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Fig. 1. LCV in the model-based development process.

diagram (i.e., controller model) and the C code (i.e., controller implementation).
LCV checks the input-output equivalence relation between the two LTI models
by similarity checking. The contribution of this work compared to the previous
work [24] is as follows: As controller specifications are often given in the form
of block diagrams, LCV extends the preliminary prototype [24] to take not only
the state-space representation of an LTI system but also the Simulink block
diagram as an input specification model. As a result, a real-world case study,
where the controller specification of a quadrotor called Erle-Copter [11] is given
as a Simulink block diagram, was conducted using LCV and demonstrated in
this paper. In the case study with a proportional-integral-derivative (PID) con-
troller, we demonstrate that LCV successfully detects a known (reproduced) bug
of Embedded Coder as well as an unknown bug of Salsa [8], a code transforma-
tion method/tool for numerical accuracy.2 Moreover, LCV has been enhanced in
many ways such as improving in scalability, supporting fully automatic verifica-
tion procedures, providing informative output messages and handling customized
user inputs.

2 Related Work

To ensure the correctness of the controller implementation against the con-
troller model, a typically used method in practice is equivalence testing (or
back-to-back testing) [6,7,28] which compares the outputs of the executable
model and code for the common input sequence. The limitation of this testing-
based method is that it does not provide a thorough verification. Static analysis-
based approaches [3,12,14] have been used to analyze the controller code,

2 This bug has been confirmed by the author of the tool.
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Fig. 2. The verification flow of LCV.

but focuses on checking common properties such as numerical stability, the
absence of buffer overflow or arithmetic exceptions rather than verifying the
code against the model. The work of [17,27] proposes translation validation tech-
niques for Simulink diagrams and the generated codes. The verification relies
on the structure of the block diagram and the code, thus being sensitive to
the controller state while our method verifies code against the model from the
input-output perspective, not being sensitive to the controller state. Due to opti-
mization and transformation during a code generation process, a generated code
which is correct, may have a different state representation than the model’s. In
this case, our method can verify that the code is correct w.r.t. the model, but
the state-sensitive methods [17,27] cannot. [13,16,37,38] present a control soft-
ware verification approach based on the concept of proof-carrying code. In their
approach, the code annotation based on the Lyapunov function and its proof
are produced at the time of code generation. The annotation asserts control
theory related properties such as stability and convergence, but not equivalence
between the controller specifications and the implementations. In addition, their
approach requires the internal knowledge and control of the code generator to
use, and may not be applicable to the off-the-shelf black-box code generators.
The work of [19,24,25] presents methods to verify controller implementations
against LTI models, but does not relate the block diagram models with the
implementation code.

3 Verification Flow of Linear Controller Verifier

The goal of LCV is to verify linear controller software. Controllers are generally
specified as a function that, given the current state of the controller and a set of
input sensor values, computes control output that is sent to the system actuators
and the new state of the controller. In this work, we focus on linear-time invariant
(LTI) controllers [26], since these are the most commonly used controllers in
control systems. In software, controllers are implemented as a subroutine (or a
function in the C language). This function is known as the step function (see [23]
for an example). The step function is invoked by the control system periodically,
or upon arrival of new sensor data (i.e., measurements).

This section describes the verification flow (shown in Fig. 2) and the imple-
mentation details of LCV. LCV takes as input a Simulink block diagram
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(i.e., controller model), a C code (i.e., controller implementation) and a tolerance
threshold as a real number. In addition, LCV requires the following information
to be given as input: the name of the step function and the interface of the step
function. LCV assumes that the step function interfaces through the given input
and output global variables. In other words, the input and output variables are
declared in the global scope, and the input variables are written (or set) before
the execution (or entrance) of the step function. Likewise, the output variables
are read (or used) after the execution (or exit) of the step function.3 Thus, the
step function interface comprises the list of input (and output) variables of the
step function in the same order of the corresponding input (and output) ports of
the block diagram model. Since LCV verifies controllers from the input-output
perspective, LCV does not require any state related information (i.e., the dimen-
sion of the controller state, or the list of state variables of the step function).
Instead, LCV automatically obtains such information about the controller state
from the analysis of the input C code and the input Simulink block diagram.

A restriction on this work is that LCV only focuses on verifying linear con-
troller software. Thus, the scope of inputs of LCV is limited as follows: the input
C program is limited to be a step function that only has a deterministic and
finite execution path for a symbolic input, which is often found to be true for
many embedded linear controllers. Moreover, the input Simulink block diagram
is limited to be essentially an LTI system model (i.e., satisfying the superpo-
sition property). The block diagram that LCV can handle may include basic
blocks (e.g., constant block, gain block, sum block), subsystem blocks (i.e., hier-
archy) and series/parallel/feedback connections of those blocks. Extending LCV
to verify a broader class of controllers is an avenue for future work.

The key idea in the verification flow (shown in Fig. 2) is that LCV represents
both the Simulink block diagram and the C code in the same form of mathemat-
ical representation (i.e., the state space representation of an LTI system), and
compares the two LTI models from the input-output perspective. Thus, the first
step of the verification is to transform the Simulink block diagram into a state
space representation of an LTI system, which is defined as follows:

zk+1 = Azk + Buk

yk = Czk + Duk.
(1)

where uk, yk and zk are the input vector, the output vector and the state vector
at time k respectively. The matrices A, B, C and D are controller parame-
ters. We convert the Simulink block diagram into the LTI model employing the
‘exact linearization’ (or block-by-block linearization) feature of Simulink Control
Design [33] which is implemented in the built-in Matlab function linearize. In
this step, each individual block is linearized first and then combined together
with others to produce the overall block diagram’s LTI model.

3 This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink.



218 J. Park et al.

Fig. 3. The simulink block diagram for checking the additivity of the controller

This step assumes that the block diagram represents a linear controller model.
A systematic procedure4 can remove this assumption: one can check whether a
given Simulink block diagram is linear (i.e., both additive and homogeneous)
using Simulink Design Verifier [34], a model checker for Simulink. For example,
to check if a controller block in Simulink is additive or not, as shown in Fig. 3, one
can create two additional duplicates of the controller block, generate two different
input sequences, and exhaustively check if the output of the controller in response
to the sum of two inputs is equal to the sum of two outputs of the controllers in
response the two inputs respectively. In Fig. 3, controller wrapper wraps the
actual controller under test, and internally performs multiplexing and demulti-
plexing to handle the multiple inputs and outputs of the controller. Simulink
Design Verifier serves checking if this holds for all possible input sequences.
However, a limitation of the current version of Simulink Design Verifier is that
it does not support all Simulink blocks and does not properly handle non-linear
cases. In these cases, alternatively, one can validate the linearity of controllers
using simulation-based testing instead of model checking, which can be system-
atically done by Simulink Test [35]. This method is not limited by any types of
Simulink blocks, and can effectively disprove the linearity of controllers for non-
linear cases. However, this alternative method using Simulink Test may not be
as rigorous as the model-checking based method using Simulink Design Verifier
because not all possible input cases are considered.

The next step in the LCV’s verification flow is to extract the LTI model from
the controller implementation C code. The idea behind this step is to exploit
the fact that linear controller codes (i.e., step function) used for embedded sys-
tems generally have simple control flows for the sake of deterministic real-time
behaviors (e.g., fixed upper bound of loops). Thus, the semantics of such linear
controller codes can be represented as a set of mathematical functions that are
loop-free, which can be further transformed into the form of an LTI model. To do
this specifically, LCV uses the symbolic execution technique which is capable of

4 This procedure is currently not implemented in LCV because the required tools such
as Simulink Design Verifier and Simulink Test mostly provide their features through
GUIs rather than APIs. Thus, this procedure will be implemented in the future work
once such APIs are available. Until then, this procedure can be performed manually.
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identifying the computation of the step function (i.e., C function which imple-
ments the controller). By the computation, we mean the big-step transition rela-
tion on global states between before and after the execution of the step function.
The big-step transition relation is represented as symbolic formulas that describe
how the global variables change as the effect of the step function execution. The
symbolic formulas associate each global variable representing the controller’s state
and output with the symbolic expression to be newly assigned to the global vari-
able, where the symbolic expression consists of the old values of the global vari-
ables representing the controller’s state and input. Then, LCV transforms the set
of equations (i.e., symbolic formulas) that represent the transition relation into a
form of matrix equation, from which an LTI model for the controller implemen-
tation is extracted [24]. LCV employs the off-the-shelf symbolic execution tool
PathCrawler [39], which outputs the symbolic execution paths and the path con-
ditions of a given C program in an extensible markup language (XML) file format.

Finally, LCV performs the input-output equivalence checking between the
LTI model obtained from the block diagram and the LTI model extracted from
the C code implementation. To do this, we employ the notion of similarity trans-
formation [26], which implies that two minimal LTI models Σ(A,B,C,D) and
Σ̂(Â, B̂, Ĉ, D̂) are input-output equivalent if and only if they are similar to each
other, meaning that there exists a non-singular matrix T such that

Â = TAT−1, B̂ = TB, Ĉ = CT−1, and D̂ = D (2)

where T is referred to as the similarity transformation matrix [26].
Given the extracted LTI model (from the C Code) and the original LTI model

(obtained from the Simulink block diagram), we first minimize both LTI models
via Kalman Decomposition [26] (Matlab function minreal). Then, the input-
output equivalence checking problem is reduced to the problem of finding the
existence of T (i.e., similarity checking problem). LCV formulates the similarity
checking problem as a convex optimization problem5, and employs CVX [15], a
convex optimization solver to find T. In the formulation, the equality relation
is relaxed up to a given tolerance threshold ε in order to tolerate the numeri-
cal errors that come from multiple sources (e.g., the controller parameters, the
computation of the implementation, the verification process). We assume that
the tolerance threshold ε is given by a control engineer as the result of robust-
ness analysis so that the verified controller implementation preserves the certain
desired properties of the original controller model (e.g., stability). ε is chosen to
be 10−5 for the case study that we performed in the next section.

The output of LCV is as follows: First of all, when LCV fails to extract an
LTI model from code, it tells the reason (e.g., non-deterministic execution paths
for a symbolic input due to branching over a symbolic expression condition,
non-linear arithmetic computation due to the use of trigonometric functions).
Moreover, for the case of non-equivalent model and code, LCV provides the
LTI models obtained from the Simulink block diagram model and the C code
respectively, so that the user can simulate both of the models and easily find
5 Please refer [24] for the details of the formulation.
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Fig. 4. The block diagram of the PID controller.

an input sequence that leads to a discrepancy between their output behaviors.6

Finally, for the case of equivalent model and code, LCV additionally provides a
similarity transformation matrix T between the two LTI models, which is the
key evidence to prove the input-output equivalence between the model and code.

4 Evaluation

We evaluate LCV through conducting a case study using a standard PID con-
troller and a controller used in a quadrotor. We also evaluate the scalability of
LCV in the subsequent subsection.

4.1 Case Study

PID Controller. In our case study, we first consider a proportional-integral-
derivative (PID) controller, which is a closed-loop feedback controller commonly
used in various control systems (e.g., industrial control systems, robotics, auto-
motive). A PID controller attempts to minimize the error value et over time
which is defined as the difference between a reference point rt (i.e., desired
value) and a measurement value yt (i.e., et = rt − yt). To do this, the PID
controller adjusts a control input ut computing the sum of the proportion term
kpet, integral term kiT

∑t
i=1 et and derivative term kd

et−et−1
T so that

ut = kpet + kiT

t∑

i=1

et + kd
et − et−1

T
. (3)

where kp, ki and kd are gain constants for the corresponding term, and T is the
sampling time. Figure 4 shows the Simulink block diagram for the PID controller,
where the gain constants are defined as kp = 9.4514, ki = 0.69006, kd = 2.8454,
and the sampling period is 0.2 s.
6 This feature to generate counterexamples will be implemented in a future version of

LCV.
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Table 1. Summary of the case study with the PID controller (Fig. 4) and its different
versions of implementation

Impl. Description Buggy? LCV output

PID1 Generated by Embedded Coder No Equivalent

PID2 Optimized from PID1 by Salsa (Level 1) No Equivalent

PID3 Optimized from PID1 by Salsa (Level 2) Yes (due to a
Not equivalent

bug in Salsa)

PID3’ Corrected from PID3 manually No Equivalent

PID4 Generated by Embedded Coder with Yes (due to a bug in
Not equivalent

a buggy option triggered Embedded Coder)

For the PID controller model, we check various different versions of imple-
mentations such as PID1, PID2, PID3, PID3’ and PID4 (summarized in Table 1).
PID1 is obtained by code generation from the model using Embedded Coder.
PID2 is obtained from PID1 by the transformation (or optimization) of Salsa [8]
to improve the numerical accuracy (using the first transformation technique
(referred to as Level 1) presented in [8]). In a similar way, PID3 is obtained by
the transformation from PID1 for an even better numerical accuracy (follow-
ing the second transformation technique (referred to as Level 2) as Listing 3
in [8]). However, this transformation for PID3 contains an unintended bug by
mistake that has been confirmed by the authors of the paper (i.e., variable s is
not computed correctly, and the integral term is redundantly added to the out-
put), which makes PID3 incorrect. PID3’ is an implementation that manually
corrects PID3. Using LCV, we can verify that PID1, PID2 and PID3’ are correct
implementations, but PID3 is not (see the verification result for PID3 [21]).

Moreover, PID4 is obtained by injecting a known bug of Embedded Coder into
the implementation PID1. The bug with the ID 1658667 [29] that exists in the
EmbeddedCoderversion from2015a through2017b (7 consecutiveversions) causes
the generated code to have state variable declarations in a wrong scope. The state
variables which are affected by the bug are mistakenly declared as local variables
inside the step function instead of being declared as global variables. Thus, those
state variables affected by the bug are unable to preserve their values throughout
the consecutive step function executions. LCV can successfully detect the injected
bugby identifying that the extractedmodel fromthe controller codedoesnotmatch
the original controller model (see the verification result for PID4 [22]).

Quadrotor Controller. The second and more complex application in our case
study is a controller of the quadrotor called Erle-Copter. The quadrotor con-
troller controls the quadrotor to be in certain desired angles in roll, yaw and
pitch. The quadrotor uses the controller software from the open source project
Ardupilot [1]. Inspired by the controller software, we obtained the Simulink block
diagram shown in Fig. 5. In the names of the Inport blocks, the suffix d indicates
the desired angle, d, the measured angle, and rate y, the angular speed. Each
component of the coordinate of the quadrotor is separately controlled by its own
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Fig. 5. Our quadrotor platform (Left). The quadrotor controller block diagram (Right).

cascade PID controller [18]. A cascade of PID controller is a sequential connec-
tion of two PID controllers such that one PID controller controls the reference
point of another. In Fig. 5, there are three cascade controllers for the controls
of roll, pitch and yaw. For example, for the roll control, roll pid controls the
angle of roll, while roll rate PID controls the rate of roll using the output of
roll PID as the reference point. The sampling time T of each PID controller is
2.5 ms. This model uses the built-in PID controller block of Simulink to enable
the PID auto-tuning software in Matlab (i.e., pidtune()). The required physical
quantities for controlling roll and pitch are identified by physical experiments
[10]. We use Embedded Coder to generate the controller code for the model, and
verify that the generated controller code correctly implements the controller
model using LCV (see the verification result for the quadrotor controller [20]).

4.2 Scalability

To evaluate the scalability of LCV, we measure the running time of LCV ver-
ifying the controllers of different dimensions (i.e., the size of the LTI model).
We randomly generate LTI controller models using Matlab function drss vary-
ing the controller dimension n from 2 to 50. The range of controller sizes was
chosen based on our observation of controller systems in practice. We construct
Simulink models with LTI system blocks that contain the generated LTI models,
and use Embedded Coder to generate the implementations for the controllers.
The running time of LCV for verifying the controllers with different dimensions
is presented in Fig. 6, which shows that LCV is scalable for the realistic size
of controller dimension. Compared to the previous version (or the preliminary
prototype) of LCV [24], the new version of LCV has been much improved in scal-
ability by tighter integration with the symbolic execution engine PathCrawler
(i.e., in the model extraction phase, the invocation of constraint solver along
with symbolic execution has been significantly reduced).
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The running time of LCV
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Fig. 6. The running time of LCV for verifying controllers with dimension n.

5 Conclusion

We have presented our tool LCV which verifies the equivalence between a given
Simulink block diagram and a given C implementation from the input-output
perspective. Through an evaluation, we have demonstrated that LCV is appli-
cable to the verification of a real-world system’s controller and scalable for the
realistic controller size. Our current/future development work includes: relating
the equivalence precision and the controller’s performance, and handling nonlin-
ear controllers.
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Abstract. Static program analyzers are increasingly effective in check-
ing correctness properties of programs and reporting any errors found,
often in the form of error traces. However, developers still spend a signif-
icant amount of time on debugging. This involves processing long error
traces in an effort to localize a bug to a relatively small part of the pro-
gram and to identify its cause. In this paper, we present a technique for
automated fault localization that, given a program and an error trace,
efficiently narrows down the cause of the error to a few statements. These
statements are then ranked in terms of their suspiciousness. Our tech-
nique relies only on the semantics of the given program and does not
require any test cases or user guidance. In experiments on a set of C
benchmarks, we show that our technique is effective in quickly isolat-
ing the cause of error while out-performing other state-of-the-art fault-
localization techniques.

1 Introduction

In recent years, program analyzers are increasingly applied to detect errors in
real-world software. When detecting an error, static (or dynamic) analyzers often
present the user with an error trace (or a failing test case), which shows how
an assertion can be violated. Specifically, an error trace refers to a sequence of
statements through the program that leads to the error. The user then needs
to process the error trace, which is often long for large programs, in order to
localize the problem to a manageable number of statements and identify its
actual cause. Therefore, despite the effectiveness of static program analyzers
in detecting errors and generating error traces, users still spend a significant
amount of time on debugging.

Our Approach. To alleviate this situation, we present a technique for auto-
mated fault localization, which significantly reduces the number of statements
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that might be responsible for a particular error. Our technique takes as input
a program and an error trace, generated by a static analyzer, and determines
which statements along the error trace are potential causes of the error. We
identify the potential causes of an error by checking, for each statement along
the error trace, whether there exists a local fix such that the trace verifies. We
call this technique semantic fault localization because it exclusively relies on the
semantics of the given program, without for instance requiring any test cases or
guidance from the user.

Although there is existing work that also relies on program semantics for
fault localization, our technique is the first to semantically rank the possible
error causes in terms of suspiciousness. On a high level, we compute a suspi-
ciousness score for a statement by taking into account how much code would
become unreachable if we were to apply a local fix to the statement. Specifically,
suspiciousness is inversely proportional to the amount of unreachable code. The
key insight is that developers do not intend to write unreachable code, and thus
the cause of the error is more likely to be a statement that, when fixed, renders
fewer parts of the program unreachable.

Our experimental evaluation compares our technique to six fault-localization
approaches from the literature on the widely-used TCAS benchmarks (of the
Siemens test suite [19]). We show that in 30 out of 40 benchmarks, our technique
narrows down the cause of the error more than any of the other approaches and is
able to pin-point the faulty statement in 14 benchmarks. In addition, we evaluate
our technique on several seeded bugs in SV-COMP benchmarks [5].

Contributions. We make the following contributions:

– We present an automated fault-localization technique that is able to quickly
narrow down the error cause to a small number of suspicious statements.

– We describe an effective ranking mechanism for the suspicious statements.
– We implement this technique in a tool architecture for localizing and

ranking suspicious statements along error traces reported by the Ultimate
Automizer [16] software model checker.

– We evaluate the effectiveness of our technique on 51 benchmarks.

2 Guided Tour

This section uses a motivating example to give an overview of our technique for
semantic fault localization and suspiciousness ranking.

Example. Let us consider the simple program on the left of Fig. 1. The state-
ment on line 2 denotes that y is assigned a non-deterministic value, denoted by �.
The conditional on line 3 has a non-deterministic predicate, but in combination
with the assume statements (lines 4 and 7), it is equivalent to a conditional of
the following form:

if (y < 3) { x := 0; } else { x := 1; }
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Fig. 1. The running example (left) and its control-flow graph (right).

The assertion on line 10 fails when program execution takes the then branch of
the if statement, and thus, it cannot be verified by a (sound) static analyzer.
The error trace that is generated by a static analyzer for this program is

x := 2; y := � ; assume y < 3; x := 0; assume x ≤ 0; assert false

and we mark it in bold on the control-flow graph of the program, which is shown
on the right of Fig. 1. Statement assume x ≤ 0 indicates that the error trace
takes the failing branch of the assertion on line 10 of the program. The assert
false statement denotes that this trace through the program results in an error.

Fault Localization. From such an error trace, our technique is able to deter-
mine a set of suspicious assignment statements, which we call trace-aberrant
statements. Intuitively, these are statements along the error trace for which there
exists a local fix that makes the trace verify. An assignment statement has a local
fix if there exists an expression that may replace the right-hand side of the assign-
ment such that the error becomes unreachable along this error trace. (In Sect. 5,
we explain how our technique is able to identify other suspicious statements,
apart from assignments.)

For example, statement x := 0 of the error trace is trace-aberrant because
there exists a value that may be assigned to variable x such that the trace veri-
fies. In particular, when x is assigned a positive value, assume x ≤ 0 terminates
execution before reaching the error. Statement y := � is trace-aberrant for sim-
ilar reasons. These are all the trace-aberrant statements along this error trace.
For instance, x := 2 is not trace-aberrant because the value of x is over-written
by the second assignment to the variable, thus making the error reachable along
this trace, regardless of the initial value of x.

Suspiciousness Ranking. So far, we have seen that, when given the above error
trace and the program of Fig. 1, semantic fault localization detects two trace-
aberrant statements, y := � and x := 0. Since for real programs there can be
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many trace-aberrant statements, our technique computes a semantic suspicious-
ness score for each of them. Specifically, the computed score is inversely propor-
tional to how much code would become unreachable if we applied a local fix to
the statement. This is because developers do not intentionally write unreachable
code. Therefore, when they make a mistake, they are more likely to fix a state-
ment that renders fewer parts of the program unreachable relatively to other
suspicious statements.

For example, if we were to fix statement x := 0 as discussed above (that
is, by assigning a positive value to x), no code would become unreachable. As
a result, this statement is assigned the highest suspiciousness score. On the
other hand, if we were to fix statement y := � such that 3 ≤ y holds and the
trace verifies, the then branch of the if statement would become unreachable.
Consequently, y := � is assigned a lower suspiciousness score than x := 0.

As we show in Sect. 6, this ranking mechanism is very effective at narrowing
down the cause of an error to only a few lines in the program.

Fig. 2. A simple programming language.

3 Semantic Fault Localization

As mentioned in the previous section, our technique consists of two steps, where
we determine (trace-)aberrant statements in the first step and compute their
suspiciousness ranks in the next one.

3.1 Programming Language

To precisely describe our technique, we introduce a small programming language,
shown in Fig. 2. As shown in the figure, a program consists of a statement, and
statements include sequencing, assignments, assertions, assumptions, condition-
als, and loops. Observe that conditionals and loops have non-deterministic pred-
icates, but note that, in combination with assumptions, they can express any
conditional or loop with a predicate p. To simplify the discussion, we do not
introduce additional constructs for procedure definitions and calls.

We assume that program execution terminates as soon as an assertion or
assumption violation in encountered (that is, when the corresponding predicate
evaluates to false). For simplicity, we also assume that our technique is applied
to one failing assertion at a time.
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3.2 Trace-Aberrant Statements

Recall from the previous section that trace-aberrant statements are assignments
along the error trace for which there exists a local fix that makes the trace verify
(that is, the error becomes unreachable along this trace):

Definition 1 (Trace aberrance). Let τ be a feasible error trace and s an
assignment statement of the form v := � or v := e along τ . Statement s is trace-
aberrant iff there exists an expression e′ that may be assigned to variable v such
that the trace verifies.

To determine which assignments along an error trace are trace-aberrant, we
first compute, in the post-state of each assignment, the weakest condition that
ensures that the trace verifies. We, therefore, define a predicate transformer WP
such that, if WP(S ,Q) holds in a state along the error trace, then the error
is unreachable and Q holds after executing statement S. The definition of this
weakest-precondition transformer is standard [9] for all statements that may
appear in an error trace:

– WP(s1; s2, Q) ≡ WP(s1 ,WP(s2 ,Q))
– WP(v := �,Q) ≡ ∀v′.Q[v := v′],where v′ /∈ freeVars(Q)
– WP(v := e,Q) ≡ Q[v := e]
– WP(assert false, Q) ≡ false
– WP(assume p,Q) ≡ p ⇒ Q

In the weakest precondition of the non-deterministic assignment, v′ is fresh in
Q and Q[v := v′] denotes the substitution of v by v′ in Q.

To illustrate, we compute this condition in the post-state of each assignment
along the error trace of Sect. 2. Weakest precondition

WP(assume x ≤ 0;assert false, true) ≡ 0 < x

should hold in the pre-state of statement assume x ≤ 0, and thus in the post-
state of assignment x := 0, for the trace to verify. Similarly, 3 ≤ y and false
should hold in the post-state of assignments y = � and x := 2, respectively.
Note that condition false indicates that the error is always reachable after assign-
ment x := 2.

Second, we compute, in the pre-state of each assignment along the error trace,
the strongest condition that holds when executing the error trace until that state.
We define a predicate transformer SP such that condition SP(P ,S ) describes
the post-state of statement S for an execution of S that starts from an initial
state satisfying P . The definition of this strongest-postcondition transformer is
also standard [10] for all statements that may appear in an error trace:

– SP(P, s1; s2) ≡ SP(SP(P , s1 ), s2 )
– SP(P, v := �) ≡ ∃v′.P [v := v′],where v′ /∈ freeVars(P )
– SP(P, v := e) ≡ ∃v′.P [v := v′] ∧ v = e[v := v′],

where v′ /∈ freeVars(P ) ∪ freeVars(e)



Semantic Fault Localization and Suspiciousness Ranking 231

– SP(P, assert false) ≡ false
– SP(P, assume p) ≡ P ∧ p

In the strongest postcondition of the assignment statements, v′ represents the
previous value of v.

For example, strongest postcondition

SP(true, x := 2) ≡ x = 2

holds in the post-state of assignment x := 2, and therefore in the pre-state of
y := �. Similarly, the strongest such conditions in the pre-state of assignments
x := 2 and x := 0 along the error trace are true and x = 2∧y < 3, respectively.

Third, our technique determines if an assignment a (of the form v := � or
v := e) along the error trace is trace-aberrant by checking whether the Hoare
triple [17] {φ} v := � {ψ} is valid. Here, φ denotes the strongest postcondition
in the pre-state of assignment a, v the left-hand side of a, and ψ the negation
of the weakest precondition in the post-state of a. If this Hoare triple is invalid,
then assignment statement a is trace-aberrant, otherwise it is not.

Intuitively, the validity of the Hoare triple implies that, when starting from
the pre-state of a, the error is always reachable no matter which value is assigned
to v. In other words, there is no local fix for statement a that would make
the trace verify. Consequently, assignment a is not trace-aberrant since it can-
not possibly be the cause of the error. As an example, consider statement
x := 2. For this assignment, our technique checks the validity of the Hoare triple
{true} x := � {true}. Since any value for x satisfies the true postcondition,
assignment x := 2 is not trace-aberrant.

If, however, the Hoare triple is invalid, there exists a value for variable v such
that the weakest precondition in the post-state of a holds. This means that there
is a local fix for a that makes the error unreachable. As a result, statement a
is found to be trace-aberrant. For instance, for statement x := 0, we construct
the following Hoare triple: {x = 2 ∧ y < 3} x := � {x ≤ 0}. This Hoare triple
is invalid because there are values that may be assigned to x such that x ≤ 0
does not hold in the post-state. Assignment x := 0 is, therefore, trace-aberrant.
Similarly, for y := �, the Hoare triple {x = 2} y := � {y < 3} is invalid.

3.3 Program-Aberrant Statements

We now define program-aberrant statements; these are assignments for which
there exists a local fix that makes every trace through them verify:

Definition 2 (Program aberrance). Let τ be a feasible error trace and s
an assignment statement of the form v := � or v := e along τ . Statement s
is program-aberrant iff there exists an expression e′ that may be assigned to
variable v such that all traces through s verify.

Based on the above definition, the trace-aberrant assignments in the program
of Fig. 1 are also program-aberrant. This is because there is only one error trace
through these statements.
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As another example, let us replace the assignment on line 8 of the program by
x := -1. In this modified program, the assertion on line 10 fails when program
execution takes either branch of the if statement. Now, assume that a static
analyzer, which clearly fails to verify the assertion, generates the same error
trace that we described in Sect. 2 (for the then branch of the if statement). Like
before, our technique determines that statements y := � and x := 0 along this
error trace are trace-aberrant. However, although there is still a single error trace
through statement x := 0, there are now two error traces through y := �, one
for each branch of the conditional. We, therefore, know that x := 0 is program-
aberrant, but it is unclear whether assignment y := � is.

To determine which trace-aberrant assignments along an error trace are also
program-aberrant, one would need to check if there exists a local fix for these
statements such that all traces through them verify. Recall that there exists a fix
for a trace-aberrant assignment if there exists a right-hand side that satisfies the
weakest precondition in the post-state of the assignment along the error trace.
Therefore, checking the existence of a local fix for a program-aberrant statement
involves computing the weakest precondition in the post-state of the statement
in the program, which amounts to program verification and is undecidable.

Identifying which trace-aberrant statements are also program-aberrant is
desirable since these are precisely the statements that can be fixed for the pro-
gram to verify. However, determining these statements is difficult for the reasons
indicated above. Instead, our technique uses the previously-computed weakest
preconditions to decide which trace-aberrant assignments must also be program-
aberrant, in other words, it can under-approximate the set of program-aberrant
statements. In our experiments, we find that many trace-aberrant statements
are must-program-aberrant.

To compute the must-program-aberrant statements, our technique first iden-
tifies the trace-aberrant ones, for instance, y := � and x := 0 for the modified
program. In the following, we refer to the corresponding error trace as ε.

As a second step, our technique checks whether all traces through the trace-
aberrant assignments verify with the most permissive local fix that makes ε
verify. To achieve this, we instrument the faulty program as follows. We replace a
trace-aberrant statement ai of the form v := e by a non-deterministic assignment
v := � with the same left-hand side v. Our technique then introduces an assume
statement right after the non-deterministic assignment. The predicate of the
assumption corresponds to the weakest precondition that is computed in the
post-state of the assignment along error trace ε1. We apply this instrumentation
separately for each trace-aberrant statement ai, where i = 0, . . . , n, and we refer
to the instrumented program that corresponds to trace-aberrant statement ai

as Pai
. (Note that our technique uses this instrumentation for ranking aberrant

statements in terms of suspiciousness, as we explain in Sect. 4.) Once we obtain
a program Pai

, we instrument it further to add a flag that allows the error to

1 Any universal quantifier appearing in the weakest precondition can be expressed
within the language of Fig. 2 by using non-deterministic assignments.
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manifest itself only for traces through statement ai (as per Definition 2). We
denote each of these programs by P †

ai
.

For example, the light gray boxes on the right show
the instrumentation for checking whether statement x
:= 0 of the modified program is program-aberrant (the
darker boxes should be ignored). Lines 8–9 constitute
the instrumentation that generates program Px := 0.
As explained in Sect. 3.2, when the computed weakest
precondition holds on line 9, it implies that trace ε ver-
ifies. Consequently, this instrumentation represents a
hypothetical local fix for assignment x := 0. Lines 1,
10, and 15 block any program execution that does not
go through statement x := 0. As a result, the asser-
tion may fail only due to failing executions through
this statement. Similarly, when considering the dark
gray boxes in addition to lines 1 and 15 (and ignor-
ing all other light boxes), we obtain P †

y := �. Line 4
alone constitutes the instrumentation that generates
program Py := �.

Third, our technique runs the static analyzer on each of the n instrumented
programs P †

ai
. If the analyzer does not generate a new error trace, then state-

ment ai must be program-aberrant, otherwise we do not know. For instance,
when running the static analyzer on P †

x := 0 from above, no error is detected.
Statement x := 0 is, therefore, program-aberrant. However, an error trace is
reported for program P †

y := � (through the else branch of the conditional). As
a result, our technique cannot determine whether y := � is program-aberrant.
Notice, however, that this statement is, in fact, not program-aberrant because
there is no fix that we can apply to it such that both traces verify.

3.4 k-Aberrance

So far, we have focused on (trace- or program-) aberrant statements that may
be fixed to single-handedly make one or more error traces verify. The notion
of aberrance, however, may be generalized to sets of statements that make the
corresponding error traces verify only when fixed together:

Definition 3 (k-Trace aberrance). Let τ be a feasible error trace and s̄ a set
of assignment statements of the form v := � or v := e along τ . Statements s̄ are
|s̄|-trace-aberrant, where |s̄| is the cardinality of s̄, iff there exist local fixes for
all statements in s̄ such that trace τ verifies.

Definition 4 (k-Program aberrance). Let τ̄ be the set of all feasible error
traces through any assignment statement s in a set s̄. Each statement s is of
the form v := � or v := e along an error trace τ in τ̄ . Statements s̄ are |s̄|-
program-aberrant, where |s̄| is the cardinality of s̄, iff there exist local fixes for
all statements in s̄ such that all traces τ̄ verify.
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For example, consider the modified version of the program in Fig. 1 that
we discussed above. Assignments x := 0 and x := -1 are 2-program-aberrant
because their right-hand side may be replaced by a positive value such that both
traces through these statements verify.

Our technique may be adjusted to compute k-aberrant statements by explor-
ing all combinations of k assignments along one or more error traces.

4 Semantic Suspiciousness Ranking

In this section, we present how aberrant statements are ranked in terms of their
suspiciousness. As mentioned earlier, the suspiciousness score of an aberrant
statement is inversely proportional to how much code would become unreachable
if we applied a local fix to the statement.

First, for each aberrant statement ai, where i =
0, . . . , n, our technique generates the instrumented
program Pai

(see Sect. 3.3 for the details). Recall that
the trace-aberrant statements for the program of Fig. 1
are y := � and x := 0.

Second, we check reachability of the code in each of
these n instrumented programs Pai

. Reachability may
be simply checked by converting all existing assertions
into assumptions and introducing an assert false
at various locations in the program. An instrumenta-
tion for checking reachability in Px := 0 is shown on
the right; all changes are highlighted. In particular,
we detect whether the injected assertion on line 7 is
reachable by passing the above program (without the dark gray box) to an off-
the-shelf analyzer. We can similarly check reachability of the other assertion. In
the above program, both assertions are reachable, whereas in the corresponding
program for assignment y := �, only one of them is. The number of reachable
assertions in a program Pai

constitutes the suspiciousness score of statement ai.
As a final step, our technique ranks the aberrant statements in order of

decreasing suspiciousness. Intuitively, this means that, by applying a local fix to
the higher-ranked statements, less code would become unreachable in comparison
to the statements that are ranked lower. Since developers do not typically intend
to write unreachable code, the cause of the error in P is more likely to be a higher-
ranked aberrant statement. For our running example, trace-aberrant statement
x := 0 is ranked higher than y := �.

As previously discussed, when modifying the program of Fig. 1 to replace
assignment x := 1 by x := -1, our technique determines that only x := 0
must be program-aberrant. For the error trace through the other branch of the
conditional, we would similarly identify statement x := -1 as must-program-
aberrant. Note that, for this example, must program aberrance does not miss
any program-aberrant statements. In fact, in our experiments, must program
aberrance does not miss any error causes, despite its under-approximation.
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5 Implementation

We have implemented our technique in a toolchain for localizing and ranking sus-
picious statements in C programs. We used UAutomizer in the Ultimate analysis
framework to obtain error traces (version 0.1.23).UAutomizer is a softwaremodel
checker that translates C programs to Boogie [4] and then employs an automata-
basedverification approach [16].Our implementation extendsUAutomizer to iden-
tify (trace- or program-) aberrant statements along the generated error traces, as
we describe in Sect. 3. Note that, due to abstraction (for instance, of library calls),
UAutomizer may generate spurious error traces. This is an orthogonal issue that
we do not address in this work.

To also identify aberrant expressions, for instance, predicates of conditionals
or call arguments, we pre-process the program by first assigning these expressions
to temporary variables, which are then used instead. This allows us to detect
error causes relating to statements other than assignments.

Once the aberrant statements have been determined, we instrument the
Boogie code to rank them (see Sect. 4). Specifically, our implementation inlines
procedures and injects an assert false statement at the end of each basic block
(one at a time). Instead of extending the existing support for “smoke checking”
in Boogie, we implemented our own reachability checker in order to have more
control over where the assertions are injected. While this might not be as effi-
cient due to the larger number of Boogie queries (each including the time for pars-
ing, pre-processing, and SMT solving), one could easily optimize or replace this
component.

6 Experimental Evaluation

We evaluate the effectiveness of our technique in localizing and ranking suspi-
cious statements by applying our toolchain to several faulty C programs. In the
following, we introduce our set of benchmarks (Sect. 6.1), present the experimen-
tal setup (Sect. 6.2), and investigate four research questions (Sect. 6.3).

6.1 Benchmark Selection

For our evaluation, we used 51 faulty C programs from two independent sources.
On the one hand, we used the faulty versions of the TCAS task from the Siemens
test suite [19]. The authors of the test suite manually introduced faults in several
tasks while aiming to make these bugs as realistic as possible. In general, the
Siemens test suite is widely used in the literature (e.g., [14,20,22,25–28]) for
evaluating and comparing fault-localization techniques.

The TCAS task implements an aircraft-collision avoidance system and con-
sists of 173 lines of C code; there are no specifications. This task also comes with
1608 test cases, which we used to introduce assertions in the faulty program ver-
sions. In particular, in each faulty version, we specified the correct behavior as
this was observed by running the tests against the original, correct version of the
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code. This methodology is commonly used in empirical studies with the Siemens
test suite, and it was necessary for obtaining an error trace from UAutomizer.

On the other hand, we randomly selected 4 correct programs (with over 250
lines of code) from the SV-COMP software-verification competition [5], which
includes standard benchmarks for evaluating program analyzers. We automati-
cally injected faults in each of these programs by randomly mutating statements
within the program. All SV-COMP benchmarks are already annotated with
assertions, so faults manifest themselves by violating the existing assertions.

6.2 Experimental Setup

We ran all experiments on an Intel R© Core i7 CPU @ 2.67 GHz machine with
16 GB of memory, running Linux. Per analyzed program, we imposed a timeout
of 120 s and a memory limit of 6 GB to UAutomizer.

To inject faults in the SV-COMP benchmarks, we developed a mutator that
randomly selects an assignment statement, mutates the right-hand side, and
checks whether the assertion in the program is violated. If it is, the mutator
emits a faulty program version. Otherwise, it generates up to two additional
mutations for the same assignment before moving on to another.

6.3 Experimental Results

To evaluate our technique, we consider the following research questions:

– RQ1: How effective is our technique in narrowing down the cause of an error
to a small number of suspicious statements?

– RQ2: How efficient is our technique?
– RQ3: How does under-approximating program-aberrant statements affect

fault localization?
– RQ4: How does our technique compare against state-of-the-art approaches

for fault localization in terms of effectiveness and efficiency?

RQ1 (Effectiveness). Tables 1 and 2 summarize our experimental results on
the TCAS and SV-COMP benchmarks, respectively. The first column of Table 1
shows the faulty versions of the program, and the second column the number
of trace-aberrant statements that were detected for every version. Similarly, in
Table 2, the first column shows the program version2, the second column the
lines of source code in every version, and the third column the number of trace-
aberrant statements. For all benchmarks, the actual cause of each error is always
2 A version is denoted by <correct-program-id>.<faulty-version-id>. We mutate the

following correct programs from SV-COMP: 1. mem slave tlm.1 true-unreach-

call false-termination.cil.c (4 faulty versions), 2. kundu true-unreach-call

false-termination.cil.c (4 faulty versions), 3. mem slave tlm.2 true-unreach-

call false-termination.cil.c (2 faulty versions), and 4. pc sfifo 1 true-un

reach-call false-termination.cil.c (1 faulty version). All versions are at:
https://github.com/numairmansur/SemanticFaultLocalization Benchmarks.

https://github.com/numairmansur/SemanticFaultLocalization_Benchmarks
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Table 1. Our experimental results for the TCAS benchmarks.

included in the statements that our technique identifies as trace-aberrant. This
is to be expected since the weakest-precondition and strongest-postcondition
transformers that we use for determining trace aberrance are known to be sound.

The fourth column of Table 1 and the fifth column of Table 2 show the suspi-
ciousness rank that our technique assigns to the actual cause of each error. For
both sets of benchmarks, the average rank of the faulty statement is 3, and all
faulty statements are ranked in the top 6. A suspiciousness rank of 3 means that
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users need to examine at least three statements to identify the problem; they
might have to consider more in case multiple statements have the same rank.

To provide a better indication of how much code users have to examine to
identify the bug, the eighth column of Table 1 and the seventh column of Table 2
show the percentage reduction in the program size. On average, our technique
reduces the code size down to 5% for TCAS and less than 1% for SV-COMP.

RQ2 (Efficiency). The sixth column of Table 1 shows the time that our tech-
nique requires for identifying the trace-aberrant statements in a given error trace
as well as for ranking them in terms of suspiciousness. This time does not include
the generation of the error trace by UAutomizer. As shown in the table, our
technique takes only a little over 2 min on average to reduce a faulty program
to about 5% of its original size.

Table 2. Our experimental results for the SV-COMP benchmarks.

Prg
LoSC

Abr stmts Rank Rdc (%)
ver trc prg trc prg trc prg

1.1 1336 34 29 4 2 0.4 0.2
1.2 1336 34 28 4 2 0.4 0.2
1.3 1336 34 31 2 1 0.2 0.1
1.4 1336 34 30 3 1 0.4 0.1
2.1 630 23 10 3 2 1.3 0.3
2.2 630 16 8 1 1 0.3 0.3
2.3 630 22 9 3 2 1.3 0.3
2.4 630 27 25 4 3 1.2 1.1
3.1 1371 37 33 3 1 0.3 0.2
3.2 1371 37 32 3 1 0.3 0.1
4.1 360 18 8 4 2 3.3 0.8

Average 28.7 22.0 3.0 1.6 0.8 0.3

Note that most of this time (98.5% on average) is spent on the suspiciousness
ranking. The average time for determining the trace-aberrant statements in an
error trace is only 1.7 s. Recall from Sect. 5 that our reachability analysis, which is
responsible for computing the suspiciousness score of each aberrant statement, is
not implemented as efficiently as possible (see Sect. 5 for possible improvements).

RQ3 (Program aberrance). In Sect. 3.3, we discussed that our technique can
under-approximate the set of program-aberrant statements along an error trace.
The third, fifth, seventh, and ninth columns of Table 1 as well as the fourth, sixth,
and eighth columns of Table 2 show the effect of this under-approximation.

There are several observations to be made here, especially in comparison
to the experimental results for trace aberrance. First, there are fewer aberrant
statements, which is to be expected since (must-)program-aberrant statements
may only be a subset of trace-aberrant statements. Perhaps a bit surprisingly, the
actual cause of each error is always included in the must-program-aberrant state-
ments. In other words, the under-approximation of program-aberrant statements
does not miss any error causes in our benchmarks. Second, the suspiciousness
rank assigned to the actual cause of each error is slightly higher, and all faulty
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statements are ranked in the top 5. Third, our technique requires about 1.5 min
for fault localization and ranking, which is faster due to the smaller number of
aberrant statements. Fourth, the code is reduced even more, down to 4.3 for
TCAS and 0.3% for SV-COMP.

RQ4 (Comparison). To compare our technique against state-of-the-art fault-
localization approaches, we evaluated how five of the most popular [35] spectrum-
based fault-localization (SBFL) techniques [20,24,34] perform on our bench-
marks. In general, SBFL is the most well-studied and evaluated fault-localization
technique in the literature [26]. SBFL techniques essentially compute suspicious-
ness scores based on statement-execution frequencies. Specifically, the more fre-
quently a statement is executed by failing test cases and the less frequently it is
executed by successful tests, the higher its suspiciousness score. We also compare
against an approach that reduces fault localization to the maximal satisfiability
problem (MAX-SAT) and performs similarly to SBFL.

The last eight columns of Table 1 show the comparison in code reduction
across different fault-localization techniques. Columns A, B, C, D, and E refer to
the SBFL techniques, and in particular, to Tarantula [20], Ochiai [2], Op2 [24],
Barinel [1], and DStar [34], respectively. The last column (F) corresponds to
BugAssist [21,22], which uses MAX-SAT. To obtain these results, we imple-
mented all SBFL techniques and evaluated them on TCAS using the existing
test suite. For BugAssist, we used the published percentages of code reduction
for these benchmarks [22]. Note that we omit version 38 in Table 1 as is common
in experiments with TCAS. The fault is in a non-executable statement (array
declaration) and its frequency cannot be computed by SBFL.

The dark gray boxes in the table show which technique is most effective
with respect to code reduction for each version. Our technique for must program
aberrance is the most effective for 30 out of 40 versions. The light gray boxes in
the trace-aberrance column denote when this technique is the most effective in
comparison with columns A–F (that is, without considering program aberrance).
As shown in the table, our technique for trace aberrance outperforms approaches
A–F in 28 out of 40 versions. In terms of lines of code, users need to inspect 7–9
statements when using our technique, whereas they would need to look at 13–15
statements when using other approaches. This is a reduction of 4–8 statements,
and every statement that users may safely ignore saves them valuable time.

Regarding efficiency, our technique is comparable to SBFL (A–E); we were
not able to run BugAssist (F), but it should be very lightweight for TCAS. SBFL
techniques need to run the test suite for every faulty program. For the TCAS
tests, this takes 1 min 11 s on average on our machine. Parsing the statement-
execution frequencies and computing the suspiciousness scores takes about
5 more seconds. Therefore, the average difference with our technique ranges
from a few seconds (for program aberrance) to a little less than a minute (for
trace aberrance). There is definitely room for improving the efficiency of our
technique, but despite it being slightly slower than SBFL for these benchmarks,
it saves the user the effort of inspecting non-suspicious statements. Moreover,
note that the larger the test suite, the higher the effectiveness of SBFL, and the
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longer its running time. Thus, to be as effective as our technique, SBFL would
require more test cases, and the test suite would take longer to run. We do not
consider the time for test case generation just like we do not consider the running
time of the static analysis that generates the error traces.

7 Related Work

Among the many fault-localization techniques [35], SBFL [20,24,34] is the most
well-studied and evaluated. Mutation-based fault localization (MBFL) [23,25]
is almost as effective as SBFL but significantly more inefficient [26]. In general,
MBFL extends SBFL by considering, not only how frequently a statement is
executed in tests, but also whether a mutation to the statement affects the test
outcomes. So, MBFL generates many mutants per statement, which requires
running the test suite per mutant, and not per faulty program as in SBFL.
Our local fixes resemble mutations, but they are performed symbolically and
can be seen as applying program-level abductive reasoning [6,11,12] or angelic
verification [8] for fault localization.

The use of error invariants [7,13,18,29] is a closely-related fault-localization
technique. Error invariants are computed from Craig interpolants along an error
trace and capture which states will produce the error from that point on. They
are used for slicing traces by only preserving statements whose error invariants
before and after the statement differ. Similarly, Wang et al. [32] use a syntactic-
level weakest-precondition computation for a given error trace to produce a
minimal set of word-level predicates, which explain why the program fails. In
contrast, we use the novel notion of trace aberrance for this purpose and compute
a suspiciousness ranking to narrow down the error cause further.

Griesmayer et al. [14] use an error trace from a bounded model checker to
instrument the program with “abnormal predicates”. These predicates allow
expressions in the program to take arbitrary values, similarly to how our tech-
nique replaces a statement v := e by a non-deterministic one. Unlike our
technique, their approach may generate a prohibitively large instrumentation,
requires multiple calls to the model checker, and does not rank suspicious state-
ments.

Several fault-localization algorithms leverage the differences between faulty
and successful traces [3,15,27,36]. For instance, Ball et al. [3] make several calls
to a model checker and compare any generated counterexamples with successful
traces. In contrast, we do not require successful traces for comparisons.

Zeller [36] uses delta-debugging, which identifies suspicious parts of the input
by running the program multiple times. Slicing [31,33] removes statements that
are definitely not responsible for the error based on data and control dependen-
cies. Shen et al. [30] use unsatisfiable cores for minimizing counterexamples. Our
technique is generally orthogonal to these approaches, which could be run as a
pre-processing step to reduce the search space.
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8 Conclusion

We have presented a novel technique for fault localization and suspiciousness
ranking of statements along an error trace. We demonstrated its effectiveness in
narrowing down the error cause to a small fraction of the entire program.

As future work, we plan to evaluate the need for k-aberrance by analyzing
software patches and to combine our technique with existing approaches for
program repair to improve their effectiveness.
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Abstract. Coupled similarity is a notion of equivalence for systems with
internal actions. It has outstanding applications in contexts where inter-
nal choices must transparently be distributed in time or space, for exam-
ple, in process calculi encodings or in action refinements. No tractable
algorithms for the computation of coupled similarity have been proposed
up to now. Accordingly, there has not been any tool support.

We present a game-theoretic algorithm to compute coupled similarity,
running in cubic time and space with respect to the number of states
in the input transition system. We show that one cannot hope for much
better because deciding the coupled simulation preorder is at least as
hard as deciding the weak simulation preorder.

Our results are backed by an Isabelle/HOL formalization, as well as by
a parallelized implementation using the Apache Flink framework. Data
or code related to this paper is available at: [2].

1 Introduction

Coupled similarity hits a sweet spot within the linear-time branching-time
spectrum [9]. At that spot, one can encode between brands of process cal-
culi [14,22,25], name a branching-time semantics for Communicating Sequential
Processes [10], distribute synchronizations [23], and refine atomic actions [5,28].
Weak bisimilarity is too strong for these applications due to the occurrence of
situations with partially commited states like in the following example.

