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Abstract. Distributed clause-sharing SAT solvers can solve problems
up to one hundred times faster than sequential SAT solvers by shar-
ing derived information among multiple sequential solvers working on
the same problem. Unlike sequential solvers, however, distributed solvers
have not been able to produce proofs of unsatisfiability in a scalable man-
ner, which has limited their use in critical applications. In this paper,
we present a method to produce unsatisfiability proofs for distributed
SAT solvers by combining the partial proofs produced by each sequen-
tial solver into a single, linear proof. Our approach is more scalable and
general than previous explorations for parallel clause-sharing solvers, al-
lowing use on distributed solvers without shared memory. We propose a
simple sequential algorithm as well as a fully distributed algorithm for
proof composition. Our empirical evaluation shows that for large-scale
distributed solvers (100 nodes of 16 cores each), our distributed approach
allows reliable proof composition and checking with reasonable overhead.
We analyze the overhead and discuss how and where future efforts may
further improve performance.

Keywords: SAT solving · proofs · distributed computing.

1 Introduction

SAT solvers are general-purpose tools for solving complex computational prob-
lems. By encoding domain problems into propositional logic, users have suc-
cessfully applied SAT solvers in various fields such as formal verification [31],
automated planning [25], and mathematics [8, 16]. The list of applications has
grown significantly over the years, mainly because algorithmic improvements
have led to orders of magnitude improvement in the performance of the best
sequential solvers (see, e.g., [21] for a comparison).

Despite all this progress, there are still many problems that cannot be solved
quickly with even the best sequential solvers, pushing researchers to explore
ways of parallelizing SAT solving. One approach that has worked well for specific
problem instances is Cube-and-Conquer [17, 18], which can achieve near-linear
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speedups for thousands of cores but requires domain knowledge about how ef-
fectively to split a problem into subproblems. An alternative approach that does
not require such knowledge is clause-sharing portfolio solving, which has recently
led to solvers [12,28] achieving impressive speedups (10x–100x on a 100x16 core
cluster) over the best sequential solvers across broad sets of benchmarks.5

Although distributed solvers are demonstrably the most powerful tools for
solving hard SAT problems, there is an important caveat: unlike sequential
solvers, current distributed clause-sharing solvers cannot produce proofs of un-
satisfiability. While there has been foundational work in producing proofs for
shared-memory clause-sharing SAT solvers [14], existing approaches are neither
scalable nor general enough for large-scale distributed solvers. This is not just a
theoretical problem—for four problems in the 2020 and 2021 SAT competitions,
distributed solvers produced incorrect answers that were not discovered until the
2022 competition because they could not be independently verified.6

In this paper, we deal with this issue and present the first scalable approach
for generating proofs for distributed SAT solvers. To construct proofs, we main-
tain provenance information about shared clauses in order to track how they
are used in the global solving process, and we use the recently-developed LRAT
proof format [9] to track dependencies among partial proofs produced by solver
instances. By exploiting these dependencies, we are then able to reconstruct a
single linear proof from all the partial proofs produced by the sequential solvers.
We first present a simple sequential algorithm for proof reconstruction before
devising a parallel algorithm that can even be implemented in a distributed way.
Both algorithms produce independently-verifiable proofs in the LRAT format.
We demonstrate our approaches using an LRAT-producing version of the se-
quential SAT solver CaDiCaL [5] to turn it into a clause-sharing solver, and
then modify the distributed solver Mallob [28] to orchestrate a portfolio of such
CaDiCaL instances while tracking the IDs of all shared clauses.

We conduct an evaluation of our approaches from the perspective of efficiency,
benchmarking the performance of our clause-sharing portfolio solver against the
winners of the cloud track, parallel track, and sequential track from the SAT
Competition 2022. Adding proof support introduces several kinds of overhead
for clause-sharing portfolios in terms of solving, proof reconstruction, and proof
checking, which we examine in detail. We show that even with this overhead, dis-
tributed solving and proving is much faster than the best sequential approaches.
We also demonstrate that our approach dramatically outperforms previous work
on proof production for clause-sharing portfolios [14]. We argue that much of the
overhead of our current setup can be compensated, among other measures, by
improving support for LRAT in solver backends. We thus hope that our work
provides an impetus for researchers to add LRAT support to other solvers.

Our main contributions are as follows:

5 c.f.: the SAT Competition 2022 results:
https://satcompetition.github.io/2022/downloads/sc2022-detailed-results.zip

6 The incorrectly scored problems were SAT_MS_sat_nurikabe_p08.pddl_71.cnf,
randomG-Mix-n18-d05.cnf, php12e12.cnf, and Cake_9_20.cnf.
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– We present the first effective and scalable approach for proof generation in
distributed SAT solving.

– We implement our approach on top of the state-of-the-art solvers CaDiCaL
and Mallob.

– We perform a large-scale empirical evaluation analyzing the overhead intro-
duced by proof production as compared to state-of-the-art portfolios.

– We demonstrate that our approach dramatically outperforms previous work
in parallel proof production, and that it remains substantially more scalable
than the best sequential solvers.

The rest of this paper is structured as follows. In Section 2, we present the
background required to understand the rest of our paper and discuss related
work. In Section 3, we describe the general problem of producing proofs for
distributed SAT solving and a simple algorithm for proof combination. In Sec-
tion 4, we describe a much more efficient distributed version of our algorithm
before discussing implementation details in Section 5. Finally, we present the
results of our empirical evaluation in Section 6 and conclude with a summary
and an outlook for future work in Section 7.

2 Background and Related Work

The Boolean satisfiability problem (SAT) asks whether a Boolean formula can
be satisfied by some assignment of truth values to its variables. An overview can
be found in [6]. We consider formulas in conjunctive normal form (CNF). As
such, a formula F is a conjunction (logical “AND”) of disjunctions (logical “OR”)
of literals, where a literal is a Boolean variable or its negation. For example,
(a ∨ b ∨ c) ∧ (b ∨ c) ∧ (a) is a formula with variables a, b, c and three clauses.
A truth assignment A maps each variable to a Boolean value (true or false). A
formula F is satisfied by an assignment A if F evaluates to true under A, and
F is satisfiable if such an assignment exists. Otherwise, F is called unsatisfiable.

If a formula F is found to be satisfiable, modern SAT solvers commonly
output a truth assignment; users can easily evaluate F under the assignment in
linear time to verify that F is indeed satisfiable. In contrast, if a formula turns
out unsatisfiable, sequential SAT solvers produce an independently-checkable
proof that there exists no assignment that satisfies the formula.

File Formats in Practical SAT Solving. In practical SAT solving, formulas are
specified in the DIMACS format. DIMACS files feature a header of the form
‘p cnf #variables #clauses’ followed by a list of clauses, one clause per line.
For example, the clause (x1 ∨x2 ∨x3) is represented as ‘1 -2 3 0’. An example
formula in DIMACS format is given in Figure 1.

The current standard format for proofs is DRAT [15]. DRAT files are similar
to DIMACS files, with each line containing a proof statement that is either an
addition or a deletion. Additions are lines that represent clauses like in the DI-
MACS format; they identify clauses that were derived (“learned”) by the solver.
Each clause addition must preserve satisfiability by adhering to the so-called
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DIMACS
p cnf 4 8
1 -2 0

2 -4 0
1 2 4 0

-1 -3 0
1 -3 0

-1 3 0
1 3 -4 0
1 3 4 0

DRAT

-3 0
1 2 0

-1 0
d -3 0

2 3 -4 0
1 2 3 0

0

LRAT

9 -3 0 5 4 0
10 1 2 0 3 2 0
11 -1 0 6 9 0
11 d 9 0
12 2 3 -4 0 7 11 0
13 1 2 3 0 8 12 0
14 0 11 10 1 0

Fig. 1: DIMACS formula and corresponding proofs in DRAT and LRAT format.

RAT criterion—as the details of RAT are not essential to our paper, we refer
the reader to the respective literature for more details [20]. Deletions are lines
that start with a ‘d’, followed by a clause; they identify clauses that were deleted
by the solver because they were not deemed necessary anymore. Clause deletions
can only make a formula “more satisfiable”, meaning that they aren’t required
for deriving unsatisfiability, but they drastically speed up proof checking. A valid
DRAT proof of unsatisfiability ends with the derivation of the empty clause. As
the empty clause is trivially unsatisfiable (and since each proof step preserves
satisfiability) the unsatisfiability of the original formula can then be concluded.
An example DRAT proof is given in Figure 1.

The more recent LRAT proof format [9] augments each clause-addition step
with so-called hints, which identify the clauses that were required to derive the
current clause. This makes proof checking more efficient, and in fact the usual
pipeline for trusted proof checking is to first use an efficient but unverified tool
(like DRAT-trim [15]) to transform a DRAT proof into an LRAT proof, and
then check the resulting LRAT proof with a formally verified proof checker (c.f.,
[9, 13, 22, 30]). Figure 1 shows an LRAT proof corresponding to a DRAT proof.
Each proof line starts with a clause ID. The numbering starts with 9 because
the eight clauses of the original formula are assigned the IDs 1 to 8. Each clause
addition first lists the literals of the clause, then a terminating 0, followed by
hints (in the form of clause IDs), and finally another 0. For example, clause
9 contains the literal -3 and can be derived from the clauses 4 and 5 of the
original formula. Clause deletions just state the clause ID of the clause that is
to be deleted, as in the later deletion of clause 9. In our work, we exploit the
hints of LRAT to determine dependencies among distributed solvers.

Parallel and Distributed SAT Solving. One way to parallelize SAT solving is to
run a portfolio of sequential solvers in parallel and to consider a problem solved
as soon as one of the solvers finishes (c.f. [1, 4, 5, 11, 12, 18, 23, 29, 32]). Given
that the solvers are sufficiently diverse, portfolio solving is already effective if
all of the sequential solvers work independently, but performance and scalability
can be boosted significantly by having the solvers share information in the form
of learned clauses [4, 12]. This approach is taken by the distributed solver Mal-
lob [28], which won the cloud track of the last three SAT competitions [2,3,27].
As opposed to other solvers, Mallob relies on a communication-efficient aggrega-
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tion strategy to collect the globally most useful learned clauses and to reliably
filter duplicates as well as previously shared clauses [27]. With this strategy,
which aims to maximize the density and utility of the communicated data, Mal-
lob scored first place in all four eligible subtracks for unsatisfiable problems at
the 2022 SAT Competition.

As we discuss in more detail later, the drawback of clause sharing is that a
local proof written by an individual solver may contain clauses whose deriva-
tions cannot be justified because they rely on clauses imported from another
solver. Previous work focuses on writing DRAT proofs for clause-sharing par-
allel solvers [14]. In that work, solvers write to the same shared proof as they
learn clauses. However, since the clauses are shared, one solver deleting a clause
could invalidate a later clause-addition by another solver that is still holding the
clause. To handle this, the parallel solver moderates deletion statements, only
writing them to the proof once all solvers have deleted a clause, which leads to
poor scalability during proof search. In our approach, solvers write proof files
fully independently—only when the unsatisfiability of the problem has been de-
termined do we combine all proofs into a single valid proof.

Other recent work includes reconstructing proofs from divide-and-conquer
solvers [24] and from a particular shared-memory parallel solver [10] whereas we
aim to exploit distributed portfolio solving.

3 Basic Proof Production

Our goal is to produce checkable unsatisfiability proofs for problems solved by
distributed clause-sharing SAT solvers. We propose to reuse the work done on
proofs for sequential solvers by having each solver produce a partial proof con-
taining the clauses it learned. These partial proofs are invalid in general because
each sequential solver can rely on clauses shared by other solvers when learning
new clauses. For example, when solver A derives a new clause, it might rely on
clauses from solvers B and C, which in turn relied on clauses from solvers D
and E, and so on. The justification of A’s clause derivation is thus spread across
multiple partial proofs. We need to combine the partial proofs into a single valid
proof in which the clauses are in dependency order, meaning that each clause
can be derived from previous clauses.

To generate an efficiently-checkable combined proof in a scalable way, we
must solve three challenges:

1. Provide metadata to identify which solver produced each learned clause.
2. Efficiently sort learned clauses in dependency order across all solvers.
3. Reduce proof size by removing unnecessary clauses.
Switching from DRAT to the LRAT proof format provides the mechanism to

unlock all three challenges. First, we specialize the clause-numbering scheme used
by LRAT in order to distinguish the clauses produced by each solver. Second,
we use the dependency information from LRAT to construct a complete proof
from the partial proofs produced by each solver. Finally, we determine which
clauses are unnecessary (or used only for certain parts of the proof) to delete
clauses from the proof as soon as they are no longer required.
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Algorithm 1 Algorithm for combining partial proofs
1: function Combine(partial proofs p1, p2, ...pn, number of original clauses o)
2: i ← 1
3: while true do
4: if pi .hasNext() then
5: ⟨id, type, clause, proofHint⟩ ← pi .peekNext()
6: if dependenciesSatisfied(proofHint) then
7: emit ⟨id, type, clause, proofHint⟩
8: pi .next() ▷ Line completed
9: if clause = ∅ then ▷ Derived empty clause

10: return
11: else ▷ Leave the line and move to next partial proof
12: i← (i mod n) + 1

13: else ▷ Move to next partial proof if current is done
14: i← (i mod n) + 1

We update the clause-distribution mechanism in the distributed solver to
broadcast the clause ID with each learned clause. A receiving solver stores the
clause with its ID and uses the ID in proof hints when the clause is used locally,
as it does with locally-derived clauses. Unlike locally-derived clauses, we add no
derivation lines for remote clauses to the local proof. Instead, these derivations
will be added to the final proof when combining the partial proofs.

3.1 Solver Partial Proof Production

To combine the partial proofs into a complete proof, we modify the mechanism
producing LRAT proofs in each of the component solvers. We assign to each
clause an ID that is unique across solvers and identifies which solver originally
derived it. The following mapping from clauses to IDs achieves this:

Definition 1. Let o be the number of clauses in the original formula and let
n be the number of sequential solvers. Then, the ID of the k-th derived clause
(k ≥ 0) of solver i is defined as ID i

k = o+ i+ nk.

Given ID i
k, we can easily determine the solver ID i using modular arithmetic.

3.2 Partial Proof Combination

Once the distributed solver has concluded the input formula is unsatisfiable, we
have n partial proofs. The clause derivations in these proofs refer to clauses of
other partial proofs, but they are, locally, in dependency order. We can therefore
combine the partial proofs without reordering their clauses beforehand. We can
simply interleave their clauses so the resulting proof is also in dependency order,
ignoring any deletions in the partial proofs.

Our algorithm goes through the partial proofs round-robin, at each step
emitting all the clauses from each file where the dependencies of the clause have
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Instance 1
9 -3 0 5 4 0

11 -1 0 6 9 0
11 d 9 0
13 1 2 3 0 8 12 0

Instance 2
10 1 2 0 3 2 0
12 2 3 -4 0 7 11 0
14 0 11 10 1 0

Combined
9 -3 0 5 4 0

11 -1 0 6 9 0
10 1 2 0 3 2 0
12 2 3 -4 0 7 11 0
14 0 11 10 1 0

Fig. 2: Partial proofs and combined proof of unsatisfiability.

already been emitted. It ends when the empty clause is emitted. The procedure
is shown in Algorithm 1. For each partial proof, we maintain an iterator over the
learned clauses. We add the next clause from the current partial proof (pi) to the
final proof if its dependencies are satisfied (determined by comparing each hint
to the last clause emitted from the partial proof whence it originated); otherwise
it cycles to the next partial proof. It emits the line and moves to the next clause
in the file. The algorithm terminates when it emits the empty clause (line 10).

Example 1. Suppose that two solver instances (instance 1 and instance 2) de-
termined together that the formula from Figure 1 is unsatisfiable, with the two
partial proofs shown in Figure 2. We start with instance 1. As clause 9 only relies
on original clauses, we emit it. Clause 11 relies on original clause 6 and emitted
clause 9, so we emit it. Clause 13 relies on clauses 8 and 12, which is not emitted,
so we cannot emit clause 13 and move to instance 2. Clause 10 can be emitted,
as can clause 12, which relies on an original and an emitted clause. Clause 14
relies on emitted clauses 11 and 10 and on original clause 1, so we can emit it as
well. Since clause 14 is the empty clause, we finish with a complete proof, shown
in Figure 2(c). Notice that clause 13 was not added to the combined proof, since
it was not required to satisfy any dependencies of the empty clause.

3.3 Proof Pruning

The combined proof produced by our procedure is valid but not efficiently check-
able because (1) it can contain clauses that are not required to derive the empty
clause and (2) it does not contain deletion lines, meaning that a proof checker
must maintain all learned clauses in memory throughout the checking process.
To reduce size and to improve proof-checking performance, we prune our com-
bined proof toward a minimal proof containing only necessary clauses, and we
add deletion statements for clauses as soon as they are not needed anymore.

Algorithm 2 shows our pruning algorithm that walks the combined proof in
reverse (similar to backward checking of DRAT proofs [19]). We maintain a set of
clauses required in the proof, initialized to the empty clause alone. We then pro-
cess all clauses in reverse order, including the empty clause, ignoring all clauses
not in the required set. For each required clause, we check its dependencies to
see if this is the first time (from the proof’s end) a dependency is seen; if so,
we emit a deletion line for the dependency since it will never be used again in
the proof. After checking all its dependencies, we output the clause itself. The
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Algorithm 2 Algorithm for pruning proofs
1: function Prune(combined and reversed proof p, number of original clauses o)
2: required← {p.peekNextId()} ▷ Must be empty clause, which is required
3: while p.hasNext() do
4: ⟨id, type, clause, proofHint⟩ ← p.readNext()
5: if id ∈ required then ▷ Only process a line if it is required later
6: for hint ∈ proofHint do
7: if hint > o ∧ hint /∈ required then ▷ Not used later
8: required← required ∪ {hint}
9: emit ⟨id, delete, hint⟩

10: emit ⟨id, add, clause, proofHint⟩

final output of the algorithm is a proof in reversed order, where each clause is
required for some derivation and deleted as soon as it is no longer required.

Example 2. Consider the combined proof from Figure 2. After applying Algo-
rithm 2, working backward from clause 14, we determine that clause 12 is not
required, so it is removed. Additionally, prior to clause 11, clause 9 is not in the
required set, so it can be deleted after processing clause 11. On larger proofs, as
discussed in Section 6, pruning can reduce the size of the proof by 10x or more.

4 Distributed Proof Production

The proof production as described above is sequential and may process huge
amounts of data, all of which needs to be accessible from the machine that
executes the procedure. In addition, maintaining the required clause IDs during
the procedure may require a prohibitive amount of memory for large proofs. In
the following, we propose an efficient distributed approach to proof production.

4.1 Overview

Our previous sequential proof-combination algorithm first combines all partial
proofs into a single proof and then prunes unneeded proof lines. In contrast,
our distributed algorithm first prunes all partial proofs in parallel and only then
merges them into a single file.

We have m processes with c solver instances each, amounting to a total of
n = mc solvers. We make use of the fact that the solvers exchange clauses in
periodic intervals (one second by default). We refer to these intervals between
subsequent sharing operations as epochs. Consider Fig. 3 (left): Clause 118 was
produced by S2 in epoch 1. Its derivation may depend on local clause 114 and on
any of the 11 clauses produced in epoch 0, but it cannot depend, e.g., on clause
109 or 111 since these clauses have been produced after the last clause sharing.
More generally, a clause c produced by instance i during epoch e can only depend
on (i) earlier clauses by instance i produced during epoch e or earlier, and (ii)
clauses by instances j ̸= i produced before epoch e.
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Fig. 3: Four solvers work on a formula with 99 original clauses, produce new
clauses (depicted by their ID), and share clauses periodically, without (left) and
with (right) aligning clause IDs.

Using this knowledge, we can essentially rewind the solving procedure. Each
process reads its partial proofs in reverse order, outputs each line which adds a
required clause, and adds the hints of each such clause to the required clauses.
Required remote clauses produced in epoch e are transferred to their process of
origin before any proof lines from epoch e are read. As such, whenever a process
reads a proof line, it knows whether the clause is required. The outputs of all
processes can be merged into a single valid proof (Section 4.3).

4.2 Distributed Pruning

Clause ID Alignment. To synchronize the reading and redistribution of clause
IDs in our distributed pruning, we need a way to decide from which epoch a
remote clause ID originates. However, solvers generally produce clauses with
different speeds, so the IDs by different solvers will likely be in dissimilar ranges
within the same epoch over time. For instance, in Fig. 3 (left) instance S3 has no
way of knowing from which epoch clause 118 originates. To solve this issue, we
propose to align all produced clause IDs after each sharing. During the solving
procedure, we add a certain offset δei to each ID produced by instance i in epoch
e. As such, we can associate each epoch e with a global interval [Ae, Ae+1) that
contains all clause IDs produced in that epoch. In Fig. 3 (right), A0 = 100,
A1 = 116, and A2 = 128. Clause 118 on the left has been aligned to 122 on the
right (δ12 = 4) and due to A1 ≤ 122 < A2 all instances know that this clause
originates from epoch 1.

Initially, δ0i := 0 for all i. Let Iei be the first original (unaligned) ID produced
by instance i in epoch e. With the sharing that initiates epoch e > 0, we compute
the common start of epoch e, Ae := maxi{Iei + δe−1

i − i}, as the lowest possible
value that is larger than all clause IDs from epoch e−1. We then compute offsets
δei in such a way that Iei +δei = Ae+ i, which yields δei := (Ae+ i)−Iei . If we then
export a clause produced during e by instance i, we add δei to its ID, and if we
import shared clauses to i, we filter any clauses produced by i itself. Note that
we do not modify the solvers’ internal ID counters or the proofs they output.
Later, when reading the partial proof of solver i at epoch e, we need to add δei
to each ID originating from i. All other clause IDs are already aligned.
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Rewinding the Solve Procedure. Assume that instance u ∈ {1, . . . , n} has derived
the empty clause in epoch ê. For each local solver i, each process has a frontier
Fi of required clauses produced by i. In addition, each process has a backlog B
of remote required clauses. B and Fi are collections of clause IDs and can be
thought of as maximum-first priority queues. Initially, Fu contains the ID of the
empty clause while all other frontiers and backlogs are empty. Iteration x ≥ 0 of
our algorithm processes epoch ê− x and features two stages:

1. Processing: Each process continues to read its partial proofs in reverse
order from the last introduced clause of the current epoch. If a line from solver
i is read whose clause ID is at the top of Fi, then the ID is removed from Fi,
the line is output, and each clause ID hint h in the line is treated as follows:
– h is inserted in Fj if local solver j (possibly j = i) produced h.
– h is inserted in B if a remote solver produced h.
– h is dropped if h is an ID of an original clause of the problem.

Reading stops as soon as a line’s ID precedes epoch e = ê − x. Each Fi as well
as B now only contain clauses produced before e.

2. Task redistribution: Each process extracts all clause IDs from B that were
produced during ê−x−1. These clause IDs are aggregated among all processes,
eliminating duplicates in the same manner as Mallob’s clause sharing detects
duplicate clauses [28]. Each process traverses the aggregated clause IDs, and
each clause produced by a local solver i is added to Fi.

Our algorithm stops in iteration ê after the Processing stage, at which point
all frontiers and backlogs are empty and all relevant proof lines have been output.

Analysis. In terms of total work performed, all partial proofs are read completely.
For each required clause we may perform an insertion into some B, a deletion
from said B, an insertion into some Fi, and a deletion from said Fi. If we assume
logarithmic work for each insertion and deletion, the work for these operations
is linear in the combined size of all partial proofs and loglinear in the size of the
output proof. In addition, we have ê iterations of communication whose overall
volume is bounded by the communication done during solving. In fact, since only
a subset of shared clauses are required and we only share 64 bits per clause, we
expect strictly less communication than during solving. Computing Ae for each
epoch e during solving is negligible since the necessary aggregation and broadcast
can be integrated into an existing collective operation. Regarding memory usage,
the size of each B and each Fi can be proportional to the combined size of
all required lines of the according partial proofs. However, we can make use of
external data structures which keep their content on disk except for a few buffers.

4.3 Merging Step

For each partial proof processed during the pruning step, we have a stream of
proof lines sorted in reverse chronological order, i.e., starting with the highest
clause ID. The remaining task is to merge all these lines into a single, sorted
proof file. As shown in Fig. 4 (left), we arrange all processes in a tree. We can
easily merge a number of sorted input streams into a single sorted output stream
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Fig. 4: Left: Proof merging with seven processes and 14 solvers. Each box rep-
resents a process with two local proof sources. Dashed arrows denote commu-
nication. Right: Example of merging three streams of LRAT lines into a single
stream. Each number i represents an LRAT line describing a clause of ID i.

by repeatedly outputting the line with the highest ID among all inputs (Fig. 4
right). This way, we can hierarchically merge all streams along the tree. At the
tree’s root, the output stream is directed into a file. This is a sequential I/O task
that limits the speed of merging. Finally, since the produced file is in reverse
order, a buffered operation reverses the file’s content.

A final challenge is to add clause deletions to the final proof. Before a line is
written to the combined proof file, we can scan its hints and output a deletion
line for each hint we did not encounter before (see Section 3.3). However, imple-
menting this in an exact manner requires maintaining a set of clause IDs which
scales with the final proof size. Since our proof remains valid even if we omit
some clause deletions, we can use an approximate membership query (AMQ)
structure with fixed size and a small false positive rate, e.g., a Bloom filter [7].

5 Implementation

We employ a solver portfolio based on the sequential SAT solver CaDiCaL [5].
We modified CaDiCaL to output LRAT proof lines and to assign clause IDs as
described in Section 3.1. To ensure sound LRAT proof logging, some features of
CaDiCaL currently need to be turned off, such as bounded variable elimination,
hyper-ternary resolution, and vivification. Similarly, Mallob’s original portfolio
of CaDiCaL configurations features several options that are incompatible with
our proof logging as of yet. Therefore, we created a smaller portfolio of “safe”
configurations that include shuffling variable priorities, adjusted restart intervals,
and disabled inprocessing. We also use different random seeds and use Mallob’s
diversification based on randomized initial variable polarities.

We modified Mallob to associate each clause with a 64-bit clause ID. For
consistent bookkeeping of sharing epochs, we defer clause sharing until all pro-
cesses have fully initialized their solvers. While several solvers may derive the
empty clause simultaneously, only one of them is selected to be the “winner”
whose empty clause will be traced. The distributed proof production features

D. Michaelson et al.358



communication similar to Mallob’s clause sharing. To realize the frontier Fi and
the backlog B described in Section 4.2, we implemented an external-memory
data structure which writes clause IDs to disk, categorized by their epoch. Upon
reaching a new epoch, all clause IDs from this epoch are read from disk and in-
serted into an internal priority queue to allow for efficient polling and insertion.
To merge the pruned partial proofs, we use point-to-point messages to query and
send buffers of proof lines between processes. We interleave this merging with
the pruning procedure in order to avoid writing the intermediate output to disk.
We use a fixed-size Bloom filter to add some deletion lines to the final proof.

6 Evaluation

In this section, we present an evaluation of our proof production approaches. We
provide the associated software as well as a digital appendix online.7

6.1 Experimental Setup

Supporting proofs introduces several kinds of performance overhead for clause-
sharing portfolios in terms of solving, proof reconstruction, and proof checking.
We wish to examine how well our proof-producing solver performs against (1)
best-of-breed parallel and cloud solvers that do not produce proofs, (2) previous
approaches to proof-producing parallel solvers, and (3) best-of-breed sequential
solvers. We analyze the overhead introduced by each phase of the process, and
we discuss how and where future efforts might improve performance.

We use the following pipeline for our proof-producing solvers: First, the in-
put formula is preprocessed by performing exhaustive unit propagation. This is
necessary due to a technical limitation of our LRAT-producing modification of
CaDiCaL. Second, we execute our proof-producing variant of Mallob on the pre-
processed formula. Third, we prune and combine all partial proofs, using either
our sequential proof production or our distributed proof production. Fourth, we
merge the preprocessor’s proof and our produced proof and syntactically trans-
form the result to bring the set of clause IDs into compact shape. Fifth and
finally, we run lrat-check8 to check the final proof. Only steps two and three
of our pipeline are parallelized (step three depending on the particular experi-
ment). We will refer to the first two steps as solving, the third step as assembly,
the fourth step as postprocessing, and the fifth step as checking.

To examine performance overhead for proof-producing parallel and dis-
tributed solvers, we compare our proof-producing cloud and parallel solvers
(mallob-cacld-p and mallob-capar-p) against six solvers. First, we include
the winners of the 2022 SAT competition cloud track (mallob-kicaliglu, us-
ing Kissat+CaDiCaL+Lingeling+Glucose), parallel track (parkissat-rs, using
Kissat), and sequential track (Kissat_MAB-HyWalk), as well as the second place

7 https://github.com/domschrei/mallob/tree/certified-unsat
8 https://github.com/marijnheule/drat-trim
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Table 1: Overview of solved instances: (S)equential, (P)arallel, and (C)loud
Solver Type Solved SAT UNSAT PAR-2 score
Kissat_MAB-HyWalk S 218 118 100 1065.7
parkissat-rs P 299 155 144 603.0
mallob-ki P 260 113 147 827.6
mallob-capar P 292 145 147 641.6
mallob-capar-p (Seq.) P 279 140 139 719.8
mallob-capar-p (Par.) P 276 141 135 731.4
mallob-kicaliglu C 341 165 176 344.8
mallob-cacld C 333 163 170 378.0
mallob-cacld-p C 314 159 155 484.1

solver from the parallel track (mallob-ki, using Lingeling9). We then run a
parallel and cloud version of Mallob that runs our described CaDiCaL portfolio
without proof production (mallob-capar and mallob-cacld).

Following the SAT competition setup, each cloud solver runs on 100
m6i.4xlarge EC2 instances (16 core, 64GB RAM), each parallel solver runs on
a single m6i.16xlarge EC2 instance (64 core, 256GB RAM), and the sequential
Kissat_MAB-HyWalk runs on a single m6i.4xlarge EC2 instance. For each solver,
we run the full benchmark suite from the SAT-Competition 2022 (400 formulas)
containing both SAT and UNSAT examples. The timeout for the solving step is
1000 seconds, and the timeout for all subsequent steps is set to 4000 seconds.

Since earlier work [14] is no longer competitive in terms of solving time,
we only compare proof-checking times. Specifically, we measure the overhead of
checking un-pruned DRAT proofs as the ones produced by [14]. As such, we
can get a picture of the performance of the earlier approach if it was realized
with state-of-the-art solving techniques. We generate un-pruned DRAT proofs
from the original (un-pruned) LRAT proof by stripping out the dependency
information and adding delete lines for the last use of each clause.

6.2 Results

First we examine the performance overhead of changing portfolios to enable proof
generation as described in Section 5 on the solving process only. Fig. 5 (left) and
Table 1 show this data. The PAR-2 metric takes the average time to solve each
problem, but counts a timeout result as a 2x penalty (e.g., given our timeout of
1000 seconds, a timeout is scored as taking 2000 seconds). We can see that our
CaDiCaL portfolio mallob-capar outperforms the Lingeling-based mallob-ki
significantly and is almost on par with parkissat-rs. Similarly, mallob-cacld
solves eight instances less compared to mallob-kicaliglu but performs almost
equally well otherwise. In both cases, we have constructed solvers which are,

9 mallob-ki employed a Lingeling-based portfolio due to a misconfiguration, see:
http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki-mallob-li.pdf
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Fig. 5: Left: Comparison of solving times. Right: Relation of solving times to
assembly and postprocessing times for mallob-cacld-p. Each pair of points
corresponds to one instance, the y coordinate denoting the solving time. The
left x coordinate denotes solving and assembly time and the right x coordinate
denotes solving, assembly, and postprocessing time.

up to a small margin, on par with the state of the art. For our actual proof-
producing solvers, mallob-capar-p and mallob-cacld-p, we noticed a more
pronounced decline in solving performance. On top of the overhead introduced
by proof logging and our preprocessing, we experienced a few technical problems,
including memory issues10, which resulted in a drop in the number of instances
solved and also caused mallob-capar-p with parallel proof production to solve
three instances less than with sequential proof production. We believe that we
can overcome these issues in future versions of our system. That being said, our
proof-producing solvers already outperform any of the solvers at a lower scale.

Second, we examine statistics on proof reconstruction and checking, show-
ing results in Table 2. Since we want to investigate our approaches’ overhead
compared to pure solving, we measure run times as a multiple of the solving
time. (We provide absolute run times in the Appendix, Table 1.) The prefix
“Seq.” denotes mallob-capar-p with sequential proof production, “Par.” denotes
mallob-capar-p with distributed proof production run on a single machine, and
“Cld.” denotes mallob-cacld-p with distributed proof production.

DRAT checking succeeded in 81 out of 139 cases and timed out in 58 cases.
For the successful cases, DRAT checking took 24.8× the solving time on av-
erage whereas our sequential assembly, postprocessing and checking combined
succeeded in 139 cases and only took 3.8× the solving time on average. This
result confirms that our approach successfully overcomes the major scalability
problems of earlier work [14]. In terms of uncompressed proof sizes, our LRAT

10 We disabled Mallob’s memory panic mode to ensure consistent proof logging.
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Table 2: Statistics on proof production and checking. All properties except for
file sizes and pruning factor are given as a multiple of the solving time. We list
minima, maxima, medians, arithmetic means, and the 10th and 90th percentiles.

Property # min p10 med mean p90 max
DRAT check 81 0.512 1.725 7.442 24.815 67.065 169.869
Seq. assembly 139 0.019 0.305 1.376 2.324 5.747 13.289
Seq. postprocessing 139 0.001 0.012 0.131 0.263 0.790 2.218
Seq. checking 139 0.007 0.043 0.572 1.252 3.970 10.980
Seq. asm+post+chk 139 0.037 0.412 2.110 3.840 10.834 26.487
Par. assembly 135 0.059 0.080 0.365 0.805 2.227 7.475
Par. postprocessing 135 0.001 0.016 0.156 0.293 0.861 2.300
Par. checking 135 0.007 0.042 0.622 1.241 3.540 11.645
Par. asm+post+chk 135 0.067 0.167 1.097 2.339 6.611 21.420
Cld. assembly 155 0.114 0.185 1.412 2.444 5.410 44.268
Cld. postprocessing 155 0.003 0.060 0.696 2.046 4.785 39.096
Cld. checking 155 0.033 0.189 3.291 8.883 21.974 170.378
Cld. asm+post+chk 155 0.168 0.577 5.110 13.373 32.484 253.742
DRAT proof size (GiB) 139 0.012 0.366 1.236 3.246 8.395 29.308
Seq. proof size (GiB) 139 0.016 0.223 2.379 5.384 16.082 46.986
Par. proof size (GiB) 135 0.006 0.173 2.034 5.345 13.164 57.739
Cld. proof size (GiB) 155 0.016 0.342 3.940 10.533 30.130 89.106
Cld. pruning factor 155 2.374 5.379 17.826 293.762 337.486 12466.700

proofs can be about twice as large as the DRAT proofs, which seems more
than acceptable considering the dramatic difference in performance. Given that
DRAT-based checking was ineffective at the scale of parallel solvers, we decided
to omit it in our distributed experiments which feature even larger proofs.

Regarding mallob-capar-p with parallel proof production, we can see that
the assembly time is reduced from 2.32× down to 0.81× the solving time on
average, which also improves overall performance (3.84× to 2.34×).

The results for mallob-cacld-p demonstrate that our proof assembly is feasi-
ble, taking around 2.5× the solving time on average. We visualized this overhead
and how it relates to the postprocessing overhead in Fig. 5 (right). The proofs
produced are about twice as large as for mallob-capar-p. Considering that the
proofs originate from 25 times as many solvers, this increase in size is quite mod-
est, which can be explained by our proof pruning. We captured the pruning factor
— the number of clauses in all partial proofs divided by the number of clauses in
the combined proof — for each instance. Our pruning reduces the derived clauses
by a factor of 293.8 on average (17.8 for the median instance), showing that it is
a crucial technique to obtain proofs that are feasible to check. As such, we also
managed to produce and check a proof of unsatisfiability for a formula whose
unsatisfiability has not been verified before (PancakeVsInsertSort_8_7.cnf).

Lastly, to compare our approach at the largest scale with the state of the
art in sequential solving, we computed speedups of mallob-cacld-p, solv-
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ing times only, over Kissat_MAB-HyWalk and arrived at a median speedup
of 11.5 (Appendix, Table 2). We also analyzed drat-trim checking times of
Kissat_MAB-HyWalk, kindly provided by the competition organizers, and arrived
at a median overhead of 1.1× its own solving time (Appendix, Table 3). Going by
these measures, Kissat_MAB-HyWalk takes around 11.5 · 2.1 ≈ 24.2× the solving
time of mallob-cacld-p to arrive at a checked result while our complete pipeline
only takes 5.1× the solving time for the median instance. This indicates that
our approach is considerably faster than the best available sequential solvers.

We can see that the bottleneck of our pipeline shifts from the assembly step
further to the postprocessing and checking steps when increasing the degree of
parallelism. This is to be expected since the latter steps are, so far, inherently
sequential whereas our proof assembly is scalable. While the postprocessing step
is a technical necessity in our current setup, we believe that large portions of it
can be eliminated in the future with further engineering. For instance, enhancing
the LRAT support of our modified CaDiCaL to natively handle unit clauses in
the input would allow us to skip preprocessing and simplify postprocessing.

7 Conclusion and Future Work

Distributed clause-sharing solvers are currently the fastest tools for solving a
wide range of difficult SAT problems. Nevertheless, they have previously not
supported proof-generation techniques, leading to potential soundness concerns.
In this paper, we have examined mechanisms to add efficient support for proof
generation to clause-sharing portfolio solvers. Our results demonstrate that we
can, with reasonable efficiency, add support to these solvers to have full confi-
dence that the results they produce are correct.

Following our research, more work is required to reduce overhead in the
different steps involved and to improve scalability of the end-to-end procedure.
This may include designing more efficient (perhaps even parallel) LRAT checkers,
examining proof-streaming techniques to eliminate most I/O operations, and
improving LRAT support in solver backends. In fact, it might be possible to
generalize our approach to DRAT-based solvers by adding additional metadata,
and this might allow easier retrofitting of the approach onto larger portfolios of
solvers. We also intend to investigate producing proofs in Mallob for the case
where many problems are solved at once and jobs are rescaled dynamically [26].
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Abstract. Proofs from SMT solvers ensure correctness independently
from implementation, which is often a requirement when solvers are used
in safety-critical applications or proof assistants. Alethe is an established
SMT proof format generated by the solvers veriT and cvc5, with recon-
struction support in the proof assistants Isabelle/HOL and Coq. The for-
mat is close to SMT-LIB and allows both coarse- and fine-grained steps,
facilitating proof production. However, it lacks a stand-alone checker,
which harms its usability and hinders its adoption. Moreover, the coarse-
grained steps can be too expensive to check and lead to verification fail-
ures. We present Carcara, an independent proof checker and elaborator
for Alethe, implemented in Rust. It aims to increase the adoption of the
format by providing push-button proof-checking for Alethe proofs, focus-
ing on efficiency and usability; and by providing elaboration for coarse-
grained steps into fine-grained ones, increasing the potential success rate
of checking Alethe proofs in performance-critical validators, such as proof
assistants. We evaluate Carcara over a large set of Alethe proofs gen-
erated from SMT-LIB problems and show that it has good performance
and its elaboration techniques can make proofs easier to check.

1 Introduction

Satisfiability modulo theories (SMT) solvers are widely used as background tools
in various formal method applications, ranging from proof assistants to program
verification [9]. Since these applications rely on the SMT solver results, they must
trust their correctness. However, state-of-the-art SMT solvers are often found to
have bugs, despite the best efforts of developers [30, 38]. One way to address
this issue is to formally verify the solvers’ correctness (“certifying” them), but
this approach can be prohibitively expensive and time consuming, besides often
requiring performance compromises [19, 20, 27, 33] and increasing the evolution
cost of the systems [14]. Alternatively, solvers can produce proofs: independently
checkable certificates that justify the correctness of their results. Since proof
checking generally has lower complexity than solving, small and trusted checkers
can verify solver results in an scalable manner. Despite the successful adoption
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of this approach by several SMT solvers [7,13,15,24,37], no standard SMT proof
format has emerged, with each system using their own format and independent
toolchain. The Alethe1 format [35] for SMT proofs however can be emitted by
the veriT solver for several years [10] and recently2 also by the cvc5 solver [7].
Moreover, Alethe proofs can be reconstructed within the proof assistants Coq [4,
16] and Isabelle/HOL [11, 36], which allows leveraging solvers who support the
format (namely veriT and CVC4, the latter via a translator [16]) for automatic
theorem proving. In Isabelle/HOL in particular this integration has been very
successful with the veriT solver, significantly increasing the success rate of the
popular Sledgehammer tactic [36]. The format has been refined and extended
through the years [6], being now mature and used by multiple systems, with
support for core SMT theories, quantifiers, and pre-processing. It allows different
levels of granularity, so that solvers can provide coarse-grained proofs (which are
easier to produce), or take the effort to produce more detailed, fine-grained proofs
(which are often easier to check). It provides a term language close to SMT-
LIB [8], facilitating printing from solvers as well as validating the connection
between proofs and the corresponding proved problems. An overview of the
Alethe proof format is given in Section 2.

A significant drawback of the Alethe format, however, is that it does not
have an independent proof checker. This makes it harder for solvers to adopt
the format, since to test their proof production they must be directly integrated
with the proof assistants with Alethe reconstructions available. Moreover, these
reconstruction methods do not check whether proof steps comply to the format’s
semantics, but rather are used as hints for internal tactics. Finally, the recon-
struction techniques struggle with scalability due to well-known performance
issues in the proof assistants [12,36].

In this paper we introduce Carcara3 (Section 3), an independent proof
checker for Alethe proofs, implemented in a high-performance programming lan-
guage, Rust.Carcara is open-source and available under the Apache 2.0 license.
Proof checking (Section 3.1) is performed by a collection of modules specific for
each rule being checked. The presence of coarse-grained steps in Alethe requires
special handling in the checker to account for missing information, which are dis-
cussed in detail. Carcara also provides proof elaboration methods (Section 3.2)
for particularly impactful coarse-grained steps, so that they can be automati-
cally translated, offline from the solver, into easier-to-check fine-grained steps.
We evaluate (Section 4) Carcara’s proof checking on a large set of proofs
generated by veriT from SMT-LIB problems, analyzing its performance and ef-
fectiveness. The same set of proofs is used to evaluate the proof elaboration
methods, where we analyze how checking elaborated proofs compares with the

1 The format was previously known as the “veriT format”, but it has recently been
renamed to reflect its independence from any individual solver.

2 cvc5’s support for Alethe is still experimental and is under active development. Car-
cara can actually be instrumental for improving cvc5’s support for Alethe.

3 We follow on the bird theme of the “Alethe” name. Carcará is the Portuguese word
for the crested caracara, a resourceful bird of prey native of South America.
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originals. Our analysis shows that Carcara has performant proof checking and
can identify wrong proofs produced by veriT. It also shows that elaboration can
in some cases generate proofs significantly easier to check than the original ones.

1.1 Related work

Carcara is inspired by the highly-successful DRAT-trim [23] proof checker
for SAT proofs, which has been instrumental to the extensive usage of proofs
in toolchains involving SAT solvers. It has also provided a basis for numerous
advances in SAT proofs, with new proof formats and new checking techniques.
We see its performant proof checking and elaboration techniques as the key
elements to its success, serving both as an independent checker and as a bridge
between solvers and performance-critical checkers, such as proof assistants or
certified checkers. Providing both these features is the main goal of Carcara.

The checker for the Logical Framework with Side Conditions (LFSC) [37], an
extension of Edinburgh’s Logical Framework (LF) [22], written in C++, is also a
stand-alone, non-certified, highly efficient proof checker. The logical framework,
where new rules can be mechanized in a language understood by the checker,
provides great flexibility, and LFSC has been successfully used as a proof format
for CVC4 [28] and cvc5 [5]. Similarly, Dedukti [25] is an OCaml checker for the
λΠ-calculus, another extension of LF, and has been applied to SMT proofs, in-
cluding to Alethe4. However, we are not aware of any mature implementation for
this end. Elaboration techniques have not been the focus in these tools. Another
difference is that they are based on dependently-typed languages far-removed
from SMT-LIB, and generating proofs from SMT solvers for them can be more
challenging, as well as relating the resulting proofs to the original problems.

An independent checker has been proposed for SMT proofs [34] from the
OpenSMT [26] solver. The checker targets problems with uninterpreted func-
tions and linear arithmetic, but does not support quantifiers nor pre-processing.
It leverages DRAT-trim for the propositional reasoning and employs Python
components for checking the other parts of the proof. Different components can
use different proof formats, and to the best of our knowledge no comprehensive
specification of the overall format is available. Some SMT solvers, such as SMT-
Interpol [24] and cvc5 [7], have internal checkers for their proofs. Since these are
not independent from the solvers, they are incomparable to our approach.

2 The Alethe Proof Format

Alethe was originally designed [10] as a proof-assistant friendly, easy-to-produce
proof format for SMT solvers. A clear specification of the rules in a reference
document [2] is provided, facilitating reconstruction within proof assistants by
avoiding ambiguous syntax or semantics. To facilitate proof production, Alethe
uses a term language that directly extends SMT-LIB, thus not requiring solvers

4 “Verine” library available at https://deducteam.github.io/data/libraries/verine.tar.gz
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to translate between different term languages when outputting proofs. More im-
portantly, Alethe’s proof calculus provides rules with varying levels of granular-
ity, allowing coarse-grained steps and relying on powerful proof checkers for filling
in the gaps. This reduces the burden on developers to track all reasoning steps
performed by the solver, a notoriously difficult task [7]. The set of rules in the
format captures SMT solving (as generally performed by CDCL(T )-based SMT
solvers [31]) for problems containing a mix of any of quantifiers, uninterpreted
functions, and linear arithmetic, as well as multiple pre-processing techniques. As
a testament of the format’s success, it has been refined and extended throughout
the years [6], and has been used as the basis for the integration, with the proof
assistants Isabelle/HOL and Coq, of the SMT solvers veriT [6, 36], CVC4 [16]
and cvc5 [5, Sec. 3].

Here we briefly overview the Alethe proof format. For the full description of
its syntax and semantics please see [2]. We assume the reader is familiar with
basic notions of many-sorted equational first-order logic [17]. Alethe proofs have
the form π : φ1 ∧ · · · ∧ φn → ⊥, i.e., they are refutations, where ⊥ is derived
from assumptions φ1, . . . , φn corresponding to the original SMT instance be-
ing refuted. Proofs are a series of steps represented as an indexed list of step

commands. The command assume is analogous to step but used only for intro-
ducing assumptions. The indexed steps induce a directed acyclic graph rooted
on the step concluding ⊥ and with the assumptions φ1, . . . , φn as leaves. Steps
represent inferences and abstractly have the form

c1, . . . , ck ▷ i. ψ1, . . . , ψl (rule p1, . . . , pn) [a1, . . . , am]

where rule names the inference rule used in this step. Every step has an iden-
tifier i and concludes a clause, represented as a list of literals ψ1, . . . , ψl. The
premises are identifiers p1, . . . , pn of previous steps or assumptions, and rule-
dependent arguments are terms a1, . . . , am; steps may occur under a context,
which is defined by bound variables or substitutions c1, . . . , ck. Contexts are in-
troduced by the anchor command, which opens subproofs. Subproofs simulate
the effect of the ⇒-introduction rule of Natural Deduction, where local assump-
tions are put in context and the last step in a subproof represents its conclusion
and the closing of its context. Besides arbitrary formulas, Alethe has support for
contexts which put in scope bound variables and substitutions, which are useful
for representing pre-processing techniques in the presence of binders [6], such as
Skolemization, let elimination and alpha-conversion.

The structure of Alethe proofs is motivated by SMT solvers generally oper-
ating with a cooperation of a SAT solver and multiple engines to perform theory
reasoning, deriving new facts and applying simplifications. The overall proof may
be seen as a ground first-order resolution proof with theory lemmas justified by
closed subproofs. Thus the emphasis on steps concluding clauses as term lists,
which avoids ambiguity as to what clause a disjunction represents. An example
is that whether a resolution step concluding the term A ∨B corresponds to the
clause [A, B] or [A∨B] depends on the premises. The use of identifiers for steps
allows representing proofs as directed acyclic graphs rather than trees. Similarly,
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Fig. 1: A simple SMT-LIB problem and an Alethe proof of its unsatisfiability.

term sharing can be achieved via the SMT-LIB :named attribute or define-fun
commands [8, Sec1 4.1.6], which both allow naming subterms. These measures
are essential for compact representation of proofs, which can be prohibitively
large otherwise. Explicitly providing the conclusion of proof steps aims to both
facilitate proof checking (as it allows steps to be verified locally) and proof pro-
duction, so coarse-grained rules that do not uniquely define their conclusions
from premises and arguments can be effectively checked.

Example 1. Figure 1 shows an SMT-LIB problem and an Alethe proof of its
unsatisfiability. Note that in Alethe’s concrete syntax clauses are represented via
the cl operator (the only exception are conclusions of assume commands, which
are considered unit clauses) and the context is not explicitly put in the steps, but
rather assumed for all steps under (potentially nested) anchors introducing its
elements. For this proof to be valid, three conditions need to be met: each assume

command must correspond to an assert command in the original problem,
every step command must be valid according to the semantics of its rule, and
the proof must end with a step that concludes the empty clause (cl). The
proof satisfies the first condition, as the terms in the assume commands are
precisely the asserted terms in the SMT problem. The third condition holds as
t5, the last step, concludes the empty clause. For the second condition, step t4

is a direct consequence of the equivalence in its premise, t3, so it remains to
check step t3, which is derived from a subproof. The anchor for t3 introduces a
bound variable y and a substitution {x 7→ y}. The steps in the subproof contain
terms with this new variable and operate under this substitution. The rule refl
models reflexivity modulo the cumulative, capture-avoiding substitution in the
(potentially nested) context, and thus t3.t1 holds since x = y{x 7→ y}. Step
t3.t2 is regular congruence with the operator “>” and does not depend on the
context. Finally, step t3 holds because its subproof shows the equivalence of the

(set-logic LIA)

(assert (forall ((x Int)) (> x 0)))

(assert (not (forall ((y Int)) (> y 0))))

(check-sat)

(assume h1 (forall ((x Int)) (> x 0)))

(assume h2 (not (forall ((y Int)) (> y 0))))

(anchor :step t3 :args ((y Int) (:= x y)))

(step t3.t1 (cl (= x y)) :rule refl)

(step t3.t2 (cl (= (> x 0) (> y 0))) :rule cong :premises (t3.t1))

(step t3 (cl (= (forall ((x Int)) (> x 0)) (forall ((y Int)) (> y 0))))

:rule bind)

(step t4 (cl (not (forall ((x Int)) (> x 0))) (forall ((y Int)) (> y 0)))

:rule equiv1 :premises (t3))

(step t5 (cl) :rule resolution :premises (t4 h1 h2))

An Efficient Proof Checker and Elaborator for Alethe Proofs 371



Fig. 2: Overview of the architecture of Carcara.

bodies of the quantifiers under the renaming, introduced in the context, into a
fresh variable relative to the left-hand side quantifier. Since all steps follow the
expected semantics, all conditions are met and the proof is valid.

In the next section we show how Carcara checks the above conditions,
highlighting some challenging rules and showing how some coarse-grained steps
are elaborated into proofs potentially simpler to check.

3 Architecture and core components

Carcara is developed in the Rust programming language, and is publicly avail-
able5 under the Apache 2.0 license. Its architecture is shown in Figure 2. It pro-
vides both a command line interface and bindings for a Rust API. The main
component is the proof checking one, with 6.5k LOC, which is a collection of
procedures for each rule to be checked (Section 3.1). The elaborator has 1k
LOC and has an interface to the cvc5 solver, as well as a collection of elabo-
ration methods and a post-processing module to knit together the elaborated
proof (Section 3.2). The other components together have 6k LOC, including a
handwritten 2k LOC SMT-LIB and Alethe parser, and an Alethe printer.

The inputs of Carcara are an SMT-LIB problem ϕ and an Alethe proof
π : ϕ → ⊥. In proof-checking mode it checks each step in π with the respective
procedure for its rule and prints either valid, when all steps are successfully
checked and the proof concludes the empty clause (cl), holey when π is valid
but contains steps that are not checked (“holes”), and invalid otherwise, to-
gether with an error message indicating the first step where checking failed and
why. In proof-elaboration mode it converts π into π′ : ϕ → ⊥, where some steps
may be replaced by a series of steps elaborating them, and prints π′.

5
https://github.com/ufmg-smite/carcara
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3.1 Checking Alethe proofs

First the original SMT-LIB problem and its Alethe proof are parsed. The prob-
lem provides the declaration of sorts and symbols that may be used in the proof,
as well as the original assertions, which must match the assumptions in the proof.
Symbol definitions in the proof for term sharing are expanded during parsing.
Terms are internally represented as directed acyclic graphs, using hash consing
for maximal sharing and constant-time syntactically-equality tests. The proof is
represented internally as an array of command objects, each corresponding ei-
ther to an Alethe assume or step command, or a subproof, which is represented
as a step with an (arbitrarily) nested array of command objects. Step identifiers
are converted into indices for the arrays, so that access is constant-time.

Each command is checked individually by the rule checker corresponding to
the rule in that command. That component takes as input the conclusion, the
conclusions of its premises, and the arguments of the command, as well as the
context it is in. As the Alethe format currently has 90 possible rules, Carcara
has 90 rule checkers. We highlight below some of the rule checkers as well as
some challenges for checking Alethe proofs and how we addressed them.

Term equality tests. Terms introduced by Alethe rules may have equality sub-
terms implicitly reordered, but the rules are still valid if the conclusion changes
only in this way. This flexibility is motivated by solvers often internally repre-
senting equalities ignoring order, which may lead to equalities being implicitly
reordered when appearing in facts derived by these components. The congruence
closure procedure [29] commonly used in SMT is an example of such a compo-
nent. Since equality symmetry justifies these reorderings, but keeping track of
all the changes can be challenging, the format allows them to be implicit.

As a consequence, syntactic equality cannot be the only test for whether two
terms are the same. For example, the terms (and p (= a b)) and (and p (=

b a)) may be required to be equal. Thus Carcara tests equality in two phases:
first if they are syntactically equal, in which case they can be compared in con-
stant time; otherwise they are simultaneously traversed and equality subterms
in the same position are compared modulo equality reordering, failing as soon as
subterms differ. We refer to this as a polyequal test. As we will see in Section 4.1,
these tests can be a substantial portion of overall checking time in some cases.

Checking initial assumptions. The initial assume commands in an Alethe proof
must correspond to assertions in the original problem, so their checker searches
through the assertions to find a match. In general, this can be done efficiently:
assertions are stored in a hash set during parsing, and these assume commands
are valid if their conclusions occur in the set. However, assume commands are
also impacted by implicit equality reordering, thus requiring polyequal tests.
When an assumption does not occur in the assertions hash set, the checker
attempts to match it to each assertion in turn, performing a polyequal test.
As a consequence, when the original problem is large and the assertions similar
and deep, checking assume steps may dominate overall checking time, as our
experiments show (Section 4.1).

An Efficient Proof Checker and Elaborator for Alethe Proofs 373



Checking contextual steps. Steps within subproofs may depend on their context
to be valid, so before checking these steps, a context object is built based on the
anchor opening the subproof. As shown in Section 2, context elements on which
rules may depend are bound variables and substitutions. The former make new
symbols available to build terms, while the latter allows steps to be valid modulo
applying these substitutions.

Substitutions in Alethe are capture-avoiding, renaming bound variables dur-
ing application, which facilitates producing proofs with binders [6]. However, it
has the side effect of also preventing constant-time equality tests, since we must
rather check α-equivalence, i.e., a term with bound variables may be required to
be equal6 to the result of applying a substitution that may have renamed some
of these variables. To avoid spurious renaming when applying substitutions, the
checker only renames bound variables which occur as free variables in the substi-
tution range. Since computing free variables is itself costly, it is done lazily, only
when the substitution is to be applied under a binder, and the result is cached.

Note that, as subproofs can be nested, the substitution in context for a step
is the composition of a stack of substitutions σ1, . . . , σn. To avoid sequential
application of substitutions, Alethe requires the substitution σ in context to be
a cumulative substitution in which every term t in the range of the substitution
σi+1 is replaced by tσi. Thus σ can be applied simultaneously and correspond to
a sequential application of σ1, . . . , σn. As a result of these requirements, handling
and applying substitutions can be expensive in Alethe, as shown in Section 4.1.

Finally, the rules enclosing subproofs must be checked to whether their con-
clusions are valid from the introduced context and resulting subproof. For exam-
ple, the bind rule in Example 1 requires that the bound variable in the quantifier
at the right-hand side of the equality matches the range of the substitution put
in context for its subproof. The subproof rule, which introduces local assump-
tions a1, . . . , an, and concludes a formula ¬a′1 ∨ · · · ¬a′n ∨ φ, requires that the
enclosed subproof derives φ and that each ai match a′i.

We now highlight coarse-grained rules whose checking is more intricate and
expensive.

Resolution. The rule resolution in Alethe captures hyper-resolution on ground
first-order clauses, i.e.,

C1 · · · Cn

C
resolution, p1, p2, . . . , pn−1

where C1, . . . , Cn are premises; pi the pivot for the binary resolution between Ci

and Ci+1, occurring as is in Ci and as ¬pi in Ci+1; and C the conclusion. While
it is simple to check such steps, Alethe allows resolution steps to not provide
the pivots, for the sake of facilitating proof-production in solvers. Checking such
steps requires searching for the pivots and in which binary resolution they are to

6 Since Alethe has bound-variable renaming rules, the checker requires names to be
handled properly, rather than normalizing all binders internally via De Brujin indices.
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be used, but Carcara applies an incomplete heuristic where pivots are inferred
between the difference of literals in the premises and in the conclusion (i.e.,
literals not in the conclusion must have been pivots eventually eliminated). If
that fails, we apply a reverse unit propagation (RUP) test [21], i.e., the step is
valid if we can derive a conflict via Boolean Constraint Propagation from the
premises and the negated conclusion. Note that Carcara also allows the pivots
to be provided as arguments, in which case checking is simple, as expected.

AC simplification. Normalization modulo associativity and commutativity for
conjunction and disjunction can be represented in Alethe via the ac simp rule,
which establishes the equality between a term t and a term t′ that is t but
with nested occurrences of these connectives flattened and duplicate arguments
removed, until a fix-point. While this simplification is performance-critical [6,
Sec. 4.6], checking the corresponding rule requires traversing t and performing
the normalization, which is proportional to t’s depth.

Arithmetic reasoning. Apart from simplification rules, arithmetic reasoning in
Alethe is mainly captured by two rules: la generic and lia generic. Both
rules conclude a clause of negated linear inequalities, which is valid due to the
Farkas’ lemma [18] guaranteeing that there exists a linear combination of these
inequalities equivalent to ⊥. The la generic rule takes as arguments the coeffi-
cients of this linear combination, with which the rule can be checked by applying
simple (but costly) operations on the coefficients to reduce the linear combina-
tion to ⊥ (see [2, Sec 5.4, Rule 9] for the algorithm). The checker uses GMP [1]
for efficiently performing the required computations with the coefficients.

While la generic can be checked effectively, lia generic cannot. It pro-
vides only the negated inequalities, which would require searching for the coef-
ficients to perform the checking, essentially requiring the arithmetic solving to
be repeated in the checker. As a consequence this rule is considered a hole and
Carcara ignores it during proof checking, issuing a warning.

3.2 Elaborating Alethe proofs

In order to mitigate bottlenecks in checking some Alethe steps, Carcara can
also elaborate Alethe proofs into easier-to-check ones by filling in missing details
from the original proofs. This is done by replacing coarse-grained steps with fine-
grained proofs of their conclusions, producing a new overall proof equivalent to
the original, but with some coarse-grained steps broken down into fine-grained
ones. Formally, a proof as the one below on the left, with a coarse step concluding
ψ from premises ψ1, . . . , ψn, is elaborated into the proof on the right where the
coarse step is replaced by a proof π, with fine-grained steps, rooted on ψ and
with ψ1, . . . , ψn as leaves:

ψ1 · · · ψn

ψ
coarseStep

· · ·
Θ

rule
⇒elab

ψ1 · · · ψn

π

ψ · · ·
Θ

rule
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Fig. 3: Elaboration of an eq transitive step. Note the new eq transitive step
is easy to check, and the new t2 step has the same conclusion as the original.

Note the expansion only affects the proof locally, since any step using the conclu-
sion of the coarse step as a premise may use the conclusion of π interchangeably.

There are many Alethe rules whose checking would be simpler if elaborated,
but we have focused initially on what we believe can be more impactful: removing
implicit equality reordering, and thus polyequal tests, which affects virtually
every Alethe rule; and providing checkable justifications for lia generic steps,
to remove holes from proofs. Before detailing these methods, we illustrate the
elaboration process with an example.

Elaborating transitivity steps. The eq transitive rule concludes a valid clause
composed of negated equalities followed by a single positive equality, such that
the negated equalities form a transitive chain resulting in the final equality.
However, the specification does not impose an order on the negated equalities
(which can, remember, also be implicitly reordered). So the following step must
also be valid, with a “shuffled” chain:

This permissive specification again facilitates proof production (particularly
from congruence closure procedures), but requires the eq transitive checker,
for every link in the chain, to potentially traverse the whole clause searching for
the next one, performing polyequal tests throughout. The goal of elaborating
eq transitive steps is that steps like t2 are justified in a fine-grained manner.
If we changed the conclusion of the step, this would impact the rest of the proof,
if t2 is used anywhere as a premise. We instead introduce a fine-grained proof
for t2’s conclusion, as shown in Figure 3: an easy-to-check eq transitive step
(t2.t1), eq symmetric steps to flip the equalities (t2.t2, t2.t3), resolution
(t2.t4) and reordering (t2.t5) steps to derive the original conclusion.

Elaborating implicit equality reordering. Similarly to above, steps concluding a
term t, with some subterm equality implicitly reordered, have their conclusion
replaced by t′ where that subterm is not reordered and a fine-grained proof of
the conversion of t′ into t is added. Figure 4 illustrates this process for an assume

(step t2.t1 (cl (not (= a b)) (not (= b c)) (not (= c d)) (= a d))

:rule eq_transitive)

(step t2.t2 (cl (not (= b a)) (= a b)) :rule eq_symmetric)

(step t2.t3 (cl (not (= c b)) (= b c)) :rule eq_symmetric)

(step t2.t4 (cl (not (= c d)) (= a d) (not (= b a)) (not (= c b)))

:rule resolution :premises (t2.t1 t2.t2 t2.t3))

(step t2 (cl (not (= b a)) (not (= c d)) (not (= c b)) (= a d))

:rule reordering :premises (t2.t4))

(step t2 (cl (not (= b a)) (not (= c d)) (not (= c b)) (= a d))

:rule eq_transitive)
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command, where note that step h2.t1 is the rewriting justifying the equality
reordering of the subterm and the following steps rebuild the original conclusion.

In the original proof, the assume command h2 introduces the term (or p (=

a b)), which is the original assertion (or p (= b a)) with the equality (= b

a) implicitly reordered. In the elaborated proof (Figure 4c), the conclusion of
h2 is replaced by one without implicit equality reordering, but step t3 expects
the original conclusion. The steps h2.t1 to h2.t4 convert the new h2 conclusion
into the original one, relying on standard equality reasoning and on resolution to
connect the introduced steps. Notice that the t3 step, which originally refered
to h2 as a premise, now refers to h2.t4.

When applied to every concluding terms with implicit equality reordering,
the result of this elaboration method is a proof where equality tests are only
syntactic, erasing the overhead of checking assumptions and polyequal tests.

Elaborating lia generic steps. As discussed in Section 3.1, Carcara considers
lia generic steps holes in the proof, as their checking is as hard as solving. Since
our goal is to keep Carcara as simple as possible, we rely on an external tool to
elaborate the step by solving a problem corresponding to it in a proof-producing
manner, then import the proof, checking it and guaranteeing that it is sound to
replace the original step. Any tool producing detailed Alethe proofs for linear-
integer arithmetic reasoning can be used to this end, but currently only cvc5
can do so [7]. We note that cvc5 currently has the limitation that its Alethe

(set-logic QF_UF)

(declare-const a Bool)

(declare-const b Bool)

(declare-const p Bool)

(assert (not (or p (= a b))))

(assert (or p (= b a)))

(check-sat)

Fig. 4a: An example SMT problem in-
stance.

(assume h1 (not (or p (= a b))))

(assume h2 (or p (= a b)))

(step t3 (cl) :rule resolution

:premises (h1 h2))

Fig. 4b: An Alethe proof for the SMT
problem in Figure 4a. Notice that this
proof makes use of implicit reordering
of equalities in h2.

(assume h1 (not (or p (= a b))))

(assume h2 (or p (= b a)))

(step h2.t1 (cl (= (= b a) (= a b))) :rule equiv_simplify)

(step h2.t2 (cl (= (or p (= b a)) (or p (= a b))))

:rule cong :premises (h2.t1))

(step h2.t3 (cl (not (or p (= b a))) (or p (= a b)))

:rule equiv1 :premises (h2.t2))

(step h2.t4 (cl (or p (= a b))) :rule resolution :premises (h2 h2.t3))

(step t3 (cl) :rule resolution :premises (h1 h2.t4))

Fig. 4c: The elaborated proof without implicit equality reordering.

Fig. 4: An example of the elaboration to remove implicit equality reordering.
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proofs may contain rewrite steps not yet modeled in the Alethe simplification
rules [2, Sec 5.11], and are thus not supported by Carcara. They are considered
holes, but since these are generally simple simplification rules, are much less
harmful than lia generic ones.

In detail, the elaboration method, when encountering a lia generic step
S concluding the negated inequalities ¬l1 ∨ · · · ∨ ¬ln, generates an SMT-LIB
problem asserting l1 ∧ · · · ∧ ln and invokes cvc5 on it, expecting an Alethe proof
π : (l1 ∧ · · · ∧ ln) → ⊥. Carcara will check each step in π and, if they are not
invalid, will replace step S in the original proof by a proof of the form:

where steps S.h 1 until S.t m are imported from the cvc5 proof. As a result the
lia generic step S in the original proof will have been replaced by a detailed
justification whose correctness can be independently established by Carcara.

4 Evaluation

We evaluate Carcara for proof-checking performance and the impact of elabo-
ration methods. We use the veriT solver [13], version 2021.06-40-rmx, to generate
Alethe proofs from all problems in the SMT-LIB benchmark library7 whose logic
it supports, with a 120 seconds timeout. We did not consider cvc5 as its support
for Alethe is not yet as mature or complete. The veriT solver produced 39,229
proofs. They total 92gb, but vary greatly in size. The biggest proof has 4.5gb,
fourteen have at least 1gb and over a hundred have more than 100mb, while
almost 90% are under 1mb. All the experiments were run on a server equipped
with AWS Graviton2 2.5 GHz ARM CPUs, with 4 GB of memory for each job.

4.1 Proof checking

We ran Carcara on each proof until checking succeeded or failed. Only 378 had
checking failures, which were due to incorrect8 steps for quantifier simplifications
(Skolemization and elimination of one-point quantifiers) and AC normalization.
The issues have been communicated to the solver developers. For the success-
ful proofs, a summary is given in Table 1, for each SMT-LIB logic, with the
cumulative solving time by veriT and checking time by Carcara.

7 https://smtlib.cs.uiowa.edu/benchmarks.shtml
8 In a superficial analysis the steps seemed sound, but the proofs were incorrect.

(anchor :step S.t_m+1)

(assume S.h_1 l1)

...

(assume S.h_n ln)

...

(step S.t_m (cl false) :rule ...)

(step S.t_m+1 (cl (not l1) ... (not ln) false) :rule subproof)

(step S.t_m+2 (cl (not false)) :rule false)

(step S (cl (not l1) ... (not ln))

:rule resolution :premises (S.t_m+1 S.t_m+2))
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Logic Problems Solving time (s) Checking time (s) Ratio

AUFLIA 2135 1094.67 12.51 87.53
AUFLIRA 19200 248.95 144.03 1.73
UF 2885 2858.14 30.95 92.35
UFIDL 55 0.54 0.66 0.82
UFLIA 7221 3547.78 136.21 26.05
UFLRA 10 0.02 0.01 3.05

QF ALIA 16 0.79 1.39 0.57
QF AUFLIA 256 0.34 0.11 3.04
QF IDL 609 3316.08 2240.10 1.48
QF LIA 1018 5975.36 742.73 8.05
QF LRA 537 3629.39 258.60 14.03
QF RDL 81 620.46 123.14 5.04
QF UF 4180 3857.34 1881.55 2.05
QF UFIDL 66 396.74 87.58 4.53
QF UFLIA 167 1194.51 4.70 254.41
QF UFLRA 415 141.82 65.14 2.18

Total: 38851 26882.93 5729.39 4.69

Table 1: Total solving and proof-checking time per logic for veriT and Carcara.

As expected, the comparison is heavily logic-dependent. In quantified log-
ics (top of the table), checking is generally significantly cheaper than solving.
An outlier is AUFLIRA, which is explained by the problems to which veriT
could produce proofs being all both simple to solve and check. In logics such as
QF UF and QF IDL, which can have very large proofs, overall checking time is
comparable to solving time, if still noticeably smaller in total.

When comparing per-problem, for the large majority of proofs (81.61%) the
checking time was smaller than the solving time. Furthermore, for 3.96% of the
proofs, checking was more than 10 times faster than solving the problem, and
for 0.96%, that ratio was of 100 times. There were only 24 instances where the
checking time was more than 10 times bigger than the solving time, and, in all
of them, the checking time was less than 0.6 seconds.

We also evaluate the per-rule frequency, as shown in Figure 5b, and checking
time, with Figure 6a showing the cumulative checking times and Figure 5a a
box plot considering individual rule checks. The lower whisker represents the
5th percentile, the lower bound of the box represents the first quartile, the line
inside the box represents the median, the upper bound of the box represents the
third quartile, and the upper whisker represents the 95th percentile9. Rules that
are rare and have negligible checking time are omitted. The data is gathered
from proof checking in all proofs, even those that failed.

The assume commands account for a large proportion of the total time.
This is justified by their checking, due to implicit equality reordering, being
potentially proportional to both the quantity and the depth of assertions in the
original problems. The box plot shows that the worse cases lead to the most
expensive rule checks among all rules.

9 The plots follow the same criteria of the evaluation in [36].
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Fig. 5a: Box plot for checking time per rule.

Rule %

cong 31%
resolution 27%
refl 17%
comp simplify 5%
eq transitive 4%
la rw eq 2%
ac simp 1%
and pos 1%
and 1%
bind 1%
trans < 1%
or < 1%
equiv pos2 < 1%
eq congruent < 1%
la generic < 1%
. . . < 1%

Fig. 5b: Perc. of
total steps per
rule (only most
frequent shown).

Rules with highest overall time are resolution, ac simp and la generic.
For resolution this is explained mainly by its high frequency (this is similarly
the case for cong), as well as by some more expensive checks (veriT does not
provide pivots), as shown in the box plot. As for ac simp and la generic, while
they are much less frequent, their checking is expensive (Section 3.1).

Other expensive rules to note are those related to contexts involving sub-
stitutions10, specially let, for let elimination, and refl. It is common for let
subproofs to be deeply nested, leading to large cumulative substitutions needing
to be computed. As for refl, besides being one of the most frequent rules, about
a third of its total time is spent on polyequal tests, and most of the rest is related
to handling and applying substitutions, as well as checking alpha-equivalence.

4.2 Proof elaboration

We ran Carcara, on each successfully checked proof, in proof-elaboration mode
with the elaboration of transitivity steps and, more importantly, the removal of
implicit equality reordering. On average, excluding parsing, elaboration takes
40% of the time required for checking. We focus on the impact on proof checking
of the result of elaboration.

In Figure 7 we have the comparison, per proof, of the proof-checking time on
the original proof and on the elaborated one (excluding parsing time). There is
not a clear winner, but note that for harder proofs (those originally requiring at
least 1s), checking the elaborated proof is often significantly faster. A per-rule
analysis is shown in Figure 6b, with the proportion of the checking time spent

10 The ones shown in the plots are let, bind, sko forall, and onepoint.
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Fig. 6a: Total checking time per rule. Fig. 6b: Times after elaboration.

in each rule, for the elaborated proofs. Comparing to Figure 6a, the checking
time for assume steps becomes negligible in the elaborated proofs, as checking
them now amounts to checking occurrence in a hash set. The overall time for
refl also decreases, but only by 10%. This can be explained by the refl steps
added during elaboration. While checking each refl is now potentially cheaper,
this is offset by their increased number. Note that these additions also impact
other rules, specially cong, whose cumulative time increased by 13%. Overall,
proof elaboration resulted in a net improvement in checking time of 6%. Parsing
time, however, increased, which made the overall runtime for proof-checking the
original proofs virtually the same as for the elaborated proofs.

Fig. 7: Before vs after elaboration.

The results indicate that elaborat-
ing implicit equality reordering is not
always worth it, specially for high-
performant tools. However, it success-
fully yields proofs not requiring polye-
qual tests, which may help performance
in other scenarios. For example, the
reconstruction of Alethe proofs in Is-
abelle/HOL requires equality tests to be
done by applying a normalizer to both
terms and then testing them for syntactic
equality. This leads to performance issues
for reconstructing some rules [36], which
this elaboration method would avoid.

Elaborating lia generic steps. In our
benchmark set, 276 proofs contain a total of 127k lia generic steps. As a
proof of concept we instrumented Carcara to apply the elaboration method
described in Section 3.2 via a connection with cvc511. Due to the still experimen-
tal Alethe proof production in cvc5, we only considered SMT problems derived

11 cvc5-1.0.2, modified for better Alethe support, provided by the cvc5 team.
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from lia generic steps in proofs for the QF UFLIA and QF LIA logics. This
excluded only 15 proofs, each containing exactly one lia generic step. We ran
Carcara on proof-elaboration mode with a 30 minute timeout for each proof.
For each lia generic step, cvc5 was invoked with a 30s timeout and the result-
ing Alethe proof, if any, replaced the original lia generic step, as described in
Section 3.2.

Of the 261 proofs, Carcara timed out on only 13 of them. Of the remaining
248 proofs, 82 still contained lia generic steps after elaboration, either because
cvc5 timed out when solving the generated problem, or because the cvc5 proofs
contained lia generic steps of their own. Note however that they are still im-
provements over the original lia generic steps, since generally less inequalities
are involved and the steps are potentially simpler to solve, were the process to
be repeated. Similarly, although all elaborated proofs contained holes from cvc5
rewriting steps, these are much simpler than the original lia generic ones.

As with the elaboration of implicit equality reordering, this elaboration method
would be particularly impactful in scenarios such as Alethe reconstruction in Is-
abelle/HOL. Steps such as lia generic are reconstructed via limited internal
automation for arithmetic reasoning, which is known to fail [36, Sec. 4.3].

5 Conclusion and future work

Our evaluation shows that Carcara has good performance and can identify
shortcomings in the proof-production of established SMT solvers. Carcara can
also elaborate proofs into demonstrably easier-to-check ones, which can have a
significant impact, for example, if it is used as a bridge between solvers and proof
assistants. Extending Carcara to convert Alethe proofs into other formats
would also allow the elaboration techniques to benefit other toolchains.

As future work, we will add support for parallel proof checking, since steps
in the same context can be checked completely independently. We will also add
new elaboration methods for resolution and ac simp, which occasionally are
bottlenecks, and will provide elaboration for rewrite rules, which can change
significantly between different solvers, complicating proof-production if solvers
have to phrase their rewrites with a fixed set of rules. An automatic conversion
into a defined set of rewrite rules, as described in [32], would address this issue.

Finally, we expect Carcara to facilitate improving how we use Alethe
proofs. For example, our large-scale evaluation shows the significant time spent
on contextual substitutions, which is mainly due to the Alethe requirement of
only applying substitutions simultaneously. Extending the proof format to allow
other substitution application strategies may be beneficial for different scenar-
ios, as proof production in some solvers has indicated [7, Sec 5.1]. In general,
extensions to the format (for example, to other logical theories) can be done in
a more informed way with the help of an independent checker.
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Abstract. A packing k-coloring is a natural variation on the standard
notion of graph k-coloring, where vertices are assigned numbers from
{1, . . . , k}, and any two vertices assigned a common color c ∈ {1, . . . , k}
need to be at a distance greater than c (as opposed to 1, in standard
graph colorings). Despite a sequence of incremental work, determining
the packing chromatic number of the infinite square grid has remained
an open problem since its introduction in 2002. We culminate the search
by proving this number to be 15. We achieve this result by improving
the best-known method for this problem by roughly two orders of mag-
nitude. The most important technique to boost performance is a novel,
surprisingly effective propositional encoding for packing colorings. Addi-
tionally, we developed an alternative symmetry breaking method. Since
both new techniques are more complex than existing techniques for this
problem, a verified approach is required to trust them. We include both
techniques in a proof of unsatisfiability, reducing the trusted core to the
correctness of the direct encoding.

Keywords: Packing coloring · SAT · Verification.

1 Introduction

Automated reasoning techniques have been successfully applied to a variety of
coloring problems ranging from the classical computer-assisted proof of the Four
Color Theorem [1], to progress on the Hadwiger-Nelson problem [21], or im-
proving the bounds on Ramsey-like numbers [19]. This article contributes a new
success story to the area: we show the packing chromatic number of the infi-
nite square grid to be 15, thus solving via automated reasoning techniques a
combinatorial problem that had remained elusive for over 20 years.

The notion of packing coloring was introduced in the seminal work of God-
dard et al. [10], and since then more than 70 articles have studied it [3], estab-
lishing it as an active area of research. Let us consider the following definition.

Definition 1. A packing k-coloring of a simple undirected graph G = (V,E) is a
function f from V to {1, . . . , k} such that for any two distinct vertices u, v ∈ V ,
and any color c ∈ {1, . . . , k}, it holds that f(u) = f(v) = c implies d(u, v) > c.
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Note that by changing the last condition to d(u, v) > 1 we recover the stan-
dard notion of coloring, thus making packing colorings a natural variation of
them. Intuitively, in a packing coloring, larger colors forbid being reused in a
larger region of the graph around them. Indeed, packing colorings were origi-
nally presented under the name of broadcast coloring, motivated by the problem
of assigning broadcast frequencies to radio stations in a non-conflicting way [10],
where two radio stations that are assigned the same frequency need to be at
distance greater than some function of the power of their broadcast signals.
Therefore, a large color represents a powerful broadcast signal at a given fre-
quency, that cannot be reused anywhere else within a large radius around it,
to avoid interference. Minimizing the number of colors assigned can thus be in-
terpreted as minimizing the pollution of the radio spectrum. The literature has
preferred the name packing coloring ever since [3].

Analogously to the case of standard colorings, we can naturally define the
notion of packing chromatic number, and study its computation.

Definition 2. Given a graph G = (V,E), define its packing chromatic number
χρ(G) as the minimum value k such that G admits a packing k-coloring.

Example 1. Consider the infinite graph with vertex set Z and with edges between
consecutive integers, which we denote as Z1. A packing 3-coloring is illustrated
in Figure 1. On the other hand, by examination one can observe that it is im-
possible to obtain a packing 2-coloring for Z1.

1 3 1 2 1 3 1 2· · · · · ·

Fig. 1: Illustration of a packing 3-coloring for Z1.

While Example 1 shows that χρ(Z1) = 3, the question of computing χρ(Z2),
where Z2 is the graph with vertex set Z × Z and edges between orthogonally
adjacent points (i.e., points whose �1 distance equals 1), has been open since the
introduction of packing colorings by Goddard et al. [10]. On the other hand, it
is known that χρ(Z3) = ∞ (again considering edges between points whose �1
distance equals 1) [9]. The problem of computing 3 ≤ χρ(Z2) ≤ ∞ has received
significant attention, and it is described as “the most attractive [of the packing
coloring problems over infinite graphs]” by Brešar et al. [3]. We can now state
our main theorem, providing a final answer to this problem.

Theorem 1. χρ(Z2) = 15.

An upper bound of 15 had already been proved by Martin et al. [18], who
found a packing 15-coloring of a 72 × 72 grid that can be used for periodically
tiling the entirety of Z2. Therefore, the main contribution of our work consists
of proving that 14 colors are not enough for Z2. Table 1 presents a summary of
the historical progress on computing χρ(Z2). It is worth noting that amongst the
computer-generated proofs (i.e., all since Soukal and Holub [22] in 2010), ours is
the first one to be formally verified, see Section 4.
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Table 1: Historical summary of the bounds known for χρ(Z2).

Year Citation Approach Lower bound Upper bound

2002 Goddard et al. [10] Manual 9 23
2002 Schwenk [20] Unkown 9 22
2009 Fiala et al. [8] Manual + Computer 10 23
2010 Soukal and Holub [22] Simulated Annealing 10 17
2010 Ekstein et al. [7] Brute Force Program 12 17
2015 Martin et al. [17] SAT solver 13 16
2017 Martin et al. [18] SAT solver 13 15
2022 Subercaseaux and Heule [23] SAT solver 14 15
2022 This article SAT solver 15 15

For any k ≥ 4, the problem of determining whether a graph G admits a
packing 4-coloring is known to be NP-hard [10], and thus we do not expect a
polynomial time algorithm for computing χρ(·). This naturally motivates the use
of satisfiability (SAT) solvers for studying the packing chromatic number of finite
subgraphs of Z2. The rest of this article is thus devoted to proving Theorem 1
by using automated reasoning techniques, in a way that produces a proof that
can be checked independently and that has been checked by verified software.

2 Background

We start by recapitulating the components used to obtain a lower bound of
14 in our previous work [23]. Naturally, in order to prove a lower bound for
Z2 one needs to prove a lower bound for a finite subgraph of it. As in earlier
work, we consider disks (i.e., 2-dimensional balls in the �1-metric) as the finite
subgraphs to study [23]. Concretely, let Dr(v) be the subgraph induced by
{u ∈ V (Z2) | d(u, v) ≤ r}. To simplify notation, we use Dr as a shorthand
for Dr((0, 0)), and we let Dr,k be the instance consisting of deciding whether
Dr admits a packing k-coloring. Moreover, let Dr,k,c be the instance Dr,k but
enforcing that the central vertex (0, 0) receives color c (Fig. 2).

For example, a simple lemma of Subercaseaux and Heule [23, Proposition 5]
proves that the unsatisfiability ofD3,6,3 is enough to deduce that χρ(Z2) ≥ 7. We
will prove a slight variation of it (Lemma 2) later on in order to prove Theorem 1,
but for now let us summarize how they proved that D12,13,12 is unsatisfiable.

Encodings. The direct encoding for Dr,k,c consists simply of variables xv,t

stating that vertex v gets color t, as well as the following clauses:

1. (at-least-one-color clauses, aloc)
∨k

t=1 xv,t, ∀v ∈ V,
2. (at-most-one-distance clauses, amod)

xu,t ∨ xv,t, ∀t ∈ {1, . . . , k}, ∀u, v ∈ V s.t. 0 < d(u, v) ≤ t,



392 B. Subercaseaux and M. J. H. Heule

3

1

2

1

1

2

1

1

7

1

5

1

1

6

1

4

1

1

2

1

1

2

1

11 6

1

2

1

1

2

1

1

5

1

3

1

1

3

1

4

1

1

2

1

1

2

1

11 3

1

2

1

1

2

1

1

1

5

1

1

6

1

4

1

1

2

1

1

2

1

11

Fig. 2: Illustration of satisfying assignments for D3,7,3 and D3,6,6. On the other
hand, D3,6,3 is not satisfiable.

3. (center clause) x(0,0),c.

This amounts to O(r2k3) clauses [23]. The recursive encoding is significantly
more involved, but it leads to only O(r2k log k) clauses asymptotically. Unfor-
tunately, the constant involved in the asymptotic expression is large, and this
encoding did not give them practical speed-ups [23].

Cube And Conquer. Introduced by Heule et al. [13], the Cube And Con-
querapproach aims to split a SAT instance ϕ into multiple SAT instances ϕ1, . . . ,
ϕm in such a way that ϕ is satisfiable if, and only if, at least one of the instances
ϕi is satisfiable; thus allowing to work on the different instances ϕi in parallel.
If ψ = (c1 ∨ c2 ∨ · · · ∨ cm) is a tautological DNF, then we have

SAT(ϕ) ⇐⇒ SAT(ϕ ∧ ψ) ⇐⇒ SAT

(
m∨
i=1

(ϕ ∧ ci)

)
⇐⇒ SAT

(
m∨
i=1

ϕi

)
,

where the different ϕi := (ϕ ∧ ci) are the instances resulting from the split.
Intuitively, each cube ci represents a case, i.e., an assumption about a sat-

isfying assignment to ϕ, and soundness comes from ψ being a tautology, which
means that the split into cases is exhaustive. If the split is well designed, then
each ϕi is a particular case that is substantially easier to solve than ϕ, and thus
solving them all in parallel can give significant speed-ups, especially consider-
ing the sequential nature of CDCL, at the core of most solvers. Our previous
work [23] proposed a concrete algorithm to generate a split, which already results
in an almost linear speed-up, meaning that by using 128 cores, the performance
gain is roughly a ×60 factor.

