
304 A. Rady and F. van Breugel

and Viktor Kuncak, editors, Proceedings of the 29th International Conference on
Computer Aided Verification, volume 10427 of Lecture Notes in Computer Science,
pages 592–600, Heidelberg, Germany, July 2017. Springer-Verlag.

15. Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-
labelled quantitative transition systems. In Antonio Cerone and Herbert Wiklicky,
editors, Proceedings of 3rd Workshop on Quantitative Aspects of Programming Lan-
guages, volume 153(2) of Electronic Notes in Theoretical Computer Science, pages
79–96, Edinburgh, UK, April 2005. Elsevier.

16. Yuxin Deng and Rob van Glabbeek. Characterising probabilistic processes logi-
cally. In Christian G. Fermüller and Andrei Voronkov, editors, Proceedings of the
17th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, volume 6397 of Lecture Notes in Computer Science, pages 278–
293, Yogyakarta, Indonesia, October 2010. Springer-Verlag.

17. Salem Derisavi, Holger Hermanns, and William Sanders. Optimal state-space
lumping in Markov chains. Information Processing Letters, 87(6):309–315, Septem-
ber 2003.

18. Josée Desharnais. Labelled Markov Processes. PhD thesis, McGill University, Mon-
treal, November 1999.

19. Josée Desharnais, Abbas Edalat, and Prakash Panangaden. A logical characteriza-
tion of bisimulation for labeled Markov processes. In Proceedings of the 13th Annual
IEEE Symposium on Logic in Computer Science, pages 478–487, Indianapolis, IN,
USA, June 1998. IEEE.

20. Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors,
Proceedings of the 10th International Conference on Concurrency Theory, volume
1664 of Lecture Notes in Computer Science, pages 258–273, Eindhoven, The Nether-
lands, August 1999. Springer-Verlag.

21. Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled Markov processes. Theoretical Computer Science, 318(3):323–
354, June 2004.

22. Josée Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden.
The metric analogue of weak bisimulation for probabilistic processes. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 413–422,
Copenhagen, Denmark, July 2002. IEEE.

23. Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate analysis
of probabilistic processes: logic, simulation and games. In Proceedings of the 5th
International Conference on the Quantitative Evaluation of Systems, pages 264–
273, Saint-Malo, France, September 2008. IEEE.

24. Wenjie Du, Yuxin Deng, and Daniel Gebler. Behavioural pseudometrics for non-
deterministic probabilistic systems. In Martin Fränzle, Deepak Kapur, and Nai-
jun Zhan, editors, Proceedings of the 2nd International Symposium on Dependable
Software Engineering: Theories, Tools, and Applications, volume 9984 of Lecture
Notes in Computer Science, pages 67–84, Beijing, China, November 2016. Springer-
Verlag.

25. Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in
probabilistic automata. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, edi-
tors, Proceedings of the 19th International Symposium on Formal Methods, volume
8442 of Lecture Notes in Computer Science, pages 247–262, Singapore, May 2014.
Springer-Verlag.

Explainability of Probabilistic Bisimilarity Distances 305

26. Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov
decision processes. In Proceedings of the 20th Annual Conference on Uncertainty
in Artificial Intelligence, pages 162–169, Banff, Canada, July 2004. AUAI Press.

27. Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for
probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working
Conference on Programming Concepts and Methods, pages 443–458, Sea of Gallilee,
Israel, April 1990. North-Holland.

28. Susanne Graf and Joseph Sifakis. A modal characterization of observational con-
gruence on finite terms of CCS. In Jan Paredaens, editor, Proceedings of the
11th Colloquium on Automata, Languages and Programming, volume 172 of Lec-
ture Notes in Computer Science, pages 222–234, Antwerp, Belgium, July 1984.
Springer-Verlag.

29. Matthew Hennessy and Robin Milner. On observing nondeterminism and con-
currency. In Jaco de Bakker and Jan van Leeuwen, editors, Proceedings of the
7th Colloquium on Automata, Languages and Programming, volume 85 of Lecture
Notes in Computer Science, pages 299–309, Noordwijkerhout, The Netherlands,
July 1980. Springer-Verlag.

30. Michael Hillerström. Verification of CSS-processes. Master’s thesis, Aalborg Uni-
versity, Aalborg, Denmark, January 1987.

31. Leonid Kantorovich and Gennadi Rubinstein. On the space of completely additive
functions (in Russian). Vestnik Leningradskogo Universiteta, 3(2):52–59, 1958.

32. Leonid Khachiyan. A polynomial algorithm in linear programming (in Russian).
Doklady Akademii Nauk SSSR, 244(5):1093–1096, 1979. English translation in
Soviet Mathematics Doklady, 20:191–194, 1979.

33. Viktor Klee and Christoph Witzgall. Facets and vertices of transportation poly-
topes. In George Dantzig and Arthur Veinott, editors, Proceedings of 5th Summer
Seminar on the Mathematics of the Decision Sciences, volume 11 of Lectures in
Applied Mathematics, pages 257–282, Stanford, CA, USA, June/July 1967. AMS.

34. Stephen Kleene. Introduction to Metamathematics. Van Nostrand, New York, NY,
USA, 1952.

35. Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot, and Ichiro
Hasuo. Expressivity of quantitative modal logics : Categorical foundations via co-
density and approximation. In Proceedings of the 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, pages 1–14, Rome, Italy, June/July 2021.

36. Barbara König and Christina Mika-Michalski. (Metric) bisimulation games and
real-valued modal logics for coalgebras. In Sven Schewe and Lijun Zhang, editors,
Proceedings of the 29th International Conference on Concurrency Theory, volume
118 of Leibniz International Proceedings in Informatics, pages 37:1–37:17, Beijing,
China, September 2018. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

37. Barbara König, Christina Mika-Michalski, and Lutz Schröder. Explaining non-
bisimilarity in a coalgebraic approach: Games and distinguishing formulas. In
Daniela Petrisan and Jurriaan Rot, editors, Proceedings of 15th IFIP WG 1.3 In-
ternational Workshop on Coalgebraic Methods in Computer Science, volume 12094
of Lecture Notes in Computer Science, pages 133–154, Dublin, Ireland, April 2020.
Springer-Verlag.

38. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Proceedings of the 23rd International Conference on Computer Aided Veri-
fication, volume 6806 of Lecture Notes in Computer Science, pages 585–591, Snow-
bird, UT, USA, July 2011. Springer-Verlag.

306 A. Rady and F. van Breugel

39. Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of Programming Languages,
pages 344–352, Austin, TX, USA, January 1989. ACM.

40. David Luenberger and Yinyu Ye. Linear and nonlinear programming. Springer-
Verlag, New York, NY, USA, 2008.

41. Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany, 1980.

42. James Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming, 78(2):109–129, August 1997.

43. Vera Pantelic and Mark Lawford. A pseudometric in supervisory control of prob-
abilistic discrete event systems. Discrete Event Dynamic Systems, 22(4):479–510,
December 2012.

44. David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Proceedings of 5th GI-Conference on Theoretical Computer Science, volume
104 of Lecture Notes in Computer Science, pages 167–183, Karlsruhe, Germany,
March 1981. Springer-Verlag.

45. Amgad Rady and Franck van Breugel. Java code to explain proba-
bilistic bisimilarity distances for labelled Markov chains, February 2023.
https://doi.org/10.5281/zenodo.7626542.

46. Michel Reniers, Rob Schoren, and Tim Willemse. Results on embeddings between
state-based and event-based systems. The Computer Journal, 57(1):73–92, 2014.

47. Joshua Sack and Lijun Zhang. A general framework for probabilistic characterizing
formulae. In Viktor Kuncak and Andrey Rybalchenko, editors, Proceedings of
the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation, volume 7148 of Lecture Notes in Computeer Science, pages 396–411,
Philadelphia, PA, USA, January 2012. Springer-Verlag.

48. Qiyi Tang. Computing probabilistic bisimilarity distances. PhD thesis, York Uni-
versity, Toronto, Canada, August 2018.

49. Kathleen Trustrum. Linear programming. Routledge & Kegan Paul, London, UK,
1971.

50. Antti Valmari and Giuliana Franceschinis. Simple O(m log n) time Markov chain
lumping. In Javier Esparza and Rupak Majumdar, editors, Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of Lecture Notes in Computer Science, pages
38–52, Paphos, Cyprus, March 2010. Springer-Verlag.

51. Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via
fuzzy lax extensions. In Igor Konnov and Laura Kovács, editors, Proceedings of
the 31st International Conference on Concurrency Theory, volume 171 of Leib-
niz International Proceedings in Informatics, pages 27:1–27:23, Vienna, Austria,
September 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

52. Thorsten Wißmann, Stefan Milius, and Lutz Schröder. Explaining behavioural
inequivalence generically in quasilinear time. In Serge Haddad and Daniele Varacca,
editors, Proceedings of the 32nd International Conference on Concurrency Theory,
volume 203 of Leibniz International Proceedings in Informatics, pages 32:1–32:18,
Paris, France, April 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

https://doi.org/10.5281/zenodo.7626542

Explainability of Probabilistic Bisimilarity Distances 307

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Weighted and Branching Bisimilarities from
Generalized Open Maps

Jérémy Dubut1(�) and Thorsten Wißmann2,3 ‹

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
jeremy.dubut@aist.go.jp

2 Radboud University, Nijmegen, the Netherlands
t.wissmann@cs.ru.nl

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract. In the open map approach to bisimilarity, the paths and their
runs in a given state-based system are the first-class citizens, and bisimi-
larity becomes a derived notion. While open maps were successfully used
to model bisimilarity in non-deterministic systems, the approach fails to
describe quantitative system equivalences such as probabilistic bisimi-
larity. In the present work, we see that this is indeed impossible and we
thus generalize the notion of open maps to also accommodate weighted
and probabilistic bisimilarity. Also, extending the notions of strong path
and path bisimulations into this new framework, we show that branching
bisimilarity can be captured by this extended theory and that it can be
viewed as the history preserving restriction of weak bisimilarity.

Keywords: Open maps · Weighted Bisimilarity · Probabilistic Bisimi-
larity · Branching Bisimilarity · Weak Bisimilarity

1 Introduction

The theory of open maps is a categorical framework to reason about systems
and their bisimilarities [16]. Given a category of systems and a description of
the shape of the executions and how to extend them, open maps are morphisms
with lifting properties with respect to those extensions. Intuitively, open maps
are morphisms which preserve and reflect transitions of systems, that is, they are
morphisms whose graphs are bisimulations. The theory covers various classical
notions of bisimilarity. For example, two LTSs are strongly bisimilar if and only
if there is a span of open maps between them. Varying the category of models
and the execution shapes allows describing weak bisimilarity, timed bisimilarity,
probabilistic Larsen and Skou bisimilarity, and history-preserving bisimilarity of
event structures (see [16,3,12] for examples).

Another categorical framework for bisimilarity is coalgebra [22]. This time,
given a category and an endofunctor describing respectively the type of state
spaces and the type of transitions, a ‘system’ is understood as a coalgebra for this

‹ Supported by the NWO TOP project 612.001.852.

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 308–327, 2023.
https://doi.org/10.1007/978-3-031-30829-1 15

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_15&domain=pdf
https://orcid.org/0000-0002-2640-3065
https://orcid.org/0000-0001-8993-6486
mailto:jeremy.dubut@aist.go.jp
mailto:t.wissmann@cs.ru.nl
https://doi.org/10.1007/978-3-031-30829-1_15
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_15&domain=pdf

Weighted Bisimilarity from Generalized Open Maps 309

functor. Coalgebra homomorphisms are then very similar to open maps in spirit:
they also are morphisms that preserve and reflect transitions. This intuition has
been made formal by transformations between the categorical frameworks in
both ways; from open maps to coalgebra [19], and conversely [25]. However, the
latter suggests that open maps are only adapted to modeling non-deterministic
systems and would struggle with other types of branchings, such as probabilistic.

In coalgebra, there are no particular difficulties in modeling weighted systems,
and by extension, discrete probabilistic systems [17]. There is also some work for
continuous probabilities, although the theory is much more complicated [5,4].
As we will explain more precisely later, there have been some attempts to do so
with open maps in [3,5], but the result is somewhat disappointing.

Conversely, coalgebra is not adapted to bisimilarities for systems where tran-
sitions are not history-preserving, that is, for which the behavioral equivalence
does not just depend on the transitions at a given state, but on the whole history
of the execution that led to this state. That is the case for example for branching
bisimilarity [23]. Branching bisimilarity arose precisely to make weak bisimilarity
history-preserving. In [3], weak bisimilarity has been described using open maps
by carefully choosing the underlying category, with a general theory developed
in [9] using presheaf models. Branching bisimilarity has also been studied using
open maps in [1,2], but indirectly, through a translation into presheaves.

To resume, the goal of this paper is to capture weighted and branching bisim-
ilarities using a generalization of open maps. Concretely, the contributions are:

1. a proof that it is impossible to appropriately model probabilistic system
using standard open maps (Section 3.2),

2. a faithful extension of the theory of open maps and (strong) path bisimula-
tions (Section 4),

3. a generalized open map situation capturing weighted and probabilistic bisim-
ilarities (Section 5),

4. a generalized open map situation where strong path bisimulations correspond
to stuttering branching bisimulations, open map bisimilarity to branching
bisimilarity, and path bisimulations to weak bisimulations (Section 6).

Full proofs can be found in the appendix: http://arxiv.org/abs/2301.07004

2 From Path Categories to Bisimilarity

Before discussing weighted bisimilarity, let us first recall the main ideas of mod-
eling bisimilarity via open maps, as introduced by Joyal et al. [16]. The definition
is parametric in a functor J : P Ñ M, from a category P of paths to a category
M of models or systems of interest. In the prime example, M is the category of
labelled transition systems LTS as defined next:

Definition 2.1. For a fixed set A of labels, the category LTS contains:

1. Objects: a labelled transition system pX, , x0q is a set X of states, a tran-
sition relation Ď X ˆAˆX and a distinguished initial state x0 P X. We

http://arxiv.org/abs/2301.07004

310 J. Dubut and T. Wi�mann

write x a x1 to denote that px, a, x1q P and simply refer to the LTS as X
if and x0 are clear from the context. For disambiguation, we use Ñ for
morphisms and for transitions.

2. Morphisms: a functional simulation f : pX, , x0q Ñ pY, , y0q is a func-
tion f : X Ñ Y with fpx0q “ y0 and for all x a x1 in X, we have
fpxq a fpx1q.
A functional simulation f : X Ñ Y intuitively means that the system Y has

at least the transitions of X, but possibly more. A special case of a functional
simulation is the run of a word in a system:

Definition 2.2. For the label set A, let pA˚,ďq be the partially ordered set of
words, ordered by the prefix ordering. The functor J : pA˚,ďq Ñ LTS sends a
word w P A˚ to the LTS Jw “ ptv | v ď wu, , εq of all prefixes of w with
v a va for all a P A, va ď w.

This functor J (or more precisely, its image) is often called path category of LTS:
the possible runs of a word w P A˚ in pX, , x0q correspond precisely to the
functional simulations Jw Ñ pX, , x0q in LTS.

On the abstract level, for a general functor J : P Ñ M, we understand the
set of morphisms r : Jw Ñ X for w P P and X P M as the runs of the path w in
the model X. We can already make the trivial observation that all morphisms
f : X Ñ Y in M preserve runs: given a run r : Jw Ñ X of some path w P P in
X, there is a run f ¨ r : Jw Ñ Y of w in Y .

The converse does not hold for a general f : X Ñ Y in M: given a run of w
in Y , there is not necessarily a run of w in X. If f reflects runs, it is called open:

Definition 2.3. For a functor J : P Ñ M, a morphism f : X Ñ Y in M is
called open if f satisfies the following lifting property for all e : v Ñ w in P:

for all

Jv X

Jw Y

r

Je œ f

s

there is d : Jw Ñ X with

Jv X

Jw Y

r

Je
œ

œ
f

s

d

That is, for all commutative squares (s ¨ Je “ f ¨ r), there is d : Jw Ñ X in M
that makes both triangles on the right commute (f ¨ d “ s and d ¨ Je “ r).

By construction, we can only make statements about states that are reachable
via some run. Thus, one often restricts M beforehand to contain only models in
which all states are reachable from the initial state.

For LTSs in which all states are reachable from the initial state, open maps
are related to strong bisimulations [20]: open maps are precisely functions whose
graph relation tpx, fxq | x P Xu is a strong bisimulation. Reformulated in the
context of allegories [10], open maps are precisely the maps in the allegory of
relations that are strong bisimulations. It is then natural to recover bisimulations
as tabulations of open maps, that is:

Definition 2.4. For a functor J : P Ñ M, we say that two models X and Y are
J-bisimilar, if there exist another model Z and two J-open maps f : Z Ñ X and
g : Z Ñ Y , that is, if there is a span of J-open maps between them.

Weighted Bisimilarity from Generalized Open Maps 311

Of course, J-bisimilarity is a reflexive (identities are open maps) and sym-
metric (by permuting f and g in the definition) relation on models, but it is not
transitive in general. It is when the category M has pullbacks [16].

Given a functor J : P Ñ M, there are more classical ways of defining bisim-
ilarities given in [16]. The first one is (strong) path bisimulations, which are re-
lations on runs (similar to history-preserving bisimulations) satisfying the usual
bisimilarity conditions. The second one is by using a modal logic similar to the
Hennessy-Milner theorem. In the case of LTSs with strong bisimilarity, all those
notions describe the same notion of bisimilarity, but that is not true for general
J : P Ñ M: it can only be proved that J-bisimilarity implies the existence of
a (strong) path bisimulation, which itself implies that the two models satisfy
the same formulas of the modal logic. In [6], some mild sufficient conditions in
terms of trees (i.e., colimits of paths in M) are given for those three notions to
coincide. In particular, all the examples of bisimilarities covered by open maps
cited earlier satisfy these conditions.

We use coalgebra for uniform statements about state-based systems of dif-
ferent branching type (including non-deterministic and probabilistic branching):

Definition 2.5. For an object 1 of a category C and an endofunctor F : C Ñ C,
a pointed coalgebra is a pair of morphisms of C of the form 1

iÝÝÑ X
ξÝÝÑ FX.

For example, LTSs can be modeled as pointed coalgebras with C “ Set, 1
any singleton, and F “ PpA ˆ q, where P is the power set functor. The usual
notion of morphisms of coalgebras can be spelt out as follows:

Definition 2.6. A (proper) homomorphism of
pointed coalgebras from pX, ξ, iq to pY, ζ, jq is a
morphism f : X Ñ Y of C such that the diagram
on the right commutes.

1 X FX

Y FY

i

j

œ

ξ

f œ Ff

ζ

Pointed coalgebras and proper homomorphisms always form a category, but
in the case of LTSs as described above, this category is not equivalent to the
category LTS. Indeed, proper homomorphisms are not just morphisms that pre-
serve transitions, but similarly to open maps, they also reflect them. In [25], the
authors proved that for a large class of endofunctors, whose coalgebras basically
are non-deterministic, proper homomorphisms precisely correspond to J-open
maps for a certain functor J . To model morphisms that are only required to
preserve transitions, homomorphisms have to be made lax as follows (see [25]):

Definition 2.7. Assume a relation Ď on ev-
ery Hom-set CpX,FY q. A lax homomorphism of
pointed coalgebras from pX, ξ, iq to pY, ζ, jq is a
morphism f : X Ñ Y of C such that the diagram
on the right laxly commutes, that is, f ¨i “ j and
Ff ¨ ξ Ď ζ ¨ f in CpX,FY q.

1 X FX

Y FY

i

j

œ

ξ

f

Ď

Ff

ζ

In the case of the functor PpA ˆ q, we can consider the pointwise inclu-
sion on every Hom-set SetpX,PpA ˆ Y qq. With this, pointed coalgebras and lax

312 J. Dubut and T. Wi�mann

homomorphisms form a category which is isomorphic to the category LTS. How-
ever, it is not true in general that they form a category, as a compatibility of Ď
with the composition is needed as follows:

Definition 2.8. A partial order on F is a collection of partial orders Ď, one
for each Hom-set of the form CpX,FY q such that

@X f1,f2ÝÝÝÑ FY, X 1 gÝÑ X, Y
hÝÑ Y 1 : f1 Ď f2 ñ Fh ¨ f1 ¨ g Ď Fh ¨ f2 ¨ g.

This is equivalent to the requirement that the Hom-functor Cp , F q factors
through partially ordered sets: Cp , F q : Cop ˆ C Ñ Pos.

Remark 2.9. The present definition subsumes the definition of order on a Set-
functor established by Hughes and Jacobs [11, Def 2.1] (details in the appendix).

Lemma 2.10 [25]. When Ď is a partial order on F , pointed coalgebras and lax
homomorphisms form a category, which we denote by LCoalgp1, F q.

Much as with open maps, many flavors of bisimilarity can be recovered using
spans of proper homomorphisms:

Definition 2.11. We say that two pointed coalgebras are coalgebraically bisim-
ilar if there is a span of proper homomorphisms between them.

There are many ways of defining bisimilarities in coalgebra (see [13] for an
overview), but they coincide for the purpose of the present paper.

3 Weighted Bisimilarity and Open Maps

In this section, we describe known attempts to model weighted systems, and
particularly probabilistic ones, using open maps. They all work with some vari-
ations of the (discrete) distribution functor on Set. We will denote this functor,
which maps a set X to the set

DX “ �
f : X Ñ r0, 1s | f´1

`p0, 1s˘ is finite and
ÿ
xPX

fpxq “ 1
(
,

by D and the variation where the condition “ 1 is replaced by ď 1 by Dď1

(i.e. Dď1X :“ DpX ` 1q). We will prove that, even though Larsen-Skou bisimu-
lations for reactive systems can be modeled with open maps, that is impossible
for bisimulations for generative systems.

3.1 Larsen-Skou Bisimilarity Using Open Maps

In [3], Cheng et al. describe an open map situation for Probabilistic Transition
Systems (PTSs), which corresponds to coalgebras for the functor pDp q ` 1qA.
In this setting, they consider Partial PTSs (PPTS) which are coalgebras for
pDεď1p q ` 1qA where the sub-probability distributions can have values in hyper-
reals, allowing infinitesimals ε. The category of PTSs embeds in that of PPTSs,

Weighted Bisimilarity from Generalized Open Maps 313

and the path category is the full subcategory of PPTSs consisting of finite linear
systems whose probabilities of transitions are infinitesimals. It is then proved
that J-bisimilarity, restricted to PTSs, for this path category corresponds to
Larsen-Skou’s probabilistic bisimilarity [18].

This open map situation has been reformulated in [7] in terms of coreflections:
the obvious functor from PPTSs to TSs is a coreflection whose left-adjoint maps
a LTS T to the PPTS whose underlying LTS is T and where all transitions have
infinitesimal probabilities. In general, given a coreflection F : C Ñ D with left-
adjoint G and a path category J on D, one automatically has the path category
G ˝ J on C, and this construction preserves good properties of J . In particular,
one has that two systems A and B are pG ˝ Jq-bisimilar if and only if FA and
FB are J-bisimilar. Cheng et al.’s path category is obtained in this manner with
the coreflection above and the standard path category on LTSs. In particular,
it means that two PPTSs are bisimilar if and only if their underlying TSs are
strongly bisimilar.

3.2 Impossibility Result for Generative Systems

In [5], Desharnais et al. describe several bisimilarities for generative probabilistic
systems, that is, coalgebras for the functor Dď1pA ˆ q, in a coalgebraic way.
They pointed out that their efforts to model those bisimilarities using open maps
failed [5, p. 188]. In the following, we see that it is in fact not possible. We will
show that for generative probabilistic systems modeled by the category M :“
LCoalgp1,Dď1pAˆ qq, there is no open map characterization of the coalgebraic
bisimilarity. Actually, the argument here is valid for many other types of weights
and is not limited to reals.

Here, for two functions f, g : X Ñ Dď1pY q, f Ď g means that for all x P X,
for all y P Y , fpxqpyq ď gpxqpyq, where ď is the usual ordering on r0, 1s.

In this situation:

Theorem 3.1. For M :“ LCoalgp1,Dď1pA ˆ qq there is no category P and no
functor J : P Ñ M such that for every h : X Ñ Y with reachable X the following
equivalence holds:

h is J-open ðñ h is a proper homomorphism

and there is no P and no functor J such that for every X and Y :

X and Y are J-bisimilar ðñ X and Y are coalgebraically bisimilar.

Proof (Sketch). By contradiction, assume that there is such a J . We prove that
there is a proper homomorphism of the form:

X “ r
x11{n, a ...
xn1{n, a

hÝÝÑ Y “ r y
1, a

314 J. Dubut and T. Wi�mann

which cannot be J-open. Consider first the unique lax homomorphism 0M Ñ Y
where 0M consists in one state and no transition. This is not a proper homomor-
phism, so it is not open by assumption. That is there is a square:

JP 0M

JQ Y

p

Jφ !Y

q

with no lifting. It is mechanical to check that JP » 0M and JQ has at least one
transition from its initial state to another state r

w, a
z with w ‰ 0. With

n “ 2 ¨ r 1
w s, the proper homomorphism h above is not open: there cannot be a

morphism from JQ to X because w ą 1
n . [\

4 Generalized Open Maps

The main argument of the proof of impossibility is the fact that sometimes, a
transition with some probability w in the codomain comes from probabilities
w1, . . . , wn with

ř
i wi “ w in the domain, which makes a lifting morphism

impossible with the current framework of open maps.
In this section, we will extend the open map framework with the main in-

tuition that the lifting morphism splits the probability w into smaller parts
w1, . . . , wn. After defining these generalized open maps, we show some basic
properties of the bisimilarity generated by them.

4.1 Generalized Open Maps Situation

Here, we describe our extension of the open maps framework. The data is similar:
we start with a category of models M, but we need more than just a functor
J : P Ñ M. Assume:

– a set V together with a function J : V Ñ obpMq,
– two small categories E and S whose sets of objects are V ,
– two functors JE : E Ñ M and JS : S Ñ M coinciding with J on objects.

The classical open maps situation J : P Ñ M fits in this extension as follows.
The category E is given by P with the intention that they model path shapes
and their extensions. The functor JE is given by J . The category S is given by
the discrete category |P|, that is, the category whose objects are those of P and
whose morphisms are only identities. The functor JS is the only possible one
respecting the conditions of the definition above.

In the general context of this extension, the interpretation is a bit different.
Now V is meant to be a set of trees labelled by alphabets and weights. E still
consists in extensions, extending trees into trees with longer branches. S then
consists in merging morphisms, similar to the description above: for the example
of weighted systems, those morphisms are allowed to merge states into one,

Weighted Bisimilarity from Generalized Open Maps 315

as long as they sum up the weights of the in-going branches. Generally, those
morphisms are allowed to perform some merges that are harmless for bisimilarity.

With this data, we can define generalized open maps:

Definition 4.1. A morphism f : X Ñ Y in M is called (E,S)-open if it satisfies
the following lifting property for all e : v Ñ w in E:

for all

Jv X

Jw Y

x

JEe œ f

y

there is

Jv X

Ju

Jw Y

x

JEe
1

JEe

œ

œ
fœ

x1

JSs

y

The interpretation starts the same as in usual open maps. Assume that we have
a tree y in Y extending the image by f of the tree x in X. If f is open, there
should be a tree x1 extending x and whose image by f is y. However, x1 may have
a different shape than y, since it might be necessary to split transitions. That is
what u and s are modeling: w is obtained from u by merging some states.

The connection with the classical open maps can be formulated as follows

Proposition 4.2. Given a functor J : P Ñ M and a morphism f : X Ñ Y ,

f is J-open if and only if f is pP, |P|q-open.
Again, bisimilarity can be defined as the existence of a span of open maps

Definition 4.3. We say that X and Y are pE, Sq-bisimilar if there is a span of
pE, Sq-open maps between them.

4.2 Basic Properties

In this section, we will prove general properties of pE, Sq-bisimilarity similar to
the classical case. First, we show that if M has pullbacks, then pE, Sq-bisimilarity
is an equivalence relation. Secondly, we describe two notions of path bisimula-
tions, both implied by pE, Sq-bisimilarity. Finally, we prove that it is enough to
check openness on some generators of E.
In order to see when pE, Sq-bisimilarity is an equiva-
lence relation, we need to check symmetry, reflexiv-
ity, and transitivity. Symmetry always holds because
we can always swap the legs of the span. For reflex-
ivity, it is enough to prove that identities are open
which is valid because S is a category and JS is a
functor, as shown in the diagram on the right. The
proof of transitivity relies on composition and pull-
backs:

Jv X

Jw

Jw Y

x

JEe

JEe

œ

œ
idœ

y

JS id“id

y

Lemma 4.4. pE, Sq-open maps are closed under composition and pullbacks.

Theorem 4.5. If M has pullbacks, then pE, Sq-bisimilarity is a transitive rela-
tion, and thus is an equivalence relation.

316 J. Dubut and T. Wi�mann

Generalized Path Bisimulations. In the classical open map setup [16], an-
other notion of bisimilarity can be defined by using path extensions directly:
so-called strong path and path bisimulations, which can be generalized as fol-
lows. Like originally [16], we assume that there is an element 0 P V , such that J0
is an initial object of M (note that 0 is not required to be initial in E or S). The
intuition is that the unique morphism !X : J0 Ñ X points to the initial state of
X. For example, J0 can be given by p1, id1,Kq in a category of pointed coalge-
bras if 1 is the final object of C and if Cp1, F1q has the least element K : 1 Ñ F1
(those conditions hold in the cases of interest).

Definition 4.6. A path simulation from A to B in M is a set R of spans of the

form A
aÐÝÝ Jv

bÝÝÑ B (for v P V) satisfying the following two properties

– initial condition: the span A
!AÐÝÝÝ J0

!BÝÝÝÑ B belongs to R.

– forward closure: for all spans A
aÐÝÝ Jv

bÝÝÑ B
in R, all e : v Ñ w P E and all a1 : Jw Ñ A P
M such that a “ a1 ¨ JEe, there are e1 : v Ñ u P
E, s : u Ñ w P S, and b1 : Ju Ñ B P M such
that JEe “ JSs ¨ JEe1, b “ b1 ¨ JEe1, and the span

A
a1¨JSsÐÝÝÝÝÝ Ju

b1ÝÝÑ B belongs to R.

Jw Ju

Jv

A B

a1

œ

JSs

b1œ

JEe JEe
1

a b

œ

P R

We say that R is a strong path simulation if it additionally satisfies the following:

– backward closure: for all spans A
aÐÝ Jv

bÝÑ B
in R and all e : w Ñ v P E, we have that the span

A
a¨JEeÐÝÝÝÝ Jw

b¨JEeÝÝÝÝÑ B belongs to R.

Jv Jw Jv

A P R B

a

JEe JEe

b

We say that R is a (strong) path bisimulation from A to B if R and R: “
tB bÐÝÝ Jv

aÝÝÑ A | A aÐÝÝ Jv
bÝÝÑ B P Ru are (strong) path simulations.

Remark that this version of (strong) path bisimulations has the same type as
the one by Joyal et al. [16], but satisfies more general conditions. In particular,
when S is a discrete category, the formulation above is exactly the one from [16].
Obviously, a strong path bisimulation is a path bisimulation.

The main result of this section is the following.

Theorem 4.7. Assume two models A and B in M. If there is a span A
fÐÝÝ

C
gÝÝÑ B where g is a morphism of M and f is an pE, Sq-open map, then the

following set is a strong path simulation:

Rf,g :“ tA aÐÝÝ Jv
bÝÝÑ B | Dc : Jv Ñ C with a “ f ¨ c and b “ g ¨ cu

Jv

A C B

a bc
œ œ

f g

Consequently, if A and B are pE, Sq-bisimilar, then there is strong path bisimu-
lation between them.

Weighted Bisimilarity from Generalized Open Maps 317

As in the classical case of [16], there is no reason for the converse to be
true in general: there might be a strong path bisimulation between two models,
but no span of generalized open maps. However, conditions from [6] could be
accommodated to describe a general framework in which the converse holds.
Since this is not the main focus of this paper, we will not do it here, but will
show a particular case in Section 6.

Generators of the Category of Extensions. In the first example of open
maps for LTSs introduced in Section 2, the path category was described as the
poset of words with the prefix order. Consequently, to prove that a functional
simulation is J-open, we have to prove the lifting property of Definition 4.1 with
respect to all pairs w ď w1. However, it is sufficient to check the lifting property
for extensions by one letter: w1 “ w.a for some a P A. The general reason is that,
as a category, pA˚,ďq is generated by the morphisms w ď w.a, and verifying the
lifting property with respect to generators of the category P is enough to obtain
J-openness. This can be extended to generalized open maps, with additional
care.

Proposition 4.8. Assume a subgraph E1 of E that generates E, that is, every
morphism of E is a finite composition of morphisms of E1. Assume additionally,
that for every e P E1 and s P S for which JEe ¨JSs is well-defined, there are s1 P S
and e1 P E1 such that JEe ¨ JSs “ JSs

1 ¨ JEe1.
In that case, if a morphism of M satisfies the lifting property of Definition 4.1

for all morphisms in E1, then it is pE, Sq-open. Also, if a set of spans satisfies
the conditions of Definition 4.6, where E is replaced by E1, then it is a (strong)
path bisimulation.

The first condition is satisfied when E is a free category and E1 is its class of
generators. The second condition is satisfied for e.g. E “ P and S “ |P|.

5 Open Maps for Weighted Systems

In this section, we will prove that weighted systems can be captured by this
generalized open map theory for a large variety of weights, including those needed
to capture probabilistic systems.

5.1 Category of Coalgebras for Weighted Systems

In this section, we will consider weighted functors as follows.

Definition 5.1. Given a commutative monoid pK,`, eq, the K-weighted functor

pK,`, eqp q
: Set Ñ Set is defined as follows on sets and maps:

sets: X Ñ pK,`, eqpXq “ �
μ : X Ñ K | μ´1pKzteuq is finite

(

maps: f : X Ñ Y Ñ pK,`, eqpfqpμq “ `
y P Y Ñ

ÿ
tμpxq | x P X, fpxq “ yu˘

318 J. Dubut and T. Wi�mann

An element μ of pK,`, eqpXq is a finite distributions sending each x P X to a
weight in K. Whenever a map f : X Ñ Y identifies elements fpx1q “ fpx2q “
¨ ¨ ¨ , then the functor action turns μ into a distribution on Y by adding up the
weights μpx1q `μpx2q ` ¨ ¨ ¨ as elements of X are sent to the same element in Y .
Since μ is finite and K is commutative, this addition is well-defined.

Given a commutative monoid pK,`, eq and an alphabet A, we want to con-

sider weighted systems as coalgebras for the functor pK,`, eqpAˆ q
. As described

in Section 2, we want to be able to talk about lax homomorphisms, so we need

an order on pK,`, eqpAˆ q
as in Definition 2.8. For that, we need to assume

an ordered commutative monoid pK,`, e,Ďq, that is, a monoid pK,`, eq with a
partial order Ď such that ` is monotone in both its arguments.

Lemma 5.2. Given an ordered commutative monoid pK,`, e,Ďq, then for all

sets X and Y , the relation on the hom-set Set
`
X, pK,`, eqpAˆY q˘

defined by

f1 Ď f2 ðñ @x P X, @y P Y, @a P A, f1pxqpa, yq Ď f2pxqpa, yq

is an order on pK,`, eqpAˆ q
.

So, we have a category LCoalg
´
1, pK,`, eqpAˆ q¯

of pointed coalgebras and

lax homomorphisms. The goal of this section is to design a generalized open maps
situation for which pE, Sq-bisimilarity characterizes coalgebraic bisimilarity and
more precisely for which pE, Sq-openness characterizes proper homomorphisms.

In the course of the constructions and proofs, we will need additional as-
sumptions that we list here.

Definition 5.3. We call an ordered commutative monoid pK,`, e,Ďq a rear-
rangement monoid if it satisfies the additional requirement that if n,m ě 1 and

nÿ
i“1

xi Ď
mÿ
j“1

yj ,

then there exists a family pui,jq1ďiďn,1ďjďm such that

for all j,
nÿ

i“1

ui,j Ď yj and for all i,
mÿ
j“1

ui,j “ xi.

In addition, we say that a rearrangement monoid is strict if the condition above
holds also when replacing Ď with “.

The intuition is as follows. We have some weights arranged as x1, . . . , xn. We
want to be able to decompose those weights into smaller weights, the ui,js, and
by rearranging those small weights obtaining weights smaller than the yj . This
condition states that this is possible when there is enough weight in total. The
special case of strictness is called the row-column property in [17].

Weighted Bisimilarity from Generalized Open Maps 319

Lemma 5.4. For any subgroup G of the real numbers pRn,`,´, 0q such that
for all x, y in G pminpx1, y1q, . . . ,minpxn, ynqq P G, the monoids pG,`, 0,ďq
and pGě0,`, 0,ďq, where ď is the usual order on Rn, are strict rearrangement
monoids.

For any lattice with bottom element pL,ď,\,[,Kq, pL,\,K,ďq is a rear-
rangement monoid if and only if pL,ď,\,[q is distributive. Furthermore, in
that case, it is always strict.

Another property is a form of positivity: we say that an ordered monoid is
positively ordered if e is the bottom element for Ď, that is, for all k P K, e Ď k.

Example 5.5. The positive real line pR`,`, 0,ďq is a positively ordered strict
rearrangement monoid and it is necessary to define probabilistic systems. An-
other example is the monoid of natural numbers pN,`, 0,ďq, which defines the
bag functor. Finally, any distributive lattice with bottom element pL,\,K,ďq,
typically powerset lattices pPpXq,Y,∅,Ďq, is too. On the contrary, pR,`, 0,ďq
and pZ,`, 0,ďq are strict rearrangement monoids but are not positively ordered.
Conversely pNě1,ˆ, 1,ďq is positively ordered but not a rearrangement monoid.
Indeed, it is impossible to rearrange the inequality 2 ˆ 5 ď 3 ˆ 4.

5.2 Generalized Open Maps Situation for Weighted Systems

Let pK,`, e,Ďq be a commutative ordered monoid. Elements of VK are

– either words on A ˆ pKzteuq, w “ pa1, k1q, . . . , pan, knq,
– or triples pw1, b, w2q of a word w1 on A ˆ pKzteuq, a letter b P A, and a

non-empty word w2 on pKzteuq.
The function JK maps

– a word w “ pa1, k1q, . . . , pan, knq to the system

Jw “ 0 1 ¨ ¨ ¨ n
pa1,k1q pa2,k2q pan,knq

that is, to the coalgebra Jw : t0, . . . , nu Ñ KpAˆt0,...,nuq such that if b “ ai`1

and j “ i ` 1 then Jwpiqpb, jq “ ki`1, else “ e.
– a triple pw1, b, w2q with w1 “ pa1, k1q, . . . , pan, knq and w2 “ l1, . . . , lm is

mapped to the system

Jpw1, b, w2q “ 0 1 ¨ ¨ ¨ n

pn ` 1, 1q

pn ` 1,mq
pa1,k1q pa2,k2q pan,knq pb,l1q

pb,lmq

¨¨¨

that is, Jpw1, b, w2qpnqpn ` 1, iq “ pb, liq.
The category EK is defined as follows. For every w1, b, and w2, there is a

unique edge e from w1 to pw1, b, w2q. The functor then maps this edge e to JEe,
the obvious injection.

The category SK has two types of morphisms:

320 J. Dubut and T. Wi�mann

0 10.4 i

r

s

t

0.55 0.3

0.4

0.9

0 1

p2, 1q

p2, 2q

0.4 0.2

0.3

0 1 p2, 1q0.4 0.5 i
s

t

0.55
0.7

0.9

x : 0 Ñi,1 Ñi

JEe

JEe

h : i Ñi

r Ñs

s Ñs

t Ñt

JSs

d

y : 0 Ñi,1 Ñi,p2,1q Ñs

Fig. 1. Example of a lifting of a path extension in R`-weighted systems and for a
singleton label alphabet |A| “ 1, thus omitting action labels.

– identities on words w1,
– morphisms from pw1, b, w

1
2q to pw1, b, w2q, with w1

2 “ l11, . . . , l1m1 and m ď
m1, which are given by surjective monotone functions s : t1, . . . ,m1u Ñ
t1, . . . ,mu such that for all i ď m, li “ ř

tj|spjq“iu l1j .

The functor JS then maps s of the second type to the proper homomorphism
JSs which maps i to i and pn ` 1, jq to pn ` 1, spjqq.

As a piece of notation, for a morphism x : Jw1 Ñ X, with w1 of length n we
denote xpnq P X by endpxq. We then say that a state p of X is reachable if there
is a morphism of type x : Jw1 Ñ X with endpxq “ p. By extension, we say that
X is reachable if all its states are reachable.

5.3 Equivalence between Open Maps and Proper Homomorphisms

An example of an pE, Sq-open map h is provided in Figure 1, together with a path
extension that is lifted. Like it is often the case in the non-deterministic systems,
the lifting map d is not unique. Hence, only existence (and no uniqueness) is
required in the lifting property. Since h is a proper homomorphism, it provides
a lifting for all extensions, as we show in general:

Theorem 5.6. Assume a lax homomorphism f : X Ñ Y . If f is pEK , SKq-open,
X is reachable, and K is positively ordered, then f is a proper homomorphism.
Conversely, if f is a proper homomorphism and K is a rearrangement monoid,
then f is pEK , SKq-open. In particular, if K is a positively ordered rearrangement
monoid, two weighted systems X and Y are pEK , SKq-bisimilar if and only if they
are coalgebraically bisimilar.

For an endofunctor on Set, to prove that coalgebraic bisimilarity is an equiv-
alence relation it is enough to show that the functor preserves weak-pullbacks.
In the case of the weighted functor, this is given by strictness (see also [17]):

Weighted Bisimilarity from Generalized Open Maps 321

Corollary 5.7. If K is a positively ordered strict rearrangement monoid, then
pEK , SKq-bisimilarity is an equivalence relation.

5.4 About Sub-distribution Functor

Until now, we have not dealt with probabilistic systems, that is, coalgebras
for the sub-distribution functor Dď1. Those coalgebras are particular cases of

coalgebras for the weighted functor X Ñ pR`,`qpXq
. We want to show in this

section that it is equivalent to consider coalgebras for X Ñ Dď1pA ˆ Xq as

coalgebras for X Ñ pR`,`qpAˆXq
, in the sense that, two coalgebras for the

former are bisimilar if and only if they are bisimilar when seen as coalgebras for
the latter. The main ingredient is the following remark.

Lemma 5.8. Assume a pointed coalgebra 1
iÝÝÑ X

cÝÝÑ Dď1pAˆXq and assume

given a lax (resp. proper) homomorphism f from 1
jÝÝÑ Y

dÝÝÑ pR`,`qpAˆY q

to 1
iÝÝÑ X

cÝÝÑ Dď1pA ˆ Xq Ď pR`,`qpAˆXq
. Then Y

dÝÝÑ Dď1pA ˆ Y q and

f is a lax (resp. proper) homomorphism from 1
jÝÝÑ Y

dÝÝÑ Dď1pA ˆ Y q to

1
iÝÝÑ X

cÝÝÑ Dď1pA ˆ Xq.
Remark that this property is not true for the proper distribution functor D.

This suggests that we can define a generalized open maps situation ED, SD for
coalgebras for the functor X Ñ Dď1pA ˆ Xq by considering EpR`,`q, SpR`,`q as
defined in Section 5.2, and restricting it to those v such that Jv is a coalgebra
for X Ñ Dď1pA ˆ Xq.

Corollary 5.9. A lax homomorphism from 1
jÝÝÑ Y

dÝÝÑ Dď1pA ˆ Y q to 1
iÝÝÑ

X
cÝÝÑ Dď1pAˆXq is pED, SDq-open if and only if it is pEpR`,`q, SpR`,`qq-open.

Furthermore, two Dď1pA ˆ q-coalgebras are pED, SDq-bisimilar if and only if
they are pEpR`,`q, SpR`,`qq-bisimilar.

Finally, the main result of this section:

Theorem 5.10. Let f : X Ñ Y be a lax homomorphism between Dď1pA ˆ q-
coalgebras pX, c, iq and pY, d, jq. If pX, c, iq is reachable and f is pED, SDq-open,
then f is a proper homomorphism. Conversely, if f is a proper homomorphism,
then it is pED, SDq-open. Moreover, two Dď1pA ˆ q-coalgebras pX, c, iq and
pY, d, jq are pED, SDq-bisimilar if and only if they are coalgebraically bisimilar.

6 Open Maps for Branching Bisimilarity

In this section, we present a new way of modeling branching and weak bisim-
ulations using our generalized framework of open maps. Using this additional
flexibility, we do not need to rely on weak morphisms anymore, but on a slight
modification of the morphism described in Definition 2.1. Concretely, we build a

322 J. Dubut and T. Wi�mann

generalized open map situation such that stuttering branching bisimulations co-
incide with strong path bisimulations, and that in this case, they precisely char-
acterize pE, Sq-bisimilarity. In addition, in this framework, path bisimulations
precisely correspond to weak bisimulations, witnessing branching bisimilarity as
the history-preserving analogue to weak bisimilarity.

6.1 LTSs with Internal Moves, Category and Bisimilarities

Definition 6.1. For a fixed set A of labels with a particular element τ (called
internal move), the category WLTS contains the same objects as LTS, and its
morphisms f : pX, , x0q Ñ pY, , y0q are functions f : X Ñ Y such that
fpx0q “ y0 and for all x a x1 in X, we have fpxq a fpx1q, or a “ τ and
fpxq “ fpx1q.

LTS is a (non-full) subcategory of WLTS, and in fact the LTS-morphisms
will be used later in the paper. For easier distinction, we use the terminology
strong morphisms for WLTS-morphisms that are also in LTS (alluding to strong
bisimulations which were the bisimulation notion in LTS). Another notion of
morphisms are so-called weak morphisms [3]:

– if x a x1 in X, then fpxq τ ‹ a τ ‹ fpx1q in Y ,
– if x τ x1 in X, then fpxq τ ‹ fpx1q in Y .

Though we do not use weak morphisms in the following development of the
paper, it is worth mentioning the WLTS-morphisms form a proper subclass of
the weak morphisms.

Definition 6.2. A branching bisimulation from pX, X , iXq to pY, Y , iY q is
a relation R Ď X ˆ Y such that piX , iY q P R, and for px, yq P R:

– if x a x1 then
‚ a “ τ and px1, yq P R, or
‚ y τ y1

τ . . . τ yn
a z1

τ . . . τ zm such that px, ynq,
px1, z1q, and px1, zmq P R.

– symmetrically when y a y1.

If furthermore in the second condition px, yiq, px1, ziq P R for all i (and symmet-
rically in the third condition), then R is said to be stuttering.

It is known from [23] that the largest branching bisimulation is stuttering,
so that both notions generate the same bisimilarity. In the following, we will
prove that strong path bisimulations are more naturally related to stuttering
branching bisimulations thanks to their backward closure.

Definition 6.3. A weak bisimulation from pX, X , iXq to pY, Y , iY q is a
relation R Ď X ˆ Y such that piX , iY q P R, and for px, yq P R:

– if x τ x1, then there is y1 such that px1, y1q P R and y τ ‹ y1,
– if x a x1 with a ‰ τ , then there is y1 such that px1, y1q P R and y τ ‹ a

τ ‹ y1.
– symmetrically when y τ y1 or y a y1.

It is clear that a (stuttering) branching bisimulation is a weak bisimulation.

Weighted Bisimilarity from Generalized Open Maps 323

6.2 Generalized Open Maps for Branching Bisimulations

In this section, we describe the generalized open maps situation that captures
branching bisimulation. Like for plain LTSs (Def. 2.2), elements of V will be
words on A, representing a finite linear LTS labelled by this word. However,
to emphasize the particularity of the internal move τ , we will provide another
presentation here.

Here, V is the set of sequences of the form: v “ n1, a1, n2, . . . , nk, ak, nk`1

such that ai P Aztτu and ni P N, e.g. ττaτbcτ p“ 2, a, 1, b, 0, c, 1. The natural
numbers ni P N – tτu˚

represent the number of internal moves between two
observable moves. Then, J maps this sequence to the usual linear LTS:

Jv “ p0, 1q

pn1, 1q

p0, 2q

pn2, 2q

(0,k+1)

pnk`1, k ` 1q
¨ ¨ ¨
τ

τ
a1 ¨ ¨ ¨

τ

τ

a2 ak ¨ ¨ ¨
τ

τ

Elements of E append at most one observable (i.e. non-τ) move:

– Only internal moves: for sequences v “ n1, a1, . . . , ak, nk`1 and w “
n1, a1, . . . , ak, n

1
k`1 with nk`1 ď n1

k`1 there is a unique edge eτ : v Ñ w in
E, e.g. eτ : 2, a, 1, b, 0, c, 1 Ñ 2, a, 1, b, 0, c, 3

– One observable move: for sequences v “ n1, a1, . . . , ak, nk`1 and w “
n1, a1, . . . , ak, n

1
k`1, a, nk`2 with nk`1 ď n1

k`1 there is a unique edge ea : v Ñ
w in E.

The graph morphism JE : E Ñ M maps those edges to the obvious inclusion,
mapping state pi, jq of Jv to the same state in Jw.

Strictly speaking, E is not a category, but just a graph, because we have
a

ebÝÑ ab and ab
ecÝÑ abc, but there is no morphism from a to abc. To fit in

the framework of Section 4, we take the free category FreepEq generated by
this graph and the unique functor extending the graph homomorphism JE. By
Proposition 4.8, it is equivalent to consider FreepEq and E for openness and path
bisimulations, so we will talk of pE, Sq-openness, when we mean pFreepEq, Sq-
openness, and all the statements and proofs will be done using E only.

Elements of S are trickier to describe. The intuition is that they are mor-
phisms that merge states. In the context of LTSs with internal moves, merging
happens when the source and the target of a τ -transition are mapped to the
same state. This is crucial for the open maps we want to describe: to lift one
τ -transition, it might be necessary to use several τ -transitions. With this knowl-
edge, elements of S are as follows.

– Merging internal moves: morphisms in S from v “ n1, a1, . . . , ak, nk`1 to
w “ n1

1, a1, . . . , ak, n
1
k`1 with ni ě n1

i are pk ` 1q-tuples s “ ps1, . . . , sk`1q of
monotone surjective functions si : t0 ă 1 ă . . . ă niu Ñ t0 ă 1 ă . . . ă n1

iu.
For example, there are two morphisms from aττb p“ 0, a, 2, b, 0 to aτb p“ 0, a, 1, b, 0,
one for each τ that can be dropped. The functor JS then maps s to the morphism
from Jv to Jw defined by JSpsqpi, jq “ psjpiq, jq.

324 J. Dubut and T. Wi�mann

As a piece of notation, for a morphism x : Jpn1, a1, . . . , ak, nk`1q Ñ X, we
denote xpnk`1, k ` 1q P X by endpxq.

6.3 Equivalence of Bisimilarities

In this section, we prove that pE, Sq-bisimilarity indeed coincides with branching
bisimilarity. To do so, we prove first that for the present instance of E and S
(Sec. 6.2), pE, Sq-bisimilarity coincides with strong path bisimilarity. In general,
pE, Sq-bisimilarity implies strong path bisimilarity (Theorem 4.7), so it remains
to show the converse direction for the present instance. To this end, we start by
internalizing strong path bisimulations into objects of LTS/WLTS, in order to
relate it them to open maps:

Definition 6.4. For a strong path bisimulation R from X to Y , define the LTS
rR “ pR, R, pX !ÐÝÝ J0

!ÝÝÑ Y qq to have transitions

pX xÐÝ Jv
yÝÑ Y q a

R pX x1ÐÝ Jw
y1ÝÑ Y q

– for a ‰ τ with v “ pn1, a1, . . . , ak, nk`1q, w “ pn0, a1, . . . , ak, nk`1, a, 0q,
x1 “ x ¨ JEea, and y1 “ y ¨ JEea (for the unique ea : v Ñ w);

– for a “ τ with v “ pn1, a1, . . . , ak, nk`1q, w “ pn1, a1, . . . , ak, nk`1 ` 1q,
x1 “ x ¨ JEeτ , and y1 “ y ¨ JEeτ (for the unique eτ : v Ñ w).

As a first observation, we describe runs in rR in terms of projection maps:

Lemma 6.5. In WLTS, we have projection maps X
πXÐÝÝ rR

πYÝÝÑ Y given by
πX : pX xÐÝ Jv

yÝÑ Y q Ñ endpxq and πY : pX xÐÝ Jv
yÝÑ Y q Ñ endpyq. For every

strong morphism r : Jv Ñ rR (i.e. r P LTS),

endprq is of the form pX πX ¨rÐÝÝÝÝ Jv
πY ¨rÝÝÝÝÑ Y q.

Remark that in this statement, we require r to be strong and not just a mor-
phism of WLTS. With a morphism of WLTS, the statement would become that
there is s : v1 Ñ v P S such that πX ¨ r “ x ¨JSs instead. For the characterization
of open maps in WLTS, it suffices for our needs to restrict to strong morphisms:

Lemma 6.6. For f : X Ñ Y in WLTS to be pE, Sq-open, it is sufficient to verify
the lifting in Definition 4.1 in the special case of x being a strong morphism.

We use this simplification to prove that the projection maps πX , πY are open:

Proposition 6.7. For a strong path bisimulation R from X to Y , the projec-
tions X

πXÐÝÝ rR
πYÝÝÑ Y are both pE, Sq-open.

The next step is to prove the equivalence between strong path and stuttering
branching bisimulations.

Weighted Bisimilarity from Generalized Open Maps 325
Table 1. Equivalences of bisimilarity notions in LTSs with τ -actions X,Y P WLTS

branching bisimilarity ðñ strong path bisimilarity (Theorem 6.8)
ðñ pE, Sq-bisimilarity (Proposition 6.7 & Theorem 4.7)

weak bisimilarity ðñ path bisimilarity (Theorem 6.9)

Theorem 6.8. If R is a stuttering branching bisimulation from X to Y , then

R “ tX xÐÝ Jv
yÝÑ Y | v “ pn1, a1, . . . , nk`1q ^ @i, j. pxpi, jq, ypi, jqq P Ru

is a strong path bisimulation. Conversely, if R is a strong path bisimulation, then

qR “ tpendpxq, endpyqq | pX xÐÝ Jv
yÝÑ Y q P Ru

is a stuttering branching bisimulation.

The same reasoning can be made for weak and path bisimulations:

Theorem 6.9. If R is a weak bisimulation from X to Y , then

pR “ tX xÐÝ Jv
yÝÑ Y | pendpxq, endpyqq P Ru

is a path bisimulation. If R is a path bisimulation, then qR is a weak bisimulation.

In total, we can describe branching and weak bisimilarity by categorical
bisimilarity notions, as summarized in Table 1.

7 Conclusions and Future Work

In this paper, we investigate bisimilarities of weighted and probabilistic systems
through the theory of open maps. After showing that the usual theory cannot
capture weights, we provide a faithful extension of the theory by the notion of
mergings. The new theory has similar properties (equivalence relation, charac-
terization as sets of spans, restriction to generators) as classical open maps but
also captures bisimilarity of weighted systems and even branching bisimilarity.

The new instances come at the cost of more parameters to the theory. It
remains for future work whether the parameters E, S can be combined in a
single path category with two morphism classes and morphism factorizations. It
would also be illuminating to know whether this new theory satisfies the axioms
of a class of open maps from [15], in particular for toposes of coalgebras [14].

For the framework as presented, we would like to formally relate it to coalge-
bra – as this has been done for non-deterministic systems [19,25]. Furthermore,
we would like to investigate how system semantics of true concurrency, such
as Higher Dimensional Automata [21] can be integrated. Designing open maps
for them turned out to be complicated (see [8]), but a hope would be that the
addition of mergings would allow modeling homotopy more naturally.

Finally, it would be interesting to see whether our theory capture quantitative
extensions of systems classically modeled by open maps, such as probabilistic and
quantum extensions of petri nets and event structures (see [24] for example).

326 J. Dubut and T. Wi�mann

References

1. Beohar, H., Cuijpers, P.J.L.: Open Maps in Concrete Categories and Branching
Bisimulation for Prefix Orders. Electronic Notes in Theoretical Computer Science
319, 51–66 (2015). https://doi.org/10.1016/j.entcs.2015.12.005

2. Beohar, H., Küpper, S.: Bisimulation Maps in Presheaf Categories. Electronic
Notes in Theoretical Computer Science 347, 5–24 (2019). https://doi.org/10.
1016/j.entcs.2019.09.002

3. Cheng, A., Nielsen, M.: Open Maps (at) Work. B R I C S Report Series (RS-95-23)
(1995)

4. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocon-
gruence for probabilistic systems. Information and Computation 204(4), 503–523
(2006). https://doi.org/10.1016/j.ic.2005.02.004

5. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for Labelled Markov Pro-
cesses. Information and Computation 179(2), 163–193 (2003). https://doi.org/
10.1006/inco.2001.2962

6. Dubut, J., Goubault, E., Goubault-Larrecq, J.: Bisimulations and unfolding in
P-accessible categorical models. In: Desharnais, J., Jagadeesan, R. (eds.) 27th In-
ternational Conference on Concurrency Theory, CONCUR 2016. LIPIcs, vol. 59,
pp. 25:1–25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.25

7. Dubut, J., Hasuo, I., Katsumata, S., Sprunger, D.: Quantitative bisimulations using
coreflections and open morphisms (2018), arXiv:1809.09278

8. Fahrenberg, U., Legay, A.: History-Preserving Bisimilarity for Higher-Dimensional
Automata via Open Maps. Electronic Notes in Theoretical Computer Science 298,
165–178 (2013). https://doi.org/10.1016/j.entcs.2013.09.012

9. Fiore, M., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In:
Proceedings. 14th Symposium on Logic in Computer Science. pp. 67–76 (1999).
https://doi.org/10.1109/LICS.1999.782590

10. Freyd, P., Scedrov, A.: Categories, Allegories, Mathematical Library, vol. 39.
North-Holland (1990)

11. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2),
71–108 (2004). https://doi.org/10.1016/j.tcs.2004.07.022

12. Hune, T., Nielsen, M.: Timed bisimulations and open maps. In: Brim, L., Gruska,
J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS
1998. Lecture Notes in Computer Science, vol. 1450. Springer, Berlin, Heidelberg
(1998). https://doi.org/10.1007/BFb0055787

13. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Ob-
servation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016)

14. Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure
of categories of coalgebras. Theoretical Computer Science 260, 87–117 (2001).
https://doi.org/10.1016/S0304-3975(00)00124-9

15. Joyal, A., Moerdijk, I.: A completeness theorem for open maps. Annals of Pure
and Applied Logic 70, 51–86 (1994). https://doi.org/10.1016/0168-0072(94)
90069-8

16. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from Open Maps. Information and
Computation 127, 164–185 (1996). https://doi.org/10.1006/inco.1996.0057

17. Klin, B.: Semantics and Algebraic Specification, Lecture Notes in Computer Sci-
ence, vol. 5700, chap. Structural Operational Semantics for Weighted Transition
Systems, pp. 121–139. Springer, Berlin, Heidelberg (2009)

https://doi.org/10.1016/j.entcs.2015.12.005
https://doi.org/10.1016/j.entcs.2015.12.005
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.entcs.2019.09.002
https://doi.org/10.1016/j.ic.2005.02.004
https://doi.org/10.1016/j.ic.2005.02.004
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.4230/LIPIcs.CONCUR.2016.25
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1109/LICS.1999.782590
https://doi.org/10.1109/LICS.1999.782590
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1007/BFb0055787
https://doi.org/10.1007/BFb0055787
https://doi.org/10.1016/S0304-3975(00)00124-9
https://doi.org/10.1016/S0304-3975(00)00124-9
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1016/0168-0072(94)90069-8
https://doi.org/10.1006/inco.1996.0057
https://doi.org/10.1006/inco.1996.0057

Weighted Bisimilarity from Generalized Open Maps 327

18. Larsen, K.G., Skou, A.: Bisimulations through Probabilistic Testing. Information
and Computation 94, 1–28 (1991). https://doi.org/10.1016/0890-5401(91)

90030-6

19. Lasota, S.: Coalgebra morphisms subsume open maps. Theoretical Computer
Science 280(1), 123 – 135 (2002). https://doi.org/10.1016/S0304-3975(01)

00023-8

20. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of
the 5th GI-Conference on Theoretical Computer Science. Lecture Notes in Com-
puter Science, vol. 104, pp. 167–183. Springer (1981). https://doi.org/10.1007/
BFb0017309

21. Pratt, V.: Higher dimensional automata revisited. Mathenatical Structures
in Computer Science 10(4), 525–548 (2000). https://doi.org/10.1017/

S0960129500003169

22. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1), 3 – 80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

23. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996). https://doi.org/
10.1145/233551.233556

24. Winskel, G.: Distributed probabilistic and quantum strategies. Electronic Notes in
Theoretical Computer Science 298, 403–425 (2013). https://doi.org/10.1016/
j.entcs.2013.09.024

25. Wißmann, T., Dubut, J., Katsumata, S., Hasuo, I.: Path category for free. In:
Bojańczyk, M., Simpson, A. (eds.) Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2019). pp. 523–540. Springer International Publishing,
Cham (04 2019). https://doi.org/10.1007/978-3-030-17127-8_30

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1016/S0304-3975(01)00023-8
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1017/S0960129500003169
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1016/j.entcs.2013.09.024
https://doi.org/10.1007/978-3-030-17127-8_30
https://doi.org/10.1007/978-3-030-17127-8_30
http://creativecommons.org/licenses/by/4.0/

Preservation and Reflection of Bisimilarity
via Invertible Steps

Ruben Turkenburg(�)1 , Clemens Kupke2 , Jurriaan Rot1 , and
Ezra Schoen2

1 Institute for Computing and Information Sciences (iCIS), Radboud University,
Nijmegen, The Netherlands
ruben.turkenburg@ru.nl

2 Department of Computer and Information Sciences, Strathclyde University,
Glasgow, UK

Abstract. In the theory of coalgebras, distributive laws give a general
perspective on determinisation and other automata constructions. This
perspective has recently been extended to include so-called weak distribu-
tive laws, covering several constructions on state-based systems that are
not captured by regular distributive laws, such as the construction of a
belief-state transformer from a probabilistic automaton, and ultrafilter
extensions of Kripke frames.
In this paper we first observe that weak distributive laws give rise to the
more general notion of what we call an invertible step: a pair of natural
transformations that allows to move coalgebras along an adjunction. Our
main result is that part of the construction induced by an invertible
step preserves and reflects bisimilarity. This covers results that have
previously been shown by hand for the instances of ultrafilter extensions
and belief-state transformers.

Keywords: Coalgebra · Bisimulations · Weak distributive laws

1 Introduction

Distributive laws between a monad T and a functor B are ubiquitous in the
theory of coalgebras. They capture various forms of interaction between algebras
and coalgebras, including structural operational semantics [45,33], efficient proof
techniques [9] and a general coalgebraic determinisation procedure which applies
to a wide range of automata and other state-based systems [43,15,29].

The central idea of this general determinisation procedure is to interpret
coalgebras in the Eilenberg-Moore category EM(T), as coalgebras for a lifting of
B that arises from the distributive law. Behavioural equivalence in EM(T) then
amounts to desired notions of equivalence. For instance: language equivalence of
non-deterministic automata; weighted automata [7]; Mealy and Moore machines
with side-effects [43]; or various types of trace equivalence of transition systems [8].

An illustrative non-example of this general determinisation procedure is in
a natural construction of belief-state transformers from probabilistic automata,
which feature both non-determinism and probabilities. From a categorical per-
spective, the problem is related to the classical result that there is no suitable
distributive law of the probability distribution monad D over the powerset monad

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_16

328–348, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_16&domain=pdf
http://orcid.org/0000-0001-7336-9405
http://orcid.org/0000-0002-0502-391X
http://orcid.org/0000-0002-1404-6232
https://doi.org/10.1007/978-3-031-30829-1_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_16&domain=pdf

Preservation and Reflection of Bisimilarity via Invertible Steps 329

P [46] (also see [47,34] for other non-existence results of distributive laws). Hence,
general determinisation via distributive laws seems not applicable here.

Nevertheless, in [12] a concrete coalgebraic account of the construction of
belief-state transformers is given, in terms of a two-stage process:

1. from probabilistic automata to coalgebras in EM(D), which are a type of
labelled transition systems over convex algebras;

2. from these coalgebras in EM(D) back to plain transition systems in Set,
yielding the belief-state transformer.

A key result in op. cit. is that the second stage preserves and reflects behavioural
equivalence. This shows that behavioural equivalence of coalgebras in EM(D)
coincides with distribution bisimilarity on the belief-state transformer.

In [12,21] it was shown that this construction, in fact, arises from a canonical
weak distributive law of D over P [22]. Weak distributive laws correspond to
so-called weak liftings [19], and—as shown in [22]—these yield a new gener-
alised determinisation procedure which covers the above example, and precisely
instantiates to the two stages above. Further examples are the treatment of
alternating automata via weak distributive laws in [23], and weak distributive
laws for combining non-determinism with semimodules in [10].

However, the result for probabilistic automata that the second stage above
preserves and reflects behavioural equivalence has not yet been accounted for in
the abstract theory of determinisation via weak distributive laws.

In this paper we provide such an account, starting from a more general setting
than weak distributive laws: what we call invertible steps. These basically replace
the Eilenberg-Moore adjunction inherent in the weak liftings approach by a
general adjunction. In this context, a step allows one to lift the left adjoint to
coalgebras—this is a widely occurring phenomenon, for instance in the semantics
of coalgebraic modal logic, testing semantics and trace semantics (see [41] for an
overview). The key idea here is to assume a right inverse, allowing the lifting of
the right adjoint, such that we generalise the two-stage construction above.

We show that, in this setting of an invertible step, the second stage of the
two-stage construction preserves and reflects bisimilarity, under mild conditions.
As a consequence, we recover the above-mentioned results on preservation and
reflection of behavioural equivalence for probabilistic automata [12] for free from
the abstract theory.3 Another motivating example is that of coalgebras for the
Vietoris functor on the category of Stone spaces: we obtain that bisimilarity is
preserved and reflected by the forgetful functor, recovering the main result in [5].

In fact, the latter example is related to a coalgebraic presentation [36] of
ultrafilter extensions, a standard construction in modal logic [6]. It fits within the
general setting of invertible steps, but not directly in weak liftings, as it involves
the category of Stone spaces (for the duality with Boolean algebras). However,
if we move from Stone spaces to compact Hausdorff spaces, then the relevant
weak lifting (or invertible step) arises precisely from the weak distributive law
3 We focus on bisimilarity, but our setting allows for an easy argument that this

coincides with behavioural equivalence in this and many related examples.

330 R. Turkenburg et al.

constructed by Garner [19]. The weak distributive law in loc. cit. thus gives rise
to ultrafilter extensions in modal logic.

Finally, we include an example of an invertible step involving Setop instead
of an Eilenberg-Moore category. Steps for adjunctions with opposite categories
are a standard way of presenting the semantics of coalgebraic modal logic [40,32].
The included example shows the generality of the approach.

Outline. Section 2 presents (invertible) steps, the relation to weak liftings and
distributive laws, and a range of examples. In Section 3 we recall the standard
notion of coalgebraic bisimilarity, defined via relation lifting. Section 4 contains
the main results on preservation and reflection of bisimilarity. In Section 5 we
discuss applications and instances of these results. We discuss other notions of
bisimulation, and future work, in Section 6.

2 Forward and Backward Steps

We briefly present the required theory of steps, first termed as such in [41]. This
structure occurs already in work on coalgebraic modal logic [35,14,40,32,17,38]
where a step gives the one-step semantics of a logic. In existing work, only what
we call a forward step is considered. Here, we also speak of backward steps, being
arrows in the opposite direction. In the sequel, such forward and backward steps
will usually be each other’s (one-sided) inverses, referred to as invertible steps.

Next, we recall how such steps give rise to liftings of functors between
categories of coalgebras and further, when the adjunction underlying the steps
can also be lifted to coalgebras [27]. Finally, we present examples of invertible
steps from the literature, which we return to in later sections.

For a functor B : C → C, a coalgebra is a pair (X, f) consisting of an object X
and an arrow f : X → BX. A homomorphism from (X, f) to (Y, g) is an arrow
h : X → Y such that g ◦ h = Bh ◦ f . Coalgebras and homomorphisms between
them form a category, denoted by Coalg(B), or CoalgC(B) if we wish to make
the underlying category explicit.

The category of sets and functions is denoted by Set. For a monad T , we
write EM(T) for the category of Eilenberg-Moore algebras. The powerset monad
is denoted by P : Set → Set, given on objects by P(X) = {S | S ⊆ X}, and
the finitely-supported distribution monad by D : Set → Set, given by D(X) =
{ϕ : X → [0, 1] | ∑x∈X ϕ(x) = 1, supp(ϕ) finite} (see also [12]).

2.1 Invertible Steps

The basic setting of interest in this work consists of the following:

Definition 2.1. Given an adjunction P � Q : D → C and endofunctors B : C →
C and L : D → D as in the diagram

C D
P

B

Q

L� , (1)

Preservation and Reflection of Bisimilarity via Invertible Steps 331

a (forward) step is a natural transformation δ : BQ → QL. A backward step is
simply a natural transformation ι : QL → BQ going the other way. If, moreover,
δ ◦ ι = id then we call δ an invertible step (with right inverse ι). Finally, if δ
witnesses an isomorphism then we call it an isomorphic step.

Notice the asymmetry in the definition of invertible step: ι is always assumed
to be a right inverse of δ. These invertible steps are the main focus of this paper.
Examples are given below in Section 2.2.

Step-induced liftings There is a bijective correspondence between a step

and its mate δ̂ : PB → LP given by PB PBQP PQLP LP
PBη PδP εLP

(see [37,31]). This mate and the backward step allow us to define liftings of P
and Q to the categories of coalgebras for B and L.

Definition 2.2. Given steps δ : BQ → QL and ι : QL → BQ, the step-induced
coalgebra liftings P : Coalg(B) → Coalg(L) and Q : Coalg(L) → Coalg(B) of P
and Q are defined by

f : X → BX �→ δ̂X ◦ Pf : PX → LPX (2)
g : Y → LY �→ ιY ◦Qg : QY → BQY (3)

on objects and act as P and Q on arrows. This is well-defined due to functoriality
of P and Q and naturality of δ̂ and ι.

It is shown in [27, Theorem 2.14] that, when δ and ι form an isomorphism,
the adjunction P � Q lifts to an adjunction P � Q between the step-induced
liftings. For our purposes it will be useful to split the isomorphism condition into
the cases where ι is the left or right inverse of δ.

Lemma 2.3. If δ ◦ ι = id, then the counit ε : PQ → Id of the adjunction P � Q
lifts to a natural transformation ε : P Q → Id. If ι ◦ δ = id, then the unit η : Id →
QP of the adjunction lifts to a natural transformation η : Id → QP .

The combination of these two liftings gives us the lifting of the adjunction.

Corollary 2.4. If δ and ι form an isomorphism, then P � Q.

In such a situation, Q (being a right adjoint) preserves the final coalgebra
for L (the limit of the empty diagram) when this exists. However, there are a
number of known examples where the step is not an isomorphism; instead we
only have a one-sided inverse. We consider, in particular, these invertible steps,
and in the next subsection give a number of examples of this setting.

2.2 Steps from weak liftings, and other examples

Example 2.5. Our first example arises from the work of Garner, who shows that
the Vietoris monad V on the category CHaus of compact Hausdorff spaces arises

332 R. Turkenburg et al.

as a so-called weak lifting of the powerset monad [19] (we discuss weak liftings in
general after this example). For the definition of the Vietoris monad the reader is
referred to [19, Sec. 2.3]. The category CHaus is equivalent to the Eilenberg-Moore
category EM(β) of the ultrafilter monad β [39]. The weak lifting provided by
Garner consists of natural transformations ι, δ, satisfying δ ◦ ι = id:

Set EM(β) UV PU UV
F

P
U

V� ι δ (4)

where F � U is the Eilenberg-Moore adjunction of β. Notice that δ is an invertible
step, with right inverse ι. As shown by Garner, a component δX : PUX → UVX,
sends each subset S ∈ PUX to its topological closure. The components of ι
simply include the closed subsets into the powerset.

It turns out that this invertible step gives rise to ultrafilter extensions of
Kripke frames. In modal logic, ultrafilter extensions [6,20,4] are a construction
taking a Kripke frame (which we can see as a coalgebra for the powerset functor P)
with state space W and forming a new Kripke frame with states being ultrafilters
over W . The central motivation for this is in “bisimilarity-somewhere-else” results:
two states are modally equivalent iff they are bisimilar in the ultrafilter extension.

Now, the composition of the step-induced coalgebra liftings F : Coalg(P) →
Coalg(V) and U : Coalg(V) → Coalg(P), precisely yields the ultrafilter extension
of a Kripke frame. The first stage β is the actual extension, which turns the
Kripke frame into a V-coalgebra. The second stage U turns this back into a
Kripke frame, i.e., a powerset coalgebra in Set.

In [36], ultrafilter extensions are developed more generally for coalgebras for a
functor B : Set → Set, via the duality between Boolean algebras and Stone spaces.
In fact, since both V and the left adjoint F restrict to the category Stone of Stone
spaces, the invertible step δ, ι restricts to an invertible step in the restriction of
the above adjunction to Stone.

In general, for monads S, T on a category C, Garner [19] defines S̃ : EM(T) →
EM(T) to be a weak lifting of S if there are natural transformations

US̃ SU US̃ι δ (5)

with δ ◦ ι = id and satisfying further axioms, where U denotes the forgetful
functor from EM(T) to C. They show that there is a bijective correspondence
between weak distributive laws of T over S, and weak liftings of S to EM(T),
in case idempotents in C split (which holds for Set). Here, we do not assume a
monad structure on S (which is why the additional axioms are not relevant).
In this case, a weak lifting is precisely an invertible step, where the underlying
adjunction is an Eilenberg-Moore adjunction.

Example 2.6. In [11,12], a procedure is given for “determinising” probabilistic
automata (PAs), which model systems with both non-determinism and probabili-
ties, into belief state transformers. It was shown in [22] that this is an instance

Preservation and Reflection of Bisimilarity via Invertible Steps 333

of a more general determinisation procedure induced by a weak lifting, which in
turn corresponds to a canonical weak distributive law.

Stated for a general monad T with the usual Eilenberg-Moore adjunction
F � U : EM(T) → C, this general determinisation procedure thus starts from an
invertible step (weak lifting) δ : BU → UB. This gives rise to a two-step process:

CoalgC(BT) CoalgEM(T)(B) CoalgC(B)F U (6)

where the second functor U is simply the step-induced lifting of U . The first
is a variation of a step-induced lifting (notice that it takes BT -coalgebras
rather than B-coalgebras as input), mapping a coalgebra f : X → BTX to

FX FBUFX BFUFX BFX
Ff δ̂UFX BεFX , where ε is the counit of the

Eilenberg-Moore adjunction. In fact, this can be viewed as a step-induced lifting
for BT which arises by composing δ and the counit, see [41].

We instantiate this to the Eilenberg-Moore adjunction of the distribution
monad D, where Pc is the convex powerset monad:

Set EM(D)

F
P

U

Pc� (7)

We take Pc(X) to have as underlying set {S ⊆ X | S convex} following [22].
This matches the usage of Pne + 1 and Pc + 1 in [12], where Pne and Pc are
defined to exclude the empty set. A subset is convex if it is closed under convex
combinations (see [12] for details). Further, the category EM(D) is equivalent to
the category of convex algebras and convex maps.

It is explained in [22, Sec. 5] that we have an invertible step in the setting
of Eq. (7), which sends a subset X to its convex hull (the smallest convex set
containing X) and that the lifting F of (6) then gives the transformation of a
probabilistic automaton into a belief state transformer in the category EM(D).
The second step is then to transfer the obtained belief state transformer back to
Set with the step-induced lifting of U . As shown in [12] and later recovered from
our abstract theory (Section 5), this yields a system with the same behaviour. In
fact, this is done for automata with labels, i.e., for the functors PL and PL

c with
L a set of labels. The weak lifting we will require in this context is given in [21].

Example 2.7. The following example from automata and languages considers a
dual adjunction P � Q : Dop → C. One motivation to discuss this kind of example
stems from coalgebraic modal logic where C commonly is some category of ‘spaces’
and D commonly is a category of ‘algebras’ [32]. The setup is as follows:

Set Setop 2L B(2−) 2L
2−

B

2−
L� ι δ (8)

Here, we have BX = 2× (PX)Σ and LX = 1 +Σ ×X for a fixed alphabet Σ.
The step δ is given by

δ(i, ξ) = {inl(∗) | i = 1} ∪ {inr(a, x) | a ∈ Σ, x ∈
⋃

ξ(a)} (9)

334 R. Turkenburg et al.

This step δ is invertible, e.g., by ι as in Eq. (10).

ι(u) = (1 iff inl(∗) ∈ u, a �→ {v | {(a, x) | x ∈ v} ⊆ u}) (10)

A B-coalgebra is a non-deterministic automaton. An L-coalgebra in Setop is an
algebra X ← 1 +Σ ×X in Set, which can be seen as specifying the initial state
and transition structure of a deterministic automaton. From this point of view,
the coalgebra lifting Q : Coalg(L) → Coalg(B) can be seen as first reversing, and
then performing a powerset construction. The specific powerset construction
might depend on the chosen right inverse ι, as it is not unique. For ι as in (10),
for example, u a→ v in Q(A) if and only if each state in v is reachable from a
state in u via an a-transition in the reverse of A.

In Section 5 we return to these examples and show how we can apply the
techniques from Section 4 to obtain preservation and reflection of bisimilarity.

3 Relations, Liftings and Coalgebraic Bisimulations

We recall the standard notion of coalgebraic bisimulation defined via relation
lifting, broadly following [30,28]. Note, we will use some terminology from the
theory of fibrations to allow us to be more concise and many of the coming results
can be generalised to a larger class of fibrations, but knowledge of fibrations is
not required as we give a self-contained presentation of the fibration of relations.

We make the following assumptions for the remainder of the paper:

Assumption 3.1. We assume categories C,D with all finite limits, and factori-
sation systems (E1,M1), (E2,M2) respectively for which M1 = MonoC ,M2 =
MonoD and for any left adjoint functor P : C → D we have P (E1) ⊆ E2.

We assume finite limits mainly for binary products and pullbacks to allow
the definitions of relations and inverse images. The assumptions that maps in M
are mono means that pullbacks of abstract monos and factorisation both yield
monos, which represent subobjects. The final condition specifies that left adjoints
preserve abstract epis. This is required in Section 4.2 and holds, e.g., when the
involved categories possess a (RegEpi,Mono)-factorisation system [16,2], as in all
our examples from Sections 2.2 and 5.

For a category C satisfying the above, the category Rel(C) consists of:

– Objects of Rel(C) are subobjects R � X ×X of the binary product of the
object X with itself;

– A map R � X ×X → S � Y × Y in Rel(C) consists of a map u : X → Y
in C such that there is the following commutative diagram

R S

X ×X Y × Y
u×u

(11)

Preservation and Reflection of Bisimilarity via Invertible Steps 335

In Set, these are subsets of the binary product of underlying sets as usual, and
maps between relations constitute maps between the products sending R to S,
i.e., xR y implies u(x)S u(y). Objects of Rel(Stone) are closed relations, as the
image of a mono representing a subobject is homeomorphic to its domain, and
images of continuous functions are compact and thus closed. In the case of an
Eilenberg-Moore category for a monad T , objects of Rel(EM(T)) are congruences,
as the map into the product is an algebra morphism.

Remark 3.2. A note on notation: we use for epis and for monos and the
subobjects they represent. We use for abstract epis and for abstract
monos, i.e., maps in E and M respectively.

Using the factorisation system on D, we lift a functor F : C → D to a functor
Rel(F) : Rel(C) → Rel(D). The action on objects is given by the factorisation

FR F (X ×X) FX × FX

Rel(F)(R)

Fr

e

〈Fπ1,Fπ2〉

m
(12)

The action on arrows is defined by orthogonality. The resulting functor Rel(F)
is a lifting in the sense that the following diagram commutes

Rel(C) Rel(D)

C D

Rel(F)

p q

F

(13)

where p : Rel(C) → C sends a relation R � X ×X to the object X, and similarly
for q. We say (following the terminology of fibrations) that the relation R is above
the object X and a map between relations is above the map u from Eq. (11).
Note that commutativity of diagram (13) expresses that Rel(F), applied to a
relation R � X ×X on X, yields a relation on FX.

Given a category of relations Rel(C), called the total category, the subcategory
(also called a fibre) RelX consists of objects R � X ×X and maps above the
identity on X. For relations in Set, such maps are inclusions of relations. In
general, these maps are unique, and writing R ≤ S iff there is an arrow from R
to S turns the fibre into a poset. A relation lifting Rel(F) can be restricted to
the fibres to give a functor Rel(F)X : RelX → RelFX . Since RelX and RelFX are
posetal categories, Rel(F)X can be viewed as a monotone map.

For a map f : X → Y in C, we have the direct image and inverse image
functors

∐
f : RelX → RelY and f∗ : RelY → RelX . For relations on sets, we have∐

f (R ⊆ X ×X) = {(f(x), f(y)) | (x, y) ∈ R} and f∗(S ⊆ Y × Y) = {(x, y) ∈
X ×X | (f(x), f(y)) ∈ S}. More generally, they are obtained as the factorisation
and pullback in the left and right diagram below respectively

R
∐

f (R) f∗(S) S

X ×X Y × Y X ×X Y × Y

r
∐

f (r) f∗(s)
�

s

f×f f×f

(14)

336 R. Turkenburg et al.

It can further be shown that
∐

f � f∗. We say that Rel(F) : Rel(C) → Rel(D)
preserves inverse images if Rel(F)X ◦ f∗ = (Ff)∗ ◦ Rel(F)Y .

In this context, a bisimulation for a B-coalgebra f : X → BX is a post-fixed
point of the endofunctor f∗ ◦Rel(B)X : RelX → RelX , i.e., a relation R � X×X
such that R ≤ f∗ ◦ Rel(B)X(R). Bisimilarity is then obtained as the greatest
fixed point ν(f∗ ◦Rel(B)X), if it exists. In Set a bisimulation is a relation R such
that R ⊆ (f × f)−1(Rel(B)(R)), i.e., if xR y then f(x) Rel(B)(R) f(y).

4 Preserving and Reflecting Bisimilarity

In this section we show that, in the presence of an invertible step, bisimilarity
is preserved and reflected by the step-induced lifting of the right adjoint, given
some further mild conditions. This allows us to recover a number of existing
results for concrete instances (Section 5).

Our approach is as follows:

– In Section 4.1, we make precise what it means for a monotone map to preserve
and reflect bisimulations;

– In Section 4.2, we obtain conditions which ensure that the step-induced
lifting of the right adjoint to bisimulations preserves and reflects bisimula-
tions/bisimilarity.

Throughout this section we assume categories C and D as in Assumption 3.1, and
an invertible step δ : BQ → QL with right inverse ι : QL → BQ (and P,Q,B,L
as in Definition 2.1).

4.1 Preservation and reflection

We now make precise what it means for a monotone map h to preserve and reflect
bisimulations. This will be instantiated to bisimulations, captured abstractly as
post-fixed points of a monotone map f : Γ → Γ on a poset Γ , which typically
consists of relations (Section 3). These are compared against a second type of
bisimulations, modelled as post-fixed points of another monotone map g : Δ → Δ.
This motivates the following definition.