Example 1 (Gradually committing philosophers). Three philosophers A, B, and
C want to eat pasta. To do so, they must first sit down on a bench s and grab
a fork f. Unfortunately, only either A alone or the thinner B and C together
can fit on the bench, and there is just one fork. From the outside, we are only
interested in the fact which of them gets to eat. So we consider the whole bench-
and-fork business internal to the system. The following CCS structure models
the situation in the notation of [21]. The resources correspond to output actions
(which can be consumed only once) and obtaining the resources corresponds to
input actions.

Pg
def=

(
s | f | s.f.A | s.( f.B | f.C )

) \ {s, f}
A

def= aEats.A B
def= bEats.B

C
def= cEats.C

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 244–261, 2019.
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Fig. 1. A non-maximal weak/coupled simulation R on the philosopher system from
Example 1. (Color figure online)

One might now be inclined to ponder that exactly one of the philosophers will get
both resources and that we thus could merge s and f into a single resource sf:

Po
def=

(
sf | sf.A | sf.B | sf.C

) \ {sf}
The structure of Pg and Po has the transition system in Fig. 1 as its semantics.
Notice that the internal communication concerning the resource allocation turns
into internal τ -actions, which in Pg, gA, and gBC gradually decide who is going
to eat the pasta, whereas Po decides in one step.

Pg and Po are mutually related by a weak simulation (blue dashed lines in
Fig. 1) and hence weakly similar. However, there cannot be a symmetric weak
simulation relating them because Pg

τ→gBC cannot be matched symmetrically by
Po as no other reachable state shares the weakly enabled actions of gBC. Thus,
they are not weakly bisimilar. This counters the intuition that weak bisimilar-
ity ignores how much internal behavior happens between visible actions. There
seems to be no good argument how an outside observer should notice the differ-
ence whether an internal choice is made in one or two steps.

So how to fix this overzealousness of weak bisimilarity? Falling back to weak
similarity would be too coarse for many applications because it lacks the prop-
erty of weak bisimilarity to coincide with strong bisimilarity on systems without
internal behavior. This property, however, is present in notions that refine con-
trasimilarity [31]. There is an easy way to having the cake and eating it, here:
Coupled similarity is precisely the intersection of contrasimilarity and weak sim-
ilarity (Fig. 2). It can be defined by adding a weak form of symmetry (coupling)
to weak simulation. The weak simulation in Fig. 1 fulfills coupling and thus is
a coupled simulation. This shows that coupled similarity is coarse enough for
situations with gradual commitments. At the same time, it is a close fit for weak
bisimilarity, with which it coincides for many systems.
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Fig. 2. Notions of equivalence for systems with internal actions.

Up to now, no algorithms and tools have been developed to enable a wider use
of coupled similarity in automated verification settings. Parrow and Sjödin [24]
have only hinted at an exponential-space algorithm and formulated as an open
research question whether coupled similarity can be decided in P. For similar-
ity and bisimilarity, polynomial algorithms exist. The best algorithms for weak
bisimilarity [3,19,26] are slightly sub-cubic in time, O(|S|2 log |S|) for transition
systems with |S| states. The best algorithms for similarity [15,27], adapted for
weak similarity, are cubic. Such a slope between similarity and bisimilarity is
common [18]. As we show, coupled similarity inherits the higher complexity of
weak similarity. Still, the closeness to weak bisimilarity can be exploited to speed
up computations.

Contributions. This paper makes the following contributions.

– We prove that action-based single-relation coupled similarity can be defined
in terms of coupled delay simulation (Subsect. 2.2).

– We reduce weak similarity to coupled similarity, thereby showing that deciding
coupled similarity inherits the complexity of weak similarity (Subsect. 2.4).

– We present and verify a simple polynomial-time coupled simulation fixed-point
algorithm (Sect. 3).

– We characterize the coupled simulation preorder by a game and give an algo-
rithm, which runs in cubic time and can be nicely optimized (Sect. 4)

– We implement the game algorithm for parallel computation using Apache
Flink and benchmark its performance (Sect. 5).

Technical details can be found in the first author’s Master’s thesis [1]. Isabelle/
HOL [32] proofs are available from https://coupledsim.bbisping.de/isabelle/.

2 Coupled Similarity

This section characterizes the coupled simulation preorder for transition systems
with silent steps in terms of coupled delay simulation. We prove properties that
are key to the correctness of the following algorithms.

https://coupledsim.bbisping.de/isabelle/
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Fig. 3. Illustration of weak simulation and coupling on transition systems (Definition 4,
black part implies red part). (Color figure online)

2.1 Transition Systems with Silent Steps

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes (“transitions”) to future
states.

Definition 1 (Labeled transition system). A labeled transition system is a
tuple S = (S,Στ ,→) where S is a set of states, Στ is a set of actions containing
a special internal action τ ∈ Στ , and → ⊆ S ×Στ ×S is the transition relation.
We call Σ :=Στ \ {τ} the visible actions.

The weak transition relation ·̂⇒ is defined as the reflexive transitive closure
of internal steps τ̂⇒ := τ→∗

combined with â⇒ := τ̂⇒ a→ τ̂⇒ (a ∈ Σ).

As a shorthand for τ̂⇒, we also write just ⇒. We call an α̂⇒-step “weak” whereas
an α→-step is referred to as “strong” (α ∈ Στ ). A visible action a ∈ Σ is said to
be weakly enabled in p iff there is some p′ such that p

â⇒ p′.

Definition 2 (Stability and divergence). A state p is called stable iff it has
no τ -transitions, p � τ→. A state p is called divergent iff it is possible to perform
an infinite sequence of τ -transitions beginning in this state, p

τ→ω
.

2.2 Defining Coupled Similarity

Coupled simulation is often defined in terms of two weak simulations, but it is
more convenient to use just a single one [10], which extends weak simulation
with a weak form of symmetry, we shall call coupling (Fig. 3).

Definition 3 (Weak simulation). A weak simulation is a relation R ⊆ S ×S

such that, for all (p, q) ∈ R, p
α→ p′ implies that there is a q′ such that q

α̂⇒ q′

and (p′, q′) ∈ R.

Definition 4 (Coupled simulation). A coupled simulation is a weak simula-
tion R ⊆ S × S such that, for all (p, q) ∈ R, there exists a q′ such that q ⇒ q′

and (q′, p) ∈ R (coupling).
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The coupled simulation preorder relates two processes, p �CS q, iff there
is a coupled simulation R such that (p, q) ∈ R. Coupled similarity relates two
processes, p ≡CS q, iff p �CS q and q �CS p.

Adapting words from [10], p �CS q intuitively does not only mean that “p is ahead
of q” (weak simulation), but also that “q can catch up to p” (coupling). The weak
simulation on the philosopher transition system from Example 1 is coupled.

Coupled similarity can also be characterized employing an effectively stronger
concept than weak simulation, namely delay simulation. Delay simulations [11,
28] are defined in terms of a “shortened” weak step relation α=� where τ=� := id
and a=� := ⇒ a→. So the difference between a=� and â⇒ lies in the fact that the
latter can move on with τ -steps after the strong a→-step in its construction.

Definition 5 (Coupled delay simulation). A coupled delay simulation is a
relation R ⊆ S × S such that, for all (p, q) ∈ R,

– p
α→p′ implies there is a q′ such that q

α=�q′ and (p′, q′) ∈ R (delay simulation),
– and there exists a q′ such that q ⇒ q′ and (q′, p) ∈ R ( coupling).

The only difference to Definition 4 is the use of α=� instead of α̂⇒. Some cou-
pled simulations are no (coupled) delay simulations, for example, consider
R = {(c.τ, c.τ), (τ,0), (0, τ), (0,0)} on CCS processes. Still, the greatest cou-
pled simulation �CS is a coupled delay simulation, which enables the following
characterization:

Lemma 1. p �CS q precisely if there is a coupled delay simulation R such that
(p, q) ∈ R.

2.3 Order Properties and Coinduction

Lemma 2. �CS forms a preorder, that is, it is reflexive and transitive. Coupled
similarity ≡CS is an equivalence relation.

Lemma 3. The coupled simulation preorder can be characterized coinductively
by the rule:

∀p′, α. p
α→ p′ −→ ∃q′. q

α=� q′ ∧ p′ �CS q′ ∃q′. q ⇒ q′ ∧ q′ �CS p

p �CS q
.

This coinductive characterization motivates the fixed-point algorithm (Sect. 3)
and the game characterization (Sect. 4) central to this paper.

Lemma 4. If q ⇒ p, then p �CS q.

Corollary 1. If p and q are on a τ -cycle, that means p ⇒ q and q ⇒ p, then
p ≡CS q.

Ordinary coupled simulation is blind to divergence. In particular, it cannot
distinguish two states whose outgoing transitions only differ in an additional
τ -loop at the second state:
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⊥

τ

τ
τ

τ τ

Fig. 4. Example for S⊥ from Theorem 1 (S in black, S⊥\S in red). (Color figure
online)

Lemma 5. If p
α→ p′ ←→ q

α→ p′ ∨ p′ = p ∧ α = τ for all α, p′, then p ≡CS q.

Due to the previous two results, finite systems with divergence can be trans-
formed into ≡CS -equivalent systems without divergence. This connects the orig-
inal notion of stability-coupled similarity [23,24] to our modern formulation and
motivates the usefulness of the next lemma.

Coupling can be thought of as “weak symmetry.” For a relation to be sym-
metric, R−1 ⊆ R must hold whereas coupling means that R−1 ⊆ ⇒R. This
weakened symmetry of coupled similarity can guarantee weak bisimulation on
steps to stable states:

Lemma 6. Assume S is finite and has no τ -cycles. Then p �CS q and p
α̂⇒ p′

with stable p′ imply there is a stable q′ such that q
α̂⇒ q′ and p′ ≡CS q′.

2.4 Reduction of Weak Simulation to Coupled Simulation

Theorem 1. Every decision algorithm for the coupled simulation preorder in
a system S, �S

CS , can be used to decide the weak simulation preorder, �S
WS ,

(without relevant overhead with respect to space or time complexity).

Proof. Let S = (S,Στ ,→) be an arbitrary transition system and ⊥ /∈ S. Then

S⊥ :=
(
S ∪ {⊥}, Στ ,

·→ ∪ {(p, τ,⊥) | p ∈ S ∪ {⊥}}
)

extends S with a sink ⊥ that can be reached by a τ -step from everywhere. For an
illustration see Fig. 4. Note that for p, q �= ⊥, p �S

WS q exactly if p �S⊥
WS q. On S⊥,

coupled simulation preorder and weak simulation preorder coincide, �S⊥
WS =�S⊥

CS ,
because ⊥ is τ -reachable everywhere, and, for each p, ⊥ �S⊥

CS p discharges the
coupling constraint of coupled simulation.

Because �S
WS can be decided by deciding �S⊥

CS , a decision procedure for �CS

also induces a decision procedure for �WS . The transformation has linear time
in terms of state space size |S| and adds only one state to the problem size.
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1 def fp step(S,Στ ,→)(R):

2 return {(p, q) ∈ R |
3 (∀p′, α. p

α→ p′ −→ ∃q′. (p′, q′) ∈ R ∧ q
α
=� q′)

4 ∧ (∃q′. q ⇒ q′ ∧ (q′, p) ∈ R)}
5 def fp compute cs(S = (S, Στ , →)):
6 R := S × S
7 while fp stepS(R) �= R:
8 R := fp stepS(R)
9 return R
Algorithm 1: Fixed-point algorithm for the coupled simulation preorder.

3 Fixed-Point Algorithm for Coupled Similarity

The coinductive characterization of �CS in Lemma 3 induces an extremely simple
polynomial-time algorithm to compute the coupled simulation preorder as a great-
est fixed point. This section introduces the algorithm and proves its correctness.

3.1 The Algorithm

Roughly speaking, the algorithm first considers the universal relation between
states, S×S, and then proceeds by removing every pair of states from the relation
that would contradict the coupling or the simulation property. Its pseudo code
is depicted in Algorithm 1.

fp step plays the role of removing the tuples that would immediately violate
the simulation or coupling property from the relation. Of course, such a pruning
might invalidate tuples that were not rejected before. Therefore, fp compute cs
repeats the process until fp stepS(R) = R, that is, until R is a fixed point of
fp stepS .

3.2 Correctness and Complexity

It is quite straight-forward to show that Algorithm 1 indeed computes �CS

because of the resemblance between fp step and the coupled simulation property
itself, and because of the monotonicity of fp step.

Lemma 7. If R is the greatest fixed point of fp step, then R =�CS .

On finite labeled transition systems, that is, with finite S and →, the while loop
of fp compute cs is guaranteed to terminate at the greatest fixed point of fp step
(by a dual variant of the Kleene fixed-point theorem).

Lemma 8. For finite S, fp compute cs(S) computes the greatest fixed point of
fp stepS .
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Theorem 2. For finite S, fp compute cs(S) returns �S
CS .

We verified the proof using Isabelle/HOL. Due to its simplicity, we can trust
implementations of Algorithm 1 to faithfully return sound and complete �CS -
relations. Therefore, we use this algorithm to generate reliable results within test
suites for the behavior of other �CS -implementations.

The space complexity, given by the maximal size of R, clearly is in O(|S|2).
Time complexity takes some inspection of the algorithm. For our considerations,
we assume that ·=� has been pre-computed, which can slightly increase the space
complexity to O(|Σ| |S|2).
Lemma 9. The running time of fp compute cs is in O(|Σ| |S|6).
Proof. Checking the simulation property for a tuple (p, q) ∈ R means that for all
O(|Σ| |S|) outgoing p

·→-transitions, each has to be matched by a q
·=�-transition

with identical action, of which there are at most |S|. So, simulation checking
costs O(|Σ| |S|2) time per tuple. Checking the coupling can be approximated
by O(|S|) per tuple. Simulation dominates coupling. The amount of tuples that
have to be checked is in O(|S|2). Thus, the overall complexity of one invocation
of fp step is in O(|Σ| |S|4).

Because every invocation of fp step decreases the size of R or leads to ter-
mination, there can be at most O(|S|2) invocations of fp step in fp compute cs.
Checking whether fp step changes R can be done without notable overhead. In
conclusion, we arrive at an overall time complexity of O(|Σ| |S|6).
Now, it does not take much energy to spot that applying the filtering in fp step
to each and every tuple in R in every step, would not be necessary. Only after
a tuple (p, q) has been removed from R, the algorithm does really need to find
out whether this was the last witness for the ∃-quantification in the clause of
another tuple. While this observation could inspire various improvements, let us
fast-forward to the game-theoretic approach in the next section, which elegantly
explicates the witness structure of a coupled similarity problem.

4 Game Algorithm for Coupled Similarity

Checking whether two states are related by a (bi-)simulation preorder �X can be
seen as a game along the lines of coinductive characterizations [30]. One player,
the attacker, challenges that p �X q, while the other player, the defender, has
to name witnesses for the existential quantifications of the definition.

Based on the coinductive characterization from Lemma 3, we here define such
a game for the coupled simulation preorder and transform it into an algorithm,
which basically only amounts to a more clever way of computing the fixed point
of the previous section. We show how this additional layer of abstraction enables
optimizations.
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Fig. 5. Schematic coupled simulation game. Boxes stand for attacker nodes, circles for
defender nodes, arrows for moves. From the dashed boxes, the moves are analogous to
the ones of the solid box.

4.1 The Coupled Simulation Game

The coupled simulation game proceeds as follows: For p �CS q, the attacker
may question that simulation holds by selecting p′ and a ∈ Σ with p

a→ p′. The
defender then has to name a q′ with q

a=�q′, whereupon the attacker may go on to
challenge p′ �CS q′. If p

τ→p′, the attacker can directly skip to question p′ �CS q.
For coupled simulation, the attacker may moreover demand the defender to name
a coupling witness q′ with q ⇒ q′ whereafter q′ �CS p stands to question. If the
defender runs out of answers, they lose; if the game continues forever, they win.
This can be modeled by a simple game, whose schema is given in Fig. 5, as
follows.

Definition 6 (Games). A simple game G[p0] = (G,Gd,�, p0) consists of

– a (countable) set of game positions G,
• partitioned into a set of defender positions Gd ⊆ G
• and attacker positions Ga :=G \ Gd,

– a graph of game moves � ⊆ G × G, and
– an initial position p0 ∈ G.

Definition 7 (�CS game). For a transition system S = (S,Στ ,→), the cou-
pled simulation game GS

CS [p0] = (G,Gd,�, p0) consists of

– attacker nodes (p, q)a ∈ Ga with p, q ∈ S,
– simulation defender nodes (a, p, q)d ∈ Gd for situations where a simulation

challenge for a ∈ Σ has been formulated, and
– coupling defender nodes (Cpl, p, q)d ∈ Gd when coupling is challenged,

and five kinds of moves

– simulation challenges (p, q)a �(a, p′, q)d if p
a→ p′ with a �= τ ,

– simulation internal moves (p, q)a �(p′, q)a if p
τ→ p′,
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– simulation answers (a, p′, q)d �(p′, q′)a if q
a=� q′,

– coupling challenges (p, q)a �(Cpl, p, q)d, and
– coupling answers (Cpl, p, q)d �(q′, p)a if q ⇒ q′.

Definition 8 (Plays and wins). We call the paths p0p1... ∈ G∞ with pi � pi+1

plays of G[p0]. The defender wins all infinite plays. If a finite play p0 . . . pn is
stuck, that is, if pn ��, then the stuck player loses: The defender wins if pn ∈ Ga,
and the attacker wins if pn ∈ Gd.

Definition 9 (Strategies and winning strategies). A defender strategy is
a (usually partial) mapping from initial play fragments to next moves f ⊆
{(p0...pn, p′) | pn ∈ Gd ∧ pn � p′}. A play p follows a strategy f iff, for each
move pi � pi+1 with pi ∈ Gd, pi+1 = f(p0...pi). If every such play is won by the
defender, f is a winning strategy for the defender. The player with a winning
strategy for G[p0] is said to win G[p0].

Definition 10 (Winning regions and determinacy). The winning region
Wσ of player σ ∈ {a, d} for a game G is the set of states p0 from which player
σ wins G[p0].

Let us now see that the defender’s winning region of GS
CS indeed corresponds

to �S
CS . To this end, we first show how to construct winning strategies for the

defender from a coupled simulation, and then establish the opposite direction.

Lemma 10. Let R be a coupled delay simulation and (p0, q0) ∈ R. Then the
defender wins GS

CS [(p0, q0)a] with the following positional strategy:

– If the current play fragment ends in a simulation defender node (a, p′, q)d,
move to some attacker node (p′, q′)a with (p′, q′) ∈ R and q

a=� q′;
– if the current play fragment ends in a coupling defender node (Cpl, p, q)d,

move to some attacker node (q′, p)a with (q′, p) ∈ R and q ⇒ q′.

Lemma 11. Let f be a winning strategy for the defender in GS
CS [(p0, q0)a]. Then

{(p, q) | some GS
CS [(p0, q0)a]-play fragment consistent with f ends in (p, q)a} is

a coupled delay simulation.

Theorem 3. The defender wins GS
CS [(p, q)a] precisely if p �CS q.

4.2 Deciding the Coupled Simulation Game

It is well-known that the winning regions of finite simple games can be computed
in linear time. Variants of the standard algorithm for this task can be found
in [12] and in our implementation [1]. Intuitively, the algorithm first assumes
that the defender wins everywhere and then sets off a chain reaction beginning
in defender deadlock nodes, which “turns” all the nodes won by the attacker.
The algorithm runs in linear time of the game moves because every node can
only turn once.
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1 def game compute cs(S):
2 GS

CS = (G, Ga, �) := obtain cs game(S)

3 win := compute winning region(GS
CS )

4 R := {(p, q) | (p, q)a ∈ Ga ∧ win[(p, q)a] = d}
5 return R

Algorithm 2: Game algorithm for the coupled simulation preorder �CS .

With such a winning region algorithm for simple games, referred to as
compute winning region in the following, it is only a matter of a few lines to deter-
mine the coupled simulation preorder for a system S as shown in game compute cs
in Algorithm 2. One starts by constructing the corresponding game GS

CS using
a function obtain cs game, we consider given by Definition 7. Then, one calls
compute winning region and collects the attacker nodes won by the defender for
the result.

Theorem 4. For a finite labeled transition systems S, game compute cs(S)
from Algorithm 2 returns �S

CS .

Proof. Theorem 3 states that the defender wins GS
CS [(p, q)a] exactly if p �S

CS q.
As compute winning region(GS

CS ), according to [12], returns where the defender
wins, line 4 of Algorithm 2 precisely assigns R =�S

CS .

The complexity arguments from [12] yield linear complexity for deciding the
game by compute winning region.

Proposition 1. For a game G = (G,Ga,�), compute winning region runs in
O(|G| + |�|) time and space.

In order to tell the overall complexity of the resulting algorithm, we have to look
at the size of GS

CS depending on the size of S.

Lemma 12. Consider the coupled simulation game GS
CS = (G,Ga,�) for vary-

ing S = (S,Στ ,→). The growth of the game size |G| + |�| is in O(| ·=�| |S|).
Proof. Let us reexamine Definition 7. There are |S|2 attacker nodes. Collectively,
they can formulate O(| ·→| |S|) simulation challenges including internal moves and
|S|2 coupling challenges. There are O(| ·=�| |S|) simulation answers and O(|⇒| |S|)
coupling answers. Of these, O(| ·=�| |S|) dominates the others.

Lemma 13. game compute cs runs in O(| ·=�| |S|) time and space.

Proof. Proposition 1 and Lemma 12 already yield that line 3 is in O(| ·=�| |S|)
time and space. Definition 7 is completely straight-forward, so the complexity of
building GS

CS in line 2 equals its output size O(| ·=�| |S|), which coincides with the
complexity of computing ·=�. The filtering in line 4 is in O(|S|2) (upper bound
for attacker nodes) and thus does not influence the overall complexity.
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4.3 Tackling the τ -closure

We have mentioned that there can be some complexity to computing the
τ -closure ⇒ = τ→∗

and the derived ·=�. In theory, both the weak delay tran-
sition relation ·=� and the conventional transition relation ·→ are bounded in size
by |Στ | |S|2. But for most transition systems, the weak step relations tend to be
much bigger in size. Sparse ·→-graphs can generate dense ·=�-graphs. The compu-
tation of the transitive closure also has significant time complexity. Algorithms
for transitive closures usually are cubic, even though the theoretical bound is a
little lower.

There has been a trend to skip the construction of the transitive closure
in the computation of weak forms of bisimulation [3,13,19,26]. With the game
approach, we can follow this trend. The transitivity of the game can emulate the
transitivity of ·=� (for details see [1, Sec. 4.5.4]). With this trick, the game size,
and thus time and space complexity, reduces to O(|Στ | | τ→| |S|+| ·→| |S|). Though
this is practically better than the bound from Lemma 13, both results amount
to cubic complexity O(|Σ| |S|3), which is in line with the reduction result from
Theorem 1 and the time complexity of existing similarity algorithms.

4.4 Optimizing the Game Algorithm

The game can be downsized tremendously once we take additional over- and
under-approximation information into account.

Definition 11. An over-approximation of �CS is a relation RO of that we know
that �CS ⊆ RO. Conversely, an under-approximation of �CS is a relation RU

where RU ⊆�CS .

Regarding the game, over-approximations tell us where the defender can win,
and under-approximations tell us where the attacker is doomed to lose. They can
be used to eliminate “boring” parts of the game. Given an over-approximation
RO, when unfolding the game, it only makes sense to add moves from defender
nodes to attacker nodes (p, q)a if (p, q) ∈ RO. There just is no need to allow the
defender moves we already know cannot be winning for them. Given an under-
approximation RU , we can ignore all the outgoing moves of (p, q)a if (p, q) ∈ RU .
Without moves, (p, q)a is sure to be won by the defender, which is in line with
the claim of the approximation.

Corollary 2. ⇒−1 is an under-approximation of �CS . (Cf. Lemma 4)

Lemma 14. {(p, q) | all actions weakly enabled in p are weakly enabled in q} is
an over-approximation of �CS .

The fact that coupled simulation is “almost bisimulation” on steps to stable
states in finite systems (Lemma 6) can be used for a comparably cheap and
precise over-approximation. The idea is to compute strong bisimilarity for the
system S⇒| = (S,Στ ,⇒|), where maximal weak steps, p

α⇒| p′, exist iff p
α̂⇒ p′

and p′ is stable, that is, p′ � τ→. Let ≡⇒| be the biggest symmetric relation where
p ≡⇒| q and p

α⇒| p′ implies there is q′ such that p′ ≡⇒| q′ and q
α⇒| q′.
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Lemma 15. R⇒| = {(p, q) | ∀p′. p α⇒| p′ −→ q
α⇒|≡⇒| p′} is an over-approxima-

tion of �CS on finite systems.

Computing ≡⇒| can be expected to be cheaper than computing weak bisimilarity

≡WB . After all, ·⇒| is just a subset of ·̂⇒. However, filtering S × S using subset
checks to create R⇒| might well be quartic, O(|S|4), or worse. Nevertheless,
one can argue that with a reasonable algorithm design and for many real-world
examples, α⇒|≡⇒| will be sufficiently bounded in branching degree, in order for
the over-approximation to do more good than harm.

For everyday system designs, R⇒| is a tight approximation of �CS . On the
philosopher system from Example 1, they even coincide. In some situations, R⇒|
degenerates to the shared enabledness relation (Lemma 14), which is to say it
becomes comparably useless. One example for this are the systems created by
the reduction from weak simulation to coupled simulation in Theorem1 after
τ -cycle removal. There, all ⇒|-steps are bound to end in the same one τ -sink
state ⊥.

5 A Scalable Implementation

The experimental results by Ranzato and Tapparo [27] suggest that their simula-
tion algorithm and the algorithm by Henzinger, Henzinger, and Kopke [15] only
work on comparably small systems. The necessary data structures quickly con-
sume gigabytes of RAM. So, the bothering question is not so much whether some
highly optimized C++-implementation can do the job in milliseconds for small
problems, but how to implement the algorithm such that large-scale systems are
feasible at all.

To give first answers, we implemented a scalable and distributable prototype
of the coupled simulation game algorithm using the stream processing framework
Apache Flink [4] and its Gelly graph API, which enable computations on large
data sets built around a universal data-flow engine. Our implementation can be
found on https://coupledsim.bbisping.de/code/flink/.

5.1 Prototype Implementation

We base our implementation on the game algorithm and optimizations from
Sect. 4. The implementation is a vertical prototype in the sense that every feature
to get from a transition system to its coupled simulation preorder is present, but
there is no big variety of options in the process. The phases are:

Import Reads a CSV representation of the transition system S.
Minimize Computes an equivalence relation under-approximating ≡CS on the

transition system and builds a quotient system SM . This stage should at least
compress τ -cycles if there are any. The default minimization uses a parallelized
signature refinement algorithm [20,33] to compute delay bisimilarity (≡S

DB ).

https://coupledsim.bbisping.de/code/flink/
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Table 1. Sample systems, sizes, and benchmark results.

system S
·→ ·

=� S/≡DB
� �σ. S/≡CS

�S/≡CS
CS time/s

phil 10 14 86 6 234 201 5 11 5.1

ltbts 88 98 2,599 27 4,100 399 25 38 5.5

vasy 0 1 289 1,224 52,641 9 543 67 9 9 5.7

vasy 1 4 1,183 4,464 637,585 4 73 30 4 4 5.3

vasy 5 9 5,486 9,676 1,335,325 112 63,534 808 112 112 6.0

cwi 1 2 1,952 2,387 593,734 67 29,049 1,559 67 137 6.9

cwi 3 14 3,996 14,552 15,964,021 2 15 10 2 2 7.8

vasy 8 24 8,879 24,411 2,615,500 170 225,555 3,199 169 232 6.7

vasy 8 38 8,921 38,424 46,232,423 193 297,643 2,163 193 193 6.7

vasy 10 56 10,849 56,156 842,087 2,112 o.o.m. 72,617 2,112 3,932 13.8

vasy 25 25 25,217 25,216 50,433 25,217 o.o.m. 126,083 25,217 25,217 117.4

Compute over-approximation Determines an equivalence relation over-ap-
proximating ≡SM

CS . The result is a mapping σ from states to signatures (sets
of colors) such that p �SM

CS q implies σ(p) ⊆ σ(q). The prototype uses the
maximal weak step equivalence ≡⇒| from Subsect. 4.4.

Build game graph Constructs the τ -closure-free coupled simulation game GSM

CS

for SM with attacker states restricted according to the over-approximation
signatures σ.

Compute winning regions Decides for GSM

CS where the attacker has a winning
strategy following the scatter-gather scheme [16]. If a game node is discovered
to be won by the attacker, it scatters the information to its predecessors.
Every game node gathers information on its winning successors. Defender
nodes count down their degrees of freedom starting at their game move out-
degrees.

Output Finally, the results can be output or checked for soundness. The winning
regions directly imply �SM

CS . The output can be de-minimized to refer to the
original system S.

5.2 Evaluation

Experimental evaluation shows that the approach can cope with the smaller exam-
ples of the “Very Large Transition Systems (VLTS) Benchmark Suite” [6] (vasy *
and cwi * up to 50,000 transitions). On small examples, we also tested that the
output matches the return values of the verified fixed-point �CS -algorithm from
Sect. 3. These samples include, among others, the philosopher system phil contain-
ing Pg and Po from Example 1 and ltbts, which consists of the finitary separating
examples from the linear-time branching-time spectrum [9, p. 73].

Table 1 summarizes the results for some of our test systems with pre-
minimization by delay bisimilarity and over-approximation by maximal weak step
equivalence. The first two value columns give the system sizes in number of states
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S and transitions ·→. The next two columns present derived properties, namely an
upper estimate of the size of the (weak) delay step relation ·=�, and the number
of partitions with respect to delay bisimulation S/≡DB

. The next columns list the
sizes of the game graphs without and with maximal weak step over-approximation
(� and �σ, some tests without the over-approximation trick ran out of mem-
ory, “o.o.m.”). The following columns enumerate the sizes of the resulting coupled
simulation preorders represented by the partition relation pair (S/≡CS

,�S/≡CS

CS ),
where S/≡CS

is the partitioning of S with respect to coupled similarity ≡CS , and

�S/≡CS

CS the coupled simulation preorder projected to this quotient. The last col-
umn reports the running time of the programs on an Intel i7-8550U CPU with four
threads and 2 GB Java Virtual Machine heap space.

The systems in Table 1 are a superset of the VLTS systems for which Ranzato
and Tapparo [27] report their algorithm SA to terminate. Regarding complex-
ity, SA is the best simulation algorithm known. In the [27]-experiments, the
C++ implementation ran out of 2 GB RAM for vasy 10 56 and vasy 25 25 but
finished much faster than our setup for most smaller examples. Their time advan-
tage on small systems comes as no surprise as the start-up of the whole Apache
Flink pipeline induces heavy overhead costs of about 5 s even for tiny examples
like phil. However, on bigger examples such as vasy 18 73 their and our imple-
mentation both fail. This is in stark contrast to bi -simulation implementations,
which usually cope with much larger systems single-handedly [3,19].

Interestingly, for all tested VLTS systems, the weak bisimilarity quotient sys-
tem S/≡WB

equals S/≡CS
(and, with the exception of vasy 8 24, S/≡DB

). The pre-

order �S/≡CS

CS also matches the identity in 6 of 9 examples. This observation about
the effective closeness of coupled similarity and weak bisimilarity is two-fold. On
the one hand, it brings into question how meaningful coupled similarity is for min-
imization. After all, it takes a lot of space and time to come up with the output
that the cheaper delay bisimilarity already minimized everything that could be
minimized. On the other hand, the observation suggests that the considered VLTS
samples are based around models that do not need—or maybe even do avoid—the
expressive power of weak bisimilarity. This is further evidence for the case from
the introduction that coupled similarity has a more sensible level of precision than
weak bisimilarity.

6 Conclusion

The core of this paper has been to present a game-based algorithm to compute
coupled similarity in cubic time and space. To this end, we have formalized cou-
pled similarity in Isabelle/HOL and merged two previous approaches to defining
coupled similarity, namely using single relations with weak symmetry [10] and
the relation-pair-based coupled delay simulation from [28], which followed the
older tradition of two weak simulations [24,29]. Our characterization seems to be
the most convenient. We used the entailed coinductive characterization to devise
a game characterization and an algorithm. Although we could show that deciding
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coupled similarity is as hard as deciding weak similarity, our Apache Flink imple-
mentation is able to exploit the closeness between coupled similarity and weak
bisimilarity to at least handle slightly bigger systems than comparable similar-
ity algorithms. Through the application to the VLTS suite, we have established
that coupled similarity and weak bisimilarity match for the considered systems.
This points back to a line of thought [11] that, for many applications, branch-
ing, delay and weak bisimilarity will coincide with coupled similarity. Where
they do not, usually coupled similarity or a coarser notion of equivalence is
called for. To gain deeper insights in that direction, real-world case studies—
and maybe an embedding into existing tool landscapes like FDR [8], CADP [7],
or LTSmin [17]—would be necessary.
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Abstract. In term rewriting, reachability analysis is concerned with the
problem of deciding whether or not one term is reachable from another by
rewriting. Reachability analysis has several applications in termination
and confluence analysis of rewrite systems. We give a unified view on
reachability analysis for rewriting with and without conditions by means
of what we call reachability constraints. Moreover, we provide several
techniques that fit into this general framework and can be efficiently
implemented. Our experiments show that these techniques increase the
power of existing termination and confluence tools.

Keywords: Reachability analysis · Termination · Confluence ·
Conditional term rewriting · Infeasibility

1 Introduction

Reachability analysis for term rewriting [6] is concerned with the problem of,
given a rewrite system R, a source term s and a target term t, deciding whether
the source reduces to the target by rewriting, which is usually written s −→∗

R t.
A useful generalization of this problem is the (un)satisfiability of the following
reachability problem: given terms s and t containing variables, decide whether
there is a substitution σ such that sσ −→∗

R tσ or not. This problem, also called
(in)feasibility by Lucas and Guitiérrez [11], has various applications in termina-
tion and confluence analysis for plain and conditional rewriting.

This can be understood as a form of safety analysis, as illustrated below.

Example 1. Let R be a term rewrite system consisting of the following rules for
division (where s stands for “successor”):

x − 0 → x s(x ) − s(y) → x − y 0 ÷ s(y) → 0

s(x ) ÷ s(y) → s((x − y) ÷ s(y)) x ÷ 0 → err("division by zero")

The question “Can division yield an error?” is naturally formulated as the sat-
isfiability of reachability from x ÷ y to err(z ). Unsurprisingly, the solution
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σ = [y �→ 0, z �→ "division by zero"]

shows that it is actually possible to obtain an error.

In termination analysis we are typically interested in unsatisfiability of reach-
ability and can thereby rule out certain recursive calls as potential source of non-
termination. For confluence analysis of conditional term rewriting, infeasibility
is crucial: some other techniques do not apply before critical pairs are shown
infeasible, and removal of infeasible rules simplifies proofs.

In this work we provide a formal framework that allows us to uniformly speak
about (un)satisfiability of reachability for plain and conditional rewriting, and
give several techniques that are useful in practice.

More specifically, our contributions are as follows:

• We introduce the syntax and semantics of reachability constraints (Sect. 3)
and formulate their satisfiability problem. We recast several concrete tech-
niques for reachability analysis in the resulting framework.

• We present a new, simple, and efficient technique for reachability analy-
sis based on what we call the symbol transition graph of a rewrite system
(Sect. 4.1) and extend it to conditional rewriting (Sect. 5.2).

• Additionally, we generalize the prevalent existing technique for term rewrit-
ing to what we call look-ahead reachability (Sect. 4.2) and extend it to the
conditional case (Sect. 5.3).

• Then, we present a new result for conditional rewriting that is useful for
proving conditional rules infeasible (Sect. 5.1).

• Finally, we evaluate the impact of our work on existing automated tools
NaTT [16] and ConCon [13] (Sect. 6).

2 Preliminaries

In the remainder, we assume some familiarity with term rewriting. Nevertheless,
we recall required concepts and notations below. For further details on term
rewriting, we refer to standard textbooks [3,14].

Throughout the paper F denotes a set of function symbols with associated
arities, and V a countably infinite set of variables (so that fresh variables can
always be picked) such that F ∩ V = ∅. A term is either a variable x ∈ V or of
the form f(t1, . . . , tn), where n is the arity of f ∈ F and the arguments t1, . . . , tn
are terms. The set of all terms over F and V is denoted by T (F ,V). The set
of variables occurring in a term t is denoted by Var(t). The root symbol of a
term t = f(t1, . . . , tn) is f and denoted by root(t). When we want to indicate
that a term is not a variable, we sometimes write f(...), where “...” denotes an
arbitrary list of terms.

A substitution is a mapping σ : V → T (F ,V). Given a term t, tσ denotes
the term obtained by replacing every occurrence of variable x in t by σ(x). The
domain of a substitution σ is Dom(σ) := {x ∈ V | xσ �= x}, and σ is idempotent
if Var(xσ) ∩ Dom(σ) = ∅ for every x ∈ V. A renaming is a bijection α : V → V.
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Two terms s and t are unifiable if sσ = tσ for some substitution σ, which is
called a unifier of s and t.

A context is a term with exactly one occurrence of the special symbol �. We
write C[t] for the term resulting from replacing � in context C by term t.

A rewrite rule is a pair of terms, written l → r, such that the variable
conditions l /∈ V and Var(l) ⊇ Var(r) hold. By a variant of a rewrite rule we
mean a rule that is obtained by consistently renaming variables in the original
rule to fresh ones. A term rewrite system (TRS) is a set R of rewrite rules. A
function symbol f ∈ F is defined in R if f(...) → r ∈ R, and the set of defined
symbols in R is DR := {f | f(...) → r ∈ R}. We call f ∈ F \ DR a constructor.

There is an R-rewrite step from s to t, written s −→R t, iff there exist a
context C, a substitution σ, and a rule l → r ∈ R such that s = C[lσ] and
t = C[rσ]. We write s

ε−→R t if C = � (called a root step), and s
>ε−→R t (called

a non-root step), otherwise. We say a term s0 is R-terminating if it starts no
infinite rewrite sequence s0 →R s1 →R s2 →R · · · , and say R is terminating if
every term is R-terminating.

For a relation � ⊆ A×A, we denote its transitive closure by �+ and reflexive
transitive closure by �∗. We say that a1, . . . , an ∈ A are joinable (meetable) at
b ∈ A with respect to � if ai �∗ b (b �∗ ai) for every i ∈ {1, . . . , n}.

3 Reachability Constraint Satisfaction

In this section we introduce the syntax and semantics of reachability constraints,
a framework that allows us to unify several concrete techniques for reachability
analysis on an abstract level. Reachability constraints are first-order formulas1

with a single binary predicate symbol whose intended interpretation is reacha-
bility by rewriting with respect to a given rewrite system.

Definition 1 (Reachability Constraints). Reachability constraints are given
by the following grammar (where s, t ∈ T (F ,V) and x ∈ V)

φ, ψ, · · · ::= � | ⊥ | s −→→ t | φ ∨ ψ | φ ∧ ψ | ¬φ | ∀x. φ | ∃x. φ

To save some space, we use conventional notation like
∧

i∈I φi and ∃x1, . . . , xn. φ.
As mentioned above, the semantics of reachability constraints is defined with

respect to a given rewrite system. In the following we define satisfiability of con-
straints with respect to a TRS. (This definition will be extended to conditional
rewrite systems in Sect. 5).

Definition 2 (Satisfiability). We define2 inductively when a substitution σ
satisfies a reachability constraint φ modulo a TRS R, written σ |=R φ, as follows:

1 While in general we allow an arbitrary first-order logical structure for formulas, for
the purpose of this paper, negation and universal quantification are not required.

2 It is also possible to give a model-theoretic account for these notions. However, the
required preliminaries are outside the scope of this paper.
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– σ |=R �;
– σ |=R s −→→ t if sσ −→∗

R tσ;
– σ |=R φ ∨ ψ if σ |=R φ or σ |=R ψ;
– σ |=R φ ∧ ψ if σ |=R φ and σ |=R ψ;
– σ |=R ¬φ if σ |=R φ does not hold;
– σ |=R ∀x. φ if σ′ |=R φ for every σ′ that coincides with σ on V \ {x}.
– σ |=R ∃x. φ if σ′ |=R φ for some σ′ that coincides with σ on V \ {x}.

We say φ and ψ are equivalent modulo R, written φ ≡R ψ, when σ |=R φ iff
σ |=R ψ for all σ. We say φ and ψ are (logically) equivalent, written φ ≡ ψ,
if they are equivalent modulo any R. We say φ is satisfiable modulo R, written
SATR(φ), if there is a substitution σ that satisfies φ modulo R, and call σ a
solution of φ with respect to R.

Checking for satisfiability of reachability constraints is for example useful for
proving termination of term rewrite systems via the dependency pair method [2],
or more specifically in dependency graph analysis. For the dependency pair
method, we assume a fresh marked symbol f � for every f ∈ DR, and write
s� to denote the term f �(s1, . . . , sn) for s = f(s1, . . . , sn). The set of dependency
pairs of a TRS R is DP(R) :=

{
l� → r�

∣
∣ l → C[r] ∈ R, r /∈ V, root(r) ∈ DR

}
.

The standard definition of the dependency graph of a TRS [2] can be recast
using reachability constraints as follows:

Definition 3 (Dependency Graph). Given a TRS R, its dependency graph
DG(R) is the directed graph over DP(R) where there is an edge from l� → s�

to t� → r� iff SATR(s� −→→ t�α), where α is a renaming of variables such that
Var(t�α) ∩ Var(s�) = ∅.

The nodes of the dependency graph correspond to the possible recursive calls
in a program (represented by a TRS), while its edges encode the information
which recursive calls can directly follow each other in arbitrary program execu-
tions. This is the reason why dependency graphs are useful for investigating the
termination behavior of TRSs, as captured by the following result.

Theorem 1 ([10]). A TRS R is terminating iff for every strongly connected
component C of an over approximation of DG(R), there is no infinite chain
s0

ε−→C t0 −→∗
R s1

ε−→C t1 −→∗
R · · · where every ti is R-terminating.

Example 2. Consider the TRS R of Toyama [15] consisting of the single rule
f(0, 1, x ) → f(x , x , x ). Its dependency graph DG(R) consists of the single node:

f�(0, 1, x ) → f�(x , x , x ) (1)

To show R terminates it suffices to show that DG(R) has no edge from (1) back
to (1), that is, the unsatisfiability of the constraint (with a fresh variable x ′)

f�(x , x , x ) −→→ f�(0, 1, x ′) (2)
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The most popular method today for checking reachability during dependency
graph analysis is unifiability between the target and an approximation of the
topmost part of the source (its “cap”) that does not change under rewriting,
which is computed by the tcapR function [9].

Definition 4 (tcap). Let R be a TRS. We recursively define tcapR(t) for a given
term t as follows: tcapR(x) is a fresh variable if x ∈ V; tcapR(f(t1, . . . , tn)) is
a fresh variable if u = f(tcapR(t1), . . . , tcapR(tn)) unifies with some left-hand
side of the rules in R; otherwise, it is u.

The standard way of checking for nonreachability that is implemented in
most tools is captured by of the following proposition.

Proposition 1. If tcapR(s) and t are not unifiable, then s −→→ t ≡R ⊥.

Example 3. Proposition 1 cannot prove the unsatisfiability of (2) of Example 2,
since the term cap of the source tcapR(f�(x , x , x )) = f�(z , z ′, z ′′), where z , z ′, z ′′

are fresh variables, is unifiable with the target f�(0, 1, x ′).

4 Reachability in Term Rewriting

In this section we introduce some techniques for analyzing (un)satisfiability of
reachability constraints. The first one described below formulates an obvious
observation: no root rewrite step is applicable when starting from a term whose
root is a constructor.

Definition 5 (Non-Root Reachability). For terms s = f(...) and t = g(...),
we define the non-root reachability constraint s

>ε−−→→ t as follows:

– s
>ε−−→→ t = ⊥ if f �= g, and

– f(s1, . . . , sn) >ε−−→→ f(t1, . . . , tn) = s1 −→→ t1 ∧ . . . ∧ sn −→→ tn.

The intention of non-root reachability constraints is to encode zero or more
steps of non-root rewriting, in the following sense.

Lemma 1. For s, t /∈ V, sσ
>ε−→∗

R tσ iff σ |=R s
>ε−−→→ t.

Proof. The claim vacuously follows if root(s) �= root(t). So let s = f(s1, . . . , sn)
and t = f(t1, . . . , tn). We have f(s1, . . . , sn)σ >ε−→∗

R f(t1, . . . , tn)σ iff s1σ −→∗
R

t1σ, . . . , snσ −→∗
R tnσ iff σ |=R s1 −→→ t1 ∧ . . . ∧ sn −→→ tn. 
�

Combined with the observation that no root step is applicable to a term
whose root symbol is a constructor, we obtain the following reformulation of a
folklore result that reduces reachability to direct subterms.

Proposition 2. If s = f(...) with f /∈ DR and t /∈ V, then s −→→ t ≡R s
>ε−−→→ t.

Proposition 2 is directly applicable in the analysis of dependency graphs.

Example 4. Consider again the constraint f�(x , x , x ) −→→ f�(0, 1, x ′) from Exam-
ple 2. Since f� is not defined in R, Proposition 2 reduces this constraint to
f�(x , x , x ) >ε−−→→ f�(0, 1, x ′), that is,

x −→→ 0 ∧ x −→→ 1 ∧ x −→→ x ′ (3)
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Fig. 1. Example symbol transition graphs.

4.1 Symbol Transition Graphs

Here we introduce a new, simple and efficient way of overapproximating reacha-
bility by tracking the relation of root symbols of terms according to a given set
of rewrite rules. We first illustrate the intuition by an example.

Example 5. Consider a TRS R consisting of rules of the following form:

f(...) → g(...) g(...) → c(...) h(...) → x

Moreover, suppose s −→∗
R t. Then we can make the following observations:

– If root(s) = c, then root(t) = c since non-root steps preserve the root symbol
and no root steps are applicable to terms of the form c(...).

– If root(s) = g, then root(t) ∈ {g, c} since non-root steps preserve the root
symbol and the only possible root step is g(...) → c(...).

– If root(s) = f, then root(t) ∈ {f, g, c} by the same reasoning.
– If root(s) = h, then t can be any term and root(t) can be arbitrary.

This informal argument is captured by the following definition.

Definition 6 (Symbol Transition Graphs). The symbol transition graph
SG(R) of a TRS R over signature F is the graph 〈F ,�R〉, where f �R g iff
R contains a rule of form f(...) → g(...) or f(...) → x with x ∈ V.

The following result tells us that for non-variable terms the symbol transition
graph captures the relation between the root symbols of root rewrite steps.

Lemma 2. If s
ε−→R t then t ∈ V or root(s) �R root(t).

Proof. By assumption there exist l → r ∈ R and σ such that s = lσ and
rσ = t. If r ∈ V then either t ∈ V or root(s) = root(l) �R root(t). Otherwise,
root(s) = root(l) �R root(r) = root(t). 
�

Since every rewrite sequence is composed of subsequences that take place
entirely below the root (and hence do not change the root symbol) separated by
root steps, we can extend the previous result to rewrite sequences.

Lemma 3. If s = f(...) −→∗
R g(...) = t then f �∗

R g.
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Proof. We prove the claim for arbitrary s and f by induction on the derivation
length of s −→∗

R t. The base case is trivial, so consider s −→R s′ −→n
R tσ. Since

t /∈ V, we have f ′ ∈ F with s′ = f ′(...). Thus the induction hypothesis yields
f ′ �∗

R g. If s
ε−→R s′ then by Lemma 2 we conclude f �R f ′ �∗

R g, and
otherwise f = f ′ �∗

R g. 
�

It is now straightforward to derive the following from Lemma 3.

Corollary 1. If f �∗
R g does not hold, then f(...) −→→ g(...) ≡R ⊥.

Example 6. The symbol transition graph for Example 5 is depicted in Fig. 1(a).
By Corollary 1 we can conclude, for instance, g(...) −→→ f(...) is unsatisfiable.

Corollary 1 is useful for checking (un)satisfiability of s −→→ t, only if neither
s nor t is a variable. However, the symbol transition graph is also useful for
unsatisfiability in the case when s and t may be variables.

Proposition 3. If SATR(x −→→ t1 ∧ . . . ∧ x −→→ tn) for t1 = g1(...), . . . , tn =
gn(...), then g1, . . . , gn are meetable with respect to �R.

Proof. By assumption there is a substitution σ such that xσ −→∗
R t1σ, . . . , xσ −→∗

R
tnσ. Clearly xσ ∈ V is not possible. Thus, suppose xσ = f(...) for some f .
Finally, from Lemma 3, we have f �∗

R g1, . . . , f �∗
R gn and thereby conclude

that g1, . . . , gn are meetable at f . 
�

The dual of Proposition 3 is proved in a similar way, but with some special
care to ensure xσ ∈ V.

Proposition 4. If SATR(s1 −→→ x ∧ . . . ∧ sn −→→ x) for s1 = f1(...), . . . , sn =
fn(...), then f1, . . . , fn are joinable with respect to �R.

Example 7 (Continuation of Example 4). Due to Proposition 3, proving (3)
unsatisfiable reduces to proving that 0 and 1 are not meetable with respect to
�R. This is obvious from the symbol transition graph depicted in Fig. 1(b).
Hence, we conclude the termination of R.

Example 8. Consider the following extension of R from Example 2.

f(0, 1, x ) → f(x , x , x ) g(x , y) −→ x g(x , y) −→ y

The resulting system is not terminating [15]. The corresponding symbol transi-
tion graph is depicted in Fig. 1(c), where 0 and 1 are meetable, as expected.

4.2 Look-Ahead Reachability

Here we propose another method for overapproximating reachability, which even-
tually subsumes the tcap-unifiability method when target terms are linear. Note
that this condition is satisfied in the dependency graph approximation of left-
linear TRSs. Our method is based on the observation that any rewrite sequence
either contains at least one root step, or takes place entirely below the root. This
observation can be captured using our reachability constraints.



