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Abstract

Functional encryption (FE) is a novel paradigm for encryption scheme which allows tremendous flexibility in accessing
encrypted information. In FE, a user can learn specific function of encrypted messages by restricted functional key and
reveal nothing else about the messages. Inner product encryption (IPE) is a special type of functional encryption
where the decryption algorithm, given a ciphertext related to a vector x and a secret key related to a vector y,
computes the inner product x · y. In this paper, we construct an efficient private-key functional encryption (FE) for
inner product with simulation-based security, which is much stronger than indistinguishability-based security, under
the External Decisional Linear assumption in the standard model. Compared with the existing schemes, our
construction is faster in encryption and decryption, and the master secret key, secret keys and ciphertexts are shorter.
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Introduction
Traditional public key encryption provides all-or-nothing
access to data, either recovering the entire plaintext
or revealing nothing from the ciphertext. Functional
Encryption (FE) (Dan et al. 2011; O’Neill 2010) is a very
useful tool for non-interactive computation on encrypted
data. In FE, the owner of master secret key msk can cre-
ate a secret key skf for a function f, which enables users to
compute the value of f (x) by decrypting a ciphertext of x
without revealing anything else about x. As cloud services
are increasing rapidly, users’ demand for computation on
encrypted data is also increasing because cloud servers are
by no means trustful. FE is one solution to this problem,
providing a paradigm where users can compute a function
f on encrypted data using a secret key skf without reveal-
ing anything else about the encrypted data using data to
the cloud server.
One of the principal interests in FE is what class of

functions F can be supported and what kind of security
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can be achieved. It started from identity-based encryption
(Boneh and Franklin 2001), followed by attributed-based
encryption (Goyal et al. 2006), hidden vector encryp-
tion (Iovino and Persiano 2008; Caro et al. 2012) and
predicate encryption (Katz et al. 2008; Shen et al. 2009).
Amazingly, recent works realize computation of general
polynomial-size circuits (Garg et al. 2016), although they
require expensive assumptions like indistinguishability
obfuscation, which are far from being practical. Moti-
vated by this unreality, (Abdalla et al. 2015) introduced
a new non-generic FE scheme specialized for compu-
tation of the evaluation of inner product values, which
is efficient and constructed from standard assumptions.
As (Abdalla et al. 2015) mentioned in their work, inner-
product is a very useful tool for statistics because it can
provide the weighted mean. In an inner product encryp-
tion (IPE) scheme, a ciphertext ctx is related to a vector
x ∈ Z

n
q of length n and a secret key sky related to a vec-

tor y ∈ Z
n
q . Given the ciphertext and the secret key, the

decryption algorithm computes the inner product x · y =∑n
i=1 xiyi. Note that FE for inner-product is different from

inner-product encryption (IPE) in the context of predi-
cate encryption. In the phase of encryption and secret
key generation of the inner product encryption (predicate
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encryption), a secret key corresponds to a predicate vector
y ∈ Z

n
q and a ciphertext for a messagem comes along with

an attribute vector x ∈ Z
n
q , the decryption algorithm out-

putsm if x·y = 0. By contrast, the result of the IPE scheme
in this paper is the actual value of the inner product.
Private-key IPE has several practical applications (Kim

et al. 2018; Zhao et al. 2018) as well, such as bio-
metric authentication and nearest-neighbor search on
encrypted data. Biometric-based authentication system
is prevalent. It is well-known that biometrics are inher-
ently noisy, authentication should be successful when the
supplied biometric is close to a user’s credential stored
in the system. It is achieved by computing the Ham-
ming distance between them, which is the number of
bits differing from each other. Private-key inner product
encryption can be used to compute theHamming distance
between the bitstrings of two vectors. Another applica-
tion of IPE is the nearest-neighbor search on encrypted
data. Consider an encrypted database of files F. Given
a file f, the problem of k-nearest neighbor search is
to find the prior-k files in F that are the most simi-
lar to f. The common measure of file similarity is the
Euclidean distance between the vector representations of
files. Private-key IPE gives an efficient way of performing
the nearest-neighbor search over an encrypted database.
Readers could refer to (Kim et al. 2018; Zhao et al.
2018) for a detailed introduction to these applications of
IPE.

Related works
The first construction of IPE was presented by Abdalla
et al. (2015) who developed a selectively secure scheme
under the indistinguishability-based security. Subse-
quently, (Agrawal et al. 2016) and (Abdalla et al. 2016)
have designed adaptively secure IPE constructions where
the messages x0 and x1 may be adaptively chosen in time,
based on the previously collected information. However,
these constructions are built with public key and do not
support any forms of function privacy. Then, researchers
explored the possibility of attaining function privacy in the
context of IPE. Bishop et al. (2015) constructed a function-
hiding IPE scheme in the private key domain under the
well-studied Symmetric External Diffie-Hellman(SXDH)
assumption, which satisfies an indistinguishability-based
definition, and considered adaptive adversaries. Roughly
speaking, an IPE scheme is function-hiding if the keys and
ciphertexts reveal no additional information about both x
and y beyond their inner product. However, their security
model imposes a little unrealistic admissibility constraint
on the adversary’s queries. All ciphertexts queries x0, x1
and all secret key queries y0, y1 are restrained by x0 · y0 =
x0 · y1 = x1 · y0 = x1 · y1.That makes the security of
the scheme become weak. Datta et al. (2017) constructed
a private-key function-hiding IPE scheme from the SXDH

assumption that changed the restriction on adversaries’
queries is only x0 ·y0 = x1 ·y1. In their construction, secret
keys and ciphertexts of n-dimensional vectors consist of
4n+8 groups elements. This was further improved upon
in a work by Tomida et al. (2016) who gave a construc-
tion of a private-key function hiding IPE from the DLIN
assumption where the secret keys and ciphertexts con-
sist of 2n+5 groups elements. Recently, (Kim et al. 2019)
put forth a construction of function-hiding IPE scheme
with less parameter sizes and run time complexity than
in Bishop et al. (2015); Datta et al. (2017). The scheme is
proved simulation-based secure in the generic model of
bilinear maps.
There are also several research works about Inner