Definition 4.1. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ monotone
maps. A monotone map h : Γ → Δ preserves post-fixed points if x ≤ f(x) implies
h(x) ≤ g(h(x)). It reflects post-fixed points if the converse implication holds.

In the step setting of Eq. (1), bisimulations for B- and L-coalgebras can be
represented as post-fixed points of monotone maps on posets of relations as in
Section 3. More concretely:

– Bisimulations for an L-coalgebra f : X → LX are post-fixed points of the
monotone map f∗ ◦ Rel(L)X : RelX → RelX ;

– Bisimulations for the B-coalgebra ιX ◦ Qf : QX → BQX resulting from
the application of the step-induced lifting of Q are post-fixed points of
(ιX ◦Qf)∗ ◦ Rel(B)QX : RelQX → RelQX .

Preservation and Reflection of Bisimilarity via Invertible Steps 337

The two can be compared via the restriction Rel(Q)X : RelX → RelQX of the
functor Rel(Q). Indeed, our main objective is to show that in the presence of
an invertible step, Rel(Q)X preserves and reflects post-fixed points representing
bisimulations, and that it maps the greatest fixed point in RelX (bisimilarity on
f) to the greatest fixed point in RelQX (bisimilarity on ιX ◦Qf). In this context
we speak about preservation and reflection of bisimulations/bisimilarity.

4.2 Proof of preservation and reflection

We are now ready to prove preservation and reflection of bisimilarity, in the sense
described in the previous subsection. First, the following basic lemma provides a
method of showing preservation and reflection of post-fixed points, which will be
useful for our purposes.

Lemma 4.2. Let Γ and Δ be posets, and f : Γ → Γ , g : Δ → Δ and h : Γ → Δ
monotone maps. Suppose that h has a left (lower) adjoint k : Δ → Γ , and the
equality gh = hf holds. Then h maps the greatest fixed point of f to the greatest
fixed point of g, when these exist; h preserves post-fixed points; and if h is
order-reflecting, then h reflects post-fixed points.

Categorically speaking, the equality gh = hf is an isomorphic step. Instan-
tiated to our setting of interest, Lemma 4.2 gives us a method for proving
preservation and reflection of bisimilarity: it suffices to show each of the following.

1. A left adjoint for Rel(Q)X (Lemma 4.7).
2. The equality (ιX ◦ Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X

(Theorem 4.9).
3. Order-reflection of Rel(Q)X (assumption; discussed at the end of this section).

To obtain the required adjunction between the fibres RelX and RelQX , we first
establish the adjunction Rel(P) � Rel(Q) between the total relation categories.
Given Theorem 3.1, we can lift the unit and counit of the adjunction P � Q,
using the transformations constructed in the following lemma.

Lemma 4.3. Let F : C → D and G : D → E be functors, with Rel(F) : Rel(C) →
Rel(D) and Rel(G) : Rel(D) → Rel(E) the corresponding relation liftings. Then
we have a natural transformation Rel(GF) → Rel(G)Rel(F). Further, if G pre-
serves abstract epis, then there is also a natural transformation Rel(G)Rel(F) →
Rel(GF). Also, the constructed transformations are above the identity.

We note that the first part is in [28, Exercise 4.4.6] and the result is proved
for Set endofunctors in [9, Lemma 14.1]. This allows the lifting of the adjunction,
which we note may also be obtainable from results on fibred adjunctions in [30,26],
but a direct proof is quite straightforward; the main idea is to use Lemma 4.3
together with preservation of abstract epis by P .

338 R. Turkenburg et al.

Lemma 4.4. The adjunction P � Q : D → C lifts to relations, i.e., the following
diagram is commutative, and the unit and counit of the upper adjunction are
above the unit and counit of P � Q.

Rel(C) Rel(D)

C D

Rel(P)

p
Rel(Q)

q

�

P

Q

�

(15)

The relation lifting defined in Section 3 allows us to define endofunctors
Rel(B), Rel(L) in the context of the above adjunction:

Rel(C) Rel(D)

Rel(P)

Rel(B)

Rel(Q)

Rel(L)

�

(16)

In this setting, we may try to lift the step δ or its converse ι to this adjunction.
It turns out that δ always lifts. For ι, there is a sufficient condition which is
independent of ι itself: that Q preserves abstract epis. In both cases, this result
follows essentially from Lemma 4.3.

Proposition 4.5. For a forward step δ and backward step ι, we have:

1. δ lifts to relations, i.e., there exists a natural transformation δ : Rel(B) ◦
Rel(Q) → Rel(Q) ◦ Rel(L) above δ.

2. If Q preserves abstract epis, then ι lifts to relations, i.e., there exists a natural
transformation ι : Rel(Q) ◦ Rel(L) → Rel(B) ◦ Rel(Q) above ι.

The condition that Q preserves abstract epis holds, e.g., in case it is the
forgetful functor in an adjunction monadic over Set. This is because Eilenberg-
Moore categories of monads on Set have (RegEpi,Mono)-factorisation systems, and
the forgetful functor sends regular epis to epis in Set as discussed in [13, Example
2.3]. It also holds in the Stone-Set case, as Stone is a reflective subcategory of
CHaus (which is equivalent to the category of algebras for the ultrafilter monad).

The lifted steps δ and ι give step-induced liftings of Rel(P) and Rel(Q)
between Coalg(Rel(B)) and Coalg(Rel(L)). Since bisimulations can be equivalently
presented as coalgebras for Rel(B) and Rel(L), these liftings can be used to capture
preservation of bisimulations. But it is less obvious what reflection means in this
context and how to prove it. For reflection of bisimulations by Rel(Q), we turn
our attention to the fibres, as described in the beginning of this section.

As a consequence of Proposition 4.5 and of δ ◦ ι = id, we obtain the following
result, which will later be used in the construction of a step on the fibres.

Lemma 4.6. Let δ be an invertible step with right inverse ι, and suppose Q
preserves abstract epis. Then Rel(Q)LX ◦ Rel(L)X = ι∗X ◦ Rel(B)QX ◦ Rel(Q)X .

Preservation and Reflection of Bisimilarity via Invertible Steps 339

Adjoining the fibres Next, we construct an adjunction between the fibres
RelX and RelQX . The usual restriction Rel(Q)X of Rel(Q) to the fibre RelX
will be the right adjoint, similarly to the adjunction obtained earlier. To map
back into the fibre RelX , we post-compose Rel(P)QX with

∐
ε, the direct image

functor obtained from the counit of the adjunction Rel(P) � Rel(Q). We note the
similarity with results on fibred adjunctions in [30], where only adjunctions over
a single base category are considered.

Lemma 4.7. We have an adjunction
∐

ε ◦Rel(P)QX � Rel(Q)X : RelX → RelQX .

The above lemma fulfils the first proof obligation stated in the beginning of
Section 4.2. It now remains to show the second proof obligation, i.e., that we
have an isomorphic step in the following setting:

RelQX RelX

∐

ε ◦Rel(P)QX

(ιX◦Qf)∗◦Rel(B)QX

Rel(Q)X

f∗◦Rel(L)X

�
(17)

To this end, we first show that Rel(Q) preserves inverse images, using the fact
that we can obtain inverse images as pullbacks inside the category of relations.
Since Rel(Q) is a right adjoint, it preserves these pullbacks.

Lemma 4.8. Rel(Q) preserves inverse images.

We are now ready to show the existence of the required isomorphic step.

Theorem 4.9. If Q preserves abstract epis, then for any L-coalgebra (X, f):

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = Rel(Q)X ◦ f∗ ◦ Rel(L)X (18)

Proof. We have

(ιX ◦Qf)∗ ◦ Rel(B)QX ◦ Rel(Q)X = (Qf)∗ ◦ ι∗X ◦ Rel(B)QX ◦ Rel(Q)X (19)
= (Qf)∗ ◦ Rel(Q)LX ◦ Rel(L)X (20)
= Rel(Q)X ◦ f∗ ◦ Rel(L)X (21)

where Eq. (19) is an application of a basic fact on inverse images (technically,
that the poset fibration of relations is split), Eq. (20) holds by Lemma 4.6, and
Eq. (21) holds by Lemma 4.8.

We now reach our main result on preservation and reflection of bisimulations
and bisimilarity by Rel(Q)X .

Theorem 4.10. Let (X, f) be an L-coalgebra. Suppose that Q preserves abstract
epis. Then Rel(Q)X maps bisimilarity on (X, f) (when it exists) to bisimilarity on
Q(X, f). Further, Rel(Q)X preserves bisimulations and, if it is order-reflecting,
also reflects bisimulations.

340 R. Turkenburg et al.

Proof. We have seen in Lemma 4.7, that Rel(Q)X has a left adjoint, and in
Theorem 4.9, that in this setting we have an isomorphic step. The result now
follows from Lemma 4.2.

While this result is formulated in terms of Rel(Q)X , we will also speak of
simply Q preserving and reflecting both bisimulations and bisimilarity.

As a special case of Theorem 4.10, we recover (a version of) the following
existing result found in [42,3,11,12].

Lemma 4.11. Assume functors B,L : C → C, and a natural transformation
ι : L → B. Then the functor Id : Coalg(L) → Coalg(B) defined by (X, f) �→
(X,σX ◦ f) on objects and identity on morphisms, preserves bisimulations. If
additionally ι has a left inverse, Id reflects bisimulations.

We briefly turn to the condition of order-reflectingness. As we are often
interested in cases where the right adjoint is a forgetful functor in the context of
an Eilenberg-Moore adjunction, it is useful to state the following.

Lemma 4.12. For a monad T with forgetful functor U : EM(T) → C, the (re-
stricted) lifting Rel(U)X is an order-reflecting map.

If C = Set in the above lemma, then Rel(U)X is just the inclusion of the poset
of congruences RelX on an algebra X into the poset of all relations on its carrier.

In that case, we can also use the above to show preservation and reflection
of behavioural equivalence. Two states of a coalgebra (in Set) are behaviourally
equivalent if they can be identified by some coalgebra homomorphism. This can
be captured more abstractly using kernel bisimulations (see, e.g., [44]). Since U
is assumed to be a forgetful functor to Set, we simply define preservation and
reflection of behavioural equivalence by U to mean that for any two states x, y
of an L-coalgebra (X, f), x and y are behaviourally equivalent (for (X, f)) if and
only if they are behaviourally equivalent for U(X, f).

It turns out that, in our setting, coincidence of bisimilarity and behavioural
equivalence for L-coalgebras reduces to coincidence for B-coalgebras. This is
stated in the following lemma; the essence is that U is easily shown to preserve
behavioural equivalence.

Lemma 4.13. For a monad T , consider the Eilenberg-Moore adjunction F �
U : EM(T) → Set with functors L : EM(T) → EM(T) and B : Set → Set, and
an invertible step δ : BU → UL. Further suppose that U preserves and reflects
bisimilarity, and that B preserves weak pullbacks. Then bisimilarity and be-
havioural equivalence for L-coalgebras coincide (and hence, U preserves and
reflects behavioural equivalence).

Remark 4.14. We conclude with a brief exploration of preservation and reflection
by the restriction of the left adjoint Rel(P)X , in the setting of

RelX RelPX
Rel(P)X

f∗◦Rel(B)X (δ̂X◦Pf)∗◦Rel(L)PX (22)

Preservation and Reflection of Bisimilarity via Invertible Steps 341

with f : X → BX a B-coalgebra in this case. Here, we can obtain a backward
step Rel(P)X ◦ f∗ ◦ Rel(B)X ≤ (δ̂X ◦ Pf)∗ ◦ Rel(L)PX ◦ Rel(P)X which means
that we can lift Rel(P)X to bisimulations, so that these are preserved. However,
we cannot obtain a forward step in this context, thus reflection will not hold. This
is illustrated, e.g., by the example of ultrafilter extensions, where the ultrafilter
monad β certainly does not reflect bisimulations: in general, in the ultrafilter
extension more states will be bisimilar.

5 Applications

Now that we have obtained conditions for the preservation and reflection of
bisimilarity, we return to the examples of Section 2.2. We will show how a number
of existing non-trivial results can be recovered in a concise way. Further, the
Set-Stone adjunction used in the first example is known to not be monadic, and
so outside the scope of weak liftings, which indicates the generality of our results.

Ultrafilter Extensions and Vietoris bisimulations In Example 2.5, we
have seen how the construction of ultrafilter extensions can be obtained from
an invertible step, which arises from a weak lifting described by Garner. In the
current treatment of reflection and preservation of bisimilarity, we focus on the
restriction of this invertible step to the category Stone.

This brings us in line with [5], where a comparison is made between bisimilarity
for the Vietoris functor V : Stone → Stone and bisimilarity for the powerset functor
P : Set → Set, called Vietoris-bisimilarity and Kripke-bisimilarity respectively in
op. cit. More precisely, for a V-coalgebra (X, f), Kripke bisimilarity is bisimilarity
on U(X, f), where U is the step-induced lifting of the forgetful functor U : Stone →
Set. Vietoris bisimilarity is simply bisimilarity on the coalgebra (X, f) itself.

We consider the following results from [5]:

1. The relation liftings of P and V coincide for closed subsets [5, Prop 3.4]
2. Vietoris bisimulations are equivalently closed Kripke bisimulations [5, Thm 3.6]
3. The closure of a Kripke bisimulation is a Vietoris bisimulation [5, Thm 5.2]
4. Vietoris- and Kripke-bisimilarity are equivalent [5, Cor 3.10]

From the above discussion, we see that these results fit into the setting of
Section 4, so that they can be recovered using our results on the preservation
and reflection of bisimilarity as follows:

1. This follows from the equality of Lemma 4.6, as the action of ι∗ is exactly
the restriction to closed subsets. We can apply this lemma as U preserves
abstract epis, due to the same argument as for adjunctions monadic over Set
(see the discussion after Proposition 4.5), as Stone is also a regular category.

2. For this, we use preservation and reflection of bisimulations by the (restricted)
relation lifting Rel(U)X : RelX → RelUX of the forgetful functor, which is
simply the inclusion of the poset of closed relations on a Stone space X to
that of all relations on the underlying set.

342 R. Turkenburg et al.

Indeed, preservation and reflection by Rel(U)X follows from Theorem 4.10.
We have seen that U : Stone → Set preserves abstract epis, so it only remains
to check that Rel(U)X is order-reflecting. This holds because Stone is a
reflective (i.e. full) subcategory of CHaus, which is monadic over Set.

3. The left adjoint
∐

ε ◦Rel(β)UX of Lemma 4.7 gives the closure of a relation.
Its lifting to bisimulations (cf. Remark 4.14) yields the desired result.

4. This holds since Rel(U)X maps the greatest fixed point of (ιX ◦ Uf)∗ ◦
Rel(P)UX to that of f∗ ◦ Rel(V)X , i.e., it preserves and reflects bisimilarity.

PAs and Belief State Transformers As discussed in Example 2.6, we can
determinise a PA to a coalgebra for the convex powerset functor Pc : EM(D) →
EM(D) using a lifting of F : Set → EM(D). The step-induced lifting of the
corresponding forgetful functor U : EM(D) → Set maps the Pc-coalgebra back
into Set, but we must take care that this does not change its behaviour. What
we can do now, is show that bisimilarity is preserved and reflected.

Once we know this, we can apply Lemma 4.13 to show the coincidence of
bisimilarity and behavioural equivalence in the case of the convex powerset functor
on EM(D) and the powerset functor on Set as this preserves weak pullbacks.
This coincidence is relevant for the generalisation of the corresponding results
of [12] (restricted to the convex powerset functor), which are formulated in terms
of behavioural equivalence. As mentioned in Example 2.6, the weak lifting we
require to cover automata with labels can be found in [21]. Consider the following:

1. The lifting of the forgetful functor U : EM(D) → Set preserves and reflects
behavioural equivalence on PL

c -coalgebras [12, Proposition 6.6].
2. A relation R is a kernel bisimulation for a PL

c -coalgebra (S, c) in EM(D) iff
it is a kernel bisimulation for U(S, c) and also a congruence.

Again, we can apply the results of Section 4 to recover these results. In fact,
in [12, Proposition 6.5], the second result is proved more generally, namely for
settings where a so-called lax lifting exists rather than the weak lifting we require.

1. We have seen that U preserves abstract epis as the adjunction in question is
monadic over Set. This allows us to apply Theorem 4.10 so that U indeed
preserves and reflects bisimulations, and the relevant lifting preserves and
reflects bisimilarity. From Lemma 4.13, it follows that U also preserves and
reflects behavioural equivalence.

2. Assuming (S, c) is a PL
c -coalgebra, this follows from Lemma 4.13 together

with the previous item, and the fact that bisimulations in Eilenberg-Moore
categories are congruences.

Automata For a different instance, we revisit Example 2.7 and consider the
basic adjunction P � Q : Dop → C. As a general remark, we note that if D admits
a factorization system (E ,M) with E a class of epis, and M a class of monos,
then (M, E) forms a factorization system for Dop, with M a class of epis in Dop,
and E a class of monos in Dop. We can explicitly describe Rel(Dop) as follows:

Preservation and Reflection of Bisimilarity via Invertible Steps 343

– Objects of Rel(Dop) are quotients X +X � E of X +X;
– A map X +X � E → Y + Y � F consists of a map u : Y → X in D such

that there is the following commutative diagram

E F

X +X Y + Y
u+u

(23)

In the case D = Set, E = Epi and M = Mono. Further, every epi e : X +X � E
is isomorphic to an epi of the form X +X � (X +X)/∼ with ∼ an equivalence
relation on X +X. This gives us an equivalent description of Rel(Setop):

– Objects of Rel(Setop) are equivalence relations ∼ on X +X for a set X;
– A map ∼ ⊆ (X +X)2 → ≈ ⊆ (Y + Y)2 consists of a map u : Y → X such

that if j(y) ≈ j′(y′), then j(u(y)) ∼ j′(u(y′)), with j, j′ arbitrary coproduct
inclusions.

In particular, we see that the fibre over a set X consists of all equivalence relations
on X + X, ordered by reverse inclusion. Reindexing along a map u : X ← Y
maps an equivalence relation ≈ on Y + Y to the least equivalence relation ∼ on
X +X, such that j(u(y)) ∼ j′(u(y′)) for all j(y) ≈ j′(y′).

Focusing on the setting of (8) in Example 2.7, the lifting Rel(L) is given by

inl(∗) Rel(L)(∼) inr(∗) (24)
j((a, x)) Rel(L)(∼) j′((b, x)) ⇐⇒ a = b and j(x) ∼ j′(y) (25)

If f : X ← 1 + Σ × X is an L-coalgebra, we see that f∗ ◦ Rel(L)X maps an
equivalence relation ∼ on X +X to the least equivalence relation ≈ satisfying

inl(f(∗)) ≈ inr(f(∗)) (26)
j(f(a, x)) ≈ j′(f(a, y)) whenever j(x) ∼ j′(y) (27)

A post-fixed point of this map is an equivalence relation ∼ which relates inl(f(∗))
and inr(f(∗)) and is closed under the action of Σ on X +X. The greatest post-
fixed point is the least such relation, as relations in RelX are ordered by reverse
inclusion. It is easy to see that this is exactly the relation which identifies inl(x)
and inr(x) for those x reachable from f(∗).

Rel(Q), meanwhile, maps an equivalence relation ∼ on X +X to the relation
R on 2X given by

uRv ⇐⇒ inl[u] ∪ inr[v] is ∼-closed (28)

If X ′ is the set of reachable states, we conclude that Rel(Q) maps the greatest
bisimulation ∼ to the relation

uRv ⇐⇒ u ∩X ′ = v ∩X ′ (29)

The functor Q preserves (abstract) epis, as all epis in Setop are regular. Now,
Theorem 4.10 tells us that the relation (29) coincides with bisimilarity on the
automaton Q(X, f) from Example 2.7. It follows that the subautomaton on 2X

′

is minimal, and is the minimal automaton equivalent to Q(X, f).

344 R. Turkenburg et al.

6 Discussion and Future Work

We studied the notion of an invertible step, which provides several constructions
on coalgebras via functor liftings. We showed that the lifting of the right adjoint,
induced by such an invertible step, preserves and reflects bisimilarity. This
abstract result instantiates to several concrete results from the literature, in
examples related to ultrafilter extensions and weak distributive laws.

We have focused on preservation and reflection of bisimilarity, defined in terms
of relation lifting. There are several other coalgebraic notions of behavioural
equivalence and bisimilarity [44]—we discuss these in the next subsection. Finally,
in Section 6.2 we list directions for future work.

6.1 Remarks on other notions of bisimulation

Aczel-Mendler bisimulations For a coalgebra f : X → LX, an Aczel-Mendler
bisimulation R � X ×X is defined by the existence of an L-coalgebra structure
R → LR on R such that the projection maps are coalgebra homomorphisms [1].

In the invertible step setting, applying a lifting Q to such a bisimulation,
yields a structure QR → BQR. However, this is not immediately a bisimulation,
as QR may not be a relation. We can obtain a relation by taking the image of
〈Qπ1, Qπ2〉 as we do to define relation lifting, but in general this is a Hermida-
Jacobs bisimulation [28, Exercise 4.5.2], rather than an Aczel-Mendler one.

On the other hand, if we wish to speak of reflection of Aczel-Mendler bisimu-
lations, we start with a span QX ← R → QX and try to construct a relation on
X. Using the adjunction of the step setting, we can transpose the projections to
obtain a span X ← PR → X. Again PR is not immediately a relation in general,
and taking the image yields a Rel(L)-coalgebra (not an L-coalgebra) as the
projections and the counit ε are coalgebra homomorphisms (see also [28, Exercise
4.5.4]). This in fact comes down to the same as the left adjoint

∐
ε ◦Rel(P)QX

constructed earlier. There we factorise to obtain the relation lifting and factorise
again for the direct image of ε, instead of factorising the paired transposes defined
using ε. We also do not explicitly use that ε is a coalgebra homomorphism (al-
though this follows from the step with right inverse and Lemma 2.3); instead we
lift the adjunction at the level of relations to give a map between bisimulations.
This is part of the motivation for the use of relation liftings and the corresponding
notion of bisimulations.

Going further, it is shown in [5] that there exists a Vietoris bisimulation which
is not an Aczel-Mendler bisimulation and, stronger, that there exist Vietoris
coalgebras with states which can be related by a Vietoris but not an Aczel-
Mendler bisimulation. Thus, the correspondences between bisimulations on Set
and Stone we have discussed in the previous sections are not obtainable when we
consider Aczel-Mendler bisimulations.

Kernel bisimulations/behavioural equivalence In applying our results to
the preservation and reflection of behavioural equivalence, we currently work
concretely; considering sets of states and identification of elements.

Preservation and Reflection of Bisimilarity via Invertible Steps 345

We prefer to work more abstractly, as we have done for bisimilarity. To this
end, we may consider kernel bisimulations. A relation R � X ×X is a kernel
bisimulation on a coalgebra (X, f : X → LX) in a category D, if it is the pullback
of morphisms X → Z ← X in D forming a cospan of coalgebra homomorphisms
(X, f) → (Z, z) ← (X, f) in CoalgD(L). In a concrete setting this coincides with
behavioural equivalence, as such a pullback contains exactly the pairs of elements
of X which are identified in Z by the morphisms forming the cospan. We can
thus view this as a generalisation of behavioural equivalence as defined earlier.

Assuming an invertible step δ : BQ → QL, we would like to relate R to a
kernel bisimulation on the coalgebra Q(X, f) obtained by applying the step-
induced lifting of Q. Applying Q to the pullback square for R yields a pullback
square as Q is a right adjoint. However, as in our discussion of Aczel-Mendler
bisimulations, this may not be a relation. We may try to also use relation liftings
here, and take Rel(Q)(R) instead of Q(R), however this may no longer be a
pullback. It is not currently clear to us how to resolve these problems in general.

6.2 Future work

There are several further directions for future work. First, in this paper we focused
primarily on fibrations of relations, which suffice for our purposes of studying
bisimilarity. However, we expect that some of our results can be generalised to
arbitrary (posetal) fibrations. Such a generalisation could be the basis to study
preservation and reflection of other coinductive predicates and relations than
bisimilarity, which can be formulated in terms of fibrations and liftings (e.g., [25]).

Secondly, while we have shown in Section 5 how our results can be used
to recover the central results from [5], the latter have been generalised in two
directions: the recent [24] considers bisimulations for Vietoris coalgebras on
the category of arbitrary topological spaces, while [18] develops a notion of
neighbourhood bisimulation for coalgebras that allows to generalise the results
from [5] to a large variety of functors on the category of Stone spaces and their
corresponding functors on Set. We would like to understand whether or not our
framework is able to recover these generalisations.

Finally, the examples that we have studied in this paper do not yet exploit the
full generality of invertible steps: our main motivating examples are based on an
Eilenberg-Moore adjunction (or close, as in the example based on Stone spaces).
In [41] it is shown that steps are relevant in a much wider setting, for instance
when based on a Kleisli adjunction or on contravariant adjunctions and dualities.
The latter type of steps are relevant for coalgebraic modal logics—we have studied
a first instance in our example of deterministic and non-deterministic automata.
Investigating the meaning of invertible steps in these other types of adjunctions
is left for future work.

Acknowledgements This research has been partially funded by the NWO
grant OCENW.M20.053 and by Leverhulme Trust Research Project Grant RPG-
2020-232.

346 R. Turkenburg et al.

References

1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Category Theory and
Computer Science. Lecture Notes in Computer Science, vol. 389, pp. 357–365.
Springer (1989)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The
Joy of Cats. Dover Publications (2009)

3. Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theor. Comput. Sci. 327(1-2), 3–22 (2004)

4. van Benthem, J.: Canonical modal logics and ultrafilter extensions. The Journal of
Symbolic Logic 44(1), 1–8 (1979), publisher: Cambridge University Press

5. Bezhanishvili, N., Fontaine, G., Venema, Y.: Vietoris bisimulations. J. Log. Comput.
20(5), 1017–1040 (2010)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in
Theoretical Computer Science, vol. 53. Cambridge University Press (2001)

7. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalge-
braic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

8. Bonchi, F., Bonsangue, M.M., Caltais, G., Rutten, J., Silva, A.: A coalgebraic view
on decorated traces. Math. Struct. Comput. Sci. 26(7), 1234–1268 (2016)

9. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: A general account of coinduction up-to.
Acta Informatica 54(2), 127–190 (2017)

10. Bonchi, F., Santamaria, A.: Combining semilattices and semimodules. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 12650, pp. 102–123. Springer (2021)

11. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: CONCUR.
LIPIcs, vol. 85, pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

12. Bonchi, F., Silva, A., Sokolova, A.: Distribution bisimilarity via the power of convex
algebras. Log. Methods Comput. Sci. 17(3) (2021)

13. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws.
Log. Methods Comput. Sci. 11(3) (2015)

14. Bonsangue, M.M., Kurz, A.: Duality for logics of transition systems. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 3441, pp. 455–469. Springer (2005)

15. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of
coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1), 7:1–7:52 (2013)

16. Borceux, F.: Handbook of categorical algebra: volume 1, Basic category theory,
vol. 1. Cambridge University Press (1994)

17. Chen, L., Jung, A.: On a categorical framework for coalgebraic modal logic. In:
MFPS. Electronic Notes in Theoretical Computer Science, vol. 308, pp. 109–128.
Elsevier (2014)

18. Enqvist, S., Sourabh, S.: Bisimulations for coalgebras on Stone spaces. J. Log.
Comput. 28(6), 991–1010 (2018)

19. Garner, R.: The Vietoris monad and weak distributive laws. Appl. Categorical
Struct. 28(2), 339–354 (2020)

20. Goldblatt, R.I.: Metamathematics of modal logic. Bulletin of the Australian Math-
ematical Society 10(3), 479–480 (1974), publisher: Cambridge University Press

21. Goy, A.: On the compositionality of monads via weak distributive laws. (Composi-
tionnalité des monades par lois de distributivité faibles). Ph.D. thesis, University
of Paris-Saclay, France (2021)

22. Goy, A., Petrisan, D.: Combining probabilistic and non-deterministic choice via
weak distributive laws. In: LICS. pp. 454–464. ACM (2020)

Preservation and Reflection of Bisimilarity via Invertible Steps 347

23. Goy, A., Petrisan, D., Aiguier, M.: Powerset-like monads weakly distribute over
themselves in toposes and compact Hausdorff spaces. In: ICALP. LIPIcs, vol. 198,
pp. 132:1–132:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

24. Gumm, H.P., Taheri, M.: Saturated Kripke structures as Vietoris coalgebras. In:
CMCS. Lecture Notes in Computer Science, vol. 13225, pp. 88–109. Springer (2022)

25. Hasuo, I., Kataoka, T., Cho, K.: Coinductive predicates and final sequences in a
fibration. Math. Struct. Comput. Sci. 28(4), 562–611 (2018)

26. Hermida, C.: On fibred adjunctions and completeness for fibred categories. In:
COMPASS/ADT. Lecture Notes in Computer Science, vol. 785, pp. 235–251.
Springer (1992)

27. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational
setting. Inf. Comput. 145(2), 107–152 (1998)

28. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Ob-
servation, Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press (2016)

29. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
Syst. Sci. 81(5), 859–879 (2015)

30. Jacobs, B.P.F.: Categorical Logic and Type Theory, Studies in logic and the
foundations of mathematics, vol. 141. North-Holland (2001)

31. Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Kelly, G.M. (ed.)
Category Seminar: Proceedings Sydney Category Seminar 1972/1973. No. 420 in
Lecture Notes in Mathematics, Springer-Verlag (1974)

32. Klin, B.: Coalgebraic modal logic beyond sets. In: MFPS. Electronic Notes in
Theoretical Computer Science, vol. 173, pp. 177–201. Elsevier (2007)

33. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor.
Comput. Sci. 412(38), 5043–5069 (2011)

34. Klin, B., Salamanca, J.: Iterated covariant powerset is not a monad. In: MFPS.
Electronic Notes in Theoretical Computer Science, vol. 341, pp. 261–276. Elsevier
(2018)

35. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In:
CMCS. Electronic Notes in Theoretical Computer Science, vol. 106, pp. 219–241.
Elsevier (2004)

36. Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter extensions for coalgebras. In: CALCO.
Lecture Notes in Computer Science, vol. 3629, pp. 263–277. Springer (2005)

37. Leinster, T.: Higher Operads, Higher Categories, London Mathematical Society
Lecture Notes, vol. 298. Cambridge University Press (2004)

38. Levy, P.B.: Final coalgebras from corecursive algebras. In: CALCO. LIPIcs, vol. 35,
pp. 221–237. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

39. Manes, E.: A triple theoretic construction of compact algebras. In: Seminar on
triples and categorical homology theory. pp. 91–118. Springer (1969)

40. Pavlovic, D., Mislove, M.W., Worrell, J.: Testing semantics: Connecting processes
and process logics. In: AMAST. Lecture Notes in Computer Science, vol. 4019, pp.
308–322. Springer (2006)

41. Rot, J., Jacobs, B., Levy, P.B.: Steps and traces. J. Log. Comput. 31(6), 1482–1525
(2021)

42. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000)

43. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing deter-
minization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)

44. Staton, S.: Relating coalgebraic notions of bisimulation. Log. Methods Comput. Sci.
7(1) (2011)

348 R. Turkenburg et al.

45. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS.
pp. 280–291. IEEE Computer Society (1997)

46. Varacca, D.: Probability, Nondeterminism and Concurrency: Two Denotational
Models for Probabilistic Computation. Ph.D. thesis, University of Aarhus (2003)

47. Zwart, M., Marsden, D.: No-go theorems for distributive laws. Log. Methods
Comput. Sci. 18(1) (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantitative Safety and Liveness

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç(�)

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{tah,nmazzocc,esarac}@ist.ac.at

Abstract. Safety and liveness are elementary concepts of computation,
and the foundation of many verification paradigms. The safety-liveness
classification of boolean properties characterizes whether a given prop-
erty can be falsified by observing a finite prefix of an infinite computation
trace (always for safety, never for liveness). In quantitative specification
and verification, properties assign not truth values, but quantitative val-
ues to infinite traces (e.g., a cost, or the distance to a boolean property).
We introduce quantitative safety and liveness, and we prove that our def-
initions induce conservative quantitative generalizations of both (1) the
safety-progress hierarchy of boolean properties and (2) the safety-liveness
decomposition of boolean properties. In particular, we show that every
quantitative property can be written as the pointwise minimum of a
quantitative safety property and a quantitative liveness property. Con-
sequently, like boolean properties, also quantitative properties can be
min-decomposed into safety and liveness parts, or alternatively, max-
decomposed into co-safety and co-liveness parts. Moreover, quantitative
properties can be approximated naturally. We prove that every quan-
titative property that has both safe and co-safe approximations can be
monitored arbitrarily precisely by a monitor that uses only a finite num-
ber of states.

1 Introduction

Safety and liveness are elementary concepts in the semantics of computation [39].
They can be explained through the thought experiment of a ghost monitor—an
imaginary device that watches an infinite computation trace at runtime, one
observation at a time, and always maintains the set of possible prediction values
to reflect the satisfaction of a given property. Let Φ be a boolean property,
meaning that Φ divides all infinite traces into those that satisfy Φ, and those that
violate Φ. After any finite number of observations, True is a possible prediction
value for Φ if the observations seen so far are consistent with an infinite trace
that satisfies Φ, and False is a possible prediction value for Φ if the observations
seen so far are consistent with an infinite trace that violates Φ. When True is no
possible prediction value, the ghost monitor can reject the hypothesis that Φ is
satisfied. The property Φ is safe if and only if the ghost monitor can always reject
the hypothesis Φ after a finite number of observations: if the infinite trace that is
being monitored violates Φ, then after some finite number of observations, True is
no possible prediction value for Φ. Orthogonally, the property Φ is live if and only
if the ghost monitor can never reject the hypothesis Φ after a finite number of

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_17

349–370, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_17&domain=pdf

350 T. A. Henzinger et al.

observations: for all infinite traces, after every finite number of observations, True
remains a possible prediction value for Φ.

The safety-liveness classification of properties is fundamental in verification.
In the natural topology on infinite traces—the “Cantor topology”—the safety
properties are the closed sets, and the liveness properties are the dense sets [4].
For every property Φ, the location of Φ within the Borel hierarchy that is in-
duced by the Cantor topology—the so-called “safety-progress hierarchy” [17]—
indicates the level of difficulty encountered when verifying Φ. On the first level,
we find the safety and co-safety properties, the latter being the complements of
safety properties, i.e., the properties whose falsehood (rather than truth) can
always be rejected after a finite number of observations by the ghost monitor.
More sophisticated verification techniques are needed for second-level properties,
which are the countable boolean combinations of first-level properties—the so-
called “response” and “persistence” properties [17]. Moreover, the orthogonality
of safety and liveness leads to the following celebrated fact: every property can be
written as the intersection of a safety property and a liveness property [4]. This
means that every property Φ can be decomposed into two parts: a safety part—
which is amenable to simple verification techniques, such as invariants—and a
liveness part—which requires heavier verification paradigms, such as ranking
functions. Dually, there is always a disjunctive decomposition of Φ into co-safety
and co-liveness.

So far, we have retold the well-known story of safety and liveness for boolean
properties. A boolean property Φ is formalized mathematically as the set of infi-
nite computation traces that satisfy Φ, or equivalently, the characteristic function
that maps each infinite trace to a truth value. Quantitative generalizations of
the boolean setting allow us to capture not only correctness properties, but also
performance properties [31]. In this paper we reveal the story of safety and live-
ness for such quantitative properties, which are functions from infinite traces to
an arbitrary set D of values. In order to compare values, we equip the value
domain D with a partial order <, and we require (D, <) to be a complete lattice.
The membership problem [18] for an infinite trace f and a quantitative property
Φ asks whether Φ(f) ≥ v for a given threshold value v ∈ D. Correspondingly,
in our thought experiment, the ghost monitor attempts to reject hypotheses of
the form Φ(f) ≥ v, which cannot be rejected as long as all observations seen
so far are consistent with an infinite trace f with Φ(f) ≥ v. We will define Φ
to be a quantitative safety property if and only if every hypothesis of the form
Φ(f) ≥ v can always be rejected by the ghost monitor after a finite number of
observations, and we will define Φ to be a quantitative liveness property if and
only if some hypothesis of the form Φ(f) ≥ v can never be rejected by the ghost
monitor after any finite number of observations. We note that in the quantita-
tive case, after every finite number of observations, the set of possible prediction
values for Φ maintained by the ghost monitor may be finite or infinite, and in
the latter case, it may not contain a minimal or maximal element.

Let us give a few examples. Suppose we have four observations: observation
rq for “request a resource,” observation gr for “grant the resource,” observa-
tion tk for “clock tick,” and observation oo for “other.” The boolean property

Quantitative Safety and Liveness 351

Resp requires that every occurrence of rq in an infinite trace is followed even-
tually by an occurrence of gr. The boolean property NoDoubleReq requires that
no occurrence of rq is followed by another rq without some gr in between. The
quantitative property MinRespTime maps every infinite trace to the largest num-
ber k such that there are at least k occurrences of tk between each rq and the
closest subsequent gr. The quantitative property MaxRespTime maps every in-
finite trace to the smallest number k such that there are at most k occurrences
of tk between each rq and the closest subsequent gr. The quantitative property
AvgRespTime maps every infinite trace to the lower limit value lim inf of the in-
finite sequence (vi)i≥1, where vi is, for the first i occurrences of tk, the average
number of occurrences of tk between rq and the closest subsequent gr. Note that
the values of AvgRespTime can be ∞ for some computations, including those for
which the value of Resp is True. This highlights that boolean properties are not
embedded in the limit behavior of quantitative properties.

The boolean property Resp is live because every finite observation sequence
can be extended with an occurrence of gr. In fact, Resp is a second-level liveness
property (namely, a response property), because it can be written as a countable
intersection of co-safety properties. The boolean property NoDoubleReq is safe
because if it is violated, it will be rejected by the ghost monitor after a finite
number of observations, namely, as soon as the ghost monitor sees a rq followed
by another occurrence of rq without an intervening gr. According to our quan-
titative generalization of safety, MinRespTime is a safety property. The ghost
monitor always maintains the minimal number k of occurrences of tk between
any past rq and the closest subsequent gr seen so far; the set of possible predic-
tion values for MinRespTime is always {0, 1, . . . , k}. Every hypothesis of the form
“the MinRespTime-value is at least v” is rejected by the ghost monitor as soon
as k < v; if such a hypothesis is violated, this will happen after some finite num-
ber of observations. Symmetrically, the quantitative property MaxRespTime is
co-safe, because every wrong hypothesis of the form “the MaxRespTime-value is
at most v” will be rejected by the ghost monitor as soon as the smallest possible
prediction value for MaxRespTime, which is the maximal number of occurrences
of tk between any past rq and the closest subsequent gr seen so far, goes above v.
By contrast, the quantitative property AvgRespTime is both live and co-live be-
cause no hypothesis of the form “the AvgRespTime-value is at least v,” nor of the
form “the AvgRespTime-value is at most v,” can ever be rejected by the ghost
monitor after a finite number of observations. All nonnegative real numbers and
∞ always remain possible prediction values for AvgRespTime. Note that a ghost
monitor that attempts to reject hypotheses of the form Φ(f) ≥ v does not need
to maintain the entire set of possible prediction values, but only the sup of the set
of possible prediction values, and whether or not the sup is contained in the set.
Dually, updating inf (and whether it is contained) suffices to reject hypotheses
of the form Φ(f) ≤ v.

By defining quantitative safety and liveness via ghost monitors, we not only
obtain a conservative and quantitative generalization of the boolean story, but
also open up attractive frontiers for quantitative semantics, monitoring, and ver-
ification. For example, while the approximation of boolean properties reduces to

352 T. A. Henzinger et al.

adding and removing traces to and from a set, the approximation of quantitative
properties offers a rich landscape of possibilities. In fact, we can approximate
the notion of safety itself. Given an error bound α, the quantitative property Φ
is α-safe if and only if for every value v and every infinite trace f whose value
Φ(f) is less than v, all possible prediction values for Φ are less than v + α after
some finite prefix of f . This means that, for an α-safe property Φ, the ghost
monitor may not reject wrong hypotheses of the form Φ(f) ≥ v after a finite
number of observations, once the violation is below the error bound. We show
that every quantitative property that is both α-safe and β-co-safe, for any fi-
nite α and β, can be monitored arbitrarily precisely by a monitor that uses only
a finite number of states.

We are not the first to define quantitative (or multi-valued) definitions of
safety and liveness [41,27]. While the previously proposed quantitative gener-
alizations of safety share strong similarities with our definition (without coin-
ciding completely), our quantitative generalization of liveness is entirely new.
The definitions of [27] do not support any safety-liveness decomposition, be-
cause their notion of safety is too permissive, and their liveness too restrictive.
While the definitions of [41] admit a safety-liveness decomposition, our definition
of liveness captures strictly fewer properties. Consequently, our definitions offer
a stronger safety-liveness decomposition theorem. Our definitions also fit natu-
rally with the definitions of emptiness, equivalence, and inclusion for quantitative
languages [18].

Overview. In Section 2, we introduce quantitative properties. In Section 3, we
define quantitative safety as well as safety closure, namely, the property that
increases the value of each trace as little as possible to achieve safety. Then, we
prove that our definitions preserve classical boolean facts. In particular, we show
that a quantitative property Φ is safe if and only if Φ equals its safety closure
if and only if Φ is upper semicontinuous. In Section 4, we generalize the safety-
progress hierarchy to quantitative properties. We first define limit properties. For
� ∈ {inf, sup, lim inf, lim sup}, the class of �-properties captures those for which
the value of each infinite trace can be derived by applying the limit function � to
the infinite sequence of values of finite prefixes. We prove that inf-properties co-
incide with safety, sup-properties with co-safety, lim inf-properties are suprema
of countably many safety properties, and lim sup-properties infima of countably
many co-safety properties. The lim inf-properties generalize the boolean persis-
tence properties of [17]; the lim sup-properties generalize their response prop-
erties. For example, AvgRespTime is a lim inf-property. In Section 5, we intro-
duce quantitative liveness and co-liveness. We prove that our definitions preserve
the classical boolean facts, and show that there is a unique property which is
both safe and live. As main result, we provide a safety-liveness decomposition
that holds for every quantitative property. In Section 6, we define approximate
safety and co-safety. We generalize the well-known unfolding approximation of
discounted properties for approximate safety and co-safety properties over the
extended reals. This allows us to provide a finite-state approximate monitor for
these properties. In Section 7, we conclude with future research directions. For
complete proofs of all results, we refer the reader to the full version of the paper.

Quantitative Safety and Liveness 353

Related Work. The notions of safety and liveness for boolean properties ap-
peared first in [39] and were later formalized in [4], where safety properties were
characterized as closed sets of the Cantor topology on infinite traces, and liveness
properties as dense sets. As a consequence, the seminal decomposition theorem
followed: every boolean property is an intersection of a safety property and a
liveness property. A benefit of such a decomposition lies in the difference between
the mathematical arguments used in their verification. While safety properties
enable simpler methods such as invariants, liveness properties require more com-
plex approaches such as well-foundedness [42,5]. These classes were characterized
in terms of Büchi automata in [5] and in terms of linear temporal logic in [46].

The safety-progress classification of boolean properties [17] proposes an or-
thogonal view: rather than partitioning the set of properties, it provides a hi-
erarchy of properties starting from safety. This yields a more fine-grained view
of nonsafety properties which distinguishes whether a “good thing” happens at
least once (co-safety or “guarantee”), infinitely many times (response), or even-
tually always (persistence). This classification follows the Borel hierarchy that
is induced by the Cantor topology on infinite traces, and has corresponding pro-
jections within properties that are definable by finite automata and by formulas
of linear temporal logic.

Runtime verification, or monitoring, is a lightweight, dynamic verification
technique [6], where a monitor watches a system during its execution and tries
to decide, after each finite sequence of observations, whether the observed finite
computation trace or its unknown infinite extension satisfies a desired property.
The safety-liveness dichotomy has profound implications for runtime verification
as well: safety is easy to monitor [28], while liveness is not. An early definition of
boolean monitorability was equivalent to safety with recursively enumerable sets
of bad prefixes [35]. The monitoring of infinite-state boolean safety properties
was later studied in [26]. A more popular definition of boolean monitorabil-
ity [44,8] accounts for both truth and falsehood, establishing the set of moni-
torable properties as a strict superset of finite boolean combinations of safety and
co-safety [23]. Boolean monitors that use the set possible prediction values can
be found in [7]. The notion of boolean monitorability was investigated through
the safety-liveness lens in [43] and through the safety-progress lens in [23].

Quantitative properties (a.k.a. “quantitative languages”) [18] extend their
boolean counterparts by moving from the two-valued truth domain to richer
domains such as real numbers. Such properties have been extensively studied
from a static verification perspective in the past decade, e.g., in the context
of model-checking probabilistic properties [38,37], games with quantitative ob-
jectives [10,15], specifying quantitative properties [11,1], measuring distances
between systems [2,16,22,29], best-effort synthesis and repair [9,20], and quan-
titative analysis of transition systems [47,14,21,19]. More recently, quantitative
properties have been also studied from a runtime verification perspective, e.g., for
limit monitoring of statistical indicators of infinite traces [25] and for analyzing
resource-precision trade-offs in the design of quantitative monitors [33,30].

To the best of our knowledge, previous definitions of (approximate) safety
and liveness in nonboolean domains make implicit assumptions about the spec-

354 T. A. Henzinger et al.

ification language [48,34,24,45]. We identify two notable exceptions. In [27], the
authors generalize the framework of [43] to nonboolean value domains. They
provide neither a safety-liveness decomposition of quantitative properties, nor a
fine-grained classification of nonsafety properties. In [41], the authors present a
safety-liveness decomposition and some levels of the safety-progress hierarchy on
multi-valued truth domains, which are bounded distributive lattices. Their mo-
tivation is to provide algorithms for model-checking properties on multi-valued
truth domains. We present the relationships between their definitions and ours
in the relevant sections below.

2 Quantitative Properties

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is an infinite
sequence of observations, denoted by f, g, h ∈ Σω, and a finite trace is a finite
sequence of observations, denoted by s, r, t ∈ Σ∗. Given s ∈ Σ∗ and w ∈ Σ∗∪Σω,
we denote by s ≺ w (resp. s � w) that s is a strict (resp. nonstrict) prefix of w.
Furthermore, we denote by |w| the length of w and, given a ∈ Σ, by |w|a the
number of occurrences of a in w.

A value domain D is a poset. Unless otherwise stated, we assume that D is
a nontrivial (i.e., ⊥ �= �) complete lattice and, whenever appropriate, we write
0, 1, −∞, ∞ instead of ⊥ and � for the least and the greatest elements. We
respectively use the terms minimum and maximum for the greatest lower bound
and the least upper bound of finitely many elements.

Definition 1 (Property). A quantitative property (or simply property) is a
function Φ : Σω → D from the set of all traces to a value domain.

A boolean property P ⊆ Σω is defined as a set of traces. We use the boolean
domain B = {0, 1} with 0 < 1 and, in place of P , its characteristic property
ΦP : Σω → B, which is defined by ΦP (f) = 1 if f ∈ P , and ΦP (f) = 0 if f /∈ P .

For all properties Φ1, Φ2 on a domain D and all traces f ∈ Σω, we let
min(Φ1, Φ2)(f) = min(Φ1(f), Φ2(f)) and max(Φ1, Φ2)(f) = max(Φ1(f), Φ2(f)).
For a domain D, the inverse of D is the domain D that contains the same el-
ements as D but with the ordering reversed. For a property Φ, we define its
complement Φ : Σω → D by Φ(f) = Φ(f) for all f ∈ Σω.

Some properties can be defined as limits of value sequences. A finitary prop-
erty π : Σ∗ → D associates a value with each finite trace. A value function
� : Dω → D condenses an infinite sequence of values to a single value. Given a
finitary property π, a value function �, and a trace f ∈ Σω, we write �s≺f π(s)
instead of �(π(s0)π(s1) . . .), where each si fulfills si ≺ f and |si| = i.

3 Quantitative Safety

Given a property Φ : Σω → D, a trace f ∈ Σω, and a value v ∈ D, the quanti-
tative membership problem [18] asks whether Φ(f) ≥ v. We define quantitative
safety as follows: the property Φ is safe iff every wrong hypothesis of the form
Φ(f) ≥ v has a finite witness s ≺ f .

Quantitative Safety and Liveness 355

Definition 2 (Safety). A property Φ : Σω → D is safe iff for every f ∈ Σω and
value v ∈ D with Φ(f) �≥ v, there is a prefix s ≺ f such that supg∈Σω Φ(sg) �≥ v.

Let us illustrate this definition with the minimal response-time property.

Example 3. Let Σ = {rq, gr, tk, oo} and D = N ∪ {∞}. We define the minimal
response-time property Φmin through an auxiliary finitary property πmin that
computes the minimum response time so far. In a finite or infinite trace, an
occurrence of rq is granted if it is followed, later, by a gr, and otherwise it is
pending. Let πlast(s) = ∞ if the finite trace s contains a pending rq, or no
rq, and πlast(s) = |r|tk − |t|tk otherwise, where r ≺ s is the longest prefix of
s with a pending rq, and t ≺ r is the longest prefix of r without pending rq.
Intuitively, πlast provides the response time for the last request when all requests
are granted, and ∞ when there is a pending request or no request. Given s ∈ Σ∗,
taking the minimum of the values of πlast over the prefixes r 	 s gives us the
minimum response time so far. Let πmin(s) = minr�s πlast(r) for all s ∈ Σ∗, and
Φmin(f) = lims≺f πmin(s) for all f ∈ Σω. The limit always exists because the
minimum is monotonically decreasing.

The minimal response-time property is safe. Let f ∈ Σω and v ∈ D such
that Φmin(f) < v. Then, some prefix s ≺ f contains a rq that is granted after
u < v ticks, in which case, no matter what happens in the future, the minimal
response time is guaranteed to be at most u; that is, supg∈Σω Φmin(sg) ≤ u < v.
If you recall from the introduction the ghost monitor that maintains the sup
of possible prediction values for the minimal response-time property, that value
is always πmin; that is, supg∈Σω Φmin(sg) = πmin(s) for all s ∈ Σ∗. Note that
in the case of minimal response time, the sup of possible prediction values is
always realizable; that is, for all s ∈ Σ∗, there exists an f ∈ Σω such that
supg∈Σω Φmin(sg) = Φmin(sf). ��
Remark 4. Quantitative safety generalizes boolean safety. For every boolean
property P ⊆ Σω, the following statements are equivalent: (i) P is safe ac-
cording to the classical definition [4], (ii) its characteristic property ΦP is safe,
and (iii) for every f ∈ Σω and v ∈ B with ΦP (f) < v, there exists a prefix s ≺ f
such that for all g ∈ Σω, we have ΦP (sg) < v.

We now generalize the notion of safety closure and present an operation that
makes a property safe by increasing the value of each trace as little as possible.

Definition 5 (Safety closure). The safety closure of a property Φ is the prop-
erty Φ∗ defined by Φ∗(f) = infs≺f supg∈Σω Φ(sg) for all f ∈ Σω.

We can say the following about the safety closure operation.

Proposition 6. For every property Φ : Σω → D, the following statements hold.

1. Φ∗ is safe.
2. Φ∗(f) ≥ Φ(f) for all f ∈ Σω.
3. Φ∗(f) = Φ∗∗(f) for all f ∈ Σω.
4. For every safety property Ψ : Σω → D, if Φ(f) ≤ Ψ(f) for all f ∈ Σω, then

Ψ(g) �< Φ∗(g) for all g ∈ Σω.

356 T. A. Henzinger et al.

3.1 Alternative Characterizations of Quantitative Safety
Consider a trace and its prefixes of increasing length. For a given property,
the ghost monitor from the introduction maintains, for each prefix, the sup of
possible prediction values, i.e., the least upper bound of the property values
for all possible infinite continuations. The resulting sequence of monotonically
decreasing suprema provides an upper bound on the eventual property value.
Moreover, for some properties, this sequence always converges to the property
value. If this is the case, then the ghost monitor can always dismiss wrong
lower-bound hypotheses after finite prefixes, and vice versa. This gives us an
alternative definition for the safety of quantitative properties which, inspired by
the notion of Scott continuity, was called continuity [33]. We now believe that
upper semicontinuity is a more appropriate term, as becomes clear when we
consider the Cantor topology on Σω and the value domain R ∪ {−∞, +∞}.
Definition 7 (Upper semicontinuity [33]). A property Φ is upper semicon-
tinuous iff Φ(f) = lims≺f supg∈Σω Φ(sg) for all f ∈ Σω.

We note that the minimal response-time property is upper semicontinuous.
Example 8. Recall the minimal response-time property Φmin from Example 3.
For every trace f ∈ Σω, the Φmin value is the limit of the πmin values for the
prefixes of f . Therefore, Φmin is upper semicontinuous. ��

In general, a property is safe iff it maps every trace to the limit of the suprema
of possible prediction values. Moreover, we can also characterize safety properties
as the properties that are equal to their safety closure.
Theorem 9. For every property Φ, the following statements are equivalent:
1. Φ is safe. 2. Φ is upper semicontinuous. 3. Φ(f) = Φ∗(f) for all f ∈ Σω.

3.2 Related Definitions of Quantitative Safety
In [41], the authors consider the model-checking problem for properties on multi-
valued truth domains. They introduce the notion of multi-safety through a clo-
sure operation that coincides with our safety closure. Formally, a property Φ is
multi-safe iff Φ(f) = Φ∗(f) for every f ∈ Σω. It is easy to see the following.
Proposition 10. For every property Φ, we have Φ is multi-safe iff Φ is safe.

Although the two definitions of safety are equivalent, our definition is con-
sistent with the membership problem for quantitative automata and motivated
by the monitoring of quantitative properties.

In [27], the authors extend a refinement of the safety-liveness classification for
monitoring [43] to richer domains. They introduce the notion of verdict-safety
through dismissibility of values not less than or equal to the property value.
Formally, a property Φ is verdict-safe iff for every f ∈ Σω and v �≤ Φ(f), there
exists a prefix s ≺ f such that for all g ∈ Σω, we have Φ(sg) �= v.

We demonstrate that verdict-safety is weaker than safety. Moreover, we pro-
vide a condition under which the two definitions coincide. To achieve this, we
reason about sets of possible prediction values: for a property Φ and s ∈ Σ∗, let
PΦ,s = {Φ(sf) | f ∈ Σω}.

Quantitative Safety and Liveness 357

Lemma 11. A property Φ is verdict-safe iff Φ(f) = sup(lims≺f PΦ,s) for all
f ∈ Σω.

Notice that Φ is safe iff Φ(f) = lims≺f (sup PΦ,s) for all f ∈ Σω. Below we
describe a property that is verdict-safe but not safe.

Example 12. Let Σ = {a, b}. Define Φ by Φ(f) = 0 if f = aω, and Φ(f) = |s|
otherwise, where s ≺ f is the shortest prefix in which b occurs. The property Φ
is verdict-safe. First, observe that D = N ∪ {∞}. Let f ∈ Σω and v ∈ D with
v > Φ(f). If Φ(f) > 0, then f contains b, and Φ(f) = |s| for some s ≺ f in which
b occurs for the first time. After the prefix s, all g ∈ Σω yield Φ(sg) = |s|, thus
all values above |s| are rejected. If Φ(f) = 0, then f = aω. Let v ∈ D with v > 0,
and consider the prefix av ≺ f . Observe that the set of possible prediction values
after reading av is {0, v + 1, v + 2, . . .}, therefore av allows the ghost monitor to
reject the value v. However, Φ is not safe because, although Φ(aω) = 0, for every
s ≺ aω, we have supg∈Σω Φ(sg) = ∞. ��

The separation is due to the fact that, for some finite traces, the sup of
possible prediction values cannot be realized by any future. Below, we present a
condition that prevents such cases.

Definition 13 (Supremum closedness). A property Φ is sup-closed iff for
every s ∈ Σ∗ we have sup PΦ,s ∈ PΦ,s.

We remark that the minimal response-time property is sup-closed.

Example 14. The safety property minimal response-time Φmin from Example 3
is sup-closed. This is because, for every s ∈ Σ∗, the continuation grω realizes
the value supg∈Σω Φ(sg). ��

Recall from the introduction the ghost monitor that maintains the sup of
possible prediction values. For monitoring sup-closed properties this suffices;
otherwise the ghost monitor also needs to maintain whether or not the supremum
of the possible prediction values is realizable by some future continuation. In
general, we have the following for every sup-closed property.

Lemma 15. For every sup-closed property Φ and for all f ∈ Σω, we have
lims≺f (sup PΦ,s) = sup(lims≺f PΦ,s).

As a consequence of the lemmas above, we get the following.

Theorem 16. A sup-closed property Φ is safe iff Φ is verdict-safe.

4 The Quantitative Safety-Progress Hierarchy

Our quantitative extension of safety closure allows us to build a Borel hierarchy,
which is a quantitative extension of the boolean safety-progress hierarchy [17].
First, we show that safety properties are closed under pairwise min and max.

Proposition 17. For every value domain D, the set of safety properties over D
is closed under min and max.

358 T. A. Henzinger et al.

The boolean safety-progress classification of properties is a Borel hierarchy
built from the Cantor topology of traces. Safety and co-safety properties lie on
the first level, respectively corresponding to the closed sets and open sets of
the topology. The second level is obtained through countable unions and inter-
sections of properties from the first level: persistence properties are countable
unions of closed sets, while response properties are countable intersections of
open sets. We generalize this construction to the quantitative setting.

In the boolean case, each property class is defined through an operation that
takes a set S ⊆ Σ∗ of finite traces and produces a set P ⊆ Σω of infinite traces.
For example, to obtain a co-safety property from S ⊆ Σ∗, the corresponding
operation yields SΣω. Similarly, we formalize each property class by a value
function. For this, we define the notion of limit property.

Definition 18 (Limit property). A property Φ : Σω → D is a limit prop-
erty iff there exists a finitary property π : Σ∗ → D and a value function
� : Dω → D such that Φ(f) = �s≺f π(s) for all f ∈ Σω. We denote this by
Φ = (π, �), and write Φ(s) instead of π(s). In particular, if Φ = (π, �), where
� ∈ {inf, sup, lim inf, lim sup}, then Φ is an �-property.

To account for the value functions that construct the first two levels of the
safety-progress hierarchy, we start our investigation with inf- and sup-properties
and later focus on lim inf- and lim sup- properties [18].

4.1 Infimum and Supremum Properties

Let us start with an example by demonstrating that the minimal response-time
property is an inf-property.

Example 19. Recall the safety property Φmin of minimal response time from
Example 3. We can equivalently define Φmin as a limit property by taking the
finitary property πlast and the value function inf. As discussed in Example 3,
the function πlast outputs the response time for the last request when all re-
quests are granted, and ∞ when there is a pending request or no request. Then
infs≺f πlast(s) = Φmin(f) for all f ∈ Σω, and therefore Φmin = (πlast, inf). ��

In fact, the safety properties coincide with inf-properties.

Theorem 20. A property Φ is safe iff Φ is an inf-property.
Defining the minimal response-time property as a limit property, we observe

the following relation between its behavior on finite traces and infinite traces.

Example 21. Consider the property Φmin = (πlast, inf) from Example 19. Let
f ∈ Σω and v ∈ D. Observe that if the minimal response time of f is at least v,
then the last response time for each prefix s ≺ f is also at least v. Conversely, if
the minimal response time of f is below v, then there is a prefix s ≺ f for which
the last response time is also below v. ��

In light of this observation, we provide another characterization of safety
properties, explicitly relating the specified behavior of the limit property on
finite and infinite traces.

Quantitative Safety and Liveness 359

Theorem 22. A property Φ : Σω → D is safe iff Φ is a limit property such that
for every f ∈ Σω and value v ∈ D, we have Φ(f) ≥ v iff Φ(s) ≥ v for all s ≺ f .

Recall that a safety property allows rejecting wrong lower-bound hypotheses
with a finite witness, by assigning a tight upper bound to each trace. We de-
fine co-safety properties symmetrically: a property Φ is co-safe iff every wrong
hypothesis of the form Φ(f) ≤ v has a finite witness s ≺ f .

Definition 23 (Co-safety). A property Φ : Σω → D is co-safe iff for every
f ∈ Σω and value v ∈ D with Φ(f) �≤ v, there exists a prefix s ≺ f such that
infg∈Σω Φ(sg) �≤ v.

We note that our definition generalizes boolean co-safety, and thus a dual of
Remark 4 holds also for co-safety. Moreover, we analogously define the notions
of co-safety closure and lower semicontinuity.

Definition 24 (Co-safety closure). The co-safety closure of a property Φ is
the property Φ∗(f) defined by Φ∗(f) = sups≺f infg∈Σω Φ(sg) for all f ∈ Σω.

Definition 25 (Lower semicontinuity [33]). A property Φ is lower semicon-
tinuous iff Φ(f) = lims≺f infg∈Σω Φ(sg) for all f ∈ Σω.

Now, we define and investigate the maximal response-time property. In partic-
ular, we show that it is a sup-property that is co-safe and lower semicontinuous.

Example 26. Let Σ = {rq, gr, tk, oo} and D = N∪{∞}. We define the maximal
response-time property Φmax through a finitary property that computes the cur-
rent response time for each finite trace and the value function sup. In particular,
for all s ∈ Σ∗, let πcurr(s) = |s|tk − |r|tk, where r
 s is the longest prefix of s
without pending rq; then Φmax = (πcurr, sup). Note the contrast between πcurr
and πlast from Example 3. While πcurr takes an optimistic view of the future
and assumes the gr will follow immediately, πlast takes a pessimistic view and
assumes the gr will never follow. Let f ∈ Σω and v ∈ D. If the maximal response
time of f is greater than v, then for some prefix s ≺ f the current response time
is greater than v also, which means that, no matter what happens in the future,
the maximal response time is greater than v after observing s. Therefore, Φmax
is co-safe. By a similar reasoning, the sequence of greatest lower bounds of pos-
sible prediction values over the prefixes converges to the property value. In other
words, we have lims≺f infg∈Σω Φmax(sg) = Φmax(f) for all f ∈ Σω. Thus Φmax
is also lower semicontinuous, and it equals its co-safety closure. Now, consider
the complementary property Φmax, which maps every trace to the same value
as Φmax on a domain where the order is reversed. It is easy to see that Φmax is
safe. Finally, recall the ghost monitor from the introduction, which maintains
the infimum of possible prediction values for the maximal response-time prop-
erty. Since the maximal response-time property is inf-closed, the output of the
ghost monitor after every prefix is realizable by some future continuation, and
that output is πmax(s) = maxr�s πcurr(r) for all s ∈ Σ∗. ��

Generalizing the observations in the example above, we obtain the following
characterizations due to the duality between safety and co-safety.

360 T. A. Henzinger et al.

Theorem 27. For every property Φ : Σω → D, the following are equivalent.

1. Φ is co-safe.
2. Φ is lower semicontinuous.
3. Φ(f) = Φ∗(f) for every f ∈ Σω.
4. Φ is a sup-property.
5. Φ is a limit property such that for every f ∈ Σω and value v ∈ D, we have

Φ(f) ≤ v iff Φ(s) ≤ v for all s ≺ f .
6. Φ is safe.

4.2 Limit Inferior and Limit Superior Properties

Let us start with an observation on the minimal response-time property.

Example 28. Recall once again the minimal response-time property Φmin from
Example 3. In the previous subsection, we presented an alternative definition of
Φmin to establish that it is an inf-property. Observe that there is yet another
equivalent definition of Φmin which takes the monotonically decreasing finitary
property πmin from Example 3 and pairs it with either the value function lim inf,
or with lim sup. Hence Φmin is both a lim inf- and a lim sup-property. ��

Before moving on to investigating lim inf- and lim sup-properties more closely,
we show that the above observation can be generalized.

Theorem 29. Every �-property Φ, for � ∈ {inf, sup}, is both a lim inf- and a
lim sup-property.

An interesting response-time property beyond safety and co-safety arises
when we remove extreme values: instead of minimal response time, consider
the property that maps every trace to a value that bounds from below, not all
response times, but all of them from a point onward (i.e., all but finitely many).
We call this property tail-minimal response time.

Example 30. Let Σ = {rq, gr, tk, oo} and πlast be the finitary property from
Example 3 that computes the last response time. We define the tail-minimal
response-time property as Φtmin = (πlast, lim inf). Intuitively, it maps each trace
to the least response time over all but finitely many requests. This property
is interesting as a performance measure, because it focuses on the long-term
performance by ignoring finitely many outliers. Consider f ∈ Σω and v ∈ D.
Observe that, if the tail-minimal response time of f is at least v, then there is
a prefix s ≺ f such that for all longer prefixes s � r ≺ f , the last response time
in r is at least v, and vice versa. ��

Similarly as for inf-properties, we characterize lim inf-properties through a
relation between property behaviors on finite and infinite traces.

Theorem 31. A property Φ : Σω → D is a lim inf-property iff Φ is a limit
property such that for every f ∈ Σω and value v ∈ D, we have Φ(f) ≥ v iff there
exists s ≺ f such that for all s � r ≺ f , we have Φ(r) ≥ v.

Now, we show that the tail-minimal response-time property can be expressed
as a countable supremum of inf-properties.

Quantitative Safety and Liveness 361

Example 32. Let i ∈ N and define πi,last as a finitary property that imitates
πlast from Example 3, but ignores the first i observations of every finite trace.
Formally, for s ∈ Σ∗, we define πi,last(s) = πlast(r) for s = sir where si � s
with |si| = i, and r ∈ Σ∗. Observe that an equivalent way to define Φtmin from
Example 30 is supi∈N(infs≺f (πi,last(s))) for all f ∈ Σω. Intuitively, for each
i ∈ N, we obtain an inf-property that computes the minimal response time of
the suffixes of a given trace. Taking the supremum over these, we obtain the
greatest lower bound on all but finitely many response times. ��

We generalize this observation and show that every lim inf-property is a
countable supremum of inf-properties.

Theorem 33. Every lim inf-property is a countable supremum of inf-properties.

We would also like to have the converse of Theorem 33, i.e., that every
countable supremum of inf-properties is a lim inf-property. Currently, we are
able to show only the following.

Theorem 34. For every infinite sequence (Φi)i∈N of inf-properties, there is a
lim inf-property Φ such that supi∈N Φi(f) ≤ Φ(f).

We conjecture that some lim inf-property that satisfies Theorem 34 is also
a lower bound on the countable supremum that occurs in the theorem. This,
together with Theorem 34, would imply the converse of Theorem 33. Proving
the converse of Theorem 33 would give us, thanks to the following duality, that
the lim inf- and lim sup-properties characterize the second level of the Borel
hierarchy of the topology induced by the safety closure operator.

Proposition 35. A property Φ is a lim inf-property iff its complement Φ is a
lim sup-property.

5 Quantitative Liveness

Similarly as for safety, we take the perspective of the quantitative membership
problem to define liveness: a property Φ is live iff, whenever a property value is
less than �, there exists a value v for which the wrong hypothesis Φ(f) ≥ v can
never be dismissed by any finite witness s ≺ f .

Definition 36 (Liveness). A property Φ : Σω → D is live iff for all f ∈ Σω,
if Φ(f) < �, then there exists a value v ∈ D such that Φ(f) �≥ v and for all
prefixes s ≺ f , we have supg∈Σω Φ(sg) ≥ v.

An equivalent definition can be given through the safety closure.

Theorem 37. A property Φ is live iff Φ∗(f) > Φ(f) for every f ∈ Σω with
Φ(f) < �.

Our definition generalizes boolean liveness. A boolean property P ⊆ Σω is
live according to the classical definition [4] iff its characteristic property ΦP is
live according to our definition. Moreover, the intersection of safety and liveness
contains only the single degenerate property that always outputs �.

362 T. A. Henzinger et al.

Proposition 38. A property Φ is safe and live iff Φ(f) = � for all f ∈ Σω.

We define co-liveness symmetrically, and note that the duals of the observa-
tions above also hold for co-liveness.

Definition 39 (Co-liveness). A property Φ : Σω → D is co-live iff for all
f ∈ Σω, if Φ(f) > ⊥, then there exists a value v ∈ D such that Φ(f) �≤ v and
for all prefixes s ≺ f , we have infg∈Σω Φ(sg) ≤ v.

Next, we present some examples of liveness and co-liveness properties. We
start by showing that lim inf- and lim sup-properties can be live and co-live.

Example 40. Let Σ = {a, b} be an alphabet, and let P = �♦a and Q = ♦�b be
boolean properties defined in linear temporal logic. Consider their characteristic
properties ΦP and ΦQ. As we pointed out earlier, our definitions generalize their
boolean counterparts, therefore ΦP and ΦQ are both live and co-live. Moreover,
ΦP is a lim sup-property: define πP (s) = 1 if s ∈ Σ∗a, and πP (s) = 0 otherwise,
and observe that ΦP (f) = lim sups≺f πP (s) for all f ∈ Σω. Similarly, ΦQ is a
lim inf-property. 	

Now, we show that the maximal response-time property is live, and the min-
imal response time is co-live.

Example 41. Recall the co-safety property Φmax of maximal response time from
Example 26. Let f ∈ Σω such that Φmax(f) < ∞. We can extend every prefix
s ≺ f with g = rq tkω, which gives us Φmax(sg) = ∞ > Φ(f). Equivalently,
for every f ∈ Σω, we have Φ∗

max(f) = ∞ > Φmax(f). Hence Φmax is live and,
analogously, the safety property Φmin from Example 3 is co-live. 	

Finally, we show that the average response-time property is live and co-live.

Example 42. Let Σ = {rq, gr, tk, oo}. For all s ∈ Σ∗, let p(s) = 1 if there is
no pending rq in s, and p(s) = 0 otherwise. Define πvalid(s) = |{r � s | ∃t ∈
Σ∗ : r = t rq ∧ p(t) = 1}| as the number of valid requests in s, and define
πtime(s) as the number of tk observations that occur after a valid rq and before
the matching gr. Then, Φavg = (πavg, lim inf), where πavg(s) = πtime(s)

πvalid(s) for all
s ∈ Σ∗ with πvalid(s) > 0, and πavg(s) = ∞ otherwise. For example, πavg(s) = 3

2
for s = rq tk gr tk rq tk rq tk. Note that Φavg is a lim inf-property.

The property Φavg is defined on the value domain [0, ∞] and is both live and
co-live. To see this, let f ∈ Σω such that 0 < Φavg(f) < ∞ and, for every prefix
s ≺ f , consider g = rq tkω and h = gr (rq gr)ω. Since sg has a pending request
followed by infinitely many clock ticks, we have Φavg(sg) = ∞. Similarly, since
sh eventually has all new requests immediately granted, we get Φavg(sh) = 0. 	

5.1 The Quantitative Safety-Liveness Decomposition

A celebrated theorem states that every boolean property can be expressed as an
intersection of a safety property and a liveness property [4]. In this section, we
prove the analogous result for the quantitative setting.

Quantitative Safety and Liveness 363

Example 43. Let Σ = {rq, gr, tk, oo}. Recall the maximal response-time prop-
erty Φmax from Example 26, and the average response-time property Φavg from
Example 42. Let n > 0 be an integer and define a new property Φ by Φ(f) =
Φavg(f) if Φmax(f) ≤ n, and Φ(f) = 0 otherwise. For the safety closure of Φ,
we have Φ∗(f) = n if Φmax(f) ≤ n, and Φ∗(f) = 0 otherwise. Now, we further
define Ψ(f) = Φavg(f) if Φmax(f) ≤ n, and Ψ(f) = n otherwise. Observe that Ψ
is live, because every prefix of a trace whose value is less than n can be extended
to a greater value. Finally, note that for all f ∈ Σω, we can express Φ(f) as
the pointwise minimum of Φ∗(f) and Ψ(f). Intuitively, the safety part Φ∗ of
this decomposition checks whether the maximal response time stays below the
permitted bound, and the liveness part Ψ keeps track of the average response
time as long as the bound is satisfied. ��

Following a similar construction, we show that a safety-liveness decomposi-
tion exists for every property.

Theorem 44. For every property Φ, there exists a liveness property Ψ such that
Φ(f) = min(Φ∗(f), Ψ(f)) for all f ∈ Σω.

In particular, if the given property is safe or live, the decomposition is trivial.

Remark 45. Let Φ be a property. If Φ is safe (resp. live), then the safety (resp.
liveness) part of the decomposition is Φ itself, and the liveness (resp. safety) part
is the constant property that maps every trace to �.

For co-safety and co-liveness, the duals of Theorem 44 and Remark 45 hold.
In particular, every property is the pointwise maximum of its co-safety closure
and a co-liveness property.

5.2 Related Definitions of Quantitative Liveness

In [41], the authors define a property Φ as multi-live iff Φ∗(f) > ⊥ for all
f ∈ Σω. We show that our definition is more restrictive, resulting in fewer
liveness properties while still allowing a safety-liveness decomposition.

Proposition 46. Every live property is multi-live, and the inclusion is strict.

We provide a separating example on a totally ordered domain below.

Example 47. Let Σ = {a, b, c}, and consider the following property: Φ(f) = 0 if
f |= �a, and Φ(f) = 1 if f |= ♦c, and Φ(f) = 2 otherwise (i.e., if f |= ♦b∧�¬c).
For all f ∈ Σω and prefixes s ≺ f , we have Φ(scω) = 1. Thus Φ∗(f)
= ⊥, which
implies that Φ is multi-live. However, Φ is not live. Indeed, for every f ∈ Σω

such that f |= ♦c, we have Φ(f) = 1 < �. Moreover, f admits some prefix s
that contains an occurrence of c, thus satisfying supg∈Σω Φ(sg) = 1. ��

In [27], the authors define a property Φ as verdict-live iff for every f ∈ Σω

and value v
≤ Φ(f), every prefix s ≺ f satisfies Φ(sg) = v for some g ∈ Σω. We
show that our definition is more liberal.

364 T. A. Henzinger et al.

Proposition 48. Every verdict-live property is live, and the inclusion is strict.

We provide a separating example below, concluding that our definition is
strictly more general even for totally ordered domains.

Example 49. Let Σ = {a, b}, and consider the following property: Φ(f) = 0 if
f �|= ♦b, and Φ(f) = 1 if f |= ♦(b ∧ ©♦b), and Φ(f) = 2−|s| otherwise, where
s ≺ f is the shortest prefix in which b occurs. Consider an arbitrary f ∈ Σω.
If Φ(f) = 1, then the liveness condition is vacuously satisfied. If Φ(f) = 0, then
f = aω, and every prefix s ≺ f can be extended with g = baω or h = bω to obtain
Φ(sg) = 2−(|s|+1) and Φ(sh) = 1. If 0 < Φ(f) < 1, then f satisfies ♦b but not
♦(b∧©♦b), and every prefix s ≺ f can be extended with bω to obtain Φ(sbω) = 1.
Hence Φ is live. However, Φ is not verdict-live. To see this, consider the trace
f = akbaω for some integer k ≥ 1 and note that Φ(f) = 2−(k+1). Although all
prefixes of f can be extended to reach the value 1, the value domain contains
elements between Φ(f) and 1, namely the values 2−m for 1 ≤ m ≤ k. Each of
these values can be rejected after reading a finite prefix of f , because for n ≥ m
it is not possible to extend an to reach the value 2−m. 	

6 Approximate Monitoring through Approximate Safety

In this section, we consider properties on extended reals R±∞ = R∪{−∞, +∞}.
We denote by R≥0 the set of nonnegative real numbers.

Definition 50 (Approximate safety and co-safety). Let α ∈ R≥0. A prop-
erty Φ is α-safe iff for every f ∈ Σω and value v ∈ R±∞ with Φ(f) < v, there
exists a prefix s ≺ f such that supg∈Σω Φ(sg) < v + α. Similarly, Φ is α-co-safe
iff for every f ∈ Σω and v ∈ R±∞ with Φ(f) > v, there exists s ≺ f such that
infg∈Σω Φ(sg) > v − α. When Φ is α-safe (resp. α-co-safe) for some α ∈ R≥0,
we say that Φ is approximately safe (resp. approximately co-safe).

Approximate safety can be characterized through the following relation with
the safety closure.

Proposition 51. For every error bound α ∈ R≥0, a property Φ is α-safe iff
Φ∗(f) − Φ(f) ≤ α for all f ∈ Σω.

An analogue of Proposition 51 holds for approximate co-safety and the co-
safety closure. Moreover, approximate safety and approximate co-safety are dual
notions that are connected by the complement operation, similarly to their pre-
cise counterparts (Theorem 27).

6.1 The Intersection of Approximate Safety and Co-safety

Recall the ghost monitor from the introduction. If, after a finite number of obser-
vations, all the possible prediction values are close enough, then we can simply
freeze the current value and achieve a sufficiently small error. This happens for
properties that are both approximately safe and approximately co-safe, general-
izing the unfolding approximation of discounted properties [13].

Quantitative Safety and Liveness 365

Proposition 52. For every limit property Φ and all error bounds α, β ∈ R≥0,
if Φ is α-safe and β-co-safe, then the set Sδ = {s ∈ Σ∗ | supr1∈Σ∗ Φ(sr1) −
infr2∈Σ∗ Φ(sr2) ≥ δ} is finite for all reals δ > α + β.

Based on this proposition, we show that, for limit properties that are both
approximately safe and approximately co-safe, the influence of the suffix on the
property value is eventually negligible.

Theorem 53. For every limit property Φ such that Φ(f) ∈ R for all f ∈ Σω,
and for all error bounds α, β ∈ R≥0, if Φ is α-safe and β-co-safe, then for every
real δ > α + β and trace f ∈ Σω, there is a prefix s ≺ f such that for all
continuations w ∈ Σ∗ ∪ Σω, we have |Φ(sw) − Φ(s)| < δ.

We illustrate this theorem with a discounted safety property.

Example 54. Let P ⊆ Σω be a boolean safety property. We define the finitary
property πP : Σ∗ → [0, 1] as follows: πP (s) = 1 if sf ∈ P for some f ∈ Σω,
and πP (s) = 1 − 2−|r| otherwise, where r � s is the shortest prefix with rf /∈ P
for all f ∈ Σω. The limit property Φ = (πP , inf) is called discounted safety [3].
Because Φ is an inf-property, it is safe by Theorem 20. Now consider the finitary
property π′

P defined by π′
P (s) = 1 − 2−|s| if sf ∈ P for some f ∈ Σω, and

π′
P (s) = 1 − 2−|r| otherwise, where r � s is the shortest prefix with rf /∈ P for

all f ∈ Σω. Let Φ′ = (π′
P , sup), and note that Φ(f) = Φ′(f) for all f ∈ Σω.

Hence Φ is also co-safe, because it is a sup-property.
Let f ∈ Σω and δ > 0. For every prefix s ≺ f , the set of possible prediction

values is either the range [1 − 2−|s|, 1] or the singleton {1 − 2−|r|}, where r � s
is chosen as above. In the latter case, we have |Φ(sw) − Φ(s)| = 0 < δ for all
w ∈ Σ∗ ∪ Σω. In the former case, since the range becomes smaller as the prefix
grows, there is a prefix s′ ≺ f with 2−|s′| < δ, which yields |Φ(s′w) − Φ(s′)| < δ
for all w ∈ Σ∗ ∪ Σω. 	

6.2 Finite-state Approximate Monitoring

Monitors with finite state spaces are particularly desirable, because finite au-
tomata enjoy a plethora of desirable closure and decidability properties. Here,
we prove that properties that are both approximately safe and approximately
co-safe can be monitored approximately by a finite-state monitor. First, we recall
the notion of abstract quantitative monitor from [30].

A binary relation ∼ over Σ∗ is an equivalence relation iff it is reflexive,
symmetric, and transitive. Such a relation is right-monotonic iff s1 ∼ s2 implies
s1r ∼ s2r for all s1, s2, r ∈ Σ∗. For an equivalence relation ∼ over Σ∗ and a finite
trace s ∈ Σ∗, we write [s]∼ for the equivalence class of ∼ to which s belongs.
When ∼ is clear from the context, we write [s] instead. We denote by Σ∗/∼ the
quotient of the relation ∼.

Definition 55 (Abstract monitor [30]). An abstract monitor M = (∼, γ)
is a pair consisting of a right-monotonic equivalence relation ∼ on Σ∗ and a
function γ : (Σ∗/ ∼) → R±∞. The monitor M is finite-state iff the relation

366 T. A. Henzinger et al.

∼ has finitely many equivalence classes. Let δfin, δlim ∈ R±∞ be error bounds.
We say that M is a (δfin, δlim)-monitor for a given limit property Φ = (π, �) iff
for all s ∈ Σ∗ and f ∈ Σω, we have |π(s) − γ([s])| ≤ δfin and |�s≺f (π(s)) −
�s≺f (γ([s]))| ≤ δlim.

Building on Theorem 53, we identify a sufficient condition to guarantee the
existence of an abstract monitor with finitely many equivalence classes.

Theorem 56. For every limit property Φ such that Φ(f) ∈ R for all f ∈ Σω,
and for all error bounds α, β ∈ R≥0, if Φ is α-safe and β-co-safe, then for every
real δ > α + β, there exists a finite-state (δ, δ)-monitor for Φ.

Due to Theorem 56, the discounted safety property of Example 54 has a
finite-state monitor for every positive error bound. We remark that Theorem 56
is proved by a construction that generalizes the unfolding approach for the ap-
proximate determinization of discounted automata [12], which unfolds an au-
tomaton until the distance constraint is satisfied.

7 Conclusion

We presented a generalization of safety and liveness that lifts the safety-progress
hierarchy to the quantitative setting of [18] while preserving major desirable
features of the boolean setting, such as the safety-liveness decomposition.

Monitorability identifies a boundary separating properties that can be ver-
ified or falsified from a finite number of observations, from those that cannot.
Safety-liveness and co-safety-co-liveness decompositions allow us separate, for an
individual property, monitorable parts from nonmonitorable parts. The larger
the monitorable parts of the given property, the stronger the decomposition.
We provided the strongest known safety-liveness decomposition, which consists
of a pointwise minimum between a safe part defined by a quantitative safety
closure, and a live part which corrects for the difference. We then defined ap-
proximate safety as the relaxation of safety by a parametric error bound. This
further increases the monitorability of properties and offers monitorability at a
parametric cost. In fact, we showed that every property that is both approx-
imately safe and approximately co-safe can be monitored arbitrarily precisely
by a finite-state monitor. A future direction is to extend our decomposition to
approximate safety together with a support for quantitative assumptions [32].

The literature contains efficient model-checking procedures that leverage the
boolean safety hypothesis [36,40]. We thus expect that also quantitative safety
and co-safety, and their approximations, enable efficient verification algorithms
for quantitative properties.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. This work was supported in part by the ERC-2020-AdG 101020093.

