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Summary 1

Ras-homology (Rho) family GTPases are conserved molecular switches controlling fun- 2

damental cellular activities in eukaryotic cells. As such, they are targeted by numerous 3

bacterial toxins and effector proteins, which have been intensively investigated regarding 4

their biochemical activities and discrete target spectra; however, molecular mechanisms 5

of target selectivity have remained elusive. Here, we report a bacterial effector protein 6

that targets all four Rac subfamily members of Rho family GTPases, but none of the 7

closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC 8

domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic in- 9

teractions with a subfamily-specific pair of residues in the nucleotide-binding motif and 10

the Rho insert helix. Residue substitutions at the identified positions in Cdc42 facilitate 11

modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly di- 12

minish modification. Our study establishes a structural paradigm for target selectivity 13

towards Rac subfamily GTPases and provides a highly selective tool for their functional 14

analysis. 15

Introduction 16

Small GTPases of the Ras-protein superfamily are molecular switches that control fun- 17

damental cellular functions in eukaryotes by cycling between GTP-bound “on” and 18

GDP-bound “off” conformational states of their switch regions 1 (Sw1) and 2 (Sw2) 19

(Didsbury et al., 1989; Wennerberg et al., 2005). Members of the Ras-homology (Rho) 20

protein family function as signaling hubs and regulate cytoskeletal rearrangements, cell 21

motility, and the production of reactive oxygen species (Heasman and Ridley, 2008; 22

Jaffe and Hall, 2005). Rho family GTPases are defined by the presence of the highly 23

variable, 13 residues long, α-helical Rho insert close to the C-terminus that has been 24

implicated in wiring Rho family GTPases to their specific biological functions (Bokoch 25

and Diebold, 2002; Karnoub et al., 2004). Additionally, the otherwise invariable TKxD 26

Ras-nucleotide-binding motif is altered to TQxD in a subset of Rho family GTPases. 27

Due to their central role in eukaryotic cell signalling Rho family GTPases are targeted 28

by a plethora of bacterial virulence factors, including secreted bacterial toxins that 29
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autonomously enter host cells and effector proteins that are directly translocated from 30

bacteria into host cells via dedicated secretion systems (Aktories, 2011, 2015). By 31

means of these virulence factors, pathogens established ways to stimulate, attenuate or 32

destroy the intrinsic GTPase activity of Rho family GTPases, either directly through 33

covalent modification of residues in the Sw1 or Sw2 regions (Aktories, 2015), or indirectly 34

by mimicking guanine nucleotide exchange factor (GEF) or GTPase-activating protein 35

(GAP) function. However, the structural basis for selective targeting of Rho family 36

GTPase subfamilies has remained unknown (Aktories, 2011). 37

The bacterial genus Bartonella comprises a rapidly expanding number of virtually 38

omnipresent pathogens adapted to mammals, many of which have been recognized to 39

cause disease in humans (Wagner and Dehio, 2019). The stealth infection strategy of 40

Bartonella spp. (Harms and Dehio, 2012) relies to a large extend on translocation of 41

multiple Bartonella effector proteins (Beps) via a dedicated type IV secretion system. 42

Strikingly, the majority of the currently known several dozens of Beps contains enzy- 43

matic FIC domains (Harms et al., 2017; Wagner and Dehio, 2019), indicating that 44

Bartonella spp. successfully utilize this effector type in their lifestyle. In order to gain 45

more insights into the function of FIC domain-containing Beps we have here investigated 46

Bep1 of Bartonella rochalimae originally described by (Harms et al., 2017). 47

FIC (filamentation induced by cyclic AMP) domain-containing effector proteins rep- 48

resent a family of ubiquitous proteins with a conserved molecular mechanism for post- 49

translational modification of target proteins. FIC domains are comprised of six helices 50

with a common HxFx(D/E)GNGRxxR motif between the central helices 4 and 5 (Harms 51

et al., 2016). Some of the FIC domain-containing effector proteins have been recognized 52

to modify Rho family GTPases by catalyzing transfer of the AMP-moiety from the ATP 53

substrate to specific target hydroxyl side-chains (reviewed in Harms et al., 2016; Hedberg 54

and Itzen, 2015). Prototypical examples are the effector proteins IbpA from Histophilus 55

somnii and VopS from Vibrio parahaemolyticus, which both target a wide range of Rho 56

family GTPases and AMPylate (adenylylate) a conserved tyrosine or threonine residue 57

of Sw1, respectively (Mattoo et al., 2011; Worby et al., 2009; Yarbrough et al., 2009). 58

Both modifications result in abrogation of downstream signaling, causing collapse of the 59

cytoskeleton of the host cell and subsequent cell death (Roy and Cherfils, 2015). Here, 60

we show that the FIC domain of Bartonella effector protein 1 of Bartonella rochalimae 61

(Bep1) AMPylates the same Sw1 tyrosine residue as IbpA, while the target spectrum 62

is strictly limited to the Rac subfamily of Rho GTPases. Employing a combination of 63

structural analysis, modelling, biochemistry, and mutational analysis, we identify the 64

structural determinants of this remarkable target selectivity. Our findings highlight 65

the potential of Bep1 as a novel tool for dissecting Rho family GTPase activities and 66

provide a rationale for the re-design of its target selectivity. 67
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Results 68

Bep1 selectively AMPylates Rac subfamily GTPases 69

Bep1 is composed of a canonical FIC domain followed by an oligosaccharide binding 70

(OB) fold and a C-terminal BID domain (Harms et al., 2017). Latter domain is impli- 71

cated in recognition and translocation by the type 4 secretion system VirB/VirD4 of 72

Bartonella (Schulein, Guye et al., 2005; Wagner et al., 2019). 73

In search for Bep1 targets we performed AMPylation assays by incubating lysates 74

of E. coli expressing Bep1 with eukaryotic cell lysates and α-32P-labelled ATP and ob- 75

served a radioactive band migrating with an apparent molecular weight of 20 kDa (Fig. 76

S1A), consistent with modification of Rho family GTPases as previously described for 77

IbpA and VopS (Worby et al., 2009; Yarbrough et al., 2009). To investigate further, we 78

explored the target spectrum of Bep1 and compared it to those of the FIC domains of 79

IbpA (IbpAFIC2) or VopS (VopSFIC) by selecting 19 members of the Ras superfamily 80