product encryption (Agrawal et al. 2015; Caro et al.
2013; Goldwasser et al. 2014; Abdalla et al. 2017);
(Datta et al. 2018), such as Multi-Input inner prod-
uct encryption(MIPE) and predicate encryption for inner
product (Okamoto and Takashima 2009; Attrapadung and
Libert 2010; Lewko et al. 2010; Okamoto 2011; Park 2011;
Okamoto and Takashima 2012a; Okamoto and Takashima
2012b; Kawai and Takashima 2013; Zhenlin andWei 2015;
Zhang et al. 2019). In Goldwasser et al. (2014) intro-
duced the definition ofMulti-Input functional encryption,
the functions can be evaluated on encrypted informa-
tion to take multiple inputs, with each input correspond-
ing to a different ciphertext. Abdalla et al. (2017) con-
structed the first scheme of Multi-Input inner product
encryption which achieves message privacy, and (Datta
et al. 2018) proposed a new scheme which they call
unbounded private-key Multi-Input inner product func-
tional encryption. Their scheme achieved function-hiding
privacy, meanwhile they enabled the encryption of cipher-
texts, and the generation of secret keys for unbounded
vectors. In Dufour-Sans and Pointcheval (2019), described
an unbounded inner product encryption which supported
identity access control with succinct keys. Their construc-
tion is proven selectively secure in the random-oracle
model based on the standard DBDH assumption. Tomida
and Takashima (2018) did the similar research, but their
construction didn’t supported the function of identity
access control. In Agrawal et al. (2020), resolved the
question of simulation-based security for inner product
encryption based on DDH, Paillier and LWE assump-
tion. In 2008, the first predicate encryption for inner
product was introduced by Katz et al. (2008), which
allows evaluating predicates over ZN using inner prod-
uct, where N is a composite number. In Okamoto and
Takashima (2009) proposed the first hierarchical predi-
cate encryption for inner product predicate, which allows
a user with functionality that can delegate more restric-
tive functionality to another user, but their schemes
had low inefficiency. Attrapadung and Libert (2010);
Lewko et al. (2010); Okamoto (2011) constructed their IPE
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schemes respectively, which improves the efficiency of the
previous scheme. However, the security proof of all previ-
ous studies based on non-standard assumptions. In order
to address this issue, (Park 2011) proposed the first IPE
scheme under the standard assumptions (i.e., decisional
bilinear Diffie-Hellman (DBDH) and decisional linear
(DLIN) assumptions). Okamoto and Takashima (2012a)
proposed the first IPE scheme that is fully secure and
fully attribute-hiding, and then (Okamoto and Takashima
2012b) further proposed the first unbounded IPE scheme
that is also fully secure and fully attribute-hiding in
the standard model under DLIN assumption. Kawai and
Takashima (2013) introduced a new concept, called IPE
with ciphertext conversion, which takes into account the
security of predicate hiding. Zhenlin and Wei (2015)
introduced another notion, called multi-party cloud com-
putation IPE with multiplicative homomorphic property,
which enables IPE to support multi-party cloud compu-
tation. Zhang et al. (2019) proposed a new IPE scheme
based on double encryption system, which is proven to be
adaptive security under weak attribute hiding model.
A lot of the problems mentioned above will lead an IPE

scheme impractical and takes us the following problem:
Can we optimize the length of the master secret key,

ciphertexts and secret keys with the simulation-based secu-
rity?

Our contribution
We construct a more efficient and flexible private-key IPE
scheme with simulation-based security. To ensure cor-
rectness, our scheme requires that the computation of
inner products is within a polynomial range (Datta et al.
2016), where discrete logarithm of gx·y can be found in
polynomial time.

Efficiency
Our scheme is constructed based on dual paring vector
spaces (DPVS). Namely, a master secret key is orthonor-
mal bases of DPVS, secret keys and ciphertexts are vectors
of DPVS, both key generation algorithm and encryption
algorithm involve scalar multiplications on cyclic groups,
and a decryption algorithm involves paring operations
on bilinear paring groups. Our scheme is superior to
other schemes, in terms of both necessary storage and
computational efficiency.

Assumption and flexibility
The schemes of Bishop et al. (2015); Datta et al. (2016)
are secure under the symmetric external Diffie-Hellman
(SXDH) assumption, while our scheme is based on deci-
sion linear (DLIN) assumption or its variant (XDLIN).
SXDH holds in only Type-3 bilinear pairing groups, DLIN
and XDLIN hold in any type of bilinear pairing groups,
so DLIN and XDLIN are weaker assumptions than SXDH.

For this reason, the schemes of Bishop et al. (2015)
Datta et al. (2016) work in only Type-3 groups while we
can use our scheme in any type of bilinear pairing groups.

Security
There are two notions of security for a FE scheme,
indistinguishability-based security and simulation based
security model. The former one requires that an adver-
sary cannot distinguish between ciphertexts of any two
messages m0,m1 with access to a secret key skf of func-
tion f such that f (m0) = f (m1). By contrast, the latter
one requires that the view of the adversary can be sim-
ulated by a simulator, given only access to secret keys
and functions evaluated on the corresponding messages.
Note that simulation-based security has higher secu-
rity strength than indistinguishability-based security such
that there exists an indistinguishability-based secure FE
scheme for a certain functionality which is not able to
be proved secure under simulation-based security. Our
scheme achieves simulation-based security, which is more
secure than indistinguishability-based security.

Preliminary
Notation

For a set S, x U← S denotes that x is uniformly cho-
sen from S. For a probability distribution X, x R← X
denotes that x is chosen from X according to its dis-
tributions. For a prime q, Zq denotes a set of integers
{0, · · · , q−1}, and Z×

q denotes a set of integers {1, · · · , q−
1}, 0 denotes a zero vector. For an n-dimensional vector
x, xi(1 ≤ i ≤ n) denotes the i-th component of x. For vec-
tors x, y ∈ Z

n
q , x · y denotes inner-product of x and y

over Zq. For vector components, 0n denotes a line of n
zeros, e.g., a :=(0,0,0,1)=(03,1). Let A = {An}n∈N and
B = {Bn}n∈N be distribution ensembles. We denote by
A ≈c B that A and B are computationally indistinguish-
able. Let negl(λ) be a negligible function in λ. BT denotes
the transpose of matrix B. GL(n,Zq) denotes the general
linear group of degree n over Zq.

Bilinear pairing groups
Bilinear pairing groups are defined by the tuple
(q,G1,G2,GT , e), where q is a prime, G1, G2 and GT are
cyclic groups of order q, and e : G1 × G2 → GT is a map
that has the following properties:

1 Bilinearity: ∀G1 ∈ G1, ∀G2 ∈ G2, ∀a, b ∈
Zq, e(aG1, bG2) = e(G1,G2)ab.

2 Non-degeneracy: if
∀G1 ∈ G1, G1 �= 0, e(G1,G2) = 1, then G2 = 0.

There are three types of bilinear groups according to
whether efficient isomorphisms exist or not between G1
and G2. In Type-1 bilinear groups, both the isomorphism
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φ: G2 → G1 and its inverse φ−1: G1 → G2 can be com-
puted efficiently, i.e., G1 = G2. In Type-2 bilinear groups,
the isomorphism φ: G2 → G1 is computed efficiently but
its inverse is not. Type-3 groups do not have efficient iso-
morphisms between G1 and G2. Type-1 groups are called
symmetric bilinear pairing groups, and Type-2 and Type-
3 are called asymmetric bilinear pairing groups. We use
Type-3 groups to build our scheme in the paper. Let Gabpg
be an asymmetric bilinear pairing group generators that
takes 1λ and outputs a description of (q,G1,G2,GT , e) and
generators of groups G1 �= 0 ∈ G1, G2 �= 0 ∈ G2. We
denote the tuple (q,G1,G2,GT ,G1,G2, e) by paramG.