Reachability Analysis for Termination and Confluence of Rewriting 269

Definition 7 (Root Narrowing Constraints). Let l → r be a rewrite rule
with Var(l) = {x1, . . . , xn}. Then for terms s and t not containing x1, . . . , xn,
the root narrowing constraint from s to t via l → r is defined by

s �l→r t := ∃x1, . . . , xn. s
>ε−−→→ l ∧ r −→→ t

We write s �R t for
∨

l→r∈R′ s �l→r t, where R′ is a variant of R in which
variables occurring in s or t are renamed to fresh ones.

In the definition above, the intuition is that if there are any root steps inside
a rewrite sequence then we can pick the first one, which is only preceded by
non-root steps. The following theorem justifies this intuition.

Theorem 2. If s, t /∈ V, then s −→→ t ≡R s
>ε−−→→ t ∨ s �R t.

Proof. Let s = f(s1, . . . , sn) and σ be a substitution. We show σ |=R s −→→ t

iff σ |=R s
>ε−−→→ t ∨ s �R t. For the “if” direction suppose the latter. If σ |=R

s
>ε−−→→ t, then t is of form f(t1, . . . , tn) and siσ −→∗

R tiσ for every i ∈ {1, . . . , n},
and thus sσ −→∗

R tσ. If σ |=R s �R t, then we have a renamed variant l → r
of a rule in R such that σ |=R s �l→r t. This indicates that there exists a
substitution σ′ that coincides with σ on V \ Var(l), and satisfies

– σ′ |=R s
>ε−−→→ l, that is, l = f(l1, . . . , ln) and siσ

′ −→∗
R liσ

′;
– σ′ |=R r −→→ t, that is, rσ′ −→∗

R tσ′.

In combination, we have sσ = sσ′ >ε−→∗
R lσ′ ε−→R rσ′ −→∗

R tσ′ = tσ.
Now consider the “only if” direction. Suppose that σ is an idempotent sub-

stitution such that sσ −→∗
R tσ. We may assume idempotence, since from any

solution σ′ of s −→→ t, we obtain idempotent solution σ by renaming variables in
Var(s) ∪ Var(t) to fresh ones. We proceed by the following case analysis:

– No root step is involved: sσ
>ε−→∗

R tσ. Then Lemma 1 implies σ |=R s
>ε−−→→ t.

– At least one root step is involved: there is a rule l → r ∈ R and a substitution
θ such that sσ

>ε−→∗
R lθ and rθ −→∗

R tσ. Since variables in lθ must occur in
sσ (due to our assumptions on rewrite rules), we have lθ = lθσ since σ is
idempotent. Thus from Lemma 1 we have σ |=R s

>ε−−→→ lθ. Further, variables
in rθ must occur in lθ and thus in sθ, we also have rθσ = rθ −→∗

R tσ, and
hence σ |=R rθ −→→ t. This concludes σ |=R s �l→r t. 
�

Proposition 2 is a corollary of Theorem 2 together with the following easy
lemma, stating that if the root symbol of the source term is not a defined symbol,
then no root step can occur.

Lemma 4. If c /∈ DR then c(...) �R t ≡ ⊥.

Example 9. Consider the TRS R consisting of the following rules:

0 > x → false s(x ) > 0 → true s(x ) > s(y) → x > y

Applying Theorem 2 once reduces the reachability constraint 0 > z −→→ true to
the disjunction of
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1. 0 > z >ε−−→→ true,
2. ∃x . 0 > z >ε−−→→ 0 > x ∧ false −→→ true
3. ∃x . 0 > z >ε−−→→ s(x ) > 0 ∧ true −→→ true

4. ∃x , y . 0 > z >ε−−→→ s(x ) > s(y) ∧ x > y −→→ true

Disjuncts 1, 3, and 4 expand to ⊥ by definition of >ε−−→→. For disjunct 2, applying
Theorem 2 or Proposition 2 to false −→→ true yields ⊥.

Note that Theorem 2 can be applied arbitrarily often. Thus, to avoid nonter-
mination in an implementation, we need to control how often it is applied. For
this purpose we introduce the following definition.

Definition 8 (k-Fold Look-Ahead). We define the k-fold look-ahead trans-
formation with respect to a TRS R as follows:

Lk
R(s −→→ t) :=

{
Lk

R(s >ε−−→→ t) ∨ s �k
R t if k ≥ 1 and s, t /∈ V

s −→→ t otherwise

which is homomorphically extended to reachability constraints. Here, �k
R is

defined as in Definition 7, but k controls the number of root steps to be expanded:

s �k
l→r t := ∃x1, . . . , xn. Lk

R(s >ε−−→→ l) ∧ Lk−1
R (r −→→ t)

It easily follows from Theorem 2 and induction on k that the k-fold look-
ahead preserves the semantics of reachability constraints.

Corollary 2. Lk
R(φ) ≡R φ.

The following results indicate that,whenever tcapR-unifiability (Proposition1)
proves s −→→ t unsatisfiable for linear t, L1

R can also conclude it.

Lemma 5. Let s = f(s1, . . . , sn) and t /∈ V be a linear term, and suppose that
f(tcapR(s1), . . . , tcapR(sn)) does not unify with t or any left-hand side in R.
Then L1

R(s −→→ t) ≡ ⊥.

Proof. By structural induction on s. First, we show L1
R(s >ε−−→→ t) ≡ ⊥. This

is trivial if root(t) �= f . So let t = f(t1, . . . , tn). By assumption there is an
i ∈ {1, . . . , n} such that tcapR(si) does not unify with ti. Hence tcapR(si) can-
not be a fresh variable, and thus si is of the form g(u1, . . . , um) and tcapR(si) =
g(tcapR(u1), . . . , tcapR(um)) is not unifiable with any left-hand side in R. There-
fore, the induction hypothesis applies to si, yielding L1

R(si −→→ ti) ≡ ⊥. This
concludes L1

R(s >ε−−→→ t) = L1
R(s1 −→→ t1) ∧ . . . ∧ L1

R(sn −→→ tn) ≡ ⊥.
Second, we show L1

R(s �1
R t) ≡ ⊥. To this end, we show for an arbitrary

variant l → r of a rule in R that L1
R(s >ε−−→→ l) ≡ ⊥. This is clear if root(l) �= f . So

let l = f(l1, . . . , ln). By assumption there is an i ∈ {1, . . . , n} such that tcapR(si)
and li are not unifiable. By a similar reasoning as above the induction hypothesis
applies to si and yields L1

R(si −→→ li) ≡ ⊥. This concludes L1
R(s >ε−−→→ l) ≡ ⊥. 
�

Corollary 3. If tcapR(s) and t are not unifiable, then L1
R(s −→→ t) ≡ ⊥.
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5 Conditional Rewriting

Conditional rewriting is a flavor of rewriting where rules are guarded by condi-
tions. On the one hand, this gives us a boost in expressiveness in the sense that
it is often possible to directly express equations with preconditions and that
it is easier to directly express programming constructs like the where-clauses
of Haskell. On the other hand, the analysis of conditional rewrite systems is
typically more involved than for plain rewriting.

In this section we first recall the basics of conditional term rewriting. Then,
we motivate the importance of reachability analysis for the conditional case.
Finally, we extend the techniques of Sect. 4 to conditional rewrite systems.

Preliminaries. A conditional rewrite rule l → r ⇐ φ consists of two terms l /∈ V
and r (the left-hand side and right-hand side, respectively) and a list φ of pairs
of terms (its conditions). A conditional term rewrite system (CTRS for short) is
a set of conditional rewrite rules. Depending on the interpretation of conditions,
conditional rewriting can be separated into several classes. For the purposes of
this paper we are interested in oriented CTRSs, where conditions are interpreted
as reachability constraints with respect to conditional rewriting. Hence, from now
on we identify conditions 〈s1, t1〉, . . . , 〈sn, tn〉 with the reachability constraint
s1 −→→ t1 ∧ . . . ∧ sn −→→ tn, and the empty list with � (omitting “⇐ �” from
rules).

The rewrite relation of a CTRS is layered into levels: given a CTRS R and
level i ∈ N, the corresponding (unconditional) TRS Ri is defined recursively:

R0 := ∅

Ri+1 := {lσ → rσ | l → r ⇐ φ ∈ R, σ |=Ri
φ}

Then the (conditional) rewrite relation at level i, written −→R,i (or −→i whenever
R is clear from the context), is the plain rewrite relation −→Ri

induced by the
TRS Ri. Finally, the induced (conditional) rewrite relation of a CTRS R is
defined by −→R :=

⋃
{−→i | i ≥ 0}. At this point Definition 2 is extended to the

conditional case in a straightforward manner.

Definition 9 (Level Satisfiability). Let R be a CTRS and φ a reachability
constraint. We say that a substitution σ satisfies φ modulo R at level i, whenever
σ |=R,i φ. If we are not interested in a specific satisfying substitution we say
that φ is satisfiable modulo R at level i and write SATR,i(φ) (or just SATi(φ)
whenever R is clear from the context).

5.1 Infeasibility

The main area of interest for reachability analysis in the conditional case is
checking for infeasibility. While a formal definition of this concept follows below,
for the moment, think of it as unsatisfiability of conditions. The two predominant
applications of infeasibility are: (1) if the conditions of a rule are unsatisfiable,
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the rule can never be applied and thus safely be removed without changing
the induced rewrite relation; (2) if the conditions of a conditional critical pair
(which arises from confluence analysis of CTRSs) are unsatisfiable, then it poses
no problem to confluence and can safely be ignored.

Definition 10 (Infeasibility). We say that a conditional rewrite rule l → r ⇐
φ is applicable at level i with respect to a CTRS R iff SATR,i−1(φ). A set S of
rules is infeasible with respect to R when no rule in S is applicable at any level.

The next theorem allows us to remove some rules from a CTRS while checking
for infeasibility of rules.

Theorem 3. A set S of rules is infeasible with respect to a CTRS R iff it is
infeasible with respect to R \ S.

Proof. The ‘only if’ direction is trivial. Thus we concentrate on the ‘if’ direction.
To this end, assume that S is infeasible with respect to R\S, but not infeasible
with respect to R. That is, at least one rule in S is applicable at some level with
respect to R. Let m be the minimum level such that there is a rule l → r ⇐ φ ∈ S
that is applicable at level m with respect to R. Now if m = 0 then l → r ⇐ φ is
applicable at level 0 and thus SATR,0(φ), which trivially implies SATR\S,0(φ),
contradicting the assumption that all rules in S are infeasible with respect to
R\S. Otherwise, m = k +1 for some k ≥ 0 and since l → r ⇐ φ is applicable at
level m we have SATR,k(φ). Moreover, the rewrite relations −→R,k and −→R\S,k

coincide (since all rules in S are infeasible at levels smaller than m by our choice
of m). Thus we also have SATR\S,k(φ), again contradicting the assumption that
all rules in S are infeasible with respect to R \ S. 
�

The following example from the confluence problems data base (Cops)3 shows
that Theorem 3 is beneficial for showing infeasibility of conditional rewrite rules.

Example 10 (Cops 794). Consider the CTRS R consisting of the two rules:

a → c ⇐ f(a) −→→ f(b) f(b) → b

The tcap-method does not manage to conclude infeasibility of the first rule,
since tcapR(f(a)) = x for some fresh variable x and thus unifies with f(b). The
reason for this result was that for computing tcapR we had to recursively (in a
bottom-up fashion) try to unify arguments of functions with left-hand sides of
rules, which succeeded for the left-hand side of the first rule and the argument a
of f(a), thereby obtaining f(x ) which, in turn, unifies with the left-hand side of
the second rule. But by Theorem 3 we do not need to consider the first rule for
computing the term cap and thus obtain tcap{f(b)→b}(f(a)) = f(a) which does
not unify with f(b) and thereby shows that the first rule is infeasible.

3 http://cops.uibk.ac.at/?q=ctrs+oriented.

http://cops.uibk.ac.at/?q=794
http://cops.uibk.ac.at/?q=ctrs+oriented
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Fig. 2. Inductive and plain symbol transition graph of Example 11.

5.2 Symbol Transition Graphs in the Presence of Conditions

In the presence of conditions in rules we replace Definition 6 by the following
inductive definition:

Definition 11 (Inductive Symbol Transition Graphs). The symbol tran-
sition graph SG(R) of a CTRS R over a signature F is the graph 〈F ,�R〉 where
�R is defined inductively by the following two inference rules:

f(...) → x ⇐ φ ∈ R ∀〈s, t〉 ∈ φ. s ∈ V ∨ t ∈ V ∨ root(s) �∗
R root(t)

f �R g
g ∈ F

f(...) → g(...) ⇐ φ ∈ R ∀〈s, t〉 ∈ φ. s ∈ V ∨ t ∈ V ∨ root(s) �∗
R root(t)

f �R g

The example below shows the difference between the symbol transition graph
for TRSs (which can be applied as a crude overapproximation also to CTRSs by
dropping all conditions) and the inductive symbol transition graph for CTRSs.

Example 11 (Cops 293). Consider the CTRS consisting of the three rules:

a → b a → c b → c ⇐ b −→→ c

The corresponding inductive symbol transition graph is depicted in Fig. 2(a)
and implies unsatisfiability of b −→→ c. Note that this conclusion cannot be drawn
from the plain symbol transition graph of the TRS obtained by dropping the
condition of the third rule, shown in Fig. 2(b).

The inductive symbol transition graph gives us a sufficient criterion for con-
cluding nonreachability with respect to a given CTRS, as shown in the following.

Lemma 6. If f(...) −→∗
R g(...) then f �∗

R g.

Proof. Let s = f(...) and u = g(...) and assume that s rewrites to u at level i, that
is, s −→∗

i u. We prove the statement by induction on the level i. If i = 0 then we
are done, since −→0 is empty and therefore f(...) = s = u = g(...), which trivially
implies f �∗

R g. Otherwise, i = j + 1 and we obtain the induction hypothesis
(IH) that s −→∗

j t implies root(s) �∗
R root(t) for arbitrary non-variable terms s

and t. We proceed to show that s −→∗
i u implies f �∗

R g by an inner induction
on the length of this derivation. If the derivation is empty, then f(...) = s =

http://cops.uibk.ac.at/?q=293
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u = g(...) and therefore trivially f �∗
R g. Otherwise, the derivation is of the

shape s −→∗
i t −→i u for some non-variable term t = h(...) and we obtain the

inner induction hypothesis that f �∗
R h. It remains to show h �∗

R g in order
to conclude the proof. To this end, consider the step t = C[lσ] −→i C[rσ] = u
for some context C, substitution σ, and rule l → r ⇐ φ ∈ R such that σ |=j φ.
Now, by IH, we obtain that s′ ∈ V or t′ ∈ V or root(s′) �∗

R root(t′) for all
〈s′, t′〉 ∈ φ. Thus, by Definition 11, we obtain that root(lσ) �R root(rσ). We
conclude by a case analysis on the structure of the context C. If C is empty,
that is C = �, then h = root(lσ) �∗

R root(rσ) = g and we are done. Otherwise,
h = root(t) = root(u) = g and therefore trivially h �∗

R g. 
�

Corollary 4. If f �∗
R g does not hold, then f(...) −→→ g(...) ≡R ⊥.

5.3 Look-Ahead Reachability in the Presence of Conditions

In the following definition we extend our look-ahead technique from plain rewrit-
ing to conditional rewriting.

Definition 12 (Conditional Root Narrowing Constraints). Let l → r ⇐
φ be a conditional rewrite rule with Var(l) = {x1, . . . , xn}. Then for terms s
and t not containing x1, . . . , xn, the conditional root narrowing constraint from
s to t via l → r ⇐ φ is defined by

s �l→r⇐φ t := ∃x1, . . . , xn. s
>ε−−→→ l ∧ r −→→ t ∧ φ

We write s �R t for
∨

l→r⇐φ∈R′ s �l→r⇐φ t, where R′ is a variant of R in
which variables occurring in s or t are renamed to fresh ones.

And we obtain a result similar to Theorem 2.

Lemma 7. If s, t /∈ V, then s −→→ t ≡R s
>ε−−→→ t ∨ s �R t.

Example 12 (Cops 793). Consider the CTRS R consisting of the two rules:

a → a ⇐ f(a) −→→ a f(x ) → a ⇐ x −→→ b

To show infeasibility of the first rule we can safely remove it from R by Theorem 3,
resulting in the modified CTRS R′. Then we have to check SATR′(f(a) −→→ a) which
is made easier by the following chain of equivalences:

f(a) −→→ a ≡R′ f(a) >ε−−→→ a ∨ f(a) �f(x)→a⇐x�b a (by Lemma 7)
≡R′ f(a) �f(x)→a⇐x�b a (by Definition 5)

≡R′ ∃x . f(a) >ε−−→→ f(x ) ∧ a −→→ a ∧ x −→→ b (by Definition 12)
≡R′ ∃x . a −→→ x ∧ a −→→ a ∧ x −→→ b (by Definition 5)

Since satisfiability of the final constraint above implies SATR′(a −→→ b) and we
also have a ��∗

R b, we can conclude unsatisfiability of the original constraint by
Corollary 4 and hence that the first rule of R is infeasible.

http://cops.uibk.ac.at/?q=793


Reachability Analysis for Termination and Confluence of Rewriting 275

Table 1. Experimental results for dependency graph analysis (TRSs).

Look-ahead

L0
R L1

R L2
R L3

R L8
R

None UNSAT 0 104 050 105 574 105 875 105 993

time (s) 33.96 38.98 38.13 39.15 116.52

Corollary 1 UNSAT 307 207 328 216 328 430 328 499 328 636

time (s) 38.50 42.71 42.72 43.00 66.82

6 Assessment

We implemented our techniques in the TRS termination prover NaTT [16]4 ver-
sion 1.8 for dependency graph analysis, and the CTRS confluence prover Con-
Con [13]5 version 1.7 for infeasibility analysis. In both cases we only need a
complete satisfiability checker, or equivalently, a sound unsatisfiability checker.
Hence, to conclude unsatisfiability of given reachability constraints, we apply
Corollary 2 with appropriate k together with a complete approximation of con-
straints. One such approximation is the symbol transition graph (Corollary 1).
In the following we describe the experimental results on TRS termination and
CTRS confluence. Further details of our experiments can be found at http://cl-
informatik.uibk.ac.at/experiments/reachability/.

TRS Termination. For plain rewriting, we take all the 1498 TRSs from the TRS
standard category of the termination problem data base version 10.6,6 the bench-
mark used in the annual Termination Competition [8], and over-approximate
their dependency graphs. This results in 1 133 963 reachability constraints, which
we call “edges” here. Many of these edges are actually satisfiable, but we do not
know the exact number (the problem is undecidable in general).

For checking unsatisfiability of edges, we combine Corollary 2 for various
values of k (0, 1, 2, 3, and 8), and either Corollary 1 or ‘None’. Here ‘None’
concludes unsatisfiability only for constraints that are logically equivalent to ⊥.
In Table 1 we give the number of edges that could be shown unsatisfiable. Here,
the ‘UNSAT’ row indicates the number of detected unsatisfiable edges and the
‘time’ row indicates the total runtime in seconds. (We ran our experiments on an
Amazon EC2 instance model c5.xlarge: 4 virtual 3.0 GHz Intel Xeon Platinum
CPUs on 8 GB of memory).

The starting point is L1
R + None, which corresponds to the tcap technique,

the method that was already implemented in NaTT before. The benefit of symbol
transition graphs turns out to be quite significant, while the overhead in runtime
seems acceptable. Moreover, increasing k of the look-ahead reasonably improves
the power of unsatisfiability checks, both with and without the symbol transition
4 https://www.trs.css.i.nagoya-u.ac.jp/NaTT/.
5 http://cl-informatik.uibk.ac.at/software/concon/.
6 http://www.termination-portal.org/wiki/TPDB.

http://cl-informatik.uibk.ac.at/experiments/reachability/
http://cl-informatik.uibk.ac.at/experiments/reachability/
https://www.trs.css.i.nagoya-u.ac.jp/NaTT/
http://cl-informatik.uibk.ac.at/software/concon/
http://www.termination-portal.org/wiki/TPDB
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graph technique. In terms of the overall termination proving power, NaTT using
only tcap solves 1039 out of the 1498 termination problems, while using L8

R and
Corollary 1, it proves termination of 18 additional problems.

CTRS Confluence. For conditional rewriting, we take the 148 oriented CTRSs
of Cops,7 a benchmark of confluence problems used in the annual Confluence
Competition [1]. Compared to version 1.5 of ConCon (the winner of the CTRS
category in the last competition in 2018) our new version (1.7) can solve five
more systems (that is a gain of roughly 3%) by incorporating a combination of
Theorem 3, inductive symbol transition graphs (Corollary 4), and k-fold look-
ahead (Lemma 7), where for the latter we fixed k = 1 since we additionally have
to control the level of conditional rewriting.

7 Related Work

Reachability is a classical topic in term rewriting; cf. Genet [7] for a survey.
Some modern techniques include the tree-automata-completion approach [5,6]
and a Knuth-Bendix completion-like approach [4]. Compared to these lines of
work, first of all our interest is not directly in reachability problems but their
(un)satisfiability. Middeldorp [12] proposed tree-automata techniques to approx-
imate dependency graphs and made a theoretical comparison to an early term-
cap-unifiability method [2], a predecessor of the tcap-based method. It is indeed
possible (after some approximations of input TRSs) to encode our satisfiabil-
ity problems into reachability problems between regular tree languages. How-
ever, our main motivation is to efficiently test reachability when analyzing other
properties like termination and confluence. In that setting, constructing tree
automata often leads to excessive overhead.

Our work is inspired by the work of Lucas and Gutiérrez [11]. Their feasibility
sequences serve the same purpose as our reachability constraints, but are limited
to atoms and conjunctions. Our formulation, allowing other constructions of logic
formulas, is essential for introducing look-ahead reachability.

8 Conclusion

We introduced reachability constraints and their satisfiability problem. Such
problems appear in termination and confluence analysis of plain and con-
ditional rewriting. Moreover, we proposed two efficient techniques to prove
(un)satisfiability of reachability constraints, first for plain and then for con-
ditional rewriting. Finally, we implemented these techniques in the termination
prover NaTT and the confluence prover ConCon, and experimentally verified their
significance.

7 http://cops.uibk.ac.at/?q=oriented+ctrs.

http://cops.uibk.ac.at/?q=oriented+ctrs
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Abstract. Spatial and spatio-temporal model checking techniques have
a wide range of application domains, among which large scale distributed
systems and signal and image analysis. We explore a new domain, namely
(semi-)automatic contouring in Medical Imaging, introducing the tool
VoxLogicA which merges the state-of-the-art library of computational
imaging algorithms ITK with the unique combination of declarative spec-
ification and optimised execution provided by spatial logic model check-
ing. The result is a rapid, logic based analysis development methodology.
The analysis of an existing benchmark of medical images for segmenta-
tion of brain tumours shows that simple VoxLogicA analysis can reach
state-of-the-art accuracy, competing with best-in-class algorithms, with
the advantage of explainability and easy replicability. Furthermore, due
to a two-orders-of-magnitude speedup compared to the existing general-
purpose spatio-temporal model checker topochecker, VoxLogicA enables
interactive development of analysis of 3D medical images, which can
greatly facilitate the work of professionals in this domain.

Keywords: Spatial logics · Closure spaces · Model checking ·
Medical Imaging

1 Introduction and Related Work

Spatial and Spatio-temporal model checking have gained an increasing interest
in recent years in various domains of application ranging from Collective Adap-
tive Systems [11,15,18] and networked systems [27], to signals [32] and digi-
tal images [14,26]. Research in this field has its origin in the topological app-
roach to spatial logics, dating back to the work of Alfred Tarski (see [9] for a
thorough introduction). More recently these early theoretical foundations have
been extended to encompass reasoning about discrete spatial structures, such as
graphs and images, extending the theoretical framework of topology to (quasi
discrete) closure spaces (see for instance [1,23,24]). That framework has subse-
quently been taken further in recent work by Ciancia et al. [13,14,17] resulting
in the definition of the Spatial Logic for Closure Spaces (SLCS), temporal exten-
sions (see [12,32,36]), and related model checking algorithms and tools.
c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 281–298, 2019.
https://doi.org/10.1007/978-3-030-17462-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-17462-0_16
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The main idea of spatial (and spatio-temporal) model checking is to use
specifications written in a suitable logical language to describe spatial properties
and to automatically identify patterns and structures of interest in a variety of
domains (see e.g., [5,16,18]). In this paper we focus on one such domain, namely
medical imaging for radiotherapy, and brain tumour segmentation in particular,
which is an important and currently very active research domain of its own. One
of the technical challenges of the development of automated (brain) tumour seg-
mentation is that lesion areas are only defined through differences in the intensity
(luminosity) in the (black & white) images that are relative to the intensity of
the surrounding normal tissue. A further complication is that even (laborious
and time consuming) manual segmentation by experts shows significant varia-
tions when intensity gradients between adjacent tissue structures are smooth or
partially obscured [31]. Moreover, there is a considerable variation across images
from different patients and images obtained with different Magnetic Resonance
Images (MRI) scanners. Several automatic and semi-automatic methods have
been proposed in this very active research area (see e.g., [20–22,29,34,37]).

This paper continues the research line of [3,7,8], introducing the free and
open source tool VoxLogicA (Voxel-based Logical Analyser)1, catering for a novel
approach to image segmentation, namely a rapid-development, declarative, logic-
based method, supported by spatial model checking. This approach is particularly
suitable to reason at the “macro-level”, by exploiting the relative spatial relations
between tissues or organs at risk. VoxLogicA is similar, in the accepted logical
language, and functionality, to the spatio-temporal model checker topochecker2,
but specifically designed for the analysis of (possibly multi-dimensional, e.g. 3D)
digital images as a specialised image analysis tool. It is tailored to usability and
efficiency by employing state-of-the-art algorithms and open source libraries,
borrowed from computational image processing, in combination with efficient
spatial model checking algorithms.

We show the application of VoxLogicA on BraTS 20173 [2,31,35], a publicly
available set of benchmark MRI images for brain tumour segmentation, linked to a
yearly challenge. For each image, a manual segmentation of the tumour by domain
experts is available, enabling rigorous and objective qualitative comparisons via
established similarity indexes. We propose a simple, yet effective, high-level spec-
ification for glioblastoma segmentation. The procedure, partly derived from the
one presented in [3], directly competes in accuracy with the state-of-the-art tech-
niques submitted to the BraTS 2017 challenge, most of which based on machine
learning. Our approach to segmentation has the unique advantage of explainabil-
ity, and is easy to replicate; in fact, the structure of a logically specified procedure
can be explained to domain experts, and improved to encompass new observations.
A mathematically formalised, unambiguous semantics permits results to be repli-
cated not only by executing them in the multi-platform, open source tool that has
been provided, but also by computing them via different implementations.

1 VoxLogicA: https://github.com/vincenzoml/VoxLogicA.
2 Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://

github.com/vincenzoml/topochecker.
3 See https://www.med.upenn.edu/sbia/brats2017/data.html.

https://github.com/vincenzoml/VoxLogicA
http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker
https://www.med.upenn.edu/sbia/brats2017/data.html
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2 The Spatial Logic Framework

In this section, we briefly recall the logical language ImgQL (Image Query Lan-
guage) proposed in [3], which is based on the Spatial Logic for Closure Spaces
SLCS [13,14] and which forms the kernel of the framework we propose in the
present paper. In Sect. 4 we will see how the resulting logic can be used for actual
analysis via spatial model checking.

2.1 Foundations: Spatial Logics for Closure Spaces

The logic for closure spaces we use in the present paper is closely related to
SLCS [13,14] and, in particular, to the SLCS extension with distance-based
operators presented in [3]. As in [3], the resulting logic constitutes the kernel of
a solid logical framework for reasoning about texture features of digital images,
when interpreted as closure spaces. In the context of our work, a digital image is
not only a 2-dimensional grid of pixels, but, more generally, a multi-dimensional
(very often, 3-dimensional) grid of hyper-rectangular elements that are called
voxels (“volumetric picture elements”). When voxels are not hypercubes, images
are said to be anisotropic; this is usually the case in medical imaging. Further-
more, a digital image may contain information about its “real world” spatial
dimensions, position (origin) and rotation, permitting one to compute the real-
world coordinates of the centre and edges of each voxel. In medical imaging, such
information is typically encapsulated into data by machines such as MRI scan-
ners. In the remainder of the paper, we make no dimensionality assumptions.
From now on, we refer to picture elements either as voxels or simply as points.

Definition 1. A closure space is a pair (X, C) where X is a non-empty set (of
points) and C : 2X → 2X is a function satisfying the following axioms: C(∅) = ∅;
Y ⊆ C(Y ) for all Y ⊆ X; C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2) for all Y1, Y2 ⊆ X. •

Given any relation R ⊆ X×X, function CR : 2X → 2X with CR(Y ) � Y ∪{x |
∃y ∈ Y.y R x} satisfies the axioms of Definition 1 thus making (X, CR) a closure
space. Whenever a closure space is generated by a relation as above, it is called a
quasi-discrete closure space. A quasi-discrete closure space (X, CR), can be used
as the basis for a mathematical model of a digital image. X represents the finite
set of voxels and R is the reflexive and symmetric adjacency relation between
voxels [25]. A closure space (X, C) can be enriched with a notion of distance, i.e.
a function d : X × X → R≥0 ∪ {∞} such that d(x, y) = 0 iff x = y, leading to
the distance closure space ((X, C), d).4

4 We recall that for ∅ �= Y ⊆ X, d(x, Y ) � inf{d(x, y) | y ∈ Y }, with d(x, ∅) = ∞.
In addition, as the definition of d might require the elements of R to be weighted,
quasi-discrete distance closure spaces may be enriched with a R-weighting function
W : R → R assigning the weight W(x, y) to each (x, y) ∈ R. In the sequel we will
keep W implicit, whenever possible and for the sake of simplicity.
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It is sometimes convenient to equip the points of a closure space with
attributes; for instance, in the case of images, such attributes could be the color or
intensity of voxels. We assume sets A and V of attribute names and values, and
an attribute valuation function A such that A(x, a) ∈ V is the value of attribute
a of point x. Attributes can be used in assertions α, i.e. boolean expressions,
with standard syntax and semantics. Consequently, we abstract from related
details here and assume function A extended in the obvious way; for instance,
A(x, a ≤ c) = A(x, a) ≤ c, for appropriate constant c.

A (quasi-discrete) path π in (X, CR) is a function π : N → X, such that
for all Y ⊆ N, π(CSucc(Y )) ⊆ CR(π(Y )), where (N, CSucc) is the closure space
of natural numbers with the successor relation: (n,m) ∈ Succ ⇔ m = n + 1.
Intuitively: the ordering in the path imposed by N is compatible with relation
R, i.e. π(i)R π(i + 1). For given set P of atomic predicates p, and interval of R

I, the syntax of the logic we use in this paper is given below:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | NΦ | ρ Φ1[Φ2] | DIΦ (1)

We assume that space is modelled by the set of points of a distance closure
space; each atomic predicate p ∈ P models a specific feature of points and is
thus associated with the points that have this feature5. A point x satisfies N Φ
if a point satisfying Φ can be reached from x in at most one (closure) step,
i.e. if x is near (or close) to a point satisfying Φ; x satisfies ρ Φ1[Φ2] if x may
reach a point satisfying Φ1 via a path passing only by points satisfying Φ2; it
satisfies DI Φ if its distance from the set of points satisfying Φ falls in interval I.
The logic includes logical negation (¬) and conjunction (∧). In the following we
formalise the semantics of the logic. A distance closure model M is a tuple M =
(((X, C), d),A,V), where ((X, C), d) is a distance closure space, A : X × A → V
an attribute valuation, and V : P → 2X is a valuation of atomic propositions.

Definition 2. Satisfaction M, x |= Φ of a formula Φ at point x ∈ X in model
M = (((X, C), d),A,V) is defined by induction on the structure of formulas:

M, x |= p ∈ P ⇔ x ∈ V(p)
M, x |= ¬Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∧ Φ2 ⇔ M, x |= Φ1 and M, x |= Φ2

M, x |= N Φ ⇔ x ∈ C({y | M, y |= Φ})
M, x |= ρ Φ1[Φ2] ⇔ there is path π and index � s.t. π(0) = x and M, π(�) |= Φ1

and for all indexes j : 0 < j < � implies M, π(j) |= Φ2

M, x |= DI Φ ⇔ d(x, {y | M, y |= Φ}) ∈ I

where, when p := α is a definition for p, we let x ∈ V(p) iff A(x, α) is true. •

5 In particular, a predicate p can be a defined one, by means of a definition as p := α,
meaning that the feature of interest is characterized by the (boolean) value of α.
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In the logic proposed in [13,14], the “may reach” operator is not present,
and the surrounded operator S has been defined as basic operator as follows: x
satisfies Φ1 S Φ2 if and only if x belongs to an area of points satisfying Φ1 and one
cannot “escape” from such an area without hitting a point satisfying Φ2. Several
types of reachability predicates can be derived from S. However, reachability is
in turn a widespread, more basic primitive, implemented in various forms (e.g.,
flooding, connected components) in programming libraries. Thus, in this work,
we prefer to use reachability as a basic predicate of the logic, as in [4], which is
dedicated to extending the Spatial Signal Temporal Logic of [32]. In the sequel
we show that S can be derived from the operators defined above, employing
a definition patterned after the model-checking algorithm of [13]. This change
simplifies the definition of several derived connectives, including that of touch
(see below), and resulted in notably faster execution times for analyses using such
derived connectives. We recall the definition of S from [14]: M, x |= Φ1 S Φ2 if
and only if M, x |= Φ1 and for all paths π and indexes � we have: if π(0) = x
and M, π(�) |= ¬Φ1, then there is j such that 0 < j ≤ � and M, π(j) |= Φ2.

Proposition 1. For all closure models M = ((X, C),A,V) and all formulas Φ1,
Φ2 the following holds: Φ1 S Φ2 ≡ Φ1 ∧ ¬(ρ ¬(Φ1 ∨ Φ2)[¬Φ2]) �
Definition 3. We define some derived operators that are of particular use in
medical image analysis: touch(Φ1, Φ2) � Φ1 ∧ ρ Φ2[Φ1]; grow(Φ1, Φ2) � Φ1 ∨
touch(Φ2, Φ1);flt(r, Φ1) � D<r(D≥r¬Φ1) •

The formula touch(Φ1, Φ2) is satisfied by points that satisfy Φ1 and that are
on a path of points satisfying Φ1 that reaches a point satisfying Φ2. The formula
grow(Φ1, Φ2) is satisfied by points that satisfy Φ1 and by points that satisfy Φ2

which are on a path of points satisfying Φ2 that reaches a point satisfying Φ1.
The formula flt(r, Φ1) is satisfied by points that are at a distance of less than
r from a point that is at least at distance r from points that do not satisfy Φ1.
This operator works as a filter; only contiguous areas satisfying Φ1 that have a
minimal diameter of at least 2r are preserved; these are also smoothened if they
have an irregular shape (e.g. protrusions of less than the indicated distance).

Example 1. In Fig. 1, the top row shows four pictures using colours blue and
red, interpreted as atomic propositions. Each picture in the bottom row shows
in white the points that satisfy a given formula. In particular: Fig. 1e is blueS red
of (a); Fig. 1f is touch(red, blue) of (b); Fig. 1g is grow(red, blue) of (c); Fig. 1h
is redS (D≤11blue) of (d). For more details the reader is referred to [6].

2.2 Region Similarity via Statistical Cross-correlation

In the sequel, we provide some details on a logical operator, first defined in [3],
that we use in the context of Texture Analysis (see for example [10,19,28,30])
for defining a notion of statistical similarity between image regions. The sta-
tistical distribution of an area Y of a black and white image is approximated
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Some examples of ImgQL operators (see Example 1). (Color figure online)

by the histogram of the grey levels of points (voxels) belonging to Y , limiting
the representation to those levels laying in a certain interval [m,M ], the lat-
ter being split into k bins. In the case of images modelled as closure models,
where each point may have several attributes, the histogram can be defined for
different attributes. Given a closure model M = ((X, C),A,V), define function
H : A × 2X × R × R × N → (N → N) such that for all m < M , k > 0 and
i ∈ {1, . . . , k}, H(a, Y,m,M, k)(i) =

∣
∣
∣{y ∈ Y | (i − 1) · Δ ≤ A(y, a) − m < i · Δ}

∣
∣
∣

where Δ = M−m
k . We call H(a, Y,m,M, k) the histogram of Y (for attribute a),

with k bins and m, M min and max values respectively. The mean h of a his-
togram h with k bins is the quantity 1

k

∑k
i=1 h(i). The cross correlation between

two histograms h1, h2 with the same number k of bins is defined as follows:

r(h1, h2) =
∑k

i=1(h1(i)−h1)(h2(i)−h2)
√∑k

i=1(h1(i)−h1)2
√∑k

i=1(h2(i)−h2)2 . The value of r is normalised so

that −1 ≤ r ≤ 1; r(h1, h2) = 1 indicates that h1 and h2 are perfectly correlated
(that is, h1 = ah2 + b, with a > 0); r(h1, h2) = −1 indicates perfect anti-
correlation (that is, h1 = ah2 + b, with a < 0). On the other hand, r(h1, h2) = 0
indicates no correlation.

We embed statistical similarity ����c

[
m M k
r a b

]

in the logic by adding it to the
grammar defined by (1) and extending the definition of the satisfaction relation
(Definition 2) with the following equation, for m,M, k as above:

M, x |= ����c

[
m M k
r a b

]

Φ ⇔ r(ha, hb) �	 c

where ha = H(a, S(x, r),m,M, k), hb = H(b, {y | M, y |= Φ},m,M, k), c is a
constant in [−1, 1], �	∈ {<,≤,=,≥, >} and S(x, r) = {y ∈ X | d(x, y) ≤ r}
is the sphere of radius r centred in x. Note that, differently from topochecker
that was used in [3], in VoxLogicA, for efficiency reasons, S(x, r) is actually the
hypercube with edge size 2r, which, for anisotropic images, becomes a hyperrect-
angle. So ����c

[
m M k
r a b

]

Φ compares the region of the image constituted by the
sphere (hypercube) of radius r centred in x against the region characterised by
Φ. The comparison is based on the cross correlation of the histograms of the
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chosen attributes of (the points of) the two regions, namely a and b and both
histograms share the same range ([m,M ]) and the same bins ([1, k]). In sum-
mary, the operator allows to check to which extent the sphere (hypercube) around
the point of interest is statistically similar to a given region (specified by) Φ.

3 The Tool VoxLogicA

VoxLogicA is a framework for image analysis, that embeds the logic ImgQL into
a user-oriented expression language to manipulate images. More precisely, the
VoxLogicA type system distinguishes between boolean-valued images, that can be
arguments or results of the application of ImgQL operators, and number-valued
images, resulting from imaging primitives. Underlying such expression language
is a global model checker, that is, the set of points satisfying a logic formula
is computed at once; this is done implicitly when an expression corresponding
to a logic formula is saved to an image. Functionality-wise, VoxLogicA spe-
cialises topochecker to the case of spatial analysis of multi-dimensional images.
It interprets a specification written in the ImgQL language, using a set of multi-
dimensional images6 as models of the spatial logic, and produces as output a set
of multi-dimensional images representing the valuation of user-specified expres-
sions. For logical operators, such images are Boolean-valued, that is, regions of
interest in medical imaging terminology, which may be loaded as overlays in med-
ical image viewers. Non-logical operators may generate number-valued images.
VoxLogicA augments ImgQL with file loading and saving primitives, and a set
of additional commodity operators, specifically aimed at image analysis, that is
destined to grow along with future developments of the tool. The main execution
modality of VoxLogicA is batch execution. A (currently experimental) graphical
user interface is under development.

Implementation-wise, the tool achieves a two-orders-of-magnitude speedup
with respect to topochecker. Such speedup has permitted the rapid develop-
ment of a novel procedure for automatic segmentation of glioblastoma that,
besides being competitive with respect to the state-of-the-art in the field (see
Sect. 4), is also easily replicable and explainable to humans, and therefore
amenable of improvement by the community of medical imaging practitioners.

3.1 Functionality

We provide an overview of the tool functionality, starting from its syntax. For
space reasons, we omit details on parsing rules (delegated to the tool documenta-
tion). In the following, f, x1,..., xN, x are identifiers, "s" is a string, and e1,
..., eN, e are expressions (to be detailed later). A VoxLogicA specification
consists of a text file containing a sequence of commands (see Specification 1
in Sect. 4 as an example). Five commands are currently implemented:
6 Besides common bitmap formats, the model loader of VoxLogicA currently supports

the NIfTI (Neuro-imaging Informatics Technology Initiative) format (https://nifti.
nimh.nih.gov/, version 1 and 2). 3D MR-FLAIR images in this format very often
have a slice size of 256 by 256 pixels, multiplied by 20 to 30 slices.

https://nifti.nimh.nih.gov/
https://nifti.nimh.nih.gov/
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– let f(x1,...,xN) = e is used for function declaration, also in the form let f =

e(constant declaration), and with special syntactic provisions to define infix oper-
ators. After execution of the command, name f is bound to a function or constant
that evaluates to e with the appropriate substitutions of parameters;

– load x = "s" loads an image from file "s" and binds it to x for subsequent usage;
– save "s" e stores the image resulting from evaluation of expression e to file "s";
– print "s" e prints to the log the string s followed by the numeric, or boolean,

result of computing e;
– import "s" imports a library of declarations from file "s"; subsequent import

declarations for the same file are not processed; furthermore, such imported files
can only contain let or import commands.

VoxLogicA comes equipped with a set of built-in functions, such as arithmetic
operators, logic primitives as described in Sect. 2, and imaging operators, for
instance for computing the gray-scale intensity of a colour image, or its colour
components, or the percentiles of its values (see Sect. 4.1). An exhaustive list of
the available built-ins is provided in the user manual7. Furthermore, a “standard
library” is provided containing short-hands for commonly used functions, and
for derived operators. An expression may be a numeric literal (no distinction
is made between floating point and integer constants), an identifier (e.g. x), a
function application (e.g. f(x1,x2)), an infix operator application (e.g. x1 +
x2), or a parenthesized (sub-)expression (e.g. (x1 + x2)).

The language features strong dynamic typing, that is, types of expressions
are unambiguously checked and errors are precisely reported, but such checks are
only performed at “run time”, that is, when evaluating closed-form expressions
with no free variables. The type system has currently been kept lightweight (the
only typing rules regard constants and function application), in order to leave the
design space open to future improvements. For instance, a planned development
is function and operator overloading, as well as some form of static typing not
interfering with the usability of the tool.

However, it is not the case that a type error may waste a long-running anal-
ysis. Type checking occurs after loading and parsing, but before analysis is run.
Actual program execution after parsing is divided into two phases. First (usu-
ally, in a negligible amount of time), all the “save” and “print” instructions are
examined to determine what expressions actually need to be computed; in this
phase, name binding is resolved, all constant and function applications are sub-
stituted with closed expressions, types are checked and the environment binding
expressions to names is discarded. Finally, the set of closed expressions to be
evaluated is transformed into a set of tasks to be executed, possibly in parallel,
and dependencies among them. After this phase, no further syntax processing or
name resolution are needed, and it is guaranteed that the program is free from
type errors. The second phase simply runs each task – in an order compliant
with dependencies – parallelising execution on multiple CPU cores.

Each built-in logical operator has an associated type of its input parameters
and output result. The available types are inductively defined as Number, Bool,

7 See https://github.com/vincenzoml/VoxLogicA.

https://github.com/vincenzoml/VoxLogicA
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String, Model, and Valuation(t), where t is in turn a type. The type Model
is the type assigned to x in load x = "f"; operations such as the extraction
of RGB components take this type as input, and return as output the only
parametric type: Valuation(t), which is the type of a multi-dimensional image
in which each voxel contains a value of type t. For instance, the red component
of a loaded model has type Valuation(Number), whereas the result of evaluating
a logic formula has type Valuation(Bool)8.

An important aspect of the execution semantics of VoxLogicA specifications
is memoization, constituting the core of its execution engine, and used to achieve
maximal sharing of subformulas. In VoxLogicA, no expression is ever computed
twice, freeing the user from worrying about how many times a given function is
called, and making execution of complex macros and logical operators feasible.

3.2 Implementation Details

VoxLogicA is implemented in the functional, object-oriented programming lan-
guage FSharp, using the .NET Core implementation of the .NET specification9.
This permits a single code base with minimal environment-dependent setup to
be cross-compiled and deployed as a standalone executable, for the major desk-
top operating systems, namely Linux, macOS, and Windows. Despite .NET code
is compiled for an intermediate machine, this does not mean that efficiency of
VoxLogicA is somehow “non-native”. There are quite a number of measures in
place to maximise efficiency. First and foremost, the execution time is heav-
ily dominated by the time spent in native libraries (more details below), and
VoxLogicA acts as a higher-level, declarative front-end for such libraries, adding
a logical language, memoization, parallel execution, and abstraction from a
plethora of technical details that a state-of-the-art imaging library necessarily
exposes. In our experiments, parsing, memoization, and preparation of the tasks
to be run may take a fraction of a second; the rest of the execution time (usu-
ally, several seconds, unless the analysis is extremely simple) is spent in foreign
function calls. The major performance boosters in VoxLogicA are: a state-of-the-
art computational imaging library (ITK); the optimised implementation of the
may reach operator; a new algorithm for statistical cross-correlation; an efficient
memoizing execution engine; parallel evaluation of independent tasks, exploit-
ing modern multi-core CPUs. Moreover, special care has been put in making
all performance-critical loops allocationless. All used memory along the loops is
pre-allocated, avoiding the risk to trigger garbage collection during computation.
We will address each of them briefly in the following.

ITK Library. VoxLogicA uses the state-of-the-art imaging library ITK, via the
SimpleITK glue library10. Most of the operators of VoxLogicA are implemented

8 Although such type system would permit “odd” types such as Valuation(Model),
there is no way to construct them; in the future this may change when appropriate.

9 See https://fsharp.org and https://dotnet.github.io.
10 See https://itk.org and http://www.simpleitk.org.

https://fsharp.org
https://dotnet.github.io
https://itk.org
http://www.simpleitk.org
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directly by a library call. Notably, this includes the Maurer distance transform,
used to efficently implement the distance operators of ImgQL.

Novel Algorithms. The two most relevant operators that do not have a direct
implementation in ITK are mayReach and crossCorrelation, implementing,
respectively, the logical operator ρ, and statistical comparison described in
Sect. 2.2. The computation of the voxels satisfying ρ φ1[φ2] can be imple-
mented either using the (classical, in computer graphics) flood-fill primitive,
or by exploiting the connected components of φ2 as a reachability primitive;
both solutions are available in SimpleITK. In our experiments, connected com-
ponents perform better using this library from FSharp, for large input seeds.
Several critical logical connectives (e.g. surrounded and touch), are defined in
terms of mayReach. Therefore, an optimised algorithm for mayReach is a key per-
formance improvement. The crossCorrelation operation is resource-intensive,
as it uses the histogram of a multi-dimensional hyperrectangle at each voxel.
Pre-computation methods such as the integral histogram [33], would not yield
the expected benefits, because cross-correlation is called only few times on the
same image. In this work, we designed a parallel algorithm exploiting additivity
of histograms. Given two sets of values P1, P2, let h1, h2 be their respective
histograms, and let h′

1, h′
2 be the histograms of P1\P2 and P2\P1. For i a bin,

we have h2(i) = h1(i) − h′
1(i) + h′

2(i). This property leads to a particularly
efficient algorithm when P1 and P2 are two hyperrectangles centred over adja-
cent voxels, as P1\P2 and P2\P1 are hyperfaces, having one dimension less than
hyperrectangles. Our algorithm divides the image into as many partitions as the
number of available processors, and then computes a Hamiltonian path for each
partition, passing by each of its voxels exactly once. All partitions are visited
in parallel, in the order imposed by such Hamiltonian paths; the histogram is
computed incrementally as described above; finally cross-correlation is also com-
puted and stored in the resulting image. The asymptotic algorithmic complexity
of the implementation of ImgQL primitives in VoxLogicA is linear in the number
of voxels, with the exception of crossCorrelation, which, by the above expla-
nation, has complexity O(k · n), where n is the number of voxels, and k is the
size of the largest hyperface of the considered hypercube.

Memoizing Execution Semantics. Sub-expressions in VoxLogicA are by construc-
tion identified up-to syntactic equality and assigned a number, representing a
unique identifier (UID). UIDs start from 0 and are contiguous, therefore admit-
ting an array of all existing sub-formulas to be used to pre-computed valuations
of expressions without further hashing.

3.3 Design and Data Structures

The design of VoxLogicA defines three implementation layers. The core execution
engine implements the concurrent, memoizing semantics of the tool. The inter-
preter is responsible for translating source code into core library invocations.
These two layers only include some basic arithmetic and boolean primitives.
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Operators can be added by inheriting from the abstract base class Model. The
third implementation layer is the instantiation of the core layer to define oper-
ators from ImgQL, and loading and saving of graphical models, using the ITK
library. We provide some more detail on the design of the core layer, which is
the most critical part of VoxLogicA. At the time of writing, the core consists of
just 350 lines of FSharp code, that has been carefully engineered not only for
performance, but also for ease of maintenance and future extensions.

The essential classes are ModelChecker, FormulaFactory, Formula, and
Operator, of which Constant is a subclass. Class Operator describes the avail-
able operators and their evaluation method. Class Formula is a symbolic repre-
sentation of a syntactic sub-expression. Each instance of Formula has a unique
numeric id (UID), an instance of Operator, and (inductively) a list of Formula
instances, denoting its arguments. The UID of a formula is determined by the
operator name (which is unique across the application), and the list of param-
eter UIDs. Therefore, by construction, it is not possible to build two different
instances of Formula that are syntactically equal. UIDs are contiguous and start
from 0. By this, all created formulas can be inserted into an array. Furthermore,
UIDs are allocated in such a way that the natural number order is a topological
sort of the dependency graph between subformulas (that is, if f1 is a parameter
of f2, the UID of f1 is greater than the UID of f2). This is exploited in class
ModelChecker; internally, the class uses an array to store the results of evaluat-
ing each Formula instance, implementing memoization. The class ModelChecker
turns each formula into a task to be executed. Whenever a formula with UID i
is a parameter of the formula with UID j, a dependency is noted between the
associated tasks. The high-level, lightweight concurrent programming library
Hopac11 and its abstractions are used to evaluate the resulting task graph, in
order to maximise CPU usage on multi-core machines.