Quantitative Safety and Liveness 367

References
1. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model

checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170
(2005). https://doi.org/10.1016/j.tcs.2005.07.033

2. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quan-
titative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) Automata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings. Lecture Notes in
Computer Science, vol. 3142, pp. 97–109. Springer (2004). https://doi.org/10.
1007/978-3-540-27836-8_11

3. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings.
Lecture Notes in Computer Science, vol. 2719, pp. 1022–1037. Springer (2003).
https://doi.org/10.1007/3-540-45061-0_79

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput.
2(3), 117–126 (1987). https://doi.org/10.1007/BF01782772

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 1–33. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5_1

7. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/
logcom/exn075

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/
10.1145/2000799.2000800

9. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643,
pp. 140–156. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_14

10. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthe-
sis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 921–962. Springer (2018). https://doi.org/10.1007/
978-3-319-10575-8_27

11. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifi-
cations with accumulative values. ACM Trans. Comput. Log. 15(4), 27:1–27:25
(2014). https://doi.org/10.1145/2629686

12. Boker, U., Henzinger, T.A.: Approximate determinization of quantitative au-
tomata. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. LIPIcs,
vol. 18, pp. 362–373. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012).
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362

13. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.
2168/LMCS-10(1:10)2014

https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/2629686
https://doi.org/10.1145/2629686
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014

368 T. A. Henzinger et al.

14. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-
time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011).
https://doi.org/10.1145/1995376.1995396

15. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-
energy games. Acta Informatica 55(2), 91–127 (2018). https://doi.org/10.1007/
s00236-016-0274-1

16. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21–35 (2012). https://doi.org/10.1016/j.tcs.2011.08.002

17. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Bauer,
F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification.
pp. 143–202. Springer Berlin Heidelberg, Berlin, Heidelberg (1993). https://doi.
org/10.1007/978-3-642-58041-3_5

18. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.
1805953

19. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. ACM Trans.
Comput. Log. 18(4), 31:1–31:44 (2017). https://doi.org/10.1145/3152769

20. D’Antoni, L., Samanta, R., Singh, R.: Qlose: Program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9780, pp. 383–401.
Springer (2016). https://doi.org/10.1007/978-3-319-41540-6_21

21. Fahrenberg, U., Legay, A.: Generalized quantitative analysis of metric transition
systems. In: Shan, C. (ed.) Programming Languages and Systems - 11th Asian
Symposium, APLAS 2013, Melbourne, VIC, Australia, December 9-11, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8301, pp. 192–208. Springer
(2013). https://doi.org/10.1007/978-3-319-03542-0_14

22. Fahrenberg, U., Legay, A.: The quantitative linear-time-branching-time spectrum.
Theor. Comput. Sci. 538, 54–69 (2014). https://doi.org/10.1016/j.tcs.2013.
07.030

23. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https:
//doi.org/10.1007/s10009-011-0196-8

24. Faran, R., Kupferman, O.: Spanning the spectrum from safety to liveness. Acta In-
formatica 55(8), 703–732 (2018). https://doi.org/10.1007/s00236-017-0307-4

25. Ferrère, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: Fer-
nández, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer
Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. LIPIcs, vol. 152,
pp. 20:1–20:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https:
//doi.org/10.4230/LIPIcs.CSL.2020.20

26. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Dawar,
A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 394–403.
ACM (2018). https://doi.org/10.1145/3209108.3209194

27. Gorostiaga, F., Sánchez, C.: Monitorability of expressive verdicts. In: Deshmukh,
J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods - 14th International
Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13260, pp. 693–712. Springer (2022).
https://doi.org/10.1007/978-3-031-06773-0_37

28. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Ka-
toen, J., Stevens, P. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems, 8th International Conference, TACAS 2002, Held as Part of

https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1007/978-3-642-58041-3_5
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/3152769
https://doi.org/10.1145/3152769
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-03542-0_14
https://doi.org/10.1007/978-3-319-03542-0_14
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1016/j.tcs.2013.07.030
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s00236-017-0307-4
https://doi.org/10.1007/s00236-017-0307-4
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1145/3209108.3209194
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1007/978-3-031-06773-0_37

Quantitative Safety and Liveness 369

the Joint European Conference on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings. Lecture Notes in Com-
puter Science, vol. 2280, pp. 342–356. Springer (2002). https://doi.org/10.1007/
3-540-46002-0_24

29. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci.
Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

30. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Abstract monitors for quantitative
specifications. In: Dang, T., Stolz, V. (eds.) Runtime Verification - 22nd Inter-
national Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13498, pp. 200–220. Springer (2022).
https://doi.org/10.1007/978-3-031-17196-3_11

31. Henzinger, T.A., Otop, J.: From model checking to model measuring. In:
D’Argenio, P.R., Melgratti, H.C. (eds.) CONCUR 2013 - Concurrency Theory
- 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, Au-
gust 27-30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8052, pp.
273–287. Springer (2013). https://doi.org/10.1007/978-3-642-40184-8_20

32. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh,
J., Nickovic, D. (eds.) Runtime Verification - 20th International Conference, RV
2020, Los Angeles, CA, USA, October 6-9, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12399, pp. 3–18. Springer (2020). https://doi.org/10.
1007/978-3-030-60508-7_1

33. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470547

34. Katoen, J., Song, L., Zhang, L.: Probably safe or live. In: Henzinger, T.A., Miller,
D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Com-
puter Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014. pp. 55:1–55:10. ACM (2014). https://doi.org/10.1145/2603088.2603147

35. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Computational anal-
ysis of run-time monitoring - fundamentals of java-mac. In: Havelund, K., Rosu,
G. (eds.) Runtime Verification 2002, RV 2002, FLoC Satellite Event, Copenhagen,
Denmark, July 26, 2002. Electronic Notes in Theoretical Computer Science, vol. 70,
pp. 80–94. Elsevier (2002). https://doi.org/10.1016/S1571-0661(04)80578-4

36. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

37. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Model Checking: Ad-
vances and Applications, pp. 73–121. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-57685-5_3

38. Kwiatkowska, M.Z.: Quantitative verification: models techniques and tools. In:
Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th joint meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croa-
tia, September 3-7, 2007. pp. 449–458. ACM (2007). https://doi.org/10.1145/
1287624.1287688

39. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

40. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani,
S.K. (eds.) Model Checking Software, 10th International SPIN Workshop. Port-
land, OR, USA, May 9-10, 2003, Proceedings. Lecture Notes in Computer Science,

https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-642-40184-8_20
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1145/2603088.2603147
https://doi.org/10.1145/2603088.2603147
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904

370 T. A. Henzinger et al.

vol. 2648, pp. 74–88. Springer (2003). https://doi.org/10.1007/3-540-44829-2_
5

41. Li, Y., Droste, M., Lei, L.: Model checking of linear-time properties in multi-valued
systems. Inf. Sci. 377, 51–74 (2017). https://doi.org/10.1016/j.ins.2016.10.
030

42. Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness
properties of concurrent programs. Sci. Comput. Program. 4(3), 257–289 (1984).
https://doi.org/10.1016/0167-6423(84)90003-0

43. Peled, D., Havelund, K.: Refining the safety-liveness classification of tempo-
ral properties according to monitorability. In: Margaria, T., Graf, S., Larsen,
K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?
- Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 11200, pp. 218–234. Springer (2018).
https://doi.org/10.1007/978-3-030-22348-9_14

44. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal Methods, 14th
International Symposium on Formal Methods, Hamilton, Canada, August 21-27,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4085, pp. 573–586.
Springer (2006). https://doi.org/10.1007/11813040_38

45. Qian, J., Shi, F., Cai, Y., Pan, H.: Approximate safety properties in metric tran-
sition systems. IEEE Trans. Reliab. 71(1), 221–234 (2022). https://doi.org/10.
1109/TR.2021.3139616

46. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–512 (1994). https://doi.org/10.1007/BF01211865

47. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebraic Methods Program. 79(7), 689–703 (2010).
https://doi.org/10.1016/j.jlap.2010.07.010

48. Weiner, S., Hasson, M., Kupferman, O., Pery, E., Shevach, Z.: Weighted safety. In:
Hung, D.V., Ogawa, M. (eds.) Automated Technology for Verification and Analysis
- 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18,
2013. Proceedings. Lecture Notes in Computer Science, vol. 8172, pp. 133–147.
Springer (2013). https://doi.org/10.1007/978-3-319-02444-8_11

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1007/3-540-44829-2_5
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/j.ins.2016.10.030
https://doi.org/10.1016/0167-6423(84)90003-0
https://doi.org/10.1016/0167-6423(84)90003-0
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/11813040_38
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1109/TR.2021.3139616
https://doi.org/10.1007/BF01211865
https://doi.org/10.1007/BF01211865
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1016/j.jlap.2010.07.010
https://doi.org/10.1007/978-3-319-02444-8_11
https://doi.org/10.1007/978-3-319-02444-8_11
http://creativecommons.org/licenses/by/4.0/

On the Comparison of Discounted-Sum
Automata with Multiple Discount Factors

Udi Boker� and Guy Hefetz(�)

Reichman University, Herzliya, Israel
udiboker@runi.ac.il, ghefetz@gmail.com

Abstract. We look into the problems of comparing nondeterministic
discounted-sum automata on finite and infinite words. That is, the prob-
lems of checking for automata A and B whether or not it holds that for
all words w, A(w) = B(w),A(w) ≤ B(w), or A(w) < B(w).
These problems are known to be decidable when both automata have
the same single integral discount factor, while decidability is open in all
other settings: when the single discount factor is a non-integral rational;
when each automaton can have multiple discount factors; and even when
each has a single integral discount factor, but the two are different.
We show that it is undecidable to compare discounted-sum automata
with multiple discount factors, even if all are integrals, while it is de-
cidable to compare them if each has a single, possibly different, integral
discount factor. To this end, we also provide algorithms to check for
given nondeterministic automaton N and deterministic automaton D,
each with a single, possibly different, rational discount factor, whether
or not N (w) = D(w), N (w) ≥ D(w), or N (w) > D(w) for all words w.

Keywords: Discounted-sum Automata · Comparison · Containment

1 Introduction

Equivalence and containment checks of Boolean automata, namely the checks of
whether L(A) = L(B), L(A) ⊆ L(B), or L(A) ⊂ L(B), where L(A) and L(B) are
the languages that A and B recognize, are central in the usage of automata theory
in diverse areas, and in particular in formal verification (e.g, [34,26,17,33,35,28]).
Likewise, comparison of quantitative automata, which extends the equivalence
and containment checks by asking whether A(w) = B(w), whether A(w) ≤
B(w), or whether A(w) < B(w) for all words w, are essential for harnessing
quantitative-automata theory to the service of diverse fields and in particular to
the service of quantitative formal verification (e.g, [15,14,21,11,27,3,5,22]).

Discounted summation is a common valuation function in quantitative au-
tomata theory (e.g, [19,12,14,15]), as well as in various other computational mod-
els, such as games (e.g., [37,4,1]), Markov decision processes (e.g, [23,29,16]), and
reinforcement learning (e.g, [32,36]), as it formalizes the concept that an imme-
diate reward is better than a potential one in the far future, as well as that a
� Research supported by the Israel Science Foundation grant 2410/22.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 371–391, 2023.
https://doi.org/10.1007/978-3-031-30829-1_18

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf
http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0002-4451-6581
https://doi.org/10.1007/978-3-031-30829-1_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf
http://orcid.org/0000-0003-4322-8892
http://orcid.org/0000-0002-4451-6581
https://doi.org/10.1007/978-3-031-30829-1_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_18&domain=pdf

372 U. Boker and G. Hefetz

potential problem (such as a bug in a reactive system) in the far future is less
troubling than a current one.

A nondeterministic discounted-sum automaton (NDA) has rational weights
on the transitions, and a fixed rational discount factor λ > 1. The value of
a (finite or infinite) run is the discounted summation of the weights on the
transitions, such that the weight in the ith transition of the run is divided by
λi. The value of a (finite or infinite) word is the infimum value of the automaton
runs on it. An NDA thus realizes a function from words to real numbers.

NDAs cannot always be determinized [15], they are not closed under basic
algebraic operations [8], and their comparison is not known to be decidable,
relating to various longstanding open problems [9]. However, restricting NDAs
to have an integral discount factor λ ∈ N \ {0, 1} provides a robust class of
automata that is closed under determinization and under algebraic operations,
and for which comparison is decidable [8].

Various variants of NDAs are studied in the literature, among which are
functional, k-valued, probabilistic, and more [21,20,13]. Yet, until recently, all of
these models were restricted to have a single discount factor. This is a signifi-
cant restriction of the general discounted-summation paradigm, in which multi-
ple discount factors are considered. For example, Markov decision processes and
discounted-sum games allow multiple discount factors within the same entity
[23,4]. In [6], NDAs were extended to NMDAs, allowing for multiple discount
factors, where each transition can have a different one. Special attention was
given to integral NMDAs, namely to those with only integral discount factors,
analyzing whether they preserve the good properties of integral NDAs. It was
shown that they are generally not closed under determinization and under alge-
braic operations, while a restricted class of them, named tidy-NMDAs, in which
the choice of discount factors depends on the prefix of the word read so far, does
preserve the good properties of integral NDAs.

While comparison of tidy-NMDAs with the same choice function is decidable
in PSPACE [6], it was left open whether comparison of general integral NMDAs
A and B is decidable. It is even open whether comparison of two integral NDAs
with different (single) discount factors is decidable.

We show that it is undecidable to resolve for given NMDA N and determinis-
tic NMDA (DMDA) D, even if both have only integral discount factors, on both
finite and infinite words, whether N ≡ D and whether N ≤ D, and on finite
words also whether N < D. We prove the undecidability result by reduction from
the halting problem of two-counter machines. The general scheme follows similar
reductions, such as in [18,2], yet the crux is in simulating a counter by integral
NMDAs. Upfront, discounted summation is not suitable for simulating counters,
since a current increment has, in the discounted setting, a much higher influence
than of a far-away decrement. However, we show that multiple discount factors
allow in a sense to eliminate the influence of time, having automata in which
no matter where a letter appears in the word, it will have the same influence
on the automaton value. (See Lemma 1 and Fig. 3). Another main part of the
proof is in showing how to nondeterministically adjust the automaton weights

Comparison of Discounted-Sum Automata with Multiple Discount Factors 373

and discount factors in order to “detect” whether a counter is at a current value
0. (See Figs. 5, 6, 8 and 9.)

On the positive side, we provide algorithms to decide for given NDA N and
deterministic NDA (DDA) D, with arbitrary, possibly different, rational discount
factors, whether N ≡ D, N ≥ D, or N > D (Theorem 4). Our algorithms
work on both finite and infinite words, and run in PSPACE when the automata
weights are represented in binary and their discount factors in unary. Since
integral NDAs can always be determinized [8], our method also provides an
algorithm to compare two integral NDAs, though not necessarily in PSPACE,
since determinization might exponentially increase the number of states. (Even
though determinization of NDAs is in PSPACE [8,6], the exponential number of
states might require an exponential space in our algorithms of comparing NDAs
with different discount factors.)

The challenge with comparing automata with different discount factors comes
from the combination of their different accumulations, which tends to be in-
tractable, resulting in the undecidability of comparing integral NMDAs, and in
the open problems of comparing rational NDAs and of analyzing the represen-
tation of numbers in a non-integral basis [30,24,25,9]. Yet, the main observation
underlying our algorithm is that when each automaton has a single discount fac-
tor, we may unfold the combination of their computation trees only up to some
level k, after which we can analyze their continuation separately, first handling
the automaton with the lower (slower decreasing) discount factor and then the
other one. The idea is that after level k, since the accumulated discounting of the
second automaton is already much more significant, even a single non-optimal
transition of the first automaton cannot be compensated by a continuation that
is better with respect to the second automaton. We thus compute the optimal
suffix words and runs of the first automaton from level k, on top which we
compute the optimal runs of the second automaton.

2 Preliminaries

Words. An alphabet Σ is an arbitrary finite set, and a word over Σ is a finite
or infinite sequence of letters in Σ, with ε for the empty word. We denote the
concatenation of a finite word u and a finite or infinite word w by u ·w, or simply
by uw. We define Σ+ to be the set of all finite words except the empty word, i.e.,
Σ+ = Σ∗\{ε}. For a word w = σ0σ1σ2 · · · and indexes i ≤ j, we denote the letter
at index i as w[i] = σi, and the sub-word from i to j as w[i..j] = σiσi+1 · · ·σj .

For a finite word w and letter σ ∈ Σ, we denote the number of occurrences
of σ in w by #(σ,w), and for a set S ⊆ Σ, we denote

∑
σ∈S #(σ,w) by #(S,w).

For a finite or infinite word w and a letter σ ∈ Σ, we define the prefix of
w up to σ, prefσ(w), as the minimal prefix of w that contains a σ letter if
there is a σ letter in w or w itself if it does not contain any σ letters. Formally,

prefσ(w) =

{
w
[
0..min{i | w[i] = σ}] ∃i | w[i] = σ

w otherwise

374 U. Boker and G. Hefetz

Automata. A nondeterministic discounted-sum automaton (NDA) [15] is an au-
tomaton with rational weights on the transitions, and a fixed rational discount
factor λ > 1. A nondeterministic discounted-sum automaton with multiple dis-
count factors (NMDA) [6] is similar to an NDA, but with possibly a different
discount factor on each of its transitions. They are formally defined as follows:

Definition 1 ([6]). A nondeterministic discounted-sum automaton with mul-
tiple discount factors (NMDA), on finite or infinite words, is a tuple A =
〈Σ,Q, ι, δ, γ, ρ〉 over an alphabet Σ, with a finite set of states Q, an initial set of
states ι ⊆ Q, a transition function δ ⊆ Q×Σ ×Q, a weight function γ : δ → Q,
and a discount-factor function ρ : δ → Q ∩ (1,∞), assigning to each transition
its discount factor, which is a rational greater than one. 1

– A run of A is a sequence of states and alphabet letters, p0, σ0, p1, σ1, p2, · · · ,
such that p0 ∈ ι is an initial state, and for every i, (pi, σi, pi+1) ∈ δ.

– The length of a run r, denoted by |r|, is n for a finite run r = p0, σ0, p1,
· · · , σn−1, pn, and ∞ for an infinite run.

– For an index i < |r|, we define the i-th transition of r as r[i] = (pi, σi, pi+1),
and the prefix run with i transitions as r[0..i] = p0, σ0, p1, · · · , σi, pi+1.

– The value of a finite/infinite run r is A(r) =
∑|r|−1

i=0

(
γ
(
r[i])

) ·∏i−1
j=0

1

ρ
(
r[j]

)).

For example, the value of the run r1 = q0, a, q0, a, q1, b, q2 of A from Fig. 1
is A(r1) = 1 + 1

2 · 1
3 + 2 · 1

2·3 = 3
2 .

– The value of A on a finite or infinite word w is
A(w) = inf{A(r) | r is a run of A on w}.

– For every finite run r = p0, σ0, p1, · · · , σn−1, pn, we define the target state
as δ(r) = pn and the accumulated discount factor as ρ(r) =

∏n−1
i=0 ρ

(
r[i])

)
.

– When all discount factors are integers, we say that A is an integral NMDA.
– In the case where |ι| = 1 and for every q ∈ Q and σ ∈ Σ, we have

|{q′ ∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic, denoted by DMDA,
and view δ as a function from words to states.

– When the discount factor function ρ is constant, ρ ≡ λ ∈ Q∩ (1,∞), we say
that A is a nondeterministic discounted-sum automaton (NDA) [15] with
discount factor λ (a λ-NDA). If A is deterministic, it is a λ-DDA.

– For a state q ∈ Q, we write Aq for the NMDA Aq = 〈Σ,Q, { q } , δ, γ, ρ〉.

Counter machines. A two-counter machine [31] M is a sequence (l1, . . . , ln)
of commands, for some n ∈ N, involving two counters x and y. We refer to
{ 1, . . . , n } as the locations of the machine. For every i ∈ { 1, . . . , n } we refer to
li as the command in location i. There are five possible forms of commands:

inc(c), dec(c), goto lk, if c=0 goto lk else goto lk′ , halt,

where c ∈ {x, y } is a counter and 1 ≤ k, k′ ≤ n are locations. For not decreasing
a zero-valued counter c ∈ {x, y }, every dec(c) command is preceded by the
1 Discount factors are sometimes defined as numbers between 0 and 1, under which

setting weights are multiplied by these factors rather than divided by them.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 375

A : q0 q1 q2

a, 1, 3 a, 1
2
, 2

a, 1
4
, 2

b, 1
4
, 2a, 1, 3

a, 1
2
, 2

b, 2, 5

b, 3
2
, 4

Fig. 1. An NMDA A. The labeling on the transitions indicate the alphabet letter, the
weight of the transition, and its discount factor.

command if c=0 goto <current_line> else goto <next_line>, and
there are no other direct goto-commands to it. The counters are initially set to
0. An example of a two-counter machine is given in Fig. 2.

l1. inc(x)
l2. inc(x)
l3. if x=0 goto l3 else goto l4
l4. dec(x)
l5. if x=0 goto l6 else goto l3
l6. halt

Fig. 2. An example of a two-counter machine.

Let L be the set of possible commands in M, then a run of M is a sequence
ψ = ψ1, . . . , ψm ∈ (L× N× N)∗ such that the following hold:

1. ψ1 = 〈l1, 0, 0〉.
2. For all 1 < i ≤ m, let ψi−1 = (lj , αx, αy) and ψi = (l′, α′

x, α
′
y). Then, the

following hold.
– If lj is an inc(x) command (resp. inc(y)), then α′

x = αx + 1, α′
y = αy

(resp. αy = αy + 1, α′
x = αx), and l′ = lj+1.

– If lj is dec(x) (resp. dec(y)) then α′
x = αx − 1, α′

y = αy (resp. αy =
αy − 1, α′

x = αx), and l′ = lj+1.
– If lj is goto lk then α′

x = αx, α′
y = αy, and l′ = lk.

– If lj is if x=0 goto lk else goto lk′ then α′
x = αx, α′

y = αy, and
l′ = lk if αx = 0, and l′ = lk′ otherwise.

– If lj is if y=0 goto lk else goto lk′ then α′
x = αx, α′

y = αy, and
l′ = lk if αy = 0, and l′ = lk′ otherwise.

– If l′ is halt then i = m, namely a run does not continue after halt.

If, in addition, we have that ψm = 〈lj , αx, αy〉 such that lj is a halt command,
we say that ψ is a halting run. We say that a machine M 0-halts if its run is
halting and ends in 〈l, 0, 0〉. We say that a sequence of commands τ ∈ L∗ fits a
run ψ, if τ is the projection of ψ on its first component.

The command trace π = σ1, . . . , σm of a halting run ψ = ψ1, . . . , ψm describes
the flow of the run, including a description of whether a counter c was equal
to 0 or larger than 0 in each occurrence of an if c=0 goto lk else goto lk′

command. It is formally defined as follows. σm = halt and for every 1 < i ≤ m,
we define σi−1 according to ψi−1 = (lj , αx, αy) in the following manner:

376 U. Boker and G. Hefetz

– σi−1 = lj if lj is not of the form if c=0 goto lk else goto lk′ .
– σi−1 = (goto lk, c = 0) for c ∈ {x, y}, if αc = 0 and the command lj is of

the form if c=0 goto lk else goto lk′ .
– σi−1 = (goto lk′ , c > 0) for c ∈ {x, y}, if αc > 0 and the command lj is of

the form if c=0 goto lk else goto lk′ .

For example, the command trace of the halting run of the machine in Fig. 2 is
inc(x), inc(x), (goto l4, x > 0), dec(x), (goto l3, x > 0), (goto l4, x > 0),
dec(x), (goto l6, x = 0), halt.

Deciding whether a given counter machine M halts is known to be undecid-
able [31]. Deciding whether M halts with both counters having value 0, termed
the 0-halting problem, is also undecidable. Indeed, the halting problem can be
reduced to the latter by adding some commands that clear the counters, before
every halt command.

3 Comparison of NMDAs

We show that comparison of (integral) NMDAs is undecidable by reduction from
the halting problem of two-counter machines. Notice that our NMDAs only use
integral discount factors, while they do have non-integral weights. Yet, weights
can be easily changed to integers as well, by multiplying them all by a common
denominator and making the corresponding adjustments in the calculations.

We start with a lemma on the accumulated value of certain series of discount
factors and weights. Observe that by the lemma, no matter where the pair of
discount-factor λ ∈ N \ {0, 1} and weight w = λ−1

λ appear along the run, they
will have the same effect on the accumulated value. This property will play a
key role in simulating counting by NMDAs.

Lemma 1. For every sequence λ1, · · · , λm of integers larger than 1 and weights
w1, · · · , wm such that wi =

λi−1
λi

, we have
∑m

i=1

(
wi ·

∏i−1
j=1

1
λj

)
= 1− 1

∏m
j=1 λj

.

The proof is by induction on m and appears in [7].

3.1 The Reduction

We turn to our reduction from the halting problem of two-counter machines
to the problem of NMDA containment. We provide the construction and the
correctness lemma with respect to automata on finite words, and then show in
Section 3.2 how to use the same construction also for automata on infinite words.

Given a two-counter machine M with the commands (l1, . . . , ln), we con-
struct an integral DMDA A and an integral NMDA B on finite words, such that
M 0-halts iff there exists a word w ∈ Σ+ such that B(w) ≥ A(w) iff there exists
a word w ∈ Σ+ such that B(w) > A(w).

Comparison of Discounted-Sum Automata with Multiple Discount Factors 377

The automata A and B operate over the following alphabet Σ, which consists
of 5n+ 5 letters, standing for the possible elements in a command trace of M:

Σincdec = { inc(x),dec(x), inc(y),dec(y) }
Σgoto =

{
goto lk : k ∈ {1, . . . , n}}∪{
(goto lk, c = 0) : k ∈ {1, . . . , n}, c ∈ {x, y}}∪{
(goto lk′ , c > 0) : k′ ∈ {1, . . . , n}, c ∈ {x, y}}

Σnohalt = Σincdec ∪Σgoto

Σ = Σnohalt ∪ {
halt

}
When A and B read a word w ∈ Σ+, they intuitively simulate a sequence of

commands τu that induces the command trace u = prefhalt(w). If τu fits the
actual run of M, and this run 0-halts, then the minimal run of B on w has a
value strictly larger than A(w). If, however, τu does not fit the actual run of M,
or it does fit the actual run but it does not 0-halt, then the violation is detected
by B, which has a run on w with value strictly smaller than A(w).

In the construction, we use the following partial discount-factor functions
ρp, ρd : Σnohalt → N and partial weight functions γp, γd : Σnohalt → Q.

ρp(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5 σ = inc(x)
4 σ = dec(x)
7 σ = inc(y)
6 σ = dec(y)
15 otherwise

ρd(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4 σ = inc(x)
5 σ = dec(x)
6 σ = inc(y)
7 σ = dec(y)
15 otherwise

γp(σ) =
ρp(σ)−1
ρp(σ)

, and γd(σ) = ρd(σ)−1
ρd(σ)

. We say that ρp and γp are the primal
discount-factor and weight functions, while ρd and γd are the dual functions.
Observe that for every c ∈ {x, y} we have that

ρp(inc(c)) = ρd(dec(c)) > ρp(dec(c)) = ρd(inc(c)) (1)

Intuitively, we will use the primal functions for A’s discount factors and
weights, and the dual functions for identifying violations. Notice that if changing
the primal functions to the dual ones in more occurrences of inc(c) letters than
of dec(c) letters along some run, then by Lemma 1 the run will get a value lower
than the original one.

We continue with their formal definitions. A = 〈Σ, {qA, qhA}, {qA}, δA, γA, ρA〉
is an integral DMDA consisting of two states, as depicted in Fig. 3. Observe that
the initial state qA has self loops for every alphabet letter in Σnohalt with
weights and discount factors according to the primal functions, and a transition
(qA,halt, qhA) with weight of 14

15 and a discount factor of 15.
The integral NMDA B = 〈Σ,QB, ιB, δB, γB, ρB〉 is the union of the following

eight gadgets (checkers), each responsible for checking a certain type of violation
in the description of a 0-halting run of M. It also has the states qfreeze, qhalt ∈ QB

378 U. Boker and G. Hefetz

qA qhA

inc(x), 4
5
, 5

dec(x), 3
4
, 4

inc(y), 6
7
, 7

Σgoto, 14
15
, 15

dec(y), 5
6
, 6

halt, 14
15
, 15

Σ, 0, 2

Fig. 3. The DMDA A constructed for the proof of Lemma 2.

such that for all σ ∈ Σ, there are 0-weighted transitions (qfreeze, σ, qfreeze) ∈ δB
and (qhalt, σ, qhalt) ∈ δB with an arbitrary discount factor. Observer that in all
of B’s gadgets, the transition over the letter halt to qhalt has a weight higher
than the weight of the corresponding transition in A, so that when no violation
is detected, the value of B on a word is higher than the value of A on it.

1. Halt Checker. This gadget, depicted in Fig. 4, checks for violations of non-
halting runs. Observe that its initial state qHC has self loops identical to those
of A’s initial state, a transition to qhalt over halt with a weight higher than the
corresponding weight in A, and a transition to the state qlast over every letter
that is not halt, “guessing” that the run ends without a halt command.

qHC qhalt

qlast qfreeze

inc(x), 4
5
, 5

dec(x), 3
4
, 4

inc(y), 6
7
, 7

Σgoto,
14
15
, 15

dec(y), 5
6
, 6

halt, 15
16
, 16

Σ, 0, 2

Σnohalt, 0, 2

Σ, 2, 2

Σ, 0, 2

Fig. 4. The Halt Checker in the NMDA B.

2. Negative-Counters Checker. The second gadget, depicted in Fig. 5, checks
that the input prefix u has no more dec(c) than inc(c) commands for each
counter c ∈ {x, y}. It is similar to A, however having self loops in its initial
states that favor dec(c) commands when compared to A.

qNx qhalt
inc(x), 9

10
, 10

dec(x), 1
2
, 2

inc(y), 6
7
, 7

Σgoto, 14
15
, 15

dec(y), 5
6
, 6 halt, 15

16
, 16

qNy

inc(x), 4
5
, 5
dec(x), 3

4
, 4

inc(y), 13
14
, 14

Σgoto, 14
15
, 15dec(y), 2

3
, 3

halt, 15
16
, 16

Fig. 5. The negative-counters checker, on the left for x and on the right for y, in the
NMDA B.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 379

3. Positive-Counters Checker. The third gadget, depicted in Fig. 6, checks
that for every c ∈ {x, y}, the input prefix u has no more inc(c) than dec(c)
commands. It is similar to A, while having self loops in its initial state according
to the dual functions rather than the primal ones.

qBC qhalt
inc(x), 3

4
, 4

dec(x), 4
5
, 5

inc(y), 5
6
, 6

Σgoto, 14
15
, 15

dec(y), 6
7
, 7 halt, 15

16
, 16

Fig. 6. The Positive-Counters Checker in the NMDA B.

4. Command Checker. The next gadget checks for local violations of succes-
sive commands. That is, it makes sure that the letter wi represents a command
that can follow the command represented by wi−1 in M, ignoring the counter
values. For example, if the command in location l2 is inc(x), then from state
q2, which is associated with l2, we move with the letter inc(x) to q3, which is
associated with l3. The test is local, as this gadget does not check for violations
involving illegal jumps due to the values of the counters. An example of the
command checker for the counter machine in Fig. 2 is given in Fig. 7.

q1 q2 q3 q4 q5 q6

qhaltqfreeze

inc(x), 4
5
, 5 inc(x), 4

5
, 5

(goto l3, x = 0), 14
15
, 15

goto l4
x > 0, 14

15
, 15 dec(x), 3

4
, 4

(goto l6, x = 0),
14
15
, 15

(goto l3, x > 0), 14
15
, 15

halt,
15
16
, 16Σ \ {inc(x)},

0, 2
Σ \ {halt},

0, 2

Fig. 7. The command checker that corresponds to the counter machine in Fig. 2.

The command checker, which is a DMDA, consists of states q1, . . . , qn that
correspond to the commands l1, . . . , ln, and the states qhalt and qfreeze. For two
locations j and k, there is a transition from qj to qk on the letter σ iff lk can locally
follow lj in a run of M that has σ in the corresponding location of the command
trace. That is, either lj is a goto lk command (meaning lj = σ = goto lk),
k is the next location after j and lj is an inc or a dec command (meaning
k = j + 1 and lj = σ ∈ Σincdec), lj is an if c=0 goto lk else goto lk′

command with σ = (goto lk, c = 0), or lj is an if c=0 goto ls else goto lk
command with σ = (goto lk, c > 0). The weights and discount factors of the
Σnohalt transitions mentioned above are according to the primal functions γp
and ρp respectively. For every location j such that lj = halt, there is a transition
from qj to qhalt labeled by the letter halt with a weight of 15

16 and a discount

380 U. Boker and G. Hefetz

factor of 16. Every other transition that was not specified above leads to qfreeze
with weight 0 and some discount factor.

5,6. Zero-Jump Checkers. The next gadgets, depicted in Fig. 8, check for vi-
olations in conditional jumps. In this case, we use a different checker instance for
each counter c ∈ {x, y}, ensuring that for every if c=0 goto lk else goto lk′

command, if the jump goto lk is taken, then the value of c is indeed 0.

qcZC

qc

qhalt

Σgoto, 14
15
, 15

Σincdec \ { inc(c),dec(c) } , γp(σ), ρp(σ)
{ inc(c),dec(c) } , γd(σ), ρd(σ)

(goto lk, c = 0), 14
15
, 15

Σincdec, γp(σ), ρp(σ)Σgoto, 14
15
, 15

halt, 15
16
, 16

halt, 15
16
, 16

Fig. 8. The Zero-Jump Checker (for a counter c ∈ {x, y }) in the NMDA B.

Intuitively, qcZC profits from words that have more inc(c) than dec(c) letters,
while qc continues like A. If the move to qc occurred after a balanced number
of inc(c) and dec(c), as it should be in a real command trace, neither the
prefix word before the move to qc, nor the suffix word after it result in a profit.
Otherwise, provided that the counter is 0 at the end of the run (as guaranteed
by the negative- and positive-counters checkers), both prefix and suffix words
get profits, resulting in a smaller value for the run.

7,8. Positive-Jump Checkers. These gadgets, depicted in Fig. 9, are dual to
the zero-jump checkers, checking for the dual violations in conditional jumps.
Similarly to the zero-jump checkers, we have a different instance for each counter
c ∈ {x, y}, ensuring that for every if c=0 goto lk else goto lk′ command, if
the jump goto lk′ is taken, then the value of c is indeed greater than 0.

Intuitively, if the counter is 0 on a (goto lk′ , c > 0) command when there
was no inc(c) command yet, the gadget benefits by moving from qcPC0 to qfreeze.
If there was an inc(c) command, it benefits by having the dual functions on the
move from qcPC0 to qcPC1 over inc(c) and the primal functions on one additional
self loop of qcPC1 over dec(c).

Lemma 2. Given a two-counter machine M, we can compute an integral DMDA
A and an integral NMDA B on finite words, such that M 0-halts iff there exists
a word w ∈ Σ+ such that B(w) ≥ A(w) iff there exists a word w ∈ Σ+ such that
B(w) > A(w).

The proof uses the construction presented above, and can be found in [7].

3.2 Undecidability of Comparison

For finite words, the undecidability result directly follows from Lemma 2 and
the undecidability of the 0-halting problem of counter machines [31].

Comparison of Discounted-Sum Automata with Multiple Discount Factors 381

qcPC0

qcPC1

qcPC2

qfreeze

qhalt

Σgoto, 14
15
, 15 Σincdec \ { inc(c) } , γp(σ), ρp(σ)

inc(c),
γd(inc(c)),
ρd(inc(c))

halt, 15
16
, 16(goto lk′ , c > 0), 0, 2

Σincdec,
γp(σ), ρp(σ)Σgoto, 14

15
, 15

(goto lk′ , c > 0), 14
15
, 15

Σincdec \ { inc(c),dec(c) } , γp(σ), ρp(σ)
Σgoto, 14

15
, 15

{ inc(c),dec(c) } , γd(σ), ρd(σ)
halt, 15

16
, 16

halt, 1, 2

Fig. 9. The Positive-Jump Checker (for a counter c) in the NMDA B.

Theorem 1. Strict and non-strict containment of (integral) NMDAs on finite
words are undecidable. More precisely, the problems of deciding for given integral
NMDA N and integral DMDA D whether N (w) ≤ D(w) for all finite words w
and whether N (w) < D(w) for all finite words w.

For infinite words, undecidability of non-strict containment also follows from
the reduction given in Section 3.1, as the reduction considers prefixes of the
word until the first halt command. We leave open the question of whether strict
containment is also undecidable for infinite words. The problem with the latter is
that a halt command might never appear in an infinite word w that incorrectly
describes a halting run of the two-counter machine, in which case both automata
A and B of the reduction will have the same value on w. On words w that have
a halt command but do not correctly describe a halting run of the two-counter
machine we have B(w) < A(w), and on a word w that does correctly describe a
halting run we have B(w) > A(w). Hence, the reduction only relates to whether
B(w) ≤ A(w) for all words w, but not to whether B(w) < A(w) for all words w.

Theorem 2. Non-strict containment of (integral) NMDAs on infinite words is
undecidable. More precisely, the problem of deciding for given integral NMDA N
and integral DMDA D whether N (w) ≤ D(w) for all infinite words w.

Proof. The automata A and B in the reduction given in Section 3.1 can operate
as is on infinite words, ignoring the Halt-Checker gadget of B which is only
relevant to finite words.

Since the values of both A and B on an input word w only relate to the
prefix u = prefhalt(w) of w until the first halt command, we still have that
B(w) > A(w) if u correctly describes a halting run of the two-counter machine
M and that B(w) < A(w) if u is finite and does not correctly describe a halting
run of M.

382 U. Boker and G. Hefetz

Yet, for infinite words there is also the possibility that the word w does not
contain the halt command. In this case, the value of both A and the command
checker of B will converge to 1, getting A(w) = B(w).

Hence, if M 0-halts, there is a word w, such that B(w) > A(w) and otherwise,
for all words w, we have B(w) ≤ A(w). ��

Observe that for NMDAs, equivalence and non-strict containment are in-
terreducible.

Theorem 3. Equivalence of (integral) NMDAs on finite as well as infinite words
is undecidable. That is, the problem of deciding for given integral NMDAs A and
B on finite or infinite words whether A(w) = B(w) for all words w.

Proof. Assume toward contradiction the existence of a procedure for equivalence
check of A and B. We can use the nondeterminism to obtain an automaton
C = A∪B, having C(w) ≤ A(w) for all words w. We can then check whether C is
equivalent to A, which holds if and only if A(w) ≤ B(w) for all words w. Indeed,
if A(w) ≤ B(w) then A(w) ≤ min(A(w),B(w)) = C(w), while if there exists a
word w, such that B(w) < A(w), we have C(w) = min(A(w),B(w)) < A(w),
implying that C and A are not equivalent. Thus, such a procedure contradicts
the undecidability of non-strict containment, shown in Theorems 1 and 2. ��

4 Comparison of NDAs with Different Discount Factors

We present below our algorithm for the comparison of NDAs with different
discount factors. We start with automata on infinite words, and then show how
to solve the case of finite words by reduction to the case of infinite words.

The algorithm is based on our main observation that, due to the difference
between the discount factors, we only need to consider the combination of the
automata computation trees up to some level k, after which we can consider first
the best/worst continuation of the automaton with the smaller discount factor,
and on top of it the worst/best continuation of the second automaton.

For an NDA A, we define its lowest (resp. highest) infinite run value by
lowrun(A) (resp. highrun(A)) = min (resp. max) {A(r)

∣∣ r is an infinite run
of A (on some word w ∈ Σω)}.

Observe that we can use min and max (rather than inf and sup) since the in-
fimum and supremum values are indeed attainable by specific infinite runs of the
NDA (cf. [10, Proof of Theorem 9]). Notice that lowrun(A) and highrun(A)
can be calculated in PTIME by a simple reduction to one-player discounted-
payoff games [4].

Considering word values, we also refer to the lowest (resp. highest) word
value of A, defined by lowword(A) (resp. highword(A))= min (resp. max)
{A(w)

∣∣ w ∈ Σω }. Observe that lowword(A) = lowrun(A), highword(A) ≤
highrun(A), and for deterministic automaton, highword(A) = highrun(A).

For an NMDA A with states Q, we define the maximal difference between suf-
fix runs of A as maxdiff(A) = max {highrun(Aq)− lowrun(Aq)

∣∣ q ∈ Q }.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 383

Notice that maxdiff(A) ≥ 0 and that Aq(w) is bounded as follows.

lowrun(Aq) ≤ Aq(w) ≤ lowrun(Aq) + maxdiff(A) (2)

Lemma 3. There is an algorithm that computes for every input discount factors
λA, λD ∈ Q∩ (1,∞), λA-NDA A and λD-DDA D on infinite words the value of
min{A(w)−D(w)

∣∣ w ∈ Σω}.

Proof. Consider an alphabet Σ, discount factors λA, λD ∈ Q ∩ (1,∞), a λA-
NDA A = 〈Σ,QA, ιA, δA, γA〉 and a λD-DDA D = 〈Σ,QD, ιD, δD, γD〉. When
λA = λD, we can generate a λA-NDA C ≡ A − D over the product of A and D
and compute lowword(C).

When λA
= λD, we consider first the case that λA < λD.
Our algorithm unfolds the computation trees of A and D, up to a level in

which only the minimal-valued suffix words of A remain relevant – Due to the
massive difference between the accumulated discount factor in A compared to
the one in D, any “penalty” of not continuing with a minimal-valued suffix word
in A, defined below as mA, cannot be compensated even by the maximal-valued
word of D, which “profit” is at most as high as maxdiff(D). Hence, at that
level, it is enough to look among the minimal-valued suffixes of A for the one
that implies the highest value in D.

For every transition t = (q, σ, q′) ∈ δA, let minval(q, σ, q′) = γA(q, σ, q′) +
1
λA

· lowword(Aq′) be the best (minimal) value that Aq can get by taking t as
the first transition. We say that t is preferred if it starts a minimal-valued infinite
run of Aq, namely δpr = { t = (q, σ, q′) ∈ δA

∣∣ minval(t) = lowword(Aq) } is
the set of preferred transitions of A. Observe that an infinite run of Aq that
takes only transitions from δpr, has a value equal to lowrun(Aq) (cf. [10, Proof
of Theorem 9]).

If all the transitions of A are preferred, A has the same value on all words, and
then min{A(w)−D(w)

∣∣w ∈ Σω} = lowrun(A)−highword(D). (Recall that
since D is deterministic, we can easily compute highword(D).) Otherwise, let
mA be the minimal penalty for not taking a preferred transition in A, meaning

mA = min
{
minval(t′)−minval(t′′)

∣∣∣ t′ = (q, σ′, q′) ∈ δA \ δpr,
t′′ = (q, σ′′, q′′) ∈ δpr

}
. Observe that

mA > 0.
Considering the connection between mA and maxdiff(D), notice first that

if maxdiff(D) = 0, D has the same value on all words, and then we have
min{A(w)−D(w)

∣∣w ∈ Σω} = lowrun(A)−lowrun(D). Otherwise, meaning
maxdiff(D) > 0, we unfold the computation trees of A and D for the first
k levels, until the maximal difference between suffix runs in D, divided by the
accumulated discount factor of D, is smaller than the minimal penalty for not
taking a preferred transition in A, divided by the accumulated discount factor
of A. Meaning, k is the minimal integer such that

maxdiff(D)

λD
k

<
mA
λA

k
(3)

384 U. Boker and G. Hefetz

Starting at level k, the penalty gained by taking a non-preferred transition of A
cannot be compensated by a higher-valued word of D.

At level k, we consider separately every run ψ of A on some prefix word u.
We should look for a suffix word w, that minimizes

A(uw)−D(uw) = A(ψ) +
1

λA
k
· AδA(ψ)(w)−D(u)− 1

λD
k
· DδD(u)(w) (4)

A central point of the algorithm is that every word that minimizes A − D
must take only preferred transitions of A starting at level k (full proof in [7]).
As all possible remaining continuations after level k yield the same value in A,
we can choose among them the continuation that yields the highest value in D.

Let B be the partial automaton with the states of A, but only its preferred
transitions δpr. (We ignore words on which B has no runs.) We shall use the
automata product BδA(ψ)×DδD(u) to force suffix words that only take preferred
transitions of A, while calculating among them the highest value in D.

Let C(δA(ψ),δD(u)) = 〈Σ,QA×QD, { (δA(ψ), δD(u)) } , δpr×δD, γC〉 be the par-
tial λD-NDA that is generated by the product of BδA(ψ) and DδD(u), while only
considering the weights (and discount factor) of D, meaning γC((q, p), σ, (q′, p′)) =
γD(p, σ, p′).

A word w has a run in AδA(ψ) that uses only preferred transitions iff w has a
run in C(δA(ψ),δD(u)). Also, observe that the nondeterminism in C is only related
to the nondeterminism in A, and the weight function of C only depends on the
weights of D, hence all the runs of C(δA(ψ),δD(u)) on the same word result in the
same value, which is the value of that word in D. Combining both observations,
we get that a word w has a run in AδA(ψ) that uses only preferred transitions iff
w has a run r in C(δA(ψ),δD(u)) such that C(δA(ψ),δD(u))(r) = DδD(u)(w). Hence,
after taking the k-sized run ψ of A, and under the notations defined in Eq. (4),
a suffix word w that can take only preferred transitions of A, and maximizes
DδD(u)(w), has a value of DδD(u)(w) = highrun(C(δA(ψ),δD(u))). This leads to

min {A(v)−D(v)
∣∣ v ∈ Σω } =

min
{
A(ψ) +

AδA(ψ)(w)

λA
k

−D(u)− DδD(u)(w)

λD
k

∣∣∣ u ∈ Σk, w ∈ Σω,
ψ is a run of A on u

}
=

min
ψ

{
A(ψ) +

lowrun(AδA(ψ))

λA
k

−D(u)− highrun(C(δA(ψ),δD(u)))

λD
k

∣∣∣ u ∈ Σk,
ψ is a run
of A on u

}

and it is only left to calculate this value for every k-sized run of A, meaning for
every leaf in the computation tree of A.
The case of λA > λD is analogous, with the following changes:

– For every transition of D, we compute maxval(p, σ, p′) = γD(p, σ, p′) + 1
λD

·
highword(Dp′

), instead of minval(q, σ, q′).
– The preferred transitions of D are the ones that start a maximal-valued in-

finite run, that is δpr = { t = (p, σ′, p′) ∈ δD
∣∣ maxval(t) = highrun(Dp) },

Comparison of Discounted-Sum Automata with Multiple Discount Factors 385

and the minimal penalty mD is

mD = min
{
maxval(t′′)− maxval(t′)

∣∣∣ t′′ = (p, σ′′, p′′) ∈ δpr,
t′ = (p, σ′, p′) ∈ δD \ δpr

}
– k should be the minimal integer such that maxdiff(A)

λA
k < mD

λD
k .

– We define B to be the restriction of D to its preferred transitions, and
C(δA(ψ),δD(u)) as a partial λA-NDA on the product of AδA(ψ) and BδD(u) while
considering the weights of A. We then calculate lowrun(C(δA(ψ),δD(u))) for
every k-sized run of A, ψ, and conclude that min {A −D } is equal to
minψ {A(ψ) + lowrun(C(δA(ψ),δD(u)))

λA
k −D(u)− highrun(DδD(u))

λD
k }.

Observe that in this case, it might not hold that all runs of C(δA(ψ),δD(u)) on
the same word have the same value, but such property is not required, since
we look for the minimal run value (which is the minimal word value).

��
Notice that the algorithm of Lemma 3 does not work if switching the direction

of containment, namely if considering a deterministic A and a nondeterministic
D. The determinism of D is required for finding the maximal value of a valid
word in BδA(ψ) × DδD(u). If D is not deterministic, the maximal-valued run of
BδA(ψ) × DδD(u) on some word w equals the value of some run of D on w, but
not necessarily the value of D on w. We also need D to be deterministic for
computing highword(Dp) in the case that λA > λD.

Moving to automata on finite words, we reduce the problem to the corre-
sponding problem handled in Lemma 3, by adding to the alphabet a new letter
that represents the end of the word, and making some required adjustments.

Lemma 4. There is an algorithm that computes for every input discount factors
λA, λD ∈ Q ∩ (1,∞), λA-NDA A and λD-DDA D on finite words the value of
inf {A(u)−D(u)

∣∣ u ∈ Σ+ }, and determines if there exists a finite word u for
which A(u)−D(u) equals that value.

Proof. Without loss of generality, we assume that initial states of automata have
no incoming transitions. (Every automaton can be changed in linear time to an
equivalent automaton with this property.)

We convert, as described below, an NDA N on finite words to an NDA
N̂ on infinite words, such that N̂ intuitively simulates the finite runs of N .
For an alphabet Σ, a discount factor λ ∈ Q ∩ (1,∞), and a λ-NDA (DDA)
N = 〈Σ,QN , ιN , δN , γN 〉 on finite words, we define the λ-NDA (DDA) N̂ =
〈Σ̂,QN ∪ { qτ } , ιN , δN̂ , γN̂ 〉 on infinite words. The new alphabet Σ̂ = Σ ∪ { τ }
contains a new letter τ /∈ Σ that indicates the end of a finite word. The new
state qτ has 0-valued self loops on every letter in the alphabet, and there are 0-
valued transitions from every non-initial state to qτ on the new letter τ . Formally,
δN̂ = δN ∪ { (qτ , σ, qτ

∣∣ σ ∈ Σ̂) } ∪ { (q, τ, qτ
∣∣ q ∈ QN \ ιN) }, and

γN̂ (t) =

{
γN (t) t ∈ δN
0 otherwise

Observe that for every state q ∈ QN , the following hold.

386 U. Boker and G. Hefetz

1. For every finite run rN of N q, there is an infinite run rN̂ of N̂ q, such that
N̂ q(rN̂) = N q(rN), and rN̂ takes some τ transitions. (rN̂ can start as rN
and then continue with only τ transitions.)

2. For every infinite run rN̂ of N̂ q that has a τ transition, there is a finite run
rN of N q, such that N̂ q(rN̂) = N q(rN). (rN can be the longest prefix of rN̂
up to the first τ transition).

3. For every infinite run rN̂ of N̂ q that has no τ transition, there is a series of
finite runs of N q, such that the values of the runs in N q converge to N̂ q(rN̂).
(For example, the series of all prefixes of rN̂).

Hence, for every q ∈ QN we have inf {N q(r)
∣∣ r is a run of N q } = lowrun(N̂ q)

and sup {N q(r)
∣∣ r is a run of N q } = highrun(N̂ q). (For a non-initial state q,

we also consider the “run” of N q on the empty word, and define its value to
be 0.) Notice that the infimum (supremum) run value of N q is attained by an
actual run of N q iff there is an infinite run of N̂ q that gets this value and takes
a τ transition.

For every state q ∈ QN̂ , we can determine, as follows, whether lowrun(N̂ q)

is attained by an infinite run taking a τ transition. We calculate lowrun(N̂ q)
for all states, and then start a process that iteratively marks the states of N̂ , such
that at the end, q ∈ QN̂ is marked iff lowrun(N̂ q) can be achieved by a run
with a τ transition. We start with qτ as the only marked state. In each iteration
we further mark every state q from which there exists a preferred transition
t = (q, σ, q′) ∈ δpr to some marked state q′. The process terminates when an
iteration has no new states to mark. Analogously, we can determine whether
highrun(N̂ q) is attained by a run that goes to qτ .

Consider discount factors λA, λD ∈ Q∩ (1,∞), a λA-NDA A and a λD-DDA
D on finite words. When λA = λD, similarly to Lemma 3, the algorithm finds
the infimum value of C ≡ A−D using Ĉ, and determines if an actual finite word
attains this value using the process described above.

Otherwise, the algorithm converts A and D to Â and D̂, and proceeds as
in Lemma 3 over Â and D̂. According to the above observations, we have
that inf {A(u)−D(u)

∣∣ u ∈ Σ+ } = min{Â(w) − D̂(w)
∣∣ w ∈ Σω}, and that

inf {A(u)−D(u) } is attainable iff min{Â(w)−D̂(w)} is attainable by some word
that has a τ transition. Hence, whenever computing lowrun or highrun, we
also perform the process described above, to determine whether this value is at-
tainable by a run that has a τ transition. We determine that inf {A(u)−D(u) }
is attainable iff exists a leaf of the computation tree that leads to it, for which
the relevant values lowrun and highrun are attainable. ��

Complexity analysis We show below that the algorithm of Lemmas 3 and 4
only needs a polynomial space, with respect to the size of the input automata,
implying a PSPACE algorithm for the corresponding decision problems. We
define the size of an NDA N , denoted by |N |, as the maximum between the
number of its transitions, the maximal binary representation of any weight in it,

Comparison of Discounted-Sum Automata with Multiple Discount Factors 387

and the maximal unary representation of the discount factor. (Binary represen-
tation of the discount factors might cause our algorithm to use an exponential
space, in case that the two factors are very close to each other.) The input NDAs
may have rational weights, yet it will be more convenient to consider equivalent
NDAs with integral weights that are obtained by multiplying all the weights by
their common denominator [6]. (Observe that it causes the values of all words
to be multiplied by this same ratio, and it keeps the same input size, up to a
polynomial change.)

Before proceeding to the complexity analysis, we provide an auxiliary lemma
(proof appears in [7]).

Lemma 5. For every integers p > q ∈ N\{0}, a p
q -NDA A with integral weights,

and a lasso run r = t0, t1, . . . , tx−1, (tx, tx+1, . . . , tx+y−1)
ω of A, there exists an

integer b, such that A(r) = b
px(py−qy) .

Proceeding to the complexity analysis, let the input size be S = |A| + |D|,
the reduced forms of λA and λD be p

q and pD
qD

respectively, the number of states
in A be n, and the maximal difference between transition weights in D be M .
Observe that n ≤ S, p ≤ S,M ≤ 2 · 2S , λD

λD−1 ≤ pD
pD−qD

≤ pD ≤ S, and for
λD > λA > 1, we also have λD

λA
= p·qD

q·pD
≥ 1 + 1

S2 .
Observe that A has a best infinite run (and D has a worst infinite run),

in a lasso form as in Lemma 5, with x, y ∈ [1..n]. Indeed, following preferred
transitions, a run must complete a lasso, and then may forever repeat its choices
of preferred transitions. Hence, mA, being the difference between two lasso runs,
is in the form of

mA =
b1

px1(py1 − qy1)
− b2

px2(py2 − qy2)
=

b3
pn(py1 − qy1)(py2 − qy2)

>
b3

pnpy1py2

≥ 1

p3n
≥ 1

S3S

for S≥1
>

1

(2S)3S
=

1

23S2

for some x1, x2, y1, y2 ≤ n and some integers b1, b2, b3. (Similarly, we can show
that mD > 1

23S2 .) We have maxdiff(D) ≤ M · λD
λD−1 , hence

maxdiff(D)

mA
≤ M · λD

λD−1

mA
≤ 21+S · S

mA

(for S≥1)
<

23S

mA
< 23S+3S2

Recall that we unfold the computation tree until level k, which is the min-
imal integer such that (λD

λA
)k > maxdiff(D)

mA
. Observe that for S ≥ 1 we have(

λD
λA

)S2

≥ (
1 + 1

S2

)S2

≥ 2, hence for k′ = S2 · (3S + 3S2), we have

(λD

λA

)k′
=

(
(
λD

λA
)S

2)3S+3S2

≥ 23S+3S2

>
maxdiff(D)

mA

meaning that k is polynomial in S. Similar analysis shows that k is polynomial
in S also for λD < λA.

388 U. Boker and G. Hefetz

Considering decision problems that use our algorithm, due to the equivalence
of NPSPACE and PSPACE, the algorithm can nondeterministically guess an
optimal prefix word u of size k, letter by letter, as well as a run ψ of A on u,
transition by transition, and then compute the value of A(ψ)+lowrun(AδA(ψ))

λA
k −

D(u)− highrun(C(δA(ψ),δD(u)))

λD
k .

Observe that along the run of the algorithm, we need to save the following
information, which can be done in polynomial space:

– The automaton C ≡ B ×D (or A× B), which requires polynomial space.
– λAk (for A(ψ)) and λDk (for D(u)). Since we save them in binary represen-

tation, we have log2(λ
k) ≤ k log2(S), requiring polynomial space.

We thus get the following complexity result.

Theorem 4. For input discount factors λA, λD ∈ Q ∩ (1,∞), λA-NDA A and
λD-DDA D on finite or infinite words, it is decidable in PSPACE whether
A(w) ≥ D(w) and whether A(w) > D(w) for all words w.

Proof. We use Lemma 3 in the case of infinite words and Lemma 4 in the
case of finite words, checking whether min {A(w)−D(w) } < 0 and whether
min {A(w)−D(w) } ≤ 0. In the case of finite words, we also use the informa-
tion of whether there is an actual word that gets the desired value. �	

Since integral NDAs can always be determinized [8], we get as a corollary that
there is an algorithm to decide equivalence and strict and non-strict containment
of integral NDAs with different (or the same) discount factors. Note, however,
that it might not be in PSPACE, since determinization exponentially increases
the number of states, resulting in k that is exponential in S, and storing in
binary representation values in the order of λk might require exponential space.

Corollary 1. There are algorithms to decide for input integral discount factors
λA, λB ∈ N, λA-NDA A and λB-NDA B on finite or infinite words whether or
not A(w) > B(w), A(w) ≥ B(w), or A(w) = B(w) for all words w.

5 Conclusions

The new decidability result, providing an algorithm for comparing discounted-
sum automata with different integral discount factors, may allow to extend the
usage of discounted-sum automata in formal verification, while the undecidabil-
ity result strengthen the justification of restricting discounted-sum automata
with multiple integral discount factors to tidy NMDAs. The new algorithm also
extends the possible, more limited, usage of discounted-sum automata with ra-
tional discount factors, while further research should be put into this direction.

Acknowledgements We thank Guillermo A. Perez for stimulating discussions
on the comparison of integral NDAs with different discount factors.

Comparison of Discounted-Sum Automata with Multiple Discount Factors 389

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: proceedings of ICALP. vol. 2719, pp. 1022–1037 (2003). https://doi.
org/10.1007/3-540-45061-0_79

2. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted au-
tomata? Information and Computatio 282 (2022). https://doi.org/10.1016/j.
ic.2020.104651

3. Almagor, S., Kupferman, O., Ringert, J.O., Velner, Y.: Quantitative assume guar-
antee synthesis. In: proceedings of CAV. pp. 353–374. Springer (2017). https:
//doi.org/10.1007/978-3-319-63390-9_19

4. Andersson, D.: An improved algorithm for discounted payoff games. In: proceedings
of ESSLLI Student Session. pp. 91–98 (2006)

5. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative
verification. In: proceedings of FoSSaCS. LNCS, vol. 10803, pp. 420–437 (2018).
https://doi.org/10.1007/978-3-319-89366-2_23

6. Boker, U., Hefetz, G.: Discounted-sum automata with multiple discount factors. In:
proceedings of CSL. LIPIcs, vol. 183, pp. 12:1–12:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.12

7. Boker, U., Hefetz, G.: On the comparison of discounted-sum automata with mul-
tiple discount factors (2023). https://doi.org/10.48550/ARXIV.2301.04086

8. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.
2168/LMCS-10(1:10)2014

9. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In:
proceedings of LICS. pp. 750–761 (2015). https://doi.org/10.1109/LICS.2015.
74

10. Boker, U., Lehtinen, K.: History determinism vs. good for gameness in quantitative
automata. In: proceedings of FSTTCS. pp. 38:1–38:20 (2021). https://doi.org/
10.4230/LIPIcs.FSTTCS.2021.38

11. Brenguier, R., Clemente, L., Hunter, P., Pérez, G.A., Randour, M., Raskin, J.F.,
Sankur, O., Sassolas, M.: Non-zero sum games for reactive synthesis. In: Language
and Automata Theory and Applications. pp. 3–23. Springer (2016)

12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In:
proceedings of FCT. LNCS, vol. 5699, pp. 3–13 (2009). https://doi.org/10.1007/
978-3-642-03409-1_2

13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In:
proceedings of CONCUR. LNCS, vol. 5710, pp. 244–258 (2009). https://doi.org/
10.1007/978-3-642-04081-8_17

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Log. Methods Comput. Sci. 6(3) (2010), http://arxiv.
org/abs/1007.4018

15. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.
1805953

16. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward ver-
ification in graphs and MDPs. In: proceedings of LPAR. LNCS, vol. 8312, pp.
228–242 (2013). https://doi.org/10.1007/978-3-642-45221-5_17

17. Clarke, E.M., Draghicescu, I.A., Kurshan, R.P.: A unified approach for showing
language containment and equivalence between various types of ω-automata. In-
formation Processing Letters 46, 301–308 (1993)

https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
http://arxiv.org/abs/1007.4018
http://arxiv.org/abs/1007.4018
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.1007/978-3-319-89366-2_23
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.4230/LIPIcs.CSL.2021.12
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.48550/ARXIV.2301.04086
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-03409-1_2
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
https://doi.org/10.1007/978-3-642-04081-8_17
http://arxiv.org/abs/1007.4018
http://arxiv.org/abs/1007.4018
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-45221-5_17

390 U. Boker and G. Hefetz

18. Degorre, A., Doyen, L., Gentilini, R., Raskin, J., Toruńczyk, S.: Energy and mean-
payoff games with imperfect information. In: proceedings of CSL. LNCS, vol. 6247,
pp. 260–274 (2010). https://doi.org/10.1007/978-3-642-15205-4_22

19. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theor. Comput.
Sci. 366(3), 199–227 (2006). https://doi.org/10.1016/j.tcs.2006.08.024

20. Filiot, E., Gentilini, R., Raskin, J.: Finite-valued weighted automata. In: proceed-
ings of FSTTCS. LIPIcs, vol. 29, pp. 133–145 (2014). https://doi.org/10.4230/
LIPIcs.FSTTCS.2014.133

21. Filiot, E., Gentilini, R., Raskin, J.: Quantitative languages defined by functional
automata. Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/
LMCS-11(3:14)2015

22. Filiot, E., Löding, C., Winter, S.: Synthesis from weighted specifications with par-
tial domains over finite words. In: proceedings of FSTTCS. pp. 46:1–46:16 (2020).
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46

23. Gimbert, H., Zielonka, W.: Limits of multi-discounted markov decision processes.
In: proceedings of LICS. pp. 89–98 (2007). https://doi.org/10.1109/LICS.2007.
28

24. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Mathematical Research Letters 8(4), 535–543 (2001)

25. Hare, K.: Beta-expansions of pisot and salem numbers. In: Waterloo Workshop in
Computer Algebra (2006)

26. Hojati, R., Touati, H., Kurshan, R., Brayton, R.: Efficient ω-regular language con-
tainment. In: proceedings of CAV. LNCS, vol. 663. springer (1992)

27. Hunter, P., Pérez, G.A., Raskin, J.: Reactive synthesis without regret. Acta Infor-
matica 54(1), 3–39 (2017). https://doi.org/10.1007/s00236-016-0268-z

28. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)

29. Madani, O., Thorup, M., Zwick, U.: Discounted deterministic markov decision
processes and discounted all-pairs shortest paths. ACM Trans. Algorithms 6(2),
33:1–33:25 (2010). https://doi.org/10.1145/1721837.1721849

30. Mahler, K.: An unsolved problem on the powers of 3
2
. The journal of the Australian

mathematical society 8(2), 313–321 (1968)
31. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Series in

Automatic Computation, Prentice-Hall (1967)
32. Sutton, R.S., G.Barto, A.: Introduction to Reinforcement Learning. MIT Press

(1998), http://dl.acm.org/doi/book/10.5555/551283
33. Tasiran, S., Hojati, R., Brayton, R.: Language containment using non-deterministic

omega-automata. In: proceedings of CHARME. LNCS, vol. 987, pp. 261–277.
springer (1995)

34. Vardi, M.Y.: Verification of concurrent programs: The automata-theoretic frame-
work. In: proceedings of LICS. pp. 167–176 (1987)

35. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS,
vol. 1043, pp. 238–266 (1996)

36. Wang, Y., Ye, Q., Liu, T.: Beyond exponentially discounted sum: Automatic learn-
ing of return function. CoRR (2019), http://arxiv.org/abs/1905.11591

37. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158, 343–359 (1996). https://doi.org/10.1016/0304-3975(95)
00188-3

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1145/1721837.1721849
https://doi.org/10.1145/1721837.1721849
http://dl.acm.org/doi/book/10.5555/551283
http://arxiv.org/abs/1905.11591
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.1016/j.tcs.2006.08.024
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.133
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.2168/LMCS-11(3:14)2015
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.46
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1109/LICS.2007.28
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1145/1721837.1721849
https://doi.org/10.1145/1721837.1721849
http://dl.acm.org/doi/book/10.5555/551283
http://arxiv.org/abs/1905.11591
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3

Comparison of Discounted-Sum Automata with Multiple Discount Factors 391

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Fast Matching of Regular Patterns
with Synchronizing Counting

Lukáš Holı́k , Juraj Sı́č(�) , Lenka Turoňová , and Tomáš Vojnar

Brno University of Technology, Brno, Czech Republic
{holik,sicjuraj,ituronova,vojnar}@fit.vut.cz

Abstract. Fast matching of regular expressions with bounded repetition, aka
counting, such as (ab){50,100}, i.e., matching linear in the length of the text
and independent of the repetition bounds, has been an open problem for at least
two decades. We show that, for a wide class of regular expressions with counting,
which we call synchronizing, fast matching is possible. We empirically show that
the class covers nearly all counting used in usual applications of regex match-
ing. This complexity result is based on an improvement and analysis of a recent
matching algorithm that compiles regexes to deterministic counting-set automata
(automata with registers that hold sets of numbers).

1 Introduction

Fast matching of regular expressions with bounded repetition, aka counting, has been
an open problem for at least two decades (cf., e.g., [33]). The time complexity of the
standard matching algorithms run on a regex such as .*a.{100} is, at best, dominated
by the length of the text multiplied by the repetition bounds. This makes matching prone
to unacceptable slowdowns since the length of the text as well as the repetition bounds
are often large. In this paper, we provide a theoretical basis for matching of bounded
repetition with a much more reliable performance. We show that a large and practical
class of regexes with counting theoretically allows fast matching—in time indepen-
dent of the counter bounds and linear in the length of the text.

The problem also has a strong practical motivation. Regex matching is used for
searching, data validation, detection of information leakage, parsing, replacing, data
scraping, syntax highlighting, etc. It is natively supported in most programming lan-
guages [6], and ubiquitous (used in 30–40 % of Java, JavaScript, and Python software
[7,39,8,5]). Efficiency and predictability of regex matching is important. An extreme
run-time of matching can have serious consequences, such as a failed input validation
against injection attacks [41] and events like the outage of Cloudflare services [18].
Regexes vulnerabilities are also a doorway for the ReDoS (regular expression denial of
service) attack, in which the attacker crafts a text to overwhelm a matcher (as, e.g., in the
case of the outage of StackOverflow [13] or the websites exposed due to their use of the
popular Express.js framework [3]). ReDoS has been widely recognized as a common
and serious threat [7,9,11], with counting in regexes begin especially dangerous [37].

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 392–412, 2023.
https://doi.org/10.1007/978-3-031-30829-1 19

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0001-7454-3751
http://orcid.org/0000-0003-1450-6136
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-031-30829-1_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_19&domain=pdf

Fast Matching of Regular Patterns with Synchronizing Counting 393

Matching algorithms and complexity. The potential instability of the pattern matchers
is in line with the worst-case complexity of the matching algorithms. The most widely
used approach to matching is backtracking (used, e.g., in standard matchers of .NET,
Python, Perl, PHP, Java, JavaScript, Ruby) for its simplicity and ease of implementation
of advanced features such as back-references or look-arounds. It is, however, at worst
exponential to the length of the matched text and prone to ReDoS. Even though this
can be improved, for instance by memoization [11], the fastest matchers used in perfor-
mance critical applications all use automata-based algorithms instead of backtracking.
The basis of these approaches is Thompson’s algorithm [35] (also referred to as online
NFA-simulation). Together with many optimizations, it is implemented in Intel’s Hyper-
scan [40]. When combined with caching, it becomes the on-the-fly subset construction
of a DFA, also called online DFA-simulation (implemented in RE2 from Google, GNU
grep, SRM, or the standard matcher of Rust [17,19,30,12]). Without counting, the major
factor in the worst-case complexity is O(nm2), with n being the length of the text and
m the size of the number of character occurrences in the regex (m is smaller than size
of the regex, the length of string defining it). We say that the character cost, i.e., the
cost of extending the text with one character, is m2. This is the cost of iterating through
transitions of an NFA with O(m) states and O(m2) transitions compiled from the regex
by some classical construction [2,16,24].

Extending the syntax of regexes with bounded quantifiers (or counters), such as
(ab){50,100}, increases the character complexity dramatically. Given k counters with
the maximum bound �, the number of NFA states rises to O(m�k), the number of tran-
sitions as well as the character cost to O((m�k)2). For instance, the minimal DFA for
.*a.{k} (i.e., a appears k characters from the end) has more than 2k states. Moreover,
note that, since k is written as a decadic numeral, its value is exponential in the size
of the regex. This makes matching with already moderately high k prone to significant
slowdowns and ReDoS vulnerabilities with virtually every mainstream matcher (see
[36,37]). At the same time, repetition bounds easily reach thousands, in extreme tens
of millions (in real-life XML [4]). Writing a dangerous counting expression is easy and
it is hard to identify. Security-critical solutions may be vulnerable to counting-related
ReDoS [37] despite an extra effort spent in regex design and testing, hence developers
sometimes avoid counting, use workarounds and restrict functionality.

The problem of matching with bounded repetition has been addressed from
the theoretical as well as from the practical perspective by a number of authors
[15,4,22,26,31,20,25,36]. From these, the recent work [36] is the only one offering fast
matching for a practically significant class of regexes. The algorithm of [36] compiles
a regex with counting to a non-deterministic counting automaton (CA), an automaton
with counters that can be incremented, reset, and compared with a constant. The crux of
the problem is then to convert the CA to a succinct deterministic machine that could be
simulated fast in matching. The work [36] achieves this by determinizing the CA into a
counting-set automaton (CSA), an automaton with registers that hold sets of numbers.
Its size is independent of the counter bounds and it updates the sets by a handful of
operations that are all constant time, regardless the size of the sets. However, regexes
outside the supported class do appear, the class has no syntactic characterization, and
it is hard to recognize (as demonstrated also by an incorrect proposal of a syntactic

394 L. Holík et al.

class in [36] itself). For instance, .*a{5} or (ab){5} are handled, but .*(aa){5} or
.*(ab){5} are not (the requirement is technical, see Section 4).

Our contribution. In this paper, we

1. generalize the algorithm of [36] to extend the class of handled regexes and
2. derive a useful syntactic characterization of the extended class.

The derived class is characterized by flat counting (counting operators are not nested)
where repetitions of each counted expression R are synchronizing (a word from Rn can-
not have a prefix from Rn+1). It is the first clearly delimited practical class of regexes
with counting that allows fast matching. It includes the easily recognizable and frequent
case where every word in R has exactly one occurrence of a marker, a letter or a word
from a finite set of markers that unambiguously identifies each occurrence of R (note
that even this simple class was not handled by any previous fast algorithms, including
[36]). In a our experiment with a large set of regexes from various sources, 99.6 % of
non-trivial flat counting was synchronizing and 99.2 % was letter-marked.

To obtain the results (1) and (2) above, we first modify the determinization of [36]
to include the entire class of regexes with flat counting. In a nutshell, this is achieved
by two changes: (i) We allow copying and uniting of sets stored in registers, and (ii) in
the determinization, we index counters of the CA by its states to handle CA in which
nondeterministic runs that reach different states reach different counter values.

These modifications come with the main technical challenge that we solve in this
paper: copying and uniting sets is not constant-time but linear to the size of the sets.
This would make the character cost linear in the counter bound � again. To remove the
dependency on the counter bounds, we augment the determinization by optimizations
that avoid the copying and uniting. First, to alleviate the cost of uniting, we store inter-
sections of sets stored in registers in new shared registers, so that the intersection does
not contribute to the cost of uniting the registers. Then, to increase the impact of in-
tersection sharing, we synchronize register updates in order to make their intersections
larger. We then show that if the CSA does not replicate registers, i.e, each register can in
a transition appear on the right-hand side of only one register assignment, then it never
copies registers and the cost of unions can be amortised. Finally, we define the class of
regexes with synchronizing counting for which the optimized CsA do not replicate
counters so their simulation in matching is fast.

Related work. In the context of regex matching, counting automata were used in several
forms under several names (e.g. [20,36,4,15,31,32,33,14,23]). Besides [36] discussed
above, other solutions to matching of counting regexes [15,4,22,26,31,20,25] handle
small classes of regexes or do not allow matching linear in the text size and indepen-
dent of counter bounds. The work [20] proposes a CA-to-CA determinization producing
smaller automata than the explicit CA determinization for the limited class of monadic
regexes, covered by letter-marked counting, and the size of their deterministic automata
is still dependent on the counter bounds. The work [4] uses a notion of automata with
counters of [15]. It focuses mostly on deterministic regexes, a class much smaller than
regexes with synchronizing counting, and proposes a matching algorithm still depen-
dent on the counter bounds. The paper [25] proposes an algorithm that takes time at

Fast Matching of Regular Patterns with Synchronizing Counting 395

worst quadratic to the length of the text. Extended FA (XFA) of [31,32] augment NFA
with a scratch memory of bits that can represent counters, and their determinization
is exponential in counter bounds already for regexes such as .*a.{k}. The counter-1-
unambiguous regexes of [22,23] can be directly compiled into deterministic automata
called FACs, similar to our CA, independent of counter bounds, but the class is limited,
excluding e.g., .*a.{k}.

2 Preliminaries

We use N to denote the natural numbers including 0. For a set S, P (S) denotes its
powerset and Pfin(S) is the set of all finite subsets of S.

A first order language (f.o.l.) Γ = (F,P) consists of a set of function symbols F
and a set of predicate symbols P. An interpretation I of Γ with a domain DI assigns
a function f I : Dn

I → DI to each n-ary f ∈ F and a function pI : Dn
I → {0,1} to each

n-ary p ∈ P. An assignment of a set of variables X in I is a total function ν : X → DI.
The set of terms TermsΓ,X and the set QFFΓ,X of quantifier free formulae (boolean
combinations of atomic formulae) over Γ and X , as well as the interpretation of a term,
tI(ν), and a formula, ϕI(ν), are defined as usual. We denote by ν |=I ϕ that the formula
ϕ is satisfied (interpreted as true) by the assignment ν. It is then satisfiable. We drop
the sub/superscript I when it is clear from the context. We write ϕ[x] and t[x] to denote
a unary formula ϕ or term t, respectively, with the free variable x, and we may also
abuse this notation to denote the term/formula with its only free variable replaced by
x. We write tI(k) and ϕI(k) to denote the values tI({x �→ k}) and ϕI({x �→ k}). For a
set of formulae Ψ = {ψ1, . . . ,ψn}, the set Minterms(Ψ) consists of all minterms of Ψ,
satisfiable conjunctions ϕ1 ∧·· ·∧ϕn where for each i : 1 ≤ i ≤ n, ϕi is ψi or ¬ψi.

We fix a finite alphabet Σ of symbols/letters for the rest of the paper. Words are se-
quences of letters, with the empty word ε. The concatenation of words u and v is denoted
u · v, uv for short. A set of words over Σ is a language, the concatenation of languages
is L ·L′ = {u ·v | u ∈ L∧v ∈ L′}, LL′ for short. Bounded iteration xi, i ∈N, of a word or
a language x is defined by x0 = ε for a word, x0 = {ε} for a language, and xi+1 = xi · x.
Then x∗ =

⋃
i∈N xi. We consider a usual basic syntax of regular expressions (regexes),

generated by the grammar R ::= ε | a | (R) | RR | R|R | R* | R{m,n} where m∈N,
n ∈ N∪∞, 0 ≤ m, 0 < n, m ≤ n, and a ∈ Σ. We use R{m} for R{m,m}. Regexes con-
taining a sub-expression with the counter R{m,n} or R{m} are called counting regexes
and m,n are counter bounds. We denote by maxR the maximum integer occurring in
the counter bounds of regex R and we denote the number of counters by cntR. A regex
with flat counting does not have nested counting, that is, in a sub-regex S{m,n}, S
cannot contain counting. The language of a regex R is constructed inductively to the
structure: L(ε) = {ε}, L(a) = {a} for a ∈ Σ, L(RR′) = L(R) · L(R′), L(R*) = L(R)∗,
L(R|R′) = L(R)∪L(R′), and L(R{m,n}) =⋃

m≤i≤n L(R)i. We understand |R| simply as
the length of the defining string, e.g. |(ab){10}| = 8. We define �R as the number of
character occurrences in R, formally, �a = 1 for a ∈ Σ, �ε = 0, �(R) = �R{m,n} = �R,
and �R ·S = �R|S = �R+ �S.

A (nondeterministic) automaton (NA) is a tuple A = (Q,Δ, I,F) where Q is a set of
states, Δ is a set of transitions of the form q−{a}→r with q,r ∈ Q and a ∈ Σ, I ⊆ Q is the

396 L. Holík et al.

set of initial states, and F ⊆ Q is the set of final states. A run of A over a word w =
a1 . . .an from state p0 to pn, n ≥ 0 is a sequence of transitions p0−{a1}→p1, p1−{a2}→p2,
. . ., pn−1−{an}→pn from Δ. The empty sequence is a run with p0 = pn over ε. The run is
accepting if p0 ∈ I and pn ∈ F , and the language L(A) of A is the set of all words for
which A has an accepting run. A state q is reachable if there is a run from I to it. The size
of the NA, |A|, is defined as the number of its states plus the number of its transitions.
The automaton is deterministic (DA) iff |I|= 1 and for every state q and symbol a, Δ has
at most one transition q−{a}→r. The subset construction transforms the NA to the DA with
the same language DA(A) = (Q{},Δ{}, I{},F {}) where Q{} ⊆ P (Q) and Δ{} are the smallest
sets of states and transitions satisfying I{} = {I}, Δ{} has for each a ∈ Σ and each S ∈ Q{}

the transition S−{a}→{s′ | s ∈ S∧ s−{a}→s′ ∈ Δ}, and F {} = {S ∈ Q{} | S∩F 	= /0}. When the
set of states Q is finite, we talk about (deterministic) finite state automata (NFA, DFA).1

This paper is concerned with the problem of fast pattern matching, basically a mem-
bership test: given a regex R and a text w, decide whether w ∈ L(R). While w may be
very long, R is normally small, hence the dependence on |w| is the major factor in
the complexity. The offline DFA simulation takes time linear in |w|. It (1) compiles
R into an NFA NFA(R) (2) determinizes it, and (3) follows the DFA run over w (aka
simulates the DFA on w), all in time and space Θ(2|NFA(R)| + |w|). The cost of deter-
minization, exponential in |NFA(R)|, is however too impractical. Modern matchers such
as Grep or RE2 [19,17] therefore use the techniques of online DFA simulation, where
only the part of the DFA used for processing w is constructed. It reduces the complexity
to O(min(2|NFA(R)|+ |w|, |w| · |NFA(R)|)) (the first operand of min is the explicit deter-
minization in case the entire DFA is constructed, plus the cost of DFA-simulation; the
second operand is the cost of the online-DFA simulation, coming from that every step
may incur construction of a new DFA state and transition in time O(|NFA(R)|)). For
counting regexes, the factor |NFA(R)| depends linearly (or more if counting is nested)
on maxR and thus exponentially on |R|. This makes counting very problematic in prac-
tice [36,37,33]. We will present a matching algorithm which is fast for a specific class
of regexes, meaning that its run-time is still linear in |w| but is independent of maxR.

3 Counting Automata

We use a rephrased definition of counting automata and counting-set automata of [36].
We will present them as a special case of a generic notion of automata with registers.

Definition 1 (Automata with registers). An automaton with registers (RA) operated
through an f.o.l. Γ under an interpretation I is a tuple A = (X ,Q,Δ, I,F) where X is a
set of variables called registers; Q is a finite set of states; Δ is a finite set of transitions
of the form q−{a,ϕ,u}→p where p,q ∈ Q, a ∈ Σ, u : X → TermsΓ,X is an update, and ϕ ∈
QFFΓ,X is a guard; I is a set of initial configurations, where a configuration is a pair of
the form (q,m) where q ∈ Q and m : X → DI is a register assignment called a memory;
and F : Q → QFFΓ,X is a final condition assignment.

1 We do not require finiteness in the basic definition in order to avoid artificial restrictions of the
notions of automata with registers/counters/counting sets defined later.

Fast Matching of Regular Patterns with Synchronizing Counting 397

The language of A, L(A), is defined as the language of its configuration automaton
Conf(A). States of Conf(A) are configurations of A that are reachable. I is the set of
initial states of Conf(A). It has a transition (q,m)−{a}→(q′,m′) iff (q,m) is reachable and
A has a transition δ = q−{a,ϕ,u}→q′ ∈ Δ such that (q′,m′) is the image of (q,m) under δ,
denoted (q′,m′) = δ(q,m), meaning that (1) δ is enabled in (q,m), m |= ϕ, and (2)
m′ = u(m), i.e. m′(x) = u(x)I(m) for each x ∈ X. We let δ(C) = {δ(c) | c ∈C} for a set
of configurations C. A configuration (q,m) is a final if m |= F(q). By runs of A we mean
runs of Conf(A). The RA A is deterministic if Conf(A) is deterministic. The size of the
RA is |A|= |Q|+∑δ∈Δ |δ| where |δ| is the sum of the sizes of the update and the guard.

Definition 2 (Counting automata). A counting automaton (CA) is an automaton with
registers, called counters, operated through the counting language Γcnt that contains
the unary increment function, denoted x+1, constants 0 and 1, and predicates x> k and
x≤ k, k∈N, with the standard interpretation over natural numbers, that we denote Icnt.

q0x :=0

a1

b1

b2 [x ≥ 3]

a

x :=1
b

x :=1

b
x := x

b

x := x

a;x < 8
x := x+1

b;x < 8
x := x+1

Fig. 1: CA(R) for R = ((a|b)b){3,8}. The
accepting condition of all states is ⊥ except
for b2 whose accepting condition is written
in the square brackets.

Regexes with counting may be
translated to CA by several meth-
ods ([36,33,14,23]). We use a slightly
adapted version of [14]—an extension of
Glushkov’s algorithm [16] to counting.
For a regex R, it produces a CA CA(R) =
(X ,Q,Δ,{α0},F). Figure 1 shows an
example of such CA. The construction
is discussed in detail in [21], here we
only overview the important properties
needed in Sections 4-6:

1. Every occurrence S of a counted sub-expression T{minS,maxS } of R corresponds
to a unique counter xS and a substructure AS of CA(R). Outside AS, xS is inactive (a
dead variable) and its value is 0, it is assigned 1 on entering AS, and every iteration
through AS increments the value of xS while reading a word from L(T). Our minor
modification of [14] is related to the fact that the original assigns 1 to inactive
counters while we need 0.

2. CA(R) has at most �R+ 1 states, cntR.�R2 transitions, cntR counters. It has at most
�R2 transitions if R is flat.

3. CA(R) has a single initial configuration α0 = (q0,s0) s.t. s0(xS) = 0 for each xS ∈ X .
4. Guards and final conditions are conjunctions consisting of at most one conjunct

of the form minS ≤ xS or maxS > xS per counter xS ∈ X . A transition update may
assign to xS ∈ X only one of the terms 0, 1, xS, and xS +1. It has no guard on xS if it
is assigned xS, i.e. kept unchanged, it has the guard xS ≥ minS iff xS is reset to 0 or
1 (a counter cannot be reset before reaching its lower bound), and it has the guard
xS < maxS iff xS is assigned xS + 1 (counter can never exceed its maximum value
maxS). Hence, a counter can never exceed maxR.

5. Flatness of R translates to the fact that configurations of CA(R) assign a non-zero
value to at most one counter. This implies that Conf(CA(R)) has at most |Q|.maxR
states and also that CA(R) is Cartesian, a property that will be defined in Section 4
and is crucial for correctness of our CA determinization (Theorem 3 in Section 6.)