Dual pairing vector space
Definition 1 (Lewko et al. 2010; Okamoto and

Takashima 2009; Okamoto and Takashima 2015)
(Dual Pairing Vector Spaces : DPVS): We briefly
introduce the concept of DPVS. DPVS are defined
by the tuple (q,V,V∗,GT ,A,A∗, ẽ), which is directly
constructed from paramG

R← Gabpg
(
1λ

)
. V := G

n
1

and V
∗ := G

n
2 are n-dimensional vector spaces,

A := (a1, · · · ,an) =

⎡

⎢
⎢
⎢
⎣

G1 0 · · · 0
0 G1 · · · 0
...

...
. . .

...
0 0 · · · G1

⎤

⎥
⎥
⎥
⎦

and

A
∗ := (a∗

1, · · · ,a∗
n) =

⎡

⎢
⎢
⎢
⎣

G2 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · G2

⎤

⎥
⎥
⎥
⎦

are

canonical bases, where ai := (
0i−1,G1, 0n−i),

a∗
i := (

0i−1,G2, 0n−i), and ẽ : V × V
∗ → GT is a

pairing defined by ẽ(x, y) := ∏n
i=1 e(Xi,Yi) ∈ GT , where

x := (X1, · · · ,Xn) ∈ V, y := (Y1, · · · ,Yn) ∈ V
∗.

Let (q,V,V∗,GT ,A,A∗, ẽ) be the output of algorithm
Gdpvs(1λ, n,paramG), where n ∈ N. Then we describe
random dual orthonormal bases as follows:
We randomly select a new non-singular matrix X to do

a linear transformation and achieve base change.
ψ

U← Z
×
q , X := (

χi,j
)
1≤i,j≤n

U← GL
(
n,Zq

)
,
(
υi,j

)
1≤i,j≤n

:= ψ
(
XT

)−1
,

bi :=
∑n

j=1
χi,jaj = (

a1 · · · an
)

⎛

⎜
⎝

χi1
...

χin

⎞

⎟
⎠ ,

b∗
i :=

∑n

j=1
υi,ja∗

j = (
a∗
1 · · · a∗

n
)

⎛

⎜
⎝

υi1
...

υin

⎞

⎟
⎠

for i = 1, · · · , n,

B := (b1, · · · , bn),
B

∗ := (b∗
1, · · · , b∗

n),
gT := e(G1,G2)

ψ .

Let Gob be the random dual orthonormal basis gen-
erator that takes 1λ and a dimension of bases n and
outputs (paramG,B,B∗, gT ), whereB,B∗, gT are computed
as above. We denote the combination(paramG, gT ) by
paramV. For a vector x = (x1, · · · , xn)T ∈ Z

n
q and a basis

B := (b1, · · · , bn) we denote ∑n
i=1 xibi =

(
x1 · · · xn

)

⎛

⎜
⎝

b1
...
bn

⎞

⎟
⎠ by(x)B. Then we have

ẽ
(
(x)A , (y)A∗

) =
n∏

i=1
e(xiG1, yiG2)

= e (G1,G2)
∑n

i=1 xiyi = e(G1,G2)
x·y,

so

ẽ
(
(x)B ,

(
y
)
B∗

) = ẽ
(

(Xx)A ,
(

ψ
(
XT

)−1
y
)

A∗

)

= e (G1,G2)
ψXx·(XT )−1y = gx·yT .

External decision linear assumption
Definition 2 (Abe et al. 2016) We choose an arbitrary

number x ∈ {1, 2}. The XDLIN problem is to guess a bit
b ∈ {0, 1}, given Pb, where

paramG

R← Gabpg
(
1λ

)
, ξ , κ , δ, σ , ρ U← Zq,

Y0 = (δ + σ)Gx, Y1 = (δ + σ + ρ)Gx,

Pb = (
paramG, ξG1, κG1, δξG1,

σκG1, ξG2, κG2, δξG2, σκG2,Yb) .

For any probabilistic polynomial time (PPT) adversary A,
if its advantage (defined as below) in solving XDLIN prob-
lem is negligible in λ, we say that the XDLIN assumption
holds. Namely,

AdvAXDLIN(λ) = Pr
[
A(1λ,P0) → 1

]

− Pr
[
A(1λ,P1) → 1

] ≤ negl(λ).

Private-key inner product encryption
A private-key IPE scheme is composed of the following
four PPT algorithms.

• IPE.Setup
(
1λ, n

) → (msk, pp): The setup algorithm
takes as input the security parameters 1λ and vector
length n. Then it outputs a master secret key msk
and public parameters pp.

• IPE.Encrypt(msk, pp, x) → ctx: The encryption
algorithm takes as input the master secret key msk,
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the public parameters pp, and a vector x ∈ Z
n
q . Then

it outputs a ciphertext ctx.
• IPE.KeyGen(msk, pp, y) → sky: The key generation

algorithm takes as input the master secret key msk,
the public parameters pp, and a vector y ∈ Z

n
q . Then

it outputs a secret key sky.
• IPE.Decryption

(
pp, ctx, sky

) → m ∈ Zq or ⊥: The
decryption algorithm takes as input the public
parameters pp, a ciphertext ctx and a secret key sky.
Then it outputs either a valuem = x · y ∈ Zq or a
dedicated symbol ⊥.

Simulation-based security
The simulation-based security (Caro et al. 2013; O’Neill
2010) in the Fig. 1 tries to capture the intuition that any-
thing the adversary can compute from a ciphertext and the
secret keys can be computed from the secret keys and the
values of the corresponding functions on the underlying
message. For an IPE scheme, if there exists a PPT adver-
sary A = (A1,A2) and a PPT simulator S , we define two
experiments REALA

(
1λ

)
, IDEALA,S

(
1λ

)
in the box, let

q1 be the number of challenge messages output byA1 and
q2 be the number of secret key queries in the first stage.
The oracleO andO′ are defined as follows:

1 The oracleO(msk, ·) = IPE.KeyGen(msk, ·, ·).
2 The oracleO′(msk, st, ·) is the second stage of the

simulator, namely algorithm S
{
x(l)·y(μ)

}

(msk, st, ·), for
l ∈ {

1, · · · , q1
}
, μ ∈ {

1, · · · , q2
}
, where x(l) and y(μ)

are inputs of the l -th ciphertext query and the μ-th
secret key query byA1, respectively. Note that the
simulator algorithm S is stateful so that after each
invocation, it updates the state st which is carried
over to its next invocation.

An IPE scheme is simulation-based secure if there exists
a PPT simulator S such that, for all PPT adversaries A,
the outputs of the following two experiments are compu-
tationally indistinguishable:

REALA
(
1λ

) ≈c IDEALA,S
(
1λ

)
.