(Fig. 1A) with an emphasis on members of the Rho family. While AMPylation activity 81

of all three enzymes was strictly confined to Rho family GTPases, their target selec- 82

tivity spectra differed markedly: While Bep1 modified exclusively members of the Rac 83

subfamily (i.e., Rac1/2/3, and RhoG), the target spectrum of IbpAFIC2 comprised all 84

Rho GTPases with the exception of RhoH/U/V and the Rnd subfamily, and VopSFIC 85

was found to be fully indiscriminative (Fig. 1A, summarized in D). 86

Figure 1. Bep1 selectively targets Rac subfamily GTPases. (A) 32P-autoradio-
grams of in vitro AMPylation reactions using the indicated purified and GDP-loaded
Rho family GTPases display exquisite selectivity of full-length Bep1 for Rac subfamily
GTPases in contrast to the broader target spectrum of IbpAFIC2 and VopSFIC. (B) The
FIC domain of Bep1 in complex with the regulatory protein BiaA (Bep1FIC*) is sufficient
for the recognition of Rac subfamily GTPases and the catalytic H170 is required for
AMPylation. (C) Bep1FIC* AMPylates residue Y32 of Rac1 and RhoG, since the
respective Y32F mutants are not modified. AMPylation by the T35-specific VopSFIC
indicates structural integrity of the analyzed GTPases and their Y32F mutants. (D)
Venn diagram showing AMPylation target selectivity of tested FIC domains, overlaid
to the phylogenetic relation of Rho-family GTPases (Heasman and Ridley, 2008).

Next, we designed a minimal Bep1FIC construct (residues 13 – 229) that proved 87

sufficient for selective target modification. Bep1 belongs to the class I of FIC proteins 88

that are regulated by a small regulatory protein, here BiaA, that inhibits FIC activity 89

by inserting a glutamate residue (E33) into the ATP binding pocket (Engel, Goepfert et 90

al., 2012). In order to improve expression level and stability, we co-expressed Bep1FIC 91
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with an inhibition relieved mutant (E33G) of BiaA, yielding the stabilized minimal 92

AMPylation-competent Bep1FIC/BiaAE33G complex, in short Bep1FIC*. 93

Bep1FIC* efficiently AMPylates its targets and the activity depends on the presence 94

of the catalytic histidine (H170) of the signature motif (Fig. 1B), consistent with the 95

canonical AMPylation mechanism (Engel, Goepfert et al., 2012). Bep1FIC*, in contrast 96

to VopSFIC, does not AMPylate Rac1Y32F (Fig. 1C), indicating that Bep1FIC* modifies 97

Y32 of the Rac1 Sw1 as confirmed by mass spectrometry (Fig. S1C). Thus, Bep1FIC* 98

catalyzes the equivalent modification as IbpAFIC2 (Worby et al., 2009; Xiao et al., 99

2010), whereas VopS modifies T35 (Yarbrough et al., 2009). In contrast to the GDP- 100

form, GTP-loaded GTPases may not be amenable to FIC-mediated modification of 101

Y32 since this residue is known to be involved in GTP binding via interaction with 102

the γ-phosphate group (Lapouge et al., 2000) (Fig. S2D). Indeed, exchanging GDP 103

against GTP efficiently protected the GTP hydrolysis deficient mutant Rac1Q61L from 104

modification and the same effect was observed, when replacing GDP bound to wild-type 105

Rac1 with non-hydrolysable GTPγS (Fig. S2C). Thus, we conclude that GDP-loaded 106

GTPases are the physiological targets of Bep1-mediated AMPylation. 107

The crystal structure of Bep1FIC* reveals an extended target 108

recognition flap 109

To reveal the structural basis of target selectivity, we solved the crystal structure of 110

Bep1FIC* to 1.6Å resolution. The structure (Fig. 2) closely resembles those of other 111

FIC domains with AMPylation activity such as VbhT (Engel, Goepfert et al., 2012), 112

IbpA (Xiao et al., 2010), and VopS (Luong et al., 2010), featuring the active site defined 113

by the conserved signature motif encompassing the α4-α5 loop and the N-terminal part 114

of α5. Comparison with the apo crystal structure of the close Bep1 homolog from B. 115

clarridgeiae (PDB ID 4nps) shows that the presence of the small regulatory protein 116

BiaA in Bep1FIC* does not affect the structure of the FIC domain (Fig. S2B). 117

The active site is partly covered by a β-hairpin ‘flap’ (Fig. 2A) that serves to register 118

the segment carrying the modifiable side-chain (here Sw1) to the active site via β- 119

sheet augmentation, as has been inferred from bound peptides (Goepfert et al., 2013; 120

Yarbrough et al., 2009), observed directly in the IbpAFIC2:Cdc42 complex (Xiao et al., 121

2010), and discussed elsewhere (Roy and Cherfils, 2015). Strikingly, the flap of Bep1 122

and its orthologs in other Bartonella species (Fig. S2A) is considerably longer than in 123

other FIC structures (e.g., of IbpAFIC2) and features a well-defined bulge at its tip (Fig. 124

2B, C). 125

Bep1FIC:target model suggests that charged residues of the flap 126

determine target selectivity 127

The complex structure of a FIC enzyme with a small GTPase target and the mechanism 128

of FIC catalyzed AMPylation reaction has been elucidated for IbpAFIC2 in complex 129

with GDP-loaded Cdc42 (Xiao et al., 2010) (Fig. 3B). The detailed view in Fig. 3D 130

shows that the Sw1 segment of Cdc42 exhibits an extended conformation and forms 131

antiparallel, largely sequence independent, β-sheet interactions with the flap of the FIC 132

enzyme, thereby aligning the modifiable Y32 with the active site. Considering the 133

close structural homology of the catalytic core of Bep1FIC with IbpAFIC2 (rmsd = 1.0Å 134

for 32 Cα atoms in the active site helices) and of Rac subfamily GTPases with Cdc42 135