398 L. Holík et al.

A DFA can be obtained by the subset construction in the form DA(Conf(CA(R))), called
explicit determinization. Due to the factor maxR in the size of Conf(CA(R)), the explicit
determinization is exponential to maxR even if R is flat, meaning doubly exponential to
|R| (R has maxR written as a decadic numeral). If R is not flat, then the factor maxR is
replaced by (maxR)

cntR .

4 Counter-subset Construction

In this section, we formulate a modified version of determinization of CA from [36]
that constructs a machine of a size independent of maxR. Our version handles the entire
class of Cartesian CA (defined below) and in turn also all regexes with flat counting.

The main idea of the determinization remains the same as in [36]. The standard sub-
set construction is augmented with registers, we call them counting sets, that can store
sets of counter values that would be generated by non-deterministic runs of the CA.
The automata with counting-sets as registers are called counting-set automata. Our first
modification of [36] is indexing of counters by states. In intuitively, this allows to han-
dle cases such as a*(ba|ab){5}, where, after reading the first ab, the counter is either
incremented or not (b is the first letter of the counted sub-expression or not). This would
violate the uniformity property of CA necessary in [36]—the set of values generated by
the non-deterministic CA runs must be the same for every CA state. In our modified ver-
sion, values at distinct states are stored separately in registers indexed by those states
and may differ. Then, in order to handle the indexed counters, we have to introduce a
general assignment of counters, allowing to assign the union of other counters.2 Intu-
itively, when a run non-deterministically branches into several states, each branch needs
to continue with its own copy of the set, stored in a counter indexed by the state. The
union of sets is used when the branches join again. This brings a technical challenge
that we solve in this work: how to simulate the counting-set automata fast when the set
union and copy are used? The solution is presented in Sections 5 and 6.

Definition 3 (Counting-set automata). A counting-set automaton (CSA) is an au-
tomaton with registers operated through the counting-set language Γset under the num-
ber-set interpretation I{}cnt where the language Γset extends the counting language Γcnt

with the constant /0, binary union ∪, and set-filter functions ∇p where p is a predicate
symbol of Γcnt. For simplicity, we restrict terms assigned to counters by transition up-
dates to the form t = t1 ∪ ·· · ∪ tn where each ti is either (a) a term of Γcnt or /0, (b) of
the form ∇p(t ′) where t ′ is a term of Γcnt. Each ti is called an r-term of t.

The domain of Iset is sets of natural numbers, P (N). The interpretation of the
predicates and functions of Γcnt under Iset is derived from the base number inter-
pretation of the same predicates and functions: A function returns the image of the
set in the argument under the base semantics, f Iset(S) = { f Icnt(n) | n ∈ S}. A set sat-
isfies a predicate if some of its elements satisfy the base semantics of that predicate,
pIset(S) ⇐⇒ ∃e ∈ S : pIcnt(e). Filters then filter out values that do not satisfy the base
semantics of their predicate, ∇Iset

p (S) = {e ∈ S | pIcnt(e)}. Finally, /0 is interpreted as

2 [36] could assign to a counter x only a constant or function of the current value of x.

Fast Matching of Regular Patterns with Synchronizing Counting 399

the empty set and ∪ as the union of sets. We denote memories of the CSA by s to distin-
guish them from memories of CA. We write DCSA to abbreviate deterministic CSA.

Less formally, registers of CSA hold sets of numbers and are manipulated by the
increment x+ 1 of all values, assignment of constant sets {0}, {1}, and /0, denoted by
0, 1, and /0, filtering out values smaller or larger than a constant, denoted ∇x≤k(x) and
∇x<k(x), and testing on a presence of a value x satisfying x ≤ k or x < k, k ∈ N.

We will present an algorithm that determinizes a CA A = (X ,Q,Δ, I,F), fixed for
the rest of the section, into a DCSA DCSA(A) = (X {},Q{},Δ{}, I{},F {}). We assume that
guards of transitions in Δ and final conditions are of the form

∧
x∈Y px[x],Y ⊆ X , i.e.

conjunctions with a at most a single atomic predicate per counter. This is satisfied by
all CA(R), for any regex R (see the list of properties of CA(R) in Section 3).3

Runs of DCSA(A) will encode runs of DA(Conf(A)) obtained from the explicit deter-
minization of A. Recall that the states DA(Conf(A)) are sets of configurations of A, pairs
(q,m) of a state and a counter assignment. DCSA(A) will represent the sets of counter
values within a DA state as run-time values of its registers.

Particularly, for every state q and a counter x of the CA, DCSA(A) has a register xq in
which it remembers, after reading a word w, the set of all values that x reaches in runs
of the base CA on w ending in q. Hence, we have X {} = {xq | x ∈ X ∧q ∈ Q}
Definition 4 (Encoding of sets of CA configurations). A state S = {(qi,mi)}n

i=1 of
DA(Conf(A)) is encoded as the DCSA(A) configuration enc(S) = ({qi}n

i=1,s) where
s(xq) = {mi(x) | qi = q}n

i=1.

Since a set of assignments appearing with the state q is broken down to sets of values
of the individual counters, it disregards relations between values of different counters.
For instance, in the DA state S1 = {(q,{x �→ 0,y �→ 0}),(q,{x �→ 1,y �→ 1})}, the values
of x and y are either both 0 or both 1, but enc(S1) = (q,{xq �→ {0,1},yq �→ {0,1}})
does not retain this information. It is identical to the encoding of another DA state
S2 = {(q,{x �→ 1,y �→ 0}),(q,{x �→ 0,y �→ 1})}. This is the same loss of information as
in the so-called Cartesian abstraction. The encoding is hence precise and unambiguous
only when we assume that inside the states of DA(A), the relations between counters are
always unrestricted—there is no information to be lost. We then call the CA Cartesian,
as defined below. The encoding function is then unambiguous, and we call the inverse
function decoding, denoted dec.

Definition 5 (Cartesian CA). Assuming the set of counters of A is X = {xi}m
i=1, then

a set C of configurations of A is Cartesian iff, for every state q of A, there exist sets
N1, . . . ,Nm ⊆N such that (q,{xi �→ ni}m

i=1) ∈C iff (n1, . . . ,nm) ∈ N1 ×·· ·×Nm. The CA
A is Cartesian iff all states of DA(Conf(A)) are Cartesian.

For instance, the DA states S1 and S2 above are not Cartesian, while S1 ∪S2 is.
Similarly as the regex to CA construction of [36], our regex to CA construction

discussed in Section 3 returns a Cartesian CA when called on a flat regex.

3 Every CA can be transformed to this form by transforming the formulae to DNF and creating
clones of transitions/states for individual clauses.

400 L. Holík et al.

Subset construction for Cartesian CA. The algorithm below is a generalization of the
subset construction. Let us denote by indexq(t) the term that arises from t by replacing
every variable x ∈ X by xq, analogously indexq(ϕ) for formulas. We have Q{} ⊆ P (Q),
the initial configuration I{} = {enc(I)}, and the final conditions assign to R ∈ Q{} the
disjunction of the final conditions of its elements, F {}(R) =

∨
q∈R indexq(F(q)).

We will construct DCSA(A) which is deterministic and its runs encode the runs of
DA DA(Conf(A)). Conf(DCSA(A)) will be isomorphic to DA(Conf(A)). For that, we
need for each transition δ of DA(Conf(A)) one unique transition of DCSA(A) over the
same letter enabled in the encoding of the source of δ and generating the encoding of
the target of δ. In other words, we need for each transition dec(R,s)−{a}→dec(R′,s′) of
DA(Conf(A)) one unique transition δ′ = R−{a,ϕ,u}→R′ ∈ Δ{} with (R′,s′) = δ′(R,s). That
transition δ′ will be built by summarizing the effect of all base CA a-transitions enabled
in the CA configurations of dec(R,s).

To construct the transition δ′, we first translate each base transition δ= q−{a,ϕδ,uδ}→r ∈
Δ into its set-version δ{}, supposed to transform an encoding of a (Cartesian) set C of
configurations, enc(C), into the encoding of the set of their images under δ, enc(δ(C)),
and enabled if δ is enabled for at least one configuration in C. To that end, assum-
ing ϕδ =

∧
x∈X px[x], we (1) construct the update u∇

δ
from uδ by substituting in every

uδ(x),x ∈ X variables y ∈ X by their filtered versions ∇py(y), (2) add indices to reg-
isters that mark the current state, resulting in the transition δ{} = q−{a,ϕ{}

δ
,u{}

δ
}→r where

ϕ
{}

δ
= indexq(ϕδ) and u{}

δ
assigns to every xr,x ∈ X the term indexq(u∇

δ
(x)).

The states Q{} and the transitions Δ{} are then constructed as the smallest sets satisfy-
ing that enc(I) ∈ Q{} and every R ∈ Q{} has for every a ∈ Σ the outgoing transitions con-
structed as follows. Let {q j−{a,ϕ j ,u j}→r j} j∈J for some index set J be the set of constituent
a-transitions for R, all a-transitions δ{} where δ ∈ Δ originates in R. To achieve deter-
minism, Δ{} has the transition R−{a,ψ,u}→R′ for every minterm ψ ∈ Minterms({ϕ j} j∈J).
The update u and target R′ are constructed from the set {q j−{a,ϕ j ,u j}→r j} j∈K , K ⊆ J, of
constituent transitions with guards ϕ j compatible with the minterm ψ, i.e., with satis-
fiable ψ∧ϕ j. R′ is the set of their target states, R′ = {r j} j∈K , and u(x) unites all their
update terms u j(x), i.e. u(x) =

⋃
j∈K u j(x), for each x ∈ X {}.

Example 1. When showing examples of transition updates, we write x := t to denote
that u(x) = t and we omit the assignments x := /0 in CSA.

Let R = {p,q} and let the a-transitions originating at R be q−{a,�,x:=x}→s,
p−{a,x<n,x:=x+1}→r, and p−{a,x≥m,x:=1}→s. They induce three constituent transitions for
R and a, q−{a,�,xs:=xq}→s, p−{a,xp<n,xr :=∇x<n(xp)+1}→r, and p−{a,xp≥m,xs:=1}→s. A transition
R−{a,ψ,u′}→R′ is constructed for each of the following minterms ψ: xp<n∧xp≥m, ¬xp<n∧
xp≥m, xp<n∧¬xp≥m, ¬xp<n∧¬xp≥m. For the first one, all three constituent transi-
tions are compatible and so the update u′ is xr :=∇x<n(xp)+1;xs :=xq ∪1 (update of xr
is taken from the first constituent transitions leading to r, update of xs is the union of the
updates of the second two transitions leading to s) and the target state is R′ = {r,s}.
�

DCSA(A) is deterministic since it has a single initial configuration and the guards of
transitions originating in the same state are minterms. The size of DCSA(A) obviously
depends only on the size of A and not on the interpretation of the language. Especially,

Fast Matching of Regular Patterns with Synchronizing Counting 401

when A is CA(R) for some regex R, the size does not depend on maxR. The theorem
below is proved in [21].4

Theorem 1. DCSA(A) is deterministic, |DCSA(A)| ∈ O(2|A|), and if A is Cartesian, then
L(A) = L(DCSA(A)).

Since for regexes with flat counting, our regex to CA algorithm always returns a
Cartesian CA, we can transform them into DCSA.

5 Fast Simulation of Counting-set Automata

In this section, we discuss how a run of a DCSA on a given word can be simulated
efficiently to achieve fast matching. Let us fix a word w = a1 · · ·an together with the
DCSA A = (X ,Q,Δ,{α0},F). We wish to construct the run of the DCSA on w and test
whether the reached configuration is accepting. We aim at a running time linear to |w|
and independent of the sizes of the sets stored in A’s registers at run-time.

We will assume that the initial configuration α0 of A assigns to every register a
singleton or the empty set. The assumption is satisfied by CSA constructed from CA(R),
R being any regex, by the algorithms of Section 4 and also Section 6.5

Technically, the simulation maintains a configuration α = (q,s), initialized with
α0, and for every i from 1 to n, it constructs the transition α−{ai}→α′ of Conf(A) and
replaces α by the successor configuration α′ = (q′,s′). We use the key ingredient of
fast simulation from [36], the offset-list data structure for sets of numbers with constant
time addition of 0/1, comparison of the maximum to a constant, reset, and increment of
all values. The problem is that the newly added union and copy of sets are still linear
to the size of the sets, and hence linear to the maximum counter bounds. We show how,
under a condition introduced below, set copy can be avoided entirely and the cost of
union can be amortized by the cost of incrementing the sets. This will again allow a
CSA-simulation in time independent of maxA and falling into O(|A| · |w|).

First, we define a property of CSA sufficient for fast simulation—that the updates
on its transitions do not replicate counters.

Definition 6 (Counter replication). We say that a CSA replicates counters if for some
transition q−{a,ϕ,u}→r, some counter appears in the image of u twice, that is, it appears
in two r-terms of some u(x) or it appears in u(x) as well as in u(y) for x �= y. A non-
replicating CSA does not replicate counters.

For instance, {x �→ x;y �→ x+ 1} and {x �→ x∪ x+ 1,y �→ y} are updates where x is
replicated, {x �→ x+1,y �→ y} is not a replicating update.

4 It may be interesting to note that, as follows from our formulation of the determinization, the
construction is independent of the particular f.o.l. used to manipulate registers and of its inter-
pretation. The determinization could be applied to any kind of automata that fits the definition
of automata with registers. The numbers could be manipulated by other functions and tests,
natural numbers could be replaced by reals etc. The counting-set automata are themselves an
instance of automata with registers. One could also think about push-down automata or, with
small modifications, variants of data-word automata with registers.

5 This is a technical assumption important in order for unions of the initial sets not to influence
the overall complexity of the simulation.

402 L. Holík et al.

Offset-list data structure. The offset-list data structure of [36] allows constant time
implementation of the set operations of increment of all elements, reset to /0 or {0} or
{1}, addition of 0 or 1, and comparison of the maximum with a constant.

It assigns to every counter x ∈ X a pointer ol(x) to an offset-list pair (ox, lx) with the
offset ox ∈N and a sorted list lx = m1, . . . ,mk of integers. The data structure implement-
ing the list needs constant access to the first and the last element, forward and backward
iteration of a pointer, and insertion/deletion at/before a pointer to an element. This is
satisfied for instance by a doubly-linked list that maintains pointers to the first and the
last element. The offset-list pair represents the set s(x) = {m1+ox, . . . ,mk +ox}. Union
of two such sets is still linear in their size, but we will show that if the CSA does not
replicate counters, the cost of set unions can be amortized by the cost of increments.

Finding the CSA transition and evaluating the update. The first step of computing α′
from α is finding the transition q−{ai,ϕ,u}→q′ ∈ Δ, the only ai-transition from q that is
enabled, i.e. where s |= ϕ. The simplest algorithm iterates through the transitions of
Δ and, for each of them, tests whether s satisfies its guard. The cost of evaluating an
atomic counter predicate p, i.e., deciding whether s |= p, is constant: since the lists lx
are sorted, we only need to access the first or the last element and the offset to decide
x < n or x ≥ n, respectively. With that, the cost of evaluating ϕ is linear to the size of
ϕ. The cost of the iteration through the transitions of Δ is then linear in the sum of their
sizes, which is within O(|A|).

Having found q−{ai,ϕ,u}→q′, we evaluate its update to compute s′ and compute α′ as
(q′,s′). We will explain the algorithm and argue that the amortized cost of computing s′
is in O(|X |). The update is evaluated by, for each x ∈ X , evaluating all r-terms in u(x),
uniting the results, and assigning the union to ol(x).

First, we argue that evaluating an r-term t of u(x), i.e. computing t(s), is amortized
constant time. Since the counters are non-replicating, we can compute the value of each
r-term t[y] in situ. That is, we modify the offset-list pair (oy, ly) and return the pointer
ol(y). The original value of y can be discarded after evaluating t[y] since y does not
appear in any other r-term. There are 5 cases: (1) If t is 0 or 1, then we return a pointer
to a fresh offset-list pair with the offset 0 and the list containing only 0 or 1, respectively.
This is done in constant time.

(2) If t is y ∈ Y , then we return ol(y).
(3) If t is y+ 1, then oy is incremented by one. This constant time implementation

of the increment is the reason for pairing the lists with the offsets.
(4) If t is ∇p[y], then ly is filtered by the atomic predicate p. Filtering with the

predicate x ≥ n uses the invariant of sortedness of ly. It is done by iterating the following
steps: i) test whether the list head is smaller than n−oy and ii) if yes, remove the head,
if not, terminate the iteration. Every iteration is constant time: The cost of the iterations
which remove an element is amortized by the cost of additions of the element to the list.
What remains is only the constant cost of the last iteration which detects an element
greater or equal to n−oy, or that the list is empty. Filtering with x < n is analogous (the
iterations test and remove the last element instead of the head).

(5) If t is ∇p(y)+1, then the construction for the constant increment is applied after
the constant filter discussed above.

Fast Matching of Regular Patterns with Synchronizing Counting 403

Next, we argue that computing the union of values of the r-terms in u(x) may be
amortized by the cost of evaluating the increment terms. Let l1, . . . , ln be the offset-list
representations of the values of the terms in u(x) computed by the algorithm above.
The offset-list representation of their union is computed by a sequence of merging,
as merge(l1,merge(l2, . . .merge(ln−1, ln) . . .)). Particularly, given two pointers to offset-
lists l, l′, merge(l, l′) implements their union: it chooses the offset-list that represents a
set with the larger maximum, assume that it is l, and inserts the elements represented by
the other list, l′, to it. We say that l′ is merged into l. This is done by the standard sorted-
list merging in time O(|l′|) where |l′| is the length of l′. Since l′ is without duplicities
and with minimum 0, O(|l′|)⊆ O(max(l′)) where max(l′) is the maximal element.

The O(max(l′)) cost is amortized by the cost of evaluating increments. The offset-
list pair at l′ has seen at least max(l′)− 1 increments since the only elements inserted
into it are 0, 1, or, during merge, elements from other sets smaller than max(l′). These
increments of l′ are the budget used to pay for the mergeing of l′ into l. After the
merge, the offset-list pair of l′ is discarded (as the CSA is non-replicating, it is no longer
needed) hence the budget is used only once. Last, the assignment of the union to c is
done by a constant time assignment of a pointer to the offset-list returned by the merge.

Overall complexity of the simulation. Let us define the cost cost(x) of manipulations
with the counter x ∈ X during one step of the simulation as the sum of the costs of:
(1) evaluating all r-terms containing c, (2) merging their offset-list into other ones, (3)
creating offset-lists for terms 0 or 1 in u(x) and merging them into other offset-lists, (4)
the assignment of the result of u(x) to x. The cost of processing a single letter ai is then
the sum ∑x∈X cost(x) and |w| ·∑x∈X cost(x) is the cost of the entire simulation. Since the
CSA is non-replicating and evaluating a single r-term is amortized constant time, the
cost of (1) is in amortized constant time. The cost of (2) is amortized by increments from
step (1). The creation and insertion of singletons in (3), at most two in u(x), is constant
time. The pointer assignment in (4) is constant time. The cost(x) is therefore amortized
constant time, the amortized time of evaluating the update u is in O(|X |), and the cost of
the updates through the simulation is in O(|X | · |w|). The cost of choosing the transitions,
by evaluating their guards, is in O(|A| · |w|) by the above analysis. Analogously, the cost
of testing the accepting condition at the reached configuration is in O(|A|).

Theorem 2. If A is non-replicating, then its simulation on w takes O(|A| · |w|) time.

6 Augmented Determinization

In this section, we augment the subset construction from Section 4 with optimiza-
tions that prevent counter replication and hence extend the class of regexes that can
be matched fast by simulation of the CSA. It optimizations are tailored to CA with the
special properties of CA(R), for a regex R, listed in Section 3.

Intuition for the optimizations. The emergence of counter replication and means of
its elimination in the augmented construction, by techniques of counter sharing and
increment postponing, are illustrated on simplified fragments of CA in Figure 2.

404 L. Holík et al.

qr s
a) a;x := x+1 a;x := x+1

b;x := xb;x := x
q r

b) a;x :=1
a;
x := x

a;
x := x+1a;x := x+1

qr s
c) a;x := x+1 a;x := x

b;x := x+1b;x := x

Fig. 2: Sub-structures of CA that are sources of counter replication.

In a), DCSA(CA(R)) has transitions {q}−{a,xr :=xq+1,xs:=xq+1}→{r,s}−{b,xq:=xr∪xs}→{q}.
The first transition replicates the entire content of the xq, the second one unites the
two sets. Both transitions are expensive. The can be optimized by detecting that the
values of xs and xr are the same, being generated by syntactically identical updates,
and storing the values in a shared counter x{s,r}. This would result in transitions
{q}−{a,x{r,s}:=x{q}+1}→{s, t}−{b,x{q}:=x{r,s}}→{q}, with the replication and union eliminated.

Figure b) then illustrates why a counter xP, P ⊆ Q, represents the set of
values shared between the original counters xp, p ∈ P. That is, xP does not
always hold the entire sets stored in the counters xp, p ∈ P. If their val-
ues are not the same, it stores only their intersection. The value of each
xp is then partitioned among several shared counters xS with p ∈ S. In b),
DCSA(CA(R)) has transitions q−{a,xq:=xq;xr :=1}→{q,r}−{a,xq:=xq∪xr+1;xr :=1∪xr+1}→{q,r},
replicating the counter xr. Counter sharing would then generate transitions
q−{a,x{q}:=x{q};x{r}:=1}→{q,r}−{a,x{q}:=x{q};x{r}:=1;x{q,r}:=x{r}+1}→{q,r} with counters x{q},
x{r} for the subsets exclusive to xq and xr, respectively, and x{q,r} for the intersection.

Last, in c), we illustrate the technique of increment postponing. DCSA(CA(R)) would
have transitions {q}−{a,xr :=xq+1,xs:=xq}→{s, t}−{b,xq:=xr∪xs+1}→{q}. Since the increments
on the two branches happen in different moments, the values of xr and xs differ until
the last increment of xs synchronizes them. We avoid replication by storing the non-
incremented value, obtained from xq, in a counter shared by xr and xs and remembering
that an increment of xr has been postponed. This is marked with + in the name of
the shared counter x{r+,s}. When the values of xr and xs synchronize (the increment
is applied to xs too), the postponed increment is evaluated and the +-mark is removed.
We would create transitions {q}−{a,x{r+,s}:=x{q}}→{s, t}−{b,x{q}:=x{r+,s}+1}→{q}. If, before the
synchronization, the value of the marked counter is either tested or incremented for the
second time, we declare an irresolvable replication and abort the entire construction
(we allow postponing of only one increment). To prevent this situation from arising
needlessly, we let states remember the counters that must have the empty value and we
ignore these counters.

Augmented Determinization Algorithm. The augmented determinization produces from
CA(R) = (X ,Q,Δ,{α0},F) the CSA DCSAa(CA(R)) = (Xa,Qa,Δa,{αa

0},Fa). Its coun-
ters in Xa are of the form xS where x ∈ X and S ⊆ Q+ and Q+ = Q∪{q+ | q ∈ Q}. The
guiding principle of the algorithm is that an assignment sa of Xa represents an assign-
ment s of the counters in X {} of DCSA(CA(R)), namely, for each xq ∈ X {},

s(xq) =
⋃

q∈S,S⊆Q+ s
a(xS)∪

⋃
q+∈S,S⊆Q+ {n+1 | n ∈ sa(xS)} . (1)

We will use some simplifying notation. As discussed in Section 3, by the construc-
tion of CA(R), the increment of c and the guard x<maxx always appear on its transitions

Fast Matching of Regular Patterns with Synchronizing Counting 405

together, without any other guard on x. Hence, in DCSA(CA(R)), all terms with an incre-
ment or filtering are of the form ∇x<maxx(xq◦)+1. We will denote them by the shorthand
xq◦ ⊕1 (we are using q◦ to denote an element from the set Q+, either q or q+, for q ∈ Q).

The states of DCSAa(CA(R)) will additionally be distinguished according to which
of the counters of Xa are active, i.e., could have a non-empty value. Counters always
valued by /0 can be ignored, which simplifies transitions and decreases the chance of
an irresolvable counter replication. The states of DCSAa(CA(R)) are thus of the form
(R,Act) where R ⊆ Q and Act ⊆ Xa is a set of active counters.

The initial configuration is αa
0 = (({q0},{x{q0} | x ∈ X}),sa0) where sa0 assigns {0}

to every x{q0},x ∈ X and /0 to every other counter in Xa. The final condition assignment
Fa((R,Act)) is, for each (R,Act) ∈ Qa, constructed from F {}(R) by replacing every
predicate p[xq] by the disjunction p[xq]

Act =
∨

xS∈Act,q∈S p[xS] that encodes p[xq] using
the counters of Act in the sense of (1).

The transitions in Δa are constructed from transitions in Δ{}. For source state (R,Act)∈
Qa, an original transition R−{a,ϕ,u}→R′ ∈ Δ{}, and set of active counters Act ⊆ Xa, Δa has
the transition (R,Act)−{a,ϕa,ua}→(R′,Act′), constructed as follows:

The guard ϕa is made from ϕ by replacing every predicate p[xq] by the equivalent
version with shared counters p[xq]

Act (as when constructing Fa above).
The update ua is constructed in three steps. First, the update ush is made from u by

expressing the r-terms of u using the shared counters Xa. Each t[xq] is replaced by

ta =
⋃({

t[xS] | xS ∈ Act,q ∈ S
}∪{

t[xS]⊕1 | xS ∈ Act,q+ ∈ S
})

.

Notice that all postponed increments are evaluated in ush, transformed to normal incre-
ments. If ush has an r-term t⊕1⊕1, i.e., a double increment, then the whole construction
aborts and declares an irresolvable counter replication. We allow postponing only one
increment.6 Otherwise, we proceed to resolve counter replication. First, we make sure
that every counter appears in the image of the update only in one kind of r-term. We
collect the set Conflict of all r-terms xS ⊕1 of ush with conflicting increments, i.e. such
that also xS is an r-term of ush. In update u+, conflicting increments are postponed. For
x ∈ X , q ∈ Q, and ush(xq) =

⋃
T ,

u+(xq) =
⋃(

T \Conflict
)

and u+(xq+) =
⋃{

xS | xS ⊕1 ∈ T ∩Conflict
}
.

The final update ua then resolves counter replication, by grouping r-terms replicated
in u+ under a common l-value (we call z an l-value of r-terms of u+(z)). For an r-term
t of u+, let lval(t) be the set of its l-values. Note that lval(t) is always of the form
{xq◦}x∈S for some fixed x ∈ X (see property 4 of CA(R) in Section 3). We let Act′ be
the set of counters xS with lval(t) = {xq◦}x∈S for some r-term of u+. For all xS ∈ Xa, if
xS
∈ Act′ then ua(xS) = /0 else

ua(xS) =
⋃{

t | t is an r-term of u+ and lval(t) = {xq◦}q◦∈S
}
.

6 Also transition guards and final conditions of DCSAa(CA(R)) must not contain the +-mark
since evaluating them regardless the postponed increments would return incorrect results.
However, declaring counter replication on seeing a double increment here covers these cases
due to the structural properties of CA(R).

406 L. Holík et al.

Example 2. Let us have R−{a,ϕ,u}→R′ ∈ Δ{} created in Example 1 with R = {p,q}, R′ =
{r,s}, ϕ = xp<n∧xp≥m, and u = {xr :=xp⊕1,xs :=xq∪1}. Let Act = {x{p,q},x{p,q+}}.
Then ush = {xr := x{p,q+} ⊕ 1∪ x{p,q} ⊕ 1,xs := x{p,q+} ⊕ 1∪ x{p,q} ∪ 1}. Note that the
xq in u(xs) becomes x{p,q+} ⊕ 1, corresponding to the right part of the definition of ta

(the postponed increment xq+ is evaluated in ush). Note that the r-term x{p,q} ⊕ 1 is in
Conflict as x{p,q} is an r-term of ush too. Therefore it is postponed in u+, i.e. ush(xr) =
x{p,q} ⊕1∪·· · becomes u+(xr+) = x{p,q}. We get u+ = {xr := x{p,q+} ⊕1,xs := x{p,q+} ⊕
1∪x{p,q} ∪1,xr+ :=x{p,q}}. Finally, ua groups r-terms replicated in u+ under a common
l-value: ua = {x{r,s} := x{p,q+} ⊕ 1,x{s} := 1,x{s,r+} := x{p,q}}. The next active counters
are Act′ = {x{r,s},x{s},x{s,r+}}. Note that, for x{p,q+}, the postponed increment at p+ was
synchronized on this transition, while the conflict at x{p,q} was solved by postponing
increment and marking r with +. 	

The algorithm either returns the CSA DCSAa(CA(A)), or detects an irresolvable
counter replication, in which case DCSAa(CA(A)) does not exist.7 Let m = �R and re-
call that n denotes the length of the matched text, |w|. Since CA(R) has at most m states
and m2 transitions, a basic analysis of the algorithm’s data structures reveals that the
resulting CSA has at most 22m

states, each with at most 2m2
outgoing transitions, each

transition of the size in O(m2m). Because DCSAa(CA(A)) encodes DCSA(CA(A)), it has
the same language, and it also inherits its determinism. Since it does not replicate coun-
ters, it can be simulated in pattern matching fast, in time linear to the text and indepen-
dent of the counter bounds. The following theorem is proved in [21].

Theorem 3. For R with flat counting, if DCSAa(CA(R)) exists, then it does not replicate
counters, its size is in O(22m

m), L(CA(R)) = L(DCSAa(CA(R))), and it can be simulated
on a word w of the length n in time O(22mmn).

Matching can be done in time of constructing the CSA plus its simulation, which
in the sum is indeed fast, not dependent on k and linear in n. It can also be noted that
the m in the exponents above is not the size of the entire regex, but only the size of the
counted sub-regexes.

7 Regexes with Synchronizing Counting

Finally, in this section we define the class of regexes with synchronizing counting,
which precisely captures when the CSA created by our construction in Section 6 does
not replicate counters and hence allow fast matching (in the sense of Theorem 3).

Definition 7 (Regexes with synchronizing counting). A regex has synchronizing count-
ing iff it has no sub-expression S{n,m} where for some k ∈N, a word from L(S)k has a
prefix from L(S)k+1.

For instance, (ac*){1,4}(ab|ba){3,5}(a(ab)*){2,8} is a regex with synchro-
nizing counting as each word from L(ac*)k must contain the symbol a exactly k times,

7 Aborting the construction here simplifies the description, but it would also be possible to con-
tinue the construction and return a DCSA that does not guarantee fast simulation.

Fast Matching of Regular Patterns with Synchronizing Counting 407

words from L(ab|ba)k must have exactly 2k symbols, and words from L(a(ab)*)k can
be uniquely split at the first a in the a(ab)*. In comparison, (a|aa){2,5} does not
have synchronizing counting as a ·a ·a is a prefix of aa ·aa.

Intuitively, there is no pair of paths through CA(S{m,n}) starting at the same state,
over the same word, ending in the same state, where the number of increments differs
by two. In such case, DCSAa(CA(S{m,n})) would have to delay two increments, which
our construction does not allow. The theorem below is proved in [21].

Theorem 4. Given a regex R with flat counting, the algorithm of Section 6 returns
DCSAa(CA(R)) if and only if R has synchronizing counting.

Corollary 1. Regexes with flat synchronizing counting have a fast matching algorithm.

Proof. From Theorems 3 and 4.

Counting with Markers. Even though designing and recognizing synchronizing count-
ing is usually intuitive, it may also be tricky. For instance, (\\\\d+\\\\.){3}, from the
database of real-world regexes we use in our experiment, has synchronizing counting,
while ICE Dims.{92}((?(X|\d+)){13}) does not.8 A vast majority of real-world
regexes we examined fortunately belong to very easily recognizable subclasses of syn-
chronizing counting. The most wide-spread and easy to recognize are regexes with
letter-marked counting, where every sub-expression S{m,n} has a set of marker letters
such that every word from L(S) has exactly one occurrence of a marker letter. 9

Marker letters may be generalized to marker words, though, markers that can arise
by concatenation of several words from L(S) cannot be used. The condition that has to
be satisfied is that any word from L(S)k, k ∈ N, has exactly k non-overlapping occur-
rences of marker words as infixes. Another sufficient property of S is that it has words
of a uniform length. The idea of markers may be generalized further until the point
when the set of marker words is specified by general regexes, when we get precisely
the synchronizing counting. The regexes with letter-marked counting are easily human
as well as machine recognizable (see a simple O(|R|2)-time algorithm in [21]).

8 Practical Considerations

Although the main point of this work is the theoretical feasibility of fast matching with
synchronizing counting, we will also argue that the results are of practical relevance.
To this end, we show experimentally that synchronizing counting and marked counting
cover a majority of practical regexes. We also give arguments that matching with the
CSA constructed in Section 6 can be done efficiently.

8 An automated way of identifying synchronizing counting would be running the CSA-to-DCSA
determinization from Section 6, but this is exponential to |R|.

9 That letter-marked counting is a strict superset of the class that is in [36] conjectured as handled
by the algorithm of [36]. The conjecture of [36] is also not correct, as shown in [21].

408 L. Holík et al.

8.1 Occurrence of Synchronizing Counting in Practice

To substantiate the practical relevance of synchronizing counting regexes, we examined
a large sample of practical regexes using a simple checker of letter-marked counting.
The benchmark consists of over 540 000 regexes collected from (1) a large scale anal-
ysis of software projects [10]; (2) regexes used by network intrusion detection systems
Snort [27], Bro [29], Sagan [34], and the academic papers [42,38]; (4) the RegExLib
database of regexes [28].

From the regexes that we could parse10, 31 975 contained counting. We selected
those with flat counting and with the sum of upper bounds of counters larger than 20 (as
was done in [36] to filter out counting with small bounds that can be handled through
counter unfolding and traditional methods)11. This left us with 5 751 regexes. From
these, only 46 regexes (0.8%) have counting that is not letter-marked. Furthermore, we
manually checked these regexes and we identified that 22 of them have synchronizing
counting. We have therefore found only 24 regexes with non-synchronizing counting,
i.e., 0.4 % of the examined set of regexes with flat counting.

The 24 non-synchronizing regexes are listed in [21]. Some of them may clearly be
rewritten with synchronizing counting, such as (.+){25}(.*), which can be rewrit-
ten as .{25,}(.*). We speculate that some of them might in fact represent a mis-
take, such as (.*){1,32000}[bc] where the counter matches the empty word, or
(\n\s+)(criterion .*\n)(\s.+){1,99} where the \s.+ might have been intended
as \s\S+ (\s are white spaces, \S are all the other characters). Synchronizing count-
ing seems to capture the intuition with which counting is often written, hence reporting
non-synchronizing counting might help identifying bugs.

By the same methodology and from a nearly identical benchmark, [36] arrived to a
sample of 5 000 regexes with flat counting with the sum of bounds larger than 20. The
algorithm of [36] did not cover 571 regexes from the 5 000, which is 11 % of the exam-
ined set of regexes with flat counting (in contrast to the 0.4% with non-synchronizing
counting and the 0.8% with counting that is not letter-marked, measured on a slightly
larger set of regexes). The two sets of regexes with flat counting, the 5 751 of ours and
the 5 000 of [36], are not perfectly identical, however. Differences are to a small degree
caused by differences in the base database ([36] uses about 18 more regexes that are
proprietary and excludes 26 regexes with counter bounds larger than 1 000), and to a
larger degree by small differences in the parsers.

8.2 Practical Efficiency of Matching with Synchronizing Counting

The size and the worst-case time of simulation of DCSAa(CA(R)) are still exponential to
the number of states of CA(R) (namely, O(22m

m) and O(22mmn) where m = �R equals
the number of states of CA(R), cf. Theorem 3). The potential problem is that the algo-
rithm may generate at most 2m counters, and this potentially threatens practicality of
our matching algorithm.

10 We did not parse 38 558 regexes since their syntax was broken or contained some advanced
features we do not support.

11 926 regexes contain nested counting and 25297 regexes contain small upper bounds.

Fast Matching of Regular Patterns with Synchronizing Counting 409

First, it should be noted that the m in the exponent can be decreased from the size of
the entire regex to the size of the counted sub-expression, which is usually very small.
Then, although an efficient implementation is beyond the scope of this paper and we
are leaving it as a future work, we give some indirect arguments for practicality of the
CA-to-CSA algorithm.12

By the standard techniques of register allocation [1], it is possible to decrease the
number of counters and counter assignments other than identity dramatically. In fact,
simply eliminating needless renaming of counters and reusing the same name whenever
possible, our algorithm creates CSA isomorphic to those of [36] when run on regexes
handled by [36]. The work [36] already shows that simulating these CSA may be done
efficiently and that it brings dramatic improvements over best matchers on counting-
intensive examples.

In our experience with hand-simulating the algorithm on practical examples, cases
not handled by [36] do not behave much differently, and the numbers of CSA counters
do not have a strong tendency to explode.

9 Conclusions

We have extended the regex matching algorithm of [36] and shown that the extended
version allows fast pattern matching of so-called synchronising regexes, a class of
regexes that we have newly introduced. The class of synchronising regexes significantly
extends all previously known classes of regexes that allow fast matching and covers a
majority of regexes appearing in practice (wrt. our empirical study).

In the future, we plan to study extensions of the presented techniques to regexes with
nested counting (non-flat). This will probably require a more sophisticated alternative
of the offset-list data structure for sets, capable of storing relations of numbers. An
interesting question is also how and when regexes can be rewritten to a synchronizing
form and for what cost.

Acknowledgment

This work has been supported by the Czech Ministry of Education, Youth and Sports
project LL1908 of the ERC.CZ programme, the Czech Science Foundation project 23-
06506S, and the FIT BUT internal project FIT-S-23-8151.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison Wesley (August 2006), http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20&path=ASIN/0321486811

12 A competitive matcher that runs on real-world regexes requires an extensive infrastructure,
optimized data structures for the shared registers, and ideally an on-the-fly version of the CA-
to-CSA determinization (similar to the online DFA simulation).

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321486811
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321486811

410 L. Holík et al.

2. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions.
Theoretical Computer Science 155(2), 291 – 319 (1996). https://doi.org/10.1016/
0304-3975(95)00182-4, https://doi.org/10.1016/0304-3975(95)00182-4

3. Baldwin, A.: Regular expression denial of service affecting express.js. https://med
ium.com/node-security/regular- expression-denial-of-service-affecting-
express-js-9c397c164c43 (2016)

4. Björklund, H., Martens, W., Timm, T.: Efficient incremental evaluation of succinct regular
expressions. In: CIKM’15. ACM (2015). https://doi.org/10.1145/2806416.2806434

5. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in python. In:
Zeller, A., Roychoudhury, A. (eds.) Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. pp.
282–293. ACM (2016). https://doi.org/10.1145/2931037.2931073, https://doi.
org/10.1145/2931037.2931073

6. contributors, W.: Regular expression—wikipedia (2019), https://en.wikipedia.org/w/
index.php?title=Regular_expression&%20oldid=852858998

7. Davis, J.C.: Rethinking regex engines to address ReDoS. In: ESEC/FSE’19. pp. 1256–1258.
ACM (2019)

8. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression de-
nial of service (redos) in practice: an empirical study at the ecosystem scale. In: Leavens,
G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018. pp. 246–256. ACM (2018). https://doi.org/10.1145/3236024.3236027,
https://doi.org/10.1145/3236024.3236027

9. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression denial of
service (ReDoS) in practice: An empirical study at the ecosystem scale. In: ESEC/FSE’18.
pp. 246–256. ACM (2018)

10. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t regular expres-
sions a lingua franca? An empirical study on the re-use and portability of regular expressions.
In: ESEC/FSE’19. pp. 1256–1258. ACM (2019)

11. Davis, J.C., Servant, F., Lee, D.: Using selective memoization to defeat regular expression
denial of service (ReDoS). In: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021. pp. 1–17. IEEE (2021). https://doi.org/10.
1109/SP40001.2021.00032, https://doi.org/10.1109/SP40001.2021.00032

12. docs.rs: regex - rust. https://docs.rs/regex/1.5.4/regex/ (2021)
13. Exchange, S.: Outage postmortem. http://stackstatus.net/post/147710624694/

outage-postmortem-july-20-2016 (2016)
14. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak versus

strong determinism. In: Mathematical Foundations of Computer Science 2009. pp. 369–
381. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03816-7_32

15. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: Weak ver-
sus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012). https://doi.org/10.
1137/100814196, extended version of paper in MFCS’09

16. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53 (1961).
https://doi.org/10.1070/RM1961v016n05ABEH004112

17. Google: RE2. https://github.com/google/re2
18. Graham-Cumming, J.: Details of the Cloudflare outage on july 2, 2019. https://blog.

cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/ (2019)
19. Haertel, M., et al.: GNU grep. https://www.gnu.org/software/grep/

https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://medium.com/node-security/regular- expression-denial-of-service-affecting- express-js-9c397c164c43
https://doi.org/10.1145/2806416.2806434
https://doi.org/10.1145/2806416.2806434
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://en.wikipedia.org/w/index.php?title=Regular_expression&%20oldid=852858998
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1109/SP40001.2021.00032
https://docs.rs/regex/1.5.4/regex/
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1007/978-3-642-03816-7_32
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://github.com/google/re2
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://www.gnu.org/software/grep/

Fast Matching of Regular Patterns with Synchronizing Counting 411

20. Holı́k, L., Lengál, O., Saarikivi, O., Turoňová, L., Veanes, M., Vojnar, T.: Succinct determin-
isation of counting automata via sphere construction. In: Proc. of APLAS’19. LNCS, vol.
11893, pp. 468–489. Springer (2019). https://doi.org/10.1007/978-3-030-34175-6_
24

21. Holı́k, L., Sı́č, J., Turoňová, L., Vojnar, T.: Fast matching of regular patterns with syn-
chronizing counting (technical report). Tech. rep., Brno University of Technology (2023),
https://doi.org/10.48550/arXiv.2301.12851

22. Hovland, D.: Regular expressions with numerical constraints and automata with counters.
In: ICTAC. LNCS, vol. 5684, pp. 231–245. Springer (2009). https://doi.org/10.1007/
978-3-642-03466-4_15

23. Hovland, D.: The membership problem for regular expressions with unordered concatenation
and numerical constraints. In: Language and Automata Theory and Applications. pp. 313–
324. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28332-1_27

24. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-free non-
deterministic finite automata. In: Reischuk, R., Morvan, M. (eds.) STACS 97. pp. 55–66.
Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

25. Kilpeläinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence indicators -
preliminary results. In: SPLST’03. pp. 163–173. University of Kuopio, Department of Com-
puter Science (2003)

26. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with numeric oc-
currence indicators. Information and Computation 205(6), 890–916 (2007). https://doi.
org/10.1016/j.ic.2006.12.003

27. M. Roesch et al.: Snort: A Network Intrusion Detection and Prevention System,. http://
www.snort.org

28. RegExLib.com: The Internet’s first Regular Expression Library. http://regexlib.com/
29. Robin Sommer et al.: The Bro Network Security Monitor, http://www.bro.org
30. Saarikivi, O., Veanes, M., Wan, T., Xu, E.: Symbolic regex matcher. In: Vojnar, T., Zhang, L.

(eds.) TACAS’2019. LNCS, vol. 11427, pp. 372–378. Springer (2019). https://doi.org/
10.1007/978-3-030-17462-0_24, https://doi.org/10.1007/978-3-030-17462-0_
24

31. Smith, R., Estan, C., Jha, S.: XFA: faster signature matching with extended automata. In:
IEEE Symposium on Security and Privacy. IEEE (2008). https://doi.org/10.1109/SP.
2008.14

32. Smith, R., Estan, C., Jha, S., Siahaan, I.: Fast signature matching using extended finite au-
tomaton (XFA). In: ICISS’08. LNCS, vol. 5352, pp. 158–172. Springer (2008). https:
//doi.org/10.1007/978-3-540-89862-7_15

33. Sperberg-McQueen, M.: Notes on finite state automata with counters. https://www.
w3.org/XML/2004/05/msm-cfa.html, https://www.w3.org/XML/2004/05/msm-cfa.
html, accessed: 2018-08-08

34. The Sagan team: The Sagan Log Analysis Engine, https://quadrantsec.com/sagan_
log_analysis_engine/

35. Thompson, K.: Programming techniques: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

36. Turoňová, L., Holı́k, L., Lengál, O., Saarikivi, O., Veanes, M., Vojnar, T.: Regex matching
with counting-set automata. Proc. ACM Program. Lang. 4(OOPSLA), 218:1–218:30 (2020)

37. Turoňová, L., Holı́k, L., Lengál, O., Veanes, M., Vojnar, T.: Counting in regexes considered
harmful (2022)

38. Češka, M., Havlena, V., Holı́k, L., Lengál, O., Vojnar, T.: Approximate reduction of finite
automata for high-speed network intrusion detection. In: Proc. of TACAS’18. LNCS, vol.
10806. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_9

https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.48550/arXiv.2301.12851
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-03466-4_15
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1007/978-3-642-28332-1_27
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
https://doi.org/10.1016/j.ic.2006.12.003
http://www.snort.org
http://www.snort.org
http://regexlib.com/
http://www.bro.org
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1109/SP.2008.14
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://doi.org/10.1007/978-3-540-89862-7_15
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://www.w3.org/XML/2004/05/msm-cfa.html
https://quadrantsec.com/sagan_log_analysis_engine/
https://quadrantsec.com/sagan_log_analysis_engine/
https://doi.org/10.1007/978-3-319-89963-3_9
https://doi.org/10.1007/978-3-319-89963-3_9

412 L. Holík et al.

39. Wang, P., Stolee, K.T.: How well are regular expressions tested in the wild? In: Leavens,
G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018. pp. 668–678. ACM (2018). https://doi.org/10.1145/3236024.3236072, https:
//doi.org/10.1145/3236024.3236072

40. Wang, X., Hong, Y., Chang, H., Park, K., Langdale, G., Hu, J., Zhu, H.: Hyperscan:
A fast multi-pattern regex matcher for modern CPUs. In: 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). pp. 631–648. USENIX
Association, Boston, MA (Feb 2019), https://www.usenix.org/conference/nsdi19/
presentation/wang-xiang

41. Wübbeling, M.: Regular expression security. ADMIN 55 (2020)
42. Yang, L., Karim, R., Ganapathy, V., Smith, R.: Improving NFA-based signature matching

using ordered binary decision diagrams. In: Recent Advances in Intrusion Detection. pp.
58–78. Springer Berlin Heidelberg (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
http://creativecommons.org/licenses/by/4.0/

Compositional Learning for Interleaving Parallel
Automata

Faezeh Labbaf1(�) , Jan Friso Groote2 ,
Hossein Hojjat1,3 , and Mohammad Reza Mousavi4

1 Tehran Institute for Advanced Studies (TeIAS), Khatam University, Tehran, Iran
f.labaf@khatam.ac.ir

2 Eindhoven University of Technology, Eindhoven, The Netherlands
j.f.Groote@tue.nl

3 University of Tehran, Tehran, Iran
hojjat@ut.ac.ir

4 King’s College London, London, UK
mohammad.mousavi@kcl.ac.uk

Abstract. Active automata learning has been a successful technique
to learn the behaviour of state-based systems by interacting with them
through queries. In this paper, we develop a compositional algorithm
for active automata learning in which systems comprising interleaving
parallel components are learned compositionally. Our algorithm auto-
matically learns the structure of systems while learning the behaviour
of the components. We prove that our approach is sound and that it
learns a maximal set of interleaving parallel components. We empirically
evaluate the effectiveness of our approach and show that our approach
requires significantly fewer numbers of input symbols and resets while
learning systems. Our empirical evaluation is based on a large number of
subject systems obtained from a case study in the automotive domain.

1 Introduction

Active automata learning has been successfully used to learn models of complex
industrial systems such as communication- and security protocols [11], biometric
passports [2], smart cards [1], large-scale printing machines [33], and lithogra-
phy machines for integrated circuits [32,15]; we refer to the recent survey by
Howar and Steffen on the practical applications of active automata learning
[16]. Throughout these applications of automata learning, scalability issues have
been pointed out [32,15]. It has also been suggested that compositional learning,
i.e., learning a system through learning its components, is a promising approach
to tame the complexity of learning [10,12].

Some early attempts have been recently made in learning structured models
of systems [27,10] (we refer to the Related Work for an in-depth analysis). For
example, the approach proposed by al-Duhaiby and Groote [10] decomposes
the learning process into learning its parallel components; however, it relies on
a deep knowledge of the system under learning, and the intricate interaction

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 20

413–435, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_20&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-8812-6702
http://orcid.org/0000-0003-2196-6587
http://orcid.org/ 0000-0002-4743-8750
http://orcid.org/0000-0002-4869-6794
mailto:f.labaf@khatam.ac.ir
mailto:j.f.Groote@tue.nl
mailto:hojjat@ut.ac.ir
mailto:mohammad.mousavi@kcl.ac.uk
https://doi.org/10.1007/978-3-031-30829-1_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_20&domain=pdf

414 F. Labbaf et al.

q0 q1

p0 p1

a/1

b/1 a/0

b/0

c/1

d/0

c/0

d/1

(a)

a/1

a/0 b/1

d/0

d/1

c/1

(b)

a/1

a/0

b/0

d/0

d/1

c/1

(c)

Fig. 1: (a) Initial system with two concurrent FSMs (b) Partition the input al-
phabet to 4 elements and learn each component individually (c) Use the counter-
example ab to merge two components

of the various actions being learned. In this paper, we propose an approach
based on Dana Angluin’s celebrated L∗ algorithm [6], to learn the components
of a system featuring an interleaving parallel composition. Our approach, called
CL∗, does not assume any pre-knowledge of the structure and the alphabet
of these components; instead, we learn this information automatically and on-
the-fly, while providing a rigorous guarantee of the learned information. This
is particularly relevant in the context of legacy and black-box systems where
architectural discovery is challenging [8,22].

The gist of our approach is to learn the System Under Learning (SUL) in
separate components with disjoint alphabets. We start with a partition compris-
ing only singleton sets. The interleaving parallel composition of the components
gives us the total behavior of the system. We pass the result to the teacher, and
by exploiting the counter-examples returned, we iteratively merge the alphabet
of the individual components.

Example. Figure 1(a) shows an example of two parallel Finite State Machines
(FSMs) over the input alphabet {a, b, c, d} and output alphabet {0, 1}. We start
by partitioning the alphabet into disjoint singleton sets of elements. The parallel
composition of the 4 learned FSMs of Figure 1(b) does not comply with the
original system, and the teacher may return the counter-example ab. The string
ab generates the output sequence 10 in (a) but the output sequence in (b) is
11. The counter-example suggests to merge the sets {a} and {b} and restart the
learning process which leads to the FSMs in Figure 1(c). One further merging
step results in learning the original system. We provide a theoretical proof of
correctness of this compositional construction, meaning that it is guaranteed to
construct a correct system.

To study the effectiveness of our approach in practice, we designed an em-
pirical experiment to investigate the following two research questions:

Compositional Learning for Interleaving Parallel Automata 415

RQ1 Does CL∗ require fewer resets, compared to L∗?
RQ2 Does CL∗ require fewer input symbols, compared to L∗?

Our research questions are motivated by the following facts: 1) Resets are a
major contributing factor in learning practical systems as they are immensely
time- and resource consuming [31]. Hence, reducing the number of resets can have
a significant impact in the learning process. 2) The total number of symbols used
in interacting with the system under learning provides us with a total measure of
cost for the learning process and hence, reducing the total cost is a fair indicator
of improved efficiency [36,9].

To answer these questions, we use a benchmark based an industrial auto-
motive system. We design a number of experiments on learning various combi-
nations of components in this system, gather empirical data, and analyse them
through statistical hypothesis testing. Our results indicate that our composi-
tional approach significantly improves the efficiency of learning compared to
the monolithic L∗ learning algorithm. The implementation of the algorithm,
experiments, and their results can be found on-line in our lab package [23]
(https://github.com/faezeh-lbf/CL-Star).

The remainder of this paper is organised as follows. In Section 2, we review
the related work and position our research with respect to the state of the art.
In Section 3, we present the preliminary definitions that are used throughout
the rest of the paper. In Section 4, we present our algorithm and its proof of
correctness and termination. We evaluate our algorithm on a benchmark from
the automotive domain in Section 5. We conclude the paper and present the
directions of our ongoing and future research in Section 6.

2 Related Work

Active automata learning is a technique used to find the underlying model of
a black box system by posing queries and building a hypothesis in an iterative
manner. There is substantial early work in this domain, e.g., under the name
system identification or grammar inference; we refer to the accessible introduc-
tion by Vaandrager [36] for more information. A seminal work in this domain is
the L∗ algorithm by Dana Angluin [6], which comes with theoretical complexity
bounds for the learning process using a representation called the “Minimally
Adequate Teacher” (MAT).

MAT hypothesises a teacher that is capable of responding to membership
queries (MQs) and equivalence queries (EQs); the former checks the outcome of a
sequence of inputs (e.g., with their respective outputs, or with their membership
in the language of the automaton) and the latter checks whether a hypothesised
automaton is equivalent to the system under learning. Our work replaces a single
MAT with multiple MATs that can potentially run in parallel and learn different
components of the black-box system automatically.

Learning structured systems and in particular, compositional learning of par-
allel systems has been studied recently in the literature. Moerman [27] proposes

https://github.com/faezeh-lbf/CL-Star

416 F. Labbaf et al.

an algorithm to learn parallel interleaving Moore machines. Our algorithm dif-
fers from Moerman’s algorithm in that in the parallel composition of Moore
machines, the output of each individual component is explicitly specified, be-
cause the output of the system is specified as a tuple of the outputs of its com-
ponents. In other words, the underlying structure is immediately exposed by
considering the type of outputs produced by the system under learning. How-
ever, in our approach, we need to identify the components and assign outputs to
them on-the-fly since the decomposition is not explicit in parallel composition.
Al-Duhaiby and Groote [10] learn parallel labelled transitions systems with the
possibility of synchronisation among them. In order to develop their algorithm,
they assume a priori knowledge of mutual dependencies among actions in terms
of a confluence relation. This type of information is difficult to obtain and the
domain knowledge in this regard may be error prone. Particularly for legacy and
large black-box systems (e.g., binary code), architectural discovery has proven
challenging [8,22]. We address this challenge and go beyond the existing ap-
proaches by learning about confluence of actions on-the-fly through observing
the minimal counter-examples generated by the MAT(s).

Frohme and Steffen [12] introduce a compositional learning approach for
Systems of Procedural Automata [13]; these are collections of DFAs that may
“call” each, akin to the way non-terminals may be used in defining other non-
terminals in a grammar. Their approach is essentially different from ours in that
the calls across automata are assumed to be observable and hence the general
structure is assumed to be known; in our approach, we learn the structure by
observing implicit dependencies among the learned automata through analysing
counter-examples. Also their approach is aimed at a richer and more expressive
type of systems, namely pushdown systems, which justifies the requirement for
additional information.

L∗ has been improved significantly in the past few years; the major improve-
ments upon L∗ can be broadly categorised into three categories: 1) improving the
data structures used to store and retrieve the learned information [21,31,19,37];
2) improving the way counter-examples are processed in refining the hypothesis
[31,28,3,17]; 3) learning more expressive models, such as register- [18,14] and
timed automata [34,5]. This third category of improvements is orthogonal to our
contribution and extension of our approach can be considered in those contexts
as well.

Two notable recent improvements, in the first two categories, are L# [37] and
Lλ [17], respectively. L# uses the notion of apartness to organise and maintain
a tree-shaped data-structure about the learned automaton. Lλ uses a search-
based method to incorporate the information about the counter-example into
the learned hypothesis. The improvements brought about by Lλ can be readily
incorporated into our approach, particularly since our approach relies on finding
minimal counter-examples. Integrating our approach into L# requires a more
careful consideration of maintaining and composing tree-shaped data structures
when detecting dependencies. We expect that both of these combinations will
further improve the efficiency of our proposed method.

Compositional Learning for Interleaving Parallel Automata 417

3 Preliminaries

In this section, we review the basic notions used throughout the remainder of
the paper. We start by formalising the notion of a finite state machine, which
is the underlying model of the system under learning and move on to paral-
lel composition and decomposition (called projection) as well as the concept
of (in)dependent actions, which are essential in identifying the parallel compo-
nents. Finally, we conclude this section by recalling the basic concepts of active
automata learning and the L∗ algorithm.

3.1 Finite State Machines (FSMs)

Finite state machines (also called Mealy machines), defined below, are straight-
forward generalisations of finite automata in which the transitions produce out-
puts (rather than only indicating acceptance or non-acceptance):

Definition 1. (Finite State Machine) A Finite State Machine (FSM) M is a
sixtuple (S, s0, I, O, δ, λ) where :

– S is a finite set of internal states,

– s0 ∈ S is the initial state,

– I is a set of actions, representing the input alphabet,

– O is the set of outputs,

– δ : S × I → S is a total state transition function,

– λ : S × I → O is a total output function.

An FSM starts in the initial state s0 and accepts a word (a sequence of
actions of its input alphabet) in order to produce an equally-sized sequence of
outputs. State transition- δ and output function λ determine the next state and
the output of an FSM upon receiving a single input. For each s, s′ ∈ S, i ∈ I,

and o ∈ O, we write s
i/o−−→ s′ when δ(s, i) = s′ and λ(s, i) = o.

State transitions are extended inductively from a single input i ∈ I, to a
sequence of inputs w ∈ I∗, i.e., we define δ(s, ε) = s and λ(s, ε) = ε where ε is
the empty sequence; and for s ∈ S,w ∈ I∗, and a ∈ I, we have δ(s, wa) =
δ(δ(s, wa), a) and λ(s, wa) = λ(s, w)λ(δ(s, w), a), where juxtaposition of se-
quences denotes concatenation. For the sake of conciseness, we write δ(w) and
λ(w) instead of δ(s0, w) and λ(s0, w).

In much of the literature in active learning, the system under learning is as-
sumed to be complete and deterministic and we follow this common assumption
in Definition 1 by requiring the state transition and output relations to be total
functions. While the determinism assumption is essential for our forthcoming re-
sults to hold, we expect that the existing recipes for learning non-deterministic
state machines can be made compositional using a similar approach as ours.

418 F. Labbaf et al.

3.2 (De)Composing FSMs

Our aim is to produce a compositional learning algorithm for systems composed
of interleaving parallel components, defined below. Due to the interleaving na-
ture of parallel composition and determinism of the system under learning, the
alphabets of these components are assumed to be disjoint.

Definition 2. (Interleaving Parallel Composition) For two FSMs Mi =
(Si, s0i , Ii, Oi, δi, λi), with i ∈ {0, 1}, where I0 ∩ I1 = ∅, the interleaving par-
allel composition of M0 and M1, denoted by M0 || M1, is an FSM defined as

(S0 × S1, (s00 , s01), I0 ∪ I1, O0 ∪O1, δ, λ)

where δ and λ are defined by

δ((s0, s1), a) =

{

(δ0(s0, a), s1) if a ∈ I0,

(s0, δ1(s1, a)) otherwise, and
λ((s0, s1), a) =

{

λ0(s0, a) if a ∈ I0,

λ1(s1, a) otherwise.

For s0 ∈ S0, s1 ∈ S1, and a ∈ I0 ∪ I1

Next, we define the notions of projections for FSMs and for words; these no-
tions are further used in the notion of (in)dependence and eventually in our proof
of correctness to establish that the composed system has the same behaviour as
the composition of the learned components.

Definition 3. (Projection of an FSM) The projection of an FSM M =
(S, s0, I, O, δ, λ) on a set of inputs I ′ ⊆ I denoted by P (M, I ′), is an FSM
(S, s0, I

′, O′, δ′, λ′), where

– δ′(s, a) = δ(s, a) for a ∈ I ′,
– λ′(s, a) = λ(s, a) for a ∈ I ′, and
– O′ = {o ∈ O | ∃a ∈ I ′. ∃s ∈ S. λ(s, a) = o}.

Definition 4. (Projection of a word) The projection of a word w ∈ I∗ on a set
of inputs I ′ ⊆ I, denoted by PI′(w), is inductively defined as follows:

PI′(ε) := ε,

PI′(au) :=

{
aPI′(u) if a ∈ I ′,
PI′(u) otherwise.

Definition 5. (Projection of an output sequence) The projection of the output
sequence w = o1 . . . on with respect to an equally-sized sequence of inputs v =
i1, . . . , in ∈ I∗ and a subset of inputs I ′ ⊆ I, denoted by PI′(w, v), is defined as
follows:

PI′(ε, ε) := ε,

PI′(ow, av) :=

{
oPI′(w, v) if a ∈ I ′,
PI′(w, v) otherwise.

Compositional Learning for Interleaving Parallel Automata 419

Definition 6. ((In)Dependent Actions) Consider an FSM M with a set of inputs
I. The subsets I0, . . . , In ⊆ I form an independent partition of I when for any
u ∈ I∗, λP (M,I0)||...||P (M,In)(u) = λM (u). Two inputs i0, i1 ∈ I are independent
when they belong to two distinct subsets of an independent partition. Two input
actions are dependent, when they are not independent.

Example. The partition
{{a}, {b}, {c, d}} in Figure 1(a) is not an independent

partition because λM (ab) = 10 but λP (M,{a})||P (M,{b})||P (M,{c,d})(ab) = 11.

It immediately follows from Definition 6 and associativity of parallel compo-
sition (with respect to trace equivalence) that any coarser partitioning based on
an independent partition is also an independent partitioning; this is formalised
in the following corollary.

Corollary 1. By combining two or more sets of an independent partition, the
resulting partition remains independent.

Moreover, it holds that any smaller subset of an independent partitioning is
also an independent partitioning of the original state machine projected on the
alphabet of the smaller subset, as specified and proven below.

Lemma 1. Consider an independent partition I0, . . . , In of inputs I for an
FSM M ; then for K ⊆ {0, . . . , n}, {Ii | i ∈ K} is an independent partition
for P (M,

⋃
i∈K(Ii)).

Proof. Consider any subset K ⊆ {0, . . . , n} and {Ii | i ∈ K} and consider any
input sequence u ∈ (

⋃
i∈K Ii)

∗. Since u does not contain a symbol that is in any
Ij for j /∈ K, we have that λ||i∈KP (M,Ii)(u) = λP (M,I0)||...||P (M,In)(u). Since
I0, . . . , In are independent, it follows likewise that λP (M,I0)||...||P (M,In)(u) =
λM (u). Using again that u has no symbol in any Ij for j /∈ K, we know that
λM (u) = λP (M,

⋃

i∈K(Ii))(u). Hence, λ||i∈KP (M,Ii)(u) = λP (M,
⋃

i∈K(Ii))(u), which
was to be shown.

�

Lemma 2. For any independent partition I0, . . . , In ⊆ I, w ∈ I∗ and 0 ≤ i ≤ n,
and state s it holds that PIi(λM (s, w), w) = λP (M,Ii)(s, PIi(w)).

Proof. The proof uses induction on the length of w. Instead of proving the thesis,
we prove the following stronger statement, which is possible because M can be
viewed as the parallel construction of independent components.

PIi(λM ((s0, . . . sn), w), w) = λP (M,Ii)((s
′
0, . . . , s

′
n), PIi(w)) with si = s′i.

Note that the lemma directly follows from this. Below we write s for s0, . . . , sn,
and likewise for s′ and s′′.

The base case (|w| = 0) holds trivially as w = ε. For the induction step we
assume that the induction hypothesis holds for |w| = k and we show that it
holds for w′ = aw for arbitrary a ∈ I.

420 F. Labbaf et al.

We first consider the case where a /∈ Ii. We derive

PIi(λM (s, aw), aw) = PIi(λM (s, a)λM (δ(s, a), w), aw) Definition 1

= PIi(λM (δ(s, a), w), w) Definition 5.

= λP (M,Ii)(s
′, PIi(w)) Induction hypothesis.

= λP (M,Ii)(s
′′, PIi(aw)) Definition 4.

By construction the i-th state in δ(s, a) is equal to si as a /∈ Ii. Hence, using the
induction hypothesis, s′i = si. By definition s′ = δ(s′′, a) and hence, s′′i = s′i = si
as we had to show.

The other case we must consider is a ∈ Ii. Again the derivation is straight-
forward.

PIi(λM (s, aw), aw) = PIi(λM (s, a)λM (δ(s, a), w), aw) Definition 1

= λM (s, a)PIi(λM (δ(s, a), w), w) Definition 5.

= λM (s′, a)λP (M,Ii)(δ(s
′, a), PIi(w)) Induction hypothesis.

= λP (M,Ii)(s, PIi(aw)) Definition 4.

Using the induction hypothesis it follows that si = s′i, which concludes the
proof. �

3.3 Model Learning

Active model learning, introduced by Dana Angluin, was originally designed to
formulate a hypothesis H about the behavior of a System Under Learning (SUL)
as an FSM. Model learning is often described in terms of the Minimally Adequate
Teacher (MAT). In the MAT framework, there are two phases: (i) hypothesis
construction, where a learning algorithm poses Membership Queries (MQ) to
gain knowledge about the SUL using reset operations and input sequences; and
(ii) hypothesis validation, where based on the model learned so far, the learner
proposes a hypothesis H about the “language” of the SUL and asks Equivalence
Queries (EQ) to test it. The results of the queries are organised in an observation
table. The table is iteratively refined and is used to formulate H .

Definition 7. (Observation Table) An observation table is a triple (S,E, T),
where S ⊆ I∗ is a prefix-closed set of input strings (i.e., prefixes); E ⊆ I+ is a
suffix-closed set of input strings (i.e., suffixes); and T is a table where rows are
labeled by elements from S∪ (S.I), columns are labeled by elements from E, such
that for all pre ∈ S ∪ (S.I) and suf ∈ E, T (pre, suf) is the SUL’s output suffix of
size |suf| for the input sequence pre.suf.

The L∗ algorithm initially starts with S only containing the empty word ε,
and E equals set of inputs alphabet I. Two crucial properties of the observation
table, closedness and consistency, defined below, allow for the construction of a
hypothesis.

Compositional Learning for Interleaving Parallel Automata 421

Definition 8. (Closedness Property) An observation table is closed iff for all
w ∈ S.I there is a w′ ∈ S that for all suf ∈ E, T (w, suf) = T (w′, suf) holds.

Definition 9. (Consistency Property) An observation table is consistent iff for
all pre1, pre2 ∈ S, if for all suf ∈ E, T (pre1, suf) = T (pre2, suf), it holds that
T (pre1.α, suf) = T (pre2.α, suf) for all α ∈ I, suf ∈ E.

MQs are posed until these two properties hold, and once they do, a hypothe-
sis H is formulated. After formulating H , L∗ works under the assumption that
an EQ can return either a counter-example (CE) exposing the non-conformance,
or yes, if H is indeed equivalent to the SUL. When a CE is found, a CE pro-
cessing method adds prefixes and/or suffixes to the observation table and hence
refines H . The aforementioned steps are repeated until EQ confirms that H
and SUL are the same. In between MQs, we often need to bring the FSM back
to a known state; this is done through reset operations, which are one of our
metrics for measuring the efficiency of the algorithm. EQs are posed by run-
ning a large number of test-cases and hence they are (two- to three) orders of
magnitude larger than MQs. These test cases are generated through a random-
walk of the graph or through a deterministic algorithm that tests all states
and transitions for a given fault model. Two examples of deterministic test-case
generation algorithms are the W- and WP-method [7]. It appears from recent
empirical evaluations that for realistic systems deterministic equivalence queries
are not efficient [4].

Since we are going to be learning the system in terms of components with
disjoint alphabets, we define the following projection operator that removes all
the transitions that are not in the projected alphabet. Our compositional learn-
ing algorithm basically learns a black-box with respect to its projection on the
actions available in each purported component.

Definition 10. (L∗ with projected alphabet) Given an SUL M = (S, s0, I, O, δ, λ)
and I ′ ⊂ I, L∗(M, I ′) returns P (M, I ′) by running algorithm L∗ with projected
alphabet I ′ on M .

4 Compositional Active Learning

In this section, we present an algorithm that learns the SUL in separate compo-
nents and uses the interleaving parallel composition of the learned components
to reach the total behavior of the system. Each component has an input alphabet
Ii, which is disjoint from the alphabet of all the other components. The set of
the input alphabets of components IF = {I1, . . . , In} is a partition of the total
system’s input alphabet. The main idea is to find an independent partitioning
IF . To reach such a partitioning, we start with a partition with singleton sets
and iteratively merge those sets that are found to be dependent on each other.
Then for Ii ∈ IF , we learn the SUL with the projected alphabet Ii, and compute
the product of the obtained components with interleaving parallel composition.
The result is equivalent to the SUL if IF is an independent partition.

422 F. Labbaf et al.

Algorithm 1: Compositional Learning Algorithm (CL∗)
Result: H

1 Input: IF = {I1, . . . , In}, M
2 H ← LearnInParts(M, IF)
3 eq ← Equivalence-Query(H ,M)
4 while eq �= yes do
5 CE ← eq

6 D ← InvolvedSets(CE, IF)

7 IF ← Composition(IF , D)

8 H ← LearnInParts(M, IF)
9 eq ← Equivalence-Query(H ,M)

10 end

11 return H , IF

Definition 11. (LearnInParts) The LearnInParts function gets M =
(S, s0, I, O, δ, λ) and the partition IF = {I1, . . . , In} of I and returns the in-
terleaving parallel composition of the learned components.

LearnInParts(M, IF) = L∗(M, I1) || . . . || L∗(M, In).

Definition 12. (Composition) Given a partition IF = {I1, . . . , In} and D ⊆
{1, . . . , n}, the Composition of IF over D merges all the Ii (i ∈ D) in IF .

Composition(IF ,D) = (IF \ {Ii|i ∈ D}) ∪ { ⋃
i∈D

Ii
}
.

Example. If IF = {{a}, {b}, {c}, {d}} andD = {1, 3, 4}, then Composition(IF ,D)
= {{a, c, d}, {b}}.
Definition 13. (InvolvedSets) The function InvolvedSets gets a counter-example
CE and a partition IF = {I1, . . . , In} and returns indices of the sets in IF that
contains at least one character of CE:

InvolvedSets(CE, IF) = {j | Ij ∈ IF , ∃i CE[i] ∈ Ij},

where the ith character of CE is denoted by by CE[i].

The function InvolvedSets allows us to detect some dependent sets by using a
minimal counter-example since all actions in the counter-example are dependent,
as we prove in Theorem 2.

Algorithm 1 shows the pseudo-code of the compositional learning algorithm.
Initially the algorithm is called with the singleton partitioning IF of the al-
phabet I and the SUL M , i.e., if the input alphabet is I = {a1, a2, . . . , an},
then the initial partition of the alphabet will be IF = {{a1}, {a2}, . . . , {an}}.
The LearnInParts method on line 2 learns each of the components given the
corresponding alphabet set using the algorithm L∗ and returns the interleaving

Compositional Learning for Interleaving Parallel Automata 423

parallel composition of the learned components. If the oracle (MAT) returns
yes for the equivalence query regarding hypothesis H , the algorithm terminates
and returns H . Otherwise an(other) iteration of the loop is performed. The
InvolvedSets method in line 6 extracts the dependent sets from the counter-
example returned by the oracle; subsequently, Composition merges those sets
into one. The LearnInParts method in line 8 is run again and the loop continues
until the correct hypothesis is learned. We assume that the oracle always returns
a minimal counter-example; this assumption is used in the proof of soundness
(Theorem 2).

4.1 Termination Analysis

To prove the termination of our algorithm, we start with the following lemma
which indicates how the counter-example is used to merge the partitions.

Lemma 3. Let IF = {I1, . . . , Im} be a partition of the system’s input alphabet.
If the teacher responds with a counter-example CE, then there are at least two
actions u ∈ Ii, v ∈ Ij in CE such that Ii �= Ij ∧ Ii, Ij ∈ IF .

Proof. We prove this by contradiction. Suppose CE consists of actions that all
belong to Ii. Let Ci = L∗(M, Ii) with output function λCi

. Since the output of
L∗ is always the correctly learned FSM of the SUL, λM (CE) = λCi(CE). Also,
since Ci is a component of H produced by LearnInParts, λH (CE) = λCi(CE)
based on Definition 2. This means CE can not be a counter-example. �

The next lemma uses Lemma 3 to show how counter-examples will ensure
progress in the algorithm, eventually guaranteeing termination.

Lemma 4. At each round of the algorithm CL∗, |IF | decreases by at least 1.

Proof. By Lemma 3, at each round of the algorithm, at least two dependent sets
are found by InvolvedSets, and the algorithm merges these dependent sets into
a single set. Thus the size of the partition decrements by at least one; hence, the
lemma follows. �

Now we have the necessary ingredients to prove termination below.

Theorem 1. The Compositional Learning Algorithm terminates.

Proof. Assume, towards contradiction, that the algorithm does not terminate.
Let I be the alphabet, an IFk be the partition of I after the kth round of
the algorithm. By Lemma 4, after at least k = |I| − 1 rounds, |IFk | = 1.
Also by the assumption, the algorithm has not terminated at round k. Since
IFk = I, the algorithm reduces to algorithm L∗ which terminates. Hence, the
contradiction. �

We prove next that every time we merge two partitions, there is a sound
reason (i.e., dependency of actions) for it.

Theorem 2. Let CE be the minimal counter-example returned by the oracle at
round k of the algorithm and IF = {I1, . . . , In} the partition of the alphabet at
the same round. Then, all actions in CE are dependent.

424 F. Labbaf et al.

Proof. Let CE = wa, w ∈ I∗ and a ∈ I, and d = {d1, . . . , dm} be an in-
dependent partition for the SUL M . Assume some actions in w are indepen-
dent from a (proof by contradiction). Let dk be the set in d that includes a.
The set I \ dk contains all the independent actions from a. For M , we define
OM = Pdk

(λM (wa)); according to Lemma 2, OM = λP (M,dk)(Pdk
(wa)). The

algorithm makes the hypothesis H = P (M, I1)|| . . . ||P (M, In) at the current
round k. Since dk is the union of a subset of IF (algorithm has not terminated
yet), OH = Pdk

(λH (wa)) = λP (H ,dk)(Pdk
(wa)). If OH �= OM , then Pdk

(wa) is
a smaller counter-example than wa, which is a contradiction. Otherwise if OH =
OM , given that wa is a counter-example, PI\dk

(λM (wa)) �= PI\dk
(λH (wa)); if

so, PI\dk
(wa) is a smaller counter-example, hence the contradiction. �

By Theorems 2 and 1, we have shown that the algorithm detects the indepen-
dent action sets and eventually terminates. The next theorem is formulated to
show that it terminates as soon as all dependent action sets have been detected.

Theorem 3. Let IF = {I1, . . . , In} be an independent partition of the alphabet
at round k. The algorithm terminates in this round.

Proof. We prove this by contradiction. Assume that the algorithm does not
terminate, and CE is the minimal counter-example returned by the oracle. By
theorem 2, InvolvedSets returns two or more dependent sets from IF . Since all
the elements in IF are pairwise independent, we confront the contradiction. �

4.2 Processing Counter-examples

As mentioned in Theorem 2, we require all the actions in a minimal counter-
example returned by the oracle to be dependent. However, most equivalence
checking methods do not find the minimal counter-example. For a non-minimal
counter-example, we define a process called “distillation”, which asks a number
of extra queries to find the dependent actions. It iteratively gets a subset of
InvolvedSets(CE, IF) in the order of their sizes and merges its members together,
producing a set M. The algorithm introduces PM (CE) as output if it is a counter-
example.

Suppose CE is the counter-example returned by the oracle at round k of the
algorithm, and IF is the alphabet partition at that round. To distill two or more
dependent sets from CE, we follow Algorithm 2. The function CutCE on line 2
takes a counter-example CE and returns the smallest prefix of CE, which is also
a counter-example (i.e., the SUL and the hypothesis model produce different
outputs for it). Then, iteratively, it gets a subset of InvolvedSets(CE, IF) in the
order of their sizes and merges its members together, producing set M. The
algorithm returns PM (CE) as output if it is a counter-example.

The cost of CE-distillation algorithms is exponential in terms of the size of
CE in the worst case. However, in the results section, we show that in practice,
the cost of this part is not very significant compared to the total cost of learning.

Theorem 4. All actions in the output of the CE distillation algorithm are de-
pendent.

The proof is omitted as it is similar to the proof of Theorem 2.

Compositional Learning for Interleaving Parallel Automata 425

Algorithm 2: CE distillation

Result: CEM
1 Input: IF = {I1, . . . , In}, CE, M, H
2 CE ← CutCE(CE)

3 D ← InvolvedSets(CE, IF)
4 for k ∈ {2, . . . , size(D)} do
5 C ← all k combinations(D)
6 while C is not empty do
7 I ← C.pop
8 A ← ⋃

i∈I Ii
9 CEA ← PA(CE)

10 if CEA is a counter-example then
11 Return CEA
12 end

13 end

14 end

5 Empirical Evaluation

In this section, we present the design and the results of the experiments carried
out to evaluate our approach, in order to answer the following research questions:

RQ1 Does CL∗ require fewer resets, compared to L∗?
RQ2 Does CL∗ require fewer input symbols, compared to L∗?

As stated in Section 1, these two research questions measure the efficiency
of a learning method in a machine-independent manner: the number of input
symbols summarises the total cost of a learning campaign, while the number of
resets summarises one of its most costly parts. Note that although active learning
processes are structured in terms of queries, the queries used in the processes
have vastly different lengths and it has been observed earlier that the total
number of input symbols is a more accurate metric for comparison of learning
algorithms than the number queries [36].

5.1 Subject Systems

A meaningful benchmark for our method should feature systems of various state
sizes and various numbers of parallel components and with a non-trivial structure
that may require multiple learning rounds. Also, we would like to have realistic
systems, so that our comparisons have meaningful practical implications.

To this end, we choose the Body Comfort System (BCS) [25], which is an
automotive software product line (SPL) of a Volkswagen Golf model. This SPL
has 27 components, each representing a feature that provides specific functional-
ity. The transition system of each component is provided in a detailed technical
report [24]. We use the finite state machines of the components constructed from

426 F. Labbaf et al.

the transition system representations in [35] and compose several random sam-
ples utilising the interleaving parallel composition (Definition 2) to build the
product FSMs. We automatically constructed 100 FSMs consisting of a mini-
mum of two and a maximum of nine components in this case study. The maxi-
mum number is chosen due the performance limits of L∗; beyond this limit, our
learning campaign for L∗ could take more than four hours. All experiments were
conducted on a computer with an IntelR© Core

TM

M-5Y10c CPU and and 8GB of
physical memory running Ubuntu version 20 and LearnLib version 0.16.0. Our
subject systems have a minimum of 300 states and a maximum of 3840 states,
and their average number of states is 1278.2 with a standard deviation of 847.
We started the calculation of the metrics for subject systems of at least 300
states, since for small subject systems, the advantage of compositional learning
is not significant.

5.2 Experiment Design

To answer the research questions, we implemented the compositional learning
algorithm on top of the LearnLib framework [30]. This implementation uses
the equivalence oracle in two places; to learn projections in the LearnInParts
function and to check the hypothesis/SUL equivalence. The performance of the
algorithm significantly relies on the type of equivalence queries used by the un-
derlying L∗ algorithm. We experimented with a number of equivalence methods
and settled upon using random walks; when using deterministic algorithms such
as the WP- and the WP-method, for large systems, the cost of equivalence
queries becomes prohibitively high and obscures any gain obtained from com-
positionality. To ensure that our results are sound, we have carried out similar
experiments by using an additional deterministic equivalence query at the end
of the learning campaign, when the last random equivalence query does not re-
turn any counter-example. This additional step verifies our comparisons when
an assurance about the accuracy of the learning process is required. More details
about these additional experiments can be found in our public lab package [23]
(https://github.com/faezeh-lbf/CL-Star).

We enabled caching, since caching significantly reduces repetitive queries. We
repeat each learning process three times, comparing the number of resets and
input symbols for L∗ and CL∗.

In addition to reporting the median metrics, their standard deviations, and
the relative percentage of improvements, we use the statistical T-test to answer
the research questions with statistical confidence and report the p-values. We
analyse the distribution of the results and establish their normality using K-
tests. We use the SciPy [20] library of Python to perform statistical analysis and
Seaborn [38] for visualising the results.

5.3 Results

In this section, we first present the results of our experiments and use them to
answer our research questions. Then we show how the number of components in

https://github.com/faezeh-lbf/CL-Star

Compositional Learning for Interleaving Parallel Automata 427

an FSM affects the efficiency of our algorithm. Finally, we discuss threats to the
validity of our empirical results.

Fig. 2: The total number of input symbols and resets in the CL∗ and L∗ methods

We cluster the benchmark into eight categories based on the FSM’s number of
states and illustrate the distribution of input symbols and resets for each cluster
in Figure 2. In this figure, the CL∗ and L∗ methods are compared based on the
metrics mentioned. The scale of the x-axis (the value of metrics) is logarithmic.

Tables 1 and 2 summarise the results of our experiments. For each category,
we calculate the median and standard deviation of our metrics (the number of
input symbols and resets) both for L∗ and CL∗. The metric “progress percentage”
is defined to measure the improvement brought about by compositional learning
(compared to L∗). For each metric, the progress percentage is calculated as (1−
p
q) ∗ 100, where p and q are the value of that metric in CL∗ and L∗, respectively.
A positive progress percentage in a metric shows that the CL∗ is more efficient
in terms of that metric. To measure the statistical significance, we used the one-
sided paired sample T-test to check if there was a significant difference (p < 0.05)
between the metrics in the two algorithms.

Table 1: Comparing the total number of input symbols in the CL∗ and L∗ meth-
ods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 1443710 2834380.581 1329818 2382620.467 14.47 7.43e-3

(600, 900] 4013396 6262292.443 1716878.5 4408369.926 36.44 1.54e-8

(900, 1200] 6387472 6663334.645 1714934.5 3757307.024 52.37 8.36e-7

(1200, 1500] 6259466 9311767.302 1576494 4798094.639 57.28 6.49e-4

(1500, 1800] 9700935 10726103.24 4498072 5576873.639 54.58 4.30e-4

(1800, 2100] 11070428 5310108.013 1649557 13958718.62 37.51 2.96e-2

(2100, 2400] 15348181 6287714.182 1888226 4215184.514 70.80 1.80e-10

(2400, 3840] 24700222.5 14837416.08 4385086 13817389.06 68.42 2.66e-12

428 F. Labbaf et al.

Table 2: Comparing the total number of resets in the CL∗ and L∗ methods

#States
L* method CL* method Progress

percentage
p-value

(one-sided paired T-test)Median Standard deviation Median Standard deviation

(300, 600] 157971 65257.85738 10433 28259.60196 90.46 1.05e-33

(600, 900] 425260.5 77944.01883 16808 56274.51558 86.33 1.07e-43

(900, 1200] 501347.5 147915.8363 13109 50224.87222 90.87 3.80e-16

(1200, 1500] 712999 136904.04 12811 60125.8884 91.77 4.18e-13

(1500, 1800] 823482 275862.8299 48344 80507.59837 91.73 4.97e-13

(1800, 2100] 1262025 188390.1181 12412 369932.964 84.07 2.18e-06

(2100, 2400] 1412237 220211.8459 15042 53006.08784 95.83 2.44e-14

(2400, 3840] 1900234 427883.9888 46624.5 201052.8807 94.67 2.20e-23

Both Tables 1 and 2 indicate major improvements, particularly for large
systems, in terms of the total number of input symbols and resets, respectively.
Compositional learning reduces the number of symbols up to 70.80 percent and
the number of resets up to 95.83 percent. The statistical tests also confirm this
observations and the p-values obtained from the tests are in all cases very low;
in case of the number of input symbols the p-values range from 10−2 to 10−12,
while for resets they range from 10−6 to 10−43, which are well-below the usual
statistical p-values (0.05) and represent a very high statistical significance.