Symmetry Breaking. The idea of symmetry breaking [6] consists of exploiting
the symmetries that are present in SAT instances to speed-up computation. In
particular,Dr,k,c instances have 3 axes of symmetry (i.e., vertical, horizontal, and
diagonal) which allowed for close to an 8-fold improvement in performance for
proving D12,13,12 to be unsatisfiable. The particular use of symmetry breaking in
our previous approach [23] was happening at the Cube And Conquer level, where
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out of the sub-instances ϕi, . . . , ϕm produced by the split, only a 1/8-fraction of
them had to be solved, as the rest were equivalent under isomorphism.

Verification. Arguably the biggest drawback of our previous approach proving
a lower bound of 14 is that it lacked the capability of generating a computer-
checkable proof. To claim a full solution to the 20-year-old problem of computing
χρ(Z2) that is accepted by the mathematics community, we deem paramount a
fully verifiable proof that can be scrutinized independently.

The most commonly-used proofs for SAT problems are expressed in the
DRAT clausal proof system [11]. A DRAT proof of unsatisfiability is a list of
clause addition and clause deletion steps. Formally, a clausal proof is a list of
pairs 〈s1, C1〉, . . . , 〈sm, Cm〉, where for each i ∈ 1, . . . ,m, si ∈ {a, d} and Ci is
a clause. If si = a, the pair is called an addition, and if si = d, it is called
a deletion. For a given input formula ϕ0, a clausal proof gives rise to a set of
accumulated formulas ϕi (i ∈ {1, . . . ,m}) as follows:

ϕi =

{
ϕi−1 ∪ {Ci} if si = a

ϕi−1 \ {Ci} if si = d

Each clause addition must preserve satisfiability, which is usually guaranteed
by requiring the added clauses to fulfill some efficiently decidable syntactic cri-
terion. The main purpose of deletions is to speed up proof checking by keeping
the accumulated formula small. A valid proof of unsatisfiability must end with
the addition of the empty clause.

3 Optimizations

Even with the best choice of parameters for our previous approach, solving the
instance D12,13,12 takes almost two days of computation with a 128-core ma-
chine [23]. In order to prove Theorem 1, we will require to solve an instance
roughly 100 times harder, and thus several optimizations will be needed. In fact,
we improve on all aspects discussed in Section 2; we present five different forms
of optimization that are key to the success of our approach, which we summarize
next.

1. We present a new encoding, which we call the plus encoding that has concep-
tual similarities with the recursive encoding of Subercaseaux and Heule [23],
while achieving a significant gain in practical efficiency.

2. We present a new split algorithm that works substantially better than the
previous split algorithm when coupled with the plus encoding.

3. We improve on symmetry breaking by using multiple layers of symmetry-
breaking clauses in a way that exploits the design of the split algorithm to
increase performance.

4. We study the choice of color to fix at the center, showing that one can gain
significantly in performance by making instance-based choices; for example,
D12,13,6 can be solved more than three times as fast as D12,13,12 (the instance
used by Subercaseaux and Heule [23]).
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5. We introduce a new and extremely simple kind of clauses called alod clauses,
which improve performance when added to the other clauses of any encoding
we have tested.

The following subsections present each of these components in detail.

3.1 “Plus”: a New Encoding

Despite the asymptotic improvement of the recursive encoding of Subercaseaux
and Heule [23], its contribution is mostly of “theoretical interest” as it does
not improve solution times. Nonetheless, that encoding suggests the possibil-
ity of finding one that is both more succinct than the direct encoding and that
speed-ups computation. Our path towards such an encoding starts with Bounded
Variable Addition (BVA) [16], a technique to automatically re-encode CNF for-
mulas by adding new variables, with the goal of minimizing their resulting size
(measured as the sum of the number of variables and the number of clauses).
BVA can significantly reduce the size of Dr,k,c instances, even further than the
recursive encoding. Moreover, BVA actually speeds-up computation when solv-
ing the resulting instances with a CDCL solver, see Table 2. Figure 3 compares
the number of amod clauses between the direct encoding and the BVA encod-
ing; for example in the direct encoding, for D14 color 10 would require roughly
30000 clauses, whereas it requires roughly 3500 in the BVA encoding. It can be
observed as well in Figure 3 that the direct encoding grows in a very structured
and predictable way, where color c in Dr requires roughly r2c2 clauses. On the
other hand, arguably because of its locally greedy nature, the results for BVA
are far more erratic, and roughly follow a 4r2 lg c curve.

The encoding resulting from BVA does not perform particularly well when
coupled with the split algorithm of Subercaseaux and Heule. Indeed, Table 2
shows that while BVA heavily improves runtime under sequential CDCL, it
does not provide a meaningful advantage when using Cube And Conquer. Fur-
thermore, encodings resulting from BVA are hardly interpretable, as BVA uses
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Fig. 3: Comparison of the size of the at-most-one-color clauses between the direct
encoding and the BVA-encoding, for D4 up to D14 and colors {4, . . . , 10}.
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Table 2: Comparison between the different encodings. Cube And Conquer ex-
periments were performed with the approach of Subercaseaux and Heule [23]
(parameters F = 5, d = 2) on a 128-core machine. Hardware details in Section 5.

direct encoding bva encoding plus encoding
D5,10,5 D6,11,6 D5,10,5 D6,11,6 D5,10,5 D6,11,6

Number of variables 610 935 973 1559 673 1039
Number of clauses 10688 21086 2313 3928 4063 7548

CDCL runtime (s) 255.12 10774.79 39.88 2539.38 15.90 811.66
Cube-and-conquer wall-clock (s) 0.77 26.20 0.78 17.97 0.50 6.68

a locally greedy strategy for introducing new variables. As a result, the design
of a split algorithm that could work well with BVA is a very complicated task.
Therefore, our approach consisted of reverse engineering what BVA was doing
over some example instances, and using that insight to design a new encoding
that produces instances of size comparable to those generated by BVA while
being easily interpretable and thus compatible with natural split algorithms.

By manually inspecting BVA encodings one can deduce that a fundamental
part of their structure is what we call regional variables/clauses. A regional
variable rS,c is associated with a set of vertices S and a color c, meaning that at
least one vertex in S receives color c. Let us illustrate their use with an example.

Example 2. Consider the instance D6,11, and let us focus on the at-most-one-
distance (amod) clauses for color 4. Figure 4a depicts two regional clauses: one
in orange (vertices labeled with α), and one in blue (vertices labeled with β),
each consisting of 5 vertices organized in a plus (+) shape. We thus introduce
variables rorange,4 and rblue,4, defined by the following clauses:

1. rorange,4 ∨
∨

v has label α xv,4,
2. rblue,4 ∨

∨
v has label β xv,4,

3. rorange,4 ∨ xv,4, for each v with label α,
4. rblue,4 ∨ xv,4, for each v with label β.

The benefit of introducing these two new variables and 2 + (5 · 2) = 12
additional clauses will be shown now, when using them to forbid conflicts more
compactly. Indeed, each vertex labeled with α or β participates in |D4| − 1 = 40
amod clauses in the direct encoding, which equals a total of 10 · 40−

(
10
2

)
= 355

clauses for all of them (subtracting the clauses counted twice). However, note
that all 36 vertices shaded in light orange are at distance at most 4 from all
vertices labeled with α, and thus they are in conflict with rorange,4. This means
that we can encode all conflicts between α-vertices and orange-shaded vertices
with 36 clauses. The same can be done for β-vertices and the 36 vertices shaded
in light blue. Moreover, all pairs of vertices (x, y) with x being an α-vertex
and y being a β-vertex are in conflict, which we can represent simply with the
clause (rorange,4 ∨ rblue,4), instead of 5 · 5 = 25 pairwise clauses. We still need,
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P6,11,6, for color 4.

(b) Illustration of the placement of
regions of the 13 regions in P6,11,6.

Fig. 4: Illustrations for P6,11,6.

however, to forbid that more than one α-vertex receives color 4, and the same
for β-vertices, which can be done by simply adding all 2 ·

(
5
2

)
= 20 amod clauses

between all pairs. In total, the total number of clauses involving α or β vertices
has gone down to 12+2 ·36+20+1 = 105 clauses, from the original 355 clauses,
by merely adding two new variables.

As shown in Example 2, the use of regional clauses can make encodings more
compact, and this same idea scales even better for larger instances when the
regions are larger. A key challenge for designing a regional encoding in this man-
ner is that it requires a choice of regions (which can even be different for every
color). After trying several different strategies for defining regions, we found one
that works particularly well in practice (despite not yielding an optimal num-
ber for the metric #variables + #clauses), which we denote the plus encoding.
The plus encoding is based on simply using “+” shaped regions (i.e., D1) for all
colors greater than 3, and to not introduce any changes for colors 1, 2 and 3 as
they only amount to a very small fraction of the total size of the instances we
consider. We denote with Pd,k,c the plus encoding of the diamond of size d with
k colors, and the centered being colored with c. Figure 4b illustrates P6,11,6. In-
terestingly, the BVA encoding opted for larger regions for the larger colors, using
for example D2’s or D3’s as regions for color 14. We have experimentally found
this to be very ineffective when coupled with our split algorithms. In terms of the
locations of the “+” shaped regions, we have placed them manually through an
interactive program, arriving to the conclusion that the best choice of locations
consists of packing as many regions as possible and as densely around the center
as possible. A more formal presentation of all the clauses involved in the plus
encoding is presented in the extended arXiv version [24] of this paper, but all
its components have been illustrated in Example 2.
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The exact number of clauses resulting from the plus encoding is hard to
analyze precisely, but it is clear that asymptotically it only improves from the
direct encoding by a constant multiplicative factor. Figure 3 and Table 2 illustrate
the compactness of the plus encoding over particular instances, and its increase in
efficiency both for CDCL solving as well as with the Cube And Conquer approach
of Subercaseaux and Heule [23].

3.2 Symmetry Breaking

Another improvement of our approach is a static symmetry-breaking technique,
while Subercaseaux and Heule [23] achieved symmetry breaking by discarding
all but 1/8 of the cubes. We cannot do this easily since the plus encoding does
not have an 8-fold symmetry. Instead it has a 4-fold symmetry (see Figure 4b).
We add symmetry breaking clauses directly on top of the direct encoding (i.e.,
instead of using it after a Cube And Conquer split), as Dr,k,c has indeed an 8-fold
symmetry (see Figure 5b). Concretely, if we consider a color t, it can only appear
once in the D�t/2�, as if it appeared more than once said appearances would be
at distance ≤ t. Given this, we can assume without loss of generality that if
there is one appearance of t in D�t/2�, then it appears with coordinates (a, b)
such that a ≥ 0 ∧ b ≥ a. We enforce this by adding negative units of the form
x(i,j),t for every pair (i, j) ∈ D�t/2� such that i < 0 ∨ j < i. This is illustrated
in Figure 5b for D5,10. Note however that this can only be applied to a single
color t, as when a vertex in the north-north-east octant gets assigned color t,
the 8-fold symmetry is broken. However, if the symmetry breaking clauses have
been added for color t, and yet t does not appear in D�t/2�, then there is still an
8-fold symmetry in the encoding we can exploit by breaking symmetry on some
other color t′. This way, our encoding uses L = 5 layers of symmetry breaking,
for colors k, k − 1, . . . , k − L + 1. At each layer i, where symmetry breaking is
done over color k − i, except for the first (i.e., i > 0), we need to concatenate a
clause

SymmetryBrokeni :=

k∨
t=k−i

∨
(a,b)∈D�t/2�

0≤a≤b

x(a,b),t

to each symmetry breaking clause, so that symmetry breaking is applied only
when symmetry has not been broken already. Table 3 (page 14) illustrates the
impact of this symmetry breaking approach, yielding close to a ×40 speed-up
for D6,11,6.

3.3 At-Least-One-Distance clauses

Yet another addition to our encoding is what we call At-Least-One-Distance
(alod) clauses, which consist on stating that, for every vertex v, if we consider
D1(v), then at least one vertex in D1(v) must get color 1. Concretely, the At-
Least-One-Distance clause corresponding to a vertex v = (i, j) is

Cv = x(i,j),1 ∨ x(i+1,j),1 ∨ x(i−1,j),1 ∨ x(i,j+1),1 ∨ x(i,j−1),1.
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Fig. 5: The effect of adding alod clauses (left) and symmetry-breaking (right).

Note that adding these clauses preserves satisfiability since they are blocked
clauses [15]; this can be seen as follows. If no vertex in D1(v) gets assigned color
1, then we can simply assign xv,1, thus satisfying the new clause Cv.

The purpose of alod clauses can be described as incentives towards assigning
color 1 in a chessboard pattern (see Figure 5a), which seems to simplify the rest
of the computation. Empirically, their addition improves runtimes; see Table 3.

3.4 Cube And Conquer Using Auxiliary Variables

The split of Subercaseaux and Heule [23] is based on cases about the xv,c vari-
ables of the direct encoding, and specifically using vertices v that are close to
the center and colors c that are in the top-t colors for some parameter t.

Our algorithm is instead based on cases only around the new regional vari-
ables rS,c, which appears to be key for exploiting their use in the encoding.

More concretely, our algorithm, which we call ptr, is roughly based on split-
ting the instance into cases according to which out of the R regions that are
closest to the center get which of the T highest colors (noting that a region can
get multiple colors). A third parameter P indicates the maximum number of
positive literals in any cube of the split. More precisely, there are cubes with i
positive literals for i ∈ {0, 1, . . . , P − 1, P}, and the set of cubes with i positive
literals is constructed by ptr as follows:

1. Let R be the set of R regions that are the closest to the center, and T the
set consisting of the T highest colors (i.e., {k, k − 1, . . . , k − T + 1}).

2. For each of the Ri tuples �S ∈ Ri, we create
(
T
i

)
cubes as described in the

next step.
3. For each subset Q ⊆ T with size |Q| = i, let q1, . . . , qi be its elements

in increasing order, and then create a cube with positive literals r�Sj ,qj
for

j ∈ {1, . . . , i}. Then, if i < P , add to the cube negative literals r�Sj ,q�
for

j ∈ {1, . . . , i} and every q	 	∈ Q.

Lemma 1. The cubes generated by the ptr algorithm form a tautology.
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The proof of Lemma 1 is quite simple, and we refer the reader to the proof
of Lemma 7 in Subercaseaux and Heule [23] for a very similar one. Moreover,
because our goal is to have a verifiable proof, instead of relying on Lemma 1, we
test explicitly that the cubes generated by our algorithm form a tautology in all
the instances mentioned in this paper. Pseudo-code for ptr is presented in the
extended arXiv version of this paper [24].

3.5 Optimizing the Center Color

Our previous work [23] argued that for an instance Dr,k, one should fix the color
of the central vertex to min(r, k). However, our experiments suggest otherwise.
As the proof of Lemma 2 (in extended arXiv version [24]) implies, we are allowed
to fix any color in the center, and as long as the resulting instance is unsatisfiable,
that will allow us to establish the same lower bound. It turns out that the
choice of the center color can dramatically affect performance, as shown for
instance D12,13 (the one used to prove χρ(Z2) ≥ 14) in Figure 6. Interestingly,
performance does not change monotonically with the value fixed in the center.
Intuitively, it appears that fixing smaller colors in the center is ineffective as they
impose restrictions on a small region around the center, while fixing very large
colors in the center does not constrain the center much; for example, on the one
hand, fixing a 1 or 2 in the center does not seem to impose any serious constraints
on solutions. On the other hand, when a 12 is fixed in the center (as in our
previous work [23]), color 6 can be used 5 times in D6, whereas if color 6 is fixed
in the center, it can only be used once in D6. The apparent advantage of fixing
12 in the center (that it cannot occur anywhere else in D12,13), is outweighed by
the extra constraints around the center that fixing color 6 imposes; Subercaseaux
and Heule already observed that most conflicts between colors occur around the
center [23]), thus explaining why it makes sense to optimize in that area.

The main result of Subercaseaux and Heule [23] is the unsatisfiability of
D12,13,12, which required 45 CPU hours using the same SAT solver and similar
hardware. Let P �

d,k,cdenote Pd,k,c with alod clauses and symmetry-breaking
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Fig. 6: The impact of the color in the center (c) on the performance for P �
12,13,c.
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symmetry proof︷ ︸︸ ︷
D15,14,6 ≡ ︸ ︷︷ ︸

re-encoding proof

D�
15,14,6 ≡

implication proof︷ ︸︸ ︷
P �
15,14,6 � N15,14,6 � ⊥︸ ︷︷ ︸

tautology proof

Fig. 7: Illustration of the verification pipeline.

predicates. We show unsatisfiability of P �
12,13,12 in 1.18 CPU hours and of P �

12,13,6

in 0.34 CPU hours. So the combination of the plus encoding and the improved
center reduces the computational costs by two orders of magnitude.

4 Verification

Our pipeline proves that, in order to trust χρ(Z2) = 15 as a result, the only com-
ponent that requires unverified trust is the direct encoding of D15,14,6. Indeed,
let P �

15,14,6 be the instance P15,14,6 with alod-clauses and 5 layers of symmetry
breaking clauses, and let ψ = {c1, . . . , cm} be the set of cubes generated by the
ptr algorithm with parameters P = 6, T = 7, R = 9. We then prove:

1. that D15,14,6 is satisfiability equivalent to P �
15,14,6.

2. the DNF ψ = c1 ∨ c2 ∨ · · · ∨ cm is a tautology.

3. each instance (P �
15,14,6 ∧ ci), for ci ∈ ψ is unsatisfiable.

4. hence the negation of each cube is implied by P �
15,14,6.

5. since ψ is a tautology, its negation N15,14,6 is unsatisfiable.

As a result, Theorem 1 relies only on our implementation of D15,14,6. For-
tunately, this is quite simple, and the whole implementation is presented in the
extended arXiv version of this paper [24]. Figure 7 illustrates the verification
pipeline, and the following paragraphs detail its different components.

Symmetry Proof. The first part of the proof consists in the addition of
symmetry-breaking predicates to the formula. This part needs to go before the
re-encoding proof, because the plus encoding does not have the 8-fold symmetry
of the direct encoding. Each of the clauses in the symmetry-breaking predicates
have the substitution redundancy (SR) property [5]. This is a very strong redun-
dancy property and checking whether a clause C has SR w.r.t. a formula ϕ is
NP-complete. However, since we know the symmetry, it is easy to compute a SR
certificate. There exists no SR proof checker. Instead, we implemented a proto-
type tool to convert SR proofs into DRAT for which formally verified checkers
exists. Our conversion is similar to the approach to converted propagation re-
dundancy into DRAT [12]. The conversion can significantly increase the size of
the proof, but the other proof parts are typically larger for harder formulas, thus
the size is acceptable.
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Re-encoding Proof. After symmetry breaking, the formula encoding is opti-
mized by transforming the direct encoding into the plus encoding and adding the
alod clauses. This part of the proof is easy. All clauses in the plus encoding and
all alod clauses have the RAT redundancy property w.r.t. the direct encoding.
This means that we can add all these clauses with a single addition step per
clause. Afterward, the clauses that occur in the direct encoding but not in the
plus encoding are removed using deletion steps.

Implication Proof. The third part of the proof expresses that the formula
cannot be satisfied with any of the cubes from the split. For easy problems,
one can avoid splitting and just use the empty cube as tautological DNF. For
harder problems, splitting is crucial. We solve D15,14,6 using a split with just
over 5 million cubes. Using a SAT solver to show that the formula with a cube
is unsatisfiable shows that the negative of the cube is implied by the formula.
We can derive all these implied clauses in parallel. The proofs of unsatisfiability
can be merged into a single implication proof.

Tautology Proof. The final proof part needs to show that the negation of the
clauses derived in the prior steps form a tautology. In most cases, including ours,
the cubes are constructed using a tree-based method. This makes the tautology
check easy as there exists a resolution proof from the derived clauses to the
empty clause using m−1 resolution steps with m denoting the number of cubes.
This part can be generated using a simple SAT call.

The final proof merges all the proof parts. In case the proof parts are all in
the DRAT format, such as our proof parts, then they can simply be merged by
concatenating the proofs using the order presented above.

5 Experiments

Experimental Setup. In terms of hardware, all our experiments were run in
the Bridges2 [4] supercomputer. Each node has the following specifications: Two
AMD EPYC 7742 CPUs, each with 64 cores, 256MB of L3 cache, and 512GB
total RAM memory. Our code and various formulas are publicly available at the
repository https://github.com/bsubercaseaux/PackingChromaticTacas. In
terms of software, all sequential experiments were run on state-of-the-art solver
CaDiCaL [2], while parallel experiments with Cube And Conquer were run us-
ing a new implementation of parallel iCaDiCaL because it supports incremental
solving [13] while being significantly faster than iLingeling.

Effectiveness of the Optimizations. We evaluated the optimizations to the
direct encoding as proposed in Section 3: the plus encoding, the addition of the
alod clauses, and the new symmetry breaking. The results are shown in Table 3.
We picked D6,11,6 for this evaluation since it is the largest diamond that can still
be solved within a couple of hours on a single core.

The main conclusion is that the optimizations significantly improve the run-
time. A comparison between the direct encoding without symmetry breaking and

https://github.com/bsubercaseaux/PackingChromaticTacas
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the plus encoding with symmetry breaking and the alod clauses shows that the
latter can be solved roughly 200x faster. Table 3 shows all 8 possible configu-
rations. Turning on any of the optimizations always improves performance. The
effectiveness of the plus encoding and alod clauses is somewhat surprising: the
speed-up factor obtained by re-encoding typically does not exceed the factor by
which the formula size is reduced. In this case, the reduction factor in formula
size is less than 3, while the speed-up is larger than 13 (see the difference be-
tween the first and second row of Table 3). Moreover, we are not aware of the
effectiveness of adding blocked clauses. Typically SAT solvers remove them.

We also constructed DRAT proofs of the optimizations (shown as derivation
in the table) and the solver runtime. We merged them into a single DRAT proof
by concatenating the files. The proofs were first checked with the drat-trim

tool, which produced LRAT proofs. These LRAT files were validated using the
formally-verified cake-lpr checker. The size of the DRAT proofs and the check-
ing time are shown in the table. Note that the checking time for the proofs with
symmetry breaking is always larger than the solving times. This is caused by
expressing the symmetry breaking in DRAT resulting in a 436 Mb proof part.

The Implication Proof. The largest part of the computation consist of show-
ing that P �

15,4,6 is unsatisfiable under each of the 5, 217, 031 cubes produced by
the cube generator. The results of the experiments are shown in Figure 8 (left).
The left plot shows that roughly half of the cubes can be solved in a second
or less. The average runtime of cubes was 3.35 seconds, while the hardest cube
required 1584.61 seconds. The total runtime was 4851.38 CPU hours.

For each cube, we produced a compressed DRAT proof (the default output of
CaDiCaL). Due to the lack of hints in DRAT proofs, they are somewhat complex
to validate using a formally-verified checker. Instead, we use the tool drat-trim
to trim the proofs and add hints. The result are uncompressed LRAT files, which
we validate using the formally-verified checker cake lpr. The verification time
was 4336.93 CPU hours, so slightly less than the total runtime.

The sizes of each of the implication proofs show a similar distribution, as
depicted in Figure 8 (right). Most proofs are less than 10 MB in size. The

Table 3: Evaluating the effectiveness of the optimizations on D6,11,6.

sym alod plus #var #cls runtime derivation proof check

935 21086 10741.69 0 b 11.99 Gb 31731.20
x 1039 7548 809.65 149 Kb 1.29 Gb 1720.82

x 935 21171 8422.38 1.6 Kb 8.11 Gb 21732.74
x x 1039 7633 389.71 151 Kb 1.29 Gb 1708.21

x 935 21286 273.19 436 Mb 0.63 Gb 1390.04
x x 1039 7748 66.74 436 Mb 0.14 Gb 1022.42
x x 935 21371 252.71 436 Mb 0.68 Gb 1359.05
x x x 1039 7833 55.56 436 Mb 0.10 Gb 997.90
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Fig. 8: Cactus plot of solving and verification times in seconds (left) and cactus
plot of the size of the compressed DRAT proof and uncompressed LRAT proof
in Mb (right).

compressed DRAT proofs are generally smaller compared to the LRAT proofs,
but that is mostly due to compression, which reduces the size by around 70%.

The Chessboard Conjecture and its Counterexample. Given that color
1 can be used to fill in 1/2 of Z2 in a packing coloring, and the packing color-
ings found in the past, with 15, 16 or 17 colors used color 1 with density 1/2
in a chessboard pattern [18], it is tempting to assume that this must always be
the case. This way, we conjectured that any instance Dr,k,c is satisfiable if and
only if it is with the chessboard pattern. The consequence of the conjecture is
significant, as if it were true we could fix half of the vertices to color 1, thus
massively reducing the size of the instance and its runtime. Unfortunately, this
conjecture happens to be false, with the smallest counterexample being D14,14,6

as illustrated in Figure 9, which deviates from the chessboard pattern in only 2
vertices. We have proved as well that no solution for D14,14,6 deviating in only
1 vertex from the chessboard pattern exists.

Proving the Lower Bound. In order to prove Theorem 1, we require the
following 3 lemmas, from where the conclusion easily follows.

Lemma 2. If D15,14,6 is unsatisfiable, then χρ(Z2) ≥ 15.

Lemma 3. If D15,14,6 is satisfiable, then P �
15,14,6 is also satisfiable.

Lemma 4. P �
15,14,6 is unsatisfiable.

We have obtained computational proofs of Lemma 3 and Lemma 4 as de-
scribed above, and thus it only remains to prove Lemma 2, which we include in
the appendix. We can thus proceed to our main proof.

Proof (of Theorem 1). Since Martin et al. proved that χρ(Z2) ≤ 15 [18], it
remains to show χρ(Z2) ≥ 15, which by Lemma 2 reduces to proving Lemma 3
and Lemma 4. We have proved these lemmas computationally, obtaining a single
DRAT proof as described in Section 4. The total solving time was 4851.31 CPU
hours, while the total checking time of the proofs was 4336.93 CPU hours. The
total size of the compressed DRAT proof is 34 terabytes, while the uncompressed
LRAT proof weighs 122 terabytes.
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Fig. 9: A valid coloring of D14,14,6. No valid coloring exists for this grid with a
full chessboard pattern of 1’s.

6 Concluding Remarks and Future Work

We have proved χρ(Z2) = 15 by using several SAT-solving techniques, in what
constitutes a new success story for automated reasoning tools applied to com-
binatorial problems. Moreover, we believe that several of our contributions in
this work might be applicable to other settings and problems. Indeed, we have
obtained a better encoding by reverse engineering BVA, and designed a split
algorithm that works well coupled with the new encoding; this experience sug-
gests the split-encoding compatibility as a new key variable to pay attention to
when solving combinatorial problems under the Cube And Conquer paradigm.
As for future work, it is natural to study whether our techniques can be used to
improve other known bounds in the packing-coloring area (see e.g., [3]), as well
as to other families of coloring problems, such as distance colorings [14].
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Abstract. Benchmarking is a crucial phase when developing algorithms.
This also applies to solvers for the SAT (propositional satisfiability) prob-
lem. Benchmark selection is about choosing representative problem in-
stances that reliably discriminate solvers based on their runtime. In this
paper, we present a dynamic benchmark selection approach based on
active learning. Our approach predicts the rank of a new solver among
its competitors with minimum runtime and maximum rank prediction
accuracy. We evaluated this approach on the Anniversary Track dataset
from the 2022 SAT Competition. Our selection approach can predict the
rank of a new solver after about 10 % of the time it would take to run
the solver on all instances of this dataset, with a prediction accuracy
of about 92 %. We also discuss the importance of instance families in
the selection process. Overall, our tool provides a reliable way for solver
engineers to determine a new solver’s performance efficiently.

Keywords: Propositional satisfiability · Benchmarking · Active learning

1 Introduction

One of the main phases of algorithm engineering is benchmarking. This also ap-
plies to propositional satisfiability (SAT), the archetypal NP-complete problem.
Benchmarking is, however, quite expensive regarding the runtime of experiments.
While benchmarking a single SAT solver might still be feasible, developing new,
competitive SAT solvers requires extensive experimentation with a variety of
ideas [8,2]. In particular, a new solver idea is rarely best on the first try. Thus, it
is highly desirable to reduce benchmarking time and discard unpromising ideas
early, allowing to test more approaches or spend more time on promising ones.
The field of SAT solver benchmarking is well established, but traditional bench-
mark selection approaches do not optimize benchmark runtime. Instead, they
focus on selecting a representative set of instances for scoring solvers [10,15]. For
the latter, SAT Competitions typically employ the PAR-2 score, i.e., the average
runtime with a penalty of 2τ for timeouts with time-limit τ [8].

In this paper, we present a novel benchmark selection approach based on
active learning. Our approach can predict the rank of a new solver with high ac-
curacy in only a fraction of the time needed to evaluate the complete benchmark.
Definition 1 specifies the problem we address.
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Definition 1 (New-Solver Problem). Given solvers A, instances I, run-
times r : A×I → [0, τ ] with time-limit τ , and a new solver â /∈ A, incrementally
select benchmark instances from I to maximize the confidence in predicting the
rank of â while minimizing the total benchmark runtime.

Note that our scenario assumes knowing the runtimes of all solvers, except
the new one, on all instances. One could also imagine a collaborative filtering
scenario, where runtimes are only partially known [23,25].

Our approach satisfies several desirable criteria for benchmarking: Rather
than outputting a binary classification, i.e., whether the new solver is worse
than an existing solver or not, we provide a scoring function that shows by which
margin a solver is worse and how similar it is to existing solvers. In particular,
our approach enables ranking the new solver amidst a set of existing solvers.
For this ranking, we do not even need to predict exact solver runtimes, which
is trickier. Further, we optimize the runtime that our strategy needs to arrive
at its conclusion. We use instance and runtime features. Moreover, we select
instances non-randomly and incrementally. In particular, we consider runtime
information from already done experiments when choosing the next. By doing so,
we can control the properties of the benchmarking approach, such as its required
runtime. Our approach is scalable in that it ranks a new solver â among any
number of known solvers A. In particular, we only subsample the benchmark
once instead of comparing pairwise against each other solver [21].

We evaluate our approach with the SAT Competition 2022 Anniversary Track
dataset [2], consisting of 5355 instances and runtimes of 28 solvers. We perform
cross-validation by treating each solver once as the new solver and learning to
predict the PAR-2 rank of that solver. On average, our predictions reach about
92% accuracy with only about 10% of the runtime required to evaluate these
solvers on the complete set of instances.

Our entire source code1 and experimental data2 are available on GitHub.

2 Related Work

Benchmarking is not only of high interest in many fields but also an active
research area on its own. Recent studies show that benchmark selection is chal-
lenging for multiple reasons. Biased benchmarks can easily lead to fallacious in-
terpretations [7]. Benchmarking also has many interchangeable parts, such as the
performance measures used, how measurement points are aggregated, and how
missing values are handled. Questionable research practices could alter these ele-
ments a-posteriori to meet expectations, thereby skewing the results [27]. In the
following, we discuss related work from the areas of static benchmark selection,
algorithm configuration, incremental benchmark selection, and active learning.
Table 1 compares the most relevant approaches, which all pursue slightly differ-
ent goals. Thus, our approach is not a general improvement over the others but
the only one fully aligned with Definition 1.
1 https://github.com/mathefuchs/al-for-sat-solver-benchmarking
2 https://github.com/mathefuchs/al-for-sat-solver-benchmarking-data

https://github.com/mathefuchs/al-for-sat-solver-benchmarking
https://github.com/mathefuchs/al-for-sat-solver-benchmarking-data
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Table 1: Comparison of features of our benchmark-selection approach, the static
benchmark-selection approach by Hoos et al. [15], the algorithm configuration
system SMAC [16], and the active-learning approaches by Matricon et al. [21].

Feature Hoos [15] SMAC [16] Matricon [21] Our approach
Ranking/Scoring � � (�) �

Runtime Minimization � � � �

Incremental/Non-Random � � � �

Scalability � � � �

Static Benchmark Selection. Benchmark selection is essential for competi-
tions, e.g., the SAT Competition. In such competitions, the organizers define
the rules for composing the benchmarks. These selection strategies are primarily
static, i.e., they do not depend on particular solvers to distinguish. Balint et al.
provide an overview of benchmark-selection criteria in different solver competi-
tions [1]. Froleyks et al. describe benchmark selection in recent SAT competi-
tions [8]. Manthey and Möhle find that competition benchmarks might contain
redundant instances and propose a feature-based approach to remove redun-
dancy [20]. Mısır presents a feature-based approach to reduce benchmarks by
matrix factorization and clustering [24].

Hoos et al. [15] discuss which properties are most desirable when selecting
SAT benchmark instances. The selection criteria are instance variety to avoid
over-fitting, adapted instance hardness (not too easy but also not too hard), and
avoiding duplicate instances. To filter too similar instances, they use a distance-
based approach with the SATzilla features [37,38]. The approach does, however,
not optimize for benchmark runtime and selects instances randomly, apart from
constraints on the instance hardness and feature distance.

Algorithm Configuration. Further related work can be found within the field
of algorithm configuration [14,32], e.g., the configuration system SMAC [16].
Thereby, the goal is to tune SAT solvers for a given sub-domain of problem in-
stances. Although this task is different from our goal, e.g., we do not need to
navigate the configuration space, there are similarities to our approach as well.
For example, SMAC also employs an iterative, model-based selection procedure,
though for configurations rather than instances. An algorithm configurator, how-
ever, cannot be used to rank/score a new solver since algorithm configuration
solemnly seeks to find the best-performing configuration. Also, while using a
model-based selection strategy to sample configurations, instance selection is
made randomly, i.e., without building a model over instances.

Incremental Benchmark Selection. Matricon et al. present an incremental
benchmark selection approach [21]. Their per-set efficient algorithm selection
problem (PSEAS) is similar to our New-Solver Problem (cf. Definition 1). Given
a pair of SAT solvers, they iteratively select a subset of instances until the
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Fig. 1: Types of machine learning (depiction inspired by Rubens et.al. [29]).

desired confidence level is reached to decide which of the two solvers is better.
The selection of instances depends on the choice of the solvers to distinguish.
They calculate a scoring metric for all unselected instances, run the experiment
with the highest score, and update the confidence. Their approach ticks off most
of our desired features in Table 1. However, the approach only compares solvers
binarily rather than providing a scoring. Thus, it is unclear how similar two given
solvers are or on which instances they behave similarly. Moreover, a significant
shortcoming is the lacking scalability with the number of solvers. Comparing only
pairs of solvers, evaluating a new solver requires sampling a separate benchmark
for each existing solver. In contrast, our approach allows comparing a new solver
against a set of existing solvers by sampling only one benchmark.

Active Learning. Prediction models in passive machine learning are trained
on datasets with given instance labels (cf. Fig. 1a). In contrast, active learn-
ing (AL) starts with no or little labeled data. It repeatedly selects interesting
problem instances for which to acquire labels, aiming to gradually improve the
prediction model (cf. Fig. 1b). AL methods are especially beneficial if acquiring
labels is computationally expensive, like obtaining solver runtimes. Without AL
methods, it is not obvious which instances to label and which not. On the one
hand, we want to maximize the utility an instance provides to our model, i.e.,
rank prediction accuracy, and on the other hand, minimize the cost, i.e., pre-
dicted runtime, associated with the instance’s acquisition. Thus, we strive for an
accurate prediction model without having to label every data point.

Rubens et. al. [29] survey active-learning advances. While synthesis-based AL
methods [5,9,34] generate instances for labeling, pool-based methods [11,13,19]
rely on a fixed set of unlabeled instances to sample from. Recent synthesis-based
methods within the field of SAT solving show how to generate problem instances
with desired properties [5,9]. This goal is, however, orthogonal to ours. While
those approaches want to generate instances on which a solver is good or bad,
we want to predict whether a solver is good or bad on an existing benchmark.
Volpato and Guangyan use pool-based AL to learn an instance-specific algorithm
selector [35]. Rather than benchmarking a solver’s overall performance, their goal
is to recommend the best solver out of a set of solvers for each SAT instance.
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Algorithm 1: Incremental Benchmarking Framework
Input: Solvers A, Instances I, Runtimes r : A× I → [0, τ ], Solver â
Output: Predicted Score of â, Measured Runtimes R

1 M ← initModel (A, I, r, â) // cf. Section 3.1

2 R ← ∅
3 while not stop (M) do // cf. Section 3.3
4 e ← selectNextInstance (M) // cf. Section 3.2
5 t ← runExperiment (â, e) // Runs â on e with timeout τ
6 R ← R∪ {(e, t)}
7 updateModel (M, R) // cf. Section 3.1

8 sâ ← predictScore(M) // cf. Section 3.1

9 return (sâ,R)

3 Active Learning for SAT Solver Benchmarking

Algorithm 1 outlines our benchmarking framework. Given a set of solvers A,
instances I and runtimes r, we first initialize a prediction model M for the
new solver â �∈ A (Line 1). The prediction model M is used to repeatedly
select an instance (Line 4) for benchmarking â (Line 5). The acquired result
is subsequently used to update the prediction model M (Line 7). When the
stopping criterion is met (Line 3), we quit the benchmarking loop and predict
the final score of â (Line 8). Algorithm 1 returns the predicted score of â as well
as the acquired instances and runtime measurements (Line 9).

Section 3.1 describes the underlying prediction model M and specifies how
we may derive a solver ranking from it. We discuss criteria for selecting instances
in Section 3.2. Section 3.3 concludes with possible stopping conditions.

3.1 Solver Model

The model M provides a runtime-label prediction function f : Â × I → R for
all solvers Â := A ∪ {â}. This prediction function powers instance selection
as described in Section 3.2. During model updates (Algorithm 1, Line 7), f is
trained to predict a transformed version of the acquired runtimes R. We describe
the runtime transformation in the subsequent section. The features described in
Section 4.2 serve as the input to the model. Further, note that we build a new
prediction model in each iteration since running experiments (Line 5) dominates
the runtime of model training by magnitudes. Finally, we predict the score of
the new solver â with the prediction function f (Line 8).

Runtime Transformation. For the prediction model M , we transform the
real-valued runtimes into discrete runtime labels on a per-instance basis. For
each instance e ∈ I, we use a clustering algorithm to assign the runtimes in{
r(a, e) | a ∈ A

}
to one of k clusters C1, . . . , Ck such that the fastest runtimes
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for the instance e are in cluster C1 and the slowest are in cluster Ck−1. Timeouts
τ always form a separate cluster Ck. The runtime transformation function γk :
A× I → {1, . . . , k} is then specified as follows:

γk(a, e) = j ⇔ r(a, e) ∈ Cj

Given an instance e ∈ I, a solver a ∈ A belongs to the γk(a, e)-fastest solvers on
instance e. In preliminary experiments, we achieved higher accuracy for predict-
ing such discrete runtime labels than for predicting raw runtimes. Research on
portfolio solvers has also shown that discretization works well in practice [4,26].

Ranking Solvers. To determine solver ranks, we use the transformed runtimes
γk(a, e) in the adapted scoring function sk : A → [1, 2 · k] as follows:

sk(a) :=
1

|I|
∑
e∈I

γ′
k(a, e) γ′

k(a, e) :=

{
2 · γk(a, e) if γk(a, e) = k

γk(a, e) otherwise
(1)

I.e., we apply PAR-2 scoring, which is commonly used in SAT competitions [8],
on the discrete labels. The scoring function sk induces a ranking among solvers.

3.2 Instance Selection

Selecting an instance based on the model is a core functionality of our framework
(cf. Algorithm 1, Line 4). In this section, we introduce two instance sampling
strategies, one that minimizes uncertainty and one that maximizes information
gain. Both strategies use the model’s label-prediction function f and are in-
spired by existing work within the realms of active learning [30]. These methods
require the model’s predictions to include probabilities for the k discrete runtime
labels. Let f ′ : Â × I → [0, 1]

k denote this modified prediction function. In the
following, the set Ĩ ⊆ I denotes the instances that have already been sampled.

Uncertainty Sampling. The uncertainty sampling strategy selects the in-
stance closest to the model’s decision boundary, i.e., we select the instance
e ∈ I \ Ĩ that minimizes U(e), which is specified as follows:

U(e) :=

∣∣∣∣
1

k
− max

n∈{1,...,k}
f ′(â, e)n

∣∣∣∣

Information-Gain Sampling. The information-gain sampling strategy selects
the instance with the highest expected entropy reduction regarding the runtime
labels of the instance. To be more specific, we select the instance e ∈ I \ Ĩ that
maximizes IG(e), which is specified as follows:

IG(e) := H(e)−
k∑

n=1

f ′(â, e)n Ĥn(e)
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Here, H(e) denotes the entropy of the runtime labels γ(a, e) over all a ∈ A and
H(e, n) denotes the entropy of these labels plus n as the runtime label for â.
The term Ĥn(e) is computed for every possible runtime label n ∈ {1, . . . , k}.
By maximizing information gain, we select instances that identify solvers with
similar behavior.

3.3 Stopping Criteria

In this section, we present the two dynamic stopping criteria in our experiments,
the Wilcoxon and the ranking stopping criterion (cf. Algorithm 1, Line 3).

Wilcoxon Stopping Criterion. The Wilcoxon stopping criterion stops the
active-learning process when we are confident enough that the predicted run-
time labels of the new solver are sufficiently different from existing solvers. This
criterion is loosely inspired by Matricon et. al. [21]. We use the average p-value
Wâ of a Wilcoxon signed-rank test w(S, P ) of the two runtime label distributions
S = {γ(a, e) | e ∈ I} for an existing solver a and P = {f(â, e) | e ∈ I} for the
new solver â:

Wâ :=
1

|A|
∑
a∈A

w(S, P )

To improve the stability of this criterion, we use an exponential moving average
to smooth out outliers and stop as soon as W (i)

exp drops below a fixed threshold:

W (0)
exp := 1

W (i)
exp := βWâ + (1− β)W (i−1)

exp

Ranking Stopping Criterion. The ranking stopping criterion is less sophisti-
cated in comparison. It stops the active-learning process if the ranking induced by
the model’s predictions (Equation 1) remained unchanged within the last l iter-
ations. However, the concrete values of the predicted score sâ might still change.
We are solemnly interested in the induced ranking in this case.

4 Experimental Design

Given all the previously presented instantiations for Algorithm 1, this section
outlines our experimental design, including our evaluation framework, used data
sets, hyper-parameter choices, and implementation details.

4.1 Evaluation Framework

As stated in the Introduction, this work addresses the New-Solver Problem
(cf. Definition 1). As described in Section 3.1, a prediction model M provides
us with an estimated scoring sâ for the new solver â.
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Algorithm 2: Evaluation Framework
Input: Solvers A, Instances I, Runtimes r : A× I → [0, τ ]
Output: Average Ranking Accuracy Ōacc, Average Fraction of Runtime Ōrt

1 O ← ∅
2 for â ∈ A do
3 A′ ← A \ {â}
4 (sâ,R) ← runALAlgorithm(A′, I, r, â) // Refer to Algorithm 1

// Determine Ranking Accuracy
5 Oacc ← 0
6 for a ∈ A do
7 if

(
sk(a)− sâ

)
·
(
par2(a)− par2(â)

)
> 0 then

8 Oacc ← Oacc +
1

|A|

// Determine Runtime Fraction
9 r ←

∑
e∈I

r(â, e)

10 Ort ← 0
11 for e ∈ I do
12 if ∃t, (e, t) ∈ R then
13 Ort ← Ort +

t
r

14 O ← O ∪
{
(Oacc, Ort)

}

15
(
Ōacc, Ōrt

)
← average(O)

16 return
(
Ōacc, Ōrt

)

To evaluate a concrete instantiation of Algorithm 1, i.e., a concrete choice
for all the sub-routines, we perform cross-validation on our set of solvers. Algo-
rithm 2 shows this. That means each solver plays the role of the new solver â
once (Line 2). Note that the new solver in each iteration is excluded from the
set of solvers A to avoid data leakage (Line 3). After running our active-learning
framework for solver â (Line 4), we compute the value of both our optimiza-
tion goals, i.e., ranking accuracy and runtime. We define the ranking accuracy
Oacc ∈ [0, 1] (higher is better) by the fraction of pairs (â, a) for all a ∈ A that
are decided correctly regarding the ground-truth scoring par2 (Lines 5-8). The
fraction of runtime that the algorithm needs to arrive at its conclusion is de-
noted by Ort ∈ [0, 1] (lower is better). This metric puts the runtime summed
over the sampled instances in relation to the runtime summed over all instances
in the dataset (Lines 9-13). Finally, we compute averages of the output metrics
in Line 15 after we have collected all cross-validation results in Line 14. Overall,
we want to find an approach that maximizes

Oδ := δOacc + (1− δ) (1−Ort) , (2)

whereby δ ∈ [0, 1] allows for linear weighting between the two optimization goals
Oacc and Ort. Plotting the approaches that maximize Oδ for all δ ∈ [0, 1] on
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an Ort-Oacc-diagram provides us with a Pareto front of the best approaches for
different optimization-goal weightings.

4.2 Data

In our experiments, we work with the dataset of the SAT Competition 2022
Anniversary Track [2]. The dataset consists of 5355 instances with respective
runtime data of 28 sequential SAT solvers. We also use a database of 56 instance
features3 from the Global Benchmark Database (GBD) by Iser et al. [17]. They
comprise instance size features and node distribution statistics for several graph
representations of SAT instances, among others, and are primarily inspired by
the SATzilla 2012 features described in [38]. All features are numeric and free of
missing values. We drop 10 out of 56 features because of zero variance. Overall,
prediction models have access to 46 instance features and 27 runtime features,
i.e., excluding the current new solver â.

Additionally, we retrieve instance-family information4 to evaluate the compo-
sition of our sampled benchmarks. Instance families comprise instances from the
same application domain, e.g., planning, cryptography, etc., and are a valuable
tool for analyzing solver performance.

For hyper-parameter tuning, we randomly sample 10% of the complete set
of 5355 instances with stratification regarding the instances’ family. All instance
families that are too small, i.e., 10% of them corresponds to less than one in-
stance, are put into one meta-family for stratification. This tuning dataset allows
for a more extensive exploration of the hyper-parameter space.

4.3 Hyper-parameters

Given Algorithm 1, there are several possible instantiations for the three sub-
routines, i.e., ranking, selection, and stopping. Also, there are different choices
for the runtime-label prediction model and runtime discretization. We describe
these experimental configurations in the following.

Ranking. Regarding ranking (cf. Section 3.1), we experiment with the following
approaches and hyper-parameter values:

– Observed PAR-2 ranking of already sampled instances
– Predicted runtime-label ranking

• History size: Consider the latest 1, 10, 20, 30, or 40 predictions within a
voting approach for stability. The latest x predictions for each instance
vote on the instance’s winning label.

• Fallback threshold: If the difference of scores between the new solver â
and another solver drops below 0.01 , 0.05 , or 0.1 , use the partially
observed PAR-2 ranking as a tie-breaker.

3 https://benchmark-database.de/getdatabase/base_db
4 https://benchmark-database.de/getdatabase/meta_db

https://benchmark-database.de/getdatabase/base_db
https://benchmark-database.de/getdatabase/meta_db
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Selection. For selection (cf. Section 3.2), we experiment with the following
methods and hyper-parameter values. Since the potential runtime of experi-
ments is by magnitudes larger than the model’s update time, we only consider
incrementing our benchmark by one instance at a time rather than using batches,
which is also proposed in current active-learning advances [31,34]. A drawback
of this is the lack of parallel execution of runtime experiments.

– Random sampling
– Uncertainty sampling

• Fallback threshold: Use random sampling for the first 0%, 5%, 10%,
15%, or 20% of instances to explore the instance space.

• Runtime scaling: Whether to normalize uncertainty scores per instance
by the average runtime of solvers on it or use the absolute values.

– Information-gain sampling
• Fallback threshold: Use random sampling for the first 0%, 5%, 10%,
15%, or 20% of instances to explore the instance space.

• Runtime scaling: Whether to normalize information-gain scores per in-
stance by the average runtime of solvers on it or use the absolute values.

Stopping. For stopping decisions (cf. Section 3.3), we experiment with the
following criteria and hyper-parameter values:

– Subset-size stopping criterion, using 10% or 20% of instances
– Ranking stopping criterion

• Minimum amount: Sample at least 2%, 8%, 10%, or 12% of instances
before applying the criterion.

• Convergence duration: Stop if the predicted ranking stays the same for
a number of sampled instances equal to 1% or 2% of all instances.

– Wilcoxon stopping criterion
• Minimum amount: Sample at least 2%, 8%, 10%, or 12% of instances

before applying the criterion.
• Average of p-values to drop below: 5%.
• Exponential-moving average: Incorporate previous significance values by

using an EMA with β = 0.1 or β = 0.7.

Prediction model. Our experiments only use one model configuration for
runtime-label prediction since an exhaustive grid search would be infeasible. In
preliminary experiments, we compared various model types from scikit-learn [28].
In particular, we conducted nested cross-validation, including hyper-parameter
tuning, and used Matthews Correlation Coefficient [12,22] to assess the perfor-
mance for predicting runtime labels. Our final choice is a stacking ensemble [36]
of two prediction models, a quadratic-discriminant analysis [33] and a random
forest [3]. Both these models can learn non-linear relationships between the in-
stance features and the runtime labels. Stacking means that another prediction
model, in our case a simple decision tree, decides which of the two ensemble
members makes the prediction on which instance.
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Runtime discretization. To define prediction targets, i.e., discrete runtime
labels, we use hierarchical clustering with k = 3 and a log-single-link criterion,
which produced the most useful labels in preliminary experiments. We denote
this adapted solver scoring function with s3. In our chosen hierarchical proce-
dure, each non-timeout runtime starts in a separate interval. We then gradually
merge intervals whose single-link logarithmic distance is the smallest until the
desired number of partitions is reached. Other clustering approaches that we
tried include hierarchical clustering with mean-, median-, and complete-link cri-
terion, as well as k-means and spectral clustering.

To obtain useful labels, we need to ensure that discretized labels still discrim-
inate solvers and align with the actual PAR-2 ranking. We analyzed the ranking
induced by s3 in preliminary experiments with the SAT Competition 2022 An-
niversary Track [2]. According to a Wilcoxon-signed-rank test with α = 0.05,
87.83% of solver pairs have significantly different scores after discretization,
only a slight drop compared to 89.95% before discretization. Further, our rank-
ing approach correctly decides for almost all (about 97.45%; σ = 3.68%) solver
pairs which solver is faster. In particular, the Spearman correlation of s3 and
PAR-2 ranking is about 0.988, which is very close to the optimal value of 1 [6].
All these results show that discretized runtimes are suitable for our framework.

4.4 Implementation Details

For reproducibility, our source code and data are available on GitHub (cf. foot-
notes in Section 1). Our code is implemented in Python using scikit-learn [28]
for making predictions and gbd-tools [17] for SAT-instance retrieval.

5 Evaluation

In this section, we evaluate our active-learning framework. First, we analyze and
tune the different sub-routines of our framework on the tuning dataset. Next,
we evaluate the best configurations with the full dataset. Finally, we analyze the
importance of different instance families to our framework.

5.1 Hyper-Parameter Analysis

Our experiments follow the evaluation framework introduced in Section 4.1.
Fig. 2 shows the performance of the approaches from Section 4.3 on Ort-Oacc-
diagrams for the hyper-parameter-tuning dataset. Evaluating a particular con-
figuration with Algorithm 2 returns a point (Ort, Oacc). We do not show in-
termediate results of the active-learning procedure but only the final results
after stopping. The plotted lines represent the best-performing configurations
per ranking approach (Fig. 2a), selection approach (Fig. 2b), and stopping crite-
rion (Fig. 2c). In particular, we show the Pareto front, i.e., of all configurations
that share a particular value of the plotted hyper-parameter, we take the maxi-
mum ranking accuracy over all remaining hyper-parameters not displayed in the
corresponding plot.
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Fig. 2: Ort-Oacc-diagrams comparing different hyper-parameter instantiations of
our active-learning framework on the hyper-parameter-tuning dataset. The x-
axis shows the ratio of total solver runtime on the sampled instances relative
to all instances. The y-axis shows the ranking accuracy (cf. Section 4.1). Each
line entails the front of Pareto-optimal configurations for the respective hyper-
parameter instantiation.
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Fig. 3: Scatter plot comparing different instantiations of trade-off parameter δ
for our active-learning framework on the hyper-parameter-tuning dataset. The
x-axis shows the fraction of runtime Ort of the sample, while the y-axes show
the fraction of instances sampled and ranking accuracy, respectively. The color
indicates the weighting between different optimization goals δ ∈ [0, 1]. The larger
δ, the more we favor accuracy over runtime.

Regarding ranking approaches (Fig. 2a), using the predicted s3-induced run-
time-label ranking consistently outperforms the partially observed PAR-2 rank-
ing for each possible value of the trade-off parameter δ. This outcome is expected
since selection decisions are not random. For example, we might sample more
instances of one family if it benefits discrimination of solvers. While the partially
observed PAR-2 score is skewed, the prediction model can account for this.

Regarding the selection approaches (Fig. 2b), uncertainty sampling performs
best in most cases. However, information-gain sampling is beneficial if runtime is
strongly favored (small δ; runtime fraction less than 5%). This result aligns with
our expectations: Information-gain sampling selects instances that maximize the
expected reduction in entropy. This means we sample instances revealing simi-
larities between solvers rather than differences, which helps to build a confident
model quickly. However, the method cannot select helpful instances for distin-
guishing solvers later. Random sampling performs reasonably well but is out-
performed by uncertainty sampling in all cases, showing the benefit of actively
selecting instances based on a prediction model.

Regarding the stopping criteria (Fig. 2c), the ranking stopping criterion per-
forms most consistently well. If accuracy is strongly favored (very high δ), the
Wilcoxon stopping criterion performs better. The subset-size stopping criterion
performs reasonably well but does not improve beyond a certain accuracy be-
cause of sampling a fixed subset of instances.

Fig. 3a shows an interesting consequence of weighting our optimization goals:
If we, on the one hand, desire to get a rough estimate of a solver’s performance
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Table 2: Performance comparison (on the full dataset) of the best-performing
active-learning approaches (AL), random sampling of the same runtime frac-
tion with 1000 repetitions (Random), and statically selecting the instances most
frequently sampled by active-learning approaches (Most Freq.)

(a) Best-performing AL approach for δ ∈ [0.2, 0.7]

AL Random Most Freq.
Sampled Runtime Fraction (%) 5.41 5.43 5.44
Sampled Instance Fraction (%) 26.53 5.43 27.75
Ranking Accuracy (%) 90.48 88.54 81.08

(b) Best-performing AL approach for δ ∈ (0.7, 0.8]

AL Random Most Freq.
Sampled Runtime Fraction (%) 10.35 10.37 10.37
Sampled Instance Fraction (%) 5.24 10.37 36.96
Ranking Accuracy (%) 92.33 91.61 84.52

fast (low δ), approaches favor selecting many easy instances. In particular, the
fraction of sampled instances is larger than the fraction of runtime. By having
many observations, it is easier to build a model. If we, on the other hand, desire
to get a good estimate of a solver’s performance in a moderate amount of time
(high δ), approaches favor selecting few, difficult instances. In particular, the
fraction of instances is smaller than the fraction of runtime.

Furthermore, Fig. 3b reveals which values make the most sense for δ. The
range δ ∈ [0.2, 0.8], thereby, corresponds to the points with a runtime fraction
between 0.03 and 0.22 We consider this region to be most promising, analogous
to the elbow method in cluster analysis [18].

5.2 Full-Dataset Evaluation

Having selected the most promising hyper-parameters, we run our active-learning
experiments on the complete Anniversary Track dataset (5355 instances). The
aforementioned range δ ∈ [0.2, 0.8] only results in two distinct configurations.
The best-performing approach for δ ∈ [0.2, 0.7] uses the predicted runtime-label
ranking, information-gain sampling, and ranking stopping criterion. It can pre-
dict a new solver’s PAR-2 ranking with 90.48% accuracy (Oacc) in only 5.41%
of the full evaluation time (Ort). The best-performing approach for δ ∈ (0.7, 0.8]
uses the predicted runtime-label ranking, uncertainty sampling, and ranking
stopping criterion. It can predict a new solver’s PAR-2 ranking with 92.33%
accuracy (Oacc) in only 10.35% of the full evaluation time (Ort).

Table 2 shows how both active-learning approaches (column AL) compare
against two static baselines: Random samples instances until it reaches roughly
the same fraction of runtime as the AL benchmark sets. We repeat sampling
1000 times and report average results. Most Freq. uses a static benchmark set
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Fig. 4: Scatter plot showing the importance of different instance families to our
framework on the full dataset. The x-axis shows the frequency of instance families
in the dataset. The y-axis shows the average frequency of instance families in
the samples selected by active learning. The dashed line represents families that
occur with the same frequency in the dataset and samples.

consisting of those instances most frequently sampled by our active learning
approach. In particular, we consider the average sampling frequency over all
solvers and Pareto-optimal active-learning approaches.

Both our AL approaches perform better than random sampling. However,
the performance differences are not significant regarding a Wilcoxon signed-
rank test with α = 0.05 and also depend on the fraction of sampled runtime
(cf. Fig. 2b). A clear advantage of our approach is, though, that it indicates
when to stop adding further instances, depending on the trade-off parameter δ.
While the active-learning results are less strong on the full dataset than on the
smaller tuning dataset, they still show the benefit of making benchmark selection
dependent on the solvers to distinguish.

A static benchmark using the most frequently AL-sampled instances per-
forms poorly, though, compared to active learning and random sampling. This
outcome is somewhat expected since the static benchmark does not reflect the
right balance of instance families: Families whose instances are uniform-randomly
selected by AL, e.g., for different solvers, appear less often in this benchmark
than families where some instances are sampled more often than others.

5.3 Instance-Family Importance

Selection decisions of our approach also reveal the importance of different in-
stance families to our framework. Fig. 4 shows the occurrence of instance fami-
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lies within the dataset and the benchmarks created by active learning. We use
the best-performing configurations for all δ ∈ [0, 1] and examine the selection
decisions by the active-learning approach on the SAT Competition 2022 Anniver-
sary Track dataset [2]. While most families appear with the same fraction in the
dataset and the sampled benchmarks, a few outliers need further discussion.
Problem instances of the families fpga, quasigroup-completion, and planning are
especially helpful to our framework in distinguishing solvers. Instances of these
families are selected over-proportionally in comparison to the full dataset. In
contrast, instances of the largest family, i.e., hardware-verification, roughly ap-
pear with the same fraction in the dataset and the sampled benchmarks. Finally,
instances of the family cryptography are less important in distinguishing solvers
than their vast weight in the dataset suggests. A possible explanation is that
these instances are very similar, such that a small fraction of them is sufficient
to estimate a solver’s performance on all of them.

6 Conclusions and Future Work

In this work, we have addressed the New-Solver Problem : Given a new solver,
we want to find its ranking amidst competitors. Our approach provides accu-
rate ranking predictions while needing significantly less runtime than a complete
evaluation on a given benchmark set. On data from the SAT Competition 2022
Anniversary Track, we can determine a new solver’s PAR-2 ranking with about
92% accuracy while only needing 10% of the full-evaluation time. We have eval-
uated several ranking algorithms, instance-selection approaches, and stopping
criteria within our sequential active-learning framework. We also took a brief
look at which instance families are the most prevalent in selection decisions.

Future work may compare further sub-routines for ranking, instance selec-
tion, and stopping. Additionally, one can apply our evaluation framework to
arbitrary computation-intensive problems, e.g., other NP-complete problems
than SAT, as all discussed active-learning methods are problem-agnostic. Such
problems share most of the relevant properties of SAT solving, i.e., there are es-
tablished instance features, a complete benchmark is expensive, and traditional
benchmark selection requires expert knowledge.

From the technical perspective, one could formulate runtime discretization
as an optimization problem rather than addressing it empirically. Further, a
major shortcoming of our current approach is the lack of parallelization, selecting
instances one at a time. Benchmarking on a computing cluster with n cores
benefits from having batches of n instances. However, bigger batch sizes n impede
active learning. Also, it is unclear how to synchronize instance selection and
updates of the prediction model without wasting too much runtime.

Acknowledgments. This work was supported by the Ministry of Science, Re-
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Abstract. Over the last years, innovative parallel and distributed SAT
solving techniques were presented that could impressively exploit the
power of modern hardware and cloud systems. Two approaches were par-
ticularly successful: (1) search-space splitting in a Divide-and-Conquer
(D&C) manner and (2) portfolio-based solving. The latter executes differ-
ent solvers or configurations of solvers in parallel. For quantified Boolean
formulas (QBFs), the extension of propositional logic with quantifiers,
there is surprisingly little recent work in this direction compared to SAT.
In this paper, we present ParaQooba, a novel framework for parallel
and distributed QBF solving which combines D&C parallelization and
distribution with portfolio-based solving. Our framework is designed in
such a way that it can be easily extended and arbitrary sequential QBF
solvers can be integrated out of the box, without any programming effort.
We show how ParaQooba orchestrates the collaboration of different
solvers for joint problem solving by performing an extensive evaluation
on benchmarks from QBFEval’22, the most recent QBF competition.

1 Introduction

Quantified Boolean formulas (QBFs) extend propositional logic by quantifiers
over the Boolean variables [2]. As a consequence, the decision problem of QBF
(QSAT) is PSPACE complete, which is potentially harder than the NP-complete
decision problem of propositional logic (SAT). Hence, the quantifiers allow for
an efficient encoding of many reasoning problems from formal verification, syn-
thesis, and planning [26] that most likely do not have a compact formulation
in propositional logic. Over the last decade, considerable progress has been
made in sequential QBF solving [22,21]. In contrast to SAT, where conflict-
driven clause learning (CDCL) [19] is the predominant solving paradigm, in
QBF solving different approaches of orthogonal strength have been presented.
Besides QCDCL, the QBF variant of CDCL, which is implemented for example
in the solver DepQBF [17], clausal abstraction as implemented in the solver
Caqe [23] and abstraction-refinement based expansion as implemented in the
solver RaReQs [13] are particularly successful [22,21]. All of these QBF solving
approaches considerably benefit from preprocessing, i.e., an extra step before
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the actual solving in which certain redundancies of a formula are eliminated in
a satisfiability-preserving way with the aim to make it easier for the solver [10].

Despite the vivid development in sequential QBF solving, only few approaches
have been presented for parallel and distributed QBF solving [18]. The most
recent parallel QBF solvers are HordeQBF [1] which integrates sequential
QCDCL-based solvers to obtain a parallel QBF solver and, more recently, a
basic implementation of a QBF module based on the parallel SAT solver Para-
Cooba [6] with DepQBF as its only backend solver. To the best of our knowl-
edge, besides these two approaches no other parallel QBF solver has recently
been presented. The situation in SAT is different: several very powerful parallel
and distributed SAT solvers like Mallob [24], Painless [5], and the afore men-
tioned solver ParaCooba [7] have been released. They show the potential of
parallel and distributed approaches impressively by solving hard SAT instances,
for example from multiplier verification [15].

In this paper, we present ParaQooba, a novel framework for parallel and
distributed QBF solving that integrates search-space splitting based on the
Divide-and-Conquer paradigm with portfolio solving. Our framework is built
on top of the ParaCooba SAT solving framework and extends its basic non-
portfolio QBF solving module. ParaQooba reuses most of ParaCooba’s mod-
ules providing management and distribution of solver tasks. In addition, we im-
plemented a very generic interface that allows the easy integration of any QBF
solver binary into our framework.

Our main contributions are as follows:

– we present a new flexible framework for parallel and distributed QBF solving
that combines D&C search-space splitting with portfolio solving;

– we show how different QBF solvers that are based on different solving ap-
proaches can be integrated seamlessly into our framework;

– we provide our framework as open-source project;
– we perform an extensive evaluation that demonstrates the power of our ap-

proach on various kinds of benchmarks.

ParaQooba is integrated into ParaCooba’s and available on GitHub:

https://github.com/maximaximal/paracooba

This paper is structured as follows: First we introduce some preliminaries re-
quired for the rest of the paper in the following section. We continue with related
work in section 3. After that, section 4 summarizes concepts of the ParaCooba
solver framework used in our work. Then we introduce how we apply Divide-
and-Conquer to solving QBF in section 5. Having introduced the background,
we present our portfolio ParaQooba module in detail in section 6 and provide
an extensive evaluation in section 7. Finally, we summarize our findings and
conclude in section 8.

https://github.com/maximaximal/paracooba
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2 Preliminaries

We consider QBFs Q.ϕ in prenex conjunctive normal form (PCNF) where the
prefix Q is of the form Q1x1, . . . , Qnxn with Q ∈ {∀, ∃}. The matrix ϕ is a propo-
sitional formula over the variables x1, . . . , xn in conjunctive normal form (CNF).
A formula in CNF is a conjunction (∧) of clauses. A clause is a disjunction (∨)
of literals. A literal is a variable x, a negated variable ¬x or a (possibly negated)
truth constant � (true) or ⊥ (false). For a literal l, the expression l̄ denotes x
if l = ¬x and it denotes ¬x otherwise. We sometimes write a clause as a set of
literals and a CNF formula as set of clauses. Further, it is often convenient to
partition the quantifier prefix into quantifier blocks, i.e., maximal sets of consec-
utive sets of variables with the same quantifier type. For example, for the QBF
∀x1∀x2∃y1∃y2.ϕ we also write ∀X∃Y.ϕ with X = {x1, x2} and Y = {y1, y2}.
With upper case letters X,Y, . . . (possibly subscripted), we usually denote sets
of variables, while with lower case letters x, y, . . . (also possibly subscripted), we
denote variables. If ϕ is CNF formula, then ϕx←t is the CNF formula obtained
from ϕ by replacing all occurrences of variable x by truth constant t ∈ {�,⊥}.
Depending on the value of t, variable x is either set to true (if t is �) or to false
(if t is ⊥). We define the semantics of QBFs as follows:

– a QBF ∀XQ.ϕ is true iff both QBFs ∀X ′Q.ϕx←⊥ and ∀X ′Q.ϕx←� are true
where x ∈ X and X ′ = X \ {x};

– a QBF ∃YQ.ϕ is true iff at least one of ∃Y ′Q.ϕy←⊥ and ∃Y ′Q.ϕy←� is true
where y ∈ Y and Y ′ = Y \ {y}.

Note that we assume that all variables of a QBF are quantified, i.e., we are
considering closed formulas only. Further, we use standard semantics of con-
junction, disjunction, negation, and truth constants. For example, the QBF
φ1 = ∀x∃y.((x∨ y)∧ (¬x∨¬y)) is true, while φ2 = ∃y∀x.((x∨ y)∧ (¬x∨¬y)) is
false. As we see already by this small example, the semantics impose an ordering
on the variables w.r.t. the prefix. Given a QBF Q.ϕ, we say that x <Q y iff x
occurs before y in the prefix. If clear from the context, we write x < y. In φ1,
we have x < y, while in φ2, we have y < x.

3 Related Work

In practical QBF solving, attempts to parallelize and distribute QBF solvers
have a long history (cf. [18] for a survey). Already more than 20 years back, the
first distributed QBF solver PQSolve [4] was presented, in a time when QCDCL
had not been invented yet. With the advent of QCDCL, several attempts have
been made to build parallel QCDCL solvers and implement knowledge-sharing
mechanisms for learned clauses and cubes. One example of such a solver is
PAQuBE [16]. Unfortunately, the code of most of the early approaches is not
available anymore. Following the success of Cube-and-Conquer-based search-
space splitting, the QBF solver MPIDepQBF has been presented [14]. While
MPIDepQBF does not implement any sophisticated look-ahead mechanisms,
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it could demonstrate that even without knowledge-sharing considerable speedup
could be achieved. These results serve as motivation for the approach presented
in this paper. Unfortunately, MPIDepQBF is implemented in an older version
of OCaml that does not run on recent systems and relies on now deprecated li-
braries, making a comparison impossible. As indicated by its name, it is tailored
around the sequential QBF solver DepQBF [17]. Another recent MPI-based
QBF solver is HordeQBF [1] which implements knowledge sharing for QCDCL
solvers. It is designed in such a way that it allows the integration of any QCDCL
solver. In order to integrate a solver, it requires that it implements a certain in-
terface, i.e., programming effort is necessary to add a new solver. To the best of
our knowledge, it includes the QBF solver DepQBF only. HordeQBF does not
perform search-space splitting, but it is a parallel portfolio solver with clause-
and cube sharing. It diversifies the parallel solver instances by different param-
eter settings. This is different than in sequential portfolio solvers as presented
in [12], which select among different solvers based on some properties of the input
formula. Overall, a very strong focus on QCDCL-based solvers can be observed
for parallel QBF solving frameworks. Because of this, many chances for better
solving performance are missed, as nowadays there are many other solvers of
orthogonal strength. With ParaQooba we provide a simple way of exploiting
the power of the different solving approaches without any integration effort.

4 ParaCooba

Our novel framework ParaQooba (with q in the middle of its name) builds on
top of the SAT solver ParaCooba (with c in the middle of its name). In this
section, we describe the parts of ParaCooba that are relevant for the remainder
of this work for our extension of ParaCooba to ParaQooba.

ParaQooba will be made available publicly during the artifact evaluation
under the MIT license, similar to ParaCooba [7,6] which is publicly available
on GitHub also under the MIT license3. ParaCooba is a distributed Cube-
and-Conquer (C&C) solver that implements a proprietary peer-to-peer based
load balancing protocol. In contrast to standard D&C solvers the splitting of
the search-space can both be done upfront by using a look-ahead solver that
produces n cubes or online during solving by lookahead or other heuristics.
Amongst other information, the cubes are stored in a binary tree, the solve tree.

Solver module. A solver module manages the sequential solver that is responsible
for solving a subproblem. Different solver modules have different code-bases,
but they also generally share common concepts. A solver module implements a
parser task, which is created directly after the module was initiated and serves
as its starting point. It parses the input formula in its own worker thread and
instantiates a solver manager based on the fully parsed formula. The parser task
also creates the first solver task as the root of the solve tree.
3 github.com/maximaximal/Paracooba

https://github.com/maximaximal/Paracooba
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Solver Tasks. For ParaCooba, solver tasks are paths in the solve tree, whith a
parser task being used to generate the tree’s root. Solver tasks are usually started
as children of other tasks, saving references to their parents, with the root solver
task being the only exception. A task’s depth in the solve tree represents its
priority to be worked on: The greater the depth, the more important a task
is to be solved locally and the less important it is to be offloaded to other
compute nodes by the broker module. Only tasks that were created locally may
be distributed.

Broker module. The broker module handles relations between solver tasks and
processes their results. While the solver module generates tasks, the broker sched-
ules them based on their priorities (their depths) and offloads them if a different
compute node has less load than the current node. A task result is propagated
upwards across compute nodes, there is no conceptual difference between locally
and remotely solved tasks. The broker module is generic and does not rely on a
specific solver module, instead providing the environment a solver module works
in. It is already provided by ParaCooba and stays the same for different solver
modules.

Cube Sources. For generating concrete subproblems, cube sources provide as-
sumption literals to leaf solver tasks. A cube source decides whether a given
solver task should split again, based on the current configuration (mainly the
splitting depth) and the given formula. Every solver module can implement
its own cube source, hence there are different kinds of cube sources for differ-
ent solver modules. On this basis, very flexible mechanisms for the selection of
splitting variables can be implemented, ranging from a simple count of literal
occurrences to advanced look-ahead heuristics.

Task Tree. The task tree built lazily, i.e., only once a leaf is visited, the leaf is
either expanded into a sub-tree, or solved. We picture such a tree in Figure 1.
This tree has a depth of 1, because the path from the tree’s root solver task
to the leaf solver tasks has a length of 1. Once the active cube source stops
further splits from being carried out, the tree’s maximum depth is reached. The
worker thread currently executing a task then lends a solver instance from the
solver manager’s central store. Each solver instance is created on-the-fly once
(normally initialized based on the parser task) for each worker thread, which
can also happen for multiple worker threads in parallel. After a solver instance
was created, all other tasks solved by the same worker thread use the same solver
instance.

Guiding Paths. The cubes that are given to solver instances as assumptions are
called guiding paths. They are generated from the path to the leaf being solved.
The solver instance then handles the solving internally, blocking the worker
thread until either result is generated or the task is terminated. Results are
not returned to parents, but instead handled by the broker module, which then
traverses the solve tree upwards as far as possible, based on the results already in
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the tree. Different kinds of evaluations can be defined on every level using a user-
defined assessment function. With the result processed by the broker module,
the solver task then finishes and the worker thread can take on the next task,
based on the next-highest priority. The broker may delete the solver task after it
finished processing, if the result was already used somewhere above it in the tree
and no information from the original solver task structure is required anymore.
Once the broker module has enough information to solve the root task, the result
of the formula was computed successfully.

Solver Handle. A solver handle wraps instances of a given solver. It must be able
to receive an Assume event, directly followed by a Solve event. While processing
these events, a correctly working handle must block its calling thread until a
result is found. Additionally, it must be fully re-entrant after finishing processing,
so that the next solver task can apply new assumptions. On top of this, a handle
must also be able to process a Terminate event, stopping the solver and early-
returning control to its calling thread. Such a termination event may happen
at any time, as it is generated by other solver tasks. This possibility of random
terminations was an issue for our extension to ParaQooba, as it complicated
synchronization of all involved threads.

QBF Solver Module. ParaCooba already provided a basic QBF solver module
similar to the approach seen in MPIDepQBF. It implemented a QDIMACS-
parser in a new solver module based on the SAT module. It realizes a simple
cube source that returns the variable at the nth position in the prefix, with
n being the current depth of a solver task. The solve tree is built using two
adapted assessment functions: one for variables quantified ∀ (requiring all sub-
trees to be true), one for ∃ (requiring at least one sub-tree to be true). The
assessment functions also use ParaCooba’s cancellation-support to terminate
unneeded siblings after results already satisfy the respective subproblem. As
backend solver, it exclusively uses DepQBF that provides an incremental API
(which no other recent solver provides, to the best of our knowledge).

Summary. With its already existing tree-based QBF solving module together
with its support for distributed solving, ParaCooba provides a stable basis
for building an advanced parallel QBF solver. While the existing QBF module
is rather uncompetitive with a few exceptions that indicate its potential, its
core infrastructure turned out to be very useful to build our novel framework
ParaQooba that offers built-in portfolio support.

The networking support mentioned above enables combining multiple com-
pute nodes by giving each peer a connection to the main node. This is achieved
with setting the --known-remote option. With this feature it becomes possible
to easily distribute larger problem instances on a cluster or in the cloud.
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5 Architecture of ParaQooba: Combining
Divide-and-Conquer Portfolio Solving

Our framework ParaQooba combines Divide-and-Conquer (D&C) search space
splitting with portfolio solving. The key feature of ParaQooba compared to
ParaCooba is to allow portfolio solving at different search depths. The idea is
illustrated in Figure 1. Both approaches are widely used to realize parallel and
distributed SAT and QBF solvers. The D&C approach has been especially suc-
cessful for hard combinatorial SAT problems [11] in a variant called Cube-and-
Conquer (C&C). The C&C approach relies on powerful, but expensive lookahead
solvers that heuristically decide which variables shall be considered for splitting.
In its original SAT version, ParaCooba builds upon this idea [7].

For a QBF Q1XQ2YQ.ϕ with Q1 	= Q2 and Q1, Q2 ∈ {∀, ∃} though, the
possible choices for variable selection are more restricted because of the quantifier
prefix. In general, only variables from the outermost quantifier block Q1X may
be considered, because otherwise, the value of the formula might change. Jordan
et al. [14] observed that for QBF following the sequential order of the variables
in the first quantifier block already leads to improvements compared to the
sequential implementation of DepQBF. The already existing QBF solver module
of ParaCooba (see section 4) relied on this observation: it traverses the prefix of
a PCNF and splits each visited leaf into two sub-trees, respecting both universal
and existential quantifiers, until a pre-defined maximum depth is reached. Hence,
it re-implements the approach of MPIDepQBF in ParaCooba.

Our framework ParaQooba generalizes the previous QBF module of Para-
Cooba not only by generalizing the interface in such a manner that any QBF
solver can be easily (without programming effort) integrated as backend solver.
Now it is also possible to run several solvers in the leaves as shown in Figure 2
for one split. Overall, ParaQooba realizes the following approach. The search-
space is split according to the variable ordering of the prefix until a given depth.
Once one of the sub-trees of an existentially quantified variable split is found to
be true, the other sibling is terminated. Only when both siblings return false,
the whole split returns false. Universal splits work in a dual manner: the result
is only true if both sub-trees are found to be true and false otherwise. This
property of QBF enables efficient termination of sub-tasks.

In ParaQooba, we now also parallelize each solver call over several QBF
solvers with orthogonal strategies. Compared to prior approaches [18], we run
a portfolio of multiple solvers in the leaves of the solve tree instead of only
parallelizing its root. Having just one tree leads to several advantages: We are
more flexible and may also call a preprocessor (e.g. Bloqqer) before each solve
call. We also only instantiate the tree once, saving memory and enabling early-
termination of sibling solver tasks.

6 Implementation

This section describes the extension of the SAT solver ParaCooba (for an
overview see section 4) to our QBF solving framework ParaQooba. As Para-
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Q1xQ2yQ.φ

Solver 2||Solver 1

Q2yQ.φx←⊥

x← ⊥

Solver 1 || Solver 2

Q2yQ.φx←�

x← �Qn ∈ {∀, ∃} splitting

solving

Fig. 1: Divide-and-Conquer with arbitrary-many levels of splitting and sub-
formulas on the leaves solved by a portfolio of different sequential solvers

Cooba was originally not designed for portfolio support, several modifications
and extensions were necessary. To this end, we first present the new QBF module
of ParaQooba followed by a discussion of novel search-space pruning facilities.

6.1 The ParaQooba QBF Module

We generalized the already existing QBF solver handle to become an abstract
base class, which now can be either a single solver handle or a portfolio handle.
The latter unifies multiple handles into one, emulating a blocking and re-entrant
interface. Once a portfolio handle is initialized, it starts one thread per internally
wrapped handle. Each such thread implements a small state machine, waiting
for events on a shared queue. Once the portfolio handle receives an assumption
(a temporary truth assignment of a variable for one solver call), it is forwarded
to all internal threads and is worked on by each wrapped solver in parallel.

If a portfolio handle was terminated before a solve call was issued, the internal
handles would enter an invalid state. To circumvent this situation, an assumption
event also directly triggers the internal state machine to continue into the solve
state. Once the solve request actually arrives, it is just translated to an empty
event, which, after it finished processing, indicates that a result was computed.
A termination event is forwarded to the internal solver handles, but is limited
to only one event per solve cycle.

ParaQooba QBF Module

QBF Solver Task(s)Worker 1
Solver 1 || . . . || Solver n

Worker 2
Solver 1 || . . . || Solver n

Worker n
Solver 1 || . . . || Solver n

Fig. 2: The ParaQooba framework
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The first internal solver handle to compute a result returns and sends a
termination event to all sibling solvers. The result is saved and the portfolio
handle waits for all internal handles to be ready to receive the next assumption,
i.e., returning all solvers to a known state. Once every internal handle has reached
that, the portfolio handle finally returns to its calling thread, forwarding the
result of the inner handle. Because of thread scheduling and fast solving of trivial
subproblems, a result can be forwarded even before the other sibling has been
started, letting the broker module already complete a task before it itself has
created both child tasks. This effect lead to some issues and had to be mitigated
by adding some conditions on a task already being terminated even though it
did not yet run to completion. Because a task will only be scheduled after the
initial call to its assessment function, not many such checks were needed.

As many QBF solvers lack APIs, we have to work with their binaries that
generally only read QDIMACS files. For this, we use the QuAPI interfacing
library, that adds well-performing assumption-based reasoning support to generic
solver binaries [9]. By not relying on specialized modifications of a solver’s source
code, we are able to plug-in generic third-party solvers, completely composable
at runtime. Our ParaQooba module provides the --quapisolver parameter,
that either directly specifies the leaf solver to be used, or automatically generates
a portfolio handle to wrap multiple parallel leaf solvers. Note that our approach
works for QBFs starting with existential as well as with universal quantification.

In its standard configuration, ParaQooba returns whether a given instance
is found to be true or false. When enabling trace output using -t, it also supports
printing the specific solver and the subproblem (including its guiding path) that
produced a result. Using this machinery, one obtains an environment to experi-
ment with benchmarks and to see how multiple solvers complement each other
for the generated sub-formulas. The trace output is also useful when fully ex-
panding a QBF formula by specifying a tree-depth of -1. While not advised for
any real formulas, this was a well-received debugging aid for stress-testing new
features. The opposite to this can also be done, by applying a tree-depth of 0.
This directly solves the root task, without splitting the formula. This was also
how the configuration PQ Portfolio with depth 0 (as discussed in the experimen-
tal evaluation below) was executed.

6.2 Search-Space Pruning

Preprocessing in the leaves. We modified the QBF preprocessor Bloqqer to
allow forwarding output directly into a given solver binary by adding a -p argu-
ment. Internally, this writes the complete formula with added assumptions into
the standard input of Bloqqer’s preprocessing pipeline.

To plug e.g. Caqe into such a processing chain and then into ParaQooba,
one may use our QBF solver module’s command line option --quapisolver
bloqqer-popen@-p=caqe. Deferring preprocessing until solving the leaves pre-
serves the original formula structure of a formula during the split phase. We
discuss the effects of this later in subsection 7.4.
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Integer-Split Reduction. In many planning and verification encodings, the vari-
ables of a quantifier block QX are interpreted as bitvectors representing m nodes
of a graph. Assume that n = |X| bits with m ≤ 2n are used for modeling the
states of the graph. Then 2n −m assignments to X are not relevant, but as a
solver is agnostic of this information, it has to consider all assignments.

If m is known to the user, ParaQooba can be called with the option
--intsplit (once or multiple times, once for each layer). One integer-split is
counted as one layer in the task tree, so a tree-depth of two would split another
quantifier into two more tasks for each state encoded in the previous integer-
based split. To provide an example: Setting --intsplit 5 creates 5 child-tasks
in the task tree, spanning over the first �log2 5� = 3 boolean variables from the
quantifier prefix. When not using doing an integer-based split, these 3 variables
would have to be expanded over 3 layers in the task tree, each inner task being
split into two child tasks, resulting in 8 leaves , opposed to the 5 from before.
Thus, integer-based splits require less intermediate splitting tasks to model the
same formula, reducing the work to be done by the load-balancing mechanism in
the Broker module. These integer splits are efficiently distributed over the net-
work by relying on both the config-system and an extended QBF cube source.
The cube source always saves the current guiding path, applying new splits, and
in turn new assumptions, by appending to that path. The cube source itself is
automatically serialized when a task is chosen to be offloaded to another com-
pute node. While the possible savings are large, one has to exert great caution
when using this feature, as it might change the semantics of a formula.

7 Evaluation

In this section, we evaluate ParaQooba on recent benchmarks and compare it
to (sequential) state-of-the-art QBF solvers. As sequential backend solvers, we
use the latest versions of DepQBF [17] as QCDCL solver, Caqe [23] as clausal-
abstraction solver, and RaReQs [13] as recursive abstraction refinement solver.
For preprocessing, we use Bloqqer [3] (version 31). All of these solvers were top-
ranked in the most recent edition of QBFEval’22 [22]. For our experiments we
used the benchmarks of the PCNF-track of this competition. The main questions
we want to answer with our evaluation are as follows:

– how does the parallel portfolio-leaf approach of ParaQooba perform in
comparison to the individual sequential solvers?

– how does the parallel portfolio-leaf approach of ParaQooba perform in
comparison to the virtual portfolio solver of the sequential solvers?

– what is the impact of performing the preprocessing in the leaves instead on
the original input formula?

We ran our experiments on machines with dual-socket 16 core AMD EPYC
7313 processors with 3.7GHz sustained boost clock speed and 256GB main
memory. Each task was assigned as many physical cores as its setup required,
except for tasks with more than 32 concurrent threads, which were exclusively
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assigned a whole node each as to not be slowed down by other loads. The ef-
fects of over-committing in case of three concurrent portfolio solvers (48 threads
running in parallel with only 32 physical cores available) are discussed below in
subsection 7.3.

Please note that in this evaluation we do not use the networking features
provided by ParaCooba, as we focus on applicability to QBF and not on the al-
ready presented scalability of the networking component (for the details see [3]).

7.1 Overall Performance Comparison

In order to exploit our hardware with 32 physical cores and 64 logical cores in the
best possible way, we mainly focus on a splitting depth of four in the following.
With this depth, 16 worker threads are generated for each problem and with
three sequential backend solvers, overall 48 processes are started. We call this
configuration PQ Portfolio, Depth 4. For understanding the impact of splitting,
we also consider other depths as well. With PQ Portfolio, Depth 0 we refer to
the configuration in which splitting is disabled. This configuration is particularly
interesting, because compared to the virtual best solver (VBS), it reveals the
overhead introduced by our framework (see also the discussion below). In order to
show the improvements of ParaQooba compared to the QBF module without
portfolio solving that was already available in ParaCooba [6], we also included
the configuration PQ DepQBF, Depth 4.