Preliminary problems of security proof
In this section, we will introduce six lemmas and their
security proofs. we firstly consider the following problems
and use them to prove the security of our scheme.

Definition 3 Problem1 is to guess b ∈ {0, 1}, given(
paramV,B, B̂∗, yb, κG1, ξG2

)
, where

paramG

R← Gabpg
(
1λ

)
,

X := (
χi,j

)
1≤i,j≤3

U← GL
(
3,Zq

)
,
(
υi,j

)
1≤i,j≤3

:=
(
XT

)−1
,

κ , ξ U← Z
×
q , bi := κ

∑3

j=1
χi,jaj, b∗

i

:= ξ
∑3

j=1
υi,ja∗

j for i = 1, 2, 3,

B := (b1, b2, b3), B̂∗ := (
b∗
1, b∗

3
)
,

gT := e (G1,G2)
κξ ,

δ, σ U← Zq, ρ
U← Z

×
q , y0 = (δ, 0, σ)Band

y1 = (δ, ρ, σ)B.

Fig. 1 Simulation-based security
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Definition 4 Problem1′ is to guess b ∈ {0, 1}, given
(paramV,B∗, B̂, y∗

b, κG1, ξG2), where

paramG

R← Gabpg
(
1λ

)
,

X := (χi,j)1≤i,j≤3
U← GL

(
3,Zq

)
, (υi,j)1≤i,j≤3

:=
(
XT

)−1
,

κ , ξ U← Z
×
q , bi := κ

∑3

j=1
χi,jaj, b∗

i

:= ξ
∑3

j=1
υi,ja∗

j for i = 1, 2, 3,

B
∗ := (b∗

1, b∗
2, b∗

3), B̂ := (b1, b3),

gT := e (G1,G2)
κξ ,

δ, σ U← Zq, ρ
U← Z

×
q , y∗

0 = (δ, 0, σ)B∗and y∗
1

= (δ, ρ, σ)B∗ .

Definition 5 Problem2 is to guess a bit b ∈ {0, 1}, given(
paramV, B̂, B̂∗, gb

)
, where

(B,B∗,paramV)
U← Gob

(
1λ, n + 5

)
,

B̂ = {b1, · · · , bn, bn+1, bn+3} ,
B̂

∗ = {
b∗
1, · · · , b∗

n, b∗
n+2, b∗

n+4
}
,

α, η U← Zq, γ ′ U← Z
×
q ,

g0 = (
0n,α, 0, η, 0, 0

)
B
and g1 = (

0n,α, 0, η, 0, γ ′)
B
.

Definition 6 Problem3 is to guess a bit b ∈ {0, 1}, given(
paramV, B̂, B̂∗, gb

)
, where

(B,B∗,paramV)
R← Gob

(
1λ, n + 5

)
,

B̂ = {b1, · · · , bn, bn+1, bn+5} ,
B̂

∗ = {
b∗
1, · · · , b∗

n, b∗
n+2, b∗

n+4
}
,

α, η U← Zq, γ ′ U← Z
×
q ,

g0 = (
0n,α, 0, η, 0, γ ′) and g1 = (

0n,α, 0, 0, 0, γ ′)
B
.

Definition 7 Problem4 is to guess a bit b ∈ {0, 1}, given(
paramV, B̂, B̂∗, g∗

b
)
, where

(B,B∗,paramV)
R← Gob

(
1λ, n + 5

)
,

B̂ = {b1, · · · , bn, bn+1, bn+5},
B̂

∗ = {
b∗
1, · · · , b∗

n, b∗
n+2, b∗

n+4
}
,

β , θ U← Zq, τ ′ U← Z
×
q ,

g∗
0 = (

0n, 0,β , 0, θ , 0
)
B∗ and g∗

1 = (
0n, 0,β , τ ′, θ , 0

)
B∗ .

Definition 8 Problem5 is to guess a bit b ∈ {0, 1}, given(
paramV, B̂, B̂∗, g∗

b
)
, where

(B,B∗,paramV)
R← Gob

(
1λ, n + 5

)
,

B̂ := (b1, · · · , bn, bn+1, bn+5) ,
B̂

∗ := {
b∗
1, · · · , b∗

n, b∗
n+2, b∗

n+3
}
,

β , θ U← Zq, τ ′ U← Z
×
q ,

g∗
0 = (

0n, 0,β , τ ′, θ , 0
)
B∗ and g∗

1 = (
0n, 0,β , τ ′, 0, 0

)
B∗ .

For a PPT algorithm A, the advantage of A against
Problem n (n = 1, 1′, 2, 3, 4, 5) is defined as

AdvPnA (λ) := ∣
∣Pr

[
A(1λ,P0) → 1

]

−Pr
[
A(1λ,P1) → 1

]∣
∣ ,

where Pb is an instance of Problem n defined above. Then
following six lemmas hold.

Lemma 1 For all PPT adversary B for Problem1,
there exists a PPT adversary A such that AdvP1B (λ) ≤
AdvXDLINA (λ) + 5/q.

Proof We construct a PPT adversary A for the XDLIN
problem from any PPT adversary B for Problem1. A is
given an instance of XDLIN problem and sets

gT := e(κG1, ξG2), paramP1 := (paramG, gT ),

u1 := (ξ , 0, 1)A = (ξG1, 0,G1),
u2 := (0, 0, 1)A = (0, 0,G1),
u3 := (0, κ , 1)A = (0, κG1,G1),

u∗
1 := (κ , 0, 0)A∗ = (κG2, 0, 0),

u∗
2 := (−κ ,−ξ , κξ)A∗ = (−κG2,−ξG2, κξG2),

u∗
3 := (0, ξ , 0)A∗ = (0, ξG2, 0),

wb := (δξG1, σκG1,Yb).
A can compute u1,u2,u3,u∗

1,u∗
3. Then it generates a ran-

dom linear transformationW onG
3 to get a new group of

bases and sets

bi := W (ui)for i = 1, 2, 3
b∗
i := (W−1)T (u∗

i )for i = 1, 3,

B := (b1, b2, b3), B̂∗ := (b∗
1, b∗

3), yb := W (wb).
Then A gives

(
paramP1,B, B̂∗, yb, κG1, ξG2

)
to B, and

outputs b′ if B outputs b′,
If b = 0 and Yb = Y0 = (δ + σ)G1, then w0 =

(δξG1, σκG1, (δ + σ)G1) = (δξ , σκ , (δ + σ))A = δu1 +
σu2 and y0 = W (w0) = W (δu1+σu2) = (δ, 0, σ)B, when
κ , ξ �= 0, with probability 2/q.
If b = 1 and Yb = Y1 = (δ + ρ +

σ)G1, then w1 = (δξG1, σκG1, (δ + ρ + σ)G1) =
(δξ , σκ , (δ + σ + ρ))A = δu1 + ρu2 + σu3 and y1 =
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W (w1) = W (δu1 + ρu2 + σu3) = (δ, ρ, σ)B, when
κ , ξ , ρ �= 0, except with probability 3/q.
It is the same as an instance of Problem1. If B suc-

ceeds in solving Problem1, so does A in solving XDLIN
porblem.