4 Experimental Evaluation

The performance of VoxLogicA has been evaluated on the Brain Tumor Image
Segmentation Benchmark (BraTS) of 2017 [2,31] containing 210 multi contrast
MRI scans of high grade glioma patients that have been obtained from multiple
institutions and were acquired with different clinical protocols and various scan-
ners. All the imaging data sets provided by BraTS 2017 have been segmented
manually and approved by experienced neuro-radiologists. In our evaluation we
used the T2 Fluid Attenuated Inversion Recovery (FLAIR) type of scans, which
is one of the four provided modalities in the benchmark. Use of other modalities is
planned for future work. For training, the numeric parameters of the VoxLogicA
specification presented in Sect. 4.1 were manually calibrated against a subset of
20 cases. Validation of the method was conducted as follows. A priori, 17 of the
210 cases can be excluded because the current procedure is not suitable for these
images. This is because of the presence of multi-focal tumours (different tumours
in different areas of the brain), or due to clearly distinguishable artifacts in the
11 See https://github.com/Hopac/Hopac.

https://github.com/Hopac/Hopac
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FLAIR acquisition, or because the hyperintense area is too large and clearly not
significant (possibly by incorrect acquisition). Such cases require further investi-
gation. For instance, the current procedure may be improved to identify specific
types of artefacts, whereas multi-modal analysis can be used to complement the
information provided by the FLAIR image in cases where FLAIR hyperinten-
sity is not informative enough. In Sect. 4.2, we present the results both for the
full dataset (210 cases), and for the subset without these problematic cases (193
cases). We considered both the gross tumour volume (GTV), corresponding to
what can actually be seen on an image, and the clinical target volume (CTV)
which is an extension of the GTV. For glioblastomas this margin is a 2–2.5 cm
isotropic expansion of the GTV volume within the brain.

4.1 ImgQL Segmentation Procedure

Specification 1 shows the tumour segmentation procedure that we used for the
evaluation12. The syntax is that of VoxLogicA, namely: |,&,! are boolean or,
and, not ; distlt(c,phi) is the set {y | M, y |= D<cphi} (similarly, distgeq;
distances are in millimiters); crossCorrelation(r,a,b,phi,m,M,k) yields a
cross-correlation coefficient for each voxel, to which a predicate c may be applied
to obtain the statistical similarity function of Sect. 2.2; the > operator performs
thresholding of an image; border is true on voxels that lay at the border of
the image. Operator percentiles(img,mask), where img is a number-valued
image, and mask is boolean-valued, considers the points identified by mask, and
assigns to each such point x the fraction of points that have an intensity below
that of x in img. Other operators are explained in Definition 3 (see also Fig. 1).
Figure 2 shows the intermediate phases of the procedure, for axial view of one
specific 2D slice of an example 3D MRI scan of the BraTS 2017 data set.

We briefly discuss the specification (see [6] for more details). Lines 1–8 merely
define utility functions and load the image, calling it flair. Lines 9–10 define
the background as all voxels in the area of intensity less than 0.1 that touches
the border of the image, and the brain as the complement of the background.
The application of percentiles in line 11 assigns to each point of the brain
the percentile rank of its intensity among those that are part of brain. Based
on these percentiles, hyper-intense and very-intense points are identified that
satisfy hI and vI, respectively (lines 12–13). Hyper-intense points have a very
high likelihood to belong to tumour tissue; very-high intensity points are likely
to belong to the tumour as well, or to the oedema that is usually surround-
ing the tumour. However, not all hyper-intense and very-intense points are part
of a tumour. The idea is to identify the actual tumour using further spatial
information. In lines 14–15 the hyper-intense and very-intense points are fil-
tered, thus removing noise, and considering only areas of a certain relevant size.

12 Note that, although the procedure is loosely inspired by the one in [3], there are major
differences, partly due to a different method for identification of hyperintensities
(using percentiles), and partly since the task in this work is simpler, as we only
identify the CTV and GTV (avoiding, for instance, to label the oedema).
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The points that satisfy hyperIntense and veryIntense are shown in red in
Fig. 2a and in Fig. 2b, respectively. In line 16 the areas of hyper-intense points
are extended via the grow operator, with those areas that are very intense (pos-
sibly belonging to the oedema), and in turn touch the hyper-intense areas. The
points that satisfy growTum are shown in red in Fig. 2c. In line 17 the previously-
defined (line 8) similarity operator is used to assign to all voxels a texture-
similarity score with respect to growTum. In line 18 this operator is used to find
those voxels that have a high cross correlation coefficient and thus are likely
part of the tumour. The result is shown in Fig. 2d. Finally (line 19), the voxels
that are identified as part of the whole tumour are those that satisfy growTum
extended with those that are statistically similar to it via the grow operator.
Points that satisfy tumFinal are shown in red in Fig. 2e and points identified
by manual segmentation are shown for comparison in blue in the same figure
(overlapping areas are purple).

ImgQL Specification 1: Full specification of tumour segmentation
1 import "stdlib.imgql"

2 let grow(a,b) = (a | touch(b,a))

3 let flt(r,a) = distlt(r,distgeq(r,!a))

4 load imgFLAIR = "Brats17 2013 2 1 flair.nii.gz"

5 load imgManualSeg = "Brats17 2013 2 1 seg.nii.gz"

6 let manualContouring = intensity(imgManualSeg) > 0

7 let flair = intensity(imgFLAIR)

8 let similarFLAIRTo(a) =

crossCorrelation(5,flair,flair,a,min(flair),max(flair),100)

9 let background = touch(flair < 0.1,border)

10 let brain = !background

11 let pflair = percentiles(flair,brain)

12 let hI = pflair > 0.95

13 let vI = pflair > 0.86

14 let hyperIntense = flt(5.0,hI)

15 let veryIntense = flt(2.0,vI)

16 let growTum = grow(hyperIntense,veryIntense)

17 let tumSim = similarFLAIRTo(growTum)

18 let tumStatCC = flt(2.0,(tumSim > 0.6))

19 let tumFinal= grow(growTum,tumStatCC)

20 save "output Brats17 2013 2 1/complete-FLAIR FL-seg.nii" tumFinal

Interesting aspects of the ImgQL specification are its relative simplicity and
abstraction level, fitting that of neuro-radiologists, its explainability, its time-
efficient verification, admitting a rapid development cycle, and its independence
of normalisation procedures through the use of percentiles rather than absolute
values for the intensity of voxels.
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4.2 Validation Results

Results of tumour segmentation are evaluated based on a number of indexes
commonly used to compare the quality of different techniques (see [31]). These
indexes are based on the true positive (TP) voxels (voxels that are identified as
part of a tumour in both manual and VoxLogicA segmentation), true negatives
(TN) voxels (those that are not identified as part of a tumour in both manual and
VoxLogicA segmentation), false positives (FP) voxels (those identified as part of
a tumour by VoxLogicA but not by manual segmentation) and false negatives
(FN) voxels (those identified as part of a tumour by manual segmentation but
not by VoxLogicA). Based on these four types the following indexes are defined:
sensitivity: TP/(TP + FN); specificity: TN/(TN + FP); Dice: 2 ∗ TP/(2 ∗ TP +
FN+FP). Sensitivity measures the fraction of voxels that are correctly identified
as part of a tumour. Specificity measures the fraction of voxels that are correctly
identified as not being part of a tumour. The Dice similarity coefficient is used to
provide a measure of the similarity of two segmentations. Table 1 shows the mean
values of the above indexes both for GTV and CTV volumes for Specification 1
applied to the BraTS 2017 training phase collection. The top-scoring methods
of the BraTS 2017 Challenge [35] can be considered a good sample of the state-
of-the-art in this domain. Among those, in order to collect significant statistics,
we selected the 18 techniques that have been applied to at least 100 cases of the
dataset. The median and range of values of the sensitivity, specificity and Dice
indexes for the GTV segmentation of the whole tumour are, respectively, 0.88
(ranging from 0.55 to 0.97), 0.99 (0.98 to 0.999) and 0.88 (0.64 to 0.96). The
3D images used in this experiment have size 240 × 240 × 155 (about 9 million
voxels). The evaluation of each case study takes about 10 s on a desktop computer
equipped with an Intel Core I7 7700 processor (with 8 cores) and 16 GB of RAM.

(a) (b) (c) (d) (e)

Fig. 2. Tumour segmentation of image Brats17 2013 2 1, FLAIR, axial 2D slice at
X = 155, Y = 117 and Z = 97. (a) hyperIntense (b) veryIntense (c) growTum (d)
tumStatCC (e) tumFinal (red) and manual (blue, overlapping area is purple). (Color
figure online)
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Table 1. VoxLogicA evaluation on the BraTS 2017 benchmark.

Sensitivity
(193 cases)

Specificity
(193 cases)

Dice (193
cases)

Sensitivity
(210 cases)

Specificity
(210 cases)

Dice (210
cases)

GTV 0.89(0.10) 1.0(0.00) 0.85(0.10) 0.86(0.16) 1.0(0.0) 0.81(0.18)

CTV 0.95(0.07) 0.99(0.01) 0.90(0.09) 0.93(0.14) 0.99(0.2) 0.87(0.15)

4.3 Comparison with topochecker

The evaluation of VoxLogicA that we presented in this section uses features
that are present in VoxLogicA, but not in topochecker. On the other hand, the
example specification in [3], and its variant aimed at 3D images, are quite similar
to the one we presented, and can be readily used to compare the performance of
VoxLogicA and topochecker. The specifications consist of two human-authored
text files of about 30 lines each. The specifications were run on a desktop com-
puter equipped with an Intel Core I7 7700 processor (with 8 cores) and 16 GB
of RAM. In the 2D case (image size: 512 × 512), topochecker took 52 s to
complete the analysis, whereas VoxLogicA took 750 ms. In the 3D case (image
size: 512× 512× 24), topochecker took about 30 min, whereas VoxLogicA took
15 s. As we mentioned before, this huge improvement is due to the combination
of a specialised imaging library, new algorithms (e.g., for statistical similarity
of regions), parallel execution and other optimisations. More details could be
obtained by designing a specialised set of benchmarks, where some of which
can also be run using topochecker; however, for the purposes of the current
paper, the performance difference is so large that we do not deem such detailed
comparison necessary.

5 Conclusions and Future Work

We presented VoxLogicA, a spatial model checker designed and optimised for
the analysis of multi-dimensional digital images. The tool has been successfully
evaluated on 193 cases of an international brain tumour 3D MRI segmentation
benchmark. The obtained results are well-positioned w.r.t. the performance of
state-of-the-art segmentation techniques, both efficiency-wise and accuracy-wise.
Future research work based on the tool will focus on further benchmarking (e.g.
various other types of tumours and tumour tissue such as necrotic and non-
enhancing parts), and clinical application. On the development side, planned
future work includes a graphical (web) interface for interactive parameter cal-
ibration (for that, execution times will need to be further improved, possibly
employing GPU computing); improvements in the type-system (e.g. operator
overloading); turning the core design layer into a reusable library available for
other projects. Finally, the (currently small, albeit useful) library of logical and
imaging-related primitives available will be enhanced, based on input from case
studies. Calibration of the numerical parameters of our Glioblastoma segmenta-
tion was done manually. Future work aims at exploring different possibilities for
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human-computer interaction in designing such procedures (e.g. via ad-hoc graph-
ical interfaces), to improve user friendliness for domain experts. Experimenta-
tion in combining machine-learning methods with the logic-based approach of
VoxLogicA are also worth being explored in this respect.
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Abstract. We address the problem of statically checking safety proper-
ties (such as assertions or deadlocks) for parameterized phaser programs.
Phasers embody a non-trivial and modern synchronization construct
used to orchestrate executions of parallel tasks. This generic construct
supports dynamic parallelism with runtime registrations and deregis-
trations of spawned tasks. It generalizes many synchronization patterns
such as collective and point-to-point schemes. For instance, phasers can
enforce barriers or producer-consumer synchronization patterns among
all or subsets of the running tasks. We consider in this work programs
that may generate arbitrarily many tasks and phasers. We propose an
exact procedure that is guaranteed to terminate even in the presence of
unbounded phases and arbitrarily many spawned tasks. In addition, we
prove undecidability results for several problems on which our procedure
cannot be guaranteed to terminate.

1 Introduction

We focus on the parameterized verification problem of parallel programs that
adopt the phasers construct for synchronization [15]. This coordination construct
unifies collective and point-to-point synchronization. Parameterized verification
is particularly relevant for mainstream parallel programs as the number of inter-
dependent tasks in many applications, from scientific computing to web services
or e-banking, may not be known apriori. Parameterized verification of phaser
programs is a challenging problem due to the arbitrary numbers of involved
tasks and phasers. In this work, we address this problem and provide an exact
symbolic verification procedure. We identify parameterized problems for which
our procedure is guaranteed to terminate and prove the undecidability of several
variants on which our procedure cannot be guaranteed to terminate in general.

Phasers build on the clock construct from the X10 programming language
[5] and are implemented in Habanero Java [4]. They can be added to any par-
allel programming language with a shared address space. Conceptually, phasers
are synchronization entities to which tasks can be registered or unregistered.
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Registered tasks may act as producers, consumers, or both. Tasks can individ-
ually issue signal, wait, and next commands to a phaser they are registered
to. Intuitively, a signal command is used to inform other tasks registered to
the same phaser that the issuing task is done with its current phase. It incre-
ments the signal value associated to the issuing task on the given phaser. The
wait command on the other hand checks whether all signal values in the phaser
are strictly larger than the number of waits issued by this task, i.e. all regis-
tered tasks have passed the issuing task’s wait phase. It then increments the
wait value associated to the task on the phaser. As a result, the wait command
might block the issuing task until other tasks issue enough signals. The next
command consists in a signal followed by a wait. The next command may
be associated to a sequence of statements that are to be executed in isolation
by one of the registered tasks participating in the command. A program that
does not use this feature of the next statement is said to be non-atomic. A task
deregisters from a phaser by issuing a drop command on it.

The dynamic synchronization allowed by the construct suits applications
that need dynamic load balancing (e.g., for solving non-uniform problems with
unpredictable load estimates [17]). Dynamic behavior is enabled by the possi-
ble runtime creation of tasks and phasers and their registration/de-registration.
Moreover, the spawned tasks can work in different phases, adding flexibility
to the synchronization pattern. The generality of the construct makes it also
interesting from a theoretical perspective, as many language constructs can be
expressed using phasers. For example, synchronization barriers of Single Program
Multiple Data programs, the Bulk Synchronous Parallel computation model [16],
or promises and futures constructs [3] can be expressed using phasers.

We believe this paper provides general (un)decidability results that will guide
verification of other synchronization constructs. We identify combinations of
features (e.g., unbounded differences between signal and wait phases, atomic
statements) and properties to be checked (e.g., assertions, deadlocks) for which
the parameterized verification problem becomes undecidable. These help iden-
tify synchronization constructs with enough expressivity to result in undecidable
parameterized verification problems. We also provide a symbolic verification pro-
cedure that terminates even on fragments with arbitrary phases and numbers of
spawned tasks. We get back to possible implications in the conclusion:

– We show an operational model for phaser programs based on [4,6,9,15].
– We propose an exact symbolic verification procedure for checking reachability

of sets of configurations for non-atomic phaser programs even when arbitrarily
many tasks and phasers may be generated.

– We prove undecidability results for several reachability problems.
– We show termination of our procedure when checking assertions for non-

atomic programs even when arbitrary many tasks may be spawned.
– We show termination of our procedure when checking deadlock-freedom and

assertions for non-atomic programs with bounded gaps between signal and
wait values, even when arbitrary many tasks may be spawned.
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Related work. The closest work to ours is [9]. It is the only work on auto-
matic and static formal verification of phaser programs. It does not consider the
parameterized case. The current work studies decidability of different parameter-
ized reachability problems and proposes a symbolic procedure that, for example,
decides program assertions even in the presence of arbitrary many tasks. This
is well beyond [9]. The work of [6] considers dynamic deadlock verification of
phaser programs and can therefore only detect deadlocks at runtime. The work
in [2] uses Java Path Finder [11] to explore all concrete execution paths. A more
general description of the phasers mechanism has also been formalized in Coq [7].

Outline. We describe phasers in Sect. 2. The construct is formally introduced
in Sect. 3 where we show a general reachability problem to be undecidable. We
describe in Sect. 4 our symbolic representation and state some of its non-trivial
properties. We use the representation in Sect. 5 to instantiate a verification pro-
cedure and establish decidability results. We refine our undecidability results in
Sect. 6 and summarize our findings in Sect. 7. Proofs can be found in [10].

Fig. 1. An unbounded number of producers and consumers are synchronized using two
phasers. In this construction, each consumer requires all producers to be ahead of it
(wrt. the p phaser) in order for it to consume their respective products. At the same
time, each consumer needs to be ahead of all producers (wrt. the c phaser) in order
for the producers to be able to move to the next phase and produce new items.

2 Motivating Example

The program listed in Fig. 1 uses Boolean shared variables B = {a, done}. The
main task creates two phasers (line 4–5). When creating a phaser, the task gets
automatically registered to it. The main task also creates an unbounded number
of other task instances (lines 7–8). When a task t is registered to a phaser p, a
pair (wp

t , sp
t ) in N2 can be associated to the couple (t, p). The pair represents the

individual wait and signal phases of task t on phaser p.
Registration of a task to a phaser can occur in one of three modes: Sig Wait,

Wait and Sig. In Sig Wait mode, a task may issue both signal and wait
commands. In Wait (resp. Sig) mode, a task may only issue wait (resp. signal)
commands on the phaser. Issuing a signal command by a task on a phaser
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results in the task incrementing its signal phase associated to the phaser. This
is non-blocking. On the other-hand, issuing a wait command by a task on a
phaser p will block until all tasks registered to p get signal values on p that
are strictly larger than the wait value of the issuing task. The wait phase of the
issuing task is then incremented. Intuitively, signals allow issuing tasks to state
other tasks need not wait for them. In retrospect, waits allow tasks to make sure
all registered tasks have moved past their wait phases.

Upon creation of a phaser, wait and signal phases are initialized to 0 (except
in Wait mode where no signal phase is associated to the task in order to not
block other waiters). The only other way a task may get registered to a phaser
is if an already registered task spawns and registers it in the same mode (or
in Wait or Sig if the registrar is registered in Sig Wait). In this case, wait
and signal phases of the newly registered task are initialized to those of the
registrar. Tasks are therefore dynamically registered (e.g., lines 7–8). They can
also dynamically deregister themselves (e.g., line 10–11).

Here, an unbounded number of producers and consumers synchronize using
two phasers. Consumers require producers to be ahead wrt. the phaser they point
to with p. At the same time, consumers need to be ahead of all producers wrt. the
phaser pointed to with c. It should be clear that phasers can be used as barriers
for synchronizing dynamic subsets of concurrent tasks. Observe that tasks need
not, in general, proceed in a lock step fashion. The difference between the largest
signal value and the smallest wait value can be arbitrarily large (several signals
before waits catch up). This allows for more flexibility.

We are interested in checking: (a) control reachability as in assertions (e.g.,
line 20), race conditions (e.g., mutual exclusion of lines 20 and 33) or regis-
tration errors (e.g., signaling a dropped phaser), and (b) plain reachability as
in deadlocks (e.g., a producer at line 19 and a consumer at line 30 with equal
phases waiting for each other). Both problems deal with reachability of sets of
configurations. The difference is that control state reachability defines the tar-
gets with the states of the tasks (their control locations and whether they are
registered to some phasers). Plain reachability can, in addition, constrain values
of the phases in the target configurations (e.g., requiring equality between wait
and signal values for deadlocks).

3 Phaser Programs and Reachability

We describe syntax and semantics of a core language. We make sure the language
is representative of general purpose languages with phasers so that our results
have a practical impact. A phaser program prg = (B, V, T) involves a set T of
tasks including a unique “main” task main(){stmt}. Arbitrary many instances
of each task might be spawned during a program execution. All task instances
share a set B of Boolean variables and make use of a set V of phaser variables
that are local to individual task instances. Arbitrary many phasers might also
be generated during program execution. Syntax of programs is as follows.
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prg ::= bool b1, . . . , bp;
task1(v11 , . . . , vk1) {stmt1} ;
. . .
taskn(v1n , . . . , vkn) {stmtn} ;

stmt ::= v = newPhaser(); || asynch(task, v1, . . . , vk); || v.drop(); || v.signal();
|| v.wait(); || v.next(); || v.next(){stmt}; || b := cond; || assert(cond);

|| while(cond) {stmt}; || stmt stmt || exit;

cond ::= ndet() || true || false || b || cond ∨ cond || cond ∧ cond || ¬cond

Initially, a unique task instance starts executing the main(){stmt} task. A
phaser can recall a pair of values (i.e., wait and signal) for each task instance
registered to it. A task instance can create a new phaser with v = newPhaser(),
get registered to it (i.e., gets zero as wait and signal values associated to the
new phaser) and refer to the phaser with its local variable v. We simplify the
presentation by assuming all registrations to be in Sig Wait mode. Including
the other modes is a matter of depriving Wait-registered tasks of a signal value
(to ensure they do not block other registered tasks) and of ensuring issued com-
mands respect registration modes. We use V for the union of all local phaser vari-
ables. A task task(v1, . . . , vk) {stmt} in T takes the phaser variables v1, . . . vk as
parameters (write paramOf(task) to mean these parameters). A task instance
can spawn another task instance with asynch(task, v1, . . . , vn). The issuing task
instance registers the spawned task to the phasers pointed to by v1, . . . , vn, with
its own wait and signal values. Spawner and Spawnee execute concurrently. A
task instance can deregister itself from a phaser with v.drop().

A task instance can issue signal or wait commands on a phaser referenced by
v and on which it is registered. A wait command on a phaser blocks until the wait
value of the task instance executing the wait on the phaser is strictly smaller than
the signal value of all task instances registered to the phaser. In other words,
v.wait() blocks if v points to a phaser such that at least one of the signal values
stored by the phaser is equal to the wait value of the task that tries to perform
the wait. A signal command does not block. It only increments the signal value
of the task instance executing the signal command on the phaser. v.next() is
syntactic sugar for a signal followed by a wait. Moreover, v.next(){stmt} is
similar to v.next() but the block of code stmt is executed atomically by exactly
one of the tasks participating in the synchronization before all tasks continue
the execution that follows the barrier. v.next(){stmt} thus requires all tasks to
be synchronized on exactly the same statement and is less flexible. Absence of a
v.next(){stmt} makes a program non-atomic.

Note that assignment of phaser variables is excluded from the syntax; addi-
tionally, we restrict task creation asynch(task, v1, . . . , vn) and require that
parameter variables vi are all different. This prevents two variables from point-
ing to the same phaser and avoids the need to deal with aliasing: we can reason
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on the single variable in a process that points to a phaser. Extending our work
to deal with aliasing is easy but would require heavier notations.

We will need the notions of configurations, partial configurations and inclu-
sion in order to define the reachability problems we consider in this work. We
introduce them in the following and assume a phaser program prg = (B, V, T).

Configurations. Configurations of a phaser program describe valuations of its
variables, control sequences of its tasks and registration details to the phasers.

Control sequences. We define the set Suff of control sequences of prg to be the set
of suffixes of all sequences stmt appearing in some statement task(. . .) {stmt}.
In addition, we define UnrSuff to be the smallest set containing Suff in addi-
tion to the suffixes of all (i) s1; while(cond) {s1}; s2 if while(cond) {s1}; s2

is in UnrSuff, and of all (ii) s1; s2 if if(cond) {s1}; s2 is in UnrSuff, and of
all (iii) s1; v.next(){}; s2 if v.next(){s1}; s2 in UnrSuff, and finally of all (iv)
v.signal(); v.wait(); s2 if v.next(){}; s2 is in UnrSuff. We write hd(s) and
tl(s) to respectively mean the head and the tail of a sequence s.

Partial configurations. Partial configurations allow the characterization of sets
of configurations by partially stating some of their common characteristics. A
partial configuration c of prg = (B, V, T) is a tuple

(
T , P , bv , seq , phase

)
where:

– T is a finite set of task identifiers. We let t, u range over the values in T .
– P is a finite set of phaser identifiers. We let p, q range over the values in P .
– bv : B → B{∗} fixes the values of some of the shared variables.1

– seq : T → UnrSuff{∗} fixes the control sequences of some of the tasks.
– phase : T → partialFunctions

(
P , V{−,∗} × (

N2 ∪ {(∗, ∗), nreg}))
is a map-

ping that associates to each task t in T a partial mapping stating which
phasers are known by the task and with which registration values.

Intuitively, partial configurations are used to state some facts about the
valuations of variables and the control sequences of tasks and their registra-
tions. Partial configurations leave some details unconstrained using partial map-
pings or the symbol ∗. For instance, if bv(b) = ∗ in a partial configuration(

T , P , bv , seq , phase
)
, then the partial configuration does not constrain the value

of the shared variable b. Moreover, a partial configuration does not constrain the
relation between a task t and a phaser p when phase(t)(p) is undefined. Instead,
when the partial mapping phase(t) is defined on phaser p, it associates a pair
phase(t)(p) = (var, val) to p. If var ∈ V{−,∗} is a variable v ∈ V then the task
t in T uses its variable v to refer to the phaser p in P2. If var is the symbol
− then the task t does not refer to v with any of its variables in V. If var is
the symbol ∗, then the task might or might not refer to p. The value val in
phase(t)(p) = (var, val) is either the value nreg or a pair (w, s). The value
nreg means the task t is not registered to phaser p. The pair (w, s) belongs to
(N × N)∪{(∗, ∗)}. In this case, task t is registered to phaser p with a wait phase

1 For any set S, S{a,b,...} denotes S ∪ {a, b, ...}.
2 The uniqueness of this variable is due to the absence of aliasing discussed above.
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Fig. 2. Definition of error configurations. For instance, a deadlock is obtained in(
T , P , bv , seq , phase

)
if tasks {t0, . . . , tn} ⊆ T form a cycle where each ti blocks the

wait being executed by t(i+1)%(n+1) on phaser p(i+1)%(n+1).

w and a signal phase s. The value ∗ means that the wait phase w (resp. signal
phase s) can be any value in N. For instance, phase(t)(p) = (v, nreg) means vari-
able v of the task t refers to phaser p but the task is not registered to p. On the
other hand, phase(t)(p) = (−, (∗, ∗)) means the task t does not refer to p but is
registered to it with arbitrary wait and signal phases.

Concrete configurations. A concrete configuration (or configuration for short)
is a partial configuration

(
T , P , bv , seq , phase

)
where phase(t) is total for each

t ∈ T and where the symbol ∗ does not appear in any range. It is a tuple(
T , P , bv , seq , phase

)
where bv : B → B, seq : T → UnrSuff, and phase :

T → totalFunctions
(

P , V{−} × ((N × N) ∪ {nreg})
)
. For a concrete config-

uration
(

T , P , bv , seq , phase
)
, we write isReg(phase, t, p) to mean the predicate

phase(t)(p) �∈ (
V{−} × {nreg})

. The predicate isReg(phase, t, p) captures whether
the task t is registered to phaser p according to the mapping phase.

Inclusion of configurations. A configuration c′ =
(

T ′, P ′, bv ′, seq ′, phase′) includes
a partial configuration c =

(
T , P , bv , seq , phase

)
if renaming and deleting tasks

and phasers from c′ can give a configuration that “matches” c. More formally,
c′ includes c if

(
(bv(b) �= bv ′(b)) =⇒ (bv(b) = ∗)

)
for each b ∈ B and there are

injections τ : T → T ′ and π : P → P ′ s.t. for each t ∈ T and p ∈ P : (1)
((seq(t) �= seq ′(τ(t))) =⇒ (seq(t) = ∗)), and either (2.a) phase(t)(p) is undefined,
or (2.b) phase(t)(p) = (var, val) and phase′(τ(t))(π(p)) = (var′, val′) with ((var �=
var′) =⇒ (var = ∗)) and either (val = val′ = nreg) or val = (w, s) and
val′ = (w′ , s′) with ((w �= w′) =⇒ (w = ∗)) and ((s �= s′) =⇒ (s = ∗)).

Semantics and reachability. Given a program prg = (B, V, T), the main
task main(){stmt} starts executing stmt from an initial configuration cinit =
(Tinit, Pinit, bv init, seq

init
, phase

init
) where Tinit is a singleton, Pinit is empty, bv init

sends all shared variables to false and seq
init

associates stmt to the unique

task in Tinit. We write c
t−−−→

stmt
c′ to mean a task t in c can fire statement stmt
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Fig. 3. Operational semantics of phaser statements. Each transition corresponds to a
task t ∈ T executing a statement from a configuration

(
T , P , bv , seq , phase

)
. For instance,

the drop transition corresponds to a task t executing v.drop() when registered to phaser
p ∈ P (with phases (w, s)) and refering to it with variable v. The result is the same
configuration where task t moves to its next statement without being registered to p.

resulting in configuration c′. See Fig. 3 for a description of phaser semantics. We
write c −−−→

stmt
c′ if c

t−−−→
stmt

c′ for some task t and c −→ c′ if c −−−→
stmt

c′ for some stmt.

We write −−−→
stmt

+ for the transitive closure of −−−→
stmt

and let −→∗ be the reflexive
transitive closure of −→. Figure 2 identifies erroneous configurations.

We are interested in the reachability of sets of configurations (i.e., checking
safety properties). We differentiate between two reachability problems depending
on whether the target sets of configurations constrain the registration phases or
not. The plain reachability problem may constrains the registration phases of
the target configurations. The control reachability problem may not. We will see
that decidability of the two problems can be different. The two problems are
defined in the following.

Plain reachability. First, we define equivalent configurations. A configuration
c =

(
T , P , bv , seq , phase

)
is equivalent to configuration c′ =

(
T ′, P ′, bv ′, seq ′, phase′)

if bv = bv ′ and there are bijections τ : T → T ′ and π : P → P ′ such that, for
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all t ∈ T , p ∈ P and var ∈ V{−}, seq(t) = seq ′(τ(t)) and there are some integers
(kp)p∈P such that phase(t)(p) = (var, (w, s)) iff phase′(τ(t))(π(p)) = (var, (w +
kp, s + kp)). We write c ∼ c′ to mean that c and c′ are equivalent. Intuitively,
equivalent configurations simulate each other. We can establish the following:

Lemma 1 (Equivalence). Assume two configurations c1 and c2. If c1 −→ c2

and c′
1 ∼ c1 then there is a configuration c′

2 s.t. c′
2 ∼ c2 and c′

1 −→ c′
2.

Observe that if the wait value of a task t on a phaser p is equal to the signal
of a task t′ on the same phaser p in some configuration c, then this is also the
case, up to a renaming of the phasers and tasks, in all equivalent configurations.
This is particularly relevant for defining deadlock configurations where a number
of tasks are waiting for each other. The plain reachability problem is given a
program and a target partial configuration and asks whether a configuration
(equivalent to a configuration) that includes the target partial configuration is
reachable.
More formally, given a program prg and a partial configuration c, let cinit be
the initial configuration of prg, then reach(prg, c) if and only if cinit −→∗ c1 for
c1 ∼ c2 and c2 includes c.

Definition 1 (Plain reachability). For a program prg and a partial configu-
ration c, decide whether reach(prg, c) holds.

Control reachability. A partial configuration c =
(

T , P , bv , seq , phase
)

is said to
be a control partial configuration if for all t ∈ T and p ∈ P , either phase(t)(p)
is undefined or phase(t)(p) ∈ (V{−,∗} × {(∗, ∗) , nreg}). Intuitively, control partial
configurations do not constrain phase values. They are enough to characterize,
for example, configurations where an assertion is violated (see Fig. 2).

Definition 2 (Control reachability). For a program prg and a control partial
configuration c, decide whether reach(prg, c) holds.

Observe that plain reachability is at least as hard to answer as control reach-
ability since any control partial configuration is also a partial configuration. It
turns out the control reachability problem is undecidable for programs result-
ing in arbitrarily many tasks and phasers as stated by the theorem below. This
is proven by reduction of the state reachability problem for 2-counter Minsky
machines. A 2-counter Minsky machine (S, {x1, x2} ,Δ, s0, sF ) has a finite set S
of states, two counters {x1, x2} with values in N, an initial state s0 and a final
state sF . Transitions may increment, decrement or test a counter. For example
(s0, test(x1), sF ) takes the machine from s0 to sF if the counter x1 is zero.

Theorem 1 (Minsky machines [14]). Checking whether sF is reachable from
configuration (s0, 0, 0) for 2-counter machines is undecidable in general.

Theorem 2. Control reachability is undecidable in general.

Proof sketch. State reachability of an arbitrary 2-counters Minsky machine is
encoded as the control reachability problem of a phaser program. The phaser
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program (see [10]) has three tasks main, xUnit and yUnit. It uses Boolean
shared variables to encode the state s ∈ S and to pass information between
different task instances. The phaser program builds two chains, one with xUnit
instances for the x-counter, and one with yUnit instances for the y-counter. Each
chain alternates a phaser and a task and encodes the values of its counter with
its length. The idea is to have the phaser program simulate all transitions of
the counter machine, i.e., increments, decrements and tests for zero. Answering
state reachability of the counter machine amounts to checking whether there
are reachable configurations where the boolean variables encoding the counter
machine can evaluate to the target machine state sF .

4 A Gap-Based Symbolic Representation

The symbolic representation we propose builds on the following intuitions. First,
observe the language semantics impose, for each phaser, the invariant that signal
values are always larger or equal to wait values. We can therefore assume this
fact in our symbolic representation. In addition, our reachability problems from
Sect. 3 are defined in terms of reachability of equivalence classes, not of individual
configurations. This is because configurations violating considered properties (see
Fig. 2) are not defined in terms of concrete phase values but rather in terms of
relations among them (in addition to the registration status, control sequences
and variable values). Finally, we observe that if a wait is enabled with smaller
gaps on a given phaser, then it will be enabled with larger ones. We therefore
propose to track the gaps of the differences between signal and wait values wrt.
to an existentially quantified level (per phaser) that lies between wait and signal
values of all tasks registered to the considered phaser.

We formally define our symbolic representation and describe a correspond-
ing entailment relation. We also establish a desirable property (namely being a
WQO, i.e., well-quasi-ordering [1,8]) on some classes of representations. This is
crucial for the decidability of certain reachability problems (see Sect. 5).

Named gaps. A named gap is associated to a task-phaser pair. It consists in a
tuple (var, val) in G =

(
V{−,∗} ×

((
N4 ∪

(
N2 × {∞}2

))
∪ {nreg}

))
. Like for

partial configurations in Sect. 3, var ∈ V{−,∗} constrains variable values. The
val value describes task registration to the phaser. If registered, then val is
a 4-tuple (lw, ls, uw, us). This intuitively captures, together with some level l
common to all tasks registered to the considered phaser, all concrete wait and
signal values (w, s) satisfying lw ≤ (l − w) ≤ uw and ls ≤ (s − l) ≤ us. A
named gap (var, (lw, ls, uw, us)) is said to be free if uw = us = ∞. It is said to
be B-gap-bounded, for B ∈ N, if both uw ≤ B and us ≤ B hold. A set G ⊆ G

is said to be free (resp. B-gap-bounded) if all its named gaps are free (resp.
B-gap-bounded). The set G is said to be B-good if each one of its named gaps
is either free or B-gap-bounded. Finally, G is said to be good if it is B-good for
some B ∈ N. Given a set G of named gaps, we define the partial order � on G ,
and write (var, val) � (var′, val′), to mean (i) (var �= var′ ⇒ var = ∗), and (ii)
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(val = nreg) ⇐⇒ (val′ = nreg), and (iii) if val = (lw, ls, uw, us) and val′ =
(lw′, ls′, uw′, us′) then lw ≤ lw′, ls ≤ ls′, uw′ ≤ uw and us′ ≤ us. Intuitively,
named gaps are used in the definition of constraints to capture relations (i.e.,
reference, registration and possible phases) of tasks and phasers. The partial
order (var, val) � (var′, val′) ensures relations allowed by (var′, val′) are also
allowed by (var, val).

Constraints. A constraint φ of prg = (B, V, T) is a tuple
(

T , P , bv , seq , gap, egap
)

that denotes a possibly infinite set of configurations. Intuitively, T and P respec-
tively represent a minimal set of tasks and phasers that are required in any
configuration denoted by the constraint. In addition:

– bv : B → B{∗} and seq : T → UnrSuff{∗} respectively represent, like for partial
configurations, a valuation of the shared Boolean variables and a mapping of
tasks to their control sequences.

– gap : T → totalFunctions (P , G) constrains relations between T -tasks and
P -phasers by associating to each task t a mapping gap(t) that defines for each
phaser p a named gap (var, val) ∈ G capturing the relation of t and p.

– egap : P → N2 associates lower bounds (ew, es) on gaps of tasks that are
registered to P -phasers but which are not explicitly captured by T . This is
described further in the constraints denotations below.

We write isReg(gap, t, p) to mean the task t is registered to the phaser p,
i.e., gap(t)(p) �∈ (V{−,∗} × {nreg}). A constraint φ is said to be free (resp. B-
gap-bounded or B-good) if the set G =

{
gap(t)(p) | t ∈ T , p ∈ P

}
is free (resp.

B-gap-bounded or B-good). The dimension of a constraint is the number of
phasers it requires (i.e., |P |). A set of constraints Φ is said to be free, B-gap-
bounded, B-good or K-dimension-bounded if each of its constraints are.

Denotations. We write c |= φ to mean constraint φ =
(

Tφ, Pφ, bvφ, seq
φ
, gap

φ
,

egap
φ

)
denotes configuration c =

(
Tc, Pc, bvc, seq

c
, phase

c

)
. Intuitively, the config-

uration c should have at least as many tasks (captured by a surjection τ from a
subset T 1

c of Tc to Tφ) and phasers (captured by a bijection π from a subset P1
c

of Pc to Pφ). Constraints on the tasks and phasers in T 1
c and P1

c ensure target
configurations are reachable. Additional constraints on the tasks in T 2

c = Tc \T 1
c

ensure this reachability is not blocked by tasks not captured by Tφ. More
formally:

1. for each b ∈ B, (bvφ(b) �= bvc(b)) =⇒ (bvφ(b) = ∗), and
2. Tc and Pc can be written as Tc = T 1

c  T 2
c and Pc = P1

c  P2
c , with

3. τ : T 1
c → Tφ is a surjection and π : P1

c → Pφ is a bijection, and
4. for tc ∈ T 1

c with tφ = τ(tc), (seq
φ
(tφ) �= seq

c
(tc)) =⇒ (seq

φ
(tφ) = ∗), and

5. for each pφ = π(pc), there is a natural level l : 0 ≤ l such that:
(a) if tc ∈ T 1

c with tφ = τ(tc), phase
c
(tc)(pc) = (varc, valc) and gap

φ
(tφ)(pφ) =

(varφ, valφ), then it is the case that:
i. (varc �= varφ) =⇒ (varφ = ∗), and
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ii. (valc = nreg) ⇐⇒ (valφ = nreg), and
iii. if (valc = (w, s)) and (valφ = (lw, ls, uw, us)) then lw ≤ l − w ≤ uw

and ls ≤ s − l ≤ us.
(b) if tc ∈ T 2

c , then for each pφ = π(pc) with phase
c
(tc)(pc) = (varc, (w, s))

and egap(pφ) = (ew, es), we have: (es ≤ s − l ) and (ew ≤ l − w)

Intuitively, for each phaser, the bounds given by gap constrain the values of
the phases belonging to tasks captured by Tφ (i.e., those in T 1

c ) and registered
to the given phaser. This is done with respect to some non-negative level, one
per phaser. The same level is used to constrain phases of tasks registered to the
phaser but not captured by Tφ (i.e., those in T 2

c ). For these tasks, lower bounds
are enough as we only want to ensure they do not block executions to target sets
of configurations. We write [[φ]] for {c | c |= φ}.

Entailment. We write φa � φb to mean φa =
(

Ta, Pa, bva, seq
a
, gap

a
, egap

a

)
is

entailed by φb =
(

Tb, Pb, bvb, seq
b
, gap

b
, egap

b

)
. This will ensure that configurations

denoted by φb are also denoted by φa. Intuitively, φb should have at least as
many tasks (captured by a surjection τ from a subset T 1

b of Tb to Ta) and
phasers (captured by a bijection π from a subset P1

b of Pb to Pa). Conditions on
tasks and phasers in T 1

b and P1
b ensure the conditions in φa are met. Additional

conditions on the tasks in T 2
b = Tb \ T 1

b ensure at least the egap
a

conditions in
φa are met. More formally:

1. (bva(b) �= bvb(b)) =⇒ (bva(b) = ∗), for each b ∈ B and
2. Tb and Pb can be written as Tb = T 1

b  T 2
b and Pb = P1

b  P2
b with

3. τ : T 1
b → Ta is a surjection and π : P1

b → Pa is a bijection, and
4. (seq

b
(tb) �= seq

a
(ta)) =⇒ (seq

b
(tb) = ∗) for each tb ∈ T 1

b with ta = τ(tb), and
5. for each phaser pa = π(pb) in Pa:

(a) if egap
a
(pa) = (ewa, esa) and egap

b
(pb) = (ewb, esb) then ewa ≤ ewb and

esa ≤ esb

(b) for each tb ∈ T 1
b with ta = τ(tb) and gap

a
(ta)(pa) = (vara, vala), and

gap
b
(tb)(pb) = (varb, valb), it is the case that:

i. (varb �= vara) =⇒ (vara = ∗), and
ii. (valb = nreg) ⇐⇒ (vala = nreg), and
iii. if vala = (lwa, lsa, uwa, usa) and valb = (lwb, lsb, uwb, usb), then

(lwa ≤ lwb), (lsa ≤ lsb), (uwb ≤ uwa) and (usb ≤ usa).
(c) for each tb ∈ T 2

b with gap
b
(tb)(pb) = (var, (lwa, lsa, uwa, usa)), with

egap
a
(pa) = (ewa, esa), both (ewa ≤ lwb) and (esa ≤ lsb) hold.

The following lemma shows that it is safe to eliminate entailing constraints
in the working list procedure of Sect. 5.

Lemma 2 (Constraint entailment).φa � φb implies [[φb]] ⊆ [[φa]]

A central contribution that allows establishing the positive results of Sect. 5
is to show � is actually WQO on any K-dimension-bounded and B-good set
of constraints. For this, we prove (M (

UnrSuff × GK
)
, ∃�∀) is WQO if G is

B-good, where M (
UnrSuff × GK

)
is the set of multisets over UnrSuff × GK
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and M ∃�∀ M ′ requires each (s′, g′
1, . . . , g

′
K) ∈ M ′ may be mapped to some

(s, g1, . . . , gK) ∈ M for which s = s′ and gi � g′
i for each i : 1 ≤ i ≤ K (written

(s, g1, . . . , gK) � (s′, g′
1, . . . , g

′
K) ). Intuitively, we need to use ∃�∀, and not

simply ∀�∃, in order to “cover all registered tasks” in the larger constraint as
otherwise some tasks may block the path to the target configurations. Rado’s
structure [12,13] shows that, in general, (M (S) , ∃�∀) need not be WQO just
because � is WQO over S. The proof details can be found in [10].

Theorem 3. (Φ,�) is WQO if Φ is K-dimension-bounded and B-good for some
pre-defined K,B ∈ N.

5 A Symbolic Verification Procedure

We use the constraints defined in Sect. 4 as a symbolic representation in an
instantiation of the classical framework of Well-Structured-Transition-Systems
[1,8]. The instantiation (described in [10]) is a working-list procedure that takes
as arguments a program prg and a �-minimal set Φ of constraints denoting
the targeted set of configurations. Such constraints can be easily built from the
partial configurations described in Fig. 2.

The procedure computes a fixpoint using the entailment relation of Sect. 4
and a predecessor computation that results, for a constraint φ and a state-
ment stmt, in a finite set prestmt =

{
φ′ | φ −−−→

stmt
→ φ′

}
. Figure 4 describes part

of the computation for the v.signal() instruction (see [10] for other instruc-
tions). For all but atomic statements, the set prestmt =

{
φ′ | φ −−−→

stmt
→ φ′

}

is exact in the sense that
{

c′ | c ∈ [[φ]] and c′ −−−→
stmt

c
}

⊆ ⋃
φ′∈prestmt

[[φ′]] ⊆
{

c′ | c ∈ [[φ]] and c′ −−−→
stmt

+ c
}

. Intuitively, the predecessors calculation for the

atomic v.next(){stmt} is only an over-approximation because such an instruc-
tion can encode a test-and-set operation. Our representation allows for more
tasks, but the additional tasks may not be able to carry the atomic operation.
We would therefore obtain a non-exact over-approximation and avoid this issue
by only applying the procedure to non-atomic programs. We can show the fol-
lowing theorems.

Fig. 4. Part of the predecessors computation for the v.signal() phaser statement where
x+ stands for max(0, x). Task t ∈ T is registered to p ∈ P and refers to it with v with
all registered tasks having a non-zero upper bound on their waiting phases.
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Theorem 4. Control reachability is decidable for non-atomic phaser programs
generating a finite number of phasers.

The idea is to systematically drop, in the instantiated backward procedure,
constraints violating K-dimension-boundedness (as none of the denoted config-
urations is reachable). Also, the set of target constraints is free (since we are
checking control reachability) and this is preserved by the predecessors compu-
tation (see [10]). Finally, we use the exactness of the prestmt computation, the
soundness of the entailment relation and Theorem3. We can use a similar rea-
soning for plain reachability of programs generating a finite number of phasers
and bounded gap-values for each phaser.

Theorem 5. Plain reachability is decidable for non-atomic phaser programs
generating a finite number of phasers with, for each phaser, bounded phase gaps.

6 Limitations of Deciding Reachability

Assume a program prg = (B, V, T) and its initial configuration cinit. We show
a number of parameterized reachability problems to be undecidable. First, we
address checking control reachability when restricting to configurations with at
most K task-referenced phasers. We call this K-control-reachability.

Definition 3 (K-control-reachability). Given a partial control configuration
c, we write reachK(prg, c), and say c is K-control-reachable, to mean there are
n + 1 configurations (ci)i:0≤i≤n, each with at most K reachable phasers (i.e.,
phasers referenced by at least a task variable) s.t. cinit = c0 and ci −→ ci+1 for
i : 0 ≤ i < n − 1 with cn equivalent to a configuration that includes c.

Theorem 6. K-control-reachability is undecidable in general.

Proof sketch. Encode state reachability of an arbitrary Minsky machine with
counters x and y using K-control-reachability of a suitable phaser program.
The program (see [10]) has five tasks: main, xTask, yTask, child1 and child2.
Machine states are captured with shared variables and counter values with
phasers xPh for counter x (resp. yPh for counter y). Then, (1) spawn an instance
of xTask (resp. yTask) and register it to xPh (resp. yPh) for increments, and (2)
perform a wait on xPh (resp. yPh) to test for zero. Decrementing a counter, say
x, involves asking an xTask, via shared variables, to exit (hence, to deregister
from xPh). However, more than one task might participate in the decrement
operation. For this reason, each participating task builds a path from xPh to
child2 with two phasers. If more than one xTask participates in the decrement,
then the number of reachable phasers of an intermediary configuration will be
at least five.

Theorem 7. Control reachability is undecidable if atomic statements are
allowed even if only a finite number of phasers is generated.
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Proof sketch. Encode state reachability of an arbitrary Minsky machine with
counters x and y using a phaser program with atomic statements. The phaser
program (see [10]) has three tasks: main, xTask and yTask and encodes machine
states with shared variables. The idea is to associate a phaser xPh to counter x
(resp. yPh to y) and to perform a signal followed by a wait on xPh (resp. yPh)
to test for zero. Incrementing and decrementing is performed by asking spawned
tasks to spawn a new instance or to deregister. Atomic-next statements are used
to ensure exactly one task is spawned or deregistered.

Finally, even with finite numbers of tasks and phasers, but with arbitrary
gap-bounds, we can show [9] the following.

Theorem 8. Plain reachability is undecidable if generated gaps are not bounded
even when restricting to non-atomic programs with finite numbers of phasers.

Table 1. Findings summary: ctrl stands for control reachability and plain for plain
reachability; atomic stands for allowing the v.next(){stmt} atomic instruction and
non-atomic for forbidding it (resulting in non-atomic programs). Decidable problems
are marked with ✓ and undecidable ones with ✗.

Arbitrary numbers of tasks

Finite dimension K-reachability Arbitrary dimension

Bounded ctrl atomic ✗ plain non-atomic ✓

gaps (Theorem7) (Theorem5) ctrl non-atomic ✗ ctrl non-atomic ✗

Arbitrary ctrl non-atomic ✓ plain non-atomic ✗ (Theorem6) (Theorem2)

gaps (Theorem4) (From [9])

7 Conclusion

We have studied parameterized plain (e.g., deadlocks) and control (e.g., asser-
tions) reachability problems. We have proposed an exact verification procedure
for non-atomic programs. We summarize our findings in Table 1. The procedure is
guaranteed to terminate, even for programs that may generate arbitrary many
tasks but finitely many phasers, when checking control reachability or when
checking plain reachability with bounded gaps. These results were obtained using
a non-trivial symbolic representation for which termination had required show-
ing an ∃�∀ preorder on multisets on gaps on natural numbers to be a WQO.
We are working on a tool that implements the procedure to verify phaser pro-
grams that dynamically spawn tasks. We believe our general decidability results
are useful to reason about synchronization constructs other than phasers. For
instance, a traditional static barrier can be captured with one phaser and with
bounded gaps (in fact one). Similarly, one phaser with one producer and arbi-
trary many consumers can capture futures where “gets” are modeled with waits.
Also, test-and-set operations can model atomic instructions and may result in
undecidability of reachability. This suggests more general applications of the
work are to be investigated.
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Abstract. Dependency graphs, invented by Liu and Smolka in 1998, are
oriented graphs with hyperedges that represent dependencies among the
values of the vertices. Numerous model checking problems are reducible
to a computation of the minimum fixed-point vertex assignment. Recent
works successfully extended the assignments in dependency graphs from
the Boolean domain into more general domains in order to speed up the
fixed-point computation or to apply the formalism to a more general set-
ting of e.g. weighted logics. All these extensions require separate correct-
ness proofs of the fixed-point algorithm as well as a one-purpose imple-
mentation. We suggest the notion of abstract dependency graphs where
the vertex assignment is defined over an abstract algebraic structure of
Noetherian partial orders with the least element. We show that existing
approaches are concrete instances of our general framework and provide
an open-source C++ library that implements the abstract algorithm. We
demonstrate that the performance of our generic implementation is com-
parable to, and sometimes even outperforms, dedicated special-purpose
algorithms presented in the literature.