(0.44Å /175), we reasoned that computational assembly of a Bep1FIC:Rac complex could 136

provide a structural basis for an understanding of Bep1 target selectivity. 137

Fig. 3A shows the assembled Bep1FIC:Rac2 complex that was obtained by individual 138

superposition of (1) the Bep1FIC active site helices and the flap with the corresponding 139
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Figure 2. Crystal structure of Bep1FIC* reveals extended flap. (A) Cartoon
representation of the crystal structure of the Bep1FIC:BiaA complex (Bep1FIC*) deter-
mined in this work. The regulatory protein BiaA is shown in light grey. The FIC
domain fold is shown in light brown, with the central FIC helices (α4-α5) in blue. The
FIC signature loop with the catalytic H170 is shown in yellow, the FIC flap covering
the active site in dark brown. (B) Detailed view of the Bep1 flap region (PDB ID 5eu0,
this study). Structural flap elements are stabilized by an H-bonding network involv-
ing main-chain and side-chain groups. H-bonds are shown by grey dashed lines. The
base of the flap forms a two-stranded β-sheet, with the N-terminal part constituting
the target dock. The tip of the flap forms an i > i+3 turn between N115 and T118,
which is further stabilized by the sidechain of N115. The tip is followed by a bulge
and a conserved proline residue and stabilized by interactions of the backbone with a
central water (in red). This arrangement suggests, that the well-defined structure of
the flap orients sidechains K117 and D119 for target interaction. (C) Overlay of flaps
from Bep1FIC (brown) and IbpAFIC2 (turquoise). Residues at the tip of both flaps are
indicated. Compared to Bep1, the flap of IbpA is 6 residues shorter amounting to 8Å
(see Fig. S2A).

elements in IbpAFIC2 and (2) of the Sw1 loop of Rac2 with that of Cdc42. Thereby, we 140

assumed implicitly that the interaction between these central segments should be very 141

similar, since both FIC enzymes utilize a homologous set of active residues to catalyze 142

AMP-transfer to a homologous residue (Y32) on Sw1. 143

The local structural alignment resulted in a virtually identical relative arrangement of 144

the FIC core to the GTPase as in the template structure (compare Figs. 3A and B) and 145

caused no steric clashes. Conspicuously, the extended Bep1FIC flap is accommodated 146

in a groove formed by Sw1, the nucleotide binding T(K/Q)xD motif, and the following 147

Rho-insert helix (Fig. 3C; Fig. S2E). 148
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149

Figure 3. Bep1FIC:Rac2 complex model suggests charged interactions be- 150

tween FIC flap and targets. 151

(A) Bep1FIC:Rac2 complex model and (B) IbpAFIC2:Cdc42 crystal structure (PDB 152

4itr). The FIC fold is shown in light brown. The FIC signature loop with the catalytic 153

H170 is shown in yellow, the FIC flap covering the active site in brown. GTPases 154

are shown as surface representation with indicated structural elements distinguished by 155

color: Switch 1 (Sw1) in orange, Switch 2 (Sw2) in red and Rho-insert in green. The 156

extension of the Bep1FIC flap is accommodated in a groove formed by the T(K/Q)xD 157

motif and the Rho insert (B), whereas the arm domain of IbpA (in blue) contacts 158

the effector binding regions, Sw1 and Sw2, of the GTPase. (C, D) Comparison of 159

intermolecular interactions in (C) the Bep1FIC:Rac2 model and (D) the IbpAFIC2:Cdc42 160
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complex. H-bonding and electrostatic interactions are indicated by dashed lines in grey. 161

The tip of the Bep1FIC flap is accommodated in a groove, with K117 and D119 in 162

favorable position to interact with D124 and K116 of Rac2, respectively. (D) In the 163

IbpAFIC2:Cdc42 complex the Rho insert region is not involved in such interaction. (E) 164

Structure-guided sequence alignment of the GTPases of the Rho, Ras, and RalA/B 165

families. The K116/D124 configuration (marked with a star) is unique to Rac1/2/3 and 166

RhoG (light yellow). Residue numbers refer to Rac1, names of representative members 167

of Rho subfamilies are indicated in bold. 168

The manually created complex model was used as input for an adapted Rosetta- 169

modelling protocol to allow for sampling of backbone and side-chain torsion angles in 170

the interface of the complex, as described in the method section (Barlow et al., 2018; 171

Kapp et al., 2012). Consistent with the low affinity of the complex in vitro (see below), 172

the models confirm the relatively small interface area of approximately 800Å2. Common 173

to all top scoring models we find that the modifiable residue Y32 is pointing towards 174

the active site of Bep1, where it is held in place by a mainchain-mediated interaction 175

between the base of the flap and the Sw1 loop of the GTPase (Fig. S3A), indicating 176

that the configuration of active site residues and the modifyable tyrosine side-chain is, 177

indeed, most likely the same as in the template complex. 178

However, in the IbpAFIC2:Cdc42 complex, the aforementioned GTPase groove on the 179

nucleotide binding face is not utilized for the contact (Fig. 3D). Instead, the so called 180

arm domain of IbpAFIC2 (Fig. 3B) constitutes a major part of the interface and contacts 181

the highly conserved Sw2 loop of Cdc42. This rationalizes the broad target spectrum 182

of arm domain-containing FIC AMP-transferases like IbpA and VopS (Harms et al., 183

2016; Luong et al., 2010). In turn, residues of the groove predicted to get recognized 184

exclusively by Bep1FIC are likely to be important for the limited target range of Bep1. 185

Conspicuously, the top scoring models revealed two potential salt-bridges between the 186

Bep1 flap and the Rac2 groove, namely D119(Bep1) - K116(Rac2) and K117(Bep1) - 187

D124(Rac2) (Fig. 3C, S3A). Since the combination of K116 and D124 is exclusively 188

found in the Rac sub-family as revealed by sequence alignment of Rho family GTPases 189

(Fig. 3E), we reasoned that these residues may contribute significantly to the specific 190

recognition of Rac GTPases by Bep1 (Fig. 1A). 191

Two salt-bridges between flap and target are crucial for selective 192

interaction of Bep1FIC with Rac subfamily GTPases 193

The relevance of the two identified salt-bridges in the Bep1FIC*:Rac2 complex (Fig. 194

3C) for affinity and selectivity was tested by single- and double replacements of the 195

constituting residues 116 and 124 in a Bep1 target and a non-target GTPase. For Rac1, 196

we tested if substitutions at these residues with corresponding amino acids of Cdc42 197

- a non-target of Bep1 with the highest conservation in regions flanking the proposed 198

interaction sites (Fig. 3E) - influence target recognition (loss-of-function approach, see 199

interaction schemes in Fig. 4A). In addition, we tested whether Cdc42 can be converted 200

to a Bep1 target by reciprocal substitution(s) of these sites with the corresponding Rac1 201

residues (gain-of-function approach, Fig. 4B). 202

First, we applied, as for Fig. 1A, the autoradiography end-point assay with [α-32P]- 203

ATP as substrate. Compared to wild-type Rac1, mutant D124S showed no significant 204

difference in the amount of AMPylated target, whereas AMPylation of mutant K116Q 205

and, even more, of the double mutant was found drastically reduced (Fig. 4C, S4A). 206