Lemma 2 For all PPT adversary B for Problem1′,
there exists a PPT adversary A such that AdvP1

′
B (λ) ≤

AdvXDLINA (λ) + 5/q.

Proof The proof follows in the same condition as
Lemma 1.

Lemma 3 For all PPT adversary B for Problem2, there
exists a PPT adversaryA such that AdvP2B (λ) ≤ AdvP1A (λ).

Proof We construct a PPT adversary A for Problem1
from any PPT adversary B for Problem2. A is given an
instance of Problem1

(
paramP1,B, B̂∗, yb, κG1, ξG2

)
. Then

A generates a random linear transformation W on G
n+5,

and sets

paramV : = paramP1

di : = W
(
0i+2, κG1, 0n+2−i) for i = 1, · · · , n

dn+1 : = W
(
b1, 0n+2) ,dn+2 := W

(
0n+2, κG1, 02

)
,

dn+3 : = W
(
b3, 0n+2) ,dn+4 := W

(
0n+4, κG1

)
,

dn+5 : = W
(
b2, 0n+2) ,

d∗
i : = (

(W )−1)T (
0i+2, ξG2, 0n+2−i)

for i = 1, · · · , n
d∗
n+1 : =

(
(W )−1)T (

b∗
1, 0n+2) ,

d∗
n+2 := W

(
0n+2, ξG2, 02

)
,

d∗
n+3 : =

(
(W )−1)T (

b∗
3, 0n+2) ,

d∗
n+4 :=

(
(W )−1)T (

0n+4, ξG2
)
,

d∗
n+5 : = W

(
b∗
2, 0n+2) ,

hb = W
(
yb, 0

n+2)

D : = (d1, · · · ,dn+5) , D∗ := (
d∗
1, · · · ,d∗

n+5
)

We can see that (D,D∗) are dual orthonormal bases. A
does not have b∗

2 but it can compute

D̂ := (d1, · · · ,dn,dn+1,dn+3) ,
D̂

∗ := (
d∗
1, · · · ,d∗

n,d∗
n+2,d∗

n+4
)

ThenA gives
(
paramV, D̂, D̂∗,hb

)
to B, and outputs b′ if B

outputs b′. We can see that h0 := (0n,α, 0, η, 0, 0)D , h1 :=
(0n,α, 0, η, 0, γ ′)D, where α := δ, η := σ and γ ′ := ρ. It
is the same as an instance of Problem2. If B succeeds in
solving Problem2, so does A in solving XDLIN problem.

Lemma 4 For all PPT adversary B for Problem3, there
exists a PPT adversaryA such that AdvP3B (λ) ≤ AdvP1A (λ).

Proof We can construct a PPT adversary A for Prob-
lem1 from any PPT adversary B for Problem3. A is given
an instance of Problem1, (paramP1,B, B̂∗, yb, κG1, ξG2).
Then A generates a random linear transformation W on
G

n+5, and sets

paramV : = paramP1,
di : = W

(
0i+2, κG1, 0n+2−i) for i = 1, · · · , n

dn+1 : = W
(
b1, 0n+2) ,dn+2 := W

(
0n+2, κG1, 02

)
,

dn+3 : = W
(
b2, 0n+2) ,dn+4 := W

(
0n+4, κG1

)
,

dn+5 : = W
(
b3, 0n+2) ,

d∗
i : = W

(
0i+2, ξG2, 0n+2−i) for i = 1, · · · , n

d∗
n+1 : =

(
(W )−1)T (

b∗
1, 0n+2) ,

d∗
n+2 :=

(
(W )−1)T (

0n+2, ξG2, 02
)
,

d∗
n+3 : =

(
(W )−1)T (

b∗
2, 0n+2) ,

d∗
n+4 :=

(
(W )−1)T (

0n+4, ξG2
)
,

d∗
n+5 : =

(
(W )−1)T (

b∗
3, 0n+2) ,

hb = W
(
yb, 0n+2)

D : = (d1, · · · ,dn+5) , D∗ := (
d∗
1, · · · ,d∗

n+5
)

We can see that (D,D∗) are dual orthonormal bases. A
does not have b∗

2 but it can compute

D̂ := (d1, · · · ,dn,dn+1,dn+5) ,
D̂

∗ := (
d∗
1, · · · ,d∗

n,d∗
n+2,d∗

n+4
)

Then A gives
(
paramV, D̂, D̂∗,hb

)
to B, and out-

puts b′ if B outputs b′. We can see that h0 :=(
0n,α, 0, η, 0, γ ′)

D
, h1 := (

0n,α, 0, 0, 0, γ ′)
D
, where α :=

δ, γ ′ := σ and η := ρ. It is the same as an instance of
Problem3. If B succeeds in solving Problem3, so doesA in
solving XDLIN problem.

Lemma 5 For all PPT adversary B for Problem4, there
exists a PPT adversaryA such that AdvP4B (λ) ≤ AdvP1

′
A (λ).

Proof We can construct a PPT adversary
A for Problem1′ from any PPT adversary
B for Problem4. A is given an instance of
Problem1′(paramP1′ ,B∗, B̂, y∗

b, κG1, ξG2
)
. Then A gen-

erates a random linear transformation W on G
n+5, and

sets
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paramV : = paramP1′

di : = W
(
0i+2, κG1, 0n+2−i) for i = 1, · · · , n

dn+1 : = W
(
0n+1, κG1, 03

)
,dn+2 := W

(
b1, 0n+2) ,

dn+3 : = W
(
b2, 0n+2) ,dn+4 := W

(
b3, 0n+2) ,

dn+5 : =
(
(W )−1)T (

0n+4, κG1
)
,

d∗
i : = (

(W )−1)T (
0i+2, ξG2, 0n+2−i)

for i = 1, · · · , n
d∗
n+1 : =

(
W )−1)T (

0n+1, ξG2, 03
)
,

d∗
n+2 :=

(
(W )−1)T (

b∗
1, 0n+2) ,

d∗
n+3 : =

(
(W )−1)T (

b∗
2, 0n+2) ,

d∗
n+4 :=

(
(W )−1)T (

b∗
3, 0n+2) ,

d∗
n+5 : =

(
(W )−1)T (

0n+4, ξG2
)
,

h∗
b = (

(W )−1)T (
y∗
b, 0

n+2)

D : = (d1, · · · ,dn+5) , D∗ := (
d∗
1, · · · ,d∗

n+5
)

We can see that (D,D∗) are dual orthonormal bases. A
does not have b2 but it can compute

D̂ := (d1, · · · ,dn,dn+1,dn+5),
D̂

∗ := (d∗
1, · · · ,d∗

n,d∗
n+2,d∗

n+4).