Figure 3 shows the overall results of our evaluation without preprocessing.
Both configurations of ParaQooba, PQ Portfolio, Depth 0 and PQ Portfolio,
Depth 4 are considerably better than the single sequential solvers as well as the
basic non-portfolio QBF module of ParaCooba only solving with DepQBF
(PQ DepQBF, Depth 4). However, compared to the virtual portfolio, 28 in-
stances less are solved in total (for an explanation see below). On the positive
side, 33 formulas can be solved by our new approach that could not be solved by
any sequential solver. The situation changes when preprocessing is applied (cf.
Figure 4). Now ParaQooba in configuration PQ Portfolio Preprocessed For-
mulas, Depth 4 is able to solve most formulas. It even solves more formulas than
the Preprocessed Virtual Portfolio, indicating the potential of our approach.

A detailed analysis is given in Figure 5. By comparing the number of solved
instances to the solve time of individual (preprocessed) problem instances, we
see a small average speedup when using ParaQooba with depth 4 compared
to a virtual portfolio solver in Figure 5a. The more trivial instances tend to be
solved quicker using a sequential solver, while the harder to solve instances tend
to be solved faster with the Divide-and-Conquer approach of ParaQooba.

Next, we used the preprocessed leaves functionality introduced in subsec-
tion 6.2. Here ParaQooba generates its guiding paths using the original formula
and applies Bloqqer only in the leaves of the solve tree. In this configuration,
some problem instances take longer to solve than when preprocessing the full for-
mula, while others can be solved quicker. We present these results in Figure 5b.
Such a result was expected, as it is conceptually similar to inprocessing.
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Fig. 5: Detailed comparison of ParaQooba against the virtual portfolio of De-
pQBF, Caqe, and RaReQs in a, b, d. In a, ParaQooba solves 45 instances
that no sequential solver could solve. In b, ParaQooba solves 38 instances no
sequential solver could solve, 8 of which also could not be solved with portfolio
over preprocessed formulas as in a. d focuses only on preprocessed formulas from
the Hex benchmark family. In c, we directly compare preprocessing in the leaves
to preprocessing in the input formula.
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When considering the formulas that were exclusively solved by ParaQooba,
then the variant with preprocessing the full formula up-front performed best
followed by the variant with preprocessing in the leaves. These formulas include
verification and synthesis benchmarks with 2–3 quantifier alternations as well
as many encodings of the game Hex with 13, 15 or 17 quantifier alternations.
Table 1 in the appendix lists all instances (48) that were only solved with some
variant of ParaQooba. It also lists which variant was the fastest.

7.2 Family-Based Analysis

To understand which formula families benefit most from our Divide-and-Conquer
solving strategy, we compared the (wall-clock) solve time of ParaQooba to the
virtual portfolio solver. We calculated the speedup by dividing the solve time
of the sequential solver by the solve time of ParaQooba. The instances with
the highest speedups were some reachability queries (up to 18.09), the Hex game
planning family (17.64), multipliers (16.46), and the formula_add family (15.16).
More detailed results are appended in Table 2. Together with the number of
Hex instances only ParaQooba solved (21), this makes Hex game planning the
benchmark family with the best overall results in our evaluation. A comparison
between ParaQooba and other solvers is shown in Figure 6.

7.3 Scalability of our Approach

As already discussed above, using 16 workers leads to overcommitting cores
when solving with a portfolio of more than two solvers. To quantify this, we did
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a scalability experiment with different worker counts. Because the Hex planning
benchmarks had the most predictable performance, we focused this experiment
on these formulas. Figure 7 shows the scalability graph, where the X-axis has
been multiplied by the number of workers used, to visualize the cost of in-
creased CPU-time compared to reduced wall-clock solve time. The impact of
over-committing CPU cores can be clearly observed in the results of the portfo-
lio with depth 4. This curve solves more compared to the others and takes longer
to solve the first 140 instances, until the curves become more similar again.

7.4 Preprocessed Leaves compared to Preprocessed Formulas

We compared preprocessing the whole formula at once using Bloqqer to calling
Bloqqer using bloqqer-popen in each leaf after first splitting on the unchanged
formula. The first variant modifies the original prefix, including the quantifier or-
dering. Because the used splitting algorithm generates guiding paths by following
this quantifier ordering, the different approaches lead to vastly different results.
Figure 5c visualizes these differences by scattering both variants together.

Looking at the specific benchmarks benefiting from the two variants, we
often observed improvements to one variant per family. This strongly suggests
that adaptive preprocessing and inprocessing techniques could further improve
solving performance, even without otherwise changing solvers themselves.

7.5 Lessons Learned

One would expect that for any given problem, parallel portfolio solvers are as
fast as the fastest used solver. While this statement is conceptually true, we
encountered some formulas where PQ-Portfolio gave comparatively bad results,
while a solver alone could solve the same formula quicker or even instantly.
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We investigated this in more detail and found several segmentation faults in
Caqe and API inconsistencies in DepQBF that were encountered because of
some corner-case structures of the generated subproblems (e.g., by enforcing the
values of certain variables). We reported these issues to the solver developers
and hope to obtain fixes soon. Having this issues fixed would lead to a more
performant general solution and to a more robust user experience. In sequential
execution of these solvers, we did not encounter any problems on the unmodified
competition benchmarks without added unit clauses.

Currently, we adopt the following work-around. Segmentation faults of the
sequential solvers are handled in our QBF module using the indirection provided
by QuAPI. Once an unrecoverable error occurs in the solver child process, it
exits and returns the error up through QuAPI’s factory process and into the
solver handle. There, such a result is interpreted as Unknown, which is invalid
and therefore ignored, letting the portfolio wait for other results. We provide all
affected formulas that we found in the artifact submitted alongside this paper.

We also observed that calling a solver via its API might lead to a consider-
ably different behavior than calling a solver from the command line, i.e., different
optimizations are activated when calling a solver through its API compared to
using the command-line binary. Such behavior can be mitigated by not using the
API directly, and instead relying on QuAPI, even if an API would be available.
This fixes the issues with DepQBF, which solves some formulas (with assump-
tions supplied as unit clauses) in under one second if used as a solver binary,
but not when applying assumptions through its API. We also supply all found
formulas that triggered this issue in the submitted artifact.

8 Conclusions

We presented ParaQooba, a parallel and distributed QBF solving framework
that combines search-space splitting with portfolio solving. We designed the
framework in such a way that any sequential QBF solver binary can be eas-
ily integrated without any implementation effort. Our experiments demonstrate
that this approach in combination with sequential preprocessing lead to consid-
erable performance improvements for certain formula families.

With our framework, we provide a stable infrastructure that has the po-
tential for many future extensions. For example, we did not incorporate any
advanced splitting heuristics as in modern Cube-and-Conquer solvers. We ex-
pect that with more advanced heuristics, combined with adaptive but possibly
non-deterministic re-splitting of leaves, even more speedups could be achieved.

In addition to the presented experiments, we also evaluated the novel integer-
split feature (cf. subsection 6.2) with the Hex benchmark family. By providing
the number of valid game states to ParaQooba, we could increase the split-
ting depth as well as the number of solved instances. We see much potential of
providing encoding-specific or domain-specific knowledge to the solver and will
investigate this in future work.



442 M. Heisinger et al.

Data Availability Statement

Data used for benchmarking the described software, including source code, are
made available permanently under a permissive license in a public artifact on
Zenodo. Raw source data for the figures presented in this paper are also in-
cluded [8].

A Instances Only Solved by ParaQooba

Name Clauses Variables QA Time [s] Res Variant
b21_C_3_206 242896 3270 3 265.77 � full
c1_Debug_s3_f1_e1_v1 1775758 379113 3 3164.34 � full
c2_Debug_s3_f1_e1_v2 431970 98425 3 1834.27 � full
cache-coherence-2-fixpoint-2 10648 3686 2 0.56 ⊥ leaves
cmu.dme1.B-f3 4540 1795 3 0.2 � leaves
cmu.dme2.B-f3 6151 2342 3 818.3 � leaves
LoginService 21667 5289 2 1086.07 ⊥ orig
query64_query42_1344n 3423 1426 2 86.73 � full
hex_compact_goal_witness_
based_hein_03_6x6-13.pg

3401 1056 15 2594.27 ⊥ leaves

hex_compact_goal_witness_
based_hein_05_6x6-13.pg

3493 1071 15 3102.97 � full

hex_compact_goal_witness_
based_hein_17_6x6-13.pg

3430 1060 15 1919.64 ⊥ full

hex_compact_goal_witness_
based_hein_18_7x7-13.pg

4256 1267 15 1401.12 ⊥ full

hex_compact_goal_witness_
based_hein_02_5x5-13.pg

3134 1007 15 308.99 � full

hex_compact_goal_witness_
based_hein_15_5x5-15.pg

3667 1195 17 3063.67 � full

hex_symbolic_explicit_goal_
hein_03_6x6-11.pg

3421 902 13 693.11 ⊥ full

hex_symbolic_explicit_goal_
hein_05_6x6-11.pg

3611 918 13 501.29 ⊥ full

hex_symbolic_explicit_goal_
hein_18_7x7-11.pg

3084 1021 13 447.7 ⊥ leaves

hex_symbolic_explicit_goal_
hein_02_5x5-11.pg

2480 739 13 973.33 ⊥ full

hex_symbolic_explicit_goal_
hein_16_5x5-11.pg

2376 731 13 301.31 ⊥ full

hex_symbolic_implicit_goal_
hein_03_6x6-13.pg

3069 1001 15 1830.57 ⊥ full

hex_symbolic_implicit_goal_
hein_17_6x6-13.pg

3097 1005 15 2674.38 ⊥ full



PARAQOOBA: Parallel and Distributed QBF Solving 443

hex_symbolic_implicit_goal_
hein_02_5x5-13.pg

2812 952 15 404.36 � full

hex_symbolic_implicit_goal_
hein_15_5x5-15.pg

3106 1072 17 1944.27 � full

hex_witness_based_hein_03_
6x6-13.pg

7174 1917 13 2050.04 ⊥ full

hex_witness_based_hein_05_
6x6-13.pg

7456 1962 13 1005.06 � full

hex_witness_based_hein_17_
6x6-13.pg

7353 1936 13 1572.7 ⊥ full

hex_witness_based_hein_18_
7x7-13.pg

9577 2405 13 1102.69 ⊥ full

hex_witness_based_hein_20_
6x6-13.pg

7551 1962 13 3123.99 ⊥ full

hex_witness_based_hein_15_
5x5-15.pg

7423 2136 15 2489.7 � leaves

OrgSynth_mitexams_p02_l_6 83500 23384 3 1852.22 � full
OrgSynth_mitexams_p02_l_7 97214 27239 3 2693.19 � full
OrgSynth_mitexams_p03_l_5 106413 29730 3 2897.47 � full
OrgSynth_mitexams_p07_l_5 165039 46587 3 2469.04 ⊥ leaves
OrgSynth_mitexams_p16_l_6 53448 15692 3 2169.18 � full
OrgSynth_mitexams_p16_l_7 62141 18265 3 3054.75 � leaves
OrgSynth_mitexams_p19_l_6 106252 29346 3 3489.44 � full
OrgSynth_mitexams_p20_l_7 74375 21534 3 1782.51 ⊥ full
OrgSynth_mitexams_p01_l_4 65294 17864 3 1609.48 ⊥ full
OrgSynth_mitexams_p05_l_3 79279 22897 3 2055.46 � leaves
OrgSynth_mitexams_p05_l_4 105042 30409 3 2253.59 � full
OrgSynth_mitexams_p10_l_3 44309 12864 3 870.16 � full
OrgSynth_mitexams_p10_l_4 58490 17046 3 2163.5 � full
OrgSynth_mitexams_p13_l_3 52653 14953 3 1310.32 � full
OrgSynth_mitexams_p13_l_4 69554 19819 3 2592.6 � leaves
OrgSynth_sat18_p09_l_3 52653 14953 3 1765.8 � leaves
OrgSynth_sat18_p09_l_4 69554 19819 3 2328.99 � leaves
OrgSynth_sat18_p11_l_4 85537 23860 3 2123.52 ⊥ leaves
OrgSynth_sat18_p12_l_4 82734 23155 3 2803.72 ⊥ leaves

Table 1: 48 instances that were only solved by a ParaQooba configuration.
QA: Quantifier Alternations, Res: Result, Variant: ParaQooba configuration
that solved the problem the fastest (preprocess full formula, preprocess leaves,
original formula).
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B Instances Solved faster by ParaQooba

Name PQ [s] VPS [s] Speedup Res
nreachq_query71_1344n 2.21 39.97 18.09 ⊥
hex_witness_based_hein_08_5x5-11.pg 0.22 3.88 17.64 �
mult9.sat 2.11 34.73 16.46 �
add5_COMPLETE 1.78 26.98 15.16 �
hex_symbolic_explicit_goal_hein_10_5x5-11.pg 32.23 465.43 14.44 ⊥
hex_compact_goal_witness_based_hein_10_
5x5-13.pg

144.98 1853.09 12.78 �

hex_symbolic_explicit_goal_hein_11_5x5-09.pg 1.79 22.53 12.59 ⊥
hex_symbolic_implicit_goal_hein_03_6x6-11.pg 47.52 538.03 11.32 ⊥
reachqu_query60_1344n 7.57 77.4 10.22 ⊥
query71_query36_1344n 11.38 105.83 9.30 ⊥
hex_symbolic_explicit_goal_hein_08_5x5-09.pg 1.18 10.94 9.27 ⊥
hex_symbolic_implicit_goal_hein_20_6x6-11.pg 140.49 1282.38 9.13 ⊥
hex_witness_based_hein_06_4x4-11.pg 3.41 30.9 9.06 ⊥
hex_compact_goal_witness_based_hein_10_
5x5-11.pg

13.97 121.04 8.66 ⊥

hex_symbolic_implicit_goal_hein_19_5x5-11.pg 1.69 14.29 8.46 �
hex_symbolic_implicit_goal_hein_16_5x5-11.pg 22.26 184.75 8.30 ⊥
sortnetsort10.AE.stepl.008 13.33 107.07 8.03 ⊥
add7_REDUCED 135.58 1051.44 7.76 �
reachqu_query64_1344n 128.4 982.54 7.65 ⊥
hex_compact_goal_witness_based_hein_02_
5x5-11.pg

39.04 295.57 7.57 ⊥

amba4b9y.unsat 10.9 81.72 7.50 ⊥
hex_symbolic_implicit_goal_hein_15_5x5-13.pg 95.67 714.78 7.47 ⊥
hex_compact_goal_witness_based_hein_15_
5x5-13.pg

167.18 1229.74 7.36 ⊥

hex_symbolic_implicit_goal_hein_06_4x4-11.pg 1.32 9.67 7.33 ⊥
hex_compact_goal_witness_based_hein_16_
5x5-13.pg

372.26 2713.59 7.29 �

Table 2: Instances that ParaQooba (PQ) solved faster compared to a virtual
portfolio solver (VPS) that also solved the same problem, ordered by the relative
speedup and limited to the top 25 entries. Res: Result, Speedup: VPS[s]

PQ[s] .
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Abstract. Efficiency is a fundamental property of any type of program,
but it is even more so in the context of the programs executing on the
blockchain (known as smart contracts). This is because optimizing smart
contracts has direct consequences on reducing the costs of deploying and
executing the contracts, as there are fees to pay related to their bytes-size
and to their resource consumption (called gas). Optimizing memory usage
is considered a challenging problem that, among other things, requires a
precise inference of the memory locations being accessed. This is also
the case for the Ethereum Virtual Machine (EVM) bytecode generated
by the most-widely used compiler, solc, whose rather unconventional
and low-level memory usage challenges automated reasoning. This paper
presents a static analysis, developed at the level of the EVM bytecode
generated by solc, that infers write memory accesses that are needless
and thus can be safely removed. The application of our implementation on
more than 19,000 real smart contracts has detected about 6,200 needless
write accesses in less than 4 hours. Interestingly, many of these writes were
involved in memory usage patterns generated by solc that can be greatly
optimized by removing entire blocks of bytecodes. To the best of our
knowledge, existing optimization tools cannot infer such needless write
accesses, and hence cannot detect these inefficiencies that affect both the
deployment and the execution costs of Ethereum smart contracts.

1 Introduction

EVM and memory model. Ethereum [27] is considered the world-leading
programmable blockchain today. It provides a virtual machine, named EVM
(Ethereum Virtual Machine) [21], to execute the programs that run on the
blockchain. Such programs, known as Ethereum “smart contracts”, can be writ-
ten in high-level programming languages such as Solidity [6], Vyper [4], Serpent [3]
or Bamboo [1] and they are then compiled to EVM bytecode. The EVM bytecode
is the code finally deployed in the blockchain, and has become a uniform format
to develop analysis and optimization tools. The memory model of EVM pro-
grams has been described in previous work [17,19,26,27]. Mainly, there are three
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regions in which data can be stored and accessed: (1) The EVM is a stack-based
virtual machine, meaning that most instructions perform computations using
the topmost elements in a machine stack. This memory region can only hold a
limited amount of values, up to 1024 256-bit words. (2) EVM programs store
data persistently using a memory region named storage that consists of a map-
ping of 256-bit addresses to 256-bit words and whose contents persist between
external function calls. (3) The third memory region is a local volatile memory
area that we will refer to as EVM memory, and which is the focus of our work.
This memory area behaves as a simple word-addressed array of bytes that can
be accessed by byte or as a one-word group. The EVM memory can be used
to allocate dynamic local data (such as arrays or structs) and also for specific
EVM bytecode instructions which have been designed to require some lengthy
operands to be stored in local memory. This is the case of the instructions for
computing cryptographic hashes, or for passing arguments to and returning data
from external function calls. Compilers use the stack and volatile memory regions
in different ways. The most-used Solidity compiler solc generates EVM code
that uses the stack for storing value-type local variables, as well as intermediate
values for complex computations and jump addresses, whereas reference-type
local variables such as array types and user-defined struct types are located in
memory. For instance, when a Solidity function returns a struct variable, the
required memory for the struct is allocated and initialized at the beginning of
the function execution. However, the allocated memory is not always accessed as
we illustrate in the following function (that belongs to the contract in Fig. 1):

1 function ownershipAt (uint256 i ) pr ivate returns (TokenOwnership memory) {
2 return c . unpackedOwnership ( packedOwnerships [ i ] ) ;
3 }

Although the execution of _ownershipAt allocates memory for the return value de-
clared in the function definition, the execution of the function is reserving a differ-
ent memory space for the actual returned struct obtained from unpackedOwnership

and, thus, the first reservation and its initialization are needless. The focus of our
work is on detecting such needless write memory accesses on the code generated
by solc. Nevertheless, as the analysis works at EVM level, it could be easily
adapted to EVM code generated by any other compiler.

Optimization. Optimization of Ethereum smart contracts is a hot research topic,
see e.g. [9, 10, 12–14,22, 24] and their references. This is because the reduction of
their costs is relevant for three reasons: (1) Deployment fees. When the contract
is deployed on the blockchain, the owner pays a fee related to the size in bytes
of the bytecode. Hence, a clear optimization criterion is the bytes-size of the
program. The Solidity compiler solc [6] has as optimization target such bytes-size
reduction. (2) Gas-metered execution. There is a fee to be paid by each client to
execute a transaction in the blockchain. This fee is a fixed amount per transaction
plus the cost of executing all bytecode instructions within the function being
invoked within the transaction. This cost is measured in “gas” (which is then
priced in the corresponding cryptocurrency) and this is why the execution is
said to be gas-metered. The EVM specification ([27] and more recent updates)
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provides a precise gas consumption for each bytecode instruction in the language.
The goal of most EVM bytecode optimization tools [9, 10, 12–14,22] is to reduce
such gas consumption, as this will revert on reducing the price of all transactions
on the smart contract. (3) Enlarging Ethereum’s capability. Due to the huge
volume of transactions that are being demanded, there is a huge interest in
enlarging the capability of the Ethereum network to increase the number of
transactions that can be handled. Optimization of EVM bytecode in general
–and of its memory usage in particular– is an important step contributing into
this direction.

Challenges and contributions. Optimizing memory usage is considered a chal-
lenging problem that requires a precise inference of the memory locations being
accessed, and that usually varies according to the memory model of the language
being analyzed, and to the compiler that generates the code to be executed.
In the case of Ethereum smart contracts generated by the solc compiler, the
memory model is rather unconventional and its low-level memory usage patterns
challenge automated reasoning. On one hand, instead of having an instruction to
allocate memory, the allocation is performed by a sequence of instructions that
use the value stored at address 0x40 as the free memory pointer, i.e., a pointer to
the first memory address available for allocating new memory. In the general case,
the memory is structured as a sequence of slots: a slot is composed of several
consecutive memory locations that are accessed in the bytecode from the same
initial memory location plus a corresponding offset. A slot might just hold a data
structure created in the smart contract but also, when nested data structures
are used, from one slot we can find pointers to other memory slots for the nested
components. Finally, there are other type of transient slots that hold temporary
data and that need to be captured by a precise memory analysis as well. These
features pose the main challenges to infer needless write accesses and, to handle
them accurately, we make the following main contributions: (1) we present a
slot analysis to (over-)approximate the slots created along the execution and
the program points at which they are allocated; (2) we then introduce a slot
usage analysis which infers the accesses to the different slots from the bytecode
instructions; (3) we finally infer needless write accesses, i.e., program points
where the memory is written but is never read by any subsequent instruction
of the program; and (4) we implement the approach and perform a thorough
experimental evaluation on real smart contracts detecting needless write accesses
which belong to highly optimizable memory usage patterns generated by solc.
Finally, it is worth mentioning that the applications of the memory analysis
(points 1 and 2) go beyond the detection of needless write accesses: a precise
model of the EVM memory is crucial to enhance the accuracy of any posterior
analysis (see, e.g., [19] for other concrete applications of a memory analysis).

2 Memory Layout and Motivating Examples

Memory Opcodes. The EVM instruction set contains the usual instructions to
access memory: the most basic instructions that operate on memory are MLOAD
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4 struct TokenOwnership {
5 address addr ;
6 uint64 startTs ;
7 bool burned ;
8 }
9

10 contract Running1 {
11 // . . .
12 function unpackedOwnership
13 (uint256 packed) publ ic
14 s1s2 returns (TokenOwnership

memory ownership ) {
15 ownership . addr = . . . ;
16 ownership . startTs = . . . ;
17 ownership . burned = . . . ;
18 }
19 }

17 contract Running2 {
18 Running1 c ;
19 mapping(uint256=>uint256 ) pr ivate packedOwnerships ;
20 // . . .
21 function ownershipAt (uint256 i ) pr ivate
22 s6 returns (TokenOwnership memory) {
23 s7 return c . unpackedOwnership ( packedOwnerships [ i ] ) ;
24 }
25 function expl ic itOwnershipOf (uint256 tokenId )
26 s3 publ ic returns (TokenOwnership memory) {
27 s4 TokenOwnership memory ownership ;
28 s5 i f ( . . . ) { return ownership ; }
29 s8 ownership = ownershipAt ( tokenId ) ;
30 // . . .
31 s5 return ownership ;
32 }
33 }

Fig. 1: Excerpt of smart contract ERC721A.

and MSTORE, which load and store a 32-byte word from memory, respectively.3

The solc compiler generates code to handle memory with a cumulative model
in which memory is allocated along the execution of the program and is never
released. In contrast to other bytecode virtual machines, like the Java Virtual
Machine, the EVM does not have a particular instruction to allocate memory.
The allocation is performed by a sequence of instructions that use the value
stored at address 0x40 as the free memory pointer, i.e., a pointer to the first
memory address available for allocating new memory. In what follows, we use
mem〈x〉 to refer to the content stored in memory at location x.

Memory Slots. In the general case, memory is structured as a sequence of slots.
A slot is composed of consecutive memory locations that are accessed by using
its initial memory location, which we call the base reference (baseref for short) of
the slot, plus the corresponding offset needed to access a specific location within
the slot. Slots usually store (part of) some data structure created in the Solidity
program (e.g., an array or a struct) and whose length can be known.

Example 1 (slots). Fig. 1 shows an excerpt of smart contract ERC721A [2]
which contains two different contracts Running1 and Running2. We have omitted
non-relevant instructions such as those that appear at lines 15-17 (L15-L17 for
short). The contract Running1 to the left of Fig. 1 contains the public function
unpackedOwnership that returns a struct of type TokenOwnership defined at L4-
L7. The contract Running2, shown to the right, contains the public function
explicitOwnershipOf that returns, depending on a non-relevant condition, an
empty struct of type TokenOwnership (L29) or the TokenOwnership received from
a call to function unpackedOwnership of contract Running1 (L23), which is done in
the private function _ownershipAt. The execution of function unpackedOwnership

in Running1 allocates two different memory slots at L13: s1, for the returned
variable ownership, and s2, which is used for actually returning from the function
the contents of ownership:

3 Although the local memory is byte addressable with instruction MSTORE8, to keep the
description simpler, we only consider the general case of word-addressable MSTORE.
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0x00 0x20 0x40 0x60

ownership

bref=0x80

s1(L13)

return

bref=0x80+0x60

s2(L13)

The function explicitOwnershipOf in Running2 makes a more intensive use of the
memory which can be seen in this graphical representation:

0x00-0x60

returns

s3(L27)

ownership

s4(L28) returns

s6(L22)

return

s7(L23)

call res.

s8(L31)

return

s5(L33-L29)

The execution of this function might create up to six different slots. At L27 and
L28, it creates two slots, one for the struct declared in the returns part of the
function header (s3) and one for the local variable ownership (s4). Depending
on the evaluation of the condition in the if sentence, it might create the slots
needed to perform the call to _ownershipAt and, consequently, the external call
to Running1.unpackedOwnership. The invocation to the private function involves
three slots: one for the struct declared in the returns part of _ownershipAt in
L31 (s6), one slot to manage the external call data in L23 (s7), and one slot for
storing the results of the private function _ownershipAt in L31 (s8). Finally, a
new slot (s5) is created for returning the results of explicitOwnershipOf. This
new slot might contain the contents of s4 or s8, depending on the if evaluation.

When an amount of memory t is to be allocated, the slot reservation is made
by reading and incrementing the free memory pointer (mem〈0x40〉) t positions.
From this update on, the base reference to the slot just allocated is used, and
subsequent accesses to the slot are performed by means of this baseref, possibly
incremented by an offset.

Example 2 (memory slot reservation). The following excerpt of EVM code allo-
cates a slot of type TokenOwnership. The EVM bytecode performs three steps:
(i) load the current value of the free memory
pointer mem〈0x40〉 that will be used as the
baseref of the new slot; (ii) compute the new
free memory address by adding t to the baseref;
and (iii), store the new free memory pointer
in mem〈0x40〉. Additionally, in the same block
of the CFG, the slot reservation is followed
by the slot initialization at 0x19A, 0x1AB and
0x1B4.

0x175: JUMPDEST
0x176: PUSH1 0x40
0x178: MLOAD // (i) baseref

DUP1
PUSH1 0x60 // Sizeof "t"
ADD // (ii) baseref+0x60

0x17D: PUSH1 0x40
0x17F: MSTORE // (iii)

. . .
0x19A: MSTORE // baseref+0x00

. . .
0x1AB: MSTORE // baseref+0x20

. . .
0x1B4: MSTORE // baseref+0x40

Solidity reference type values such as arrays, struct typed variables and strings
are stored in memory using this general pattern, with some minor differences.
However, there are some cases in which the steps detailed above vary and the
size of the slot is not known in advance, and thus the free memory pointer cannot
be updated at this point. For instance, when data is returned by an external call,
its length is unknown beforehand and hence the free memory pointer is updated
only after the memory pointed to is written. In other cases, the free memory is
used as a temporary region with a short lifetime, as in the case of parameter
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passing to external calls, and the free memory pointer is not updated. These
variants of the general schema must be detected by a precise memory analysis.
To this end, we consider that a slot is in transient state when its baseref has been
read from mem〈0x40〉 but the free memory pointer has not been updated, and it
is in permanent state when the free memory pointer has been pushed forward.

Example 3 (transient slot). Now we focus on the external call in L23 of Running2,
which performs a STATICCALL, reading from the stack (see [27] for details) the
memory location of the input arguments and the location where the results of the
call will be saved. Interestingly, both locations reuse the same slot (it corresponds
to s7) as it can be seen in the following EVM bytecode from _ownerShipAt:

PUSH4 0xb04dd20b // func. selector
. . .
PUSH1 0x40

0x114: MLOAD // baseref transient slot
. . .
DUP2
MSTORE // stores func. selector
PUSH1 0x04
ADD // offset of funct. args.
· · · // copy func. args.
MSTORE // stores func. args.
. . .

PUSH 0x40
0x132: MLOAD // slot baseref

. . .
0x139: STATICCALL // external call

. . .
PUSH1 0x40

0x151: MLOAD // slot baseref
RETURNDATASIZE
. . .
ADD // baseref + data size
. . .

0x15E: PUSH1 0x40
0x160: MSTORE // permanent slot

The call starts by reading the free memory pointer (at 0x114) and storing at
that address the arguments’ data (which include the function selector as first
argument). Importantly, the pointer is not pushed forward when the input
arguments are written and thus the slot remains in transient state. Once the
call at 0x139 is executed, the result is written to memory from the baseref on
(overwriting the locations used for the input arguments) and the slot is finally
made permanent by reading the free memory pointer again (0x151) and updating
it (0x160) by adding the actual return data size (RETURNDATASIZE).

Transient slots are also used when returning data from a public function to
an external caller. In that case, the EVM code of the public function halts its
execution using a RETURN instruction. It reads from the stack the memory location
where the length and the data to be returned are located. However, it does not
change mem〈0x40〉 because the function code halts its execution at this point, as
we can see in the EVM code of explicitOwnershipOf (corresponds to slot s5):

PUSH1 0x40
0x4D:MLOAD //ret slot baseref

. . .
MSTORE // ret.addr (ret+0x00)
. . .
MSTORE // ret.startTs (ret+0x20)
. . .
MSTORE // ret.burned (ret+0x40)

. . .
PUSH1 0x40

0x5A:MLOAD //ret slot revisit
DUP1
SWAP2 // Baseref of ret plus size
SUB // Size of ret data

0x5E:SWAP1
0x5F:RETURN //ret returned

The baseref for the return slot is read (at 0x4D) and it is used as a transient slot
to write the struct contents to be returned by adding the corresponding offset for
each field contained in the struct (instructions on the left column). The code on
the left ends with the baseref plus the size of the stored data on top of the stack.
After that, the baseref is read again (top of the right column) and the length of
the returned data is computed (by subtracting the baseref to the baseref plus
the size of the stored data) before calling the RETURN instruction.



454 E. Albert et al.

3 Inference of Needless Write Accesses
This section presents our static inference of needless write accesses. We first
provide some background in Sec. 3.1 on the type of control-flow-graph (CFG) and
static analysis we rely upon. Then, the analysis is divided into three consecutive
steps: (1) the slot analysis, which is introduced in Sec. 3.2, to identify the slots
created along the execution and the program points at which they are allocated;
(2) the slot usage analysis, presented in Sec. 3.3, which computes the read and
write accesses to the different slots identified in the previous step; and (3) the
detection of needless write accesses, given in Sec. 3.4, which finds those program
points where there is a write access to a slot which has no read access later on.

3.1 Context-Sensitive CFG and Flow-Sensitive Static Analysis

The construction of the CFG of Ethereum smart contracts is a key part of any
decompiler and static analysis tool and has been subject of previous research [15,
16, 25]. The more precise the CFG is, the more accurate our analysis results will
be. In particular, context-sensitivity [16] on the CFG construction is vital to
achieve precise results. Our implementation of context-sensitivity is realized by
cloning the blocks which are reached from different contexts.

Example 4 (context-sensitive CFG). The EVM code of Running2 creates multiple
slots for handling structs of type TokenOwnership. Interestingly, all these slots
are created by means of the same EVM code shown in Ex. 2, which corresponds
to the CFG block that starts at program point 0x175. As this block is reached
from different contexts, the context-sensitive CFG contains three clones of this
block: 0x175, which creates s3 at L27; 0x175_0, which creates s4 used at L28; and
0x175_1, which reserves s6, created at L22. Block cloning means that program
points are cloned as well, and we adopt the same subindex notation to refer
to the program points included in the cloned block: e.g. program point 0x178

contains the MLOAD 0x40 that gets the baseref of the slot reserved at block 0x178,
and 0x178_0 to the same MLOAD but at 0x178_0, etc.

In what follows, we assume that cloning has been made and the memory
analysis using the resulting CFG (with clones) is thus context-sensitive as well,
without requiring additional extensions. As usual in standard analyses [23], one
has to define the notion of abstract state which defines the abstract information
gathered in the analysis and the transfer function which models the analysis
output for each possible input. Besides context-sensitivity, the two analyses that
we will present in the next two sections are flow-sensitive, i.e., they make a
flow-sensitive traversal of the CFG of the program using as input for analyzing
each block of the CFG the information inferred for its callers. When the analysis
reaches a CFG block with new information, we use the operation t to join the
two abstract states, and the operator v to detect that a fixpoint is reached and,
thus, that the analysis terminates. The operations t and v, the abstract state,
and transfer function, will be defined for each particular analysis.

3.2 Slot Analysis

The slot analysis aims at inferring the abstract slots, which are an abstraction
of all memory allocations that will be made along the program execution. The
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slots inferred are abstract because over-approximation is made at the level of the
program points at which slots are allocated. Therefore, an abstract slot might
represent multiple (not necessarily consecutive) real memory slots, e.g., when
memory is allocated within a loop. The slot analysis will look for those program
points at which the value stored in mem〈0x40〉 is read for reserving memory space.
These program points are relevant in the analysis for two reasons: firstly, to
obtain the baseref of the memory slot, and, secondly, because from this point on,
the memory reservation of the corresponding slot has started and it is pending
to become permanent at some subsequent program point. The output of the
slot analysis is a set which contains the allocated abstract slots, named Sall in
Def. 2 below. Each allocated abstract slot (i.e., each element in Sall) is in turn
a set of program points, as the same abstract slot might have several program
points where mem〈0x40〉 is read before its reservation becomes permanent. In
order to obtain Sall, the memory analysis makes a flow-sensitive traversal of
the (context-sensitive) CFG of the program that keeps at every program point
the set of transient slots (i.e. whose baseref has been read but it has not yet
made permanent) and applies the transfer function in Def. 1 to each bytecode
instruction within the blocks until a fixpoint is reached. An abstract state of
the analysis is a set S ⊆ }(PR), where PR is the set of all program points at
which mem〈0x40〉 is read. The analysis of the program starts with S = {∅} at
all program points and takes t and v as the set union and inclusion operations.
Termination is trivially guaranteed as the number of program points is finite
and so is }(PR). In what follows, Ins is the set of EVM instructions and, for
simplicity, we consider MLOAD 0x40 and MSTORE 0x40 as single instructions in Ins.

Definition 1 (slot analysis transfer function). Given a program point pp
with an instruction I ∈ Ins, an abstract
state S, and K = {MSTORE 0x40, RETURN, REVERT,
STOP, SELFDESTRUCT}, the slot analysis transfer func-
tion ν is defined as a mapping ν : Ins × }(S) 7→
}(S) computed according to the following table:

I ν(I,S)

(1) MLOAD 0x40 {s ∪ {pp} | s ∈ S}

(2) I ∈ K {∅}

(3) otherwise S

Let us explain intuitively how the above transfer function works. As we have
seen in Sec. 2, in an EVM program all memory reservations start by reading
mem〈0x40〉 by means of a MLOAD instruction preceded by a PUSH 0x40 instruction
(case 1 in Def. 1). In this case, the transfer function adds to all sets in S the
current program point, since this is, in principle, an access to the same slots that
were already open at this program point and are not permanent yet. To properly
identify the slots, our analysis also searches for those program points at which
slots reservations are made permanent (case 2 in Def. 1), i.e., those program
points with instructions I ∈ K. The most frequently used instruction to make
a slot reservation permanent is a write access to mem〈0x40〉 using MSTORE, that
pushes forward the free memory pointer such that any subsequent read access to
mem〈0x40〉 will allocate a different slot. The rest of instructions in K finalize the
execution in different forms (a normal return, a forced stop, a revert execution,
etc.). In all such cases, the slot needs to be considered as a permanent slot so
that we can reason later on potential needless write accesses involved in it. The
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set S is empty after these instructions since all transient (abstract) slots are
made permanent after them. We use the notation Spp to refer to the abstract
state computed at program point pp.

Example 5 (slot analysis). The slot analysis of Running2 starts with Spp={∅}
at all program points. When it reaches the block that starts at 0x175 (see
Ex. 2) S0x175 is {∅} and it remains empty until 0x178, where the baseref of s3
is read and hence S0x178={{0x178}}. This slot is made permanent when the free
memory pointer is updated at 0x17F, thus having S0x17D={{0x178}} and S0x17F={∅}.
Following the same pattern, s4 and s6 are resp. reserved at instructions 0x178_0

and 0x178_1 and closed at 0x17F_0 and 0x17F_1 (at the cloned blocks). On the
other hand, the baseref of s5 is read at two consecutive program points (0x4D
and 0x5A) and updated at 0x5F, and thus, we have S0x4D={{0x4D}} and the same
until S0x5A={{0x4D, 0x5A}} and again the same until S0x5F={∅}. Finally, after the
execution of STATICCALL (see Ex. 3) we have three consecutive reads of mem〈0x40〉
at 0x114, 0x132 and 0x151 that refer to the same slot s7, which is made permanent
at 0x160. Therefore, we have S0x151={{0x114, 0x132, 0x151}} and S0x160 = {∅}.

Using the transfer function, as mentioned in Sec. 3.1, our analysis makes a
flow-sensitive traversal of the (context-sensitive) CFG of the program that uses
as input for analyzing each block the information inferred for its callers. When a
fixpoint is reached, we have an abstract state for each program point that we use
to compute the set of abstract slots allocated in the program, named Sall.
Definition 2. The set of allocated abstract slots Sall is defined as
Sall =

⋃
pp∈PW

Spp−1, where PW is the set of all program points pp:I where I∈K.

Example 6 (Sall computation). With the values of S0x17F-1, S0x17F 0-1, S0x17F 1-1, S0x160-1

and S0x5F-1 from Ex. 5, at the end of the slot analysis of Running2, we have:
Sall={{0x178}︸ ︷︷ ︸

s3

, {0x178 0}︸ ︷︷ ︸
s4

, {0x178 1}︸ ︷︷ ︸
s6

, {0x114, 0x132, 0x151}︸ ︷︷ ︸
s7

, {0x5A, 0x4D}︸ ︷︷ ︸
s5

, . . . }.

Note that, the cloning of block 0x175 allows our analysis to detect three different
slots, s3, s4 and s6, for the same program point, 0x178, in the original EVM code.

The next example shows the behavior of the analysis when the program
contains loops, and an abstraction is needed for approximating the slots.

Example 7 (loops). Fig. 2 shows the contract Running3 that includes the func-
tion explicitOwnershipsOf from the smart contract at [2] (made through a
STATICCALL). This function receives an array of token identifiers as argument
and returns an array of TokenOwnership structs that is populated invoking the
function explicitOwnershipOf from Running2 inside a loop. The slots identified
by the analysis for contract Running3 shown in Fig. 2 are: s9, which is created
for making a copy of parameter tokenIds to memory; s10, which creates the
local array ownerships (L44) that contains the array length and pointers to the
structs identified initially by s11 (and later on by s13); s12 for STATICCALL input
arguments and return data (L46); s13 which abstracts the structs for storing the
STATICCALL output results (L46); and s14, which includes the length of ownership
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37 contract Running3 {
38 Running2 c ;
39 // . . .
40 s9 function expl ic itOwnershipsOf (uint256 [ ] memory tokenIds )
41 publ ic view returns (TokenOwnership [ ] memory) {
42 unchecked {
43 uint256 tokenIdsLength = tokenIds . length ;
44 s10s11 TokenOwnership [ ] memory ownerships = new TokenOwnership [ ] ( tokenIdsLength ) ;
45 for (uint256 i ; i != tokenIdsLength ; ++i ) {
46 s12s13 ownerships [ i ] = c . expl ic itOwnershipOf ( tokenIds [ i ] ) ;
47 }
48 s14 return ownerships ;
49 }
50 }
51 }

0x00-0x60

tokenIds

s9(L40)

ownerships

s10(L44)

o[0] ...

s11(L44)

o[n] c[0]

s12

o[0]

s13

...

s12

...

s13

c[0]

s12

o[n]

s13

r.l r[0] ...

s14(L48)

r[n]

Fig. 2: Solidity code of contract Caller.

and a copy of s13 for returning the results (L48). The important point is that,
the local array declaration at L44 produces a loop to allocate as many structs
as elements are contained in the array. For this reason, s11 is an abstract slot
that represents all TokenOwnership’s initially added to the array. Similarly, s12
and s13 are created inside the for loop, and each abstract slot represents as many
concrete slots as iterations are performed by the loop. Note that, each iteration
of the loop creates one instance of s12 for getting the results from the call, and it
is copied later to s13 and pointed by ownerships (s10).

As notation, we will use a unique numeric identifier (1, 2, . . .) to refer to each
abstract slot (represented in Sall as a set) and retrieve it by means of function
get id(a), a ∈ Sall. We use A to refer to the set of all such identifiers in the program.
Also, given a program point pp with an instruction MLOAD 0x40, we define the
function get slots(pp) to retrieve the identifiers of the elements of Sall that might
be referenced at pp as follows: get slots(pp) = {id | a ∈ Sall∧pp ∈ a∧ id = get id(a)}.

3.3 Slot Access Analysis

While Sec. 3.2 looked for allocations, the next step of the analysis is the inference
of the program points at which the inferred abstract slots might be accessed. To
do so, our slot access analysis needs to propagate the references to the abstract
slots that are saved at the different positions of the execution stack. Importantly,
we keep track, not only of the stack positions, but also, in order to abstract
complex data structures stored in memory (e.g., arrays of structs), we need to
keep track of the abstract slots that could be saved at memory locations. As seen
in Ex. 7, a memory location within a slot might contain a pointer to another
memory location of another slot, as it happens when nested data structures are
used. Thus, an abstract state is a mapping at which we store the potential slots
saved at stack positions or at memory locations within other slots.

Definition 3 (memory analysis abstract state). A memory analysis ab-
stract state is a mapping π of the form T ∪ A 7→ }(A).
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T is the set containing all stack positions, which we represent by natural
numbers from 0 (bottom of the stack) on, and A is the set of abstract slots
identifiers computed in Sec. 3.2. We refer to the set of all memory analysis
abstract states as AS. Note that, for each entry, we keep a set of potential slots
for each stack position because a block might be reached from several blocks
with different execution stacks, e.g., in loops or if-then-else structures. In what
follows, we assume that, given a value k, the map π returns the empty set when
k 6∈ dom(π). The inference is performed by a flow-sensitive analysis (as described
in Sec. 3.1) that keeps track of the information about the abstract slots used at
any program point by means of the following transfer function.

Definition 4 (memory analysis transfer function). Given an instruction
I with n input operands at program point pp and an abstract state π, the memory
analysis transfer function τ is defined as a mapping τ :Ins×AS 7→ AS of the form:

I τ(I, π)

(1) MLOAD 0x40 π[t 7→ get slots(pp)]

(2) MLOAD π[t 7→ {m | s ∈ π(t) ∧m∈π(s)}]

(3) MSTORE π[s 7→ π(s) ∪ π(t−1)]\{t, t−1} ∀s∈π(t)

I τ(I, π)

(4) SWAPi π[t 7→ π(t− i), t− i 7→ π(t)]

(5) DUPi π[t+ 1 7→ π(t− i+ 1)]

(6) otherwise π\x t−n < x ≤ t

t=top(pp) is the numerical position of the top of the stack before executing I.

Let us explain the above definition. The transfer function distinguishes between
two different types of MLOAD: (1) accesses to location mem〈0x40〉, which return the
baseref of the slots that might be used, taking them from the previous analysis
through get slots(p); and (2) other MLOAD instructions, which could potentially
return slot baserefs from memory locations. Therefore, we have to consider two
possibilities: if we are reading a memory location which reads a generic value
(e.g. a number) then π(t) = ∅; if we are reading a memory location that might
store an abstract slot, then π(t) contains all abstract slots that might be stored
at that memory location. Regarding (3), MSTORE has two operands: the operand
at t is the memory address that will be modified by MSTORE, and the operand at
t− 1 is the value to be stored in that address. For each element s in π(t), the
analysis adds the abstract slots that are in π(t−1). Other instructions that are
also treated by the analysis are SWAP* and DUP* shown in (4-5), that exchange or
copy the elements of the stack that take part in the operation. Finally, all other
operations delete the elements of the stack that are no longer used based on the
number of elements taken and written to the stack (case 6).

Example 8 (transfer). Now we focus on the analysis of block 0x175, shown in
Fig. 3. As we have already explained, this block is responsible for creating the
memory needed to work with several structs of type TokenOwnership and it is thus
cloned in the CFG. In particular, we focus on the clone 0x175_1. The analysis
of the block starts with a stack of size 7 and includes at positions 3 and 4, the
abstract slots s3 and s4, which were created at L26 and L27 of Fig. 1. At 0x178_1,
mem〈0x40〉 is read, and, by means of get slots(0x178 1) and, considering that
top(0x178 1)=8, we add to π a new entry 8 7→ s6. At 0x179_1, 0x180_1, 0x1AA_1,
0x1B3_1 the transfer function duplicates a slot identifier stored in the stack. MSTORE
and POP instructions of the example remove a slot identifier from the stack.
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PP Instr π PP Instr π
0x175 1 JUMPDEST {3 7→s3, 4 7→s4} 0x19A 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x176 1 PUSH1 0x40 {3 7→s3, 4 7→s4} ...
0x178 1 MLOAD {3 7→s3, 4 7→s4, 8 7→s6} 0x1A9 1 AND {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x179 1 DUP1 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1AA 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6}
0x17A 1 PUSH1 0x60 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1AB 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x17C 1 ADD {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} ...
0x17D 1 PUSH1 0x40 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B2 1 ISZERO {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
0x17F 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6} 0x1B3 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6}
0x180 1 DUP1 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B4 1 MSTORE {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6}
... 0x1B5 1 POP {3 7→s3, 4 7→s4, 8 7→s6}
0x198 1 AND {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6} 0x1B6 1 SWAP1 {3 7→s3, 4 7→s4, 7 7→s6}
0x199 1 DUP2 {3 7→s3, 4 7→s4, 8 7→s6, 9 7→s6, 11 7→s6} 0x1B7 1 JUMP {3 7→s3, 4 7→s4, 7 7→s6}

Fig. 3: Block of the CFG that reserves memory slot for struct

As it is flow-sensitive, the analysis of each block of the CFG takes as input the
join t of the abstract states computed with the transfer function for the blocks
that jump to it, and keeps applying the memory analysis transfer function until
a fixpoint is reached. The operation A tB is the result of joining, by means of
operation ∪, all entries from maps A and B. Operation v is defined as expected,
A v B, when B includes entries that are not in dom(A) or when we have an
entry v ∈ dom(A) ∩ dom(B) such that A(v) ⊆ B(v). Again, termination of the
computation is guaranteed because the domain is finite.

Example 9 (joining abstract states). The EVM code of explicitOwnershipOf of
Fig. 1 uses s5 in both return sentences at L29 and L33 (see Ex. 1). This EVM
code has a single return block which is reachable from two different paths from
the if statement, and which come with different abstract states: (1) the path
that corresponds to L29 comes with π={3 7→ s8}, and the other path (L33) with
π={3 7→ s4}. Our analysis joins both abstract states resulting in π={3 7→ {s4, s8}}.
Because of this join, we get that the RETURN instruction that comes from lines
L29 and L33 might return the content of the slots s4 or s8.

When the fixpoint is reached, the analysis has computed an abstract state
for each program point pp, denoted by πpp in what follows.

Example 10 (complex data structures). The analysis of the code at Fig. 2 shows
how it deals with data structures that might contain pointers to other structures,
e.g. ownerships. The abstract slot that represents variable ownerships is s10, which
is written, by means of MSTORE at two program points, say pp1 and pp2 which, resp.,
come from L44 and L46 of the Solidity code. The input abstract state that reaches
pp1 is {2 7→ s9, 6 7→ s10, 8 7→ s10, 9 7→ s11, 10 7→ s10}, and the transfer function of
MSTORE leaves the abstract state as πpp1 = {2 7→ s9, 6 7→ s10, 8 7→ s10, s10 7→ s11}.
At this point, we can see that variable ownerships is initialized with empty
structs and, to represent it, our analysis includes in π the entry s10 7→ s11
as it is described in instruction MSTORE of the transfer function at Def. 4. The
second write to s10 is performed by another MSTORE instruction at pp2. The input
abstract state for pp2 is {2 7→ s9, 5 7→ s10, 7 7→ s13, 8 7→ s13, 9 7→ s10, s10 7→ s11},
and thus we get πpp2 = {2 7→ s9, 5 7→ s10, 7 7→ s13, s10 7→ {s11, s13}}. Interestingly,
at pp2, we detect that s11 might also store the structs returned by the call
to c.explicitOwnershipOf(tokenIds[i]), identified by s13, which is added to
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s10 7→ {s11, s13}. Finally, s10 is read at the end of the method, returning the set
{s11, s13}, to copy the content of ownerships to s14, the slot used in the return.

3.4 Inference of Needless Write Memory Accesses

With the results of the previous analysis, we can compute the maps R and W,
which are of the form pp 7→ }(A) and capture the slots that might be read
or written, resp., at the different program points. To do so, as multiple EVM
instructions, e.g. RETURN, CALL, LOG, CREATE, ..., might read, or write, memory
locations taking the concrete location from the stack, we define functions mr(I)
and mw(I) that, given an EVM instruction I, return the position in the stack of
the address to be read and written by I, resp. If the instruction does not read/write
any memory position, function mr(I) = ⊥/mw(I) = ⊥. For example, mr(MLOAD) = 0

as it reads the top of the stack and mw(MLOAD) = ⊥, or mr(STATICCALL) = 2 and
mw(STATICCALL) = 4. Now, we define the read/write maps R/W:

Definition 5 (memory read/write accesses map). Given an EVM program
P, such that pp ≡ I ∈ P and being t=top(pp), we define maps R and W as follows:

R(pp)=

{
∅ mr(I) = ⊥
πpp−1(t−mr(I)) otherwise

W(pp)=

{
∅ mw(I) = ⊥
πpp−1(t−mw(I)) otherwise

Example 11 (R/W maps). Let us illustrate the computation of R(0x139) and
W(0x139), which contains the STATICCALL of Running2. With the analysis infor-
mation obtained from the analysis we have that top(0x139) = 16 and π0x138 =

{3 7→ s3, 4 7→ s4, 7 7→ s6, 10 7→ s7, 12 7→ s7, 14 7→ s7}, thus we get R(0x139) = {s7}
and W(0x139) = {s7}, i.e., the slot used for managing the input and the output
of the external call. Analogously, we get that R(0x178) = {s3} and W(0x178) = ∅.

The last step of our analysis consists in searching for write accesses to slots
which will never be read later. To do so, we use the information computed in R
and W. Given the CFG of the program and two program points p and p2, we
define function reachable(p, p2), which returns true when there exists a path in
the CFG from p to p2. We define the set write leaks N as follows:

Definition 6. Given an EVM program and its W and R, we define N as
N = {pw:s | pw ∈ P ∧ s ∈ W(pw) ∧ ¬exists read(pw, s)}
where exists read(pw, s) ≡ ∃ pr ∈ dom(R) | s ∈ R(pr) ∧ reachable(pw, pr).

Intuitively, the set N contains those write accesses, taken from W, that are
never read by subsequent blocks in the CFG. As both function reachable and the
sets W and R are over-approximations, the computation of N provides us those
write accesses that can be safely removed, as the next example shows.

Example 12. Our analysis detects that at program points 0x19A, 0x1AB and 0x1B4

there are MSTORE operations that are never read in the subsequent blocks of
the CFG. Such operations correspond to the memory initialization of s3, which
is performed at L27 of the code of Fig. 1 (see Ex. 2). Given that these write
accesses are the only use of the slot, the whole reservation can be safely removed.
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Moreover, the analysis detects that program points 0x19A_1, 0x1AB_1 and 0x1B4_1,
which correspond to the reservation of s6 performed at L22, are detected as
needless. In essence, it means that s3 and s6 are allocated and initialized but
are never used in the program. Note that, all these program points belong to
two blocks cloned: (0x175 and 0x175_1). However, the three MSTORE operations of
the other clone of the same block (0x175_0), which correspond to the allocation
at L28 are not identified as non-read, as they might be used in the return of
the function. For this, the precision of the context-sensitive CFG is necessary
to identify these MSTORE operations as needless. As a result we cannot eliminate
the block because it is needed in one of the clones, but still we can achieve an
important optimization on the EVM code by removing the unconditional jumps
to this block in the other two cases that would avoid completely the execution of
all these instructions (and their corresponding gas consumption [27]).

The soundness of slots and slots access analyses states that, for each concrete
slot, there exists an abstract slot in Sall that represents it and, that any access
to memory is approximated by an inferred abstract slot. Technical details can be
found in an extended report [8].

4 Experimental Evaluation

This section reports on the results of the experimental evaluation of our approach,
as described in Sec. 3. All components of the analysis are implemented in Python,
are open-source, and can be downloaded from github where detailed instructions
for its installation and usage are provided4. We use external components to build
the CFGs (as this is not a contribution of our work). Our analysis tool accepts
smart contracts written in versions of Solidity up to 0.8.17 and bytecode for the
Ethereum Virtual Machine v1.10.255. The experiments have been performed on
an AMD Ryzen Threadripper PRO 3995WX 64-cores and 512 GB of memory,
running Debian 5.10.70. In order to experimentally evaluate the analysis, we
pulled from etherscan.io [5] the Ethereum contracts bound to the last 5,000
open-source verified addresses whose source code was available on July 14, 2022.
From those addresses, the code of 2.18% of them raises a compilation error from
solc . For the code bound to the 4,891 remaining addresses, the generation of
the CFG (which is not a contribution of this work) timeouts after 120s on 626
of them. Removing such failing cases, we have finally analyzed 19,199 smart
contracts, as each address and each Solidity file may contain several contracts
in it. Note that 84.86% of the contracts are compiled with the solc version 0.8,
presumably with the most advanced compilation techniques. The whole dataset
used will be found at the above github link.

In order to be in a worst-case scenario for us, we run the memory analysis
after executing the solc optimizer, i.e, we analyze bytecode whose memory
usage may have been optimized already by the optimizer available in solc.
This will allow us also to see if we can achieve further optimization with our

4 https://github.com/costa-group/EthIR/tree/memory optimizer/ethir
5 The latest versions released up to Oct 2022.

https://github.com/costa-group/EthIR/tree/memory_optimizer/ethir
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approach. Unfortunately, we have not been able to apply our tool after running
the super-optimizer GASOL [9], because it does not generate the optimized
bytecode but rather it only reports on the gas and/or size gains for each of
the blocks. Nevertheless, a detailed comparison of the techniques that GASOL
applies and ours is given in Sec. 5, where we justify that GASOL will not find
any of our needless accesses. From the 19,199 analyzed contracts, the analysis
infers 679,517 abstract memory slots and detects 6,242 needless write memory
accesses in 12,803s. These needless accesses occur within the code bound to 780
different addresses, i.e., 15.95% of the analyzed ones.

We have computed the number of needless accesses identified by our analysis
grouped by function and the number of different contracts that contain these
functions. Some of them such as transferFrom(1736 accesses in 439 contracts),
transfer (1745 aacesses in 441 contracts), reflectionFromToken(105 accesses in 6
contracts) or withdraw(54 accesses in 32 contracts) are functions widely used in
the implementation of contracts based on ERC tokens. A manual inspection of
the 10 most common public functions with the needless accesses inferred has
revealed two different sources for them: some of the needles accesses are due to
inefficient programming practices, while others are generated by the compiler
and could be improved. As regards compiler inefficiencies, we detected bytecode
that allocates memory slots that are inaccessible and cannot be used because the
baseref to access them is not maintained in the stack. For example, when a struct
is returned by a function, it always allocates memory for this data. However,
if the return variable is not named in the header of the function, the compiler
allocates memory for this data although it will never be accessed. If programmers
are aware of this behavior they can avoid such generation of useless memory
but, even better, this memory usage patterns can be changed in the compiler.
For instance, it is reflected in L22 and L27 in Fig. 1, where the functions do
not name the return variable. Hence, the compiler allocates memory for these
anonymous data structures which are never used. Similarly, there are various
situations involving external calls in which the compiler creates memory that is
never used. When there is an external call that does not retrieve any result, the
compiler creates two memory slots, one for retrieving the result from the call,
and another one for copying a potential result to a memory variable that is never
used. Finally, the compiler also creates memory that is never used for low-level
plain calls for currency transfer. Even though the contract code does not use
the second result returned by the low-level call, the compiler generates code for
retrieving it. All these potential optimizations have been detected by means of
our inference of needless write accesses and will be communicated to the solc

developers.

5 Conclusions and Related Work

We have proposed a novel memory analysis for Ethereum smart contracts and
have applied it to infer needless write memory accesses. The application of our
implementation over more than 19,000 real smart contracts has detected some
compilation patterns that introduce needless write accesses and that can be easily
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changed in the compiler to generate more efficient code. Let us discuss related
work along two directions: (1) memory analysis and (2) memory optimization.
Regarding (1), we can find advanced points-to analysis developed for Java-like
languages [7, 11, 18, 20]. Focusing on EVM, the static modeling of the EVM
memory in [16] has some similarities with the memory analysis presented in
Secs. 3.2 and 3.3, since in both cases we are seeking to model the memory
although with different applications in mind. There are differences on one hand
on the type of static analysis used in both cases: [16] is based on a Datalog
analysis while we have defined a standard transfer function which is used within
a flow-sensitive analysis. More importantly, there are differences on the precision
of both analyses. We can accurately model the memory allocated by nested
data structures in which the memory contains pointers to other memory slots,
while [16] does not capture such type of accesses. This is fundamental to perform
memory optimization since, as shown in the running examples of the paper, it
allows detecting needless write accesses that otherwise would be missed. Finally,
the application of the memory analysis to optimization is not studied in [16],
while it is the main focus of our work.

As regards (2), optimizing memory usage is a challenging research problem
that requires to precisely infer the memory positions that are being accessed.
Such positions sometimes are statically known (e.g., when accessing the EVM
free memory pointer) but, as we have seen, often a precise and complex inference
is required to figure out the slot being accessed at each memory access bytecode.
Recent work within the super-optimizer GASOL [9] is able to perform some
memory optimizations at the level of each block of the CFG (i.e., intra-block). of
There are three fundamental differences between our work and GASOL: First,
GASOL can only apply the optimizations when the memory locations being
addressed refer to the same constant direction. In other words, there is no real
memory analysis (namely Secs. 3.2 and 3.3). Second, the optimizations are
applied only at an intra-block level and hence many optimization opportunities
are missed. These two points make a fundamental difference with our approach,
since detected optimizable patterns (see Sec. 4) require inter-block analysis and
a precise slot access analysis, and hence cannot be detected by GASOL.

Finally, as mentioned in Sec. 1, in addition to dynamic memory, smart
contracts also use a persistent memory called storage. Regarding the application
of our approach to infer needless accesses in storage, there are two main points.
First, there is no need to develop a static analysis to detect the slots in storage, as
they are statically known (hence our inference in Sec. 3.2 and 3.3 is not needed),
i.e., one can easily know the read and write sets of Def. 6. Thus, the read and
write sets of our analysis can be easily defined for storage. The second point is
that, as storage is persistent memory, a write storage access is not removable
even if there is no further read access within the smart contract, as it needs
to be stored for a future transaction. The removable write storage accesses are
only those that are rewritten and not read in-between the two write accesses.
Including this in our implementation is straightforward. However, this situation
is rather unusual, and we believe that very few cases would be found and hence
little optimization can be achieved.
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and Germán Puebla an d Guillermo Román-Dı́ez. Object-Sensitive Cost Analysis for
Concurrent Objects. Software Testing, Verification and Reliability, 25(3):218–271,
2015.
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Abstract. Model checking undiscounted reachability and expected-re-
ward properties on Markov decision processes (MDPs) is key for the
verification of systems that act under uncertainty. Popular algorithms are
policy iteration and variants of value iteration; in tool competitions, most
participants rely on the latter. These algorithms generally need worst-case
exponential time. However, the problem can equally be formulated as
a linear program, solvable in polynomial time. In this paper, we give a
detailed overview of today’s state-of-the-art algorithms for MDP model
checking with a focus on performance and correctness. We highlight
their fundamental differences, and describe various optimizations and
implementation variants. We experimentally compare floating-point and
exact-arithmetic implementations of all algorithms on three benchmark
sets using two probabilistic model checkers. Our results show that (op-
timistic) value iteration is a sensible default, but other algorithms are
preferable in specific settings. This paper thereby provides a guide for
MDP verification practitioners—tool builders and users alike.

1 Introduction

The verification of MDPs is crucial for the design and evaluation of cyber-physical
systems with sensor noise, biological and chemical processes, network protocols,
and many other complex systems. MDPs are the standard model for sequential
decision making under uncertainty and thus at the heart of reinforcement learning.
Many dependability evaluation and safety assurance approaches rely in some
form on the verification of MDPs with respect to temporal logic properties.
Probabilistic model checking [4,5] provides powerful tools to support this task.

The essential MDP model checking queries are for the worst-case probability
that something bad happens (reachability) and the expected resource consumption
until task completion (expected rewards). These are indefinite (undiscounted)
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horizon queries: They ask about the probability or expectation of a random vari-
able up until an event—which forms the horizon—but are themselves unbounded.
Many more complex properties internally reduce to solving either reachability or
expected rewards. For example, if the description of something bad is in linear
temporal logic (LTL), then a product construction with a suitable automaton
reduces the LTL query to reachability [6]. This paper sets out to determine the
practically best algorithms to solve indefinite horizon reachability probabilities
and expected rewards; our methodology is an empirical evaluation.

MDP analysis is well studied in many fields and has lead to three main types
of algorithms: value iteration (VI), policy iteration (PI), and linear programming
(LP) [55]. While indefinite horizon queries are natural in a verification context,
they differ from the standard problem of e.g. operations research, planning, and
reinforcement learning. In those fields, the primary concern is to compute a
policy that (often approximately) optimizes the discounted expected reward over
an infinite horizon where rewards accumulated in the future are weighted by a
discount factor < 1 that exponentially prefers values accumulated earlier.

The lack of discounting in verification has vast implications. The Bellman
operation, essentially describing a one-step backward update on expected re-
wards, is a contraction with discounting, but not a contraction without. This
leads to significantly more complex termination criteria for VI-based verification
approaches [34]. Indeed, VI runs in polynomial time for every fixed discount
factor [49], and similar results are known for PI as well as LP solving with
the simplex algorithm [60]. In contrast, VI [9] and PI [20] are known to have
exponential worst-case behaviour in the undiscounted case.

So, what is the best algorithm for model checking MDPs? A polynomial-time
algorithm exists using an LP formulation and barrier methods for its solution [12].
LP-based approaches (and their extension to MILPs) are also prominent for
multi-objective model checking [21], in counterexample generation [23], and
for the analysis of parametric Markov chains [16]. However, folklore tells us
that iterative methods, in particular VI, are better for solving MDPs. Indeed,
variations of VI are the default choice of all model checkers participating in the
QComp competition [14]. This uniformity may be misleading. Indeed, for some
stochastic game algorithms, using LP to solve the underlying MDPs may be
preferential [3, Appendix E.4]. An application in runtime assurance preferred PI
for numerical stability [45, Sect. 6]. A toy example from [34] is a famous challenge
for VI-based methods. Despite the prominence of LP, the ease of encoding MDPs,
and the availability of powerful off-the-shelf LP solvers, many tools did (until
very recently) not include MDP model checking via LP solvers.

With this paper, we reconsider the PI and LP algorithms to investigate
whether probabilistic model checking focused on the wrong family of algorithms.
We report the results of an extensive empirical study with two independent
implementations in the model checkers Storm [42] and mcsta [37]. We find that,
in terms of performance and scalability, optimistic value iteration [40] is a solid
choice on the standard benchmark collection (which goes beyond competition
benchmarks) but can be beat quite considerably on challenging cases. We also
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emphasize the question of precision and soundness. Numerical algorithms, in
particular ones that converge in the limit, are prone to delivering wrong results.
For VI, the recognition of this problem has led to a series of improvements over
the last decade [8,34,40,19,54,56]. We show that PI faces a similar problem. When
using floating-point arithmetic, additional issues may arise [36,59]. Our use of
various LP solvers exhibits concerning results for a variety of benchmarks. We
therefore also include results for exact computation using rational arithmetic.
Limitations of this study. A thorough experimental study of algorithms requires
a carefully scoped evaluation. We work with flat representations of MDPs that
fit completely into memory (i.e. we ignore the state space exploration process
and symbolic methods). We selected algorithms that are tailored to converge to
the optimal value. We also exclude approaches that incrementally build and solve
(partial or abstract) MDPs using simulation or model checking results to guide
exploration: they are an orthogonal improvement and would equally profit from
faster algorithms to solve the partial MDPs. Moreover, this study is on algorithms,
not on their implementations. To reduce the impact of potential implementation
flaws, we use two independent tools where possible. Our experiments ran on a
single type of machine—we do not study the effect of different hardware.
Contributions. This paper contributes a thorough overview on how to model-
check indefinite horizon properties on MDPs, making MDP model checking more
accessible, but also pushing the state-of-the-art by clarifying open questions. Our
study is built upon a thorough empirical evaluation using two independent code
bases, sources benchmarks from the standard benchmark suite and recent publi-
cations, compares 10 LP solvers, and studies the influence of various prominent
preprocessing techniques. The paper provides new insights and reviews folklore
statements: Particular highlights are a new simple but challenging MDP family
that leads to wrong results on all floating-point LP solvers (Section 2.3), a nega-
tive result regarding the soundness of PI with epsilon-precise policy evaluators
(Section 4), and an evaluation on numerically challenging benchmarks that shows
the limitations of value iteration in a practical setting (Section 5.3).

2 Background

We recall MDPs with reachability and reward objectives, describe solution
algorithms and their guarantees, and address commonly used optimizations.

2.1 Markov Decision Processes

Let DX := { d : X → [0, 1] |
∑
x∈X d(x) = 1 } be the set of distributions over X.

A Markov decision process (MDP) [55] is a tupleM = (S,A, δ) with finite sets of
states S and actions A, and a partially defined transition function δ : S×A⇀ DS

such that A(s) := { a | (s, a) ∈ domain(δ) } 6= ∅ for all s ∈ S. A(s) is the set of
enabled actions at state s. δ maps enabled state-action pairs to distributions over
successor states. A Markov chain (MC) is an MDP with |A(s)| = 1 for all s. The
semantics of an MDP are defined in the usual way, see, e.g. [6, Chapter 10]. A
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(memoryless deterministic) policy—a.k.a. strategy or scheduler—is a function
π : S → A that, intuitively, given the current state s prescribes what action
a ∈ A(s) to play. Applying a policy π to an MDP induces an MCMπ. A path
in this MC is an infinite sequence ρ = s1s2 . . . with δ(si, π(si))(si+1) > 0. Paths
denotes the set of all paths and Pπs denotes the unique probability measure of
Mπ over infinite paths starting in the state s.

A reachability objective Popt(T) with set of target states T ⊆ S and opt ∈
{max,min} induces a random variable X : Paths→ [0, 1] over paths by assigning 1
to all paths that eventually reach the target and 0 to all others. Eopt(rew) denotes
an expected reward objective, where rew : S→ Q≥0 assigns a reward to each state.
rew(ρ) :=

∑∞
i=1 rew(si) is the accumulated reward of a path ρ = s1s2 . . . . This

yields a random variable X : Paths→ Q ∪ {∞} that maps paths to their reward.
For a given objective and its random variable X, the value of a state s ∈ S is the
expectation of X under the probability measure Pπs of the the MC induced by an
optimal policy π from the set of all policies Π, formally V(s) := optπ∈ΠEπs [X].

2.2 Solution Algorithms

Value iteration (VI), e.g. [15], computes a sequence of value vectors converging
to the optimum in the limit. In all variants of the algorithm, we start with a
function x : S → Q that assigns to every state an estimate of the value. The
algorithm repeatedly performs an update operation to improve the estimates.
After some preprocessing, this operation has a unique fixpoint when x = V. Thus,
value iteration converges to the value in the limit. Variants of VI include interval
iteration [34], sound VI [56] and optimistic VI [40]. We do not discuss these in
detail, but instead refer to the respective papers.

Linear programming (LP), e.g. [6, Chapter 10], encodes the transition structure
of the MDP and the objective as a linear optimization problem. For every state,
the LP has a variable representing an estimate of its value. Every state-action
pair is encoded as a constraint on these variables, as are the target set or rewards.
The unique optimum of the LP is attained if and only if for every state its
corresponding variable is set to the value of the state. We provide an in-depth
discussion of theoretical and practical aspects of LP in Section 3.

Policy iteration (PI), e.g. [11, Section 4], computes a sequence of policies.
Starting with an initial policy, we evaluate its induced MC, improve the policy by
switching suboptimal choices and repeat the process on the new policy. As every
policy improves the previous one and there are only finitely many memoryless
deterministic policies (a number exponential in the number of states), eventually
we obtain an optimal policy. We further discuss PI in Section 4.

2.3 Guarantees

Given the stakes in many application domains, we require guarantees about the
relation between an algorithm’s result v̄ and the true value v. First, implemen-
tations are subject to floating-point errors and imprecision [59] unless they use
exact (rational) arithmetic or safe rounding [36]. This can result in arbitrary
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Fig. 1: A hard MDP for all algorithms

Table 1: Correct results

alg. solver n≤

PI – 20

LP COPT 18
CPLEX 18
Glop 25
GLPK 24
Gurobi 18
HiGHS 22
lp_solve 28
Mosek 22
SoPlex 34

differences between v̄ and v. Second are the algorithm’s inherent properties: VI
is an approximating algorithm that converges to the true value only in the limit.
In theory, it is possible to obtain the exact result by rounding after exponentially
many iterations [15]; in practice, this results in excessive runtime. Instead, for
years, implementations used a naive stopping criterion that could return arbi-
trarily wrong results [33]. This problem’s discovery sparked the development
of sound variants of VI [8,34,40,19,54,56], including interval iteration, sound
value iteration, and optimistic value iteration. A sound VI algorithm guarantees
ε-precise results, i.e. |v − v̄| ≤ ε or |v − v̄| ≤ v · ε. For LP and PI, the guarantees
have not yet been thoroughly investigated. Theoretically, both are exact, but
implementations are often not. We discuss the problems in Sections 3 and 4.

The handcrafted MC of [33, Figure 2] highlights the lack of guarantees
of VI: standard implementations return vastly incorrect results. We extended
it with action choices to obtain the MDP Mn shown in Fig. 1 for n ∈ N,
n ≥ 2. It has 2n+ 1 states; we compute Pmin({n }) and Pmax({n }). The policy
that chooses action m wherever possible induces the MC of [33, Figure 2] with
(Pmin({n }),Pmax({n })) = ( 1

2 ,
1
2 ). In every state s with 0 < s < n, we added

the choice of action j that jumps to n and 9n. With that, the (optimal) values
over all policies are ( 1

3 ,
2
3 ). In VI, starting from value 0 for all states except n,

initially taking j everywhere looks like the best policy for Pmax. As updated
values slowly propagate, state-by-state, m becomes the optimal choice in all states
except −n+ 1. We thus layered a “deceptive” decision problem on top of the slow
convergence of the original MC. For n = 20, VI with Storm and mcsta deliver the
incorrect results (0.247, 0.500). For Storm’s PI and various LP solvers, we show in
Table 1 the largest n for which they return a ± 0.01-correct result. For larger n,
PI and all LP solvers claim ≈ ( 1

2 ,
1
2 ) as the correct solution except for Glop and

GLPK which only fail for the maximum at the given n; for the minimum, they
return the wrong result at n ≥ 29 and 52, respectively. Sound VI algorithms and
Storm’s exact-arithmetic engine produce (ε-)correct results, though the former at
excessive runtime for larger n. We used default settings for all tools and solvers.
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2.4 Optimizations

VI, LP, and PI can all benefit from the following optimizations:
Graph-theoretic algorithms can be used for qualitative analysis of the MDP,
i.e. finding states with value 0 or (only for reachability objectives) 1. These
qualitative approaches are typically a lot faster than the numerical computations
for quantitative analysis. Thus, we always apply them first and only run the
numerical algorithms on the remaining states with non-trivial values.
Topological methods, e.g. [17], do not consider the whole MDP at once. Instead,
they first compute a topological ordering of the strongly connected components
(SCCs)5 and then analyze each SCC individually. This can improve the runtime,
as we decompose the problem into smaller subproblems. The subproblems can
be solved with any of the solution methods. Note that when considering acyclic
MDPs, the topological approach does not need to call the solution methods, as
the resulting values can immediately be backpropagated.
Collapsing of maximal end components (MECs), e.g., [13,34], transforms the MDP
into one with equivalent values but simpler structure. After collapsing MECs,
the MDP is contracting, i.e. we almost surely reach a target state or a state with
value zero. VI algorithms rely on this property for convergence [34,40,56]. For PI
and LP, simplifying the graph structure before applying the solution method can
speed up the computation.
Warm starts, e.g. [26,46], may adequately initialize an algorithm, i.e., we may
provide it with some prior knowledge so that the computation has a good starting
point. We implement warm starts by first running VI for a limited number of
iterations and using the resulting estimate to guess bounds on the variables in
an LP or a good initial policy for PI. See Sections 3 and 4 for more details.

3 Practically solving MDPs using Linear Programs

This section considers the LP-based approach to solving the optimal policy prob-
lem in MDPs. To the best of our knowledge, this is the only polynomial-time
approach. We discuss various configurations. These configuration are a combina-
tion of the LP formulation, the choice of software, and their parameterization.

3.1 How to encode MDPs as LPs?

For objective Pmax(T) we formulate the following LP over variables xs, s ∈ S \ T:
minimize

∑
s∈S

xs s.t. lb(s) ≤ xs ≤ ub(s) and

xs ≥
∑

s′∈S\T

δ(s, a)(s′) · xs′ +
∑
t∈T

δ(s, a)(t) for all s ∈ S \ T, a ∈ A

5 A set S′ ⊆ S is a connected component if for all s, s′ ∈ S′, s can be reached from s′.
We call S′ strongly connected component if it is inclusion maximal.
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We assume bounds lb(s) = 0 and ub(s) = 1 for s ∈ S \ T. The unique solution
η : {xs | s ∈ S \ T } → [0, 1] to this LP coincides with the desired objective
values η(xs) = V (s). Objectives Pmin(T) and Eopt(rew) have similar encodings:
minimizing policies require maximisation in the LP and flipping the constraint
relation. Rewards can be added as an additive factor on the right-hand side. For
practical purposes, the LP formulation can be tweaked.

The choice of bounds. Any bounds that respect the unique solution will not change
the answer. That is, any lb and ub with 0 ≤ lb(s) ≤ V (s) ≤ ub(s) yield a sound
encoding. While these additional bounds are superfluous, they may significantly
prune the search space. We investigate trivial bounds, e.g., knowing that all
probabilities are in [0, 1], bounds from a structural analysis as discussed by [8],
and bounds induced by a warm start of the solver. For the latter, if we have
obtained values V ′ ≤ V , e.g., induced by a suboptimal policy, then V ′(s) is a
lower bound on the value xs, which is particularly relevant as the LP minimizes.

Equality for unique actions. Markov chains, i.e., MDPs where |A| = 1, can be
solved using linear equation systems. The LP encoding uses one-sided inequalities
and the objective function to incorporate nondeterministic choices. We investigate
adding constraints for all states with a unique action.

xs ≤
∑

s′∈S\T

δ(s, a)(s′) · xs′ +
∑
t∈T

δ(s, a)(t) for all s ∈ S \ T with A(s) = {a}

These additional constraints may trigger different optimizations in a solver, e.g.,
some solvers use Gaussian elimination for variable elimination.

A simpler objective. The standard objective assures the solution η is optimal for
every state, whereas most invocations require only optimality in some specific
states – typically the initial state s0 or the entry states of a strongly connected
component. In that case, the objective may be simplified to optimize only the
value for those states. This potentially allows for multiple optimal solutions: in
terms of the MDP, it is no longer necessary to optimize the value for states that
are not reached under the optimal policy.

Encoding the dual formulation. Encoding a dual formulation to the LP is interest-
ing for mixed-integer extensions to the LP, relevant for computing, e.g., policies
in POMDPs [47], or when computing minimal counterexamples [58]. For LPs, due
to the strong duality, the internal representation in the solvers we investigated is
(almost) equivalent and all solvers support both solving the primal and the dual
representation. We therefore do not further consider constructing them.

3.2 How to solve LPs with existing solvers?

We rely on the performance of state-of-the-art LP solvers. Many solvers have
been developed and are still actively advanced, see [2] for a recent comparison
on general benchmarks. We list the LP solvers that we consider for this work
in Table 2. The columns summarize for each solver the type of license, whether
it uses exact or floating-point arithmetic, whether it supports multithreading,
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Table 2: Available LP solvers (“intr� = interior point)

solver version license exact/fp parallel algorithms mcsta Storm

COPT [24] 5.0.5 academic fp yes intr+ simplex yes no
CPLEX [44] 22.10 academic fp yes intr+ simplex yes no
Gurobi [32] 9.5 academic fp yes intr+ simplex yes yes
GLPK [29] 4.65 GPL fp no intr+ simplex no yes
Glop [30] 9.4.1874 Apache fp no simplex only yes no
HiGHS [35,43] 1.2.2 MIT fp yes intr+ simplex yes no
lp_solve [10] 5.5.2.11 LGPL fp no simplex only yes no
Mosek [52] 10.0 academic fp yes intr+ simplex yes no
SoPlex [28] 6.0.1 academic both no simplex only no yes
Z3 [53] 4.8.13 MIT exact no simplex only no yes

and what type of algorithms it implements. We also list whether the solver is
available from the two model checkers used in this study6.
Methods. We briefly explain the available methods and refer to [12] for a thorough
treatment. Broadly speaking, the LP solvers use one out of two families of
methods. Simplex -based methods rely on highly efficient pivot operations to
consider vertices of the simplex of feasible solutions. Simplex can be executed
either in the primal or dual fashion, which changes the direction of progress
made by the algorithm. Our LP formulation has more constraints than variables,
which generally means that the dual version is preferable. Interior methods,
often the subclass of barrier methods, do not need to follow the set of vertices.
These methods may achieve polynomial time worst-case behaviour. It is generally
claimed that simplex has superior average-case performance but is highly sensitive
to perturbations, while interior-point methods have a more robust performance.
Warm starts. LP-based model checking can be done using two types of warm
starts. Either by providing a (feasible) basis point as done in [26] or by presenting
bounds. The former, however, comes with various remarks and limitations, such
as the requirement to disable preprocessing. We therefore used warm starts only
by using bounds as discussed above.
Multithreading. We generally see two types of parallelisation in LP solvers. Some
solvers support a portfolio approach that runs different approaches and finishes
with the first one that yields a result. Other solvers parallelize the interior-point
and/or simplex methods themselves.
Guarantees for numerical LP solvers. All LP solvers allow tweaking of various
parameters, including tolerances to manage whether a point is considered feasible
or optimal, respectively. The experiments in Table 1 already indicate that these
guarantees are not absolute. A limited experiment indicated that reducing these
tolerances towards zero did remove some incorrect results, but not all.
6 Support for Gurobi, GLPK, and Z3 was already available in Storm. Support for Glop
was already available in mcsta. All other solver interfaces have been added.
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Exact solving. SoPlex supports exact computations, with a Boost library wrapping
GMP rationals [22], after a floating-point arithmetic-based startup phase [27].
While this combination is beneficial for performance in most settings, it leads to
crashes for the numerically challenging models. Z3 supports only exact arithmetic
(also wrapping GMP numbers with their own interface). We observe that the
price of converting large rational numbers may be substantial. SMT solvers like
Z3 use a simplex variation [18] tailored towards finding feasible points and in an
incremental fashion, optimized for problems with a nontrivial Boolean structure.
In contrast, our LP formulation is easily feasible and is a pure conjunction.

4 Sound Policy Iteration

Starting with an initial policy, PI-based algorithms iteratively improve the policy
based on the values obtained for the induced MC. The algorithm for solving
the induced MC crucially affects the performance and accuracy of the overall
approach. This section addresses the solvers available in Storm, possible precision
issues, and how to utilize a warm start, while Section 5 discusses PI performance7.
Markov chain solvers. To solve the induced MC, Storm can employ all linear
equation solvers listed in [42] and all implemented variants of VI. In our experi-
ments, we consider (i) the generalized minimal residual method (GMRES) [57]
implemented in GMM++ [25], (ii) VI [15] with a standard (relative) termination
criterion, (iii) optimistic VI (OVI) [40], and (iv) the sparse LU decomposition
implemented in Eigen [31] using either floating-point or exact arithmetic (LUX).
LU and LUX provide exact results (modulo floating-point errors in LU) while
OVI yields ε-precise results. VI and GMRES do not provide any guarantees.
Correctness of PI. The accuracy of PI is affected by the MC solver. Firstly, PI
cannot be more precise than its underlying solver: the result of PI has the same
precision as the result obtained for the final MC. Secondly, inaccuracies by the
solver can hide policy improvements; this may lead to premature convergence with
a sub-optimal policy. We show that PI can return arbitrarily wrong results—even
if the intermediate results are ε-precise:

s0 s1

s2 G

s3
a

b 0.1

0.9

δ/2

δ/2

1−δ

Fig. 2: Example MDP

Consider the MDP in Fig. 2 with objective
Pmax({G }). There is only one nondeterministic choice,
namely in state s0. The optimal policy is to pick b,
obtaining a value of 0.5. Picking a only yields 0.1. How-
ever, when starting from the initial policy π(s0) = a,
an ε-precise MC solver may return 0.1 + ε for both s0
and s1 and δ/2 + (1 − δ) · 0.1 for s2. This solution is
indeed ε-precise. However, when evaluating which action to pick in s0, we can
choose δ such that a seems to obtain a higher value. Concretely, we require
δ/2 + (1 − δ) · 0.1 < 0.1 + ε. For every ε > 0, this can be achieved by setting
δ < 2.5 · ε. In this case, PI would terminate with the final policy inducing a
severely suboptimal value.
7 [46] addresses performance in the context of PI for stochastic games.
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If every Markov chain is solved precisely, PI is correct. Indeed, it suffices to be
certain that one action is better than all others. This is the essence of modified
policy iteration as described in [55, Chapters 6.5 and 7.2.6]. Similarly, [46, Section
4.2] suggests to use interval iteration when solving the system induced by the
current policy and stopping when the under-approximation of one action is higher
than the over-approximation of all other actions.
Warm starts. PI profits from being provided a good initial policy. If the initial
policy is already optimal, PI terminates after a single iteration. We can inform
our choice of the initial policy by providing estimates for all states as computed
by VI. For every state, we choose the action that is optimal according to the
estimate. This is a good way to leverage VI’s ability to quickly deliver good
estimates [40], while at the same time providing the exactness guarantees of PI.

5 Experimental Evaluation

To understand the practical performance of the different algorithms, we performed
an extensive experimental evaluation. We used three sets of benchmarks: all
applicable benchmark instances8 from the Quantitative Verification Benchmark
Set (QVBS) [41] (the qvbs set), a subset of hard QVBS instances (the hard set),
and numerically challenging models from a runtime monitoring application [45]
(the premise set, named for the corresponding prototype). We consider two prob-
abilistic model checkers, Storm [42] and the Modest Toolset’s [37] mcsta. We used
Intel Xeon Platinum 8160 systems running 64-bit CentOS Linux 7.9, allocating 4
CPU cores and 32GB RAM to each experiment unless noted otherwise.

We plot algorithm runtimes in seconds in quantile plots as on the left and
scatter plots as on the right of Fig. 3. The former compare multiple tools or con-
figurations; for each, we sort the instances by runtime and plot the corresponding
monotonically increasing line. Here, a point (x, y) on the a-line means that the
x-th fastest instance solved by a took y seconds. The latter compare two tools
or configurations. Each point (x, y) is for one benchmark instance: the x-axis
tool took x while the y-axis tool took y seconds to solve it. The shape of points
indicates the model type; the mapping from shapes to types is the same for all
scatter plots and is only given explicitly in the first one in Fig. 3. Additional
plots to support the claims in this section are provided in the appendix of the
full version [39] of this paper.

The depicted runtimes are for the respective algorithm and all necessary
and/or stated preprocessing, but do not include the time for constructing the
MDP state spaces (which is independent of the algorithms). mcsta reports all
time measurements rounded to multiples of 0.1 s. We summarize timeouts, out-
of-memory, errors, and incorrect results as “n/a”. Our timeout is 30 minutes for
the algorithm and 45 minutes for total runtime including MDP construction. We
consider a result v̄ incorrect if |v− v̄| > v ·10−3 (i.e. relative error 10−3) whenever
a reference result v is available. We however do not flag a result as incorrect if

8 A benchmark instance is a combination of model, parameter valuation, and objective.



A Practitioner’s Guide to MDP Model Checking 479

0 50 100 150 200 250 300 350
0.1

1

10

100

1,000 VIs
VIm
COPTm

CPLEXm

Glopm
GLPKs

Gurobis
Gurobim
HiGHSm

lp_solvem
Mosekm

SoPlexs

SoPlexXs
Z3X

s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobim

C
O

P
T

m

MA MDP PTA

Fig. 3: Comparison of LP solver runtime on the qvbs set

v and v̄ are both below 10−8 (relevant for the premise set). Nevertheless, we
configure the (unsound) convergence threshold for VI as 10−6 relative; among the
sound VI algorithms, we include OVI, with a (sound) stopping criterion of relative
10−6 error. To only achieve the 10−3 precision we actually test, OVI could thus
be even faster than it appears in our plots. We make this difference to account
for the fact that many algorithms, including the LP solvers, do not have a sound
error criterion. We mark exact algorithms/solvers that use rational arithmetic
with a superscript X. The other configurations use floating-point arithmetic (fp).