Conversely, in the gain-of-function approach, Cdc42 mutant S124D did not convert 207

the GTPase to a Bep1 target, while mutant Q116K mutant and the double mutant 208

showed low, but significant AMPylation (Fig. 4D, S4B). In a fairly undiscriminating 209

way, IbpAFIC2 modified all investigated GTPase variants (Fig. S4C,D) indicating their 210
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Figure 4. Two salt-bridges are crucial for Rac subfamily-selective AMPy-
lation.(A) Schematic view of the two intramolecular Bep1FIC:Rac1 salt-bridges (left)
and their partial disruption upon site-directed Rac1 mutagenesis, yielding Rac1 loss-
of-function mutants (right). (B) Absence of ionic interactions in the predicted
Bep1FIC:Cdc42 interface (left) and partial establishment of salt-bridges in Cdc42 gain-
of-function mutants (right). (C, D) AMPylation of the variants given in panels (A,
B) as measured by autoradiography. Note that, due to the employed higher Bep1FIC*
concentration (see Material and Methods), the experiments in panel D also revealed
auto-AMPylation of Bep1FIC*. (E, F) Enzymatic efficiency constants, kcat/KM, for
Bep1FIC* catalyzed AMPylation of the GTPase variants shown in (A, B) as derived
from the oIEC measurements shown in Figure S4. b.d. – below detection limit.
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proper folding. Together, the semi-quantitative radioactive end-point assay demon- 211

strated a major role of K116 in target recognition by Bep1FIC*, while a contribution of 212

D124 could not be demonstrated. 213

To overcome the limitations of the radioactive end-point assay and to characterize 214

target AMPylation quantitatively, we developed an online ion exchange chromatography 215

(oIEC) assay (see Methods) which allows efficient acquisition of enzymatic progress 216

curves to determine initial velocities, vinit (see for instance inset to Fig. S4F). For 217

AMPylation of Rac1 by Bep1FIC*, titrations experiments yielded 0.52 mM and 1.4 mM 218

for the substrates ATP and Rac1, respectively, and a kcat of 1.9 s-1. The comparison with 219

published values on other Fic AMP transferases (Tab. S1) shows that the KM values 220

are comparable to IbpA, but that kcat is smaller by about two orders of magnitude. 221

Considering the physiological conditions in the cell with an ATP concentration above 222

KM, Bep1 can be expected to be saturated with ATP and only partially loaded with the 223

target ([target] << KM,target). In such a regime, the AMPylation rate will be given by 224

v = (kcat/KM,target) · [E0] · [target] (Marangoni, 2002) 225

i.e., will depend solely on the second order rate constant kcat/KM,target (efficiency 226

constant), which is, thus, the relevant parameter for enzyme comparison. Next, we 227

determined the efficiency constants for all GTPase variants. In the loss-of-function 228

series, the single mutants reduced the efficiency constant by 2- and 6-fold, the double 229

mutant by about 30-fold (Fig. 4E, Table S1). In the gain-of-function series, wild-type 230

Cdc42 showed no and mutant S124D only marginal modification, while mutant Q116K 231

showed a very significant (about 30-fold larger than that of S124D) effect. Again, as in 232

the previous series, the double mutant showed the largest effect that was greater than 233

the sum of the two single mutant contributions (Fig. 4F, Table S1). Summarizing, the 234

quantitative oIEC assay confirmed the prominent dependence of Bep1FIC* catalyzed 235

target modification on the type of residue in target position 116 that had already been 236

revealed by the radioactive endpoint assay and predicted by modeling (Fig. S3A), but 237

also demonstrated a significant influence of the residue in position 124. Importantly, the 238

activity data indicate a significant synergistic effect of the two salt bridges on reaction 239

efficiency, which leads to a more than additive decrease or increase of the efficiency 240

constant in the double mutants. Thus, for a substantial change of Bep1 AMPylation 241

efficiency both salt-bridges appear to be crucial. 242

Discussion 243

Although many protein interaction surfaces of Rho family GTPases have been described 244

(Dvorsky and Ahmadian, 2004; Vetter and Wittinghofer, 2001) the basis of discrimina- 245

tion between these structurally conserved but functionally diverse GTPases remained 246

elusive, especially with regard to the role of the highly divergent Rho-insert element. 247

Our structure-function analysis establishes a molecular paradigm of target selectivity 248

for Rac subfamily GTPases that is encoded by intermolecular interaction with the Rho- 249

family specific structural elements. We anticipate that similar mechanisms may be 250

also used by endogenous Rho family GTPase interacting proteins in the physiological 251

context. 252

We speculate that in the infection process of Bartonella spp., the selective inactiva- 253

tion of Rac subfamily GTPases plays a critical role for specifically evading the innate 254

immune response, without causing the collateral damage and activation of the immune 255

system associated with broad-spectrum Rho-GTPase toxins like VopS or IbpA. 256

Patients with impaired signaling of Rac-subfamily GTPases cannot clear bacterial 257

infections due to diminished ability for ROS production in immune cells, as seen in 258
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patients suffering from chronic granulomatosis disease (CGD) or case studies from pa- 259

tients with dysfunctional Rac2 genes resulting in neutrophil immunodeficiency syndrome 260

(NEUID) (Ambruso et al., 2000; Kurkchubasche et al., 2001). At the same time, Rac 261

subfamily-selective AMPylation does not trigger a response of the innate immune system 262

via activation of the pyrin inflammasome, which has been shown to accompany inacti- 263

vation of RhoA by covalent modification in the Sw1 region (Xu et al., 2014), potentially 264

providing a substantial benefit for Bartonella spp. in order to establish a largely asymp- 265

tomatic chronic infection in their host. Along these lines, we speculate that selective 266

targeting of GDP complexed Rac subfamily GTPases provides the additional benefit 267

that protein levels of GDP-bound Rac are not down-regulated via proteasomal degra- 268

dation (Lynch et al., 2006), allowing to build a stable pool of inactive Rac subfamily 269

GTPases that would subdue Rac-mediated immune responses effectively. 270

Beyond providing a molecular paradigm for target selectivity among Rho family GT- 271

Pases, the narrow target spectrum of Bep1 for Rac subfamily GTPases also provides a 272

unique tool for dissecting their specific functions in cellular processes, such as cytoskele- 273

tal rearrangements related to the Rac1-dependent formation of membrane ruffles, the 274