1 Introduction

Dependency Graphs (DG) [1] have demonstrated a wide applicability with
respect to verification and synthesis of reactive systems, e.g. checking behavioural
equivalences between systems [2], model checking systems with respect to tem-
poral logical properties [3–5], as well as synthesizing missing components of sys-
tems [6]. The DG approach offers a general and often performance-optimal way
to solve these problem. Most recently, the DG approach to CTL model checking
of Petri nets [7], implemented in the model checker TAPAAL [8], won the gold
medal at the annual Model Checking Contest 2018 [9].

A DG consists of a finite set of vertices and a finite set of hyperedges that
connect a vertex to a number of children vertices. The computation problem is
to find a point-wise minimal assignment of vertices to the Boolean values 0 and
1 such that the assignment is stable: whenever there is a hyperedge where all
children have the value 1 then also the father of the hyperedge has the value 1.
The main contribution of Liu and Smolka [1] is a linear-time, on-the-fly algorithm
to find such a minimum stable assignment.
c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 316–333, 2019.
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Recent works successfully extend the DG approach from the Boolean
domain to more general domains, including synthesis for timed systems [10],
model checking for weighted systems [3] as well as probabilistic systems [11].
However, each of these extensions have required separate correctness arguments
as well as ad-hoc specialized implementations that are to a large extent similar
with other implementations of dependency graphs (as they are all based on the
general principle of computing fixed points by local exploration). The contribu-
tion of our paper is a notion of Abstract Dependency Graph (ADG) where the
values of vertices come from an abstract domain given as an Noetherian par-
tial order (with least element). As we demonstrate, this notion of ADG covers
many existing extensions of DG as concrete instances. Finally, we implement
our abstract algorithms in C++ and make it available as an open-source library.
We run a number of experiments to justify that our generic approach does not
sacrifice any significant performance and sometimes even outperforms existing
implementations.

Related Work. The aim of Liu and Smolka [1] was to find a unifying formalism
allowing for a local (on-the-fly) fixed-point algorithm running in linear time.
In our work, we generalize their formalism from the simple Boolean domain to
general Noetherian partial orders over potentially infinite domains. This requires
a non-trivial extension to their algorithm and the insight of how to (in the general
setting) optimize the performance, as well as new proofs of the more general loop
invariants and correctness arguments.

Recent extensions of the DG framework with certain-zero [7], integer [3] and
even probabilistic [11] domains generalized Liu and Smolka’s approach, how-
ever they become concrete instances of our abstract dependency graphs. The
formalism of Boolean Equation Systems (BES) provides a similar and indepen-
dently developed framework [12–15] pre-dating that of DG. However, BES may
be encoded as DG [1] and hence they also become an instance of our abstract
dependency graphs.

2 Preliminaries

A set D together with a binary relation � ⊆ D × D that is reflexive (x � x for
any x ∈ D), transitive (for any x, y, z ∈ D, if x � y and y � x then also x � z)
and anti-symmetric (for any x, y ∈ D, if x � y and y � x then x = y) is called a
partial order and denoted as a pair (D,�). We write x � y if x � y and x �= y.
A function f : D → D′ from a partial order (D,�) to a partial order (D′,�′) is
monotonic if whenever x � y for x, y ∈ D then also f(x) �′ f(y). We shall now
define a particular partial order that will be used throughout this paper.

Definition 1 (NOR). Noetherian Ordering Relation with least element (NOR)
is a triple D = (D,�,⊥) where (D,�) is a partial order, ⊥ ∈ D is its least
element such that for all d ∈ D we have ⊥ � d, and � satisfies the ascending
chain condition: for any infinite chain d1 � d2 � d3 � . . . there is an integer k
such that dk = dk+j for all j > 0.
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We can notice that any finite partial order with a least element is a NOR;
however, there are also such relations with infinitely many elements in the
domain as shown by the following example.

Example 1. Consider the partial order D = (N0 ∪ {∞},≥,∞) over the set of nat-
ural numbers extended with ∞ and the natural larger-than-or-equal comparison
on integers. As the relation is reversed, this implies that ∞ is the least ele-
ment of the domain. We observe that D is NOR. Consider any infinite sequence
d1 ≥ d2 ≥ d3 . . . . Then either di = ∞ for all i, or there exists i such that
di ∈ N0. Clearly, the sequence must in both cases eventually stabilize, i.e. there
is a number k such that dk = dk+j for all j > 0.

New NORs can be constructed by using the Cartesian product. Let Di =
(Di,�i,⊥i) for all i, 1 ≤ i ≤ n, be NORs. We define Dn = (Dn,�n,⊥n) such
that Dn = D1 ×D2 ×· · ·×Dn and where (d1, . . . , dn) �n (d′

1, . . . , d
′
n) if di �i d′

i

for all i, 1 ≤ i ≤ k, and where ⊥n = (⊥1, . . . ,⊥n).

Proposition 1. Let Di be a NOR for all i, 1 ≤ i ≤ n. Then Dn = (Dn,�n,⊥n)
is also a NOR.

In the rest of this paper, we consider only NOR (D,�,⊥) that are effec-
tively computable, meaning that the elements of D can be represented by finite
strings, and that given the finite representations of two elements x and y from
D, there is an algorithm that decides whether x � y. Similarly, we consider
only functions f : D → D′ from an effectively computable NOR (D,�,⊥) to an
effectively computable NOR (D′,�′,⊥′) that are effectively computable, mean-
ing that there is an algorithm that for a given finite representation of an element
x ∈ D terminates and returns the finite representation of the element f(x) ∈ D′.
Let F(D, n), where D = (D,�,⊥) is an effectively computable NOR and n is a
natural number, stand for the collection of all effectively computable functions
f : Dn → D of arity n and let F(D) =

⋃
n≥0 F(D, n) be a collection of all such

functions.
For a set X, let X∗ be the set of all finite strings over X. For a string w ∈ X∗

let |w| denote the length of w and for every i, 1 ≤ i ≤ |w|, let wi stand for the
i’th symbol in w.

3 Abstract Dependency Graphs

We are now ready to define the notion of an abstract dependency graph.

Definition 2 (Abstract Dependency Graph). An abstract dependency
graph (ADG) is a tuple G = (V,E,D, E) where

– V is a finite set of vertices,
– E : V → V ∗ is an edge function from vertices to sequences of vertices such

that E(v)i �= E(v)j for every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e. the
co-domain of E contains only strings over V where no symbol appears more
than once,
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A

B ∨ (C ∧ D)

B

1

C

1

D

E ∧ F

E1 F E ∧ D

(a) Abstract dependency graph

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation

Fig. 1. Abstract dependency graph over NOR ({0, 1}, ≤, 0)

– D is an effectively computable NOR, and
– E is a labelling function E : V → F(D) such that E(v) ∈ F(D, |E(v)|) for each

v ∈ V , i.e. each edge E(v) is labelled by an effectively computable function f
of arity that corresponds to the length of the string E(v).

Example 2. An example of ADG over the NOR D = ({0, 1}, {(0, 1)}, 0) is shown
in Fig. 1a. Here 0 (interpreted as false) is below the value 1 (interpreted as true)
and the monotonic functions for vertices are displayed as vertex annotations. For
example E(A) = B ·C ·D and E(A) is a ternary function such that E(A)(x, y, z) =
x ∨ (y ∧ z), and E(B) = ε (empty sequence of vertices) such that E(B) = 1 is
a constant labelling function. Clearly, all functions used in our example are
monotonic and effectively computable.

Let us now assume a fixed ADG G = (V,E,D, E) over an effectively com-
putable NOR D = (D,�,⊥). We first define an assignment of an ADG.

Definition 3 (Assignment). An assignment on G is a function A : V → D.

The set of all assignments is denoted by A. For A,A′ ∈ A we define A ≤ A′

iff A(v) � A′(v) for all v ∈ V . We also define the bottom assignment A⊥(v) = ⊥
for all v ∈ V that is the least element in the partial order (A,≤). The following
proposition is easy to verify.

Proposition 2. The partial order (A,≤, A⊥) is a NOR.

Finally, we define the minimum fixed-point assignment Amin for a given ADG
G = (V,E,D, E) as the minimum fixed point of the function F : A → A defined
as follows: F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk)) where E(v) = v1v2 . . . vk.

In the rest of this section, we shall argue that Amin of the function F exists by
following the standard reasoning about fixed points of monotonic functions [16].

Lemma 1. The function F is monotonic.

Let us define the notation of multiple applications of the function F by
F 0(A) = A and F i(A) = F (F i−1(A)) for i > 0.
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Lemma 2. For all i ≥ 0 the assignment F i(A⊥) is effectively computable,
F i(A⊥) ≤ F j(A⊥) for all i ≤ j, and there exists a number k such that
F k(A⊥) = F k+j(A⊥) for all j > 0.

We can now finish with the main observation of this section.

Theorem 1. There exists a number k such that F j(A⊥) = Amin for all j ≥ k.

Example 3. The computation of the minimum fixed point for our running exam-
ple from Fig. 1a is given in Fig. 1b. We can see that starting from the assignment
where all nodes take the least element value 0, in the first iteration all constant
functions increase the value of the corresponding vertices to 1 and in the second
iteration the value 1 propagates from the vertex B to A, because the function
B ∨ (C ∧ D) that is assigned to the vertex A evaluates to true due to the fact
that F (A⊥)(B) = 1. On the other hand, the values of the vertices D and F keep
the assignment 0 due to the cyclic dependencies between the two vertices. As
F 2(A⊥) = F 3(A⊥), we know that we found the minimum fixed point.

As many natural verification problems can be encoded as a computation
of the minimum fixed point on an ADG, the result in Theorem 1 provides an
algorithmic way to compute such a fixed point and hence solve the encoded
problem. The disadvantage of this global algorithm is that it requires that the
whole dependency graph is a priory generated before the computation can be
carried out and this approach is often inefficient in practice [3]. In the following
section, we provide a local, on-the-fly algorithm for computing the minimum
fixed-point assignment of a specific vertex, without the need to always explore
the whole abstract dependency graph.

4 On-the-Fly Algorithm for ADGs

The idea behind the algorithm is to progressively explore the vertices of the
graph, starting from a given root vertex for which we want to find its value
in the minimum fixed-point assignment. To search the graph, we use a waiting
list that contains configurations (vertices) whose assignment has the potential of
being improved by applying the function E . By repeated applications of E on the
vertices of the graph in some order maintained by the algorithm, the minimum
fixed-point assignment for the root vertex can be identified without necessarily
exploring the whole dependency graph.

To improve the performance of the algorithm, we make use of an optional
user-provided function Ignore(A, v) that computes, given a current assignment
A and a vertex v of the graph, the set of vertices on an edge E(v) whose current
and any potential future value no longer effect the value of Amin(v). Hence,
whenever a vertex v′ is in the set Ignore(A, v), there is no reason to explore the
subgraph rooted by v′ for the purpose of computing Amin(v) since an improved
assignment value of v′ cannot influence the assignment of v. The soundness
property of the ignore function is formalized in the following definition. As before,
we assume a fixed ADG G = (V,E,D, E) over an effectively computable NOR
D = (D,�,⊥).
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Definition 4 (Ignore Function). A function: Ignore : A × V → 2V is
sound if for any two assignments A,A′ ∈ A where A ≤ A′ and every i such that
E(v)i ∈ Ignore(A, v) holds that

E(v)(A′(v1), A′(v2), . . . , A(vi), . . . , A′(v|E(v)−1|), A′(v|E(v)|))
= E(v)(A′(v1), A′(v2), . . . , A′(vi), . . . , A′(v|E(v)−1|), A′(v|E(v)|)).

From now on, we shall consider only sound and effectively computable ignore
functions. Note that there is always a trivially sound Ignore function that
returns for every assignment and every vertex the empty set. A more interesting
and universally sound ignore function may be defined by

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if d ≤ A(v) for all d ∈ D

∅ otherwise

that returns the set of all vertices on an edge E(v) once A(v) reached its maximal
possible value. This will avoid the exploration of the children of the vertex v once
the value of v in the current assignment cannot be improved any more. Already
this can have a significant impact on the improved performance of the algorithm;
however, for concrete instances of our general framework, the user can provide
more precise and case-specific ignore functions in order to tune the performance
of the fixed-point algorithm, as shown by the next example.

Example 4. Consider the ADG from Fig. 1a in an assignment where the value of
B is already known to be 1. As the vertex A has the labelling function B ∨ (C ∧
D), we can see that the assignment of A will get the value 1, irrelevant of what
are the assignments for the vertices C and D. Hence, in this assignment, we can
move the vertices C and D to the ignore set of A and avoid the exploration of
the subgraphs rooted by C and D.

The following lemma formalizes the fact that once the ignore function of a
vertex contains all its children and the vertex value has been relaxed by applying
the associated monotonic function, then its current assignment value is equal to
the vertex value in the minimum fixed-point assignment.

Lemma 3. Let A be an assignment such that A ≤ Amin . If vi ∈ Ignore(A, v)
for all 1 ≤ i ≤ k where E(v) = v1 · · · vk and A(v) = E(v)(A(v1), . . . , A(vk)) then
A(v) = Amin(v).

In Algorithm 1 we now present our local (on-the-fly) minimum fixed-point
computation. The algorithm uses the following internal data structures:

– A is the currently computed assignment that is initialized to A⊥,
– W is the waiting list containing the set of pending vertices to be explored,
– Passed is the set of explored vertices, and
– Dep : V → 2V is a function that for each vertex v returns a subset of vertices

that should be reevaluated whenever the assignment value of v improves.
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Input: An effectively computable ADG G = (V, E, D, E) and v0 ∈ V .
Output: Amin(v0)

1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W �= ∅ do
4 let v ∈ W ; W := W \ {v}
5 UpdateDependents (v)
6 if v = v0 or Dep(v) �= ∅ then
7 let v1v2 · · · vk = E(v)
8 d := E(v)(A(v1), . . . , A(vk))
9 if A(v) � d then

10 A(v) := d
11 W := W ∪ {u ∈ Dep(v) | v /∈ Ignore(A, u)}
12 if v = v0 and {v1, . . . , vk} ⊆ Ignore(A, v0) then
13 ”break out of the while loop”

14 if v /∈ Passed then
15 Passed := Passed ∪ {v}
16 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
17 Dep(vi) := Dep(vi) ∪ {v}
18 W := W ∪ {vi}
19 return A(v0)
20 Procedure UpdateDependents(v):
21 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
22 Dep(v) := Dep(v) \ C
23 if Dep(v) = ∅ and C �= ∅ then
24 Passed := Passed \ {v}
25 UpdateDependentsRec (v)

26 Procedure UpdateDependentsRec(v):
27 for v′ ∈ E(v) do
28 Dep(v′) := Dep(v′) \ {v}
29 if Dep(v′) = ∅ then
30 UpdateDependentsRec (v′)
31 Passed := Passed \ {v′}

Algorithm 1. Minimum Fixed-Point Computation on an ADG

The algorithm starts by inserting the root vertex v0 into the waiting list. In
each iteration of the while-loop it removes a vertex v from the waiting list and
performs a check whether there is some other vertex that depends on the value of
v. If this is not the case, we are not going to explore the vertex v and recursively
propagate this information to the children of v. After this, we try to improve
the current assignment of A(v) and if this succeeds, we update the waiting list
by adding all vertices that depend on the value of v to W , and we test if the
algorithm can early terminate (should the root vertex v0 get its final value).
Otherwise, if the vertex v has not been explored yet, we add all its children to
the waiting list and update the dependencies. We shall now state the termination
and correctness of our algorithm.
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Lemma 4 (Termination). Algorithm 1 terminates.

Lemma 5 (Soundness). Algorithm 1 at all times satisfies A ≤ Amin .

Lemma 6 (While-Loop Invariant). At the beginning of each iteration of the
loop in line 1 of Algorithm 1, for any vertex v ∈ V it holds that either:

1. A(v) = Amin(v), or
2. v ∈ W , or
3. v �= v0 and Dep(v) = ∅, or
4. A(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk = E(v) and for all i, 1 ≤ i ≤ k,

whenever vi /∈ Ignore(A, v) then also v ∈ Dep(vi).

Theorem 2. Algorithm 1 terminates and returns the value Amin(v0).

5 Applications of Abstract Dependency Graphs

We shall now describe applications of our general framework to previously stud-
ied settings in order to demonstrate the direct applicability of our framework.
Together with an efficient implementation of the algorithm, this provides a solu-
tion to many verification problems studied in the literature. We start with the
classical notion of dependency graphs suggested by Liu and Smolka.

5.1 Liu and Smolka Dependency Graphs

In the dependency graph framework introduced by Liu and Smolka [17], a
dependency graph is represented as G = (V,H) where V is a finite set of
vertices and H ⊆ V × 2V is the set of hyperedges. An assignment is a func-
tion A : V → {0, 1}. A given assignment is a fixed-point assignment if (A)(v) =
max(v,T )∈H minv′∈T A(v′) for all v ∈ V . In other words, A is a fixed-point assign-
ment if for every hyperedge (v, T ) where T ⊆ V holds that if A(v′) = 1 for
every v′ ∈ T then also A(v) = 1. Liu and Smolka suggest both a global and a
local algorithm [17] to compute the minimum fixed-point assignment for a given
dependency graph.

We shall now argue how to instantiate their framework into abstract depen-
dency graphs. Let (V,H) be a fixed dependency graph. We consider a NOR
D = ({0, 1},≤, 0) where 0 < 1 and construct an abstract dependency graph
G′ = (V,E,D, E). Here E : V → V ∗ is defined

E(v) = v1 · · · vk s.t. {v1, . . . , vk} =
⋃

(v,T )∈H

T

such that E(v) contains (in some fixed order) all vertices that appear on at least
one hyperedge rooted with v. The labelling function E is now defined as expected

E(v)(d1, . . . , dk) = max
(v,T )∈H

min
vi∈T

di
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mimicking the computation in dependency graphs. For the efficiency of fixed-
point computation in abstract dependency graphs it is important to provide an
Ignore function that includes as many vertices as possible. We shall use the
following one

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1
∅ otherwise

meaning that once there is a hyperedge with all the target vertices with value
1 (that propagates the value 1 to the root of the hyperedge), then the vertices
of all other hyperedges can be ignored. This ignore function is, as we observed
when running experiments, more efficient than this simpler one

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if A(v) = 1
∅ otherwise

because it avoids the exploration of vertices that can be ignored before the root
v is picked from the waiting list. Our encoding hence provides a generic and
efficient way to model and solve problems described by Boolean equations [18]
and dependency graphs [17].

5.2 Certain-Zero Dependency Graphs

Liu and Smolka’s on-the-fly algorithm for dependency graphs significantly ben-
efits from the fact that if there is a hyperedge with all target vertices having
the value 1 then this hyperedge can propagate this value to the source of the
hyperedge without the need to explore the remaining hyperedges. Moreover, the
algorithm can early terminate should the root vertex v0 get the value 1. On the
other hand, if the final value of the root is 0 then the whole graph has to be
explored and no early termination is possible. Recently, it has been noticed [19]
that the speed of fixed-point computation by Liu and Smolka’s algorithm can
been considerably improved by considering also certain-zero value in the assign-
ment that can, in certain situations, propagate from children vertices to their
parents and once it reaches the root vertex, the algorithm can early terminate.

We shall demonstrate that this extension can be directly implemented in our
generic framework, requiring only a minor modification of the abstract depen-
dency graph. Let G = (V,H) be a given dependency graph. We consider now a
NOR D = ({⊥, 0, 1},�,⊥) where ⊥ � 0 and ⊥ � 1 but 0 and 1, the ‘certain’
values, are incomparable. We use the labelling function

E(v)(d1, . . . , dk) =

⎧
⎪⎨

⎪⎩

1 if ∃(v, T ) ∈ H.∀vi ∈ T.di = 1
0 if ∀(v, T ) ∈ H.∃vi ∈ T.di = 0
⊥ otherwise

so that it rephrases the method described in [19]. In order to achieve a compet-
itive performance, we use the following ignore function.
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Ignore(A, v) =

⎧
⎪⎨

⎪⎩

{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∀(v, T ) ∈ H.∃u ∈ T.A(u) = 0
∅ otherwise

Our experiments presented in Sect. 6 show a clear advantage of the certain-
zero algorithm over the classical one, as also demonstrated in [19].

5.3 Weighted Symbolic Dependency Graphs

In this section we show an application that instead of a finite NOR considers an
ordering with infinitely many elements. This allows us to encode e.g. the model
checking problem for weighted CTL logic as demonstrated in [3,20]. The main
difference, compared to the dependency graphs in Sect. 5.1, is the addition of
cover-edges and hyperedges with weight.

A weighted symbolic dependency graph, as introduced in [20], is a triple G =
(V,H,C), where V is a finite set of vertices, H ⊆ V × 2(N0×V ) is a finite set
of hyperedges and C ⊆ V × N0 × V a finite set of cover-edges. We assume the
natural ordering relation > on natural numbers such that ∞ > n for any n ∈ N0.
An assignment A : V → N0 ∪ {∞} is a mapping from configurations to values.
A fixed-point assignment is an assignment A such that

A(v) =

⎧
⎨

⎩

0 if there is (v, w, u) ∈ C such that A(u) ≤ w

min
(v,T )∈H

(
max{A(u) + w | (w, u) ∈ T})

otherwise

where we assume that max ∅ = 0 and min ∅ = ∞. As before, we are interested in
computing the value Amin(v0) for a given vertex v0 where Amin is the minimum
fixed-point assignment.

In order to instantiate weighted symbolic dependency graphs in our frame-
work, we use the NOR D = (N0 ∪ {∞},≥,∞) as introduced in Example 1
and define an abstract dependency graph G′ = (V,E,D, E). We let E : V →
V ∗ be defined as E(v) = v1 · · · vmc1 · · · cn where {v1, . . . , vm} =

⋃
(v,T )∈H⋃

(w,vi)∈T {vi} is the set (in some fixed order) of all vertices that are used in
hyperedges and {c1, . . . , cn} =

⋃
(v,w,u)∈C{u} is the set (in some fixed order) of

all vertices connected to cover-edges. Finally, we define the labelling function E
as

E(v)(d1, . . . , dm, e1, . . . , en) =
{

0 if ∃(v, w, ci) ∈ C. w ≥ ei

min(v,T )∈H max(w,vi)∈T w + di otherwise.

In our experiments, we consider the following ignore function.

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, w, u) ∈ C.A(u) ≤ w

{E(v)i | 1 ≤ i ≤ |E(v)|, A(E(v)i) = 0} otherwise
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struct Value {
bool operator ==( const Value &);
bool operator !=( const Value &);
bool operator <(const Value &);

};

struct VertexRef {
bool operator ==( const VertexRef &);
bool operator <(const VertexRef &);

};

struct ADG {
using Value = Value;
using VertexRef = VertexRef;
using EdgeTuple = vector <VertexRef >;
static Value BOTTOM;
VertexRef initialVertex ();
EdgeTuple getEdge(VertexRef& v);
using VRA = typename algorithm:VertexRefAssignment <ADG >;
Value compute(const VRA*, const VRA**, size_t n);
void updateIgnored(const VRA*, const VRA**, size_t n, vector <bool >& ignore );
bool ignoreSingle(const VRA* v, const VRA* u);

};

Fig. 2. The C++ interface

This shows that also the formalism of weighted symbolic dependency graphs
can be modelled in our framework and the experimental evaluation documents
that it outperforms the existing implementation.

6 Implementation and Experimental Evaluation

The algorithm is implemented in C++ and the signature of the user-provided
interface in order to use the framework is shown in Fig. 2. The structure ADG is
the main interface the algorithm uses. It assumes the definition of the type Value
that represents the NOR, and the type VertexRef that represents a light-weight
reference to a vertex and the bottom element. The type aliased as VRA contains
both a Value and a VertexRef and represents the assignment of a vertex. The
user must also provide the implementation of the functions: initialVertex
that returns the root vertex v0, getEdge that returns ordered successors for a
given vertex, compute that computes E(v) for a given assignment of v and its
successors, and updateIgnored that receives the assignment of a vertex and its
successors and sets the ignore flags.

We instantiated this interface to three different applications as discussed
in Sect. 5. The source code of the algorithm and its instantiations is available at
https://launchpad.net/adg-tool/.

We shall now present a number of experiments showing that our generic
implementation of abstract dependency graph algorithm is competitive with
single-purpose implementations mentioned in the literature. The first two experi-
ments (bisimulation checking for CCS processes and CTL model checking of Petri
nets) were run on a Linux cluster with AMD Opteron 6376 processors running
Ubuntu 14.04. We marked an experiment as OOT if it run for more than one
hour and OOM if it used more than 16 GB of RAM. The final experiment for
WCTL model checking required to be executed on a personal computer as the
tool we compare to is written in JavaScript, so each problem instance was run on

https://launchpad.net/adg-tool/
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Size ]BM[yromeM]s[emiT
DG ADG Speedup DG ADG Reduction

Lossy Alternating Bit Protocol – Bisimilar

3 83.03 78.08 +6% 71 58 22%
4 2489.08 2375.10 +5% 995 810 23%

Lossy Alternating Bit Protocol — Nonbisimilar

4 6.04 5.07 +19% 25 18 39%
5 4.10 5.08 −19% 69 61 13%
6 9.04 6.06 +49% 251 244 3%

Ring Based Leader-Election — Bisimilar

8 21.09 18.06 +17% 31 23 35%
9 190.01 186.05 +2% 79 71 11%

10 2002.05 1978.04 +1% 298 233 28%
Ring Based Leader-Election — Nonbisimilar

8 4.09 2.01 +103% 59 52 13%
9 16.02 15.07 +6% 185 174 6%

10 125.06 126.01 −1% 647 638 1%

Fig. 3. Weak bisimulation checking comparison

a Lenovo ThinkPad T450s laptop with an Intel Core i7-5600U CPU @ 2.60 GHz
and 12 GB of memory.

6.1 Bisimulation Checking for CCS Processes

In our first experiment, we encode using ADG a number of weak bisimulation
checking problems for the process algebra CCS. The encoding was described
in [2] where the authors use classical Liu and Smolka’s dependency graphs to
solve the problems and they also provide a C++ implementation (referred to
as DG in the tables). We compare the verification time needed to answer both
positive and negative instances of the test cases described in [2].

Figure 3 shows the results where DG refers to the implementation from [2]
and ADG is our implementation using abstract dependency graphs. It displays
the verification time in seconds and peak memory consumptions in MB for both
implementations as well as the relative improvement in percents. We can see
that the performance of both algorithms is comparable, slightly in favour of our
algorithm, sometimes showing up to 103% speedup like in the case of nonbisim-
ilar processes in leader election of size 8. For nonbisimilar processes modelling
alternating bit protocol of size 5 we observe a 19% slowdown caused by the differ-
ent search strategies so that the counter-example to bisimilarity is found faster
by the implementation from [2]. Memory-wise, the experiments are slightly in
favour of our implementation.

We further evaluated the performance for weak simulation checking on task
graph scheduling problems. We verified 180 task graphs from the Standard Task
Graph Set as used in [2] where we check for the possibility to complete all tasks
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Name VerifyPN ADG Speedup
VerifyPN/ADG Best 2

Diffusion2D-PT-D05N350:12 OOM 42.07 ∞
Diffusion2D-PT-D05N350:01 332.70 0.01 +3326900%

VerifyPN/ADG Middle 7

IOTPpurchase-PT-C05M04P03D02:08 4.15 2.13 +95%
Solitaire-PT-SqrNC5x5:09 340.31 180.47 +89%
Railroad-PT-010:08 155.34 83.92 +85%
IOTPpurchase-PT-C05M04P03D02:13 0.16 0.09 +78%
PolyORBLF-PT-S02J04T06:11 2.66 1.67 +59%
Diffusion2D-PT-D10N050:01 168.17 110.59 +52%
MAPK-PT-008:05 454.50 325.24 +40%

VerifyPN/ADG Worst 2

ResAllocation-PT-R020C002:06 0.02 OOM −∞
MAPK-PT-008:06 0.01 OOM −∞

Fig. 4. Time comparison for CTL model checking (in seconds)

within a fixed number of steps. Both DG and ADG solved 35 task graphs using
the classical Liu Smolka approach. However, once we allow for the certain-zero
optimization in our approach (requiring to change only a few lines of code in the
user-defined functions), we can solve 107 of the task graph scheduling problems.

6.2 CTL Model Checking of Petri Nets

In this experiment, we compare the performance of the tool TAPAAL [8] and
its engine VerifyPN [21], version 2.1.0, on the Petri net models and CTL queries
from the 2016 Model Checking Contest [22]. From the database of models and
queries, we selected all those that do not contain logical negation in the CTL
query (as they are not supported by the current implementation of abstract
dependency graphs). This resulted in 267 model checking instances1.

The results comparing the speed of model checking are shown in Fig. 4. The
267 model checking executions are ordered by the ratio of the verification time
of VerifyPN vs. our implementation referred to as ADG. In the table we show
the best two instances for our tool, the middle seven instances and the worst two
instances. The results significantly vary on some instances as both algorithms
are on-the-fly with early termination and depending on the search strategy the
verification times can be largely different. Nevertheless, we can observe that on
the average (middle) experiment IOTPpurchase-PT-C05M04P03D02:13, we are
78% faster than VerifyPN. However, we can also notice that in the two worst
cases, our implementation runs out of memory.

1 During the experiments we turned off the query preprocessing using linear program-
ming as it solves a large number of queries by applying logical equivalences instead
of performing the state-space search that we are interested in.
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Name VerifyPN ADG Reduction
VerifyPN/ADG Best 2

Diffusion2D-PT-D05N350:12 OOM 4573 +∞
Diffusion2D-PT-D05N350:01 9882 7 141171%

VerifyPN/ADG Middle 7

PolyORBLF-PT-S02J04T06:13 17 23 −35%
ParamProductionCell-PT-0:02 1846 2556 −38%
ParamProductionCell-PT-0:07 1823 2528 −39%
ParamProductionCell-PT-4:13 1451 2064 −42%
SharedMemory-PT-000010:12 21 30 −43%
Angiogenesis-PT-15:04 51 74 −45%
Peterson-PT-3:03 1910 2792 −46%

VerifyPN/ADG Worst 2

ParamProductionCell-PT-5:13 6 OOT −∞
ParamProductionCell-PT-0:10 6 OOT −∞

Fig. 5. Memory comparison for CTL model checking (in MB)

In Fig. 5 we present an analogous table for the peak memory consumption of
the two algorithms. In the middle experiment ParamProductionCell-PT-4:13 we
use 42% extra memory compared to VerifyPN. Hence we have a trade-off between
the verification speed and memory consumption where our implementation is
faster but consumes more memory. We believe that this is due to the use of
the waiting list where we store directly vertices (allowing for a fast access to
their assignment), compared to storing references to hyperedges in the VerifyPN
implementation (saving the memory). Given the 16 GB memory limit we used
in our experiments, this results in the fact that we were able to solve only 144
instances, compared to 218 answers provided by VerifyPN and we run 102 times
out of memory while VerifyPN did only 45 times.

6.3 Weighted CTL Model Checking

Our last experiment compares the performance on the model checking of
weighted CTL against weighted Kripke structures as used in the WKTool [3].
We implemented the weighted symbolic dependency graphs in our generic inter-
face and run the experiments on the benchmark from [3]. The measurements for
a few instances are presented in Fig. 6 and clearly show significant speedup in
favour of our implementation. We remark that because WKTool is written in
JavaScript, it was impossible to gather its peek memory consumption.
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Instance Time [s] Satisfied?
WKTool ADG Speedup

Alternating Bit Protocol: EF [≤ Y ] delivered = X

B=5 X=7 Y =35 7.10 0.83 +755% yes
B=5 X=8 Y =40 4.17 1.05 +297% yes
B=6 X=5 Y =30 7.58 1.44 +426% yes
Alternating Bit Protocol: EF (send0 && deliver1 ) ‖ (send1 && deliver0 )
B=5, M=7 7.09 1.39 +410% no
B=5, M=8 4.64 1.60 +190% no
B=6, M=5 7.75 2.37 +227% no

Leader Election: EF leader > 1
N=10 5.88 1.98 +197% no
N=11 25.19 9.35 +169% no
N=12 117.00 41.57 +181% no

Leader Election: EF [≤ X] leader

N=11 X=11 24.36 2.47 +886% yes
N=12 X=12 101.22 11.02 +819% yes
N=11 X=10 25.42 9.00 +182% no

Task Graphs: EF [≤ 10] done = 9
T=0 26.20 22.17 +18% no
T=1 6.13 5.04 +22% no
T=2 200.69 50.78 +295% no

Fig. 6. Speed comparison for WCTL (B–buffer size, M–number of messages, N–number
of processes, T–task graph number)

7 Conclusion

We defined a formal framework for minimum fixed-point computation on depen-
dency graphs over an abstract domain of Noetherian orderings with the least
element. This framework generalizes a number of variants of dependency graphs
recently published in the literature. We suggested an efficient, on-the-fly algo-
rithm for computing the minimum fixed-point assignment, including perfor-
mance optimization features, and we proved the correctness of the algorithm.

On a number of examples, we demonstrated the applicability of our frame-
work, showing that its performance is matching those of specialized algorithms
already published in the literature. Last but not least, we provided an open
source C++ library that allows the user to specify only a few domain-specific
functions in order to employ the generic algorithm described in this paper. Expe-
riential results show that we are competitive with e.g. the tool TAPAAL, winner
of the 2018 Model Checking Contest in the CTL category [9], showing 78%
faster performance on the median instance of the model checking problem, at
the expense of 42% higher memory consumption.
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In the future work, we shall apply our approach to other application domains
(in particular probabilistic model checking), develop and test generic heuristic
search strategies as well as provide a parallel/distributed implementation of our
general algorithm (that is already available for some of its concrete instances [7,
23]) in order to further enhance the applicability of the framework.

Acknowledgments. The work was funded by the center IDEA4CPS, Innovation
Fund Denmark center DiCyPS and ERC Advanced Grant LASSO. The last author
is partially affiliated with FI MU in Brno.
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Abstract. We introduce nonreach, an automated tool for nonreachabil-
ity analysis that is intended as a drop-in addition to existing termination
and confluence tools for term rewriting. Our preliminary experimental
data suggests that nonreach can improve the performance of existing
termination tools.
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1 Introduction

Nonreachability analysis is an important part of automated tools like TTT2 [1]
(for proving termination of rewrite systems) and ConCon [2] (for proving con-
fluence of conditional rewrite systems). Many similar systems compete against
each other in the annual termination (TermComp)1 and confluence (CoCo)2

competitions, both of which will run as part of TACAS’s TOOLympics3 in 2019.
Our intention for nonreach is to become a valuable component of all of the

above mentioned tools by providing a fast and powerful back end for reachability
analysis. This kind of analysis is illustrated by the following example.

Example 1. Suppose we have a simple program for multiplication represented
by a term rewrite system (TRS, for short) consisting of the following rules:

add(0, y) → y add(s(x ), y) → s(add(x , y))
mul(0, y) → 0 mul(s(x ), y) → add(mul(x , y), y)

For checking termination we have to make sure that there is no infinite sequence
of recursive calls. One specific subproblem for doing so is to check whether it is

This work is supported by the Austrian Science Fund (FWF): project P27502.
1 http://termination-portal.org/wiki/Termination Competition.
2 http://project-coco.uibk.ac.at/.
3 https://tacas.info/toolympics.php.
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possible to reach t = MUL(s(y), z )4 from s = ADD(mul(w , x ), x ) for arbitrary
instantiations of the variables w , x , y , and z . In other words, we have to check
nonreachability of the target t from the source s.

In the remainder we will: comment on the role we intend for nonreach
(Sect. 2), describe how nonreach is built and used (Sect. 3), give an overview
of the techniques that went into nonreach (Sect. 4), and finally provide some
experimental data (Sect. 5).

2 Role

When looking into implementations of current termination and confluence tools
it soon becomes apparent that many tools use the same techniques for proving
nonreachability. In light of this observation, one of our main goals for nonreach
was to provide a dedicated stand-alone tool for nonreachability that can be
reused for example in termination and confluence tools and can in principle
replace many existing implementations.

In order to make such a reuse desirable for authors of other tools two things
are important: (1) we have to provide a simple but efficient interface, and (2)
we should support all existing techniques that can be implemented efficiently.5

At the time of writing, we already successfully use nonreach as back end in
the termination tool TTT2 [1]. To this end, we incorporated support for external
nonreachability tools into TTT2, with interaction purely via standard input and
output. More specifically, while at the moment only YES/NO/MAYBE answers
are required, the interface is general enough to support more detailed certificates
corroborating such answers. The external tool is launched once per termination
proof and supplied with those nonreachability problems that could not be han-
dled by the existing techniques of TTT2. Our next goal is to achieve the same for
the confluence tool ConCon [2].

Furthermore, a new infeasibility category will be part of CoCo 2019.6 Infea-
sibility is a concept from conditional term rewriting but can be seen as a variant
of nonreachability [3]. Thus, we plan to enter the competition with nonreach.

Another potential application of nonreach is dead code detection or showing
that some error can never occur.

3 Installation and Usage

Our tool nonreach is available from a public bitbucket7 repository which can be
obtained using the following command:
4 We differentiate between recursive calls and normal argument evaluation by capital-

ization of function symbols.
5 Efficiency is especially important under the consideration that, for example, termi-

nation tools may sometimes have to check thousands of nonreachability problems
within a single termination proof.

6 http://project-coco.uibk.ac.at/2019/categories/infeasibility.php.
7 https://bitbucket.org/fmessner/nonreach.
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git clone git@bitbucket.org:fmessner/nonreach.git

To compile and run nonreach, you need an up to date installation of Haskell’s
stack.8 The source code is compiled by invoking stack build in the project
directory containing the stack.yaml file. In order to install the executable in
the local bin path (~/.local/bin/ on Linux), run stack install instead.

Usage. The execution of nonreach is controlled by several command line flags.
The only mandatory part is a rewrite system (with respect to which nonreach-
ability should be checked). This may be passed either as literal string (flag
-d "...") or as file (flag -f filename). Either way, the input follows the for-
mats for (conditional) rewrite systems that are used for TermComp and CoCo.

In addition to a rewrite system we may provide the nonreachability problems
to be worked on (if we do not provide any problems, nonreach will wait indefi-
nitely). For a single nonreachability problem the simple format s -> t is used,
where s and t are terms and we are interested in nonreachability of the target t
from the source s. Again, there are several ways to pass problems to nonreach:

• We can provide white-space-separated lists of problems either literally on the
command line (flag -P "...") or through a file (flag -p filename).

• Alternatively, a single infeasibility problem can be provided as part of
the input rewrite system as specified by the new infeasibility category of
CoCo 2019.

• Otherwise, nonreach waits for individual problems on standard input.

For each given problem nonreach produces one line of output: In its default
mode the output is NO whenever nonreachability can be established and either
MAYBE or TIMEOUT, otherwise. When given an infeasibility problem, the output
is YES if the problem is infeasible and either MAYBE or TIMEOUT, otherwise.

Further flags may be used to specify a timeout (in microseconds; flag -t)
or to give finer control over the individual techniques that are implemented in
nonreach (we will mention those in Sect. 4).

It is high time for an example. Let us check Example 1 using nonreach.

Example 2. Assuming that the TRS of Example 1 is in a file mul.trs we can
have the following interaction (where we indicate user input by a preceding >):

nonreach -f mul.trs
> ADD(mul(w,x),x) -> MUL(s(y),z)
NO

4 Design and Techniques

In this section we give a short overview of the general design decisions and
specific nonreachability techniques that went into nonreach.
8 https://docs.haskellstack.org/en/stable/README.
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Design. Efficiency was at the heart of our concern. On the one hand, from
a user-interface perspective, this was the reason to provide the possibility that
a single invocation of nonreach for a fixed TRS can work on arbitrarily many
reachability problems. On the other hand, this lead us to mostly concentrate on
techniques that are known to be fast in practice. The selection of techniques we
present below (with the exception of narrowing) satisfies this criterion.

Techniques. Roughly speaking, nonreach uses two different kinds of techniques:
(1) transformations that result in disjunctions or conjunctions of easier nonreach-
ability problems, and (2) actual nonreachability checks. We use the notation
s � t for a nonreachability problem with source s and target t.

Reachability checks. The first check we recapitulate is implemented by most
termination tools and based on the idea of computing the topmost part of a term
that does not change under rewriting (its cap) [4]. If the cap of the source s does
not unify with the target t, then there are no substitutions σ and τ such that
sσ →∗ tτ . There are different algorithms to underapproximate such caps. We
use etcap, developed by Thiemann together with the second author [5], due to its
linear time complexity (by reducing unification to ground context matching) but
nevertheless simple implementation. With etcap subterms are matched bottom-
up with left-hand sides of rules. In case of a match, the corresponding subterm
is potentially rewritable and thus replaced by a hole, written �, representing a
fresh variable. We illustrate etcap on the first two (addition) rules of Example 1.

Example 3. We have etcap(s(0)) = s(0) and etcap(s(add(s(z ), s(0)))) = s(�),
since the subterm headed by add matches the second addition rule. Using etcap,
we obtain the following nonreachability check

reachetcap(s � t) =

{
MAYBE if etcap(s) ∼ t

NO otherwise

where ∼ denotes unifiability of terms.

The second reachability check implemented in nonreach [3,6] is based on the
so called symbol transition graph (SG for short) of a TRS. Here, the basic idea
is to build a graph that encodes the dependencies between root symbols induced
by the rules of a TRS. This is illustrated by the following example:

Example 4. Given the TRS R consisting of the four rules

f(x , x ) → g(x ) g(x ) → a h(a) → b h(x ) → x

we generate the corresponding SG shown in Fig. 1(a) on page 5.
For each rule we generate an edge from the node representing the root symbol

of the left-hand side to the node representing the root symbol of the right-hand
side. Since in the last rule, the right-hand side is a variable (which can in principle
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(a) SG of TRS R from Example 4.
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(b) Decomposition by narrowing.

Fig. 1. A symbol transition graph and the idea of narrowing.

be turned into an arbitrary term by applying a substitution), we have to add
edges from h to all nodes (including h itself).

From the graph it is apparent that f(x , y) is not reachable from g(z ), no
matter the substitutions for x , y and z , since there is no path from g to f.

We obtain the following SG based nonreachability check:

reachstg(s � t) =

{
MAYBE if there is a path from root(s) to root(t) in the graph

NO otherwise

Which reachability checks are applied by nonreach can be controlled by its -s
flag, which expects a list of checks (in Haskell syntax). Currently the two checks
TCAP and STG are supported.

Transformations. We call the first of our transformations (problem) decomposi-
tion. This technique relies on root-reachability checks to decompose a problem
into a conjunction of strictly smaller subproblems. Thus, we are done if any of
these subproblems is nonreachable.

Decomposition of a problem s � t only works if source and target are of the
form s = f(s1, . . . , sn) and t = f(t1, . . . , tn), respectively. Now the question is
whether t can be reached from s involving at least one root-rewrite step. If this
is not possible, we know that for reachability from s to t, we need all ti to be
reachable from the corresponding si.

For the purpose of checking root-nonreachability, we adapt the two reacha-
bility checks from above:

rootreachetcap(s, t) =

{
True if there is a rule � → r such that etcap(s) ∼ �

False otherwise

rootreachstg(s, t) =

⎧⎨
⎩
True if there is a non-empty path from root(s)

to root(t) in the SG
False otherwise

If at least one of these checks returns False, we can decompose the initial
problem s � t into a conjunction of problems s1 � t1, . . . , sn � tn.
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The second transformation is based on narrowing. Without going into too
much technical detail let us start from the following consideration. Given a reach-
ability problem s � t, assume that t is reachable from s. Then either the cor-
responding rewrite sequence is empty (in which case s and t are unifiable) or
there is at least one initial rewrite step. Narrowing is the tool that allows us to
capture all possible first steps (one for each rule l → r and each subterm of s
that unifies with l), of the form s → si →∗ t. This idea is captured in Fig. 1(b).

Now, decomposition (which is always applicable and thus has to be handled
with care), transforms a given reachability problem s � t into a disjunction of
new problems (that is, this time we have to show NO for all of these problems
in order to conclude NO for the initial one) s

?∼ t or s1 � t or . . . or sk � t,
where the first one is a unifiability problem and the remaining ones are again
reachability problems.

The maximal number of narrowing applications is specified by the -l flag.

5 Experiments

In order to obtain test data for nonreach we started from the Termination Prob-
lem Data Base (TPDB, for short),9 the data base of problems that are used
also in TermComp. Then we used a patched version of the termination tool
TTT2 to obtain roughly 20,000 non-trivial reachability problems with respect to
730 TRSs. These are available from a public bitbucket repository10 alongside
a small script, that runs nonreach on all the problems and displays the over-
all results. All these problems could, at the time of creating the dataset, not be
solved with the reachability checks used in the competition strategy of TTT2. The
current version11 of nonreach in its default configuration can prove nonreacha-
bility of 369 problems of this set. While this does not seem much, we strongly
suspect that the majority of problems in our set are actually reachable.
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Abstract. We present an extensive collection of quantitative models to
facilitate the development, comparison, and benchmarking of new verifi-
cation algorithms and tools. All models have a formal semantics in terms
of extensions of Markov chains, are provided in the Jani format, and
are documented by a comprehensive set of metadata. The collection is
highly diverse: it includes established probabilistic verification and plan-
ning benchmarks, industrial case studies, models of biological systems,
dynamic fault trees, and Petri net examples, all originally specified in
a variety of modelling languages. It archives detailed tool performance
data for each model, enabling immediate comparisons between tools and
among tool versions over time. The collection is easy to access via a
client-side web application at qcomp.org with powerful search and visu-
alisation features. It can be extended via a Git-based submission process,
and is openly accessible according to the terms of the CC-BY license.

1 Introduction

Quantitative verification is the analysis of formal models and requirements that
capture probabilistic behaviour, hard and soft real-time aspects, or complex con-
tinuous dynamics. Its applications include probabilistic programs, safety-critical
and fault-tolerant systems, biological processes, queueing systems, and plan-
ning in uncertain environments. Quantitative verification tools can, for example,
compute the worst-case probability of failure within a time bound, the minimal
expected cost to achieve a goal, or a Pareto-optimal control strategy balancing
energy consumption versus the probability of unsafe behaviour. Two prominent
such tools are Prism [15] for probabilistic and Uppaal [17] for real-time systems.

Over the past decade, various improvements and extensions have been made
to quantitative model checking algorithms, with different approaches imple-
mented in an increasing number of tools, e.g. [7,8,11,13,18]. Researchers, tool
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developers, non-academic users, and reviewers can all greatly benefit from a com-
mon set of realistic and challenging examples that new algorithms and tools are
consistently benchmarked and compared on and that may indicate the practical-
ity of a new method or tool. Such sets, and the associated push to standardised
semantics, formats, and interfaces, have proven their usefulness in other areas
such as software verification [4] and SMT solving [3].

In quantitative verification, the Prism Benchmark Suite (PBS) [16] has
served this role for the past seven years. It provides 24 distinct examples in the
Prism language covering discrete- and continuous time Markov chains (DTMC
and CTMC), discrete-time Markov decision processes (MDP), and probabilistic
timed automata (PTA). To date, it has been used in over 60 scientific papers.
Yet several developments over the past seven years are not adequately reflected
or supported by the PBS. New tools (1) support other modelling languages
and semantics (in particular, several tools have converged on the Jani model
exchange format [6]), and (2) exploit higher-level formalisms like Petri nets or
fault trees. In addition, (3) today’s quantitative verification tools employ a wide
range of techniques, whereas the majority of models in the PBS work best with
Prism’s original BDD-based approach. Furthermore, (4) probabilistic verifica-
tion and planning have been connected (e.g. [14]), and (5) MDP have gained in
prominence through recent breakthroughs in AI and learning.

We present the Quantitative Verification Benchmark Set (QVBS): a new
and growing collection of currently 72 models (Sect. 2) in the Jani format, doc-
umented by comprehensive metadata. It includes all models from the PBS plus
a variety of new examples originally specified in significantly different modelling
languages. It also covers decision processes in continuous stochastic time via
Markov automata (MA [9]). The QVBS aggregates performance results obtained
by different tools on its models (Sect. 3). All data is accessible via a client-side
web application with powerful search and visualisation capabilities (Sect. 4).

2 A Collection of Quantitative Models

The Quantitative Verification Benchmark Set is characterised by commonality
and diversity. All models are available in the Jani model exchange format [6], and
they all have a well-defined formal semantics in terms of five related automata-
based probabilistic models based on Markov chains. At the same time, the models
of the QVBS originate from a number of different application domains, were
specified in six modelling languages (with the original models plus information
on the Jani conversion process being preserved in the QVBS), and pose different
challenges including state space explosion, numeric difficulties, and rare events.

Syntax and semantics. The QVBS accepts any interesting model with a Jani
translation to the DTMC, CTMC, MDP, MA, and PTA model types. Its current
models were originally specified in Galileo for fault trees [20], GreatSPN [2]
for Petri nets, the Modest language [5], PGCL for probabilistic programs [10],
PPDDL for planning domains [21], and the Prism language [15]. By also storing
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Table 1. Sources and domains of models

source application domain

all PBS IPPC TA com rda dpe pso bio sec

all 72 24 10 7 12 9 17 16 6 5

DTMC 9 7 2 3 1 2

CTMC 13 7 4 1 6

MDP 25 5 10 5 5 13

MA 18 7 1 12 2 1

PTA 7 5 5 2

Table 2. Properties and valuations

properties parameter valuations

all P Pb E Eb S all 104 106 107 >107

all 229 90 57 52 12 18 589 135 127 94 28

DTMC 20 10 1 9 91 40 23 14 14

CTMC 49 6 22 4 11 6 161 43 52 28 5

MDP 61 40 3 17 1 82 31 24 21 6

MA 61 14 18 17 12 218 7 28 26 3

PTA 38 20 13 5 37 14 5

the original model, structural information (such as in Petri nets or fault trees)
that is lost by a conversion to an automata-based model is preserved for tools that
can exploit it. We plan to broaden the scope to e.g. stochastic timed automata [5]
or stochastic hybrid systems [1] in coordination with interested tool authors.