5.1 The QVBS Benchmarks

The qvbs set comprises all QVBS benchmark instances with an MDP, Markov
automaton (MA), or probabilistic timed automaton (PTA) model9 and a reacha-
bility or expected reward/time objective that is quantitative, i.e. not a query that
yields a zero or one probability. We only consider instances where both Storm
and mcsta can build the explicit representation of the MDP within 15 minutes.
This yields 367 instances. We obtain reference results for 344 of them from either
the QVBS database or by using one of Storm’s exact methods. We found all
reference results obtained via different methods to be consistent.

For LP, we have various solvers with various parameters each, cf. Section 3. For
conciseness, we first compare all available LP solvers on the qvbs set. For the best-
performing solver, we then evaluate the benefit of different solver configurations.
We do the same for the choice of Markov chain solution method in PI. We then
focus on these single, reasonable, setups for LP and PI each in more detail.
LP solver comparison. The left-hand plot of Fig. 3 summarizes the results of
our comparison of the different LP solvers. Subscripts s and m indicate whether
the solver is embedded in either Storm or mcsta. We apply no optimizations or
9 MA and PTA are converted to MDP via embedding and digital clocks [48].
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Fig. 4: Performance impact of LP problem formulation variants (using Gurobis)

Table 3: LP summary

solver correct incorr. no result

VIs 359 8 0
VIm 357 8 2
COPTm 312 12 43
CPLEXm 291 10 66
Glopm 257 4 106
GLPKs 199 5 163
Gurobis 331 4 32
Gurobim 323 4 40
HiGHSm 288 10 69
lp_solvem 209 0 158
Mosekm 287 15 65
SoPlexs 226 9 132
SoPlexXs 218 0 149
Z3X

s 148 0 219

reductions to the MDPs except for the precom-
putation of probability-0 states (and in Storm
also of probability-1 states), and use the default
settings for all solvers, with the trivial variable
bounds [0, 1] and [0,∞) for probabilities and ex-
pected rewards, respectively. We include VI as
baseline. In Table 3, we summarize the results.

In terms of performance and scalability,
Gurobi solves the highest number of benchmarks
in any given time budget, closely followed by
COPT. CPLEX, HiGHS, and Mosek make up a
middle-class group. While the exact solver Z3 is
very slow, SoPlex’s exact mode actually competes
with some fp solvers. However, the quantile plots
do not tell the whole story. On the right of Fig. 3, we compare COPT and Gurobi
directly: each has a large number of instances on which it is (much) better.

In terms of reliability of results, the exact solvers as expected produce no
incorrect results; so does the slowest fp solver, lp_solve. COPT, CPLEX, HiGHS,
Mosek, and fp-SoPlex perform badly in this metric, producing more errors than
VI. Interestingly, these are mostly the faster solvers, the exception being Gurobi.

Overall, Gurobi achieves highest performance at decent reliability; in the
remainder of this section, we thus use Gurobis whenever we apply non-exact LP.
LP solver tweaking. Gurobi can be configured to use an “auto” portfolio approach,
potentially running multiple algorithms concurrently on multiple threads, a primal
or a dual simplex algorithm, or a barrier method algorithm. We compared each
option with 4 threads and found no significant performance difference. Similarly,
running the auto method with 1, 4, and 16 threads (only here, we allocate 16
threads per experiment) also failed to bring out noticeable performance differences.
Using more threads results in a few more out-of-memory errors, though. We thus
fix Gurobi on auto with 4 threads.

Fig. 4 shows the performance impact of supplying Gurobi with more precise
bounds on the variables for expected reward objectives using methods from
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Fig. 5: Comparison of MDP model checking algorithms on the qvbs set

[8,51] (“bounds” instead of “simple”), of optimizing only for initial state (“init”)
instead of the sum over all states (“all”), and of using equality (“eq”) instead of
less-/greater-than-or-equal (“ineq”) for unique action states. More precise bounds
yield a very small improvement at essentially no cost. Optimizing for the initial
state only results in a little better overall performance (in the “pocket” in the
quantile plot around x = 315 that is also clearly visible in the scatter plot).
However, it also results in 2 more incorrect results in the qvbs set. Using equality
for unique actions noticeably decreases performance and increases the incorrect
result count by 9 instances. For all experiments that follow, we thus use the more
precise bounds, but do not enable the other two optimizations.

0 100 200 300

1

100

PI/gmres
PI/VI
PI/OVI
PI/LU
PI/LUX

PI methods comparison. The main choice in
PI is which algorithm to use to solve the
induced Markov chains. On the right, we
show the performance of the different algo-
rithms available in Storm (cf. Section 4). LUX

yields a fully exact PI. This interestingly
performs better than the fp version, poten-
tially because fp errors induce spurious policy
changes. The same effect likely also hinders the use of OVI, whereas VI leads
to good performance. Nevertheless, gmres is best overall, and thus our choice
for all following experiments with non-exact PI. VI and gmres yield 6 and 4
incorrect results, respectively. OVI and the exact methods are always correct on
this benchmark set.

Best MDP algorithms for QVBS. We now compare all MDP model checking
algorithms on the qvbs set: with floating-point numbers, LP and PI configured as
described above, plus unsound VI, sound OVI, and the warm-start variants of PI
and LP denoted “VI2PI” and “VI2LP”, respectively. Exact results are provided
by rational search (RS, essentially an exact version of VI) [50], PI with exact LU,
and LP with exact solvers (SoPlex and Z3). All are implemented in Storm.

In a first experiment, we evaluated the impact of using the topological
approach and of collapsing MECs (cf. Section 2.4). The results, for which we
omit plots, are that the topological approach noticeably improves performance
and scalability for all algorithms, and we therefore always use it from now on.
Collapsing MECs is necessary to guarantee termination of OVI, while for the
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Fig. 7: Comparison of MDP model checking algorithms on the hard subset

other algorithms it is a potential optimization; however we found it to overall
have a minimal positive performance impact only. Since it is required by OVI
and does not reduce performance, we also always use it from now on.

Fig. 5 shows the complete comparison of all the methods on the qvbs set,
for fp algorithms on the left and exact solutions on the right. Among the fp
algorithms, OVI is clearly the fastest and most scalable. VI is somewhat faster
but incurs several incorrect results that diminish its appearance in the quantile
plot. OVI is additionally special among these algorithms in that it is sound, i.e.
provides guaranteed ε-correct results—though up to fp rounding errors, which
can be eliminated following the approach of [36]. On the exact side, PI with
an inexact-VI warm start works best. The scatter plots in Fig. 6(a) shows the
performance impact of computing an exact instead of an approximate solution.

5.2 The Hard QVBS Benchmarks

The QVBS contains many models built for tools that use VI as default algorithm.
The other algorithms may actually be important to solve key challenging instances
where VI/OVI perform badly. This contribution could be hidden in the sea of
instances trivial for VI. We thus zoom in on a selection of QVBS instances that
appear “hard” for VI: those where VI takes longer than the prior MDP state
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space construction phase in both Storm and mcsta, and additionally both phases
together take at least 1 s. These are 18 of the previously considered 367 instances.

In Fig. 7, we show the behaviour of all the algorithms on this hard subset. OVI
again works better than VI due to the incorrect results that VI returns. We see
that the performance and scalability gap between the algorithms has narrowed;
although OVI still “wins”, LP in particular is much closer than on the full qvbs set.
We also investigated the LP outcomes with solvers other than Gurobi: even on this
set, Gurobi and COPT remain the fastest and most scalable solvers. With mcsta,
in the basic configuration, they solve 16 and 17 instances, the slowest taking
835 s and 1334 s, respectively; with the topological optimization, the numbers
become 17 and 15 instances with the slowest at 1373 s and 1590 s seconds. We
show the detailed comparison of OVI and LP in Fig. 6(c), noting that there are
a few instances where LP is much faster, and repeat the comparison between the
best fp and exact algorithms (Fig. 6(b)).

5.3 The Runtime Monitoring Benchmarks

While the QVBS is intentionally diverse, our third set of benchmarks is inten-
tionally focused: We study 200 MDPs from a runtime monitoring study [45]. The
original problem is to compute the normalized risk of continuing to operate the sys-
tem being monitored subject to stochastic noise, unobservable and uncontrollable
nondeterminism, and partial state observations. This is a query for a conditional
probability. It is answered via probabilistic model checking by unrolling an MDP
model along an observed history trace of length n ∈ { 50, . . . , 1000 } following
the approach of Baier et al. [7]. The MDPs contain many transitions back to the
initial state, ultimately resulting in numerically challenging instances (containing
structures similar to the one of Mn in Section 2.3). We were able to compute a
reference result for all instances.

Fig. 8 compares the different MDP model checking algorithms on this set. In
line with the observations in [45], we see very different behaviour compared to
the QVBS. Among the fp solutions on the left, LP with Gurobi terminates very
quickly (under 1 s), and either produces a correct (155 instances) or a completely
incorrect result (mostly 0, on 45 instances). VI behaves similarly, but is slower.
OVI, in contrast, delivers no incorrect result, but instead fails to terminate on all
but 116 instances. In the exact setting, warm starts using VI inherit its relative
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slowness and consequently do not pay off. Exact PI outperforms both exact LP
solvers. In the case of exact SoPlex, out of the 112 instances it does not manage
to solve, 98 are crashes likely related to a confirmed bug in its current version.

The premise set highlights that the best MDP model checking algorithm
depends on the application. Here, in the fp case, LP appears best but produces
unreliable (incorrect) results; the seemingly much worse OVI at least does not
do so. Given the numeric challenge, an exact method should be chosen, and we
show that these actually perform well here.

6 Conclusion

We thoroughly investigated the state of the art in MDP model checking, showing
that there is no single best algorithm for this task. For benchmarks which are
not numerically challenging, OVI is a sensible default, closely followed by PI and
LP with a warm start—although using the latter two means losing soundness as
confirmed by a number of incorrect results in our experiments. For numerically
hard benchmarks, PI and LP as well as computing exact solutions are more
attractive, and clearly preferable in combination. Overall, although LP has the
superior (polynomial) theoretical complexity, in our practical evaluation, it almost
always performs worse than the other (exponential) approaches. This is even
though we use modern commercial solvers and tune both the LP encoding of the
problem as well as the solvers’ parameters. While we observed the behaviour of
the different algorithms and have some intuition into what makes the premise
set hard, an entire research question of its own is to identify and quantify the
structural properties that make a model hard.

Our evaluation also raises the question of how prevalent MDPs that challenge
VI are in practice. Aside from the premise benchmarks, we were unable to find
further sets of MDPs that are hard for VI. Notably, several stochastic games (SGs)
difficult for VI were found in [46]; the authors noted that using PI for the SGs
was better than applying VI to the SGs. However, when we extracted the induced
MDPs, we found them all easy for VI. Similarly, [3] used a random generation
of SGs of at most 10,000 states, many of which were challenging for the SG
algorithms. Yet the same random generation modified to produce MDPs delivered
only MDPs easily solved in seconds, even with drastically increased numbers
of states. In contrast, Alagöz et al. [1] report that their random generation
returned models where LP beat PI. However, their setting is discounted, and
their description of the random generation was too superficial for us to be able
to replicate it. We note that, in several of our scatter plots, the MA instances
from the QVBS (where we check the embedded MDP) appeared more challenging
overall than the MDPs. We thus conclude this paper with a call for challenging
MDP benchmarks—as separate benchmark sets of unique characteristics like
premise, or for inclusion in the QVBS.

Data availability statement. The datasets generated and analysed in this
study and code to regenerate them are available in the accompanying artifact [38].
For Storm, our code builds on version 1.7.0. We used mcsta version 3.1.213.
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Abstract. A classical problem for Markov chains is determining their
stationary (or steady-state) distribution. This problem has an equally
classical solution based on eigenvectors and linear equation systems.
However, this approach does not scale to large instances, and iterative
solutions are desirable. It turns out that a naive approach, as used by
current model checkers, may yield completely wrong results. We present
a new approach, which utilizes recent advances in partial exploration and
mean payoff computation to obtain a correct, converging approximation.

1 Introduction

Discrete-time Markov chains (MCs) are an elegant and standard framework to
describe stochastic processes, with a vast area of applications such as computer
science [4], biology [28], epidemiology [13], and chemistry [12], to name a few.
In a nutshell, MC comprise a set of states and a transition function, assigning
to each state a distribution over successors. The system evolves by repeatedly
drawing a successor state from the transition distribution of the current state.
This can, for example, model communication over a lossy channel, a queuing
network, or populations of predator and prey which grow and interact randomly.
For many applications, the stationary distribution of such a system is of particular
interest. Intuitively, this distribution describes in which states the system is in
after an “infinite” number of steps. For example, in a chemical reaction network
this distribution could describe the equilibrium states of the mixture.

Traditionally, the stationary distribution is obtained by computing the domi-
nant eigenvector for particular matrices and solving a series of linear equation
systems. This approach is appealing in theory, since it is polynomial in the size
of the considered Markov chain. Moreover, since linear algebra is an intensely
studied field, many optimizations for the computations at hand are known.

In practice, these approaches however often turn out to be insufficient. Real-
world models may have millions of states, often ruling out exact solution ap-
proaches. As such, the attention turns to iterative methods. In particular, the
popular model checker PRISM [21] employs the power method (or power iteration)
to approximate the stationary distribution. Similar to many other problems on
Markov chains, such iterative methods have an exponential worst-case, however
obtain good results quickly on many models. (Models where iterative methods
indeed converge slowly are called stiff.) However, as we show in this work, the
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“absolute change”-criterion used by PRISM to stop the iteration is incorrect. In
particular, the produced results may be arbitrarily wrong already on a model
with only four states. In [14,7] the authors discuss a similar issue for the problem
of reachability, also rooted in an incorrect absolute change stopping criterion, and
provide a solution through converging lower and upper bounds. In our case, the
situations is more complicated. The convergence of the power method is quite
difficult to bound: A good (and potentially tight) a-priori bound is given by
the ratio of first and second eigenvalues, which however is as hard to determine
as solving the problem itself. In the case of MC, only a crude bound on this
ratio can be obtained easily, which gives an exponential bound on the number of
iterations required to achieve a given precision. More strikingly, in contrast to
reachability, there is to our knowledge no general adaptive stopping criterion for
power iteration, i.e. a way to check whether the current iterates are already close
to the correct result. Thus, one would always need to iterate for as many steps
as given by the a-priori bound to obtain guarantees on the result. In summary,
exact solution approaches do not scale well, and the existing iterative approach
may yield wrong results or requires an intractable number of steps.

Another, orthogonal issue of the mentioned approaches is that they construct
the complete system, i.e. determine the stationary distribution for each state.
However, when we figure out that, for example, the stationary distribution has
a value of at least 99% for one state, all other states can have at most 1% in
total. In case we are satisfied with an approximate solution, we could already
stop the computation here, without investigating any other state. Inspired by the
results of [7,18], we thus also want to find such an approximate solution, capable
of identifying the relevant parts of the system and only constructing those.

1.1 Contributions

In this work, we address all the above issues. To this end, we

– provide a characterization of the stationary distribution through mean payoff
which allows us to obtain provably correct approximations (Section 3),

– introduce a general framework to approximate the stationary distribution in
Markov chains, capable of utilizing partial exploration approaches (Section 4),

– as the main technical contribution, provide very general, precise correctness
and termination proofs, requiring only minimal assumptions (Theorem 3),

– instantiate this framework with both the classical solution approach as well
as our novel sampling-based interval approximation approach (Section 4.2),

– evaluate the variants of our framework experimentally (Section 5), and
– demonstrate with a minimal example that the standard approach of PRISM

may yield arbitrarily wrong results (Fig. 2).

1.2 Related Work

Most related is the work of [30], which also try to identify the most relevant
parts of the system, however they employ the special structure given by cellular
processes to find these regions and estimate the subsequent approximation
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error. Many other works deal with special cases, such as queueing models [1,17],
time-reversible chains [8], or positive rows (all states have a transition to one
particular state) [9,11,27]. In contrast, our methods aim to deal with general
Markov chains. We highlight that for the “positive row” case, [11] also provides
converging bounds, however through a different route. Another topic of interest
are continuous time Markov chains, where abstraction- and truncation-based
algorithms are applicable [20,3] and computation of the stationary distribution
can be used for time-bounded reachability [16].

2 Preliminaries
As usual, N and R refer to the (positive) natural numbers and real numbers,
respectively. For a set S, S denotes its complement, while S⋆ and Sω refer to the
set of finite and infinite sequences comprising elements of S, respectively. We
write 1S(s) = 1 if s ∈ S and 0 otherwise for the characteristic function of S.

We assume familiarity with basic notions of probability theory, e.g., probability
spaces, probability measures, and measurability; see e.g. [6] for a general introduc-
tion. A probability distribution over a countable set X is a mapping d : X → [0, 1],
such that

∑
x∈X d(x) = 1. Its support is denoted by supp(d) = {x ∈ X | d(x) > 0}.

D(X) denotes the set of all probability distributions on X. Some event happens
almost surely (a.s.) if it happens with probability 1.

The central object of interest are Markov chains, a classical model for systems
with stochastic behaviour: A (discrete-time time-homogeneous) Markov chain
(MC) is a tuple M = (S, δ), where S is a finite set of states, and δ : S → D(S) is
a transition function that for each state s yields a probability distribution over
successor states. We deliberately exclude the explicit definition of an initial state.
We direct the interested reader to, e.g., [4, Sec. 10.1], [29, App. A], or [19] for
further information on Markov chains and related notions.

For ease of notation, we write δ(s, s′) instead of δ(s)(s′), and, given a function
f : S → R mapping states to real numbers, we write δ(s)⟨f⟩ :=

∑
s′∈S δ(s, s′) ·

f(s′) to denote the weighted sum of f over the successors of s.
We always assume an arbitrary but fixed numbering of the states and identify

a state with its respective number. For example, given a vector v ∈ R|S| and a
state s ∈ S, we may write v[s] to denote the value associated with s by v. In this
way, a function v : S → R is equivalent to a vector v ∈ R|S|.

For a set of states R ⊆ S where no transitions leave R, i.e. δ(s, s′) = 0 for all
s ∈ R, s′ ∈ S \ R, we define the restricted Markov chain M|R := (R, δ|R) with
δ|R : R → D(R) copying the values of δ, i.e. δ|R(s, s′) = δ(s, s′) for all s, s′ ∈ R.

Paths An infinite path ρ in a Markov chain is an infinite sequence ρ = s1s2 · · · ∈
Sω, such that for every i ∈ N we have that δ(si, si+1) > 0. We use ρ(i) to refer to
the i-th state si in a given infinite path. We denote the set of all infinite paths of
a Markov chain M by PathsM. Observe that in general PathsM is a proper subset
of Sω, as we imposed additional constraints. A Markov chain together with an
initial state ŝ ∈ S induces a unique probability measure PrM,ŝ over infinite paths
[4, Sec. 10.1]. Given a measurable random variable f : PathsM → R, we write
EM,ŝ[f ] :=

∫
ρ∈Paths f(ρ) dPrM,ŝ to denote its expectation w.r.t. this measure.
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Reachability An important tool in the following is the notion of reachability
probability, i.e. the probability that the system, starting from a state ŝ, will
eventually reach a given set T . Formally, for a Markov chain M and set of states
T , we define the set of runs which reach T (i) at step n by ♢=nT := {ρ ∈ PathsM |
ρ(n) ∈ T} and (ii) eventually by ♢T =

⋃∞
i=1 ♢

=iT . (For a measurability proof see
e.g. [4, Chp. 10].) For a state ŝ, the probability to reach T is given by PrM,ŝ[♢T ].

Classically, the reachability probability can be determined by solving a linear
equation system, as follows. For a fixed target set T , let S0 be all states that
cannot reach T . Note that S0 can be determined by simple graph analysis. Then,
the reachability probability PrM,ŝ[♢T ] is the unique solution of [4, Thm. 10.19]

f(s) = 1 if s ∈ T , 0 if s ∈ S0, and δ(s)⟨f⟩ otherwise. (1)

Value Iteration A classical tool to deal with Markov chains is value iteration (VI)
[5]. It is a simple yet surprisingly efficient and extendable approach to solve a
variety of problems. At its heart, VI relies, as the name suggests, on iteratively
applying an operation to a value vector. This operation often is called “Bellman
backup” or “Bellman update”, usually derived from a fixed-point characterization
of the problem at hand. Thus, VI often can be viewed as fixed point iteration.
For reachability, inspired by Eq. (1), we start from v1[s] = 0 and iterate

vk+1[s] = 1 if s ∈ T , 0 if s ∈ S0, and δ(s)⟨vk⟩ otherwise. (2)
This iteration monotonically converges to the true value in the limit from below
[4, Thm. 10.15], [29, Thm. 7.2.12]. Convergence up to a given precision may
take exponential time [14, Thm. 3], but in practice VI often is much faster than
methods based on equation solving. For further details, see [26, App. A.2].

Strongly Connected Components A non-empty set of states C ⊆ S in a Markov
chain is strongly connected if for every pair s, s′ ∈ C there is a non-empty finite
path from s to s′. Such a set C is a strongly connected component (SCC) if it
is inclusion maximal, i.e. there exists no strongly connected C ′ with C ⊊ C ′.
SCCs are disjoint, each state belongs to at most one SCC. An SCC is bottom
(BSCC) if additionally no path leads out of it, i.e. for all s ∈ C, s′ ∈ S \ C we
have δ(s, s′) = 0. The set of BSCCs in an MC M is denoted by BSCC(M) and
can be determined in linear time by, e.g., Tarjan’s algorithm [32].

The bottom components fully capture the limit behaviour of any Markov
chain. Intuitively, the following statement says that (i) with probability one a
run of a Markov chain eventually forever remains inside one single BSCC, and
(ii) inside a BSCC, all states are visited infinitely often with probability one.

Lemma 1 ([4, Thm. 10.27]). For any MC M and state s, we have
PrM,s[{ρ | ∃Ri ∈ BSCC(M).∃n0 ∈ N.∀n > n0.ρ(n) ∈ Ri}] = 1.

For any BSCC R ∈ BSCC(M) and states s, s′ ∈ R, we have PrM,s[♢{s′}] = 1.

Stationary Distribution Given a state ŝ, the stationary distribution (also known
as steady-state or long-run distribution) of a Markov chain intuitively describes,
for each state s, the probability for the system to be at this particular state at an
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arbitrarily chosen step “at infinity”. There are several ways to define this notion.
In particular, there is a subtle difference between the limiting and stationary
distribution, which however coincide for aperiodic MC. For the sake of readability,
we omit this distinction and assume w.l.o.g. that all MCs we deal with are
aperiodic. See [26, App. A.1] for further discussion. Our definition follows the
view of [4, Def. 10.79]; see [29, Sec. A.4] for a different approach.
Definition 1. Fix a Markov chain M = (S, δ) and initial state ŝ. Let πn

M,ŝ(s) :=
PrM,ŝ[♢=n{s}] the probability that the system is at state s in step n. Then,
π∞

M,ŝ(s) := limn→∞
1
n

∑n
i=1 πi

M,ŝ(s) is the stationary distribution of M.
See Fig. 1 for an example. Whenever the reference is clear from context, we omit
the respective subscripts from π∞

M,ŝ.
We briefly recall the classical approach to compute stationary distributions

(see e.g. [19, Sec. 4.7]). By Lemma 1, almost all runs eventually end up in a BSCC.
Thus, π∞(s) = 0 for all states s not in a BSCC, or, dually,

∑
s∈B π∞(s) = 1

for B =
⋃

R∈BSCC(M) R. Moreover, once in a BSCC, we always obtain the
same stationary distribution, irrespective of through which state we entered the
BSCC. Formally, for each BSCC R ∈ BSCC(M) and s, s′ ∈ R, we have that
π∞

M,s = π∞
M,s′ = π∞

M|R,s, i.e. each BSCC R has a unique stationary distribution,
which we denote by π∞

R . Note that supp(π∞
R ) = R, i.e. π∞

R (s) ̸= 0 if and only if
s ∈ R. Together, we observe that the stationary distribution of a Markov chain
decomposes into (i) the steady state distribution in each BSCC and (ii) the
probability to end up in a particular BSCC. More formally, for any state s ∈ S

π∞
M,ŝ(s) =

∑
R∈BSCC(M)

PrM,ŝ[♢R] · π∞
R (s). (3)

Consider the example of Fig. 1: We have two BSCCs, {p} and {q1, q2}, which
both are reached with probability 1

2 , respectively. The overall distribution π∞
M,s

then is obtained from π∞
{p} = {p 7→ 1} and π∞

{q1,q2} = {q1 7→ 1
6 , q2 7→ 5

6 }.
As mentioned, we can compute reachability probabilities in Markov chains by

solving Eq. (1). Thus, the remaining concern is to compute π∞
R , i.e. the stationary

distribution of M|R. In this case, i.e. Markov chains comprising a single BSCC,
the steady state distribution is the unique fixed point of the transition function
(up to rescaling). By defining the row transition matrix of M as Pi,j = δ(i, j),
we can reformulate this property in terms of linear algebra. In particular, we
have that P · π∞

R = π∞
R , or, in other words, (P − I) · π∞

R = 0⃗, where I is an
appropriately sized identity matrix [29, Thm. A.2]. This equation again can be
solved by classical methods from linear algebra. In summary, we (i) compute
BSCC(M), (ii) for each BSCC R, compute π∞

R and PrM,ŝ[♢R], and (iii) combine
according to Eq. (3).
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However, as also mentioned in the introduction, precisely solving linear
equation systems may not scale well, both due to time as well as memory
constraints. Thus, we also are interested in relaxing the problem slightly and
instead approximating the stationary distribution up to a given precision of ε > 0.

Problem Statement Given a Markov chain M and precision requirement
ε > 0, compute bounds l, u : S → [0, 1] such that (i) maxs∈S u(s) − l(s) ≤ ε
and (ii) for all s ∈ S we have l(s) ≤ π∞

M,ŝ(s) ≤ u(s).

Approximate Solutions Aiming for approximations is not a new idea; to achieve
practical performance, current model checkers employ approximate, iterative
methods by default for most queries (typically a variant value iteration). In
particular, this also is the case for stationary distribution: Instead of solving the
equation system for each BSCC R precisely, we can approximate the solution by,
e.g., the power method. This essentially means to repeatedly apply the transition
matrix (of the model restricted to the BSCC) to an initial vector v0, i.e. iterating
vn+1 = PR · vn (or vn+1 = P n

R · v1). Similarly, the reachability probability for
each BSCC then also is approximated by value iteration.

It is known that (for aperiodic MC) limn→∞ vn = π∞
R (see e.g. [31,16,27]),

however convergence up to a precision of ε may take exponential time in the
worst case. Moreover, there is no known stopping criterion which allows us to
detect that we have converged and stop the computation early. Yet, similar to
reachability [7,14], current model checkers employ this method without a sound
stopping criterion, leading to potentially arbitrarily wrong results, as we show in
our evaluation (Fig. 2). See [16] for a related, in-depth discussion of these issues
in the context of CTMC.

We thus want to find efficient methods to derive safe bounds on the station-
ary distribution of a BSCC with a correct stopping criterion and combine it
with correct reachability approximations to obtain an overall fast and sound
approximation. To this end, we exploit two further concepts.

Partial Exploration Recent works [7,2,18,24] demonstrate the applicability of
partial exploration to a variety of problems associated with probabilistic systems
such as reachability. Essentially, the idea is to “omit” parts of the system which
can be proven to be irrelevant for the result, instead focussing on important areas
of the system. Of course, by omitting parts of the system, we may incur a small
error. As such, these approaches naturally aim for approximate solutions.

Mean payoff We make use of another property, namely mean payoff (also known
as long-run average reward). We provide a brief overview and direct to e.g.
[29, Chp. 8 & 9] or [2] for more information. Mean payoff is specified by a
Markov chain and a reward function r : S → R, assigning a reward to each state.
Given an infinite path ρ = s1s2 · · · , this naturally induces a stream of rewards
r(ρ) := r(s1)r(s2) · · · . The mean payoff of this path then equals the average
reward obtained in the limit, mp′

r(ρ) := lim infn→∞
1
n

∑n
i=1 r(si). (The limit
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might not be defined for some paths, hence considering the lim inf is necessary.)
Finally, the mean payoff of a state s is the expected mean payoff according to
PrM,s, i.e. mpr(s) := EM,s[mp′

r].
Classically, mean payoff is computed by solving a linear equation system [29,

Thm. 9.1.2]. Instead, we can also employ value iteration to approximate the
mean payoff, however with a slight twist. We iteratively compute the expected
total reward, i.e. the expected sum of rewards obtained after n steps, by iterating
vn+1(s) = r(s) + δ(s)⟨vn⟩. It turns out that the increase ∆n(s) = vn+1(s) − vn(s)
approximates the mean payoff, i.e. mpr(s) = limn→∞ ∆n(s) [29, Thm. 9.4.5
a)]. Moreover, we have mins′∈S ∆n(s′) ≤ mpr(s) ≤ maxs′∈S ∆n(s′), yielding a
correct stopping criterion [29, Thm. 9.4.5 b)]. Finally, on BSCCs these upper and
lower bounds always converge [29, Cor. 9.4.6 b)], yielding termination guarantees.
We provide further details on VI for mean payoff in [26, App. A.3].

3 Building Blocks

To arrive at a practical algorithm approximating the stationary distribution, we
propose to employ sampling-based techniques, inspired by, e.g. [7,2,18]. Intuitively,
these approaches repeatedly sample paths and compute bounds on a single
property such as reachability or mean payoff. The sampling is designed to follow
probable paths with high probability, hence the computation automatically
focuses on the most relevant parts of the system. Additionally, by building the
system on the fly, construction of hardly reachable parts of the system may be
avoided altogether, yielding immense speed-ups for some models (see, e.g., [18] for
additional background). We apply a series of tweaks to the original idea to tailor
this approach to our use case, i.e. approximating the stationary distribution.

In this section, we present the “building blocks” for our approximate approach.
In the spirit of Eq. (3), we discuss how we handle a single BSCC and how to
approximate the reachability probabilities of all BSCCs. In the following section,
we then combine these two approaches in a non-trivial manner.

3.1 Bounds in BSSCs through Mean Payoff

It is well known that the mean payoff can be computed directly from the stationary
distribution [29, Prop. 8.1.1], namely:

mpr(s) =
∑

s′∈S
π∞

M,s(s′) · r(s′) (4)

In this section, we propose the opposite, namely computing the stationary
distribution of a BSCC through mean payoff queries. Fix a Markov chain M =
(S, δ) which comprises a single BSCC, i.e. S ∈ BSCC(M), and define r(s′) =
1{s}(s′), i.e. 1 for s and 0 otherwise. Then, the mean payoff corresponds to the
frequency of s appearing, i.e. the stationary distribution. Formally, we have that
π∞

M,ŝ(s) = mpr(s′) for any state s′ (in a BSCC, all states have the same value).
This also follows directly by inserting in Eq. (4). So, naively, for each state of
the BSCC, we can solve a mean payoff query, and from these results obtain the
overall stationary distribution.
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Algorithm 1 Approximate Stationary Distribution in BSCC
Input: Markov chain M = (S, δ) with BSCC(M) = {S}
Output: Bounds l, u on stationary distribution π∞

S .
1: n← 1
2: for s ∈ S do l1(s)← 0, u1(s)← 1
3: for s ∈ S do
4: m← 1, v1 ← InitGuess(s)
5: while not ShouldStop(s, m, ∆m) do ▷ Iterate until some stopping criterion
6: for s′ ∈ S do vm+1(s′)← 1{s}(s′) + δ(s′)⟨vm⟩ ▷ Mean payoff VI for s
7: m← m + 1
8: l′

n(s)← max
(
ln(s), mins′∈S ∆m(s′)

)
, u′

n(s)← min
(
un(s), maxs′∈S ∆m(s′)

)
9: for s′ ∈ S \ {s} do l′

n(s′)← ln(s′), u′
n(s′)← un(s′)

10: for s′ ∈ S do ▷ Update bounds based on current results (optional)
11: ln+1(s′)← max

(
l′
n(s′), 1−

∑
s′′∈S,s′′ ̸=s′ u′

n(s′′)
)

12: un+1(s′)← min
(
u′

n(s′), 1−
∑

s′′∈S,s′′ ̸=s′ l′
n(s′′)

)
13: n← n + 1 and copy all unchanged values from n to n + 1
14: return (ln, un)

At first, this may seem excessive, especially considering that computing the
complete stationary distribution is as hard as determining the mean payoff for
one state (both can be obtained by solving a linearly sized equation system).
However, this idea yields some interesting benefits. Firstly, using the approxi-
mation approach discussed in Section 2, we obtain a practical approximation
scheme with converging bounds for each state. As such, we can quickly stop the
computation if the bounds converge fast. Moreover, we can pause and restart the
computation for each state, which we will use later on in order to focus on crucial
states. Finally, observe that π∞

R is a distribution. Thus, having lower bounds on
some states actually already yields upper bounds for remaining states. Formally,
for some lower bound l : S → [0, 1], we have π∞

R (s) ≤ 1 −
∑

s′∈S,s′ ̸=s l(s′). If
during our computation it turns out that a few states are actually visited very
frequently, i.e. the sum of their lower bounds is close to 1, we can already stop
the computation without ever investigating the other states. Note that this only
is possible since we obtain provably correct bounds.

Combining these ideas, we present our first algorithm template in Algorithm 1.
We solve each state separately, by applying the classical value iteration approach
for mean payoff until a termination criterion is satisfied. To allow for modifica-
tions, we leave the definition of several sub-procedures open. Firstly, InitGuess
initializes the value vector for each mean payoff computation. We can naively
choose 0 everywhere, obtain an initial guess by heuristics, or re-use previously
computed values. Secondly, ShouldStop decides when to stop the iteration for
each state. A simple choice is to iterate until max ∆m(s) − min ∆m(s) < ε for
some precision requirement ε. By results on mean payoff, we can conclude that in
this case the stationary distribution is computed with a precision of ε. However,
as we argue later on, more sophisticated choices are possible. Finally, the order
in which states are chosen is not fixed. Indeed, any order yields correct results,
however heuristically re-ordering the states may also bring practical benefits.

Before we continue, we briefly argue that the algorithm is correct.
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Theorem 1. The result returned by Algorithm 1 is correct for any MC M = (S, δ)
with BSCC(M) = {S}.

Proof (Sketch). Correctness of the mean payoff iteration follows from the defini-
tion of the reward function, Eq. (4), and the correctness of value iteration for
mean payoff [29, Sec. 8.5]. In particular, note that the states of the MC form a
single BSCC and the model is unichain (see [29, Chp. A]), implying that all states
have the same value. For l and u, we prove correctness inductively. The initial
values are trivially correct. The updates based on the mean payoff computation
are correct by the above arguments and by induction hypothesis: The maximum
of two correct lower bounds still is a lower bound, analogous for the upper bound.
The updates based on the bounds are correct since π∞

R is a distribution and l′,
u′ are correct bounds. ⊓⊔

We deliberately omit introducing an explicit precision requirement in the algo-
rithm, since we will use it as a building block later on.

Remark 1. A variant of this approach also allows for memory savings: By handling
one state at a time, we only need to store linearly many additional values (in the
number of states) at any time, while an explicit equation system may require
quadratic space. This only yields a constant factor improvement if the system
is represented explicitly (storing δ requires as much space), however can be of
significant merit for symbolically encoded systems. Note that this comes at a
cost: As we cannot stop and resume the computation for different states, we have
to determine the correct result up to the required precision immediately.

3.2 Reachability and Guided Sampling

As mentioned before, the second challenge to obtain a stationary distribution
is the reachability probability for each BSCC. We employ a sampling-based ap-
proach using insights from [7]. There, the authors considered a single reachability
objective, i.e. a single value per state. In contrast, we need to bound reachabil-
ity probabilities for each BSCC. For now, suppose that all BSCCs are already
discovered and their respective stationary distribution is already computed (or
approximated). In other words, we have for each BSCC R ∈ BSCC(M) bounds
lR, uR : R → [0, 1] with lR(s) ≤ π∞

R (s) ≤ uR(s), and we want to obtain bounds
on the stationary distribution, i.e. functions l, u such that l(s) ≤ π∞

M,ŝ(s) ≤ u(s).
We propose to additionally compute bounds on the probability to reach each
BSCC R, i.e. functions l♢R and u♢R such that l♢R(s) ≤ PrM,s[♢R] ≤ u♢R(s). By
Eq. (3), we then have for each state s a bound on the stationary distribution∑

R∈BSCC(M)
l♢R(ŝ) · lR(s) ≤ π∞

M,ŝ(s) ≤
∑

R∈BSCC(M)
u♢R(ŝ) · uR(s).

We take a route similar to [7]. There, the algorithm essentially samples a
path through the system, possibly guided by a heuristic, terminates the sampling
based on several criteria, and then propagates the reachability value backwards
along the path, repeating until termination. We propose a simple modification,
namely to sample until a BSCC is reached, and then propagate the reachability
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Algorithm 2 Approximate BSCC Reachability
Input: Markov chain M = (S, δ)
Output: For each BSCC R bounds l♢R, u♢R on the probability to reach R.
1: B ←

⋃
R∈BSCC(M) R, n← 1

2: for R ∈ BSCC(M) do
3: for s ∈ R do l♢R

1 (s)← 1, u♢R
1 (s)← 1

4: for s ∈ B \R do l♢R
1 (s)← 0, u♢R

1 (s)← 0
5: for s ∈ S \B do l♢R

1 (s)← 0, u♢R
1 (s)← 1

6: while ShouldSample do ▷ Sample until some stopping criterion
7: P ← SampleStates ▷ Select states to update (e.g. sample a path)
8: for R ∈ SelectUpdate(P ) do ▷ Select BSCCs to update
9: for s ∈ P do

10: l♢R
n+1(s)← δ(s)⟨l♢R

n ⟩
11: u♢R

n+1(s)← δ(s)⟨u♢R
n ⟩

12: for s ∈ S do ▷ Update bounds based on current results (optional)
13: for R ∈ BSCC(M) do
14: l♢R

n+1(s)← max
(
l♢R
n (s), 1−

∑
R′∈BSCC(M),R′ ̸=R

uR′
n (s)

)
15: u♢R

n+1(s)← min
(
u♢R

n (s), 1−
∑

R′∈BSCC(M),R′ ̸=R
lR′
n (s)

)
16: n← n + 1 and copy unchanged values from l♢R

n and u♢R
n to l♢R

n+1 and u♢R
n+1

17: return {(l♢R, u♢R) | R ∈ BSCC(R)}

values of that particular BSCC back along the path. Moreover, we can employ a
similar trick as above: Due to Lemma 1, the reachability probabilities of BSCCs
sum up to one, i.e.

∑
R∈BSCC(M) PrM,s[♢R] = 1 for every state s. Hence, the sum

of lower bounds also yields upper bounds for other BSCCs, even those we have
never encountered so far.

Our ideas are summarized in Algorithm 2. As before, the algorithm leaves
several choices open. Instead of requiring to sample a path, our algorithm allows
to select an arbitrary set of states to update. We note that the exact choice of
this sampling mechanism does not improve the worst case runtime. However, as
first observed in [7], specially crafted guidance heuristics can achieve dramatic
practical speed-ups on several models. Later on, we combine our two algorithms
and derive such a heuristic. For now, we briefly prove correctness.

Theorem 2. The result returned by Algorithm 2 is correct for any MC M = (S, δ)
with BSCC(M) = {S}.

Proof (Sketch). Similar to the previous algorithm, we prove correctness by induc-
tion. The initial values for l♢R and u♢R are correct. Then, assume that l♢R

n and
u♢R

n are correct bounds. The correctness of the back propagation updates follows
directly by inserting in Eq. (1) (or other works on interval value iteration [7,14]).
Updates based on the bounds in other states are correct by Lemma 1 – the sum
of all BSCC reachability probabilities is 1. Together, this yields correctness of
the bounds computed by the algorithm. ⊓⊔

To obtain termination, it is sufficient to require that every state eventually is
selected “arbitrarily often” by SampleStates. However, as before, we delegate
the termination proof to our combined algorithm in the following section.
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4 Dynamic Computation with Partial Exploration

Recall that our overarching goal is to approximate the stationary distribution
through Eq. (4). In the previous section, we have seen how we can (i) obtain
approximations for a given BSCC and (ii) how to approximate the reachability
probabilities of all BSCCs through sampling. However, the naive combination of
these algorithms would require us to compute the set of all BSCCs, approximate
the stationary distribution in each of them until a fixed precision, and additionally
approximate reachability for each of them.

We now combine both ideas to obtain a sampling-based algorithm, capable of
partial exploration, that focusses computation on relevant parts of the system.
In particular, we construct the system dynamically, identify BSCCs on the fly,
and interleave the exploration with both the approximation inside each explored
BSCC (Algorithm 1) and the overall reachability computation (Algorithm 2).
Moreover, we focus computation on BSCCs which are likely to be reached and
thus have a higher impact on the overall error of the result. Together, our approach
roughly performs the following steps until the required precision is achieved:

– Sample a path through the system, guided by a heuristic,
– check if a new BSCCs is discovered or sampling ended in a known BSCC,
– refine bounds on the stationary distribution in the reached BSCC, and
– propagate reachability bounds and additional information along the path.

We first formalize a generic framework which can instantiate the classical, precise
approach as well as our approximation building blocks and then explain our
concrete variant of this framework to efficiently obtain ε-precise bounds.

4.1 The Framework

Since our goal is to allow for both precise as well as approximate solutions, we
phrase the framework using lower and upper bounds together with abstract
refinement procedures. We first explain our algorithm and how it generalizes the
classical approach. Then, we prove its correctness under general assumptions.
Finally, we discuss several approximate variants.

Algorithm 3 essentially repeats three steps until the termination condition in
Line 4 is satisfied. First, we update the set of known BSCCs through UpdateB-
SSCs. In the classical solution, this function simply computes BSCC(M) once;
our on-the-fly construction would repeatedly check for newly discovered BSCCs,
dynamically growing the set Bn. Then, we select BSCCs for which we should
update the stationary distribution bounds. The classical solution solves the fixed
point equation we have discussed in Section 2 for all BSCCs, i.e. SelectDis-
tributionUpdates yields BSCC(M) and RefineDistribution the precisely
computed values both as upper and lower bounds. Alternatively, we could, for
example, select a single BSCC and apply a few iterations of Algorithm 1. Next,
we update reachability bounds for a selected set of BSCCs. Again, the classical
solution solves the reachability problem precisely for each BSCC through Eq. (1).
Instead, we could employ value iteration as suggested by Algorithm 2.



500 T. Meggendorfer

Algorithm 3 Stationary Distribution Computation Framework
Input: Markov chain M = (S, δ), initial state ŝ, precision ε > 0
Output: ε-precise bounds l, u on the stationary distribution π∞

M,ŝ

1: for s ∈ S do ▷ Initial bounds for all possible BSSCs that can be discovered
2: l♢◦

1 (s) = 0, u♢◦
1 (s) = 1, l◦

1(s)← 0, u◦
1(s)← 1

3: n← 1, B1 ← ∅
4: while

(
1−

∑
R∈Bn

l♢R
n (ŝ)

)
+

∑
R∈Bn

(
l♢R
n (ŝ) ·maxs∈S(uR

n (s)− lR
n (s))

)
> ε do

5: n← n + 1
6: Bn ← UpdateBSSCs, Bn ←

⋃
R∈Bn

R ▷ Discover new BSCCs
7: for R ∈ Bn \ Bn−1, s ∈ R do ▷ Update trivial reach bounds
8: l♢R

n (s)← 1 ▷ s ∈ R surely reaches R
9: for ◦ ̸= R do u♢◦

n (s)← 0 ▷ s ∈ R reaches no other BSCC
10: for R ∈ SelectDistributionUpdates(Bn) ∩ Bn do
11: (lR

n , uR
n )← RefineDistribution(R) ▷ Update BSCC bounds

12: for R ∈ SelectReachUpdates(Bn) ∩ Bn do
13: (l♢R

n , u♢R
n )← RefineReach(R) ▷ Update reachability bounds

14: Copy unchanged variables from n− 1 to n
15: L←

∑
R∈Bn

l♢R
n (ŝ)

16: for R ∈ Bn, s ∈ R do
17: l(s)← l♢R

n (ŝ) · lR
n (s)

18: u(s)← min(u♢R
n (ŝ), 1− L + l♢R

n (ŝ)) · uR
n (s)

19: for s ∈ S \Bn do l(s)← 0, u(s)← 0
20: return (l, u)

Before we present our variant, we prove correctness under weak assumptions.
We note a subtlety of the termination condition: One may assume that upper
bounds on the reachability are required to bound the overall error caused by each
BSCC. Yet, as we show in the following theorem, lower bounds are sufficient. The
upper bound is implicitly handled by the first part of the termination condition.

Theorem 3. The result returned by Algorithm 3 is correct, i.e. ε precise bounds
on the stationary distribution, if (i) Bn ⊆ Bn+1 ⊆ BSCC(M) for all n, and
(ii) RefineDistribution and RefineReach yield correct, monotone bounds.

The proof can be found in [26, App. B.1].

Remark 2. Technically, the algorithm does not need to track explicit upper
bounds on the reachability of each BSCC at all. Indeed, for a BSCC R ∈ Bn, we
could use 1 −

∑
R′∈BSCC(M)\{R} l♢R′

n (s) as upper bound and still obtain a correct
algorithm. However, tracking a separate upper bound is easier to understand and
has some practical benefits for the implementation.

We exclude a proof of termination, since this strongly depends on the interplay
between the functions left open. We provide a general, technical criterion to-
gether with a proof in [26, App. B.2]. Intuitively, as one might expect, we require
that eventually UpdateBSSCs identifies all relevant BSCCs, SelectDistri-
butionUpdates and SelectReachUpdates select all relevant BSCCs, and
RefineDistribution and RefineReach converge to the respective true value.
In the following, we present a concrete template which satisfies this criterion.



Correct Approximation of Stationary Distributions 501

4.2 Sampling-Based Computation

We present our instantiation of Algorithm 3 using guided sampling and heuristics.
Since the details of the sampling guidance heuristic are rather technical, we focus
on how the template functions UpdateBSSCs, SelectDistributionUpdates,
RefineDistribution, SelectReachUpdates, and RefineReach are instan-
tiated. For now, the reader may assume that states are, e.g., selected by sampling
random paths through the system.

– UpdateBSSCs: We track the set of explored states, i.e. states which have
already been sampled at least once. On these, we search for BSCCs whenever
we repeatedly stop sampling due to a state re-appearing.

– SelectDistributionUpdates: If we stopped sampling due to entering a
known BSCC, we update the bounds of this single one, otherwise none.

– RefineDistribution: We employ Algorithm 1 to refine the bounds until
the error over all states is halved.

– SelectReachUpdates: We refine the reach values for all sampled states.
– RefineReach: If we stopped sampling due to entering a BSCC, we back-

propagate the reachability bounds for this BSCC in the spirit of Algorithm 2,
i.e. for all sampled states set l♢R

n+1(s) = δ(s)⟨l♢R
n ⟩ and u♢R

n+1(s) = δ(s)⟨u♢R
n ⟩.

We prove that this yields correct results and terminates with probability 1 through
Theorem 3. Note that this description leaves exact details of the sampling open.
Thus, we prove termination using (weak) conditions on the sampling mechanism.
For readability, we define the shorthand errR

n = maxs∈R uR
n (s) − lR

n (s) denoting
the overall error of the stationary distribution in BSCC R and err♢R

n (s) =
u♢R

n (s) − l♢R
n (s) the error bound on the reachability of R from s.

Theorem 4. Algorithm 3 instantiated with our sampling-based approach yields
correct results and terminates with probability 1 if, with probability 1,

(S.i) the sampled states P ⊆ S satisfy PrM,ŝ[♢P ] < ε
4 (P is a ε

4 -core [18]),
(S.ii) the initial state is sampled arbitrarily often, and

(S.iii) for each state s sampled arbitrarily often, every successor s′ ∈ P with
En(s′) := maxR∈Bn

u♢R
n (s′) · errR

n + maxR∈Bn
err♢R

n (s) ≥ ε
4(|Bn|+1) is

sampled arbitrarily often,

where “arbitrarily often” means that if the algorithm would not terminate, this
would happen infinitely often.

The proof can be found in [26, App. B.3].
Due to space constraints, we omit an in-depth description of our sampling

method and only provide a brief summary here. In summary, our algorithm
first selects a “sampling target” which is either “the unknown”, i.e. states not
seen so far, to encourage exploration in the style of [18], or a known BSCC, to
bias sampling towards it. We select a choice randomly, weighted by its current
potential influence on the precision. The sampling process is guided by the
chosen target, taking actions which lead to the respective target with high
probability. In technical terms, we sample successors weighted by the upper
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bound on reachability probability times the transition probability. Once the
target is reached, we either explore the unknown, or improve precision in the
reached BSCC. Finally, information is back-propagated along the path. Further
details, in particular pitfalls we encountered during the design process, together
with a complete instantiation of our algorithm can be found in [26, App. C].

5 Experimental Evaluation

In this section, we evaluate our approaches, comparing to both our own reference
implementation using classical methods, as well as the established model checker
PRISM [21]. (The other popular model checkers Storm [10] and IscasMC/ePMC
[15] do not directly support computing stationary distributions.) We implemented
our methods in Java based on PET [24], running on consumer hardware (AMD
Ryzen 5 3600). To solve arising linear equation systems, we use Jeigen v1.2.
All executions are performed in a Docker container, restricted to a single CPU
core and 8GB of RAM. For approximations, we require a precision of ε = 10−4.

Tools Aside from PRISM1, we consider three variants of Algorithm 3, namely
Classic, the classical approach, solving each BSCC through a linear equation
system and then approximating the reachability through PRISM (using interval
iteration), Naive, the naive sampling approach, following the transition dynamics,
and Sample, our sampling approach, selecting a target and steering towards it.
The sourcecode of our implementation used to run these experiments as well as
all models and our data is available at [25]. Moreover, the current version can be
found at GitHub [23].

We mention two points relevant for the comparison. First, as we show in the
following, PRISM may yield wrong results due to a (too) simple computation. As
such, we should not expect that our correct methods are on par or even faster.
Second, our implementation employs conservative procedures to further increase
quality of the result, such as compensated summation to mitigate numerical error
due to floating-point imprecision, noticeably increasing computational effort.

Models We consider the PRISM benchmark suite2 [22], comprising several prob-
abilistic models, in particular DTMC, CTMC, and MDP. Since there are not too
many Markov chains in this set, we obtain further models as follows. For each
CTMC, we consider the uniformized CTMC (which preserves the steady state
distribution), and for MDP we choose actions uniformly at random. Unfortu-
nately, all models obtained this way either comprise only single-state BSCCs or
the whole model is a single BSCC. In the former case, our approximation within
the BSCC is not used at all, in the latter, a sampling based approach needs to
invest additional time to discover the whole system. In order to better compare
the performance of our mean payoff based approximation approach, in these cases
1 We observed that the default hybrid engine typically is significantly slower than the

“explicit” variant and thus use that one, see [26, App. D].
2 Obtained from https://github.com/prismmodelchecker/prism-benchmarks.

https://github.com/prismmodelchecker/prism-benchmarks
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Fig. 2. A small MC where PRISM reports wrong results for e ≤ 10−7.

we pre-explore the whole system and compute the stationary distribution directly
through Algorithm 1. To compare the combined performance, we additionally
consider a handcrafted model, named branch, which comprises both transient
states as well as several non-trivial BSCCs.

We present selected results, highlighting different strengths and weaknesses of
each approach. An evaluation of the complete suite can be found in [26, App. D].

Correctness We discovered that PRISM potentially yields wrong results, due to
an unsafe stopping criterion. In particular, PRISM iterates the power method
until the absolute difference between subsequent iterates is small, exactly as
with its “unsafe” value iteration for reachability, as reported by e.g. [7]. On
the model from Fig. 2, PRISM (with explicit engine) immediately terminates,
printing a result of ≈ ( 1

6 , 1
6 , 1

3 , 1
3 ). However, the correct stationary distribution is

≈ ( 1
9 , 2

9 , 4
9 , 2

9 ) (from left to right), which both of our methods correctly identify.
This behaviour is due to the small difference between first and second eigenvalue
of the transition matrix, which in turn implies that the iterates of the power
method only change by a small amount. We note that on this example, PRISM’s
default hybrid engine eventually yields the correct result (after ≈ 108 iterations)
due to the used iteration scheme. On small variation of the model (included in
the artefact) it also terminates immediately with the wrong result.

Results We summarize our results in Table 1. We observe several points. First,
we see that the naive sampling approach can hardly handle non-trivial models.
Second, our guided sampling approach achieves significant improvements on
several models over both the classical, correct method as well as the potentially
unsound approach of PRISM, in particular when hardly reachable portions of the
state space can be completely discarded. However, on other models, the classical
approach seems to be more appropriate, in particular on models with many likely
to be reached BSCCs. Here, the sampling approach struggles to propagate the
reachability bounds of all BSCCs simultaneously. Finally, as suggested by the
phil and rabin models, using mean payoff based approximation can significantly
outperform classical equation solving. In summary, PRISM, Classic, and Sample
all can be the fastest method, depending on the structure of the model. However,
recall that PRISM’s method does not give guarantees on the result.

Further Discussion As expected, we observed that the runtime of approximation
can increase drastically for smaller precision requirements (e.g. ε = 10−8) and
solving the equation system precisely may actually be faster for some BSCCs.
However, especially in the combined approach, if we already have some upper
bounds on the reachability probability of a certain BSCC, we do not need to solve
it with the original precision. Hence, a future version of the implementation could
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Table 1. Overview of our results. For each model, we list its parameters, overall size,
and number of BSCCs, followed by the total execution time in seconds for each tool,
TO denotes a timeout (300 seconds), MO a memout, and err an internal error. On
systems comprising a single BSCC, the Naive and Sample approach coincide.

Model Parameters |S| |BSCC| PRISM Classic Naive Sample

brp N=64,MAX=5 5,192 134 1.2 11 TO 4.9
nand N=15,K=2 56,128 16 4.9 30 TO 64

zeroconf_dl reset=false,deadline=40,N=1000,K=1 251,740 10,048 99 238 8.0 1.0
phil4 9,440 1 err TO 51

rabin3 27,766 1 err MO 178

branch 1,087,079 1,000 155 TO TO 20

dynamically decide whether to solve a BSCC based on mean payoff approximation
or equation solving, combining advantages of both worlds.

Secondly, this also highlights an interesting trade-off implicit to our approach:
The algorithm needs to balance between exploring unknown areas and refining
bounds on known BSCCs, in particular, since exploring a new BSCC adds
noticeable effort: One more target for which the reachability has to be determined.
Here, more sophisticated heuristics could be useful.

Finally, for models with large BSCCs, such as rabin, we also observed that
the classical linear equation approach indeed runs out of memory while a variant
of the approximation algorithm can still solve it, as indicated by Remark 1.
Thus, the implementation could moreover take memory constraints into account,
deciding to apply the memory-saving approach in appropriate cases.

6 Conclusion

We presented a new perspective on computing the stationary distribution in
Markov chains by rephrasing the problem in terms of mean payoff and reachability.
We combined several recent advances for these problems to obtain a sophisti-
cated partial-exploration based algorithm. Our evaluation shows that on several
models our new approach is significantly more performant. As a major technical
contribution, we provided a general algorithmic framework, which encompasses
both the classical solution approach as well as our new method.

As hinted by the discussion above, our framework is quite flexible. For future
work, we particularly want to identify better guidance heuristics. Specifically,
based on experimental data, we conjecture that the reachability part can be
improved significantly. Moreover, due to the flexibility of our framework, we can
apply different methods for each BSCC to obtain the reachability and stationary
distribution. Thus, we want to find meta-heuristics which suggest the most
appropriate method in each case. For example, for smaller BSCCs, we could
use the classical, precise solution method to obtain the stationary distribution,
while for larger ones we employ our mean payoff approach, and, in the spirit of
Remark 1, for even larger ones we approximate them to the required precision
immediately, saving memory. Additionally, we could identify BSCCs that satisfy
the conditions of specialized approaches such as [11].
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Abstract. Multiple-environment MDPs (MEMDPs) capture finite sets
of MDPs that share the states but differ in the transition dynamics. These
models form a proper subclass of partially observable MDPs (POMDPs).
We consider the synthesis of policies that robustly satisfy an almost-sure
reachability property in MEMDPs, that is, one policy that satisfies a
property for all environments. For POMDPs, deciding the existence of
robust policies is an EXPTIME-complete problem. We show that this
problem is PSPACE-complete for MEMDPs, while the policies require
exponential memory in general. We exploit the theoretical results to
develop and implement an algorithm that shows promising results in
synthesizing robust policies for various benchmarks.

1 Introduction

Markov decision processes (MDPs) are the standard formalism to model sequential
decision making under uncertainty. A typical goal is to find a policy that satisfies a
temporal logic specification [5]. Probabilistic model checkers such as Storm [22]
and Prism [30] efficiently compute such policies. A concern, however, is the
robustness against potential perturbations in the environment. MDPs cannot
capture such uncertainty about the shape of the environment.

Multi-environment MDPs (MEMDPs) [36,14] contain a set of MDPs, called
environments, over the same state space. The goal in MEMDPs is to find a
single policy that satisfies a given specification in all environments. MEMDPs
are, for instance, a natural model for MDPs with unknown system dynamics,
where several domain experts provide their interpretation of the dynamics [11].
These different MDPs together form a MEMDP. MEMDPs also arise in other
domains: The guessing of a (static) password is a natural example in security. In
robotics, a MEMDP captures unknown positions of some static obstacle. One
can interpret MEMDPs as a (disjoint) union of MDPs in which an agent only has
partial observation, i.e., every MEMDP can be cast into a linearly larger partially
observable MDP (POMDP) [27]. Indeed, some famous examples for POMDPs are
in fact MEMDPs, such as RockSample [39] and Hallway [31]. Solving POMDPs is
notoriously hard [32], and thus, it is worthwhile to investigate natural subclasses.

We consider almost-sure specifications where the probability needs to be
one to reach a set of target states. In MDPs, it suffices to consider memoryless
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policies. Constructing such policies can be efficiently implemented by means of a
graph-search [5]. For MEMDPs, we consider the following problem:

Compute one policy that almost-surely reaches the target in all environments.

Such a policy robustly satisfies an almost-sure specification for a set of MDPs.

Our approach. Inspired by work on POMDPs, we construct a belief-observation
MDP (BOMDP) [16] that tracks the states of the MDPs and the (support of
the) belief over potential environments. We show that a policy satisfying the
almost-sure property in the BOMDP also satisfies the property in the MEMDP.

Although the BOMDP is exponentially larger than the MEMDP, we exploit
its particular structure to create a PSPACE algorithm to decide whether such a
robust policy exists. The essence of the algorithm is a recursive construction of a
fragment of the BOMDP, restricted to a setting in which the belief-support is fixed.
Such an approach is possible, as the belief in a MEMDP behaves monotonically:
Once we know that we are not in a particular environment, we never lose this
knowledge. This behavior is in contrast to POMDPs, where there is no monotonic
behavior in belief-supports. The difference is essential: Deciding almost-sure
reachability in POMDPs is EXPTIME-complete [37,19]. In contrast, the problem
of deciding whether a policy for almost-sure reachability in a MEMDP exists
is indeed PSPACE-complete. We show the hardness using a reduction from the
true quantified Boolean formula problem. Finally, we cannot hope to extract a
policy with such an algorithm, as the smallest policy for MEMDPs may require
exponential memory in the number of environments.

The PSPACE algorithm itself recomputes many results. For practical purposes,
we create an algorithm that iteratively explores parts of the BOMDP. The
algorithm additionally uses the MEMDP structure to generalize the set of states
from which a winning policy exists and deduce efficient heuristics for guiding
the exploration. The combination of these ingredients leads to an efficient and
competitive prototype on top of the model checker Storm.

Related work. We categorize related work in three areas.

MEMDPs. Almost-sure reachability for MEMDPs for exactly two environments
has been studied by [36]. We extend the results to arbitrarily many environments.
This is nontrivial: For two environments, the decision problem has a polynomial
time routine [36], whereas we show that the problem is PSPACE-complete for
an arbitrary number of environments. MEMDPs and closely related models
such as hidden-model MDPs, hidden-parameter MDPs, multi-model MDPs, and
concurrent MDPs [11,2,40,10] have been considered for quantitative properties1.
The typical approach is to consider approximative algorithms for the undecidable
problem in POMDPs [14] or adapt reinforcement learning algorithms [3,28]. These
approximations are not applicable to almost-sure properties.

POMDPs. One can build an underlying potentially infinite belief-MDP [27] that
corresponds to the POMDP – using model checkers [35,7,8] to verify this MDP

1 Hidden-parameter MDPs are different than MEMDPs in that they assume a prior
over MDPs. However, for almost-sure properties, this difference is irrelevant.
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can answer the question for MEMDPs. For POMDPs, almost-sure reachability
is decidable in exponential time [37,19] via a construction similar to ours. Most
qualitative properties beyond almost-sure reachability are undecidable [4,15]. Two
dedicated algorithms that limit the search to policies with small memory require-
ments and employ a SAT-based approach [12,26] to this NP-hard problem [19]
are implemented in Storm. We use them as baselines.

Robust models. The high-level representation of MEMDPs is structurally similar
to featured MDPs [18,1] that represent sets of MDPs. The proposed techniques
are called family-based model checking and compute policies for every MDP in the
family, whereas we aim to find one policy for all MDPs. Interval MDPs [25,43,23]
and SGs [38] do not allow for dependencies between states and thus cannot model
features such as various obstacle positions. Parametric MDPs [2,44,24] assume
controllable uncertainty and do not consider robustness of policies.

Contributions. We establish PSPACE-completeness for deciding almost-sure
reachability in MEMDPs and show that the policies may be exponentially large.
Our iterative algorithm, which is the first specific to almost-sure reachability in
MEMDPs, builds fragments of the BOMDP. An empirical evaluation shows that
the iterative algorithm outperforms approaches dedicated to POMDPs.

2 Problem Statement

In this section, we provide some background and formalize the problem statement.
For a set X, Dist(X) denotes the set of probability distributions over X.

For a given distribution d ∈ Dist(X), we denote its support as Supp(d). For a
finite set X, let unif(X) denote the uniform distribution. dirac(x) denotes the
Dirac distribution on x ∈ X. We use short-hand notation for functions and
distributions, f = [x 7→ a, y 7→ b] means that f(x) = a and f(y) = b. We write
P (X) for the powerset of X. For n ∈ N we write [n] = {i ∈ N | 1 ≤ i ≤ n}.

Definition 1 (MDP). A Markov Decision Process is a tupleM = 〈S,A, ιinit, p〉
where S is the finite set of states, A is the finite set of actions, ιinit ∈ Dist(S) is
the initial state distribution, and p : S ×A→ Dist(S) is the transition function.

The transition function is total, that is, for notational convenience MDPs are
input-enabled. This requirement does not affect the generality of our results. A
path of an MDP is a sequence π = s0a0s1a1 . . . sn such that ιinit(s0) > 0 and
p(si, ai)(si+1) > 0 for all 0 ≤ i < n. The last state of π is last(π) = sn. The set of
all finite paths is Path and Path(S′) denotes the paths starting in a state from
S′ ⊆ S. The set of reachable states from S′ is Reachable(S′). If S′ = Supp(ιinit)
we just call them the reachable states. The MDP restricted to reachable states
from a distribution d ∈ Dist(S) is ReachFragment(M, d), where d is the new
initial distribution. A state s ∈ S is absorbing if Reachable({s}) = {s}. An MDP
is acyclic, if each state is absorbing or not reachable from its successor states.

Action choices are resolved by a policy σ : Path → Dist(A) that maps
paths to distributions over actions. A policy of the form σ : S → Dist(A) is
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N1 : s0 s1

q1, q2

q1, q2
a1a2, a3

N2 : s0 s1

q2

q2

q1 q1

a2a1, a3

N3 : s0

q1, q2

a3a1, a2

Fig. 1: Example MEMDP

called memoryless, deterministic if we have σ : Path → A; and, memoryless
deterministic for σ : S → A. For an MDP M, we denote the probability of a
policy σ reaching some target set T ⊆ S starting in state s as PrM(s→ T | σ).
More precisely, PrM(s → T | σ) denotes the probability of all paths from s
reaching T under σ. We use PrM(T | σ) if s is distributed according to ιinit.

Definition 2 (MEMDP). A Multiple Environment MDP is a tuple N =
〈S,A, ιinit, {pi}i∈I〉 with S,A, ιinit as for MDPs, and {pi}i∈I is a set of transition
functions, where I is a finite set of environment indices.

Intuitively, MEMDPs form sets of MDPs (environments) that share states and
actions, but differ in the transition probabilities. For MEMDP N with index set I
and a set I ′ ⊆ I, we define the restriction of environments as the MEMDP N↓I′ =
〈S,A, ιinit, {pi}i∈I′〉. Given an environment i ∈ I, we denote its corresponding
MDP as Ni = 〈S,A, ιinit, pi〉. A MEMDP with only one environment is an MDP.
Paths and policies are defined on the states and actions of MEMDPs and do not
differ from MDP policies. A MEMDP is acyclic, if each MDP is acyclic.

Example 1. Figure 1 shows an MEMDP with three environments Ni. An agent
can ask two questions, q1 and q2. The response is either ‘switch’ (s1 ↔ s2), or
‘stay’ (loop). In N1, the response to q1 and q2 is to switch. In N2, the response
to q1 is stay, and to q2 is switch. The agent can guess the environment using
a1, a2, a3. Guessing ai leads to the target { } only in environment i. Thus, an
agent must deduce the environment via q1, q2 to surely reach the target. �

Definition 3 (Almost-Sure Reachability). An almost-sure reachability prop-
erty is defined by a set T ⊆ S of target states. A policy σ satisfies the property T
for MEMDP N = 〈S,A, ιinit, {pi}i∈I〉 iff ∀i ∈ I : PrNi(T | σ) = 1.

In other words, a policy σ satisfies an almost-sure reachability property T , called
winning, if and only if the probability of reaching T within each MDP is one. By
extension, a state s ∈ S is winning if there exists a winning policy when starting
in state s. Policies and states that are not winning are losing.
We will now define both the decision and policy problem:

Given a MEMDP N and an almost-sure reachability property T .
The Decision Problem asks to decide if a policy exists that satisfies T .
The Policy Problem asks to compute such a policy, if it exists.

In Section 4 we discuss the computational complexity of the decision problem.
Following up, in Section 5 we present our algorithm for solving the policy problem.
Details on its implementation and evaluation will be presented in Section 6.
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3 A Reduction To Belief-Observation MDPs

In this section, we reduce the policy problem, and thus also the decision problem,
to finding a policy in an exponentially larger belief-observation MDP. This
reduction is an elementary building block for the construction of our PSPACE
algorithm and the practical implementation. Additional information such as proofs
for statements throughout the paper are available in the technical report [41].

3.1 Interpretation of MEMDPs as Partially Observable MDPs

Definition 4 (POMDP). A partially observable MDP (POMDP) is a tuple
〈M, Z,O〉 with an MDP M = 〈S,A, ιinit, p〉, a set Z of observations, and an
observation function O : S → Z.

A POMDP is an MDP where states are labelled with observations. We lift O to
paths and use O(π) = O(s1)a1O(s2) . . . O(sn). We use observation-based policies
σ, i.e., policies s.t. for π, π′ ∈ Path, O(π) = O(π′) implies σ(π) = σ(π′). A
MEMDP can be cast into a POMDP that is made up as the disjoint union:

Definition 5 (Union-POMDP). Given an MEMDP N = 〈S,A, ιinit, {pi}i∈I〉
we define its union-POMDP Nt = 〈〈S′, A, ι′init, p′〉, Z,O〉, with states S′ = S× I,
initial distribution ι′init(〈s, i〉) = ιinit(s) · |I|−1, transitions p′(〈s, i〉, a)(〈s′, i〉) =
pi(s, a)(s′), observations Z = S, and observation function O(〈s, i〉) = s.

A policy may observe the state s but not in which MDP we are. This forces any
observation-based policy to take the same choice in all environments.

Lemma 1. Given MEMDP N , there exists a winning policy iff there exists an
observation-based policy σ such that PrNt(T | σ) = 1.

The statement follows as, first, any observation-based policy of the POMDP can
be applied to the MEMDP, second, vice versa, any MEMDP policy is observation-
based, and third, the induced MCs under these policies are isomorphic.

3.2 Belief-observation MDPs

For POMDPs, memoryless policies are not sufficient, which makes computing
policies intricate. We therefore add the information that the history — i.e.,
the path until some point — contains. In MEMDPs, this information is the
(environment-)belief (support) J ⊆ I, as the set of environments that are consistent
with a path in the MEMDP. Given a belief J ⊆ I and a state-action-state
transition s

a−→ s′, then we define Up(J, s, a, s′) = {i ∈ J | pi(s, a, s′) > 0}, i.e.,
the subset of environments in which the transition exists. For a path π ∈ Path,
we define its corresponding belief B(π) ⊆ I recursively as:

B(s0) = I and B(π · sas′) = Up(B(π · s), s, a, s′)

The belief in a MEMDP monotonically decreases along a path, i.e., if we know
that we are not in a particular environment, this remains true indefinitely.
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We aim to use a model where memoryless policies suffice. To that end, we
cast MEMDPs into the exponentially larger belief-observation MDPs [16]2.

Definition 6 (BOMDP). For a MEMDP N = 〈S,A, ιinit, {pi}i∈I〉, we define
its belief-observation MDP (BOMDP) as a POMDP GN = 〈〈S′, A, ι′init, p′〉, Z,O〉
with states S′ = S × I × P (I), initial distribution ι′init(〈s, j, I〉) = ιinit(s) · |I|−1,
transition relation p′(〈s, j, J〉, a)(〈s′, j, J ′〉) = pj(s, a, s

′) with J ′ = Up(J, s, a, s′),
observations Z = S × P (I), and observation function O(〈s, j, J〉) = 〈s, J〉.

Compared to the union-POMDP, BOMDPs also track the belief by updating it
accordingly. We clarify the correspondence between paths of the BOMDP and
the MEMDP. For a path π through the MEMDP, we can mimic this path exactly
in the MDPs Nj for j ∈ B(π). As we track B(π) in the state, we can deduce from
the BOMDP state in which environments we can be.

Lemma 2. For MEMDP N and the path 〈s1, j, J1〉a1〈s2, j, J2〉 . . . 〈sn, j, Jn〉 of
the BOMDP GN , let j ∈ J1. Then: Jn 6= ∅ and the path s1a1 . . . sn exists in MDP
Ni iff i ∈ J1 ∩ Jn.

Consequently, the belief of a path can be uniquely determined by the observation
of the last state reached, hence the name belief-observation MDPs.

Lemma 3. For every pair of paths π, π′ in a BOMDP, we have:

B(π) = B(π′) implies O(last(π)) = O(last(π′)).

For notation, we define SJ = {〈s, j, J〉 | j ∈ J, s ∈ S}, and analogously write
ZJ = {〈s, J〉 | s ∈ S}. We lift the target states T to states in the BOMDP: TGN =
{〈s, j, J〉 | s ∈ T, J ⊆ I, j ∈ J} and define target observations TZ = O(TGN ).

Definition 7 (Winning in a BOMDP). Let GN be a BOMDP with target
observations TZ . An observation-based policy σ is winning from some observation
z ∈ Z, if for all s ∈ O−1(z) it holds that PrGN (s→ O−1(TZ) | σ) = 1.

Furthermore, a policy σ is winning if it is winning for the initial distribution ιinit.
An observation z is winning if there exists a winning policy for z. The winning
region WinTGN is the set of all winning observations.
Almost-sure winning in the BOMDP corresponds to winning in the MEMDP.

Theorem 1. There exists a winning policy for a MEMDP N with target states
T iff there exists a winning policy in the BOMDP GN with target states TGN .

Intuitively, the important aspect is that for almost-sure reachability, observation-
based memoryless policies are sufficient [13]. For any such policy, the induced
Markov chains on the union-POMDP and the BOMDP are bisimilar [16].

BOMDPs make policy search conceptually easier. First, as memoryless policies
suffice for almost-sure reachability, winning regions are independent of fixed
policies: For policies σ and σ′ that are winning in observation z and z′, respectively,
there must exist a policy σ̂ that is winning for both z and z′. Second, winning
regions can be determined in polynomial time in the size of the BOMDP [16].

2 This translation is notationally simpler than going via the union-POMDP.



514 M. van der Vegt et al.

3.3 Fragments of BOMDPs

To avoid storing the exponentially sized BOMDP, we only build fragments: We
may select any set of observations as frontier observations and make the states
with those observations absorbing. We later discuss the selection of frontiers.

Definition 8 (Sliced BOMDP). For a BOMDP GN = 〈〈S,A, ιinit, p〉, Z,O〉
and a set of frontier observations F ⊆ Z, we define a BOMDP GN |F =
〈〈S,A, ιinit, p′〉, Z,O〉 with:

∀s ∈ S, a ∈ A : p′(s, a) =

{
dirac(s) if O(s) ∈ F,
p(s, a) otherwise.

We exploit this sliced BOMDP to derive constraints on the set of winning states.

Lemma 4. For every BOMDP GN with states S and targets T and for all
frontier observations F ⊆ Z it holds that: WinTGN |F ⊆WinTGN ⊆WinT∪FGN |F .

Making (non-target) observations absorbing extends the set of losing observations,
while adding target states extends the set of winning observations.

4 Computational Complexity

The BOMDP GN above yields an exponential time and space algorithm via
Theorem 1. We can avoid the exponential memory requirement. This section
shows the PSPACE-completeness of deciding whether a winning policy exists.

Theorem 2. The almost-sure reachability decision problem is PSPACE-complete.

The result follows from Lemmas 11 and 10 below. In Section 4.3, we show that
representing the winning policy itself may however require exponential space.

4.1 Deciding Almost-Sure Winning for MEMDPs in PSPACE

We develop an algorithm with a polynomial memory footprint. The algorithm
exploits locality of cyclic behavior in the BOMDP, as formalized by an acyclic
environment graph and local BOMDPs that match the nodes in the environment
graph. The algorithm recurses on the environment graph while memorizing results
from polynomially many local BOMDPs.

The graph-structure of BOMDPs. First, along a path of the MEMDP, we
will only gain information and are thus able to rule out certain environments [14].
Due to the monotonicity of the update operator, we have for any BOMDP
that 〈s, j, J〉 ∈ Reachable(〈s′, j, J ′〉) implies J ⊆ J ′. We define a graph over
environment sets that describes how the belief-support can update over a run.

Definition 9 (Environment graph). Let N be a MEMDP and p the tran-
sition function of GN . The environment graph GEN = (VN ,EN ) for N is a
directed graph with vertices VN = P (I) and edges

EN = {〈J, J ′〉 | ∃s, s′ ∈ S, a ∈ A, j ∈ I.p(〈s, j, J〉, a, 〈s′, j, J ′〉) > 0 and J 6= J ′}.
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{1, 2, 3}

{2, 3}

{1, 2} {1}

{2}

{3}

{1, 3}

Fig. 2: The environment graph for our running example.

Example 2. Figure 2 shows the environment graph for the MEMDP in Ex. 1. It
consists of the different belief-supports. For example, the transition from {1, 2, 3}
to {2, 3} and to {1} is due to the action q1 in state s0, as shown in Fig. 1. �

Paths in the environment graph abstract paths in the BOMDP. Path fragments
where the belief-support remains unchanged are summarized into one step, as
we do not create edges of the form 〈J, J〉. We formalize this idea: Let π =
〈s1, j, J1〉a1〈s2, j, J2〉 . . . 〈sn, j, Jn〉 be a path in the BOMDP. For any J ⊆ I, we
call π a J-local path, if Ji = J for all i ∈ [n].

Lemma 5. For a MEMDP N with environment graph GEN , there is a path
J1 . . . Jn iff there is a path π = π1 . . . πn in GN s.t. every πi is Ji-local.

The shape of the environment graph is crucial for the algorithm we develop.

Lemma 6. Let GEN = (VN ,EN ) be an environment graph for MEMDP N .
First, EN (J, J ′) implies J ′ ( J . Thus, G is acyclic and has maximal path length
|I|. The maximal outdegree of the graph is |S|2|A|.

The monotonicity regarding J, J ′ follows from definition of the belief update. The
bound on the outdegree is a consequence from Lemma 9 below.

Local belief-support BOMDPs. Before we continue, we remark that the
(future) dynamics in a BOMDP only depend on the current state and set of
environments. More formally, we capture this intuition as follows.

Lemma 7. Let GN be a BOMDP with states S′. For any state 〈s, j, J〉 ∈ S′, let
N ′ = ReachFragment(N↓J , dirac(s)) and Y = {〈s, i, J〉 | i ∈ J}. Then:

ReachFragment(GN , unif(Y )) = GN ′ .

The key insight is that restricting the MEMDP does not change the transition
functions for the environments j ∈ J . Furthermore, using monotonicity of the
update, we only reach BOMDP-states whose behavior is determined by the
environments in J .

This intuition allows us to analyze the BOMDP locally and lift the results
to the complete BOMDP. We define a local BOMDP as the part of a BOMDP
starting in any state in SJ . All observations not in ZJ are made absorbing.

Definition 10 (Local BOMDP). Given a MEMDP N with BOMDP GN and
a set of environments J . The local BOMDP for environments J is the fragment

LocG(J) = ReachFragment(GN↓J |F , unif(SJ)) where F = Z \ ZJ .
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Algorithm 1 Search algorithm

1: function Search(MEMDP N = 〈S,A, {pi}i∈I , ιinit〉, J ⊆ I, T ⊆ S)
2: T ′ ← {〈s, j, J〉 | j ∈ J, s ∈ T}
3: for J ′ s.t. EN (J, J ′) do . Consider the edges in the env. graph (Def. 9)
4: WJ′ ← Search(N , J ′, T ) . Recursion!
5: T ′ ← T ′ ∪ {〈s, j, J ′〉 | j ∈ J, 〈s, J ′〉 ∈WJ′}
6: return WinT

′

LocG(J) ∩ ZJ . Construct BOMDP as in Def. 10, then model check

7:
8: function ASWinning(MEMDP N = 〈S,A, {pi}i∈I , ιinit〉, T ⊆ S)
9: return O(Supp(ιinit)) ⊆ Search(N , I, T )

This definition of a local BOMDP coincides with a fragment of the complete
BOMDP. We then mark exactly the winning observations restricted to the
environment sets J ′ ( J as winning in the local BOMDP and compute all
winning observations in the local BOMDP. These observations are winning in
the complete BOMDP. The following concretization of Lemma 4 formalizes this.

Lemma 8. Consider a MEMDP N and a subset of environments J .

Win
T ′GN
LocG(J) ∩ ZJ = Win

TGN
GN ∩ ZJ with T ′GN = TGN ∪ (Win

TGN
GN \ ZJ).

Furthermore, local BOMDPs are polynomially bounded in the size of the MEMDP.

Lemma 9. Let N be a MEMDP with states S and actions A. LocG(J) has at
most O(|S|2 · |A| · |J |) states and O(|S|2 · |A| · |J |2) transitions3.

A PSPACE algorithm. We present Algorithm 1 for the MEMDP decision
problem, which recurses depth-first over the paths in the environment graph4.
We first state the correctness and the space complexity of this algorithm.

Lemma 10. ASWinning in Alg. 1 solves the decision problem in PSPACE.

To prove correctness, we first note that Search(N , J, T ) computes Win
TGN
GN ∩ZJ .

We show this by induction over the structure of the environment graph. For all
J without outgoing edges, the local BOMDP coincides with a BOMDP just for
environments J (Lemma 7). Otherwise, observe that T ′ in line 5 coincides with

its definition in Lemma 8 and thus, by the same lemma, we return Win
TGN
GN ∩ ZJ .

To finalize the proof, a winning policy exists in the MEMDP if the observation of
the initial states of the BOMDP are winning (Theorem 1). The algorithm must
terminate as it recurses over all paths of a finite acyclic graph, see Lemma 6.
Following Lemma 9, the number of frontier states is then bounded by |S|2 · |A|.
The main body of the algorithm therefore requires polynomial space, and the
maximal recursion depth (stack height) is |I| (Lemma 6). Together, this yields a
space complexity in O(|S|2 · |A| · |I|2).

3 The number of transitions is the number of nonzero entries in p
4 In contrast to depth-first-search, we do not memorize nodes we visited earlier.
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Fig. 3: Constructed MEMDP for the QBF formula ∀x∃y
[
(x ∨ y) ∧ (¬x ∨ ¬y)

]
.

4.2 Deciding Almost-Sure Winning for MEMDPs Is PSPACE-hard

It is not possible to improve the algorithm beyond PSPACE.

Lemma 11. The MEMDP decision problem is PSPACE-hard.

Hardness holds even for acyclic MEMDPs and uses the following fact.

Lemma 12. If a winning policy exists for an acyclic MEMDP, there also exists
a winning policy that is deterministic.

In particular, almost-sure reachability coincides with avoiding the sink states.
This is a safety property. For safety, deterministic policies are sufficient, as
randomization visits only additional states, which is not beneficial for safety.

Regarding Lemma 11, we sketch a polynomial-time reduction from the
PSPACE-complete TQBF problem [20] problem to the MEMDP decision problem.
Let Ψ be a QBF formula, Ψ = ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn

[
Φ
]

with Φ a Boolean
formula in conjunctive normal form. The problem is to decide whether Ψ is true.

Example 3. Consider the QBF formula Ψ = ∀x∃y
[
(x ∨ y) ∧ (¬x ∨ ¬y)

]
. We

construct a MEMDP with an environment for every clause, see Figure 35. The
state space consists of three states for each variable v ∈ V : the state v and
the states v> and v⊥ that encode their assignment. Additionally, we have a
dedicated target W and sink state F . We consider three actions: The actions true
(>) and false (⊥) semantically describe the assignment to existentially quantified
variables. The action any α⊗ is used for all other states. Every environment
reaches the target state iff one literal in the clause is assigned true.

In the example, intuitively, a policy should assign the negation of x to y.
Formally, the policy σ, characterized by σ(π · y) = > iff x⊥ ∈ π, is winning. �

As a consequence of this construction, we may also deduce the following theorem.

Theorem 3. Deciding whether a memoryless winning policy exists is NP-complete.

The proof of NP hardness uses a similar construction for the propositional SAT
fragment of QBF, without universal quantifiers. Additionally, the problem for
memoryless policies is in NP, because one can nondeterministically guess a (poly-
nomially sized) memoryless policy and verify in each environment independently.

5 We depict a slightly simplified MEMDP for conciseness.
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Fig. 4: Witness for exponential memory requirement for winning policies.

4.3 Policy Problem

Policies, mapping histories to actions, are generally infinite objects. However, we
may extract winning policies from the BOMDP, which is (only) exponential in the
MEMDP. Finite state controllers [34] are a suitable and widespread representation
of policies that require only a finite amount of memory. Intuitively, the number
of memory states reflects the number of equivalence classes of histories that a
policy can distinguish. In general, we cannot hope to find smaller policies than
those obtained via a BOMDP.

Theorem 4. There is a family of MEMDPs {Nn}n≥1 where for each n, Nn

has 2n environments and O(n) states and where every winning policy for Nn

requires at least 2n memory states.

We illustrate the witness. Consider a family of MEMDPs {Nn}n, where Nn

has 2n MDPs, 4n states partitioned into two parts, and at most 2n outgoing
actions per state. We outline the MEMDP family in Figure 4. In the first part,
there is only one action per state. The notation is as follows: in state s0 and
MDP Nn

1 , we transition with probability one to state a0, whereas in Nn
2 we

transition with probability one to state b0. In every other MDP, we transition with
probability one half to either state. In state s1, we do the analogous construction
for environments 3, 4, and all others. A path s0b1 . . . is thus consistent with
every MDP except Nn

1 . The first part ends in state sn. By construction, there
are 2n paths ending in sn. Each of them is (in)consistent with a unique set of n
environments. In the second part, a policy may guess n times an environment by
selecting an action αi for every i ∈ [2n]. Only in MDP Nn

i , action αi leads to a
target state. In all other MDPs, the transition leads from state gj to gj+1. The
state gn+1 is absorbing in all MDPs. Importantly, after taking an action αi and
arriving in gj+1, there is (at most) one more MDP inconsistent with the path.

Every MEMDP Nn in this family has a winning policy which takes σ(π ·gi) =
α2i−1 if ai ∈ π and σ(π · gi) = α2i otherwise. Furthermore, when arriving in
state sn, the state of a finite memory controller must reflect the precise set of
environments consistent with the history. There are 2n such sets. The proof shows
that if we store less information, two paths will lead to the same memory state,
but with different sets of environments being consistent with these paths. As we
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can rule out only n environments using the n actions in the second part of the
MEMDP, we cannot ensure winning in every environment.