Rac2/RhoG-dependent production of reactive oxygen in immune cells, or the role of 275

Rac1 in carcinogenesis. 276

Considering the simple topology and small size of the FIC domain, we find a surpris- 277

ingly modular division of functions. While the conserved catalytic core allows efficient 278

AMPylation of a target hydroxyl residue located in an extended loop that registers to 279

the active site via β-strand augmentation, target affinity and thereby selectivity is en- 280

coded separately in a short loop insertion. The modular nature and amenable size of 281

this structural framework appears well suited for the rational design of synthetic Rho 282

subfamily selective FIC domain AMP-transferases with novel physiological activities 283

and beyond. 284
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Star*Methods 310

Contact for reagent and resource sharing 311

Requests for further information and for resources and reagents should be directed to 312

and will be fulfilled by the Lead Contact Christoph Dehio (christoph.dehio@unibas.ch). 313

Method details 314

Protein expression and purification. The FIC domain of Bep1 was cloned, ex- 315

pressed and purified in complex with the inhibition-relieved regulatory protein BiaAE33G 316

as described for the crystallization construct and is subsequently referred to as Bep1FIC*. 317

For the generation of cleared bacterial lysate, the bacterial pellet was resuspended in 318

reaction buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM MgCl2) supplemented 319

with protease inhibitor cocktail (complete EDTA-free mini, Roche) and lysed by soni- 320

cation. After clearing the lysates by centrifugation (120’000 g for 30 min. at 4°C), the 321

supernatant was directly used in the assays or stored at -20°C. Protein expression and 322

purification of GST- or HIS-tagged GTPases and GST-tagged FIC domains of VopS and 323

IbpA followed standard GST- or HIS-fusion-tag protocols. In short: E. coli BL21 or 324

BL21 AI (Invitrogen) were transformed with expression plasmids and used for protein 325

expression. Bacteria were grown in LB medium supplemented with appropriate antibi- 326

otic on a shaker until A600 = 0.6 to 0.8 at 30°C. Protein expression was induced by 327

addition of 0.2 mM isopropyl-β-D-thiogalactopyranoside (IPTG) (AppliChem GmbH, 328

Darmstadt, Germany) or 0.1% w/v arabinose (Sigma-Aldrich, Germany) for 4-5 h at 329

22°C. 330

Bacteria were harvested by centrifugation at 6’000 g for 6 min. at 4°C, resuspended 331

in lysis buffer (20 mM Tris-HCl pH 7.5, 10 mM NaCl, 5 mM MgCl2, 1% Triton X-100, 5 332

mM DTT and protease inhibitor cocktail (protean Mini EDTA-free, Roche)) and lysed 333

using a French press (Thermo Fisher). After ultracentrifugation at 120’000 g for 20 min 334

at 4°C the cleared lysate of GST-tagged GTPases was added to equilibrated glutathione- 335

Sepharose resin (Genescript, USA) and incubated for 1 h at 4°C on a turning wheel. 336

After four washing steps with wash buffer (20 mM Tris-HCl pH 7.5, 10 mM NaCl, 5 337

mM MgCl2) the bound protein was eluted with wash buffer supplemented with 10 mM 338

reduced glutathione (Sigma-Aldrich, Germany). 339

Cleared lysate of His-tagged GTPases was injected on HisTrap HP columns (GE 340

Healthcare) after equilibration with binding buffer (50 mM Hepes pH 7.5, 150 mM 341

NaCl, 5 mM MgCl2, 20 mM imidazole). Washing with 10 column volumes of binding 342

buffer was followed by elution with 5 column volumes of elution buffer (50 mM Hepes 343

pH 7.5, 150 mM NaCl, 5 mM MgCl2, 500 mM imidazole). HIS-tagged GTPases were 344

incubated with 50 mM EDTA and further purified by size exclusion chromatography 345

(HiLoad 16/600 Superdex 75 pg, GE Healthcare) with SEC buffer (50 mM Hepes pH 7.5, 346

150 mM NaCl, 5 mMMgCl2, 50 mM EDTA). EDTA was removed by buffer exchange (50 347

mM Hepes pH 7.5, 150 mM NaCl, 5 mM MgCl2) and the protein used for quantitative 348

AMPylation assays. 349

Nucleotide-loading of GTPases. To preload purified GTPases with the respective 350

nucleotide, 50 µM protein was incubated with 3 mM nucleotide (GDP, GTP or GTPγS) 351

and 8 mM EDTA in reaction buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM 352

MgCl2) for 20 min at room temperature. To stop nucleotide exchange 16 mM MgCl2 353

(final) was added. The protein was then used for both in vitro AMPylation assays. 354

Radioactive AMPylation assay. In vitro AMPylation activity was assayed using 355

either cleared bacterial lysates expressing full-length Bep1 or purified FIC domains of 356
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Bep1, VopS and IbpA. 357

To analyse the AMPylation activity of Bep1, Bep1FIC*, VopSFIC and IbpAFIC2, 10 358

µM purified GTPase, preloaded with respective nucleotide, was incubated in presence 359

of the respective AMPylator with 10 µCi [α-32P]-ATP (Hartmann Analytic) in reaction 360

buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM MgCl2 containing 0.2 mg/ml 361

RNaseA) for 1 h at 30°C. The reaction was stopped by addition of SDS-sample buffer 362

and heating to 95°C for 5 min. Samples were separated by SDS-PAGE, and subjected 363

to autoradiography. 364

For AMPylation of Rac1, Cdc42 and their mutant variants, 5 µM of purified HIS- 365

tagged GTPases, preloaded with GDP, were incubation with Bep1FIC* (1 µM and 5 µM 366

in Rac1 and Cdc42 variants, respectively) in the presence of [α-32P]-ATP for 40 min in 367

reaction buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM MgCl2) at 20°C. 368

Quantitative AMPylation assay. We developed online ion exchange chromatogra- 369

phy (oIEC) assay, monitoring the UV absorption of GTPase targets at 260 nm. The 370

observed increase in absorbance due to AMPylation could be readily quantified and 371

resulted in progress curves that yielded reaction velocities and in turn AMPylation 372

efficiencies (kcat/KM ). 373

A 1 ml Resource Q column (GE Healthcare) was equilibrated with loading buffer 374

(20 mM Tris/HCl pH 8.5 or 6.5 for Rac1 or Cdc42, respectively). The purified GTPase 375

variant was mixed with Bep1FIC* in reaction buffer (50 mM Tris-HCl pH 7.5, 150 mM 376