ThenA gives (paramV, D̂, D̂∗,h∗
b) to B, and outputs b′ if B

outputs b′. We can see that h∗
0 := (0n, 0,β , 0, θ , 0)D∗ , h∗

1 :=
(0n, 0,β , τ ′, θ , 0)D∗ ,where β := δ, θ := σ and τ ′ := ρ. It
is the same as an instance of Problem4. If B succeeds in
solving Problem4, so does A in solving XDLIN problem.

Lemma 6 For all PPT adversary B for Problem5, there
exists a PPT adversaryA such that AdvP5B (λ) ≤ AdvP1

′
A (λ).

Proof We can construct a PPT adversary
A for Problem1′ from any PPT adversary
B for Problem5. A is given an instance of
Problem1′(paramP1′ ,B∗, B̂, y∗

b, κG1, ξG2). Then A gen-
erates a random linear transformation W on G

n+5, and
sets

paramV : = paramP1′

di : = W
(
0i+2, κG1, 0n+2−i) for i = 1, · · · , n

dn+1 : = W
(
0n+1, κG1, 03

)
,dn+2 := W

(
b1, 0n+2) ,

dn+3 : = W
(
b3, 0n+2) ,dn+4 := W

(
b2, 0n+2) ,

dn+5 : = W
(
0n+4, κG1

)
,

d∗
i : = (

(W )−1)T (
0i+2, ξG2, 0n+2−i)

for i = 1, · · · , n

d∗
n+1 : =

(
(W )−1)T (

0n+1, ξG2, 03
)
,

d∗
n+2 :=

(
(W )−1)T (

b∗
1, 0n+2) ,

d∗
n+3 : =

(
(W )−1)T (

b∗
3, 0n+2) ,

d∗
n+4 :=

(
(W )−1)T (

b∗
2, 0n+2) ,

d∗
n+5 : =

(
(W )−1)T (

0n+4, ξG2
)
,

h∗
b = (

(W )−1)T (
y∗
b, 0

n+2)

D : = (d1, · · · ,dn+5) , D∗ := (
d∗
1, · · · ,d∗

n+5
)

We can see that (D,D∗) are dual orthonormal bases. A
does not have b2 but it can compute

D̂ := (d1, · · · ,dn,dn+1,dn+5) ,
D̂

∗ := (
d∗
1, · · · ,d∗

n,d∗
n+2,d∗

n+3
)
.

Then A gives
(
paramV, D̂, D̂∗,h∗

b
)

to B, and out-
puts b′ if B outputs b′. We can see that h∗

0 :=(
0n, 0,β , τ ′, θ , 0

)
D∗ , h∗

1 := (
0n, 0, θ , τ ′, 0, 0

)
D∗ , where β :=

δ, τ ′ := σ and θ := ρ. It is the same as an instance of
Problem5. If B succeeds in solving Problem5, so doesA in
solving XDLIN problem.

Scheme
In this section, we present our construction of IPE scheme
with simulation-based security.

• IPE.Setup(1λ, n)→ (msk, pp): The setup algorithm
selects

(
B,B∗,paramV

) R← Gob
(
1λ, n + 5

)
, The

algorithm outputsmsk = (
B̂, B̂∗), where

B̂ = {b1, · · · , bn, bn+1, bn+3} ,
B̂

∗ = {b1, · · · , bn, bn+2, bn+4}
and pp = (

1λ,paramV

)

• IPE.Encrypt(msk, pp, x) → ctx: The encryption
algorithm samples α, η ∈ Zq at random and outputs a
ciphertext ctx as

ctx = (x,α, 0, η, 0, 0)B
• IPE.KeyGen(msk, pp, y) → sky: The secret key

generation algorithm samples β , θ ∈ Zq at random
and outputs a secret key sky as

sky = (y, 0,β , 0, θ , 0)B∗

• IPE.Decryption(pp, ctx, sky) → m ∈ Zp or ⊥: The
decryption algorithm outputs

d = ẽ(ctx, sky) = ẽ(G1,G2)
ψx·y.

It then attempts to determinem ∈ Zq such that
gmT = d. If there is m that satisfies the equation, the
algorithm outputs m. Otherwise, it outputs ⊥. Due to
the polynomial-size range of possible values for m,
the decryption algorithm runs in polynomial time.



Liu et al. Cybersecurity             (2021) 4:2 Page 9 of 13

Remark. We stress that the polynomial running time
of our decryption algorithm is ensured by restricting the
output to lie within a fixed polynomial-size range.
Correctness: For any ctx and sky in IPE.Encrypt and

IPE.KeyGen algorithms respectively, the pairing evalua-
tions in the decryption algorithm compute as follows:

d = ẽ
(
ctx, sky

) = ẽ (G1,G2)
ψx·y = gx·yT . (1)

If the decryption algorithm takes polynomial time in the
size of the plaintext space, it will output m = x · y as
desired.

Security proof
In this section, we will prove that our construction is
secure under the simulation-based security based on
XDLIN assumption in the standard model.

Theorem1 Under the XDLIN assumption, our proposed
scheme is simulation-based secure.

Security proof of our scheme
In order to finish the security proof, we follow the
simulation-based security definition (Caro et al. 2013;
O’Neill 2010). A simulator responds to queries by an
adversaryA and provides simulated secret keys and simu-
lated ciphertexts toA. The simulator is comprised of three
algorithms: S̃etup, ˜Encrypt and K̃eyGen.

• S̃etup: It generates a master secret key msk and
public parameters pp, which are transferred to the
adversaryA. Specially, on input (1λ, n), it sets
(msk, pp) ← IPE.Setup. The simulator will use the
master secret key and the public parameters to
respond the queries ofA in ˜Encrypt and K̃eyGen.

• ˜Encrypt: It simulates the ciphertexts of challenge
messages x(1), · · · , x(q1), where x(1), . . . , x(q1) are
output byA. q1 is the number of the challenge
messages. Let q2 be the number of secret key queries
in the first stage. ˜Encrypt receives as inputmsk, pp,
nonadaptive secret key queries y(1), · · · , y(q2) made by
A, together with

(
x(l) · y(1), · · · , x(l) · y(q2)

)
for each

1 ≤ l ≤ q1, and the secret keys (y, sky), · · · , (y, sky).
The normal ciphertext is (x,α, 0, η, 0, 0)B generated
by IPE.Encrypt, where α, η U← Zq. The simulated
ciphertext is (x,α, 0, 0, 0, γ ′)B generated by ˜Encrypt,
where γ ′ U← Z

×
q . In order to prove the views ofA in

IPE.Encrypt and that in ˜Encrypt have the same
distribution, we introduce a new algorithm ˜Encrypt′
as a transition, where ctx = (x,α, 0, η, 0, γ ′)B.