Fig. 3: The diagrams of improvement brought about by compositional learning
vs. size of the SUL in terms of number states (left) and components (right).

The plots in Figure 3 visualise the improvements brought about by compo-
sitional learning. This plot demonstrates that the saving due to compositional
learning increases as the number of components in SULs increases. We further
analysed the trends of our measured metrics in terms of the number of states
and the number of parallel components. These trends are depicted for the total
number of input symbols in Figure 4 and for the number of resets in Figure 5,
respectively. These figures indicate that the increase of both metrics with the
number of states is more moderate for the compositional learning approach, i.e.,
compositional learning is more scalable. More importantly, the right-hand-side

Compositional Learning for Interleaving Parallel Automata 429

Fig. 4: The effect of FSM sizes in terms of the number of components and states
on the total number of input symbols.

of both figures signifies the effect of compositional learning when the number of
parallel components increases while the number of states remains fixed.

Figure 6 shows the effect of the number of components on the total number
of input symbols for a fixed state-space size for algorithms L∗ and CL∗. In this
plot, as the number of components increases, the corresponding dot will become
darker and larger. According to this figure, the learning cost is lower for SULs
with more components in both L∗ and CL∗. Still, for CL∗ (the right side), the
cost of learning SULs with more components is significantly lower because we
structurally learn these components essentially independently.

As mentioned in Section 4.2, the cost of the CE distillation process can
increase exponentially in the size of the counter-example. However, in practice,
it seems to be much more tractable. To evaluate this, we count the number
of input symbols required by the CE distillation process to learn each SUL.
The median value of this metric is 1961 input symbols, which is insignificant
compared the total cost of learning. In fact, the cost of CE distillation process
for each group in Table 1 is between 0.037 and 0.12 percent of the total learning
cost; the reported total learning cost (total number of input symbols) includes
the cost of CE distillation.

5.4 Threats to Validity

In this section, we summarise the major threats to the validity of our empirical
conclusions. First, we analyse the threats to conclusion validity, i.e., whether the
empirical conclusions necessarily follow from the experiments carried out. Then,
we discuss the threats to external validity concerning the generalisation of our
results to other systems.

We mitigated conclusion validity threats by using statistical tests to ensure
that our observations (both in terms of improvement percentages in Tables 1 and
2 and the visual observations in Figures 2) do represent a statistically significant
improvement. We opt for one-sided paired sample T-tests in order to minimise

430 F. Labbaf et al.

Fig. 5: The effect of the size of FSMs in terms of the number of components and
states on the total number of required input resets.

Fig. 6: The relation between the total number of symbols and the number of
states and components for the algorithms L∗ (left) and CL∗ (right).

the threats to conclusion validity. We only conclude that the CL∗ is more efficient
than the L∗ when there is a meaningful difference (p < 0.05) between the results
of L∗ and CL∗. To make sure that the chosen statistical test is applicable, we
analysed the distribution of the data first.

We mitigated the risk of conclusion validity by using subject systems that
are based on practical systems rather than using randomly generated FSMs.
However, further research is needed to analyse the performance of our approach
based on other benchmarks from other domains. We also mitigated the effect
of using random equivalence queries by repeating the experiments with a final
deterministic query.

Compositional Learning for Interleaving Parallel Automata 431

6 Conclusions

In this paper, we presented a compositional learning method based on Angluin’s
algorithm L∗ that detects and independently learns interleaving parallel compo-
nents of the system under learning. We proved that our algorithm, called CL∗, is
correct and we empirically showed that it causes significant gains in the number
of input symbols and the number of resets in a learning campaign. The gain is
significantly increased with the number of parallel components.

Our algorithm is naturally amenable to parallelisation and developing a
parallel implementation is a natural next step. A more thorough investigation
of counter-example processing in order to efficiently find a minimal counter-
example is an area of further research, particularly, in the light of the recent
results in this area [13]. Finding a trade-off between using deterministic and ran-
dom (or mutation-based) equivalence queries is another area of future research.
We would also like to investigate the possibility of developing equivalence queries
that take the structure of the systems into account: we have observed that much
of the effort in the final equivalence query (on the composed system) is redundant
and the final equivalence query can be made much more efficient by only consid-
ering the dependencies among purportedly independent partitions. Finally, ex-
tending our notion of parallel composition to allow for a possible synchronisation
of components is another direction of future work; we believe inspirations from
concurrency theory and in particular, Milner and Moller’s prime decomposition
theorem [26] may prove effective in this regard. Independently from our work,
Neele and Sammartino [29] proposed an approach to learn synchronous parallel
composition, under the assumption of knowing the alphabets of the components.
This is a promising approach to incorporate synchronous parallel composition
into our framework.

Acknowledgments

We would like to thank Rasta Tadayon and Amin Asadi Sarijalou for their
contributions to the early stages of this work. The work of Mohammad Reza
Mousavi was supported by the UKRI Trustworthy Autonomous Systems Node in
Verifiability, Grant Award Reference EP/V026801/2. We thank the reviewers of
FOSSACS for their insightful and constructive comments, which, in our view, led
to improvements in our final paper. We thank the Artifact Evaluation committee
at ESOP/FOSSACS for their careful review of our lab package.

References

1. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free.
In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxem-
bourg, March 18-22, 2013. pp. 461–468. IEEE Computer Society (2013).
https://doi.org/10.1109/ICSTW.2013.60

https://doi.org/10.1109/ICSTW.2013.60

432 F. Labbaf et al.

2. Aarts, F., Schmaltz, J., Vaandrager, F.W.: Inference and abstraction of the biomet-
ric passport. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification, and Validation - 4th International Symposium on Lever-
aging Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 6415, pp. 673–686.
Springer (2010). https://doi.org/10.1007/978-3-642-16558-0 54

3. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mu-
tation testing. Journal of Automated Reasoning 63(4), 1103–1134 (2019).
https://doi.org/10.1007/s10817-018-9486-0

4. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning
and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim,
H. (eds.) Tests and Proofs - 14th International Conference, TAP@STAF 2020,
Bergen, Norway, June 22-23, 2020, Proceedings [postponed]. Lecture Notes in Com-
puter Science, vol. 12165, pp. 3–22. Springer (2020). https://doi.org/10.1007/978-
3-030-50995-8 1

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed au-
tomata. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. pp. 444–462. Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5 25

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

7. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based
Testing of Reactive Systems, Advanced Lectures [The volume is the outcome of a
research seminar that was held in Schloss Dagstuhl in January 2004], Lecture Notes
in Computer Science, vol. 3472. Springer (2005). https://doi.org/10.1007/b137241

8. Cifuentes, C., Simon, D.: Procedure abstraction recovery from binary code. In: Pro-
ceedings of the Fourth European Conference on Software Maintenance and Reengi-
neering. pp. 55–64. IEEE (2000). https://doi.org/10.1109/CSMR.2000.827306

9. Damasceno, C.D.N., Mousavi, M.R., da Silva Simão, A.: Learning by sampling:
learning behavioral family models from software product lines. Empir. Softw. Eng.
26(1), 4 (2021). https://doi.org/10.1007/s10664-020-09912-w

10. al Duhaiby, O., Groote, J.F.: Active learning of decomposable systems. In: Bae, K.,
Bianculli, D., Gnesi, S., Plat, N. (eds.) FormaliSE@ICSE 2020: 8th International
Conference on Formal Methods in Software Engineering, Seoul, Republic of Korea,
July 13, 2020. pp. 1–10. ACM (2020). https://doi.org/10.1145/3372020.3391560

11. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10-14, 2017. pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

12. Frohme, M., Steffen, B.: Compositional learning of mutually recursive proce-
dural systems. Int. J. Softw. Tools Technol. Transf. 23(4), 521–543 (2021).
https://doi.org/10.1007/s10009-021-00634-y

13. Frohme, M., Steffen, B.: From languages to behaviors and back. In: Jansen, N.,
Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed
Automata to Model Learning - Essays Dedicated to Frits Vaandrager on the Oc-
casion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13560, pp.
180–200. Springer (2022). https://doi.org/10.1007/978-3-031-15629-8 11

14. Garhewal, B., Vaandrager, F.W., Howar, F., Schrijvers, T., Lenaerts, T., Smits,
R.: Grey-box learning of register automata. In: Dongol, B., Troubitsyna, E. (eds.)

https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-50995-8_1
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/b137241
https://doi.org/10.1109/CSMR.2000.827306
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1145/3372020.3391560
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/978-3-031-15629-8_11

Compositional Learning for Interleaving Parallel Automata 433

Integrated Formal Methods - 16th International Conference, IFM 2020, Lugano,
Switzerland, November 16-20, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12546, pp. 22–40. Springer (2020). https://doi.org/10.1007/978-3-030-
63461-2 2

15. Hooimeijer, B., Geilen, M., Groote, J.F., Hendriks, D., Schiffelers, R.R.H.: Con-
structive model inference: Model learning for component-based software ar-
chitectures. In: Fill, H., van Sinderen, M., Maciaszek, L.A. (eds.) Proceed-
ings of the 17th International Conference on Software Technologies, ICSOFT
2022, Lisbon, Portugal, July 11-13, 2022. pp. 146–158. SCITEPRESS (2022).
https://doi.org/10.5220/0011145700003266

16. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bib-
liography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K.
(eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits
- International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 123–148.
Springer (2018). https://doi.org/10.1007/978-3-319-96562-8 5

17. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy
partition refinement. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey
from Process Algebra via Timed Automata to Model Learning : Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday, pp. 321–338. Springer
Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 17

18. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from
languages to program structures. Machine Learning 96(1), 65–98 (2014).
https://doi.org/10.1007/s10994-013-5419-7

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) Run-
time Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8734,
pp. 307–322. Springer (2014). https://doi.org/10.1007/978-3-319-11164-3 26

20. Jones, E., Oliphant, T., Peterson, P.: Scipy: Open source scientific tools for python
(01 2001). https://doi.org/10.1038/s41592-019-0686-2

21. Kearns, M.J., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press (1994). https://doi.org/10.7551/mitpress/3897.001.0001

22. Koschke, R.: Architecture Reconstruction, p. 140–173. Springer-Verlag, Berlin, Hei-
delberg (2009). https://doi.org/10.1007/978-3-540-95888-8 6

23. Labbaf, F., Groot, J.F., Hojjat, H., Mousavi, M.R.: Compositional
Learning for Interleaving Parallel Automata (CL-Star) (Apr 2023).
https://doi.org/10.5281/zenodo.7624699, https://doi.org/10.5281/zenodo.

7624699

24. Lachmann, R., Lity, S., Lischke, S., Beddig, S., Schulze, S., Schaefer, I.:
Delta-oriented test case prioritization for integration testing of software prod-
uct lines. In: Proceedings of the 19th International Conference on Software
Product Line. p. 81–90. SPLC ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2791060.2791073

25. Lity, S., Lachmann, R., Lochau, M., Schaefer, I.: Delta-oriented software product
line test models-the body comfort system case study. Tech. Rep. 2012-07, TU
Braunschweig (2012)

26. Milner, R., Moller, F.: Unique decomposition of processes. Theoretical Computer
Science 107(2), 357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T,
https://www.sciencedirect.com/science/article/pii/030439759390176T

https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.5220/0011145700003266
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1007/978-3-540-95888-8_6
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.5281/zenodo.7624699
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1016/0304-3975(93)90176-T
https://www.sciencedirect.com/science/article/pii/030439759390176T

434 F. Labbaf et al.

27. Moerman, J.: Learning product automata. In: Unold, O., Dyrka, W., Wieczorek,
W. (eds.) Proceedings of The 14th International Conference on Grammatical Infer-
ence 2018. Proceedings of Machine Learning Research, vol. 93, pp. 54–66. PMLR
(feb 2019), https://proceedings.mlr.press/v93/moerman19a.html

28. Naeem Irfan, M., Oriat, C., Groz, R.: Model inference and testing. Advances in
Computers, vol. 89, pp. 89–139. Elsevier (2013). https://doi.org/10.1016/B978-
0-12-408094-2.00003-5, https://www.sciencedirect.com/science/article/pii/
B9780124080942000035

29. Neele, T., Sammartino, M.: Compositional Automata Learning of Synchronous
Systems. In: Lambers, L., Uchitel, S. (eds.) FASE 2023. Lecture Notes in Computer
Science, Springer (2023)

30. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning and experi-
mentation. In: Baresi, L., Heckel, R. (eds.) Fundamental Approaches to Software
Engineering. pp. 377–380. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
https://doi.org/10.1145/1081180.1081189

31. Rivest, R., Schapire, R.: Inference of finite automata using hom-
ing sequences. Information and Computation 103(2), 299–347 (1993).
https://doi.org/10.1006/inco.1993.1021

32. Sanchez, L., Groote, J.F., Schiffelers, R.R.H.: Active learning of industrial software
with data. In: Hojjat, H., Massink, M. (eds.) Fundamentals of Software Engineer-
ing - 8th International Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 11761, pp. 95–110.
Springer (2019). https://doi.org/10.1007/978-3-030-31517-7 7

33. Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M.J., Conchon, S., Zäıdi, F.
(eds.) Formal Methods and Software Engineering - 17th International Conference
on Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-5, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9407, pp. 67–83. Springer
(2015). https://doi.org/10.1007/978-3-319-25423-4 5

34. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: Formal Modeling and Analysis of Timed Systems:
17th International Conference, FORMATS 2019, Amsterdam, The Netherlands,
August 27–29, 2019, Proceedings. p. 216–235. Springer-Verlag, Berlin, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-29662-9 13

35. Tavassoli, S., Damasceno, C.D.N., Khosravi, R., Mousavi, M.R.: Adaptive be-
havioral model learning for software product lines. In: Felfernig, A., Fuentes, L.,
Cleland-Huang, J., Assunção, W.K.G., Falkner, A.A., Azanza, M., Luaces, M.Á.R.,
Bhushan, M., Semini, L., Devroey, X., Werner, C.M.L., Seidl, C., Le, V., Horcas,
J.M. (eds.) SPLC ’22: 26th ACM International Systems and Software Product Line
Conference, Graz, Austria, September 12 - 16, 2022, Volume A. pp. 142–153. ACM
(2022). https://doi.org/10.1145/3546932.3546991

36. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (jan 2017).
https://doi.org/10.1145/2967606

37. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) Proceedings
of the 28th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems TACAS 2022. Lecture Notes in Computer Science,
vol. 13243, pp. 223–243. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9 12

38. Waskom, M.L.: seaborn: statistical data visualization. Journal of Open Source
Software 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

https://proceedings.mlr.press/v93/moerman19a.html
https://doi.org/10.1016/B978-0-12-408094-2.00003-5
https://doi.org/10.1016/B978-0-12-408094-2.00003-5
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://www.sciencedirect.com/science/article/pii/B9780124080942000035
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-030-31517-7_7
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/3546932.3546991
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.21105/joss.03021

Compositional Learning for Interleaving Parallel Automata 435

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Pebble minimization: the last theorems

Gaëtan Douéneau-Tabot(�)

1 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
2 Direction générale de l’armement - Ingénierie des projets, Paris, France

doueneau@irif.fr

Abstract Pebble transducers are nested two-way transducers which can
drop marks (named “pebbles”) on their input word. Such machines can
compute functions whose output size is polynomial in the size of their
input. They can be seen as simple recursive programs whose recursion
height is bounded. A natural problem is, given a pebble transducer, to
compute an equivalent pebble transducer with minimal recursion height.
This problem has been open since the introduction of the model.
In this paper, we study two restrictions of pebble transducers, that can-
not see the marks (“blind pebble transducers” introduced by Nguyên et
al.), or that can only see the last mark dropped (“last pebble transducers”
introduced by Engelfriet et al.). For both models, we provide an effective
algorithm for minimizing the recursion height. The key property used in
both cases is that a function whose output size is linear (resp. quadratic,
cubic, etc.) can always be computed by a machine whose recursion height
is 1 (resp. 2, 3, etc.). We finally show that this key property fails as soon
as we consider machines that can see more than one mark.

Keywords: Pebble transducers · Polyregular functions · Blind pebble
transducers · Last pebble transducers · Factorization forests.

1 Introduction

Transducers are finite-state machines obtained by adding outputs to finite auto-
mata. They are very useful in a lot of areas like coding, computer arithmetic,
language processing or program analysis, and more generally in data stream
processing. In this paper, we consider deterministic transducers which compute
functions from finite words to finite words. In particular, a deterministic two-
way transducer is a two-way automaton with outputs. This model describes
the class of regular functions, which is often considered as one of the func-
tional counterparts of regular languages. It has been intensively studied for its
properties such as closure under composition [5], equivalence with logical trans-
ductions [12] or regular expressions [7], decidable equivalence problem [14], etc.

Pebble transducers and polyregular functions. Two-way transducers can
only describe functions whose output size is at most linear in the input size.
A possible solution to overcome this limitation is to consider nested two-way

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1_21

436–455, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_21
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_21&domain=pdf

Pebble minimization: the last theorems 437

transducers. In particular, the model of k-pebble transducer has been studied
for a long time [13]. For k = 1, a 1-pebble transducer is just a two-way transducer.
For k � 2, a k-pebble transducer is a two-way transducer that, when on any
position i of its input word, can call a (k−1)-pebble transducer. The latter takes
as input the original input where position i is marked by a “pebble”. The main
two-way transducer then outputs the concatenation of all the outputs produced
along its calls. The intuitive behavior of a 3-pebble transducer is depicted in
fig. 1. It can be seen as a recursive program whose recursion stack has height 3.
The class of functions computed by pebble transducers is known as polyregular
functions. It has been intensively studied due to its properties such as closure
under composition [11], equivalence with logical interpretations [4], etc.

Input word� �

Main machine

Input word� �
Submachine called in •

pebble

Input word� �

Submachine called in •
pebblepebble

Figure 1: Behavior of a 3-pebble transducer.

Optimization of pebble transducers. Given a k-pebble transducer com-
puting a function f , a very natural problem is to compute the least possible
1 � � � k such that f can be computed by an �-pebble transducer. Further-
more, we can be interested in effectively building an �-pebble transducer for f .
Both questions are open, but they are meaningful since they ask whether we can
optimize the recursion height (i.e. the running time) of a program.

It is easy to observe that if f is computed by a k-pebble transducer, then
|f(u)| = O(|u|k). It was first claimed in a LICS 2020 paper that the minimal
recursion height � of f (i.e. the least possible � such that f can be computed by an
�-pebble transducer) was exactly the least possible � such that |f(u)| = O(|u|�).
However, Bojańczyk recently disproved this statement in [3, Theorem 6.3]: the
function inner-squaring : u1# · · ·#un �→ (u1#)n · · · (un#)n can be computed
by a 3-pebble transducer and is such that |inner-squaring(u)| = O(|u|2), but
it cannot be computed by a 2-pebble transducer. Other counterexamples were
given in [16] using different proof techniques. Therefore, computing the minimal
recursion height of f is believed to be hard, since this value not only depends
on the output size of f , but also on the word combinatorics of this output.

438 G. Dou�eneau-Tabot

Optimization of blind pebble transducers. A subclass of pebble trans-
ducers, named blind pebble transducers, was recently introduced in [17]. A
blind k-pebble transducer is somehow a k-pebble transducer, with the difference
that the positions are no longer marked when making recursive calls. The beha-
vior of a blind 3-pebble transducer is depicted in fig. 2. The class of functions
computed by blind pebble transducers is strictly included in polyregular func-
tions [10,17]. The main result of [17] shows that for blind pebble transducers, the
minimal recursion height for computing a function only depends on the growth
of its output. More precisely, if f is computed by a blind k-pebble transducer,
then the least possible 1 � � � k such that f can be computed by an blind
�-pebble transducer is the least possible � such that |f(u)| = O(|u|�).

Input word� �

Main machine

Input word� �
Submachine called in •

Input word� �

Submachine called in •

Figure 2: Behavior of a blind 3-pebble transducer.

Contributions. In this paper, we first give a new proof of the connection
between minimal recursion height and growth of the output for blind pebble
transducers. Furthermore, our proof provides an algorithm that, given a function
computed by a blind k-pebble transducer, builds a blind �-pebble transducer
which computes it, for the least possible 1 � � � k. This effective result is not
claimed in [17], and our proof techniques significantly differ from theirs. Indeed,
we make a heavy use of factorization forests, which have already been used
as a powerful tool in the study of pebble transducers [2,8,10].

Secondly, the main contribution of this paper is to show that the (effective)
connection between minimal recursion height and growth of the output also
holds for the class of last pebble transducers (introduced in [13]). Intuitively,
a last k-pebble transducer is a k-pebble transducer where a called submachine
can only see the position of its call, but not the full stack of the former positions.
The behavior of a last 3-pebble transducer is depicted in fig. 3. Observe that a
blind k-pebble transducer is a restricted version of a last k-pebble transducer.
Formally, we show that if f is computed by a last k-pebble transducer, then the
least possible � such that f can be computed by a last �-pebble transducer is
the least possible � such that |f(u)| = O(|u|�). Furthermore, our proof gives an
algorithm that effectively builds a last �-pebble transducer computing f .

Pebble minimization: the last theorems 439

Input word� �

Main machine

Input word� �
Submachine called in •

pebble

Input word� �

Submachine called in •
pebble

Figure 3: Behavior of a last 3-pebble transducer.

As a third theorem, we show that our result for last pebble transducers is
tight, in the sense that the connection between minimal recursion height and
growth of the output does not hold for more powerful models. More precisely,
we define the model of last-last k-pebble transducers, which extends last
k-pebble transducers by allowing them to see the two last positions of the calls
(and not only the last one). We show that for all k � 1, there exists a function
f such that |f(u)| = O(|u|2) and that is computed by a last-last (2k+1)-pebble
transducer, but cannot be computed by a last-last 2k-pebble transducer. The
proof of this result relies on a counterexample presented by Bojańczyk in [2].

Outline. We introduce two-way transducers in section 2. In section 3 we de-
scribe blind pebble transducers and last pebble transducers. We also state our
main results that connect the minimal recursion height of a function to the
growth of its output. Their proof goes over sections 4 to 6. In section 7, we
finally show that these results cannot be extended to two visible marks.

2 Preliminaries on two-way transducers

Capital letters A,B denote alphabets, i.e. finite sets of letters. The empty word
is denoted by ε. If u ∈ A∗, let |u| ∈ N be its length, and for 1 � i � |u| let u[i]
be its i-th letter. If i � j, we let u[i:j] be u[i]u[i+1] · · ·u[j] (empty if j < i).
If a ∈ A, let |u|a be the number of letters a occurring in u. We assume that
the reader is familiar with the basics of automata theory, in particular two-way
automata and monoid morphisms. The type of total (resp. partial, i.e. possibly
undefined on some inputs) functions is denoted S → T (resp. S ⇀ T).

The machines described in this paper are always deterministic.

Definition 2.1. A two-way transducer T = (A,B,Q, q0, F, δ, λ) consists of:
– an input alphabet A and an output alphabet B;
– a finite set of states Q with q0 ∈ Q initial and F ⊆ Q final;
– a transition function δ : Q× (A � {�,�}) ⇀ Q× {�, �};
– an output function λ : Q× (A � {�,�}) ⇀ B∗ with same domain as δ.

440 G. Dou�eneau-Tabot

The semantics of a two-way transducer T is defined as follows. When given
as input a word u ∈ A∗, T disposes of a read-only input tape containing �u�.
The marks � and � are used to detect the borders of the tape, by convention we
denote them by positions 0 and |u|+1 of u. Formally, a configuration over �u� is
a tuple (q, i) where q ∈ Q is the current state and 0 � i � |u|+1 is the position
of the reading head. The transition relation −→ is defined as follows. Given a
configuration (q, i), let (q′, �) := δ(q, u[i]). Then (q, i) −→ (q′, i′) whenever either
� = � and i′ = i−1 (move left), or � = � and i′ = i+1 (move right), with
0 � i′ � |u|+1. A run is a sequence of configurations (q1, i1) −→ · · · −→ (qn, in).
Accepting runs are those that begin in (q0, 0) and end in a configuration of the
form (q, |u|+1) with q ∈ F (and never visit such a configuration before).

The partial function f : A∗ ⇀ B∗ computed by the two-way transducer T
is defined as follows: for u ∈ A∗, if there exists an accepting run on �u�, then it
is unique, and f(u) is defined as λ(q1, (�u�)[i1]) · · ·λ(qn, (�u�)[in]) ∈ B∗. The
class of functions computed by two-way transducers is called regular functions.

Example 2.2. Let ũ be the mirror image of u ∈ A∗. Let # �∈ A be a fresh symbol.
The function map-reverse : u1# · · ·#un �→ ũ1# · · ·#ũn can be computed by a
two-way transducer, that reads each factor uj from right to left.

It is well-known that the domain of a regular function is always a regular
language (see e.g. [18]). From now on, we assume without losing generalities
that our two-way transducers only compute total functions (in other words,
they have exactly one accepting run on each �u�). Furthermore, we assume that
λ(q,�) = λ(q,�) = ε for all q ∈ Q (we only lose generality for the image of ε).

In the rest of this section, T denotes a two-way transducer with input alpha-
bet A, output alphabet B and output function λ. Now, we define the crossing
sequence in a position 1 � i � |u| of input �u�. Intuitively, it regroups the
states of the accepting run which are visited in this position.

Definition 2.3. Let u ∈ A∗ and 1 � i � |u| . Let (q1, i1) −→ · · · −→ (qn, in) be
the accepting run of T on �u�. The crossing sequence of T in i, denoted
crossuT (i), is defined as the sequence (qj)1�j�n and ij=i.

If μ : A∗ → M is a monoid morphism, we say that any m,m′ ∈ M and a ∈ A
define a μ-context that we denote by m�a�m′. It is well-known that the crossing
sequence in a position of the input only depends on the context of this position,
for a well-chosen monoid, as claimed in proposition 2.4 (see e.g. [7]).

Proposition 2.4. One can build a finite monoid T and a monoid morphism
μ : A∗ → T, called the transition morphism of T , such that for all u ∈ A∗

and 1 � i � |u|, crossuT (i) only depends on μ(u[1:i−1]), u[i] and μ(u[i+1:|u|]).
Thus we denote it crossT (μ(u[1:i−1])�u[i]�μ(u[i+1:|u|]).

Finally, let us define “the output produced below position i”.

Definition 2.5. Let u ∈ A∗ and 1 � i � |u| and q1 · · · qn := crossuT (i). We
define the production of T in i, denoted produT (i), as λ(q1, u[i]) · · ·λ(qn, u[i]).

Pebble minimization: the last theorems 441

By proposition 2.4, it also makes sense to define prodT (m�a�m′) ∈ B∗ to be
produT (i) whenever m = μ(u[1:i−1]), m′ = μ(u[i+1:|u|]) and a = u[i].

3 Blind and last pebble transducers

Now, we are ready to define formally the models of blind pebble transducers
and last pebble transducers. Intuitively, they correspond to two-way transducers
which make a tree of recursive calls to other two-way transducers.

Definition 3.1 (Blind pebble transducer [17]). For k � 1, a blind k-pebble
transducer with input alphabet A and output alphabet B is:
– if k = 1, a two-way transducer with input alphabet A and output B;
– if k � 2, a tree T 〈B1, · · · ,Bp〉 where the subtrees B1, . . . ,Bp are blind

(k−1)-pebble transducers with input A and output B; and the root label T
is a two-way transducer with input A and output alphabet {B1, . . . ,Bp}.

The (total) function f : A∗ → B∗ computed by the blind k-pebble transducer of
definition 3.1 is built in a recursive fashion, as follows:
– for k = 1, f is the function computed by the two-way transducer;
– for k � 2, let u ∈ A∗ and (q1, i1) −→ · · · −→ (qn, in) be the accepting run

of T = (A,B,Q, q0, F, δ, λ) on �u�. For all 1 � j � n, let fj : A∗ → B∗

be the concatenation of the functions recursively computed by the sequence
λ(qj , (�u�)[ij]) ∈ {B1, . . . ,Bp}∗. Then f(u) := f1(u) · · · fn(u).

The behavior of a blind 3-pebble transducer is depicted in fig. 2.

Example 3.2. The function unmarked-square : A∗ → A∗ � {#}, u 	→ (u#)|u| can
be computed by a blind 2-pebble transducer. This machine has shape T 〈T ′〉:
T calls T ′ on each position 1 � i � |u| of its input u, and T ′ outputs u#.

The class of functions computed by a blind k-pebble transducer for some k � 1
is called polyblind functions [10]. They form a strict subclass of polyregular
functions [8,10,17] which is closed under composition [17, Theorem 6.1].

Now, let us define last pebble transducers. They corresponds to blind pebble
transducers enhanced with the ability to mark the current position of the input
when doing a recursive call. Formally, this position is underlined and we define
u•i := u[1] · · ·u[i−1]u[i]u[i+1] · · ·u[|u|] for u ∈ A∗ and 1 � i � |u|.

Definition 3.3 (Last pebble transducer [13]). For k � 1, a last k-pebble
transducer with input alphabet A and output alphabet B is:
– if k = 1, a two-way transducer with input alphabet A �A and output B;
– if k � 2, a tree T 〈L1, · · · ,Lp〉 where the subtrees L1, . . . ,Lp are last

(k−1)-pebble transducers with input A and output B; and the root label T
is a two-way transducer with input A�A and output alphabet {L1, . . . ,Lp}.

The (total) function f : (A�A)∗ → B∗ computed by the last k-pebble transducer
of definition 3.3 is defined in a recursive fashion, as follows:
– for k = 1, f is the function computed by the two-way transducer;

442 G. Dou�eneau-Tabot

– for k � 2, let u ∈ A∗ and (q1, i1) −→ · · · −→ (qn, in) be the accepting run of
T = (A�A,B,Q, q0, F, δ, λ) on �u�. For all 1 � j � n, let fj : A∗ → B∗ be
the concatenation of the functions recursively computed by λ(qj , (�u�)[ij]) ∈
{L1, . . . ,Lp}∗. Let τ : (A � A)∗ → A∗ be the morphism which erases the
underlining (i.e. τ(a) = a), then f(u) := f1(τ(u)•i1) · · · fn(τ(u)•in).

The behavior of a last 3-pebble transducer is depicted in fig. 3. Observe that our
definition builds a function of type (A�A)∗ → B∗, but we shall in fact consider
its restriction to A∗ (the marks are only used within the induction step).

Example 3.4 ([1]). The function square : u �→ (u•1)# · · · (u•|u|)# can be com-
puted by a last 2-pebble transducer, which successively marks and makes recurs-
ive calls in positions 1, 2, etc. However this function is not polyblind [17].

We are ready to state our main result. Its proof goes over sections 4 to 6.

Theorem 3.5 (Minimization of the recursion height). Let 1 � � � k. Let
f : A∗ → B∗ be computed by a blind k-pebble transducer (resp. by a last k-pebble
transducer). Then f can be computed by a blind �-pebble transducer (resp. by a
last �-pebble transducer) if and only if |f(u)| = O(|u|�).
This property is decidable and the construction is effective.

As an easy consequence, the class of functions computed by last pebble trans-
ducers form a strict subclass of the polyregular functions (because theorem 3.5
does not hold for the full model of pebble transducers [3, Theorem 6.3]) and
therefore it is not closed under composition (because any polyregular function
can be obtained as a composition of regular functions and squares [1]).

Even if a (non-effective) theorem 3.5 was already known for blind pebble
transducers [17, Theorem 7.1], we shall first present our proof of this case. Indeed,
it is a new proof (relying on factorization forests) which is simpler than the
original one. Furthermore, understanding the techniques used is a key step for
understanding the proof for last pebble transducers presented afterwards.

4 Factorization forests

In this section, we introduce the key tool of factorization forests. Given a monoid
morphism μ : A∗ → M and u ∈ A∗, a μ-factorization forest of u is an unranked
tree structure defined as follows. We use the brackets 〈· · ·〉 to build a tree.

Definition 4.1 (Factorization forest [19]). Given a morphism μ : A∗ → M
and u ∈ A∗, we say that F is a μ-forest of u if:
– either u = ε and F = ε; or u = 〈a〉 ∈ A and F = a;
– or F = 〈F1, · · · ,Fn〉, u = u1 · · ·un, for all 1 � i � n, Fi is a μ-forest of

ui ∈ A+, and if n � 3 then μ(u) = μ(u1) = · · · = μ(un) is idempotent.

We use the standard tree vocabulary of height, child, sibling, descendant and
ancestor (a node being itself one of its ancestors/descendants), etc. We denote
by NodesF the set of nodes of F . In order to simplify the statements, we identify

Pebble minimization: the last theorems 443

a node t ∈ NodesF with the subtree rooted in this node. Thus NodesF can
also be seen as the set of subtrees of F , and F ∈ NodesF . We say that a node
is idempotent if it has at least 3 children. We denote by Forestsμ(u) (resp.
Forestsdμ(u)) the set of μ-forests of u ∈ A∗ (resp. μ-forests of u ∈ A∗ of height at
most d). We write Forestsμ and Forestsdμ of all forests (of any word).

A μ-forest of u ∈ A∗ can also be seen as “the word u with brackets” in
definition 4.1. Therefore Forestsμ can be seen as a language over Â := A� {〈, 〉}.
In this setting, it is well-known that μ-forests of bounded height can effectively
be computed by a rational function, i.e. a particular case of regular function
that can be computed by a non-deterministic one-way transducer (see e.g. [8]).

Theorem 4.2 (Simon [19,6]). Given a morphism μ : A∗ → M into a finite
monoid M, one can effectively build a rational function forestμ : A∗ → (Â)∗ such
that for all u ∈ A∗, forestμ(u) ∈ Forests3|M|

μ (u).

Building μ-forests of bounded height is especially useful for us, since it enables
to decompose any word in a somehow bounded way. This decomposition will be
guided by the following definitions, that have been introduced in [8,10]. First,
we define iterable nodes as the middle children of idempotent nodes.

Definition 4.3. Let F ∈ Forestsμ(u). Its iterable nodes, denoted IterF , are:
– if F = 〈a〉 ∈ A or F = ε, then IterF := ∅;
– otherwise if F = 〈F1, · · · ,Fn〉, then:

IterF := {Fi : 2 � i � n−1} ∪
⋃

1�i�n

IterFi .

Now, we define the notion of skeleton of a node t, which contains all the des-
cendants of t except those which are iterable.

Definition 4.4 (Skeleton, frontier). Let F ∈ Forestsμ(u), t ∈ NodesF , we
define the skeleton of t, denoted SkelF (t), by:
– if t = 〈a〉 ∈ A is a leaf, then SkelF (t) := {t};
– otherwise if t = 〈F1, · · · ,Fn〉, then SkelF (t) := {t} ∪ SkelF (F1)∪ SkelF (Fn).

The frontier of t is the set FrF (t) ⊆ [1:|u|] containing the positions of u which
belong to SkelF (t) (when seen as leaves of the μ-forest F over u).

Example 4.5. Let M := ({−1, 1, 0},×) and μ : M∗ → M the product. A μ-forest
F of the word (−1)(−1)0(−1)000000 is depicted in Figure 4. Double lines denote
idempotent nodes. The set of blue nodes is the skeleton of the topmost blue node.

It is easy to observe that for F ∈ Forestsdμ(u), the size of a skeleton, or of
a frontier, is bounded independently from F . Furthermore, the set of skeletons
{SkelF (t) : t ∈ IterF ∪ {F}} is a partition of NodesF [8, Lemma 33]. As a
consequence, the set of frontiers {FrF (t) : t ∈ IterF ∪ {F}} is a partition of
[1:|u|]. Given a position 1 � i � |u|, we can thus define the origin of i in F ,
denoted originF (i), as the unique t ∈ IterF ∪ {F} such that i ∈ FrF (t).

444 G. Dou�eneau-Tabot

−1 −1 0 −1 0 0 0 0 0 0

Figure 4: F ∈ Forestsμ((−1)(−1)0(−1)000000) and a skeleton.

Definition 4.6 (Observation). Let F ∈ Forestsμ and t, t′ ∈ NodesF . We say
that t ∈ NodesF observes t′ ∈ NodesF if either t′ is an ancestor of t, or t′ is
the immediate right or left sibling of an ancestor of t.

Nodes that observe •

• observes these nodes

Figure 5: Nodes that observe • and that • observes

The intuition behind the notion of observation (which is not symmetrical) is
depicted in fig. 5. Note that in a forest of bounded height, the number of nodes
that some t observes is bounded. This will be a key argument in the following.
We say that t and t′ are dependent if either t observes t′ or the converse. Given
F , we can translate these notions to the positions of u: we say that i observes
(resp. depends on) i′ if originF (i) observes (resp. depends on) originF (i′).

5 Height minimization of blind pebble transducers

In this section, we show theorem 3.5 for blind pebble transducers. We say that
a two-way transducer T is a submachine of a blind pebble transducer B if T
labels a node in the tree description of B. If B = T 〈B1, . . . ,Bn〉, we say that
the submachine T is the head of B. We let the transition morphism of B
be the cartesian product of all the transition morphisms of all the submachines
of B. Observe that it makes sense to consider the production of a submachine
T in a context defined using the transition morphism of B.

Pebble minimization: the last theorems 445

5.1 Pumpability

We first give a sufficient condition, named pumpability, for a blind k-pebble
transducer to compute a function f such that |f(u)| �= O(|u|k−1). The behavior
of a pumpable blind 2-pebble transducer is depicted in fig. 6 over a well-chosen
input: it has a factor in which the head T1 calls a submachine T2, and a factor
in which T2 produces a non-empty output. Furthermore both factors can be
iterated without destroying the runs of these machines (due to idempotents).

Definition 5.1. Let B be a blind k-pebble transducer whose transition morph-
ism is μ : A∗ → T. We say that the transducer B is pumpable if there exists:
– submachines T1, . . . ,Tk of B, such that T1 is the head of B;
– m0, . . . ,mk, �1, . . . , �k, r1, . . . , rk ∈ μ(A∗);
– a1, . . . , ak ∈ A such that for all 1 � j � k, ej := �jμ(aj)rj is an idempotent;
– a permutation σ : [1:k] → [1:k];

such that if Mj
i := miei+1mi+1 · · · ejmj for all 0 � i � j � k, and if we define

the following context for all 1 � j � k:

Cj := Mσ(j)−1
0 eσ(j)�σ(j)�aσ(j)�rσ(j)eσ(j)Mk

σ(j)

then for all 1 � j � k−1, |prodTj
(Cj)|Tj+1 �= 0, and prodTk

(Ck) �= ε.

a1 a2� �
m0 e1 �1 �a1� r1 e1 m1 e2 �2 μ(a2) r2 e2 m2

a1 a2� �
m0 e1 �1 μ(a1) r1 e1 m1 e2 �2 �a2� r2 e2 m2

T1 head

T2
λ �= ε

Call T2

Figure 6: Pumpability in a blind 2-pebble transducer.

Lemma 5.2 follows by choosing inverse images in A∗ for the mi, �i and ri.

Lemma 5.2. Let f be computed by a pumpable blind k-pebble transducer. There
exists words v0, . . . , vk, u1, . . . , uk such that |f(v0uX

1 · · ·uX
k vk)| = Θ(Xk).

Now, we use pumpability as a key ingredient for showing theorem 3.5, which
directly follows by induction from the more precise theorem 5.3.

Theorem 5.3 (Removing one layer). Let k � 2 and f : A∗ → B∗ be
computed by a blind k-pebble transducer B. The following are equivalent:
1. |f(u)| = O(|u|k−1);

446 G. Dou�eneau-Tabot

2. B is not pumpable;
3. f can be computed by a blind (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective.

Proof. Item 3 ⇒ item 1 is obvious. Item 1 ⇒ item 2 is lemma 5.2. Furthermore,
pumpability can be tested by an enumeration of μ(A∗) and A. It remains to
show item 2 ⇒ item 3 (in an effective fashion): this is the purpose of section 5.2.

5.2 Algorithm for removing a recursion layer

Let k � 2 and U be a blind k-pebble transducer that is not pumpable, and that
computes f : A∗ → B∗. We build a blind (k−1)-pebble transducer U for f .

Let μ : A∗ → T be the transition morphism of U . We shall consider that, on
input u ∈ A∗, the submachines of U can in fact use forestμ(u) ⊆ (Â)∗ as input.
Indeed forestμ is a rational function (by theorem 4.2), hence its information can
be recovered by using a lookaround. Informally, the lookaround feature enables
a two-way transducer to chose its transitions not only depending on its current
state and current letter u[i] in position 1 � i � |u|, but also on a regular property
of the prefix u[1:i−1] and the suffix u[i+1:|u|]. It is well-known that given a two-
way transducer T with lookarounds, one can build an equivalent T ′ that does
not have this feature (see e.g. [15,12]). Furthermore, even if the accepting runs
of T and T ′ may differ, they produce the same outputs from the same positions
(this observation will be critical for last pebble transducers, in order to ensure
that the marked positions of the recursive calls will be preserved).

Now, we describe the two-way transducers that are the submachines of U .
First, it has submachines old-T for T a submachine of U , which are described
in algorithm 1. Intuitively, old-T is just a copy of T . It is clear that if T is a
submachine of U , then old-T (u) is the concatenation of the outputs produced
by (the recursive calls of) T along its accepting run on �u�.

Algorithm 1: Submachines that behave as the original ones
1 Submachine old-T (u)
2 ρ := accepting run of T over �u�; λ := output function of T ;
3 for (q, i) ∈ ρ do
4 if T is a leaf of U then
5 Output λ(q, (�u�)[i]); /* T has output in B∗; */
6 else
7 for B′ ∈ λ(q, (�u�)[i]) do
8 T ′ := head of B′;
9 Call old-T ′(u); /* T makes recursive calls; */

10 end
11 end
12 end

Pebble minimization: the last theorems 447

U also has submachines accelerate-T for T a submachine of U , which are
described in algorithm 2. Intuitively, accelerate-T simulates T while trying to
inline recursive calls in its own run. More precisely, let u ∈ A∗ be the input and
F := forestμ(u). If T calls B′ in 1 � i � |u| that belongs to the frontier of
the root node F of F , then accelerate-T inlines the behavior of the head of B′.
Otherwise it makes a recursive call, except if B′ is a leaf of U . Hence if T is
a submachine of U which is not a leaf, accelerate-T (u) is the concatenation of
the outputs produced by the calls of T along its accepting run.

Algorithm 2: Submachines that try to simulate their recursive calls
1 Submachine accelerate-T (u)
2 /* T is not a leaf of U (i.e. it makes calls); */
3 ρ := accepting run of T over �u�; F := forestμ(u); λ := output fun. of T ;
4 for (q, i) ∈ ρ do
5 for B′ ∈ λ(q, (�u�)[i]) do
6 T ′ := head of B′;
7 if i ∈ FrF (F) then
8 /* We can inline the call since |FrF (F)| is bounded; */
9 Inline the code of old-T ′ (u) /* (see explanations); */

10 else if B′ is a leaf of U then
11 /* Then B′ = T ′ and we can inline the call because the

output of T ′ on input u is bounded; */
12 Inline the code of old-T ′ (u) /* (see explanations); */
13 else
14 /* It is not possible to inline the call to B′, so we

make a recursive call; */
15 Call accelerate-T ′ (u);
16 end
17 end
18 end

Finally, the transducer U is obtained by defining accelerate-T to be its
head, where T is the head of U . Furthermore, we remove the submachines
old-T or accelerate-T which are never called. Observe that U indeed computes
the function f . Furthermore, we observe that U has recursion height (i.e. the
number of nested Call instructions, plus 1 for the head) k−1, since each inlining
of lines 9, 10 and 12 in algorithm 2 removes exactly one recursion layer of U .

It remains to justify that each accelerate-T can be implemented by a two-
way transducer (i.e. with lookarounds but a bounded memory). We represent
variable i by the current position of the transducer. Since it has access to F , the
lookaround can be used to check whether i ∈ FrF (F) or not (since the size of
FrF (F) is bounded). It remains to explain how the inlinings are performed:
– if i ∈ FrF (F), the two-way transducer inlines old-T ′ by executing the same

moves and calls as T ′ does. Once its computation is ended, it has to go back

448 G. Dou�eneau-Tabot

to position i. This is indeed possible since belonging to FrF (F) is a property
that can be detected by using the lookaround, hence the machine only needs
to remember that i was the �-th position of FrF (F) (� being bounded);

– else if B′ = T ′ is a blind 1-pebble transducer, we produce the output of T ′

without moving. This is possible since for all i′ �∈ FrF (F), produT ′(i′) = ε
(hence the output of T ′ on u is bounded, and its value can be determined
without moving, just by using the lookaround). Indeed, if produT ′(i′) �= ε
for such an i′ �∈ FrF (F) when reaching line 12 of algorithm 2, then the
conditions of lemma 5.4 hold, which yields a contradiction. This lemma is
the key argument of this proof, relying on the non-pumpability of U .

Lemma 5.4 (Key lemma). Let u ∈ A∗ and F ∈ Forestsμ(u). Assume that
there exists a sequence T1, . . . ,Tk of submachines of U and a sequence of posi-
tions 1 � i1, . . . , ik � |u| such that:
– T1 is the head of U ;
– for all 1 � j � k−1, |produTj

(ij)|Tj+1
�= 0 and produTk

(ik) �= ε;
– for all 1 � j � k, ij �∈ FrF (F) (i.e. originF (ij) ∈ IterF).

Then B is pumpable.

Proof (idea). We first observe that pumpability follows as soon as the nodes
originF (ij) are pairwise independent. We then show that this independence con-
dition can always be obtained, up to duplicating some iterable subtrees of F
(and some factors of u), because the behavior of a submachine in a blind pebble
transducer does not depend on the positions of the above recursive calls.

6 Height minimization of last pebble transducers

In this section, we show theorem 3.5 for last pebble transducers. The notions of
submachine, head and transition morphism for a last pebble transducer are
defined as in section 5. The transition morphism is now defined over (A �A)∗.

6.1 Pumpability

The sketch of the proof is similar to section 5. We first give an equivalent of
pumpability for last pebble transducers. The intuition behind this notion is de-
picted in fig. 7. The formal definition is however more cumbersome, since we
need to keep track of the fact that the calling position is marked.

Definition 6.1. Let L be a last k-pebble transducer whose transition morphism
is μ : (A∪A)∗ → T. We say that the transducer L is pumpable if there exists:
– submachines T1, . . . ,Tk of L , such that T1 is the head of L ;
– m0, . . . ,mk, �1, . . . , �k, r1, . . . , rk ∈ μ(A∗);
– a1, . . . , ak ∈ A such that for all 1 � j � k, ej := �jμ(aj)rj is idempotent;
– a permutation σ : [1:k] → [1:k];

Pebble minimization: the last theorems 449

such that if we let Mj
i := miei+1mi+1 · · · ejmj for all 0 � i � j � k, and if we

define the following context:

C1 := Mσ(1)−1
0 eσ(1)�σ(1)�aσ(1)�rσ(1)eσ(1)Mk

σ(1)

and for all 1 � j � k−1 the context:

Cj+1 := Mσ(j)−1
0 eσ(j)�σ(j)μ(aσ(j))rσ(j)eσ(j)Mσ(j+1)−1

σ(j)

eσ(j+1)�σ(j+1)�aσ(j+1)�rσ(j+1)eσ(j+1)Mk
σ(j+1) if σ(j) < σ(j + 1);

Cj+1 := Mσ(j)−1
0 eσ(j+1)�σ(j+1)�aσ(j+1)�rσ(j+1)eσ(j+1)

Mσ(j)−1
σ(j+1)eσ(j)�σ(j)μ(aσ(j))rσ(j)eσ(j)Mk

σ(j) otherwise;

then for all 1 � j � k−1, |prodTj
(Cj)|Tj+1 �= 0, and prodTk

(Ck) �= ε.

a1 a2� �
m0 e1 �1 �a1� r1 e1 m1 e2 �2 μ(a2) r2 e2 m2

a1 a2� �
m0 e1 �1 μ(a1) r1 e1 m1 e2 �2 �a2� r2 e2 m2

T1 head

T2
λ �= ε

Call T2

Figure 7: Pumpability in a last 2-pebble transducer.

We obtain lemma 6.2 by a proof which is similar to that of lemma 5.2.

Lemma 6.2. Let f be computed by a pumpable last k-pebble transducer. There
exists words v0, . . . , vk, u1, . . . , uk such that |f(v0uX

1 · · ·uX
k vk)| = Θ(Xk).

Theorem 6.3 (Removing one layer). Let k � 2 and f : A∗ → B∗ be
computed by a last k-pebble transducer L . The following are equivalent:
1. |f(u)| = O(|u|k−1);
2. L is not pumpable;
3. f can be computed by a last (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective.

Proof. Item 3 ⇒ item 1 is obvious. Item 1 ⇒ item 2 is lemma 6.2. Furthermore,
pumpability can be tested by an enumeration of μ(A∗) and A. It remains to
show item 2 ⇒ item 3 (in an effective fashion): this is the purpose of section 6.2.

450 G. Dou�eneau-Tabot

6.2 Algorithm for removing a recursion layer

Let k � 2 and U be a last k-pebble transducer that is not pumpable, and
that computes f : A∗ → B∗. We build a last (k−1)-pebble transducer U for
f . Let μ : (A � A)∗ → T be the transition morphism of U . As before (using a
lookaround), the submachines of U have access to forestμ(u) on input u ∈ A∗.

Now, we describe the submachines of U . It has submachines old-T -along-ρ
for T a submachine of U and ρ a run of T , which are described in algorithm 1.
Intuitively, these machines mimics the behavior of T along the run ρ (which is
not necessarily accepting) of T over �v� with v ∈ (A �A)∗.

Since they are indexed by a run ρ, it may seem that we create an infinite
number of submachines, but it will not be the case. Indeed, a run ρ will be
represented by its first configuration (q1, i1) and last configuration (qn, in). This
information is sufficient to simulate exactly the two-way moves of ρ, but there is
still an unbounded information: the positions i1 and in. In fact, the input will be
of the form v = u•i and we shall guarantee that the i1 and in can be detected by
the lookaround if i is marked. Hence the run ρ will be represented in a bounded
way, independently from the input v, and so that its first and last configurations
can be detected by the lookaround of the submachine.

It follows from algorithm 3 that if T is a submachine of U , then for all
v ∈ (A ∪A)∗ and ρ run of T on �v�, old-T -along-ρ (v) is the concatenation of
the outputs produced by (the recursive calls of) T along ρ.

We also define a submachine normal-T -along-ρ-pebble-i that is similar to
old-T -along-ρ, except that it ignores the mark of its input and acts as if it was
in position i (as above for ρ, i will be encoded by a bounded information).

Algorithm 3: Submachines that behave like the original ones
1 Submachine old-T -along-ρ(v)
2 /* v ∈ (A �A)∗; ρ is a run of T over �v�; */
3 λ := output function of T ;
4 for (q, i) ∈ ρ do
5 if T is a leaf of U then
6 Output λ(q, (�v�)[i]); /* T has output in B∗; */
7 else
8 for L ′ ∈ λ(q, (�v�)[i]) do
9 T ′ := head of L ′; ρ′ := accepting run of T ′ on �τ(v)•i�;

10 Call old-T ′-along-ρ′(τ(v)•i); /* Recursive call; */
11 end
12 end
13 end
14 Submachine normal-T -along-ρ-pebble-i(v)
15 /* v ∈ (A �A)∗; ρ is a run of T over �τ(v)•i�; */
16 Simulate old-T -along-ρ (τ(v)•i);

Pebble minimization: the last theorems 451

U also has submachines accelerate-T -along-ρ for T a submachine of U ,
which are described in algorithm 4. Intuitively, accelerate-T -along-ρ simulates
T along ρ while trying to inline some recursive calls. Whenever it is in position i
and needs to call recursively L ′ whose head is T ′, it first slices the accepting run
ρ′ of T ′ on �u•i�, with respect to forestμ(u) and i, as explained in definition 6.4
and depicted in fig. 8. Intuitively, this operation splits ρ′ into a bounded number
of runs whose positions either all observe i, or i observes all of them, or none of
these cases occur (the positions are either 0, |u|+1 or independent of i).

Definition 6.4 (Slicing). Let u ∈ A∗, F ∈ Forestsμ(u) and 1 � i � |u|. We
let ↑ i (resp. ↓ i) be the set of positions that i observes (resp. that observe i).
Let ρ = (q1, i1) −→ · · · −→ (qn, in) be a run of a two-way transducer T on �u•i�.
We build by induction a sequence �1, . . . , �N+1 with �1 := 1 and:
– if �j = n+1 then j := N and the process ends;
– else if i�j ∈ ↑ i (resp. i�j ∈ ↓ i� ↑ i, resp. i�j ∈ [0:|u|+1]� (↑ i ∪ ↓ i)), then

�j+1 is the largest index such that for all �j � � � �j+1−1, i� ∈ ↑ i (resp.
i� ∈ ↓ i� ↑ i, resp. i� ∈ [0:|u|+1]� (↑ i ∪ ↓ i)).

Finally the slicing of ρ ,with respect to F and i, is the sequence of runs ρ1, . . . , ρN
where ρj := (q�j , i�j) −→ (q�j+1, i�j+1) −→ · · · −→ (q�j+1−1, i�j+1−1).

� �
i

positions that

belong to ↓i�↑i
positions that

belong to ↑i

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
ρ7ρ8ρ9ρ10

ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17

Figure 8: Slicing of a run ρ with respect to i and F .

Now, let ρ′1, . . . , ρ
′
N be slicing of the run ρ′ of T ′ on the input u•i. For all

1 � j � N , there are mainly two cases. Either the positions of ρ′j all are in ↑ i or
↓ i. In this case, accelerate-T -along-ρ directly inlines old-T ′-along-ρ′j within its
own run (i.e. without making a recursive call). Otherwise, it makes a recursive
call to accelerate-T ′-along-ρ′j , except if L ′ is a leaf of U (thus L ′ = T ′).

Finally, U is described as follows: on input u ∈ A∗, its head is the submachine
accelerate-T -along-ρ (u), where T is the head of U and ρ is the accepting run
of T on �u� (represented by the bounded information that it is both initial
and final). As before, we remove the submachines which are never called in U .
Observe that we have created a machine with recursion height k−1 (because
line 17 in algorithm 4 prevents from calling a k-th layer).

Let us justify that each accelerate-T -along-ρ can indeed be implemented by
a two-way transducer. First, let us observe that since F has bounded height, the
number N of slices given in line 7 of algorithm 4 is bounded. Furthermore, we
claim that the first and last positions of each ρ′j belong to a given set of bounded
size, which can be detected by a lookaround which has access to i. For the ρ′j

452 G. Dou�eneau-Tabot

Algorithm 4: Submachines that try to simulate their recursive calls
1 Submachine accelerate-T -along-ρ (v)
2 /* T is not a leaf of U (i.e. it makes calls); */
3 /* v ∈ (A �A)∗; ρ is a run of T over �v�; */
4 u := τ(v); F := forestμ(u); λ := output function of T ;
5 for (q, i) ∈ ρ do
6 for L ′ ∈ λ(q, (�v�)[i]) do
7 T ′ := head of L ′; ρ′ := accepting run of T ′ over �u•i�;
8 ρ′1, · · · , ρ′N := slicing of ρ′ with respect to F and i;
9 for j = 1 to N do

10 (q1, i1) −→ · · · (qn, in) := ρ′j
11 if i1, . . . , in ∈ ↑ i then
12 /* We inline the call because n is bounded; */
13 Inline the code of old-T ′-along-ρ′j (u•i);
14 else if i1, . . . , in ∈ ↓ i then
15 /* We can inline the call because the positions

i1, . . . , in are “below” i in F; */
16 Inline the code of old-T ′-along-ρ′j (u•i);
17 else if L ′ is a leaf of U then
18 /* The output of L ′ = T ′ along ρ′j is empty; */
19 else
20 /* It is not possible to inline the call to L ′, so

we make a recursive call; */
21 Call accelerate-T ′-along-ρ′j (u•i);
22 end
23 end
24 end
25 end

whose positions are in ↑ i, this is clear since |↑ i| is bounded (because the frontier
of any node is bounded). For ↓ i� ↑ i we use lemma 6.5, which implies that this
set is a bounded union of intervals. The last case is very similar.

Lemma 6.5. Let 1 � i � |u|, t := originF (i) and t1 (resp. t2) be its immediate
left (resp. right) sibling (they exist whenever t ∈ IterF , i.e. here t �= F). Then:

↓ i� ↑ i = [min(FrF (t1)) : max(FrF (t2))]� {FrF (t1),FrF (t),FrF (t2)}.

This analysis justifies why each ρ′j can be encoded in a bounded way. Now, we
show how to implement the inlinings while using i as the current position:
– if i1, . . . , in ∈ ↑ i, then n is bounded (because |↑ i| is bounded). We can

thus inline old-T ′-along-ρ′j (u•i) while staying in position i. However, when
T ′ calls some L ′′ (of head T ′′) on position i�, we would need to call
old-T ′′-along-ρ′′(u•i�) (where ρ′′ is the accepting run of T ′′ along �u•i��).
But we cannot do this operation, since we are in position i and not in i�.
The solution is that the inlined code calls normal-T ′′-along-ρ′′-pebble-i�(u•i)

Pebble minimization: the last theorems 453

instead, which simulates an accepting run ρ′′ of T on u•i�, even if its in-
put is u•i. Note that i� can be represented as a bounded information and
recovered by a lookaround given u•i as input, since i observes i�;

– if i1, . . . , in ∈ ↓ i � ↑ i, then the nodes originF (i1), . . . , originF (in) are
roughly below originF (i) in F (see fig. 5). We inline old-T ′-along-ρ′j (u•i),
by moving along i1, . . . , in as ρ′j does. We can keep track of the height of
originF (i) above the current originF (i�) (it is a bounded information). With
the lookaround, we can detect the end of ρ′j , and go back to position i.
It remains to justify that U is correct. For this, we only need to show that

when it reaches line 18 in algorithm 4, the output of T ′ along ρ′j is indeed empty.
Otherwise, the conditions of lemma 6.6 would hold (since we never execute two
successive recursive calls in dependent positions). It provides a contradiction.

Lemma 6.6 (Key lemma). Let u ∈ A∗ and F ∈ Forestsμ(u). Assume that
there exists a sequence T1, . . . ,Tk of submachines of U and a sequence of posi-
tions 1 � i1, . . . , ik � |u| such that:
– T1 is the head of U ;
– |produT1

(i1)|T2 �= 0 and produ•ik−1

Tk
(ik) �= ε;

– for all 2 � j � k−1, |produ•ij−1

Tj
(ij)|Tj+1

�= 0;
– for all 1 � j � k−1, originF (ij) and originF (ij+1) are independent;

Then U is pumpable.

Proof (idea). As for lemma 5.4, the key observation is that pumpability follows
as soon as the nodes originF (ij) are pairwise independent. Furthermore, this
condition can be obtained by duplicating some nodes in F .

7 Making the two last pebbles visible

We can define a similar model to that of last k-pebble transducer, which sees
the two last calling positions instead of only the previous one. Let us name this
model a last-last k-pebble transducer. A very natural question is to know
whether we can show an analog of theorem 3.5 for these machines.

Note that for k = 1, 2 and 3, a last-last k-pebble transducer is exactly the
same as a k-pebble transducer. Hence the function inner-squaring of page 2 is
such that |inner-squaring(u)| = O(|u|2) and can be computed by a last-last 3-
pebble transducer, but it cannot be computed by a last-last 2-pebble transducer.
It follows that the connection between minimal recursion height and growth of
the output fails. However, this result is somehow artificial. Indeed, a last-last
2-pebble transducer is a degenerate case, since it can only see one last pebble.
More interestingly, we show that the connection fails for arbitrary heights.

Theorem 7.1. For all k � 2, there exists a function f : A∗ → B∗ such that
|f(u)| = O(|u|2) and that can be computed by a last-last (2k+1)-pebble trans-
ducer, but not by a last-last 2k-pebble transducer.

Proof (idea). We re-use a counterexample introduced by Bojańczyk in [2] to
show a similar failure result for the model of k-pebble transducers.

454 G. Dou�eneau-Tabot

8 Outlook

This paper somehow settles the discussion concerning the variants of pebble
transducers for which the minimal recursion height only depends on the growth
of the output. As soon as two marks are visible, the combinatorics of the output
also has to be taken into account, hence minimizing the recursion height in this
case (e.g. for last-last pebble transducers) seems hard with the current tools.

As observed in [13], one can extend last pebble transducers by allowing the
recursion height to be unbounded (in the spirit of marble transducers [9]).
This model enables to produce outputs whose size grows exponentially in the
size of the input. A natural question is to know whether a function computed by
this model, but whose output size is polynomial, can in fact be computed with
a recursion stack of bounded height (i.e. by a last k-pebble transducer).

Acknowledgements. The author is grateful to Tito Nguyên for suggesting the
study of the recursion height for last pebble transducers.

References

1. Bojańczyk, M.: Polyregular functions. arXiv preprint arXiv:1810.08760 (2018)
2. Bojańczyk, M.: The growth rate of polyregular functions. arXiv preprint

arXiv:2212.11631 (2022)
3. Bojańczyk, M.: Transducers of polynomial growth. In: Proceedings of the 37th

Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 1–27 (2022)
4. Bojańczyk, M., Kiefer, S., Lhote, N.: String-to-string interpretations with

polynomial-size output. In: 46th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2019 (2019)

5. Chytil, M.P., Jákl, V.: Serial composition of 2-way finite-state transducers and
simple programs on strings. In: 4th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 1977. pp. 135–147. Springer (1977)

6. Colcombet, T.: Green’s relations and their use in automata theory. In: Interna-
tional Conference on Language and Automata Theory and Applications. pp. 1–21.
Springer (2011)

7. Dave, V., Gastin, P., Krishna, S.N.: Regular transducer expressions for regular
transformations. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 315–324. ACM (2018)

8. Douéneau-Tabot, G.: Pebble transducers with unary output. In: 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2021
(2021)

9. Douéneau-Tabot, G., Filiot, E., Gastin, P.: Register transducers are marble trans-
ducers. In: 45th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2020 (2020)

10. Douéneau-Tabot, G.: Hiding pebbles when the output alphabet is unary. In: 49th
International Colloquium on Automata, Languages, and Programming, ICALP
2022 (2022)

11. Engelfriet, J.: Two-way pebble transducers for partial functions and their compos-
ition. Acta Informatica 52(7-8), 559–571 (2015)

Pebble minimization: the last theorems 455

12. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Computational Logic (TOCL) 2(2),
216–254 (2001)

13. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: Xml transformation by tree-walking
transducers with invisible pebbles. In: Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. pp.
63–72. ACM (2007)

14. Gurari, E.M.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM Journal on Computing 11(3), 448–452 (1982)

15. Hopcroft, J.E., Ullman, J.D.: An approach to a unified theory of automata. The
Bell System Technical Journal 46(8), 1793–1829 (1967)

16. Kiefer, S., Nguyên, L.T.D., Pradic, C.: Revisiting the growth of polyregular func-
tions: output languages, weighted automata and unary inputs. arXiv preprint
arXiv:2301.09234 (2023)

17. Nguyên, L.T.D., Noûs, C., Pradic, C.: Comparison-free polyregular functions. In:
48th International Colloquium on Automata, Languages, and Programming, IC-
ALP 2021 (2021)

18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3(2), 198–200 (1959)

19. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94
(1990)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Fixed Points and Noetherian Topologies

Aliaume Lopez1,2(�)

1 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
alopez@irif.fr

2 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France.

Abstract. Noetherian spaces are a generalisation of well-quasi-orderings
to topologies, that can be used to prove termination of programs. They
find applications in the verification of transition systems, some of which
are better described using topology. The goal of this paper is to al-
low the systematic description of computations using inductively defined
datatypes via Noetherian spaces. This is achieved through a fixed point
theorem based on a topological minimal bad sequence argument.

Keywords: Noetherian spaces · topology · well-quasi-orderings · initial
algebras · Kruskal’s Theorem · Higman’s Lemma.

1 Introduction

Let (E ,≤) be a set endowed with a quasi-order. A sequence (xn)n ∈ EN is good
whenever there exists i < j such that xi ≤ xj . A quasi-ordered set (E ,≤) is a
well-quasi-ordered — abbreviated as wqo — if every sequence is good. By calling
a sequence bad whenever it is not good, well-quasi-orderings are equivalently
defined as having no infinite bad sequences. This generalisation of well-founded
total orderings can be used as a basis for proving program termination. For
instance, algorithms alike Example 1.1 can be studied via well-quasi-orderings
and the length of their bad sequences [5]. More generally, one can map the
states of a run to a wqo via a so-called quasi-ranking function to both prove the
termination of the program and gain information about its runtime [27, Chapter
2]. Let us provide a concrete example of this proof scheme.

Example 1.1. Let Alg be the algorithm with three integer variables a, b, c that
non-deterministically performs one of the following operations until a, b or c
becomes negative: (l) 〈a, b, c〉 ← 〈a− 1, b, 2c〉 or (r) 〈a, b, c〉 ← 〈2c, b− 1, 1〉.
Lemma 1.2. For every choice of a, b, c ∈ N3, the algorithm Alg terminates.

Proof. Let us prove that Alg builds a bad sequence of triples when ordering N3

with (a1, b1, c1) ≤ (a2, b2, c2) whenever a1 ≤ a2, b1 ≤ b2, and c1 ≤ c2. If (ai, bi, ci)
and (aj , bj , cj) represent two configurations in a run of Alg, either only rule (l)
was fired and aj < ai, or rule (r) was fired as least once, and bj < bi.

Because (N3,≤) is a well-quasi-ordering (see Dickson’s Lemma in [28]), Alg
terminates for every choice of initial triple (a, b, c) ∈ N3.

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 22

456–476, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_22&domain=pdf
http://orcid.org/0000-0002-4205-327X
mailto:alopez@irif.fr
https://doi.org/10.1007/978-3-031-30829-1_22
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_22&domain=pdf

Fixed Points and Noetherian Topologies 457

As a combinatorial tool, well-quasi-orderings appear frequently in varying
fields of computer science, ranging from graph theory to number theory [18, 22,
21, 3]. Well-quasi-orderings have also been highly successful in proving the termi-
nation of verification algorithms. One critical application of well-quasi-orderings
is to the verification of infinite state transition systems, via the study of so-called
Well-Structured Transition Systems (WSTS) [1, 2, 16, 7].

Noetherian spaces. A major roadblock arises when using well-quasi-orders:
the powerset of a well-quasi-order may fail to be one itself [26]. This is particu-
larly problematic in the study of WSTS, where the powerset construction appears
frequently [19, 29, 1]. To tackle this issue, one can justify that the quasi-orders
of interest are not pathological, and are actually better quasi-orders [25, 23]. An-
other approach is offered by the topological notion of Noetherian space, which
as pointed out by Goubault-Larrecq, can act as a suitable generalisation of well-
quasi-orderings that is preserved under the powerset construction [10].

The topological analogues to WSTS enjoy similar decidability properties, and
there even exists an analogue to Karp and Miller’s forward analysis for Petri
nets [11]. Moreover, their topological nature allows to verify systems beyond
the reach of quasi-orderings, such as lossy concurrent polynomial programs [11].
This is possible because the polynomials are handled via results from algebraic
geometry, through the notion of the Zariski topology over Cn [12, Exercise 9.7.53].

One drawback of the topological approach is that many topologies correspond
to a single quasi-ordering. Hence, when the problem is better described via an
ordering, one has to choose a specific topology, and there usually does not exist
a finest one that is Noetherian.

Inductively defined datatypes. As for well-quasi-orders, Noetherian spaces
are stable under finite products and finite sums [28, 12]. While this can be
enough to describe the set of configurations of a Petri net using Nk, it does not
allow to talk about more complex data structures, that are typically defined
inductively, such as lists and trees. To make the above statement precise, let 1
be the singleton set, A + B be the disjoint union of A and B, and A × B their
cartesian product. Then, the set of finite words over an alphabet Σ is precisely
the least fixed point of F : X �→ 1+Σ×X. Similarly, the set of finite trees over
Σ equals lfpX .Σ ×X∗, where lfpX .F (X) denotes the least fixed point of F .

In the realm of well-quasi-orderings, the specific cases of finite words and
finite trees are handled respectively via Higman’s Lemma [18] and Kruskal’s Tree
Theorem [22]. Let us recall that a word u embeds into a word w (written u ≤∗ v)
whenever whenever there exists a strictly increasing map h : |w| → |w′| such
that wi ≤ wh(i) for 1 ≤ i ≤ |w|. Similarly, a tree t embeds into a tree t′ (written
t ≤tree t

′) whenever there exists a map from nodes of t to nodes of t′ respecting
the least common ancestor relation, and increasing the colours of the nodes.
Proofs that finite words and finite trees preserve well-quasi-orderings typically
rely on a so-called minimal bad sequence argument due to Nash-Williams [24].
However, the argument is quite subtle, and needs to be handled with care [9, 30].

458 A. Lopez

In addition, the argument is not compositional and has to be slightly modified
whenever a new inductive construction is desired [as in, e.g., 4, 3].

This picture has been adapted by Goubault-Larrecq to the topological setting
by proposing analogues of the word embedding and tree embedding, together
with a proof that they preserve Noetherian spaces [12, Section 9.7]. However,
both the definitions and the proofs have an increased complexity, as they rely
on an adapted “topological minimal bad sequence argument” that appears to be
even more subtle [14, errata n. 26]. Moreover, the newly introduced topologies
have involved definitions often relying on ad-hoc constructions.

In the case of well-quasi-orderings, two generic fixed point constructions have
been proposed to handle inductively defined datatypes [17, 8]. In these frame-
works, lfpX .F (X) is guaranteed to be a well-quasi-ordering provided that F is a
“well-behaved functor” of quasi-orders. Both proposals, while relying on different
categorical notions, successfully recover Higman’s word embedding and Kruskal’s
tree embedding through their respective definitions as least fixed points. As a side
effect, they reinforce the idea that these two quasi-orders are somehow canonical.

In the case of Noetherian spaces, no equivalent framework exists to build
inductive datatypes, and the notions of “well-behaved” constructors from [17, 8]
rule out the use of important Noetherian spaces, as they require that an element
a ∈ F (X) has been built using finitely many elements of X: while this is the
case for finite words and finite trees, it does not hold for the arbitrary powerset.
Moreover, there have been recent advances in placing Noetherian topologies over
spaces that are not straightforwardly obtained through “well-behaved” defini-
tions, such as infinite words [13], or even ordinal length words [15].

1.1 Contributions of this paper

In this paper, we propose a least fixed point theorem for Noetherian topolo-
gies. This is done in a way that greatly differs from the categorical frameworks
introduced in the study of well-quasi-orders, as the construction of the space
is entirely decoupled from the construction of the topology. In particular, the
carrier set X itself need not be inductively defined.

In this setting, we consider a fixed set X and a map R from topologies τ over
X to topologies R(τ) over X. Because the set of topologies over X is a complete
lattice, it suffices to ask for R to be monotone to guarantee that it has a least
fixed point, that we write lfpτ .R(τ). In general, this least fixed point will not
be Noetherian, but we show that a simple sufficient condition on R guarantees
that it is. This main theorem (Theorem 3.21), encapsulates all the complexity of
the topological adaptations of the minimal bad sequences arguments [12, Section
9.7], and we believe that it has its own interest.

The necessity to separate the construction of the set of points from the con-
struction of the topology might be perceived as a weakness of the theory, when
it is in fact a strength of our approach. We illustrate this by giving a shorter
proof that the words of ordinal length are Noetherian [15], without providing an

Fixed Points and Noetherian Topologies 459

inductive definition of the space. As an illustration of the versatility of our frame-
work, we introduce a reasonable topology over ordinal branching trees (with
finite depth), and prove that it is Noetherian using the same technique.

In the specific cases where the space of interest can be obtained as a least
fixed point of a “well-behaved” functor, we show how Theorem 3.21 can be
used to generalise the categorical framework of Hasegawa [17] to a topological
setting. As well as adding inductively defined topologies (hence, inductively de-
fined datatypes) to the theory of Noetherian spaces, this provide a reasonable
answer to the canonicity issue previously mentioned.

Outline. In Section 2 we recall some of the main results in the theory of Noethe-
rian spaces. In Section 3 we prove our main result (Theorem 3.21). In Section 4
we explore how this result covers existing topological results in the literature,
and provide a new non-trivial Noetherian space (Definition 4.7). In Section 5,
we leverage our main result to devise a Noetherian topology over inductively
defined datatypes (Theorem 5.13), and prove that this generalises the work of
Hasegawa over well-quasi-orders (Theorem 5.15).

2 A Quick Primer on Noetherian Topologies

A topological space is a pair (X , τ) where τ ⊆ P(X), τ is stable under finite
intersections, and τ is stable under arbitrary unions. A subset U ⊆ X is an
open subset when U ∈ τ , and a closed subset when X \ U ∈ τ . As an order-
theoretic counterpart to open and closed subsets, we say that a subest U of
a quasi-ordered set (E ,≤) is upwards-closed whenever for all x ∈ U , x ≤ y
implies y ∈ U . Similarly, a subset is downwards-closed whenever its complement
is upwards-closed. One can convert back and forth between the two as follows:

Notation 2.1. Let (E ,≤) be a quasi-order and (X , τ) be a topological space. The
Alexandroff topology alex(≤) over E is the collection of upwards-closed subsets
of E . The specialisation preorder ≤τ is defined via x ≤ τ y whenever for every
open subset U ∈ τ , if x ∈ U then y ∈ U .

It is an easy check that the specialisation pre-order of the Alexandroff topol-
ogy of a quasi-order ≤ is the quasi-order itself. Beware that several topologies
can share the same specialisation pre-order ≤, and among those, the Alexandroff
topology is the finest.

We can now build the topological analogue to wqos through the notion of
compactness: a subset K of X is defined as compact whenever from every family
(Ui)i∈I of open sets such that K ⊆ ⋃

i∈I Ui, one can extract a finite subset
J ⊆ I such that K ⊆ ⋃

i∈J Ui. A quasi-order (E ,≤) is wqo if and only if every
subset K of E is compact for alex(≤). Generalising this property to arbitrary
topological spaces (X , τ), a topological space (X , τ) is said to be a Noetherian
space whenever every subset of X is compact.

460 A. Lopez

Table 1. An algebra of Noetherian spaces [see 10, 12, 15].

Constructor Syntax Topology

Well-quasi-orders E Alexandroff topology

Complex vectors Ck Zariski topology

Disjoint sum X1 + X2 co-product topology
Product X1 ×X2 product topology

Finite words X ∗ subword topology
Finite trees T(X) tree topology
Finite multisets X� multiset topology

Transfinite words X<α transfinite subword topology
Powerset P(X) Lower-Vietoris

Remark 2.2. A space (X , τ) is Noetherian if and only if for every increasing
sequence of open subsets (Ui)i∈N, there exists j ∈ N such that

⋃
i∈N Ui =

⋃
i≤j Ui.

In order to inductively define Noetherian spaces, we will often rely on basic
constructors such as the disjoint sum and the finite product. For completeness,
we recall in Table 1 usual constructors that preserve Noetherian spaces. This
table also illustrate the versatility of the concept, that encompasses both the
algebraic properties of Ck and the order properties of well-quasi-orders.

3 Refinements of Noetherian topologies

Let us fix a set X . The collection of topologies over X is itself a set, and forms
a complete lattice for inclusion. In this lattice, the least element is the trivial
topology τtriv := {∅,X}, and the greatest element is the discrete topology P(X).
Thanks to Tarski’s fixed point theorem, every monotone function R mapping
topologies over X to topologies over X has a least fixed point, which can be
obtained by transfinitely iterating R from the trivial topology. Writing lfpτ .R(τ)
for the least fixed point of R, our goal is to provide sufficient conditions for
(X , lfpτ .R(τ)) to be Noetherian.

Definition 3.1. A refinement function over a set X is a function R mapping
topologies over X to topologies over X . Moreover, we assume that R(τ) is Noethe-
rian whenever τ is, and that R(τ) ⊆ R(τ ′) when τ ⊆ τ ′.

As (X , τtriv) is always Noetherian, (X ,Rn(τtriv)) is Noetherian for all n ∈ N
and refinement function R. However, it remains unclear whether the transfinite
iterations needed to reach a fixed point preserve Noetherian spaces.

We demonstrate in Example 3.2 how to obtain the topology alex(≤) over
N as a least fixed point of some simple refinement function. Before that, let us
define the notion of upwards-closure: given a quasi-order (E ,≤) and a set E ⊆ E ,
let us define the upwards-closure of E, written ↑≤ E, as the set of elements that
are greater or equal than some element of E in E .

Fixed Points and Noetherian Topologies 461

Example 3.2 (Natural Numbers). Over X := N, one can define Div(τ) as the
collection of the sets ↑≤ (U + 1) for U ∈ τ , plus N itself. Then Div(τtriv) =
{∅, ↑≤ 1,N}, Div2(τtriv) = {∅, ↑≤ 1, ↑≤ 2,N}. More generally, for every k ≥ 0,

Divk(τtriv) = {∅, ↑≤ 1, . . . , ↑≤ k,N}. It is an easy check that lfpτ .Div(τ) is pre-
cisely alex(≤), which is Noetherian because (N,≤) is a well-quasi-ordering.

3.1 An ill-behaved refinement function

Not all refinement functions behave as nicely as in Example 3.2, and one can
obtain non-Noetherian topologies via their least fixed points.

Let us consider for this section Σ := {a, b} with the discrete topology, i.e.,
{∅, {a}, {b}, Σ}. Let us now build the set Σ∗ of finite words over Σ. Whenever
U and V are subsets of Σ∗, let us write UV for their concatenation, defined
as {uv : u ∈ U, v ∈ V }. To construct an ill-behaved refinement function, we will
associate to a topology τ the set {UV : U ∈ {∅, {a}, {b}, Σ} , V ∈ τ}. However,
the latter fails to be a topology in general. This problem frequently appears in
this paper, and is solved by considering the so-called generated topology.

Let us briefly recall that for every set X and collection of subsets B ⊆
P(X), one can construct the topology generated from B as the least topology
on X containing B. This topology coincides with the one containing arbitrary
unions of finite intersections of subsets in B. We say that B is a subbasis of τ
when τ is the topology generated by B. Alexanders’s Subbase Lemma allows to
study Noetherian spaces in this setting [12, Thm. 4.4.29]: it states that checking
whether a subset K of X is compact in τ can be done by considering only open
subsets in B, i.e., that for every family (Ui)i∈I of a subbasis B of τ such that
K ⊆ ⋃

i∈I Ui, one can extract a finite subset J ⊆ I such that K ⊆ ⋃
j∈J Uj .

Definition 3.3. Let Rpref be the function mapping a topology τ over Σ∗ to the
topology generated by the sets UV where U ⊆ Σ and V ∈ τ ,

We refer to Figure 1 for a graphical presentation of the first two iterations
of the refinement function Rpref . For the sake of completeness, let us compute
lfpτ .Rpref(τ), which is the Alexandroff topology of the prefix ordering on words.

Definition 3.4. The prefix topology3 τpref∗ , over Σ
∗ is generated by the follow-

ing open sets: U1 . . . UnΣ
∗, where n ≥ 0 and Ui ⊆ Σ.

Lemma 3.5. The prefix topology over Σ∗ is the least fixed point of Rpref.

Lemma 3.6. The function Rpref is a refinement function.

Proof. It is an easy check that whenever τ ⊆ τ ′, Rpref(τ) ⊆ Rpref(τ
′). Now, as-

sume that τ is Noetherian, it remains to prove that Rpref(τ) remains Noetherian.
Consider a subset E ⊆ Σ∗ and let us prove that E is compact in Rpref(τ).

3 This definition differs from what is called the “prefix topology” in the literature
[see 6, 12, resp. Section 8 and Exercise 9.7.36].

462 A. Lopez
Σ∗

∅

Σ∗

∅

aΣ∗ bΣ∗

Σ∗

∅

aΣ∗ bΣ∗

aaΣ∗ abΣ∗ baΣ∗ bbΣ∗

Fig. 1. Iterating Rpref over Σ
∗. On the left the trivial topology τtriv, followed by Rpref ,

and on the right Rpref
2.

For that, we consider an open cover E ⊆ ⋃
i∈I Wi, where Wi ∈ Rpref(τ).

Thanks to Alexander’s subbase lemma, we can assume without loss of generality
that Wi is a subbasic open set of Rpref(τ), that is, Wi = UiVi with Ui ⊆ Σ and
Vi ∈ τ .

Since (Σ∗, τ) × (Σ∗, τ) is Noetherian (see Table 1), there exists a finite set
J ⊆ I such that

⋃
i∈J Ui × Vi =

⋃
i∈I Ui × Vi. This implies that E ⊆ ⋃

i∈J UiVi,
and provides a finite subcover of E. ��

The sequence
⋃

0≤i≤k a
ibΣ∗, for k ∈ N, is a strictly increasing sequence of

opens. Therefore, the prefix topology is not Noetherian. The terms aibΣ∗ can
be observed in Figure 1 as a diagonal of incomparable open sets.

Corollary 3.7. The topology lfpτ .Rpref(τ) is not Noetherian.

The prefix topology is not Noetherian, even when starting from a finite al-
phabet. However, we claimed in Section 1 that there is a natural generalisation
of the subword embedding to topological spaces which is Noetherian. Before in-
troducing this topology, let us write [U1, . . . , Un] as a shorthand notation for the
set Σ∗U1Σ

∗ . . . Σ∗UnΣ
∗.

Definition 3.8 (Subword topology [12, Definition 9.7.26]). Given a topo-
logical space (Σ, τ), the space Σ∗ of finite words over Σ can be endowed with the
subword topology, generated by the open sets [U1, . . . , Un] when Ui ∈ τ .

The topological Higman lemma [12, Theorem 9.7.33] states that the subword
topology over Σ∗ is Noetherian if and only if Σ is Noetherian. Although the
subword topology might seem ad-hoc, it can be validated as a generalisation
of the subword embedding because the subword topology of alex(≤) equals the
Alexandroff topology of the subword ordering of ≤, for every quasi-order ≤ over
Σ [12, Exercise 9.7.30]. Let us now reverse engineer a refinement function whose
least fixed point is the subword topology.

Definition 3.9. Let (Σ, θ) be a topological space. Let Eθ
words be defined as map-

ping a topology τ over Σ∗ to the topology generated by the following sets: ↑≤∗ UV
for U, V ∈ τ ; and ↑≤∗ W , for W ∈ θ.

Fixed Points and Noetherian Topologies 463

Σ∗

∅

Σ∗aΣ∗ Σ∗bΣ∗

Σ∗aΣ∗aΣ∗ Σ∗aΣ∗bΣ∗ Σ∗bΣ∗aΣ∗ Σ∗bΣ∗bΣ∗

Fig. 2. The topology Eθ
words

2(τtriv), with bold red arrows for the inclusions that were
not present between the “analogous sets” in Rpref

2(τtriv). We have taken θ to be the
discrete topology over Σ.

Lemma 3.10. Let (Σ, θ) be a topological space. The subword topology over Σ∗

is the least fixed point of Eθ
words.

In order to show that Eθ
words is a refinement function, we first claim that the

two parts of the topology can be dealt with separately.

Lemma 3.11 ([12, Proposition 9.7.18]). If (X , τ) and (X , τ ′) are Noethe-
rian, then X endowed with the topology generated by τ ∪ τ ′ is Noetherian.