5 A Partial Game Exploration Algorithm

In this section, we present an algorithm for the policy problem. We tune the
algorithm towards runtime instead of memory complexity, but aim to avoid
running out of memory. We use several key ingredients to create a pragmatic
variation of Alg. 1, with support for extracting the winning policy.

First, we use an abstraction from BOMDPs to a belief stochastic game
(BSG) similar to [45] that reduces the number of states and simplifies the
iterative construction6. Second, we tailor and generalize ideas from bounded model
checking [6] to build and model check only a fragment of the BSG, using explicit
partial exploration approaches as in, e.g., [33,9,42,29]. Third, our exploration
does not continuously extend the fragment, but can also prune this fragment by
using the model checking results obtained so far. The structure of the BSG as
captured by the environment graph makes the approach promising and yields
some natural heuristics. Fourth, the structure of the winning region allows to
generalize results to unseen states. We thereby operationalize an idea from [26] in
a partial exploration context. Finally, we analyze individual MDPs as an efficient
and significant preprocessing step. In the following we discuss these ingredients.

Abstraction to Belief Support Games. We briefly recap stochastic games
(SGs). See [38,17] for more details.

Definition 11 (SG). A stochastic game is a tuple B = 〈M, S1, S2〉, where
M = 〈S,A, ιinit, p〉 is an MDP and (S1, S2) is a partition of S.

S1 are Player 1 states, and S2 are Player 2 states. As common, we also ‘par-
tition’ (memoryless deterministic) policies into two functions σ1 : S1 → A and
σ1 : S2 → A. A Player 1 policy σ1 is winning for state s if Pr(T | σ1, σ2) for all
σ2. We (re)use WinTBN to denote the set of states with a winning policy.

We apply a game-based abstraction to group states that have the same
observation. Player 1 states capture the observation in the BOMDP, i.e., tuples
〈s, J〉 of MEMDP states s and subsets J of the environments. Player 1 selects
the action a, the result is Player 2 state 〈〈s, J〉, a〉. Then Player 2 chooses an
environment j ∈ J , and the game mimics the outgoing transition from 〈s, j, J〉,
i.e., it mimics the transition from s in Nj . Formally:

Definition 12 (BSG). Let GN be a BOMDP with GN = 〈〈S,A, ιinit, p〉, Z,O〉.
A belief support game BN for GN is an SG BN = 〈〈S′, A′, ι′init, p〉, S1, S2〉 with
S′ = S1 ∪ S2 as usual, Player 1 states S1 = Z, Player 2 states S2 = Z × A,
actions A′ = A ∪ I, initial distribution ι′init(〈s, I〉) =

∑
i∈I ιinit(〈s, i, I〉), and the

(partial) transition function p defined separately for Player 1 and 2:

p′(z, a) = dirac(〈z, a〉) (Player 1)

p′(〈z, a〉, j, z′) = p(〈s, j, J〉, a, 〈s′, j, J ′〉) with z = 〈s, J〉, z′ = 〈s′, J ′〉 (Player 2)
6 At the time of writing, we were unaware of a polytime algorithm for BOMDPs.
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Algorithm 2 Policy finding algorithm

1: function FindPolicy(MEMDP N = 〈S,A, {pi}i∈I , ιinit〉, targets T ⊆ S)
2: W ← {〈s, J〉 | s ∈ T, J ⊆ I}; L← ∅; i← 1; Sinit ← Supp(ιinit)× {I}
3: while Sinit ∩W 6= W and Sinit ∩ L = ∅ do
4: 〈B, F 〉 ← GenerateGameSlice(N ,W,L, i)
5: W ←W ∪WinWB
6: L← L ∪ S \WinW∪FB
7: i← i+ 1

8: if Sinit ⊆W then return ExtractPolicy(W ) else return ⊥

Lemma 13. An (acyclic) MEMDP N with target states T is winning if(f) there
exists a winning policy in the BSG BN with target states TZ .

Thus, on acyclic MEMDPs, a BSG-based algorithm is sound and complete,
however, on cyclic MDPs, it may not find the winning policy. The remainder of
the algorithm is formulated on the BSG, we use sliced BSGs as the BSG of a
sliced BOMDP, or equivalently, as a BSG with some states made absorbing.

Main algorithm. We outline Algorithm 2 for the policy problem. We track
the sets of almost-sure observations and losing observations (states in the BSG).
Initially, target states are winning. Furthermore, via a simple preprocessing, we
determine some winning and losing states on the individual MDPs.

We iterate until the initial state is winning or losing. Our algorithm constructs
a sliced BSG and decides on-the-fly whether a state should be a frontier state,
returning the sliced BSG and the used frontier states. We discuss the implemen-
tation below. For the sliced BSG, we compute the winning region twice: Once
assuming that the frontier states are winning, once assuming they are loosing.
This yields an approximation of the winning and losing states, see Lemma 4.
From the winning states, we can extract a randomized winning policy [13].

Soundness. Assuming that the BN is indeed a sliced BSG with frontier F . Then
the following invariant holds: W ⊆ WinTBN and L ∩WinTBN = ∅. This invariant
exploits that from a sliced BSG we can (implicitly) slice the complete BSG while
preserving the winning status of every state, formalized below. In future iterations
we only explore the implicitly sliced BSG.

Lemma 14. Given W ⊆Win
TBN
BN and L ⊆ S \Win

TBN
BN : Win

TBN
BN = Win

TBN ∪W
BN |W∪L

Termination depends on the sliced game generation. It suffices to ensure that in
the long run, either W or L grow as there are only finitely many states. If W and
L remain the same longer than some number of iterations, W ∪L will be used as
frontier. Then, the new game will suffice to determine if s ∈W in one shot.

Generating the sliced BSG. Algorithm 3 outlines the generation of the sliced
BSG. In particular, we explore the implicit BSG from the initial state but make
every state that we do not explicitly explore absorbing. In every iteration, we first
check if there are states in Q left to explore and if the number of explored states
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Algorithm 3 Game generation algorithm

1: function GenerateGameSlice(MEMDP N , W , L, i)
2: Q← {sι}; E = {sι}
3: while s ∈ Q and |E| ≤ Bound[i] exists do
4: E ← E ∪ {s} . Mark s as explored
5: B ← BN |(S \ E) . Extend game, cut-off everything not explored
6: Q← Reachable(B) \ (E ∪W ∪ L) . Add newly reached states

7: return B, Q

in E is below a threshold Bound[i]. Then, we take a state from the priority queue
and add it to E. We find new reachable states7 and add them to the queue Q.

Generalizing the winning and losing states. We aim to determine that a
state in the game BN is winning without ever exploring it. First, observe:

Lemma 15. A winning policy in MEMDP N is winning in N↓J for any J .

A direct consequence is the following statement for two environments J1 ⊆ J2:

〈s, J2〉 ∈WinTBN implies 〈s, J1〉 ∈WinTBN .

Consequently, we can store W (and symmetrically, L) as follows. For every
MEMDP state s ∈ S, Ws = {J | 〈s, J〉 ∈W} is downward closed on the partial
order P = (I,⊂). This allows for efficient storage: We only have to store the set
of pairwise maximal elements, i.e., the antichain,

Wmax
s = {J ∈Ws | ∀J ′ ∈Ws with J 6⊆ J ′}.

To determine whether 〈s, J〉 is winning, we check whether J ⊆ J ′ for some
J ′ ∈Wmax

s . Adding J to Wmax
s requires removing all J ′ ⊆ J and then adding J .

Note, however, that |Wmax
s | is still exponential in |I| in the worst case.

Selection of heuristics. The algorithm allows some degrees of freedom. We
evaluate the following aspects empirically. (1) The maximal size bound[i] of a
sliced BSG at iteration i is critical. If it is too small, the sets W and L will grow
slowly in every iteration. The trade-off is further complicated by the fact that
the sets W and L may generalize to unseen states. (2) For a fixed bound[i], it
is unclear how to prioritize the exploration of states. The PSPACE algorithm
suggests that going deep is good, whereas the potential for generalization to
unseen states is largest when going broad. (3) Finally, there is overhead in
computing both W and L. If there is a winning policy, we only need to compute
W . However, computing L may ensure that we can prune parts of the state space.
A similar observation holds for computing W on unsatisfiable instances.

Remark 1. Algorithm 2 can be mildly tweaked to meet the PSPACE algorithm
in Algorithm 1. The priority queue must ensure to always include complete

7 In l. 5 we do not rebuild the game B from scratch but incrementally construct the
data structures. Likewise, reachable states are a direct byproduct of this construction.



522 M. van der Vegt et al.

1 9 9
0

9
0
0

1

9

90

900

T
O

M
O

TO

MO

PaGE (default)

P
O
M

D
P
-b

e
l

1 9 9
0

9
0
0

1

9

90

900

T
O

M
O

TO

MO

PaGE (default)

P
O
M

D
P
-S

A
T

1 9 9
0

9
0
0

1

9

90

900

T
O

M
O

TO

MO

PaGE (default)

P
a
G
E

(p
o
s
e
n
tr
p
y
)

Fig. 5: Performance of baselines and novel PaGE algorithm

(reachable) local BSGs and to explore states 〈s, J〉 with small J first. Furthermore,
W and L require regular pruning, and we cannot extract a policy if we prune W
to a polynomial size bound. Practically, we may write pruned parts of W to disk.

6 Experiments

We highlight two aspects: (1) A comparison of our prototype to existing baselines
for POMDPs, and (2) an examination of the exploration heuristics. The technical
report [41] contains details on the implementation, the benchmarks, and more
results.

Implementation. We provide a novel PArtial Game Exploration (PaGE) prototype,
based on Algorithm 2, on top of the probabilistic model checker Storm [22].
We represent MEMDPs using the Prism language with integer constants. Every
assignment to these constants induces an explicit MDP. SGs are constructed and
solved using existing data structures and graph algorithms.

Setup. We create a set of benchmarks inspired by the POMDP and MEMDP
literature [26,12,21]. We consider a combination of satisfiable and unsatisfiable
benchmarks. In the latter case, a winning policy does not exist. We construct
POMDPs from MEMDPs as in Definition 5. As baselines, we use the following
two existing POMDP algorithms. For almost-sure properties, a belief-MDP
construction [7] acts similar to an efficiently engineered variant of our game-
construction, but tailored towards more general quantitative properties. A SAT-
based approach [26] aims to find increasingly larger policies. We evaluate all
benchmarks on a system with a 3GHz Intel Core i9-10980XE processor. We use
a time limit of 30 minutes and a memory limit of 32 GB.

Results. Figure 5 shows the (log scale) performance comparisons between differ-
ent configurations8. Green circles reflect satisfiable and red crosses unsatisfiable
benchmarks. On the x-axis is PaGE in its default configuration. The first plot
compares to the belief-MDP construction. The tailored heuristics and representa-
tion of the belief-support give a significant edge in almost all cases. The few points

8 Every point 〈x, y〉 in the graph reflects a benchmarks which was solved by the
configuration on the x-axis in x time and by the configuration on the y-axis in y time.
Points above the diagonal are thus faster for the configuration on the x-axis.
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Table 1: Satisfiable and unsatisfiable benchmark results

PaGE(posentr) PaGE(negentr) Belief SAT

|I| |S| |A| t n t n t t

G
ri

d 19 132 4 0.2 3002 0.2 3002 0.6 3.7
39 152 4 0.4 9007 1.6 41029 12.6 121.3

199 474 4 6.4 337177 MO MO TO

C
a
tc

h 256 625 4 6.6 93614 5.9 41094 3.8 TO
256 6561 4 40.1 749295 32.6 337899 9.1 TO
256 14641 4 82.5 1826922 65.3 338079 16.2 TO

E
x
p 8 19 9 0.1 349 0.1 349 0.1 75.9

20 43 21 131.4 192163 197.6 448443 217.6 TO
24 51 25 TO MO MO TO

F
ro

g
g
er

10 1200 4 0.2 1200 0.2 1200 22.7 1.4
20 1200 4 0.4 1200 0.5 1200 MO 3.9
80 4000 4 4.4 4000 4.4 4000 TO 597.3
99 4000 4 5.9 8001 6.1 8001 TO TO

PaGE(posentr) PaGE(negentr) Belief

|I| |S| |A| t n t n t

M
M

in
d 16 21 16 0.1 1003 0.2 1445 0.3

27 17 27 0.5 5167 0.5 7579 2.0
32 25 32 0.6 7799 0.9 11809 4.2
81 21 81 41.1 170291 38.6 296407 MO

E
x
p 20 42 21 0.8 9005 173.8 388127 576.1

24 50 25 8.3 41022 MO MO
32 66 33 347.7 337177 MO MO

below the line are due to a higher exploration rate when building the state space.
The second plot compares to the SAT-based approach, which is only suitable
for finding policies, not for disproving their existence. This approach implicitly
searches for a particular class of policies, whose structure is not appropriate for
some MEMDPs. The third plot compares PaGE in the default configuration –
with negative entropy as priority function – with PaGE using positive entropy.
As expected, different priorities have a significant impact on the performance.

Table 1 shows an overview of satisfiable and unsatisfiable benchmarks. Each
table shows the number of environments, states, and actions-per-state in the
MEMDP. For PaGE, we include both the default configuration (negative entropy)
and variation (positive entropy). For both configurations, we provide columns
with the time and the maximum size of the BSG constructed. We also include the
time for the two baselines. Unsurprisingly, the number of states to be explored is
a good predictor for the performance and the relative performance is as in Fig. 5.

7 Conclusion

This paper considers multi-environment MDPs with an arbitrary number of
environments and an almost-sure reachability objective. We show novel and
tight complexity bounds and use these insights to derive a new algorithm. This
algorithm outperforms approaches for POMDPs on a broad set of benchmarks.
For future work, we will apply an algorithm directly on the BOMDP [16].
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Kret́ınský, Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verifi-
cation of markov decision processes using learning algorithms. In ATVA, volume
8837 of LNCS, pages 98–114. Springer, 2014.

10. Peter Buchholz and Dimitri Scheftelowitsch. Computation of weighted sums of
rewards for concurrent mdps. Math. Methods Oper. Res., 89(1):1–42, 2019.

11. Iadine Chades, Josie Carwardine, Tara G. Martin, Samuel Nicol, Régis Sabbadin,
and Olivier Buffet. Momdps: A solution for modelling adaptive management
problems. In AAAI. AAAI Press, 2012.

12. Krishnendu Chatterjee, Martin Chmelik, and Jessica Davies. A symbolic sat-based
algorithm for almost-sure reachability with small strategies in pomdps. In AAAI,
pages 3225–3232. AAAI Press, 2016.

13. Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia.
Optimal cost almost-sure reachability in pomdps. Artif. Intell., 234:26–48, 2016.

14. Krishnendu Chatterjee, Martin Chmeĺık, Deep Karkhanis, Petr Novotný, and
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Abstract. Mungojerrie is an extensible tool that provides a frame-
work to translate linear-time objectives into reward for reinforcement
learning (RL). The tool provides convergent RL algorithms for stochas-
tic games, reference implementations of existing reward translations for
ω-regular objectives, and an internal probabilistic model checker for
ω-regular objectives. This functionality is modular and operates on shared
data structures, which enables fast development of new translation tech-
niques. Mungojerrie supports finite models specified in PRISM and
ω-automata specified in the HOA format, with an integrated command
line interface to external linear temporal logic translators. Mungojerrie
is distributed with a set of benchmarks for ω-regular objectives in RL.

1 Introduction

Reinforcement learning (RL) [41] is a sequential optimization approach where
a decision maker learns to optimally resolve a sequence of choices based on
feedback received from the environment. This feedback often takes the form of
rewards and punishments proportional to the fitness of the decisions taken by
the agent (or their effects) as judged by the environment towards some higher-
level objectives. We call such objectives learning objectives. RL is inspired by the
way dopamine-driven organisms latch on to past rewarding actions and hence,
historically, RL adopted a myopic way of looking at the reward sequences in the
form of the discounted-sum of rewards, where the discount factor controls the
weight placed toward future rewards. More recently, other forms of reward aggre-
gation, such as limit-average, have also been considered. A key design challenge
for users of RL is that of translation: given a class of learning objectives and
aggregator functions, design a reward function from the sequence of learner’s
choices to scalar rewards such that an RL agent maximizing the aggregated sum
of rewards converges to an optimal policy for the learning objective.
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Fig. 1. The reinforcement learning loop implemented within Mungojerrie. The inter-
preter assigns reward to the agent based on the state of the model and automaton.

The translation of objectives to reward signals has historically been a largely
manual process. Such translations not only depend on the expertise of the trans-
lator in reward engineering, they also pose obstacles to providing formal guar-
antees on the faithfulness of the translation. Unsurprisingly, specifying reward
manually is prone to error [22,44]. As the practice of model-free RL continues
to produce impressive results [38,31,29], the integration of RL in safety-critical
system design is inevitable. An alternative to manually programming the reward
function is to specify the objective in a formal language and have it “compiled”
to a reward function. We call such a translation a reward scheme.

In designing reward schemes for RL, one strives to achieve an overall trans-
lation that is faithful (maximizing reward means maximizing the probability of
achieving the objective) and effective (RL quickly converges to optimal strate-
gies). While the faithfulness of a reward scheme can be established theoretically,
its effectiveness requires experimental evaluation. Experimenting with reward
schemes requires a framework for specifying learning objectives, environments,
a wide range of RL algorithms, and an interface for connecting reward schemes
with these components. In addition, it may be beneficial to have access to a
probabilistic model checker to evaluate the quality of the policy computed by
RL, and to compare it against ground truth.

Mungojerrie is designed to provide this functionality for learning require-
ments expressible as linear-time objectives (ω-regular languages [32] and
linear temporal logic [27,33]) against finite MDPs and stochastic games.

Features. Mungojerrie is designed with ease of use and extensibility in mind.
Models in Mungojerrie can be specified in PRISM [25], which maintains compati-
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bility with existing benchmarks, or by explicitly constructing the model via calls
to internal functions. Mungojerrie supports reading ω-automata in the Hanoi
Omega Automata (HOA) format [2], and has a command line interface con-
necting Mungojerrie with performant LTL translators (Spot [7] and Owl [24]).
Mungojerrie provides an OpenAI Gym [4] like interface between the RL algo-
rithms (included with the tool) and the learning environment to allow integra-
tion with off-the-shelf RL algorithms. The tool also has methods for performing
probabilistic model checking (including end-component decomposition, stochas-
tic shortest-path, and discounted-reward optimization) of ω-regular objectives
on the same data structures used for learning. Mungojerrie also provides refer-
ence implementations of several reward schemes [11,12,14,19,23] proposed by the
formal methods community. Mungojerrie is packaged with over 100 benchmarks
and outputs GraphViz [8] for easy visualization of small models and automata.

An introductory example. Figure 2 shows an example MDP in which a gam-
bler places bets with the aim of accumulating a wealth of 7 units. In addition
the gambler will quit if her wealth wanes to just one unit more than once. This
objective is captured by the (deterministic) Büchi automaton of Fig. 3. Mungo-
jerrie computes a strategy for the gambler that maximizes the probability of
satisfying her objective. Figure 4 shows the Markov chain that results from fol-
lowing this strategy. This figure was minimally modified from GraphViz output
from Mungojerrie. Note that the strategy altogether avoids the state in which
x = 1; hence it achieves the same probability of success (5/7) as an optimal
strategy for the simpler objective of eventually reaching x = 7 (without going
broke). Mungojerrie computes the strategy of Fig. 4 by RL; it can also verify it
by probabilistic model checking.

2 Overview of Mungojerrie

Models. The systems used in Mungojerrie consist of finite sets of states and
actions, where states are labeled with atomic propositions. There are at most
two strategic players: Max player and Min player. Each state is controlled by
one player. We call models where all states are controlled by Max player Markov
decision processes (MDPs) [34]. Else, we refer to them as stochastic games [5].

Mungojerrie supports parsing models specified in the PRISM language. The
allowed model types are “mdp” (Markov decision process) and “smg” (stochas-
tic multiplayer game) with two players. There should be one initial state. The
interface for building the model is exposed, allowing extensions of Mungojerrie
to connect with parsers for other languages. The authors of [6] used Mungojerrie
in their experiments by extending the tool to support continuous-time MDPs.

Properties. The properties natively supported by Mungojerrie are ω-regular
languages. Starting from the initial state, the players produce an infinite se-
quence of states with a corresponding infinite sequence of atomic propositions:
an ω-word. The inclusion of this ω-word in our ω-regular language determines
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whether or not this particular run satisfies the property. The Max player maxi-
mizes the probability that a run is satisfying, while goal of the Min player is the
opposite.

We specify our ω-regular language as an ω-automaton, which may be nonde-
terministic. For model checking and RL, this nondeterminism must be resolved
on the fly. Automata where this can be done in any MDP without changing
acceptance are said to be Good-for-MDPs (GFM) [13]. Automata where this
can be done in any stochastic game without changing acceptance are said to be
Good-for-Games (GFG) [21]. In general, nondeterministic Büchi automata are
not GFM, but two classes of GFM Büchi automata with limited nondeterminism
have been studied: suitable limit-deterministic Büchi automata [10,37] and slim
Büchi automata [13].

The user of Mungojerrie can either provide the ω-automaton directly or use
one of the supported external translators to generate the automaton from LTL
with a single call to Mungojerrie. Mungojerrie reads automata specified in the
HOA format. Mungojerrie supports providing the ω-automaton directly for test-
ing the effectiveness of different automata for learning (see Section 4). The LTL
translators that can be called from Mungojerrie are the ePMC plugin from
[13], Spot [7], and Owl [24] for generating slim Büchi, deterministic parity,
and suitable limit-deterministic Büchi automata. The user is responsible for the
ω-automata provided directly having the appropriate property, GFM or GFG.

For use in Mungojerrie, the labels and acceptance conditions for the au-
tomaton should be on the transitions. The acceptance conditions supported by

0 mdp
1

2 const i n t Wealth = 5 ; // i n i t i a l gambler ’ s wea l th
3 const double p = 1/2 ; // p r o b a b i l i t y o f w inn ing one bet
4

5 l a b e l ” r i c h ” = x = 7 ;
6 l a b e l ” poor ” = x = 1 ;
7

8 module gambler
9 x : [ 0 . . 7 ] i n i t Wealth ;

10

11 [ b0 ] x=0 ∨ x=7 → t rue ; // ab so r b i n g s t a t e s
12 [ b1 ] x>0 ∧ x<7 → p : ( x ’=x+1) + (1−p ) : ( x ’=x−1) ;
13 [ b2 ] x>1 ∧ x<6 → p : ( x ’=x+2) + (1−p ) : ( x ’=x−2) ;
14 [ b3 ] x>2 ∧ x<5 → p : ( x ’=x+3) + (1−p ) : ( x ’=x−3) ;
15 endmodule

Fig. 2. A Gambler’s Ruin model in the PRISM language. Line 13, for example, says
that when 1 < x < 6, the gambler may bet two units because action b2 is enabled.
The ‘+’ sign does double duty: as addition symbol in arithmetic expressions and as
separator of probabilistic transitions.
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Fig. 3. Deterministic Büchi automaton equivalent to the LTL formula ¬poorU
(
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)
. The transitions marked with the green dots are accepting.
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Fig. 4. Optimal gambler strategy for the objective of Fig. 3. Boxes are decision states
and circles are probabilistic choice states. For a decision state, the label gives the value
of x and the state of the automaton. Transitions are labelled with either an action or
a probability, and with the priority (1 for accepting and 0 for non-accepting).

Mungojerrie should be reducible to parity acceptance conditions without al-
tering the transition structure of the automaton. This includes parity, Büchi,
co-Büchi, Streett 1 (one pair), and Rabin 1 (one pair) conditions. Nondetermin-
istic automata must have Büchi acceptance conditions. Generalized acceptance
conditions are not supported in version 1.1.

Reinforcement Learning. The RL algorithms optimize over MDP/Stochas-
tic game environments equipped with a Markovian reward function. The re-
ward function assigns a reward Rt+1 ∈ R dependent on the state and action at
timestep t and the next state at timestep t+1. As the players make their choices
within the environment, the resulting play produces a sequence of states, actions,
and rewards (S0, A0, R1, S1, A1, R2, . . .). The discounted reward aggregator is

discγ(π, ν) = Eπ,ν

[∑
t≥0

γtRt+1

]
,

where π is the strategy for Max player, ν is the strategy for Min player, γ ∈ [0, 1)
is the discount factor, and Rt is the reward at timestep t. We can set γ = 1 when
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with probability 1 we enter an absorbing sink (termination), where we receive no
reward. This is called the episodic setting. Another well-studied RL aggregator
is the limit-average reward defined as

avg(π, ν) = lim sup
n→∞

1

n
Eπ,ν

[ ∑
n≥t≥0

Rt+1

]
.

The limit-average reward aggregator is natural in the continuing setting, where
the agent’s trajectory is never reset and there is no preferred initial state [30].
The objective of RL is to compute the optimal value and policies for a given
aggregator. Mungojerrie includes the stochastic game extensions of Q-learning
[43], Double Q-learning [20], and Sarsa(λ) [40] for RL in finite state and action
models. Mungojerrie also includes Differential Q-learning [42] for average RL
in finite communicating MDPs. We collectively refer to parameters that are set
by hand prior to running an RL algorithm as hyperparameters. Mungojerrie
supports changing all hyperparameters from the command line. As the design of
Mungojerrie separates the learning agent(s) from the reward scheme, extending
Mungojerrie to include another RL algorithm is easy.

Reward Schemes. The user of Mungojerrie can either select one of the reward
schemes included with the tool or extend the tool to include a new reward
scheme. Mungojerrie also allows the use of the reward specified in the PRISM
model (either state- or action-based). The following reward schemes are included
in version 1.1 of Mungojerrie:

– Limit-reachability. The limit-reachability scheme [11] uses a GFM Büchi au-
tomaton. This reward scheme converts accepting edges in the automaton into a
transition to a sink with probability 1−ζ with a reward of +1, where 0 < ζ < 1 is
a hyperparameter. All other transitions produce zero reward. For a sufficiently
large ζ and discount factor γ, strategies that are optimal for the discounted
reward maximize the probability of satisfaction of the Büchi objective.
– Multi-discounted. The multi-discounted reward scheme [3] also uses a GFM
Büchi automaton. This translation converts accepting edges in the automaton
into a transition that gives 1−γB reward with a discount of γB , where 0 < γB < 1
is a hyperparameter. All other transitions yield no reward and are discounted by
the standard discount factor γ. For suitably large γB and γ, discounted reward
optimal strategies maximize the probability of satisfaction of the Büchi objective.
– Dense limit-reachability. The dense limit-reachability reward scheme [12] con-
nects the approaches of [11] and [3]. This reward scheme is identical to [11]
except for giving a +1 reward given every time an accepting transition is seen,
instead of only when the transition to the sink succeeds. Since discounting can
be thought of as a constant stopping probability [41], this reward scheme is the
same in expectation as a scaled version of [3].
– Parity. The parity reward scheme was proposed for stochastic games in [14].
For two-player games, it requires a GFG automaton. This translation utilizes a
deterministic parity automaton with a max odd objective. Transitions of priority
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i go to a sink with probability εk−i, where k is the number of priorities and
0 < ε < 1 is a hyperparameter. The transition to the sink receives a +1 or −1
reward for odd or even priorities, respectively. All other transitions receive a zero
reward. For sufficiently small ε, maximizing the cumulative reward results in a
strategy maximizing the probability of satisfaction of the parity objective.
– Priority tracker. The priority tracker reward scheme was proposed by Hahn et
al. [14]. For MDPs, Hahn et al. introduce a priority tracker gadget that takes a
parity objective with a hyperparameter 0 < ε < 1. The priority tracker consists
of two stages. In stage one, we wait for transients to end by ending the stage with
probability ε on each step. In the second stage, we detect the maximum priority
occuring infinitely often with a set of wait states, where we accept the current
maximum with probability ε on each step. For sufficiently small ε and large
discount γ, maximizing the discounted reward also maximizes the probability of
satisfaction of the parity objective.
– Lexicographic. Hahn et al.[19] proposed this reward scheme for lexicographic
ω-regular objectives. In this reward scheme, there is a tracker gadget that keeps
track of which accepting edges for the GFM Büchi automata have been seen.
When the tracker indicates that at least one accepting edge has been seen, the
learning agent can decide to “cash in” the tracker, which clears the tracker.
When this happens, with probability 1− ζ the learning agent receives a reward
which is the weighted sum of seen accepting edges, scaled by powers of f , and
transitions to a terminating sink, where 0 < ζ < 1 and f ≥ 1 are hyperpa-
rameters. For suitable f , ζ, and γ, maximizing the discounted reward yields the
lexicographically optimal strategy.
– Average. The average reward scheme [23] translates absolute liveness ω-regular
objectives, which means the objective is concerned with eventual satifaction,
to average reward for communicating MDPs. Given a GFM Büchi automaton,
transitions from every state in the automaton back to the initial state are in-
troduced, so called “resets”. A hyperparameter c < 0 is introduced which gives
a penalizing reward to these resets. Accepting edges are then given a reward
of +1. Positional policies that maximize the average reward also maximize the
probability of satisfaction of the objective.
– Reward on accept. This reward scheme was proposed in [35]. The translation of
[35] picks a pair in a Rabin automaton to satisfy, and gives positive and negative
reward for the good and bad states of the pair, respectively. In general, picking
the winning pair ahead of time is not possible [11]. For a Büchi automaton, this
corresponds to giving positive (+1) rewards for accepting edges and zero rewards
otherwise. While this reward scheme was shown to be not faithful [11] for general
objectives, it is included for comparison purposes.

3 Tool Design

The primary design goal of Mungojerrie is to enable extensibility. To accomplish
this, Mungojerrie separates different processing stages as much as possible so that
extensions can reuse other components. We begin by presenting the architecture
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Fig. 5. Architecture of Mungojerrie 1.1.

of Mungojerrie. Afterwards, we take a closer at the novel slim Büchi automata
plugin, which is described here in detail for the first time.

Architecture of Mungojerrie. Mungojerrie begins its execution by parsing
the input PRISM and HOA (see upper part of Fig. 5). The HOA is either read
in from a file or piped from a call to one of the supported LTL translators. In
particular the ePMC plugin from [13], an LTL translator capable of producing
slim Büchi automata, is packaged with the tool. Requested automaton modifica-
tions, such as determinization, are run after this step. If specified, Mungojerrie
creates the synchronous product between the automaton and the model, and
runs model checking or game solving [1,15,16]. The requested strategy and val-
ues are returned. Due to this step, Mungojerrie has been connected to external
linear program solvers. This enabled the extension of Mungojerrie to compute
reward maximizing policies via a linear program for branching Markov decision
processes in [18].
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If learning has been specified, the interpreter takes the automaton and model,
without explicitly forming the product, and provides an interface akin to OpenAI
Gym [4] for the RL agent to interact with the environment and receive rewards.
When learning is complete, the Q-table(s) can be saved to a file for later use,
and the interpreter forms the Markov chain induced by the learned strategy and
passes it to the internal model checker for verification.

LTL formula (1) HOA file (2)

translate (Spot) (3) parse (4)

NTLBA (5)

construct SBA (6) construct LDBA (7)

SBA (8)

LDBA (9)

minimize LDBA (10)

minimized LDBA (11)

construct simulation game (12)

simulation game (13)

game solver (14)

HOA file (15)

ePMC plugin

won lost

Fig. 6. Automata generation block diagram

Slim Büchi Automata Generation. For reward schemes involving LTL, the
ω-regular automata translation is an important part of the design. Certain au-
tomata may be more effective for learning than others. Slim Büchi automata
[13] were designed with learning considerations in mind. The translator that
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produces these automata is packaged with Mungojerrie. We will now describe
its design in detail for the first time.

We have implemented slim Büchi automata generation as a plugin of the
probabilistic model checker ePMC [17]. The process is described in Fig. 6. The
starting point is a transition-labeled Büchi automaton in HOA format [2] (2)
or an LTL formula (1). In case we are given an automaton in HOA format, we
parse this automaton (4) and if we are given an LTL formula, we use the tool
Spot [7] to transform the formula into an automaton (3). In both cases, we end
up with a transition-labeled Büchi automaton (5).

Afterwards, we have two options. The first option is to transform (6) this
automaton into a slim Büchi automaton (8) [13]. These automata can then be
directly composed with MDPs for model checking or used to produce rewards
for learning. The other option is to construct (7) a suitable limit-deterministic
Büchi automaton (SLDBA) (9). Automata of this type consist of an initial part
and a final part. A nondeterministic choice only occurs when moving from the
initial to the final part by an ε transition (a transition without reading a charac-
ter). SLDBA can be directly composed with MDPs. However, SLDBA directly
constructed from general Büchi automata are often quite large, which in turn
also means that the product with MDPs would be quite large as well. Therefore,
we have implemented further optimization steps. We can apply a number of al-
gorithms to minimize (10) this automaton so as to achieve a smaller SLDBA
(11). To do so, we implemented several methods:

– Subsuming the states in the final part with an empty language
– Signature-based strong bisimulation minimization in the final part
– Signature-based strong bisimulation minimization in the initial part
– Language-equivalence of states in the final part
– If we have a state s in the initial part for which we find a state s′ in the final
part where the language of s and s′ are the same, we can remove all transitions
of s and add an ε transition from s to s′ instead. Afterwards, automaton states
that cannot be reached anymore can be removed.

Each of these methods has a different potential for minimization as well as
runtime. We therefore allow to specify which optimizations are to be used and
in which order they are applied.

Once we have optimized the SLDBA, we could directly use it for later compo-
sition with an MDP. Another possibility is to prove that the original automaton
is already good for MDPs. If this is the case, then it is often preferable to use
the original automaton: being constructed by specialized tools such as Spot, it
is often smaller than the minimized SLDBA. The original automaton is good-
for-MDPs if it simulates the SLDBA [13]. If it does, then it is also composable
with MDPs. Otherwise, it is unknown whether it is suitable for MDPs. In this
case, sometimes more complex notions of simulation can be used, but existing
decision procedures are too expensive to implement [36].

To show simulation, we construct (12) a simulation game, which in our case
is a transition-labeled parity game (13) with 3 colors. We solve these games
using (a slight variation of) the McNaughton algorithm [28]. (We are aware
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that specialized algorithms for parity games with 3 colors exist [9]. However, so
far the construction of the arena, not solving the game, turned out to be the
bottleneck here). If the even player is winning, the simulation holds. Otherwise,
more complex notions of simulation can be used, which however lead to larger
parity games being constructed. In case the even player is winning for any of
them, we can use the original automaton, otherwise we have to use the SLDBA.
In any case, we export the result to an HOA file (15). For illustration and
debugging , automata and simulation games can be exported to the GraphViz [8].

4 Case Studies

To showcase how Mungojerrie can be used to experiment with different reward
schemes, we provide three case studies. In the first case study, we demonstrate
how Mungojerrie can be used to compare the effectiveness of two different re-
ward schemes on the same system. In the second case study, we consider the
design space of automata, and demonstrate how Mungojerrie can be used to
compare how different ω-automata change learning effectiveness. This is impor-
tant for considering how to design LTL translators that produce automata that
are effective for learning. In the last case study, we demonstrate how the dif-
ferent outputs of Mungojerrie can be used. For additional experimental results
obtained using Mungojerrie, we refer readers to [11,12,14,19,39,45,23] for case
studies testing ω-regular reward schemes, and [13] for the ePMC plugin. We
also refer readers to [26, Fig. 3] which examined RL for scLTL properties, [6] for
continuous-time MDPs, and [18], which extended Mungojerrie to test model-free
reinforcement learning in branching Markov decision processes.

4.1 Comparing Reward Schemes

To demonstrate how Mungojerrie may be used to compare reward schemes, we
compare the reward scheme of [11] with a modification of it that assigns a +1
reward on every accepting edge, as introduced in [12]. We compare these two
methods on the same problem, where the learner must safely navigate two robots
on a slippery gridworld to a goal. We also fix the problem parameters ζ = 0.99
and γ = 0.99999, and the use of Q-learning. Since we are interested in which
method will converge sooner, we fix the amount of training to be relatively low.
We allow the two parameters specific to Q-learning, the learning rate α and the
exploration rate ε, to be varied in order to find the optimal combination for
each method. We average 10 runs for each grid point. This required 32000 runs,
which took approximately 79 CPU hours (single-core) on a 2.5GHz Intel Xeon
E5-2680 v3. This corresponds to an average of approximately 188000 sampled
transitions per second per core, including model checking time. This sampling
rate is typical of what was observed in other experiments.

Figure 7 shows the probability of satisfaction of the learned strategy as com-
puted by the model checker of Mungojerrie. One can see that under these con-
ditions, the reward scheme from [12] is able to consistently learn probability
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Fig. 7. Probability of satisfaction of learned strategies as computed by the model
checker of Mungojerrie. ‘Hahn et al. 19’ refers to the translation of [11]. ‘Hahn et
al. 20’ refers to the translation of [12] that assigns +1 reward on every accepting edge
with reachability parameter ζ. Each grid point is the average of 10 runs.

1 strategies under certain parameter combinations, while [11] does not. Fig-
ure 8 shows the difference in the estimated probability of satisfaction, found by
taking the value from the initial state of Q-table and renormalizing it appropri-
ately, and the probability of satisfaction of the learned strategy computed by
the model checker of Mungojerrie. One can see that the reward scheme of [11]
sometimes overestimates and sometimes underestimates when it achieves a high
actual probability of satisfaction under these conditions. However, on the same
example, the reward scheme of [12] consistently underestimates everywhere. In
summary, Mungojerrie allowed us to see that, although the reachability reward
scheme of [12] may achieve higher probabilities of satisfaction sooner, it may
take longer for the values in the Q-table to properly converge.

4.2 Comparing Automata

An ω-regular objective may be described by different automata, many of which
may be good-for-MDPs. Mungojerrie can be used to compare the effectiveness
of such automata when used in RL. Consider the two nondeterministic Büchi
automata shown in Fig. 9. Both are equivalent to the LTL formula (FGx) ∨
(GF y), but the one on the right should be better for learning: long transient
sequences of observations that satisfy x∧¬y may convince the agent to commit
to State 1 of the left automaton too soon.

To test this conjecture, we specified a model in PRISM organized in two long
chains. In one of them the agent sees many xs for a while, but eventually only
sees ys. In the other chain the situation is reversed. Which chain is followed is up
to chance. We then used the reward scheme from [3] with Q-learning under the
default hyperparameters in Mungojerrie, γB = 0.99, γ = 0.99999, α = 0.1, and
ε = 0.1. We then trained for 20000 episodes under each automaton, and used
Mungojerrie to compute the probability of satisfaction of the property at periodic
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Fig. 8. Estimated probability of satisfaction of learned strategies minus the probability
of satisfaction computed by the model checker of Mungojerrie. Blue indicates under-
estimation, while red indicates overestimation. Hahn et al. 19 refers to the translation
of [11]. Hahn et al. 20 refers to the translation of [12] that assigns +1 reward on every
accepting edge with reachability parameter ζ. Each grid point is the average of 10 runs.

intervals. Since learning to control the left automaton requires thorough and deep
exploration, we conjectured that optimistic intialization of the Q-table [41] to
the value 0.8 will improve performance. We took the average of 1000 runs for
each combination.

Figure 10 shows the resulting curve. When using the LDBA without opti-
mistic intialization, the learning agent is unable to learn the optimal strategy
under these conditions. While it is worth noting that using the LDBA with-
out optimistic initialization eventually converges to the optimal strategy with
enough training, it is clear that the choice of the automaton can have a signifi-
cant impact on learning performance. Therefore, the design of translations from
LTL to automata has a role to play in producing effective reward schemes.

0 1y

¬y

x ∧ ¬y
x 0 1y

¬y

x ∧ ¬y

x ∧ ¬yy

Fig. 9. Equivalent, but not equally effective, Büchi automata. “LDBA” and “Forgiv-
ing” refer to the automaton the left and right, respectively.
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Fig. 10. Plot of the evolution of the probability of satisfaction of learned strategies as
computed by the model checker of Mungojerrie. “Forgiving” and “LDBA” refer to the
left and right automata in Figure 9, respectively. “(optimistic)” indicates optimistic
initialization of the Q-table was used. Each curve is the average of 1000 runs.
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Fig. 11. A grid-world stochastic game arena (left) and a deterministic parity automa-
ton for the objective (right).

4.3 A Game of Pursuit

Figure 11 describes a stochastic parity game of pursuit in which the Max player
(M) tries to escape from the Min player (m). At each round, each player in turn
chooses a direction to move. If movement in that direction is not obstructed
by a wall, then the player moves either two squares or one square with equal
probabilities. One square of the grid is a trap, which m must avoid at all times,
but M may visit finitely many times. Player M should be at least 5 squares away
from player m infinitely often. This objective is described by the LTL property
(F¬trapmn) ∨ ((FG¬trapmx) ∧ (GF¬close)), where trapmn and trapmx are
true when m and M visit the trap square, respectively, and close is true when
the Manhattan distance between the two players is less than 5 squares. This
objective translates to the deterministic parity automaton in Fig. 11, which
accepts a word if the maximum recurring priority of its run is odd.

Unlike the example of Fig. 2, inspection of the Markov chain induced by
an optimal strategy and manual verification of the optimality of the learned
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Fig. 12. Max player learned strategy for the game of Fig. 11 when the automaton is
in State 0. (Any strategy will do when the automaton is in State 1.) In each 6× 6 box
the rose-colored square is the position of the minimizing player, while the light-blue
square marks the trap.

strategy is impractical. Instead, the model checker of Mungojerrie has verified the
optimality of this strategy from the intial state. For visualization, Mungojerrie
can also save the strategy in CSV format. Postprocessing can then produce a
graphical representation like the one of Fig. 12. The color gradient shows that,
in the main, M ’s strategy is to move away from m.

5 Conclusion

We have introduced Mungojerrie, an extensible tool for experimenting with re-
ward schemes for RL, with a focus on ω-regular objectives. Mungojerrie allows
the specification of models in PRISM [25] and ω-automata in HOA [2]. Mul-
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tiple LTL translators can be called from the tool [7,24], including the ePMC
plugin introduced in [13] for the construction of slim Büchi automata. Mungojer-
rie includes various reward schemes [11,3,12,14,19,23,35] for ω-regular objectives
and model-free RL algorithms [43,20,40,23]. Mungojerrie also includes an inter-
nal probabilistic model checker for the verification of learned strategies against
ω-regular objectives, and for allowing users to verify that developed examples
are as intended. The tool also comes packaged with benchmarks for ω-regular
objectives in RL.

We have discussed Mungojerrie’s design and demonstrated how Mungojerrie
can be used to perform comparisons of reward schemes for ω-regular objectives.
The source and documentation of Mungojerrie are publicly available.
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Abstract. CHERI-C extends the C programming language by adding
hardware capabilities, ensuring a certain degree of memory safety while
remaining efficient. Capabilities can also be employed for higher-level se-
curity measures, such as software compartmentalization, that have to be
used correctly to achieve the desired security guarantees. As the exten-
sion changes the semantics of C, new theories and tooling are required
to reason about CHERI-C code and verify correctness. In this work, we
present a formal memory model that provides a memory semantics for
CHERI-C programs. We present a generalised theory with rich proper-
ties suitable for verification and potentially other types of analyses. Our
theory is backed by an Isabelle/HOL formalisation that also generates
an OCaml executable instance of the memory model. The verified and
extracted code is then used to instantiate the parametric Gillian pro-
gram analysis framework, with which we can perform concrete execution
of CHERI-C programs. The tool can run a CHERI-C test suite, demon-
strating the correctness of our tool, and catch a good class of safety
violations that the CHERI hardware might miss.

Keywords: CHERI-C · Hardware Capabilities · Memory Model · Se-
mantics · Theorem Proving · Verification

1 Introduction

Despite having been developed more than 40 years ago, C remains a widely used
programming language owing to its efficiency, portability, and suitability for low-
level systems code. The language’s lack of inherent memory safety, however, has
been the source of many serious issues [18]. While there have been significant ef-
forts aimed at vulnerability mitigation, memory safety issues remain widespread,
with a recent study stating that 70% of security vulnerabilities are caused by
memory safety issues [31].

The Capability Hardware Enhanced RISC Instructions (CHERI) project of-
fers an alternative model that provides better memory safety [44]. Its main fea-
tures include a new machine representation of C pointers called capabilities and
extensions to existing Instruction Set Architectures (ISA) that enable the se-
cure manipulation of capabilities. Capabilities are in essence memory addresses
bound to additional safety-related metadata, such as access permissions and
bounds on the memory locations that can be accessed. As the hardware per-
forms the safety checks on capabilities, legacy C programs compiled and run
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addr :: 64 bits

base :: 64 bits

length :: 64 bits

perm :: 31 bits

tag :: 1 bit

reserved

(a) CHERI-256 Capability Layout

addr :: 64 bits

bounds :: 41 bits

tag :: 1 bit

perm :: 15 bits reserved

(b) CHERI-128 Capability Layout

Fig. 1: Simplified CHERI Capability Layouts

on CHERI architecture, i.e. CHERI-C code, acquire hardware-ensured spatial
memory safety, while retaining efficiency. Porting code from one language to
another generally requires significant efforts. But porting C codes to CHERI-C
requires little, if any, changes to the original code to ensure the code runs on
CHERI hardware [36, 39].

In 2019, the UK announced its Digital Security by Design programme with
£190 million of funding distributed over more than 26 research projects and 5
industrial demonstrators [6] to ‘radically update the foundation of our insecure
digital computing infrastructure, by demonstrating that mainstream processor
technology . . . can be updated to include new security technologies based on
the CHERI Architecture’ [5]. A cornerstone of the programme is Morello [4], a
CHERI-enabled prototype developed by Arm.

Over the several years that lead to the realisation of Morello, there were
several design revisions made to the hardware; examples are depicted in Fig. 1.
The refined designs used methods for compression of bounds that reduced cache
footprints and improved overall performance while minimising incompatibil-
ity. Morello uses a very similar design to the compressed scheme for capa-
bilities depicted in Fig. 1b, with the overall bit-representation of the layout
differing slightly. Future capability designs may possibly incorporate a different
bit-representation design, provided there are improvements in performance or
compatibility. Due to the ever-changing design of capability bit-representations,
it seems best to have an abstract representation of capabilities, so that CHERI-
based verification tools can remain modular.

Checking for memory safety issues of legacy C code can, of course, be achieved
using existing analysis tools for C, but there are new problems that arise when
such code is run on CHERI hardware. Because the pointer and memory represen-
tations are fundamentally different in a CHERI architecture, there are non-trivial
differences in the semantics between C and CHERI-C.

To illustrate this point, consider the C code in Listing 1.1. This code segment
performs memcpy twice: once from a to b, where pointers/capabilities are stored
misaligned in b, then from b to c, where pointers/capabilities are stored correctly
again in c. In standard C, there are no problems accessing the pointer stored
in c. But in CHERI-C, misaligned capabilities in memory are invalidated. That
means the address and meta-data of the misaligned capabilities are accessible,
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but such capabilities can no longer be dereferenced [41]. While c will contain the
same capability value as that of a, the capability stored in c is invalidated. Thus,
the last line will trigger an ‘invalid tag’ exception when the code is executed on
ARM Morello and other CHERI-based machines.

1 #include <stdlib.h>
2 #include <string.h>
3 void main(void) {
4 int *n = calloc(sizeof(int), 1);
5 int **a = malloc(sizeof(int *));
6 *a = n;
7 int **b = malloc(sizeof(int *) * 2);
8 int **c = malloc(sizeof(int *));
9 memcpy((char *) b + 1, a, sizeof(int *));

10 memcpy(c, (char *) b + 1, sizeof(int *));
11 int x = **c;
12 }

Listing 1.1: C code example

Of course, existing C analysis tools cannot catch these cases, as such tools are
not only unaware of the changes in the semantics that capabilities bring, but also
the code is not problematic in conventional C. Moreover, while CHERI ensures
spatial safety by the hardware, CHERI is still incapable of catching temporal
safety violations, such as Use After Free (UAF) violations. There exists work that
attempt to address temporal safety [11, 17, 42], but they are either a software-
implemented solution [42], where overall performance is inevitably affected, or
ongoing work [11]. There is, therefore, a need for program analysis tools that
correctly integrate the semantics of CHERI-C.

To the best of our knowledge, there is no prior work on formalising a CHERI-
C memory model. The Cerberus C work [30] is primarily designed to capture
pointer provenance of C programs and uses CHERI-C as a reference for pointer
provenance, but the tool lacks a formal CHERI-C memory model. ESBMC is
a verification tool that supports CHERI-C code [15]. But support for tagged
memory does not yet exist; ESBMC would not be able to catch the ‘invalid tag’
exception in the code in Listing 1.1. Furthermore, ESBMC’s memory model is
not formally verified. Users of ESBMC must trust that the implementation of
the memory model and its underlying theory are correct. SAIL formalisations
for each CHERI architectures exist [3, 8, 9], but they only capture the low-level
semantics of the architecture and not high-level C constructs such as allocation.

In this paper, we introduce a formal CHERI-C memory model that captures
the memory semantics of the CHERI-C language. In Sect. 3, We formalise the
memory and its operations and prove essential properties that provide correct-
ness guarantees. We provide a rigorous logical formalisation of the CHERI-C
memory model in Isabelle/HOL [32] (in Sect. 4.1) and use the code generation
feature to generate a verified OCaml instance of the memory model [21]. We then
show, in Sect. 4.2, the practical aspects of this work by providing the memory
model to, and thereby instantiating, Gillian [20], a general, parametric verifica-
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tion framework that supports concrete and symbolic execution and verification
based on separation logic, backed by rich correctness properties. In Sect. 5, we
demonstrate that the tool can capture the semantics of CHERI-C programs cor-
rectly. A discussion on the existing works can be found in Sect. 6 while Sect. 7
concludes this paper mentioning possible future directions. We first start with
an introduction to the CHERI architecture.

2 CHERI

CHERI extends a conventional ISA by introducing capabilities which are essen-
tially pointers that come along with metadata to restrict memory access. The
ISA now has additional hardware instructions and exceptions that operate over
capabilities. Register sets are extended to include capability registers, instruc-
tions are added that reference the capability registers, and custom hardware
exceptions are added to block operations that would violate memory safety. De-
signs of CHERI capabilities have refined over the past several years and have
been incorporated in several existing architectures, such as MIPS and RISC-
V [40]. All CHERI-extended ISAs have been formally defined using the SAIL
specification language, in which the logic of machine instructions and memory
layout have been defined formally in a first-order language [13].

Regardless of the layout, CHERI capabilities include three important types
of high-level information, in addition to a 64-bit address:

– Permissions. Permissions state what kind of operations a capability can
perform. Loading from memory and storing to memory are examples of per-
missions a capability may possess.

– Bounds. Bounds stipulate the memory region that the address part of a
capability can reference. The lower bound stipulates the lowest address that
a capability may access, and the upper bound stipulates the highest address.

– Tag. Stored separately from the other components of a capability, the tag
states the validity of the capability it is attached to. Capabilities with invalid
tags can hold data but cannot be dereferenced. Attempts to forge capabilities
out of thin air result in a tag-invalidated capability.

Fig. 1a show a 256-bit representation of a capability, which was one of the
earlier designs. The lower and upper bounds are represented using the base and
length fields. Here, the lower bound is the address stated by the base field, and
the upper bound is the address in the base field plus the length field. Permis-
sions and other metadata are stored in the remaining fields as a bit vector. The
capability’s tag bit exists separately from the capability. Tag bits are, in prac-
tice, stored separately from the main memory where capabilities reside, so users
cannot manipulate the tag bits of capabilities stored in memory. Furthermore,
overwriting capabilities stored in memory with non-capability values invalidates
their tag bits, which ensures capabilities cannot be forged out of thin air.

This representation, in theory, exercises a high level of compatibility with ex-
isting C code. But performance, particularly with regards to caching, is reduced
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due to the size of the capability representation [43]. Refined designs ultimately
resulted in a capability that utilises a floating-point-based lossy compression
technique on the bounds [43], such as the one depicted in Fig. 1b. In many
cases, the upper bits of the address fields are most likely to overlap with those
of the lower and upper bounds. Knowing this, bounds can be compressed by
having the upper bits of their fields depend on that of the address, which means
only the lower bits need to be stored.

The lossy compression of bounds may result in some incompatibility. Bounds
may no longer be represented exactly, and changes in the address field may
result in an unintentional change in the bounds. Nonetheless, such representa-
tions give an acceptable level of compatibility, provided aggressive pointer arith-
metic optimisations are avoided. The Morello processor incorporates a similar
compression-based design in its architecture, though sizes of each field differ [12].

The added capability-aware instructions operate over capabilities. Conven-
tional load and store operations are extended to first check that the tag, permis-
sions, and bounds of the capability are all valid. Violations result in triggering a
capability-related hardware exception. There are additional operations to access
or change the tag, permissions, and bounds. To ensure spatial memory safety,
these operations can, at most, make the conditions for execution more restric-
tive; they cannot grant that which was not previously available. For instance, one
cannot lower the lower bound of a capability to access a region that was inacces-
sible before, or grant a store permission that was unset beforehand. Because of
how tags work for capabilities stored in memory, one cannot grant capabilities
larger bounds or more permissions by manipulating the memory—attempting
this results in tag invalidation.

Library support for CHERI has grown over the past few years. In particular,
a software stack for CHERI-C that utilises a custom Clang compiler now exists
[41]. Users can compile their program either in ‘purecap’ mode, where all pointers
in programs are replaced with capabilities, or in ‘hybrid’ mode, where both
pointers and capabilities co-exist within the program. Because operations that
change the fields of a capability does not generally exist in standard C, Clang
incorporates additional CHERI libraries of operations that users may use to
access or mutate capabilities.

3 CHERI-C Memory Model

Incorporating hardware-enabled spatial safety requires significant changes to the
C memory model. Pointer designs must be extended to incorporate bounds,
metadata, and the out-of-band tag bit. The memory, i.e. heap, must also be able
to distinguish the main memory and the tagged memory. Operations with respect
to the heap must also be defined such that tag preservation and invalidation are
incorporated appropriately.

In this section, we provide a generalised theory for the CHERI-C memory
model. We identify the type and value system used by the memory model. We
then define the heap and the core memory operations. Finally, we state some
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essential properties of the heap and the operations that (1) characterises the se-
mantics and (2) states what types of verification or analyses could be supported.
We make the assumption that we work on a ‘purecap’ environment, where all
pointers have been replaced with capabilities.

3.1 Design

The CHERI-C memory model is inspired by that of CompCert [26]. The beauty
of CompCert is that it is a verified C compiler. The internal components, which
include the block-offset based memory model, are formalised in a theorem prover,
with many of its essential properties verified. Using CompCert’s memory model
as a basis, we design the CHERI-C memory model by providing extensions to
ensure the modelling of correct semantics and the capture of safety violations:

– Capability Values. In addition to the standard primitive types, we incor-
porate abstract capabilities as values. We also incorporate capability frag-
ments to provide semantics to higher-level memory actions like memcpy,
which should preserve tags if copied correctly and invalidate otherwise [41].

– Extended Operations. Basic memory actions such as load and store
now work on capabilities and will trigger the correct capability-related ex-
ception when required.

– Tagged Memory. Tags in memory are stored separately from the main
heap, as could be seen by the formal CHERI-MIPS SAIL model [9]. So we
provide a separate mapping for tagged memory for storing capability tags.

– Freed Regions. The standard CompCert memory model can mark which
memory regions are valid but lacks the ability to distinguish which regions
are marked as ‘Freed’. We incorporate freed regions as a means to catch
temporal safety violations.

3.2 Type and Value System

Figure 2 shows the formalisation of CHERI-C types and values. Types τ are anal-
ogous to chunks in CompCert terms. Types comprise primitive types (e.g. U8τ ,

τ � U8τ | S8τ | ... | U64τ | S64τ | Capτ
MCap � B × Z×md

Cap � MCap× B
VC � U8V :: 8 bits | ...

| S64V :: 64 sbits
| CapV :: Cap
| CapFV :: Cap× N
| Undef

VM � Byte :: 8 bits
| MCapF :: MCap× N

Fig. 2: CHERI-C Types and Values
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S64τ , etc.) and a capability type Capτ . We define a function | · | : τ → N that
returns, in terms of bytes, the size of the type. For Capτ , the value is not fixed
but requires that it must be divisible by 16. This requirement allows capabilities
with 128- and 256-bit representations to have a valid size.

MCap represents a memory capability value and is represented as a tuple
(b, i,m), which comprises the block identifier b ∈ B, offset i ∈ Z, and metadata
m ∈ md, where md represents the bounds and permissions. Here, B must be
a countable set. Offsets are represented as integers, as CHERI allows out-of-
bounds addresses, where the address may be lower than the lower bound. Because
capabilities stored in memory have their tag bit stored elsewhere, we make the
distinction between memory capabilities and tagged capabilities, Cap, which is a
capability ((b, i,m), t) that contains the tag bit t ∈ B.

Unlike those of CompCert, CHERI-C values VC are given type distinctions to
ensure: (1) types can be inferred directly, and (2) they contain the correct values
at all times. From a practical standpoint, this ensures that the proof of correct-
ness of memory operations can be simplified, and bounded arithmetic operations
can be implemented correctly. Capability values CapV and capability fragment
values CapFV also exist as values. Provided some capability value C ∈ CapV ,
capability fragment values Cn ∈ CapFV correspond to the n-th byte of the ca-
pability C. For both cases, instead of fixing their representation concretely, we
represent them abstractly using a tuple. This representation ensures that con-
version to a compressed representation could be achieved when needed while
avoiding the need to fix to one particular bit representation. Furthermore, this
approach provides a reasonable way to correctly define memcpy, where capabil-
ity tags must be preserved if possible. While capability fragments are extended
structures of capabilities, operations that can be performed on capability frag-
ments are limited. Finally, we have Undef , which represents invalid values. These
values may appear when, for example, the user calls malloc and immediately
tries to load the undefined contents. The idea behind incorporating capability
fragments values is heavily inspired by the work from [25].

Because values are given a type distinction, identifying the types of values is
straightforward. For capability fragments, we have two choices: they may either
be a U8τ or S8τ type. Capability fragments are essentially bytes, so operations
over capability fragments can be treated as if they were a U8τ or S8τ type. Since
Undef does not correspond to a valid value, it is not assigned a type.

CapErr � TagViolation | PermitLoadViolation | . . .
LogicErr � UseAfterFree | MissingResource | . . .
Err � CapErr | LogicErr
R ρ � Succ ρ

| Fail Err

Fig. 3: CHERI-C Errors
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Memory operations, such as load and store, are defined so that, upon
failure, the operation returns the type of error that lead to the failure. In general,
partial functions, or function using the option type, can model function failure
but cannot state what caused the failure. As such, the operations use the return
typeR ρ, where ρ is a generic return type. For CHERI-C, we make the distinction
between errors caused by capabilities, denoted by CapErr, and errors caused by
the language, denoted by LogicErr. Figure 3 depicts the formalised Errors system
used by the memory model.

3.3 Memory

We now formalise the memory. We use CompCert’s approach of using a union
type VM that can represent either a byte or a byte fragment of a memory
capability. Then it is possible to create a memory mapping N ⇀ VM.1 We also
create a separate mapping of type N ⇀ B for tagged memory. When the user
attempts to store a capability, it will be converted into a memory capability and
then stored in the memory mapping. Separately, the tag bit will be stored in
the tagged memory. When the tag bit is stored, adjustments are made to ensure
tags are only stored in capability-size-aligned offsets.

To ensure we can catch temporal safety violations, we need to be able to
make distinctions between blocks that are freed and blocks that are valid. One
way to encode this is as follows: a block b may point to either a freed location
(i.e. b �→ ∅), or point to the pair of maps we defined earlier. The idea is that if a
block identifier points to a freed block, attempts to load such a block will trigger
a ‘Use After Free’ violation and would otherwise point to a valid mapping pair.
Ultimately, the heap has the following form:

H : B ⇀ ((N ⇀ VM)× (N ⇀ B))∅

3.4 Operations

We define the core memory operations, or actions, of the memory model. We
use the same result type R given in Fig. 3 instead of using a partial function to
give the type of error, should the operation fail.

The memory actions AC = {alloc,free,load,store} are given below
with their respective signatures:

– alloc : H → N→ R (H× Cap)
– free : H → Cap→ R (H× Cap)
– load : H → Cap→ τ → R (VC)
– store : H → Cap→ VC → R (H)

1The notation ⇀ denotes a partial map. Offsets in heaps are N, whereas offsets
stored in capabilities are Z. Operations check whether the offsets are in bounds, which
requires offsets to be non-negative. This means valid offset values can be converted
from Z to N without issues.
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The function alloc μ n = Succ (μ′, c) takes a heap μ and size n input and
produces a fresh capability c and the updated heap μ′ as output. The bounds of
c are determined by n. In the case of compressed capabilities, a sufficiently large
n may result in the upper bound being larger than what was requested. The
capability c is also given the appropriate permissions and a valid tag bit. Like
that of CompCert, alloc is designed to never fail, provided that the countable
set B has infinite elements.

The function free μ c = Succ (μ′, c′) takes a heap μ and capability c =
((b, i,m), t) as input. Upon success, the operation will return the updated heap,
where we now have b �→ ∅. The capability c′ is also updated such that the tag
bit of c is invalidated. This conforms to the CHERI-C design stated in [41]. We
note that c should also be a valid capability, that is—at the very least—the
tag bit should be set, and the offset should be within the capability bounds.
The function free may fail if the block is invalid or already freed, even if the
capability itself was valid. In such case, free returns a logical error.

The function load μ c t = Succ v takes a heap μ, capability c and type t
as input, where t is the type the user wants to load. Upon success, the operation
will return the value v from the memory, where v has the corresponding type
t.2 Before load attempts to access the block provided by c, it first checks that
c has sufficient permissions to load. We use the CHERI-MIPS SAIL implemen-
tation of the CL[C] instruction [40] for the capability checks, implementing the
extra checks provided that t = Capτ . Once the capability checks are done, the
operation attempts to access the blocks and the mappings, failing and returning
the appropriate logical error if they do not exist.

When accessing both the main memory and tagged memory, there are a
number of cases to consider. When loading primitive values, it is important that
the region about to be loaded is all of Byte and not of MCapF type. Thus, before
loading the values, we check whether the contiguous region in memory are all
of Byte type. If this is not the case, load will return Undef . For capability
fragments, the cell in memory has to be an MCapF . Finally for capabilities, not
only do the contiguous cells have to be of MCapF type, but (1) they must have
the same memory capability value, and (2) the fragment values must all be a
sequence forming {0, 1, ..., |Capτ | − 1}. The idea is that even if the contiguous
cells have the same memory capability values, they do not form a valid capability
if the fragments are not stored in order. After all the checks, the tagged memory
will be accessed, where the tag value is retrieved.3 The loaded memory capability
and tag bit are then combined to form a tagged capability, which load returns.

The function store μ c v = Succ μ′ takes a heap μ, capability c, and value v.
Upon success, the operations will return the updated heap μ′. Like load, store
performs the necessary capability checks based on CHERI-MIPS’ CS[C] instruc-
tion and attempts to access the blocks and mappings afterwards, returning the
appropriate exception upon failure. For storing primitive values and capability

2For capability fragments, the corresponding type may be either U8τ or S8τ .
3The tagged memory does not need to be accessed if c does not have a capability

load permission. In such case, the loaded capability will have an invalidated tag.
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fragment values, the main memory mapping will simply be updated to contain
the values, and the associated tagged memories will be invalidated. For primi-
tive values that are not bytes, the values will be converted into a sequence of
bytes, where each byte in the list will be stored contiguously in memory. For
a capability fragment value, it will be stored in the cell as an MCapF type,
where the tag value of the fragment will be stripped when storing in mem-
ory. Finally, for capability values, the value will be split into a list comprising
|Capτ | − 1 memory capability fragments, with the fragment value forming a se-
quence {0, 1, ..|Capτ | − 1}, and a tag bit. The main memory will store the list of
memory fragments contiguously, and the tagged memory will store the tag value
in the corresponding capability-aligned tagged memory.

3.5 Properties

In the previous section, we have articulated a formal CHERI-C memory model,
explaining how the heap is structured and how the operations are defined. It is
essential that the formalisation we provided is correct and is also suitable for
verification or other types of analyses. In this section, we first discuss the proper-
ties of the memory. We then discuss the properties of the operations themselves,
primarily concerned with correctness.

When we observe the memory, it is important that we always work with a
valid one, i.e. the memory is well-formed. In our formalisation, we require that
all tags in the tagged memory are stored in a capability-aligned location. The
well-formedness relation WC

f is defined as follows:

WC
f (μ) ≡ ∀b ∈ dom(μ). b �→ (c, t) −→ ∀x ∈ dom(t). x mod |Capτ | = 0

The well-formedness property must hold when the heap is initialised and
when memory operations mutate the heap. That is, provided μ0 is the initialised
heap where all mappings are empty, α ∈ AC is a memory action, v are the
arguments of the memory operation α and μ′ is one of the return values denoting
the updated heap, we have the following properties:

WC
f (μ0)

WC
f (μ) =⇒ α μ v = Succ μ′ =⇒WC

f (μ
′)

The two properties above ensure that the heap is well-formed throughout the
execution of the CHERI-C program.

For the correctness of the operations, we primarily consider soundness and
completeness:

– If the inputs are valid for operation α ∈ AC then the action should succeed.
– If the action α succeeds, the inputs provided to the operations are valid.
– If the inputs are invalid for the operation α, then the action should fail and

return the correct error.
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The first and second points are simple soundness and completeness properties.
The third point is important in that the input may be problematic in many ways.
For example, the NULL capability has an invalid tag bit, invalid bounds, and no
permissions. The function load will fail if provided with the NULL capability,
as it violates many of the checks. Because the SAIL specification states that tags
are always checked first, the error must be a TagViolation type.

Next, we need to ensure successive operations yield the desired result. The
primary properties to consider are the good variable laws [26]; examples of prop-
erties encoding this law include load after allocation, load after free, and load
after store. It is worth mentioning there are some caveats. For example, the
load after store case no longer guarantees that you will retrieve the same value
you stored, unlike CompCert’s load after store property in [26], since the value
that was stored and to be loaded again could have been either a capability
or capability fragment. In such cases, the tag bit may become invalidated due
to insufficient permissions on the capability, or because storing capability frag-
ments resulted in the tagged memory being cleared. The solution is to divide
the general property into a primitive value case and a capability-related value
case. Ultimately, the idea is to prove that the loaded value is correct rather than
exact, i.e. capability-related values when loaded with have the correct tag value.

Finally, we have properties suitable for verification. We note that the memory
H can be instantiated as a separation algebra by providing the partial commu-
tative monoid (PCM) (H,�, μ0), where � is the disjoint union of two heaps and
μ0 is the empty initialised heap. For tools that rely on using partial memories, it
is also imperative to show that the well-formedness property is compatible with
memory composition:

WC
f (μ1 � μ2) =⇒WC

f (μ1) ∧WC
f (μ2)

We also note that the current heap design keeps track of negative resources [28],
which may potentially be useful for incorrectness logic based verification [33].

4 Application

The overall memory model provided in Sect. 3 has been designed to be appli-
cable for verification tools. In this section, we explain how we use the theory
provided above to create a verified, executable instance of the memory model.
We then explain how this executable model can be used to instantiate a tool
called Gillian [20]. Using the instantiated tool, we demonstrate the concrete
execution of CHERI-C programs with the desired behaviour.

4.1 Isabelle/HOL

Isabelle/HOL is an interactive theorem prover based on classical Higher Or-
der Logic (HOL) [32]. We use Isabelle/HOL to formalise the entirety of the
CHERI-C memory model discussed in Sect. 3. Types, values, heap structure,
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etc. were implemented, memory operations were defined, and properties relat-
ing to the heap and the operations were proven. Memory capabilities, tagged
capabilities, and capability fragments were represented using records, a form of
tuple with named fields. For code generation, we instantiated the block type B
to be Z. For showing that H is an instance of a separation algebra, we use the
cancellative sep algebra class [23] and prove that the heap model is an
instance. This proof ultimately shows that H forms a PCM. Proving that well-
formedness is compatible with memory composition is stated slightly differently.
The cancellative sep algebra class takes in a total operator ·t instead of
a partial one and requires a ‘separation disjunction’ binary operator #, which
states disjointedness. Ultimately, the compatibility property can be given as:

μ1 # μ2 =⇒WC
f (μ1 ·t μ2) =⇒WC

f (μ1) ∧WC
f (μ2)

For partial mappings of the form A ⇀ B, we use Isabelle/HOL’s finite mapping
type (’a,’b)mapping [22]. To ensure we obtain an OCaml executable instance
of the memory model, we use the Containers framework [27], which generates
a Red-Black Tree mapping provided the abstract mapping in Isabelle/HOL. All
definitions in Isabelle were either defined to be code-generatable to begin with
(i.e. definitions should not comprise quantifiers or non-constructive constants
like the Hilbert choice operation SOME), or code equations were provided and
proven to ensure a sound code generation [21]. For bounded machine words,
which is required for formalising the primitive values, we use Isabelle/HOL’s
word type ’a word, where ’a states the length of the word [14]. Types like
’a word, nat, int and string were also transformed to use OCaml’s Zarith
and native string library for efficiency [21].

4.2 Gillian

Gillian is a high-level analysis framework, theoretically capable of analysing a
wide range of languages. The framework allows concrete and symbolic execu-
tion, verification based on Separation Logic, and bi-abduction [28]. The crux of
the framework lies in its parametricity, where the tool can be instantiated by
simply providing a compiler front end and OCaml-based memory models of the
language. So far, CompCert C and JavaScript have both been instantiated for
Gillian, giving birth to Gillian-C and Gillian-JS.

The underlying theoretical foundation of Gillian has its essential correctness
properties like soundness and completeness already proven [20, 29]. Thus, users
who instantiate the tool only need to prove the correctness of the implementation
of their compiler and memory models to ensure the correctness of the entire tool.
From the perspective of someone trying to instantiate Gillian with their compiler
and memory models, it is essential to understand the underlying intermediate
language GIL and the overall memory model interface used by Gillian.

GIL GIL is the GOTO-based Intermediate Language used by Gillian which
is used for all types of analyses the tool supports. For concrete execution, GIL
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supports basic GOTO constructs and assertions. For symbolic execution, the GIL
grammar is extended to support path cutting, i.e. assumptions, and generation
of symbolic variables. For separation logic based verification, the GIL grammar is
further extended to support core predicates and user-defined predicates [28] that
can be utilised to form separation logic based assertions. Furthermore, function
specifications in the Hoare-triple form {P}f(x̄){Q} can be provided, where P
and Q are separation logic based assertions.

Note that Gillian uses a value set V which differs from that used in the
CHERI-C memory model. As we are only interested in the values used in the
CHERI-C memory model, it is possible to implement a thin conversion layer
between the two value systems. We note that a list of GIL values also constitutes
a GIL value, so arguments for functions can be expressed as a single GIL value.
This is important when understanding the memory model layout of Gillian.

Memory Model Memory Models in Gillian have a specific definition and have
properties that state what kind of analysis is supported. Proving that the pro-
vided memory models satisfy certain properties is essential in understanding
what the instantiated tool supports.

Gillian differentiates between concrete and symbolic memory models, which
are used for concrete and symbolic execution, respectively. As we are concerned
with concrete execution, we will consider only concrete memory models here.

At the highest level, there are two kinds of memory model properties: exe-
cutional and compositional. The executional memory model states properties a
memory model must have for whole-program execution, and the compositional
memory model states properties a memory model must have for separation logic
based symbolic verification. Each paper in the Gillian literature states slightly
different definitions for the memory models [20, 28, 29, 37]—in Definitions 1 and
2 below, we present unified, consistent definitions for each of the memory model
properties. We ignore contexts, as there exists only one context in concrete mem-
ories, which is the GIL boolean value true.

Definition 1. (Execution Memory Model). Given the set of GIL values V and
an action set A, an execution memory model M(V, A) � (|M |,Wf , ea) com-
prises:

1. a set of memories |M | 
 μ
2. a well-formedness relation Wf ⊆ |M |, with Wf (μ) denoting μ is well-formed
3. the action execution function ea : A→ |M | → V → R (|M | × V)

Definition 2. (Compositional Memory Model). Given the set of GIL values V
and core predicate set Γ , a compositional memory model, M(V,AΓ ) � (|M |,Wf ,
eaΓ ) comprises:

1. a partial commutative monoid (PCM) (|M |, ·, 0)
2. A well-formedness relation Wf ⊆ |M | with the following property:

Wf (μ1 · μ2) =⇒Wf (μ1) ∧Wf (μ2)



562 S. H. Park et al.

3. the predicate action execution function eaΓ : AΓ → |M | → V ⇀ R (|M |×V )

First, we note that for concrete execution, Gillian also uses the return type
R in the action execution function ea.4 ForWf defined in Definition 1, the main
properties that must be satisfied are Properties 3.1, 3.2, and 3.6 in [29].

The PCM requirement is required to show that the heap forms a separation
algebra [16].Wf is extended to state that memory composition must also be well-
formed. Finally, the predicate action execution function eaΓ provides a way to
frame on and off parts of the memory, though they are not required for concrete
execution as they are not part of the GIL concrete execution grammar.

Using the CHERI-C memory model we defined earlier, we can show that
our model conforms to both Definitions 1 and 2. Let AC be the set of memory
actions, H be the memory, eaC be the action execution function of the CHERI-
C memory model, and WC

f be the well-formedness relation. Then we observe

that (H,WC
f , eaC) forms an execution memory model. We note that Properties

3.1 and 3.2 in [29] are satisfied, and Property 3.6 is trivial in that operations
that return errors do not return an updated heap. We also note that the mem-
ory model also conforms to a compositional memory model, as we have the
PCM (H,�, μ0) along with the well-formedness property being composition-
compatible. The predicate action execution function is not required to be given,
as the concrete execution of Gillian does not utilise this feature.

4.3 Compiler

We implemented a CHERI-C to GIL compiler by utilising ESBMC’s GOTO
language. The idea is that ESBMC uses its own intermediate representation
for bounded model checking, which is the GOTO language. CHERI-enabled
ESBMC uses Clang as a front end to generate the GOTO language. In our case
we can build a GOTO to GIL compiler instead of building a CHERI-C compiler
from scratch. The GOTO language is very similar to GIL in that they are both
goto-based languages and uses single static assignment. For most parts, the
compilation process is straightforward. As ESBMC’s GOTO language is typed
while the CHERI-C memory model is untyped—untyped in the sense that the
memory model does not support user-defined types like structs—we make sure
that capability arithmetic and casts are applied correctly by inferring the sizes
of the user-defined types.

5 Experimental Results

In Sect. 4, we have provided a way to instantiate the Gillian tool, where we
obtain a concrete CHERI-C model using Isabelle/HOL and a CHERI-C to GIL

4In the Gillian literature, it is stated that R can return both a return value and
an error. The OCaml implementation of Gillian slightly differs from this and is more
similar to R used for the CHERI-C memory model.
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compiler that utilises ESBMC’s GOTO language. Our framework can demon-
strate that higher-level memory actions—such as memcpy(), which preserves
tags when applicable—can be implemented. Furthermore, we can run concrete
instances of programs that use memcpy() to show they emit the expected be-
haviour. This also means the tool can catch the TagViolation exception that
is triggered in Listing 1.1. Our tool also allows capability-related functions de-
fined in cheriintrin.h and cheri.h, to be usable, i.e. it is possible to call
operations such as cheri tag get() and cheri tag clear().

Filename GC GCC AM BMC

buffer overflow.c � � � �
dangling ptr.c � � × �
double free.c � � × �
invalid free.c ×5 � � �
misaligned ptr.c � � � ×
listing 1.c × � � ×

Table 1: Violation detection

Filename Time(s)

libc malloc.c 8.585
libc memcpy.c 1.698
libc memmove.c 0.318
libc string.c 0.315

Table 2: GCC runtime
performance

Table 1 shows a list of safety violations that Gillian-C, our tool, the ARM
Morello hardware, and CHERI-ESBMC—labelled as GC, GCC, AM, and BMC,
respectively—all catch. We observe that Morello fails to catch temporal safety
violations such as dangling pointers and double frees. For the invalid free case,
where we attempt to free a pointer not produced by malloc, we discovered a
bug in the Gillian-C tool that fails to catch this violation.5 Gillian-C does not
return any errors for the program in Listing 1.1, which is to be expected, as this
is not problematic for conventional C. Finally, we observe that CHERI-ESBMC
fails to catch the last two violations that relating to tag invalidation.

Table 2 shows the runtime performance of running the CHERI-C library test
suites, based on the Clang CHERI-C test suite [1]. Tests were conducted on
a machine running Fedora 34 on an 11th Gen Intel Core i7-1185G7 CPU with
31.1 GB RAM, with trace logging enabled. We note that when the test cases
were executed on Morello without any modifications to the code, all of the tests
terminated instantaneously without any issues. In the libc malloc.c test
case, we reduced the scope of the test6 to ensure the tool terminates within a
reasonable time, though the performance can be drastically improved by turning
logging off, e.g. the libc malloc.c case would only take 0.686 seconds. For
the remaining tests, we made modifications to the code to ensure the compiler
can correctly produce the GIL code, and we made sure to preserve all the edge
cases covered by the original tests. For example, in libc memcpy.c we made
sure to test all cases where both src and dst capabilities were aligned and
misaligned in the beginning and the end, which affected tag preservation. We
observed that no assertions were violated, and we also observed that the same

5The bug has since been fixed after a discussion with the developers [7].
6In particular, we reduced max from the libc malloc.c case in [1] from 20 to 9.
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code when run in Morello also resulted in no assertion violations, demonstrating
a faithful implementation of CHERI-C semantics.

6 Related Work

The CompCert C memory model [26], CH2O memory model [24], and Tuch’s C
memory model [38] are C memory models formalised in a theorem prover, each
focusing on different aspects of verification. Our model mostly draws inspiration
from these models, extending such work to support CHERI-C programs.

VCC, which internally uses the typed C memory model [19], and CHERI-
ESBMC [15] are designed with automated verification of C programs via sym-
bolic execution in mind—in particular, CHERI-ESBMC supports hybrid settings
and compressed capabilities in addition to purecap settings and uncompressed
capabilities. Both tools rely on a memory model that is not formally verified, so
the tools have components that must be trusted.

7 Conclusion and Future Work

We have provided a formal CHERI-C memory model and demonstrated its utility
for verification. We formalised the entire theory in Isabelle/HOL and generated
an executable instance of the memory model, which was then used to instantiate
a CHERI-C tool. The result lead to a concrete execution tool that is robust
in terms of the properties that are guaranteed both by the tool and by the
memory model. We demonstrated its practicality by running CHERI-C based
test suites, capturing memory safety violations, and comparing the results with
actual CHERI hardware—namely the physical Morello processor.

Currently there are a number of limitations provided by the memory model.
Capability arithmetic is limited only to addition and subtraction, but the heap
can be extended to incorporate mappings from blocks to physical addresses and
vice versa. This provides a way to extend capability arithmetic. While the theory
incorporates abstract capabilities, compression is still under work. We believe,
however, that the abstract design itself does not need to change. It may be
possible to utilise the compression/decompression work to convert between the
two forms [2] when needed whilst retaining our design for the operations.

This theory serves as a starting point for much potential future work. A
compositional symbolic memory model can be built from this design to enable
symbolic execution and verification in Gillian. As we have already proven the
core properties, proving the remaining properties for the extended model will
allow automated separation logic based verification of CHERI-C programs.
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Abstract. The correctness of real-time systems depends both on the
correct functionalities and the realtime constraints. To go beyond the
existing Timed Automata based techniques, we propose a novel solution
that integrates a modular Hoare-style forward verifier with a term rewrit-
ing system (TRS) on Timed Effects (TimEffs). The main purposes are
to: increase the expressiveness, dynamically manipulate clocks, and effi-
ciently solve clock constraints. We formally define a core language C t ,
generalizing the real-time systems, modeled using mutable variables and
timed behavioral patterns, such as delay, timeout, interrupt, deadline.
Secondly, to capture real-time specifications, we introduce TimEffs, a
new effects logic, that extends regular expressions with dependent values
and arithmetic constraints. Thirdly, the forward verifier reasons tempo-
ral behaviors – expressed in TimEffs – of target C t programs. Lastly, we
present a purely algebraic TRS, i.e., an extended Antimirov algorithm,
to efficiently check language inclusions between TimEffs. To demonstrate
the feasibility of our proposal, we prototype the verification system; prove
its soundness; report on case studies and experimental results.

1 Introduction

During the last three decades, a popular approach for specifying real-time systems
has been based on Timed Automata (TAs) [1]. TAs are powerful in designing
real-time models via explicit clocks, where real-time constraints are captured by
explicitly setting/resetting clock variables. A number of automatic verification
tools for TAs have proven to be successful [2,3,4,5]. Industrial case studies show
that requirements for real-time systems are often structured into phases, which
are then composed sequentially, in parallel, alternatively [6,7]. TAs lack high-
level compositional patterns for hierarchical design; moreover, users often need to
manipulate clock variables with carefully calculated clock constraints manually.
The process is tedious and error-prone.

There have been some translation-based approaches on building verification
support for compositional timed-process representations. For example, Timed
Communicating Sequential Process (TCSP), Timed Communicating Object-Z
(TCOZ) and Statechart based hierarchical Timed Automata are well suited for
presenting compositional models of complex real-time systems. Prior works [8,9]
systematically translate TCSP/TCOZ/Statechart models to flat TAs so that the
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model checker Uppaal [3] can be applied. However, possible insufficiencies are:
the expressiveness power is limited by the finite-state automata; and there is
always a gap between the verified logic and the actual code implementation.

In this work, we investigate an alternative approach for verifying real-time sys-
tems. We propose a novel temporal specification language, Timed Effects (Tim-
Effs), which enables a compositional verification via a Hoare-style forward verifier
and a term rewriting system (TRS). More specifically, we specify system behav-
iors in the form of TimEffs, which integrates the Kleene Algebra with dependent
values and arithmetic constraints, to provide real-time abstractions into tradi-
tional linear temporal logics. For example, one safety property, “The event Done

will be triggered no later than one time unit”1, is expressed in TimEffs as: Φ ,
0≤t<1 ∧ ( ? · Done)#t. Here ∧ connects the arithmetic formula and the timed
trace; the operator # binds time variables to traces (here t is a time bound of
( ? · Done)); is a wildcard matching to any event; Kleene star ? denotes a trace
repetition. The above formula Φ corresponds to `�[0 ,1)Done’ in metric temporal
logic (MTL), reads “within one time unit, Done finally happens”. Furthermore,
the time bounds can be dependent on the program inputs, as shown in Fig. 1.

1 void addOneSugar ()

2 /* req: true ∧ ?

3 ens: t>1 ∧ ε # t */

4 { timeout ((), 1); }

5

6 void addNSugar (int n)

7 /* req: true ∧ ?

8 ens: t≥n ∧ EndSugar # t */

9 { if (n == 0) {

10 event ["EndSugar"];}

11 else {

12 addOneSugar ();

13 addNSugar (n-1);}}

Fig. 1. Value-dependent specification.

Function addNSugar takes a parameter
n, representing the portion of the sugar to
add. When n=0, it raises an event EndSugar

to mark the end of the process. Otherwise,
it adds one portion of the sugar by call-
ing addOneSugar(), then recursively calls
addNSugar with parameter n-1. The use of
timeout(e, d) is standard [11], which exe-
cutes a block of code e after the specified
time d. Therefore, the time spent on adding
one portion of the sugar is more than one
time unit. Note that ε#t refers to an empty
trace which takes time t. Both precondi-
tions require no arithmetic constraints and
no temporal constraints upon the history

traces. The postcondition of addNSugar(n) indicates that the method generates a
finite trace where EndSugar takes a no less than n time-units delay to finish.

Although these examples are simple, they show the benefits of deploying
value-dependent time bounds, which is beyond the capability of TAs. Essen-
tially, TimEffs define symbolic TAs, which stands for a set (possibly infinite) of
concrete transition systems. Moreover, we deploy a Hoare-style forward verifier
to soundly reason about the behaviors from the source level, with respect to
the well-defined operational semantics. This approach provides a direct (opposite
to the techniques which require manual and remote modeling processes), and
modular verification – where modules can be replaced by their already verified
properties – for real-time systems, which are not possible by any existing tech-

1 In this paper, we pretend time is discrete and only integral values. However, it’s just
as easy to represent continuous time by letting time variables assume real values [10].
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niques. Furthermore, we develop a novel TRS, which is inspired by Antimirov
and Mosses’ algorithm2 [12] but solving the language inclusions between more
expressive TimEffs. In short, the main contributions of this work are:

1. Language Abstraction: we formally define a core language C t , by defining
its syntax and operational semantics, generalizing the real-time systems with
mutable variables and timed behavioral patterns, e.g., delay, timeout, deadline.
2. Novel Specification: we propose TimEffs, by defining its syntax and seman-
tics, gaining the expressive power beyond traditional linear temporal logics.
3. Forward Verifier: we establish a sound effect system to reason about tem-
poral behaviors of given programs. The verifier triggers the back-end solver TRS.
4. Efficient TRS: we present the rewriting rules to (dis)prove the inclusion rela-
tions between the actual behaviors and the given specifications, both in TimEffs.
5. Implementation and Evaluation: we prototype the automated verification
system, prove its soundness, report on case studies and experimental results.

2 Overview

Fig. 2. System Overview.