Sources and application domains. 41 of the QVBS’s current 72 models stem from
existing smaller and more specialised collections: 24 from the PRISM Bench-
mark Suite (PBS) [16], 10 from the probabilistic/uncertainty tracks of the 2006
and 2008 International Planning Competitions (IPPC) [21], and 7 repairable
dynamic fault trees from the Twente Arberretum (TA) [19]. 65 of the models
can be categorised as representing systems from six broad application domains:
models of communication protocols (com), of more abstract randomised and dis-
tributed algorithms (rda), for dependability and performance evaluation (dpe),
of planning, scheduling and operations management scenarios (pso), of biological
processes (bio), and of mechanisms for security and privacy (sec). We summarise
the sources and application domains of the QVBS models in Table 1.

Metadata. Alongside each model, in original and Jani format, we store a compre-
hensive set of structured Json metadata to facilitate browsing and data mining
the benchmark set. This includes basic information such as a description of the
model, its version history, and references to the original source and relevant liter-
ature. Almost all models are parameterised such that the difficulty of analysing
the model can be varied: some parameters influence the size of the state spaces,
others may be time bounds used in properties, etc. The metadata documents all
parameters and the ranges of admissible values. It includes sets of “proposed”
parameter valuations with corresponding state space sizes and reference results.
Each model contains a set of properties to be analysed; they are categorised
into probabilistic unbounded and bounded reachability (P and Pb), unbounded
and bounded expected rewards (E and Eb), and steady-state queries (S). Table 2
summarises the number of properties of each type (left), and the number of sug-
gested parameter valuations (right) per resulting state space size (if available),
where e.g. column “106” lists the numbers of valuations yielding 104 to 106 states.
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3 An Archive of Results

The Quantitative Verification Benchmark Set collects not only models, but also
results: the values of the properties that have been checked and performance data
on runtime and memory usage. For every model, we archive results obtained with
different tools/tool versions and settings on different hardware in a structured
Json format. The aim is to collect a “big dataset” of performance information
that can be mined for patterns over tools, models, and time. It also gives devel-
opers of new tools and algorithms a quick indication of the relative performance
of their implementation, saving the often cumbersome process of installing and
running many third-party tools locally. Developers of existing tools may profit
from an archive of the performance of their own tool, helping to highlight perfor-
mance improvements—or pinpoint regressions—over time. The QVBS includes
a graphical interface to aggregate and visualise this data (see Sect. 4 below).

4 Accessing the Benchmark Set

The models and results data of the Quantitative Verification Benchmark Set
are managed in a Git repository at github.com/ahartmanns/qcomp. A user-
friendly interface is provided at qcomp.org/benchmarks via a web application
that dynamically loads the Json data and presents it in two views:

Fig. 1. The model browser and detail view

The model browser presents
a list of all models with key
metadata. The list can be
refined by a full-text search
over the models’ names,
descriptions and notes, and
by filters for model type,
original modelling language,
property types, and state
space size. For example, a
user could request the list
of all Modest MDP mod-
els with an expected-reward
property and at least ten
million states. Every model
can be opened in a detail
view that links to the Jani
and original files, shows all
metadata including param-
eters, proposed valuations,
and properties with reference results, and provides access to all archived results.
Figure 1 shows the model browser filtered to GreatSPN models that include a
bounded probabilistic reachability property. The flexible-manufacturing model is
open in detail view.

https://github.com/ahartmanns/qcomp
http://qcomp.org/benchmarks/
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Fig. 2. The results browser showing a bar chart

The results browser is
accessed by selecting one
or more models in the
model browser and open-
ing the “compare results”
link. It provides a flexible,
summarising view of the
performance data collected
from all archived results
for the selected models.
The data can be filtered
to include select proper-
ties or parameter valua-
tions only. It is visualised
as a table or different types
of charts, including bar
charts and scatter plots.
Figure 2 shows the result
browser for the beb and
breakdown-queues models,
comparing the performance
of mcsta [13] with default
settings to Storm [8] in its slower “exact” mode. The performance data can
optionally be normalised by the benchmark scores of the CPU used to some-
what improve comparability, although this still disregards many other important
factors (like memory bandwidth and storage latency), of course.

The web application is entirely client-side: all data is loaded into the user’s
browser as needed. All aggregation, filtering, and visualisation is implemented
in Javascript. The application thus has no requirements on the server side. It is
part of the Git repository and can be downloaded and opened offline by anyone.

5 Conclusion

Building upon the successful foundation of the Prism Benchmark Suite, the
new Quantitative Verification Benchmark Set not only expands the number and
diversity of easily accessible benchmarks, but also professionalises the collection
and provision of benchmark data through its Json-based formats for metadata
and results. We expect its associated web application to become a valuable tool
for researchers, tool authors, and users alike. The QVBS is also an open dataset:
all content is available under the CC-BY license, and new content—new models,
updates, and results—can be contributed via a well-defined Git-based process.
The Quantitative Verification Benchmark Set is the sole source of models for
QComp 2019 [12], the first friendly competition of quantitative verification tools.
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Abstract. We present ILAng, a platform for modeling and verification
of systems-on-chip (SoCs) using Instruction-Level Abstractions (ILA).
The ILA formal model targeting the hardware-software interface enables
a clean separation of concerns between software and hardware through
a unified model for heterogeneous processors and accelerators. Top-
down it provides a specification for functional verification of hardware,
and bottom-up it provides an abstraction for software/hardware co-
verification. ILAng provides a programming interface for (i) constructing
ILA models (ii) synthesizing ILA models from templates using program
synthesis techniques (iii) verifying properties on ILA models (iv) behav-
ioral equivalence checking between different ILA models, and between an
ILA specification and an implementation. It also provides for translat-
ing models and properties into various languages (e.g., Verilog and SMT
LIB2) for different verification settings and use of third-party verifica-
tion tools. This paper demonstrates selected capabilities of the platform
through case studies. Data or code related to this paper is available
at: [9].

1 Introduction

Modern computing platforms are increasingly heterogeneous, having both pro-
grammable processors and application-specific accelerators. These accelerator-
rich platforms pose two distinct verification challenges. The first challenge is
constructing meaningful specifications for accelerators that can be used to verify
the implementation. Higher-level executable models used in early design stages
are not suitable for this task. The second challenge is to reason about hardware-
software interactions from the viewpoint of software. The traditional approach
in system-level/hardware modeling using detailed models, e.g., Register-Transfer
Level (RTL) descriptions, is not amenable to scalable formal analysis.
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The Instruction-Level Abstraction (ILA) has been proposed to address these
challenges [4]. The ILA model is a uniform formal abstraction for processors
and accelerators that captures their software-visible functionality as a set of
instructions. It facilitates behavioral equivalence checking of an implementation
against its ILA specification. This, in turn, supports accelerator upgrades using
the notion of ILA compatibility similar to that of ISA compatibility for proces-
sors [4]. It also enables firmware/hardware co-verification [3]. Further, it enables
reasoning about memory consistency models for system-wide properties [8].

In this paper, we present ILAng, a platform for Systems-on-chip (SoC) verifi-
cation where ILAs are used as the formal model for processors and accelerators.
ILAng provides for (i) ILA modeling and synthesis, (ii) ILA model verification,
and (iii) behavioral equivalence checking between ILA models, and between an
ILA specification and an implementation. The tool is open source and available
online on https://github.com/Bo-Yuan-Huang/ILAng.

Fig. 1. ILAng work flow

2 The ILAng Platform

Figure 1 illustrates the modeling and verification capabilities of ILAng.

1. It allows constructing ILA formal models using a programming interface.
It also allows semi-automated ILA synthesis using program synthesis tech-
niques [5] and a template language [6].

2. It provides a set of utilities for ILA model verification, such as SMT-based
transition unrolling and bounded model checking. Further, ILAng is capa-
ble of translating ILA formal models into various languages for verification,
including Verilog, C, C++, and SMT LIB2, targeting other off-the-shelf ver-
ification tools and platforms.

3. It supports behavioral equivalence checking between ILA models and between
an ILA specification and an implementation based on the standard commu-
tative diagram approach [1].

https://github.com/Bo-Yuan-Huang/ILAng
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2.1 Background

ILA. The ILA is a formal, uniform, modular, and hierarchical model for mod-
eling both programmable processors and accelerators [4].

An ILA model is modular (state updates defined per instruction) and can
be viewed as a generalization of the processor ISA in the heterogeneous context,
where the commands on an accelerator’s interface are defined as instructions.
Generally, these appear as memory-mapped IO (MMIO) instructions in pro-
grams. The MMIO instruction lacks the actual semantics of what the instruction
is doing in the accelerator; the ILA instruction captures exactly that.

It is an operational model that captures updates to program-visible states
(i.e., states that are accessible or observable by programs). For processors, these
include the architectural registers, flag bits, data, and program memory. An ADD
instruction (R1 = R2+R3), for example, of a processor defines the update to the
R1 program-visible register. For accelerators, the program visible state includes
memory-mapped registers, internal buffers, output ports to on-chip interconnect,
etc. An ILA instruction for a crypto-accelerator could define the setting of an
encryption key or even the encryption of an entire block using this key.

An ILA model is hierarchical, where an instruction at a high level can
be expressed as a program of child-instructions (like micro-instructions). For
example, the START ENCRYPT instruction of a crypto-accelerator can be described
as a program of reading data, encrypting it, and writing the result.

2.2 Constructing ILAs

ILAng provides a programming interface to define ILA models. For each com-
ponent, the program-visible (aka architectural) states are specified. For each
instruction, the state updates are specified independently as transition relations.
Currently, ILAng supports state variables of type Boolean, bit-vector, and array.
Uninterpreted functions are also supported for modeling complex operations.

Synthesis Capability. To alleviate the manual effort in constructing ILAs,
ILAng provides a synthesis engine for synthesizing ILAs from a partial descrip-
tion called a template [6] using program synthesis techniques [5]. This is shown
as Block 1 in Fig. 1. The synthesis algorithm requires two user inputs: an ILA
template, and a design simulator/emulator. A template is a partially defined
ILA model that specifies the program-visible states, the set of instructions, and
also the possible operations for each instruction. The simulator can be a soft-
ware/hardware prototype and is used as an oracle during ILA synthesis. The
synthesis algorithm fills in the missing parts in the set of instructions.

2.3 Verification Using ILAs

The ILA formal model is a modular (per instruction) transition system, enabling
the use of verification techniques such as model checking. We now discuss a
selected list of verification capabilities provided by ILAng.
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ILA Model Verification. As shown in Block 2 in Fig. 1, ILAng supports
verification of user-provided safety properties on ILAs. It generates verification
targets (including the design and property assertions) into different languages,
as discussed in Sect. 2.4.

Behavioral Equivalence Checking. The modularity and hierarchy in the
ILA models simplify behavioral equivalence checking through decomposition.
Based on the standard commutative diagram approach [1], behavioral equiva-
lence checking in ILAng supports two main settings: (i) ILA vs. ILA, and (ii)
ILA vs. finite state machine (FSM) model (e.g., RTL implementation). As shown
in Blocks 3a and 3b in Fig. 1, ILAng takes as input the two models (two ILA
models, or an ILA model and an implementation model) and the user-provided
refinement relation. The refinement relation specifies:

1. how to apply an instruction (e.g., instruction decode),
2. how to flush the state machine if required (e.g., stalling), and
3. how to identify if an instruction has completed (e.g., commit point).

The refinement map is then used with the two models to generate the property
assertions using the standard commutative diagram approach [1]. The verifica-
tion targets (the design and property assertions) are then generated in Verilog
or SMT LIB2 for further reasoning, as described in Sect. 2.4.

SMT-Based Verification Utilities

Unrolling. Given an ILA, ILAng provides utilities to unroll the transition rela-
tion up to a finite bound, with options for different encodings and simplifications.
Users can unroll a sequence of given instructions with a fixed instruction order-
ing. They can also unroll all possible instructions as a monolithic state machine.

Bounded Model Checking (BMC). With the unrolling utility, ILAng supports
BMC of safety properties using an SMT solver. Users can specify initial condi-
tions, invariants, and the properties. They can use a fixed bound for BMC or
use on-the-fly BMC that iteratively increases the bound.

2.4 Generating Verification Targets

To utilize off-the-shelf verification tools, ILAng can export ILA models into
different languages, including Verilog, C, C++, and SMT-LIB2.

Verilog. Many hardware implementations use RTL descriptions in Verilog. To
support ILA vs. FSM equivalence checking, ILAng supports exporting ILA to
Verilog. This also allows the use of third-party verification tools, since most such
tools support Verilog. The memory module in the exported ILA can be config-
ured as internal registers or external memory modules for different requirements.
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C/C++. Given an ILA model, ILAng can generate a hardware simulator (in C
or C++) for use in system/software development. This simulator can be verified
against an implementation to check that it is a reliable executable model.

SMT LIB2. The ILAng platform is integrated with the SMT solver z3 [2]. It
can generate SMT formulas for the transition relation and other verification
conditions using the utilities described in Sect. 2.3.

3 Tutorial Case Studies

We demonstrate the applicability of ILAng through two case studies discussed
in this section.1 Table 1 provides information for each case study, including
implementation size, ILA (template) size, synthesis time, and verification time
(Ubuntu 18.04 VM on Intel i5-8300H with 2 GB memory). Note that these case
studies are for demonstration, ILAng is capable of handling designs with signif-
icant complexity, as discussed and referenced in Sect. 4.

Table 1. Experimental Results

Design Statistics ILA Verif.

Reference Ref. Size
# of Insts.
(parent/child)

ILA Size
Synth.
Time (s)

Time (s)

AESV RTL Impl. (Verilog) 1756 8/5 324† 110 63

AESC Software Model (C) 328 8/7 292† 63

PipeI RTL Impl. (Verilog) 218 4/0 78 - 25

† ILA synthesis template. Note: sizes are LoC w.r.t the corresponding language.

3.1 Advanced Encryption Standard (AES)

In this case study, we showcase the synthesis engine (Sect. 2.2) and the verifica-
tion utilities (Sect. 2.3) for ILA vs. ILA behavioral equivalence checking.

We synthesized two ILAs for the AES crypto-engine, AESC and AESV , based
on C and Verilog implementations respectively. They have the same instruction
set, but with differences in block-level and round-level algorithms. As shown in
Table 1, the sizes of ILAs (synthesis templates) are significantly smaller than the
final RTL implementation, making this an attractive entry point for verification.

The equivalence between AESC and AESV is checked modularly, i.e., per
instruction. Table 1 shows the verification time for checking behavioral equiva-
lence using the SMT solver z3.

3.2 A Simple Instruction Execution Pipeline

In this case study, we demonstrate the steps in manually defining an ILA
(Sect. 2.2) and exporting it in Verilog (Sect. 2.4) for ILA vs. FSM behavioral
equivalence checking using existing hardware verification tools.
1 All tutorial case studies are available in the submitted artifact and on GitHub.
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This pipeline case study is a simple version of the back-end of a pipelined pro-
cessor. We manually define an ILA model PipeI as the specification of the design.
This specification can be verified against a detailed RTL implementation, using a
given refinement relation. We exported the Verilog model (including PipeI and
property assertions) and utilized Yosys and z3 for hardware verification. The
equivalence is checked modularly per instruction, and took 22 s in total for all
four instructions, as shown in Table 1.

4 Other ILAng Applications

Firmware/Hardware Co-verification. The ILA models program-visible hardware
behavior while abstracting out lower-level implementation details. This enables
scalable firmware/hardware co-verification, as demonstrated in our previous
work on security verification of firmware in industrial SoCs using ILAs [3].

Reasoning about Concurrency and Memory Consistency. The ILA model is an
operational model that captures program-visible state updates. When integrated
with axiomatic memory consistency models that specify orderings between mem-
ory operations, the transition relation defined in ILAs (Sect. 2.3) can be used to
reason about concurrent interactions between heterogeneous components [8].

Data Race Checking of GPU Programs. Besides general-purpose processors and
accelerators, an ILA model has been synthesized for the nVidia GPU PTX
instruction set using the synthesis engine (Sect. 2.2) [7]. This model has then
been used for data race checking for GPU programs using the BMC utility
(Sect. 2.3).
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Abstract. Modular deductive verification is a powerful technique capa-
ble to show that each function in a program satisfies its contract. How-
ever, function contracts do not provide a global view of which high-level
(e.g. security-related) properties of a whole software module are actu-
ally established, making it very difficult to assess them. To address this
issue, this paper proposes a new specification mechanism, called meta-
properties. A meta-property can be seen as an enhanced global invariant
specified for a set of functions, and capable to express predicates on
values of variables, as well as memory related conditions (such as sepa-
ration) and read or write access constraints. We also propose an auto-
matic transformation technique translating meta-properties into usual
contracts and assertions, that can be proved by traditional deductive ver-
ification tools. This technique has been implemented as a Frama-C plugin
called MetAcsl and successfully applied to specify and prove safety- and
security-related meta-properties in two illustrative case studies.

1 Introduction

Modular deductive verification is a well-known technique for formally proving
that a program respects some user-defined properties. It consists in providing
for each function of the program a contract, which basically contains a precon-
dition describing what the function expects from its callers, and a postcondition
indicating what it guarantees when it successfully returns. Logical formulas,
known as verification conditions or proof obligations (POs), can then be gener-
ated and given to automated theorem provers. If all POs are validated, the body
of the function fulfills its contract. Many deductive verification frameworks exist
for various programming and formal specification languages. We focus here on
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Frama-C [1] and its deductive verification plugin Wp, which allows proving a
C program correct with respect to a formal specification expressed in ACSL [1].

However, encoding high-level properties spanning across the entire program
in a set of Pre/Post-based contracts is not always immediate. In the end, such
high-level properties get split among many different clauses in several contracts,
without an explicit link between them. Therefore, even if each individual clause
is formally proved, it might be very difficult for a verification engineer, a code
reviewer or a certification authority to convince themselves that the provided
contracts indeed ensure the expected high-level properties. Moreover, a software
product frequently evolves during its lifetime, leading to numerous modifications
in the code and specifications. Maintaining a high-level (e.g. security-related)
property is extremely complex without a suitable mechanism to formally specify
and automatically verify it after each update.

The purpose of the present work is to propose such a specification mecha-
nism for high-level properties, which we call meta-properties, and to allow their
automatic verification on C code in Frama-C thanks to a new plugin called
MetAcsl.

Motivation. This work was motivated by several previous projects. During the
verification of a hypervisor, we observed the need for a mechanism of specifica-
tion and automatic verification of high-level properties, in particular, for global
properties related to isolation and memory separation. Isolation properties are
known as key properties in many verification projects, in particular, for hyper-
visors and micro-kernels.

A similar need for specific high-level properties recently arose from a case
study on a confidentiality-oriented page management system submitted by an
industrial partner. In this example, each page and each user (process) are given
a confidentiality level, and we wish to specify and verify that in particular:

– (Pread) a user cannot read data from a page with a confidentiality level higher
than its own;

– (Pwrite) a user cannot write data to a page with a confidentiality level lower
than its own.

This case study will be used as a running example in this paper. As a second
case study (also verified, but not detailed in this paper), we consider a simple
smart house manager with several interesting properties such as: “a door can
only be unlocked after a proper authentication or in case of alarm” or “whenever
the alarm is ringing, all doors must be unlocked”. Again, these examples involve
properties that are hard to express with function contracts since they apply to
the entire program rather than a specific function.1

Contributions. The contributions of this paper2 include:

– a new form of high-level properties, which we call meta-properties, and an
extension of the ACSL language able to express them (Sect. 2),

1 These examples are publicly available at https://huit.re/metacas.
2 A longer version is available at https://arxiv.org/abs/1811.10509.

https://huit.re/metacas
https://arxiv.org/abs/1811.10509


360 V. Robles et al.

– a set of code transformations to translate meta-properties into native ACSL
annotations that can be proved via the usual methods (Sect. 3),

– a Frama-C plugin MetAcsl able to parse C code annotated with meta-
properties and to perform the aforementioned code transformations (Sect. 4),

– a case study: a confidentiality-oriented page system, where important security
guarantees were expressed using meta-properties and automatically verified
thanks to the code transformation with MetAcsl (Sect. 4).

Fig. 1. Partial meta-specification of a confidentiality case study

2 Specification of Meta-properties

A meta-property is a property meant to express high-level requirements. As such,
it is not attached to any particular function but instead to a set of functions. It
is thus defined in the global scope and can only refer to global objects.

To define a meta-property, the user must provide (i) the set of functions it
will be applied to, (ii) a property (expressed in ACSL) and (iii) the context, i.e. a
characterization of the situations in which they want the property to hold in each
of these functions (everywhere in the function, only at the beginning and the
end, upon writing in a variable, etc.). Furthermore, depending on the context,
the property can refer to some special variables which we call meta-variables.
Figure 1 features a few examples of meta-properties further explained below.

Let F denote the set of functions defined in the current program, and P
the set of native ACSL properties. Formally, we can define a meta-property
as a triple (c, F, P ), where c is a context (see Sect. 2.2), F ⊆ F and P ∈ P.
Intuitively, we can interpret this triple as “∀f ∈ F , P holds for f in the context
c”. For the meta-property to be well-formed, P must be a property over a subset
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of G ∪ M(c), where G is the set of variables available in the global scope of the
program and M(c) is the set of meta-variables provided by the context c.

The actual MetAcsl syntax for defining a meta-property (c, F, P ) is
meta [specification of F] c, P; An example is given by property M1 (cf.
lines 10–12 in Fig. 1), where F = F , c = strong_invariant and P is the pred-
icate stating that the status of any page should be either FREE or ALLOCATED.

2.1 Target Functions and Quantification

Meta-properties are applied to a given target set of functions F defined as F =
F+\F− by providing explicit lists of considered and excluded functions F+, F− ⊆
F . If not provided, F+ and F− are respectively equal to F and ∅ by default, i.e.
the meta-property should hold for all functions of the program. F− is useful
when the user wants to target every function except a few, since they do not
have to explicitly provide every resulting target function.

The MetAcsl syntax for the specification of F uses the built-in ACSL con-
struction \forall, possibly followed by \subset with or without logic negation
! (to express f ∈ F+ and f /∈ F−). It can be observed in property M2 (lines
13–16), where F+ = F and F− = {page_encrypt} excludes only one function.

2.2 Notion of Context

The context c of a meta-property defines the states in which property P must
hold, and may introduce meta-variables that can be used in the definition of P .

Beginning/Ending Context (Weak Invariant). A weak invariant indicates that
P must hold at the beginning and at the end of each target function f ∈ F .

Everywhere Context (Strong invariant). A strong invariant is similar to a weak
invariant, except that it ensures that P holds at every point3 of each target
function. For example, property M1 specifies that at every point of the program,
the status of any page must be either FREE or ALLOCATED.

Writing Context. This ensures that P holds upon any modification of the mem-
ory (both stack and heap). It provides a meta-variable \written that refers to
the variable (and, more generally, the memory location) being written to.

A simple usage of this context can be to forbid any direct modification of some
global variable, as in property M2. This property states that for any function
that is not page_encrypt, the left-hand side of any assignment must be separated
from (that is, disjoint with) the global variable metadata[page].level for any
page with the ALLOCATED status. In other words, only the page_encrypt function
is allowed to modify the confidentiality level of an allocated page.

An important benefit of this setting is a non-transitive restriction of modifi-
cations that cannot be specified using the ACSL clause assigns, since the latter
is transitive over function calls and necessarily permits to modify a variable when
3 More precisely, every sequence point as defined by the C standard.
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at least one callee has the right to modify it. Here, since we only focus on direct
modifications, a call to page_encrypt (setting to public the level of the page it
has encrypted) from another function does not violate meta-property M2.

Furthermore, modification can be forbidden under some condition (i.e. that
the page is allocated), while assigns has no such mechanism readily available.

Reading Context. Similar to the writing context, this ensures that the property
holds whenever some memory location is read, and provides a meta-variable
\read referring to the read location. It is used in property M3 (lines 17–20),
which expresses the guarantee Pread of the case study (see Motivation in Sect. 1)
by imposing a separation of a read location and the contents of allocated con-
fidential pages when the user does not have sufficient access rights. As another
example, an isolation of a page can be specified as separation of all reads and
writes from it.

These few simple contexts, combined with the native features of ACSL, turn
out to be powerful enough to express quite interesting properties, including mem-
ory isolation and all properties used in our two motivating case studies.

3 Verification of Meta-properties

Figure 2 shows an (incorrect) toy implementation of two functions of Fig. 1 that
we will use to illustrate the verification of meta-properties M1–M3.

The key idea of the verification is the translation of meta-properties into
native ACSL annotations, which are then verified using existing Frama-C ana-
lyzers. To that end, the property P of a meta-property (c, F, P ) must be inserted
as an assertion in relevant locations (as specified by context c) in each target
function f ∈ F , and the meta-variables (if any) must be instantiated.

Fig. 2. Incorrect code w.r.t. M2 and M3

We define a specific translation
for each context. For weak invariants,
property P is simply added as both
a precondition and a postcondition in
the contract of f . This is also done
for the strong invariant, for which
P is additionally inserted after each
instruction potentially modifying the
values of the free variables in P 4 For
example, Fig. 3a shows the transla-
tion of M1 on page_alloc. Our prop-
erty (defined on lines 11–12 in Fig. 1,
denoted PM1 here) is inserted after
the modification of a status field

4 The AST is normalized so that every memory modification happens through an
assignment. Then we conservatively determine if the object being assigned is one of
the free variables of P : in presence of pointers, we assume the worst case.
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(line 6) since the property involves these objects, but not after the modifica-
tion of a level field (line 8).

For Writing (resp. Reading) contexts, P is inserted before any instruction
potentially making a write (resp. read) access to the memory, with the exception
of function calls. In addition, each meta-variable is replaced by its actual value.
For example, in the translation of M2 on page_alloc (Fig. 3b), the property is
inserted before the two modifications of fp, and \written is replaced respectively
by fp->status and fp->level. In this case M2 does not hold. While its first
instantiation (lines 4–6) is easily proved, it is not the case for the second one
(lines 8–10). Indeed, there exists a page (the one being modified) that has a
status set to ALLOCATED because of the previous instruction (line 7) and for which
the \separated clause is obviously false. Hence, the assertion fails, meaning that
the whole meta-property M2 cannot be proved. The fix consists in swapping lines
6 and 7 in Fig. 2. After that, all assertions generated from M2 are proved.

A similar transformation for M3 on page_read shows that the proof fails
since the implementation allows an agent to read from any page without any
check. Adding proper guards allows the meta-property to be proved. Conversely,
if a meta-property is broken by an erroneous code update, a proof failure after
automatically re-running MetAcsl helps to easily detect it.

Fig. 3. Examples of code transformations for functions of Fig. 2

4 Results on Case Studies and Conclusion

Experiments. The support of meta-properties and the proposed methodology
for their verification were fully implemented in OCaml as a Frama-C plugin
called MetAcsl. We realized a simple implementation of the two case studies
mentioned in Sect. 1 and were able to fully specify and automatically verify all
aforementioned properties (in particular Pread and Pwrite) using MetAcsl. The
transformation step is performed in less than a second while the automatic proof
takes generally less than a minute.

Conclusion. We proposed a new specification mechanism for high-level prop-
erties in Frama-C, as well as an automatic transformation-based technique to
verify these properties by a usual deductive verification approach. The main idea
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of this technique is similar to some previous efforts e.g. [2]. Meta-properties pro-
vide a useful extension to function contracts offering the possibility to express a
variety of high-level safety- and security-related properties. They also provide a
verification engineer with an explicit global view of high-level properties being
really proved, avoiding the risk to miss some part of an implicit property which is
not formally linked to relevant parts of several function contracts, thus facilitat-
ing code review and certification. Another benefit of the new mechanism is the
possibility to easily re-execute a proof after a code update. Initial experiments
confirm the interest of the proposed solution.

Future Work. We plan to establish a formal soundness proof for our transforma-
tion technique, thereby allowing MetAcsl to be reliably used for critical code
verification. Other future work directions include further experiments to evaluate
the proposed approach on real-life software and for more complex properties.
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Abstract. We present ROLL 1.0, an ω-regular language learning library
with command line tools to learn and complement Büchi automata. This
open source Java library implements all existing learning algorithms for
the complete class of ω-regular languages. It also provides a learning-
based Büchi automata complementation procedure that can be used as
a baseline for automata complementation research. The tool supports
both the Hanoi Omega Automata format and the BA format used by
the tool RABIT. Moreover, it features an interactive Jupyter notebook
environment that can be used for educational purpose.

1 Introduction

In her seminal work [3], Angluin introduced the well-known algorithm L∗ to
learn regular languages by means of deterministic finite automata (DFAs). In
the learning setting presented in [3], there is a teacher, who knows the target
language L, and a learner, whose task is to learn the target language, represented
by an automaton. The learner interacts with the teacher by means of two kinds
of queries: membership queries and equivalence queries. A membership query
MQ(w) asks whether a string w belongs to L while an equivalence query EQ(A)
asks whether the conjectured DFA A recognizes L. The teacher replies with a
witness if the conjecture is incorrect otherwise the learner completes its job.
This learning setting now is widely known as active automata learning. In recent
years, active automata learning algorithms have attracted increasing attention
in the computer aided verification community: it has been applied in black-box
model checking [24], compositional verification [12], program verification [10],
error localization [8], and model learning [26].

Due to the increasing importance of automata learning algorithms, many
efforts have been put into the development of automata learning libraries such
as libalf [6] and LearnLib [18]. However, their focus is only on automata accepting
c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 365–371, 2019.
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finite words, which correspond to safety properties. The ω-regular languages are
the standard formalism to describe liveness properties. The problem of learning
the complete class of ω-regular languages was considered open until recently,
when it has been solved by Farzan et al. [15] and improved by Angluin et al. [4].

However, the research on applying ω-regular language learning algorithms for
verification problems is still in its infancy. Learning algorithms for ω-regular lan-
guages are admittedly much more complicated than their finite regular language
counterparts. This becomes a barrier for the researchers doing further investi-
gations and experiments on such topics. We present ROLL 1.0, an open-source
library implementing all existing learning algorithms for the complete class of
ω-regular languages known in literature, which we believe can be an enabling
tool for this direction of research. To the best of our knowledge, ROLL 1.0 is the
only publicly available tool focusing on ω-regular language learning.

ROLL, a preliminary version of ROLL 1.0, was developed in [22] to compare
the performance of different learning algorithms for Büchi automata (BAs). The
main improvements made in ROLL 1.0 compared to its previous version are as
follows. ROLL 1.0 rewrites the algorithms in the core part of ROLL and obtains
high modularity to allow for supporting the learning algorithms for more types of
ω-automata than just BAs, algorithms to be developed in future. In addition to
the BA format [1,2,11], ROLL 1.0 now also supports the Hanoi Omega Automata
(HOA) format [5]. Besides the learning algorithms, ROLL 1.0 also contains com-
plementation [23] and a new language inclusion algorithm. Both of them are
built on top of the BAs learning algorithms. Experiments [23] have shown that
the resulting automata produced by the learning-based complementation can
be much smaller than those built by structure-based algorithms [7,9,19,21,25].
Therefore, the learning-based complementation is suitable to serve as a baseline
for Büchi automata complementation researches. The language inclusion check-
ing algorithm implemented in ROLL 1.0 is based on learning and a Monte Carlo
word sampling algorithm [17]. ROLL 1.0 features an interactive mode which is
used in the ROLL Jupyter notebook environment. This is particularly helpful for
teaching and learning how ω-regular language learning algorithms work.

2 ROLL 1.0 Architecture and Usage

ROLL 1.0 is written entirely in Java and its architecture, shown in Fig. 1, com-
prises two main components: the Learning Library, which provides all known
existing learning algorithms for Büchi automata, and the Control Center,
which uses the learning library to complete the input tasks required by the user.

Learning Library. The learning library implements all known BA learning algo-
rithms for the full class of ω-regular languages: the L$ learner [15], based on
DFA learning [3], and the Lω learner [22], based on three canonical family of
DFAs (FDFAs) learning algorithms [4,22]. ROLL 1.0 supports both observation
tables [3] and classification trees [20] to store membership query answers. All
learning algorithms provided in ROLL 1.0 implement the Learner interface; their
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Fig. 1. Architecture of ROLL 1.0

corresponding teachers implement the Teacher interface. Any Java object that
implements Teacher and can decide the equivalence of two Büchi automata is a
valid teacher for the BA learning algorithms. Similarly, any Java object imple-
menting Learner can be used as a learner, making ROLL 1.0 easy to extend
with new learning algorithms and functionalities. The BA teacher implemented
in ROLL 1.0 uses RABIT [1,2,11] to answer the equivalence queries posed by the
learners since the counterexamples RABIT provides tend to be short and hence
are easier to analyze; membership queries are instead answered by implementing
the ASCC algorithm from [16].

Control Center. The control center is responsible for calling the appropriate
learning algorithm according to the user’s command and options given at com-
mand line, which is used to set the Options. The file formats supported by ROLL
1.0 for the input automata are the RABIT BA format [1,2,11] and the standard
Hanoi Omega Automata (HOA) format [5], identified by the file extensions .ba
and .hoa, respectively. Besides managing the different execution modes, which
are presented below, the control center allows for saving the learned automa-
ton into a given file (option -out), for further processing, and to save execution
details in a log file (option -log). The output automaton is generated in the same
format of the input. The standard way to call ROLL 1.0 from command line is

java -jar ROLL.jar command input file(s) [options]

Learning mode (command learn) makes ROLL 1.0 learn a Büchi automaton
equivalent to the given Büchi automaton; this can be used, for instance, to get
a possibly smaller BA. The default option for storing answers to membership
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queries is -table, which selects the observation tables; classification trees can
be chosen instead by means of the -tree option.

java -jar ROLL.jar learn aut.hoa

for instance runs ROLL 1.0 in learning mode against the input BA aut.hoa;
it learns aut.hoa by means of the Lω learner using observation tables. The
three canonical FDFA learning algorithms given in [4] can be chosen by means
of the options -syntactic (default), -recurrent , and -periodic. Options -under
(default) and -over control which approximation is used in the Lω learner [22]
to transform an FDFA to a BA. By giving the option -ldollar , ROLL 1.0
switches to use the L$ learner instead of the default Lω learner.

Interactive mode (command play) allows users to play as the teacher guiding
ROLL 1.0 in learning the language they have in mind. To show how the
learning procedure works, ROLL 1.0 outputs each intermediate result in the
Graphviz dot layout format1; users can use Graphviz’s tools to get a graphical
view of the output BA so to decide whether it is the right conjecture.

Complementation (command complement) of the BA B in ROLL 1.0 is based
on the algorithm from [23] which learns the complement automaton Bc from
a teacher who knows the language Σω \ L(B). This allows ROLL 1.0 to dis-
entangle Bc from the structure of B, avoiding the Ω((0.76n)n) blowup [27] of
the structure-based complementation algorithms (see., e.g., [7,19,21,25]).

Inclusion testing (command include) between two BAs A and B is imple-
mented in ROLL 1.0 as follows: (1) first, sample several ω-words w ∈ L(A)
and check whether w /∈ L(B) to prove L(A) �⊆ L(B); (2) then, try simulation
techniques [11,13,14] to prove inclusion; (3) finally, use the learning based
complementation algorithm to check inclusion. The ROLL 1.0’s ω-word sam-
pling algorithm is an extension of the one proposed in [17]. The latter only
samples paths visiting any state at most twice while ROLL 1.0’s variant allows
for sampling paths visiting any state at most K times, where K is usually
set to the number of states in A. In this way, ROLL 1.0 can get a larger set
of ω-words accepted by A than the set from the original algorithm.

Online availability of ROLL 1.0. ROLL 1.0 is an open-source library freely avail-
able online at https://iscasmc.ios.ac.cn/roll/, where more details are provided
about its commands and options, its use as a Java library, and its GitHub repos-
itory2. Moreover, from the roll page, it is possible to access an online Jupyter
notebook3 allowing to interact with ROLL 1.0 without having to download and
compile it. Each client gets a new instance of the notebook, provided by Jupyter-
Hub4, so to avoid unexpected interactions between different users. Figure 2 shows
few screenshots of the notebook for learning in interactive mode the language
Σ∗ · bω over the alphabet Σ = {a, b}. As we can see, the membership query

1 https://www.graphviz.org/.
2 https://github.com/ISCAS-PMC/roll-library.
3 https://iscasmc.ios.ac.cn/roll/jupyter.
4 https://jupyterhub.readthedocs.io/.

https://iscasmc.ios.ac.cn/roll/
https://www.graphviz.org/
https://github.com/ISCAS-PMC/roll-library
https://iscasmc.ios.ac.cn/roll/jupyter
https://jupyterhub.readthedocs.io/
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Fig. 2. ROLL 1.0 running in the Jupyter notebook for interactively learning Σ∗ · bω

MQ(w) is answered by means of the mqOracle function: it gets as input two
finite words, the stem and the loop of the ultimately periodic word w, and it
checks whether loop contains only b. Then one can create a BA learner with the
oracle mqOracle, say the BA learner nbaLearner, based on observation tables
and the recurrent FDFAs, as shown in the top-left screenshot. One can check
the internal table structures of nbaLearner by printing out the learner, as in
the top-right screenshot. The answer to an equivalence query is split in two
parts: first, the call to getHypothesis() shows the currently conjectured BA;
then, the call to refineHypothesis("ba", "ba") simulates a negative answer
with counterexample ba · (ba)ω. After the refinement by nbaLearner, the new
conjectured BA is already the right conjecture.

Acknowledgement. This work has been supported by the National Natural Science
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GZ1023.
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Abstract. Symbolic regex matcher is a new open source .NET reg-
ular expression matching tool and match generator in the Microsoft
Automata framework. It is based on the .NET regex parser in combi-
nation with a set based representation of character classes. The main
feature of the tool is that the core matching algorithms are based on
symbolic derivatives that support extended regular expression opera-
tions such as intersection and complement and also support a large set
of commonly used features such as bounded loop quantifiers. The partic-
ularly useful features of the tool are that it supports full UTF16 encoded
strings, the match generation is backtracking free, thread safe, and par-
allelizes with low overhead in multithreaded applications. We discuss
the main design decisions behind the tool, explain the core algorithmic
ideas and how the tool works, discuss some practical usage scenarios,
and compare it to existing state of the art.

1 Motivation

We present a new tool called Symbolic Regex Matcher or SRM for fast match
generation from extended regular expressions. The development of SRM has
been motivated by some concrete industrial use cases and should meet the fol-
lowing expectations. Regarding performance, the overall algorithm complexity of
match generation should be linear in the length of the input string. Regarding
expressivity, it should handle common types of .NET regexes, including sup-
port for bounded quantifiers and Unicode categories; while nonregular features
of regexes, such as back-references, are not required. Regarding semantics, the
tool should be .NET compliant regarding strings and regexes, and the main
type of match generation is: earliest eager nonoverlapping matches in the input
string. Moreover, the tool should be safe to use in distributed and multi threaded
development environments. Compilation time should be reasonable but it is not
a critical factor because the intent is that the regexes are used frequently but
updated infrequently. A concrete application of SRM is in an internal tool at
Microsoft that scans for credentials and other sensitive content in cloud service
software, where the search patterns are stated in form of individual regexes or
in certain scenarios as intersections of regexes.

c© The Author(s) 2019
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The built-in .NET regex engine uses a backtracking based match search algo-
rithm and does not meet the above expectations; in particular, some patterns
may cause exponential search time. While SRM uses the same parser as the
.NET regex engine, its back-end is a new engine that is built on the notion of
derivatives [1], is developed as a tool in the open source Microsoft Automata
framework [5], the framework was originally introduced in [8]. SRM meets all
of the above expectations. Derivatives of regular expressions have been stud-
ied before in the context of matching of regular expressions, but only in the
functional programming world [2,6] and in related domains [7]. Compared to
earlier derivative based matching engines, the new contribution of SRM is that
it supports match generation not only match detection, it supports extended
features, such as bounded quantifiers, Unicode categories, and case insensitivity,
it is .NET compliant, and is implemented in an imperative language. As far as we
are aware of, SRM is the first tool that supports derivative based match gener-
ation for extended regular expressions. In our evaluation SRM shows significant
performance improvements over .NET, with more predictable performance than
RE2 [3], a state of the art automata based regex matcher.

In order to use SRM in a .NET application instead of the built-in match
generator, Microsoft.Automata.dll can be built from [5] on a .NET platform
version 4.0 or higher. The library extends the built-in Regex class with methods
that expose SRM, in particular through the Compile method.

2 Matching with Derivatives

Here we work with derivatives of symbolic extended regular expressions or regexes
for short. Symbolic means that the basic building blocks of single character
regexes are predicates as opposed to singleton characters. In the case of stan-
dard .NET regexes, these are called character classes, such as the class of digits
or \d. In general, such predicates are drawn from a given effective Boolean alge-
bra and are here denoted generally by α and β; ⊥ denotes the false predicate
and . the true predicate. For example, in .NET ⊥ can be represented by the
empty character class [0-[0]].1 Extended here means that we allow intersec-
tion, complement, and bounded quantifiers.

The abstract syntax of regexes assumed here is the following, assuming the
usual semantics where () denotes the empty sequence ε and 〈α〉 denotes any
singleton sequence of character that belongs to the set [[α]] ⊆ Σ, where Σ is the
alphabet, and n and m are nonnegative integers such that n ≤ m:

() 〈α〉 R1R2 R{n,m} R{n, ∗} R1|R2 R1&R2 ¬R

where [[R{n,m}]] def= {v ∈ [[R]]i | n≤i≤m}, [[R{n, ∗}]] def= {v ∈ [[R]]i | n≤i}. The
expression R∗ is a shorthand for R{0, ∗}. We write ⊥ also for 〈⊥〉. We assume
that [[R1|R2]] = [[R1]] ∪ [[R2]], [[R1&R2]] = [[R1]] ∩ [[R2]], and [[¬R]] = Σ∗ \ [[R]].

1 The more intuitive syntax [] is unfortunately not allowed.
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A less known feature of the .NET regex grammar is that it also supports if-then-
else expressions over regexes, so, when combined appropriately with ⊥ and., it
also supports intersection and complement. R is nullable if ε ∈ [[R]]. Nullability
is defined recursively, e.g., R{n,m} is nullable iff R is nullable or n = 0.

∂x() def= ⊥
∂x〈α〉 def=

{
(), if x ∈ [[α]];
⊥, otherwise.

∂x(R1R2)
def=

{
((∂xR1)R2)|∂xR2, if R1 is nullable;
(∂xR1)R2, otherwise.

∂xR{n,m} def=

⎧⎨
⎩

(∂xR)R{n−1,m−1}, if n>0;
(∂xR)R{0,m−1}, if n=0 and m>0;
⊥, otherwise (since R{0, 0} def= ()).

∂xR{n, ∗} def=
{

(∂xR)R{n − 1, ∗}, if n > 0;
(∂xR)R{0, ∗}, otherwise.

∂x(R1|R2)
def= (∂xR1)|(∂xR2)

∂x(R1&R2)
def= (∂xR1)&(∂xR2)

∂x¬R
def= ¬∂xR

Given a concrete char-
acter x in the under-
lying alphabet Σ, and
a regex R, the x-
derivative of R, denoted
by ∂xR, is defined on
the right. Given a lan-
guage L ⊆ Σ∗, the x-
derivative of L, ∂xL

def=
{v | xv ∈ L}. It is well-
known that [[∂xR]] =
∂x[[R]]. The abstract
derivation rules provide
a way to decide if an
input u matches a regex
R as follows. If u = ε
then u matches R iff R
is nullable; else, if u =
xv for some x ∈ Σ, v ∈ Σ∗ then u matches R iff v matches ∂xR. In other
words, the derivation rules can be unfolded lazily to create the transitions of the
underlying DFA. In this setting we are considering Brzozowski derivatives [1].

Match Generation. The main purpose of the tool is to generate matches. While
match generation is a topic that has been studied extensively for classical regular
expressions, we are not aware of efforts that have considered the use of derivatives
and extended regular expressions in this context, while staying backtracking free
in order to guarantee linear complexity in terms of the length of the input. Our
matcher implements by default nonoverlapping earliest eager match semantics.
An important property in the matcher is that the above set of regular expressions
is closed under reversal. The reversal of regex R is denoted Rr. Observe that:

(R1R2)r
def= (Rr

2R
r
1) R{n,m}r def= Rr{n,m} R{n, ∗}r def= Rr{n, ∗}

It follows that [[Rr]] = [[R]]r where Lr denotes the reversal of L ⊆ Σ∗. The match
generation algorithm can now be described at a high level as follows. Given a
regex R, find all the (nonoverlapping earliest eager) matches in a given input
string u. This procedure uses the three regexes: R, Rr and.∗R:

1. Initially i = 0 is the start position of the first symbol u0 of u.
2. Let iorig = i. Find the earliest match starting from i and q =.∗R: Compute

q := ∂ui
q and i := i + 1 until q is nullable. Terminate if no such q exists.

3. Find the start position for the above match closest to iorig: Let p = Rr. While
i > iorig let p := ∂ui

p and i := i − 1, if p is nullable let istart := i.



Symbolic Regex Matcher 375

4. Find the end position for the match: Let q = R and i = istart. Compute
q := ∂ui

q and i := i + 1 and let iend := i if q is nullable; repeat until q = ⊥.
5. Return the match from istart to iend.
6. Repeat step 2 from i := iend + 1 for the next nonoverlapping start position.

Observe that step 4 guarantees longest match in R from the position istart found
in step 3 for the earliest match found in step 2. In order for the above procedure
to be practical there are several optimizations that are required. We discuss some
of the implementation aspects next.

3 Implementation

SRM is implemented in C#. The input to the tool is a .NET regex (or an array
of regexes) that is compiled into a serializable object R that implements the
main matching interface IMatcher. Initially, this process uses a Binary Decision
Diagram (BDD) based representation of predicates in order to efficiently canon-
icalize various conditions such as case insensitivity and Unicode categories. The
use of BDDs as character predicates is explained in [4]. Then all the BDDs that
occur in R are collected and their minterms (satisfiable Boolean combinations)
are calculated, called the atoms (α1, . . . , αk) of R, where {[[αi]]BDD}k

i=1 forms a
partition of Σ. Each BDD-predicate α in R is now translated into a k-bit bit-
vector (or BV) value β whose i’th bit is 1 iff α ∧BDD αi is nonempty. Typically k
is small (often k ≤ 64) and allows BV to be implemented very efficiently (often
by ulong), where ∧BV is bit-wise-and. All subsequent Boolean operations are
performed on this more efficient and thread safe data type. The additional step
required during input processing is that each concrete input character c (char
value) is now first mapped into an atom id i that determines the bit position in
the BV predicate. In other words, c ∈ [[β]]BV is implemented by finding the index i
such that c ∈ [[αi]]BDD and testing if the i’th bit of β is 1, where the former search
is hardcoded into a precomputed lookup table or decision tree.

For example let R be constructed for the regex \w\d*. Then R has three
atoms: [[α1]] = Σ \ [[\w]], [[α2]] = [[\d]], and [[α3]] = [[\w]] \ [[\d]], since [[\d]] ⊂ [[\w]].
For example BV 1102 represents \w and 0102 represents \d.

The symbolic regex AST type is treated as a value type and is handled
similarly to the case of derivative based matching in the context of functional
languages [2,6]. A key difference though, is that weak equivalence [6] check-
ing is not enough to avoid state-space explosion when bounded quantifiers are
allowed. A common situation during derivation is appearance of subexpressions
of the form (A{0, k}B)|(A{0, k − 1}B) that, when kept unchecked, keep rein-
troducing disjuncts of the same subexpression but with smaller value of the
upper bound, potentially causing a substantial blowup. However, we know that
A{0, n}B is subsumed by A{0,m}B when n ≤ m, thus (A{0,m}B)|(A{0, n}B)
can be simplified to A{0,m}B. To this end, a disjunct A{0, k}B, where k > 0,
is represented internally as a multiset element 〈A,B〉 → k and the expression
(〈A,B〉 → m)|(〈A,B〉 → n) reduces to (〈A,B〉 → max(m,n)). This is a form
of weak subsumption checking that provides a crucial optimization step during
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derivation. Similarly, when A and B are both singletons, say 〈α〉 and 〈β〉, then
〈α〉|〈β〉 reduces to 〈α∨BVβ〉 and 〈α〉&〈β〉 reduces to 〈α∧BVβ〉. Here thread safety
of the Boolean operations is important in a multi threaded application.

Finally, two more key optimizations are worth mentioning. First, during the
main match generation loop, symbolic regex nodes are internalized into integer
state ids and a DFA is maintained in form of an integer array δ indexed by [i, q]
where 1 ≤ i ≤ k is an atom index, and q is a state integer id, such that old
state ids are immediately looked up as δ[i, q] and not rederived. Second, during
step 2, initial search for the relevant initial prefix, when applicable, is performed
using string.IndexOf to completely avoid the trivial initial state transition
corresponding to the loop ∂c.∗R =.∗R in the case when ∂cR = ⊥.

4 Evaluation

We have evaluated the performance of SRM on two benchmarks:

Twain: 15 regexes matched against a 16 MB file containing the collected works
of Mark Twain.

Assorted: 735 regexes matched against a synthetic input that includes some
matches for each regex concatenated with random strings to produce an input
file of 32 MB. The regexes are from the Automata library’s samples and were
originally collected from an online database of regular expressions.

We compare the performance of our matcher against the built-in .NET regex
engine and Google’s RE2 [3], a state of the art backtracking free regex match
generation engine. RE2 is written in C++ and internally based on automata. It
eliminates bounded quantifiers in a preprocessing step by unwinding them, which
may cause the regex to be rejected if the unwinding exceeds a certain limit.
RE2 does not support extended operations over regexes such as intersection or
complement. We use RE2 through a C# wrapper library.