Lemma 3.12. Let (Σ, θ) be a Noetherian topological space. The map Eθ
words is

a refinement function over Σ.

Proof. We leave the monotonicity of Eθ
words as an exercice and focus on the proof

that Eθ
words(τ) is Noetherian, whenever τ is. Thanks to Lemma 3.11, it suffices

to prove that the topology generated by the sets ↑≤∗ UV (U, V open in τ), and
the topology generated by the sets ↑≤∗ W (W open in θ) are Noetherian.

Let (↑≤∗ UiVi)i∈N be a sequence of open sets. Because Noetherian topologies
are closed under products (see Table 1), there exists k such that

⋃
i≤k Ui × Vi =⋃

i∈N Ui × Vi. Hence,
⋃

i≤k ↑≤∗ UiVi =
⋃

i∈N ↑≤∗ UiVi

Let ↑≤∗ Wi be a sequence of open sets. Because θ is Noetherian, there exists
k such that

⋃
i≤k Wi =

⋃
i∈N Wi, hence

⋃
i≤k ↑≤∗ Wi =

⋃
i∈N ↑≤∗ Wi. ��

We have designed two refinement functions Rpref and Eθ
words over Σ

∗. Fixing θ
to be the discrete topology over Σ, the least fixed point of Rpref is not Noetherian
while the least fixed point of Eθ

words is. We have depicted the result of iterating
Eθ
words twice over the trivial topology in Figure 2. As opposed to Rpref , the

“diagonal” elements are comparable for inclusion.

3.2 Well-behaved refinement functions

In this section, we will show how the behaviour of refinement function with
respect to subsets will act as a sufficient condition to separate the well-behaved

464 A. Lopez

ones from the others. In order to make the idea of computing the refinement
function directly over a subset precise, we will replace a subset with the induced
topology by a “restricted” topology over the whole space.

Definition 3.13. Let (X , τ) be a topological space and H be a closed subset of
X . Define the subset restriction τ |H to be the topology generated by the open
subsets U ∩H where U ranges over τ .

Let X be a topological space, and H be a proper closed subset of X . The
space X endowed with τ |H has a lattice of open sets that is isomorphic to the
one of the space H endowed with the topology induced by τ , except for the entire
space X itself. As witnessed by Example 3.14, the two spaces are in general not
homeomorphic.

Example 3.14. Let R be endowed with the usual metric topology. The set {a}
is a closed set when a ∈ R. The induced topology over {a} is {∅, {a}}. The
subset restriction of the topology to {a} is τa := {∅, {a},R}. Clearly, (R, τa) and
({a}, τtriv) are not homeomorphic.

In order to build intuition, let us consider the special case of an Alexandroff
topology over X and compute the specialisation preorder of τ |H, where H is a
downwards closed set.

Lemma 3.15. Let τ = alex(≤) over a set X , and x, y ∈ X. Then, x ≤ τ |H y if
and only if x ≤ τ y ∧ y ∈ H or x �∈ H. In other words, Hc is collapsed to an
equivalence class below H itself.

Definition 3.16. A topology expander is a refinement function E that satisfies
the following extra property: for every Noetherian topology τ satisfying τ ⊆ E(τ),
for all closed set H in τ , E(τ)|H ⊆ E(τ |H)|H.

Lemma 3.17. The refinement function Rpref is not a topology expander.

Proof. Let us consider τ := {∅, aΣ∗, bΣ∗, Σ∗}. Remark that H := aΣ∗ ∪ {ε}
is a closed subset because Σ = {a, b}. It is an easy check that Rpref(τ)|H =
{∅, aaΣ∗, abΣ∗, aΣ∗, Σ∗} �= {∅, aaΣ∗, aΣ∗, Σ∗} = Rpref(τ |H)|H.

Lemma 3.18. When θ is Noetherian, Eθ
words is a topology expander.

Proof. We have proven in Lemma 3.12 that Eθ
words is a refinement function. Let

us now prove that it is a topology expander.

Let τ be a Noetherian topology over Σ∗, such that τ ⊆ Eθ
words(τ). Let H

be a closed subset of (Σ∗, τ). Notice that as H is closed in τ , and since τ ⊆
Eθ
words(τ), H is downwards closed for ≤∗. As a consequence, (↑≤∗ UV) ∩H =

(↑≤∗ (U ∩H)(V ∩H)) ∩H. Hence, Eθ
words(τ)|H ⊆ Eθ

words(τ |H)|H. ��

Fixed Points and Noetherian Topologies 465

3.3 Iterating Expanders

Our goal is now to prove that topology expanders are refinement functions that
can be safely iterated. For that, let us first define precisely what “iterating
transfinitely” a refinement function means.

Definition 3.19. Let (X , τ) be a topological space, and E be a topology expander.

The limit topology Eα(τ) is defined as: τ when α = 0, E(Eβ(τ)) when α = β+1,
and as the join of the topologies Eβ(τ) for all β < α, when α is a limit ordinal.

We devote the rest of this section to proving our main theorem, which im-
mediately implies that least fixed points of topology expanders are Noetherian.
Notice that the theorem is trivial whenever α is a successor ordinal.

Proposition 3.20. Let α be an ordinal, τ be a topology, and E be a topology
expander. If Eβ(τ) is Noetherian for all β < α, and τ ⊆ E(τ), then Eα(τ) is
Noetherian.

Theorem 3.21 (Main Result). Let X be a set and E be a topology expander.
The least fixed point of E is a Noetherian topology over X .

The topological minimal bad sequence argument. In order to prove The-
orem 3.21, we will use a topological minimal bad sequence argument. To that
end, let us first introduce a well-founded partial ordering over the elements of
Eα(τ). With an open set U ∈ Eα(τ), we associate a depth depth(U), defined as
the smallest ordinal β ≤ α such that U ∈ Eβ(τ). We then define U � V to hold
whenever depth(U) ≤ depth(V), and U � V whenever depth(U) < depth(V). It
is an easy check that this is a well-founded total quasi-order over Eα(τ).

As a first step towards proving that Eα(τ) is Noetherian for a limit ordinal
α, we first reduce the problem to open subsets of depth strictly less than α itself.

Lemma 3.22. Let α be a limit ordinal, and E be a topology expander. The topol-
ogy Eα(τ) has a subbasis of elements of depth strictly below α.

Let us recall the notion of topological bad sequence designed by Goubault-
Larrecq [12, Lemma 9.7.31] in the proof of the Topological Kruskal Theorem,
adapted to our ordering of subbasic open sets.

Definition 3.23. Let (X , τ) be a topological space. A sequence U = (Ui)i∈N of
open subsets is good if there exists i ∈ N such that Ui ⊆

⋃
j<i Uj. A sequence

that is not good is called bad.

Lemma 3.24. Let α be a limit ordinal, and E be a topology expander such that
Eα(τ) is not Noetherian. Then, there exists a bad sequence U of open subsets
in Eα(τ) of depth less than α that is lexicographically minimal for �. Such a
sequence is called minimal bad.

466 A. Lopez

We deduce that in a limit topology, minimal bad sequences are not allowed to
use open subsets of arbitrary depth. This will then be leveraged via Lemma 3.27
to decrease the depth by one.

Lemma 3.25. Let α be a limit ordinal, τ be a topology and E be a topology
expander such that Eβ(τ) is Noetherian for all β < α. Assume that U = (Ui)i∈N
is a minimal bad sequence of Eα(τ). Then, for every i ∈ N, depth(Ui) is either
0 or a successor ordinal.

Definition 3.26. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U ∈ Eα(τ). The topology Down(U) is generated by
the open sets V such that V � U , where V ranges over Eα(τ).

Lemma 3.27. Let α be an ordinal, E be a topology expander and U ∈ Eα(τ). If
depth(U) is a successor ordinal, then U ∈ E(Down(U)).

If U is a minimal bad sequence in (X,Eα(τ)), then Ui �⊆
⋃

j<i Uj := Vi, i.e.,
Ui∩V c

i �= ∅. We can now use our subset restriction operator to devise a topology
associated to this minimal bad sequence. Noticing that Hi := V c

i is a closed set
in Eα(τ), hence we can build the subset restriction Down(Ui)|Hi.

Definition 3.28. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U = (Ui)i∈N be a minimal bad sequence in Eα(τ).
Then, the minimal topology U(Eα(τ)) is generated by

⋃
i∈N Down(Ui)|Hi, where

Hi := (
⋃

j<i Uj)
c.

Lemma 3.29. Let α be an ordinal, τ be a topology, E be a topology expander
such that τ ⊆ E(τ), and let U = (Ui)i∈N be a minimal bad sequence in Eα(τ).
Then, the minimal topology U(Eα(τ)) is Noetherian.

Proof. Assume by contradiction that U(Eα(τ)) is not Noetherian. Let us define
Vi as

⋃
j<i Uj , and Hi as V

c
i .

Thanks to [12, Lemma 9.7.15] there exists a bad sequence W := (Wi)i∈N of
subbasic elements of U(Eα(τ)). By definition, Wi is in some Down(Uj)|Hj . Let
us select a mapping ρ : N → N, such that Wi ∈ Down(Uρ(i))|Hρ(i). This amounts
to the existence of an open Tρ(i), such that Tρ(i) � Uρ(i), and Wi = Tρ(i) \ Vρ(i).
Without loss of generality we assume that ρ is monotonic.

Let us build the sequence Y defined by Yi := Ui if i < ρ(0) and Yi := Tρ(i)

otherwise. This is a sequence of open sets in Eα(τ) that is lexicographically
smaller than U , hence Y is a good sequence: there exists i ∈ N such that Yi ⊆⋃

j<i Yj .

– If i < ρ(0), then Ui ⊆
⋃

j<i Uj contradicting that U is bad.
– If i ≥ ρ(0), let us write Yi = Tρ(i) ⊆

⋃
j<ρ(0) Uj ∪

⋃
j<i Tρ(j). By taking the

intersection with Hρ(i), we obtain Wi ⊆
⋃

j<i Wj , contradicting the fact that
W is a bad sequence.
�
We are now ready to leverage our knowledge of minimal topologies associated

with minimal bad sequences to carry on the proof of our main theorem.

Fixed Points and Noetherian Topologies 467

Proposition 3.20. Let α be an ordinal, τ be a topology, and E be a topology
expander. If Eβ(τ) is Noetherian for all β < α, and τ ⊆ E(τ), then Eα(τ) is
Noetherian.

Proof. If α is a successor ordinal, then α = β + 1 and Eα(τ) = E(Eβ(τ)). Be-
cause E respects Noetherian topologies, we immediately conclude that Eα(τ)
is Noetherian. We are therefore only interested in the case where α is a limit
ordinal.

Assume by contradiction that Eα(τ) is not Noetherian, using Lemma 3.24
there exists a minimal bad sequence U := (Ui)i∈N. Let us write di := depth(Ui) <
α. Thanks to Lemma 3.25, di is either 0 or a successor ordinal.

Because Eβ(τ) is Noetherian for β < α, there are finitely many open subsets
Ui at depth β for every ordinal β < α. Indeed, if they were infinitely many, one
would extract an infinite bad sequence of opens in Eβ(τ), which is absurd.

Furthermore, the sequence (di)i∈N must be monotonic, otherwise U would
not be lexicographically minimal. We can therefore construct a strictly increas-
ing map ρ : N → N such that 0 < depth(Uρ(j)) and depth(Ui) < depth(Uρ(j))
whenever 0 ≤ i < ρ(j).

Let us consider some i = ρ(n) for some n ∈ N. Let us write Vi :=
⋃

j<i Uj ,
and Hi := X \ Vi. The set Vi is open in Down(Ui) by construction of ρ, hence
Hi is closed in Down(Ui). As E is a topology expander, we derive the following
inclusions:

E(Down(Ui))|Hi ⊆ E(Down(Ui)|Hi)|Hi

⊆ E(U(Eα(τ)))|Hi

Recall that Ui ∈ E(Down(Ui)) thanks to Lemma 3.27. As a consequence,
Ui \ Vi = Wi \ Vi for some open set Wi in E(U(Eα(τ))). Thanks to Lemma 3.29,
and preservation of Noetherian topologies through topology expanders, the latter
is a Noetherian topology. Therefore, (Wρ(i))i∈N is a good sequence. This provides
an i ∈ N such that Wρ(i) ⊆

⋃
ρ(j)<ρ(i) Wρ(j). In particular,

Uρ(i) \ Vρ(i) = Wρ(i) \ Vρ(i) ⊆
⋃

ρ(j)<ρ(i)

Wρ(j) \ Vρ(i) ⊆
⋃

ρ(j)<ρ(i)

Wρ(j) \ Vρ(j)

⊆
⋃

ρ(j)<ρ(i)

Uρ(j) \ Vρ(j) ⊆
⋃

j<ρ(i)

Uj = Vρ(i)

This proves that Uρ(i) ⊆ Vρ(i), i.e. that Uρ(i) ⊆
⋃

j<ρ(i) Uj . Finally, this contra-
dicts the fact that U is bad. ��

We have effectively proven that being well-behaved with respect to closed
subspaces is enough to consider least fixed points of refinement functions. This
behaviour should become clearer in the upcoming sections, where we illustrate
how this property can be ensured both in the case of Noetherian spaces and
well-quasi-orderings.

468 A. Lopez

4 Applications of Topology Expanders

We now briefly explore topologies that can be proven to be Noetherian using
Theorem 3.21. It should not be surprising that both the topological Higman
lemma and the topological Kruskal theorem fit in the framework of topology
expanders, as both were already proven using a minimal bad sequence argument.
However, we will proceed to extend the use of topology expander to spaces for
which the original proof did not use a minimal bad sequence argument, and
illustrate how they can easily be used to define new Noetherian topologies.

Finite words and finite trees. As a first example, we can easily recover the
topological Higman lemma [12, Theorem 9.7.33] because the subword topology
is the least fixed point of Eθ

words, which is a topology expander (see Lemmas 3.10
and 3.18).

It does not require much effort to generalise this proof scheme to the case of
the topological Kruskal theorem [12, Theorem 9.7.46]. As a shorthand notation,
let us write t ∈ �U〈V 〉 whenever there exists a subtree t′ of t whose root is
labelled by an element of U and whose list of children belongs to V . Recall that
we write u ≤∗ v when u is a scattered subword of v, and t ≤tree t

′ when t embeds
in t′ as a tree (see page 2). As for the subword topology, the definition is ad-hoc
but correctly generalises the tree embedding relation because the tree topology
of alex(≤) is the Alexandroff topology of ≤tree, for every ordering ≤ over Σ [12,
Exercise 9.7.48].

Definition 4.1 ([12, Definition 9.7.39]). Let (Σ, θ) be a topological space.
The space T(Σ) of finite trees over Σ can be endowed with the tree topology,
the coarsest topology such that �U〈V 〉 is open whenever U is an open set of Σ,
and V is an open set of T(Σ)

∗
in its subword topology.

Definition 4.2. Let (Σ, θ) be a topological space. Let Etree
θ be the function that

maps a topology τ to the topology generated by the sets ↑≤tree U〈V 〉, for U open
in θ, V open in T(Σ)

∗
with the subword topology of τ .

Lemma 4.3. The tree topology is the least fixed point of Etree
θ, which is a topol-

ogy expander. Hence, the tree topology is Noetherian when θ is.

Ordinal words. Let us now demonstrate how Theorem 3.21 can be applied
over spaces which are proved to be Noetherian without using a minimal bad
sequence argument. For that, let us consider Σ<α the set of words of ordinal
length less than α, where α is a fixed ordinal. Since ≤∗ is in general not a wqo
on Σ<α when ≤ is wqo on Σ, this also provides an example of a topological
minimal bad sequence argument that has no counterpart in the realm of wqos.

Definition 4.4 ([15]). Let (Σ, θ) be a topological space. The ordinal subword

topology over Σ<α is the topology generated by the closed sets F<β1

1 · · ·F<βn
n ,

for n ∈ N, Fi closed in θ, βi < α, and where F<β is the set of words of length
less than β with all of their letters in F .

Fixed Points and Noetherian Topologies 469

The ordinal subword topology is Noetherian [15], but the proof is quite tech-
nical and relies on the in-depth study of the possible inclusions between the
subbasic closed sets. Before defining a suitable topology expander, given an or-
dinal β and a set U ⊆ Σ<α, let us write w ∈ β �U if and only if w>γ ∈ U for all
0 ≤ γ < β.

Definition 4.5. Let (Σ, θ) be a topological space, and α be an ordinal. The

function Eθ
α-words maps a topology τ to the topology generated by the following

sets: ↑≤∗ UV for U, V opens in τ ; ↑≤∗ β � U , for U open in τ , β ≤ α; ↑≤∗ W ,
for W open in θ.

Lemma 4.6. Given a Noetherian space (Σ, θ), and an ordinal α. The map
Eθ
α-words is a topology expander, whose least fixed point contains the ordinal sub-

word topology. Therefore, the ordinal subword topology is Noetherian.

Remark that Definitions 4.2, 4.5 and 3.9 all follow the same blueprint: new
open sets are built as upwards closure for the corresponding quasi-order of the
natural constructors associated to the space. We argue that this blueprint miti-
gates the canonicity issue and the complexity of Definitions 4.1, 4.4 and 3.8.

Ordinal branching trees. As an example of a new Noetherian topology de-
rived using Theorem 3.21, we will consider α-branching trees T<α(Σ), i.e., the
least fixed point of the constructor X �→ 1+Σ×X<α where α is a given ordinal.
This example was not known to be Noetherian, and fails to be a well-quasi-order,
and illustrates how Theorem 3.21 easily applies on inductively defined spaces.

Definition 4.7. Let (Σ, θ) be a Noetherian space. The ordinal tree topology

over α-branching trees is the least fixed point of Eθ
α-trees, mapping a topology

τ to the topology generated by the sets ↑≤tree U〈V 〉, where U ∈ θ, V is open
in (T<α(Σ))<α with the ordinal subword topology, and U〈V 〉 is the set of trees
whose root is labelled by an element of U and list of children belongs to V .

Theorem 4.8. The α-branching trees endowed with the ordinal tree topology
forms a Noetherian space.

Proof. It suffices to prove that Eθ
α-trees is a topology expander. It is clear that

Eθ
α-trees is monotone, and a closed set of Eθ

α-trees(τ) is always downwards closed
for ≤tree. As a consequence, if τ ⊆ Eθ

α-trees(τ) and H is closed in τ , t ∈ V :=
(↑≤tree U〈V 〉) ∩ H if and only if t ∈ H and every children of t belongs to H.
Therefore, (↑≤tree U〈V 〉)∩H = (↑≤tree U〈V ∩H<α〉)∩H. Notice that H<α∩V is
an open of the ordinal subword topology over τ |H. As a consequence, V ∩H ∈
Eθ
α-trees(τ |H)|H.
Let us now check that Eθ

α-trees preserves Noetherian topologies. Let Wi :=
↑≤tree Ui〈Vi〉 be a N-indexed sequence of open sets in Eθ

α-trees(τ) where τ is Noethe-
rian. The product of the topology θ and the ordinal subword topology over τ is
Noetherian thanks to Table 1 and Lemma 4.6. Hence, there exists a i ∈ N such
that Ui × Vi ⊆

⋃
j<i Uj × Vj . As a consequence, Wi ⊆

⋃
j<i Wj . We have proven

that Eθ
α-trees(τ) is Noetherian. ��

470 A. Lopez

At this point, we have proven that the framework of topology expanders
allows to build non-trivial Noetherian spaces. We argue that this bears several
advantages over ad-hoc proofs: (i) the ad-hoc proofs are often tedious and error
prone [12, 13, 15] (ii) the verification that E is a topology expander on the other
hand is quite simple (iii) reduces the canonicity issue of topologies to the choice
of a suitable topology expander.

5 Consequences on inductive definitions

So far, the process of constructing Noetherian spaces has been the following:
first build a set of points, then compute a topology that is Noetherian as a
least fixed point. In the case where the set of points itself is inductively defined
(such as finite words or finite trees), the second step might seem redundant, and
getting rid of it provides a satisfactory answer to the canonicity concerns about
Noetherian topologies.

Before studying inductive definition of topological spaces, the notion of least
fixed-point in this setting has to be made precise. To that purpose, let us now in-
troduce ome basic notions of category theory. In this paper only three categories
will appear, the category Set of sets and functions, the category Top of topolog-
ical spaces and continuous maps, and the category Ord of quasi-ordered spaces
and monotone maps. Using this language, a unary constructor G in the algebra
of wqos defines an endofunctor from objects of the category Ord to objects of
the category Ord preserving well-quasi-orderings.

Notation 5.1. Recall that in a category C, Hom(A,B) is used to denote the
collection of morphisms from the object A to the object B in C. Moreover, Aut(A)
denotes the set of automorphisms of A, i.e., invertible elements of (Hom(A,A), ◦).

In our study of Noetherian spaces (resp. well-quasi-orderings), we will often
see constructorsG′ as first building a new set of structures, and then adapting the
topology (resp. ordering) to this new set. In categorical terms, we are interested
in endofunctorsG′ that are U-lifts of endofunctors on Set, where U is the forgetful
functor from Top (resp. Ord) to Set.

5.1 Divisibility Topologies of Analytic Functors

The goal of this section is to introduce the categorical framework needed to
formalise the automatic definition of a topology over an inductively defined
datatype, and to compare this definition with the work that exists on well-
quasi-orders by Hasegawa [17] and Freund [8]. We will avoid as much as possible
the use of complex machinery related to analytic functors, and use as a defini-
tion an equivalent characterisation given by Hasegawa [17, Theorem 1.6]. For
an introduction to analytic functors and combinatorial species, we redirect the
reader to Joyal [20].

Fixed Points and Noetherian Topologies 471

Notation 5.2. Given G an endofunctor of Set, the category of elements el(G) has
as objects pairs (E, a) with a ∈ G(E), and as morphisms between (E, a) and
(E′, a′) maps f : E → E′ such that Gf (a) = a′.

As an intuition to the unfamiliar reader, an element (E, a) in el(G) is a
witness that a can be produced through G by using elements of E. Morphisms
of elements are witnessing how relations between elements of G(E) and G(E′)
arise from relations between E and E′. As a way to define a “smallest” set of
elements E such that a can be found in G(E), we rely on transitive objects. We
recall that in a category C, if X,A are two objects, the action of Aut(X) on
Hom(X,A) is transitive when for every pair f, g ∈ Hom(X,A), there exists a
h ∈ Aut(X) such that f ◦ h = g.

Notation 5.3. A transitive object in a category C is an object X satisfying the
following two conditions for every object A of C: (a) the set Hom(X,A) in C
is non-empty; (b) the right action of Aut(X) on Hom(X,A) by composition is
transitive.

Notation 5.4. Given an object A in a category C, one can build the slice category
C/A whose objects are elements of Hom(B,A) when B ranges over objects of
C and morphisms between c1 ∈ Hom(B1, A) and c2 ∈ Hom(B2, A) are maps
f : B1 → B2 such that c2 ◦ f = c1.

This notion of slice category can be combined with the one of transitive
object to build so-called “weak normal forms”.

Notation 5.5. A weak normal form of an object A in a category C is a transitive
object in C/A.

A category C has the weak normal form property whenever every object A
has a weak normal form. We are now ready to formulate a definition of analytic
functors through the existence of weak normal forms for objects in their category
of elements.

Notation 5.6. An endofunctor G of Set is an analytic functor whenever its cat-
egory of elements el(G) has the weak normal form property. Moreover; X is a
finite set for every weak normal form f ∈ Hom((X,x), (Y, y)) in el(G)/(Y, y).

Example 5.7. The functor mapping X to X∗ is analytic, and the weak normal
form of a word (X∗, w) is (letters(w), w) together with the canonical injection
from letters(w) to X. In this specific case, the weak normal forms are in fact
initial objects.

Example 5.8. The functor mapping X to X<α is not analytic when α ≥ ω,
because of the restriction that weak normal forms are defined using finite sets.

Let us now explain how these weak normal forms can be used to define a
support associated to the analytic functor, which in turns allows us to build a
notion of substructure ordering over initial algebras of analytic functors.

472 A. Lopez

Definition 5.9. Let G be an analytic functor, (X,x) be an element in el(G) and
f ∈ Hom((Y, y), (X,x)) be a weak normal form in the slice category el(G)/(X,x).
We define f(Y) as the support of x in X, written suppX(x).

Definition 5.10. Let G be an analytic functor and (μG, δ) be an initial al-
gebra of G. We say that a ∈ μG is a child of b ∈ μG whenever a = b or
a ∈ supp μG(δ

−1(b)). The transitive closure of the children relation is called the
substructure ordering of μG and written �.

Example 5.11. The substructure ordering on μG for G(X) := 1+ Σ ×X is the
suffix ordering of words.

We leverage the notion of substructure ordering to define a suitable topol-
ogy expander over initial algebras of analytic functors. Note that this ordering
appears implicitely in the construction of Hasegawa [17, Definition 2.7].

Definition 5.12. Let G′ : Top → Top be a lifting of an analytic functor G, and

(μG, δ) an initial algebra of G. We define EG′
♦ that maps τ to the topology gener-

ated by ↑� δ(U) where U ∈ G′(μG, τ).
We say that lfpτ .E

G′
♦ is the divisibility topology over μG.

Theorem 5.13. Let G′ : Top → Top be a lifting of an analytic functor G, and
(μG, δ) an initial algebra of G. Moreover, we suppose that G′ preserves inclusions.
The map EG′

♦ is a topology expander, hence the divisibility topology is Noetherian.

As a sanity check, we can apply Theorem 5.13 to the sets of finite words
and finite trees, and recover the subword topology and the tree topology that
were obtained in an ad-hoc fashion in Section 4. In addition to validating the
usefulness of Theorem 5.13, we believe that these are strong indicators that
the topologies introduced prior to this work were the right generalisations of
Higman’s word embedding and Kruskal’s tree embedding in a topological setting,
and addresses the canonicity issue of the aforementioned topologies.

Lemma 5.14. The subword topology over Σ∗, (resp. the tree topology over T(Σ))
is the divisibility topology associated to the inductive construction of finite words
(resp. finite trees).

5.2 Divisibility Preorders

We are now going to prove that the divisibility topology correctly generalises
the corresponding notions on quasi-orderings. In the case of finite words, this
translates to the equation alex(≤)∗ = alex(≤∗) [12, Exercise 9.7.30]. We relate
the divisibility topology to the divisibility preorder introduced by Hasegawa [17,
Definition 2.7].

Theorem 5.15. Let G′ the be the lift of an analytic functor respecting Alexan-
droff topologies, Noetherian spaces, and embeddings. Then, the divisibility topol-
ogy of μG is the Alexandroff topology of the divisibility preorder of μG, which is
a well-quasi-ordering.

Fixed Points and Noetherian Topologies 473

6 Outlook

We have provided a systematic way to place a Noetherian topology over an in-
ductively defined datatype, which is correct with respect to its wqo counterpart
whenever it exists. As a byproduct, we obtained a uniform framework that sim-
plifies existing proofs, and serves as an indicator that the pre-existing topologies
were the “right generalisations” of their quasi-order counterparts. Let us now
briefly highlight some interesting properties of the underlying theory.

Differences with the existing categorical frameworks. The existing cate-
gorical frameworks are built around a specific kind of functors [17, 8], while the
notion of topology expander only requires talking about one specific set. This
allows proving that the ordinal subword topology and the α-branching trees are
Noetherian, while these escape both the realm of wqos, and of “well-behaved
functors” having finite support functions.

Quasi-analytic functors. In fact, the proof of Theorem 5.13, never relies on
the finiteness of the support of an element. This means that the definition of
analytic functors can be loosened to allow non finite weak normal forms. We do
not know whether this notion of “quasi-analytic functor” already exists in the
literature.

Transfinite iterations. As the reader might have noticed, all of the least fixed
points considered in this paper are obtained using at most ω steps. This is
because the topology expanders that are presented in the paper are all Scott-
continuous, i.e., they satisfy the equation E(supi τi) = supi E(τi). While The-
orem 3.21 does apply to non Scott-continuous topology expanders, we do not
know any reasonable example of such expander.

Lack of ordinal invariants. Even though our proof that the ordinal subword
topology is Noetherian is shorter than the original one, it actually provides
less information. In particular, it does not provide a bound for ordinal rank of
the lattice of closed sets (called the stature of Σ<α), whereas a clear bound is
provided by the previous approach Goubault-Larrecq et al. [15, Proposition 33].
This limitation already appears in the existing categorical frameworks [17, 8], and
we believe that this is inherent to the use of minimal bad sequence arguments.

Acknowledgements. I thank the anonymous reviewers for their helpful sug-
gestions. I thank Jean Goubault-Larrecq and Sylvain Schmitz for their help and
support in writing this paper, together with Simon Halfon for his insight on
transfinite words.

474 A. Lopez

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theo-
rems for infinite-state systems. Proceedings of LICS’96. pp. 313–321. IEEE (1996).
https://doi.org/10.1109/LICS.1996.561359

2. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. Proceedings of
TACAS’98. Lecture Notes in Computer Science, vol. 1384, pp. 298–312. Springer
(1998). https://doi.org/10.1007/BFb0054179

3. Daligault, J., Rao, M., Thomassé, S.: Well-Quasi-Order of Relabel Functions. Or-
der 27(3), 301–315 (2010). https://doi.org/10.1007/s11083-010-9174-0

4. Dershowitz, N., Tzameret, I.: Gap Embedding for Well-Quasi-Orderings. Proceed-
ings of WoLLIC’03. Electronic Notes in Theoretical Computer Science, vol. 84, pp.
80–90. Elsevier (2003). https://doi.org/10.1016/S1571-0661(04)80846-6

5. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. Proceedings of LICS’11. pp.
269–278. IEEE (2011). https://doi.org/10.1109/LICS.2011.39

6. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: completions.
Mathematical Structures in Computer Science 30(7), 752–832 (2020). https://
doi.org/10.1017/S0960129520000195

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1), 63–92 (2001). https://doi.org/10.1016/

S0304-3975(00)00102-X

8. Freund, A.: From Kruskal’s Theorem to Friedman’s gap condition. Mathemati-
cal Structures in Computer Science 30(8), 952–975 (2020). https://doi.org/10.
1017/S0960129520000298

9. Gallier, J.H.: Ann. Pure Appl. Logic: Erratum to “What’s so special about
Kruskal’s Theorem and the ordinal γ0? A survey of some results in proof the-
ory” [53 (1991) 199–260]. Annals of Pure and Applied Logic 89(2), 275 (1997).
https://doi.org/10.1016/S0168-0072(97)00043-2

10. Goubault-Larrecq, J.: On Noetherian spaces. Proceedings of LICS’07. pp. 453–462.
IEEE (2007). https://doi.org/10.1109/LICS.2007.34

11. Goubault-Larrecq, J.: Noetherian Spaces in Verification. Proceedings of ICALP’10.
Lecture Notes in Computer Science, vol. 6199, pp. 2–21. Springer (2010). https:
//doi.org/10.1007/978-3-642-14162-1_2

12. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory, New Math-
ematical Monographs, vol. 22. Cambridge University Press (2013). https://doi.
org/10.1017/CBO9781139524438

13. Goubault-Larrecq, J.: Infinitary Noetherian Constructions I. Infinite Words.
Colloquium Mathematicum (168), 257–286 (2022). https://doi.org/10.4064/

cm8077-4-2021

14. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory. Electronic
supplements to the book – errata. https://projects.lsv.ens-cachan.fr/

topology/?page_id=12 (2022)

15. Goubault-Larrecq, J., Halfon, S., Lopez, A.: Infinitary Noetherian Constructions
II. Transfinite Words and the Regular Subword Topology (2022), https://doi.
org/10.48550/arXiv.2202.05047

16. Goubault-Larrecq, J., Seisenberger, M., Selivanov, V.L., Weiermann, A.: Well
Quasi-Orders in Computer Science (Dagstuhl Seminar 16031). Dagstuhl Reports
6(1), 69–98 (2016). https://doi.org/10.4230/DagRep.6.1.69

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/BFb0054179
https://doi.org/10.1007/BFb0054179
https://doi.org/10.1007/s11083-010-9174-0
https://doi.org/10.1007/s11083-010-9174-0
https://doi.org/10.1016/S1571-0661(04)80846-6
https://doi.org/10.1016/S1571-0661(04)80846-6
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1017/S0960129520000298
https://doi.org/10.1016/S0168-0072(97)00043-2
https://doi.org/10.1016/S0168-0072(97)00043-2
https://doi.org/10.1109/LICS.2007.34
https://doi.org/10.1109/LICS.2007.34
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1007/978-3-642-14162-1_2
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://doi.org/10.4064/cm8077-4-2021
https://projects.lsv.ens-cachan.fr/topology/?page_id=12
https://projects.lsv.ens-cachan.fr/topology/?page_id=12
https://doi.org/10.48550/arXiv.2202.05047
https://doi.org/10.48550/arXiv.2202.05047
https://doi.org/10.4230/DagRep.6.1.69
https://doi.org/10.4230/DagRep.6.1.69

Fixed Points and Noetherian Topologies 475

17. Hasegawa, R.: Two applications of analytic functors. Theoretical Computer Science
272(1), 113–175 (2002). https://doi.org/10.1016/S0304-3975(00)00349-2

18. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society 3(1), 326–336 (1952). https://doi.org/10.1112/plms/
s3-2.1.326

19. Jančar, P.: A note on well quasi-orderings for powersets. Information Processing
Letters 72(5), 155–160 (Dec 1999). https://doi.org/10.1016/S0020-0190(99)

00149-0

20. Joyal, A.: Foncteurs analytiques et espèces de structures. Combinatoire
énumérative. Lecture Notes in Mathematics, vol. 1234, pp. 126–159. Springer
(1986). https://doi.org/10.1007/BFb0072514

21. Kř́ıž, I., Thomas, R.: On well-quasi-ordering finite structures with labels. Graphs
and Combinatorics 6(1), 41–49 (1990). https://doi.org/10.1007/BF01787479

22. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
Journal of Combinatorial Theory, Series A 13(3), 297–305 (1972). https://doi.
org/10.1016/0097-3165(72)90063-5

23. Milner, E.C.: Basic wqo-and bqo-theory. Graphs and order, pp. 487–502. Springer
(1985). https://doi.org/10.1007/978-94-009-5315-4_14

24. Nash-Williams, C.St.J.A.: On well-quasi-ordering transfinite sequences. Mathemat-
ical Proceedings of the Cambridge Philosophical Society 61(1), 33–39 (1965)

25. Pouzet, M.: Un bel ordre d’abritement et ses rapports avec les bornes d’une mul-
tirelation. CR Acad. Sci. Paris Sér. AB 274, A1677–A1680 (1972)

26. Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1(2), 89–95 (1954).
https://doi.org/10.1112/S0025579300000565

27. Schmitz, S.: Algorithmic Complexity of Well-Quasi-Orders. Habilitation à diriger
des recherches, École normale supérieure Paris-Saclay (2017), https://tel.

archives-ouvertes.fr/tel-01663266

28. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory (2012), https:
//cel.archives-ouvertes.fr/cel-00727025

29. Segoufin, L., Figueira, D.: Bottom-up automata on data trees and vertical XPath.
Logical Methods in Computer Science 13 (2017). https://doi.org/10.23638/

LMCS-13(4:5)2017

30. Singh, D., Shuaibu, A.M., Ndayawo: Simplified proof of Kruskal’s Tree Theo-
rem. Mathematical Theory and Modeling 3, 93–100 (2013). https://doi.org/

10.13140/RG.2.2.12298.39363

https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1016/S0020-0190(99)00149-0
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1007/BF01787479
https://doi.org/10.1007/BF01787479
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1007/978-94-009-5315-4_14
https://doi.org/10.1007/978-94-009-5315-4_14
https://doi.org/10.1112/S0025579300000565
https://doi.org/10.1112/S0025579300000565
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://cel.archives-ouvertes.fr/cel-00727025
https://cel.archives-ouvertes.fr/cel-00727025
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.23638/LMCS-13(4:5)2017
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363
https://doi.org/10.13140/RG.2.2.12298.39363

476 A. Lopez

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Efficient Cyclic Entailment Procedure in a Fragment
of Separation Logic

Quang Loc Le1(�) and Xuan-Bach D. Le2

1 Department of Computer Science, University College London, London, UK
loc.le@ucl.ac.uk

2 School of Computing and Information Systems, University of Melbourne, Melbourne,
Australia

bach.le@unimelb.edu.au

Abstract. An efficient entailment proof system is essential to compositional ver-
ification using separation logic. Unfortunately, existing decision procedures are
either inexpressive or inefficient. For example, Smallfoot is an efficient procedure
but only works with hardwired lists and trees. Other procedures that can support
general inductive predicates run exponentially in time as their proof search re-
quires back-tracking to deal with a disjunction in the consequent.
This paper presents a decision procedure to derive cyclic entailment proofs for
general inductive predicates in polynomial time. Our procedure is efficient and
does not require back-tracking; it uses normalisation rules that help avoid the in-
troduction of disjunction in the consequent. Moreover, our decidable fragment
is sufficiently expressive: It is based on compositional predicates and can cap-
ture a wide range of data structures, including sorted and nested list segments,
skip lists with fast-forward pointers, and binary search trees. We implemented
the proposal in a prototype tool, called S2SLin, and evaluated it over challenging
problems from a recent separation logic competition. The experimental results
confirm the efficiency of the proposed system.

Keywords: Cyclic Proofs, Entailment Procedure, Separation Logic.

1 Introduction

Separation logic [20,37] has successfully reasoned about programs manipulating pointer
structures. It empowers reusability and scalability through compositional reasoning
[6,7]. A compositional verification system relies on bi-abduction technology which is,
in turn, based on entailment proof systems. Entailment is defined: Given an antecedent
A and a consequent C where A and C are formulas in separation logic, the entailment
problem checks whether A |= C is valid. Thus, an efficient decision procedure for en-
tailments is the vital ingredient of an automatic verification system in separation logic.

To enhance the expressiveness of the assertion language, for example, to specify un-
bounded heaps and interesting pure properties (e.g., sortedness, parent pointers), sep-
aration logic is typically combined with user-defined inductive predicates [9,31,35].
In this setting, one key challenge of an entailment procedure is the ability to support
induction reasoning over the combination of heaps and data content. The problem of

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 23

477–497, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-30829-1_23
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_23&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

478 Q. L. Le et al.

induction is challenging, especially for an automated inductive theorem prover, where
the induction rules are not explicitly stated. Indeed, this problem is undecidable [1].

Developing a sound and complete entailment procedure that could be used for
compositional reasoning is not trivial. It is unknown how model-based systems, e.g.
[14,15,17,18,22,23], could support compositional reasoning. In contrast, there was evi-
dence that proof-based decision procedures, e.g., Smallfoot [2] and the variant [12], and
Cycomp [42], can be extended to solve the bi-abduction problem, which enables com-
positional reasoning and scalability [7,25]. Smallfoot was the centre of the biabductive
procedure deployed in Infer [7], which which greatly impacted academia and industry
[13]. Furthermore, Smallfoot is very efficient due to its use of the “exclude-the-middle”
rule, which can avoid the proof search over the disjunction in the consequent. How-
ever, Smallfoot works for hardwired lists and binary trees only. In contrast, Cycomp, a
recent complete entailment procedure, is a cyclic proof system without “exclude-the-
middle“ and can support general inductive predicates but has double exponential time
complexity due to the proof search (and back-tracking) in the consequent.

This paper introduces a cyclic proof system with an “exclude-the-middle”-styled de-
cision procedure for decidable yet expressive inductive predicates. We especially show
that our procedure runs in polynomial time when the maximum number of fields of data
structures is bounded by a constant. The decidable fragment, SHLIDe, contains induc-
tive definitions of compositional predicates and pure properties. These predicates can
capture nested list segments, skip lists and trees. The pure properties of small models
can model a wide range of common data structures, e.g. a list with fast-forward point-
ers, sorted nested lists, and binary search trees [22,32]. This fragment is much more
expressive than Smallfoot’s and is incomparable to Cycomp’s [42]: there exist some
entailments our system can handle, but Cyccomp could not, and vice versa.

Our procedure is a variant of the cyclic proof system introduced by Brotherston
[3,5] and has become one of the leading solutions to induction reasoning in separation
logic. Intuitively, a cyclic proof is naturally represented as a tree of statements (entail-
ments in this paper). The leaves are either axioms or nodes linked back to inner nodes;
the tree’s root is the theorem to be proven, and nodes are connected to one or more
children by proof rules. Alternatively, a cyclic proof can be viewed as a tree possibly
containing some back-links (a.k.a. cycles, e.g., “C, if B, if C”) such that the proof sat-
isfies some global soundness condition. This condition ensures that the proof can be
viewed as a proof of infinite descent. For instance, for a cyclic entailment proof with
inductive definitions, if every cycle contains an unfolding of some inductive predicate,
then that predicate is infinitely often reduced into a strictly “smaller” predicate. This
infinity is impossible as the semantics of inductive definitions only allows finite steps
of unfolding. Hence, that proof path with the cycle can be disregarded.

The proposed system advances Brotherston’s system in three ways. First, the pro-
posed proof search algorithm is specialized to SHLIDe, which includes “exclude-the-
middle“ rules and excludes any back-tracking. The existing proof procedures typically
search for proof (and back-track) over disjunctive cases generated from unfolding in-
ductive predicates in the RHS of an entailment. To avoid such costly searches, we pro-
pose “exclude-the-middle“-styled normalised rules in which the unfolding of inductive
predicates in the RHS always produces one disjunct. Therefore, our system is much

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 479

more efficient than existing systems. Second, while a standard Brotherston system is
incomplete, our proof search is complete in SHLIDe: If it is stuck (i.e., it can not apply
any inference rules), then the root entailment is invalid.

Lastly, while the global soundness in [5] must be checked globally and explicitly,
every back-link generated in SHLIDe is sound by design. We note that Cycomp, intro-
duced in [42], was the first work to show the completeness of a cyclic proof system.
However, in contrast to ours, it did not discuss the global soundness condition, which is
the crucial idea attributing to the soundness of cyclic proofs.

Contributions Our primary contributions are summarized as follows.

– We present a novel decision procedure, S2SLin, for the entailment problem in sepa-
ration logic with inductive definitions of compositional predicates.

– We provide a complexity analysis of the procedure.
– We have implemented the proposal in a prototype tool and tested it with the SL-

COMP benchmarks [38,39]. The experimental results show that S2SLin is effective
and efficient compared to state-of-the-art solvers.

Organization The remainder of the paper is organised as follows. Sect. 2 describes
the syntax of formulas in fragment SHLIDe. Sect. 3 presents the basics of an “exclude-
the-middle” proof system and cyclic proofs. Sect. 4 elaborates on the result, the novel
cyclic proof system, including an illustrative example. Sect. 5 discusses soundness and
completeness. Sect. 6 presents the implementation and evaluation. Sect. 7 discusses
related work. Finally, Sect. 8 concludes the work.

2 Decidable Fragment SHLIDe

Subsection 2.1 presents syntax of separation logic formulae and recursive definitions of
linear predicates and local properties. Subsection 2.2 shows semantics.

2.1 Separation Logic Formulas

Concrete heap models assume a fixed finite collection of data structures Node, a fixed
finite collection of field names Fields, a set Loc of locations (heap addresses), a set
of non-addressable values Val, with the requirement that Val∩Loc=∅ (i.e., no pointer
arithmetic). null is a special element of Val. Z denotes the set of integers (Z⊆Val) and
k denotes integer numbers. Var an infinite set of variables, v̄ a sequence of variables.

Syntax Disjunctive formula Φ, symbolic heaps Δ, spatial formula κ, pure formula π,
pointer (dis)equality φ, and (in)equality formula α are as follows.

Φ ::= Δ | Φ ∨ Φ Δ ::= κ∧π | ∃v. κ∧π
κ ::= emp | x�→c(f :v, .., f :v) | P(v̄) | κ∗κ

π ::= true | α | ¬π | π∧π
α ::= a=a | a≤a a ::=k | v

where v∈Var, c∈Node and f∈Fields. Note that we often discard field names f of points-
to predicates x�→c(f :v, .., f :v) and use the short form as x�→c(v̄). v1 =v2 is the short
form of ¬(v1=v2). E denotes for either a variable or null. Δ[E/v] denotes the formula
obtained from Δ by substituting v by E. A symbolic heap is referred as a base, denoted
as Δb, if it does not contain any occurrence of inductive predicates.

480 Q. L. Le et al.

Inductive Definitions We write P to denote a set of n defined predicates P={P1, ..., Pn}
in our system. Each inductive predicate has following types of parameters: a pair of root
and segment defining segment-based linked points-to heaps, reference parameters (e.g.,
parent pointers, fast-forwarding pointers), transitivity parameters (e.g., singly-linked
lists where every heap cell contains the same value a) and pairs of ordering parameters
(e.g., trees being binary search trees). An inductive predicate is defined as

pred P(r,F ,B̄,u,sc,tg) ≡ emp∧r=F∧sc=tg
∨ ∃Xtl, Z̄, sc′.r �→c(Xtl,p̄,u,sc

′) ∗ κ′ ∗ P(Xtl,F ,B̄,u,sc′,tg) ∧ r 	=F ∧ sc
 sc′

where r is the root, F the segment, B̄ the borders, u the parameter for a transitivity
property, sc and tg source and target, respectively, parameters of an order property,
r �→c(Xtl,p̄,u,sc

′) ∗ κ′ the matrix of the heaps, and
 ∈ {=,≥,≤}. (The extension for
multiple local properties is straightforward.) Moreover, this definition is constrained by
the following three conditions on heap connectivity, establishment, and termination.
Condition C1. In the recursive rule, p̄ = {null}∪Z̄. This condition implies that If
two variables points to the same heap, their content must be the same. For instance, the
following definition of singly-linked lists of even length does not satisfy this condition.

pred ell(r,F) ≡ emp∧r=F ∨ ∃x1,X.r �→c1(x1)∗x1 �→c1(X)∗ell(X,F)∧r 	=F

as n3 and X are not field variables of the node pointed-to by r.
Condition C2. The matrix heap defines nested and connected list segments as:

κ′:=Q(Z,Ū) | κ′∗κ′ | emp
where Z∈p̄ and (Ū \ p̄)∩Z = ∅. This condition ensures connectivity (i.e. all allocated
heaps are connected to the root) and establishment (i.e. every existential quantifier either
is allocated or equals to a parameter).
Condition C3. There is no mutual recursion. We define an order ≺P on inductive pred-
icates as: P ≺P Q if at least one occurrence of predicate Q appears in the definition of P
and Q is called a direct sub-term of P. We use ≺∗

P to denote the transitive closure of ≺P .
Several definition examples are shown as follows.

pred ll(r,F) ≡ emp∧r=F ∨ ∃Xtl.r �→c1(Xtl)∗ll(Xtl, F)∧r 	=F
pred nll(r,F ,B) ≡ emp∧r=F

∨ ∃Xtl,Z.r �→c3(Xtl,Z)∗ll(Z,B)∗nll(Xtl,F ,B)∧r 	=F
pred skl1(r,F) ≡ emp∧r=F ∨ ∃Xtl.r �→c4(Xtl,null,null)∗skl1(Xtl, F)∧r 	=F
pred skl2(r,F) ≡ emp∧r=F

∨ ∃Xtl, Z1.r �→c4(Z1,Xtl,null)∗skl1(Z1,Xtl)∗skl2(Xtl, F)∧r 	=F
pred skl3(r,F) ≡ emp∧r=F

∨ ∃Xtl,Z1,Z2.r �→c4(Z1,Z2,Xtl)∗skl1(Z1,Z2)∗skl2(Z2,Xtl)∗skl3(Xtl,F)∧r 	=F
pred tree(r,B) ≡ emp∧r=B

∨ ∃rl, rr.r �→ct(rl,rr)∗tree(rl,B)∗tree(rr,B) ∧ r 	=B

ll defines singly-linked lists, nll defines lists of acyclic lists, slk1, slk2 and slk3

define skip-lists. Finally, tree defines binary trees. We extend predicate ll with transi-

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 481

tivity and order parameters to obtain predicate lla and lls, respectively, as follows.

pred lla(r,F ,a) ≡ emp∧r=F ∨ ∃Xtl.r �→c2(Xtl,a) ∗ lla(Xtl,F ,a)∧r 	=F
pred lls(r,F ,mi,ma) ≡ emp∧r=F∧ma=mi

∨ ∃Xtl,mi1.r �→c4(Xtl,mi1) ∗ lls(Xtl,F ,mi1,ma)∧r 	=F ∧mi≤mi1

Unfolding Given pred P(t̄) ≡ Φ and a formula P(v̄)∗Δ, then unfolding P(v̄) means
replacing P(v̄) by Φ[v̄/t̄]. We annotate a number, called unfolding number, for each oc-
currence of inductive predicates. Suppose ∃w̄.r �→c(p̄) ∗ Q1(v̄1)∗...∗Qm(v̄m) ∗ P(v̄0)∧π
be the recursive rule, then in the unfolded formula, if P(v̄0[v̄/t̄])k1 and Qi(...)

k2 are di-
rect sub-terms of P(v̄)k like above, then k1=k+1 and k2 = 0. When it is unambiguous,
we discard the annotation of the unfolding number for simplicity.

2.2 Semantics

The program state is interpreted by a pair (s,h) where s∈Stacks, h∈Heaps and stack
Stacks and heap Heaps are defined as:

Heaps def
= Loc⇀fin(Node → (Fields → Val ∪ Loc)m)

Stacks def
= Var → Val ∪ Loc

Note that we assume that every data structure contains at most m fields. Given a formula
Φ, its semantics is given by a relation: s,h |= Φ in which the stack s and the heap h
satisfy the constraint Φ. The semantics is shown below

s, h |= emp iff dom(h)=∅
s, h |= v �→c(fi : vi) iff dom(h)={s(v)}, h(s(v))=g, g(c, fi)=s(vi)
s, h |= P (v̄) iff (h, s(v̄1), .., s(v̄k)) ∈ �P �
s, h |= κ1 ∗ κ2 iff ∃h1, h2 s.t h1#h2, h=h1·h2, , s, h1 |= κ1 and s, h2 |= κ2

s, h |= true iff always
s, h |= κ∧π iff s, h |= κ and s |= π
s, h |= ∃v.Δ iff ∃α.s[v �→α], h |= Δ
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

dom(g) is the domain of g, h1#h2 denotes disjoint heaps h1 and h2 i.e., dom(h1)∩
dom(h2)=∅, and h1·h2 denotes the union of two disjoint heaps. If s is a stack, v∈Var,
and α∈Val∪Loc, we write s[v �→α] = s if v∈dom(s), otherwise s[v �→α] = s∪{(v, α)}.
Semantics of non-heap (pure) formulas is omitted for simplicity. The interpretation of
an inductive predicate P(t̄) is based on the least fixed point semantics �P�.

Entailment Δ |= Δ′ holds iff for all s and h, if s, h |= Δ then s, h |= Δ′.

3 Entailment Problem & Overview

Throughout this work, we consider the following problem.

PROBLEM: QF ENT−SLLIN.
INPUT: Δa ≡ κa∧πa and Δc ≡ κc∧πc where FV(Δc) ⊆ FV(Δa) ∪ {null}.
QUESTION: Does Δa |= Δc hold?

482 Q. L. Le et al.

An entailment, denoted as e, is syntactically formalized as: Δa �Δc where Δa and
Δc are quantifier-free formulas whose syntax are defined in the preceding section.

In Sect. 3.1, we present the basis of an exclude-the-middle proof system and our
approach to QF ENT−SLLIN. In Sect. 3.2, we describe the foundation of cyclic proofs.

3.1 Exclude-the-Middle Proof System

Given a goal Δa � Δc, an entailment proof system might derive entailments with a
disjunction in the right-hand side (RHS). Such an entailment can be obtained by a proof
rule that replaces an inductive predicate by its definition rules. Authors of Smallfoot
[2] introduced a normal form and proof rules to prevent such entailments when the
predicate are lists or trees. Smallfoot considers the following two scenarios.

– Case 1 (Exclude-the-middle and Frame): The inductive predicate matches with a
points-to predicate in the left-hand side (LHS). For instance, let us consider an
entailment which is of the form e1 : x�→c(z) ∗ Δ � ll(x, y) ∗ Δ′, where ll is
singly-linked lists and ll(x, y) matches with x�→c(z) as they have the same root
x. A typical proof system might search for proof through two definition rules of
predicate ll (i.e., by unfolding ll(x, y) into two disjuncts): One includes the base
case with x = y, and another contains the recursive case with x �= y. Smallfoot
prevents such unfolding by excluding the middle in the LHS: It reduces the entail-
ment into two premises: x�→c(z)∗Δ∧x = y � ll(x, y)∗Δ′ and x�→c(z)∗Δ∧x �=
y � ll(x, y) ∗Δ′. The first one considers the base case of the list (that is, ll(x, x))
and is equivalent to x�→c(z) ∗Δ ∧ x = y � Δ′. Furthermore, the second premise
checks the inductive case of the list and is equivalent to Δ∧x �= y � ll(x, z) ∗Δ′.

– Case 2 (Induction proving via hard-wired Lemma). The inductive predicate matches
other inductive predicates in the LHS. For example, consider the entailment e2 :
ll(x, z) ∗Δ � ll(x, null) ∗Δ′. Smallfoot handle e2 by using a proof rule as the
consequence of applying the following hard-wired lemma ll(x, z)∗ll(z, null) |=
ll(x, null) and reduces the entailment to Δ � ll(z, null) ∗Δ′.

In doing so, Smallfoot does not introduce a disjunction in the RHS. However, as it uses
specific lemmas in the induction reasoning, it only works for the hardwired lists.

This paper proposes S2SLin as an exclude-the-middle system for user-defined pred-
icates, those in SHLIDe. Instead of using hardwired lemmas, we apply cyclic proofs
for induction reasoning. For instance, to discharge the entailment e2 above, S2SLin first
unfolds ll(x, z) in the LHS and obtains two premises:

– e21 : (emp ∧ x = z) ∗Δ � ll(x, null) ∗Δ′; and
– e22 : (x�→c(y) ∗ ll(y, z) ∧ x �= z) ∗Δ � ll(x, null) ∗Δ′

While it reduces e21 to Δ[z/x] � ll(z, null) ∗Δ′[z/x], for e22, it further applies the
frame rule as in Case 1 above and obtains ll(y, z) ∗ Δ ∧ x �= z � ll(y, null) ∗ Δ′.
Then, it makes a backlink between the latter and e2 and closes this path. Doing so does
not introduce disjunctions in the RHS and can handle user-defined predicates.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 483

3.2 Cyclic Proofs

Central to our work is a procedure that constructs a cyclic proof for an entailment. Given
an entailment Δ �Δ′, if our system can derive a cyclic proof, then Δ |= Δ′. If instead,
it is stuck without proof, then Δ |= Δ′ is not valid.

The procedure includes proof rules, each of which is of the form:
e1 ... en

PR0 conde

where entailment e (called the conclusion) is reduced to entailments e1, ..,en (called
the premises) through inference rule PR0 given that the side condition cond holds.

A cyclic proof is a proof tree Ti which is a tuple (V,E, C) where

– V is a finite set of nodes representing entailments derived during the proof search;
– A directed edge (e, PR, e′) ∈ E (where e′ is a child of e) means that the premise
e′ is derived from the conclusion e via inference rule PR. For instance, suppose
that the rule PR0 above has been applied, then the following n edges are generated:
(e, PR0, e1), .., (e, PR0, en);

– and C is a partial relation which captures back-links in the proof tree. If C(ec→eb, σ)
holds, then eb is linked back to its ancestor ec through the substitution σ (where
eb is referred to as a bud and ec is referred to as a companion). In particular, ec
is of the form: Δ � Δ′ and eb is of the form: Δ1∧π � Δ′

1 where Δ ≡ Δ1σ and
Δ′ ≡ Δ′

1σ.

A leaf node is marked as closed if it is evaluated as valid (i.e. the node is applied with an
axiom), invalid (i.e. no rule can apply), or linked back. Otherwise, it is marked as open.
A proof tree is invalid if it contains at least one invalid leaf node. It is pre-proof if all its
leaf nodes are either valid or linked back. Furthermore, a pre-proof is a cyclic proof if a
global soundness condition is established in the tree. Intuitively, this condition requires
that for every C(ec→eb, σ), there exist inductive predicates P(t̄1) in ec and Q(t̄2) in eb
such that Q(t̄2) is a subterm of P(t̄1).

Definition 1 (Trace) Let Ti be a pre-proof of Δa � Δc and (Δai
� Δci)i≥0 be a path

of Ti. A trace following (Δai�Δci)i≥0 is a sequence (αi)i≥0 such that each αi (for all
i≥0) is a subformula of Δai containing predicate P(t̄)u, and either:

– αi+1 is the subformula occurrence in Δai+1 corresponding to αi in Δai .
– or Δai

� Δci is the conclusion of a left-unfolding rule, αi ≡ P(t̄)u is unfolded, and
αi+1 is a subformula in Δai+1

and is the definition rule of P(x̄)u[t̄/x̄]. In this case,
i is said to be a progressing point of the trace.

Definition 2 (Cyclic proof) A pre-proof Ti of Δa � Δc is a cyclic proof if, for every
infinite path (Δai

�Δci)i≥0 of Ti, there is a tail of the path p=(Δai
� Δci)i≥n such

that there is a trace following p which has infinitely progressing points.

Suppose that all proof rules are (locally) sound (i.e., if the premises are valid, then
the conclusion is valid). The following Theorem shows global soundness.

Theorem 1 (Soundness [5]). If there is a cyclic proof of Δa � Δc, then Δa |= Δc.

The proof is by contraction (c.f. [5]). Intuitively, if we can derive a cyclic proof for
Δa � Δc and Δa �|= Δc, then the inductive predicates at the progress points are un-
folded infinitely often. This infinity contradicts the least semantics of the predicates.

484 Q. L. Le et al.

4 Cyclic Entailment Procedure

This section presents our main proposal, the entailment procedure ω-ENT with the pro-
posed inference rules (subsection 4.1), and an illustrative example (subsection 4.2).

4.1 Proof Search

ω−ENT
input: e0 output: valid or invalid
1: i←0; Ti←e0;
2: while true do
3: (res, ei, PRi)←is closed(Ti);
4: if res=valid then return valid;
5: if res=invalid then return invalid;
6: if link backe(Ti, ei) = false then
7: Ti+1←apply(Ti, ei, PRi);
8: i←i+1;
9: end

Fig. 1: Proof tree construction procedure

The proof search algorithm ω-
ENT is presented in Fig. 1. ω-
ENT takes e0 as input, pro-
duces cyclic proofs, and based
on that, decides whether the in-
put is valid or invalid. The
idea of ω-ENT is to iteratively
reduce T0 into a sequence of
cyclic proof trees Ti, i ≥ 0. Ini-
tially, for every P(v̄)k ∈ e0, k
is reset to 0, and T0 only has
e0 as an open leaf, the root.
On line 3, through the procedure
is closed(Ti), ω-ENT chooses
an open leaf node ei, and a proof
rule PRi to apply. If is closed(Ti) returns valid (that is, every leaf is applied to an
axiom rule or involved in a back-link), ω-ENT returns valid on line 4. If it returns
invalid, then ω-ENT returns invalid (one line 5). Otherwise, it tries to link ei back to
an internal node (on line 6). If this attempt fails, it applies the rule (line 7).

Note that at each leaf, is closed attempts rules in the following order: normaliza-
tion rules, axiom rules, and reduction rules. A rule PRi is chosen if its conclusion can
be unified with the leaf through some substitution σ. Then, on line 7, for each premise
of PRi, procedure apply creates a new open node and connects the node to ei via a
new edge. If PRi is an axiom, procedure apply marks ei as closed and returns.

Procedure is closed(Ti) This procedure examines the following three cases.

1. First, if all leaf nodes are marked closed, and none is invalid, then is closed

returns valid.
2. Secondly, is closed returns invalid if there exists an open leaf node ei : Δ �Δ′

in NF such that one of the four following conditions hold:
(a) ei could not be applied by any inference rule.
(b) there exists a predicate op1(E) ∈ Δ such that op2(E) /∈ Δ′ and one of the

following conditions holds:
– either P(E′,E,...) or E′ �→c(E,..) are on both sides
– both P(E′,E,...) �∈ Δ and E′ �→c(E,..) �∈ Δ

(c) there exists a predicate op1(E)∈Δ′ such that G(op1(E))∈Δ and op2(E)/∈Δ.
(d) there exist x�→c1(v̄1) ∈ Δ, x�→c2(v̄2) ∈ Δ′ such that c1 �≡ c2 or v̄1 �≡v̄2.

3. Lastly, an open leaf node ei could be applied by an inference rule (e.g. PRi),
is closed returns the triple (unknown, ei, PRi).

In the rest, we discuss the proof rules and the auxiliary procedures in detail.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 485

Normalisation An entailment is in the normal form (NF) if its LHS is in NF. We write
op(E) to denote for either E �→c(v̄) or P(E,F ,B̄,v̄). Furthermore, the guard G(op(E))

is defined by: G(E �→c(v̄))
def
= true and G(P(E,F ,B̄,v̄))

def
= E �=F .

Definition 3 (Normal Form) A formula κ∧φ∧a is in normal form if:

1. op(E) ∈ κ implies G(op(E)) ∈ φ 4. E1=E2 �∈ φ
2. op(E) ∈ κ implies E �=null ∈ φ 5. E �=E �∈ φ
3. op1(E1) ∗ op2(E2) ∈ κ implies E1 �=E2 ∈ φ 6. a is satisfiable

If Δ is in NF and for any s, h |= Δ, then dom(h) is uniquely defined by s.
The normalisation rules are presented in Fig. 2. Basically, ω-ENT applies these rules

to a leaf exhaustively and transforms it into NF before others. Given an inductive pred-
icate P(E,F, ...), rule ExM excludes the middle by doing case analysis for the predicate
between base-case (i.e., E=F) and recursive-case (i.e., E �=F). The normalisation rule
�=null follows the following facts: E �→c() ⇒ E �=null and P(E,F ,)∧E �=F ⇒
E �=null. Similarly, rule �=∗ follows the following facts: x�→ ∗P(y,F ,)∧y �=F ⇒
x�=y, x�→ ∗y �→ ⇒ x�=y, and Pi(x,F1,)∗Pj(y,F2,)∧x�=F1∧y �=F2 ⇒ x�=y.

Axiom and Reduction Axiom rules include Emp, Inconsistency and Id, presented in
Fig. 3. If each of these rules is applied to a leaf node, the node is evaluated as valid
and marked as closed. The remaining ones in Fig. 3 are reduction rules.

For simplicity, the unfoldings in rules Frame, RInd, and LInd are applied with the
following definition of inductive predicates:

P(x,F ,B̄,u,sc,tg) ≡ emp∧x=F∧sc=tg
∨ ∃X,sc′,d1,d2.x�→c(X,d1,d2,u,sc)∗Q1(d1,B)∗Q2(d2,X)∗P(X,F ,B̄,u,sc′,tg)∧π0

where B∈B̄, the matrix κ′ contains two nested predicates Q1 and Q2, and the heap
cell c ∈ Node is defined as data c{c next; c1 down1; c2 down2; τs scdata; τu udata}
where c1, c2∈Node, down1 and down2 fields are for the nested predicates in the matrix

Δ[E/x] �Δ′[E/x]
Subst

Δ∧x=E �Δ′

Δ∧E1=E2 �Δ′

Δ∧E1 �=E2 �Δ′
ExM

E1=E2, E1 �=E2 �∈π &

FV(E1, E2) ⊆ (FV(Δ)∪FV(Δ′))SΔ �Δ′

Δ �Δ′
=L

Δ∧E=E �Δ′
(κ∧π)[tg/sc] � Δ′[tg/sc]

LBase
P(E,E,B̄,u,sc,tg)∗κ∧π � Δ′

op(E)∗κ∧π∧G(op(E))∧E �=null � Δ′
�=null E �=null/∈π

op(E)∗κ∧π∧G(op(E)) �Δ′

op1(E1)∗op2(E2)∗κ∧π∧E1 �=E2 �Δ′
�=∗ E1 �=E2 �∈π and G(op1(E1)), G(op2(E2)) ∈ π

op1(E1)∗op2(E2)∗κ∧π �Δ′

Fig. 2: Normalization rules

486 Q. L. Le et al.

Id
Δ ∧ π �Δ

Emp
emp∧π � emp∧true

Inconsistency π |= false
κ∧π � Δ

Δ �Δ′
=R

Δ �Δ′∧E=E

Δ∧π �Δ′
Hypothesis π |= π′

Δ∧π �Δ′∧π′
Δ � Δ′ ∧ tg=sc

RBase
Δ � P(E,E,B̄,u,sc,tg)∗Δ′

κ1∧π � κ2 κ∧π � κ′∧π′
∗ roots(κ1) ∩ roots(κ) = ∅ & FV(κ2)⊆FV(κ1∧π)∪{null}

& FV(κ′)⊆FV(κ∧π)∪{null}κ1∗κ∧π � κ2∗κ′ ∧ π′

Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k∗Δ1∧x	=F3∧π0

� Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2
Frame x�→c()�∈κ2

P(x,F ,B̄,u,sc,tg)k∗Δ1∧x	=F3 � x
→c(X,E1,E2,u,sc′)∗κ2∧π2

x
→c(X,E1,E2,u,sc′)∗κ1∧π1∧x	=F
� x
→c(X,E1,E2,u,sc′)∗Q1(E1,B)∗Q2(E2,X)∗P(X,F ,B̄,u,sc′,tg)∗κ2∧π2∧π0

RInd †
x
→c(X,E1,E2,u,sc′)∗κ1∧π1∧x	=F � P(x,F ,B̄,u,sc,tg)∗κ2∧π2

x
→c(X,E1,E2,u,sc′)∗Q1(E1,B)0∗Q2(E2,X)0∗P(X,F ,B̄,u,sc′,tg)k+1∗Δ1∧x	=F3∧π0

� Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2
LInd �

P(x,F ,B̄,u,sc,tg)k∗Δ1∧x	=F3 � Q(x,F3,B̄,u,sc,tg2)∗κ2∧π2

Fig. 3: Reduction rules (where �: P(x,F ,B̄,u,sc,tg)�∈κ2, †: x�→c(X,E1,E2,u,sc
′)�∈κ2)

heaps, the udata field is for the transitivity data, and the scdata field is for ordering
data. The rules for the general form of the matrix heaps κ′ are presented in [28].

=R and Hypothesis eliminate pure constraints in the RHS. In rule ∗, roots(κ) is
defined inductively as: roots(emp)≡{}, roots(r �→)≡{r}, roots(P (r, F, ..))≡{r}
and roots(κ1∗κ2) ≡ roots(κ1)∪roots(κ2). This rule is applied in three ways. First,
it is applied into an entailment which is of the form κ∧π
 κ∧π′. It matches and dis-
cards the identified heap predicates between the two sides to generate a premise with
empty heaps. As a result, this premise may be applied with the axiom rule EMP. Sec-
ondly, it is applied to an entailment of the form xi �→ci(v̄i)∗...∗xn �→cn(v̄n)∧π
 κ′∧π′.
For each points-to predicate xi �→ci(v̄i)∈κ′, ω-ENT searches for one points-to predicate
xj �→cj(v̄j) in the LHS such that xj �→cj(v̄j) ≡ xi �→ci(v̄i). Lastly, it is applied into an
entailment that is of the form Δ1 ∗Δ
Δ2 ∗Δ′ where either Δ1
Δ2 or Δ
Δ′ could
be linked back into an internal node.

In RInd, for each occurrence of inductive predicates P(r,F ,B̄,u,sc,tg) in κ′, ω-ENT
searches for a points-to predicate r �→ . If any of these searches fail, ω-ENT decides the
conclusion as invalid. Rule LInd unfolds the inductive predicates in the LHS. Every
LHS of entailments in this rule also captures the unfolding numbers for the subterm
relationship and generates the progressing point in the cyclic proofs afterwards. These
numbers are essential for our system to construct cyclic proofs. This rule is applied in a
depth-first manner, i.e., if there are more than one occurrences of inductive predicates in
the LHS that could be applied by this rule, the one with the greatest unfolding number
is chosen. We emphasise that the last five rules still work well when the predicate in the
RHS contains only a subset of the local properties wrt. the predicate in the LHS.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 487

Back-Link Generation Procedure link backe generates a back-link as follows. In a pre-
proof, given a path containing a back-link, say e1, e2, .., em where e1 is a companion
and em a bud, then e1 is in NF and of the following form:

– e1≡P(x,F ,B̄,u,sc,tg)k∗κ∧π∧x�=F∧x�=null � Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′.
– e2 is obtained from applying LInd into e1. e2 is of the form:

x�→c(X, p̄, ,u,sc)∗κ′∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1

� Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

We remark that sc 	 sc′ ∈ π1, and if k ≥ 1, then sci 	 sc ∈ π

– e3, .., em−4 are obtained from applications of normalisation rules to normalise the
LHS of e2 due to the presence of κ′. As the roots of inductive predicates in κ′ are
fresh variables, the applications of the normalization rules above do not affect the
RHS of e2. That means the RHS of e3, .., and em−4 are the same as that of e2. As
a result, em−4 is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

� Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

where κ′′
1 may be emp and π2 is a conjunction of disequalities coming from ExM.

– em−3 is obtained from the application of ExM over x and F2 and of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

∧x �=F2 � Q(x,F2,B̄,u,sc,tg2)∗κ′∧π′

(For the case x=F2, the rule ExM is kept applying until either F ≡ F2, that is, two
sides are reaching the end of the same heap segment, or it is stuck.)

– em−2 is obtained from the application of RInd and is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x �=F∧x�=null∧π1∧π2

∧x�=F2 � x�→c(X,p̄,u,sc)∗κ′′
2∗Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′∧π′

2

– em−1 is obtained from the application of the Hypothesis to eliminate π′
2 (other-

wise, it is stuck) and is of the form:

x�→c(X, p̄, ,u,sc)∗κ′′
1∗P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2

∧x�=F2 � x�→c(X,p̄,u,sc)∗κ′′
2∗Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′

– em is obtained from the application of ∗ and is of the form:

P(X,F ,B̄,u,sc′,tg)k+1∗κ∧π∧x�=F∧x�=null∧π1∧π2∧x�=F2

� Q(X,F2,B̄,u,sc′,tg2)∗κ′∧π′

When k ≥ 1, it is always possible to link em back to e1 through the substitution is
σ≡[x/X, sc/sc′] after weakening some pure constraints in its LHS.

488 Q. L. Le et al.

e0

e1

e2 e3

e4

e5

e6

e7

e8

e9

e10

e11 e12

LInd

ExM ExM

Subst

LBase

RInd

Hypothesis+RBase

∗

�=∗+RInd

Hypothesis

∗ ∗

[x/X,mi/m′]

Fig. 4: Cyclic Proof of lls(x,null,mi,ma)0∧x�=null � llb(x,null,mi).

4.2 Illustrative Example

We illustrate our system through the following example:

e0: lls(x,null,mi,ma)0 ∧ x�=null � llb(x,null,mi)

where the sorted linked-list lls (mi is the minimum value and ma is the maximum
value) is defined in Sect. 2.1 and llb define singly-linked lists whose values are greater
than or equal to a constant number. Particularly, predicate llb is defined as follows.

pred llb(r,F ,b) ≡ emp∧r=F
∨ ∃Xtl,d.r �→c4(Xtl,d) ∗ llb(Xtl,F ,b)∧r �=F ∧ b≤d

Since the LHS is stronger than the RHS, this entailment is valid. Our system could
generate the cyclic proof (shown in Fig. 4) to prove the validity of e0. In the following,
we present step-by-step to show how the proof was created. Firstly, e0, which is in NF,
is applied with rule LInd to unfold predicate lls(x,null,mi,ma)0 and obtain e1 as:

e1: x�→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ � llb(x,null,mi)

We remark that the unfolding number of the recursive predicate lls in the LHS is
increased by 1. Next, our system normalizes e1 by applying rule ExM into X and null

to generate two children, e2 and e3, as follows.

e2: x�→c4(X,m′) ∗ lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X=null
� llb(x,null,mi)

e3: x�→c4(X,m′) ∗ lla(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null
� llb(x,null,mi)

For the left child, it applies normalization rules to obtain e4 (substitute X by null)
and then e5, by LBase to unfold lls(null,null,m′,ma)1 to the base case, as:

e4: x�→c4(null,m
′) ∗ lls(null,null,m′,ma)1 ∧ x�=null ∧mi≤m′ � llb(x,null,mi)

e5: x�→c4(null,ma) ∧ x�=null ∧mi≤ma � llb(x,null,mi)

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 489

Now, e5 is in NF. S2SLin applies RInd and then RBase to llb in the RHS as:

e6: x�→c4(null,ma) ∧ x�=null ∧mi≤ma
� x�→c4(null,ma) ∗ llb(null,null,mi) ∧mi≤ma

e6′ : x�→c4(null,ma) ∧ x�=null ∧mi≤ma � x�→c4(null,ma)∧mi≤ma

After that, as mi≤ma ⇒ mi≤ma, e6′ is applied with Hypothesis to obtain e7.

e7: x�→c4(null,ma) ∧ x�=null ∧mi≤ma � x�→c4(null,ma)

As the LHS of e7 is in NF and a base formula, it is sound and complete to apply rule ∗
to have e8 as emp∧x�=null∧mi≤ma � emp. By Emp, e8 is decided as valid. For the
right branch of the proof, e3 is applied with rule �=∗ and then RInd to obtain e9:

e9: x�→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X
� x�→c4(X,m′)∗llb(X,null,mi)∧mi≤m′

Then, e9 is applied with Hypothesis to eliminate the pure constraint in the RHS:

e10: x�→c4(X,m′)∗lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X
� x�→c4(X,m′)∗llb(X,null,mi)

e10 is then applied the rule ∗ to obtain e11 and e12 as follows.

e11: x�→c4(X,m′) � x�→c4(X,m′)
e12: lls(X,null,m′,ma)1 ∧ x�=null ∧mi≤m′ ∧X �=null ∧ x�=X � llb(X,null,mi)

e11 is valid by Id. e12 is successfully linked back to e0 to form a pre-proof as

(lls(X,null,m′,ma)1∧X �=null)[x/X,mi/m′] � llb(X,null,mi)[x/X,mi/m′]

is identical to e0. Since lls(X,null,m′,ma)1 in e12 is the subterm of
lls(x,null,mi,ma)0 in e0, our system decided that e0 is valid with the cyclic proof
presented in Fig. 4.

5 Soundness, Completeness, and Complexity

We describe the soundness, termination, and completeness of ω-ENT. First, we need to
show the invariant about the quantifier-free entailments of our system.

Corollary 1. Every entailment derived from ω-ENT is quantifier-free.

The following lemma shows the soundness of the proof rules.

Lemma 1 (Soundness). For each proof rule, the conclusion is valid if all premises are
valid.

As every backlink generated contains at least one pair of inductive predicate occur-
rences in a subterm relationship, the global soundness condition holds in our system.

Lemma 2 (Global Soundness). A pre-proof derived is indeed a cyclic proof.

490 Q. L. Le et al.

The termination relies on the number of premises/entailments generated by ∗. As
the number of inductive symbols and their arities are finite, there is a finite number of
equivalence classes of these entailments in which any two entailments in the same class
are equivalent under some substitution and linked back together. Therefore, the number
of premises generated by the rule ∗ is finite, considering the back-links generation.

Lemma 3. ω-ENT terminates.

In the following, we show the complexity analysis. First, we show that every occur-
rence of inductive predicates in the LHS is unfolded at most two times.

Lemma 4. Given any entailment P(v̄)k ∗Δa � Δc, 0 ≤ k ≤ 2.

Let n be the maximum number of predicates (both inductive predicates and points-to
predicates) among the LHS of the input and the definitions in P , and m be the maximum
number of fields of data structures. Then, the complexity is defined as follows.

Proposition 1 (Complexity). QF ENT−SLLIN is O(n× 2m + n3).

If m is bounded by a constant, the complexity becomes polynomial in time.
Our completeness proofs are shown in two steps. First, we show the proofs for an

entailment whose LHS is a base formula. Second, we show the correctness when the
LHS contains inductive predicates. In the following, we first define the base formulas
of the LHS derived by ω-ENT from occurrences of inductive predicates. Based on that,
we define bad models to capture counter-models of invalid entailments.

Definition 4 (SHLIDe Base) Given κ, define κ as follows.

P(E,F ,B̄,u,sc,tg)
def
= E �→c(F ,E1,E2,u,tg) ∗ Q1(E1,B)∗Q2(E2,F)∧π0

E �→c(v̄)
def
= E �→c(v̄) emp

def
= emp κ1∗κ2

def
= κ1∗κ2

The definition for general predicates with arbitrary matrix heaps is presented in [28].
As P does not include mutual recursion (Condition C3), the definition above terminates
in a finite number of steps. In a pre-proof, these SHLIDe base formulas of the LHS are
obtained once every inductive predicate has been unfolded.

Lemma 5. If κ ∧ π is in NF, then κ ∧ π is in NF, and κ ∧ π � κ is valid.

In other words, κ ∧ π is an under-approximation of κ ∧ π; invalidity of κ ∧ π � Δ′

implies invalidity of κ ∧ π � Δ′.

Definition 5 (Bad Model) The bad model for κ∧φ∧ a in NF is obtained by assigning

– a distinct non-null value to each variable in FV(κ ∧ φ); and
– a value to each variable in FV(a) such that a is satisfiable.

Lemma 6. 1. For every proof rule except the rule ∗, all premises are valid only if the
conclusion is valid.

2. For the rule ∗, where the conclusion is of the form Δb � κ′, all premises are valid
only if the conclusion is valid and Δb is in NF.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 491

The following lemma states that the correctness of the procedure is closed for cases
2(b-d).

Lemma 7 (Stuck Invalidity). Given κ∧π � Δ′ in NF, it is invalid if the procedure
is closed returns invalid for cases 2(b-d).

A bad model of the κ∧π is a counter-model. Cases 2b) and 2c) show that the heaps
of bad models are not connected, and thus accordingly to conditions C1 and C2, any
model of the LHS could not be a model of the RHS. Case 2d) shows that heaps of
the two sides could not be matched. We next show the correctness of Case 2(a) of the
procedure is closed, and invalidity is preserved during the proof search in ω-ENT.

Proposition 2 (Invalidity Preservation). If ω-ENT is stuck, the input is invalid.

In other words, if ω-ENT returns invalid, we can construct a bad model.

Theorem 2. QF ENT−SLLIN is decidable.

6 Implementation and Evaluation

We implement S2SLin using OCaml. This implementation is an instantiation of a general
framework for cyclic proofs. We utilize the cyclic proof systems to derive bases for in-
ductive predicates shown in [24] to discharge satisfiability of separation logic formulas.
We use the solver presented in [29,31] for those formulas beyond this fragment. We
also develop a built-in solver for discharging equalities.

We evaluated S2SLin to show that i) it can discharge problems in SHLIDe effectively;
and ii) its performance is compatible with state-of-the-art solvers. The evaluation of
S2SLin is provided as a companion artifact [27].

Experiment settings We have evaluated S2SLin on entailment problems taken from SL-
COMP benchmarks [38], a competition of separation logic solvers. We take 356 prob-
lems (out of 983) in two divisions of the competition, qf shls entl and qf shlid entl,
and one new division, qf shlid2 entl. All these problems semantically belong to our
decidable fragment, and their syntax is written in SMT 2.6 format [39].

– Division qf shls entl includes 296 entailment problems, 122 invalid problems and
174 valid problems, with only singly-linked lists. The authors in [33] randomly
generated them

– Division qf shlid entl contains 60 entailment problems which the authors in [15]
handcrafted. They include singly-linked lists, doubly-linked lists, lists of singly-
linked lists, or skip lists. Furthermore, the system of inductive predicates must sat-
isfy the following condition: For two different predicates P, Q in the system of
definitions, either P ≺∗

P Q or Q ≺∗
P P.

– In the third division, we introduce new benchmarks, with 27 problems, beyond the
above two divisions. In particular, every system of predicate definitions includes
two predicates, P and Q, that are semantically equivalent. We have submitted this
division to the Github repository of SL-COMP.

492 Q. L. Le et al.

Table 1: Experimental results
Tool qf shls entl qf shlid entl qf shlid2 entl

invalid valid Time invalid valid Time invalid valid Time
(122) (174) (296) (24) (36) (60) (14) (13) (27)

SLS 12 174 507m42s 2 35 133m28s 0 11 97m54s
Spen 122 174 10.78s 14 13 3.44s 8 2 1.69s

CyclistSL 0 58 1520m5s 0 24 360m38s 0 3 240m3s
Harrsh 39 116 425m19s 18 27 53m56s 8 7 156m45s

Songbird 12 174 237m25s 2 35 40m38s 0 12 47m11s
S2SLin 122 174 6.22s 24 36 0.96s 14 13 1.20s

To evaluate S2SLin’s performance, we compared it with the state-of-the-art tools such
as CyclistSL [5], Spen [15], Songbird [40], SLS [41] and Harrsh [23]. We omitted Cy-
comp [42], as these benchmarks are beyond its decidable fragment. Note that CyclistSL,
Songbird and SLS are not complete; for non-valid problems, while CyclistSL returns
unknown, Songbird and SLS use some heuristic to guess the outcome. For each division,
we report the number of correct outputs (invalid, valid) and the time (in minutes and
seconds) taken by each tool. Note that we use the status (invalid, valid) annotated
with each problem in the SL-COMP benchmark as the ground truth. If the output is the
same as the status, we classify it as correct; otherwise, it is marked as incorrect. We
also note that in these experiments, we used the competition pre-processing tool [39] to
transform the SMT 2.6 format into the corresponding formats of the tools before run-
ning them. All experiments were performed on an Intel Core i7-6700 CPU 3.4Gh and
8GB RAM. The CPU timeout is 600 seconds.

Experiment results The experimental results are reported in Table 1. In this table, the
first column presents the names of the tools. The following three columns show the
results of the first division, including the number of correct invalid outputs, the number
of correct valid outputs and the taken time (where m for minutes and s for seconds),
respectively. The number between each pair of brackets (...) in the third row shows the
number of problems in the corresponding column. Similarly, the following two groups
of six columns describe the results of the second and third divisions, respectively.

In general, the experimental results show that S2SLin is the one (and only one)
that could produce all the correct results. Other solvers either produced wrong re-
sults or could discharge a fraction of the experiments. Moreover, S2SLin took a short
time for the experiments (8.38 seconds compared to 15.91 seconds for Spen, 324 min-
utes for Songbird, 635 minutes for Harrsh, 739 minutes for SLS and 2120 minutes
for CyclistSL). While SLS returned 14 false negatives, Spen reported 20 false pos-
itives. CyclistSL, Songbird and Harrsh did not produce any wrong results. Of 569
tests, CyclistSL could handle 85 tests (15%), Harrsh could handle 215 tests (38%), and
Songbird could decide on 235 tests (41.3%). In the total of 223 valid tests, CyclistSL
could handle 85 problems (38%), and Songbird could decide 222 problems (99.5%).