• K̃eyGen: It simulates the answer to the second stage
queries ofA. It receives as inputmsk, pp, the vector
y, where y is the secret key query made byA, and the
values (x(1) · y), · · · , (x(q1) · y), where x(1), · · · , x(q1)

are the challenge messages. The normal secret key is
(y, 0,β , 0, θ , 0)B∗ generated by IPE.KeyGen, where
β , θ U← Zq. The simulated secret key is
(y, 0,β , τ ′, 0, 0)B∗ generated by K̃eyGen, where
τ ′ U← Z

×
q . Analogous to ˜Encrypt, we also introduce a

new algorithm ˜KeyGen′ as a transition, where
sky = (

y, 0,β , τ ′, θ , 0
)
B∗ .

In our scheme the decryption result should satisfy
Eq. (1), so we define the simulated ciphertext and simu-
lated secret key as (x,α, 0, 0, 0, γ ′)B and (y, 0,β , τ ′, 0, 0)B∗ ,
respectively, which would make the Eq. (1) hold as well.
Next, we will prove that the output of an ideal world
experiment and output of the real world experiment are
indistinguishable via a hybrid argument.

Proof A brief overview of the security proof is shown
in the Fig. 2. By a standard hybrid argument, we prove
the distributions of the outputs in ˜Encrypt and K̃eyGen
are computationally indistinguishable from the normal
ciphertexts and the normal secret keys, respectively. We
list a series of hybrid experiments H1, · · · ,H6 in Table 1,
where H1 is the real world experiment and H6 is the ideal
world experiment. We then prove that hybrid experiment
is indistinguishable from the neighboring one.

1 Hybrid H1: This is the real experiment.
2 Hybrid H2: This experiment is the same as H1

except that the master secret key and the public
parameters are generated by S̃etup. Namely, the
ciphertext ctx and the secret key sky are generated by
IPE.Encrypt and IPE.KeyGen:

ctx = (x,α, 0, η, 0, 0)B , sky = (
y, 0,β , 0, θ , 0

)
B∗ .

3 Hybrid H3: This experiment is the same as H2
except that every challenge ciphertext is
ctx = (

x,α, 0, η, 0, γ ′)
B
, which is generated by

˜Encrypt′.
4 Hybrid H4: This experiment is the same as H3

except that every challenge ciphertext is
ctx = (

x,α, 0, 0, 0, γ ′)
B
, which is generated by

˜Encrypt.
5 Hybrid H5: This experiment is the same as H4

except that, for every secret key query y, the
corresponding secret key is sky = (y, 0,β , τ ′, θ , 0)B∗ ,
which is generated by ˜KeyGen′.

6 Hybrid H6: This experiment is the same as H5
except that, for every secret key query y, the
corresponding secret key is sky = (y, 0,β , τ ′, 0, 0)B∗ ,
which is generated by K̃eyGen.
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Fig. 2 Framework of Security Proof

Lemma 7 For all PPT adversariesA, H1
c≈ H2.

Proof Because the master secret key and the public
parameters are all generated by IPE.Setup in H1 and
H2, the view of A in H1 and that in H2 has the same
distribution.

Lemma 8 Assuming that Problem2 holds, for all PPT
adversariesA, H2

c≈ H3.

Proof Suppose that there exists a PPT adversary A that
can distinguish the output distributions of H2 and H3.
Then, we construct a PPT algorithm B which is given an
instance of Problem2

(
paramV, B̂, B̂∗, gb

)
for b ∈ {0, 1}

and simulates H2 and H3.

Setup: B runs IPE.Setup(1λ, n) and outputs msk =(
B̂, B̂∗) and pp = (

1λ,paramV

)
. B gives A the pub-

lic parameters pp and the master secret key msk is only
known to B.

Secret Key Queries: To answer the key queries made
byA, B runs algorithm IPE.KeyGen to respond with sky =
(y, 0,β , 0, θ , 0)B∗ .

Simulated Ciphertexts: B randomly chooses μ =
{1, · · · , q1}, where q1 is the number of the ciphertext
queries asked by adversary A. To answer the ciphertext
query that A makes, B chooses α, η U← Zq and γ ′ U← Z

×
q

and computes ctx as

ctx =
n∑

l=1
xlbl + αbn+1 + ηbn+3 + γ ′bn+5if l < μ,

ctx =
n∑

l=1
xlbl + gbif l = μ,

ctx =
n∑

i=l
xlbl + αbn+1 + ηbn+3if l > μ.

We analyse that the view of A is composed of the pub-
lic parameters and the answers of the secret key queries

Table 1 Hybrid argument sequence with structure of ciphertexts and secret keys

Hybrid argument Ciphertexts Secret keys

Hybrid H2 (x,α, 0, η, 0, 0)B (y, 0,β , 0, θ , 0)B∗

Hybrid H3 (x,α, 0, η, 0, γ ′)B (y, 0,β , 0, θ , 0)B∗

Hybrid H4 (x,α, 0, 0, 0, γ ′)B (y, 0,β , 0, θ , 0)B∗

Hybrid H5 (x,α, 0, 0, 0, γ ′)B (y, 0,β , τ ′ , θ , 0)B∗

Hybrid H6 (x,α, 0, 0, 0, γ ′)B (y, 0,β , τ ′ , 0, 0)B∗
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and the ciphertext queries. The public parameters in H2
and H3 are all generated by IPE.Setup and thus have the
same distribution, similar to the answers to the secret key
queries. It can be seen that if b = 0, the answer is dis-
tributed as in H2, if b = 1, the answer is distributed as in
H3.

Lemma 9 Assuming that Problem3 holds, for all PPT
adversariesA, H3

c≈ H4.

Proof Suppose that there exists a PPT adversary A that
can distinguish the output distributions of H3 and H4.
Then, we construct a PPT algorithm B which is given an
instance of Problem3

(
paramV, B̂, B̂∗, gb

)
for b ∈ {0, 1}

and simulates H3 and H4.

Setup: B runs IPE.Setup(1λ, n) and outputs msk =(
B̂, B̂∗) and pp = (

1λ,paramV

)
. B gives A the pub-

lic parameters pp and the master secret key msk is only
known to B.

Secret Key Queries: To answer the key queries made
byA, B runs algorithm IPE.KeyGen to respond with sky =
(y, 0,β , 0, θ , 0)B∗ .

Simulated Ciphertexts: B randomly chooses μ =
{1, · · · , q1}, where q1 is the number of the ciphertext
queries asked by adversary A. To answer the ciphertext
query that A makes, B chooses random α, η U← Zq and
γ ′ U← Z

×
q and computes and answers as

ctx =
n∑

l=1
xlbl + αbn+1 + γ ′bn+5if l < μ,

ctx =
n∑

l=1
xlbl + gbif l = μ,

ctx =
n∑

l=1
xlbl + αbn+1 + ηbn+3 + γ ′bn+5if l > μ.