NaCl, 5 mM MgCl2) in a large volume (200 µl) and the reaction was started at t = 0 377

by addition of 3.2 mM ATP (final concentration, supplemented with 6.4 mM MgCl2). 378

A small fraction (20 µL) of the reaction mixture was injected automatically on the 379

column at intervals of 6 minutes. After washing with loading buffer, a gradient of 380

elution buffer (1 M (NH4)2SO4 in loading buffer) was applied, yielding a chromatogram 381

for each injection. Reaction progress was monitored by quantification of GTPase peak 382

area measured at 260 nm from each chromatogram by numerical peak integration. Note 383

that this peak comprised both native and AMPylated GTPase. A heuristic quadratic 384

function was fitted to the progress curves to yield the initial velocity. Calibration with 385

ATP samples of known concentrations allowed to derive absolute AMPylation velocities. 386

Enzymatic KM and kcat parameters were derived from vinit(S) type Michaelis-Menten 387

plots (see Fig. S4F and G). Depending on the activity, Bep1FIC* concentrations were 388

chosen such that the enzyme velocities were kept within a similar range (see Fig S4H 389

and I). Nominal GTPase concentrations were corrected based on the back-extrapolated 390

peak absorbance at t = 0. Fitting of single-substrate kinetic measurements by the 391

Michaelis-Menten equation was developed in python3 with standard modules provided 392

in the Anaconda distribution. 393

Crystallization and structure determination. The full-length biaA gene that 394

codes for the small ORF directly upstream of bep1 gene and part of the bep1 gene from 395

Bartonella rochalimae encoding the FIC domain (amino acid residues 13-229) were PCR 396

amplified from genomic DNA. The PCR products for biaA and the fragment of bep1 397

were cloned into the vector pRSF-Duet1. pRSF-Duet1 containing biaA or bep1 were 398

introduced into E. coli BL21 (DE3) by transformation. The constructs were expressed 399

and purified as described for VbhA/VbhT(FIC) (Engel, Goepfert et al., 2012) with the 400

difference that 5 mM DTT was additionally used throughout the purification procedure. 401

Fractions were pooled and concentrated to 13.6 mg/ml for crystallization. Crystals 402

were obtained at 4°C using the hanging-drop vapour diffusion method upon mixing 1 403

µl protein solution with 1 µl reservoir solution. The reservoir solution was composed 404

of 0.2 M HEPES (pH 7.5), 2.3 M ammonium sulphate and 2% v/v PEG 400. For 405

data collection, crystal was frozen in liquid nitrogen without additional cryoprotectant. 406
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Diffraction data were collected on beam-line X06SA (PXIII) of the Swiss Light Source 407

(λ= 1.0 Å) at 100K on a MAR CCD detector. Data were processed with XDS and 408

the structure solved by molecular replacement with Phaser (McCoy et al., 2007) using 409

the VbhA/VbhT(FIC) structure (PDB ID 3shg) as search model. Several rounds of 410

iterative model building and refinement were performed using Coot (Emsley et al., 2010) 411

and Buster (Bricogne et al., 2016), respectively. The final structure shows high similarity 412

to the VbhA/VbhT(FIC) structure (rmsd 1.44 Å for 183 Cα positions). Crystallographic 413

data are given in Table S2. Figures have been generated using Pymol (2015). 414

Homology modelling of the Bep1:target complex and generation of structure 415

based sequence alignments. The input structure for homology modelling was cho- 416

sen from all available Rac subfamily structures (i.e., Rac1-3 and RhoG). In total, 43 417

PDB-entries were analysed (Table S3). Cdc42 (chain D) of the IbpA-Cdc42 complex 418

served as reference for all superimpositions. The superimposition was carried out in 419

two steps: A global superimposition over all Cα atom positions and second, local super- 420

imposition using all atom positions of the residues 27-37 (Sw1) of Cdc42. Both steps 421

used the align–algorithm implemented in Pymol (version 1.8) with standard settings. 422

We observed high structural agreement between Rac subfamily GTPase structures in 423

the PDB and the reference chain with an average CαRMSD below 0.5Å. In contrast, 424

we noticed large variations in the all-atom RMSDs of residues in the Sw1 region, that 425

correlate with the nucleotide state of the GTPase. In order to find the most suitable 426

PDB for homology modelling we searched for the smallest coordinate deviations to the 427

Sw1 conformation of the Cdc42 reference chain: Three GDP-loaded GTPase structures 428

display a RMSD of coordinates to the template below 1Å (Table S3). Two of these 429

structures are complexes of the Rho-GDP-dissociation inhibitor (RhoGDI) with either 430

Rac1 (PDB: 1hh4) or Rac2 (PDB: 1ds6) representing the cytosolic “storage form” of 431

the GTPases. The third structure is the Zn2+-bound trimeric form of Rac1 (PDB: 432

2P2L), in which Sw1 is involved in the Zn2+-mediated trimer interface. From these 433

candidate PDBs, we chose 1ds6 as the most appropriate for homology modelling, since 434

it represents a physiological state of a Rac-GTPase (in contrast to 2P2L). Further, 1ds6 435

features a fully resolved Sw1-region and a higher resolution compared to entry 1hh4. To 436

correspond closely to the reference structure, we built an alternative standard rotamer 437

for the solvent-exposed Y32 of Rac2 in the PDB 1ds6 (Fig. 3C). The FIC domains of 438

Bep1 and IbpA were superimposed using the Cα atom positions of flap residues that 439

adopt a β-sheet like conformations in order to mimic the catalytically active confor- 440

mation of the IbpA:Cdc42 complex. Superimposing IbpAFIC2 residues 3667-3670 and 441

3673-3677, corresponding to Bep1 residues 110-113 and 122-126, respectively yields a 442

rms error of 0.87Å for 9 Cα pairs. Modelling of the complex structure was carried out 443

using the manually selected, superimposed and curated model described above as start- 444

ing structure for an adapted flexDDG protocol (Barlow et al., 2018) implemented in 445

the Rosetta package. In short: Ligands (GDP and hydrated Mg2+) and ordered water 446

molecules (as found in PDB entry 1ds6, as well as 1 water molecule in the center of 447

the Bep1 flap, shown in Figure 2B), that are part of the protein complex interface were 448

parameterized for the use in Rosetta and included in the modelling process to increase 449

precision and validity of the resulting models. The selected small molecules had been 450

refined with B-factors that are comparable to neighbouring mainchain atoms in the re- 451

spective PDB entries (1ds6 and 5eu0). Next, the curated input model is subjected to 452

a global minimization of backbone and side chain torsions in Rosetta (Minimize step) 453

followed by local sampling of backbone and sidechain degrees of freedom for all residues 454

with C-β atoms within 10Å distance of Rac2 residue D124 (Backrub step). The side 455

chains of the resulting models are optimized globally (Packing step) and backbone and 456

side chain torsion energies are minimized globally (Minimize Step 2). Finally, models 457
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are scored on the all atom level using the suggested talaris_2014 function (Barlow et 458

al., 2018) and best scoring models were analysed visually. The recommended total of 459