Now we examine the results for each division in detail. For qf shls entl, Spen re-
turned all correct, Songbird 186, Harrsh 155, and CyclistSL 58. If we set the timeout
to 2400 seconds, both Songbird and Harrsh produced all the correct results. Division

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 493

qf shlid entl includes 24 invalid problems and 36 valid problems. While Songbird

produced 37 problems correctly, CyclistSL produced 24 correct results. Spen reported
27 correct results and 13 false positives (skl2−vc{01− 04} skl3−vc01, skl3−vc{03−
10}). The last division, qf shlid2 entl, includes 14 invalid and 13 valid test prob-
lems. While Songbird decided only 12 problems correctly, CyclistSL produced 3 cor-
rect outcomes. Spen reported 10 correct results. However, it produced 7 false positives
(ls−mul−vc{01 − 03}, ls−mul−vc05, nll−mul−vc{01 − 03}). We believe that engi-
neering design and effort play an essential role alongside theory development. Since our
experiments provide breakdown results of the two SL-COMP competition divisions, we
hope that they provide an initial understanding of the SL-COMP benchmarks and tools.
Consequently, this might reduce the effort to prepare experiments over these bench-
marks to evaluate new SL solvers. Finally, one might point out that S2SLin performed
well because the entailments in the experiments are within its scope. We do not en-
tirely disagree with this argument but would like to emphasize that tools do not always
work well on favourable benchmarks. For example, Spen introduced wrong results on
qf shlid entl, and Harrsh did not handle qf shlid entl and qf shlid2 entl well, although
these problems are in their decidable fragments.

7 Related Work

S2SLin is a variant of the cyclic proof systems [3,4,5,26] and [42]. Unlike existing
cyclic proof systems, the soundness of S2SLin is local, and the proof search is not back-
tracking. The work presented in [42] shows the completeness of the cyclic proof system.
Its main contribution is introducing the rule ∗ for those entailments with a disjunction in
the RHS obtained from predicate unfolding. In contrast to [42], our work includes nor-
malization to soundly and completely avoid disjunction in the RHS during unfolding.
Moreover, our decidable fragment SHLIDe is non-overlapping to the cone predicates
introduced in [42]. Furthermore, due to the empty heap in the base cases, the match-
ing rule in [42] cannot be applied to the predicates in SHLIDe. Finally, our work also
presents how to obtain the global soundness condition for cyclic proofs.

Our work relates to the inductive theorem provers introduced in [10], [40] and
Smallfoot [2]. While [10] is based on structural induction, [40] is based on mathematical
induction. Smallfoot [2] proposed a decision procedure for linked lists and trees. It used
a fixed compositional rule as a consequence of induction reasoning to handle inductive
entailments. Compared with Smallfoot, our proof system replaces the compositional
rule by combining rule LInd and the back-link construction. Our system could support
induction reasoning on a much more expressive fragment of inductive predicates.

Our proposal also relates to works that use lemmas as consequences of induction
reasoning [2,16,30,41]. These works in [16,25,30,41] automatically generate lemmas
for some classes of inductive predicates. S2 [25] generated lemmas to normalize (such
as split and equivalence) the shapes of the synthesized data structures. [16] proposed
to generate several sets of lemmas not only for compositional predicates but also for
different predicates (e.g., completion lemmas, stronger lemmas and static parameter
contraction lemmas). SLS [41] aims to infer general lemmas to prove an entailment.
Similarly, S2ENT [30] solves a more generic problem, frame inference, using cyclic

494 Q. L. Le et al.

proofs and lemma synthesis. It infers a shape-based residual frame in the LHS and then
synthesizes the pure constraints over the two sides.

S2SLin relates to model-based decision procedures that reduce the entailment prob-
lem in separation logic to a well-studied problem in other domains. For instance, in
[8,11,17], the entailment problem, including singly-linked lists and their invariants, is
reduced to the problem of inclusion checking in a graph theory. The authors in [18]
reduced the entailment problem to the satisfiability problem in second-order monadic
logic. This reduction could handle an expressive fragment of spatial-based predicates
called bounded-tree width. Moreover, the work presented in [23] shows a model-based
decision procedure for a subfragment of the bounded-tree width. Furthermore, while
the work in [15,19] reduced the entailment problem to the inclusion checking problem
in tree automata, [21] presented an idea to reduce the problem to the inclusion checking
problem in heap automata. Moreover, while the procedure in [15] supported compo-
sitional predicates (single and double links) well, the procedure in [19] could handle
predicates satisfying local properties (e.g., trees with parent pointers). Our decidable
fragment subsumes the one described in [2,11,15] but is incomparable to the ones pre-
sented in [8,17,18,19]. Works in [34] and [35,36] reduced the entailment problem in
separation logic into the satisfiability problem in SMT. While GRASShoper [35,36]
could handle transitive closure pure properties, S2SLin is capable of supporting local
ones. Unlike GRASShoper, which reduces entailment into SMT problems, S2SLin re-
duces an entailment to admissible entailments and detects repetitions via cyclic proofs.

Decidable fragments and complexity results of the entailment problem in separa-
tion logic with inductive predicates were well studied. The entailment is 2-EXPTIME
in cone predicates [42], the bounded tree-width predicates and beyond [18,14], and
EXPTIME in a sub-fragment of cone predicates [19]. In the other class, entailment is
in polynomial time for singly-linked lists [11] and semantically linear inductive predi-
cates [15]. Moreover, the extensions with arithmetic [17] are in polynomial but become
EXPTIME when the lists are extended with double links [8]. SHLIDe (with nested lists,
trees and arithmetic properties) is roughly in the “middle” of the two classes above. The
entailment is EXPTIME and becomes polynomial under the upper bound restriction.

8 Conclusion

We have presented a novel decision procedure for the quantifier-free entailment prob-
lem in separation logic combined with inductive definitions of compositional predicates
and pure properties. Our proposal is the first complete cyclic proof system for the prob-
lem in separation logic without back-tracking. We have implemented the proposal in
S2SLin and evaluated it over the set of nontrivial entailments taken from the SL-COMP
competition. The experimental results show that our proposal is effective and efficient
when compared to the state-of-the-art solvers. For future work, we plan to develop a bi-
abductive procedure based on an extension of this work with the cyclic frame inference
procedure presented in [30]. This extension is fundamental to obtaining a composi-
tional shape analysis beyond the lists and trees. Another work is to formally prove that
our system is as strong as Smallfoot in the decidable fragment with lists and trees [2]:
Given an entailment, if Smallfoot can produce proof, so is S2SLin.

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 495

References

1. Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max Kanovich, and Joël Ouak-
nine. Foundations for decision problems in separation logic with general inductive predi-
cates. In Anca Muscholl, editor, Foundations of Software Science and Computation Struc-
tures, pages 411–425, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with Separation Logic. In
APLAS, volume 3780, pages 52–68, November 2005.

3. J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Proceedings
of TABLEAUX-14, volume 3702 of LNAI, pages 78–92. Springer-Verlag, 2005.

4. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem prover. In
Proceedings of APLAS-10, LNCS, pages 350–367. Springer, 2012.

5. James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic
entailment proofs in separation logic. In Proceedings of the 23rd International Conference on
Automated Deduction, CADE’11, page 131–146, Berlin, Heidelberg, 2011. Springer-Verlag.

6. Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-
tino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In Klaus Havelund, Gerard Holzmann, and Ra-
jeev Joshi, editors, NASA Formal Methods, pages 3–11, Cham, 2015. Springer International
Publishing.

7. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. In POPL, pages 289–300, 2009.

8. Taolue Chen, Fu Song, and Zhilin Wu. Tractability of Separation Logic with Inductive
Definitions: Beyond Lists. In Roland Meyer and Uwe Nestmann, editors, 28th International
Conference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:17, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

9. W.-N. Chin, C. Gherghina, R. Voicu, Q.-L. Le, F. Craciun, and S. Qin. A specialization
calculus for pruning disjunctive predicates to support verification. In CAV. 2011.

10. Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction proofs of data-
structures in imperative programs. In Proceedings of PLDI, PLDI ’15, pages 457–466, New
York, NY, USA, 2015. ACM.

11. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning in a
fragment of separation logic. In CONCUR, volume 6901, pages 235–249. 2011.

12. Christopher Curry, Quang Loc Le, and Shengchao Qin. Bi-abductive inference for shape
and ordering properties. In 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS), pages 220–225, 2019.

13. Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling
static analyses at facebook. Commun. ACM, 62(8):62–70, jul 2019.

14. Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Unifying decidable entailments in separa-
tion logic with inductive definitions. In Automated Deduction-CADE 28-28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, pages
183–199, 2021.

15. Constantin Enea, Ondrej Lengál, Mihaela Sighireanu, and Tomás Vojnar. Compositional
entailment checking for a fragment of separation logic. Formal Methods in System Design,
51(3):575–607, 2017.

16. Constantin Enea, Mihaela Sighireanu, and Zhilin Wu. On automated lemma generation for
separation logic with inductive definitions. ATVA, 2015.

17. Xincai Gu, Taolue Chen, and Zhilin Wu. A Complete Decision Procedure for Linearly Com-
positional Separation Logic with Data Constraints, pages 532–549. Springer International
Publishing, Cham, 2016.

496 Q. L. Le et al.

18. R. Iosif, A. Rogalewicz, and J. Simácek. The tree width of separation logic with recursive
definitions. In CADE, pages 21–38, 2013.

19. Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive sepa-
ration logic with tree automata. ATVA, 2014.

20. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In
ACM POPL, pages 14–26, London, January 2001.

21. Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Uni-
fied Reasoning About Robustness Properties of Symbolic-Heap Separation Logic, pages 611–
638. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.

22. Katelaan Jens, Jovanovic Dejan, and Weissenbacher Georg. A separation logic with data:
Small models and automation. In IJCAI, 2018.

23. Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for
separation logic with inductive definitions. In Tomáš Vojnar and Lijun Zhang, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 319–336, Cham, 2019.
Springer International Publishing.

24. Quang Loc Le. Compositional satisfiability solving in separation logic. In Fritz Henglein,
Sharon Shoham, and Yakir Vizel, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 578–602, Cham, 2021. Springer International Publishing.

25. Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin. Shape analysis via
second-order bi-abduction. In CAV, volume 8559, pages 52–68. 2014.

26. Quang Loc Le and Mengda He. A decision procedure for string logic with quadratic equa-
tions, regular expressions and length constraints. In Sukyoung Ryu, editor, Programming
Languages and Systems, pages 350–372, Cham, 2018. Springer International Publishing.

27. Quang Loc Le and Xuan-Bach D. Le. Artifact for an efficient cyclic entailment procedure in a
fragment of separation logic, February 2023. https://doi.org/10.5281/zenodo.
7619870.

28. Quang Loc Le and Xuan-Bach D. Le. An efficient cyclic entailment procedure in a fragment
of separation logic, January 2023. Technical Report.

29. Quang Loc Le, Jun Sun, and Wei-Ngan Chin. Satisfiability modulo heap-based programs.
In CAV. 2016.

30. Quang Loc Le, Jun Sun, and Shengchao Qin. Frame inference for inductive entailment proofs
in separation logic. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 41–60, 2018.

31. Quang Loc Le, Makoto Tatsuta, Jun Sun, and Wei-Ngan Chin. A decidable fragment in
separation logic with inductive predicates and arithmetic. In CAV, pages 495–517, 2017.

32. Scott McPeak and George C. Necula. Data structure specifications via local equality axioms.
In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verification, pages
476–490, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

33. Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition
calculus = heap theorem prover. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, page 556–566, New York,
NY, USA, 2011. Association for Computing Machinery.

34. JuanAntonio Navarro Pérez and Andrey Rybalchenko. Separation logic modulo theories. In
APLAS, volume 8301, pages 90–106. 2013.

35. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using smt. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044, pages 773–789. 2013.

36. Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees
and data. In CAV, volume 8559, pages 711–728. 2014.

37. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In IEEE LICS,
pages 55–74, 2002.

https://doi.org/10.5281/zenodo.7619870
https://doi.org/10.5281/zenodo.7619870

An Efficient Cyclic Entailment Procedure in a Fragment of Separation Logic 497

38. Mihaela Sighireanu and Quang Loc Le. SL-COMP 2022. https://sl-comp.github.io/, 2022.
[Online; accessed Jun-2022].

39. Mihaela Sighireanu, Juan Antonio Navarro Pérez, Andrey Rybalchenko, Nikos Gorogiannis,
Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan, Christoph Matheja, Thomas
Noll, Florian Zuleger, Wei-Ngan Chin, Quang Loc Le, Quang-Trung Ta, Ton-Chanh Le,
Thanh-Toan Nguyen, Siau-Cheng Khoo, Michal Cyprian, Adam Rogalewicz, Tomás Vojnar,
Constantin Enea, Ondrej Lengál, Chong Gao, and Zhilin Wu. SL-COMP: competition of
solvers for separation logic. In Tools and Algorithms for the Construction and Analysis of
Systems - 25 Years of TACAS: TOOLympics, pages 116–132, 2019.

40. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated mu-
tual explicit induction proof in separation logic. In John Fitzgerald, Constance Heitmeyer,
Stefania Gnesi, and Anna Philippou, editors, FM 2016: Proceedings, pages 659–676, 2016.

41. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated lemma
synthesis in symbolic-heap separation logic. POPL, 2018.

42. Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. Completeness of cyclic proofs for
symbolic heaps with inductive definitions. In Anthony Widjaja Lin, editor, Programming
Languages and Systems, pages 367–387, Cham, 2019. Springer International Publishing.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Just Testing

Rob van Glabbeek1,2(�) �

1 School of Informatics, University of Edinburgh, Edinburgh, UK
2 School of Computer Science and Engineering, University of New South Wales,

Sydney, Australia
rvg@cs.stanford.edu

Abstract. The concept of must testing is naturally parametrised with
a chosen completeness criterion, defining the complete runs of a sys-
tem. Here I employ justness as this completeness criterion, instead of
the traditional choice of progress. The resulting must-testing preorder is
incomparable with the default one, and can be characterised as the fair
failure preorder of Vogler. It also is the coarsest precongruence preserving
linear time properties when assuming justness.

As my system model I here employ Petri nets with read arcs. Through
their Petri net semantics, this work applies equally well to process alge-
bras. I provide a Petri net semantics for a standard process algebra ex-
tended with signals; the read arcs are necessary to capture those signals.

1 Introduction

May- and must-testing was proposed by De Nicola & Hennessy in [9]. It yields
semantic equivalences where two processes are distinguished if and only if they
react differently on certain tests. The tests are processes that additionally fea-
ture success states. A test T is applied to a process N by taking the CCS
parallel composition T |N , and implicitly applying a CCS restriction operator to
it that removes the remnants of unsuccessful communication. Applying T to N
is deemed successful if and only if this composition yields a process that may,
respectively must, reach a success state. It is trivial to recast this definition using
the CSP parallel composition ‖A [39] instead of the one from CCS.

It is not a priori clear how a given process must reach a success state. For all
we know it might stay in its initial state and never take any transition leading
to this success state. To this end one must employ an assumption saying that
under appropriate circumstances certain enabled transitions will indeed be taken.
Such an assumption is called a completeness criterion [18]. The theory of testing
from [9] implicitly employs a default completeness criterion that in [25] is called
progress. However, one can parameterise the notion of must testing by the choice
of any completeness criterion, such as the many notions of fairness classified in
[25]. Here I employ justness, a completeness criterion that is better justified than
either progress or fairness [25].

� Supported by Royal Society Wolfson Fellowship RSWF\R1\221008

© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 24

498–519, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_24&domain=pdf
https://orcid.org/0000-0003-4712-7423
https://doi.org/10.1007/978-3-031-30829-1_24
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_24&domain=pdf

Just Testing 499

The resulting must-testing equivalence is incomparable to the progress-based
one from [9]. On the one hand, it no longer distinguishes deadlock and livelock,
i.e., the Petri nets N and N ′ of Ex. 3; on the other hand, it keeps recording
information past a divergence. I characterise the corresponding preorder as the
fair failure preorder of Vogler [43], which using my terminology ought to be
called the just failures preorder. I show that it also is the coarsest precongruence
preserving linear time properties when assuming justness. Finally I show that
the same preorder originates from the timed must-testing framework explored
in [43], but only if all quantitative information is removed from that approach.

I carry out this work within the model of Petri nets extended with read arcs
[35,7], so that it also applies to process algebras through their standard Petri
net semantics. The extension with read arcs is necessary to capture signalling, a
process algebra operator that cannot be adequately modelled by standard Petri
nets. Signalling, or read arcs, can be used to accurately model mutual exclusion
without making a fairness assumption [43,8,11]. This is not possible in standard
Petri nets [31,43,24], or in process algebras with a standard Petri net semantics
[24]. Here I give a Petri net semantics of signalling, and illustrate its use in
modelling a traffic light, interacting with passing cars.

Acknowledgement I am grateful to Weiyou Wang for valuable feedback.

2 Labelled Petri nets with read arcs

I will employ the following notations for multisets.

Definition 1 Let X be a set.

– A multiset over X is a function A : X → �, i.e. A ∈ �X.
– x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.
– For multisets A and B over X I write A ⊆ B iff A(x) ≤ B(x) for all x ∈X;

A ∪B denotes the multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) +B(x),
A−B is given by (A−B)(x) := max(A(x)−B(x), 0), and
for k ∈� the multiset k ·A is given by (k ·A)(x) := k ·A(x).

– The function ∅ : X → �, given by ∅(x) := 0 for all x ∈ X, is the empty
multiset over X.

– The cardinality |A| of a multiset A over X is given by |A| := ∑
x∈X A(x).

– A multiset A over X is finite iff |A| < ∞, i.e., iff the set {x | x∈A} is finite.

With {x, x, y} I denote the multiset over {x, y} with A(x)=2 and A(y)=1, rather
than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified with
the set {x | A(x) = 1}.

I employ general labelled place/transition systems extended with read arcs [35,7].

500 R. J. van Glabbeek

Definition 2 Let A be a set of visible actions and τ �∈ A be an invisible action.

Let Aτ :=A .∪ {τ}. A (labelled) Petri net (over Aτ) is a tuple (S, T, F,R,M0, �)
where
– S and T are disjoint sets (of places and transitions),
– F : ((S × T) ∪ (T × S)) → � (the flow relation including arc weights),
– R : S × T → � (the read relation),
– M0 : S → � (the initial marking), and
– � : T → Aτ (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as
boxes, containing their label. Identities of places and transitions are displayed
next to the net element. When F (x, y) > 0 for x, y ∈ S ∪ T there is an arrow
(arc) from x to y, labelled with the arc weight F (x, y). Weights 1 are elided. An
element (s, t) of the multiset R is called a read arc. Read arcs are drawn as lines
without arrowhead. When a Petri net represents a concurrent system, a global
state of this system is given as a marking, a multiset M of places, depicted by
placing M(s) dots (tokens) in each place s. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between mark-
ings M and M ′, which take place when a finite multiset G of transitions fires.
In that case, each occurrence of a transition t in G consumes F (s, t) tokens
from each place s. Naturally, this can happen only if M makes all these tokens
available in the first place. Moreover, for each t ∈ G there need to be at least
R(s, t) tokens in each place s that are not consumed when firing G. Next, each
t produces F (t, s) tokens in each place s. Definition 4 formalises this notion of
behaviour.

Definition 3 Let N = (S, T, F,R,M0, �) be a Petri net. The multisets t̂, •t, t• :
S → � are given by t̂(s) = R(s, t), •t(s) = F (s, t) and t•(s) = F (t, s) for all s∈S.
The elements of t̂, •t and t• are called read-, pre- and postplaces of t, respectively.
These functions extend to finite multisets G: T → � by Ĝ :=

⋃
t∈G t̂, •G :=∑

t∈T G(t) · •t and G• :=
∑

t∈T G(t) · t•.

Definition 4 ([7]) Let N=(S, T, F,R,M0, �) be a Petri net, G∈�T non-empty
and finite, and M,M ′ ∈ �S . G is a step from M to M ′, written M [G〉N M ′, iff
– •G+ Ĝ ⊆ M (G is enabled) and
– M ′ = (M − •G) +G•.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the
same transition can occur multiple times in a single step. One writes M [t〉N M ′

for M [{t}〉N M ′, whereas M [t〉N abbreviates ∃M ′. M [t〉N M ′. The subscript
N may be omitted if clear from context.

In my Petri nets transitions are labelled with actions drawn from a set
A .∪ {τ}. This makes it possible to see these nets as models of reactive sys-
tems that interact with their environment. A transition t can be thought of as
the occurrence of the action �(t). If �(t)∈A, this occurrence can be observed and
influenced by the environment, but if �(t) = τ , it cannot and t is an internal or
silent transition. Transitions whose occurrences cannot be distinguished by the

Just Testing 501

environment carry the same label. In particular, since the environment cannot
observe the occurrence of internal transitions at all, they are all labelled τ .

In [31,43,24] it was established that mutual exclusion protocols cannot be
correctly modelled in standard Petri nets (without read arcs, i.e., satisfying
R(s, t) = 0 for all s ∈ S and t ∈ T), unless their correctness becomes contin-
gent on making a fairness assumption. In [24] it was concluded from this that
mutual exclusion protocols can likewise not be correctly expressed in standard
process algebras such as CCS [34], CSP [6] or ACP [4], at least when sticking to
their standard Petri net semantics. Yet Vogler showed that mutual exclusion can
be correctly modelled in Petri nets with read arcs [43], and [8,11] demonstrate
how mutual exclusion can be correctly modelled in a process algebra extended
with signalling [3]. Thus signalling adds expressiveness to process algebra that
cannot be adequately modelled in terms of standard Petri nets. This is my main
reason to use Petri nets with read arcs as system model in this paper.

In many papers on Petri nets, the sets of places and transitions are required
to be finite, or at least countable. Here I need a milder restriction, and will limit
attention to nets that are finitary in the following sense.

Definition 5 A Petri net N = (S, T, F,R,M0, �) is finitary if M0 is countable,
t• is countable for all t ∈ T , and moreover the set of transitions t with •t = ∅ is
countable.

3 A Petri net semantics of CCSP with signalling

CCSP [37] is a natural mix of the process algebras CCS [34] and CSP [6], often
used in connection with Petri nets. Here I will present a Petri net semantics
of a version CCSPS of CCSP enriched with signalling [3]. This builds on work
from [29,44,27,10,37,38]; the only novelty is the treatment of signalling. Petri
net semantics of other process algebras, like CCS [34], CSP [6] or ACP [4], are
equally well known. This Petri net semantics lifts any semantic equivalence on
Petri nets to CCSPS, or to any other process algebra, so that the results of this
work apply equally well to process algebras.

CCSPS is parametrised by the choice of sets A of visible actions and K of
agent identifiers. Its syntax is given by

P,Q, Pi ::=
∑
i∈I

aiPi | a �
∑
i∈I

aiPi | P‖AQ | τA(P) | f(P) | K

with a, ai∈A, A⊆A, f : A → A and K ∈ K. Here the guarded choice
∑

i∈I aiPi

executes one of the actions ai, followed by the process Pi. The process a � P
behaves as P , except that in its initial state it it is sending the signal a.1 2

The process P‖AQ is the partially synchronous parallel composition of processes

1 The notation a � P follows [8]; in [3,11] this is denoted Pˆa.
2 Here I require P to be a guarded choice in order to avoid the need for a root condition
[13] to make the equivalences of this paper into congruences. This is also the reason
my language features a guarded choice, instead of action prefixing and general choice.

502 R. J. van Glabbeek

P and Q, where actions from A can take place only when both P and Q can
engage in such an action, while other actions of P and Q occur independently.
The abstraction operator τA hides action from A from the environment by re-
naming them into τ , whereas f is a straightforward relabelling operator (leaving
internal actions alone). Each agent identifier K comes with a defining equation

K
def
= P , with P a guarded CCSPS expression; it behaves exactly as the body of

its defining equation. Here P is guarded if each occurrence of an agent identifier
within P lays in the scope of a guarded choice

∑
i∈I aiPi or a �

∑
i∈I aiPi.

A formal Petri net semantics of CCSPS, and of each of the operators
∑

, �,
‖A, τA and f , appears in [22, Appendix A]. Here I give an informal summary.

Given nets Ni for i∈I, the net
∑

i∈I aiNi is obtained by taking their disjoint
union, but without their initial markings (M0)i, and adding a single marked
place r, and for each i ∈ I a fresh transition ti, labelled ai, with

•ti = {r}, t̂i = ∅
and (

•
ti) = (M0)i.

The parallel composition N‖AN ′ is obtained out of the disjoint union of N
and N ′ by dropping from N and N ′ all transitions t with �(t) ∈ A, and instead
adding synchronisation transitions (t, t′) for each pair of transitions t and t′ from
N and N ′ with �(t) = �(t′) ∈ A. One has

•
(t, t′) :=

•
t +

•
t′, and similarly for̂(t, t′) and (t, t′)•, i.e., all arcs are inherited.

τA and f are renaming operators that only affect the labels of transitions.
The net a � N adds to the net N a single transition u, labelled a, that may

fire arbitrary often, but is enabled in the initial state of N only. To this end, take
•u = u• = ∅ and û = M0, the initial marking of N . I apply this construction
only to nets for which its initially marked places have no incoming arcs.

Example 1 A traffic light can be modelled by the recursive equation

TL
def
= tr .tg .(drive � ty .TL).

Here the actions tr , tg and ty stand for “turn red”, “turn green” and “turn
yellow”, and drive indicates a state where it is OK to drive through. A sequence
of two passing cars is modelled as Traffic

def
= drive.drive.0. Here 0 stands for

the empty sum
∑

i∈∅ ai.Ei and models inaction. In the parallel composition
TL ‖{drive} Traffic the cars only drive through when the light is green. All three
processes are displayed in Fig. 1.

4 Justness and other completeness criteria

Definition 6 Let N = (S, T, F,R,M0, �) be a Petri net. An execution path π
is an alternating sequence M0t1M1t2M2 . . . of markings and transitions of N ,
starting with M0, and either being infinite or ending with a marking, such that
Mi [ti+1〉N Mi+1 for all i < length(π). Here length(π) ∈ �∪ {∞} is the number
of transitions in π.

Let �(π) ∈ A∞
τ be the string �(t1)�(t2) Here A∞

τ denotes the collection
of finite and infinite sequences of actions. Moreover, trace(π) ∈ A∞ is obtained
from �(π) by dropping all occurrences of τ .

Just Testing 503

•
yellow

tr

red

tg

greenty

drive

The traffic light

•

drive

drive

The passing cars

•

tr

tg

ty

•

drive

drive

The cars passing the traffic light

Fig. 1. Traffic passing traffic light

The execution path π is said to enable a transition t, notation π[t〉, if Mk[t〉
for some k ∈ �∧ k ≤ length(π) and for all k ≤ j < length(π) one has tj �= t and
(•t+ t̂) ∩ •tj+1 = ∅.

Path π is B-just, for some B ⊆ A, if �(t) ∈ B for all t ∈ T with π[t〉.

In the definition of π[t〉 above one also has Mj+1[t〉 for all k ≤ j < length(π).
Hence, a finite execution path enables a transition iff its final marking does so.

Informally, π[t〉 holds iff transition t is enabled in some marking on the path
π, and after that state no transition of π uses any of the resources needed to
fire t. Here the read- and preplaces of t count as such resources. The clause
tj �= t moreover counts the transition itself as one of its resources, in the sense
that a transition is no longer enabled when it occurs. This clause is redundant
for transitions t with •t �= ∅. One could interpret this clause as saying that a
transition t with •t = ∅ comes with implicit marked private preplace pt, and arcs
(pt, t) as well as (t, pt).

In [18] I posed that Petri nets or transition systems constitute a good model
of concurrency only in combination with a completeness criterion: a selection of
a subset of all execution paths as complete executions, modelling complete runs
of the represented system. The default completeness criterion, called progress
in [25], declares an execution path complete iff it either is infinite, or its final
marking enables no transition. An alternative, called justness in [25], declares an
execution path complete iff it enables no transition. Justness is a stronger com-
pleteness criterion than progress, in the sense that it deems fewer execution paths
complete. The difference is illustrated by the Petri net of Fig. 2(a). There, the
execution of an infinite sequence of b-transitions, not involving the a-transition,

•

a

•

b

•a b • τ b

Fig. 2. (a) Progress vs. justness; (b) Justness vs. fairness; (c) {b}-progress vs. ∅-progress

504 R. J. van Glabbeek

is complete when assuming progress, but not when assuming justness. In the
survey paper [25], 20 different completeness criteria are ordered by strength:
progress, justness, and 18 kinds of fairness. Most of the latter are stronger than
justness: in Fig. 2(b) the infinite sequence of b-transitions is just but unfair—i.e.
incomplete according to these notions of fairness. Whereas justness was a new
idea in the context of transition systems [25], it was used as an unnamed default
assumption in much work on Petri nets [40]. That justness is better warranted in
applications than other completeness criteria has been argued in [25,18,24,17].

The mentioned completeness criteria from [25] are all stronger than progress,
in the sense that not all infinite execution paths are deemed complete; on the fi-
nite execution paths they judge the same. An orthogonal classification is obtained
by varying the set B ⊆ A of actions that may be blocked by the environment.
This fits the reactive viewpoint, in which a visible action can be regarded as a
synchronisation between the modelled system and its environment. An environ-
ment that is not ready to synchronise with an action b ∈ A can be regarded
as blocking b. Now B-progress is the criterion that deems a path complete iff
it is either infinite, or its final marking M enables only transitions with labels
from B. When the environment may block such transitions, it is possible for
the system to not progress past M . In Fig. 2(c) the execution that performs
only the τ -transition is complete when assuming {b}-progress, but not when
assuming ∅-progress. Definition 6 defines B-justness accordingly, and [25] fur-
thermore defines 18 different notions of B-fairness, for any choice of B ⊆ A. The
internal action τ /∈ B can never be blocked by the environment. The default
forms of progress and justness described above correspond with ∅-progress and
∅-justness. In [40] blocking and non-blocking transitions are called cold and hot,
respectively.

Two subtly different computational interpretations of Petri nets appear in the
literature [14]: in the individual token interpretation multiple tokens appearing
in the same place are seen as different resources, whereas in the collective token
interpretation only the number of tokens in a place is semantically relevant. The
difference is illustrated in Fig. 3.

•• a

ta

b
tb

•
s

Fig. 3. Run a∞ is just under the individual token interpretation of Petri nets

The idea underlying justness is that once a transition t is enabled, eventually
either t will fire, or one of the resources necessary for firing t will be used by
some other transition. The execution path π in the net of Fig. 3 that fires the
action a infinitely often, but never the action b, is ∅-just by Def. 6. Namely,
tb is not enabled by π, as (•tb + t̂b) ∩ •ta �= ∅. This fits with the individual
token interpretation, as in this run it is possible to eventually consume each
token that is initially present, and each token that stems from firing transition
ta. This way any resource available for firing tb will eventually be used by some
other transition.

Just Testing 505

When adhering to the collective token interpretation of nets, execution path
π could be deemed ∅-unjust, since transition tb can fire when there is at least one
token in its preplace, and this state of affairs can be seen as a single resource that
is never taken away. This might be formalised by adapting the definition of π[t〉, a
path enabling a transition, namely by changing the condition (•t+ t̂)∩•tj+1 = ∅
from Def. 6 into •t+ t̂+•tj+1 ⊆ Mj . However, this formalisation doesn’t capture
that after dropping place s from the net of Fig. 3 there is still an infinite run
in which b does not occur, namely when regularly firing two as simultaneously.
This contradicts the conventional wisdom that firing multiple transitions at once
can always be reduced to firing them in some order. To avoid that type of
complication, I here stick to the individual token interpretation. Alternatively,
one could restrict attention to 1-safe nets [40], on which there is no difference
between the individual and collective token interpretations, or to the larger class
of structural conflict nets [23,21], on which the conditions (•t + t̂) ∩ •tj+1 = ∅
and •t+ t̂+ •tj+1 ⊆ Mj are equivalent [21, Section 23.1], so that Def. 6 applies
equally well to the collective token interpretation.

5 Feasibility

A standard requirement on fairness assumptions, or completeness criteria in
general, is feasibility [2], called machine closure in [33]. It says that any finite
execution path can be extended into a complete one. The following theorem
shows that B-justness is feasible indeed.

Theorem 1 For any B ⊆ A, each finite execution path of a finitary Petri net
can be extended into a B-just path.

Proof. Without loss of generality I restrict attention to nets without transitions
t with •t = ∅. Namely, an arbitrary net can be enriched with marked private
preplaces pt for each such t, and arcs (pt, t) and (t, pt). In essence, this enrichment
preserves the collection of execution path of the net, ordered by the relation “is
an extension of”, the validity of statements π[t〉, and the property of B-justness.

I present an algorithm extending any given path M0t1M1t2 . . . tk−1Mk into
a B-just path π = M0t1M1t2M2 The extension only uses transitions ti with
�(ti) /∈ B. As data structure my algorithm employs an � × �-matrix with
columns named i, for i ≥ k, where each column has a head and a body. The
head of column k contains Mk and its body lists the places s ∈ Mk, leaving
empty most slots if there are only finitely many such places. Since the given net
is finitary, Mk has only countable many elements, so that they can be listed in
the � slots of column k.

The head of each column i > k with i−1 < length(π) will contain the pair
(ti,Mi) and its body will list the places s ∈ Mi, again leaving empty most slots
if there are only finitely many such places. Once more, finitariness ensures that
there are enough slots in column i.

506 R. J. van Glabbeek

An entry in the body of the matrix is either (still) empty, filled in with a
place, or crossed out. Let f : � → � ×� be an enumeration of the entries in
the body of this matrix.

At the beginning only column k is filled in; all subsequent columns of the
matrix are empty. At each step i > k I first cross out all entries s in the body of
the matrix for which there is no transition t with �(t) /∈ B, Mi−1[t〉 and s ∈ •t.
In case all entries of the matrix are crossed out, the algorithm terminates, with
output M0t1M1t2 . . .Mi−1. Otherwise I fill in column i as follows and cross out
some more places occurring in body of the matrix.

I take n to be the smallest value such that entry f(n) ∈ � × � is already
filled in, say with place r, but not yet crossed out. By the previous step of the
algorithm, Mi−1[ti〉 for some transition ti with �(ti) /∈ B and r ∈ •ti. I now
fill in (ti,Mi) in the head of column i; here Mi is the unique marking such
that Mi−1[ti〉Mi. Subsequently I cross out all entries in the body of the matrix
containing a place r′ ∈ •ti. This includes the entry f(n). Finally, I fill in the
body of column i with the places s ∈ Mi.

In case the algorithm doesn’t terminate, the desired path π is the sequence
π = M0t1M1t2M2 . . . that is constructed in the limit. It remains to show that π
is B-just.

Towards a contradiction, suppose π[t〉 for a transition t with �(t) /∈ B. By
Def. 6 there is an m ∈ �∧m ≤ length(π) such that Mm[t〉 and (•t+t̂)∩•tj+1 = ∅
for all m ≤ j < length(π). Let h be the smallest such m with m ≥ k. Then there
is a place r ∈ •t appearing in column h. Here I use that •t
= ∅. This place was
not yet crossed out when column h was constructed. Since r /∈ •tj+1 and Mj+1[t〉
for all h ≤ j < length(π), place r will never be crossed out. It follows that π
must be infinite. The entry r in column h is enumerated as f(n) for some n ∈ �,
and is eventually reached by the algorithm and crossed out. In this regard the
matrix acts as a priority queue. This yields the required contradiction. ��

The above proof is a variant of [18, Thm. 1], which itself is a variant of [25,
Thm. 6.1]. The side condition of finitariness is essential, as the below counterex-
ample shows.

Example 2 Let N = (S, T, F,R,M0, �) be the net with T = {tr | r ∈ �},
S = {sr | r ∈ �}, M0(sr) = 1, �(tr) = τ , •tr = {sr} and t̂r = t•r = ∅
for each r ∈ �. It contains uncountably many action transitions, each with a
marked private preplace. As each execution path π contains only countably many
transitions, many transitions remain enabled by π.

6 The coarsest preorders preserving linear time properties

A linear time property is a predicate on system runs, and thus also on the
execution paths of Petri nets. One writes π |= ϕ if the execution path π satisfies
the linear-time property ϕ. As the observable behaviour of an execution path π
of a Petri net is deemed to be trace(π), in this context one studies only linear

Just Testing 507

time properties ϕ such that

trace(π) = trace(π′) ⇔ (π |= ϕ ⇔ π′ |= ϕ) . (1)

For this reason, a linear time property can be defined or characterised as a subset
of A∞.

Linear time properties can be used to formalise correctness requirements on
systems. They are deemed to hold for (or be satisfied by) a system iff they
hold for all its complete runs. Following [20] I write D |=CC ϕ iff property
ϕ holds for all runs of the distributed system D—and N |=CC ϕ iff it holds
for all execution paths of the Petri net N—that are complete according to the
completeness criterion CC. Prior to [20], |= was a binary predicate predicate
between systems—or system representations such as Petri nets—and properties;
in this setting the default completeness criterion of Section 4 was used. When
using a completeness criterion B-C, where C is one of the 20 completeness criteria
classified in [25] and B ⊆ A is a modifier of C based on the set B of actions
that may be blocked by the environment, N |=B-C ϕ is written N |=C

B ϕ [20].
In this paper I am mostly interested in the values Pr and J of C, standing
for progress and justness, respectively. To be consistent with previous work on
temporal logic, N |= ϕ is a shorthand for N |=Pr

∅ ϕ.

For each completeness criterion B-C, let �C
B be the coarsest preorder that

preserves linear time properties when assuming B-C. Moreover, �C is the coars-
est preorder that preserves linear time properties when assuming completeness
criterion C in each environment, meaning regardless which set of actions B can
be blocked.

Definition 7 Write N �C
B N ′ iff N |=C

B ϕ ⇒ N ′ |=C
B ϕ for all linear time

properties ϕ. Write N �C N ′ iff N �C
B N ′ for all B ⊆ A.

It is trivial to give a more explicit characterisation of these preorders. To preserve
the analogy with the failure pairs of CSP [6], instead of sets B ⊆ A I will record
their complements B := A\B. As B = B, such sets carry the same information.
Since B contains the actions that may be blocked by the environment, meaning
that we consider environments that in any state may decide which actions from
B to block, the set B ∪ {τ} contains actions that may not be blocked by the
environment. This means that we only consider environments that in any state
are willing to synchronise with any action in B.

Definition 8 For completeness criterion C, B ranging over P(A), and Petri
net N , let

FC(N) := {(σ,B) |N has a B-C-complete execution path π with σ=trace(π)}
FC

B (N) := { σ |N has a B-C-complete execution path π with σ=trace(π)}.

An element (σ,X) of FC(N) could be called a C-failure pair of N , because it
indicates that the system represented by N , when executing a path with visible
content σ, may fail to execute additional actions from X, even when all these

508 R. J. van Glabbeek

actions are offered by the environment, in the sense that the environment is
perpetually willing to partake in those actions. Note that if (σ,X) ∈ FC(N)
and Y ⊆ X then (σ, Y) ∈ FC(N).

Proposition 1 N �C
B N ′ iff FC

B (N)⊇ FC
B (N ′).

Likewise, N �C N ′ iff FC(N)⊇ FC(N ′).

Proof. Suppose N �C
B N ′ and σ /∈ FC

B (N). Let ϕ be the linear time property
satisfying π |= ϕ iff trace(π) �= σ. Then N |=C

B ϕ and thus N ′ |=C
B ϕ. Hence

σ /∈ FC
B (N ′).

Suppose N ��C
B N ′. There there exists a linear time property ϕ such that

N |=C
B ϕ, yet N ′ �|=C

B ϕ. Let π′ be a B-C-complete execution path of N ′ such
that π′ �|= ϕ, and let σ = trace(π′). By (1) π �|= ϕ for any execution path π (of
any net) such that trace(π) = σ. Hence σ ∈ FC

B (N ′), yet σ /∈ FC
B (N). It follows

that FC
B (N) �⊇ FC

B (N ′).
The second statement follows as a corollary of the first, using that FC(N) ⊇

FC(N ′) iff FC
B (N) ⊇ FC

B (N ′) for all B ⊆ A. ��

The preorders �C
B can be classified as linear time semantics [12], as they are

characterised through reverse trace inclusions. The preorders �C on the other
hand capture a minimal degree of branching time. This is because they should
be ready for different choices of a system’s environment at runtime.

Note that �C is contained in �C
B for each B ⊆ A, in the sense that N �C N ′

implies N �C
B N ′. There is a priori no reason to assume inclusions between

preorders �C and �D when D is a stronger completeness criterion than C.
To relate the preorders �C

B and �C with ones established in the literature, I
consider the case C = Pr , i.e., taking progress as the completeness criterion C.
The preorder �Pr

∅ is characterised as reverse inclusion of complete traces, where
completeness is w.r.t. the default completeness criterion of Section 4. These
complete traces include

– the infinite traces of a system,
– its divergence traces (stemming from execution paths that end in infinitely

many τ -transitions), and
– its deadlock traces (stemming from finite execution paths that end in a mark-

ing enabling no transitions).

Deadlock and divergence traces are not distinguished. This corresponds with
what is called divergence sensitive trace semantics (Tλ) in [12]. The above con-
cept of complete traces of a process p is the same as in [15], there denoted CT (p).

The preorder �Pr
A is characterised as reverse inclusion of infinite and partial

traces, i.e., the traces of all execution paths. This corresponds with what is
called infinitary trace semantics (T∞) in [12]. It is strictly coarser (making more
identifications) than Tλ.

To analyse the preorder �Pr , one has (σ,X) ∈ FPr (N) if either

– σ is an infinite trace of N—the set X plays no rôle in that case,
– σ is a divergence trace of N , or

Just Testing 509

– σ is the trace of a finite path of N whose end-marking enables no transition
t with �(t) ∈ X.

The resulting preorder does not occur in [12]—it can be placed strictly between
divergence sensitive failure semantics (FΔ) and divergence sensitive trace se-
mantics (Tλ).

The entire family of preorders �C
B and �C proposed in this section was

inspired by its most interesting family member, �J (i.e., taking justness as the
completeness criterion C), proposed earlier by Walter Vogler [43, Def. 5.6], also
on Petri nets with read arcs. Vogler [43] uses the word fair for what I call just.
I believe the choice of the word “just” is warranted to distinguish the concept
from the many other kinds of fairness that appear in the literature, which are
all of a very different nature. Accordingly, Vogler calls the semantics induced
by �J the fair failure semantics, whereas I call it the just failures semantics.
My set F J(N) is called FF (N) in [43], and Vogler addresses �J simply as
FF -inclusion, thereby defining it via the right-hand side of Prop. 1.

7 Congruence properties

A preorder � is called a precongruence for an n-ary operator Op, if Ni � N ′
i

for i = 1, . . . , n implies that Op(N1, . . . , Nn) � Op(N ′
1, . . . , N

′
n). In this case the

operator Op is said to be monotone w.r.t. the preorder �. Being a precongru-
ence for important operators is known to be a valuable tool in compositional
verification [41].

I write ≡ for the kernel of �, that is, N ≡ N ′ iff N � N ′ ∧ N ′ � N . Here
I also imply that ≡C

B is the kernel of �C
B . If � is a precongruence for Op, then

≡ is a congruence for Op, meaning that Ni ≡ N ′
i for i = 1, . . . , n implies that

Op(N1, . . . , Nn) ≡ Op(N ′
1, . . . , N

′
n).

The preorder �Pr
A , characterised as reverse inclusion of infinite and partial

traces, is well-known to be precongruence for the operators of CCSP. However,
none of the other preorders �Pr

B , nor �Pr , is a precongruence for parallel com-
position.

Example 3 Let N = • , N ′ = • τ and T = • w . The definition

of ‖∅ yields T ‖∅N = • • w and T ‖∅N ′ = • τ • w . One

has N ≡Pr N ′, and thus also N ≡Pr
B N ′, for each B ⊆ A. Namely FPr (N) =

FPr (N ′) = {(ε,X) | X ⊆ A}. Here ε denotes the empty string. When fixing B
such that B 	= A one may choose w /∈ B. Now ε ∈ FPr

B (T ‖∅N ′), for this process
has an infinite execution path that avoids the w-transition, which generates a
divergence trace ε. Yet ε /∈ FPr

B (T ‖∅N). Hence T ‖∅N 	�Pr
B T ‖∅N ′, and thus

also T ‖∅N 	�Pr T ‖∅N ′. So neither �Pr
B nor �Pr are precongruences for ‖∅.

A common solution to the problem of a preorder � not being a precongruence
for certain operators is to instead consider its congruence closure, defined as the
largest precongruence contained in �.

510 R. J. van Glabbeek

In [30,15] the congruence closure of �Pr is characterised as the so-called
NDFD preorder �NDFD . Here N �NDFD N ′ iff N �Pr N ′ (characterised in
the previous section) and moreover the divergence traces of N ′ are included in
those of N . As remarked in [15], here it does not matter whether one requires
congruence closure merely w.r.t. parallel composition and injective relabelling,
or w.r.t. all operators of CSP (or CCSP, or anything in between).

Unlike �Pr , the preorder �J is a precongruence for parallel composition.
Although this has been proven already by Vogler [43], [22, in Appendix B] I
provide a proof that bypasses the auxiliary notion of urgent transitions, and
provides more details.

Proposition 2 ([43]) �J is a precongruence for relabelling and abstraction.

Proof. This follows since F J(f(N)) = {(f(σ), X) | (σ, f−1(X)) ∈ F J(N)} and
moreover F J(τI(N)) = {(τI(σ), X) | (σ,X ∪ I) ∈ F J(N)}. Here τI(σ) is the
result of pruning all I-actions from σ ∈ A∞. ��

Trivially, �J also is a precongruence for
∑

aiPi and a �
∑

aiPi.
The preorder �J

A can be seen to coincide with �Pr
A , characterised as reverse

inclusion of infinite and partial traces, and thus is a precongruence for the op-
erators of CCSP. Leaving open the case |A\B| = 1, the preorders �J

B with
|A\B| ≥ 2 fail to be precongruences for parallel composition.

Example 4 Take b, c /∈ B. Let N , N ′ and T be as shown in Fig. 4. Then

•

a

b c

N

•

a

b

a

c

N ′

•

a

c

T

•

a

c

T ‖AN

•

a a

c

T ‖AN ′

Fig. 4. The preorders �J
B with |A\B| ≥ 2 fail to be precongruences for parallel comp.

N ≡J
B N ′, as F J

B(N)=F J
B(N

′)= {ε, ab, ac}. (Whether ε is included depends on
whether a∈B.) Yet T ‖AN
≡J

B T ‖AN ′, as a∈F J
B(T ‖AN ′), yet a /∈F J

B(T ‖AN).

Moreover, as illustrated below, the preorders �J
B with B
= ∅ and |A\B| ≥ 1 fail

to be precongruences for abstraction. In the next section I will show that, for
A infinite and B
= A, the congruence closure of �J

B for parallel composition,
abstraction and relabelling is �J .

Example 5 Take b ∈ B and c /∈ B. Let N and N ′ be as shown in Fig. 5. Then
N ≡J

B N ′, as F J
B(N) = F J

B(N
′) = {ε, bc}. Yet τ{b}(N)
≡J

B τ{b}(N ′), since
ε ∈ F J

B(τ{b}(N
′)), yet ε /∈ F J

B(τ{b}(N)).

Just Testing 511

•

τ

b

c

N

•

τ τ

b

c

N ′

•

τ

τ

c

τ{b}(N)

•

τ τ

τ

c

τ{b}(N
′)

Fig. 5. The preorders �J
B with ∅ �= B �= A fail to be precongruences for abstraction

8 Must Testing

A test is a Petri net, but featuring a special action w /∈ Aτ , not used elsewhere.
This action is used to mark success markings : those in which w is enabled. If
T is a test and N a net then τA(T ‖AN) is also a test. An execution path of
τA(T ‖AN) is successful iff it contains a success marking.

Definition 9 A Petri net N may pass a test T , notation N may T , if τA(T ‖AN)
has a successful execution path. It must pass T , notation N must T , if each
complete execution path of τA(T ‖AN) is successful. It should pass T , notation
N should T , if each finite execution path of τA(T ‖AN) can be extended into a
successful execution path.

Write N �must N ′ if N must T implies N ′ must T for each test T . The
preorders �may and �should are defined similarly.

The may- and must-testing preorders stem from De Nicola & Hennessy [9],
whereas should-testing was added independently in [5] and [36].

In the original work on testing [9] the CCS parallel composition T |N was
used instead of the concealed CCSP parallel composition τA(T ‖AN); moreover,
only those execution paths consisting solely of internal actions mattered for
the definitions of passing a test. The present approach is equivalent. First of
all, restricting attention to execution paths of T |N consisting solely of internal
actions is equivalent to putting T |N is the scope of a CCS restriction operator \A
[34], for that operator drops all transitions of its argument that are not labelled
τ or w. Secondly, CCS features a complementary action ā for each a ∈ A, and
one has ¯̄a = a. For T a test, let T denote the complementary test in which
each action a ∈ A is replaced by ā; again T = T . It follows directly from the
definitions of the operators involved that τA(T ‖AN) is identical3 to (T |N)\A.
This proves the equivalence of the two approaches.

3 The standard definition of | on Petri nets [28] is given only up to isomorphism. By
choosing the names of places and transitions similar to those in the defintion of ‖A
from [22, Appendix A] one can obtain τA(T ‖AN) = (T |N)\A.

512 R. J. van Glabbeek

Unlike may- and should-testing, the concept of must-testing is naturally
parametrised with a completeness criterion, deciding what counts as a complete
execution. To make this choice explicit I use the notation �C

must, where C could
be any of the completeness criteria surveyed in [25]. Since processes τA(T ‖AN)
(or (T |N)\A) do not feature any actions other than τ and w, where w is used
merely to point to the success states, the modifier B ⊆ A of a completeness
criteria B-C has no effect, i.e., any two choices of this modifier are equivalent.

In the original work of [9] the default completeness criterion progress from
Section 4 was employed. Interestingly, �Pr

must is a congruence for the operators
of CCSP that does not preserve all linear time properties. It is strictly coarser
than �NDFD . In fact, it is the coarsest precongruence for the CCSP parallel
composition and injective relabelling that preserves those linear time properties
that express that a system will eventually reach a state in which something
[good] has happened [15]. (In [15], following [32], but deviating from the standard
terminology of [1], such properties are called liveness properties.)

In this paper I investigate the must-testing preorder when taking justness as
the underlying completeness criterion, �J

must. Thm. 2 below shows that it can
be characterised as the just failures preorder �J of Section 6.

First note that Def. 9 can be simplified. When dealing with justness as com-
pleteness criterion, the word “complete” in Def. 9 is instantiated by “just” or
“B-just”, for some B ⊆ A (not including w). As the result is independent of B,
one may take B := ∅. Since the labelling of a net has no bearing on its execution
paths, or on whether such a path is ∅-just, or successful, one may now drop the
operator τA from Def. 9 without affecting the resulting notion of must testing.

Theorem 2 N �J
must N

′ iff N �J N ′.

Proof. The “if” direction is established in [22, Appendix C].
For “only if”, suppose N �J

must N ′. Using Prop. 1, it suffices to show that
F J(N) ⊇ F J(N ′). Let (σ,X) ∈ F J(N ′), where σ = a1a2 . . . ∈ A∞ is a finite or
infinite sequence of actions. Let T be the test displayed in Fig. 6. The drawing
is for the case that σ = a1a2 . . . an finite; in the infinite case, there is no need
to display an separately. Now K must T , for any net K, when using justness
as completeness criterion, iff each ∅-just execution path of T ‖AK is successful,
which is the case iff (σ,X) /∈ F J(K). (In other words, T ‖AK has an unsuccessful
∅-just execution path iff (σ,X) ∈ F J(K). For the meaning of (σ,X) ∈ F J(K) is
thatK has an execution path π with trace(π) = σ such that �K(t) ∈ X ⇒ ¬π[t〉.)
Hence N ′ must not T and thus N must not T , and thus (σ,X) ∈ F J(N).
�
Proposition 3 Let A be infinite and B �= A. Then �J is the congruence closure
of �J

B for parallel composition, abstraction and injective relabelling.

Proof. Pick an action w ∈ A\B. Assume N ��J N ′. By applying an injective re-
labelling, one can assure that w does not occur in N or N ′. Let (σ,X) ∈ F J(N ′),
yet (σ,X) /∈ F J(N), with w /∈ X. Let T be the net of Fig. 6. Then, writing A :=
A\{w}, (σ,A) ∈ F J(T ‖AN ′), yet (σ,A) /∈ F J(T ‖AN). Moreover, (ρ,A) /∈
F J(T ‖AN ′) and (ρ,A) /∈ F J(T ‖AN) for any ρ �= σ not containing the action

Just Testing 513

•

τ

a1

τ

a2

τ

. . . an

τ

w

•

b w

b′ w

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
for each b, b′, . . . ∈ X

. . .

Fig. 6. Universal test for just must testing

w. Hence, applying the proof of Prop. 2, using that A∪B = A, one has (ε,B) ∈
F J(τA(T ‖AN ′)), yet (ε,B) /∈ F J(τA(T ‖AN)). Thus ε ∈ F J

B(τA(T ‖AN ′)), yet
ε /∈ F J

B(τA(T ‖AN)). It follows that τA(T ‖AN) ��J
B τA(T ‖AN ′). ��

9 Timed must-testing

A timed form of must-testing was proposed by Vogler in [43]. Justness says that
each transition that gets enabled must fire eventually, unless one of its necessary
resources will be taken away. In Vogler’s framework, each transition t must fire
within 1 unit of time after it becomes enabled, even though it can fire faster.
The implicit timer is reset each time t becomes disabled and enabled again, by
another transition taken a token and returning it to one of the replaces of t.
Since there is no lower bound on the time that may elapse before a transition
fires, this view encompasses the same asynchronous behaviour of nets as under
the assumption of justness.

Vogler’s work only pertains to safe nets: those with the property that no
reachable marking allocates multiple tokens to the same place. Here a marking
is reachable if it occurs in some execution path. Transitions t with •t = ∅ are
excluded. Although he only considered finite nets, here I apply his work un-
changed to finitely branching nets: those in which only finitely many transitions
are enabled in each reachable marking.

Definition 10 ([43]) A continuous(ly timed) instantaneous description (CID)
of a net N is a pair (M, ξ) consisting of a marking M of N and a function
ξ mapping the transitions enabled under M to [0, 1]; ξ describes the residual
activation time of an enabled transition.

The initial CID is CID0 = (M0; ξ0) with ξ0(t) = 1 for all t with M0[t〉.
One writes (M, ξ)[η〉(M ′, ξ′) if one of the following cases applies:

514 R. J. van Glabbeek

(1) η = t ∈ T , M [t〉M ′, ξ′(t) := ξ(t) for those transitions t enabled under M−•t
and ξ′(t) := 1 for the other transitions enabled under M ′.

(2) η = r ∈ �+, r ≤ min(ξ), M ′ = M and ξ′ = ξ − r.

A timed execution path π is an alternating sequence of CIDs and elements t ∈ T
or r ∈ �+, defined just like an execution path in Def. 6. Let ζ(π) ∈ �∪ {∞} be
the sum of all time steps in a timed execution path π, the duration of π.

A timed test is a pair (T , D) of a test T and a duration D ∈ �+
0 . A net must

pass a timed test (T , D), notation N must (T , D), if each timed execution
path π with ζ(π) > D contains a transition labelled w. Write N �timed

must N ′ if
N must (T , D) implies N ′ must (T , D) for each timed test (T , D).

Vogler shows that the preorder �timed
must is strictly finer than �J . In fact, although

τ.a.0 ≡J a.0, one has τ.a.0 	≡timed
must a.0, since only the latter process must pass

the timed test (a.w, 2). Here I use that each of the actions τ , a and w may take
up to 1 unit of time to occur. A statement N �timed

must N ′ says that N ′ is faster
than N , in the sense that composed with a test it is guaranteed to reach success
states in less time than N .

Here I show that when abstracting from the quantitative dimension of timed
must-testing, it exactly characterises �J .

Definition 11 A net must eventually pass a test T if there exists a D ∈ �+
0

such that N must (T , D). Write N �ev.
must N

′ if when N must eventually pass a
test T , then so does N ′.

Theorem 3 Let N,N ′ be finitely branching safe nets. Then N �ev.
must N ′ iff

N �J N ′.

A proof can be found in [22, Appendix D].

10 Conclusion

The just failures preorder �J was introduced by Walter Vogler [43] in 2002. Since
then it has not received much attention in the literature, and has not been used
as the underlying semantic principle justifying actual verifications. In my view
this can be seen as a fault of the subsequent literature, as �J captures exactly
what is needed—no more and no less—for the verification of safety and liveness
properties of realistic systems.

I substantiate this claim by pointing out that �J is the coarsest preorder
preserving safety and liveness properties when assuming justness, that is a con-
gruence for basic process algebra operators, such as the partially synchronous
parallel composition, abstraction from internal actions, and renaming. As argued
in [25,18,24,17], justness is better motivated and more suitable for applications
than competing completeness criteria, such as progress or the many notions of
fairness surveyed in [24].

Moreover, I adapt the well-known must-testing preorder of De Nicola & Hen-
nessy [9], by using justness as the underlying completeness criterion, instead of

Just Testing 515

the traditional choice of progress. By showing that the resulting must-testing
preorder �J

must coincides with �J I strengthen the case that this is a natural
and fundamental preorder.

This conclusion is further strengthened by my result that it also coincides
with a qualitative version �ev.

must of the timed must-testing preorder �timed
must of

Vogler [43]. (Although �timed
must and �J stem from the same paper [43], this con-

nection was not made there.)
All this was shown in the setting of Petri nets extended with read arcs, and

therefore also applies to the settings of standard process algebras such as CCS,
CSP or ACP. Since I cover read arcs, it also applies to process algebras enriched
with signalling, an operator that extends the expressiveness of standard process
algebras and is needed to accurately model mutual exclusion. I leave it for future
work to explore these matters for probabilistic models of concurrency, or other
useful extensions.

�should �J
must = �J = �ev.

must

�may�Pr
must

�Pr
must ∩ �may

�Pr
reward

↔
↔ep

↔sp

Fig. 7. A spectrum of testing preorders and bisimilarities preserving liveness properties

Fig. 7 situates �J
must w.r.t. the some other semantic preorders from the literature.

The lines indicate inclusions. Here �Pr
must, �may and �should are the classical

must-, may- and should-testing preorders from [9] and [5,36]—see Def. 9—and
�Pr

reward is the reward-testing preorder introduced by me in [19]. The failures-
divergences preorder of CSP [6,42], defined in a similar way as �J

must, coincides
with �Pr

must [9,19]. ↔ denotes the classical notion of strong bisimilarity [34], and
↔ep , ↔sp are essentially the only other preorders (in fact equivalences) that
preserve linear time properties when assuming justness: the enabling preserving
bisimilarity of [26] and the structure preserving bisimilarity of [16].
The inclusions follow directly from the definitions—see refs.

—and counterexamples against further inclusions appear below.

• �≡Pr
must

≡may

•
τ

•
a

•
τ

�≡J

↔ •
a

τ

≡J

�≡shld.

≡Pr
rew.

•
a

τ

τ

τ

•
a

τ

≡Pr
must

�≡may

•
b

τ

c

•
c

g

τ

≡Pr
must

≡may

�≡Pr
rew.

�≡shld.

�≡J

•
c

g

τ

516 R. J. van Glabbeek

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Infromation Processing Letters
21(4), 181–185 (1985). https://doi.org/10.1016/0020-0190(85)90056-0

2. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed
programming. Distributed Computing 2(4), 226–241 (1988). https://doi.org/

10.1007/BF01872848

3. Bergstra, J.A.: ACP with signals. In: Grabowski, J., Lescanne, P., Wechler, W.
(eds.) Proc. International Workshop on Algebraic and Logic Programming. LNCS,
vol. 343, pp. 11–20. Springer (1988). https://doi.org/10.1007/3-540-50667-5_
53

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37(1), 77–121 (1985). https://doi.org/10.1016/

0304-3975(85)90088-X

5. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka,
S.A. (eds.) Proc. 6th International Conference on Concurrency Theory, CON-
CUR’95. LNCS, vol. 962, pp. 313–327. Springer (1995). https://doi.org/10.

1007/3-540-60218-6_23

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

7. Busi, N., Pinna, G.M.: Non sequential semantics for contextual P/T nets. In:
Billington, J., Reisig, W. (eds.) Proc. 17th Int. Conf. on Application and The-
ory of Petri Nets. LNCS, vol. 1091, pp. 113–132. Springer (1996). https://doi.
org/10.1007/3-540-61363-3_7

8. Corradini, F., Di Berardini, M.R., Vogler, W.: Time and fairness in a process
algebra with non-blocking reading. In: Nielsen, M., Kucera, A., Miltersen, P.B.,
Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) Theory and Practice of Computer
Science, SOFSEM’09. LNCS, vol. 5404, pp. 193–204. Springer (2009). https://
doi.org/10.1007/978-3-540-95891-8_20

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984). https://doi.org/10.1016/0304-3975(84)90113-0

10. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E
system. In: Venturini Zilli, M. (ed.) Advanced School on Mathematical Models for
the Semantics of Parallelism, 1986. LNCS, vol. 280, pp. 144–165. Springer (1987).
https://doi.org/10.1007/3-540-18419-8_13

11. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing mutual exclusion using
process algebra with signals. In: Peters, K., Tini, S. (eds.) Proceedings Combined
24th International Workshop on Expressiveness in Concurrency and 14th Work-
shop on Structural Operational Semantics. EPTCS, vol. 255, pp. 18–34 (2017).
https://doi.org/10.4204/EPTCS.255.2

12. van Glabbeek, R.J.: The linear time – branching time spectrum II; the semantics
of sequential systems with silent moves. In: Best, E. (ed.) Proc. CONCUR’93, 4th

Int. Conf. on Concurrency Theory. LNCS, vol. 715, pp. 66–81. Springer (1993).
https://doi.org/10.1007/3-540-57208-2_6

13. van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Mid-
deldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes,
Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem
Klop on the Occasion of His 60th Birthday. LNCS, vol. 3838, pp. 26–39. Springer
(2005). https://doi.org/10.1007/11601548_4

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1007/3-540-60218-6_23
https://doi.org/10.1145/828.833
https://doi.org/10.1145/828.833
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/3-540-61363-3_7
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1007/3-540-18419-8_13
https://doi.org/10.1007/3-540-18419-8_13
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/11601548_4
https://doi.org/10.1007/11601548_4

Just Testing 517

14. van Glabbeek, R.J.: The individual and collective token interpretations of Petri
nets. In: Abadi, M., de Alfaro, L. (eds.) Proc. CONCUR’05, 16th Int. Conf. on
Concurrency Theory. LNCS, vol. 3653, pp. 323–337. Springer (2005). https://

doi.org/10.1007/11539452_26

15. van Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness
properties. In: Calude, C., Sassone, V. (eds.) Proc. 6th IFIP TC 1/WG 2.2 Int.
Conf. on Theoretical Computer Science, TCS’10; held as part of the World Com-
puter Congress. IFIP, vol. 323, pp. 32–52. Springer (2010). https://doi.org/10.
1007/978-3-642-15240-5_3, http://arxiv.org/abs/1007.5491

16. van Glabbeek, R.J.: Structure preserving bisimilarity, supporting an operational
petri net semantics of CCSP. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.)
Proceedings Correct System Design - Symposium in Honor of Ernst-Rüdiger
Olderog on the Occasion of His 60th Birthday. LNCS, vol. 9360, pp. 99–
130. Springer (2015). https://doi.org/10.1007/978-3-319-23506-6_9, http:

//arxiv.org/abs/1509.05842

17. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems: Open
problems. Journal of Logical and Algebraic Methods in Programming 109, 100480
(2019). https://doi.org/10.1016/j.jlamp.2019.100480

18. van Glabbeek, R.J.: Justness: A completeness criterion for capturing liveness prop-
erties. In: Bojańczyk, M., Simpson, A. (eds.) Proc. 22st Int. Conf. on Foundations
of Software Science and Computation Structures, FoSSaCS’19; held as part of
ETAPS’19. LNCS, vol. 11425, pp. 505–522. Springer (2019). https://doi.org/
10.1007/978-3-030-17127-8_29, https://arxiv.org/abs/1909.00286

19. van Glabbeek, R.J.: Reward testing equivalences for processes. In: Boreale, M.,
Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for
Concurrent and Distributed Programming, Essays Dedicated to Rocco De Nicola
on the occasion of his 65th Birthday, LNCS, vol. 11665, pp. 45–70. Springer
(2019). https://doi.org/10.1007/978-3-030-21485-2_5, https://arxiv.org/

abs/1907.13348

20. van Glabbeek, R.J.: Reactive temporal logic. In: Dardha, O., Rot, J. (eds.) Proc.
Combined 27th Int. Workshop on Expressiveness in Concurrency and 17th Work-
shop on Structural Operational Semantics. EPTCS, vol. 322, pp. 51–68 (2020).
https://doi.org/10.4204/EPTCS.322.6

21. van Glabbeek, R.J.: Modelling mutual exclusion in a process algebra with time-outs
(2021), https://arxiv.org/abs/2106.12785

22. van Glabbeek, R.J.: Just Testing (2022), version of this paper extended with four
appendices, https://arxiv.org/abs/2212.08829

23. van Glabbeek, R.J., Goltz, U., Schicke, J.W.: Abstract processes of place/transition
systems. Information Processing Letters 111(13), 626–633 (2011). https://doi.
org/10.1016/j.ipl.2011.03.013, https://arxiv.org/abs/1103.5916

24. van Glabbeek, R.J., Höfner, P.: CCS: it’s not fair! – fair schedulers cannot be
implemented in CCS-like languages even under progress and certain fairness as-
sumptions. Acta Informatica 52(2-3), 175–205 (2015). https://doi.org/10.1007/
s00236-015-0221-6, https://arxiv.org/abs/1505.05964

25. van Glabbeek, R.J., Höfner, P.: Progress, justness and fairness. ACM Computing
Surveys 52(4), 69 (August 2019). https://doi.org/10.1145/3329125, https://
arxiv.org/abs/1810.07414

26. van Glabbeek, R.J., Höfner, P., Wang, W.: Enabling preserving bisimula-
tion equivalence. In: Haddad, S., Varacca, D. (eds.) Proc. 32nd Int. Confer-
ence on Concurrency Theory, CONCUR’21. Leibniz International Proceedings

https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/11539452_26
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
https://doi.org/10.1007/978-3-642-15240-5_3
http://arxiv.org/abs/1007.5491
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/978-3-319-23506-6_9
http://arxiv.org/abs/1509.05842
http://arxiv.org/abs/1509.05842
https://doi.org/10.1016/j.jlamp.2019.100480
https://doi.org/10.1016/j.jlamp.2019.100480
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://doi.org/10.1007/978-3-030-17127-8_29
https://arxiv.org/abs/1909.00286
https://doi.org/10.1007/978-3-030-21485-2_5
https://doi.org/10.1007/978-3-030-21485-2_5
https://arxiv.org/abs/1907.13348
https://arxiv.org/abs/1907.13348
https://doi.org/10.4204/EPTCS.322.6
https://doi.org/10.4204/EPTCS.322.6
https://arxiv.org/abs/2106.12785
https://arxiv.org/abs/2212.08829
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://doi.org/10.1016/j.ipl.2011.03.013
https://arxiv.org/abs/1103.5916
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://arxiv.org/abs/1505.05964
https://doi.org/10.1145/3329125
https://doi.org/10.1145/3329125
https://arxiv.org/abs/1810.07414
https://arxiv.org/abs/1810.07414

518 R. J. van Glabbeek

in Informatics (LIPIcs), vol. 203. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.33, https://

arxiv.org/abs/2108.00142
27. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories

of concurrency. In: Bakker, J.W.d., Nijman, A.J., Treleaven, P.C. (eds.) Proc.
PARLE, Parallel Architectures and Languages Europe, Vol. II. LNCS, vol. 259,
pp. 224–242. Springer (1987). https://doi.org/10.1007/3-540-17945-3_13

28. Goltz, U.: CCS and Petri nets. In: Guessarian, I. (ed.) Proc. Semantics of Sys-
tems of Concurrent Processes, LITP Spring School on Theoretical Computer Sci-
ence. LNCS, vol. 469, pp. 334–357. Springer (1990). https://doi.org/10.1007/
3-540-53479-2_14

29. Goltz, U., Mycroft, A.: On the relationship of CCS and Petri nets. In: Paredaens,
J. (ed.) Proc. 11th Colloquium on Automata, Languages and Programming,
ICALP84. LNCS, vol. 172, pp. 196–208. Springer (1984). https://doi.org/10.
1007/3-540-13345-3_18

30. Kaivola, R., Valmari, A.: The weakest compositional semantic equivalence pre-
serving nexttime-less linear temporal logic. In: Cleaveland, R. (ed.) Proc. CON-
CUR’92. LNCS, vol. 630, pp. 207–221. Springer (1992). https://doi.org/10.

1007/BFb0084793
31. Kindler, E., Walter, R.: Mutex needs fairness. Inf. Process. Lett. 62(1), 31–39

(1997). https://doi.org/10.1016/S0020-0190(97)00033-1
32. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions

on Software Engineering 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.
1977.229904

33. Lamport, L.: Fairness and hyperfairness. Distributed Computing 13(4), 239–245
(2000). https://doi.org/10.1007/PL00008921

34. Milner, R.: Communication and Concurrency. Prentice-Hall (1989), alternatively
see A Calculus of Communicating Systems, LNCS 92, Springer, 1980, https://
doi.org/10.1007/3-540-10235-3

35. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6), 545–596 (1995).
https://doi.org/10.1007/BF01178907

36. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gécseg,
F. (eds.) Proc. 22nd Int. Colloquium on Automata, Languages and Programming,
ICALP’95. LNCS, vol. 944, pp. 648–659. Springer (1995). https://doi.org/10.
1007/3-540-60084-1_112

37. Olderog, E.R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.)
Advances in Petri Nets 1987. LNCS, vol. 266, pp. 196–223. Springer (1987). https:
//doi.org/10.1007/3-540-18086-9_27

38. Olderog, E.R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge Tracts in Theoretical Computer Science 23,
Cambridge University Press (1991)

39. Olderog, E.R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Inf. 23, 9–66 (1986). https://doi.org/10.1007/BF00268075

40. Reisig, W.: Understanding Petri Nets — Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013). https://doi.org/10.1007/978-3-642-33278-4

41. Roever, W.P.d., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods, Cambridge Tracts in TCS, vol. 54. Cambridge University
Press (2001)

42. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall (1997),
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://arxiv.org/abs/2108.00142
https://arxiv.org/abs/2108.00142
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/3-540-13345-3_18
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1007/BFb0084793
https://doi.org/10.1016/S0020-0190(97)00033-1
https://doi.org/10.1016/S0020-0190(97)00033-1
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/BF01178907
https://doi.org/10.1007/BF01178907
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-60084-1_112
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/3-540-18086-9_27
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/BF00268075
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

Just Testing 519

43. Vogler, W.: Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. Theor. Comput. Sci. 275(1-2), 589–631 (2002). https://doi.org/10.
1016/S0304-3975(01)00300-0

44. Winskel, G.: A new definition of morphism on Petri nets. In: Fontet, M.,
Mehlhorn, K. (eds.) Proc. Symposium on Theoretical Aspects of Computer Sci-
ence, STACS’84. LNCS, vol. 166, pp. 140–150. Springer (1984). https://doi.org/
10.1007/3-540-12920-0_13

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1016/S0304-3975(01)00300-0
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
https://doi.org/10.1007/3-540-12920-0_13
http://creativecommons.org/licenses/by/4.0/

Model and Program Repair via Group Actions

Paul C. Attie1 and William L. Cocke1(�)

School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
pattie@augusta.edu, wcocke@augusta.edu

Abstract. Given a textual representation of a finite-state concurrent
program P , one can construct the corresponding Kripke structure M.
However, the size of M can be exponentially larger than the textual size
of P . This state explosion can make model checking properties of P via
M expensive or even infeasible. The action of a symmetry group G on M
can be used to produce a smaller Kripke structure M. Various authors
have exploited the direct correspondence between M and M to perform
model checking. When the structure M does not satisfy a formula, one
can look for a substructure that will satisfy the formula. We call this
substructure-repair : identifying a substructure N of M that satisfies a
given temporal logic formula.
In this paper we extend previous work by showing that repairs of M
lift to repairs of M. In other words, we can repair a computer program
P , which exhibits a high degree of symmetry, by repairing the smaller
Kripke structure M and then symmetrizing the corresponding program.
To do this we arrange the substructures of M and M into substructure
lattices that are ordered by substructure inclusion. We show that the
substructures of M preserved by G form a (sub)lattice that maps to the
substructure lattice of M. When restricted to the lattice of substructures
of M that are “maximal” with the action of G on M, the above map is
a lattice isomorphism.
These results enable us to repair M and then to lift the repair to M. In
cases where a program has a high degree of symmetry, such as in many
concurrent programs, we can repair the program by repairing the small
Kripke structure M.

Keywords: Model checking · symmetry reduction · model repair

1 Introduction

To model check a program P, one first constructs a Kripke structure M. In
general, the Kripke structure M is generated by all potential executions of P .
The model checking problem for a program P w.r.t. a temporal logic formula
ϕ is to verify that the Kripke structure M generated by the execution of P
satisfies ϕ [8]. A major obstacle to model checking a concurrent program via its
Kripke structure is state explosion: in general, the size of M is exponential in
the number of processes n. As studied by Emerson and Sistla [18] and extended
by others [10,14,21], the use of symmetry reduction to ameliorate state-explosion

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 25

520–540, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_25&domain=pdf
http://orcid.org/0000-0003-1989-0974
http://orcid.org/0000-0002-0732-6666
mailto:pattie@augusta.edu
mailto:wcocke@augusta.edu
https://doi.org/10.1007/978-3-031-30829-1_25
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_25&domain=pdf

Repair via Group Actions 521

can yield a significant reduction in the complexity of model checking M |= ϕ
when both M and ϕ have a high degree of symmetry in the process index set
{1, . . . , n}.

For a Kripke structure M, we capture the symmetry of M using the group
G of automorphisms of both M and ϕ. The quotient structure M = M/G of
M by G often has significantly fewer states than M. Since M can be computed
directly from the original P , we avoid the expensive computation of the large
structure M. Model checking M |= ϕ is linear in the size of M [8], so this
provides significant savings if M is small, i.e., if G is large.

If M �|= f , then we can search for a model N related to M such that N |= f .
In this paper we focus on substructure-repair : we require N to be a substructure
of M. The key idea behind substructure-repair is to remove execution paths
which violate required properties, e.g., paths that lead to a violation of mutual
exclusion. We give examples in Section 6 of different properties and substruc-
ture repairs with respect to these properties. Substructure-repairs can always
repair M w.r.t. all universal properties (those expressible using universal path
quantification [26]).1

1.1 Our Contributions

We present a theory of substructures of Kripke structures. Using this theory
we establish an evaluation preserving correspondence between certain substruc-
tures of the original Kripke structure M and the substructures of the quotient
structure M (this is Theorem 2). This correspondence is a functorial form of
bisimilarity between a certain lattice of substructures of M and the lattice of
substructures of M. Hence for a given formula ϕ, substructure-repairs of M
with respect to ϕ can be lifted to substructure-repairs of M with respect to ϕ
(this is Theorem 3). This correspondence of Kripke substructures lattices is of
independent mathematical interest as an example of a monotone Galois connec-
tion.

We build on our theory to extend group theoretic model checking to con-
current program repair : given a concurrent program P that may not satisfy ϕ,
modify P to produce a program that does satisfy ϕ. Given P , ϕ, and a group
G that acts on both P and ϕ, our method directly computes the quotient M/G
(following [18]), then repairs M/G, using the algorithm of [2], and finally, ex-
tracts a correct program from the repaired structure.

The rest of the paper proceeds as follows: Section 3 contains the formal defi-
nition of Kripke structures and substructures. In Section 4, after briefly recalling
group actions, we show how one can use a group to obtain a quotient M of M
and the repair correspondence between M and M. We extend our results to the
repair of concurrent programs in Section 5. Section 6 presents some examples.
In particular, we show that a structure M might have a nonempty repair even

1 Existential path properties could be dealt with by first adding sufficient transitions
to M so that the augmented structure now contains the desired paths. One can then
perform substructure-repair so that universal path properties are also satisfied.

522 P. C. Attie and W. L. Cocke

if the quotient M does not. In Section 7 we examine what classes of Kripke
structures and what types of formulae guarantee the existence of quotient based
repairs.

2 Related Work

Our work combines model/program repair [5,25,29,32] and symmetry reductions
via group actions [7, 10, 16, 18–22]. Le Goues et al. [25] provides a modern in-
troduction to program repair; although their results generally relate to program
repair based on the textual representation of the program. Our approach repairs
a Kripke structure w.r.t. a computation tree logic (CTL) formula and uses that
to repair the corresponding program.

2.1 Computation Tree Logic Repair

Buccafuri et. al. [5] posed the repair problem for CTL and solved it using abduc-
tive reasoning to generate repair suggestions that are verified by model checking.
Jobstmann et. al. [29] and Staber et. al. [32] used game-based repair methods
for programs and circuits, although their method is complete for invariants only.

Chatzieleftheriou et. al. [6] repair abstract structures, using Kripke modal
transition systems and 3-valued CTL semantics. Von Essen and Jobstmann [23]
present a game-based repair method which attempts to keep the repaired pro-
gram close to the original faulty program, by also specifying a set of traces that
the repair must leave intact.

The work of Attie et al. [2] establishes that repair by abstraction can avoid
state explosion. However, repairs of abstracted structures do not always lift to
repairs of the original structure. Within networks, Namjoshi and Trefler [30]
have shown that a combination of abstraction and group actions can be used to
produce smaller structures.

2.2 Group theoretic model checking

Group theoretic approaches to symmetry-reduction in model checking began in
1995 with work by Emerson and a collection of coauthors [7, 10, 14, 16, 18–22]
compute the quotientM/G and model checkM/G, instead of the original (much
larger) structure M. The group theoretic approach to model checking works
because M and M/G are bisimilar with respect to certain formulae.

A requirement for group theoretic model checking or repair is calculating the
group of symmetries in question. We will see that larger groups of symmetries
result in smaller quotient models. Clarke et al. [7] showed that calculating the
orbit of a group action, a part of model checking via symmetry, is at least as
difficult as graph isomorphism. However, in many practical cases concurrent
programs have a natural symmetry by swapping certain processes. Hence many
concurrent programs have a small known symmetry group in advance. Donaldson

Repair via Group Actions 523

and Miller [11] showed that there is a process to build a larger symmetry group
for a program from a smaller symmetry group.

A related approach is the use of structural methods to express symmetric de-
signs, e.g., parameterized systems, where processes are all instances of a common
template (possibly with a distinguished controller process) [1, 9, 24], and rings
of processes, where all communication is between a process and its neighbors in
the ring [9, 15, 17].

3 Temporal Logic and Kripke Structures

Computation tree logic (CTL) is a propositional branching-time temporal logic
used to model the possible computational branches taken by a system [12, 13].
The semantics of CTL are defined with respect to a Kripke structure.

Definition 1 (Kripke structure). A Kripke structure M is a tuple
(S, S0, T, L,AP) where S is a finite set of states, S0 ⊆ S is a set of initial
states, T ⊆ (S × S) is a transition relation, AP is a finite set of atomic propo-
sitions, and L : S → 2AP is a labeling function that associates each state s ∈ S
with a subset of atomic propositions, namely those that hold in state s.

We require that M be total: ∀s ∈ S, ∃t ∈ S : (s, t) ∈ T , and that S �= ∅ implies
S0 �= ∅. Also, different states have different labels: s �= t ⇒ L(s) �= L(t). We
admit the empty Kripke structure, i.e., S = ∅, due to mathematical necessity.

When referring to the constituents of M = (S, S0, T, L,AP), we write MS ,
MS0

, MT , ML, and MAP respectively. State t is a successor of state s in M
iff (s, t) ∈ T . We will write s → t in this case. A path π in M is a (finite or
infinite) sequence of states, π = s0, s1, . . ., such that ∀i ≥ 0 : (si, si+1) ∈ T .

To model the behavior of a concurrent program P = P1, . . . , Pn, we define
a special type of Kripke structure: a multiprocess Kripke structure is one in
which the set of atomic propositions AP is partitioned into disjoint subsets
AP1, . . . , APn, states have the form (s1, . . . , sn) and transitions T are partitioned
into disjoint subsets T1, . . . , Tn. The set of atomic propositions “owned” by Pi

is denoted by APi: they can only be changed by Pi, but can be read by other
processes. The local state of Pi is written as si, and is labelled by the subset of
APi whose propositions are true in si. Then, the truth value of p ∈ APi in global
state (s1, . . . , sn) is given by its value in local state si. Ti gives the transitions

of process Pi, which are denoted as s
i→ t. For state s = (s1, . . . , sn), define

s�i = si, and s↓i = (s1, . . . , si−1, si+1, . . . , sn). We then require s↓i = t↓i for

every transition s
i→ t, i.e., transitions by Pi do not change atomic propositions

of other processes.
A CTL formula ϕ is evaluated (i.e., is true or false) in a state s of a Kripke

structure M [13]. We write M, s |= ϕ when s is true in state s of structure M,
and write M |= ϕ to abbreviate ∀s0 ∈ S0 : M, s0 |= ϕ, i.e., ϕ holds in all initial
states of M. The formal definition of |=, proceeds by induction on the structure
of CTL formulae [12, 13] and is omitted for space reasons.

524 P. C. Attie and W. L. Cocke

Fig. 1. The Box Kripke
structure.

Example 1 (Example Box) The ”Box” Kripke struc-
ture in Figure 1 has 4 states and transitions as
shown. Its set of atomic propositions is empty, and
so all states have empty labels, as indicated by
”()”. There is a natural group acting on this Kripke
structure, i.e., the group generated by the action
which exchanges the state s1 with s2, and the state
t1 with t2.

The theory of substructures presented below is
motivated by the concept of a substructure-repair
of a structure M with respect to a formula f , i.e.,
a substructure N of M such that N |= f .

Definition 2 (Substructure, ≤). Given Kripke structures M and N , we say
that N is a substructure of M, denoted N ≤ M, iff the following all hold:

1. NS ⊆ MS.
2. NS0

= MS0
∩M′

S.
3. NT ⊆ MT .
4. NAP = MAP .
5. NL = ML�S′ (where � denotes domain restriction).
6. For all s ∈ NS there is a t ∈ NS such that (s, t) ∈ NT , i.e., N is total.

For mathematical necessity in what follows, we allow for the ‘empty’ sub-
structure. We do not, however, accept an empty substructure as a valid repair.
It is immediate that ≤ is a reflexive partial order. Lemmas 1 and 2 below imply
that the substructures of M can be regarded as a lattice, with join and meet
operations as follows.

Lemma 1. Let M be a Kripke structure and suppose that N and N ′ are sub-
structures of M. Then

N ∨N ′ = (NS ∪N ′
S , NS0 ∪N ′

S0
, NT ∪N ′

T , ML�(NS ∪N ′
S), MAP)

is the smallest substructure of M containing both N and N ′.

Given a nonempty finite set X = {X0, X1, . . . , Xn} of substructures of M,
we define the structure

∨
X = X0 ∨X1 ∨ · · · ∨Xn.

Lemma 2. Let M be a Kripke structure and suppose that N and N ′ are sub-
structures of M. Then there exists a largest substructure of M contained in both
N and N ′.

Definition 3 (Join, Meet of Substructures). Let N and N ′ be two substruc-
tures of M. The join of N and N ′, written N ∨N ′, is the smallest substructure
of M containing both N and N ′. The meet of N and N ′, written N ∧ N ′, is
the largest substructure of M contained in both N and N ′.

Repair via Group Actions 525

The join N ∨N ′ has a simple description as given in Lemma 1. However, the
meet N ∧ N ′, while well-defined, does not have such a simple description. It is
possible that for two substructures N and N ′ of a Kripke structure M, there
are no non-empty substructures contained in both N and N ′. Hence the largest
substructure contained in both N and N ′ could be empty.