The input to the built-in .NET regex engine and SRM is in UTF16, which is
the encoding for NET’s built-in strings, while RE2 is called with UTF8 encoded
input. This implies for example that a regex such as [\uD800-\uDFFF] that
tries to locate a single UTF16 surrogate is not meaningful in the context UTF8.
All experiments were run on a machine with dual Intel Xeon E5-2620v3 CPUs
running Windows 10 with .NET Framework 4.7.1. The reported running times
for Twain are averages of 10 samples, while the statistics for Assorted are
based on a single sample for each regex.

Figure 1 presents running times for each regex in Twain, while Fig. 2 presents
a selection of metrics for the Assorted benchmark.

Both SRM and RE2 are faster than .NET on most regexes. This highlights
the advantages of automata based regular expression matching when the richer
features of a backtracking matcher are not required.

Compilation of regular expressions into matcher objects takes more time in
SRM than RE2 or .NET. The largest contributor to this is finding the minterms
of all predicates in the regex. For use cases where initialization time is critical
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Fig. 1. Time to generate all matches for each regex in Twain.

Fig. 2. Metrics for the Assorted benchmark.

and inputs are known in advance, SRM provides support for pre-compilation
and fast deserialization of matchers.

Comparing SRM to RE2 we can see that both matchers have regexes they
do better on. While SRM achieves a lower average matching time on Assorted,
this is due to the more severe outliers in RE2’s performance profile, as shown by
the lower 80th percentile matching time. Overall SRM offers performance that
is comparable to RE2 while being implemented in C# without any unsafe code.

Application to Security Leak Scanning. SRM has been adopted in an internal
tool at Microsoft that scans for credentials and other sensitive content in cloud
service software. With the built-in .NET regex engine the tool was susceptible to
catastrophic backtracking on files with long lines, such as minified JavaScript and
SQL server seeding files. SRM’s linear matching complexity has helped address
these issues, while maintaining compatibility for the large set of .NET regexes
used in the application.
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Abstract. COMPASS (COrrectness, Modeling and Performance of
AeroSpace Systems) is an international research effort aiming to ensure
system-level correctness, safety, dependability and performability of on-
board computer-based aerospace systems. In this paper we present
COMPASS 3.0, which brings together the results of various development
projects since the original inception of COMPASS. Improvements have
been made both to the frontend, supporting an updated modeling lan-
guage and user interface, as well as to the backend, by adding new func-
tionalities and improving the existing ones. New features include Timed
Failure Propagation Graphs, contract-based analysis, hierarchical fault
tree generation, probabilistic analysis of non-deterministic models and
statistical model checking.

1 Introduction

The COMPASS toolset provides an integrated model-based approach for System-
Software Co-Engineering in the aerospace domain. It uses formal verification
techniques, notably model checking, and originates from an ESA initiative dating
back to 2008 [6]. Over the past eight years, various projects followed which
extended the toolset. In a recent effort funded by ESA, the results of this work
have been thoroughly consolidated into a single release, which is now available.

COMPASS 3.0 includes features originally included in distinct tool releases
that diverged from the original development trunk1. The AUTOGEF and
FAME projects focused on Fault Detection, Identification, and Recovery (FDIR)
requirements modeling and development, and on fault propagation analysis;
HASDEL extended formal analysis techniques to deal with the specific needs
of launcher systems, with a strong focus on timed aspects of the model; and
finally CATSY had the goal of improving the requirements specification process.

This paper presents an overview of the toolset, as well as a description of the
enhancements made since its last official release in 2013 (v2.3). For a more detailed
description of the (pre-)existing features and capabilities, we refer to [5,6].
1 See www.compass-toolset.org.
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2 Toolset Overview

The COMPASS toolset can be divided into the user facing side (the frontend),
and the verification engines used (the backend). The frontend provides a GUI that
offers access to all the analysis functions of the toolset, as well as command-line
scripts. The backend tools are chosen and invoked by the toolset automatically.

Nominal Model Error Model Fault Injection Properties

Extended Model

Symbolic 
Transition System Markov Chain Logic Formulas

Fault Management

- Fault detection
- Fault isolation
- Fault recovery
- Diagnosability
- TFPG analyses and 
synthesis

Property Validation

- Consistency check
- Possibility check
- Assertion check
- Contract-based 
specification,  
refinement and 
tightening

Dependability 
Analysis

- Dynamic Fault Tree 
analysis (FTA)
- Dynamic Failure 
Modes and Effects 
Analysis (FMEA)
- Hierarchical FTA
- Probabilistic 
Evaluation

Performability 
Analysis

- Probabilistic FTA 
verification and 
evaluation 
- Performability 
evaluation
- Monte Carlo 
simulation

Functional 
Correctness

- Model checking     
(discrete/hybrid)
- Simulation
- Deadlock checking
- Zeno and clock 
divergence detection

OCRA nuXmv xSAP MRMC/IMCA
slimsim

Input models

Generated 
Model

Generated 
Formal Models

Functionalities

- Analyses
- New analyses

Tools

Fig. 1. Overview of the COMPASS toolset

The functionalities of COMPASS are summarized in Fig. 1, where arrows
represent I/O relationships for model transformations, and link models with the
corresponding analyses. User inputs are models written in a dialect of AADL [18]
and properties. COMPASS is based on the concept of model extension, i.e., the
possibility to automatically inject faults into a nominal model, by specifying error
models and a set of fault injections. The extended model is internally converted
into a symbolic model amenable to formal verification and to a Markov chain (for
probabilistic analyses). Properties are automatically translated into temporal
logic formulas. Given the models and the properties, COMPASS provides a full
set of functionalities, including property validation, functional correctness, fault
management, dependability and performability analyses.

The analyses are supported by the following verification engines: nuXmv [9]
for correctness checking; OCRA [10] for contract-based analysis; IMCA [19] and
MRMC [20] for performance analysis by probabilistic model checking; slimsim [8]
for statistical model checking and xSAP [1] for safety analysis.

COMPASS is licensed under a variant of the GPL license, restricted to ESA
member states. It is distributed on a pre-configured and ready-to-use virtual
machine, or as two different code bundles.
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In a typical workflow, one would start with both a nominal and an error
specification of the system and then use simulation to interactively explore its
dynamic behavior. In a next step, verification of functional correctness based on
user-defined properties can be performed, followed by more specialized analyses
as indicated in Fig. 1. For a complete overview of the COMPASS toolset, we
refer to the COMPASS tutorial [15] and user manual [16].

3 Input Language

Input models for COMPASS use a variant of the AADL language [18], named
SLIM. AADL is standardized and used in e.g., the aerospace and automotive
industries. SLIM provides extensions for behavior and error specification. A model
is described in terms of components, which may specify subcomponents, forming
a component hierarchy. Components interact with each other by means of ports,
which send either discrete events or data values. Components may furthermore
specify modes, which may render subcomponents active or inactive, thus enabling
system reconfiguration. Error behavior is specified in terms of error components,
which define error states, (probabilistic) events and propagations which may trig-
ger a synchronization between error components. The impact of faults occurring in
the error model onto the nominal model is described by means of fault injections,
which specify the fault effect by update operations on data components. This has
been extended by supporting specifications that can inhibit certain events from
occurring, or specifying a set of modes that is available in a certain failure state.
The language’s semantics and syntax are described in [14].

Language Updates. COMPASS 3.0 supports the property system used by AADL.
This makes it possible to annotate various elements in the model by using SLIM
specific attributes, and makes the language more compatible with the core AADL
specification, improving interoperability. New features also include timed error
models (that is, error components may contain clocks), non-blocking ports and
separation of configuration and behavior. The latter entails that composite com-
ponents can only specify modes and cannot change data values or generate events
by means of transitions, whereas atomic components may specify states.

Property Specification. Properties can be specified in three different ways. The
first two options are simpler to use, since they hide the details of the underly-
ing temporal logic, but less expressive. Design attributes [3] represent a specific
property of a model’s element, such as the delay of an event or the invariant of
a mode. They are directly associated to model elements. Formal properties are
automatically derived based on the Catalogue of System and Software Properties
(CSSP) [3]. The pattern-based system uses pre-defined patterns with placehold-
ers to define formal properties. Time bounds and probabilities can optionally be
specified. As a last option, the user can encode properties directly using logical
expressions. This enables the modeler to exploit the full power of the underlying
temporal logics, and offers the highest expressivity.
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4 New Functionalities in COMPASS 3.0

In this section, we discuss the main functionalities of the COMPASS 3.0 toolset.

Correctness Checking. COMPASS supports checking for correctness of the model
by providing properties. The toolset indicates for each property whether it holds
or not, and gives a counter example in the latter case. Verification relies on
edge technologies based on BDD- and SAT-based model checking, including
K-liveness verification [12]. In order to assist the user in the specification of
timed models, COMPASS 3.0 offers functionality to check the timed correctness
of the model w.r.t. Zenoness and clock divergence. The former is caused by cycles
in the system’s state space that do not require progressing of time. The latter
is caused by clocks that can attain an arbitrarily large value. The toolset can
automatically check Zenoness for all modes in the system, and divergence for all
clocks.

Contract-Based Analysis. COMPASS 3.0 offers the possibility to perform
contract-based analysis [11]. Contracts must be specified in the model and
attached to components. Each contract consists of an assumption (a property of
the environment of the component) and a guarantee (a property of the imple-
mentation of the component, which must hold as long as the assumption holds).
In order to perform compositional analysis, a contract refinement must be fur-
ther specified, which links a contract to a set of contracts of the subcompo-
nents. COMPASS 3.0 supports the following analyses. Validation is performed
on assumptions and guarantees. The user can choose a subset of these properties
and check consistency or entailment. Refinement checking verifies whether the
contract refinements are correct. Namely, that whenever the implementations
of the subcomponents satisfy their contracts and the environment satisfies its
assumption, then the guarantee of the supercomponent and the assumptions of
its subcomponents are satisfied. Finally, tightening looks for a weakening and/or
strengthening of the assumptions/guarantees, respectively, such that the refine-
ment still holds.

Fault Trees. COMPASS 3.0 can generate fault trees associated with particular
error states in the model. Standard fault trees are flat in nature (being two- or
three-leveled), hiding some of the nested dependencies. Contract-based analysis
can be used to generate a hierarchical fault tree, which captures the hierarchy
of the model. This approach makes use of the specified contracts, and checks
which events may cause them to be invalidated. COMPASS 3.0 offers further
alternatives to analyze fault trees. Static probabilities can be calculated for the
entire tree by specifying the probabilities of basic events. Fault Tree Evaluation
calculates the probability of failure for a given time span. Finally, Fault Tree
Verification checks a probabilistic property specified for the fault tree.

Performability. COMPASS 3.0 offers two model checking approaches to
probabilistic analysis (which, using a probabilistic property, determine the
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probability of failure within a time period): using numerical analysis or using
Monte-Carlo simulation. The former originally only supported Continuous Time
Markov Chains (CTMCs) using the MRMC [20] tool. This has now been extended
to Interactive Markov Chains (IMCs) using IMCA [19], which makes it possible to
analyze continuous-time stochastic models which exhibit non-determinism. How-
ever, neither approach supports hybrid models containing clocks. For the analysis
of these models, statistical model checking techniques [7,8] are employed, which
use Monte-Carlo simulation to determine, within a certain margin of likelihood
and error, the probability of quantitative properties.

Timed Failure Propagation Graphs. Timed Failure Propagation Graphs
(TFPGs) [2] support various aspects of diagnosis and prognosis, such as modeling
the temporal dependency between the occurrence of events and their dependence
on system modes. A TFPG is a labeled directed graph where nodes represent
either fault modes or discrepancies, which are off-nominal conditions that are
effects of fault modes. COMPASS 3.0 supports three kinds of analyses based
on TFPGs: synthesis, where a TFPG is automatically derived from the model,
behavioral validation, which checks whether a given TFPG is complete (i.e., a
faithful abstraction) w.r.t. the model; and effectiveness validation, which checks
whether the TFPG is sufficiently accurate for allowing diagnosability of failures.

5 Related Work and Conclusion

Closely related to COMPASS is the TASTE toolset, dedicated to the develop-
ment of embedded, real-time systems. It focuses on the integration of heteroge-
neous technologies for modeling and verification (including AADL), code gen-
eration and integration (e.g., written in C and ADA) and deployment. Another
ESA initiative is COrDeT-2, part of which defines OSRA (On-board Software
Reference Architecture), which aims to improve software reuse by defining a stan-
dardized architecture. Security extensions in COMPASS 3.0 have been added as
part of the D-MILS project [21], enabling reasoning on data security.

Various case studies have been performed using COMPASS 3.0. The first one
was targeting at the Preliminary Design Review stage of a satellite’s design [17].
The study lasted for six months and encompassed a model of about 90 compo-
nents. A second case study followed during the Critical Design Review stage,
focusing on modeling practices and diagnosability [4], with a scale twice the size
of [17]. A smaller scale case study was later performed as part of the HASDEL
project [8]. Recently, the CubETH nano-satellite was represented as a model
with 82 components and analyzed using COMPASS 3.0 [7].

The case studies demonstrate that the key benefit of the COMPASS approach
is the culmination of a single comprehensive system model that covers all aspects
(discrete, real-time, hybrid, probabilistic). This ensures consistency of the anal-
yses, which is a major benefit upon current practices where various (tailored)
models are constructed each covering different aspects. For further directions,
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we refer to the COMPASS roadmap [13], which thoroughly discusses goals for
the toolset as well as the development process, research directions, community
outreach and further integration with other ESA initiatives.
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Abstract. This paper presents a tool for debugging behavioural mod-
els being analysed using model checking techniques. It consists of three
parts: (i) one for annotating a behavioural model given a temporal for-
mula, (ii) one for visualizing the erroneous part of the model with a
specific focus on decision points that make the model to be correct or
incorrect, and (iii) one for abstracting counterexamples thus providing
an explanation of the source of the bug.

1 Introduction

Model checking [2] is an established technique for automatically verifying that
a behavioural model satisfies a given temporal property, which specifies some
expected requirement of the system. In this work, we use Labelled Transition
Systems (LTS) as behavioural models of concurrent programs. An LTS consists of
states and labelled transitions connecting these states. An LTS can be produced
from a higher-level specification of the system described with a process algebra
for instance. Temporal properties are usually divided into two main families:
safety and liveness properties [2]. Both are supported in this work. If the LTS
does not satisfy the property, the model checker returns a counterexample, which
is a sequence of actions leading to a state where the property is not satisfied.

Understanding this counterexample for debugging the specification is a com-
plicated task for several reasons: (i) the counterexample may consist of many
actions; (ii) the debugging task is mostly achieved manually (satisfactory auto-
matic debugging techniques do not yet exist); (iii) the counterexample does not
explicitly point out the source of the bug that is hidden in the model; (iv) the
most relevant actions are not highlighted in the counterexample; (v) the coun-
terexample does not give a global view of the problem.

The CLEAR tools (Fig. 1) aims at simplifying the debugging of concurrent
systems whose specification compiles into a behavioural model. To do so, we pro-
pose a novel approach for improving the comprehension of counterexamples by
highlighting some of the states in the counterexample that are of prime impor-
tance because from those states the specification can reach a correct part of the
model or an incorrect one. These states correspond to decisions or choices that
are particularly interesting because they usually provide an explanation of the
c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 386–392, 2019.
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source of the bug. The first component of the CLEAR toolset computes these
specific states from a given LTS (AUT format) and a temporal property (MCL
logic [5]). Second, visualization techniques are provided in order to graphically
observe the whole model and see how those states are distributed over that
model. Third, explanations of the bug are built by abstracting away irrelevant
parts of the counterexample, which results in a simplified counterexample.

Fig. 1. Overview of the CLEAR toolset.

The CLEAR toolset has been developed mainly in Java and consists of more
than 10K lines of code. All source files and several case studies are available
online [1]. CLEAR has been applied to many examples and the results turn out
to be quite positive as presented in an empirical evaluation which is also available
online.

The rest of this paper is organised as follows. Section 2 overviews the LTS
and property manipulations in order to compute annotated or tagged LTSs.
Sections 3 and 4 present successively our techniques for visualizing tagged models
and for abstracting counterexamples with the final objective in both cases to
simplify the debugging steps. Section 5 describes experiments we carried out for
validating our approach on case studies. Section 6 concludes the paper.

2 Tagged LTSs

The first step of our approach is to identify in the LTS parts of it corresponding
to correct or incorrect behaviours. This is achieved using several algorithms that
we define and that are presented in [3,4]. We use different techniques depending
on the property family. As far as safety properties are concerned, we compute an
LTS consisting of all counterexamples and compare it with the full LTS. As for
liveness properties, for each state, we compute the set of prefixes and suffixes.
Then, we use this information for tagging transitions as correct, incorrect or
neutral in the full LTS. A correct transition leads to a behaviour that always
satisfies the property, while an incorrect one leads to a behaviour that always
violates the property. A neutral transition is common to correct and incorrect
behaviours.
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Once we have this information about transitions, we can identify specific
states in the LTS where there is a choice in the LTS that directly affects the
compliance with the property. We call these states and the transitions incoming
to/outgoing from those states neighbourhoods.

There are four kinds of neighbourhoods, which differ by looking at their out-
going transitions (Fig. 2 from left to right): (1) with at least one correct transi-
tion (and no incorrect transition), (2) with at least one incorrect transition (and
no correct transition), (3) with at least one correct transition and one incorrect
transition, but no neutral transition, (4) with at least one correct transition,
one incorrect transition and one neutral transition. The transitions contained in
neighbourhood of type (1) highlight a choice that can lead to behaviours that
always satisfy the property. Note that neighbourhoods with only correct outgo-
ing transitions are not possible, since they would not correspond to a problem-
atic choice. Consequently, this type of neighbourhood always presents at least
one outgoing neutral transition. The transitions contained in neighbourhood of
type (2), (3) or (4) highlight a choice that can lead to behaviours that always
violate the property.

Fig. 2. The four types of neighbourhoods. (Color figure online)

It is worth noting that both visualization and counterexample abstraction
techniques share the computation of the tagged LTS (correct/incorrect/neutral
transitions) and of the neighbourhoods.

3 Visualization Techniques

The CLEAR visualizer provides support for visualizing the erroneous part of the
LTS and emphasizes all the states (a.k.a. neighbourhoods) where a choice makes
the specification either head to correct or incorrect behaviour. This visualization
is very useful from a debugging perspective to have a global point of view and
not only to focus on a specific erroneous trace (that is, a counterexample).

More precisely, the CLEAR visualizer supports the visualization of tagged
LTSs enriched with neighbourhoods. These techniques have been developed using
Javascript, the AngularJS framework, the bootstrap CSS framework, and the 3D
force graph library. These 3D visualization techniques make use of different col-
ors to distinguish correct (green), incorrect (red) and neutral (black) transitions
on the one hand, and all kinds of neighbourhoods (represented with different
shades of yellow) on the other hand. The tool also provides several function-
alities in order to explore tagged LTSs for debugging purposes, the main one
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being the step-by-step animation starting from the initial state or from any
chosen state in the LTS. This animation keeps track of the already traversed
states/transitions and it is possible to move backward in that trace. Beyond
visualizing the whole erroneous LTS, another functionality allows one to focus
on one specific counterexample and rely on the animation features introduced
beforehand for exploring the details of that counterexample (correct/incorrect
transitions and neighbourhoods).

Figure 3 gives a screenshot of the CLEAR visualizer. The legend on the left
hand side of this figure depicts the different elements and colors used in the LTS
visualization. All functionalities appear in the bottom part. When the LTS is
loaded, one can also load a counterexample. On the right hand side, there is the
name of the file and the list of states/transitions of the current animation. Note
that transitions labels are not shown, they are only displayed through mouseover.
This choice allows the tool to provide a clearer view of the LTS.

Fig. 3. Screenshot of the CLEAR visualizer. (Color figure online)

From a methodological point of view, it is adviced to use first the CLEAR
visualizer during the debugging process for taking a global look at the erroneous
part of the LTS and possibly notice interesting structures in that LTS that
may guide the developer to specific kinds of bug. Step-by-step animation is
also helpful for focusing on specific traces and for looking more carefully at
some transitions and neighbourhoods on those traces. If the developer does not
identify the bug using these visualization techniques, (s)he can make use of the
CLEAR abstraction techniques presented in the next section.

4 Abstraction Techniques

In this section, once the LTS has been tagged using algorithms overviewed in
Sect. 2, the developer can use abstraction techniques that aim at simplifying a
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counterexample produced from the LTS and a given property. To do so we make
a joint analysis of the counterexample and of the LTS enriched with neigh-
bourhoods computed previously. This analysis can be used for obtaining dif-
ferent kinds of simplifications, such as: (i) an abstracted counterexample, that
allows one to remove from a counterexample actions that do not belong to neigh-
bourhoods (and thus represent noise); (ii) a shortest path to a neighbourhood,
which retrieves the shortest sequence of actions that leads to a neighbourhood;
(iii) improved versions of (i) and (ii), where the developer provides a pattern rep-
resenting a sequence of non-contiguous actions, in order to allow the developer
to focus on a specific part of the model; (iv) techniques focusing on a notion of
distance to the bug in terms of neighbourhoods. For the sake of space, we focus
on the abstracted counterexample in this paper.
Abstracted Counterexample. This technique takes as input an LTS where neigh-
bourhoods have been identified and a counterexample. Then, it removes all the
actions in the counterexample that do not represent incoming or outgoing tran-
sitions of neighbourhoods. Figure 4 shows an example of a counterexample where
two neighbourhoods, highlighted on the right side, have been detected and allow
us to identify actions that are preserved in the abstracted counterexample.

Fig. 4. Abstracted counterexample.

5 Experiments

We carried out experiments on about 100 examples. For each one, we use as
input a process algebraic specification that was compiled into an LTS model,
and a temporal property. As far as computation time is concerned, the time is
quite low for small examples (a few seconds), while it tends to increase w.r.t.
the size of the LTS when we deal with examples with hundreds of thousands
of transitions and states (a few minutes). In this case, it is mainly due to the
computation of tagged LTSs, which is quite costly because it is based on several
graph traversals. Visualization techniques allowed us to identify several exam-
ples of typical bugs with their corresponding visual models. This showed that the
visualizations exhibit specific structures that characterize the bug and are helpful
for supporting the developer during his/her debugging tasks. As for abstraction
techniques, we observed some clear gain in length (up to 90%) between the orig-
inal counterexample and the abstracted one, which keeps only relevant actions
using our approach and thus facilitates the debugging task for the developer.
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We also carried out an empirical study to validate our approach. We asked 17
developers, with different degrees of expertise, to find bugs on two test cases by
taking advantage of the abstracted counterexample techniques. The developers
were divided in two groups, in order to evaluate both test cases with and without
the abstracted counterexample. The developers were asked to discover the bug
and measure the total time spent in debugging each test case. We measured the
results in terms of time, comparing for both test cases the time spent with and
without the abstracted counterexample. We observed a gain of about 25% of the
total average time spent in finding the bug for the group using our approach.
We finally asked developers’ opinion about the benefit given by our method in
detecting the bug. Most of them agreed considering our approach helpful.

The CLEAR toolset is available online [1] jointly with several case studies
and the detailed results of the empirical study.

6 Concluding Remarks

In this paper, we have presented the CLEAR toolset for simplifying the com-
prehension of erroneous behavioural specifications under validation using model
checking techniques. To do so, we are able to detect the choices in the model
(neighbourhood) that may lead to a correct or incorrect behaviour, and generate
a tagged LTS as result. The CLEAR visualizer takes as input a tagged LTS and
provides visualization techniques of the whole erroneous part of the model as
well as animation techniques that help the developer to navigate in the model
for better understanding what is going on and hopefully detect the source of the
bug. The counterexample abstraction techniques are finally helpful for build-
ing abstractions from counterexamples by keeping only relevant actions from a
debugging perspective. The experiments we carried out show that our approach
is useful in practice to help the designer in finding the source of the bug(s).
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Abstract. We provide the first solution for model-free reinforcement
learning of ω-regular objectives for Markov decision processes (MDPs).
We present a constructive reduction from the almost-sure satisfaction of
ω-regular objectives to an almost-sure reachability problem, and extend
this technique to learning how to control an unknown model so that the
chance of satisfying the objective is maximized. We compile ω-regular
properties into limit-deterministic Büchi automata instead of the tradi-
tional Rabin automata; this choice sidesteps difficulties that have marred
previous proposals. Our approach allows us to apply model-free, off-the-
shelf reinforcement learning algorithms to compute optimal strategies
from the observations of the MDP. We present an experimental evalua-
tion of our technique on benchmark learning problems.

1 Introduction

Reinforcement learning (RL) [3,37,40] is an approach to sequential decision mak-
ing in which agents rely on reward signals to choose actions aimed at achieving
prescribed objectives. Model-free RL refers to a class of techniques that are
asymptotically space-efficient [36] because they do not construct a full model of
the environment. These techniques include classic algorithms like Q-learning [37]
as well as their extensions to deep neural networks [14,31]. Some objectives, like
running a maze, are naturally expressed in terms of scalar rewards; in other cases
the translation is less obvious. We solve the problem of ω-regular rewards, that
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is, the problem of defining scalar rewards for the transitions of a Markov deci-
sion process (MDP) so that strategies that maximize the probability to satisfy an
ω-regular objective may be computed by off-the-shelf, model-free RL algorithms.

Omega-regular languages [28,38] provide a rich formalism to unambiguously
express qualitative safety and progress requirements of MDPs [2]. A common
way to describe an ω-regular language is via a formula in Linear Time Logic
(LTL); other specification mechanisms include extensions of LTL, various types
of automata, and monadic second-order logic. A typical requirement that is
naturally expressed as an ω-regular objective prescribes that the agent should
eventually control the MDP to stay within a given set of states, while at all
times avoiding another set of states. In LTL this would be written (F G goal) ∧
(G ¬trap), where goal and trap are labels attached to the appropriate states,
F stands for “finally,” and G stands for “globally.”

For verification or synthesis, an ω-regular objective is usually translated into
an automaton that monitors the traces of the MDP [10]. Successful executions
cause the automaton to take certain (accepting) transitions infinitely often, and
ultimately avoid certain (rejecting) transitions. That is, ω-regular objectives are
about the long-term behavior of an MDP; the frequency of reward collected
is not what matters. A policy that guarantees no rejecting transitions and an
accepting transition every ten steps, is better than a policy that promises an
accepting transition at each step, but with probability 0.5 does not accept at all.

The problem of ω-regular rewards in the context of model-free RL was first
tackled in 2014 by translating the objective into a deterministic Rabin automa-
ton and deriving positive and negative rewards directly from the acceptance
condition of the automaton [32]. In Sect. 3 we show that their algorithm, and
the extension of [18] may fail to find optimal strategies, and may underesti-
mate the probability of satisfaction of the objective. In [16,17] the use of limit-
deterministic Büchi automata avoids the problems connected with the use of a
Rabin acceptance condition. However, as shown in Sect. 3, that approach may
still produce incorrect results.

We avoid the problems inherent in the use of deterministic Rabin automata
for model-free RL by resorting to limit-deterministic Büchi automata, which,
under mild restrictions, were shown by [8,15,33] to be suitable for both qualita-
tive and quantitative analysis of MDPs under all ω-regular objectives. The Büchi
acceptance condition, which, unlike the Rabin condition, does not use rejecting
transitions, allows us to constructively reduce the almost-sure satisfaction of
ω-regular objectives to an almost-sure reachability problem. It is also suitable
for quantitative analysis: the value of a state converges to the maximum proba-
bility of satisfaction of the objective from that state as a parameter approaches 1.

We concentrate on model-free approaches and infinitary behaviors for finite
MDPs. Related problems include model-based RL [13], RL for finite-horizon
objectives [22,23], and learning for efficient verification [4].

This paper is organized as follows. Section 2 recalls definitions and notations.
Section 3 shows the problems that arise when the reward of the RL algorithm is
derived from the acceptance condition of a deterministic Rabin automaton. In
Sect. 4 we prove the main results. Finally, Sect. 5 discusses our experiments.
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2 Preliminaries

2.1 Markov Decision Processes

Let D(S) be the set of distributions over S. A Markov decision process M is a
tuple (S,A, T,AP,L) where S is a finite set of states, A is a finite set of actions,
T : S ×A −⇁ D(S) is the probabilistic transition (partial) function, AP is the set
of atomic propositions, and L : S → 2AP is the proposition labeling function.

For any state s ∈ S, we let A(s) denote the set of actions that can be selected
in state s. For states s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals p(s′|s, a). A run
of M is an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A × S)ω such that p(si+1|si, ai+1)>0
for all i ≥ 0. A finite run is a finite such sequence. For a run r = 〈s0, a1, s1, . . .〉
we define the corresponding labeled run as L(r) = 〈L(s0), L(s1), . . .〉 ∈ (2AP )ω.
We write RunsM(FRunsM) for the set of runs (finite runs) of the MDP M and
RunsM(s)(FRunsM(s)) for the set of runs (finite runs) of the MDP M starting
from state s. We write last(r) for the last state of a finite run r.

A strategy in M is a function σ : FRuns → D(A) such that supp(σ(r)) ⊆
A(last(r)), where supp(d) denotes the support of the distribution d. Let RunsM

σ (s)
denote the subset of runs RunsM(s) that correspond to strategy σ with initial
state s. Let ΣM be the set of all strategies. A strategy σ is pure if σ(r) is a
point distribution for all runs r ∈ FRunsM and we say that σ is stationary if
last(r) = last(r′) implies σ(r) = σ(r′) for all runs r, r′ ∈ FRunsM. A strategy
that is not pure is mixed. A strategy is positional if it is both pure and stationary.

The behavior of an MDP M under a strategy σ is defined on a probability
space (RunsM

σ (s),FRunsM
σ (s),PrM

σ (s)) over the set of infinite runs of σ with
starting state s. Given a real-valued random variable over the set of infinite runs
f : RunsM → R, we denote by EM

σ (s) {f} the expectation of f over the runs of
M originating at s that follow strategy σ.

Given an MDP M = (S,A, T,AP,L), we define its directed underlying graph
GM = (V,E) where V = S and E ⊆ S×S is such that (s, s′) ∈ E if T (s, a)(s′) >
0 for some a ∈ A(s). A sub-MDP of M is an MDP M′ = (S′, A′, T ′, AP,L′),
where S′ ⊂ S, A′ ⊆ A is such that A′(s) ⊆ A(s) for every s ∈ S′, and T ′ and
L′ are analogous to T and L when restricted to S′ and A′. In particular, M′ is
closed under probabilistic transitions, i.e. for all s ∈ S′ and a ∈ A′ we have that
T (s, a)(s′) > 0 implies that s′ ∈ S′. An end-component [10] of an MDP M is a
sub-MDP M′ of M such that GM′ is strongly connected.

Theorem 1 (End-Component Properties [10]). Once an end-component
C of an MDP is entered, there is a strategy that visits every state-action com-
bination in C with probability 1 and stays in C forever. Moreover, for every
strategy the union of the end-components is visited with probability 1.

A Markov chain is an MDP whose set of actions is singleton. A bottom strongly
connected component (BSCC) of a Markov chain is any of its end-components. A
BSCC is accepting if it contains an accepting transition (see below) and otherwise
it is rejecting. For any MDP M and positional strategy σ, let Mσ be the Markov
chain resulting from resolving the nondeterminism in M using σ.
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A rewardful MDP is a pair (M, ρ), where M is an MDP and ρ : S ×
A → R is a reward function assigning utility to state-action pairs. A
rewardful MDP (M, ρ) under a strategy σ determines a sequence of ran-
dom rewards ρ(Xi−1, Yi)i≥1, where Xi and Yi are the random variables
denoting the i-th state and action, respectively. Depending upon the prob-
lem of interest, different performance objectives may be of interest. The
reachability probability objective Reach(T )M

σ (s) (with T ⊆ S) is defined
as PrM

σ (s)
{〈s, a1, s1, . . .〉 ∈ RunsM

σ (s) : ∃i . si ∈ T
}
. For a given discount fac-

tor λ ∈ [0, 1[, the discounted reward objective Disct(λ)M
σ (s) is defined as

limN→∞ EM
σ (s)

{∑
1≤i≤N λi−1ρ(Xi−1, Yi)

}
, while the average reward AvgM

σ (s)

is defined as lim supN→∞(1/N)EM
σ (s)

{∑
1≤i≤N ρ(Xi−1, Yi)

}
. For an objective

RewardM∈{Reach(T )M,Disct(λ)M,AvgM} and an initial state s, we define the
optimal reward RewardM

∗ (s) as supσ∈ΣM RewardM
σ (s). A strategy σ∈ΣM is

optimal for RewardM if RewardM
σ (s)=RewardM

∗ (s) for all s∈S.

2.2 ω-Regular Performance Objectives

A nondeterministic ω-automaton is a tuple A = (Σ,Q, q0, δ,Acc), where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q

is the transition function, and Acc is the acceptance condition. A run r of A on
w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q ∪ Σ)ω such that r0 = q0 and, for
i > 0, ri ∈ δ(ri−1, wi−1). Each triple (ri−1, wi−1, ri) is a transition of A.

We consider Büchi and Rabin acceptance conditions, which depend on the
transitions that occur infinitely often in a run of an automaton. We write inf(r)
for the set of transitions that appear infinitely often in the run r. The Büchi
acceptance condition defined by F ⊆ Q × Σ × Q is the set of runs {r ∈ (Q ∪
Σ)ω : inf(r) ∩ F = ∅}. A Rabin acceptance condition is defined in terms of
k pairs of subsets of Q × Σ × Q, (B0, G0), . . . , (Bk−1, Gk−1), as the set {r ∈
(Q ∪ Σ)ω : ∃i < k . inf(r) ∩ Bi = ∅ ∧ inf(r) ∩ Gi = ∅}. The index of a Rabin
condition is its number of pairs.

A run r of A is accepting if r ∈ Acc. The language, LA, of A (or, accepted
by A) is the subset of words in Σω that have accepting runs in A. A language
is ω-regular if it is accepted by an ω-automaton.

Given an MDP M and an ω-regular objective ϕ given as an ω-automaton
Aϕ = (Σ,Q, q0, δ,Acc), we are interested in computing an optimal strategy satis-
fying the objective. We define the satisfaction probability of a strategy σ from ini-
tial state s as: PrM

σ (s |= ϕ) = Pr M
σ (s)

{
r ∈ RunsM

σ (s) : L(r) ∈ LA
}
. The opti-

mal satisfaction probability PrM
∗ (s |= ϕ) is defined as supσ∈ΣM PrM

σ (s |= ϕ) and
we say that σ ∈ ΣM is an optimal strategy for ϕ if PrM

∗ (s |= ϕ) = PrM
σ (s |= ϕ).

An automaton A = (Σ,Q, q0, δ,Acc) is deterministic if |δ(q, σ)| ≤ 1 for all
q ∈ Q and all σ ∈ Σ. A is complete if |δ(q, σ)| ≥ 1. A word in Σω has exactly
one run in a deterministic, complete automaton. We use common three-letter
abbreviations to distinguish types of automata. The first (D or N) tells whether
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the automaton is deterministic; the second denotes the acceptance condition (B
for Büchi and R for Rabin). The third letter (W) says that the automaton reads
ω-words. For example, an NBW is a nondeterministic Büchi automaton, and a
DRW is a deterministic Rabin automaton.

Every ω-regular language is accepted by some DRW and by some NBW. In
contrast, there are ω-regular languages that are not accepted by any DBW. The
Rabin index of a Rabin automaton [6,20] is the index of its acceptance condition.
The Rabin index of an ω-regular language L is the minimum index among those
of the DRWs that accept L. For each n ∈ N there exist ω-regular languages
of Rabin index n. The languages accepted by DBWs, however, form a proper
subset of the languages of index 1.

2.3 The Product MDP

Given an MDP M = (S,A, T,AP,L) with a designated initial state s0 ∈ S,
and a deterministic ω-automaton A = (2AP , Q, q0, δ,Acc), the product M × A
is the tuple (S × Q, (s0, q0), A, T×,Acc×). The probabilistic transition function
T× : (S × Q) × A −⇁ D(S × Q) is such that T×((s, q), a)((ŝ, q̂)) = T (s, a)(ŝ) if
{q̂} = δ(q, L(s)) and is 0 otherwise. If A is a DBW, Acc is defined by F ⊆
Q × 2AP × Q; then F× ⊆ (S × Q) × A × (S × Q) defines Acc× as follows:
((s, q), a, (s′, q′)) ∈ F× if and only if (q, L(s), q′) ∈ F and T (s, a)(s′) = 0. If A
is a DRW of index k, Acc× = {(B×

0 , G×
0 ), . . . , (B×

k−1, G
×
k−1)}. To set Bi of Acc,

there corresponds B×
i of Acc× such that ((s, q), a, (s′, q′)) ∈ B×

i if and only if
(q, L(s), q′) ∈ Bi and T (s, a)(s′) = 0. Likewise for G×

i .
If A is a nondeterministic automaton, the actions in the product are enriched

to identify both the actions of the original MDP and the choice of the successor
state of the nondeterministic automaton.

End-components and runs are defined for products just like for MDPs. A run of
M×A is accepting if it satisfies the product’s acceptance condition. An accepting
end-component of M×A is an end-component such that every run of the product
MDP that eventually dwells in it is accepting.

In view of Theorem 1, satisfaction of an ω-regular objective ϕ by an MDP
M can be formulated in terms of the accepting end-components of the product
M × Aϕ, where Aϕ is an automaton accepting ϕ. The maximum probability of
satisfaction of ϕ by M is the maximum probability, over all strategies, that a run
of the product M×Aϕ eventually dwells in one of its accepting end-components.

It is customary to use DRWs instead of DBWs in the construction of the
product, because the latter cannot express all ω-regular objectives. On the other
hand, general NBWs are not used since causal strategies cannot optimally resolve
nondeterministic choices because that requires access to future events [39].

2.4 Limit-Deterministic Büchi Automata

In spite of the large gap between DRWs and DBWs in terms of indices, even a
very restricted form of nondeterminism is sufficient to make DBWs as expressive
as DRWs. Broadly speaking, an LDBW behaves deterministically once it has
seen an accepting transition. Formally, a limit-deterministic Büchi automaton
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q0q1 q2

a ∧ b

a b
a b q0q1 q2

a b
a b

Fig. 1. Suitable (left) and unsuitable (right) LDBWs for the LTL formula (G a)∨(G b).

(LDBW) is an NBW A = (Σ,Qi ∪ Qf , q0, δ, F ) such that

– Qi ∩ Qf = ∅, F ⊆ Qf × Σ × Qf ;
– |δ(q, σ) ∩ Qi| ≤ 1 for all q ∈ Qi and σ ∈ Σ;
– |δ(q, σ)| ≤ 1 for all q ∈ Qf and σ ∈ Σ;
– δ(q, σ) ⊆ Qf for all q ∈ Qf and σ ∈ Σ.

LDBWs are as expressive as general NBWs. Moreover, NBWs can be trans-
lated into LDBWs that can be used for the qualitative and quantitative analysis
of MDPs [8,15,33,39]. We use the translation from [15], which uses LDBWs
that consist of two parts: an initial deterministic automaton (without accepting
transitions) obtained by a subset construction; and a final part produced by
a breakpoint construction. They are connected by a single “guess”, where the
automaton guesses a singleton subset of the reachable states to start the break-
point construction. Like in other constructions (e.g. [33]), one can compose the
resulting automata with an MDP, such that the optimal control of the product
defines a control on the MDP that maximizes the probability of obtaining a word
from the language of the automaton. We refer to LDBWs with this property as
suitable limit-deterministic automata (SLDBWs).

Definition 1 (Suitable LDBW). An SLDBW A for property ϕ is an LDBW
that recognizes ϕ and such that, for every finite MDP M, there exists a positional
strategy σ ∈ ΣM×A such that the probability of satisfying the Büchi condition in
the Markov chain (M × A)σ is PrM

∗ (s |= ϕ).

Although the construction of a suitable LDBW reaches back to the 80s [39],
not all LDBWs are suitable. Broadly speaking, the nondeterministic decisions
taken in the initial part may not depend on the future—though it may depend on
the state of an MDP. The example LDBW from Fig. 1 (left) satisfies the property:
it can try to delay to progress to one of the accepting states to when an end-
component in an MDP is reached that always produces a’s or b’s, respectively. In
contrast, the LDBW from Fig. 1 (right)—which recognizes the same language—
will have to make the decision of seeing only a’s or only b’s immediately, without
the option to wait for reaching an end-component. This makes it unsuitable for
the use in MDPs.

Theorem 2 [8,15,33,39]. Suitable limit-deterministic Büchi automata exist for
all ω-regular languages.
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SLDBWs—and their properties described in Definition 1—are used in the
qualitative and quantitative model checking algorithms in [8,15,33,39]. The
accepting end-components of the product MDPs are all using only states from
the final part of the SLDBW. Büchi acceptance then allows for using memoryless
almost sure winning strategies in the accepting end-components, while outside
of accepting end-components a memoryless strategy that maximizes the chance
of reaching such an end-component can be used. The distinguishing property is
the guarantee that they provide the correct probability, while using a product
with a general NBW would only provide a value that cannot exceed it.

2.5 Linear Time Logic Objectives

LTL (Linear Time Logic) is a temporal logic whose formulae describe a subset
of the ω-regular languages, which is often used to specify objectives in human-
readable form. Translations exist from LTL to various forms of automata, includ-
ing NBW, DRW, and SLDBW. Given a set of atomic propositions AP , a is
an LTL formula for each a ∈ AP . Moreover, if ϕ and ψ are LTL formulae,
so are ¬ϕ,ϕ ∨ ψ,X ϕ,ψ U ϕ. Additional operators are defined as abbreviations:
� def= a ∨ ¬a; ⊥ def= ¬�; ϕ ∧ ψ

def= ¬(¬ϕ ∨ ¬ψ); ϕ → ψ
def= ¬ϕ ∨ ψ; F ϕ

def= �U ϕ;
and G ϕ

def= ¬F ¬ϕ. We write w |= ϕ if ω-word w over 2AP satisfies LTL formula
ϕ. The satisfaction relation is defined inductively [2,24].

2.6 Reinforcement Learning

For an MDP M and an objectives RewardM ∈ {Reach(T )M,Disct(λ)M,
AvgM}, the optimal reward and an optimal strategy can be computed using
value iteration, policy iteration, or, in polynomial time, using linear program-
ming [12,30]. On the other hand, for ω-regular objectives (given as DRW,
SLDBW, or LTL formulae) optimal satisfaction probabilities and strategies
can be computed using graph-theoretic techniques (computing accepting end-
component and then maximizing the probability to reach states in such compo-
nents) over the product structure. However, when the MDP transition/reward
structure is unknown, such techniques are not applicable.

For MDPs with unknown transition/reward structure, reinforcement learn-
ing [37] provides a framework to compute optimal strategies from repeated inter-
actions with the environment. Of the two main approaches to reinforcement
learning in MDPs, model-free approaches and model-based approaches the for-
mer, which is asymptotically space-efficient [36], has been demonstrated to scale
well [14,25,35]. In a model-free approach such as Q-learning [31,37], the learner
computes optimal strategies without explicitly estimating the transition proba-
bilities and rewards. We focus on making it possible for model-free RL to learn a
strategy that maximizes the probability of satisfying a given ω-regular objective.

3 Problem Statement and Motivation

Given MDP M with unknown transition structure and ω-regular objective ϕ,
we seek a strategy that maximizes the probability that M satisfies ϕ.
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t0 ¬b ∧ ¬g0 ∧ ¬g1 B0, B1

t1 ¬b ∧ ¬g0 ∧ g1 B0, G1

t2 ¬b ∧ g0 ∧ ¬g1 G0, B1

t3 ¬b ∧ g0 ∧ g1 G0, G1

t4 b
t5 �

(0, 0)
safe

(1, 0)
safe

(0, 1)
safe

∗
trap

go
{B0, B1}

p 1−p
go

{G0, B1}

1−p

p

go
{B0, G1}

p

1−p

go, rest

rest{G0, B1}
rest{B0, G1}

rest{B0, B1}

Fig. 2. A grid-world example (left), a Rabin automaton for [(F G g0) ∨ (F G g1)] ∧ G ¬b
(center), and product MDP (right).

To apply model-free RL algorithms to this task, one needs to define rewards
that depend on the observations of the MDP and reflect the satisfaction of
the objective. It is natural to use the product of the MDP and an automaton
monitoring the satisfaction of the objective to assign suitable rewards to various
actions chosen by the learning algorithm.

Sadigh et al. [32] were the first to apply model-free RL to a qualitative-
version of this problem, i.e., to learn a strategy that satisfies the property with
probability 1. For an MDP M and a DRW Aϕ of index k, they formed the
product MDP M×Aϕ with k different “Rabin” reward functions ρ1, . . . , ρk. The
function ρi corresponds to the Rabin pair (B×

i , G×
i ): it assigns a fixed negative

reward −R− < 0 to all edges in B×
i and a fixed positive reward R+ > 0 to all

edges in G×
i . [32] claimed that if there exists a strategy satisfying an ω-regular

objective ϕ with probability 1, then there exists a Rabin pair i, discount factor
λ∗ ∈ [0, 1[, and suitably high ratio R∗, such that for all λ ∈ [λ∗, 1[ and R−/R+ ≥
R∗, any strategy maximizing λ-discounted reward for the MDP (M×Aϕ, ρi) also
satisfies the ω-regular objective ϕ with probability 1. Using Blackwell-optimality
theorem [19], a paraphrase of this claim is that if there exists a strategy satisfying
an ω-regular objective ϕ with probability 1, then there exists a Rabin pair i and
suitably high ratio R∗, such that for all R−/R+ ≥ R∗, any strategy maximizing
expected average reward for the MDP (M×Aϕ, ρi) also satisfies the ω-regular
objective ϕ with probability 1. This approach has two faults, the second of which
also affects approaches that replace DRWs with LDBWs [16,17].

1. We provide in Example 1 an MDP and an ω-regular objective ϕ with Rabin
index 2, such that, although there is a strategy that satisfies the property
with probability 1, optimal average strategies from any Rabin reward do not
satisfy the objective with probability 1.

2. Even for an ω-regular objective with one Rabin pair (B,G) and B=∅—i.e.,
one that can be specified by a DBW—we demonstrate in Example 2 that the
problem of finding a strategy that satisfies the property with probability 1
may not be reduced to finding optimal average strategies.
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�

0, safe

3, safe

1, safe2, safe ∗, trap
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p 1 − p

d
e

f

c

Fig. 3. A grid-world example. The arrows represent actions (left). When action b is
performed, Cell 2 is reached with probability p and Cell 1 is reached with probability
1 − p, for 0 < p < 1. Deterministic Büchi automaton for ϕ = (G ¬b) ∧ (G F g) (center).
The dotted transition is the only accepting transition. Product MDP (right).

Example 1 (Two Rabin Pairs). Consider the MDP given as a simple grid-world
example shown in Fig. 2. Each cell (state) of the MDP is labeled with the atomic
propositions that are true there. In each cell, there is a choice between two actions
rest and go. With action rest the state of the MDP does not change. However,
with action go the MDP moves to the other cell in the same row with probability
p, or to the other cell in the same column with probability 1−p. The initial cell
is (0, 0).

The specification is given by LTL formula ϕ = [(F G g0) ∨ (F G g1)] ∧ G¬b.
A DRW that accepts ϕ is shown in Fig. 2. The DRW has two accepting pairs:
(B0, G0) and (B1, G1). The table besides the automaton gives, for each transi-
tion, its label and the B and G sets to which it belongs.

The optimal strategy that satisfies the objective ϕ with probability 1 chooses
go in Cell (0, 0) and chooses rest subsequently. However, for both Rabin pairs,
the optimal strategy for expected average reward is to maximize the probability
of reaching one of the (0, 1), safe or (1, 0), safe states of the product and stay
there forever. For the first accepting pair the maximum probability of satisfaction
is 1

2−p , while for the second pair it is 1
1+p .

Example 2 (DBW to Expected Average Reward Reduction). This counterexam-
ple demonstrates that even for deterministic Büchi objectives, the problem of
finding an optimal strategy satisfying an objective may not be reduced to the
problem of finding an optimal average strategy. Consider the simple grid-world
example of Fig. 3 with the specification ϕ = (G ¬b)∧(G F g), where atomic propo-
sition b (blue) labels Cell 1 and atomic proposition g (green) labels Cells 2 and 3.
Actions enabled in various cells and their probabilities are depicted in the figure.

The strategy from Cell 0 that chooses Action a guarantees satisfaction of ϕ
with probability 1. An automaton with accepting transitions for ϕ is shown in
Fig. 3; it is a DBW (or equivalently a DRW with one pair (B,G) and B = ∅).

The product MDP is shown at the bottom of Fig. 3. All states whose second
component is trap have been merged. Notice that there is no negative reward
since the set B is empty. If reward is positive and equal for all accepting tran-
sitions, and 0 for all other transitions, then when p > 1/2, the strategy that
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Fig. 4. Adding transitions to the target in the augmented product MDP.

maximizes expected average reward chooses Action b in the initial state and
Action e from State (2, safe). Note that, for large values of λ, the optimal expected
average reward strategies are also optimal strategies for the λ-discounted reward
objective. However, these strategies are not optimal for ω-regular objectives.

Example 1 shows that one cannot select a pair from a Rabin acceptance condi-
tion ahead of time. This problem can be avoided by the use of Büchi acceptance
conditions. While DBWs are not sufficiently expressive, SLDBWs express all
ω-regular properties and are suitable for probabilistic model checking. In the
next section, we show that they are also “the ticket” for model-free reinforce-
ment learning, because they allow us to maximize the probability of satisfying an
ω-regular specification by solving a reachability probability problem that can be
solved efficiently by off-the-shelf RL algorithms.

4 Model-Free RL from Omega-Regular Rewards

We now reduce the model checking problem for a given MDP and SLDBW to a
reachability problem by slightly changing the structure of the product: We add
a target state t that can be reached with a given probability 1 − ζ whenever
visiting an accepting transition of the original product MDP.