35 independent simulations is calculated for the complex with a maximum number of 460

5000 minimization iterations (convergence limit score 1.0) and 35000 backrub trial steps 461

each. Structure guided multiple sequence alignments (MSA) were generated by manual 462

adjustment of MSA generated using the ClustalW algorithm as implemented in the 463

GENEIOUS software package (Kearse et al., 2012) version 7.1.7. 464

Quantification and statistical Analysis 465

Statistical parameters are indicated in figures and respective legends. Error bars in 466

quantitative AMPylation assays show the standard deviation of reaction efficiencies 467

(kcat/KM) derived from the least-square minimization of the fitting routine. 468

Data and software availability 469

Accession numbers for the most important structures used in this study are as follow- 470

ing: Bep1FIC:BiaA (PDB ID: 5EU0, B. rochalimae Bep1 uniprot ID: E6YJU0 and 471

BiaA uniprot ID: E6YLF5), IbpAFIC2:Cdc42 (PDB ID: 4ITR) and Rac2 (PDB ID: 472

1ds6). Data analysis for quantitative AMPylation assays was performend in-house 473

with python3. Source code will be made available upon reasonable request. 474
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Supplemental information 475

Figure S1. Relates to Figure 1. The Flap of Bep1 is well conserved in ortho-
logues. (A) Autoradiograms of Bep1 AMPylation reactions with [α-32P] labelled ATP.
Bep1 AMPylates an approximately 20 kDa target in J774 cell lysate, indicative of mod-
ification of a small GTPase. Lane labelled ctrl. shows no signal for Bep1 only. (B) In
vitro AMPylation activity showing conserved function in Bep1 orthologues of B. rocha-
limae (Bro), Bartonella sp. 1-1c (B1-1c), Bartonella sp. AR15-3 (B15-3), Bartonella
clarridgeiae (Bcl). (C) Identification of the modified peptide by mass spectrometry.
Sequence of the identified peptide after tryptic digestion carrying the AMPylation site.
The modification is located at tyrosine 16 of the peptide (in red and indicated by an
asterisk), corresponding to Y32 of Rac1.
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Figure S2. Relates to Figure 2. Bep1FIC* is suitable for modelling of a
complex with GDP-loaded targets. (A) Sequence alignment of flaps found in Bep1
orthologues and IbpAFIC2. (B) Analysis of BiaA-induced conformational changes in
Bep1FIC*. Binding of BiaAE33G to Bep1 does not result in detectable conformational
changes in the FIC domain as indicated by very small coordinate differences between
free (PDB ID: 4nps of B. clarridgeiae) and BiaA-bound Bep1 (PDB ID: 5eu0 of B.
rochalimae): Cα-Coordinate differences for the entire FIC core comprising helices 1 -
5 is 0.37Å (151 CA pairs in residues 42-192) with a smaller deviation the catalytic
core (residues 151- 191 comprising FIC helices 4-5, RMSD: 0.23Å, 41 Cα pairs). (C)
Nucleotide dependence of FIC-mediated Rho GTPase AMPylation. Significant Bep1-
mediated AMPylation is observed for GDP-loaded Rac1, but not for GTPγS-loaded
Rac1 or GTP-loaded, hydrolysis deficient, Rac1Q61L mutant (crystal structure shown
in panel (D)). Conformation of the switch 1 (Sw1) loop in crystal structures of (D)
GTP-bound Rac1Q61L and (E) GDP-bound Rac2 modelled in complex with Bep1 (GT-
Pase PDB codes are 1e96 and 1ds6, respectively). Notably, Sw1 is in an inward
facing conformation in the GTP-bound state shown in (D). Y32 is coordinated by the
γ-phosphate of the GTPase-bound nucleotide (hydroxyl groups in hydrogen-bonding
distance) and is thus inaccessible for modification. In contrast, Sw1 adopts an outward
facing conformation in the GDP-bound state shown in (E), rendering Y32 solvent acces-
sible. (F) Conformation of Sw1 in the product complex between IbpAFIC2 and Cdc42
in the GDP-bound state that permits the interaction.
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Figure S3. Relates to Figure 3. Proposed target interaction sites for FIC
mediated AMPylation. (A) Ensemble of Bep1FIC:Rac2 models. Bep1FIC (beige)
and Rac2 (green) backbones are drawn as wires. Important residues are drawn as sticks.
Salt-bridges between Bep1D119:Rac1K116 and Bep1K117:Rac1D124 are indicated as dotted
lines (grey). Decoys of 25 representative calculations are shown. (B) Structure based
protein sequence alignment of Rho-GTPases. Side-chain specific interactions with IbpA
and Bep1 are indicated by triangles and asterisks, respectively. Interfaces between IbpA
and Bep1 and their targets are illustrated as rectangular frames. Residues involved in
β-sheet augmentation are marked with squares. Rac1 is set as reference sequence. Polar
residues are coloured in green, negatively charged residues in red, positively charged
residues in blue and hydrophobic residues in olive.
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Figure S4. Relates to Figure 4. Raw data showing FIC–mediated AMPyla-
tion of GTPase variants. (A-D) Autoradiograms and SDS-gels of Rac1 and Cdc42
variants after incubation with [α-32P]-labelled ATP and respective AMP-transferases for
40 minutes. (A) Rac1 variants and (B) Cdc42 variants after incubation with Bep1FIC*.
(C) Rac1 variants and (D) Cdc42 variants after concurrent incubation with IbpAFIC2.
25 kDa and 20 kDa bands of Precision Plus Protein Standard (Bio-Rad) are visible in all
SDS-gels between Rac1wt and the rest of the GTPase variants (lanes labeled ‘M’). (E)
Ion exchange elution profiles for wild-type Rac1 (Rac1wt) at t = 2′ (grey) and t = 35′