We can now define a lattice of substructures ΛM for a given structure M.

Definition 4 (Lattice of Substructures). Given a Kripke structure M the
lattice of substructures of M is ΛM = ({N : N is a substructure of M} ,≤)
where the meet and join in ΛM are as given in Definition 3.

4 Quotient Structures

We capture the symmetry in a Kripke structure M with the notion of state-
mapping : a graph isomorphism on M which preserves initial states. State-
mappings also preserve paths since they are isomorphisms. We ignore for now
the labelling function ML, i.e., which atomic propositions hold in which states,
and concern ourselves only with the graph structure of M. Since the atomic
proposition labelling obviously affects the truth of CTL formulae in states of
M, it must be accounted for. We do this below using the notion of G-invariant
CTL formula. Thus, we decompose the symmetry characerization of M into two
separate concerns: the graph structure of M, handled using state-mapping, and
the atomic proposition labelling of states of M, handled using G-invariant CTL
formulae.

A type of symmetry of particular interest is the symmetry of a multiprocess
Kripke structure w.r.t. the process indices 1, . . . , n of the corresponding concur-
rent program P1 ‖ · · · ‖Pn, as we illustrate below. Our theory, however, applies
to Kripke structures in general.

4.1 Groups Acting on Kripke Structures

Definition 5. A state-mapping of M is a graph isomorphism of the state-space
of M such that its restriction to the initial states is also an isomorphism, i.e.,
takes initial states to initial states. Formally, for a Kripke structure M, a state-
mapping of M is a bijection f : MS → MS such that:

– f(MS0
) = MS0

;
– For states s, t ∈ MS we have that (s, t) ∈ MT ⇐⇒ (f(s), f(t)) ∈ MT .

The set of all state-mappings of M forms a group. This means that the com-
position of any two state-mappings is another state-mapping and for any state-
mapping f on M there is another state-mapping g on M such that f(g(s)) = s
and g(f(s)) = s. We refer to the manuscripts by Issacs [27, 28], and Serre [31]
for a more in-depth introduction to group theory.

Definition 6 (G-closed). For a group G of state-mappings of a Kripke struc-
ture M, a substructure N of M is called G-closed if G is a group of state-
mappings of N , i.e., for every g ∈ G and s ∈ NS we have g(s) ∈ NS.

526 P. C. Attie and W. L. Cocke

Lemma 3. Let M be a Kripke structure and let G be a group of state mappings
of M. Let N , N ′ be two G-closed substructures of M. Then N ∨N ′ and N ∧N ′

are both G-closed.

By Lemma 3, we see that the G-closed substructures of M form a sublattice
of ΛM. This is a proper sublattice in that the meet and join operations are the
same as those of ΛM.

Definition 7 (Lattice of G-closed substructures). Given a Kripke struc-
ture M and a group G of state mappings of M, the poset of G-closed substruc-
tures of M forms a lattice. We call this the lattice of G-closed substructures
of M and write it as ΛM,G.

Example 1 (Example Box). Let M be Example Box, i.e., the Kripke structure
presented in Figure 1. Let g be the map that simultaneously switches s1 and
s2, and switches t1 and t2, i.e., g(s1) = s2, g(s2) = s1, g(t1) = t2, g(t2) = t1.
Let G be the group consisting of g and the identity map on MS . We note that
G is not the entire group of state-mappings of M. The structure M has 10 G-
closed substructures, including the empty structure. We present some of these
structures in Figure 2.

(a) (b) (c) (d)

Fig. 2. Four G-closed substructures of Example Box. Where G is the group generated
by the simultaneous swapping of indexes of both the si and the ti. Note that each
of the structures is a substructure of the substructure to the right. Looking ahead to
Definition 10, only the entire structure (d) is G-maximal.

4.2 Constructing the Quotient structure

Given a group G of state-mappings of a structure M, we want to construct
a quotient structure M/G. However, as noted, state-mappings do not contain
any information about ML. To remedy this situation, we need a function that
assigns a representative to each orbit of G, where for s ∈ MS the orbit of s is
{g(s) : g ∈ G}.
Definition 8 (Representative map). Let M be a Kripke structure and sup-
pose that G is a group of state-mappings of M. A representative map of M
with respect to G is a function ϑG : MS → MS satisfying the following:

Repair via Group Actions 527

– For all s, s′ ∈ MS, if there is some g ∈ G such that g(s) = s′ then ϑG(s) =
ϑG(s

′). (respects orbits)
– For all s, s′ ∈ MS, if there is no g ∈ G such that g(s) = s′ then ϑG(s) �=

ϑG(s
′). (separates orbits)

– For all s ∈ MS, we have that ϑG(ϑG(s)) = ϑG(s), i.e., each orbit has a
stable representative. (idempotent)

We define ϑG(S) = {ϑG(s) | s ∈ S}.
Definition 9 (Quotient structure). Given a Kripke structure M, a group G
of state-mappings of M, and a representative map ϑG of M with respect to G,
we define the quotient structure M = M/(G,ϑG) of M with respect to G and
ϑG as follows, where we write s, t for ϑG(s), ϑG(t), respectively:

– MS = ϑG(MS), i.e., the states of M are the image under ϑG of the states
of M.

– MT consists of all (s, t) such that there exist s ∈ MS with ϑG(s) = s and
t ∈ MS with ϑG(t) = t such that (s, t) ∈ MT .

– MS0
= ϑG(MS0

), i.e., the initial states of M are the image under ϑG of
the initial states of M.

– ML(s) = ML(s), i.e., the label of a state in M is the same as its label in
M.

– MAP = MAP , i.e., M has the same atomic propositions as M.

Thus the states of a quotient structure correspond exactly to the orbits of states
of the original structure under the group of state mappings. For transitions, we
have a slightly more subtle correspondence. Consider the following examples:

Example 2. In Figure 3 we demonstrate the correspondence between Kripke
structures, G-closed substructures, and their quotients. In the figure, we present
a multiprocess Kripke structure M corresponding to two concurrent processes
P1 (atomic propositions and transitions in blue) and P2 (atomic propositions
and transitions in red). The group G of state mappings swaps the indexes of the
processes. This structure has a G-closed substructure N constructed by remov-
ing the ‘center’ state u0. Define ϑG to take the ‘left-most’ state in the orbit, i.e.,
ϑG(t1) = t0, ϑG(t5) = t2, ϑG(u0) = u0, ϑG(t6) = t3, ϑG(t4) = t4. The quo-
tient structure M/(G,ϑG) appears in the top right. While the quotient structure
is isomorphic to a substructure of M, this is not always the case. (See Figure 6
in Example 5 for an example where the quotient gains a new transition.) The
quotient structure N/(G,ϑG|NS) appears in the bottom right.

Example 3 (Example Box). Let M and G be as in Example 1. Let ϑG be defined
by ϑG(s1) = ϑG(s2) = s1 and ϑG(t1) = ϑG(t2) = t1. Then the quotient struc-
ture M/(G,ϑG) has exactly 2 states, s1 and t1 with transitions (s1, t1), (t1, s1).
Also, the G-closed substructure substructures of M given in Figure 2 (a), (b),
and (c) also map to this quotient structure via N → N/(G,ϑG). Note that the
transition (t1, s1) is present in the quotient, but is not present, for example, in
the structure of Figure 2 (b). However, the “corresponding” transition (t2, s1)
is present in Figure 2 (b).

528 P. C. Attie and W. L. Cocke

Fig. 3. As discussed in Example 2, we have a Kripke structure in the top left and a
G-closed substructure in the bottom left. On the right, we have the quotients of the
whole structure (top) and the G-closed substructure (bottom).

In the sequel, we fix a Kripke structure M, a group G of state mappings of
M, and a representative map ϑG of M with respect to G.

Example 3 shows that many G-closed substructures can have the same
quotient structure, and also that, in general, a transition in the quotient may
not itself be present in the original structure. We show, however, in Theorem 1
below that a “corresponding” transition is guaranteed to be present in the orig-
inal structure. These corresponding transitions can be joined into a path which
corresponds state-by-state to the path in the quotient. This “path correspon-
dence” is what allows for model checking of M via model checking of M and is
formalized in the following theorem from Emerson and Sistla [18, 3.1].

Theorem 1 (Path Correspondence Theorem). There is a bidirectional cor-
respondence between paths of M and paths of M. Formally we have the following:

1. If x = s0, s1, s2, . . . is a path in M, then x = s0, s1, s2, . . . is a path in M
where si = ϑG(si).

2. If x = s0, s1, s2, . . . is a path in M, then for every state s′0 ∈ MS such that
ϑG(s

′
0) = s0 there is a path s′0, s

′
1, s

′
2, . . . in M such that ϑG(s

′
i) = si.

We now extend the path correspondence between M and M to a correspon-
dence between G-closed substructures of M and substructures of M. Define
Ψ : ΛM,G → ΛM, by Ψ(N) = N/(G,ϑG), so that Ψ maps a G-closed substruc-
ture N of M to a corresponding substructure of M. We call Ψ the quotient map.

Repair via Group Actions 529

Ψ establishes a join-semilattice homomorphism between ΛM,G and ΛM as we
now show in the following series of lemmas.

Lemma 4. For every substructure N of M, there is a G-closed substructure N
of M such that N/(G,ϑG) = N .

Lemma 4 establishes that Ψ is surjective. We note that every substructure
N of M defines a set of states of M, i.e., the orbits of the states in N . However,
in general, the transitions of N do not uniquely define transitions in M.

The next lemma demonstrates that Ψ is a homomorphism of the join-
semilattices ΛM,G and ΛM. We note that it is not a homomorphism of the
lattices themselves because the meet of two G-closed structures mapping might
be empty.

Lemma 5 (Quotient map respects join). Let N ,N ′ ∈ ΛM,G. Then

Ψ(N ∨N ′) = Ψ(N) ∨Ψ(N ′).

As seen in Example 3, it is possible for multiple G-closed substructures of M
to map to the same substructure of the quotient structure M. To obtain a single
well-defined preimage for each substructure of the quotient structure, we intro-
duce the concept of G-maximal. Recall that the join of G-closed substructures
of M is G-closed.

Definition 10 (G-maximal). A G-closed substructure N of M is G-maximal
if

N =
∨

N ′∈ΛM,G

N ′/(G,ϑG)≤N/(G,ϑG)

N ′.

That is, N is the join of all G-closed substructures of M whose quotient is
a substructure of the quotient of N itself, namely of N/(G,ϑG). A G-closed
substructure N fails to be G-maximal exactly when there are states s, t ∈ N ,
such that (s, t) ∈ N/(G,ϑG), but (s, t) is not in N .

Among all of the G-closed substructures in Figure 2 only the entire structure
itself is G-maximal

Lemma 6. Let M′,M′′ be two G-maximal substructures of M. Then M′∨M′′

is G-maximal and M′ ∧M′′ is G-maximal.

Lemma 6 allows us to make the following definition.

Definition 11 (G-maximal lattice of substructures). The set of G-
maximal substructures of M forms a sublattice ΛM,G−max of ΛM.

While in general the quotient map from ΛM,G to ΛM is always surjective,
when restricted to ΛM,G−max, the map is injective and is a lattice isomorphism.

530 P. C. Attie and W. L. Cocke

Theorem 2 (G-Maximal Lattice Correspondence). The restriction of the
quotient map Ψ to ΛM,G−max is an isomorphism from ΛM,G−max to ΛM, i.e.,
between the lattice of G-maximal substructures of M and the lattice of structures
of M.

At this point, we would like to remind the reader of the various lattices that
we have defined and how they relate to each other:

G-maximal substructures︸ ︷︷ ︸
ΛM,G−max

⊆ G-closed substructures︸ ︷︷ ︸
ΛM,G

⊆ All substructures︸ ︷︷ ︸
ΛM

.

4.3 Semantic Relationships Between Structures and Quotient
Structures

Definition 12. Let G be a group of state mappings of M. A CTL formula ϕ
is G-invariant over M, if for every state s, every g ∈ G, for all maximal
propositional subformulae ϕ′ of ϕ, we have

M, s |= ϕ′ ⇐⇒ M, g(s) |= ϕ′.

Lemma 7. If ϕ is G-invariant, then the valuation of ϕ in M does not depend
on the choice of representative map ϑG.

This allows us to connect semantic statements about M with semantic state-
ments about M for formulae that are G-invariant. The path correspondence
theorem establishes a bisimulation between M and M, in which state s of M
and state s of M are bisimilar iff s is in the orbit of s, i.e., s = g(s) for some
g ∈ G. We call such a bisimulation a G-bisimulation. Hence, G-bisimilar states
satisfy the same propositional subformulae of any G-invariant CTL formula ϕ.
A straightforward induction over path length then shows that s and s satisfy
the same G-invariant CTL formulae:

Corollary 1. M |= ϕ iff M |= ϕ for all G invariant CTL formulae ϕ.

Lemma 8. Let s ∈ MS, t ∈ MS. Let ϕ be a G-invariant CTL formula. If
t = ϑG(s), then M, s |= ϕ ⇐⇒ M, t |= ϕ.

Section 3 developed the theory of substructures of a Kripke structure. This
development was motivated by the following definition and theorem.

Definition 13 (Substructure-Repair). Given a structure M and a CTL for-
mula ϕ, we call a nonempty substructure N of M a substructure-repair of
M with respect to ϕ if N |= ϕ.

If a CTL formula ϕ isG-invariant, then the lattice correspondence will respect
the valuation of ϕ.

Theorem 3 (Repair Correspondence). Let ϕ be a G-invariant CTL for-
mula. Let N be a non-empty G-closed substructure of M, s ∈ NS, and
N = N/(G,ϑG). Then N , s |= ϕ ⇐⇒ N , ϑG(s) |= ϕ.

Repair via Group Actions 531

5 Repair of Concurrent Programs

A concurrent program P = P1 ‖ . . . ‖ Pn consists of n sequential processes
executing in parallel. Each process Pi is a set of i-actions (si, B, ti), where si, ti
are local states of Pi and B is a guard (a predicate on the global state). We say
action when we ignore the process id. We assume a given set S0 of initial states.

The program P1 ‖ · · · ‖Pn generates a transition s
i→ t iff Pi contains an action

(si, B, ti) such that s�i = si, t�i = ti, and s(B) = true, where s(B) is the value
of guard B in global state s. The transition updates only atomic propositions
in APi, and so s↓i = t↓i. The state-transition graph of P is the closure of this
“transition generation” operation, starting in the initial state set S0.

Given a concurrent program P and a CTL formula ϕ, we wish to modify P
to produce a repaired program P r such that M′ |= ϕ, where M′ is the state-
transition graph of P r. The modification is ”subtractive”, that is, it only removes
behaviors and does not add them. We assume henceforth that when M is a
multiprocess Kripke structure over process indices 1, . . . , n, that the symmetry
group G is a subgroup of Sn, the group of permutations on {1, . . . , n}.

5.1 Repair of Symmetry-reduced Structures

We first generate the symmetry-reduced state transition graph M of P . We use
the algorithm of Emerson and Sistla [18, Figure 1]. We then apply the model
repair algorithm of Attie et. al. [2] to M, and the specification ϕ of P . This algo-
rithm is sound and complete, so that if M has some substructure that satisfies ϕ,
then the algorithm will return such a substructure N . If not, the algorithm will
report that no repair exists. As noted, applying this algorithm to the symmetry-
reduced state transition graph is only complete with respect to the symmetric
repairs, see Example 6.3.

5.2 Extraction of Concurrent Programs from Symmetry-reduced
Structures

We want to extract a repaired concurrent program from N using the projection

method of [4,13]: each transition s
i→ t is turned into an i-action action(s

i→ t) �
(s�i, B, t�i), with guard B = {|s|} where {|s|} � “(

∧
Q∈NL(s) Q)∧ (

∧
Q�∈NL(s) ¬Q)”

and Q ranges over AP . When process i is in local state si, guard B checks that
the current global state is actually s.

A key problem is that the definition of the quotient M allows transitions in
which the atomic propositions of more than one process are changed, since any
representative of an orbit can be chosen. Hence the repaired N ≤ M can also
contain such transitions, e.g., the transition from S6 to S1 in Figure 6 below,
which we write as [C1 T2] → [T1 N2]. Note that the propositions of both processes
1 and 2 are changed. To generate i-actions, such transitions must be converted
so that only the atomic propositions of a single process are modified.

Define a transition from s to t to be regular iff it modifies atomic propositions
in at most one APi, so that s↓i = t↓i for some process index i, and write the

532 P. C. Attie and W. L. Cocke

transition as s
i→ t. Also define a transition from s to t to be irregular iff it is not

regular, i.e., it modifies atomic propositions in more than one APi, and write
the transition as s → t, with no process index labelling the arrow.

For each irregular transition s → t ∈ N T , there is g
′ ∈ G such that s → g′(t)

is regular. Such an element g′ always exists. Let s → t ∈ MT for arbitrary
MT . By Definition 9, there exists s → t ∈ MT such that s = ϑG(s) and
t = ϑG(t). Hence there is some g ∈ G such that g(s) = s since s and s are in
the same orbit. Since g is a symmetry of M, we have g(s) → g(t) ∈ MT . Hence
s → g(t) ∈ MT . Now t = h(t) for some h ∈ G since t and t are in the same
orbit. Hence s → g(h(t)) ∈ MT , and so the needed g′ is the product of g and
h. For example, by applying the permutation of process indices 1, 2 to [T1 N2],
from the irregular transition [C1 T2] → [T1 N2] we extract the regular transition

[C1 T2]
1→ [N1 T2].

Define Reg i(N T) to be the set of regular transitions s
i→ g(t) such that

g ∈ G and s → t ∈ N T . Since g can be the identity element of G, it fol-
lows that this account for both regular and irregular transitions in N T . Define

Act i(N T) = {action(s i→ t) | s i→ t ∈ Reg i(N T)}, be the set of actions obtained
from Reg i(N T).

Define the action of g ∈ G on syntactic elements of Pi as follows. For local
state si: g(si) = sg(i). For atomic proposition Qi: g(Qi) = Qg(i). For guard B, by
induction: g(¬B) = ¬g(B) and g(B1∧B2) = g(B1)∧ g(B2), with the base case
given by g(Qi) above. For i-action (si, B, ti): g(si, B, ti) = (g(si), g(B), g(ti)).
That is, we apply g to all process indices in the syntactic element. Now define
ActGi (N T), the symmetrization of Act i(N T), by ActGi (N T) = {g(a) | g ∈ G, a ∈
Actj(N T), g(j) = i}. The repaired concurrent program arises from process-wise

repair P
G
= P

G

1 ‖· · ·‖PG

n , where P
G

i consists of the i-actions in ActGi (N T).

Theorem 4. Let P
G

be the concurrent program extracted from N as above,

let N p be the state transition graph generated by the execution of P
G
, and let

N p = N p/(G,ϑG). Then N p is G-closed and N p = N .

Corollary 2. Let P
G

be the repaired program and ϕ the CTL specification that

was used to repair M, resulting in N . Then P
G |= ϕ.

6 Examples

6.1 Two process Mutual Exclusion

We consider mutual exclusion for two processes P1, P2. Each Pi has three local
states: Ni (neutral, computing locally), Ti (trying, has requested critical section
entry), and Ci (in the critical region). We start with the ”trivial” program P
shown in Figure 4 in which all action guards are ”true” and apply the program
repair algorithm of Section 5 to repair this program w.r.t. the specification ϕ =
AG¬(C1∧C2)∧AG((T1∨T2) ⇒ AF(C1∨C2)). The first conjunct specifies mutual

Repair via Group Actions 533

exclusion of the critical sections (safety) and the second specifies progress: if some
process requests the critical section then some process will obtain it (liveness).
Figure 5 (left side) shows the Kripke structure M generated by execution of
P . Transitions of P1, P2 are shown in blue, red, respectively. Clearly, M �|= ϕ.
Actually both conjuncts are violated: AG¬(C1 ∧ C2) due to the reachability of
state S8 from the initial state, and AG((T1 ∨T2) ⇒ AF(C1 ∨C2)) due to the self
loop on state S4.

M has exactly two symmetries: the identity map, and the map that swaps
process indices 1 and 2. Our program repair algorithm does not generate M
since M may be large, and we show M only for exposition. We generate M =
M/(G,ϑG) directly from P , and we show M in Figure 5 (right side). M has
a transition (shown in black) from state S6 to S1, which is the quotient of the
transition from S6 to S2 in M, i.e., ϑG(S6) = S6 and ϑG(S2) = S1 so the edge
(ϑG(S6), ϑG(S2)) occurs in M.

Figure 6 shows the repair N of the reduced structure M, and the resultant
lifting of the repair to M. The deleted transitions and states are shown dashed.

Figure 7 shows the repaired concurrent program P
G

that is extracted from N .

Note that ⊕ means disjunction [3]. By Corollary 2, P
G |= ϕ.

Fig. 4. Initial incorrect mutual exclusion program from Section 6.1.

6.2 n-Process Mutual Exclusion

We now consider mutual exclusion for n-processes. To reduce clutter, we remove
the trying Ti state, and we give a concrete example for 3 processes — the
generalization to n processes is straightforward. Each process can move directly
from N to C with the appropriate indexes, i.e., the guards on all actions are
initially ”true”, just like in Figure 4.

We consider the mutual exclusion specification
∧

i�=j AG¬(Ci∧Cj). The group
of state mappings G for both structure and specification is the full permutation
group on the indices {1, . . . , N}. For N -processes, we have that the quotient
model by the full group of symmetries has N +1 states, while the original model
would have 2N states. Figure 8 shows the repair of the quotient M and then

534 P. C. Attie and W. L. Cocke

Fig. 5. The original model M and quotient M = M/(G,ϑG) for the Kripke structures
in Section 6.1.

Fig. 6. The repair of M and the lifting of the repair to M from Section 6.1.

Fig. 7. The mutual exclusion concurrent program extracted from M in Figure 6.

Repair via Group Actions 535

the lifting of the repair to the original structure M. Figure 9 shows the correct

(repaired) program P
G
that is extracted from the repaired quotient in Figure 8.

For N processes, the guard on actions of P
G

i is
∧

j �=i Nj .

6.3 No G-closed Repairs

Consider the structure in Figure 10 and the formula f = AXAXAXP . The struc-
ture M has a single initial state. Let G be the group consisting of the identity
and the map swapping S1 and S2. In Figure 10 we see that the quotient struc-
ture M/(G,ϑG) does not have any nonempty repairs with respect to f . But, M
does contain a substructure N that satisfies f .

7 Relative Completeness of Group Theoretic Repair

By the Repair Correspondence (Theorem 3), the existence of a repair N of M
implies the existence of a repair N of M. In Example 6.3, we gave an example
in which a repair N of M exists but no G-closed repair does, i.e., M has no
repairs. This leads us to ask: is there a fragment of CTL, and/or a class of Kripke
structures, for which group theoretic repair is complete? That is, the existence
of a repair (substructure N of M that satisfies ϕ) implies the existence of a
G-closed repair (substructure N of M that satisfies ϕ).

One attempt to answer this question is to examine formulae and structures
where substructures are equivalent to the smallest G-closed substructure con-
taining them. Assume there exists N ≤ M such that N |= ϕ. Write NG for the
smallest G-closed structure that contains N . We call NG the G-closure of N in
M. If NG is bisimilar to N , then NG |= ϕ and NG |= ϕ which is a substructure
of M.

In [14], Emerson et al., give a criteria for a structure M to be bisimilar to the
symmetrized structure MG, their criteria is: for any transition (s, t) ∈ (MG

)
T
,

there must be a g ∈ G such that (s, gt) ∈ MT . When asking about substructures,
it is not clear what criteria on M is needed to ensure that each substructure N
of M is bisimilar to NG.

Definition 14 (G-Repair Complete). Let M be a Kripke structure with a
group of state mappings G and ϕ a G-invariant CTL formula. Let N ≤ M
be any repair of M with respect to ϕ, and let s be any state in NS. Then the
pair (M, ϕ) is G-repair complete if: N , s |= ϕ implies for all g ∈ G, we have
NG, g(s) |= ϕ.

It is clear that propositional formulae are always G-repair complete. In ad-
dition we note the following:

Theorem 5. If ϕ and ψ are purely propositional formulae then for any Kripke
structure M, the pair (M,A[ϕRψ]) is G-repair complete.

There exists structures M and ϕ,ψ formulae such that (M, ϕ) G-repair
complete, and (M, ψ) G-repair complete, but (M, ϕ∧ψ) not G-repair complete.

536 P. C. Attie and W. L. Cocke

Fig. 8. The Kripke structure defined in Section 6.2. On the left is the repair of M and
the lifting of the repair to M appears on the right.

Fig. 9. The repaired program P
G

for the program in Section 6.2.

Fig. 10. The models from Section 6.3 from left to right: the model M, the quotient of
M, a repair of M with respect to f = AXAXAXP that is not G-closed.

Repair via Group Actions 537

Example 4. Let M be the Kripke structure described by Figure 11. Let G be the
group of state mappings generated by swapping s1 and s2. Let ϕ = A[pR q] and
ψ = AF �= q. The structure M has a nonempty G-closed repair for ϕ. Similarly
there is a single nonempty G-closed repair for ψ. But M has no G-closed repairs
of ϕ ∧ ψ.

Fig. 11. The Kripke Structure from Example 4 (note that (b, s0) is a transition, while
(b, r) is not) (left), G-closed repairs of M with respect to the formulae A[pR q] (center),
and AF¬q (right).

8 Conclusions

We present a theory of how group actions could be used to assist in the repair
of a Kripke structure.

We presented a theory for the substructures of a given Kripke structure
M, their organization into lattices, and how these substructures interact with
a group of state-mappings of M. We show a lattice isomorphism between
substructure-repairs of M and G-maximal repairs of M (Theorem 3: Repair
Correspondence). This monotone Galois correspondence guarantees that a re-
pair of M lifts to a repair of M: that is to say that model repairs of M with
respect to a G-invariant CTL formula ϕ lift to model repairs of M with respect
to ϕ. Using this theory we were able to devise a method for repairing concurrent
programs which exploits this correspondence, thus avoiding state explosion. We
construct the quotient structure M directly from P without the need to con-
struct the structure M. By our correspondence, repairing M will lift to a repair
of the structure M, which in turn corresponds to a repair of P . We show how to
construct a repair of P using the repair of M while circumventing the creation
of the larger Kripke structure.

A Kripke structure M that can be repaired with respect to a formulae ϕ
can be repaired via abstraction. However, not every repair of an abstracted
structure N corresponds to a repair of M. In contrast, the structure might
not be repairable using the quotient structure, but any repair of the quotient
structure will lift to a repair of the original structure.

538 P. C. Attie and W. L. Cocke

References

1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model check-
ing of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 15th International Confer-
ence, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings.
Lecture Notes in Computer Science, vol. 8318, pp. 262–281. Springer (2014).
https://doi.org/10.1007/978-3-642-54013-4_15, https://doi.org/10.1007/
978-3-642-54013-4_15

2. Attie, P.C., Dak-Al-Bab, K., Sakr, M.: Model and program repair via SAT solving.
ACM Trans. Embed. Comput. Syst. 17(2), 32:1–32:25 (2018). https://doi.org/
10.1145/3147426, https://doi.org/10.1145/3147426

3. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM Trans. Program. Lang. Syst. 20(1), 51–115 (jan 1998). https:
//doi.org/10.1145/271510.271519, https://doi.org/10.1145/271510.271519

4. Attie, P.C., Emerson, E.A.: Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Trans. Program. Lang. Syst. 23(2),
187–242 (mar 2001). https://doi.org/10.1145/383043.383044, https://doi.

org/10.1145/383043.383044

5. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112, 57–104 (1999)

6. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S., Katsaros, P.: Abstract model
repair. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods, Lecture Notes
in Computer Science, vol. 7226, pp. 341–355. Springer Berlin Heidelberg, Norfolk,
VA, USA (2012)

7. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: CAV. Lecture Notes in Computer Science, vol. 1427, pp. 147–158.
Springer (1998)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

9. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997). https://doi.org/10.1145/
265943.265960, https://doi.org/10.1145/265943.265960

10. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Formal Methods Syst. Des. 9(1/2), 77–104 (1996). https:
//doi.org/10.1007/BF00625969, https://doi.org/10.1007/BF00625969

11. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking us-
ing computational group theory. In: International Symposium on Formal Methods.
pp. 481–496. Springer (2005)

12. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier and
MIT Press (1990)

13. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

14. Emerson, E.A., Havlicek, J., Trefler, R.J.: Virtual symmetry reduction. In: LICS.
pp. 121–131. IEEE Computer Society (2000)

15. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message
passing systems. In: CSL. Lecture Notes in Computer Science, vol. 3210, pp. 325–
339. Springer (2004)

https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/3147426
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/271510.271519
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/383043.383044
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1145/265943.265960
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969

Repair via Group Actions 539

16. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL. pp. 85–94. ACM
Press (1995)

17. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

18. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods Syst.
Des. 9(1/2), 105–131 (1996)

19. Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model-checking under fair-
ness assumptions: An automata-theoretic approach. ACM Trans. Program. Lang.
Syst. 19(4), 617–638 (1997)

20. Emerson, E.A., Trefler, R.J.: Model checking real-time properties of symmetric
systems. In: MFCS. Lecture Notes in Computer Science, vol. 1450, pp. 427–436.
Springer (1998)

21. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: New techniques
for symmetry reduction in model checking. In: CHARME. Lecture Notes in Com-
puter Science, vol. 1703, pp. 142–156. Springer (1999)

22. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: TACAS. Lecture Notes
in Computer Science, vol. 3440, pp. 382–396. Springer (2005)

23. von Essen, C., Jobstmann, B.: Program repair without regret. Formal Methods
Syst. Des. 47(1), 26–50 (2015). https://doi.org/10.1007/s10703-015-0223-6,
https://doi.org/10.1007/s10703-015-0223-6

24. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681, https:
//doi.org/10.1145/146637.146681

25. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (nov 2019). https://doi.org/10.1145/3318162, https://
doi.org/10.1145/3318162

26. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (may 1994). https://doi.org/10.1145/

177492.177725, https://doi.org/10.1145/177492.177725
27. Isaacs, I.M.: Finite group theory, vol. 92. American Mathematical Soc. (2008)
28. Isaacs, I.M.: Algebra: a graduate course, vol. 100. American Mathematical Soc.

(2009)
29. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: CAV.

pp. 226–238. Springer-Verlag, Berlin, Heidelberg (2005)
30. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.

In: International Workshop on Verification, Model Checking, and Abstract Inter-
pretation. pp. 496–514. Springer (2013)

31. Serre, J.P.: Finite groups: an introduction. International Press Somerville, MA
(2016)

32. Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. In: CHARME ’05.
pp. 35–49. Springer-Verlag, Berlin, Heidelberg (2005), springer LNCS no. 3725

https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1007/s10703-015-0223-6
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725

540 P. C. Attie and W. L. Cocke

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Subgame Optimal Strategies in Finite
Concurrent Games with Prefix-Independent

Objectives

Benjamin Bordais(�), Patricia Bouyer and Stéphane Le Roux

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France
bordais@lsv.fr

Abstract. We investigate concurrent two-player win/lose stochastic
games on finite graphs with prefix-independent objectives. We charac-
terize subgame optimal strategies and use this characterization to show
various memory transfer results: 1) For a given (prefix-independent) ob-
jective, if every game that has a subgame almost-surely winning strat-
egy also has a positional one, then every game that has a subgame op-
timal strategy also has a positional one; 2) Assume that the (prefix-
independent) objective has a neutral color. If every turn-based game that
has a subgame almost-surely winning strategy also has a positional one,
then every game that has a finite-choice (notion to be defined) subgame
optimal strategy also has a positional one.
We collect or design examples to show that our results are tight in several
ways. We also apply our results to Büchi, co-Büchi, parity, mean-payoff
objectives, thus yielding simpler statements.

1 Introduction

Turn-based two-player win/lose (stochastic) games on finite graphs have been
intensively studied in the context of model checking in a broad sense [19,1]. These
games behave well regarding optimality in various settings. Most importantly for
this paper, [14] proved the following results for finite turn-based stochastic games
with prefix-independent objectives: (1) every game has deterministic optimal
strategies; (2) from every value-1 state, there is an optimal, i.e. almost-surely
winning, strategy; (3) if from every value-1 state of every game there is an
optimal strategy using some fixed amount of memory, every game has an optimal
strategy using this amount of memory. These results are of either of the following
generic forms:

– In all games, (from all nice states) there is a nice strategy.
– If from all nice states of all games there is a nice strategy, so it is from all

states.

The concurrent version of these turn-based (stochastic) games has a higher
modeling power than the turn-based version: this is really useful in practice since
real-world systems are intrinsically concurrent [15]. They are played on a finite
graph as follows: at each player state, the two players stochastically and inde-
pendently choose one among finitely many actions. This yields a Nature state,

c© The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp.
https://doi.org/10.1007/978-3-031-30829-1 26

541–560, 2023.

http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_26&domain=pdf
mailto:bordais@lsv.fr
https://doi.org/10.1007/978-3-031-30829-1_26
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30829-1_26&domain=pdf

542 B. Bordais et al.

which stochastically draws a next player state, from where each player chooses
one action again, and so on. Each player state is labelled by a color, and who wins
depends on the infinite sequence of colors underlying the (stochastically) gener-
ated infinite sequence of player states. Unfortunately, these concurrent games do
not behave well in general even for simple winning conditions and simple graph
structures, like finite graphs:

– Reachability objectives: there is a game without optimal strategies [13];
– Büchi objectives: there is a game with value 1 while all finite-memory strate-

gies have value 0 [12];
– Co-Büchi objectives: although there are always positional ε-optimal strate-

gies [8], there is a game with optimal strategies but without finite-memory
optimal strategies [4];

– Parity [12] and mean-payoff [10] objectives: there is a game with subgame
almost-surely-winning strategies, but where all finite-memory strategies have
value 0.

In this paper, we focus on concurrent stochastic finite games. Therefore, the
generic forms of our results will be more complex, in order to take into account
the above-mentioned discrepancies. They will somehow be given as generic state-
ments as follows:

– Every game that has a nice strategy also has a nicer one.
– If all special games that have a nice strategy have a nicer one, so it is for all

games.

Much of the difficulty consists in fine-tuning the strength of “nice”, “nicer” and
“special” above. We present below our main contributions on finite two-player
win/lose concurrent stochastic games with prefix-independent objectives:

1. We provide a characterization of subgame optimal strategies, which are
strategies that are optimal after every history (Theorem 1): a Player A strat-
egy is subgame optimal iff 1) it is locally optimal and 2) for every Player
B deterministic strategy, after every history, if the visited states have the
same positive value, Player A wins with probability 1. This characterization
is used to prove all the results below.

2. We prove memory transfer results from subgame almost-surely winning strate-
gies to subgame optimal strategies:
(a) Theorem 2: If every game that has a subgame almost-surely winning

strategy also has a positional one, then every game that has a subgame
optimal strategy also has a positional one.

(b) Corollary 1: every Büchi or co-Büchi game that has a subgame optimal
strategy has a positional one. (Whereas parity games may require infinite
memory [12].)

Note that the transfer result 2a can be generalized from positional to finite
memory.

3. We say that a strategy has finite-choice, if it uses only finitely many action
distributions. Note that finite-memory (resp. deterministic) strategies clearly
have finite choice.

Subgame Optimal Strategies in Concurrent Games 543

(a) Theorem 4: In a given game, if there is a finite-choice optimal strategy,
there is a finite-choice subgame optimal strategy.

(b) Theorem 5: Assume that the objective has a neutral color. If every turn-
based game that has a subgame almost-surely winning strategy also has a
positional one, then every game that has a finite-choice subgame optimal
strategy also has a positional one.

(c) Corollary 2: every parity or mean-payoff game that has a finite-memory
subgame optimal strategy also has a positional one.

Note that 3a and 3b are false if the word finite-choice is removed [4]. The
proof of 3b invokes 3a. Flavor (and proofs) of 3b and 2a are similar, but
both premises and conclusions are weakened in 3b, as emphasized.

Related works. A large part of this paper is dedicated to the extension to
concurrent games of the results from [14] regarding the transfer of memory from
almost-surely winning strategies to optimal strategies in turn-based games. Note
that the proof technique used in [14] is different and could not be adapted to
our more general setting. In their proof, both players agree on a preference over
Nature states and play according to this preference. In our proof, we slice the
graph into value areas (that is, sets of states with the same value), and show
that it is sufficient to play an almost-sure winning strategy in each slice; we then
glue these (partial) strategies together to get a subgame-optimal strategy over
the whole graph.

The slicing technique was already used in the context of concurrent games
in [8]. The authors focus on parity objectives and establishes a memory transfer
result from limit-sure winning strategies to almost-optimal strategies. As an
application, they show that, for co-Büchi objectives, since positional strategies
are sufficient to win limit-surely, they also are to win almost-optimally. Their
construction made heavy use of the specific nature of parity objectives.

We also mention [6], where the focus is also on concurrent games with prefix-
independent objectives. In particular, the authors establish a (very useful) result:
if all states have positive values, then they all have value 1. (Note that a strength-
ening of this result is presented in this paper (Theorem 3), which also appears
as an adaptation of a result proved in [14]). This result is then used in another
context with non-zero-sum games.

Finally, some recent works on concurrent games have been done in [2,3,4],
where the goal is the following: local interactions of the two players in the player
state are given by bi-dimensional tables; those tables can be abstracted as game
forms, where (output) variables are issues of the local interaction (possibly sev-
eral issues are labelled by the same variable). The goal of this series of works
is to give (intrinsic) properties of these game forms, so that, when used in a
graph game, the existence of optimal strategies is ensured. For instance, in [3],
a property of games forms, called RM, is given, which ensures that, if one only
uses RM game forms in a graph, then for every reachability objective, Player
A will always have an optimal strategy for that objective. This property is a
characterization of well-behaved game forms regarding reachability objectives

544 B. Bordais et al.

since every game form which is not RM can be embedded into a (small) graph
game in such a way that Player A does not have an optimal strategy. This line
of works really differs from the target of the current paper.

Structure of the paper. Section 2 presents notations, Section 3 recalls the
notion of game forms, Section 4 introduces our formalism, Section 5 exhibits
a necessary and sufficient pair of conditions for subgame optimality, Section 6
shows a memory transfer from subgame almost-surely winning to subgame opti-
mal in concurrent games, and Section 7 adapts the results of the previous section
to the case of the existence of a subgame finite-choice strategy.

Detailed proofs and additional formal definitions are available in [5].

2 Preliminaries

Consider a non-empty set Q. We denote by Q∗, Q+ and Qω the set of finite
sequences, non-empty finite sequences and infinite sequences of elements of Q
respectively. For n ∈ N, we denote by Qn (resp. Q≤n) the set of sequences of
(resp. at most) n elements of Q. For all ρ = q1 · · · qn ∈ Qn and i ≤ n, we denote
by ρi the element qi ∈ Q and by ρ≤i ∈ Qi the finite sequence q1 · · · qi. For a
subset S ⊆ Q, we denote by Q∗ ·Sω ⊆ Qω the set of infinite paths that eventually
settle in S and by (Q∗ ·S)ω ⊆ Qω the set of infinite paths visiting infinitely often
the set S.

A discrete probabilistic distribution over a non-empty finite set Q is a function
μ : Q → [0, 1] such that

∑
x∈Q μ(x) = 1. The support Supp(μ) of a probabilistic

distribution μ : Q → [0, 1] is the set of non-zeros of the distribution: Supp(μ) =
{q ∈ Q | μ(q) ∈ (0, 1]}. The set of all distributions over Q is denoted D(Q).

3 Game forms

We recall the definition of game forms – informally, bi-dimensional tables with
variables – and of games in normal forms – game forms whose outcomes are
values between 0 and 1.

Definition 1 (Game form and game in normal form). A game form (GF
for short) is a tuple F = 〈ActA,ActB,O, �〉 where ActA (resp. ActB) is the non-
empty finite set of actions available to Player A (resp. B), O is a non-empty set
of outcomes, and � : ActA × ActB → O is a function that associates an outcome
to each pair of actions. When the set of outcomes O is equal to [0, 1], we say
that F is a game in normal form. For a valuation v ∈ [0, 1]O of the outcomes,
the notation 〈F , v〉 refers to the game in normal form 〈ActA,ActB, [0, 1], v ◦ �〉.
We use game forms to represent interactions between two players. The strategies
available to Player A (resp. B) are convex combinations of actions given as the
rows (resp. columns) of the table. In a game in normal form, Player A tries to
maximize the outcome, whereas Player B tries to minimize it.

Subgame Optimal Strategies in Concurrent Games 545

Definition 2 (Outcome of a game in normal form). Consider a game in
normal form F = 〈ActA,ActB, [0, 1], �〉. The set D(ActA) (resp. D(ActB)) is the
set of strategies available to Player A (resp. B). For a pair of strategies (σA, σB) ∈
D(ActA)×D(ActB), the outcome outF (σA, σB) in F of the strategies (σA, σB) is
defined as: outF (σA, σB) :=

∑
a∈ActA

∑
b∈ActB

σA(a) · σB(b) · �(a, b) ∈ [0, 1].

Definition 3 (Value of a game in normal form and optimal strategies).
Consider a game in normal form F = 〈ActA,ActB, [0, 1], �〉 and a strategy σA ∈
D(ActA) for Player A. The value of the strategy σA, denoted valF (σA) is equal
to: valF (σA) := infσB∈D(ActB) outF (σA, σB), and analogously for Player B, with a
sup instead of an inf. When supσA∈D(ActA) valF (σA) = infσB∈D(ActB) valF (σB), it
defines the value of the game F , denoted valF .

A strategy σA ∈ D(ActA) ensuring valF = valF (σA) is called optimal. The set
of all optimal strategies for Player A is denoted OptA(F) ⊆ D(ActA), and analo-
gously for Player B. Von Neuman’s minimax theorem [20] ensures the existence
of optimal strategies (for both players).

In the following, strategies in games in normal forms will be called GF-strategies,
in order not to confuse them with strategies in concurrent (graph) games.

4 Concurrent games and optimal strategies

4.1 Concurrent arenas and strategies

We introduce the definition of concurrent arenas played on a finite graph.

Definition 4 (Finite stochastic concurrent arena). A colored concurrent
arena C is a tuple 〈Q, (Aq)q∈Q, (Bq)q∈Q,D, δ, dist,K, col〉 where Q is the non-
empty finite set of states, for all q ∈ Q, Aq (resp. Bq) is the non-empty finite set
of actions available to Player A (resp. B) at state q, D is the finite set of Nature
states, δ :

⋃
q∈Q({q}×Aq ×Bq) → D is the transition function, dist : D → D(Q)

is the distribution function. Furthermore, K is the non-empty finite set of colors
and col : Q → K is the coloring function.

In the following, the arena C will refer to the tuple 〈Q, (Aq)q∈Q, (Bq)q∈Q,D, δ,
dist,K, col〉, unless otherwise stated. A concurrent game is obtained from a con-
current arena by adding a winning condition: the set of infinite paths winning
for Player A (and losing for Player B).

Definition 5 (Finite stochastic concurrent game). A finite concurrent
game is a pair 〈C,W 〉 where C is a finite concurrent colored arena and W ⊆ Kω

is Borel. The set W is called the objective, as it corresponds to the set of colored
paths winning for Player A.

In this paper, we only consider a specific kind of objectives: prefix-independent
ones. Informally, they correspond to objectives W such that an infinite path ρ
is in W if and only if any of its suffixes is in W . More formally:

546 B. Bordais et al.

Definition 6 (Prefix-independent objectives). For a non-empty finite set
of colors K and W ⊆ Kω, W is said to be prefix-independent (PI for short) if,
for all ρ ∈ Kω and i ≥ 0, ρ ∈ W ⇔ ρ≥i ∈ W .

In the following, we refer to concurrent games with prefix-independent objectives
as PI concurrent games.

Definition 7 (Parity, Büchi, co-Büchi objectives). Let K ⊂ N be a finite
non-empty set of integers. Consider a concurrent arena C with K as set of col-
ors. For an infinite path ρ ∈ Qω, we denote by col(ρ)∞ ⊆ N the set of colors
seen infinitely often in ρ: col(ρ)∞ := {n ∈ N | ∀i ∈ N, ∃j ≥ i, col(ρj) =
n}. Then, the parity objective w.r.t. col is the set WParity(col) := {ρ ∈ Qω |
max col(ρ)∞ is even }. The Büchi (resp. co-Büchi) objective correspond to the
parity objective with K := {1, 2} (resp. K := {0, 1}).

Strategies are then defined as functions that, given the history of the game
(i.e. the sequence of states already seen) associate a distribution on the actions
available to the Player.

Definition 8 (Strategies). Consider a concurrent game C. A strategy for Player
A is a function sA : Q+ → D(A) with A :=

⋃
q∈Q Aq such that, for all ρ =

q0 · · · qn ∈ Q+, we have sA(ρ) ∈ D(Aqn). We denote by SAC the set of all strate-
gies in arena C for Player A. This is analogous for Player B.

Given two strategies sA, sB for both players in an arena C from a starting state
q0, we define in the usual manner the probability PC,q0

sA,sB of a finite path which
induces the probability of an arbitrary Borel subset of infinite paths. Values of
strategies and of the game are defined below.

Definition 9 (Value of strategies and of the game). Let G = 〈C,W 〉 be a
PI concurrent game and consider a strategy sA ∈ SAC for Player A. The function
χG [sA] : Q → [0, 1] giving the value of the strategy sA is such that, for all q0 ∈
Q, we have χG [sA](q0) := infsB∈SB

C
PC,q0
sA,sB [W]. The function χG [A] : Q → [0, 1]

giving the value for Player A: is such that, for all q0 ∈ Q, we have χG [A](q0) :=
supsA∈SA

C
χG [sA](q0). The function χG [B] : Q → [0, 1] giving the value of the game

for Player B is defined similarly by reversing the supremum and infimum.
By Martin’s result on the determinacy of Blackwell games [17], for all con-

current games G = 〈C,W 〉, the value functions for both Players are equal, this
defines the value function χG : Q → [0, 1] of the game: χG := χG [A] = χG [B].

We define value areas: subsets of states whose values are the same.

Definition 10 (Value area). In a PI concurrent game G, VG refers to the
set of values appearing in the game: VG := {χG [q] | q ∈ Q}. Furthermore, for
all u ∈ VG, Qu ⊆ Q refers to the set of states whose values are u w.r.t. χG:
Qu := {q ∈ Q | χG(q) = u}.

In concurrent games, game forms appear at each state and describe the in-
teractions of the players at that state. Furthermore, the valuation mapping each

Subgame Optimal Strategies in Concurrent Games 547

state to its value in the game can be lifted, via a convex combination, into a
valuation of the Nature states. This, in turn, induces a natural way to define the
game in normal form appearing at each state.

Definition 11 (Local interactions, Lifting valuations). In a PI concurrent
game G where the valuation χG : Q → [0, 1] gives the values of the game, the
lift νG : D → [0, 1] is such that, for all d ∈ D, we have νG(d) :=

∑
q∈Q χG(q) ·

dist(d)(q) (recall that dist : D → D(Q) is the distribution function).
Let q ∈ Q. The local interaction at state q is the game form

Fq = 〈Aq, Bq,D, δ(q, ·, ·)〉. The game in normal form at state q is then Fnf
q :=

〈Fq, νG〉.
The values of the game in normal form Fnf

q and of the state q are equal.

Proposition 1. In a PI concurrent game G, for all states q ∈ Q, we have
χG(q) = outFnf

q
.

4.2 More on strategies

In this subsection, we define several kinds of strategies. Let us fix a PI concurrent
game G for the rest of this section. First, we consider optimal strategies, i.e.
strategies realizing the value of the game. Strategies are positively-optimal if
their values are positive from all states whose value is positive.

Definition 12 ((Positively-) optimal strategies). A Player A strategy sA ∈
SAC is (resp. positively-) optimal from a state q ∈ Q if χG(q) = χG [sA](q) (resp.
if χG(q) > 0 ⇒ χG [sA](q) > 0). It is (resp. positively-) optimal if this holds from
all states q ∈ Q.

Note that the definition of optimal strategies we consider is sometimes referred
to as uniform optimality, as it holds from every state of the game. However, it
does not say anything about what happens once some sequence of states have
been seen. We would like now to define a notion of strategy that is optimal from
any point that can occur after any finite sequence of states has been seen. This
correspond to subgame optimal strategies. To define them, we need to introduce
the notion of residual strategy.

Definition 13 (Residual and Subgame Optimal Strategies). For all finite
sequences ρ ∈ Q+, the residual strategy sρA of a Player A strategy sA is the
strategy sρA : Q+ → D(A) such that, for all π ∈ Q+, we have sρA(π) := sA(ρ · π).

The Player A strategy sA is subgame optimal if, for all ρ = ρ′ · q ∈ Q+, the
residual strategy sρA is optimal from q, i.e. χG [s

ρ
A](q) = χG(q).

Note that, in particular, subgame optimal strategies are optimal strategies.
When such strategies do exist, we want them to be as simple as possible, for
instance we want them to be positional, that is that they only depend on the
current state of the game.

As for Player B, we will consider a specific kind of strategies, namely deter-
ministic strategies. That is because, once a Player A strategy is fixed we obtain
an (infinite) MDP. In such a context, ε-optimal strategies can be chosen among
deterministic strategies (see for instance the explanation in [9, Thm. 1]).

548 B. Bordais et al.

Definition 14 (Positional, Deterministic strategies). A Player A strategy
sA is positional if, for all states q ∈ Q and paths ρ ∈ Q+ we have sA(ρ·q) = sA(q).

A Player B strategy sB is deterministic if, for all finite sequences ρ · q ∈ Q+,
there exists b ∈ Bq such that sB(ρ · q)(b) = 1.

5 Necessary and sufficient condition for subgame
optimality

In this section, we present a necessary and sufficient pair of conditions for a
Player A strategy to be subgame optimal, formally stated in Theorem 1. The
arguments given here are somewhat similar to the ones given in Section 4 of [4],
which deals with the same question restricted to positional strategies.

The first condition is local: it specifies how a strategy behaves in the games in
normal form at each local interaction of the game. As mentioned in Proposition 1,
at each state q, the value of the game in normal form Fnf

q is equal to the value

of the state q (given by the valuation χG ∈ [0, 1]Q). This suggests that, for all
finite sequences of states ρ ∈ Q+ ending at that state q, the GF-strategy sA(ρ)
needs to be optimal in the game in normal form Fnf

q for the residual strategy sρA
to be optimal from q. Strategies with such a property are called locally optimal.
This is a necessary condition for subgame optimality. (However, it is neither a
necessary nor a sufficient condition for optimality, as argued in Section 6).

Definition 15 (Locally optimal strategies). Consider a PI concurrent game
G. A Player A strategy sA is locally optimal if, for all ρ = ρ′ · q ∈ Q+, the GF-
strategy sA(ρ) is optimal in the game in normal form Fnf

q . That is – recalling

that νG ∈ [0, 1]D lifts the valuation χG ∈ [0, 1]Q to the Nature states – for all
b ∈ Bq: χG(q) ≤

∑
a∈A sA(ρ)(a) · νG ◦ δ(q, a, b) = outFnf

q
(sA(ρ), b)

Lemma 1. In a PI concurrent game, subgame optimal strategies are locally op-
timal.

Note that this was already shown for positional strategies in [4].
Local optimality does not ensure subgame optimality in general. However, it

does ensure that, for all Player B deterministic strategies, the game almost-surely
eventually settles in a value area, i.e. in some Qu for some u ∈ VG .

Lemma 2. Consider a PI concurrent game G and a Player A locally optimal
strategy sA. For all Player B deterministic strategies, almost surely the states
seen infinitely often have the same value. That is: PsA,sB [

⋃
u∈VG Q∗ · (Qu)

ω] = 1.

Proof (Sketch). First, if a state of value 1 is reached (i.e. a state in Q1), then
all states that can be seen with positive probability have value 1 (i.e. are in
Q1), since the strategy sA is locally optimal. Let now u ∈ VG be the highest
value in VG that is not 1 and consider the set of infinite paths such that the
set Qu is seen infinitely often but the game does not settle in it, i.e. the set
(Q∗ · (Q \Qu))

ω ∩ (Q∗ ·Qu)
ω ⊆ Qω. Since the strategy sA is locally optimal (and

Subgame Optimal Strategies in Concurrent Games 549

since VG is finite), one can show that there is a positive probability p > 0 such
that, the conditional probability of reaching Q1 knowing that Qu is left is at least
p. Hence, if Qu is left infinitely often, almost-surely the set Q1 is seen (and never
left). It follows that the probability of the event (Q∗ · (Q \ Qu))

ω ∩ (Q∗ · Qu)
ω

is 0. This implies that, almost-surely, if the set Qu is seen infinitely often, then
at some point it is never left. The same arguments can then be used with the
highest value in VG that is less than u, etc. Overall, we obtain that, for all u ∈ VG ,
if a set Qu is seen infinitely often, it is eventually never left almost-surely.

Local optimality ensures that, at each step, the expected values of the states
reached does not worsen (and may even improve if Player B does not play op-
timally). By propagating this property, we obtain that, given a Player A locally
optimal strategy and a Player B deterministic strategy, the convex combination
of the values u in VG weighted by the probability of settling in the value area
Qu, from a state q is at least equal to its value χG(q). This is stated in Lemma 3
below.

Lemma 3. For a PI concurrent game G, a Player A locally optimal strategy
sA, a Player B deterministic strategy sB and a state q ∈ Q: χG(q) ≤

∑
u∈VG u ·

PsA,sB
q [Q∗ · (Qu)

ω].

Note that if Player B plays subgame optimally, then this inequality is an equality.

Proof (Sketch). First, let us denote PsA,sB
q by P. It can be shown by induction that,

for all i ∈ N∗, we have the property P(i) : χG(q) ≤
∑

π·q′∈q·Qi χG(q′) ·P(π · q′) =∑
u∈VG\{0} u ·P[q ·Qi−1 ·Qu]. Furthermore, since by Lemma 2, the game almost-

surely settles in a value area, it can be shown that for n large enough, the
probability of being in Qu after n steps (i.e. P[q ·Qn−1 ·Qu]) is arbitrarily close
to the probability of eventually settling in Qu (i.e. P[Q∗ · (Qu)

ω]). We can then
apply P(n) to obtain the desired inequality.

Recall that we are considering a pair of conditions to characterize that a
strategy is subgame optimal. The first condition is local optimality. To summa-
rize, we have seen that the fact that a strategy is locally optimal ensures that,
from any state q, the expected values of the value areas where the game settles
is at least χG(q). However, local optimality does not ensure anything as to the
probability of W given that the game settles in a specific value area. This is
where the second condition comes into play. For the explanations regarding this
condition, we will need Lemma 4 below: a consequence of Levy’s 0-1 Law.

Lemma 4. Let M be a countable Markov chain with a PI objective. If there is
a q ∈ Q such that χM(q) < 1, then infq′∈Q χM(q′) = 0.

Consider now a Player A subgame optimal strategy sA and a Player B determin-
istic strategy. Let us consider what happens if the game eventually settles in Qu

for some u ∈ VG \{0}. Assume towards a contradiction that there is a finite path
after which the probability of W given that the play eventually settles in Qu is
less than 1. Then, there is a continuation of this path ending in Qu for which this
probability of W is less than u. Indeed, it was shown that, for a PI objective,

550 B. Bordais et al.

in a countable Markov chain (which is what we obtain once strategies for both
players are fixed), if there is a state with a value less than 1, then the infimum of
the values in the Markov chain is 0 (this is what is stated in Lemma 4). Follow-
ing our above towards-a-contradiction-assumption, there would be a finite path
from which the Player A strategy sA is not optimal. This is in contradiction with
the fact that it is subgame optimal. Hence, a second necessary condition – in
addition to the local optimality assumption – for subgame optimality is: from
all finite paths, for all Player B deterministic strategies, for all positive values
u ∈ VG \ {0}, the probability of W and eventually settling in Qu is equal to the
probability of eventually settling in Qu. We obtain the theorem below.

Theorem 1. Consider a concurrent game G with a PI objective W and a Player
A strategy sA ∈ SAC . The strategy sA is subgame optimal if and only if:

– it is locally optimal;
– for all ρ ∈ Q+, for all Player B deterministic strategies sB, for all values

u ∈ VG \ {0}, we have PsρA,s
ρ
B

ρ [W ∩Q∗ · (Qu)
ω] = PsρA,s

ρ
B

ρ [Q∗ · (Qu)
ω].

Proof (Sketch). Lemma 1 states that local optimality is necessary and we have
informally argued above why the second condition is also necessary for subgame
optimality. As for the fact that they are sufficient conditions, this is a direct
consequence of Lemmas 2 and 3 and the fact that deterministic strategies can
achieve the same values as arbitrary strategies in MDPs (which we obtain once
a Player A strategy is fixed), as cited in Subsection 4.2.

One may ask what happens in the special case where the strategy sA con-
sidered is positional. As mentioned above, such a characterization was already
presented in [4]1. Overall, we obtain a similar result except that the second condi-
tion is replaced by what happens in the game restricted to the End Components
in the Markov Decision Process induced by the positional strategy sA.

6 From subgame almost-surely winning to subgame
optimality

In [14, Thm. 4.5], the authors have proved a transfer result in PI turn-based
games: the amount of memory sufficient to play optimally in every state of
value 1 of every game is also sufficient to play optimally in every game. This
result does not hold on concurrent games as is. First, although there are always
optimal strategies in PI turn-based games (as proved in the same paper [14, Thm.
4.3]), there are PI concurrent games without optimal strategies. Second, infinite
memory may be required to play optimally in co-Büchi concurrent games whereas
almost-surely winning strategies can be found among positional strategies in a
turn-based setting. This can be seen in the game of Figure 1 with col(q0) = 0 and
col(q1) = col(q′1) = 1. The green values in the local interaction at state q0 are the

1 The proof was only presented for a specific class of objectives.

Subgame Optimal Strategies in Concurrent Games 551

q0,

⎡⎣ q0 q′1 1/2
q1 1 1/2
1/2 1/2 0

⎤⎦
q1

q′1

Fig. 1. A co-Büchi game.

q0,

[
q0 q1
q1 q2

] q1

q2

Fig. 2. A parity game.

q0,

[
q0 q1
q0 q2

]1/2
q1

1/4

q2

3/4

Fig. 3. A concur-
rent game with
Aq0 = {a1, a2}.

values of the game if they are reached (the game ends immediately). If a green
value is not reached, the objective of Player A is to see only finitely often states
q1 and q′1. It has already been argued in [4] that the value of this game is 1/2 and
that there is an optimal strategy for Player A but it requires infinite memory.
To play optimally, Player A must play the top row with probability 1 − εk and
the middle row with probability εk for εk > 0 that goes (fast) to 0 when k goes
to ∞ (where k denotes the number of steps). The εk must be chosen so that,
if Player B always plays the left column with probability 1, then the state q1
is seen finitely often with probability 1. Furthermore, as soon as the state q′1 is
visited, Player A switches to a positional strategy playing the bottom row with
probability ε′k small enough (where k denotes the number of steps before the
state q′1 was seen) and the two top rows with probability (1 − ε′k)/2.

Hence, the transfer of memory from almost-surely winning to optimal does
not hold in concurrent games even if it is assumed that optimal strategies exist.
However, one can note that although the strategy described above is optimal,
it is not subgame optimal. Indeed, when the strategy switches, the value of the
residual strategy is 1/2−ε′k < 1/2. In fact, there is no subgame optimal strategy
in that game. Actually, if we assume that, not only optimal but subgame optimal
strategies exist, then the transfer of memory will hold.

The aim of this section is twofold: first, we identify a necessary and sufficient
condition for the existence of subgame optimal strategies2. Second, we establish
the above-mentioned memory transfer that relates the amount of memory to
play subgame optimally and to be almost-surely winning. Before stating the
main theorem of this section, let us first introduce the definition of positionally
subgame almost-surely winnable objective, i.e. objectives for which subgame
almost-surely winning strategies can be found among positional strategies.

Definition 16 (Positionally subgame almost-surely winnable objective).
Consider a PI objective W ⊆ Kω. It is said to be a positionally subgame almost-
surely winnable objective (PSAW for short) if the following holds: in all concur-

2 Note that this is different from what we did in the previous section: there, we es-
tablished a necessary and sufficient condition for a specific strategy to be subgame
optimal. Here, given a game, we consider necessary and sufficient conditions on the
game for the existence of a subgame optimal strategy.

552 B. Bordais et al.

rent games G = 〈C,W 〉 where there is a subgame almost-surely winning strategy,
there is a positional one.

Theorem 2. Consider a non-empty finite set of colors K and a PI objective
∅ � W ⊆ Kω. Consider a concurrent game G with objective W . Then, the three
following assertions are equivalent:

a. there exists a subgame optimal strategy;
b. there exists an optimal strategy that is locally optimal;
c. there exists a positively-optimal strategy that is locally optimal.

Furthermore, if this holds and if the objective W is PSAW, then there exists a
subgame optimal positional strategy.

First, note that the equivalence is stated in terms of existence of strategies, not
on the strategies themselves. In particular, any subgame optimal strategy is both
optimal and locally optimal, however, an optimal strategy that is locally optimal
is not necessarily a subgame optimal strategy. Second, it is straightforward that
point a implies point b (from Theorem 1) and that point b implies point c (by
definition of positively-optimal strategies). In the remainder of this section, we
explain informally the constructions leading to the proof of this theorem, i.e.
to the proof that point c implies point a. The transfer of memory is a direct
consequence of the way this theorem is proven. We fix a PI concurrent game
G = 〈C,W 〉 for the rest of the section.

The idea is as follows. As stated in Theorem 1, subgame optimal strategies
are locally optimal and win the game almost-surely if the game settles in a value
area Qu for some positive u ∈ VG \{0}. Our idea is therefore to consider subgame
almost-surely winning strategies in the derived game Gu: a “restriction” of the
game G to Qu (more details will be given later). We can then glue together these
subgame almost-surely winning strategies – defined for all u ∈ VG \ {0} – into a
subgame optimal strategy. However, there are some issues:

1. the state values in the game Gu should be all equal to 1;
2. furthermore, there must exist a subgame almost-surely winning strategy in

Gu;
3. this subgame almost-surely winning strategy in Gu should be locally optimal

when considered in the whole game G.
Note that the method we use here is different from what the authors of [14] did
to prove the transfer of memory in turn-based games.

Let us first deal with issue 3. One can ensure that the almost-surely winning
strategies in the game Gu are all locally optimal in G by properly defining the
game Gu. More specifically, this is done by enforcing that the only Player A
possible strategies in Gu are locally optimal in the game G. To do so, we construct
the game Gu whose state space is Qu (plus gadget states) but whose set of actions
AFnf

q
, at a state q ∈ Qu, is such that the set of strategies D(AFnf

q
) corresponds

exactly to the set of optimal strategies in the original game in normal form Fnf
q ,

while keeping the set of actions AFnf
q
for Player A finite. This is possible thanks

Subgame Optimal Strategies in Concurrent Games 553

a1
a2

[
q0 q1
q0 q2

]

Fig. 4. The local
interaction Fq0 at
state q0.

a1

a2

[
1
2

1
4

1
2

3
4

]

Fig. 5. The game in
normal form Fnf

q0at
the state q0.

a1+a2

2

a2

[
1
2

1
2

1
2

3
4

]

Fig. 6. The game
Fopt,nf

q0 with only op-
timal strategies.

a1+a2

2

a2

[
q0

q1+q2
2

q0 q2

]

Fig. 7. The game
form Fopt

q0 with only
optimal strategies.

to Proposition 2 below: in every game in normal form Fnf
q at state q ∈ Qu, there

exists a finite set AFnf
q

of optimal strategies such that the optimal strategies in

Fnf
q are exactly the convex combinations of strategies in AFnf

q
. This is a well

known result, argued for instance in [18].

Proposition 2. Consider a game in normal form Fnf = 〈A,B, [0, 1], δ〉 with
|A| = n and |B| = k. There exists a set AFnf ⊆ OptA(Fnf) of optimal strategies
such that |AFnf | ≤ n+ k and D(AFnf) = OptA(Fnf).

Proof (Sketch). One can write a system of n + k inequalities (with some addi-
tional equalities) whose set of solutions is exactly the set of optimal GF-strategies
OptA(Fnf). The result then follows from standard system of inequalities argu-
ments as the space of solutions is in fact a polytope with at most n+ k vertices.
.

We illustrate this construction: a part of a concurrent game is depicted in
Figure 3 and the change of the interaction of the players at state q0 is depicted
in Figures 4, 5, 6 and 7.

The game Gu has the same objective W as the game G. Since we want all the
states to have value 1 in Gu (recall issue 1), we will build the game Gu such that
any edge leading to a state not in Qu in G now leads to a PI concurrent game
GW (with the same objective W) where all states have value 1. The game GW is
(for instance) a clique with all colors in K where Player A plays alone.

An illustration of this construction can be found in Figures 8 and 9. The
blue dotted arrows are the ones that need to be redirected when the game is
changed. With such a definition, we have made some progress w.r.t. the issue 1
cited previously (regarding the values being equal to 1): the values of all states
of the game Gu are positive (for positive u).

Lemma 5. Consider the game Gu for some positive u ∈ VG \ {0} and assume
that, in G, there exists a positively-optimal strategy that is locally optimal. Then,
for all states q in Gu, the value of the state q in Gu is positive: χGu

(q) > 0.

Proof (Sketch). Consider a state q ∈ Qu and a Player A locally optimal strategy
sA in G that is positively-optimal from q. Then, the strategy sA (restricted to
Q+

u) can be seen as a strategy in Gu (it has to be defined in GW , but this can
done straightforwardly). Note that this is only possible because the strategy sA
is locally optimal (due to the definition of Gu). For a Player B strategy sB in Gu,
consider what happens with strategies sA and sB in both games Gu and G. Either

554 B. Bordais et al.

u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

q8 q0

q1

q2

q3

q4

q5

q6

q7

Fig. 8. The depiction of a PI concurrent
game with its value areas.

u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

GW

q8

GW

q0

q1

GW

q2

q3

q4

GW

q5

q6

q7

Fig. 9. The PI concurrent game after the
modifications described above.

the game stays indefinitely in Qu, and what happens in Gu and G is identical.
Or it eventually leaves Qu, leading to states of value 1 in Gu. Hence, the value of
the game Gu from q with strategies sA and sB is at least the value of the game G
from q with the same strategies. Thus, the value of the state q is positive in Gu.

As it turns out, Lemma 5 suffices to deal with both issues 1 and 2 at the
same time. Indeed, as stated in Theorem 3 below, it is a general result that in a
PI concurrent game, if all states have positive values, then all states have value
1 and there is a subgame almost-surely winning strategy.

Theorem 3. Consider a PI concurrent game G and assume that all state values
are greater than or equal to c > 0, i.e. for all q ∈ Q, χG(q) ≥ c. Then, there is
a subgame almost-surely winning strategy in G.

Remark 1. This theorem can be seen as a strengthening of Theorem 1 from [6].
Indeed, this Theorem 1 states that if all states have positive values, then they
all have value 1 (this is then generalized to games with countably-many states).
Theorem 3 is stronger since it ensures the existence of (subgame) almost-surely
winning strategies. Although a detailed proof is provided in the complete version
of this paper [5], note that this theorem was already stated and proven in [14]
in the context of PI turn-based games. Nevertheless their arguments could have
been used verbatim for concurrent games as well. In [5], we give a proof using
the same construction (namely, reset strategies) but we argue differently why
the construction proves the theorem.

We can now glue together pieces of strategies suA defined in all games Gu

into a single strategy sA[(s
u
A)u∈VG\{0}]. Informally, the glued strategy mimics the

strategy on Q+
u and switches strategy when a value area is left and another one

is reached.

Definition 17 (Gluing strategies). Consider a PI concurrent game G and
for all values u ∈ VG \ {0}, a strategy suA in the game Gu. Then, we glue these

Subgame Optimal Strategies in Concurrent Games 555

strategies into the strategy sA[(s
u
A)u∈VG\{0}] : Q+ → D(A) simply written sA such

that, for all ρ ending at state q ∈ Q:

sA(ρ) :=

{
suA(π) if u = χG(q) > 0 for π the longest suffix of ρ in Q+

u

is arbitrary if χG(q) = 0

As stated in Lemma 6 below, the construction described in Definition 17 transfers
almost-surely winning strategies in Gu into a subgame optimal strategy in G.
Lemma 6. For all u ∈ VG \{0}, let suA be a subgame almost-surely winning strat-
egy in Gu. The glued strategy sA[(s

u
A)u∈VG\{0}], denoted sA, is subgame optimal

in G.

Proof (Sketch). We apply Theorem 1. First, the strategy sA is locally optimal
in all Qu for u > 0 by the strategy restriction done to define the game Gu (only
optimal strategies are considered at each game in normal form Fnf

q at states
q ∈ Qu). Furthermore, any strategy is optimal in a game in normal form of
value 0 (which is the case of the game in normal forms of states in Q0). Second,
if the game eventually settles in a value area Qu for some u > 0, from then on
the strategy sA mimics the strategy suA, which is subgame almost-surely winning
in Gu. Hence, the probability of W given that the game eventually settles in Qu

is 1. This holds for all u ∈ VG \ {0}, so the second condition of Theorem 1 holds.

We now have all the ingredients to prove Theorem 2.

Proof (Of Theorem 2). We consider the PI concurrent game G and assume that
there is a positively-optimal strategy that is locally optimal. Then, by Lemma 5,
for all positive values u ∈ VG \{0}, all states in Gu have positive values. It follows,
by Theorem 3, that there exists a subgame almost-surely winning strategy in
every game Gu for u ∈ VG \ {0}. We then obtain a subgame optimal strategy by
gluing these strategies together, given by Lemma 6.

The second part of the theorem, dealing with transfer of positionality from
subgame almost-surely winning to subgame optimal follows from the fact that if
all strategies suA are positional for all u ∈ VG \ {0}, then so is the glued strategy
sA[(s

u
A)u∈VG\{0}].

We now apply the result of Theorem 2 to two specific classes of objectives:
Büchi and co-Büchi objectives. Note that this result is already known for Büchi
objectives, proven in [4].

Corollary 1. Consider a concurrent game with a Büchi (resp. co-Büchi) objec-
tive and assume that there is a positively-optimal strategy that is locally optimal.
Then there is a subgame optimal positional strategy.

Note that it is also possible to prove a memory transfer from subgame almost-
surely winning to subgame optimal for an arbitrary memory skeleton, instead of
only positional strategies. This adds only a few minor difficulties.

556 B. Bordais et al.

Application to the turn-based setting. The aim of Section 6 was to ex-
tend an already existing result on turn-based games in the context of concurrent
games. This required an adaptation of the assumptions. However, it is in fact
possible to retrieve the original result on turn-based games from Theorem 2 in a
fairly straightforward manner. It amounts to show that, in all finite turn-based
games G, for all values u ∈ VG \ {0}, there is a locally optimal strategy that is
positively-optimal from all states in Qu.

7 Finite-choice strategies

In this section, we introduce a new kind of strategies, namely finite-choice strate-
gies. Let us first motivate why we consider such strategies. Consider again the
co-Büchi game of Figure 1. Recall that the optimal strategy we described first
plays the top row with increasing probability and the middle row with decreas-
ing probability and then, once Player B plays the second column, switches to
a positional strategy playing the bottom row with positive, yet small enough
probability. Note that switching strategy is essential. Indeed, if Player A does
not switch, Player B could at some point opt for the middle column and see in-
definitely the state q′1 with very high probability. In fact, what happens in that
case is rather counter-intuitive: once Player B switches, there is infinitely often
a positive probability to reach the outcome of value 1. However, the probability
to ever reaching this outcome can be arbitrarily small, if Player B waits long
enough before playing the middle row. This happens because the probability εk
to visit that outcome goes (fast) to 0 when k goes to ∞. In fact, such an optimal
strategy has “infinite choice” in the sense that it may prescribe infinitely many
different probability distribution.

In this section, we consider finite-choice strategies, i.e. strategies that can use
only finitely many GF-strategies at each state.

Definition 18 (Finite-choice strategy). Let G be a concurrent game. A Player
A strategy sA in G has finite choice if, for all q ∈ Q, the set SsA

q := {sA(ρ · q) |
ρ ∈ Q+} ⊆ D(Aq) is finite.

Note that positional (even finite-memory) and deterministic strategies are ex-
amples of finite-choice strategies.

Interestingly, we can link finite-choice strategies with the existence of sub-
game optimal strategies. In general it does not hold that if there are optimal
strategies, then there exists subgame optimal strategies (as exemplified in the
game of Figure 1). However, in Theorem 4 below, we state that if we addition-
ally assume that the optimal strategy considered has finite choice, then there is
a subgame optimal strategy (that has also finite choice).

Theorem 4. Consider a PI concurrent game G. If there is a finite-choice opti-
mal strategy, then there is a finite-choice subgame optimal strategy.

Proof (Sketch). Consider such an optimal finite-choice strategy sA. In particular,
note that there is a constant c > 0 such that for all ρ · q ∈ Q+, for all a ∈ Aq we

Subgame Optimal Strategies in Concurrent Games 557

have: sA(ρ · q)(q) > 0 ⇒ sA(ρ · q)(q) ≥ c. We build a subgame optimal strategy
s′A in the following way: for all ρ = ρ′ · q ∈ Q+, if the residual strategy sρA is
optimal, then s′A(ρ) := sA(ρ), otherwise s

′
A(ρ) := sA(q) (i.e. we reset the strategy).

Straightforwardly, the strategy s′A has finite choice. We want to apply Theorem 1
to prove that it is subgame optimal. One can see that it is locally optimal (by the
criterion chosen for resetting the strategy). Consider now some ρ ∈ Q+ ending
at state q ∈ Q and another state q′ ∈ Q. Assume that the residual strategy

sρA is optimal but that the residual strategy sρ·q
′

A is not. Then, similarly to why
local optimality is necessary for subgame optimality (see Proposition 1), one can
show that any Player B action b leading to q′ from ρ with positive probability
is such that χG(q) < outFnf

q
(sA(ρ), b). Hence, there is positive probability from

ρ, if Player B opts for the action b, to reach a state of value different from
u = χG(q). And if this happens infinitely often, a state of value different from
u will be reached almost-surely3. In other words, if a value area is never left,
almost-surely, the strategy s′A only resets finitely often.

Consider now some ρ ∈ Q+, a Player B deterministic strategy sB and a value
u ∈ VG \{0}. From what we argued above, the probability of the event Q∗ ·(Qu)

ω

(resp. W ∩Q∗ ·(Qu)
ω) is the same if we intersect it with the fact that the strategy

s′A only resets finitely often. Furthermore, if the strategy does not reset anymore
from some point on, and all states have the same value u > 0, then it follows
that the probability of W is 1 (since W is PI). We can then conclude by applying
Theorem 1.

Finite-choice strategies are interesting for another reason. In the previous
section, we applied the memory transfer from Theorem 2 to the Büchi and co-
Büchi objectives. We did not apply it to other objectives – in particular to the
parity objective. Indeed, in general, contrary to the case of turn-based games,
infinite-memory is necessary to be almost-surely winning in parity games. This
happens in Figure 2 (already described in [12]) where the objective of Player A
is to see q1 infinitely often, while seeing q2 only finitely often. Let us describe a
Player A subgame almost-surely winning strategy. The top row is played with
probability 1 − εk and the bottom row is played with probability εk > 0 with
εk going to 0 when k goes to ∞ (the (εk) used in the game in Figure 1 works
here as well) where k denotes the number of times the state q0 is seen. Such a
strategy is subgame almost-surely winning and does not have finite choice. In
fact, it can be shown that all Player A finite-choice strategies have value 0 in
that game.

Interestingly, the transfer of memory of Theorem 2 is adapted in Theorem 5
with the memory that is sufficient in turn-based games – for those PI objectives
that have a “neutral color”– if we additionally assume that the subgame opti-
mal strategy considered has finite choice. First, let us define what is meant by
“neutral color”, then we define the turn-based version of PSAW.

3 This holds because the strategy sA has finite choice: the probability to see a state
of different value is bounded below by the product of c and the smallest positive
probability among all Nature states.

558 B. Bordais et al.

Definition 19 (Objective with a neutral color). Consider a set of colors K
and a PI objective W ⊆ Kω. It has a neutral color if there is some (neutral) color
k ∈ K such that, for all ρ = ρ0 ·ρ1 · · · ∈ Kω, we have ρ ∈ W ⇔ ρ0 ·k·ρ1 ·k · · · ∈ W .

Definition 20 (PASW objective in turn-based games). Consider a PI ob-
jective W ⊆ Kω. It is positionally subgame almost-surely winnable in turn-based
games (PSAWT for short) if in all turn-based games G = 〈C,W 〉 where there is
a subgame almost-surely winning strategy, there is a positional one.

Theorem 5. Consider a PSAWT PI objective W ⊆ Kω with a neutral color
and a concurrent game G with objective W . Assume there is a subgame optimal
strategy that has finite choice. Then, there is a positional one.

Proof (Sketch). A finite-choice strategy sA plays only among a finite number of
GF-strategies at each state. The idea is therefore to modify the game Gu of the
previous subsection into a game G′

u by transforming it into a (finite) turn-based
game. At each state, Player A chooses first her GF-strategy. She can choose
among only a finite number of them: she has at her disposal, at a state q, only
optimal GF-strategies in SsA

q (recall Definition 18). We consider the objective W
in that new arena where Player B states are colored with a neutral color. The
existence, in G, of a subgame optimal strategy that has finite choice ensures that
all states in G′

u have positive values. We can then conclude as for Theorem 2: a
subgame optimal strategy can be obtained by gluing together subgame almost-
surely winning strategies in the (turn-based) games G′

u (that can be chosen
positional by assumption).

As an application, one can realize that the parity, mean-payoff and general-
ized Büchi objectives have a neutral color and are PSAWT ([11,16,7]). Hence, for
these objectives, if there exists an optimal strategy that has finite choice, then
there is one that is positional.

Corollary 2. Consider a concurrent game G with a parity (resp. mean-payoff,
resp. generalized Büchi) objective. Assume that there is an optimal strategy that
has finite choice in G. Then, there is a positional one.

References

1. Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Handbook of
Model Checking, chapter Graph games and reactive synthesis, pages 921–962.
Springer, 2018.

2. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global
determinacy in concurrent graph games. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021,
Virtual Conference, volume 213 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

Subgame Optimal Strategies in Concurrent Games 559

3. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in
concurrent reachability games. In Florin Manea and Alex Simpson, editors, 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-
19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages
7:1–7:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

4. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Playing (almost-
)optimally in concurrent büchi and co-büchi games. CoRR, abs/2203.06966, 2022.

5. Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Sub-game opti-
mal strategies in concurrent games with prefix-independent objectives. CoRR,
abs/2301.10697, 2023.

6. Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput.
Sci., 388(1-3):181–198, 2007.

7. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading mem-
ory for randomness. In 1st International Conference on Quantitative Evaluation of
Systems (QEST 2004), 27-30 September 2004, Enschede, The Netherlands, pages
206–217. IEEE Computer Society, 2004.

8. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. The complexity
of quantitative concurrent parity games. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida,
USA, January 22-26, 2006, pages 678–687. ACM Press, 2006.

9. Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger.
Randomness for free. Inf. Comput., 245:3–16, 2015.

10. Krishnendu Chatterjee and Rasmus Ibsen-Jensen. Qualitative analysis of concur-
rent mean-payoff games. Inf. Comput., 242:2–24, 2015.

11. Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantita-
tive stochastic parity games. In J. Ian Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Or-
leans, Louisiana, USA, January 11-14, 2004, pages 121–130. SIAM, 2004.

12. Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In
15th Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, Cal-
ifornia, USA, June 26-29, 2000, pages 141–154. IEEE Computer Society, 2000.

13. Hugh Everett. Recursive games. Annals of Mathematics Studies – Contributions
to the Theory of Games, 3:67–78, 1957.

14. Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 847–862. SIAM, 2010.

15. Marta Kwiatkowska, Gethin Norman, Dave Parker, and Gabriel Santos. Automatic
verification of concurrent stochastic systems. Formal Methods in System Design,
58:188–250, 2021.

16. Thomas M Liggett and Steven A Lippman. Stochastic games with perfect infor-
mation and time average payoff. Siam Review, 11(4):604–607, 1969.

17. Donald A. Martin. The determinacy of blackwell games. The Journal of Symbolic
Logic, 63(4):1565–1581, 1998.

18. Lloyd S Shapley and RN Snow. Basic solutions of discrete games. Contributions
to the Theory of Games, 1(24):27–27, 1950.

19. Wolfgang Thomas. Infinite games and verification. In Proc. 14th International
Conference on Computer Aided Verification (CAV’02), volume 2404 of Lecture
Notes in Computer Science, pages 58–64. Springer, 2002. Invited Tutorial.

20. John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton Univ. Press, Princeton, 1944.

560 B. Bordais et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Ahman, Danel 1
Attie, Paul C. 520

B
Baumann, Pascal 240
Bernardo, Marco 265
Boker, Udi 371
Bordais, Benjamin 541
Bouyer, Patricia 541

C
Chen, Zhibo 68
Cocke, William L. 520

D
D’Alessandro, Flavio 240
de Amorim, Pedro H. Azevedo 89
Douéneau-Tabot, Gaëtan 436
Dubut, Jérémy 308

E
Echahed, Rachid 135
Echenim, Mnacho 135

G
Ganardi, Moses 240
Goncharov, Sergey 46
Groote, Jan Friso 413

H
Hainry, Emmanuel 156
Hefetz, Guy 371
Henzinger, Thomas A. 349

Hirschkoff, Daniel 24
Hofmann, Dirk 46
Hojjat, Hossein 413
Holík, Lukáš 392

I
Ibarra, Oscar 240

J
Jaber, Guilhem 24

K
Kupke, Clemens 328

L
Labbaf, Faezeh 413
Le, Quang Loc 477
Le, Xuan-Bach D. 477
Licata, Daniel R. 113
Lopez, Aliaume 456

M
Mazowiecki, Filip 196
Mazzocchi, Nicolas 349
McQuillan, Ian 240
Mhalla, Mehdi 135
Mousavi, Mohammad Reza 413

N
New, Max S. 113
Nora, Pedro 46

P
Péchoux, Romain 156
Peltier, Nicolas 135
Pfenning, Frank 68
Prakash, Aditya 218
Prebet, Enguerrand 24

© The Editor(s) (if applicable) and The Author(s) 2023
O. Kupferman and P. Sobocinski (Eds.): FoSSaCS 2023, LNCS 13992, pp. 561–562, 2023.
https://doi.org/10.1007/978-3-031-30829-1

https://doi.org/10.1007/978-3-031-30829-1
https://doi.org/10.1007/978-3-031-30829-1

562 Author Index

R
Rady, Amgad 285
Rossi, Sabina 265
Rot, Jurriaan 328
Roux, Stéphane Le 541

S
Saraç, N. Ege 349
Schoen, Ezra 328
Schröder, Lutz 46
Schütze, Lia 240
Síč, Juraj 392
Silva, Mário 156
Sinclair-Banks, Henry 196
Starchak, Mikhail R. 176

T
Thejaswini, K. S. 218
Turkenburg, Ruben 328
Turoňová, Lenka 392

V
van Breugel, Franck 285
van Glabbeek, Rob 498
Vojnar, Tomáš 392

W
Węgrzycki, Karol 196
Wild, Paul 46
Wißmann, Thorsten 308

Z
Zetzsche, Georg 240