An overview of our automated verifi-
cation system is given in Fig. 2. The
system consists of a forward verifier
and a TRS, i.e., the rounded boxes.
The input of the forward verifier is a
C t program annotated with tempo-
ral specifications written in TimEffs.
The input of the TRS is a pair of ef-
fects LHS and RHS, referring to the
inclusion LHS � RHS3 to be checked
(LHS and RHS refer to left/right-hand-side effects respectively). The forward ver-
ifier calls TRS to solve proof obligations. Next, we use Fig. 3 to highlight our
main methodologies, which simulates a coffee machine, that dynamically adds
sugar based on the user’s input number.
2.1 . TimEffs. We define Hoare-triple style specifications (enclosed in /*...*/)
for each function, which leads to a compositional verification strategy, where
static checking can be done locally. The precondition of makeCoffee specifies that
the input value n is non-negative, and it requires that before entering into this
function, this history trace must contain the event CupReady on the tail. The
verification fails if the precondition is not satisfied at the caller sites. Line 17
sets a five time-units deadline (i.e., maximum 5 portion of sugar per coffee) while
calling addNSugar (defined in Fig. 1); then emits event Coffee with a deadline,
indicating the pouring coffer process takes no more than four time-units. The
precondition of main requires no arithmetic constraints (expressed as true) and
an empty history trace. The postcondition of main specifies that before the final

2 Antimirov and Mosses’ algorithm was designed for deciding the inequalities of regular
expressions based on an axiomatic algorithm of the algebra of regular sets.

3 The TimEffs inclusion relation � is formally defined in Definition 3.
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Done happens, there is no occurrence of Done (! indicates the absence of events);
and the whole process takes no more than nine time-units to hit the final event.

14 void makeCoffee (int n)

15 /* req: n≥0 ∧ ?· CupReady
16 ens: n≤t≤5 ∧ t’≤4 ∧

(EndSugar # t) · (Coffee # t’) */

17 { deadline (addNSugar(n), 5);

18 deadline (event["Coffee"],4);}

19

20 int main ()

21 /* req: true ∧ ε
22 ens: t≤9 ∧ ((!Done)? # t) · Done */

23 { event["CupReady"];

24 makeCoffee (3);

25 event["Done"];}

Fig. 3. To make coffee with three portions of
sugar within nine time units.

TimEffs support more fea-
tures such as disjunctions, guards,
parallelism and assertions, etc
(cf. Sec. 3.3), providing de-
tailed information upon: branch-
ing properties: different arith-
metic conditions on the inputs
lead to different effects; and re-
quired history traces: by defin-
ing the prior effects in pre-
condition. These capabilities are
beyond traditional timed ver-
ification, and cannot be fully
captured by any prior works
[8,9,2,3,4,5]. Nevertheless, the in-

crease in expressive power needs support from finer-grind reasoning and a more
sophisticated back-end solver, discharged by our forward verifier and TRS.

1. void addOneSugar(){ // initialize the state using the function precondition.

ΦC=Φ
addOneSugar(n)
pre = {true ∧ ? } [FV -Meth]

2. timeout ((), 1);}

Φ′C={t1>1 ∧ ? · (ε # t1)} [FV -Timeout ]

3. Φ′C v Φ
addOneSugar(n)
pre · ΦaddOneSugar(n)

post ⇔ t1>1 ∧ ? · (ε#t1) v t>1 ∧ ? · (ε#t)

4. void addNSugar (int n){ // initialize the state using the function precondition.

ΦC=Φ
addNSugar(n)
pre = {true ∧ ?} [FV -Meth]

5. if (n == 0){

{n=0 ∧ ?} [FV -Cond ]
6. event ["EndSugar"];}

{n=0 ∧ ?· EndSugar} [FV -Event ]
7. else {

{n 6=0 ∧ ?} [FV -Cond ]
8. addOneSugar();

{n 6=0∧t2>1 ∧ ? · (ε # t2)} [FV -Call ]
9. addNSugar (n-1);}}

n 6=0∧t2>1 ∧ ? · (ε # t) v Φ
addNSugar(n-1)
pre // TRS: precondition checked.

{n 6=0∧t2>1 ∧ ? · (ε # t2) · ΦaddNSugar(n-1)
post } [FV -Call ]

10. Φ′C = (n=0 ∧ ?·Sugar) ∨ (n6=0∧t2>1 ∧ ?·(ε#t2)·ΦaddNSugar(n-1)
post ) [FV -Cond ]

11. Φ′C v Φ
addNSugar(n)
pre · ΦaddNSugar(n)

post ⇔ //TRS: postcondition checked, cf. Table 1

(n=0 ∧ Sugar) ∨ (n6=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)
post ) v Φ

addNSugar(n)
post

Fig. 4. The forward verification examples (t1 and t2 are fresh time variables).

2.2 . Forward Verification. Fig. 4 demonstrates the forward verification of
functions addOneSugar and addNSugar, defined in Fig. 1. The effects states are
captured in the form of {ΦC}. To facilitate the illustration, we label the steps
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by (1) to (11), and mark the deployed forward rules (cf. Sec. 4.1) in [gray]. The
initial states (1) and (4) are obtained from the preconditions, by the [FV -Meth]
rule. States (5)(7)(10) are obtained by [FV -Cond ], which enforces the condi-
tional constraints into the effects states, and unions the effects accumulated
from two branches. State (6) is obtained by [FV -Event ], which concatenates
an event to the current effects. The intermediate states (8) and (9) are obtained
by [FV -Call ]. Before each function call, [FV -Call ] invokes the TRS to check
whether the current effects states satisfy callees’ preconditions. If it is not satis-
fied, the verification fails; otherwise, it concatenates the callee’s postcondition to
the current states (the precondition check for step (8) is omitted here).

State (2) is obtained by [FV -Timeout ], which adds a lower time-bound to an
empty trace. After these state transformations, steps (3) and (11) invoke the TRS
to check the inclusions between the final effects and the declared postconditions.
2.3 . The TRS. Having TimEffs to be the specification language, and the
forward verifier to reason about the actual behaviors, we are interested in the
following verification problem: Given a program P, and a temporal specification
Φ′, does the inclusions ΦP v Φ′ holds? Typically, checking the inclusion/entail-
ment between the concrete program effects ΦP and the expected property Φ′

proves that: the program P will never lead to unsafe traces which violate Φ′.
Our TRS is an extension of Antimirov and Mosses’s algorithm [12], which

can be deployed to decide inclusions of two regular expressions (REs) through an
iterated process of checking inclusions of their partial derivatives [13]. There are
two basic rules: [Disprove ] infers false from trivially inconsistent inclusions; and
[Unfold ] applies Definition 2 to generate new inclusions.

Definition 1 (Derivative). Given any formal language S over an alphabet Σ
and any string u∈Σ∗, the derivative of S with respect to u is defined as:

u-1S={w∈Σ∗ | uw∈S}.

Definition 2 (REs Inclusion). For REs r and s, r�s⇔∀(A∈Σ ).A-1 (r)�A-1 (s).

Definition 3 (TimEffs Inclusion). For TimEffs Φ1 and Φ2 ,
Φ1 v Φ2 ⇔ ∀A.∀t≥0 . (A#t)-1 Φ1 v (A#t)-1 Φ2 .

Similarly, we defined Definition 3 for unfolding the inclusions between Tim-
Effs, where (A#t)-1 Φ is the partial derivative of Φ w.r.t the event A with the time
bound t. Termination of the rewriting is guaranteed because the set of derivatives
to be considered is finite, and possible cycles are detected using memorization (cf.
Table 5) [14]. Next, we use Table 1 to demonstrate how the TRS automatically
proves the final effects of main satisfying its postcondition (shown at step (11) in
Fig. 4). We mark the rewriting rules (cf. Sec. 5) in [gray].

In Table 1, step 1○ renames the time variables to avoid the name clashes
between the antecedent and the consequent. Step 2○ splits the proof tree into
two branches, according to the different arithmetic constraints, by rule [LHS-OR].
In the first branch, step 3○ eliminates the event ES from the head of both sides,
by rule [UNFOLD]. Step 4○ proves the inclusion, because evidently the consequent
tR≥0 ∧ ε#tR contains ε when tR=0. In the second branch, step 5○ eliminates a
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Table 1. An inclusion proving example. (I ) is the right hand side sub-tree of the the
main rewriting proof tree. (ES stands for the event EndSugar)

4○ [PROVE]
n=0 ∧ ε � tR≥0 ∧ ε # tR 3○ [UNFOLD]
n=0 ∧ ��ES � tR≥0 ∧ ��ES#tR (I )

2○ [LHS-OR]
(n=0∧ES) ∨ (n �=0∧t2>1∧tL≥(n-1)∧ ε#t2 · ES#tL) � tR≥n ∧ ES#tR

1○ [RENAME]
(n=0 ∧ ES) ∨ (n �=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)

post ) � Φ
addNSugar(n)
post

(I )
t2>1∧tL≥(n-1) ∧ tL=(tR-t2) ⇒ tR≥n 7○ [PROVE]
n �=0∧t2>1∧tL≥(n-1) ∧ ε � tR≥n ∧ ε

6○ [UNFOLD] πu:tL=(tR-t2)
n �=0∧t2>1∧tL≥(n-1) ∧ ����

ES#tL � tR≥n ∧ ��������
ES#(tR-t2)

5○ [UNFOLD]
n �=0∧t2>1∧tL≥(n-1) ∧ ���ε#t2· ES#tL � tR≥n ∧ ES���#tR

time duration ε#t2 from both sides. Therefore the rule [UNFOLD] subtracts a time
duration from the consequent, i.e., (tR-t2). Similarly, step 6○ eliminates ES#tL
from the both sides, adding tL=(tR-t2) to the unification constraints. Step 7○
proves t2>1∧tL≥(n-1)∧tL=(tR-t2)⇒tR≥n 4; therefore, the proof succeed.
2.4 . Verifying the Fischer’s Mutual Exclusion Protocol. Fig. 5 presents

Fig. 5. Fischer’s mutually exclusion algorithm.

the classical Fischer’s mutu-
ally exclusion protocol, in C t .
Global variables x and cs indi-
cate ‘which process attempted
to access the critical section
most recently’ and ‘the number
of processes accessing the crit-
ical section’ respectively. The
main procedure is a parallel
composition of three processes,
where d and e are two con-
stants. Each process attempts
to enter the critical section
when x is -1, i.e. no other pro-
cess is currently attempting.
Once the process is active (i.e.,
reaches line 6), it sets x to
its identity number i within d

time units, captured by deadline(...,d). Then it idles for e time units, captured
by delay(e) and then checks whether x still equals to i. If so, it safely enters the
critical section. Otherwise, it restarts from the beginning. Quantitative timing
constraint d<e plays an important role in this algorithm to guarantee mutual ex-
clusion. One way to prove mutual exclusion is to show that cs≤1 is always true.
Or, using event temporal logic, we can show that the occurrence of Critical

always indicates the next event is Exit. We show in Sec. 6 that our prototype
system can verify such algorithms symbolically.

4 The proof obligations for arithmetic constraints are discharged by the Z3 solver [15].
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3 Language and Specifications

3.1 The Target Language

We define the core language C t in Fig. 6, which is built based on C syntax and
provides support for timed behavioral patterns.

(Program) P ::= (α∪,meth∪)
(Types) ι ::= int | bool | void
(Method) meth ::= ι mn (ι x )∪ {req Φpre ens Φpost} {e}
(Values) v ::= () | c | b | x
(Assignment) α ::= x := v
(Expressions) e ::= v | α | [v ]e | mn(v∪) | e1 ; e2 | e1 ||e2 | if v e1 e2 | event[A(v , α∪)]

| delay[v ] | e1 timeout[v ] e2 | e deadline[v ] | e1 interrupt[v ] e2

(Terms) t ::= c | x | t1+t2 | t1 -t2

c ∈ Z b ∈ B mn, x ∈ var (Action labels) A ∈ Σ

Fig. 6. A core first-order imperative language with timed constructs via implicit clocks.

Here, c and b stand for integer and Boolean constants, mn and x are meta-
variables, drawn from var (the countably infinite set of arbitrary distinct identi-
fiers). A program P comprises a list of global variable initializations α∗ and a list
of method declarations meth∗. Here, we use the ∗ superscript to denote a finite
list of items, for example, x∗ refers to a list of variables, x1 , ..., xn . Each method
meth has a name mn, an expression-oriented body e, also is associated with a
precondition Φpre and a postcondition Φpost (specification syntax is given in Fig.
7). C t allows each iterative loop to be optimized to an equivalent tail-recursive
method, where mutation on parameters is made visible to the caller.

Expressions comprise: values v ; guarded processes [v ]e, where if v is true, it
behaves as e, else it idles until v becomes true; method calls mn(v∗); sequential
composition e1 ; e2 ; parallel composition e1 ||e2 , where e1 and e2 may communi-
cate via shared variables; conditionals if v e1 e2 ; and event raising expressions
event[A(v , α∗)] where the event A comes from the finite set of event labels Σ .
Without loss of generality, events can be further parametrized with one value v
and a set of assignments α∗ to update the mutable variables. Moreover, a number
of timed constructs can be used to capture common real-time system behaviors,
which are explained via operational semantics rules in Sec. 3.2.

3.2 Operational Semantics of C t

To build the semantics of the system model, we define the notion of a configura-
tion in Definition 4, to capture the global system state during system execution.

Definition 4 (System configuration). A system configuration ζ is a pair
(S, e) where S is a variable valuation function (or a stack) and e is an expression.

A transition of the system is of the form ζ
l−→ ζ ′ where ζ and ζ ′ are the system

configurations before and after the transition respectively. Transition labels l
include: d, denoting a non-negative integer; τ , denoting an invisible event; A,
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denoting an observable event. For example, ζ
d−→ ζ ′ denotes a d time-units elapse.

Next, we present the firing rules, associated with timed constructs.
Process delay[v] idles for exactly t time units. Rule [delay1 ] states that the

process may idle for any amount of time given it is less than or equal to t ; Rule
[delay2 ] states that the process terminates immediately when t becomes 0 .

d≤v

(S, delay[v ])
d−→ (S, delay[v -d])

[delay1 ]
(S, delay[0 ])

τ−→ (S, ())
[delay2 ]

In e1 timeout[v] e2, the first observable event of e1 shall occur before t time
units; otherwise, e2 takes over the control after exactly t time units. Note that
the usage of timeout in Fig. 1 is a special case where e1 never starts by default.

(S, e1 )
A−→ (S ′, e ′1 )

(S, e1 timeout[v ] e2 )
A−→(S ′, e ′1 )

[to1 ]
(S, e1 )

τ−→ (S ′, e ′1 )

(S, e1 timeout[v ] e2 )
τ−→(S ′, e ′1 timeout[v ]e2 )

[to2 ]

(S, e1 )
d−→ (S, e ′1 ) (d≤v)

(S, e1 timeout[v ] e2 )
d−→(S, e ′1 timeout[v -d]e2 )

[to3 ]
(S, e1 timeout[0 ]e2 )

τ−→(S, e2 )
[to4 ]

Process deadline [v] e behaves exactly as e except that it must terminate
before t time units. The guarded process [v ]e behaves as e when v is true, other-
wise it idles until v becomes true. Process e1 interrupt[v] e2 behaves as e1 until
t time units, and then e2 takes over. We leave the rest rules in [16].

(S, e)
A/τ−−→ (S ′, e ′)

(S, deadline[v ] e)
A/τ−−→ (S ′, deadline[v ] e ′)

[ddl1 ]
(S, e)

l−→ (S ′, v)

(S, deadline[v ] e)
l−→ (S ′, v)

[ddl2 ]

S |= (v=true)

(S, [v ]e)
τ−→ (S, e)

[gu1 ]
(S, e)

d−→ (S, e ′) (d≤v)

(S, deadline[v ] e)
d−→ (S, deadline[v -d] e ′)

[ddl3 ]

S 6|= (v=true)

(S, [v ]e)
τ−→ (S, [v ]e)

[gu2 ]
(S, e1 )

A/τ−−→ (S ′, e ′1 )

(S, e1 interrupt[v ] e2 )
A/τ−−→ (S ′, e ′1 interrupt[v ] e2 )

[int1 ]

(S, e1 )
l−→ (S ′, v)

(S, e1 interrupt[v ] e2 )
l−→(S ′, v)

[int2 ]
(S, e1 interrupt[0 ] e2 )

τ−→ (S, e2 )
[int3 ]

(S, e1 )
d−→ (S, e ′1 ) (d≤v)

(S, e1 interrupt[v ] e2 )
d−→ (S, e ′1 interrupt[v -d] e2 )

[int4 ]

3.3 The Specification Language

We plant TimEffs specifications into the Hoare-style verification system, using
Φpre and Φpost to capture the temporal pre/post conditions. As shown in Fig. 7,
TimEffs can be constructed by a conditioned event sequence π ∧ θ; or an effects
disjunction Φ1 ∨ Φ2. Timed sequences comprise nil (⊥); empty trace ε; single
event ev ; concatenation θ1 · θ2 ; disjunction θ1 ∨ θ2 ; parallel composition θ1 ||θ2 ;
a block waiting for a certain constraint to be satisfied π?θ. We introduce a new
operator #, and θ#t represents the trace θ takes t time units to complete, where t
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(Timed Effects) Φ ::= π ∧ θ | Φ1 ∨ Φ2

(Event Sequences) θ ::= ⊥ | ε | ev | θ1 · θ2 | θ1 ∨ θ2 | θ1 ||θ2 | π?θ | θ#t | θ?
(Events) ev ::= A(v , α∪) | τ(π) | A |

(Pure) π ::= True | False | bop(t1, t2) | π1 ∧ π2 | π1∨π2 | ¬π | π1⇒π2

(Real -Time Terms) t ::= c | x | t1+t2 | t1 -t2

c ∈ Z x ∈ var (Real Time Bound) # (Kleene Star) ?

Fig. 7. Syntax of TimEffs.

is a real-time term. A timed sequence also can be constructed by θ?, representing
zero or more times repetition of the trace θ. For single events, A(v , α∗) stands
for an observable event with label A, parameterized by v , and the assignment
operations α∗; τ(π) is an invisible event, parameterized with a pure formula π5.

Events can also be A, referring to all events which are not labeled using A;
and a wildcard , which matches to all the events. We use π to denote a pure for-
mula which captures the (Presburger) arithmetic conditions on terms or program
parameters. We use bop(t1 , t2 ) to represent binary atomic formulas of terms (in-
cluding =, >, <, ≥ and ≤). Terms consist of constant integer values c; integer
variables x ; simple computations of terms, t1+t2 and t1-t2 .

3.4 Semantic Model of Timed Effects

Let d ,S, ϕ|=Φ denote the model relation, i.e., a stack S, a concrete execution
trace ϕ take d time units to complete, and they satisfy the specification Φ.

d ,S, ϕ |= Φ1 ∨ Φ2 iff d ,S, ϕ |= Φ1 or d ,S, ϕ |= Φ2

d ,S, ϕ |= π ∧ ε iff d=0 and JπKs=True and ϕ=[]

d ,S, ϕ |= π ∧ ev iff d=0 and JπKs=True and ϕ=[ev]

d ,S, ϕ |= π ∧ (θ1 · θ2 ) iff ∃ϕ1 , ϕ2 . ϕ1++ϕ2 =ϕ and ∃d1 , d2 . d1 +d2 =d
s.t. d1 ,S, ϕ1 |=π ∧ θ1 and d2 ,S, ϕ2 |=π ∧ θ2

d ,S, ϕ |= π ∧ (θ1∨θ2 ) iff d ,S, ϕ |= π ∧ θ1 or d ,S, ϕ |= π ∧ θ2

d ,S, ϕ |= π∧(ev1 ·θ1 )||(ev2 ·θ2 ) iff d ,S, ϕ |= π ∧ ev1 · (θ1 ||(ev2 · θ2 )) or
d ,S, ϕ |= π ∧ ev2 · ((ev1 · θ1 )||θ2 )

d ,S, ϕ |= π∧(ev · θ1 )||(ev · θ2 ) iff d ,S, ϕ |= π ∧ ev · (θ1 ||θ2 )

d ,S, ϕ |= π ∧ (ε#t1 )||(ε#t2 ) iff d ,S, ϕ |= (π∧t1≥t2 ) ∧ (ε#t1 ) · (ε#(t1 -t2 )) or
d ,S, ϕ |= (π∧t1<t2 ) ∧ (ε#t2 ) · (ε#(t2 -t1 ))

d ,S, ϕ |= π ∧ π1 ?θ iff Jπ1 Ks=True, d ,S, ϕ |= π ∧ θ or
Jπ1 Ks=False, d ,S, ϕ |= π ∧ π1 ?θ

d ,S, ϕ |= π ∧ θ#t iff Jπ ∧ t≥0 Ks=True, ∃θ1 , θ2 . θ1 · θ2 =θ, fresh t1, t2, s.t.
d ,S, ϕ|=(π ∧ t1≥0∧t2≥0∧t1 +t2 =t)∧(θ1#t1 )·(θ2#t2 )

d ,S, ϕ |= π ∧ θ? iff d ,S, ϕ |= π ∧ ε or d ,S, ϕ |= π ∧ θ · θ?

d ,S, ϕ |= false iff JπKs=False or ϕ=⊥

Fig. 8. Semantics of TimEffs.

5 The difference between τ(π) and π? is: τ(π) marks an assertion which leads to false
(⊥) if π is not satisfied, whereas π? waits until π is satisfied.
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To define the model, var is the set of program variables, val is the set of
primitive values; and d , S, ϕ are drawn from the following concrete domains: d : N,
S: var→val and ϕ: list of event. As shown in Fig. 8, ++ appends event sequences;
[] describes the empty sequences, [ev ] represents the singleton sequence contains
event ev ; JπKS=True represents π holds on the stack S. Notice that, simple
events, i.e., without #, are taken to be happening in instant time.

3.5 . Expressiveness. TimEffs draw similarities to metric temporal logic (MTL),
which is derived from LTL, where a set of non-negative real numbers is added to
temporal modal operators. As shown in Table 2, we are able to encode MTL
operators into TimEffs, making it more intuitive and readable. The basic modal
operators are: � for “globally”; � for “finally”; © for “next”; U for “until”, and

their past time reversed versions:
←−
� ;
←−
� ; and 	 for “previous”; S for “since”. I in

MTL is the time interval with concrete upper/lower bounds; whereas in TimEffs
they can be symbolic bounds which are dependent on program inputs.

Table 2. Examples for converting MTL formulae into TimEffs with t∈I applied.

Φpost �I A ≡ (A?)#t �I A ≡ ( ? · A)#t ©I A ≡ ( )#t · A AUI B ≡ (A?)#t · B
Φpre

←−
� I A ≡ (A?)#t

←−
� I A ≡ (A · ?)#t 	I A ≡ A · (( )#t) ASI B ≡ B · ((A?)#t)

4 Automated Forward Verification

4.1 Forward Rules

Forward rules are in the Hoare-style triples S ` {Π ,Θ} e {Π ′,Θ ′}, where S is
the stack environment; {Π ,Θ} and {Π ′,Θ ′} are program states, i.e., disjunc-
tions of conditioned event sequence π ∧ θ. The meaning of the transition is:
{Π ′,Θ ′} =

⋃|{Π ,Θ}|-1
i=0 {Π ′i ,Θ ′i} where (πi∧θi) ∈ {Π ,Θ} and ` {πi , θi} e {Π ′i ,Θ ′i}6.

We here present the rules for time-related constructs and leave the rest rules
in [16]. Rule [FV -Delay ] creates a trace ε#t , where t is fresh, and concatenates it
to the current program state, together with the additional constraint t=v . Rule
[FV -Deadline] computes the effects from e and adds an upper time-bound to the
results. Rule [FV -Timeout ] computes the effects from e1 and e2 using the start-
ing state {π, ε}. The final state is an union of possible effects with corresponding
time bounds and arithmetic constraints. Note that, hd(Θ1 ) and tl(Θ1 ) return the
event head (cf. Definition 6), and the tail of Θ1 respectively.

[FV -Delay]
θ′ = θ · (ε#t) (t is fresh)

S ` {π, θ} delay[v ] {π∧(t=v), θ′}

[FV -Deadline]
S ` {π, ε} e {Π1, Θ1} (t is fresh)

S ` {π, θ} deadline[v ] e {Π1∧(t≤v), θ · (Θ1#t)}
[FV -Timeout ]

S ` {π, ε} e1 {Π1, Θ1} S ` {π, ε} e2 {Π2, Θ2} (t1, t2 are fresh)
{Πf , Θf} = {Π1∧t1<v, (hd(Θ1)#t1) · tl(Θ1)} ∪ {Π2∧t2=v, (ε#t2) ·Θ2}

S ` {π, θ} e1 timeout[v ] e2 {Πf , θ ·Θf }
[FV -Interrupt ]

S ` {π, ε} e1 {Π,Θ} ∆ =
⋃|{Π,Θ}|-1
i=0 ℵInterrupt(v,πi )

Interleave (θi, ε) S ` {∆} e2 {Π ′, Θ′}
S `{π, θ} e1 interrupt[v ] e2 {Π ′, θ ·Θ ′}

6 |{Π ,Θ}| is the size of {Π ,Θ}, i.e., the count of conditioned event sequence π∧θ.
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Algorithm 1: Interruption
Interleaving

Input: v , π, θ, θhis

Output: Program States: ∆
1 function ℵInterrupt(v,π)

Interleave (θ, θhis)
2 ∆← []
3 foreach f∈fstπ(θ) do
4 φ← π∧(t<v) ∧ (θhis#t)
5 θ′ ← Dπ

f (θ)
6 θ′his ← θhis · f
7 ∆′←ℵInterrupt(v,π)

Interleave (θ′, θ′his)
8 ∆← ∆ + φ + ∆′

9 return ∆

[FV -Interrupt ] computes the inter-
ruption interleaves of e1 ’s effects, which
come from the over-approximation
of all the possibilities. For exam-
ple, for trace A · B, the interruption
with time t creates three possibilities:
(ε#t) ∨ (A#t) ∨ ((A · B)#t). Then the rule
continues to compute the effects of e2 ;
lastly, it prepends the original history θ
to the final results. Algorithm 1 presents
the interleaving algorithm for interrup-
tions, where + unions program states
(cf. Definition 7 and Definition 8 for fst
and D functions).

Theorem 1 (Soundness of Forward Rules). Given any system configuration
ζ=(S, e), by applying the operational semantics rules, if (S, e)→∗(S ′, v) has ex-
ecution time d and produces event sequence ϕ; and for any history effect π∧θ,
such that d1 ,S, ϕ1 |=(π∧θ), and the forward verifier reasons S`{π, θ}e{Π ,Θ},
then ∃(π′∧θ′) ∈ {Π ,Θ} such that (d1+d),S ′, (ϕ1++ϕ)|=(π′∧θ′). (ζ−→∪ζ′ denotes

the reflexive, transitive closure of ζ −→ ζ′.)

Proof. See the technical report [16].

5 Temporal Verification via a TRS

The TRS is an automated entailment checker to prove language inclusions be-
tween TimEffs. It is triggered prior to function calls for the precondition checking;
and by the end of verifying a function, for the post condition checking.

Given two effects Φ1 and Φ2 , the TRS decides if the inclusion Φ1 v Φ2

is valid. During the effects rewriting process, the inclusions are in the form of
Γ ` Φ1 vΦ Φ2 , a shorthand for: Γ ` Φ · Φ1 v Φ · Φ2 . To prove such inclusions
is to check whether all the possible timed traces in the antecedent Φ1 are legit-
imately allowed in the timed traces described by the consequent Φ2 . Here Γ is
the proof context, i.e., a set of effects inclusion hypothesis; and Φ is the history
effects from the antecedent that have been used to match the effects from the
consequent. The checking is initially invoked with Γ =∅ and Φ=True ∧ ε.
Effects Disjunctions. An inclusion with a disjunctive antecedent succeeds if
both disjunctions entail the consequent. An inclusion with a disjunctive conse-
quent succeeds if the antecedent entails either of the disjunctions.

Γ ` Φ1 v Φ Γ ` Φ2 v Φ

Γ ` Φ1 ∨ Φ2 v Φ
[LHS -OR]

Γ ` Φ v Φ1 or Γ ` Φ v Φ2

Γ ` Φ v Φ1 ∨ Φ2
[RHS -OR]

Now, the inclusions are disjunction-free formulas. Next we provide the defini-
tions and key implementations of auxiliary functions Nullable, First and Deriva-
tive. Intuitively, the Nullable function δπ(θ) returns a Boolean value indicating
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whether π∧θ contains the empty trace; the First function fstπ(θ) computes a set
of initial heads, denoted as h, of π∧θ; the Derivative function Dπ

h (θ) computes
a next-state effects after eliminating the head h from the current effects π ∧ θ.

Definition 5 (Nullable 7). Given any Φ=π ∧ θ, δπ(θ) : bool=

{
true if ε ∈ Jπ∧θK
false if ε /∈ Jπ∧θK

δπ(⊥)=δπ(ev)=false δπ(ε)=δ(θ?)=true δπ(π′?θ)=δπ(θ) δπ(θ1∨θ2 )=δ(θ1 )∨δ(θ2 )

δπ(θ · θ2 )=δ(θ1 )∧δ(θ2 ) δπ(θ1 ||θ2 )=δ(θ1 )∧δ(θ2 ) δπ(θ#t)=SAT (π∧(t=0 )) ∧ δπ(θ)

Definition 6 (Heads). If h is a head of π ∧ θ, then there exist π′ and θ′, such that
π ∧ θ = π′ ∧ (h · θ′). A head can be t, denoting a pure time passing; A(v, α∪), denoting
an instant event passing; or (A(v, α∪), t), denoting an event passing which takes time t.

Definition 7 (First). Given any Φ=π ∧ θ, fstπ(θ) returns a set of heads, be the set of
initial elements derivable from effects π ∧ θ, where (t ′ is fresh):

fstπ(⊥)=fstπ(ε)={} fstπ(A(v , α∪))={A(v , α∪)} fstπ(ε#t)={t} fstπ(θ?)=fstπ(θ)

fstπ(θ#t)={(A(v , α∪), t ′) | A(v , α∪)∈fstπ(θ)} fstπ(θ1∨θ2 )=fstπ(θ1 ) ∪ fstπ(θ2 )

fstπ(π′?θ)=fstπ(θ) fstπ(θ1 ||θ2 )=fstπ(θ1 ) ∪ fstπ(θ2 )

fstπ(θ1 · θ2 )=

{
fstπ(θ1 ) ∪ fstπ(θ2 ) if δ(θ1 )=true

fstπ(θ1 ) if δ(θ1 )=false

Definition 8 (TimEffs Partial Derivative). Given any Φ=π ∧ θ, the partial deriva-
tive Dπ

h (θ) computes the effects for the left quotient h-1 (π ∧ θ), cf. Definition 1.

Dπ
h (⊥)=Dπ

h (ε)=False∧⊥ Dπ
h (A(v , α∪))=(π∧(h=A(v , α∪)))∧ε Dπ

h (θ?)=Dπ
h (θ)·θ?

Dπ
τ(π1 )(π

′?θ)=

{
π∧π′?θ if π1 6⇒π′

π∧θ if π1⇒π′
Dπ

h (θ1 ·θ2 )=

{
Dπ

h (θ1 )·θ2∨Dπ
h (θ2 ) if δπ(θ1 )=true

Dπ
h (θ1 )·θ2 if δπ(θ1 )=false

Dπ
(A(v,α∗),t)(θ) =

∨
{Dπ′

A(v,α∗)(θ
′) | (π′ ∧ θ′) ∈ Dπ

t (θ)}

Dπ
t (θ#t ′)=(π ∧ t+t ′′=t ′) ∧ θ#t ′′ (t ′′ is fresh) Dπ

h (θ1∨θ2 )=Dπ
h (θ1 ) ∨Dπ

h (θ2 )

Dπ
A(v,α∗)(θ#t)=

∨
{(π′∧(θ′#t)) | (π′∧θ′)∈Dπ

A(v,α∗)(θ)} Dπ
h (θ1 ||θ2 )=¯̄Dπ

h (θ1 )||¯̄Dπ
h (θ2 )

Notice that the derivatives of a parallel composition makes use of the Parallel

Derivative ¯̄Dπ
h (θ), defined as follows: ¯̄Dπ

h (θ)=

{
π∧θ if Dπ

h (π ∧ θ) = (False∧⊥)

Dπ
h (θ) otherwise

5.1 Rewriting Rules. Given the well-defined auxiliary functions above, we now
discuss the key rewriting rules that deployed in effects inclusion proofs.

Γ ` π ∧ ⊥ v Φ
[Bot-LHS]

Φ 6= π ∧ ⊥
Γ ` Φ 6v π ∧ ⊥ [Bot-RHS]

δπ1(θ1) ∧ ¬δπ2(θ2)

Γ ` π1 ∧ θ1 6v π2 ∧ θ2
[DISPROVE]

π1 ⇒ π2 fstπ1
(θ1 ) = {}

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[PROVE]

7 SAT (π) stands for querying the Z3 theorem prover to check the satisfiability of π.
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Axiom rules [Bot-LHS] and [Bot-RHS] are analogous to the standard proposi-
tional logic, ⊥ (referring to false) entails any effects, while no non-false effects
entails ⊥. [DISPROVE] is used to disprove the inclusions when the antecedent is
nullable, while the consequent is not nullable.

We use two rules to prove an inclusion: (i) [PROVE] is used when the antecedent
has no head; and (ii) [REOCCUR] proves an inclusion when there exist inclusion
hypotheses in the proof context Γ , which are able to soundly prove the current
goal. [UNFOLD] is the inductive step of unfolding the inclusions. The proof of the
original inclusion succeeds if all the derivative inclusions succeed.

(π1∧θ1 v π3∧θ3) ∈ Γ (π3∧θ3 v π4∧θ4) ∈ Γ (π4∧θ4 v π2∧θ2) ∈ Γ
Γ ` π1 ∧ θ1 v π2 ∧ θ2

[REOCCUR]

H=fstπ1
(θ1) Γ ′=Γ, (π1∧θ1 v π2∧θ2) ∀h∈H. (Γ ′ ` Dπ1

h (θ1) v Dπ2
h (θ2))

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[UNFOLD]

Theorem 2 (Termination of the TRS). The TRS is terminating.

Proof. See the technical report [16].

Theorem 3 (Soundness of the TRS). Given an inclusion Φ1 v Φ2 , if the
TRS returns TRUE with a proof, then Φ1 v Φ2 is valid.

Proof. See the technical report [16].

6 Implementation and Evaluation

To show the feasibility, we prototype our automated verification system using
OCaml (∼5k LOC); and prove soundness for both the forward verifier and the
TRS. We set up two experiments to evaluate our implementation: i) function-
ality validation via verifying symbolic timed programs; and ii) comparison with
PAT [17] and Uppaal [3] using real-life Fischer’s mutual exclusion algorithm. Ex-
periments are done on a MacBook with a 2.6 GHz 6-Core Intel i7 processor. The
source code and the evaluation benchmark are openly accessible from [18].

6.1 . Experimental Results for Symbolic Timed Models. We manually
annotate TimEffs specifications for a set of synthetic examples (for about 54 pro-
grams), to test the main contributions, including: computing effects from sym-
bolic timed programs written in C t ; and the inclusion checking for TimEffs with
the parallel composition, block waiting operator and shared global variables.

Table 3 presents the evaluation results for another 16 C t programs8, and the
annotated temporal specifications are in a 1:1 ratio for succeeded/failed cases.
The table records: No., index of the program; LOC, lines of code; Forward(ms),
effects computation time; #Prop(3), number of valid properties; Avg-Prove(ms),
average proving time for the valid properties; #Prop(7), number of invalid prop-
erties; Avg-Dis(ms), average disproving time for the invalid properties; #AskZ3,
number of querying Z3 through out the experiments.

8 All programs contain timed constructs, conditionals, and parallel compositions.
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Table 3. Experimental Results for Manually Constructed Synthetic Examples.

No. LOC Forward(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms) #AskZ3

1 26 0.006 5 52.379 5 21.31 77

2 37 43.955 5 83.374 5 52.165 188

3 44 32.654 5 52.524 5 33.444 104

4 72 202.181 5 82.922 5 55.971 229

5 98 42.706 7 149.345 7 60.325 396

6 134 403.617 7 160.932 7 292.304 940

7 133 51.492 7 17.901 7 47.643 118

8 173 57.114 7 40.772 7 30.977 128

9 182 872.995 9 252.123 9 113.838 1142

10 210 546.222 9 146.341 9 57.832 570

11 240 643.133 9 146.268 9 69.245 608

12 260 1032.31 9 242.699 9 123.054 928

13 265 12558.05 11 150.999 11 117.288 2465

14 286 12257.834 11 501.994 11 257.800 3090

15 287 1383.034 11 546.064 11 407.952 1489

16 337 49873.835 11 1863.901 11 954.996 15505

Observations: i) the proving/disproving time increases when the effect computa-
tion time increases because larger Forward(ms) indicates the higher complexity
w.r.t the timed constructs, which complicates the inclusion checking; ii) while
the number of querying Z3 per property (#AskZ3/(#Prop(3)+#Prop(7))) goes
up, the proving/disproving time goes up. Besides, we notice that iii) the disprov-
ing times for invalid properties are constantly lower than the proving process,
regardless of the program’s complexity, which is as expected in a TRS.

6.2 . Verifying Fischer’s mutual exclusion algorithm. As shown in Fig.
4, the data in columns PAT(s) and Uppaal(s) are drawn from prior work [19],
which indicate the time to prove Fischer’s mutual exclusion w.r.t the number of
processes (#Proc) in PAT and Uppaal respectively. For our system, based on the
implementation presented in Fig. 5, we are able to prove the mutual exclusion
properties, given the arithmetic constraint d<e. Besides, the system disproves
mutual exclusion when d≤e. We record the proving (Prove(s)) and disproving
(Disprove(s)) time and their number of uniquely querying Z3 (#AskZ3-u).

Table 4. Comparison with PAT via verifying Fischer’s mutual exclusion algorithm

#Proc Prove(s) #AskZ3-u Disprove(s) #AskZ3-u PAT(s) Uppaal(s)

2 0.09 31 0.110 37 ≤0.05 ≤0.09
3 0.21 35 0.093 42 ≤0.05 ≤0.09
4 0.46 63 0.120 47 0.05 0.09
5 25.0 84 0.128 52 0.15 0.19

Observations: i) automata-based model checkers (both PAT and Uppaal) are
vastly efficient when given concrete values for constants d and e; however ii) our
proposal is able to symbolically prove the algorithm by only providing the con-
straints of d and e, which cannot be achieved by existing model checkers; ii) our
verification time largely depends on the number of querying Z3, which is opti-
mized in our implementation by keeping a table for already queried constraints.
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6.3 . Case Study: Prove it when Reoccur. Termination of TRS is guaranteed
because the set of derivatives to be considered is finite, and possible cycles are
detected using memorization [14], demonstrated in Table 5. In step 2○, in order
to eliminate the first event B, A?#tR has to be reduced to ε, therefore the RHS
time constraint has been strengthened to tR=0. Looking at the sub-tree (I ), in
step 5○, tL and tR are split into tL1+tL2 and tR1+tR2 . Then in step 6○, A#tL1

together with A#tR1 are eliminated, unifying tL1 and tR1 by adding the side
constraint tL1=tR1. In step 8○, we observe the proposition is isomorphic with one
of the the previous step, marked using (‡). Hence we apply the rule [REOCCUR] to
prove it with a succeed side constraints entailment.

Table 5. The reoccurrence proving example. (I ) is the left hand side sub-tree of the
main rewriting proof tree.

(I )

tL<3∧(A?#tL)·B v tR<4∧(A?#tR)·B

4○ [PROVE]
True ∧ ε v tR=0 ∧ ε

3○ [Normal]
True ∧ �B v tR=0 ∧ ��ε · B

2○ [UNFOLD]
True ∧ B v tR<4 ∧ (A?#tR) · B

1○ [OR-LHS]
(tL<3 ∧ (A?#tL) · B) ∨ (True ∧ B) v tR<4 ∧ (A?#tR) · B

(I ) :
tL<3∧tL1+tL2=tL∧tR=tR1+tR2∧tL1=tR1∧tL2=tR2⇒tR<4

8○ [REOCCUR]
tL<3 ∧ (A?#tL2) · B v tR<4 ∧ (A?#tR2) · B (‡)

7○ [UNFOLD]
tL<3∧ ���A#tL1 · A?#tL2·BvtR<4∧ ���A#tR1· A?#tR2·B

6○ [UNFOLD] πu:tL
1=tR1

tL<3∧(A#tL1· A?#tL2)·BvtR<4∧(A#tR1· A?#tR2)·B
5○ [SPLIT]tL1+tL2=tL∧tR1+tR2=tR

tL<3 ∧ (A?#tL) · B v tR<4 ∧ (A?#tR) · B (‡)

6.4 . Discussion. Our implementation is the first that proves the inclusion of
symbolic TAs, which is considered significant because it overcomes the following
main limitations of traditional timed model checking: i) TAs cannot be used to
specify/verify incompletely specified systems (i.e., whose timing constants have
yet to be known) and hence cannot be used in early design phases; ii) verifying a
system with a set of timing constants usually requires enumerating all of them if
they are supposed to be integer-valued; iii) TAs cannot be used to verify systems
with timing constants to be taken in a real-valued dense interval.

7 Related Work

7.1 . Verification Framework. This work draws the most similarities to [20],
which also deploys a forward verifier and a TRS for extended regular expressions.
The differences are: i) [20] targets general-purpose sequential programs without
shared variables, whereas this work targets time-critical programs with the pres-
ence of concurrency and global shared states; ii) the dependent values in [20]
denote the number of repetitions of a trace, whereas in this work, they abstract
the real-time bounds; iii) in this work, the TRS supports inclusion checking for
the block waiting operator π? and the concurrent composition ||. These are es-
sential in timed verification (or, more generally, for distributed systems), which
are not supported in [20] or any other TRS-related works.
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7.2 . Specifications and Real-Time Verification. Apart from compositional
modelling for real-time systems based on timed-process algebras, such as Timed
CSP [8] and CCS+Time [21], there have been a number of translation-based ap-
proaches on building verification support for timed-process algebras. For example,
in [8], Timed CSP is translated to TAs (TAs) so that the model checker Uppaal [3]
can be applied. On the other hand, all the translation-based approaches share the
common problem: the overhead introduced by the complex translation makes it
particularly inefficient when disproving properties. We are of the opinion that in
that the goal of verifying real-time systems, in particular safety-critical systems
is to check logical temporal properties, which can be done without constructing
the whole reachability graph or the full power of model-checking. We consider
our approach is simpler as it is based directly on constraint-solving techniques
and can be fairly efficient in verifying systems consisting of many components as
it avoids to explore the whole state-space [20,22].

This work draws similarities to Real-Time Maude [23], which complements
timed automata with more expressive object-oriented specifications.

7.3 . Clock Manipulation and Zone-based Bisimulation. The concept of
implicit clocks has also been used in time Petri nets, and implemented in a
several model checking engines, e.g., [24]. On the other hand, to make model
checking more efficient with explicit clocks, [25,26,27,28] work on dynamically
deleting or merging clocks. Our work also draw connections with region/zone-
based bisimulations [29], which is broadly used in reasoning timed automata.

8 Conclusion

This work provides an alternative approach for verifying real-time systems, where
temporal behaviors are reasoned at the source level, and the specification expres-
siveness goes beyond traditional Timed Automata. We define the novel effects
logic TimEffs, to capture real-time behavioral patterns and temporal properties.
We demonstrate how to build axiomatic semantics (or rather an effects system)
for C t via timed-trace processing functions. We use this semantic model to enable
a Hoare-style forward verifier, which computes the program effects constructively.
We present an effects inclusion checker – the TRS – to efficiently prove the an-
notated temporal properties. We prototype the verification system and show its
feasibility. To the best of our knowledge, our work proposes the first algebraic
TRS for solving inclusion relations between timed specifications.

Limitations And Future Work. Our TRS is incomplete, meaning there exist
valid inclusions which will be disproved in our system. That is mainly because
of insufficient unification in favour of achieving automation. We also foresee the
possibilities of adding other logics into our existing trace-based temporal logic,
such as separation logic for verifying heap-manipulating distributed programs.
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23. P. C. Ölveczky and J. Meseguer, “Semantics and pragmatics of Real-Time Maude,”
Higher-Order and Symbolic Computation, vol. 20, no. 1-2, pp. 161–196, 2007.

24. B. Berthomieu and F. Vernadat, “Time petri nets analysis with TINA,” in Third
International Conference on the Quantitative Evaluation of Systems (QEST 2006),
11-14 September 2006, Riverside, California, USA. IEEE Computer Society,
2006, pp. 123–124. [Online]. Available: https://doi.org/10.1109/QEST.2006.56

25. C. Daws and S. Yovine, “Reducing the number of clock variables of timed
automata,” in Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS
’96), December 4-6, 1996, Washington, DC, USA. IEEE Computer Society, 1996,
pp. 73–81. [Online]. Available: https://doi.org/10.1109/REAL.1996.563702

26. S. Balaguer and T. Chatain, “Avoiding shared clocks in networks of timed
automata,” Log. Methods Comput. Sci., vol. 9, no. 4, 2013. [Online]. Available:
https://doi.org/10.2168/LMCS-9(4:13)2013

https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.comp.nus.edu.sg/~yahuis/TACAS2023.pdf
https://doi.org/10.1007/978-3-642-02658-4_59
https://zenodo.org/record/7192718#.Y7rTmi8RpOQ
https://doi.org/10.1109/ISSRE.2011.19
https://doi.org/10.1007/978-3-030-63406-3_5
https://doi.org/10.1007/3-540-54233-7_136
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1109/REAL.1996.563702
https://doi.org/10.2168/LMCS-9(4:13)2013


Automated Verication for Real-Time Systems 587
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We consider parameterized verification of systems executing according to the
total store ordering (TSO) semantics. The processes manipulate abstract data
types over potentially infinite domains. We present a framework that translates
the reachability problem for such systems to the reachability problem for register
machines enriched with the given abstract data type. We use the translation to
obtain tight complexity bounds for TSO-based parameterized verification over
several abstract data types, such as push-down automata, ordered multi push-
down automata, one-counter nets, one-counter automata, and Petri nets. We
apply the framework to get complexity bounds for higher order stack and counter
variants as well.

1 Introduction

A parameterized system consists of a fixed but arbitrary number of identical pro-
cesses that execute in parallel. The goal of parameterized verification is to prove
the correctness of the system regardless of the number of processes. Examples
for such systems are sensor networks, leader election protocols, and mutual ex-
clusion protocols. The topic has been the subject of intensive research for more
than three decades (see e.g. [10,32,13,6]), and it is the subject of one chapter of
the Handbook of Model Checking [8]. Research on parameterized verification has
been mostly conducted under the premise that (i) the processes run according
to the classical Sequential Consistency (SC) semantics, and (ii) the processes are
finite-state machines.

Under SC, the processes operate on a set of shared variables through which
they communicate atomically, i.e., read and write operations take effect immedi-
ately. In particular, a write operation is visible to all the processes as soon as the
writing process carries out its operation. Therefore, the processes always main-
tain a uniform view of the shared memory: they all see the latest value written
on any given variable, hence we can interpret program runs as interleavings of
sequential process executions. Although SC has been immensely popular as an
intuitive way of understanding the behaviours of concurrent processes, it is not
realistic to assume computation platforms guarantee SC anymore. The reason
is that, due to hardware and compiler optimizations, most modern platforms
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allow more relaxed program behaviours than those permitted under SC, leading
to so-called weak memory models. Weakly consistent platforms are found at all
levels of system design such as multiprocessor architectures (e.g., [48,47]), Cache
protocols (e.g., [46,21]), language level concurrency (e.g., [41]), and distributed
data stores (e.g., [17]). Therefore, in recent years, research on the parameterized
verification of concurrent programs under weak memory models have started to
become popular. Notable examples are the cases of the TSO semantics [4] and
the Release-Acquire semantics of C11 [39].

In a parallel development, several works have extended the basic model of pa-
rameterized systems (under the SC semantics) by considering processes that are
infinite-state systems. The most dominant such class has been the case where the
individual processes are variants of push-down automata [36,33,28,28,40,42,30]

Parameterized verification is difficult, even under the original assumption of
both SC and finite-state processes as we still need to handle an infinite state
space. The extension to weakly consistent systems is even more complex due to
the intricate extra process behaviours. Almost all weak memory models induce
infinite state spaces even without parameterization and even when the program
itself is finite-state. Therefore, performing parameterized verification under weak
consistency requires handling a state space that is infinite in two dimensions; one
due to parameterization and one due to the weak memory model. The same ap-
plies to the extension of parameterized verification under SC where the processes
are infinite-state: in addition to infiniteness due to parameterization, we have a
second source of infinity due to the infiniteness of the processes.

In this paper, we combine the above two extensions. We study parameter-
ized verification of programs under the TSO semantics, where the processes use
infinite data structures such as stacks and counters. The framework is uniform
in that the manipulation can be described using an abstract data type.

We revisit the pivot abstraction technique presented in [4]. As a first contri-
bution, we show that we can capture pivot abstraction precisely, using a class
of register machines in which the registers assume values over a finite domain.
We show that, for any given abstract data type A, we can reduce, in polynomial
time, the parameterized verification problem under TSO and A to the reach-
ability problem for register machines manipulating A. Furthermore, we show
that the reduction also holds in the other direction: the reachability problem
for register machines over A is polynomial-time reducible to the parameterized
verification problem under TSO for A. In particular, the model abstracts away
the semantics of TSO (in fact, it abstracts away concurrency altogether) since
we are dealing with a single register machine.

We summarize the contributions of the paper as follows:

– We present a register abstraction scheme that captures the behaviour of
parameterized systems under the TSO semantics.

– We translate parameterized verification under the TSO semantics when the
processes manipulate an ADT A, to the reachability problem for register
machines operating over A.

– We instantiate the framework for deciding the complexity of parameterized
verification under TSO for different abstract data types. In particular we
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show the problem is PSpace-complete when A is a one-counter, ExpTime-
complete if A is a stack, 2-ETime-complete if A is an ordered multi stack,
and ExpSpace-complete if A is a Petri net. We obtain further complexity
bounds for higher order counter and stacks.

Related Work There has been an extensive research effort on parameterized
verification since the 1980s (see [13,8] for recent surveys of the field). Early works
showed the undecidability of the general problem (even assuming finite-state
processes) [10], and hence the emphasis has been on finding useful special cases.
Such cases are characterized by three aspects, namely the system topology (un-
ordered, arrays, trees, graphs, rings, etc.), the allowed communication patterns
(shared memory, Rendez-vous, broadcast, lossy channels, etc.), and the process
types (anonymous, with IDs, with priorities, etc.) [27,20,31,24,23,43].

Another line of research to counter undecidability are over-approximations
based on regular model checking [38,14,16,1], monotonic abstraction [5], and
symmetry reduction [37,22,7].

A seminal work in the area is the paper by German and Sistla [32]. The
authors consider the verification of systems consisting of an arbitrary number
of finite-state processes interacting through Rendez-Vous communication. The
paper shows that the model checking problem is ExpSpace-complete. In a series
of more recent papers, parameterized verification has been considered in the case
where the individual processes are push-down automata. [36,33,28,40,42,30].All
the above works assume the SC semantics.

Due to the relevance of weak memory models in parameterized verification,
papers on the topic have started to appear in the last two years. The paper
[4] considers parameterized verification of programs running under TSO, and
shows that the reachability problem is PSpace-complete. However, the paper
assumes that the processes are finite-state and, in particular, the processes do
not manipulate unbounded data domains. The model of the paper corresponds
to the particular case of our framework where we take the abstract data type to
be empty. In this case our framework also implies PSpace-completeness.

The paper [39] shows PSpace-completeness when the underlying semantics is
the Release-Acquire fragment of C11. The latter semantics gives rise to different
semantics compared to TSO. The paper also considers finite-state processes.

The paper [2] considers parameterized verification of programs running un-
der TSO. However, the paper applies the framework of well-structured systems
where the buffers of the processes are modeled as lossy channels, and hence the
complexity of the algorithm is non-primitive recursive. In particular, the paper
does not give any complexity bounds for the reachability problem (or any other
verification problems). Conchon et al. [19] address the parameterized verification
of programs under TSO as well. They make use of Model Checker Modulo The-
ories, no decidability or complexity results are given. The paper [15] considers
checking the robustness property against SC for parameterized systems running
under the TSO semantics. However, the robustness problem is entirely different
from reachability and the techniques and results developed in the paper cannot
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be applied in our setting. The paper shows that the problem is ExpSpace-hard.
All these works assume finite-state processes.

In contrast to all the above works, the current paper is the first paper that
studies decidability and complexity of parameterized verification under the TSO
semantics when the individual processes are infinite-state.

2 Preliminaries

We denote a function f between sets A and B by f : A−→B. We write f [a← b]
to denote the function f ′ such that f ′(a) = b and f ′(x) = f(x) for all x 6= a.

For a finite set A, we use |A| to refer to the size of A. We also use A∗ to
denote the set of words over A including the empty word ε. For a word w ∈ A∗,
we use |w| to refer to the length of w. We say a word w is differentiated if all
symbols in w are pairwise different. The set Adiff is the set of all differentiated
words over the set A. Finally, for a differentiated word w, we define pos(w)(a)
as the unique position of the letter a in w.

A labelled transition system is a tuple 〈C,Cinit, Labs,−→〉, where C is the set
of configurations, Cinit ⊆ C is the set of initial configurations, Labs is a finite
set of labels and −→ ⊆ C × Labs × C is the transition relation over the set of

configurations. For a transition 〈c1, lab, c2〉 ∈ −→, we usually write c1
lab−−−→ c2

instead. We use c1−→ c2 to denote that c1
lab−−−→ c2 for some lab ∈ Labs. Further-

more, we write
∗−−→ to denote the transitive reflexive closure over −→, and if

c1
∗−−→ c2 then we say c2 is reachable from c1. If c1 ∈ Cinit, then we just say that

c2 is reachable. A run ρ is an alternating sequence of configurations and labels

and is expressed as follows: c0
lab1−−−→ c1

lab2−−−→ c2 . . . cn−1
labn−−−−→ cn . Given ρ, we

write c0
n−−→ cn meaning that cn is reachable from c0 by n steps, and we write

c0
ρ−−→ cn meaning that cn is reachable from c0 through the run ρ.

3 Abstract Data Types (ADT)

In this section, we introduce the notion of abstract data types (ADTs) which
will be used extensively in the paper. An ADT is a labelled transition system
A = 〈Vals, {valinit},Ops,−→A〉. Intuitively, this describes the behaviour of some
data type such as a stack, or a counter. Vals is the set of configurations of A. It
describes the possible values the data type can assume. The initial configuration
is valinit ∈ Vals. The set of labels Ops represents the operations that can be
executed on the data type and the transition relation −→A ∈ Vals × Ops ×
Vals describes the semantics of these operations. Below, we give some concrete
examples of abstract data types.

Example 1 (Counter). We define a counter, denoted by the ADT Ct, as follows.
The set of configurations ValsCt = N are the natural numbers. The initial value,
denoted by valCt

init, is 0. The set of operations is OpsCt = {inc, dec, isZero}. The
transition relation −→Ct is as follows: The operations inc and dec increase or
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decrease the value of the counter by one, respectively. The latter operation is
only enabled if the value of the counter is non-zero, otherwise it blocks. Finally,
the transition isZero checks that the value of the counter is zero, i.e. it is only
enabled if that condition is true.

Example 2 (Weak Counter). A weak counter differs from a counter in that it can-
not be checked for zero. The ADT wCt representing a weak counter is defined as
in Example 1, except the operations of wCt are reduced to OpswCt = {inc, dec}.

Example 3 (Stack). Let Γ be a finite set representing the stack alphabet. A stack
St = 〈ValsSt, {valStinit},Ops

St,−→St〉 on Γ is defined as follows. The configurations
of St are ValsSt = Γ ∗ and the initial configuration is the empty stack valStinit = ε.
The set of operations is OpsSt = {pop(γ), push(γ), isEmpty | γ ∈ Γ}. The
transition relation is as follows. For every word w ∈ Γ ∗ and every symbol γ ∈
Γ , push(γ) adds the symbol γ to the top of the stack. Similiarly, the pop(γ)
operation removes the topmost symbol from the stack. It is only enabled if the
topmost symbol on the stack. The isEmpty operation does not change the stack,
but can only be performed if the stack is the empty word ε.

Example 4 (Petri Nets). Given a Petri net[44], We can define a corresponding
ADT Petri that models its semantics. The values are the markings, the oper-
ations are the Petri net transitions and the transition relation is given by the
input and output vectors of the Petri net transitions.

Higher Order ADTs We extend the ADT St to higher order stacks referred
to as n-St. This is done recursively[18,25]. The formal definition is in the full
version of our paper [3]. A value of a level n higher order stack n-St is a stack
of level n − 1 stacks. For level 1, it is the standard stack St. The operations
for level n are Opsn-St = {pop(γ), push(γ), popk, pushk, | γ ∈ Γ, 2 ≤ k ≤ n}.
The operations pop(γ) and push(γ) are recursively applied to the top element
in the stack (which consists of a stack that is one level lower) until the level of
the top element is 1. Here, they have the standard stack behaviour. Operations
popk and pushk are recursively applied to the top element until the level of the
element is k. Then, a copy of this level k stack is pushed on top of the original.

Since a counter can be seen as a stack with an alphabet of size 1 (and a bottom
element ⊥), we can extend definitions of wCt and Ct to n-wCt and n-Ct in the
same way. We add operations inck, deck. All operations are recursively applied
to the top counter. For inc, dec, isZero, we use standard behaviour once the
level is 1. For inck, deck, we copy/remove the top element once the level is k.

Example 5 (Ordered Multi Stack). We extend the stack to a numbered list of
n many stacks n-OMSt [12]. A value of n-OMSt consists of list of stacks
valSt1 . . . valStn . An operation Opsn-OMSt = {isZeroi, popi(γ), pushi(γ), | γ ∈
Γ, i ≤ n} works on stack number i in the standard way. One additional condi-
tion is that the stacks have to be ordered, meaning an operation popi(γ) is only
enabled if the stacks 1 . . . i− 1 are empty.
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4 TSO with an Abstract Data Type : TSO(A)

In this section, we introduce concurrent programs running under TSO(A) for
an ADT A = 〈Vals, {valinit},Ops,−→A〉. These programs consist of concurrent
processes where the communication between processes is performed using shared
memory under the TSO semantics. In addition, each process maintains a local
variable of type A.
Syntax of TSO(A). Let Dom be a finite data domain and Vars be a finite set of
shared variables over Dom. Let dinit ∈ Dom be the initial value of the variables.
We define the instruction set of TSO(A) as Instrs = {rd(x, d), wr(x, d) | x ∈
Vars, d ∈ Dom} ∪ {skip, mf}, which are called read, write, skip and memory
fence, respectively.

A process is represented by a finite state transition system. It is given by
the tuple Proc = 〈Q, qinit, δ〉, where Q is a finite set of states, qinit ∈ Q is the
initial state, and δ ⊆ Q × (Instrs ∪ Ops) × Q is the transition relation. We call
this tuple the description of the process. A concurrent program is a tuple of
processes P = 〈Procι〉ι∈I , where I is some finite set of process identifiers. For
each ι ∈ I we have Procι = 〈Qι, qιinit, δ

ι〉.
Semantics of TSO(A). We describe the semantics of a program P running
under TSO(A) by a labelled transition system TP = 〈CP ,CPinit, Labs

P ,−→P〉. The
formal definition is given in [3]. Under TSO(A), there is an unbounded FIFO
buffer of writes between each process and the memory. A configuration c ∈ CP

of the system consists of the value of each variable in the shared memory as well
as for each process: its local state, its value of the ADT, and the content of the
corresponding write buffer.

The labelled transitions −→P are as follows: A local skip transition simply
updates the state of the corresponding process. An ADT operation additionally
updates the ADT value according to ADT behaviour −→A. When a process exe-
cutes a write instruction, the operation is enqueued as a pending write message
into its buffer. A message msg is an assignment of the form msg = 〈x, d〉, where
x ∈ Vars and d ∈ Dom. We denote the set of all messages by Msgs = Vars×Dom.
The buffer content for a process is given as a word over Msgs. The messages in-
side each buffer are moved non-deterministically to the main memory in a FIFO
manner. Once a message reaches the memory, it becomes visible to all the other
processes. When executing a read instruction on a variable x ∈ Vars, the process
first checks its buffer for pending write messages on x. If the buffer contains such
a message, then it reads the value of the most recent one. If the buffer contains
no write messages on x, then the process fetches the value of x from the memory.
The initial configuration is cPinit, where each process is in its initial state, each
ADT holds its initial value, each store buffer is empty and the memory holds
the initial values of all variables. Note that since FIFO buffer is unbounded, this
is an infinite state transition system, even for finite ADT.

A sequence of transitions c0
lab1−−−→P c1

lab2−−−→P c2 . . . cn−1
labn−−−−→P cn where

c0 = cPinit is the initial configuration and labi ∈ LabsP is called a run in the
TSO(A) transition system. If there is a run ending in a configuration with state
qfinal, then we say qfinal is reachable by Proc under TSO(A).
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5 Parameterized Reachability in TSO(A)

In this section, we consider the parameterized TSO setting which allows for
an a priori unbounded number of processes with the same process description.
We begin by formally introducing the parameterized state reachability problem,
and then develop a generic construction that allows us to represent the TSO
semantics (except for the ADT) in a finite manner.

The Parameterized State Reachability Problem Intuitively, parameterization al-
lows for an arbitrary number of identical processes. The parameterized state
reachability problem for TSO(A) called TSO(A)-P-Reach identifies a family of
(standard) reachability problem instances. We want to determine whether we
have reachability in some member of the family. We now introduce this formally.

For a given process description Proc, we consider the program instance, PnProc

parameterized by a natural number n as follows. For I = {1, . . . , n}, let PnProc =
〈Proc1, . . . ,Procn〉 with Procι = Proc for all ι ∈ I. That is, the nth slice of
the parameterized family of programs contains n processes, all with identical
descriptions Proc. We require that all processes maintain copies of the ADT A.

TSO(A)-P-Reach:
Given: A process Proc = 〈Q, qinit, δ〉, an ADT A, and a state qfinal ∈ Q,
Decide: Is there a n ∈ N s.t. qfinal is reachable by PnProc under TSO(A)?

When talking about a certain family of ADTs, e.g. the family of petri nets,
we write TSO(Petri)-P-Reach and mean the restriction of TSO(A)-P-Reach to
petri nets, i.e. to instances where A is a petri net.

The main difference between the non-parameterized case and the parameter-
ized case of the problem is that in the first case the index set I is a priori fixed,
while in the second case it can be arbitrary. This results in CPinit being a singleton
in the non-parameterized case while it becomes infinite (one initial state for each
n-slice) in the parameterized case.

We determine upper and lower bounds for the complexity of the state reacha-
bility problem. The challenge of solving this problem varies with the ADT. This
problem for plain TSO without an ADT has been studied in [4]. They showed
that the problem can be decided in PSpace and is in fact PSpace-complete. The
result is based on an abstraction technique called the pivot semantics. The pivot
semantics is exact in the sense that a state q is reachable under parameterized
TSO if and only if it is reachable under the pivot semantics.

We show that the dynamics underlying the pivot abstraction can be gen-
eralized to our model with ADT. We show that the pivot abstraction can be
extended to obtain a register machine. We use this construction to give a gen-
eral characterization of TSO(A)-P-Reach. First, we recall the pivot abstraction.
The Pivot Abstraction [4]. For a set of variables Vars and data domain Dom,
processes generate pending write messages from the set Msgs = Vars × Dom by
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executing wr instructions. This set has size |Vars| · |Dom| and hence at most as
many distinct (variable, value) pairs can be produced in any run. For a run ρ of
the program, for each message msg = 〈x, d〉 ∈ Msgs we can define the first point
along ρ at which some write on variable x with value d is propagated to the
memory. The pivot abstraction identifies these points as pivot points pvt(msg),
for each distinct message in Msgs. For a write message msg under ρ, the pivot
point pvt(msg) is the first point of propagation of msg to the memory under ρ.

The core observation is that if at some point in ρ, a process Procι propagates
a message msg = 〈x, d〉 from its buffer to the memory, then after that point,
the value d will always be available to read on variable x from the shared mem-
ory. Technically, this follows from parameterization. There are arbitrarily many
processes executing identical descriptions. This means transitions of the origi-
nal process Procι can be mimicked by a clone process Procι′ identical to Procι.
Hence, Procι′ can replicate the execution of Procι right up to the point where
the message msg is the oldest message in its buffer. Then a single propagate
step updates the value of x in the shared memory to d. There can be arbitrarily
many such clones and the propagate step can happen at any time. It follows that
beyond the pvt(msg) point in ρ, the value d can always be read from x.

For distinct messages from Msgs, we can order the pivot points corresponding
to these messages according to the order in which they appear in ρ. This gives
us a first update sequence, denoted by ω. No two messages in ω are the same;
the set of such sequences is the set of differentiated words Msgsdiff . A message
msg ∈ Msgs in ω has the rank k if it is the k-th pivot point in ω.

Providers. The pivot abstraction simulates a run ρ under the TSO semantics by
running abstract processes called providers in a sequential manner. For 1 ≤ k ≤
|ω|+ 1, the k-provider simulates the process that generates the write of the rank
k message 〈x, d〉 corresponding to the k-pivot in ρ. The k-provider completes its
task when it has simulated this process until the point it generates 〈x, d〉. At this
point, it invokes the (k+1)-provider. With this background, we now develop the
formal pivot semantics for parameterized TSO(A).

Formal Pivot semantics for Parameterized TSO(A). We define the formal oper-
ational semantics of the pivot abstraction as a labelled transition system. Given
a process description Proc = 〈Q, qinit, δ〉 and ADT A = 〈Vals, {valinit},Ops,−→A〉,
a configuration of the pivot transition system represents the view of a provider
when simulating a run of the program. A view v = 〈q, val, Lw, ω, φE , φL, φP 〉
is defined as follows. The process state is given by q ∈ Q. The value of the
provider’s ADT A is val ∈ Vals. The function Lw : Vars−→Dom∪{�} gives for
each x ∈ Vars, the value of the latest (i.e., most recent) write the provider has
performed on x. If no such instruction exists (the process has made no writes to
x) then Lw(x) = �. Note that Lw abstracts the buffer in terms of read-own-write
operations since the process can only read from the most recent pending write
in its buffer on each variable (if it exists). We define Lw� such that Lw�(x) = �
for all x ∈ Vars. The first update sequence of pivot messages is ω ∈ Msgsdiff . It
is unchanged by transitions and remains constant throughout the pivot run.
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The external pointer, φE ∈ {0, 1, . . . , |ω|} helps the provider keep track of
which messages from ω it has observed. These messages have been propagated by
other processes. The external pointer is used to identify which variables are still
holding their initial values in the memory. If the provider observes an external
write on a variable x (by accessing the memory), then this write has overwritten
the initial value of x in the memory. The local pointer φL : Vars−→{0, 1, . . . , |ω|}
is a set of pointers, one for each variable x ∈ Vars. The function φL(x) gives the
highest ranked write operation the provider itself has performed (on any variable)
before it performed the latest write on x. The local pointer is necessary to know
which variables lose their initial values when we need to empty the buffer. In
other words, the local pointer abstracts the buffer in terms of update operations.
We define φmax

L := max{φL(x) | x ∈ Vars} as the highest value of a local pointer
and φ0L such that φ0L(x) = 0 for all variables x ∈ Vars, i.e., the pointers are all
in the leftmost position. The progress pointer φP ∈ {1, 2, . . . , |ω| + 1} gives the
rank of the process the current provider is simulating.

skip
〈q, skip, q′〉 ∈ δ

〈q, val, Lw, ω, φE , φL, φP 〉
skip−−−−→pvt〈q′, val, Lw, ω, φE , φL, φP 〉

write(1)
〈q, wr(x, d), q′〉 ∈ δ, pos(ω)(〈x, d〉) < φP , φ

′
L = φL[x← max(pos(ω)(〈x, d〉), φmax

L )]

〈q, val, Lw, ω, φE , φL, φP 〉
wr(x,d)−−−−−→pvt〈q, val, Lw[x← d], ω, φE , φ

′
L, φP 〉

write(2)
〈q, wrx, d, q′〉 ∈ δ, pos(ω)(〈x, d〉) = φP

〈q, val, Lw, ω, φE , φL, φP 〉
wr(x,d)−−−−−→pvt vinit(ω, φP + 1)

read(1)
〈q, rd(x, d), q′〉 ∈ δ, Lw(x) = d

〈q, val, Lw, ω, φE , φL, φP 〉
rd(x,d)−−−−−→pvt〈q′, val, Lw, ω, φE , φL, φP 〉

read(2)
〈q, rd(x, d), q′〉 ∈ δ, d = init(x), Lw(x) = ⊥, pos(ω)(x) > φE

〈q, val, Lw, ω, φE , φL, φP 〉
rd(x,d)−−−−−→pvt〈q′, val, Lw, ω, φE , φL, φP 〉

read(3)
〈q, rd(x, d), q′〉 ∈ δ, pos(ω)(〈x, d〉) < φP , φ

′
E = max(φE , φL(x), pos(ω)(〈x, d〉))

〈q, val, Lw, ω, φE , φL, φP 〉
rd(x,d)−−−−−→pvt〈q′, val, Lw, ω, φ′

E , φL, φP 〉

memory-fence
〈q, mf, q′〉 ∈ δ, φ′

E = max(φE , φ
max
L )

〈q, val, Lw, ω, φE , φL, φP 〉
mf−−→pvt〈q′, val, Lw, ω, φ′

E , φL, φP 〉

data-operation
〈q, op, q′〉 ∈ δ, op ∈ Ops, val

op−−→A val′

〈q, val, Lw, ω, φE , φL, φP 〉
op−−→pvt〈q′, val′, Lw, ω, φE , φL, φP 〉

Fig. 1: The transition relation of the pivot semantics for a process Proc.

Given an update sequence ω ∈ Msgsdiff and 1 ≤ k ≤ |ω| + 1, we de-
fine the initial view induced by ω and k denoted by vinit(ω, k), as the view
〈qinit, valinit, Lw⊥, ω, 0, φ

0
L, k〉. For a given ω, the k-provider starts with vinit(ω, k):

Lw⊥ and φ0L imply that the simulated process has not performed any writes and
φE = 0 means that it has not read/updated from/to the memory.
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We define the labeled transition relation −→pvt on the set of views by the
inference rules given in Figure 1. The set of labels is Instrs∪Ops. We describe
the inference rules briefly. The skip rule only changes the local state of the
process. There are two inference rules, write(1) and write(2), to describe the
execution of a write operation wr(x, d). The rule write(1) describes the situation
when the rank of 〈x, d〉 is strictly smaller than the progress pointer φP . In this
case, we update both Lw and φL. The rule write(2) describes the situation when
the rank of 〈x, d〉 equals the progress pointer. This means that the provider has
provided the message 〈x, d〉 with rank φP . Hence it has completed its mission,
and initiates the next provider by transitioning to vinit(ω, φP + 1).

There are three inference rules that describe a read operation rd(x, d). The
rule read(1) describes when the last written value to x by the provider is d,
Lw(x) = d. In this case, the provider simply reads from its local buffer. The
rule read(2) describes the read of an initial value. It ensures that the read is
possible by checking that no write operation on x is executed by the provider
(Lw(x) = ⊥), and by checking that the initial value of the variable has not been
overwritten in the memory. This is achieved by checking if the position of 〈x, d〉 in
ω, i.e. pos(ω)(〈x, d〉), is strictly larger than φE . The rule read(3) describes when
the simulated process reads from the memory. It checks that the message 〈x, d〉
has been generated by some previous provider (pos(ω)(〈x, d〉) < φP ), and then
it updates the external pointer to max(φE , φL(x), pos(ω)(〈x, d〉)). The memory
fence rule describes when the simulated process does a fence action. The rule
updates the external pointer to max(φE , φ

max
L ). Finally, the data-operation rule

describes when the simulated process does an ADT operation.
The set of initial views is Vinit = {vinit(ω, 1) | ω ∈ Msgsdiff}. This is the set of

initial views of the 1-provider and it is finite because Msgsdiff is finite, unlike the
set of initial configurations Cinit in the parameterized case under TSO.

6 Register Machines

Our goal is to design a general method to determine the decidability and com-
plexity of TSO(A)-P-Reach depending on A. We examine the pivot abstraction
introduced in the previous chapter. A view v = 〈q, val, Lw, ω, φE , φL, φP 〉 of the
pivot transition system, can be partitioned into the following two components:
(1) q, Lw, ω, φE , φL, φP which contains the local state and also effectively ab-
stracts the unbounded FIFO buffers and shared memory of the TSO system and
(2) val which captures the value of the ADT. The first part is finite since each
component takes finitely many values. We call this the book-keeping state since
it keeps track of the progress of the core TSO system. However, the ADT part
can be infinite, depending upon the abstract data type.

We will use a register machine in order to represent the book-keeping state
in a finite way using states and registers. On the other hand, we will keep the
ADT component general and only later instantiate it to some interesting cases.

A register machine is a finite state automaton that has access to a finite set of
registers, each holding a natural number. The register machine can execute two
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operations on a register, it can write a given value or it can read a given value.
A read is blocking if the given value is not in the register. We differ from most
definitions of register machines in two significant ways: Since we only require a
finite domain to model TSO(A) semantics, the values of the registers are bound
from above by an N ∈ N. This makes the register assignments finite whereas
most definitions allow for an unbounded domain. Further, our register machine
is augmented with an ADT.

Given an ADT A = 〈Vals, {valinit},Ops,−→A〉, let Regs be a finite set of
registers and Dom = {0, . . . , N} their domain. We define the set of actions
Acts = {SKP, WRITE(r, d), READ(r, d) | r ∈ Regs, d ∈ Dom}. A register machine
is then defined as a tuple R(A) = 〈Q, qinit, δ〉, where Q is a finite set of states,
qinit ∈ Q is the initial state and δ ⊆ Q×(Acts∪Ops)×Q is the transition relation.

The semantics of the register machine are given in terms of a transition
system. The set of configurations is Q×DomRegs×Vals. A configuration consists
of a state, a register assignment Regs−→Dom and a value of A. The initial
configuration is 〈qinit, 0

Regs, valinit〉, where all registers contain the value 0.
The transition relation −→ is described in the following. SKP only changes

the local state, not the registers or the ADT value. WRITE(r, d) sets the value of
the register r to d. READ(r, d) is only enabled if the value of r is d, it does not
change the value. The operations in Ops work as usually, they do not change
any register. We define the state reachability problem for register machines as
R(A)-Reach in the usual way. A state qfinal ∈ Q is reachable if there is a run of
the transition system defined by the semantics of R(A) that starts in the initial
configuration and ends in a configuration with state qfinal.

6.1 Simulating Pivot Abstraction by Register Machines

In this section we will show how to simulate the pivot abstraction by a register
machine. The idea is to save the book-keeping state (except for the local state)
in the registers. Given a process description Proc = 〈QProc, qProc

init , δ
Proc〉 for an

ADT A, we construct a register machine R(A) = 〈Q, qinit, δ〉 that simulates the
pivot semantics as follows. The set of registers is

Regs := {Lw(x), rkVars(x), rkMsgs(msg), φE , φL(x), φmax
L , φP , rknxt | x ∈ Vars,msg ∈ Msgs} .

The registers rkVars(x) and rkMsgs(msg) hold the rank of each variable and mes-
sage, respectively. This implicitly gives rise to an update sequence. The aux-
iliary register rknxt is used to initialize the other rank registers, as will be ex-
plained later on. The remaining registers correspond to their respective coun-
terparts in the pivot abstraction. Note that the number of registers is linear in
the number of messages |Msgs|. The domain of the registers is defined to be
Dom = {0, . . . , |Msgs| + 1}. Since the TSO memory domain is finite, we can
assume w.l.o.g. that the memory values are positive integers. If Lw(x) = 0, it
means that there has been no write on x and it still holds the initial value. The
set of states Q contains QProc ∪{qRinit(A), qptr

init} as well as a number of (unnamed)
auxiliary states that will be used in the following.
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To simplify our construction, we will use additional operations on registers,
instead of just WRITE and READ. We introduce different blocking comparisons
between registers and values such as ==, <,≤, 6=, register assignments such as
r := r′, and increments by one denoted as r++. A more detailed description of
these instructions is given in [3].

The Initializer. The pivot semantics define an exponential number of initial
states: one per possible update sequence. The register machine instead guesses an
update sequence at the start of the execution and stores it in the rank registers.
This part of the register machine is the rank initializer (shown in Figure 2
(a)). It uses the auxiliary register rknxt to keep track of the next rank that is
to be assigned. In a nondeterministic manner, the rank initializer chooses a
so far unranked message and then it assigns the next rank to this message. If
the variable of the message has no rank assigned yet, it updates the rank of
the variable. Then it increases the rknxt register and continues. After each rank
assignment, the initializer can choose to stop the rank assignment. In that case,
it initializes the register φP to 1 and finishes in the initial state of Proc.

In addition to the rank initializer, we have the pointer initializer. It is respon-
sible for resetting all pointers except the process pointer to zero. The process
pointer is incremented by one instead. This initializer is not executed in the
beginning of the simulation, but between epochs of the pivot abstraction.

The simulator. The main part of this construction handles the simulation
of the pivot abstraction. It contains QProc as well as several auxiliary states that
are described in the following. It simulates each instruction of TSO(A). The skip
instruction and the data instructions are carried out unchanged. A visualization
of the remaining instructions is depicted in Figure 2. In case of a write instruction
wr(x, d), we first compare the rank of the write message with the process pointer.
If they are equal, it means that the epoch is finished and the next process should
start, therefore we jump to the first state of the pointer initializer. Otherwise,
we set the last write pointer Lw(x) to d. Now, we ensure that φmax

L is at least as
large as the rank of 〈x, d〉 and finally we update the local pointer φL(x) to be
equal to φmax

L . For the memory fence instruction, it only needs to be ensured that
the external pointer is at least as large as the maximum local pointer φmax

L . For a
read instruction rd(x, d), if the last write to x was of value d, we can execute the
read directly. Otherwise, after checking that the write can be performed by the
current provider, we ensure that the external pointer is at least as large as both
the rank of 〈x, d〉 and the local pointer of x. For the special case that d = dinit,
there is an additional way in which the read can be performed: We can read dinit

from the memory if the process has neither already written to x nor observed a
write that has higher or equal rank than the rank of x. This gives us the following
theorem, proven in Appendix C of the full version [3]:

Theorem 1. TSO(A)-P-Reach is polynomial time reducible to R(A)-Reach.
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Fig. 2: The rank initializer and the simulator for some instructions instr.

6.2 Simulating Register Machines by TSO

We will now show how to simulate an ADT register machine with a parameter-
ized program running under TSO(A). The main idea is to save the information
about the registers in the last pending write operations, while making sure that
not a single write operation actually hits the memory. Thus, the simulator always
reads the initial value or its own writes, never writes of other processes.

The TSO program has a variable for each register, and two additional vari-
ables xs and xc that act as flags: xs indicates that the verifier should start work-
ing, while xc indicates that the verifier has successfully completed the verification.
At the beginning of the execution, each process nondeterministically chooses to
be either simulator, scheduler, or verifier. Each role will be described in the
following. The complete construction is shown in Appendix C of [3].

The simulator uses the same states and transitions as R(A), but instead of
reading from and writing to registers, it uses the memory. If the simulator reaches
the target state qtarget, it first checks the xs flag. If it is already set, the simulator
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stops, never reaching the final state qfinal. Otherwise, it waits until it observes the
flag xc to be set. It then enters the final state. The scheduler’s only responsibility
is to signal the start of the verification process. It does so by setting the flag xs
at a nondeterministically chosen time during the execution of the program. The
verifier waits until it observers the flag xs. It then starts the verification process,
which consists of checking each variable that corresponds to a register. If all of
them still contain their initial value, the verification was successful. The verifier
signals this to the simulator process by setting the xc flag.

Any execution ending in qfinal must perform a simulation of R(A) ending in
qtarget first, then a scheduler propagates the setting of flag xs and afterwards
a verifier executes. This ensures that the initial values are read by the verifier
after the register machine has been simulated and thus the shared memory is
unchanged. This means the simulator only accessed its write buffer and not
writes from other threads. It follows that qtarget is reachable by R(A) if and only
if qfinal is reachable by Proc under TSO(A). This gives us the following result:

Theorem 2. R(A)-Reach is polynomial time reducible to TSO(A)-P-Reach.

Theorem 1 and Theorem 2 give us a method of determining upper and
lower bounds of the complexity of TSO(A)-P-Reach for different instantiations
of ADT. Since we have reductions in both directions, we can conclude that
TSO(A)-P-Reach is decidable if and only if R(A)-Reach is decidable. We know
TSO(A)-P-Reach is PSpace-hard for TSO(NoAdt)-P-Reach where NoAdt is
the trivial ADT that models plain TSO semantics [4]. We can immediately de-
rive a lower bound for any ADT: TSO(A)-P-Reach is PSpace-hard.

7 Instantiations of ADTs

In the following, we instantiate our framework to a number of ADTs in order to
show its applicability.

Theorem 3. TSO(Ct)-P-Reach and TSO(wCt)-P-Reach are PSpace-complete.

We know TSO(A)-P-Reach is PSpace-hard for any ADT A including Ct
and wCt. Regarding the upper bound for Ct, we can show that R(Ct)-Reach
can be polynomially reduced to R(NoAdt)-Reach. The idea is to show that there
is a bound on the counter values in order to find a witness for R(Ct)-Reach. This
bound is polynomial in the number of possible states and register assignments
(i.e., this bound is at most exponential in the size of R(Ct).) Assume a run that
contains a configuration c with a value that exceeds the bound, then certain
state and register assignment are repeated in the run with different values. We
can use this to shorten the run such that the counter value in c is reduced.

We can encode the counter value (up to this bound) in a binary way into
registers acting as bits. The number of additional registers is polynomial in the
size of R(Ct). In order to simulate an inc operation on this binary encoding
using WRITE and READ, we only have to go through the bits starting at the least
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important bit and flip them until one is flipped from 0 to 1. The dec operation
works analogously. This only requires a polynomial state and transition overhead.

We know that R(NoAdt)-Reach is in PSpace[4]. It follows from the poly-
nomial reduction that R(Ct)-Reach is in PSpace. Applying Theorem 1 gives
us that TSO(Ct)-P-Reach is in PSpace. Since any wCt is a Ct, it follows
TSO(wCt)-P-Reach is in PSpace as well. The proof is in [3].

Theorem 4. TSO(St)-P-Reach is ExpTime-complete.

For membership, we encode the registers of R(St) in the states, which yields a
finite state machine with access to a stack, i.e. a pushdown automaton. The con-
struction has an exponential number of states. From [45], we have that checking
the emptiness of a context-free language generated by a pushdown automaton is
polynomial in terms of the size of the automaton. Combined, we get that state
reachability of the constructed pushdown automaton is in ExpTime. It follows
that R(St)-Reach is in ExpTime (thanks to Theorem 1).

To prove the lower bound, we can reduce the problem of checking the empti-
ness of the intersection of a pushdown with n finite-state automata [35] to
R(St)-Reach. This problem is well-known to be ExpTime-complete. The idea
is to use the stack to simulate pushdown automaton and n registers to keep
track of the states of the finite-state automata. We apply Theorem 2 and get
TSO(St)-P-Reach is ExpTime-hard. The formal proof is in [3]

Theorem 5. TSO(Petri)-P-Reach is ExpSpace-complete.

Proof. Petri net coverability is known to be ExpSpace complete [26]. We show
hardness by reducing coverability of a marking m to R(Petri)-Reach. The idea
is to construct a register machine with a Petri net as ADT. This register machine
will have two states qinit and qfinal. For every transition t of the original Petri net,

we have t: qinit
t−−→ qinit as a transition of the register machine (we simply simulate

the original Petri net). Furthermore, we have qinit
t−m−−−−→ qfinal as a transition of

the register machine. Thus, the state qfinal can be reached iff m can be covered.

We reduce reachability of R(Petri) to Petri net coverability. We construct
the Petri net by taking the ADT Petri and adding a place pq for every state
q and a place preg,d for every register reg ∈ Regs and register value d ∈ Dom.
The idea is that a marking with a token in pq and one in preg,d but none preg,d′

for d′ 6= d corresponds to a configuration of R(Petri) with state q and reg = d.
The value of Petri is given by the remainder of the marking.

We simulate any q
instr−−−−→ q′ with a transition t that takes one token from q

and puts one in q′. If instr ∈ Ops, then instr is a Petri net transition. We simply
add the same input and output arcs to t. To simulate a write, we add a new
transition td′ for every d′ ∈ Dom with an arc to preg,d and an arc from preg,d′ .

The initial marking is consistent with valPetriinit and has one token in pqinit . A state
q is reachable if a marking with one token in pq is coverable.
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Higher Order ADTs. LetM(A)-Reach problem be the restriction ofR(A)-Reach
with no registers. The M(A)-Reach problem has been studied for many ADT
such as higher order counter and higher order stack variations[34,25].

Theorem 6.