Our reduction avoids the identification of winning end-components and thus
allows a natural integration to a wide range of model-free RL approaches. Thus,
while the proofs do lean on standard model checking properties that are based on
identifying winning end-components, they serve as a justification not to consider
them when running the learning algorithm. In the rest of this section, we fix an
MDP M and an SLDBW A for the ω-regular property ϕ.

Definition 2 (Augmented Product). For any ζ ∈]0, 1[, the augmented
MDP Mζ is an MDP obtained from M×A by adding a new state t with a
self-loop to the set of states of M×A, and by making t a destination of each
accepting transition τ of M×A with probability 1 − ζ. The original probabilities
of all other destinations of an accepting transition τ are multiplied by ζ.

An example of an augmented MDP is shown in Fig. 4. With a slight abuse
of notation, if σ is a strategy on the augmented MDP Mζ , we denote by σ also
the strategy on M×A obtained by removing t from the domain of σ.
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We let pσ
s (ζ) denote the probability of reaching t in Mζ

σ when starting at state
s. Notice that we can encode this value as the expected average reward in the
following rewardful MDP (Mζ , ρ), where we set the reward function ρ(t, a) = 1
for all a ∈ A and ρ(s, a) = 0 otherwise. For any strategy σ, the probability
pσ

s (ζ) and the reward of σ from s in (Mζ , ρ) are the same. We also let aσ
s be the

probability that a run that starts from s in (M × A)σ is accepting.

Lemma 1. If σ is a positional strategy on Mζ , then, for every state s of the
Markov chain (M×A)σ, the following holds:

1. if the state s is in a rejecting BSCC of (M×A)σ, then pσ
s (ζ) = 0;

2. if the state s is in an accepting BSCC of (M×A)σ, then pσ
s (ζ) = 1;

3. the probability pσ
s (ζ) of reaching t is greater than aσ

s ; and
4. if pσ

s (ζ)=1 then no rejecting BSCC is reachable from s in (M×A)σ and
aσ

s = 1.

Proof. (1) holds as there are no accepting transition in a rejecting BSCC of
(M×A)σ, and so t cannot be reached when starting at s in Mζ

σ. (2) holds
because t (with its self-loop) is the only BSCC reachable from s in Mζ . In other
words, t (with its self-loop) and the rejecting BSCCs of (M×A)σ are the only
BSCCs in Mζ

σ. (3) then follows, because the same paths lead to a rejecting
BSCCs in (M×A)σ and Mζ

σ, while the probability of each such a path is no
larger—and strictly smaller iff it contains an accepting transition—than in Mζ

σ.
(4) holds because, if pσ

s (ζ) = 1, then t (with its self-loop) is the only BSCC
reachable from s in Mζ

σ. Thus, there is no path to a rejecting BSCC in Mζ
σ, and

therefore no path to a rejecting BSCC in (M×A)σ. ��
Lemma 2. Let σ be a positional strategy on Mζ . For every state s of Mζ , we
have that limζ↑1 pσ

s (ζ) = aσ
s .

Proof. As shown in Lemma 1(3) for all ζ, we have pσ
s (ζ) ≥ aσ

s . For a coarse
approximation of their difference, we recall that (M×A)σ is a finite Markov
chain. The expected number of transitions taken before reaching a BSCC from
s in (M×A)σ is therefore a finite number. Let us refer to the—no larger—
expected number of accepting transitions taken before reaching a BSCC when
starting at s in (M×A)σ as fσ

s . We claim that aσ
s ≥ pσ

s (ζ) − (1 − ζ) · fσ
s . This

is because the probability of reaching a rejecting BSCC in (M×A)σ is at most
the probability of reaching a rejecting BSCC in Mζ

σ, which is at most 1− pσ
s (ζ),

plus the probability of moving on to t from a state that is not in any BSCC in
(M×A)σ, which we are going to show next is at most fσ

s · (1 − ζ).
First, a proof by induction shows that (1 − ζk) ≤ k(1 − ζ) for all k ≥ 0.

Let P σ
s (ζ, k) be the probability of generating a path from s with k accepting

transitions before t or a node in some BSCC of (M×A)σ is reached in Mζ
σ. The

probability of seeing k accepting transitions and not reaching t is at least ζk.
Therefore, probability of moving to t from a state not in any BSCC is at most

∑

k

P σ
s (ζ, k)(1−ζk) ≤

∑

k

P σ
s (ζ, k)k · (1−ζ) ≤ fσ

s · (1−ζ).
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The proof is now complete. ��
This provides us with our main theorem.

Theorem 3. There exists a threshold ζ ′ ∈]0, 1[ such that, for all ζ > ζ ′ and
every state s, any strategy σ that maximizes the probability pσ

s (ζ) of reaching
the sink in Mζ is (1) an optimal strategy in M × A from s and (2) induces an
optimal strategy for the original MDP M from s with objective ϕ.

Proof. We use the fact that it suffices to study positional strategies, and there
are only finitely many of them. Let σ1 be an optimal strategy of M×A, and
let σ2 be a strategy that has the highest likelihood of creating an accepting run
among all non-optimal memoryless ones. (If σ2 does not exist, then all strategies
are equally good, and it does not matter which one is chosen.) Let δ = aσ1

s −aσ2
s .

Let fmax = maxσ maxs fσ
s , where σ ranges over positional strategies only,

and fσ
s is defined as in Lemma 2. We claim that it suffices to pick ζ ′ ∈]0, 1[ such

that (1 − ζ ′) · fmax < δ. Suppose that σ is a positional strategy that is optimal
in Mζ for ζ > ζ ′, but is not optimal in M×A. We then have

aσ
s ≤ pσ

s (ζ) ≤ aσ
s + (1 − ζ)fσ

s < aσ
s + δ ≤ aσ1

s ≤ pσ1
s (ζ),

where these inequalities follow, respectively, from: Lemma 1(3), the proof of
Lemma 2, the definition of ζ ′, the assumption that σ is not optimal and the
definition of δ, and the last one from Lemma 1(3). This shows that pσ

s (ζ) <
pσ1

s (ζ), i.e., σ is not optimal in Mζ ; a contradiction. Therefore, any positional
strategy that is optimal in Mζ for ζ > ζ ′ is also optimal in M×A.

Now, suppose that σ is a positional strategy that is optimal in M×A. Then
the probability of satisfying ϕ in M when starting at s is at least1 aσ

s . At the
same time, if there was a strategy for which the probability of satisfying ϕ in M is
> aσ

s , then the property of A to be an SLDBW (Definition 1) would guarantee the
existence of strategy σ′ for which aσ′

s > aσ
s ; a contradiction with the assumption

that σ is optimal. Therefore any positional strategy that is optimal in M×A
induces an optimal strategy in M with objective ϕ. ��
Corollary 1. Due to Lemma 1(4), M satisfies ϕ almost surely if and only if
the sink is almost surely reachable in Mζ for all 0 < ζ < 1.

Theorem 3 leads to a very simple model-free RL algorithm. The augmented
product is not built by the RL algorithm, which does not know the transition
structure of the environment MDP. Instead, the observations of the MDP are
used by an interpreter process to compute a run of the objective automaton.
The interpreter also extracts the set of actions for the learner to choose from. If
the automaton is not deterministic and it has not taken the one nondeterministic
transition it needs to take yet, the set of actions the interpreter provides to the
learner includes the choice of special “jump” actions that instruct the automaton
to move to a chosen accepting component.
1 This holds for all nondeterministic automata that recognize the models of ϕ: an

accepting run establishes that the path was a model of ϕ.
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When the automaton reports an accepting transition, the interpreter gives
the learner a positive reward with probability 1 − ζ. When the learner actu-
ally receives a reward, the training episode terminates. Any RL algorithm that
maximizes this probabilistic reward is guaranteed to converge to a policy that
maximizes the probability of satisfaction of the ω-regular objective.

5 Experimental Results

We implemented the construction described in the previous sections in a tool
named Mungojerrie [11], which reads MDPs described in the PRISM language
[21], and ω-regular automata written in the HOA format [1,9]. Mungojer-
rie builds the augmented product Mζ , provides an interface for RL algorithms
akin to that of [5] and supports probabilistic model checking. Our algorithm
computes, for each pair (s, a) of state and action, the maximum probability of
satisfying the given objective after choosing action a from state s by using off-
the-shelf, temporal difference algorithms. Not all actions with maximum prob-
ability are part of positional optimal strategies—consider a product MDP with
one state and two actions, a and b, such that a enables an accepting self-loop,
and b enables a non-accepting one: both state/action pairs are assigned probabil-
ity 1. In b’s case, because choosing b once—or a finite number of times—does not
preclude acceptance. Since the probability values alone do not identify a pure
optimal strategy, Mungojerrie computes an optimal mixed strategy, uniformly
choosing all maximum probability actions from a state.

The MDPs on which we tested our algorithms [26] are listed in Table 1.
For each model, the numbers of decision states in the MDP, the automaton,
and the product MDP are given. Next comes the probability of satisfaction
of the objective for the strategy chosen by the RL algorithm as computed by
the model checker (which has full access to the MDP). This is followed by the
estimate of the probability of satisfaction of the objective computed by the RL
algorithm and the time taken by learning. The last six columns report values of
the hyperparameters when they deviate from the default values: ζ controls the
probability of reward, ε is the exploration rate, α is the learning rate, and tol
is the tolerance for probabilities to be considered different. Finally, ep-l controls
the episode length (it is the maximum allowed length of a path in the MDP
that does contain an accepting edge) and ep-n is the number of episodes. All
performance data are the averages of three trials with Q-learning. Rewards are
undiscounted, so that the value of a state-action pair computed by Q-learning
is a direct estimate of the probability of satisfaction of the objective from that
state when taking that action.

Models twoPairs and riskReward are from Examples 1 and 2, respectively.
Model deferred is discussed later. Models grid5x5 and trafficNtk are from
[32]. The three “windy” MDPs are taken from [37]. The “frozen” examples are
from [27]. Some ω-regular objectives are simple reachability requirements (e.g.,
frozenSmall and frozenLarge). The objective for the othergrid models is
to collect three types of coupons, while incurring at most one of two types
of penalties. In doublegrid two agents simultaneously move across the grid.
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Table 1. Q-learning results. The default values of the learner hyperparameters are:
ζ = 0.99, ε = 0.1, α = 0.1, tol= 0.01, ep-l= 30, and ep-n= 20000. Times are in seconds.

Name states aut. prod. prob. est. time ζ ε α tol ep-l ep-n

twoPairs 4 4 16 1 1 0.26

riskReward 4 2 8 1 1 1.47

deferred 41 1 41 1 1 1.01

grid5x5 25 3 75 1 1 10.82 0.01 0.2 400 30k

trafficNtk 122 13 462 1 1 2.89

windy 123 2 240 1 1 12.35 0.95 0.001 0.05 0 900 200k

windyKing 130 2 256 1 1 14.34 0.95 0.02 0.2 0 300 120k

windyStoch 130 2 260 1 1 47.70 0.95 0.02 0.2 0 300 200k

frozenSmall 16 3 48 0.823 0.83 0.51 0.05 0 200

frozenLarge 64 3 192 1 1 1.81 0.05 0 700

othergrid6 36 25 352 1 1 10.80 0 300 75k

othergrid20 400 25 3601 1 1 78.00 0.9999 0.07 0.2 0 5k

othergrid40 1600 25 14401 1 0.99 87.90 0.9999 0.05 0.2 0 14k 25k

doublegrid8 4096 3 12287 1 1 45.50 0 3k 100k

doublegrid12 20736 3 62207 1 1 717.6 0 20k 300k

slalom 36 5 84 1 1 0.98

rps1 121 2 130 0.768 0.76 5.21 0.12 0.006 0 500k

dpenny 52 2 65 0.5 0.5 1.99 0.001 0.2 0 50 120k

devious 11 1 11 1 1 0.81

arbiter2 32 3 72 1 1 5.16 0.5 0.02 200

knuthYao 13 3 39 1 1 0.31 100

threeWayDuel 10 3 13 0.397 0.42 0.08

mutual4-14 27600 128 384386 1 1 2.74

mutual4-15 27600 527 780504 1 1 3.61

The objective for slalom is given by the LTL formula G(p → X G ¬q) ∧ G(q →
X G ¬p). For model rps1 the strategy found by RL is (slightly) suboptimal. The
difference in probability of 0.01 is explained by the existence of many strategies
of nearly identical values. Model mutual [7,15,34] describes the mutual exclusion
protocol of Pnueli and Zuck [29]. Though large, this model is easy for learning.

Figure 5 illustrates how increasing the parameter ζ makes the RL algorithm
less sensitive to the presence of transient (not in an end-component) accepting
transitions. Model deferred consists of two chains of states: one, which the
agent choses with action a, has accepting transitions throughout, but leads to
an end-component that is not accepting. The other chain, selected with action
b, leads to an accepting end-component, but has no other accepting transitions.
There are no other decisions in the model; hence only two strategies are possible,
which we denote by a and b, depending on the action chosen.
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Fig. 5. Model deferred and effect of ζ on it.

The curve labeled pa in Fig. 5 gives the probability of satisfaction under
strategy a of the MDP’s objective as a function of ζ as computed by Q-learning.
The number of episodes is kept fixed at 20, 000 and each episode has length 80.
Each data point is the average of five experiments for the same value of ζ.

For values of ζ close to 0, the chance is high that the sink is reached directly
from a transient state. Consequently, Q-learning considers strategies a and b
equally good. For this reason, the probability of satisfaction of the objective, pϕ,
according to the strategy that mixes a and b, is computed by Mungojerrie’s
model checker as 0.5. As ζ approaches 1, the importance of transient accepting
transitions decreases, until the probability computed for strategy a is no longer
considered to be approximately the same as the probability of strategy b. When
that happens, pϕ abruptly goes from 0.5 to its true value of 1, because the pure
strategy b is selected. The value of pa continues to decline for larger values of ζ
until it reaches its true value of 0 for ζ = 0.9999. Probability pb, not shown in
the graph, is 1 throughout.

The change in value of pϕ does not contradict Theorem 3, which says that
pb = 1 > pa for all values of ζ. In practice a high value of ζ may be needed
to reliably distinguish between transient and recurrent accepting transitions in
numerical computation. Besides, Theorem 3 suggests that even in the almost-
sure case there is a meaningful path to the target strategy where the likelihood
of satisfying ϕ can be expected to grow. This is important, as it comes with the
promise of a generally increasing quality of intermediate strategies.

6 Conclusion

We have reduced the problem of maximizing the satisfaction of an ω-regular
objective in a MDP to reachability on a product graph augmented with a sink
state. This change is so simple and elegant that it may surprise that it has not
been used before. But the reason for this is equally simple: it does not help in
a model checking context, as it does not remove any analysis step there. In a
reinforcement learning context, however, it simplifies our task significantly. In
previous attempts to use suitable LDBW [4], the complex part of the model
checking problem—identifying the accepting end-components—is still present.
Only after this step, which is expensive and requires knowledge of the structure
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of the underlying MDP, can these methods reduce the search for optimal sat-
isfaction to the problem of maximizing the chance to reach those components.
Our reduction avoids the identification of accepting end-components entirely and
thus allows a natural integration with a wide range of model-free RL approaches.
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Abstract. The desire to use reinforcement learning in safety-critical set-
tings has inspired a recent interest in formal methods for learning algo-
rithms. Existing formal methods for learning and optimization primarily
consider the problem of constrained learning or constrained optimiza-
tion. Given a single correct model and associated safety constraint, these
approaches guarantee efficient learning while provably avoiding behaviors
outside the safety constraint. Acting well given an accurate environmen-
tal model is an important pre-requisite for safe learning, but is ultimately
insufficient for systems that operate in complex heterogeneous environ-
ments. This paper introduces verification-preserving model updates, the
first approach toward obtaining formal safety guarantees for reinforce-
ment learning in settings where multiple possible environmental models
must be taken into account. Through a combination of inductive data and
deductive proving with design-time model updates and runtime model
falsification, we provide a first approach toward obtaining formal safety
proofs for autonomous systems acting in heterogeneous environments.

1 Introduction

The desire to use reinforcement learning in safety-critical settings has inspired
several recent approaches toward obtaining formal safety guarantees for learning
algorithms. Formal methods are particularly desirable in settings such as self-
driving cars, where testing alone cannot guarantee safety [22]. Recent examples of
work on formal methods for reinforcement learning algorithms include justified
speculative control [14], shielding [3], logically constrained learning [17], and
constrained Bayesian optimization [16]. Each of these approaches provide formal
safety guarantees for reinforcement learning and/or optimization algorithms by
stating assumptions and specifications in a formal logic, generating monitoring
conditions based upon specifications and environmental assumptions, and then
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leveraging these monitoring conditions to constrain the learning/optimization
process to a known-safe subset of the state space.

Existing formal methods for learning and optimization consider the problem
of constrained learning or constrained optimization [3,14,16,17]. They address
the question: assuming we have a single accurate environmental model with a
given specification, how can we learn an efficient control policy respecting this
specification?

Correctness proofs for control software in a single well-modeled environment
are necessary but not sufficient for ensuring that reinforcement learning algo-
rithms behave safely. Modern cyber-physical systems must perform a large num-
ber of subtasks in many different environments and must safely cope with situa-
tions that are not anticipated by system designers. These design goals motivate
the use of reinforcement learning in safety-critical systems. Although some formal
methods suggest ways in which formal constraints might be used to inform con-
trol even when modeling assumptions are violated [14], none of these approaches
provide formal safety guarantees when environmental modeling assumptions are
violated.

Holistic approaches toward safe reinforcement learning should provide formal
guarantees even when a single, a priori model is not known at design time. We
call this problem verifiably safe off-model learning. In this paper we introduce a
first approach toward obtaining formal safety proofs for off-model learning. Our
approach consists of two components: (1) a model synthesis phase that constructs
a set of candidate models together with provably correct control software, and
(2) a runtime model identification process that selects between available models
at runtime in a way that preserves the safety guarantees of all candidate models.

Model update learning is initialized with a set of models. These models consist
of a set of differential equations that model the environment, a control program
for selecting actuator inputs, a safety property, and a formal proof that the
control program constrains the overall system dynamics in a way that correctly
ensures the safety property is never violated.

Instead of requiring the existence of a single accurate initial model, we intro-
duce model updates as syntactic modifications of the differential equations and
control logic of the model. We call a model update verification-preserving if there
is a corresponding modification to the formal proof establishing that the modi-
fied control program continues to constrain the system of differential equations
in a way that preserves the original model’s safety properties.

Verification-preserving model updates are inspired by the fact that different
parts of a model serve different roles. The continuous portion of a model is often
an assumption about how the world behaves, and the discrete portion of a model
is derived from these equations and the safety property. For this reason, many of
our updates inductively synthesize ODEs (i.e., in response to data from previous
executions of the system) and then deductively synthesize control logic from the
resulting ODEs and the safety objective.

Our contributions enabling verifiably safe off-model learning include: (1)
A set of verification preserving model updates (VPMUs) that systematically
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update differential equations, control software, and safety proofs in a way that
preserves verification guarantees while taking into account possible deviations
between an initial model and future system behavior. (2) A reinforcement learn-
ing algorithm, called model update learning (μlearning), that explains how to
transfer safety proofs for a set of feasible models to a learned policy. The learned
policy will actively attempt to falsify models at runtime in order to reduce the
safety constraints on actions. These contributions are evaluated on a set of hybrid
systems control tasks. Our approach uses a combination of program repair, sys-
tem identification, offline theorem proving, and model monitors to obtain formal
safety guarantees for systems in which a single accurate model is not known at
design time. This paper fully develops an approach based on an idea that was
first presented in an invited vision paper on Safe AI for CPS by the authors [13].

The approach described in this paper is model-based but does not assume
that a single correct model is known at design time. Model update learning
allows for the possibility that all we can know at design time is that there are
many feasible models, one of which might be accurate. Verification-preserving
model updates then explain how a combination of data and theorem proving can
be used at design time to enrich the set of feasible models.

We believe there is a rich space of approaches toward safe learning in-between
model-free reinforcement learning (where formal safety guarantees are unavail-
able) and traditional model-based learning that assumes the existence of a single
ideal model. This paper provides a first example of such an approach by lever-
aging inductive data and deductive proving at both design time and runtime.

The remainder of this paper is organized as follows. We first review the
logical foundations underpinning our approach. We then introduce verification-
preserving model updates and discuss how experimental data may be used to
construct a set of explanatory models for the data. After discussing several model
updates, we introduce the μlearning algorithm that selects between models at
runtime. Finally, we discuss case studies that validate both aspects of our app-
roach. We close with a discussion of related work.

2 Background

This section reviews existing approaches toward safe on-model learning and dis-
cusses the fitness of each approach for obtaining guarantees about off-model
learning. We then introduce the specification language and logic used through-
out the rest of this paper.

Alshiekh et al. and Hasanbeig et al. propose approaches toward safe rein-
forcement learning based on Linear Temporal Logic [3,17]. Alshiekh et al. syn-
thesize monitoring conditions based upon a safety specification and an environ-
mental abstraction. In this formalism, the goal of off-model learning is to sys-
tematically expand the environmental abstraction based upon both design-time
insights about how the system’s behavior might change over time and based upon
observed data at runtime. Jansen et al. extend the approach of Alshiekh et al. by
observing that constraints should adapt whenever runtime data suggests that a
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safety constraint is too restrictive to allow progress toward an over-arching objec-
tive [20]. Herbert et al. address the problem of safe motion planning by using
offline reachability analysis of pursuit-evasion games to pre-compute an overap-
proximate monitoring condition that then constrains online planners [9,19].

The above-mentioned approaches have an implicit or explicit environmen-
tal model. Even when these environmental models are accurate, reinforcement
learning is still necessary because these models focus exclusively on safety and
are often nondeterministic. Resolving this nondeterminism in a way that is not
only safe but is also effective at achieving other high-level objectives is a task
that is well-suited to reinforcement learning.

We are interested in how to provide formal safety guarantees even when
there is not a single accurate model available at design time. Achieving this goal
requires two novel contributions. We must first find a way to generate a robust
set of feasible models given some combination of an initial model and data on
previous runs of the system (because formal safety guarantees are stated with
respect to a model). Given such a set of feasible models, we must then learn
how to safely identify which model is most accurate so that the system is not
over-constrained at runtime.

To achieve these goals, we build on the safe learning work for a single model
by Fulton et al. [14]. We choose this approach as a basis for verifiably safe learning
because we are interested in safety-critical systems that combine discrete and
continuous dynamics, because we would like to produce explainable models of
system dynamics (e.g., systems of differential equations as opposed to large state
machines), and, most importantly, because our approach requires the ability to
systematically modify a model together with that model’s safety proof.

Following [14], we recall Differential Dynamic Logic [26,27], a logic for verifying
properties about safety-critical hybrid systems control software, the ModelPlex
synthesis algorithm in this logic [25], and the KeYmaera X theorem prover [12]
that will allow us to systematically modify models and proofs together.

Hybrid (dynamical) systems [4,27] are mathematical models that incorporate
both discrete and continuous dynamics. Hybrid systems are excellent models for
safety-critical control tasks that combine the discrete dynamics of control soft-
ware with the continuous motion of a physical system such as an aircraft, train,
or automobile. Hybrid programs [26–28] are a programming language for hybrid
systems. The syntax and informal semantics of hybrid programs is summarized
in Table 1. The continuous evolution program is a continuous evolution along the
differential equation system x′

i = θi for an arbitrary duration within the region
described by formula F .

Hybrid Program Semantics. The semantics of the hybrid programs described by
Table 1 are given in terms of transitions between states [27,28], where a state s
assigns a real number s(x) to each variable x. We use s�t� to refer to the value
of a term t in a state s. The semantics of a program α, written �α�, is the set
of pairs (s1, s2) for which state s2 is reachable by running α from state s1. For
example, �x := t1 ∪ x := t2� is:

{(s1, s2) | s1=s2 except s2(x)=s1�t1�} ∪ {(s1, s2) | s1=s2 except s2(x)=s1�t2�}
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Table 1. Hybrid programs

Program statement Meaning

α; β Sequentially composes β after α.

α ∪ β Executes either α or β nondeterministically.

α∗ Repeats α zero or more times nondeterministically.

x := θ Evaluates term θ and assigns result to variable x.

x := ∗ Nondeterministically assign arbitrary real value to x.

{x′
1 = θ1, ..., x′

n = θn&F} Continuous evolution for any duration within domain F .

?F Aborts if formula F is not true.

for a hybrid program α and state s where �α�(s) is set of all states t such that
(s, t) ∈ �α�.

Differential Dynamic Logic. Differential dynamic logic (dL) [26–28] is the
dynamic logic of hybrid programs. The logic associates with each hybrid pro-
gram α modal operators [α] and 〈α〉, which express state reachability properties
of α. The formula [α]φ states that the formula φ is true in all states reachable
by the hybrid program α, and the formula 〈α〉φ expresses that the formula φ is
true after some execution of α. The dL formulas are generated by the grammar

φ :: = θ1 � θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀xφ | ∃xφ| [α]φ | 〈α〉φ
where θi are arithmetic expressions over the reals, φ and ψ are formulas, α
ranges over hybrid programs, and � is a comparison operator =, �=,≥, >,≤, <.
The quantifiers quantify over the reals. We denote by s |= φ the fact that formula
φ is true in state s; e.g., we denote by s |= [α]φ the fact that (s, t) ∈ �α� implies
t |= φ for all states t. Similarly, � φ denotes the fact that φ has a proof in dL.
When φ is true in every state (i.e., valid) we simply write |= φ.

Example 1 (Safety specification for straight-line car model).

v≥0 ∧ A>0
︸ ︷︷ ︸

initial condition

→ [
(

(a:=A ∪ a:=0)
︸ ︷︷ ︸

ctrl

; {p′=v, v′=a}
︸ ︷︷ ︸

plant

)∗] v≥0
︸︷︷︸

post cond.

This formula states that if a car begins with a non-negative velocity, then it
will also always have a non-negative velocity after repeatedly choosing new accel-
eration (A or 0), or coasting and moving for a nondeterministic period of time.

Throughout this paper, we will refer to sets of actions. An action is sim-
ply the effect of a loop-free deterministic discrete program without tests. For
example, the programs a:=A and a:=0 are the actions available in the above
program. Notice that actions can be equivalently thought of as mappings from
variables to terms. We use the term action to refer to both the mappings them-
selves and the hybrid programs whose semantics correspond to these mappings.
For an action u, we write u(s) to mean the effect of taking action u in state s;
i.e., the unique state t such that (s, t) ∈ �u�.



418 N. Fulton and A. Platzer

ModelPlex. Safe off-model learning requires noticing when a system deviates
from model assumptions. Therefore, our approach depends upon the ability to
check, at runtime, whether the current state of the system can be explained by
a hybrid program.

The KeYmaera X theorem prover implements the ModelPlex algorithm [25].
For a given dL specification ModelPlex constructs a correctness proof for mon-
itoring conditions expressed as a formula of quantifier-free real arithmetic. The
monitoring condition is then used to extract provably correct monitors that check
whether observed transitions comport with modeling assumptions. ModelPlex can
produce monitors that enforce models of control programs as well as monitors that
check whether the model’s ODEs comport with observed state transitions.

ModelPlex controller monitors are boolean functions that return false if the
controller portion of a hybrid systems model has been violated. A controller
monitor for a model {ctrl;plant}∗ is a function cm : S × A → B from states
S and actions A to booleans B such that if cm(s, a) then (s, a(s)) ∈ �ctrl�. We
sometimes also abuse notation by using controller monitors as an implicit filter
on A; i.e., cm : S → A such that a ∈ cm(s) iff cm(s, a) is true.

ModelPlex also produces model monitors, which check whether the model is
accurate. A model monitor for a safety specification φ → [α∗]ψ is a function
mm : S × S → B such that (s0, s) ∈ �α� if mm(s0, s). For the sake of brevity,
we also define mm : S × A × S → B as the model monitor applied after taking
an action (a ∈ A) in a state and then following the plant in a model of form
α ≡ ctrl;plant. Notice that if the model has this canonical form and if if
mm(s, a, a(s)) for an action a, then cm(s, a(s)).

The KeYmaera X system is a theorem prover [12] that provides a language
called Bellerophon for scripting proofs of dL formulas [11]. Bellerophon pro-
grams, called tactics, construct proofs of dL formulas. This paper proposes an
approach toward updating models in a way that preserves safety proofs. Our
approach simultaneously changes a system of differential equations, control soft-
ware expressed as a discrete loop-free program, and the formal proof that the
controller properly selects actuator values such that desired safety constraints
are preserved throughout the flow of a system of differential equations.

3 Verification-Preserving Model Updates

A verification-preserving model update (VPMU) is a transformation of a hybrid
program accompanied by a proof that the transformation preserves key safety
properties [13]. VPMUs capture situations in which a model and/or a set of data
can be updated in a way that captures possible runtime behaviors which are not
captured by an existing model.

Definition 1 (VPMU). A verification-preserving model update is a mapping
which takes as input an initial dL formula ϕ with an associated Bellerophon tactic
e of ϕ, and produces as output a new dL formula ψ and a new Bellerophon tactic
f such that f is a proof of ψ.



Verifiably Safe Off-Model Reinforcement Learning 419

Before discussing our VPMU library, we consider how a set of feasible models
computed using VPMUs can be used to provide verified safety guarantees for a
family of reinforcement learning algorithms. The primary challenge is to maintain
safety with respect to all feasible models while also avoiding overly conservative
monitoring constraints. We address this challenge by falsifying some of these
models at runtime.

4 Verifiably Safe RL with Multiple Models

VPMUs may be applied whenever system designers can characterize likely ways
in which an existing model will deviate from reality. Although applying model
updates at runtime is possible and sometimes makes sense, model updates are
easiest to apply at design time because of the computational overhead of com-
puting both model updates and corresponding proof updates. This section intro-
duces model update learning, which explains how to take a set of models gener-
ated using VPMUs at design time to provide safety guarantees at runtime.

Model update learning is based on a simple idea: begin with a set of feasible
models and act safely with respect to all feasible models. Whenever a model
does not comport with observed dynamics, the model becomes infeasible and
is therefore removed from the set of feasible models. We introduce two varia-
tions of μlearning: a basic algorithm that chooses actions without considering
the underlying action space, and an algorithm that prioritizes actions that rule
out feasible models (adding an eliminate choice to the classical explore/exploit
tradeoff [32]).

All μlearning algorithms use monitored models; i.e., models equipped with
ModelPlex controller monitors and model monitors.

Definition 2 (Monitored Model). A monitored model is a tuple
(m, cm,mm) such that m is a dL formula of the form

init → [{ctrl;plant}∗]safe

where ctrl is a loop-free program, the entire formula m contains exactly one
modality, and the formulas cm and mm are the control monitor and model mon-
itor corresponding to m, as defined in Sect. 2.

Monitored models may have a continuous action space because of both tests
and the nondeterministic assignment operator. We sometimes introduce addi-
tional assumptions on the structure of the monitored models. A monitored model
over a finite action space is a monitored model where {t : (s, t) ∈ �ctrl�} is
finite for all s ∈ S. A time-aware monitored model is a monitored model whose
differential equations contain a local clock which is reset at each control step.

Model update learning, or μlearning, leverages verification-preserving model
updates to maintain safety while selecting an appropriate environmental model.
We now state and prove key safety properties about the μlearning algorithm.
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Definition 3 (μlearning Process). A learning process PM for a finite set of
monitored models M is defined as a tuple of countable sequences (U,S,Mon)
where U are actions in a finite set of actions A (i.e., mappings from variables to
values), elements of the sequence S are states, and Mon are monitored models
with Mon0 = M . Let specOKm(U,S, i) ≡ mm(Si−1,Ui−1,Si) → cm(Si,Ui)
where cm and mm are the monitors corresponding to the model m. Let specOK
always return true for i = 0.

A μlearning process is a learning process satisfying the following additional
conditions: (a) action availability: in each state Si there is at least one action u
such that for all m ∈ Moni, u ∈ specOKm(U,S, i), (b) actions are safe for all
feasible models: Ui+1 ∈ {u ∈ A | ∀(m,cm,mm) ∈ Moni,cm(Si, u)}, (c) feasible
models remain in the feasible set: if (ϕ,cm,mm) ∈ Moni and mm(Si,Ui,Si+1)
then (ϕ,cm,mm) ∈ Moni+1.

Note that μlearning processes are defined over an environment E : A×S → S
that determines the sequences U and S1, so that Si+1 = E(Ui,Si). In our
algorithms, the set Moni never retains elements that are inconsistent with the
observed dynamics at the previous state. We refer to the set of models in Moni

as the set of feasible models for the ith state in a μlearning process.
Notice that the safe actions constraint is not effectively checkable without

extra assumptions on the range of parameters. Two canonical choices are dis-
cretizing options for parameters or including an effective identification process
for parameterized models.

Our safety theorem focuses on time-aware μlearning processes, i.e., those
whose models are all time-aware; similarly, a finite action space μlearning process
is a μlearning process in which all models m ∈ M have a finite action space.
The basic correctness property for a μlearning process is the safe reinforcement
learning condition: the system never takes unsafe actions.

Definition 4 (μlearning process with an accurate model). Let PM =
(S,U,Mon) be a μlearning process. Assume there is some element m∗ ∈ Mon0

with the following properties. First,

m∗ ≡ (initm → [{ctrlm;plantm}∗]safe).

Second, � m∗. Third, (s, u(s)) ∈ �ctrlm� implies (u(s), E(u, s)) ∈ �plant� for a
mapping E : S×A → S from states and actions to new states called environment.
When only one element of Mon0 satisfies these properties we call that element
m∗ the distinguished and/or accurate model and say that the process PM is
accurately modeled with respect to E.

We will often elide the environment E for which the process PM is accurate
when it is obvious from context.

Theorem 1 (Safety). If PM is a μlearning process with an accurate model,
then Si |= safe for all 0 < i < |S|.
1 Throughout the paper, we denote by S a specific sequence of states and by S the

set of all states.
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Listing 1.1 presents the μlearning algorithm. The inputs are: (a) A set M of
models each with an associated function m.models : S ×A×S → B that imple-
ments the evaluation of its model monitor in the given previous and next state
and actions and a method m.safe : S ×A → B which implements evaluation of
its controller monitor, (b) an action space A and an initial state init ∈ S, (c)
an environment function env : S ×A → S ×R that computes state updates and
rewards in response to actions, and (d) a function choose : ℘(A) → A that
selects an action from a set of available actions and update updates a table or
approximation. Our approach is generic and works for any reinforcement learning
algorithm; therefore, we leave these functions abstract. It augments an existing
reinforcement learning algorithm, defined by update and choose, by restrict-
ing the action space at each step so that actions are only taken if they are safe
with respect to all feasible models. The feasible model set is updated at each
control set by removing models that are in conflict with observed data.

The μlearning algorithm rules out incorrect models from the set of pos-
sible models by taking actions and observing the results of those actions.
Through these experiments, the set of relevant models is winnowed down
to either the distinguished correct model m∗, or a set of models M∗

containing m∗ and other models that cannot be distinguished from m∗.

Listing 1.1. The basic µlearning algorithm

def μlearn(M,A,init,env,choose,update):
s_pre = s_curr = init
act = None
while(not done(s_curr)):
if act is not None:

M = {m ∈ M : m.models(s_pre,act,s_curr)}
avail = {a ∈ A : ∀ m ∈ M, m.safe(s_curr, a)}
act = choose(avail)
s_pre = s_curr
(s_curr, reward) = env(s_curr, act)
update(s_pre, act, s_curr, reward)

4.1 Active Verified Model Update Learning

Removing models from the set of possible models relaxes the monitoring condi-
tion, allowing less conservative and more accurate control decisions. Therefore,
this section introduces an active learning refinement of the μlearning algorithm
that prioritizes taking actions that help rule out models m ∈ M that are not
m∗. Instead of choosing a random safe action, μlearning prioritizes actions that
differentiate between available models. We begin by explaining what it means
for an algorithm to perform good experiments.

Definition 5 (Active Experimentation). A μlearning process with an accu-
rate model m∗ has locally active experimentation provided that: if Moni > 1
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and there exists an action a that is safe for all feasible models (see Definition 3)
in state si such that taking action a results in the removal of m from the model
set2, then |Moni+1| < |Moni|. Experimentation is er-active if the following
conditions hold: there exists an action a that is safe for all feasible models (see
Definition 3) in state si, and taking action a resulted in the removal of m from
the model set, then |Moni+1| < |Moni| with probability 0 < er < 1.

Definition 6 (Distinguishing Actions). Consider a μlearning process
(U,S,Mon) with an accurate model m∗ (see Definition 4). An action a dis-
tinguishes m from m∗ if a = Ui, m ∈ Moni and m �∈ Moni+1 for some i > 0.

The active μlearning algorithm uses model monitors to select distinguishing
actions, thereby performing active experiments which winnow down the set of
feasible models. The inputs to active-μlearn are the same as those to Listing
1.1 with two additions: (1) models are augmented with an additional prediction
method p that returns the model’s prediction of the next state given the current
state, a candidate action, and a time duration. (2) An elimination rate er is
introduced, which plays a similar role as the classical explore-exploit rate except
that we are now deciding whether to insist on choosing a good experiment.
The active-μlearn algorithm is guaranteed to make some progress toward
winnowing down the feasible model set whenever 0 < er < 1.

Theorem 2. Let PM = (S,U,Mon) be a finite action space μlearning process
with an accurate model m∗. Then m∗ ∈ Moni for all 0 ≤ i ≤ |Mon|.
Theorem 3. Let PM be a finite action space er-active μlearning process under
environment E and with an accurate model m∗. Consider any model m ∈ Mon0

such that m �= m∗. If every state s has an action as that is safe for all models
and distinguishes m from m∗, then limi→∞ Pr(m �∈ Moni) = 1.

Corollary 1. Let PM = (S,U,Mon) be a finite action space er-active
μlearning process under environment E and with an accurate model m∗. If each
model m ∈ Mon0 \ {m∗} has in each state s an action as that is safe for all
models and distinguishes m from m∗, then Mon converges to {m∗} a.s.

Although locally active experimentation is not strong enough to ensure that
PM eventually converges to a minimal set of models3, our experimental validation
demonstrates that this heuristic is none-the-less effective on some representative
examples of model update learning problems.

5 A Model Update Library

So far, we have established how to obtain safety guarantees for reinforcement
learning algorithms given a set of formally verified dL models. We now turn
2 We say that taking action ai in state si results in the removal of a model m from

the model set if m ∈ Moni but m �∈ Moni+1.
3 x ≥ 0 ∧ t = 0 → [{{?t = 0; x := 1 ∪ x := 0}; {x′ = F, t′ = 1}}∗] x ≥ 0 with the

parameters F = 0, F = 5, and F = x are a counter example [10, Section 8.4.4].
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our attention to the problem of generating such a set of models by systemati-
cally modifying dL formulas and their corresponding Bellerophon tactical proof
scripts. This section introduces five generic model updates that provide a repre-
sentative sample of the kinds of computations that can be performed on models
and proofs to predict and account for runtime model deviations4.

The simplest example of a VPMU instantiates a parameter whose value is not
known at design time but can be determined at runtime via system identification.
Consider a program p modeling a car whose acceleration depends upon both a
known control input accel and parametric values for maximum braking force
−B and maximum acceleration A. Its proof is

implyR(1);loop(pos− obsPos >
vel2

2B
, 1);onAll(master)

This model and proof can be updated with concrete experimentally determined
values for each parameter by uniformly substituting the variables B and A with
concrete values in both the model and the tactic.

The Automatic Parameter Instantiation update improves the basic
parameter instantiation update by automatically detecting which variables are
parameters and then constraining instantiation of parameters by identifying rel-
evant initial conditions.

The Replace Worst-Case Bounds with Approximations update
improves models designed for the purpose of safety verification. Often a variable
occurring in the system is bounded above (or below) by its worst-case value.
Worst-case analyses are sufficient for establishing safety but are often overly
conservative. The approximation model update replaces worst-case bounds with
approximate bounds obtained via series expansions. The proof update then intro-
duces a tactic on each branch of the proof that establishes our approximations
are upper/lower bounds by performing.

Models often assume perfect sensing and actuation. A common way of robus-
tifying a model is to add a piecewise constant noise term to the system’s dynam-
ics. Doing so while maintaining safety invariants requires also updating the con-
troller so that safety envelope computations incorporate this noise term. The
Add Disturbance Term update introduces noise terms to differential equa-
tions, systematically updates controller guards, and modifies the proof accord-
ingly.

Uncertainty in object classification is naturally modeled in terms of sets of
feasible models. In the simplest case, a robot might need to avoid an obstacle that
is either static, moves in a straight line, or moves sinusoidally. Our generic model
update library contains an update that changes the model by making a static
point (x, y) dynamic. For example, one such update introduces the equations
{x′ = −y, y′ = −x} to a system of differential equations in which the variables
x, y do not have differential equations. The controller is updated so that any
statements about separation between (a, b) and (x, y) require global separation
of (a, b) from the circle on which (x, y) moves. The proof is also updated by
4 Extended discussion of these model updates is available in [10, Chapters 8 and 9].
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prepending to the first occurrence of a differential tactic on each branch with a
sequence of differential cuts that characterize circular motion.

Model updates also provide a framework for characterizing algorithms that
combine model identification and controller synthesis. One example is our syn-
thesis algorithm for systems whose ODEs have solutions in a decidable fragment
of real arithmetic (a subset of linear ODEs). Unlike other model updates, we do
not assume that any initial model is provided; instead, we learn a model (and
associated control policy) entirely from data. The Learn Linear Dynamics
update takes as input: (1) data from previous executions of the system, and (2)
a desired safety constraint. From these two inputs, the update computes a set
of differential equations odes that comport with prior observations, a corre-
sponding controller ctrl that enforces the desired safety constraint with cor-
responding initial conditions init, and a Bellerophon tactic prf which proves
init → [{ctrl;odes}∗]safe . Computing the model requires an exhaustive
search of the space of possible ODEs followed by a computation of a safe con-
trol policy using solutions to the resulting ODEs. Once a correct controller is
computed, the proof proceeds by symbolically decomposing the control program
and solving the ODEs on each resulting control branch. The full mechanism is
beyond the scope of this paper but explained in detail elsewhere [10, Chapter 9].

Significance of Selected Updates. The updates described in this section demon-
strate several possible modes of use for VPMUs and μlearning. VPMUS can
update existing models to account for systematic modeling errors (e.g., missing
actuator noise or changes in the dynamical behavior of obstacles). VPMUs can
automatically optimize control logic in a proof-preserving fashion. VPMUS can
also be used to generate accurate models and corresponding controllers from
experimental data made available at design time, without access to any prior
model of the environment.

6 Experimental Validation

The μlearning algorithms introduced in this paper are designed to answer the
following question: given a set of possible models that contains the one true
model, how can we safely perform a set of experiments that allow us to efficiently
discover a minimal safety constraint? In this section we present two experiments
which demonstrate the use of μlearning in safety-critical settings. Overall, these
experiments empirically validate our theorems by demonstrating that μlearning
processes with accurate models do not violate safety constraints.

Our simulations use a conservative discretization of the hybrid systems models,
and we translated monitoring conditions by hand into Python from ModelPlex’s C
output. Although we evaluate our approach in a research prototype implemented
in Python for the sake of convenience, there is a verified compilation pipeline for
models implemented in dL that eliminates uncertainty introduced by discretiza-
tion and hand-translations [7].
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Adaptive Cruise Control. Adaptive Cruise Control (ACC) is a common fea-
ture in new cars. ACC systems change the speed of the car in response to the
changes in the speed of traffic in front of the car; e.g., if the car in front of an
ACC-enabled car begins slowing down, then the ACC system will decelerate to
match the velocity of the leading car. Our first set of experiments consider a sim-
ple linear model of ACC in which the acceleration set-point is perturbed by an
unknown parameter p; i.e., the relative position of the two vehicles is determined
by the equations pos′

rel = velrel, vel′rel = accrel.
In [14], the authors consider the collision avoidance problem when a noise

term is added so that vel′rel = paccrel. We are able to outperform the approach
in [14] by combining the Add Noise Term and Parameter Instantiation
updates; we outperform in terms of both avoiding unsafe states and in terms of
cumulative reward. These two updates allow us to insert a multiplicative noise
term p into these equations, synthesize a provably correct controller, and then
choose the correct value for this noise term at runtime. Unlike [14], μlearning
avoids all safety violations. The graph in Fig. 1 compares the Justified Specu-
lative Control approach of [14] to our approach in terms of cumulative reward;
in addition to substantially outperforming the JSC algorithm of [14], μlearning
also avoids 204 more crashes throughout a 1,000 episode training process.

Fig. 1. Left: The cumulative reward obtained by Justified Speculative Control [14]
(green) and µlearning (blue) during training over 1,000 episodes with each episode
truncated at 100 steps. Each episode used a randomly selected error term that remains
constant throughout each episode but may change between episodes. Right: a visual-
ization of the hierarchical safety environment. (Color figure online)

A Hierarchical Problem. Model update learning can be extended to provide
formal guarantees for hierarchical reinforcement learning algorithms [6]. If each
feasible model m corresponds to a subtask, and if all states satisfying termi-
nation conditions for subtask mi are also safe initial states for any subtask mj

reachable from mi, then μlearning directly supports safe hierarchical reinforce-
ment learning by re-initializing M to the initial (maximal) model set whenever
reaching a termination condition for the current subtask.
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We implemented a variant of μlearning that performs this re-initialization
and validated this algorithm in an environment where a car must first navi-
gate an intersection containing another car and then must avoid a pedestrian
in a crosswalk (as illustrated in Fig. 1). In the crosswalk case, the pedestrian at
(pedx, pedy) may either continue to walk along a sidewalk indefinitely or may
enters the crosswalk at some point between cmin ≤ pedy ≤ cmax (the boundaries
of the crosswalk). This case study demonstrates that safe hierarchical reinforce-
ment learning is simply safe μlearning with safe model re-initialization.

7 Related Work

Related work falls into three broad categories: safe reinforcement learning, run-
time falsification, and program synthesis.

Our approach toward safe reinforcement learning differs from existing
approaches that do not include a formal verification component (e.g., as surveyed
by Garćıa and Fernández [15] and the SMT-based constrained learning approach
of Junges et al. [21]) because we focused on verifiably safe learning; i.e., instead
of relying on oracles or conjectures, constraints are derived in a provably cor-
rect way from formally verified safety proofs. The difference between verifiably
safe learning and safe learning is significant, and is equivalent to the difference
between verified and unverified software. Unlike most existing approaches our
safety guarantees apply to both the learning process and the final learned policy.

Section 2 discusses how our work relates to the few existing approaches
toward verifiably safe reinforcement learning. Unlike those [3,14,17,20], as well
as work on model checking and verification for MDPs [18], we introduce an app-
roach toward verifiably safe off-model learning. Our approach is the first to com-
bine model synthesis at design time with model falsification at runtime so that
safety guarantees capture a wide range of possible futures instead of relying on
a single accurate environmental model. Safe off-model learning is an important
problem because autonomous systems must be able to cope with unanticipated
scenarios. Ours is the first approach toward verifiably safe off-model learning.

Several recent papers focus on providing safety guarantees for model-free
reinforcement learning. Trust Region Policy Optimization [31] defines safety
as monotonic policy improvement, a much weaker notion of safety than the
constraints guaranteed by our approach. Constrained Policy Optimization [1]
extends TRPO with guarantees that an agent nearly satisfies safety constraints
during learning. Brázdil et al. [8] give probabilistic guarantees by performing a
heuristic-driven exploration of the model. Our approach is model-based instead
of model-free, and instead of focusing on learning safely without a model we focus
on identifying accurate models from data obtained both at design time and at
runtime. Learning concise dynamical systems representations has one substantial
advantage over model-free methods: safety guarantees are stated with respect to
an explainable model that captures the safety-critical assumptions about the
system’s dynamics. Synthesizing explainable models is important because safety
guarantees are always stated with respect to a model; therefore, engineers must
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be able to understand inductively synthesized models in order to understand
what safety properties their systems do (and do not) ensure.

Akazaki et al. propose an approach, based on deep reinforcement learning,
for efficiently discovering defects in models of cyber-physical systems with spec-
ifications stated in signal temporal logic [2]. Model falsification is an important
component of our approach; however, unlike Akazaki et al., we also propose an
approach toward obtaining more robust models and explain how runtime falsifi-
cation can be used to obtain safety guarantees for off-model learning.

Our approach includes a model synthesis phase that is closely related to
program synthesis and program repair algorithms [23,24,29]. Relative to work on
program synthesis and repair, VPMUs are unique in several ways. We are the first
to explore hybrid program repair. Our approach combines program verification
with mutation. We treat programs as models in which one part of the model is
varied according to interactions with the environment and another part of the
model is systematically derived (together with a correctness proof) from these
changes. This separation of the dynamics into inductively synthesized models and
deductively synthesized controllers enables our approach toward using programs
as representations of dynamic safety constraints during reinforcement learning.

Although we are the first to explore hybrid program repair, several
researchers have explored the problem of synthesizing hybrid systems from data
[5,30]. This work is closely related to our Learn Linear Dynamics update.
Sadraddini and Belta provide formal guarantees for data-driven model identifi-
cation and controller synthesis [30]. Relative to this work, our Learn Linear
Dynamics update is continuous-time, synthesizes a computer-checked correct-
ness proof but does not consider the full class of linear ODEs. Unlike Asarin et al.
[5], our full set of model updates is sometimes capable of synthesizing nonlinear
dynamical systems from data (e.g., the static → circular update) and produces
computer-checked correctness proofs for permissive controllers.

8 Conclusions

This paper introduces an approach toward verifiably safe off-model learning that
uses a combination of design-time verification-preserving model updates and run-
time model update learning to provide safety guarantees even when there is no
single accurate model available at design time. We introduced a set of model
updates that capture common ways in which models can deviate from reality,
and introduced an update that is capable of synthesizing ODEs and provably
correct controllers without access to an initial model. Finally, we proved safety
and efficiency theorems for active μlearning and evaluated our approach on some
representative examples of hybrid systems control tasks. Together, these contri-
butions constitute a first approach toward verifiably safe off-model learning.
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