(black), demonstrating the increase in target/target-AMP absorption with time. (F,
G) Michaelis-Menten plots for the Rac1 ampylation reaction. Initial reaction rates as a
function of ATP and Rac1 concentration are shown in panels (F) and (G), respectively.
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Initial velocities have been derived from the progress curves shown in the insets. (H, I)
Progress curves of Bep1FIC* mediated AMPylation of Rac1 (H) and Cdc42 (I) variants.
Data points show the absorbance at 260 nm of the target/target-AMP peak during the
time course. Heuristic fits are indicated as dotted lines (black). Initial velocities are
derived from the first derivatives of the fit-function back-extrapolated to t = 0 and
drawn as dashed lines in respective.
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Table S1. Reaction efficiencies of FIC-mediated AMPylation of Rho-GTPase
variants

Enzyme Target kcat/KM, target  

[s-1mM-1] 

KM, ATP  

[mM] 

KM, target 

[mM] 

kcat  

[s-1] 

VopSFIC Cdc42Q61L 100 ± 25 4 0.160 ± 0.02 1 0.180 ± 0.04 1 18 ± 1.5 1 

IbpAFic2 Cdc42Q61L 162 ± 19 4 0.73 ± 0.04 2 1.57 ± 0.15 2 255 ± 15 2 

Bep1Fic* Rac1wt 1.31 ± 0.46 4 0.52 ± 0.02 3 1.44 ± 0.42 3 1.89 ± 0.36 3 

 Rac1wt 1.18 ± 0.20 5    

 Rac1D124S 0.481 ± 0.067 5  

Rac1K116Q 0.202 ± 0.009 5 

Rac1K116Q, D124S 0.043 ± 0.002 5 

Cdc42Q116K, D124S 0.046 ± 0.003 5 

Cdc42Q116K 0.028 ± 0.002 5 

Cdc42S124D 0.001 ± 0.002 5 

1 taken from (Luong et al., 2010) 

2 taken from (Mattoo et al., 2011) 

3 derived from Figs. S4G and F 

4 derived from kcat and KM, target 

5 derived from vinit values measured by oIEC (see Figs. S4H and I). 
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Table S2. Crystallographic data collection and refinement statistics
Bep1Fic:BiaA  

(5eu0) 

 

Data collection  

Space group P 43 21 2 

Cell dimensions    

    a, b, c (Å) 73.13, 73.13, 130.15 

       ()  90, 90, 90 

Resolution (Å) 29.7  - 1.6 (1.7 - 1.6)a 

Rsym 14.0% (164.5%) 

I/(I) 16.52 (1.43) 

CC1/2
 1.0 (0.53) 

Completeness (%) 100% (99.0%) 

Redundancy 11.6 (9.9) 

  

Refinement  

Resolution (Å) 29.7 - 1.6 

No. reflections 47278 

Rwork / Rfree 0.189 (0.211) 

No. atoms  

    Protein 2166 

    Ion 10 

    Water 271 

B factors  

    Protein 23.99 

    Ion 40.54 

    Water 34.37 

R.m.s. deviations  

    Bond lengths (Å) 0.014 

    Bond angles () 0.88 

a Values in parentheses are for highest-resolution shell. 
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Table S3. Global and local structural alignment of Rac-subfamily GTPases
to AMPylated Cdc42 in the IbpA bound complex (chain B of PDB entry
4ITR). Chain A of PDB entry 1DS6 was chosen for complex modelling.

 

NUCLEOTIDE 
(ANALOGUE) 

PDB ID 
GLOBAL 

RMSD 
(CA)[Å] 

# PAIRS 
(CA) 

USED 
LOCAL 
RMSD 

(SW1) [Å] 

# PAIRS 
(ATOMS) 

USED 

GDP 1HH4 0.534 177 158 0.526 85 61 
GDP 2P2L 0.420 172 133 0.781 91 72 
GDP 1DS6 0.439 175 151 0.827 91 65 
GDP 2H7V 0.453 175 139 1.050 91 75 
GDP 2W2T 0.412 173 144 1.867 81 68 
GDP 2G0N 0.335 175 133 1.891 82 67 
GDP 2C2H 0.411 165 132 1.955 48 42 

GDP 1I4D 0.517 172 135 2.419 91 72 
GDP 1I4L 0.613 173 152 2.511 91 77 
GDP 1RYF 0.392 161 124 3.693 89 87 

GSP 2W2V 0.383 171 138 1.973 91 74 
GSP 2W2X 0.558 167 135 3.546 87 77 
GSP 4GZM 0.492 174 139 4.116 91 89 
GSP 2FJU 0.391 173 130 4.169 91 87 

GNP 2IC5 0.357 175 133 1.608 88 66 

GNP 1I4T 0.595 173 147 2.520 91 74 
GNP 1RYH 0.405 162 126 2.759 79 68 
GNP 1MH1 0.576 174 144 3.191 81 72 
GNP 3SU8 0.633 176 152 3.449 91 79 
GNP 3RYT 0.652 173 154 3.488 91 80 
GNP 3SUA 0.607 176 148 3.505 91 79 
GNP 3SBD 0.416 172 134 3.531 91 82 
GNP 3TH5 0.373 168 134 3.960 91 87 
GNP 4GZL 0.449 168 132 4.359 82 82 

GTP 2WKP 0.428 168 143 3.317 91 78 
GTP 1E96 0.435 176 136 3.408 91 79 
GTP 5HZH 0.463 130 113 3.515 78 71 
GTP 2WKQ 0.434 168 138 3.522 87 77 
GTP 3SBD 0.416 172 134 3.531 91 82 
GTP 2WKR 0.438 175 143 3.703 91 82 
GTP 1G4U 0.602 172 146 3.770 91 84 
GTP 1HE1 0.486 172 142 3.912 91 86 
GTP 4GZM 0.492 174 139 4.116 91 89 
GTP 4GZL 0.449 168 132 4.359 82 82 

GCP 2QME 0.517 175 138 3.802 87 80 
GCP 2OV2 0.466 172 129 4.316 91 91 

APO 2NZ8 0.397 168 122 1.625 91 78 
APO 1FOE 0.483 169 131 1.651 91 79 
APO 2VRW 0.443 169 133 1.691 91 78 
APO 5FI0 0.489 169 141 1.694 91 79 
APO 4YON 0.388 167 125 1.765 91 82 
APO 3BJI 0.682 168 138 1.871 85 80 
APO 2YIN 0.547 161 139 3.476 91 73 
APO 3B13 0.472 161 137 3.645 91 75 
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