– TSO(n-St)-P-Reach is (n− 1)-ExpTime-hard and in n-ExpTime.
– TSO(n-wCt)-P-Reach is (n− 2)-ExpTime-hard and in (n− 1)-ExpTime.
– TSO(n-Ct)-P-Reach is (n− 2)-ExpSpace-hard and in (n− 1)-ExpSpace.

Proof. M(n-St)-Reach has been shown to be (n− 1)-ExpTime-complete [25].
We knowM(n-wCt)-Reach is (n− 2)-ExpTime-complete andM(n-Ct)-Reach
is (n− 2)-ExpSpace-complete [34]. Since the reduction from M(A)-Reach to
R(A)-Reach is trivial, any hardness result can be applied to TSO(A)-P-Reach
immediately using Theorem 2. In order to reduce R(A)-Reach toM(A)-Reach,
we encode register assignments into the state which results in an exponential
state explosion. Then we apply Theorem 1 to obtain our upper bound.

Theorem 7. TSO(n-OMSt)-P-Reach is 2-ETime-complete.

Proof. We know that M(n-OMSt)-Reach is 2-ETime-complete [12] and we can
apply Theorem 2 to get 2-ETime-hardness. According to Theroem 4.6 in [11],

M(n-OMSt)-Reach is in O(|M(A)|2dn) for some constant d ∈ N. We apply
the exponential size reduction to R(n-OMSt)-Reach and Theorem 1 and get

TSO(n-OMSt)-P-Reach is in O((2|P|)2
dn

) = O(2|P|·2
dn

) and thus it is also in

O(22
|P|·2dn) = O(22

|P|+dn

). Thus, TSO(n-OMSt)-P-Reach is in 2-ETime.

We study well structured ADTs [29,9] as defined in [3]:

Theorem 8. If ADT A is well structured, then TSO(A)-P-Reach is decidable.

A register machine for a well structured ADT A is equivalent to the composition
of a well structured transition system (WSTS) modeling A and a finite transition
system (and thus a WSTS) that models states and registers. According to [9], the
composition is again a WSTS and reachability is decidable. The above theorem
is then an immediate corollary of Theorem 1.

8 Conclusions and Future Work

In this paper, we have taken the first step to studying the complexity of param-
eterized verification under weak memory models when the processes manipulate
unbounded data domains. Concretely, we have presented complexity results for
parameterized concurrent programs running on the classical TSO memory model
when the processes operate on an abstract data type. We reduce the problem to
reachability for register machines enriched with the given abstract data type.

State reachability for finite automata with ADT has been extensively stud-
ied for many ADTs[34,25]. We have shown in Theorem 6 that we can apply
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our framework to existing complexity results of this problem. This provides
us with decidability and complexity results for the corresponding instances of
TSO(A)-P-Reach. However, due to the exponential number of register assign-
ments, the upper bound is exponentially larger than the lower bound. We aim
to study these cases further and determine more refined parametric bounds.

A direction for future work is considering other memory models, such as the
partial store ordering semantics, the release-acquire semantics, and the ARM
semantics. It is also interesting to re-consider the problem under the assumption
of having distinguished processes (so-called leader processes). Adding leaders is
known to make the parameterized verification problem harder. The complex-
ity/decidability of parameterized verification under TSO with a single leader is
open, even when the processes are finite-state.
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Abstract. Deep reinforcement learning (DRL) has become a dominant
deep-learning paradigm for tasks where complex policies are learned
within reactive systems. Unfortunately, these policies are known to be
susceptible to bugs. Despite significant progress in DNN verification,
there has been little work demonstrating the use of modern verification
tools on real-world, DRL-controlled systems. In this case study, we at-
tempt to begin bridging this gap, and focus on the important task of
mapless robotic navigation — a classic robotics problem, in which a
robot, usually controlled by a DRL agent, needs to efficiently and safely
navigate through an unknown arena towards a target. We demonstrate
how modern verification engines can be used for effective model selection,
i.e., selecting the best available policy for the robot in question from a
pool of candidate policies. Specifically, we use verification to detect and
rule out policies that may demonstrate suboptimal behavior, such as col-
lisions and infinite loops. We also apply verification to identify models
with overly conservative behavior, thus allowing users to choose supe-
rior policies, which might be better at finding shorter paths to a target.
To validate our work, we conducted extensive experiments on an ac-
tual robot, and confirmed that the suboptimal policies detected by our
method were indeed flawed. We also demonstrate the superiority of our
verification-driven approach over state-of-the-art, gradient attacks. Our
work is the first to establish the usefulness of DNN verification in iden-
tifying and filtering out suboptimal DRL policies in real-world robots,
and we believe that the methods presented here are applicable to a wide
range of systems that incorporate deep-learning-based agents.

1 Introduction

In recent years, deep neural networks (DNN) have become extremely popular,
due to achieving state-of-the-art results in a variety of fields — such as natural
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language processing [16], image recognition [51], autonomous driving [11], and
more. The immense success of these DNN models is owed in part to their ability
to train on a fixed set of training samples drawn from some distribution, and then
generalize, i.e., correctly handle inputs that they had not encountered previously.
Notably, deep reinforcement learning (DRL) [37] has recently become a dominant
paradigm for training DNNs that implement control policies for complex systems
that operate within rich environments. One domain in which DRL controllers
have been especially successful is robotics, and specifically — robotic navigation,
i.e., the complex task of efficiently navigating a robot through an arena, in order
to safely reach a target [63,68].

Unfortunately, despite the immense success of DNNs, they have been shown
to suffer from various safety issues [31, 57]. For example, small perturbations
to their inputs, which are either intentional or the result of noise, may cause
DNNs to react in unexpected ways [45]. These inherent weaknesses, and others,
are observed in almost every kind of neural network, and indicate a need for
techniques that can supply formal guarantees regarding the safety of the DNN
in question. These weaknesses have also been observed in DRL systems [6,21,34],
showing that even state-of-the-art DRL models may err miserably.

To mitigate such safety issues, the verification community has recently de-
veloped a plethora of techniques and tools [8,10,19,24,28,29,31,35,39,40,64,66]
for formally verifying that a DNN model is safe to deploy. Given a DNN, these
methods usually check whether the DNN: (i) behaves according to a prescribed
requirement for all possible inputs of interest; or (ii) violates the requirement,
in which case the verification tool also provides a counterexample.

To date, despite the abundance of both DRL systems and DNN verification
techniques, little work has been published on demonstrating the applicability
and usefulness of verification techniques to real-world DRL systems. In this case
study, we showcase the capabilities of DNN verification tools for analyzing DRL-
based systems in the robotics domain — specifically, robotic navigation systems.
To the best of our knowledge, this is the first attempt to demonstrate how off-
the-shelf verification engines can be used to identify both unsafe and subopti-
mal DRL robotic controllers, that cannot be detected otherwise using existing,
incomplete methods. Our approach leverages existing DNN verifiers that can
reason about single and multiple invocations of DRL controllers, and this allows
us to conduct a verification-based model selection process — through which we
filter out models that could render the system unsafe.

In addition to model selection, we demonstrate how verification methods al-
low gaining better insights into the DRL training process, by comparing the
outcomes of different training methods and assessing how the models improve
over additional training iterations. We also compare our approach to gradient-
based methods, and demonstrate the advantages of verification-based tools in
this setting. We regard this as another step towards increasing the reliability
and safety of DRL systems, which is one of the key challenges in modern ma-
chine learning [27]; and also as a step toward a more wholesome integration of
verification techniques into the DRL development cycle.
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In order to validate our experiments, we conducted an extensive evaluation
on a real-world, physical robot. Our results demonstrate that policies classified
as suboptimal by our approach indeed exhibited unwanted behavior. This eval-
uation highlights the practical nature of our work; and is summarized in a short
video clip [4], which we strongly encourage the reader to watch. In addition, our
code and benchmarks are available online [3].

The rest of the paper is organized as follows. Section 2 contains background
on DNNs, DRLs, and robotic controlling systems. In Section 3 we present our
DRL robotic controller case study, and then elaborate on the various properties
that we considered in Section 4. In Section 5 we present our experimental results,
and use them to compare our approach with competing methods. Related work
appears in Section 6, and we conclude in Section 7.

2 Background

Deep Neural Networks. Deep neural networks (DNNs) [25] are computa-
tional, directed, graphs consisting of multiple layers. By assigning values to the
first layer of the graph and propagating them through the subsequent layers,
the network computes either a label prediction (for a classification DNN) or a
value (for a regression DNN), which is returned to the user. The values com-
puted in each layer depend on values computed in previous layers, and also on
the current layer’s type. Common layer types include the weighted sum layer, in
which each neuron is an affine transformation of the neurons from the preceding
layer; as well as the popular rectified linear unit (ReLU ) layer, where each node
y computes the value y = ReLU(x) = max(0, x), based on a single node x from
the preceding layer to which it is connected. The DRL systems that are the sub-
ject matter of this case study consist solely of weighted sum and ReLU layers,
although the techniques mentioned are suitable for DNNs with additional layer
types, as we discuss later.
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Fig. 1: A toy DNN.

Fig. 1 depicts a small example of a
DNN. For input V1 = [2, 3]T , the sec-
ond (weighted sum) layer computes
the values V2 = [20,−7]T . In the third
layer, the ReLU functions are applied,
and the result is V3 = [20, 0]T . Finally,
the network’s single output is com-
puted as a weighted sum: V4 = [40].

Deep Reinforcement Learning. Deep reinforcement learning (DRL) [37] is a
particular paradigm and setting for training DNNs. In DRL, an agent is trained
to learn a policy π, which maps each possible environment state s (i.e., the
current observation of the agent) to an action a. The policy can have different
interpretations among various learning algorithms. For example, in some cases,
π represents a probability distribution over the action space, while in others it
encodes a function that estimates a desirability score over all the future actions
from a state s.
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During training, at each discrete time-step t ∈ {0, 1, 2, . . .}, a reward rt is
presented to the agent, based on the action at it performed at time-step t. Dif-
ferent DRL training algorithms leverage the reward in different ways, in order to
optimize the DNN-agent’s parameters during training. The general DNN archi-
tecture described above also characterizes DRL-trained DNNs; the uniqueness
of the DRL paradigm lies in the training process, which is aimed at generat-
ing a DNN that computes a mapping π that maximizes the expected cumulative
discounted reward Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1

]
, is a hy-

perparameter that controls the influence that past decisions have on the total
expected reward.

DRL training algorithms are typically divided into three categories [55]:

1. Value-Based Algorithms. These algorithms attempt to learn a value func-
tion (called the Q-function) that assigns a value to each ⟨state,action⟩ pair.
This iterative process relies on the Bellman equation [44] to update the
function: Qπ(st, at) = r+γmaxat+1

Qπ(st+1, at+1). Double Deep Q-Network
(DDQN) is an optimized implementation of this algorithm [60].

2. Policy-Gradient Algorithms. This class contains algorithms that attempt
to directly learn the optimal policy, instead of assessing the value func-
tion. The algorithms in this class are typically based on the policy gradi-
ent theorem [56]. A common implementation is the Reinforce algorithm [67],
which aims to directly optimize the following objective function, over the
parameters θ of the DNN, through a gradient ascent process: ∇θJ(πθ) =

E[
∑T
t ∇θ log πθ(at|st) · rt]. For additional details, see [67].

3. Actor-Critic Algorithms. This family of hybrid algorithms combines the
two previous approaches. The key idea is to use two different neural networks:
a critic, which learns the value function from the data, and an actor, which
iteratively improves the policy by maximizing the value function learned by
the critic. A state-of-the-art implementation of this approach is the Proximal
Policy Optimization (PPO) algorithm [50].

All of these approaches are commonly used in modern DRL; and each has its
advantages and disadvantages. For example, the value-based methods typically
require only small sets of examples to learn from, but are unable to learn policies
for continuous spaces of ⟨state,action⟩ pairs. In contrast, the policy-gradient
methods can learn continuous policies, but suffer from a low sample efficiency
and large memory requirements. Actor-Critic algorithms attempt to combine
the benefits of value-based and policy-gradient methods, but suffer from high
instability, particularly in the early stages of training, when the value function
learned by the critic is unreliable.

DNN Verification and DRL Verification. A DNN verification algorithm
receives as input [31]: (i) a trained DNN N ; (ii) a precondition P on the DNN’s
inputs, which limits their possible assignments to inputs of interest; and (iii) a
postcondition Q on N ’s output, which usually encodes the negation of the be-
havior we would like N to exhibit on inputs that satisfy P . The verification
algorithm then searches for a concrete input x0 that satisfies P (x0)∧Q(N(x0)),
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and returns one of the following outputs: (i) SAT, along with a concrete input
x0 that satisfies the given constraints; or (ii) UNSAT, indicating that no such x0
exists. When Q encodes the negation of the required property, a SAT result in-
dicates that the property is violated (and the returned input x0 triggers a bug),
while an UNSAT result indicates that the property holds.

For example, suppose we wish to verify that the DNN in Fig. 1 always outputs
a value strictly smaller than 7; i.e., that for any input x = ⟨v11 , v21⟩, it holds that
N(x) = v14 < 7. This is encoded as a verification query by choosing a precondition
that does not restrict the input, i.e., P = (true), and by setting Q = (v14 ≥ 7),
which is the negation of our desired property. For this verification query, a sound
verifier will return SAT, alongside a feasible counterexample such as x = ⟨0, 2⟩,
which produces v14 = 22 ≥ 7. Hence, the property does not hold for this DNN.

To date, the DNN verification community has focused primarily on DNNs
used for a single, non-reactive, invocation [24,28,31,40,64]. Some work has been
carried out on verifying DRL networks, which pose greater challenges: beyond
the general scalability challenges of DNN verification, in DRL verification we
must also take into account that agents typically interact with a reactive envi-
ronment [6,9,15,21,30]. In particular, these agents are implemented with neural
networks that are invoked multiple times, and the inputs of each invocation are
usually affected by the outputs of the previous invocations. This fact aggre-
gates the scalability limitations (because multiple invocations must be encoded
in each query), and also makes the task of defining P and Q significantly more
complex [6].

3 Case Study: Robotic Mapless Navigation

Robotis Turtlebot 3. In our case study, we focus on the Robotis Turtlebot 3
robot (Turtlebot, for short), depicted in Fig. 2. Given its relatively low cost and
efficient sensor configuration, this robot is widely used in robotics research [7,46].
In particular, this robotic platform has the actuators required for moving and
turning, as well as multiple lidar sensors for detecting obstacles. These sensors
use laser beams to approximate the distance to the nearest object in their direc-
tion [65]. In our experiments, we used a configuration with seven lidar sensors,
each with a maximal range of one meter. Each pair of sensors are 30◦ apart,
thus allowing coverage of 180◦. The images in Fig. 3 depict a simulation of the
Turtlebot navigating through an arena, and highlight the lidar beams. See the
full version of this paper [5] for additional details.

The Mapless Navigation Problem. Robotic navigation is the task of navi-
gating a robot (in our case, the Turtlebot) through an arena. The robot’s goal
is to reach a target destination while adhering to predefined restrictions; e.g.,
selecting as short a path as possible, avoiding obstacles, or optimizing energy
consumption. In recent years, robotic navigation tasks have received a great deal
of attention [63,68], primarily due to their applicability to autonomous vehicles.
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Fig. 2: The Robotis Turtlebot 3 platform, navigating in an arena. The image on
the left depicts a static robot, and the image on the right depicts the robot
moving towards the destination (the yellow square), while avoiding two wooden
obstacles in its route.

We study here the popular mapless variant of the robotic navigation problem,
where the robot can rely only on local observations (i.e., its sensors), without
any information about the arena’s structure or additional data from external
sources. In this setting, which has been studied extensively [58], the robot has
access to the relative location of the target, but does not have a complete map of
the arena. This makes mapless navigation a partially observable problem, and
among the most challenging tasks to solve in the robotics domain [13,58,70].

DRL-Controlled Mapless Navigation. State-of-the-art solutions to map-
less navigation suggest training a DRL policy to control the robot. Such DRL-
based solutions have obtained outstanding results from a performance point of
view [47]. For example, recent work by Marchesini et al. [43] has demonstrated
how DRL-based agents can be applied to control the Turtlebot in a mapless
navigation setting, by training a DNN with a simple architecture, including two
hidden layers. Following this recent work, in our case study we used the following
topology for DRL policies:

– An input layer with nine neurons. These include seven neurons representing
the Turtlebot’s lidar readings. The additional, non-lidar inputs include one
neuron representing the relative angle between the robot and the target, and
one neuron representing the robot’s distance from the target. A scheme of
the inputs appears in Fig. 4a.

– Two subsequent fully-connected layers, each consisting of 16 neurons, and
followed by a ReLU activation layer.

– An output layer with three neurons, each corresponding to a different (dis-
crete) action that the agent can choose to execute in the following step: move
FORWARD, turn LEFT, or turn RIGHT.1

1 It has been shown that discrete controllers achieve excellent performance in robotic
navigation, often outperforming continuous controllers in a large variety of tasks [43].
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Fig. 3: An example of a simulated Turtlebot entering a 2-step loop. The white
and red dashed lines represent the lidar beams (white indicates “clear”, and red
indicates that an obstacle is detected). The yellow square represents the target
position; and the blue arrows indicate rotation. In the first row, from left to
right, the Turtlebot is stuck in an infinite loop, alternating between right and
left turns. Given the deterministic nature of the system, the agent will continue
to select these same actions, ad infinitum. In the second row, from left to right,
we present an almost identical configuration, but with an obstacle located 30◦

to the robot’s left (circled in blue). The presence of the obstacle changes the
input to the DNN, and allows the Turtlebot to avoid entering the infinite loop;
instead, it successfully navigates to the target.

While the aforementioned DRL topology has been shown to be efficient for
robotic navigation tasks, finding the optimal training algorithm and reward func-
tion is still an open problem. As part of our work, we trained multiple deter-
ministic policies using the DRL algorithms presented in Section 2: DDQN [60],
Reinforce [67], and PPO [50]. For the reward function, we used the following
formulation:

Rt = (dt−1 − dt) · α− β,

where dt is the distance from the target at time-step t; α is a normalization factor
used to guarantee the stability of the gradient; and β is a fixed value, decreased
at each time-step, and resulting in a total penalty proportional to the length
of the path (by minimizing this penalty, the agent is encouraged to reach the
target quickly). In our evaluation, we empirically selected α = 3 and β = 0.001.
Additionally, we added a final reward of +1 when the robot reached the target,
or −1 in case it collided with an obstacle. For additional information regarding
the training phase, see the full version of this paper [5].

DRL Training and Results. Using the training algorithms mentioned in Sec-
tion 2, we trained a collection of DRL agents to solve the Turtlebot mapless
navigation problem. We ran a stochastic training process, and thus obtained
varied agents; of these, we only kept those that achieved a success rate of at
least 96% during training. A total of 780 models were selected, consisting of
260 models per each of the three training algorithms. More specifically, for each
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(a) The DRL controller (b) Average success rates

Fig. 4: (a) The DRL controller used for the robot in our case study. The DRL
has nine input neurons: seven lidar sensor readings (blue), one input indicating
the relative angle (orange) between the robot and the target, and one input
indicating the distance (green) between the robot and the target. (b) The average
success rates of models trained by each of the three DRL training algorithms,
per training episode.

algorithm, all 260 models were generated from 52 random seeds. Each seed gave
rise to a family of 5 models, where the individual family members differ in the
number of training episodes used for training them. Fig. 4b shows the trained
models’ average success rate, for each algorithm used. We note that PPO was
generally the fastest to achieve high accuracy. However, all three training algo-
rithms successfully produced highly accurate agents.

4 Using Verification for Model Selection

All of our trained models achieved very high success rates, and so, at face value,
there was no reason to favor one over the other. However, as we show next, a
verification-based approach can expose multiple subtle differences between them.
As our evaluation criteria, we define two properties of interest that are derived
from the main goals of the robotic controller: (i) reaching the target; and (ii)
avoiding collision with obstacles. Employing verification, we use these criteria to
identify models that may fail to fulfill their goals, e.g., because they collide with
various obstacles, are overly conservative, or may enter infinite loops without
reaching the target. We now define the properties that we used, and the results
of their verification are discussed in Section 5. Additional details regarding the
precise encoding of our queries appear the full version of this paper [5].

Collision Avoidance. Collision avoidance is a fundamental and ubiquitous
safety property [14] for navigation agents. In the context of Turtlebot, our goal
is to check whether there exists a setting in which the robot is facing an obstacle,
and chooses to move forward — even though it has at least one other viable
option, in the form of a direction in which it is not blocked. In such situations,
it is clearly preferable to choose to turn LEFT or RIGHT instead of choosing to
move FORWARD and collide. See Fig. 5 for an illustration.
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Fig. 5: Example of a single-step collision. The robot is not blocked on its right
and can avoid the obstacle by turning (panel A), but it still chooses to move
forward — and collides (panel B).

Given that turning LEFT or RIGHT produces an in-place rotation (i.e., the
robot does not change its position), the only action that can cause a collision
is FORWARD. In particular, a collision can happen when an obstacle is directly in
front of the robot, or is slightly off to one side (just outside the front lidar’s field
of detection). More formally, we consider the safety property “the robot does not
collide at the next step”, with three different types of collisions:

– FORWARD COLLISION: the robot detects an obstacle straight ahead, but nev-
ertheless makes a step forward and collides with the obstacle.

– LEFT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the left (using the lidar beam that is 30◦ to the left of the one point-
ing straight ahead), but makes a single step forward and collides with the
obstacle. The shape of the robot is such that in this setting, a collision is
unavoidable.

– RIGHT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the right, but makes a single step forward and collides with the obstacle.

Recall that in mapless navigation, all observations are local — the robot has
no sense of the global map, and can encounter any possible obstacle configu-
ration (i.e., any possible sensor reading). Thus, in encoding these properties,
we considered a single invocation of the DRL agent’s DNN, with the following
constraints:

1. All the sensors that are not in the direction of the obstacle receive a lidar
input indicating that the robot can move either LEFT or RIGHT without risk
of collision. This is encoded by lower-bounding these inputs.

2. The single input in the direction of the obstacle is upper-bounded by a value
matching the representation of an obstacle, close enough to the robot so that
it will collide if it makes a move FORWARD.

3. The input representing the distance to the target is lower-bounded, indicat-
ing that the target has not yet been reached (encouraging the agent to make
a move).
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The exact encoding of these properties is based on the physical characteristics
of the robot and the lidar sensors, as explained in the full version of this paper [5].

Infinite Loops. Whereas collision avoidance is the natural safety property to
verify in mapless navigation controllers, checking that progress is eventually
made towards the target is the natural liveness property. Unfortunately, this
property is difficult to formulate due to the absence of a complete map. Instead,
we settle for a weaker property, and focus on verifying that the robot does not
enter infinite loops (which would prevent it from ever reaching the target).

Unlike the case of collision avoidance, where a single step of the DRL agent
could constitute a violation, here we need to reason about multiple consecutive
invocations of the DRL controller, in order to identify infinite loops. This, again,
is difficult to encode due to the absence of a global map, and so we focus on
in-place loops: infinite sequences of steps in which the robot turns LEFT and
RIGHT, but without ever moving FORWARD, thus maintaining its current location
ad infinitum.

Our queries for identifying in-place loops encode that: (i) the robot does
not reach the target in the first step; (ii) in the following k steps, the robot
never moves FORWARD, i.e., it only performs turns; and (iii) the robot returns
to an already-visited configuration, guaranteeing that the same behavior will be
repeated by our deterministic agents. The various queries differ in the choice of
k, as well as in the sequence of turns performed by the robot. Specifically, we
encode queries for identifying the following kinds of loops:

– ALTERNATING LOOP: a loop where the robot performs an infinite sequence of
⟨LEFT, RIGHT, LEFT, RIGHT, LEFT...⟩ moves. A query for identifying this loop
encodes k = 2 consecutive invocations of the DRL agent, after which the
robot’s sensors will again report the exact same reading, leading to an infinite
loop. An example appears in Fig. 3. The encoding uses the “sliding window”
principle, on which we elaborate later.

– LEFT CYCLE, RIGHT CYCLE: loops in which the robot performs an infinite
sequence of ⟨LEFT, LEFT, LEFT, . . .⟩ or ⟨RIGHT, RIGHT, RIGHT, . . .⟩ operations
accordingly. Because the Turtlebot turns at a 30◦ angle, this loop is encoded
as a sequence of k = 360◦/30◦ = 12 consecutive invocations of the DRL
agent’s DNN, all of which produce the same turning action (either LEFT or
RIGHT). Using the sliding window principle guarantees that the robot returns
to the same exact configuration after performing this loop, indicating that
it will never perform any other action.

We also note that all the loop-identification queries include a condition for
ensuring that the robot is not blocked from all directions. Consequently, any
loops that are discovered demonstrate a clearly suboptimal behavior.

Specific Behavior Profiles. In our experiments, we noticed that the safe poli-
cies, i.e., the ones that do not cause the robot to collide, displayed a wide spec-
trum of different behaviors when navigating to the target. These differences
occurred not only between policies that were trained by different algorithms,
but also between policies trained by the same reward strategy — indicating that
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these differences are, at least partially, due to the stochastic realization of the
DRL training process.

Fig. 6: Comparing paths selected by
policies with different bravery levels.
Path A takes the Turtlebot close to the
obstacle (red area), and is the short-
est. Path B maintains a greater dis-
tance from the obstacle (light red area),
and is consequently longer. Finally, path
C maintains such a significant distance
from the obstacle (white area) that it is
unable to reach the target.

Specifically, we noticed high vari-
ability in the length of the routes se-
lected by the DRL policy in order
to reach the given target: while some
policies demonstrated short, efficient,
paths that passed very close to ob-
stacles, other policies demonstrated a
much more conservative behavior, by
selecting longer paths, and avoiding
getting close to obstacles (an example
appears in Fig. 6).

Thus, we used our verification-
driven approach to quantify how con-
servative the learned DRL agent is
in the mapless navigation setting. In-
tuitively, a highly conservative pol-
icy will keep a significant safety mar-
gin from obstacles (possibly taking a
longer route to reach its destination),
whereas a “braver” and less conser-
vative controller would risk venturing
closer to obstacles. In the case of Turtlebot, the preferable DRL policies are the
ones that guarantee the robot’s safety (with respect to collision avoidance), and
demonstrate a high level of bravery — as these policies tend to take shorter, op-
timized paths (see path A in Fig. 6), which lead to reduced energy consumption
over the entire trail.

Bravery assessment is performed by encoding verification queries that identify
situations in which the Turtlebot can move forward, but its control policy chooses
not to. Specifically, we encode single invocations of the DRL model, in which we
bound the lidar inputs to indicate that the Turtlebot is sufficiently distant from
any obstacle and can safely move forward. We then use the verifier to determine
whether, in this setting, a FORWARD output is possible. By altering and adjusting
the bounds on the central lidar sensor, we can control how far away the robot
perceives the obstacle to be. If we limit this distance to large values and the
policy will still not move FORWARD, it is considered conservative; otherwise, it is
considered brave. By conducting a binary search over these bounds [6], we can
identify the shortest distance from an obstacle for which the policy safely orders
the robot to move FORWARD. This value’s inverse then serves as a bravery score
for that policy.

Design-for-Verification: Sliding Windows. A significant challenge that we
faced in encoding our verification properties, especially those that pertain to
multiple consecutive invocations of the DRL policy, had to do with the local
nature of the sensor readings that serve as input to the DNN. Specifically, if

GOAL

OBSTACLE

A

B

C
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the robot is in some initial configuration that leads to a sensor input x, and
then chooses to move forward and reaches a successor configuration in which the
sensor input is x′, some connection between x and x′ must be expressed as part
of the verification query (i.e., nearby obstacles that exist in x cannot suddenly
vanish in x′). In the absence of a global map, this is difficult to enforce.

In order to circumvent this difficulty, we used the sliding window princi-
ple, which has proven quite useful in similar settings [6, 21]. Intuitively, the
idea is to focus on scenarios where the connections between x and x′ are par-
ticularly straightforward to encode — in fact, most of the sensor information
that appeared in x also appears in x′. This approach allows us to encode mul-
tistep queries, and is also beneficial in terms of performance: typically, adding
sliding-window constraints reduces the search space explored by the verifier, and
expedites solving the query.

In the Turtlebot setting, this is achieved by selecting a robot configuration in
which the angle between two neighboring lidar sensors is identical to the turning
angle of the robot (in our case, 30◦). This guarantees, for example, that if the
central lidar sensor observes an obstacle at distance d and the robot chooses to
turn RIGHT, then at the next step, the lidar sensor just to the left of the central
sensor must detect the same obstacle, at the same distance d. More generally,
if at time-step t the 7 lidar readings (from left to right) are ⟨l1, . . . , l7⟩ and the
robot turns RIGHT, then at time-step t + 1 the 7 readings are ⟨l2, l3, . . . , l7, l8⟩,
where only l8 is a new reading. The case for a LEFT turn is symmetrical. By
placing these constraints on consecutive states encountered by the robot, we
were able to encode complex properties that involve multiple time-steps, e.g., as
in the aforementioned infinite loops. An illustration appears in Fig. 3.

5 Experimental Evaluation

Next, we ran verification queries with the aforementioned properties, in order to
assess the quality of our trained DRL policies. The results are reported below.
In many cases, we discovered configurations in which the policies would cause
the robot to collide or enter infinite loops; and we later validated the correctness
of these results using a physical robot. We strongly encourage the reader to
watch a short video clip that demonstrates some of these results [4]. Our code
and benchmarks are also available online [3]. In our experiments, We used the
Marabou verification engine [33] as our backend, although other engines could
be used as well. For additional details regarding the experiments, we refer the
reader to the full version of this paper [5].

Model Selection. In this set of experiments, we used verification to assess
our trained models. Specifically, we used each of the three training algorithms
(DDQN, Reinforce, PPO) to train 260 models, creating a total of 780 models.
For each of these, we verified six properties of interest: three collision proper-
ties (FORWARD COLLISION, LEFT COLLISION, RIGHT COLLISION), and three loop
properties (ALTERNATING LOOP, LEFT CYCLE, RIGHT CYCLE), as described in Sec-
tion 4. This gives a total of 4680 verification queries. We ran all queries with a
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LEFT COLLISION FORWARD COLLISION RIGHT COLLISION

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT

DDQN 259 1 248 12 258 2

Reinforce 255 5 254 6 252 8

PPO 196 64 197 63 207 53

ALTERNATING LOOP LEFT CYCLE RIGHT CYCLE INSTABILITY

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT # alternations

DDQN 260 0 56 77 56 61 21

Reinforce 145 115 5 185 120 97 10

PPO 214 45 26 198 30 198 1

Table 1: Results of the policy verification queries. We verified six properties over
each of the 260 models trained per algorithm; SAT indicates that the property
was violated, whereas UNSAT indicates that it held (to reduce clutter, we omit
TIMEOUT and FAIL results). The rightmost column reports the stability values of
the various training methods. For the full results see [3].

TIMEOUT value of 12 hours and a MEMOUT limit of 2G; the results are summarized
in Table 1. The single-step collision queries usually terminated within seconds,
and the 2-step queries encoding an ALTERNATING LOOP usually terminated within
minutes. The 12-step cycle queries, which are more complex, usually ran for a
few hours. 9.6% of all queries hit the TIMEOUT limit (all from the 12-step cycle
category), and none of the queries hit the MEMOUT limit.2

Our results exposed various differences between the trained models. Specif-
ically, of the 780 models checked, 752 (over 96%) violated at least one of the
single-step collision properties. These 752 collision-prone models include all 260
DDQN-trained models, 256 Reinforce models, and 236 PPO models. Further-
more, when we conducted a model filtering process based on all six properties
(three collisions and three infinite loops), we discovered that 778 models out
of the total of 780 (over 99.7%!) violated at least one property. The only two
models that passed our filtering process were trained by the PPO algorithm.

Further analyzing the results, we observed that PPO models tended to be
safer to use than those trained by other algorithms: they usually had the fewest
violations per property. However, there are cases in which PPO proved less suc-
cessful. For example, our results indicate that PPO-trained models are more
prone to enter an ALTERNATING LOOP than those trained by Reinforce. Specif-
ically, 214 (82.3%) of the PPO models have entered this undesired state, com-
pared to 145 (55.8%) of the Reinforce models. We also point out that, similarly
to the case with collision properties, all DDQN models violated this property.

Finally, when considering 12-step cycles (either LEFT CYCLE or RIGHT CYCLE),
44.8% of the DDQN models entered such cycles, compared to 30.7% of the Rein-
force models, and just 12.4% of the PPO models. In computing these results, we

2 We note that two queries failed due to internal errors in Marabou.
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computed the fraction of violations (SAT queries) out of the number of queries
that did not time out or fail, and aggregated SAT results for both cycle directions.

Interestingly, in some cases, we observed a bias toward violating a certain
subcase of various properties. For example, in the case of entering full cycles —
although 125 (out of 520) queries indicated that Reinforce-trained agents may
enter a cycle in either direction, in 96% of these violations, the agent entered a
RIGHT CYCLE. This bias is not present in models trained by the other algorithms,
where the violations are roughly evenly divided between cycles in both directions.

We find that our results demonstrate that different “black-box” algorithms
generalize very differently with respect to various properties. In our setting, PPO
produces the safest models, while DDQN tends to produce models with a higher
number of violations. We note that this does not necessarily indicate that PPO-
trained models perform better, but rather that they are more robust to corner
cases. Using our filtering mechanism, it is possible to select the safest models
among the available, seemingly equivalent candidates.

Next, we used verification to compute the bravery score of the various models.
Using a binary search, we computed for each model the minimal distance a dead-
ahead obstacle needs to have for the robot to safely move forward. The search
range was [0.18, 1] meters, and the optimal values were computed up to a 0.01
precision (see the full version of this paper [5] for additional details). Almost all
binary searches terminated within minutes, and none hit the TIMEOUT threshold.

By first filtering the models based on their safe behavior, and then by their
bravery scores, we are able to find the few models that are both safe (do not col-
lide), and not overly conservative. These models tend to take efficient paths, and
may come close to an obstacle, but without colliding with it. We also point out
that over-conservativeness may significantly reduce the success rate in specific
scenarios, such as cases in which the obstacle is close to the target. Specifically,
of the only two models that survived the first filtering stage, one is considerably
more conservative than the other — requiring the obstacle to be twice as distant
as the other, braver, model requires it to be, before moving forward.

Algorithm Stability Analysis. As part of our experiments, we used our
method to assess the three training algorithms — DDQN, PPO, and Reinforce.
Recall that we used each algorithm to train 52 families of 5 models each, in which
the models from the same family are generated from the same random seed, but
with a different number of training iterations. While all models obtained a high
success rate, we wanted to check how often it occurred that a model success-
fully learned to satisfy a desirable property after some training iterations, only
to forget it after additional iterations. Specifically, we focused on the 12-step
full-cycle properties (LEFT CYCLE and RIGHT CYCLE), and for each family of 5
models checked whether some models satisfied the property while others did not.

We define a family of models to be unstable in the case where a property holds
in the family, but ceases to hold for another model from the same family with
a higher number of training iterations. Intuitively, this means that the model
“forgot” a desirable property as training progressed. The instability value of
each algorithm type is defined to be the number of unstable 5-member families.



Verifying Learning-Based Robotic Navigation Systems 621

Although all three algorithms produced highly accurate models, they dis-
played significant differences in the stability of their produced policies, as can
be seen in the rightmost column of Table 1. Recall that we trained 52 families
of models using each algorithm, and then tested their stability with respect to
two properties (corresponding to the two full cycle types). Of these, the DDQN
models display 21 unstable alternations — more than twice the number of al-
terations demonstrated by Reinforce models (10), and significantly higher than
the number of alternations observed among the PPO models (1).

These results shed light on the nature of these training algorithms — indi-
cating that DDQN is a significantly less stable training algorithm, compared to
PPO and Reinforce. This is in line with previous observations in non-verification-
related research [50], and is not surprising, as the primary objective of PPO is to
limit the changes the optimizer performs between consecutive training iterations.

Gradient-Based Methods. We also conducted a thorough comparison be-
tween our verification-based approach and competing gradient-based methods.
Although gradient-based attacks are extremely scalable, our results (summarized
in [5]) show that they may miss many of the violations found by our complete,
verification-based procedure. For example, when searching for collisions, our ap-
proach discovered a total of 2126 SAT results, while the gradient-based method
discovered only 1421 SAT results — a 33% decrease (!). In addition, given that
gradient-based methods are unable to return UNSAT, they are also incapable
of proving that a property always holds, and hence cannot formally guarantee
the safety of a policy in question. Thus, performing model selection based on
gradient-based methods could lead to skewed results. We refer the reader to the
full version of this paper [5], in which we elaborate on gradient attacks and the
experiments we ran, demonstrating the advantages of our approach for model
selection, when compared to gradient-based methods.

6 Related Work

Due to the increasing popularity of DNNs, the formal methods community has
put forward a plethora of tools and approaches for verifying DNN correctness
[20,24,26,28,31–33,36,39,52,59]. Recently, the verification of systems involving
multiple DNN invocations, as well as hybrid systems with DNN components,
has been receiving significant attention [6,9,17,18,22,34,54,61]. Our work here
is another step toward applying DNN verification techniques to additional, real-
world systems and properties of interest.

In the robotics domain, multiple approaches exist for increasing the reliability
of learning-based systems [48,62,69]; however, these methods are mostly heuristic
in nature [1,23,42]. To date, existing techniques rely mostly on Lagrangian mul-
tipliers [38,49,53], and do not provide formal safety guarantees; rather, they op-
timize the training in an attempt to learn the required policies [12]. Other, more
formal approaches focus solely on the systems’ input-output relations [15,41],
without considering multiple invocations of the agent and its interactions with
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the environment. Thus, existing methods are not able to provide rigorous guar-
antees regarding the correctness of multistep robotic systems, and do not take
into account sequential decision making — which renders them insufficient for
detecting various safety and liveness violations.

Our approach is orthogonal and complementary to many existing safe DRL
techniques. Reward reshaping and shielding techniques (e.g., [2]) improve safety
by altering the training loop, but typically afford no formal guarantees. Our
approach can be used to complement them, by selecting the most suitable policy
from a pool of candidates, post-training. Guard rules and runtime shields are
beneficial for preventing undesirable behavior of a DNN agent, but are sometimes
less suited for specifying the desired actions it should take instead. In contrast,
our approach allows selecting the optimal policy from a pool of candidates,
without altering its decision-making.

7 Conclusion

Through the case study described in this paper, we demonstrate that current
verification technology is applicable to real-world systems. We show this by ap-
plying verification techniques for improving the navigation of DRL-based robotic
systems. We demonstrate how off-the-shelf verification engines can be used to
conduct effective model selection, as well as gain insights into the stability of
state-of-the-art training algorithms. As far as we are aware, ours is the first work
to demonstrate the use of formal verification techniques on multistep properties
of actual, real-world robotic navigation platforms. We also believe the techniques
developed here will allow the use of verification to improve additional multistep
systems (autonomous vehicles, surgery-aiding robots, etc.), in which we can im-
pose a transition function between subsequent steps. However, our approach is
limited by DNN-verification technology, which we use as a black-box backend. As
that technology becomes more scalable, so will our approach. Moving forward,
we plan to generalize our work to richer environments — such as cases where
a memory-enhanced agent interacts with moving objects, or even with multiple
agents in the same arena, as well as running additional experiments with deeper
networks, and more complex DRL systems. In addition, we see probabilistic
verification of stochastic policies as interesting future work.
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Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning.
Neural Networks, 151:34–47, 2022.

62. A. Wachi and Y. Sui. Safe Reinforcement Learning in Constrained Markov Decision
Processes. In Proc. 37th Int. Conf. on Machine Learning (ICML), pages 9797–9806,
2020.

63. A. Wahid, A. Toshev, M. Fiser, and T. Lee. Long Range Neural Navigation Policies
for the Real World. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 82–89, 2019.

64. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis
of Neural Networks using Symbolic Intervals. In Proc. 27th USENIX Security
Symposium, pages 1599–1614, 2018.

65. K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, and S. Mita. Lidar Scan Feature
for Localization with Highly Precise 3-D Map. In Proc. IEEE Intelligent Vehicles
Symposium (IV), pages 1345–1350, 2014.

66. H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska. Verification
of Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis. In
Proc. 24th European Conf. on Artificial Intelligence (ECAI), pages 1690–1697,
2020.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356


Verifying Learning-Based Robotic Navigation Systems 627

67. J. Zhang, J. Kim, B. O’Donoghue, and S. Boyd. Sample Efficient Reinforcement
Learning with REINFORCE, 2020. Technical Report. https://arxiv.org/abs/
2010.11364.

68. J. Zhang, J. Springenberg, J. Boedecker, and W. Burgard. Deep Reinforcement
Learning with Successor Features for Navigation across Similar Environments. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2017.

69. L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao. Safe Reinforcement
Learning with Stability Guarantee for Motion Planning of Autonomous Vehicles.
IEEE Transactions on Neural Networks and Learning Systems, 32(12):5435–5444,
2021.

70. O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard. Curiosity-Driven Explo-
ration for Mapless Navigation with Deep Reinforcement Learning, 2018. Technical
Report. https://arxiv.org/abs/1804.00456.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/1804.00456
http://creativecommons.org/licenses/by/4.0/


Make Flows Small Again: Revisiting the Flow
Framework

Roland Meyer1 , Thomas Wies2 , and Sebastian Wolff2(�)

1 TU Braunschweig, Braunschweig, Germany, roland.meyer@tu-bs.de
2 New York University, New York, USA, {wies,sebastian.wolff}@cs.nyu.edu

Abstract We present a new flow framework for separation logic reasoning about
programs that manipulate general graphs. The framework overcomes problems in
earlier developments: it is based on standard fixed point theory, guarantees least
flows, rules out vanishing flows, and has an easy to understand notion of footprint
as needed for soundness of the frame rule. In addition, we present algorithms for
automating the frame rule, which we evaluate on graph updates extracted from
linearizability proofs for concurrent data structures. The evaluation demonstrates
that our algorithms help to automate key aspects of these proofs that have previ-
ously relied on user guidance or heuristics.

Keywords: Separation Logic · Graph Algorithms · Frame Inference.

1 Introduction

The flow framework [23, 24] is an abstraction mechanism based on separation logic [5,
32, 40] that enables reasoning about global inductive invariants of general graphs in
a local manner. The framework has proved useful to verify intricate algorithms that
are difficult to handle by other techniques, such as the Priority Inheritance Protocol,
object-oriented design patterns, and complex concurrent data structures [22,24,27,34].
However, these efforts have also exposed some rough corners in the underlying meta
theory that either limit expressivity or automation. In this paper, we propose a new meta
theory for the flow framework that aims to strike a balance between these conflicting
requirements. In addition, we present algorithms that aid proof automation.
Background. The central notion of the flow framework is that of a flow. Given a
commutative monoid (M,+, 0) (e.g. natural numbers with addition), and a graph with
nodes X and an edge function E : X ×X → M → M, a flow is a function fl : X → M
that satisfies the flow equation:

∀x ∈ X . fl(x ) = inx +
∑

y∈X E(y,x)(fl(y)) .

That is, fl is a fixed point of the function that assigns every node x an initial value
inx ∈ M, its inflow, and then propagates these values through the graph according
to the edge function. This is akin to a forward data flow analysis where the monoid
operation + is used as the join. By choosing an appropriate flow monoid, inflow, and
edge function, one can express inductive properties of graphs (reachability, sortedness,
etc.) in terms of conditions that refer only to each node’s flow value fl(x).

A graph endowed with an inflow and associated flow is a flow graph. An example
flow graph h is shown on the right-hand side of Fig. 1a. Here, the flow value fl(w) for
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Figure 1. (a) Two flow graphs h1 with nodes h1.X ={x, y, z } (left) and h2 with nodes
h2.X = { r, u, v } (center) for the flow monoid of natural numbers with addition. The
edge label λid stands for the identity function. Omitted edges are labeled by the con-
stant 0 function. Dashed edges represent the inflows. Nodes are labeled by their flow,
respectively, outflow. The right side shows the composition h = h1 ∗ h2. (b) Two flow
graphs h1 with h1.X = {u, x } (top) and h2 with h2.X = { v, w } (bottom) whose
composition is undefined due to vanishing flows.

a node w counts the number of paths from r to w. A flow graph can be partial and have
edges to nodes outside of X like the node u for h1 in Fig. 1a. If we include these nodes
in the computation of the flow, then their flow values constitute the outflow of the flow
graph. For instance, the outflow of h1 for u is 1.

Flow graphs are equipped with a notion of disjoint composition, h = h1 ∗ h2. An
example is given in Fig. 1a. The composition is only defined if the union of the flows
of h1 and h2 is again a flow of h . This may not always be the case. For instance, the
inflows and outflows of h1 and h2 may be mutually incompatible such as h1 sending
outflow 2 to u whereas the inflow to u in h2 is only 1.

Flow graph composition yields a separation algebra. That is, if we use flow graphs
as an abstraction of program states (e.g., the heap), then we can use separation logic to
reason locally about properties of programs that are expressed in terms of the induced
flow graphs. For example, suppose the program updates the flow graph h in Fig. 1a
to a new flow graph h ′ by inserting a new edge labeled λid between the nodes r and
u. This increases the flow of u and v from 1 to 2. We can break this update down as
follows. First, we decompose h into h1 and h2. Next, we obtain h ′

2 from h2 by inserting
the edge and updating the flow of u and v to 2. Finally, we compose h ′

2 again with
h1 to obtain h ′. Note that the composition h1 ∗ h ′

2 is still defined. This means that any
property expressed over the flow in the h1-portion of h still holds in h ′. This is the
well-known frame rule of separation logic, instantiated for flow graphs.

The crux in applying the frame rule is to show that the composition h1 ∗ h ′
2 is in-

deed defined. One can do this locally by showing that the update h2 � h ′
2 is frame-

preserving, i.e., for any h1 such that h1 ∗ h2 is defined, h1 ∗ h ′
2 is also defined.

Typically, the flow subgraphs involved in a frame-preserving update h2 � h ′
2 in-

clude more nodes than those immediately affected by the update. For instance, consider
the subgraphs of h and h ′ in our example that consist only of the nodes {r, u} directly
affected by inserting the edge. These subgraphs do not constitute a frame-preserving
update because inserting the edge between r and u also changes the outflow to v from
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1 to 2. Hence, the updated subgraph for {r, u} would no longer compose with the rest
of h where v’s flow is still 1 instead of 2. We refer to a set of nodes such as {r, u, v}
that identifies a frame-preserving update as the update’s footprint.

Meta theories of flow graphs. In addition to ensuring that flow graph composition
yields a separation algebra, there are two desiderata that one has to take into considera-
tion when designing a meta theory of flow graphs:

– Obtaining unique flows. When encoding inductive properties using flows, one is
often interested in a particular flow, most commonly the least fixed point of the
flow equation for a given inflow. One therefore needs a way to focus the reasoning
on the particular flow of interest.

– Identifying frame-preserving updates. In order to enable the application of the
frame rule, one needs a way to effectively compute candidate footprints and check
whether they identify frame-preserving updates.

The first subgoal is crucial for expressivity and the second one for proof automation.
Achieving one subgoals makes it more difficult to achieve the other. Specifically, con-
sider the meta theory proposed in [24]. It requires that the flow monoid (M,+, 0) is also
cancellative (m+n1=o and m+n2=o implies n1=n2). Requiring cancellativity has
the advantage that it is easy to check if an update h � h ′ is frame-preserving: it suffices
to show that h and h ′ have the same inflow and outflow. Cancellativity also ensures that
for each flow fl , there exists a unique inflow that produces fl . Hence, it is sufficient to
track only fl since the inflow is a derived quantity. However, the converse does not hold.

In fact, obtaining unique flows for cancellative M becomes more difficult. A natural
requirement that one would like to impose on M is that the pre-order induced by +
forms a complete partial order (cpo) or even a complete lattice. This way, one can focus
on the least flow, which is guaranteed to exist if one applies standard fixed point theo-
rems, imposing only mild assumptions on the edge functions. However, cancellativity
is inherently incompatible with standard domain-theoretic prerequisites. For instance,
the only ordered cancellative commutative monoid that is a directed cpo is the trivial
one: M0 = {0}. Similarly, M0 is the only such monoid that has a greatest element.

For cases where unique flows are desired, [24] imposes additional requirements on
the edge functions (nil-potent) or the graph structure (effectively acyclic). The former is
quite restrictive in terms of expressivity. The latter again complicates the computation
of frame-preserving updates: one now has to ensure that no cycles are introduced when
the updated graph h ′

2 is composed with its frame h1. In fact, for the effectively acyclic
case, [24] only provides a sufficient condition that a given footprint yields a frame-
preserving update but it gives no algorithm for computing such a footprint.

Contributions. In this paper, we propose a new meta theory of flows based on flow
monoids that form ω-cpos (but need not be cancellative). The cpo requirement yields
the desired least fixed point semantics. The differences in the requirements on the flow
monoid necessitate a new notion of flow graph composition. In particular, for a least
fixed point semantics of flows, h = h1 ∗ h2 is only defined if the flows of h1 and h2 do
not vanish. An example of such a situation is shown in Fig. 1b, where the flows in h1
and h2 would vanish to 0 in h1 ∗ h2 because the created cycle has no external inflow.
Moreover, an update h � h ′ is frame-preserving if h and h ′ route inflows to outflows
in the same way. We formalize this condition using a notion of contextual equivalence
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of the graphs’ transfer functions, which are the least fixed points of the flow equation,
parameterized by the inflows and restricted to the nodes outside the graphs. We then
identify conditions on the edge functions that are commonly satisfied in practice and
that allow us to effectively check contextual equivalence of transfer functions. This re-
sult is remarkable because the flow monoid can have infinite ascending chains and the
flow graphs can be cyclic. Building on this equivalence check, we propose an iterative
algorithm for computing footprints of updates. This algorithm enables the automation
of the frame rule for reasoning about programs manipulating flow graphs. We evalu-
ate the presented algorithms on a benchmark suite of flow graph updates that are ex-
tracted from linearizability proofs for concurrent search structures constructed by the
tool plankton [26,27]. The evaluation demonstrates that our algorithms help to automate
key aspects of these proofs that have previously relied on user guidance or heuristics.

2 Flow Graph Separation Algebra

We start with the presentation of our new separation algebra of flow graphs.
Given a commutative monoid (M,+, 0), we define the binary relation ≤ on M by

n ≤ m if there is o ∈ M with m = n+o. Flow values are drawn from a flow monoid, a
commutative monoid for which the relation ≤ is an ω-cpo. That is, ≤ is a partial order
and every ascending chain K = m0 ≤ m1 ≤ . . . in M has a least upper bound, denoted⊔
K. We expect n+

⊔
K=

⊔
(n+K). In the following, we fix a flow monoid (M,+, 0).

Let ContFun(M → M) be the continuous functions in M → M. Recall that a
function f : M → M is continuous [43] if it commutes with limits of ascending chains,
f(
⊔
K) =

⊔
f(K) for every chain K in M. We lift + and ≤ to functions M → M in

the expected way. An empty iterated sum
∑

i∈∅ mi is defined to be 0.

Lemma 1. (ContFun(M → M), ◦, id) is a monoid. Moreover, if (M,≤) is an ω-cpo,
so is (ContFun(M → M),≤).

A flow graph is a tuple h = (X ,E , in) consisting of a finite set of nodes X ⊆ N, a
set of edges E : X × N → ContFun(M → M) labeled by continuous functions, and
an inflow in : (N \X )×X → M. We use FG for the set of all flow graphs and denote
the empty flow graph by h∅ � (∅,∅,∅).

We define two derived functions for flow graphs. First, the flow is the least function
flow : X → M satisfying the flow equation: flow(x ) = inx + rhsx (flow), for all
x ∈ X . Here, inx �

∑
y∈(N\X ) in (y , x ) is a monoid value and rhsx �

∑
y∈X E(y,x)

is a function of type ContFun((X → M) → M). Finally, we also define the outflow
out : X × (N \X ) → M by out (x , y) � E(x ,y)(flow(x )).

Example 1. For linearizability proofs of concurrent search structures one can use a flow
that labels every data structure node x with its inset, the set of keys k′ such that a thread
searching for k′ may traverse the node x [22,23]. Translated to our setting, the relevant
flow monoid is the powerset of keys, P(Z ∪ {−∞,∞}), with set union as addition.
Figure 2 shows two keyset flow graphs that abstract potential states of a concurrent set
implementation based on sorted linked lists. When a key k is removed from the set,
the node x that stores k is first marked to indicate that x has been logically deleted. In
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Figure 2. Two flow graphs h1 (left) and h2 (right) with h1.X = h2.X = { l, t, r } for
the keyset flow monoid P(Z ∪ {−∞,∞}). The edge label λk for a key k denotes the
function λm. (m \ [−∞, k]).

a second step, x is then physically unlinked from the list. The idea of the abstraction
is that an edge leaving a node x that stores a key k is labeled by the function λk if x
is unmarked and otherwise by λ−∞. This is because a search for k′ ∈ Z will traverse
the edge leaving x iff k < k′ or x is marked. In the figure, l and r are assumed to be
unmarked, storing keys 6 and 8, respectively. Node t is assumed to be marked. Flow
graph h2 is obtained from h1 by physically unlinking the marked node t. Using the
keyset flow one can then express the crucial data structure invariants that are needed
for a linearizability proof based on local reasoning (e.g., the invariant that the logical
contents of a node is always a subset of its inset).

We note that the inflow of the global flow graph that abstracts the program state can
be used in the specification. In the example, one lets inr = Z for the root r of the data
structure and inx = ∅ for all other nodes to indicate that all searches start at r. ��

Composition without vanishing flows. To define the composition of flow graphs,
h1 ∗ h2, we proceed in two steps. We first define an auxiliary composition that may suf-
fer from vanishing flows, local flows that disappear in the composition. That is, this
composition is defined for the flow graphs shown in Fig. 1b. In the composed graph the
flow of each node is 0 where it was 1 before the composition—the flow vanishes. This
means that the auxiliary composition does not allow to lift lower bounds on the flow val-
ues from the individual components to the composed graph. Hence, the actual compo-
sition restricts the auxiliary composition to rule out such vanishing flows. Definedness
of the auxiliary composition requires disjointness of the nodes in h1 and h2. Moreover,
the outflow of one flow graph has to match the inflow expectations of the other:

h1 ## h2 if X1 ∩ X2 = ∅ ∧ ∀x ∈ X1, y ∈ X2. out1(x , y) = in2(x , y) ∧
out2(y , x ) = in1(y , x ) .

The auxiliary composition h1h2 removes the inflow provided by the other component:

h1  h2 � (X1  X2,E1  E2, (in1  in2)|(N\(X1�X2))×(X1�X2)) .

To rule out vanishing flows, we incorporate a suitable equality on the flows:

h1 # h2 if h1 ## h2 ∧ h1.flow  h2.flow = (h1  h2).flow .

Only if the latter equality holds, do we have the composition h1 ∗ h2 � h1  h2. It is
worth noting that h1.flow  h2.flow ≥ (h1  h2).flow always holds. What definedness
really asks for is the reverse inequality.

Recall from [5] that a separation algebra is a partial commutative monoid (Σ, ∗, emp)
with a set of units emp ⊆ Σ.

Lemma 2. (FG , ∗, { h∅ }) is a separation algebra.
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3 Frame-Preserving Updates

Since flow graphs form a separation algebra, we can use separation logic assertions
to describe sets of flow graphs as in [24] and then use them to prove separation logic
Hoare triples. A key proof rule used in such proofs is the frame rule. Given separation
logic assertions P1 and P2, and a command c, the frame rule states: if the Hoare triple
{P1} c {P2} is valid, then so is {P1 ∗F} c {P2 ∗F} for any frame F . The remainder of
the paper focuses on developing algorithms for automating this proof rule.

The flow graphs described by an assertion may have unbounded size (e.g., due to
the use of iterated separating conjunctions). We only consider bounded flow graphs in
the following; the unbounded case is known to be a challenge for which orthogonal
techniques are being developed (cf. Sect. 6). However, even if the flow graphs have
bounded size, there may still be infinitely many of them because the inflows and edge
functions are encoded symbolically in a logical theory of the flow monoid. For peda-
gogy, we present our algorithms in terms of concrete flow graphs rather than symbolic
ones. However, our development readily extends to symbolic representations assuming
the underlying flow monoid theory is decidable. In fact, our implementation discussed
in Sect. 5 works with symbolic flow graphs.

The soundness of the frame rule relies on the assumption that the state update in-
duced by the command c satisfies a certain locality condition. In our setting, this condi-
tion amounts to checking that the update of P1 under c is frame-preserving with respect
to flow graph composition. For the flow graphs h1 described by P1 and all flow graphs
h2 in the post image of h1 under c, this means that h1 # h implies h2 # h for all h .
Intuitively, h2 # h still holds if h1 and h2 transfer inflows to outflows in the same way.

Formally, for a flow graph h we define its transfer function tf (h) mapping inflows
to outflows, tf (h) : ((N \X )× X → M) → X × (N \X ) → M, by

tf (h)(in ′) � h[in 
→ in ′].out .

For a given inflow in , we also write tf (h1) =in tf (h2) to mean that for all inflows
in ′ ≤ in , tf (h1)(in ′) = tf (h2)(in

′).

Definition 1. Flow graphs h1, h2 are contextually equivalent, denoted h1 =ctx h2, if
we have h1.X = h2.X , h1.in = h2.in , and tf (h1) =h1.in tf (h2).

Theorem 1 (Frame Preservation). For all flow graphs h1 =ctx h2 and h , h1 # h if
and only if h2 # h and, in case of definedness, h1 ∗ h =ctx h2 ∗ h .

To automate the frame rule for a command c and a precondition P , we need to
identify a decomposition P = P1 ∗F so as to infer {P1} c {P2} and then apply the
frame rule to derive {P} c {Q} for the postcondition Q = P2 ∗F . This is closely related
to the frame inference problem [4]. When a command modifies a flow graph h1 to h2,
our goal is to identify a (hopefully small) set of nodes Y in h1 that are affected by this
update, the flow footprint. That is, Y captures the difference between the flow graphs
before and after the update and the complement of Y defines the frame. To make this
formal, we need the restriction of flow graphs to subsets of nodes, which then gives us
a notion of flow graph decomposition. Towards this, consider h and Y ⊆ N. We define

h|Y � (h.X ∩ Y , h.E |(h.X∩Y )×N, in)
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such that the inflow in satisfies in(z , y) � h.in(z , y) for all z ∈ N\h.X , y ∈ h.X ∩Y
and in(x , y) � h.E(x ,y)(h.flow(x )) for all x ∈ h.X \Y , y ∈ h.X ∩ Y .

Definition 2. Consider h1 and h2 with X � h1.X = h2.X and h1.in = h2.in . A
flow footprint for the difference between h1 and h2 is a subset of nodes Y ⊆ X so that
h1|Y =ctx h2|Y and h1|X\Y = h2|X\Y . The set of all such footprints is FFP(h1, h2).

Flow graphs over different sets of nodes or inflows never have a flow footprint. The
former requirement merely simplifies the presentation. To that end, we assume that all
nodes that will be allocated during program execution are already present in the initial
flow graph. This assumption can be lifted. The latter requirement is motivated by the
fact that the global inflow is part of the specification as noted earlier in Example 1.

Before we proceed with the problem of how to compute flow footprints, we high-
light some of their properties.

Lemma 3 (Footprint Monotonicity). If Z ∈ FFP(h1, h2) and Z ⊆ Y ⊆ h1.X , then
Y ∈ FFP(h1, h2).

A consequence of monotonicity is the existence of a canonical flow footprint: if
there is a flow footprint at all, then the set of all nodes will work as a footprint. Of
course this canonical footprint is undesirably large. It corresponds to the case where
one reasons about flow graph updates globally, forgoing the application of the frame
rule. Unfortunately, an inclusion-minimal flow footprint does not exist.

Proposition 1 (Canonical Footprints). We have: FFP(h1, h2) 	= ∅ if and only if
h1.X ∈ FFP(h1, h2). There is no inclusion-minimal flow footprint; in particular, the
set FFP(h1, h2) is not closed under intersection.

The proof of monotonicity requires a better understanding of the restriction opera-
tor, as provided by the following lemma.

Lemma 4 (Restriction). Consider h and Y ,Z ⊆ N. Then (i) h|Y .flow = h.flow |Y ,
(ii) h|Y # h|X\Y and h|Y ∗ h|X\Y = h , and (iii) (h|Y )|Z = h|Y∩Z .

Since flow footprints are defined via restriction, the lemma also shows that flow
footprints are well-behaved. For example, the restriction to the footprint Y does not
change the flow of a node y ∈ Y nor that of a node x ∈ h.X \ Y . More formally, this
means h|Y .flow(y) = h.flow(y) and h|X\Y .flow(x ) = h.flow(x ), by Lemma 4(i).

For our development, it will be convenient to have a more operational formulation
of the transfer function. Towards this, we understand the flow graph as a function that
takes an inflow as a parameter and yields a transformer of flow approximants:

h : ((N \X )× X → M) → (X → M) → X → M
defined by h[in](σ)(x ) = inx + rhsx (σ) .

Recall inx �
∑

y∈N\X in(y , x ) and rhsx (σ) =
∑

y∈X E(y,x)(σ(y)). The least fixed
point of h[in] is

⊔
i∈N h[in]i(⊥) with h0 = idX→M and hi+1 = hi ◦ h , by Kleene’s

theorem. Define out : (X →M)→X × (N\X )→M by out(σ)(y , z ) � E(y,z)(σ(y)).
This yields the following characterization of transfer functions and flows.

Lemma 5 (Transfer). For all flow graphs h we have (i) tf (h) = out ◦ (lfp.h[−]) and
(ii) lfp.h[h.in]) = h.flow .
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4 Computing Footprints

We present an algorithm for computing a footprint for the difference between two given
flow graphs. We proceed in two steps. We first give a high-level description of the
algorithm that ignores computability problems. In a second step, we show how to solve
the computability problems. Throughout the development, we will assume to have flow
graphs h1 and h2 over the same nodes X � h1.X = h2.X and with the same inflow
h1.in = h2.in . If this assumption fails, a flow footprint does not exist by definition.

4.1 Algorithm

We compute the flow footprint as a fixed point. We start with the footprint candidate
Z consisting of the nodes whose outgoing edges differ in h1 and h2. Then, we itera-
tively add the nodes whose outflow leaving the current footprint candidate Z differs in
h1|Z and h2|Z . That the outflow differs means that the transfer functions tf (h1|Z ) and
tf (h2|Z ) differ and thus the candidate Z is not a footprint. In turn, if all outflows match,
the transfer functions coincide and Z is a footprint as desired.

Technically, we compute the fixed point over the powerset lattice of nodes endowed
with a distinguished top element: (P(X )�, �) with P(X )�� P(X )  {�}. Element
� indicates a failure of the footprint computation. This may arise if the footprint is not
covered by X , i.e., extends beyond the flow graphs h1, h2.

Our fixed point computation starts from Z = odif h1,h2
⊆ X as defined by

odif h1,h2
� { x ∈ X | ∃z ∈ N.h1.E (x , z ) 	= h2.E (x , z ) } .

The fixed point then proceeds to extend Z as long as the transfer functions associated
with h1|Z and h2|Z do not match. To define the extension, we let the transfer failure of
Z ⊆ X be the successor nodes of Z that may receive different outflow from h1 and h2:

tfailh1,h2
(Z ) �

{
x ∈ N \ Z

∣∣∣∣∣
∃ in ≤ h1|Z .in ∃ z ∈ Z .

[tf (h1|Z )(in)](z , x ) 	= [tf (h2|Z )(in)](z , x )

}
.

This set is the reason why the current footprint candidate Z is not a footprint, that is,
Z /∈ FFP(h1, h2). Extending Z with the transfer failure yields a new candidate. We
check that the new candidate is covered by X (i.e., does not include nodes outside of
h1, h2). If the check fails, the new candidate is {�} to indicate that no footprint could
be computed. The following definition makes the extension procedure precise.

Definition 3. The function exth1,h2 : P(X )� → P(X )� is defined by

exth1,h2
(Z ) � tfailh1,h2

(Z ) 	⊆ X ? � : Z � odif h1,h2
� tfailh1,h2

(Z ) .

Iteratively extending the candidate Z with the transfer failure eventually produces a
footprint for the difference of h1 and h2, or fails with �. The approach is sound.

Theorem 2 (Soundness). Let F � lfp.exth1,h2
. If F 	=�, then F ∈FFP(h1, h2).
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Figure 3. Computing a footprint for the difference of h and h ′ iterates through the sets
Z0 � { r }, Z1 � { r, u }, and Z2 � { r, u, v }. The latter is the least fixed point of
exth,h′ and a footprint as desired, Z2 ∈ FFP(h, h ′).

Example 2. For an illustration consider Fig. 3. There, we apply the fixed point compu-
tation to find a footprint for the difference of h and h ′. As alluded to in Sect. 1, h ′ is the
result of inserting into h a new edge between nodes r and u labeled with λid .

The fixed point computation starts from Z0 � { r } = odif H,H′ as it is the only
node whose outgoing edges have changed. Next, we compute tfailh,h′(Z0). This yields
{u } because u receives 0 from Z0 in h but 1 in h ′ due to the new edge. The outflow
from Z0 to the remaining nodes coincides in h and h ′. Hence, the extension of Z0

with the transfer failure yields Z1 � exth,h′(Z0) = {u, r }. Similarly, we compute
tfailh,h′(Z1) and obtain Z2 � exth,h′(Z1) = { r, u, v }. Since v has no outgoing edges,
Z2 is the least fixed point of exth,h′ . Because Z2 is a subset of the nodes of h and h ′, it
is a footprint, Z2 ∈ FFP(h, h ′). ��

To obtain Theorem 2, we have to prove that the fixed point F � lfp.exth1,h2
is

indeed a footprint if F 	= �. That is, we have to establish the following two properties
according to Definition 2: (i) h1|F =ctx h2|F and (ii) h1|X\F = h2|X\F .

To see the latter one, note that the graph structures (the nodes and edges) of h1|X\F
and h2|X\F coincide because odif h1,h2

⊆ F . The inflows coincide as well because
they are, intuitively, comprised of the flow graph’s overall inflow h1.in = h2.in and the
outflow of the footprint, which is equal in both flow graphs due to h1|F =ctx h2|F .

The interesting part of the soundness proof is to establish property (i), the contex-
tual equivalence h1|F =ctx h2|F . Since F is a fixed point of exth1,h2

, we know that
tfailh1,h2

(Z ) = ∅ and thus the transfer functions of h1|F and h2|F coincide. Hence,
it suffices to establish h1|F .in = h2|F .in to obtain the desired contextual equivalence,
Definition 1. This key step in the proof is obtained with the help of the following lemma.

Lemma 6. Let odif h1,h2
⊆F ⊆X with tfailh1,h2

(F )=∅. Then h1|F .in=h2|F .in .

To establish the lemma one has to show that the inflow into F from the non-footprint
part Y � X \F coincides in h1 and h2. The challenge is a cyclic dependency in the flow:
the inflow from Y depends on the outflow of F , which depends on the inflow from Y.
To tackle this, we rephrase the flow equation for hi as a pairing of the two separate flow
equations for hi|F and hi|Y , for i ∈ { 1, 2 }. Intuitively, the pairings compute the flow
locally in hi|F and hi|Y for a fixed inflow (initially hi.in). Then, the inflow to hi|F
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Figure 4. Counterexample to completeness using the monoid (N∪{∞},max, 0). While
the set {x, y, z, u} is a footprint for the difference between flow graphs h1 and h2, our
fixed point will produce the candidates {x} and Z � {x, y, z} and then fail with {�}.

is updated to the inflow from outside hi and the inflow from hi|Y , and similarly for
the inflow to hi|Y . This is repeated until a fixed point is reach. Technically, we rely on
Bekić’s Lemma [1] to compute the pairings. Then, we observe tf (h1|F ) = tf (h2|F )
because tfailh1,h2

(F ) = ∅ as well as tf (h1|Y ) = tf (h2|Y ) because odif h1,h2
⊆ F .

Roughly, this means that the flow pairings for h1 and h2 must coincide as the individual
parts propagate the same values. Put differently, the updated inflow for h1|F and h2|F
as well as h1|Y and h2|Y coincide in each iteration. Overall, we get h1|F .in = h2|F .in .

Our computation of a flow footprint is forward, it starts from the nodes where the
flow graphs differ and follows the edges. It may therefore fail if predecessor nodes of
an iterate Z need to be considered to determine a flow footprint. For an example refer to
Fig. 4. Using the monoid (N∪{∞},max, 0), it is easy to see that the set {x, y, z, u } is a
footprint for the difference between h1 and h2. Our fixed point, however, will start with
{x } and extend this to Z � {x, y, z }. Let v be the node outside the flow graphs that y
is pointing to. Then, the next transfer failure is tfailh1,h2

(Z ) = { v } because for in < k
the outflow of y to v differs in h1|Z and h2|Z . Our approach fails to compute a footprint.

Fact 3 (Incompleteness) There are flow graphs h1 and h2 for which our algorithm is
not able to determine a flow footprint although one exists.

4.2 Comparing Transfer Functions

When implementing the above fixed point computation, the challenge is to prove the
equivalence between given transfer functions in order to obtain the transfer failure:
[tf (h1|Z )(−)](−, x ) = [tf (h2|Z )(−)](−, x )? Already the comparison of two functions
is known to be difficult to do algorithmically. What adds to the problem is that trans-
fer functions are defined as least fixed points, meaning we do not have a closed-form
representation of the functions to compare.

Our approach is to impose additional requirements on the set of edge functions. The
requirements are met in all our experiments, and so do not mean a limitation for the ap-
plicability of our approach. We show that if the edge functions are not only continuous
but also distributive, then the transfer functions can be understood in terms of paths
through the underlying flow graphs. If the edge functions are additionally decreasing
and the underlying monoid’s addition is idempotent, then acyclic paths are sufficient.
Both results do not hold for merely continuous edge functions.
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Distributivity. Our first additional assumption is that the edge functions f : M → M
are not only continuous, but also distributive in that f(m + n) = f(m) + f(n) for all
m,n ∈ M and f(0) = 0. We use DistFun(M) to refer to the set of all continuous and
distributive functions over M. The properties formulated in Lemma 1 carry over.

For continuous and distributive transfer functions, we can understand h[in]i in terms
of the paths through h[in] of length i. For example, i = 3 yields

[h[in]3](⊥)(z ) = inz +
∑
y∈X

E(y,z)( iny +
∑
x∈X

E(x ,y)(inx +
∑
u∈X

E(u,x)(⊥(u)) )

= inz +
∑
y∈X

E(y,z)(iny) +
∑
y∈X

∑
x∈X

E(y,z)(E(x ,y)(inx )) .

The first equality is by definition, the second is where distributivity comes in. In partic-
ular, ⊥(u) = 0 and so E(y,z)( E(x ,y)( E(u,x)( ⊥(u) ) ) = 0. The last term shows that
we forward the inflow given at a node x to an intermediary node y and from there to
the node z of interest. For higher powers of h[in], we take longer paths. For h[in]∗, we
thus obtain the sum over all nodes x and all paths from x to z through the flow graph.
We need some definitions to make this precise.

A path p through flow graph h is a finite, non-empty sequence of nodes all of which
belong to the flow graph except the last which lies outside:

p = x0 · . . . · xn · z ∈ X+ · (N \X )

where · denotes path concatenation. We use first(p) = x0 resp. last(p) = xn to extract
the first resp. last node from within the flow graph h . By Paths(h, x , y , z ) we denote
the set of all paths through flow graph h that start in node first(p) = x and leave h
from node last(p) = y to move to z ∈ N \ X . Given a set of nodes X ′ ⊆ X , we use
Paths(h,X ′, y , z ) for the union over all x ∈ X ′ of the sets Paths(h, x , y , z ). The path
induces the function Ep : M → M that composes the edge functions along the path:

Ex = id Ex .p = Ep ◦ E(x ,first(p)) .

Together with Lemma 5, the above analysis yields the first closed-form representation
of a flow graph’s transfer function, which so far has involved a fixed point computation.

Theorem 4 (Closed-Form Representation). If h is labeled over DistFun(M), then:

[tf (h)(in)](y , z ) =
∑

x ∈X

∑
p∈Paths(h,x ,y,z) Ep(inx ) .

Theorem 4 pushes the fixed point computation of transfer functions into the sets
Paths(h, x , y , z ) which are themselves defined inductively and potentially infinite. In
the following, we alleviate this problem without requiring acyclicity of the flow graph.
Idempotence. Our second assumption is that addition in the monoid is idempotent,
meaning m +m = m for all m ∈ M. Idempotence ensures the addition degenerates to
a join for comparable elements: m+n=m�n=n for all m ≤ n ∈ M. Unless stated
otherwise, we hereafter assume an idempotent addition.

With Theorem 4, it remains to compare sums over paths. With idempotence, we
show that we can further reduce the problem and reason over single paths rather than
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sums. We show that every path in h1 can be replaced by a set of paths in h2, and vice
versa. Even more, we only have to consider the paths from nodes where the edges
changed. The precise formulation of the path replacement condition is the following.

Definition 4. The path replacement condition for flow graphs h1 by h2 over the same
set of nodes X and labeled by DistDecFun(M) requires that for every x ∈ odif h1,h2

,
for every y ∈ X , and for every z ∈ N \X we have

∀ p ∈ Paths(h1, x , y , z ) ∃P ⊆ Paths(h2, x , y , z ). Ep ≤ EP �
∑

q∈P Eq .

Example 3. For the flow graphs h1 and h2 from Fig. 4, we have path replacement of
h1 by h2, and vice versa. To see this, consider the path p � x · z · u · y · v in h1 and
q � x · y · v in h2, where v is the node outside of h1, h2 that y points to. Since all edges
are labeled with λid , we have Ep = λid = Eq . It is worth noting that, in this example,
we can ignore the cycles in h1 and h2. In a moment, we will introduce restrictions on
edge functions in order to do avoid cycles in general.

Similarly, we have path replacement for the flow graphs from Fig. 2. To be precise,
Ep = λ8 = Eq for the paths p � l · t · r · v in h1 and q � l · r · v in h2. ��

The main result is that path replacement is sound and complete for proving equiva-
lence of transfer functions.

Theorem 5 (Path Replacement Principle). We have tf (h1) = tf (h2) if and only if
path replacement of h1 by h2 and of h2 by h1 hold.

The theorem is remarkable in several respects. First, one would expect we have
to replace the paths from all nodes in h1. Instead, we can focus on the nodes where
the outgoing edges changed. Second, one would expect the replacing paths P start
from arbitrary nodes in h2. Such a set of paths would yield a transfer function of type
(Y →M)→M. Instead, we can work with a function of type M→M. Even more, we
can focus on paths starting in the same node as the path we intend to replace. Finally, the
paths we use for replacement come without any constraints, leaving room for heuristics.

The proof starts from a full path replacement condition of h1 by h2, both over X and
labeled by DistFun(M). Full path replacement coincides with Definition 4 but draws x
from full X rather than x ∈ odif h1,h2

. Full path replacement characterizes equivalence
of the transfer functions in a monoid with idempotent addition in the case of continuous
and distributive edge functions.

Lemma 7. Full path replacement of h1 by h2 and h2 by h1 hold iff tf (h1) = tf (h2).

The result is a consequence of Theorem 4, which equates tf (h1) with the sum of the
Ep for all paths p ∈ Paths(h1, x , y , z ) for all x ∈ X . Full path replacement allows us to
sum over EP instead, for some P ⊆ Paths(h2, x , y , z ). Over-approximating P with all
paths Paths(h2, x , y , z ), we obtain an upper bound for tf (h1). It is easy to see that the
resulting sum can be rewritten into the form of Theorem 4, yielding tf (h1) ≤ tf (h2).
Analogously, we get tf (h1) ≥ tf (h2) and thus tf (h1) = tf (h2) as required. The reverse
direction of the lemma is similar.

To conclude the proof of the path replacement principle in Theorem 5, we show that
full path replacement and (ordinary) path replacement of h1 by h2 coincide. To see this,
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consider a path p ∈ Paths(h1, x , y , z ) for any x ∈ X . The goal is to show Ep ≤ EP for
some P ∈ Paths(h2, x , y , z ). To that end, decompose the path into p = p1 ·p2 such that
x ′ � first(p2) is the first node in p from odif h1,h2

. Ordinary path replacement yields
Q ∈ Paths(h2, x

′, y , z ) with Ep2
≤ EQ . Now, choose P � { p1·q | q ∈ Q }. Because

p1 exists in h1 and h2 with the exact same edge labels, we obtain the desired Ep ≤ EP .

Lemma 8. Full path replacement of h1 by h2 holds if and only if path replacement of
h1 by h2 holds.

Decreasingness. We assume that the edge functions f : M → M are not only continu-
ous and distributive, but also decreasing: f(m) ≤ m for all m ∈ M. The assumption of
decreasing edge functions is justified by the fact that a program that traverses the flow
graph builds up information about the status of the structure, and smaller flow values
mean more information (as in classical data flow analysis). We use DistDecFun(M) to
refer to the set of all continuous, distributive, and decreasing transfer functions over M;
Lemma 1 carries over to this set. Addition in the monoid is still assumed idempotent.

If all edge functions are decreasing, every cycle in the flow graph is decreasing as
well. The key observation is that, given an idempotent addition, cycles with decreasing
edge functions can be avoided when forming sums over sets of paths.

Lemma 9. Let h be labeled over DistDecFun(M) and p1 · p · p2 ∈ Paths(h, x , y , z )
with last(p) = first(p). Then p1 · p2 ∈ Paths(h, x , y , z ) and Ep1·p·p2

≤ Ep1·p2
.

Call a path simple if it does not repeat a node and let SimplePaths(h, x , y , z ) denote
the set of all simple paths through h from x to y and leaving the flow graph towards z .
Note that a finite graph only admits finitely many simple paths.

Theorem 6 (Simple Paths). Assuming continuous, distributive, and decreasing edge
functions, and assuming idempotent addition, Theorem 4 and Theorem 5 hold with every
occurrency of Paths(h, x , y , z ) replaced by SimplePaths(h, x , y , z ).

In practice, path-counting flows, keyset flows, reachability flows, shortest-path flows,
and priority inheritance flows are relevant [22–24, 27] and compatible with our theory.

5 Evaluation

We substantiate the practicality of our new approach by evaluating it on a real-world
collection of flow graphs extracted from the literature. We explain how we obtained our
benchmarks and how we implemented and evaluated our approach.
Benchmark Suite. As alluded to in Sect. 1, the flow framework has been used to
verify complex concurrent data structures. More specifically, it has been used for auto-
mated proof construction by the plankton tool [26, 27]. plankton performs an exhaus-
tive proof search over a separation logic with support for flows—and further advanced
features for establishing linearizability that do not matter for the present evaluation.
In order to handle heap updates, plankton generates a footprint h for the flow graph
h1 = h ∗ hframe of the current proof state (represented as an assertion in separation
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logic). It then frames the non-footprint part hframe of the flow graph h1 to compute the
post state h ′ of the heap update locally for the footprint h . The result is the new flow
graph h2 = h ′ ∗ hframe . We consider the pair (h1, h2) a benchmark for our evaluation.

We adapt plankton to export the flow graph pairs for which a footprint is con-
structed. This way, we obtain 1272 benchmarks from the heap updates occurring during
proof construction for a collection of 10 concurrent set data structures. All flow graphs
in this benchmark suite contain at most 4 nodes.

Our benchmark suite is limited by the capabilities and restrictions of plankton. In
particular, we inherit the confinement to concurrent search structures. This is due to
the fact that plankton integrates support only for the keyset flow (cf. Example 1). Our
evaluation will compute footprints with respect to this flow.

Implementation. We implement the fixed point computation to find footprints for two
given flow graphs h1, h2 from Sect. 4 in a tool called krill [28]. It integrates three
methods for computing the transfer failure tfailh1,h2

(Z ) of a footprint candidate Z :
1. NAIVE: A naive method that computes the flow within the footprint Z . Following

[24], we require acyclicity of flow graphs for this method to avoid solving a fixed
point equation when computing the flow.

2. NEW: Our new approach leveraging the path replacement condition (cf. Theorem 5)
for simple paths (cf. Theorem 6). This method requires distributive and decreasing
edge functions as well as idempotent addition in the underlying monoid.

3. DIST: A variation of our new approach leveraging the closed-form representation
(cf. Theorem 4). We require distributive edge functions and acyclicity of the flow
graphs to avoid an unbounded sum over all paths in the closed-form representation.

Our benchmark suite satisfies the requirements for all three methods. The NAIVE and
DIST methods include a (sufficient) check to ensure acyclicity in the updated flow graph
to guarantee soundness of the resulting footprint.

All three methods encode the necessary equivalence checks among transfer func-
tions as SMT formulas which are then discharged using the off-the-shelf SMT solver
Z3 [31]. Our encodings use the theory of integers with quantifiers. The NAIVE method
additionally uses free functions to encode sets of integers.

Experiments. We ran krill on our benchmark suite and compared the runtime of the
three different methods for computing the transfer failure. Our results are summarized
in Fig. 5(left). For every search structure that we extracted benchmarks from, the figure
lists: (i) the number #FG of flow graph pairs extracted, (ii) each method’s total runtime
for computing the footprints of all flow graph pairs, and (iii) the speedup of NEW over
NAIVE in percent. The experiments were conducted on an Apple M1 Pro.

Figure 5(left) shows that the runtime for all methods is roughly linear in the number
of computed footprints. Moreover, the absolute time for computing footprints is small,
making the approaches practical. The figure also shows that our NEW and DIST methods
have a performance advantage over the NAIVE method. The NEW method is between
22% and 39% faster than the NAIVE method. We believe that the difference is relatively
small only because the acyclicity assumption avoids a potentially non-terminating fixed
point computation. Avoiding this fixed point in the presence of cycles is a major ad-
vantage that our NEW method has over the NAIVE and DIST methods. The performance
difference for DIST and NEW are negligible because the acyclicity check is negligible.
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Structure #FG NAIVE DIST NEW Speedup

Fine set [13] 12 75ms 48ms 46ms 39%
Lazy set [12] 14 73ms 52ms 51ms 30%
ORVYY set [33] 20 106ms 76ms 74ms 30%
VY DCAS set [46] 19 109ms 74ms 73ms 33%
VY CAS set [46] 28 139ms 104ms 102ms 27%
Michael set [29] 225 1216ms 887ms 874ms 28%
Michael set (wait-free) 186 996ms 731ms 721ms 27%
Harris set [11] 352 2242ms 1490ms 1443ms 36%
Harris set (wait-free) 296 1859ms 1242ms 1205ms 35%
FEMRS tree [10] 120 519ms 409ms 407ms 22%

Total 1272 7335ms 5114ms 4996ms 32%

ms
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Figure 5. Experimental results averaged over 1000 repeated runs, conducted on an Ap-
ple M1 Pro. (left) Total runtime for computing footprints for flow graphs occurring dur-
ing automated proof construction for highly concurrent set data structures. The speedup
gives the relative performance improvement of NEW over NAIVE. (right) Average run-
time for computing a single footprint, partitioned by footprint size (� indicates failure).

We also factorized the runtimes of our benchmarks along the size of the resulting
footprint. Figure 5(right) gives the average runtime and standard deviation for comput-
ing a single footprint, broken down by footprint size. If no footprint could be found, its
size is listed as �. These failed footprint constructions are consistent with plankton’s
method and would not lead to verification failure.

6 Related Work

Two alternative meta theories for the flow framework have been proposed in prior
work [23, 24]. Like in our setup, the original flow framework [23] demands that the
flow domain is an ω-cpo to obtain a least fixed point semantics. However, it proposes a
different flow graph composition that leads to a notion of contextual equivalence relying
on inflow equivalence classes. This complicates proof automation. In addition, the flow
domain is assumed to be a semiring and edge functions are restricted to multiplication
with a constant. This limits expressivity.

As discussed in Sect. 1, the revised flow framework proposed in [24] requires that
the flow monoid is cancellative but not an ω-cpo. This means that uniqueness of flows is
not guaranteed per se. Instead, uniqueness is obtained by imposing additional conditions
on the edge functions. However, these conditions are more restrictive than those im-
posed in our framework. The capacity of a flow graph introduced in [24] closely relates
to our notion of transfer function. A closed-form representation based on sums over
paths is used to check equivalence of capacities. However, this reasoning is restricted
to acyclic graphs. Also, [24] provides no algorithm for computing flow footprints.

In a sense, our work strikes a balance between the two prior meta theories by guar-
anteeing unique flows without sacrificing expressivity and, at the same time, enabling
better proof automation. That said, we believe that the framework proposed in [24] re-
mains of independent interest, in particular if the application does not require unique



Make Flows Small Again: Revisiting the Flow Framework 643

flows (i.e., does not impose lower bounds on flows that may trivially hold in the pres-
ence of vanishing flows). Cancellativity allows one to aggregate inflows and outflows
to unary functions, which can lead to smaller flow footprints (i.e., more local proofs).

The benchmark suite for our evaluation is obtained from plankton [26,27], a tool for
verifying concurrent search structures using keyset flows. When the program mutates
the symbolic heap, plankton creates a flow graph for the mutated nodes plus all nodes
with a distance of k or less from those nodes. This flow graph is considered to be the
footprint and contextual equivalence is checked. The check is basically the same as
for NAIVE. However, the paper does not present the meta theory for the underlying
notion of flow graphs, nor does it provide any justification for the correctness of the
implemented algorithms used to reason about flow graphs.