We analyse that the view of A is composed of the pub-
lic parameters and the answers of the secret key queries
and the ciphertext queries. The public parameters in H3
and H4 are all generated by IPE.Setup and thus have the
same distribution, similar to the answers to the secret key
queries. It can be seen that if b = 0, the answer is dis-
tributed as in H3, if b = 1, the answer is distributed as in
H4.

Lemma 10 Assuming that Problem4 holds, for all PPT
adversariesA, H4

c≈ H5.

Proof Suppose that there exists a PPT adversary A that
can distinguish the output distributions of H4 and H5.
Then, we construct a PPT algorithm B which is given an
instance of Problem4

(
paramV, B̂, B̂∗, g∗

b
)
for b ∈ {0, 1}

and simulates H4 and H5.

Setup: B runs IPE.Setup(1λ, n) and outputs msk =(
B̂, B̂∗) and pp = (

1λ,paramV

)
. B gives A the pub-

lic parameters pp and the master secret key msk is only
known to B.

Ciphertexts Queries: To answer every ciphertext query
that A makes, B chooses random α

U← Zq and γ ′ U← Z
×
q ,

runs ˜Encrypt, and answers as ctx = (x,α, 0, 0, 0, γ ′)B.

Simulated Secret Keys: B randomly chooses ν =
{1, · · · , q2}, where q2 is the number of the secret key
queries asked by adversary A. To answer the secret key
query that A makes, B chooses β , θ U← Zq and τ ′ U← Z

×
q

and computes and answers as

sky =
n∑

j=1
yjb∗

j + βb∗
n+2 + τ ′b∗

n+3 + θb∗
n+4if j < ν,

sky =
n∑

j=1
yjb∗

j + gbif j = ν,

sky =
n∑

j=1
yjb∗

j + βb∗
n+2 + θb∗

n+4if j > ν.

We analyse that the view of A is composed of the public
parameters and the answers of the ciphertexts queries and
the secret key queries. The public parameters in H4 and
H5 are all generated by IPE.Setup and thus have the same
distribution, similar to the answers to ciphertexts queries
where ctx in H4 and H5 are all generated by ˜Encrypt. It
can be seen that if b = 0, the answer is distributed as in
H4, if b = 1, the answer is distributed as in H5.

Lemma 11 Assuming that Problem5 holds, for all PPT
adversariesA, H5

c≈ H6.

Proof Suppose that there exists a PPT adversary A that
can distinguish the output distributions of H5 and H6.
Then, we construct a PPT algorithm B which is given an
instance of Problem5 (paramV, B̂, B̂∗, g∗

b) for b ∈ {0, 1} and
simulates H5 and H6.

Setup: B runs IPE.Setup(1λ, n) and outputs msk =(
B̂, B̂∗) and pp = (

1λ,paramV

)
. B gives A the pub-

lic parameters pp and the master secret key msk is only
known to B.
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Table 2 Performance comparison of our IPE scheme

BJK15(Bishop et al.
2015)

DDM16(Datta et al.
2017)

TAO16(Tomida
et al 2016)

ZZL17(Zhao et al.
2018)

ZZL18(Zhao et al.
2018)

Ours

MSK (8n2 + 8)�Zq (8n2 +12n+28)�Zq (4n2 +18n+20)�Zq (6n2 +10n+24)�Zq (2n2 +18n+36)�Zq (2n2+14n+20)�Zq

CT (2n + 2)�G1 (4n + 8)�G1 (2n + 5)�G1 (2n + 4)�G1 (n + 6)�G1 (n + 5)�G1

SK (2n + 2)�G2 (4n + 8)�G2 (2n + 5)�G2 (2n + 4)�G2 (n + 6)�G2 (n + 5)�G2

KeyGen 2n + 2 4n + 8 2n + 5 2n + 4 n + 6 n + 5

Encrypt 2n + 2 4n + 8 2n + 5 2n + 4 n + 6 n + 5

Decrypt 2n + 2 4n + 8 2n + 5 2n + 4 n + 6 n + 5

Assumption SXDH SXDH XDLIN SXDH XDLIN XDLIN

Security IND IND IND SIM SIM SIM

Legends: n represents dimension of the vectors. All schemes utilize asymmetric bilinear maps over two groupsG1 andG2 of order q. �G is the bit length to represent an
element in groupG

Ciphertexts Queries: To answer every ciphertext query
that A makes, B chooses random α

U← Zq and γ ′ U← Z
×
q ,

runs ˜Encrypt, and answers as ctx = (x,α, 0, 0, 0, γ ′)B.

Simulated Secret Keys: B randomly chooses ν =
{1, · · · , q2}, where q2 is the number of the ciphertext
queries asked by adversary A. To answer the secret key
query that A makes, B chooses β , θ U← Zq and τ ′ U← Z

×
q

and computes and answers as

sky =
n∑

j=1
yjb∗

j + βb∗
n+2 + τ ′b∗

n+3 + if j < ν,

sky =
n∑

j=1
yjb∗

j + g∗
bif j = ν,

sky =
n∑

j=1
yjb∗

j + βb∗
n+2 + τ ′b∗

n+3 + θb∗
n+4if j > ν.

We analyse that the view of A is composed of the public
parameters and the answers of the ciphertexts queries and
the secret key queries. The public parameters in H5 and
H6 are all generated by IPE.Setup and thus have the same
distribution, similar to the answers to ciphertexts queries
where ctx in H5 and H6 are all generated by ˜Encrypt. It
can be seen that if b = 0, the answer is distributed as in
H5, if b = 1, the answer is distributed as in H6.

So we complete the proof.

Comparison
To demonstrate the advantage of our IPE scheme, we com-
pare it with some related schemes (Bishop et al. 2015;
Tomida et al. 2016; Datta et al. 2017; Zhao et al. 2018; Zhao
et al. 2018) in the Table 2. Performance in our scheme

is superior to that in the previous schemes in both stor-
age complexity and computation complexity. Our scheme
has shorter secret keys and ciphertexts. Additionally,
our scheme is secure under weaker assumptions than
other schemes. IND and SIM mean indistinguishability-
based security and simulation-based security, respectively.
KeyGen and Encryptmean scalarmultiplication on a cyclic
group of IPE.KeyGen algorithm and IPE.Encrypt algorithm,
respectively, and Decrypt means pairing operation on a
bilinear pairing group of IPE.Decryption algorithm.

Conclusion
In this paper, we presented an efficient private-key inner
product encryption scheme which achieves simulation-
based security. Our scheme utilizes asymmetric bilinear
pairing groups of prime order under the XDLIN assump-
tion. There are still some open problems for inner prod-
uct encryption can be explored and researched further.
One of the problems is to build unbounded FE schemes
for different functionalities, such as Quadratic Polyno-
mials (Baltico et al. 2017). Another one is to construct
a Multi-Input inner product encryption scheme under
simulation-based security. Abdalla et al. (2017).
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