Flow graphs form a separation algebra. Hence, the developed theory can be used
in combination with any existing separation logic that is parametric in the underly-
ing separation algebra such as [5, 7, 18, 27, 41, 44]. Identifying footprints of updates
relates to the frame inference problem in separation logic, which has been studied ex-
tensively [4, 6, 15, 25, 35, 36, 42]. However, existing work focuses on frame inference
for assertions that are expressed in terms of inductive predicates. These techniques are
not well-suited for reasoning about programs manipulating general graphs, including
overlayed structures, which are often used in practice and easily expressed using flows.
A common approach to reason about general heap graphs in separation logic is to use
iterated separating conjunction [14, 39, 44, 47] to abstract the heap by a pure graph that
does not depend on the program state. Though, the verification of specifications that
rely on inductive properties of the pure graph then resorts back to classical first-order
reasoning and is difficult to automate. An exception is [45] which uses SMT solvers to
frame binary reachability relations in graphs that are described by iterated separating
conjunctions. However, the technique is restricted to such reachability properties only.

Unbounded footprints have been encountered early on when computing the post im-
age for recursive predicates [8]. This has spawned interest in separation logic fragments
for which the reasoning can be efficiently automated [2,3,9,17,20,35,38]. A limitation
that underlies all these works is an assumption of tree-regularity of the heap, in one way
or another, which flows have been designed to overcome. In cases where the program
(or ghost code) traverses the unbounded footprint (before or after the update), recent
works [24, 27] have found a way to reduce the reasoning to bounded footprint chunks.AQ2

The definition of a flow closely resembles the classical formulation of a forward
data flow analysis. The fact that the least fixed point of the flow equation for distributive
edge functions can be characterized as a join over all paths in the flow graph mirrors dual
results for greatest fixed points in data flow analysis [19,21]. In a similar vein, the notion
of contextual equivalence of flow graphs relates to contextual program equivalence and
fully abstract models in denotational semantics [16,30,37]. In fact, Bekić’s Lemma [1],
which we use in the proofs of Theorem 1 and lemma 6, was originally motivated by the
study of such models. Flow graphs can serve as abstractions of programs (rather than
just program states). We therefore believe that our results could also be of interest for
developing incremental and compositional data flow analysis frameworks.
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The krill artifact and dataset generated and/or analysed in the present paper are avail-
able in the Zenodo repository [28], https://zenodo.org/record/7566204.
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Abstract. Automated reasoning is routinely used in the rigorous con-
struction and analysis of complex systems. Among different theories,
arithmetic stands out as one of the most frequently used and at the same
time one of the most challenging in the presence of quantifiers and un-
interpreted function symbols. First-order theorem provers perform very
well on quantified problems due to the efficient superposition calculus, but
support for arithmetic reasoning is limited to heuristic axioms. In this
paper, we introduce the Alasca calculus that lifts superposition reasoning
to the linear arithmetic domain. We show that Alasca is both sound
and complete with respect to an axiomatisation of linear arithmetic. We
implemented and evaluated Alasca using the Vampire theorem prover,
solving many more challenging problems compared to state-of-the-art
reasoners.
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1 Introduction

Automated reasoning is undergoing a rapid development thanks to its successful
use, for example, in mathematical theory formalisation [15], formal verification [16]
and web security [13]. The use of automated reasoning in these areas is mostly
driven by the application of SMT solving for quantifier-free formulas [6, 12, 29].
However, there exist many use case scenarios, such as expressing arithmetic
operations over memory allocation and financial transactions [1, 18, 20, 32], which
require complex first-order quantification. SMT solvers handle quantifiers using
heuristic instantiation in domain-specific model construction [10, 28, 30, 36].
While being incomplete in most cases, instantiation requires instances to be
produced to perform reasoning, which can lead to an explosion in work required
for quantifier-heavy problems. What is rather needed to address the above use
cases is a reasoning approach able to handle both theories and complex applications
of quantifiers. Our work tackles this challenge and designs a practical, low-cost
methodology for proving first-order quantified linear arithmetic properties.
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The problem of combining quantifiers with theories, and especially with
arithmetic, is recognised as a major challenge in both SMT and first-order proving
communities. In this paper we focus on first-order, i.e. quantified, reasoning
with linear arithmetic and uninterpreted functions. In [26], it is shown that the
validity problem for first-order reasoning with linear arithmetic and uninterpreted
functions is Π1

1 -complete even when quantifiers are restricted to non-theory sorts.
Therefore, there is no sound and complete calculus for this logic.

Quantified Reasoning in Linear Arithmetic – Related Works. In practice,
there are two classes of methods of reasoning in first-order theory reasoning,
and in particular with linear real arithmetic. SMT solvers use instance-based
methods, where they repeatedly generate ground, that is quantifier-free, instances
of quantified formulas and use decision procedures to check satisfiability of the
resulting set of ground formulas [10, 28, 36]. Superposition-based first-order
theorem provers use saturation algorithms [14, 27, 37]. In essense, they start with
an initial set of clauses obtained by preprocessing the input formulas (initial
search space) and repeatedly apply inference rules (such as superposition) to
clauses in the search space, adding their (generally, non-ground) consequences to
the search space. These two classes of methods are very different in nature and
complement each other.

The superposition calculus [4, 31] is a refutationally complete calculus for first-
order logic with equality that is used by modern first-order provers, for example,
Vampire [27], E [37], iProver [17] and Zipperposition [14]. There have been a
number of practical extensions to this calculus for reasoning in first-order theories,
in particular for linear arithmetic [9, 11, 24]. Superposition theorem provers have
become efficient and powerful on theory reasoning after the introduction of the
AVATAR architecture [33, 38], which allows generated ground clauses to be
passed to SMT solvers. Yet, superposition theorem provers have a major source
of inefficiency. To work with theories, one has to add theory axioms, for example
the transitivity of inequality ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z). In clausal form,
this formula becomes ¬x ≤ y ∨ ¬y ≤ z ∨ x ≤ z where ¬x ≤ y can be resolved
against every clause in which an inequality literal s ≤ t is selected. This, with
other prolific theory axioms, results in a very significant growth of the search
space. Note that SMT solvers do not use and do not need such theory axioms.

A natural solution is to try to eliminate some theory axioms, but this is
notoriously difficult both in theory and in practice. In [26], the Lasca calculus
was proposed, which replaced several theory axioms of linear arithmetic, including
transitivity of inequality, by a new inference rule inspired by Fourier-Motzkin
elimination and some additional rules. Lasca was shown to be complete for the
ground case. But, after 15 years, Lasca is still not implemented, due to its
complexity and lack of clear treatment for the non-ground case. As we argue
in Sect. 5, lifting Lasca to the non-ground setting is nearly impossible as a
non-ground extension of the underlining ordering is missing in [26].

Lifting Lasca to Alasca– Our contributions. In this paper we introduce a
new non-ground version of Lasca, which we call Abstracting Lasca (Alasca).
Our Alasca calculus comes with new abstraction mechanisms (Sect. 4), inference
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rules and orderings (Sect. 5), which all together are proved to yield a sound
and complete approach with respect to a natural partial axiomatisation of linear
arithmetic (Theorem 5)4. In a nutshell, we make Alasca both work and scale
by introducing (i) a novel variable elimination rule within saturation-based proof
search (Fig. 3b); (ii) an analogue of unification with abstraction [34] needed for
non-ground reasoning (Sect. 4); and (iii) a new non-ground ordering and powerful
background theory for unification, which is not restricted to arithmetic but can be
used with arbitrary theories (Sect. 5). As a result, Alasca improves [26] by ground
modifications and lifting of Lasca in a finitary way, and complements [3, 40] with
variable elimination rules that are competible with standard saturation algorithms.
We also demonstrate the practicality and efficiency of Alasca (Sect. 6). To this
end, we implemented Alasca in Vampire and show that it solves overall more
problems than existing theorem provers.

2 Motivating Example

Consider the following mathematical property:

∀x, y.
(
f(2x, y) > 2x + y ∨ f(x + 1, y) > x + 2y

)
→ ∀x.∃y.f(2, y) > x (1)

where f is an uninterpreted function. While property (1) holds, deriving its
validity is hard for state-of-the-art reasoners: only veriT [2] can solve it. Despite
its seeming simplicity, this problem requires non-trivial handling of quantifiers
and arithmetic. Namely, one would need to unify (modulo theory) the terms
2x and x + 1 (which can be done by instantiating x with 1) and then derive
f(2, y) > 2 + y ∨ f(2, y) > 1 + 2y. Further, one also needs to prove that f(2, y) is
always greater than the minimum of 2 + y and 1 + 2y, for arbitrary y.

Vampire with Alasca finds a remarkably short proof as shown in Fig. 1. To
prove (1) its negation is shown unsatisfiable by first negating and translating into
clausal form (by using skolemization and normalisation, which shifts arithmetic
terms to be compared to 0), as listed in lines 1–4. Next a lower bound for f(2x, y) is
established: In line 5, using our new inequality factoring (IF) rule with unification
with abstraction (see Fig. 3a), the constraint 2x ̸≈ x + 1 is introduced, and
establishing thereby that if 2x ≈ 1+x and y +2x ≤ 2y +x, then f(2x, y) > 2x+y.
After further normalisation, the inequalities sk ≥ f(2, y) and f(2x, y) > 2x + y
are used to derive sk > 2x + y in line 7, using the Fourier-Motzkin Elimination
rule (FM), while still keeping track of the constraint 2x ̸≈ x + 1. By applying the
Variable Elimination rule (VE) twice, the empty clause □ is derived in line 10,
showing the unsatisfiability of the negation of (1).

The key steps in the proof (and the reason why it was found in a short time)
are: (1) the use of the theory rules (FM), and (IF); (2) the use of the new variable
elimination rule (VE), and finally, a consistent use of unification with abstraction.
These rules give a significant reduction compared to the number of steps required
using theory axioms. In particular, not using (FM) would require the use of
transitivity and generation of several intermediate clauses. As well as shortening
4 proofs and further details of our results can be found in [23]
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1. f(2x, y) > 2x + y ∨ f(x + 1, y) > x + 2y Hypothesis
2. ¬f(2, y) > sk Skolemized, Neg. Conj.
3. f(2x, y)− 2x− y > 0 ∨ f(x + 1, y)− x− 2y > 0 Normalisation 1
4. −f(2, y) + sk ≥ 0 Normalisation 2
5. f(2x, y)− 2x− y > 0 ∨ y + 2x− 2y − x > 0 ∨ 2x ̸≈ x + 1 (IF) 3
6. f(2x, y)− 2x− y > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 Normalisation 5
7. −2x− y + sk > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 ∨ 2x ̸≈ 2 (FM) 6,4
8. −2x− y + sk > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 Normalisation 7
9. 0 ̸≈ x− 1 (VE) 8
10. □ (VE) 9

Fig. 1. A refutational proof using the calculus introduced in this paper. Variables x, y
are implicitly universally quantified, and sk is an uninterpreted constant.

the proof, we eliminate the fatal impact on proof search from generating a large
number of irrellevant formulas from theory axioms.

Indeed, such short proofs are also found quickly. Similar our previous example,
∀x, y.

(
f(g(x)+g(a), y) > 2x+y∨f(2g(x), y) > x+2y

)
→ ∃k.∀x∃z.f(2g(k), z) > x

has a short proof of 7 steps, excluding CNF transformation and normalisation
steps, found by Vampire with Alasca. This proof was found in almost no time
(only 37 clauses were generated) but cannot be solved by any other solver. This
shows the power of the calculus.

3 Background and Notation

Multi-Sorted First-Order Logic. We assume familiarity with standard first-order
logic with equality, with all standard boolean connectives and quantifiers in the
language. We consider a multi-sorted first-order language, with sorts τQ, τ1, . . . , τn.
The sort τQ is the sort of rationals, whereas τ1, . . . , τn are uninterpreted sorts.
We write ≈τ for the equality predicate of τ. We denote the set of all terms as
T, variables as V, and literals as L. Throughout this paper, we denote terms by
s, t, u, variables by x, y, z, function symbols by f, g, h, all possibly with indices.
Given a term t such that t is f(. . .), we write sym(t) for f , referring that f is the
top level symbol of t. We write t : τ to denote that t is a term of sort τ. A term,
or literal is called ground, when it does not contain any variables. We refer to the
sets of all ground terms, and literals as Tθ, and Lθ respectively.

We denote predicates by P, Q, literals by L, clauses by C, D, formulas by F, G,
and sets of formulas (axioms) by E , possibly with indices. We write F |= G to
denote that whenever F holds in a model, then G does as well. We call a function
(similarly, for predicates) f uninterpreted wrt some set of equations E if whenever
E |= f(s1 . . . sn) ≈ f(t1 . . . tn), then E |= s1 ≈ t1 ∧ . . . ∧ sn ≈ tn. A function f is
interpreted wrt E if it is not uninterpreted.
Rational Sort. We assume the signature contains a countable set of unary functions
k : τQ 7→ τQ for every k ∈ Q and refer to k as numeral multiplications. In
addition, the signature is assumed to also contain a constant 1 : τQ, a function
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+ : τQ × τQ 7→ τQ, and predicate symbols >, ≥: P(τQ × τQ), as well as an arbitrary
number of other function symbols. For every numeral multiplication k ∈ Q \ {1},
we simply write k to denote the term k(1) obtained by the numeral multiplication
k applied to 1; in these cases, we refer to k as numerals. Throughout this paper,
we use j, k, l to denote numerals, or numeral multiplications, possibly with indices.

We write −t to denote the term −1(t). If j, k are two numeral multiplications,
by (jk) and (j + k) we denote the numeral multiplication that corresponds to
the result of multiplying and adding the rationals/numerals j and k, respectively.
For applications of numeral multiplications j(t) we may omit the parenthesis
and write jt instead. If we write +k, or −k for some numeral k, we assume k
itself is positive. We write ± (and ∓) to denote either of the symbols + or −
(and respectively − or +). For q ∈ Q we define sign(q) to be 1 if q > 0, −1 if
q < 0, and 0 otherwise. We call +, ≥, >, 1, and the numeral multiplications the
Q symbols. Finally, an atomic term is either a logical variable, or the term 1, or a
term whose top level function symbol is not a Q symbol.

A Q-model interprets the sort τQ as Q, and all Q symbols as their corresponding
functions/predicates on Q. We write Q |= C iff for every Q-model M , M |= C
holds. If E is a set of formulas, we call a model M a E-model if M |= E .
Term Orderings. We write u[s] to denote that s is a subterm of u, where the
subterm relation is denoted via ⊴. That is, s ⊴ u; similar notation will also be
used for literals L[s] and clauses C[s]. We denote by u[s 7→ t] the term resulting
from replacing all subterms s of u by t.

Multisets (of term, literals) are denoted with {̇ . . . }̇. For a multiset S and
natural number n ∈ N, we define 0 ∗ S = ∅, and n ∗ S = (n − 1 ∗ S) ∪ S for n > 0.

Let ≺ be a relation and ≡ be an equivalence relation. By ≺mul
≡ we denote

the multiset extension of ≺, defined as the smallest relation satisfying M ∪
{̇s1, . . . , sn}̇ ≺mul

≡ N ∪ {̇t}̇, where M ≡ N , n ≥ 0, and si ≺ t for 1 ≤ i ≤ n.
For n, m ∈ N, by ≺wmul

≡ we denote the weighted multiset extension, defined by
⟨ 1

n , S⟩ ≺wmul
≡ ⟨ 1

m , T ⟩ iff m ∗ S ≺mul
≡ n ∗ T . We omit the equivalence relation ≡ if it

is clear in the context.
Let s, t, ti be terms, θ, θ′ be ground substitutions and E be a set of axioms. We

write s ≡E t for E |= s ≈ t and θ ≡E θ′ iff for all variables x we have xθ ≡E xθ′.
We say that s is a E-subterm of t (s ⊴E t) if s ≡E t, or t ≡E f(t1 . . . tn) and
s ⊴E ti. We also say that s is a strict E-subterm of t (s ◁E t) if s ⊴E t and s ̸≡E t.

4 Theoretical Foundation for Unification with Abstraction

Our motivating example from Sect. 2 showcases that first-order arithmetic reason-
ing requires (i) establishing syntactic difference among terms (e.g. 2x and x + 1),
while (ii) deriving they have instances that are semantically equal in models of a
background theory E (e.g. the theory Q).

A naive approach addressing (i)-(ii) would be to use an axiomatisation of the
background theory E , and use this axiomatisation for proof search in uninterpreted
first-order logic. Such an approach can however be very costly. For example,
even a relatively simple background theory AC axiomatizing commutativity and



652 K. Korovin et al.

1 fn uwa(s,t)
2 eqs← {s ≈ t}; σ ← ∅; C ← ∅;
3 while eqs ̸= ∅
4 ṡ ≈ ṫ← eqs.pop();
5 if ṡ ≈ ṫ ∈ {x ≈ u, u ≈ x} for some x ∈ V, x ̸◁ u
6 ⟨σ, eqs, C⟩ ← ⟨σ ∪ {x 7→ u}, eqs, C⟩{x 7→ u};
7 else if canAbstract(ṡ, ṫ)
8 C.push(ṡ ̸≈ ṫ);
9 else if ṡ = f(s1 . . . sn), ṫ = f(t1 . . . tn)

10 eqs.push({s1 ≈ t1 . . . sn ≈ tn})
11 else
12 return ⊥;
13 return ⟨σ, C⟩;

Algorithm 1: Computing an abstracting unifier uwa.

associativity of ≈, that is AC = {x+y ≈ y+x, x+(y+z) ≈ (x+y)+z}, would make
a superposition-based theorem prover derive a vast amount of useless/redundant
formulas as equational tautologies. An approach to circumvent such inefficient
handling of equality reasoning is to use unification modulo AC, or in general
unification modulo E , as already advocated in [22, 34, 40]. In this section we
describe the adjustments we made towards unification modulo E , allowing us
to introduce unification with abstraction (Sect. 4.1). We also show under which
condition our method can be used to turn a complete superposition calculus using
unification modulo E into a complete superposition calculus using unification with
abstraction. Concretely, we show how this can be used for the specific theory of
arithmetic Aeq in the calculus Alasca (Sect. 4.2).

4.1 Unification with Abstraction – UWA

In a nutshell, unification modulo E finds substitutions σ that make two terms s, t
equal in the background theory, i.e. E |= sσ ≈ tσ. While unification modulo E
removes the need for axiomatisation of E during superposition reasoning, it comes
with some inefficiencies. Most importantly, in contrast to syntactic unification,
there is no unique most general unifier mgu(s, t) when unifying modulo E but
only minimal complete sets of unifiers mcuE(s, t), which can be very large; for
example, unification modulo AC is doubly exponential in general [22].

Bypassing the need for unification modulo E , fully abstracted clauses are used
in [40], without the need for axiomatisation of the theory E and without compro-
mising completeness of the underlining superposition-based calculus. Our work
extends ideas from [40] and adjusts unification with abstraction (uwa) from [34],
allowing us to prove completeness of a calculus using uwa (Theorem 3).

Example 1. Let us first consider the example of factoring the clause p(2x)∨p(x+1),
a simplified version of the unification step performed in line 5 in Fig. 1. That
is, unifying the literals p(2x) and p(x + 1), in order to remove duplicate literals.
Within the setting of [40], these literals would only exist in their fully abstracted
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form, which can be obtained by replacing every subterm t : τQ that is not a variable
by a fresh variable x, and adding the constraint x ̸≈ t to the corresponding clause.
Hence, the clause p(2x)∨p(x+1) is transformed to p(y)∨p(z)∨y ̸≈ 2x∨z ̸≈ x+1
in [40]. Unification then becomes trivial: we would derive the clause p(y) ∨ y ̸≈
2x ∨ y ̸≈ x + 1 by factoring, from which p(2x) ∨ 2x ̸≈ x + 1 is inferred using
equality factoring and resolution.

Within unification with abstraction, we aim at cutting out intermediate steps
of applying abstractions, equality resolution and factoring. As a result, we skip
unnecessary consequences of intermediate clauses, and derive the conclusion
p(2x) ∨ 2x ̸≈ x + 1 straight away. To this end, we introduce constraints only
for those s, t : τQ on which unification fails. We thus gain the advantage that
clauses are not present in the search space in their abstracted forms, increasing
efficiency in proof search. Further, our unification with abstraction approach is
parametrized by a predicate canAbstract to control the application of abstraction,
as listed in Algorithm 1. This is yet another significant difference compared to fully
abstracted clauses, as in the latter, abstraction is performed for every subterm
t : τQ without considering the terms with which t might be unified later.

Our uwa method can be seen as a lazy approach of full abstraction from [40]. We
compute so-called abstracting unifiers uwa(s, t) = ⟨σ, C⟩ in Algorithm 1, allowing
us to replace unification modulo E by unification with abstraction.

Definition 1 (Abstracting Unifier). Let σ be a substitution and C a set of
literals. A partial function uwa that maps two terms s, t either to ⊥ or to a pair
⟨σ, C⟩ = uwa(s, t) is called an abstracting unifier.

The abstracting unifier uwa(s, t) computed by Algorithm 1 is parametrized
by the relation canAbstract. The intuition of this relation is that canAbstract(s, t)
holds for terms s and t, when s ≈ t might hold in the background theory E . To
ensure that unification with abstraction can replace unification modulo E , we
impose the following additional properties over the abstract unifier uwa(s, t).

Definition 2 (uwa Properties). Let σ be a substitution and C a set of literals.
Consider s, t ∈ T be such that uwa(s, t) = ⟨σ, C⟩ and let θ be an arbitrary ground
substitution. We say uwa is

– E-sound iff E |= (s ≈ t)σ ∨ C;
– E-general iff ∀µ ∈ mcuE(s, t).∃ρ.σρ ≡E µ;
– E-minimal iff E |= (s ≈ t)σθ =⇒ E ⊨ (¬C)θ;
– subterm-founded with respect to the clause ordering ≺, iff for every unin-

terpreted function or predicate f , every literal L[◦], it holds that E |= (s ≈
t)θ =⇒ Cθ ≺ L[f(s)]θ or Cθ ≺ L[f(t)]θ.

Further, uwa is E-complete if, for all s, t ∈ T with uwa(s, t) = ⊥, we have
mcuE(s, t) = ∅.

Definition 2 is necessary to lift inferences using unification with abstraction.
We thereby want to assure that, whenever C does not hold, then s and t are
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equal; hence abstracting unifiers uwa(x, y) = ⟨∅, x + y ̸≈ y + x⟩ would be unsound.
The E-generality property enforces that substitutions introduced by uwa are
general enough in order to still be turned into a complete set of unifiers. As such,
E-generality is needed to rule out cases like uwa(x + y, 2) = ⟨{x 7→ 0, y 7→ 2}, ∅⟩,
which would not be able to capture, for example, the substitution {x 7→ 1, y 7→ 1}.
We note that we use uwa to extend counterexample-reducing inference systems
(see Definition 4), allowing inductive completeness proofs. As these inference
systems need to derive conclusions that are smaller than the premises, we need
the subterm-foundedness property to make sure to only introduce constraints that
are smaller than the premises as well. If we have a look at the previous properties,
we see that all of them are fulfilled if uwa(s, t) = ⊥. Therefore we need to make
sure that uwa only returns ⊥ when s and t are not unifiable modulo E ; this is
captured by E-completeness.

In addition to properties of abstract unifiers uwa(s, t), we also impose conditions
over the canAbstract relation that parametrizes uwa(s, t). As Algorithm 1 only
introduces equality constraints for subterm pairs that should be unified, a resulting
abstracting unifier uwa(s, t) is sound. Further, under the assumption that the clause
ordering is defined as in standard superposition (e.g. using multiset extensions
of a simplification ordering that fulfills the subterm property), the abstracting
unifier uwa(s, t) is also subterm-founded. However, to ensure that uwa(s, t) is
also minimal, interpreted functions should not be treated as uninterpreted ones;
hence the canAbstract relation needs to always trigger abstraction on interpreted
functions. Finally, we require that canAbstract does not skip terms which are
potentially equal modulo E , in order to guarantee completeness. Hence, we define
the following properties for canAbstract.

Definition 3 (canAbstract Properties). Let s, t ∈ T. The canAbstract relation

– captures E, iff for all s, t, it holds that ∃ρ.E ⊨ (s ≈ t)ρ =⇒ canAbstract(s, t);
– guards interpreted functions, iff for all s, t, where sym(s) = sym(t) is an

interpreted function, canAbstract(s, t) holds.

Based on the above, we derive the following result.

Theorem 1. The abstracting unifier uwa computed by Algorithm 1 is subterm-
founded and sound. If canAbstract guards interpreted functions, then uwa is E-
general and E-minimal. If canAbstract guards interpreted functions and captures
E, then uwa is E-complete.

4.2 UWA Completeness

We now show how unification with abstraction (uwa) can be used to replace
unification modulo E in saturation-based theorem proving [3]. We recall from [3]
that in order to show refutational completeness of an inference-system Γ , one
constructs a model functor I that maps sets of ground clauses N to candidate
models IN . In order to show that Γ is refutationally complete, one needs to show
that if N is saturated with respect to Γ , then IN ⊨ N . For this, the notion of a
counterexample-reducing inference system is introduced.
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Definition 4. We say an inference system Γ is counterexample reducing, with
respect to a model functor I and a well-founded ordering on ground clauses ≺, if
for every ground set of clauses N and every minimal C ∈ N such that IN ̸⊨ C,
there is an inference

C1 . . . Cn C

D

where ∀i.IN ⊨ Ci, ∀i.Ci ≺ C, D ≺ C, and IN ̸⊨ D.

We then have the following key result.

Theorem 2 (Bachmair&Ganzinger [3]). Let ≺ be a well-founded ordering
on ground clauses and I be a model functor. Then, every inference system that is
counterexample-reducing wrt ≺ and I is refutationally complete.

This result also holds for an inference system being refutationally complete wrt
E if for every N it holds that IN |= E . When constructing a refutationally complete
calculus, one usually first defines a ground counterexample-reducing inference
system and then lifts this calculus to a non-ground inference system. Lifting is
done such that, if the ground inference system is counterexample reducing, then
its lifted non-ground version is also counterexample reducing.

We next show how to transform a lifting of a counterexample-reducing infer-
ence system that uses unification modulo E into a lifting using unification with
abstraction. That is, given a counterexample-reducing inference-system using
unification modulo E to define its rules, we construct another counterexample-
reducing inference system that uses uwa instead. As we only transform rules that
use unification, we introduce the notion of a unifying rule.

Definition 5. An inference rule γ is a unifying rule if it is of the form

C1 . . . Cn C , where σ ∈ mcuE(s, t).
Dσ

We also define the mapping ◦uwa that maps unifying inferences γ to γuwa as

γuwa = C1 . . . Cn C(
, where ⟨σ, C⟩ = uwa(s, t)

)
Dσ ∨ C

Soundness of the unifying rule γ alone however does not suffice to show
soundness of γuwa. Therefore we introduce a stronger notion of soundness that
holds for all the rules we will consider to lift.

Definition 6. Let γ be a unifying rule. We say γ is strongly sound iff
E , C1 . . . Cn, C |= s ≈ t → D.

Lemma 1. Assume that γ is strongly sound and uwa is sound. Then, γuwa is
sound.
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We note that not every inference can be transformed using ◦uwa, without
compromising completeness. To circumvent this problem, we consider the notion
of compatibility with respect to transformations.
Definition 7. Let γ be a unifying inference. Then, γ unifies strict subterms iff
for every grounding θ, u ∈ {s, t} there is an uninterpreted function or predicate
f , a literal L[f(u)], and clause C ′ ∈ {C1 . . . Cn, C}, such that L[f(u)]θ ⪯ C ′θ.

Note that in the above definition we usually have that L[f(s)] or L[f(t)] is
some literal of one of the premises.
Definition 8 (uwa-Compatibility). We say an inference γ is uwa compatible
if it is a unifying inference, strongly sound, and unifies strict subterms.
Theorem 3. Let uwa be a general, compatible, subterm-founded, complete, and
minimal abstracting unifier. If Γ is the lifting of a counterexample-reducing
inference system Γ ϑ with respect to a model functor I, and clause ordering ≺, then
Γuwa = {γuwa | γ ∈ Γ, γ is uwa-compatible}∪{γ ∈ Γ | γ is not uwa-compatible}
is the lifting of an inference system Γ ϑ

uwa that is counterexample-reducing with
respect to I and ≺.

Theorem 1 and Theorem 3 together imply that, given a compatible inference
system, we need to only specify the right canAbstract predicate in order to perform
a lifting using uwa. In Sect. 5 we introduce the calculus Alasca, a concrete
inference system with the desired properties, for which a suitable predicate
canAbstract can easily be found.

5 ALASCA Reasoning

We use the lifting results of Sect. 4 to introduce our Alasca calculus for reasoning
in quantified linear arithmetic, by combining superposition reasoning with Fourier-
Motzkin type inference rules. While an instance of such a combination has
been studied in the Lasca calculus of [26], Lasca is restricted to ground, i.e.
quantifier-free, clauses. Our Alasca extends Lasca with uwa and provides an
altered ground version Alascaθ (Sect. 5.1) which efficiently can be lifted to the
quantified domain (Sect. 5.2). As quantified reasoning with linear real arithmetic
and uninterpreted functions is inherently incomplete, we provide formal guarantess
about what Alasca can prove. Instead of focusing on completeness with respect
to Q-models as in [26], we show that Alasca is complete with respect to a partial
axiomatisation AQ of Q-models (Sect. 5.2).

5.1 The ALASCA Calculus – Ground Version
The Alasca calculus uses a partial axiomatisation AQ of Q-models, and handles
some Q-axioms via inferences and some via uwa. We therefore split the axiom set
AQ into Aeq and Aineq, as listed in Fig. 2.

Our Alasca calculus modifies the Lasca framework [26] to enable an efficient
lifting for quantified reasoning. For simplicity, we first present the ground version
of Alasca, which we refer to Alascaθ, whose one key benefit is illustrated next.
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AQ = Aeq ∪ Aineq

Aeq = AC
∪ {jx + kx ≈ (j + k)x | j, k ∈ Q}
∪ {j(k(x)) ≈ (jk)x | j, k ∈ Q}
∪ {1(x) ≈ x}
∪ {k(x + y) ≈ kx + ky | k ∈ Q}
∪ {x + 0 ≈ x, 0x ≈ 0}

Aineq = {x > y ∧ y > z → x > z}
∪ {x > y → x + z > y + z}
∪ {x > y ∨ x ≈ y ∨ y > x}
∪ {¬(x > x)}
∪ {x ≥ y ↔ (x > y ∨ x ≈ y)}
∪ {x > y → +kx > +ky | +k ∈ Q}
∪ {x > y → −ky > −kx | −k ∈ Q}

Fig. 2. Axioms handled by the Alasca calculus. All are implicity universally quantified.

Example 2. One central rule of Alasca is the Fourier-Motzkin variable elimina-
tion rule (FM). We use (FM) in line 7 of Fig. 1, when proving the motivating exam-
ple of Sect. 2, given in formula (1). Namely, using (FM), we derive −2x−y+sk > 0
from f(2x, y) − 2x − y > 0 and −f(2, y) + sk ≥ 0, under the assumption that
2x ≈ 2. The (FM) rule can be seen as a version of the inequality chaining rules
of [3] , chaining the inequalities sk ≥ f(2, y) and f(2x, y) > 2x + y. Moreover,
the (FM) rule can also be considered a version of binary resolution, as it resolves
the positive summand f(2x, y) with the negative summand −f(2, y), mimicing
thus resolution over subterms, instead of literals. The main benefit of (FM) comes
with its restricted application to maximal atomic terms in a sum (instead of its
naive application whenever possible).

Alascaθ Normalization and Orderings. Compared to Lasca [26], the major
difference of Alascaθ comes with focusing on which terms are being considered
equal within inferences; this in turn requires careful adjustments in the underlying
orderings and normalization steps of Alascaθ, and later also in unification within
Alasca. In Lasca terms are rewritten in their so-called Q-normalized form, while
equality inference rules exploit equivalence modulo AC. Lifting such inference
rules is however tricky. Consider for example the application of the rewrite rule
j(ks) → (jk)s (triggered by j(ks) ≈ (jk)s) over the clause C[jx, x]. In order to
lift all instances of this rewrite rule, we would need to derive C[(jk)x, kx] for
every k ∈ Q, which would yield an infinite number of conclusions. In order to
resolve this matter, Alascaθ takes a different approach to term normalization
and handling equivalence. That is, unlike Lasca, we formulate all inference rules
using equivalence modulo Aeq, and do not consider the normalization of terms as
simplification rules.

As Alascaθ rules use equivalence modulo Aeq, we also need to impose that
the simplification ordering used by Alascaθ is Aeq-compatible. Intuitively, Aeq-
compatibility means that terms that are equivalent modulo Aeq are in one equiv-
alence class wrt the ordering. This allows us to replace terms by an arbitrary
normal form wrt these equivalence classes before and after applying any inference
rules, allowing it to use a normalization similar to Q-normalization that does
not need to be lifted. Hence, we introduce Aeq-normalized terms as being terms
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whose sort is not τQ or of the form 1
k (k1t1 + · · · + kntn), such that ∀i.ki ∈ Z \ 0,

∀i ̸= j.ti ̸≡ tj , ∀i.ti is atomic, k is positive, and gcd({k, k1 . . . kn}) = 1. Obviously
every term can be turned into a Aeq-normalized term. For the rest of this section
we assume terms are Aeq-normalized, and write ≡ for ≡Aeq . We also assume that
literals with interpreted predicates ⋄ are being normalized (during preprocessing)
and to be of the form t ⋄ 0. We write s ≈̂ t for equalities, with sorts different
from τQ, and for equalities of sort τQ that can be rewritten to s ≈ t such that s is
an atomic term. Finally, Alascaθ also extends Lasca by not only handling the
predicates > and ≈, but also ≥, and ̸≈, which has the advantage that inequalities
are not being introduced in purely equational problems in Alascaθ.

As discussed in Example 2, the (FM) rule of Alascaθ is similar to binary
resolution, as it can be seen as “resolving” atomic subterms instead of literals. To
formalize such handling of terms in (FM), we distinguish so-called atoms(t), atoms
of some term t. Doing so, given an Aeq-normalized term t = 1

k (±1k1t1+. . .±nkntn),
we define atoms±(t) = ⟨k, k1 ∗ {̇ ±1 t1}̇ ∪ . . . ∪ kn ∗ {̇ ±n tn}̇⟩ and atoms(t) =
⟨k, k1∗{̇t1}̇∪. . .∪kn∗{̇tn}̇⟩. We extend both of these functions f ∈ {atoms, atoms±}
to literals as follows: f(t⋄0) = f(t), assuming that the term t has been normalised
to 1

k = 1 before. For (dis)equalities s ≈ t (s ̸≈ t) of uninterpreted sorts, we define
atoms to be ⟨1, {̇s, t}̇⟩. Further we define maxAtoms(t), to be the set of maximal
terms in atoms(t) with respect ≺, and maxAtom(t) = t0 if maxAtoms(t) = {t0}.

Alascaθ Inferences. The inference rules of Alascaθ are summarized in Fig. 3a.
All rules are parametrized by a Aeq-compatible ordering relation ≺ on ground
terms, literals and clauses. Underlining a literal in a clause or an atomic term in
a sum means that the underlined expression is non-strictly maximal wrt to the
other literals in the clause, or atomic terms in the sum. We use double-underlining
to denote that the expression is strictly maximal. We call Lθ

+ the set of potentially
productive literals, defined as all equalities and inequalities with strictly maximal
atomic term with positive coefficient.

Finding a right ordering relation is non-trivial, as many different requirements,
like compatibility, subterm property, well-foundedness, and stability under substi-
tutions, need to be met [25, 26, 39, 41]. For Alasca, we use a modified version
of the Qkbo ordering of [26], with the following two modifications.

(i) Firstly, the Alasca ordering is defined for non-ground terms. This means
that the ordering needs to handle subterms with sums where there is no maximal
atomic summand, like the term x + y. In addition, our ordering needs to be
stable under substitutions in order to work with non-ground terms. Note however
that our atom functions atoms and atoms± are not stable under substitutions, as
the term f(x) − f(y) and the substitution {x 7→ y} demonstrates. Therefore, we
parametrize our Alasca ordering by the relation subsSafe. The subsSafe relation
fulfils the property that if subsSafe( 1

k (±1k1t1 + · · · ±n kntn)), then there is no
substitution θ such that ±ikitiθ ≡ ∓jkjtjθ, for any i, j. In general, checking the
existence of such a θ is as hard as unifying modulo Aeq. Nevertheless, we can
overapproximate the subsSafe relation using the canAbstract predicate.
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Fourier-Motzkin Elimination

C1 ∨+js + t1 ≳1 0 C2 ∨ −ks′ + t2 ≳2 0
(FM)

C1 ∨ C2 ∨ kt1 + jt2 > 0

where – js + t1 > 0 ≻ C1
– −ks′ + t2 > 0 ⪰ C2
– s ≡ s′

– {>} ⊆ {≳1,≳2} ⊆ {>,≥}

Tight Fourier-Motzkin Elimination

C1 ∨+js + t1 ≥ 0 C2 ∨ −ks′ + t2 ≥ 0
(FM≥)

C1 ∨ C2 ∨ kt1 + jt2 > 0 ∨ −ks′ + t2 ≈ 0

where – js + t1 > 0 ≻ C1
– −ks′ + t2 > 0 ⪰ C2
– s ≡ s′

Inequality Factoring

C ∨+js + t1 ≳1 0 ∨+ks′ + t2 ≳2 0
(IF)

C ∨ kt1 − jt2 ≳3 0 ∨+ks′ + t2 ≳2 0

where – s ≡ s′

– ∀L ∈ (C ∨ js + t1 ≳1 0).ks′ + t2 ≳2 0 ⪰ L or
∀L ∈ (C ∨ ks′ + t2 ≳2 0).js + t1 ≳1 0 ⪰ L

– ≳i∈ {>,≥}

– ≳3=
{
≥ if ≳1=≥, and ≳2=>

> else

Term Factoring

C ∨ js + ks′ + t ⋄ 0
(TF)

C ∨ (j + k)s′ + t ⋄ 0

where – s ≡ s′

– ⋄ ∈ {>,≥, ≈̂, ̸≈}
– s, s′ ∈ maxAtoms(C ∨ js + ks′ + t ⋄ 0)
– there is no uninterperted literal in C

Contradiction

✭✭✭✭✭C ∨ ±k ⋄ 0 (Triv)
C

where – ⋄ ∈ {>,≥,≈, ̸≈}
– k ∈ Q
– Q ̸|= ±k ⋄ 0

Superposition

C1 ∨ s ≈̂ t C2 ∨ L[s′]
(Sup)

C1 ∨ C2 ∨ L[s′ → t]

where – s ≡ s′

– s ≈̂ t ≻ C1
– L[s′] ∈ Lθ

+ & L[s′] ≻ C2 or
L[s′] ̸∈ Lθ

+ & L[s′] ⪰ C2

– s′ ⊴ x ∈ maxAtoms(L[s′])
– s ≈ t ∨ C1 ≺ C2 ∨ L[s′]

Equality Resolution

C ∨ s ̸≈ s′
(ER)

C

where – s ≡ s′

– s ̸≈ s′ ⪰ C

Equality Factoring

C ∨ s ≈̂ t1 ∨ s′ ≈̂ t2

(EF)
C ∨ t1 ̸≈ t2 ∨ s ≈ t1

where – s ≡ s′

– s′ ≈ t2 ⪰ C ∨ s ≈ t1

(a) Rules of the ground calculus Alascaθ.

Variable Elimination

C ∨
∨
i∈I

x + bi ≳i 0 ∨
∨

j∈J

−x + bj ≳j 0 ∨
∨

k∈K

x + bk ≈ 0 ∨
∨

l∈L

x + bl ̸≈ 0
(VE)

∧
K+⊆K



C ∨
∨

i∈I,j∈J

bi + bj ≳i,j 0 ∨
∨

i∈I,k∈K−
bi − bk ≥ 0 ∨

∨
i∈I,l∈L

bi − bl ≳i 0

∨
∨

j∈J,k∈K+
bj + bk ≥ 0 ∨

∨
j∈J,l∈L

bj + bl ≳j 0

∨
∨

k1∈K+,k2∈K−
bk1 − bk2 ≥ 0 ∨

∨
k∈K+,l∈L

bk − bl ≥ 0

∨
∨

k∈K−,l∈L

bl − bk ≥ 0

∨
∨

l1,l2∈L

bl1 − bl2 ̸≈ 0


where

– x is an unshielded variable
– K− = K \K+

– C does not contain x

– ≳i,≳j∈ {≥, >}

– (≳i,j) =
{

(≥) if ≥∈ {≳i,≳j}
(>) otherwise

(b) Variable elimination rule used for lifting Alascaθ.

Fig. 3. Inference rules used to define the calculus Alasca.
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(ii) Secondly, we adjusted the Alasca ordering to be Aeq-compatible, instead
of AC-compatible. We modified the literal ordering of Alasca, such that literals
are ordered by all their atoms using the weighted multiset extension of ≺, instead
of only using the maximal one of each literal L as in [26].

We define a model functor I ·
∞ mapping clauses to AQ-models (see [23] for

details) and conclude the following.

Theorem 4. Alascaθ is a counterexample-reducing inference system with re-
spect to I ·

∞ and ≺.

5.2 ALASCA Lifting and Completeness

Variable Elimination. Theorem 4 establishes completeness of Alascaθ for ground
clauses wrt AQ. We next lift this result (and calculus) to non-ground clauses.

We introduce the concept of an unshielded variable. We say a term t : τQ is
a top level term of a literal L if t ∈ atoms(L). We call a variable x unshielded
in some clause C if x is a top level term of a literal in C, and there is no literal
with an atomic top level term t[x]. Observe that within the Alascaθ rules, only
maximal atomic terms in sums are being used in rule applications. This means,
lifting Alascaθ to Alasca is straightforward for clauses where all maximal terms
in sums are not variables. Further, due to the subterm property, if a variable is
maximal in a sum then it must be unshielded. Hence, the only variables we have
to deal within Alasca rule applications are unshielded ones.

The work of [40] modifies a standard saturation algorithm by integrating it
with a variable elimination rule that gets rid of unshielded variables, without com-
promising completeness of the calculus. Based on [40] and the variable elimination
rule of [3], we extend Alascaθ with the Variable Elimination Rule (VE), as given
in Fig. 3b. In what follows, we show that the handling of unshielded variables in
Fig. 3b can naturally be done within a standard saturation framework.

The (VE) rules replaces any clause with a set of clauses that is equivalent and
does not contain unshielded variables. We assume that the clause is normalized,
such that in every inequality x only occurs once with a factor 1 or −1, whereas for
for equalities, x only occurs with factor 1. A simple example for the application of
(VE) is the clause a − x > 0 ∨ x − b > 0 ∨ a + b + x ≥ 0, where x ∈ V, and a, b are
constants. By reasoning about inequalities, it is easy to see that this is equivalent
to a > x ∨ a + b ≥ x ∨ x > b, thus further equivalent to a > b ∨ a + b ≥ b, which
illustrates the benefit of variable elimination through (VE).

Lemma 2. The conclusion of (VE) is equivalent to its premise.

Alasca Calculus - Non-Ground Version with Unification with Abstraction. We
now define our lifted calculus Alasca, as follows. Let Alasca− be the calculus
Alascaθ being lifted for clauses without unshielded variables. We define Alasca
to be Alasca− chained with the variable elimination rule. That is, the result of
every rule application is simplified using (VE) as long as applicable.
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Theorem 5. Alasca is the lifting of a counterexample-reducing inference system
for sets of clauses without unshielded variables.

Theorem 5 implies that Alasca is refutationally complete wrt AQ for sets of
clauses without unshielded variables. As (VE) can be used to preprocess arbitrary
sets of clauses to eliminate all unshielded variables, we get the following.

Corollary 1. If N is a set of clauses that is unsatisfiable with respect to AQ,
then N can be refuted using Alasca.

We conclude this section by specifying the lifting of Alascaθ to get Alasca−.
To this end, we use our uwa results and properties for unification with abstraction
(Sect. 4). We note that using unification modulo Aeq would require us to develop
an algorithmic approach that computes a complete set of unifiers modulo Aeq,
which is a quite challenging task both in theory and in practice. Instead, using
Theorem 1 and Theorem 3, we need to only specify a canAbstract predicate that
guards interpreted functions and captures Aeq within uwa. This is achieved
by defining canAbstract(s, t) if any function symbol f ∈ {sym(s), sym(t)} is an
interpreted function f ∈ Q ∪ {+}.This choice of the canAbstract predicate is a
slight modification of the abstraction strategy one_side_interpreted of [34].
We note that this is not the only choice for the predicate to fulfil the canAbstract
properties. Consider for example the terms f(x) + a, and a + b. There is no
substitution that will make these two terms equal, but our abstraction predicate
introduces a constraint upon trying to unify them. In order to address this, we
introduce an alternative canAbstract predicate that compares the atoms of a term,
instead of only looking at the outer most symbol (Sect. 6).

We believe more precise abstraction predicates can improve proof search, as
evidenced by our experiments using second abstraction predicate (Sect. 6).

6 Implementation and Experiments

We implemented Alasca 5 in the extension of the Vampire theorem prover [27].
Benchmarks. We evaluated the practicality of Alasca using the following six
sets of benchmarks, resulting all together in 6374 examples, as listed in Table 1
and detailed next. (i) We considered all sets of benchmarks from the SMT-LIB
repository [7] set that involve real arithmetic and uninterpreted functions, but no
other theories. These are the three benchmark sets corresponding to the LRA,
NRA, and UFLRA logics in SMT-LIB. (ii) We further used Sledgehammer
examples generated by [15], using the SMT-LIB syntax. From the examples of [15],
we selected those benchmarks that involve real arithmetic but no other theories.
We refer to this benchmark set as SH. (iii) Finally, we also created two new sets of
benchmarks, Triangular, and Limit, exploiting various mathematical properties.
The Triangular suite contains variations of our motivating example from
Sect. 2, and thus comes with reasoning challenges about triangular inequalities
5 available at https://github.com/vprover/vampire/tree/alasca

https://github.com/vprover/vampire/tree/alasca
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Benchmarks (#) Alasca Cvc5 Vampire Yices UltElim SmtInt veriT solved
all (6374) 5744 5626 5585 5531 5218 828 465 5988
LRA (1722) 1572 1401 1396 1722 1469 623 89 1722
NRA (3814) 3800 3804 3803 3809 3669 0 0 3812
UFLRA (10) 10 10 10 0 0 10 10 10
Triangular (34) 24 10 13 0 0 0 6 25
Limit (280) 100 90 81 0 80 0 90 100
SH (514) 238 311 282 0 0 195 270 319

Table 1. Experimental results, showing the numbers of solved problems.

and continuous functions. The Limit benchmark set is comprised of problems
that combine various limit properties of real-valued functions.
Experimental Setup. We compared our implementation against the solvers from
the Arith (arithmetic) division of the SMT-COMP competition 2022. These
solvers, given in columns 3–8 of Table 1, are: Cvc5 [5], Vampire [35], Yices [19],
UltElim [8], SmtInt [21], and veriT [2]. We note that Vampire is run in its
competition portfolio mode, which includes the work from [34]. Alasca uses the
same portfolio but implements our modified version of unification with abstraction
(Sect. 4), disabling the use of theory axioms relying on our new Alasca rules
(Sect. 5). We ran our experiments using the SMT-COMP 2022 competition setup:
based on the StarExec Iowa cluster, with a 20 minutes timeout and using 4 cores.
Benchmarks, solvers and results are publicly available6.
Experimental Results. Table 1 summarizes our experimental findings and indicates
the overall best performance of Alasca. For example, Alasca outperforms the
two best arithmetic solvers of SMT-COMP 2022 by solving 118 more problems
than Cvc5 and 159 more problems than Vampire.

7 Conclusions and Future Work

We introduced the Alasca calculus and drastically improved the performance
of superposition theorem proving on linear arithmetic. Alasca eliminates the
use of theory axioms by introducing theory-specific rules such as an analogue
of Fourier-Motzkin elimination. We perform unification with abstraction with a
general theoretical foundation, which, together with our variable elimination rules,
serves as a replacement for unification modulo theory. Our experiments show
that Alasca is competitive with state-of-the-art theorem provers, solving more
problems than any prover that entered the arithmetic division in SMT-COMP
2022. Future work includes designing an integer version of Alasca, developing
different versions for the canAbstract predicate, and improving literal/clause
selections within Alasca.
Acknowledgements. This work was partially supported by the ERC Consolidator
Grant ARTIST 101002685, the TU Wien Doctoral College SecInt, the FWF SFB
project SpyCoDe F8504, and the EPSRC grant EP/V000497/1.
6 https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=535817

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=535817
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Abstract. Parity games are two-player zero-sum games of infinite du-
ration played on finite graphs for which no solution in polynomial time
is still known. Solving a parity game is an NP∩co-NP problem, with the
best worst-case complexity algorithms available in the literature running
in quasi-polynomial time. Given the importance of parity games within
automated formal verification, several practical solutions have been ex-
plored showing that considerably large parity games can be solved some-
what efficiently. Here, we propose a new approach to solving parity games
guided by the efficient manipulation of a suitable matrix-based represen-
tation of the games. Our results show that a sequential implementation
of our approach offers very competitive performance, while a parallel im-
plementation using GPUs outperforms the current state-of-the-art tech-
niques. Our study considers both real-world benchmarks of structured
games as well as parity games randomly generated. We also show that
our matrix-based approach retains the optimal complexity bounds of the
best recursive algorithm to solve large parity games in practice.

Keywords: Parity games · Formal verification · Parallel computing.

1 Introduction

Parity games are one of the most useful and effective algorithmic tools used in
automated formal verification [18,5,2]. Indeed, several computational problems,
such as model checking and automated synthesis using temporal logic specifi-
cations, can be reduced to the solution of a parity game [5,2]. More formally,
a parity game is a two-player zero-sum game of infinite duration played on a
finite graph. Since these games are determined [14,8], solving them is equiva-
lent to finding a winning strategy for one of the two players in the game; or,
similarly, deciding from which vertices in the graph one of the two players in
the game can force a win no matter the strategy that the other player makes
use of. The main question regarding parity games is that of the computational
complexity of finding a solution of the game, a problem that is known to be
in NP ∩ co-NP [11]. However, despite decades of research, a polynomial-time
algorithm to solve such games remains elusive. The best-known decision proce-
dures to solve parity games, most of them recently developed [4,13], run in quasi-
polynomial time, which provide better worst-case complexity upper bounds than
previous exponential-time approaches [18] found in the parity games literature.
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The importance of parity games in the solution of real-life automated verifi-
cation problems, and the lack of a polynomial-time decision procedure to solve
such games, has motivated the development and implementation of algorithms
that can solve parity games somewhat efficiently in practice, despite their known
worst-case exponential time complexity. In the quest for developing such decision
procedures, several different approaches have been investigated in the last two
decades, ranging from solutions that try to improve/optimise on the choice of
high-level algorithm to reason about parity games, the programming language
used to implement such a solution, the concrete data structures used to represent
the games, or the type of hardware architecture used for deployment [7,6,17,9].

Progress solving parity games in practice has been made in different direc-
tions. In [7], a state-of-the-art implementation of the best-known algorithms for
solving parity games was presented. In this work, two algorithms were found to
deliver the best performance in practice, namely, Zielonka’s recursive algorithm
(ZRA [18]) and priority promotion [3], with the former showing slightly better
performance when solving random games and a selection of structured games
for model checking, and the latter outperforming ZRA when solving a selection
of structured games for equivalence checking. But, overall, the two algorithms
expose extremely similar performance in practice, including that of a parallel
implementation of ZRA. Another attempt to improve the performance of solv-
ing parity games is presented in [6]. In this work, better performance is sought
through a parallel implementation of ZRA, known to consistently expose the
best performance in different platforms and for different types of games.

These two works [7,6] contain two strikingly opposing conclusions. While
in [7] the parallel implementation of ZRA is even outperformed by the best
sequential implementation of the same algorithm, in [6] significant gains in per-
formance are observed when parallelising the computation of ZRA – which may
solve a large set of random parity games between 3.5 and 4 times faster than the
sequential implementation of the same algorithm. These two results, arguably,
both conforming with the state of the art in the solution of parity games in
practice, indicate that no definitive conclusion can be made into what the best
approach to solving parity games in practice is, let alone whether considering
a parallel implementation would necessarily produce better results than its se-
quential version. In this paper, we present a new approach to solving parity
games, and investigate some of the issues exposed by the two above papers.

More specifically, motivated by the need to find effective new techniques for
solving parity games, in particular in large practical settings, in this paper we:

1. propose a novel matrix-based approach to solving parity games, based on
ZRA [18,13], arguably, the best-performing algorithm in practice [7];

2. study the complexity of our matrix-based procedure, and show that it retains
the optimal complexity bounds of the best algorithms for parity games [13];

3. develop a parallel implementation, which takes advantage of methods and
hardware for matrix manipulation using sophisticated GPU technologies;

4. investigate a number of alternative implementations of our matrix-based
approach in order to better assess its usefulness in practical settings.
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Our matrix-based approach, whose parallel implementation outperforms the
state-of-the-art solvers for parity games, consists in the reduction of key oper-
ations on parity games as simple computations on large matrices, which can
be significantly accelerated in practice using sophisticated techniques for matrix
manipulation, specifically, using modern GPU technologies. Firstly, our matrix-
based approach partly builds on the observation that most of the computation
time when using ZRA is spent running a particular subroutine called the “attrac-
tor” function, which we can parallelise. Secondly, we also rely on the observation
that computations on matrices – which guide the search for the solution of parity
games within our approach – can be efficiently parallelised using a combination
of both algorithmic techniques for parallel computation and GPU devices.

2 Preliminaries

A parity game is two-player zero-sum infinite-duration game played over a finite
directed graph G = (V0, V1, E,Ω), where V = V0 ∪ V1 is a set of vertices/nodes
partitioned into vertices V0 controlled by Player Even/0 and vertices V1 con-
trolled by Player Odd/1. Whenever a statement about both players is made, we
may use the letter q (∈ {0, 1}) to refer to either player, and 1 − q to refer to
the other player in the game. Without any loss of generality, we also assume
that every vertex in the graph has at least one successor. Moreover, the function
Ω : V → N is a labelling function on the set of vertices of the graph which
assigns each vertex a priority. Intuitively, the way a parity game is played is by
moving a token along the graph (starting from some designated node in V ), with
the owner of the node of which the token is on selecting a successor node in the
graph. Because every vertex has a successor, this process continues indefinitely,
producing a infinite sequence of visited nodes, and consequently an infinite se-
quence of seen priorities. The winner of a particular play is determined by the
highest priority that occurs infinitely often: Player 0 wins if the highest infinitely
recurring priority is even, while Player 1 wins if the highest infinitely recurring
priority is odd. Parity games are determined, which means that it always the
case that one of the two players has a strategy (called a winning strategy) that
wins against all possible strategies of the other player. Solving a parity game
amounts to deciding, for every node in the game, which player has a winning
strategy for the game starting in such a node. That is computing disjoint sets
W0 ⊆ V and W1 ⊆ V such that Player q has a winning strategy to win every
play in the game that starts from a node in Wq, with q ∈ {0, 1}.

Somewhat surprisingly, the best performing algorithm to solve parity games
in practice is Zielonka’s Recursive Algorithm (ZRA [18]), which runs in exponen-
tial time in the number of priorities, bounded by |V |. This algorithm is rather
simple, and mostly relies on the computation of attractor sets, which are sets
of vertices A = Attrq(X) inductively defined for each Player q as shown below
– and used to computing both W0 and W1 recursively. Formally, the attractor
function Attrq : P(V ) → P(V ) for Player q, computes the attractor set of a
given set of vertices U ⊆ V , and is defined inductively as follows:
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Algorithm 1 Zielonka(G)

if V = ∅ then
(W0,W1)← (∅, ∅)

else
m← max{Ω(v) | v ∈ V }
q ← m mod 2
U ← {v ∈ V | Ω(v) = m}
A← Attrq(U)
(W ′0,W

′
1)← Zielonka(G \A)

if W ′1−q = ∅ then
(Wq,W1−q)← (A ∪W ′q, ∅)

else
B ← Attr1−q(W

′
1−q)

(W ′0,W
′
1)← Zielonka(G \B)

(Wq,W1−q)← (W ′q,W
′
1−q ∪B)

end if
end if
return (W0,W1)

Attr0q(U) = U

Attrn+1
q (U) = Attrnq (U)

∪ {u ∈ Vq | ∃v ∈ Attrnq (U) : (u, v) ∈ E}
∪ {u ∈ V1−q | ∀v ∈ V : (u, v) ∈ E ⇒ v ∈ Attrnq (U)}

Attrq(U) = Attr|V |q (U)

As shown in Algorithm 1, ZRA [18] finds disjoint sets of verticesW0/W1 from
which Player 0/1 has a winning strategy. Through the computation of attractor
sets, the algorithm works by recursively decomposing the graph, finding sets
of nodes that could be forced towards the highest priority node(s), and hence
building the winning regions W0 and W1 for each player in the game.

3 A matrix-based approach

Experimental results from [7] motivated us to investigate whether ZRA can be
improved in practice, since such an algorithm shows the best performance both in
random games as well as in several structured games found in practical settings.
This finding is complemented by the observation made in [6], that when running
ZRA most of the time is spent in the computation of attractor sets, reported
to be about 99% in [6] (with experiments considering random games only), and
found to be of about 77% in our study (which considers larger classes of games).

Our observation, and working hypothesis, not found in previous work [7,6],
is that the basic ZRA can be highly optimised in practice if its main compu-
tation component – the attractor set subroutine – is accelerated using efficient
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Algorithm 2 Attr(A, t, q,g,o)

d← Ag
t′ ← 0
while ‖t 6= t′‖1 6= 0 do

t′ ← t
v← At
t← g � ((o = q)� (v > 0) + (o = (1− q))� (v = d))

end while
return t

techniques for matrix manipulation, should a representation of the attractor
set procedure was based on computations/operations on matrices encoding the
attractor set subroutine in ZRA. This is precisely what we do in this section,
which in turn makes our approach incredibly appropriate for an implementation
in parallel using modern GPUs technologies for efficient matrix manipulation.

To achieve a matrix-based encoding of ZRA, and in particular of its attractor
set subroutine, we redefine the representation of the graph in terms of a sparse
adjacency matrix A, a vector defining the ownership of every node o, and a vector
ω defining the priority of every node. Due to the potentially high computational
cost of copying A, we maintain a vector g representing which nodes are still
included in the game (a subgame being computed at that point in the algorithm),
which is copied and updated as Zielonka’s algorithm recurses and decomposes
the graph into ever smaller parts. As such, we are able to find d = Ag, a vector
containing the maximum out-degree of every node. More specifically:

– (A)ij = 1, if edge exists connecting i and j; (A)ij = 0, otherwise;
– (o)i = q, if node i belongs to player q;
– (ω)i = Ω(Vi);
– (g)i = 1, if node i is in the game; (g)i = 0, otherwise.

With these definitions in place, we can make the necessary modifications
to the attractor function presented before – see Algorithm 2. The input/output
vector t contains 1 at position (t)i where a node i is part of the attractor set and
0 otherwise. We thus define vectorised operations where if a vector is compared
to another vector, then the comparisons are done element-wise. If a vector is
compared to a scalar, then the scalar s is implicitly converted, s = s1. The �
operator denotes the Hadamard product, which is used primarily as a Boolean
And operation. The argument q is the player: 0 for Player 0 and 1 for Player 1.

This algorithm works by first finding the number of outbound edges each
node has (d← Ag), and at each iteration finding how many ways each node can
enter the attractor set (v← At). It then finds nodes that q owns that may enter
the attractor set ((o = q)�(v > 0)), and nodes that q do not own that are forced
to enter the attractor set ((o = (1− q))� (v = d)). It then filters the nodes to
include into the attractor set depending on which nodes are still included in the
subgraph (g� (· · · )), and breaks the loop when there is no difference between t
and t′. To illustrate this procedure, take as an example the graph below.
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Algorithm 3 MatZielonka(A,g,o)

if ‖g‖1 = 0 then
(W0,W1) ← (0,0)

else
m ← max(g � ω)
q ← m mod 2
t ← (ω = m)
t ← Attr(A, t, q,g,o)
(W ′

0,W
′
1) ← MatZielonka(A,g − t,o)

if
∥∥W ′

1−q

∥∥
1
= 0 then

(Wq,W1−q) ← (t+W ′
q,0)

else
t ← Attr(A,W ′

1−q, 1− q,g,o)
(W ′

0,W
′
1) ← MatZielonka(A,g − t,o)

(Wp,W1−p) ← (W ′
q,W

′
1−q + t)

end if
end if
return (W0,W1)

For this example, assume that g = 1 and that we are computing the attractor
set for the player that own the circle nodes, starting from the node with priority 7.
After 1 (or some arbitrary number of iteration(s)), the current state is reached.
Green nodes denote nodes included in the previous iteration’s attractor set, and
yellow nodes denote nodes that will be included in this iteration. The calculations
that may be performed are as follows. Define the adjacency matrix of the graph
(A), the currently included nodes in the attractor set, t = (1 1 0 0 0)

�, the
ownership of every node, o = (0 0 1 1 0)

�, and the degree – number of outbound
edges – of every node, d = Ag = (1 1 2 2 1)

�. Now, compute the number of
edges from each node leading to an element in the current attractor set, that is,
v = At = (1 1 2 1 1)

�, and with that, update t, to obtain: t ← (1 1 1 0 1)
�,

which exactly represents the value of the attractor function one step later. Similar
changes for ZRA in terms of the representation of the game must also be made,
so that it becomes, fully, a matrix manipulation algorithm (Algorithm 3).

The correctness of the algorithm remains unchanged from that of ZRA since
our encoding into matrix operations is functional. Less clear is whether our
algorithm retains the ZRA’s complexity, since using a functional mapping does
not necessarily imply that the encoding (our representation) has the complexity
of the encoded instance (i.e., the original problem). We study this question next.
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3.1 Complexity

Using the algorithms defined before, we derive a function R(d, n) that bounds
the maximum number of recursive calls to ZRA, given a d number of distinct
priorities and n nodes: R(d, n) = 1 +R(d− 1, n− 1) +R(d, n− 1). The 1 is the
original call; the 1st recursive call is made with at least the vertex with the largest
priority removed, and the second is made with at least one vertex removed.
Hence, the construction above. There are two base cases R(d, 0) = R(0, n) = 1.
Firstly, we observer that based on the algorithms herein defined, we get:

R(d, n) = 1 +R(d− 1, n− 1) +R(d, n− 1)

= (n+ 1) +
n∑
i=1

[R(d− 1, n− i)]

Moreover, R(d, n) is then given by: f(d, n) = 2
∑d
j=0

(
n
j

)
− 1. For the base

case, when d = 1, we note that R(1, n) = (n + 1) +
∑n
i=1[R(0, n − i)] = 2n + 1

and f(1, n) = 2
∑1
j=0

(
n
j

)
− 1 = 2(n+1)− 1 = 2n+1 = R(1, n), as required, for

all n. For the inductive case, assume that R(d, n) = f(d, n), for d = k and all n.

R(k + 1, n) = (n+ 1) +
n∑
i=1

[R(k, n− i)]

= (n+ 1) +
n∑
i=1

[f(k, n− i)]

= 1 + 2

n∑
i=1

k∑
j=0

(
n− i
j

)
= 2

k+1∑
j=0

(
n

j

)
− 1 = f(k + 1, n)

Hence, the statement is true for the base case d = 1 and all n, while the
inductive case d = k implies d = k + 1. Thus, by induction, R(d, n) = f(d, n)
for d ≥ 1 and all n. We now observe that the worst case number of calls occurs,
as expected, at d = n where R(n, n) = 2n+1 − 1. Note that the complexity
of a single call to MatZielonka has time complexity O(n3) (dominated by the
complexity of calls to the matrix-based Attr subroutine1) and space complexity
O(n), delivering worst-case complexities of O(n3 · 2n) time and O(n · 2n) space.

This result, negative in theory, is consistent with that of the worst-case com-
plexity of ZRA, which indicates that our matrix-based encoding retains the same
complexity properties of the original algorithm. More interestingly, is the fact
that the quasi-polynomial extension of ZRA by Parys [16], and later improved
by Lehtinen et al [13], can also be tackled with our approach while retaining the
quasi-polynomial complexity. However, a matrix-based extension of the latter
algorithm was not evaluated. Thus, its practical usefulness is yet to be studied.
1 In practice, this is dominated by the complexity of performing matrix multiplication
operations, which is just slightly larger than O(n2) and happens to be a vibrant topic
of research recently due to improvements made through the use of Deep learning.
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4 Implementation and evaluation

Several factors influence the practical performance of a computational solution to
a problem: for instance, (1) the algorithm used to solve the problem, (2) the pro-
gramming language to implement the solution, (3) the concrete data structures
used to represent it, and (4) the hardware where the solution is deployed. Our
solution tries to optimise 1–4 using both lessons learnt from previous research
and properties of our own matrix-based approach. Details are given later, but in
short, in this section, five parity game solvers are implemented and evaluated2:

I1 our basic matrix-based approach, presented in the previous section;
I2 its parallel implementation for deployment using GPU technologies;
I3 the improved implementation of the attractor function of ZRA in [6];
I4 the highly optimised C++ implementation of ZRA presented in [7];
I5 the unoptimised version of the above algorithm, also in [7].

Apart from (2), the five implementations above (I1–I5) will allow you to
have a comprehensive evaluation of our approach, both against different versions
of our own work and against previous research. The only aspect that all the
solutions we present in this section have in common is the programming language
used for implementation, which is C++, at present the language offering the most
efficient practical implementation of parity games solutions; cf. [9,17,6,7]. We
first present the characteristics of our matrix-based approach, deployed both as a
sequential algorithm and as a parallelised procedure. After that, we will describe
key features of the solutions originally developed elsewhere, and continue with
the results of the evaluation using different types of parity games.

Matrix-based approach.3 Whilst it is important to find performance from
parallelisable operations, it is equally important to avoid the loss of performance
from executing inefficient or slow operations. Specific algorithmic design choices
such as maintaining a vector g to track nodes that are in or out of the graph
are done to avoid otherwise necessary operations such as copying the adjacency
matrix, which would otherwise be slow, especially when solving very large games.

Additionally, all values in vectors and matrices are stored as single precision
floating point values in practice. This is due to the software limitations of the
Compute Unified Device Architecture (CUDA) [15] library, which are likely limi-
tations of the underlying hardware itself. In particular, this limits the maximum
out-degree of a node to 224, which corresponds to the number of bits in the
mantissa of a single precision floating point number (23), plus one. Beyond this
limit, the accuracy of the values computed in operations such as computing the
maximum out-degree of a node with Ag would no longer be guaranteed, along
with the correctness of the algorithm. We note that this limitation may be over-
come by splitting a single node into multiple nodes, thus curbing the maximum
out degree to an acceptable range. We do not do this for these experiments as
this transformation has unknown impacts on the performance of the algorithm.
2 All files (implementations, experiments, input games, etc.) can be found in [1].
3 The description here applies to the first two solutions described above.
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Algorithm 4 Attr(A, t, q,g,o)
. . .
while ‖t 6= t′‖1 6= 0 do

for i ∈ (1..3) do
. . .

end for
end while
return t

The invocation of functions that run on the GPU (known as kernels) have
an overhead, with the overhead duration varying somewhat between devices. As
a consequence, tuning for a particular problem depends on the functions being
executed and the GPUs themselves. Thus, there are periods where the device is
idle, and this is a result of the overheads. Also note that in practice, it is usually
faster to perform multiple iterations of the attractor computation as performing
an iteration when the full attractor set has already been computed does not alter
the results (Algorithm 4). This is because queueing multiple kernel invocations
has the same overhead as calling one kernel alone. The main difference between
our sequential and parallel implementations of the matrix-based method is the
function computing attractor sets, which is as in Algorithm 2 in the sequential
case, and as in Algorithm 4 in the parallel case. The code in . . . is the same
in both implementations, and the key difference is that we set the execution of
the parallel implementation to make 3 kernel invocations per execution of the
attractor function – which in lucky cases may require only 1 kernel invocation,
while in unlucky cases may require more than 3 kernel invocations, increasing
overheads; for our problem, we found that 3 kernel invocations was appropriate.

We find that there is another possible point of optimisation as the time taken
for the attractor computation would be approximately equal to ctc+nto, where c
is the number of attractor computations (the inside section of the for loop), n is
the number of times the outer while loop will run, tc is the time to run the for loop
once, and to is the overhead incurred by switching execution from device (GPU)
to host (CPU) as the condition is checked in the while loop. Ideally, c = C+1, and
n = 1, where C is the (unknown) number of attractor computations required.
Our implementation loops the inner for loop an arbitrary constant number of
times (3 times here). As such, C + 1 ≤ c ≤ C + 3, and n = dC3 e.

Importantly, requirements for the efficient parallelisation of the algorithm on
the GPU require us to select the ‘Naive attractor’ implementation as the under-
lying algorithm (Algorithm 2) to be parallelised (leading to Algorithm 4) rather
than the ‘Improved attractor’ implementation in [6]. The concepts of ‘Naive’ and
‘Improved’ attractors are presented by Arcucci et al in [6]. In short, the ‘Naive’
attractor loops over each node and checks if it can be included in the attrac-
tor set, and repeats this until no further nodes can be added. The ‘Improved’
attractor starts from the original attractor set, performing backpropagation on
their inbound edges to find other nodes that may be included in the set.
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GPU deployment. Our GPU implementation works by parallelising the “attract”
operation.4 Whilst the sequential version may be executed as such:

– (Loop 1) While attracting new nodes...
– (Loop 2) For each node, check if it can be included in the attractor set.

And the runtime operations may look like:

– While attracting new nodes...
• Can node 1 be included in the attractor set?
• ...
• Can node N be included in the attractor set?

– If attracted new nodes, repeat loop. Else break.

Performance is found through the inner loop being efficiently parallelised on
the GPU. Additional specifics include the following GPU deployment features.
When asking “Can node X be included ...?”, the computation taking place is:

– Let J be the set of nodes in the current attractor set.
– Let K be the set of nodes that X can move to.
– If X is on the “friendly” team, and K ∩ J 6= ∅, then J ← J ∪ {X}.
– If X is on the “enemy” team, and K ⊆ J , then J ← J ∪ {X}.

Key to our approach is that these operations are efficiently parallelised through
means of matrix multiplication operations on the GPU. It is done as such:

– Compute t = A1. Hence, ti is the number of nodes node i can move to.
– Let j be a vector of size N (where N is the size of the parity game), such

that ji = 1 if and only if node i is in the current attractor set. Default 0.
– Let A be an adjacency matrix (usually, a sparse matrix) of the parity game.
– Compute the vector k = Aj. Hence, the value ki in the vector is the number

of nodes node i can move to and that are in the current attractor set.
– Then, for each node i, if it is on the friendly team, and ki 6= 0, then ji = 1;

otherwise, if it is on the enemy team, and ki = ti, then ji = 1.

Note we convert the previous logic on sets to suit the new form using vectors:

K ∩ J 6= ∅ ⇔ ki 6= 0 and K ⊆ J ⇔ ki = ti.

Improved attractor implementation by Arucci et al [6]. The third parity
game solver we evaluate is a custom, C++, implementation of the ZRA using
the ‘Improved attractor’ algorithm in [6], originally implemented in JAVA there.

ZRA implementations in Oink [7]. The fourth and fifth implementations
we evaluate and compare against are the most highly optimised implementation
of ZRA developed in [7], and its unoptimised version – without pre-processing
routines. We include this implementation since our matrix-based (‘Naive’) im-
plementation is not optimised in terms of the pre-processing routines used for
implementation. These solvers in Oink are referred to as zlk and uzlk in [7].
We note that the parallel implementation of this algorithm is not included since
in [7] is shown that it usually is outperformed by zlk, which we include here.
4 A very different approach, leading to a very different GPU deployment is done in [10].
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4.1 Evaluation

The implementations evaluated in this paper were tested on a wide repository of
parity games, and against state-of-the-art parity game solvers in the literature.
The games used for performance evaluation include the suite by Keiren [12] (of
games representing model checking and equivalence checking problems) and an
additional set of variably sized random games generated by PGSolver [9].5

We evaluate the performance in terms of solve time of each of the solvers and
for each of the games. As it is common practice when evaluating different solvers
for parity games, the overheads incurred due to startup and game loading are not
included; this is done in order to obtain numbers that estimate only the running
time of the algorithms, and nothing else. With the same aim, we ensured that at
most one solver is running at any time, with CPU utilisation not exceeding more
than one core. Finally, in order to allow for a fair comparison of running times
only – rather than combining such results with the robustness of the algorithms
– we measured the time solving an instance only in case all implementations suc-
cessfully compute a solution. This allows for a fairer comparison with respect to
runtime performance purely, because failing a game usually implies an extremely
disproportionately (and arbitrary) high runtime. Such failures include timeouts
(at 5 minutes) or being unable to load the game, sometimes due to factors hav-
ing little to do with the running time of the algorithms. Our experiments were
conducted in the Google Cloud Platform (GCP) using a T4 n1-highmem-2.6

Profile of the input parity games. Our study includes more than 2000 parity
games, with sizes ranging from only a few dozens of states to games with millions
of states. Both nodes’ out-degrees and number of distinct priorities also cover
a wide range of dimensions. However, both random games and structured ones
(model checking and equivalence checking) typically are represented by sparse
graphs, a feature that we will leverage for implementation purposes.

5 Analysis of results

As can be seen from Tables 1, 2, and 3, we evaluate the main five implemen-
tations, all of them following the ZRA philosophy, using two types of parity
games: structured and random. Both types of benchmarks are as in [7] and [6],
arguably, the two best implementations of ZRA. The focus of this evaluation
is to understand the usefulness and scalability of the ‘GPU matrix’ algorithm,
which is the one embodying more cleanly our working hypothesis, namely, that
the combination of a matrix-based representation of ZRA and the use of modern
GPU technologies can outperform the state of the art in the design of algorithms
for parity games – a hypothesis for which we provide strong evidence here.
5 These random games were generated using parameters that are identical to those of
the random games in the ‘PGSolver’ collection in the suit of benchmarks by Keiren.

6 In order to compare performance in different hardware (GPU) architectures, we use
a different technology for experiments presented in a forthcoming section.
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Model checking Equiv checking Random games
Implementation Time P/F Time P/F Time P/F
GPU matrix 94 313/0 332 209/7 20 1750/0

Naive (matrix) attractor 566 313/0 2190 216/0 88 1750/0
Improved attractor 212 313/0 1310 216/0 113 1750/0

Oink’s zlk 143 313/0 578 216/0 39 1750/0
Oink’s uzlk 150 313/0 917 216/0 69 1750/0

Table 1: Times are in milliseconds (ms) representing the average time taken to
solve games that all implementations passed (i.e., if any implementation fails
to solve a game, the game is excluded from the time average of all five solvers,
including an additional GPU implementation on an RTX2060S, presented later).
Failures occur with a small number of large equivalence checking games only.
Failures include a few timeouts (at 5 mins), and usually being unable to load the
game in memory due to hardware limitations posed by the GPU architectures.
Columns P/F show the number of games passed/failed for every type of game.

Model checking Equiv checking Random games
Implementation Time P/F Time P/F Time P/F
GPU matrix 814 33/0 2612 29/7 283 50/0

Naive (matrix) attractor 4565 33/0 17610 36/0 1059 50/0
Improved attractor 1832 33/0 10411 36/0 1446 50/0

Oink’s zlk 1263 33/0 4568 36/0 547 50/0
Oink’s uzlk 1316 33/0 7332 36/0 952 50/0

Table 2: Results in this table are formatted as in Table 1. In this table, we report
the performance (average time in milliseconds taken to solve a single game) for
the 5 algorithms on large (>1M nodes) parity games only.

Model checking Equiv checking Random games
Implementation Time P/F Time P/F Time P/F
GPU matrix 9 280/0 22 180/0 12 1700/0

Naive (matrix) attractor 95 280/0 172 180/0 59 1700/0
Improved attractor 21 280/0 119 180/0 74 1700/0

Oink’s zlk 11 280/0 56 180/0 24 1700/0
Oink’s uzlk 13 280/0 77 180/0 43 1700/0

Nodes
Implementation 4K 8K 12K 16K 20K 40K 80K 320K 640K
GPU matrix 1 1 2 2 2 5 11 43 78

Naive (matrix) attractor 1 1 2 4 5 17 37 208 469
Improved attractor 1 1 3 5 7 19 45 264 557

Oink’s zlk 1 1 2 3 4 7 15 76 186
Oink’s uzlk 1 2 3 4 5 11 25 142 354

Table 3: Results in this table are formatted as in Table 1. In this table, we
report the performance (average time in milliseconds taken to solve a single
game) for the 5 algorithms on “small” (<1M nodes) parity games only: results
for structured and random games appear in the top table and for random games
(detailed) at the bottom. In the bottom table, there are 200 games per column,
apart from column 640K which has 100 games; there are no failures.
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The results above also show that going from the sequential version of our
approach, ‘Naive (matrix) attractor’ to its parallel implementation using GPU
technologies finds significant improvements. These two main “internal” results
are then compared with the state of the art in the algorithmic design of solu-
tions based on ZRA, namely, using the improved attractor in [6] and using the
highly optimised procedure zlk in Oink [7], which even outperforms its own
parallel implementation; cf. [7]. Finally, the unoptimised version in Oink of this
procedure, uzlk, is also included simply because our matrix-based procedure
does not contain any of the pre-processing routines that differentiate zlk from
uzlk. Thus, in a way, uzlk provides results for a somewhat fairer comparison.

GPU matrix vs Naive (matrix) attractor. Results in all tables show that the
parallel implementation using GPU technologies outperforms its own sequential
implementation (‘Naive matrix attractor’) by several orders of magnitude, with
some exceptions, usually ranging from 5 times faster in some cases (e.g., model
checking of large games) to more than 10 times faster (e.g., model checking
of small games). This, we believe, is due to the fact that the bigger the input
instances to be analysed the more any losses in the associated overheads of
running the procedure in parallel are compensated later on. A trend going in
that direction can be observed in detail when comparing the performance of
these two algorithms over small random games. But, in any case, our matrix-
based approach is always at least as good as its sequential implementation.

GPU matrix vs Improved attractor. The results show that the parallel matrix-
based approach can outperform the improved attractor procedure by Arcucci et
al [6] by 2-7 orders of magnitude, depending on the type of game being solved,
and with the best results obtained when solving random games, whether large or
small. However, the sequential version of ‘GPU matrix’, that is, the Naive imple-
mentation, usually is twice slower than the improved attractor implementation
in structured games. Contrarily, even the (sequential) Naive implementation of
the matrix-based method outperforms the improved attractor procedure over
random games, being about 30% overall in that case. When looking at all the
tables of results together, one can see that this is in fact an indicator of the fact
that the improved attractor approach performs somewhat poorly over random
graphs, at least when compared to its performance over structured games.

GPU matrix vs Oink. Even thought the GPU matrix-based implementation out-
performs Oink’s zlk, it usually does it only by a 1.5 to 2.0 factor, with the GPU
implementation performing more efficiently over (large) random games than over
structured ones. This result actually speaks very highly of the optimised sequen-
tial implementation of ZRA. However, as shown in [7], zlk performs even better
than its own parallel implementation (called zlk-8 in [7]) when solving model
checking parity games (by a very small margin) and when solving random games,
where it is nearly twice faster; cf. Table 3 of [7]. Only when solving equivalence
checking parity games zlk-8 outperforms zlk, but only by about a 13% margin.
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In contrast, the GPU implementation here outperforms zlk by more than a 70%
margin, and is even twice faster when solving small equivalence checking games.

However, as we can see from all tables, the GPU matrix-based implementa-
tion has some failures (running timeout or failure to upload the game in mem-
ory, mainly due to their size), while the improved attractor method never fails
in the considered set of benchmarks. This indicates that in this particular case,
there may be a choice to be made between some potentially marginal gain in
efficiency and more reliability offered by zlk. On the other hand, zlk clearly out-
performs the sequential (Naive) implementation of the matrix-based approach,
with better efficiency going from twice faster when solving random games to
about four times faster when solving structured games. Regarding performance
against Oink’s uzlk, all analyses above remain similar, only that a better factor
is usually obtained in favour of the GPU matrix-based approach.

Improved attractor vs Oink’s zlk. Despite these two procedures being originally
developed previously, we would like to comment on their comparative perfor-
mance, for the sake of completeness of the analysis. As can be seen from our
results, both offer the same reliability as they do not fail to solve any instance.
Regarding runtime efficiency, we can observe that, on average, Oink’s zlk imple-
mentation tends to be 1.5 to 3.0 times faster than the improved attractor method,
with the worst/best comparative performance being enacted when solving model
checking/random parity game instances, and in that way making zlk perhaps
the most efficient sequential implementation of ZRA currently available in the
literature, and being outperformed only when a parallel approach is considered.

6 Special cases

In this section, we analyse in more details two special cases of our results: per-
formance when solving large parity games and performance on random games.

6.1 Solving large parity games

For the purposes of this section, a large parity game is a game with more than
1 million nodes. Our results show that for games that are not large (Table 3),
all solvers may be regarded as running efficiently from a human perspective,
with some random games with more than 500K nodes being solved in about
half a second by the slowest implementation on random games (the improved
attractor implementation). In most other instances, solutions may be obtained
in just a few milliseconds. For instance, model checking parity games in the suite
of benchmarks can be solved in less than 0.1 minutes by any studied solver, and
even in less than 10 milliseconds on average using the parallel GPU matrix-
based approach, with Oink implementation taking virtually the same time (just
a little more than 10 milliseconds on average). Then, the real challenge when
solving parity games in practice is solving large parity games, where the relative
performances between different solvers can be much better exposed (Table 2).
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Our results show (Tables 1 and 2) that, despite the raw data being different
in about 9 orders of magnitude, nearly the same relative performance is ob-
tained when looking at performance over all games with respect to performance
over large games only, which account for no more than 15% of the games for
equivalence checking games, 10% for model checking games and less than 5% for
random games. This result indicates that in order to evaluate the performance
of parity games solvers in practice, one should better focus on large games only.
As the data shows, in that case that parallel GPU matrix-based approach out-
performs the second-best technique by, approx., a 1.5-2.0 factor, and its own
sequential implementation by a factor of 4 to 5, in each case, depending on the
type of parity game under consideration. The analysis holds across all solvers.

6.2 Solving random parity games

Random parity games are a common benchmark for parity games solvers, be-
ing the focus of the study on [6]. Our detailed experiments on random parity
games show that the parallel GPU implementation of the matrix-based approach
is comparable to the parallel implementation of the improved attractor imple-
mentation in [6] (see Table 3 there), in the sense that a similar relative gain
in performance is achieved, overall, performing about 3.5-4.0 times faster over
random games of up to 20K nodes. The gain in performance increases in our case
when considering larger random graphs, perhaps indicating that our approach
may be more scalable in terms of running time; however, in [6], only results on
random games of up to 20K nodes are presented. We note that, in this case, only
by changing the programming language of choice (JAVA in [6] and C++ here),
performance is improved going from games of 20K size being solved in more than
5 seconds to the same type of games being solved in just 7ms on average here.

7 Alternative implementations

In this section, we explore two alternative implementations, one focused on a
change of programming environment and another one based on a change of com-
puter architecture. Our results show that while the former is well outperformed
by the original C++ implementation, the latter shows even better performance
than the already reported can be achieved when using other GPU technologies.

A MATLAB implementation. Given its facility to perform matrix operations,
we investigated a MATLAB of our matrix-based approach to understand if it
could perform better than our original C++ implementation. The results were
negative. The MATLAB implementation of our approach, although simple, per-
formed significantly worse than other methods, including our own using C++. A
summary of the results, which require little discussion, can be found in Table 4.

Using a different GPU technology. We conducted experiments using the exact
same implementation of the GPU matrix solver (run on a GCP) on a different
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Model checking Equiv checking Random games
Implementation Time P/F Time P/F Time P/F
GPU matrix 94 313/0 332 209/7 20 1750/0

Naive (matrix) attractor 566 313/0 2190 216/0 88 1750/0
MATLAB matrix 2462 311/2 2338 198/18 3496 1750/0

Table 4: Results in this table are formatted as in Table 1. We report results on all
games, and in each case, independently, remove the time of unsolved instances.

Model checking Equiv checking Random games
Implementation Time P/F Time P/F Time P/F

GPU matrix (RTX2060S) 63 313/0 203 205/11 25 1750/0
GPU matrix 94 313/0 332 209/7 20 1750/0

Table 5: Results in this table are formatted as in Table 1. We report results on
all games, which show an improvement of a 1.5x factor for structured games,
while performing approximately 25% slower over random parity games.

GPU architecture, namely, on an RTX2060 Super (Ryzen 5 3600). We found
that by simply changing to this alternative hardware specification, the results
on all types of games were significantly better, as shown in the Table 5.

8 Concluding remarks and related work

We have shown that a new method for solving parity games using a matrix-based
approach can outperform the state-of-the-art techniques, both sequential and
parallel, currently available. As such, our results become a new point of compari-
son when evaluating modern solvers for parity games. Previous research [7,6,17,9]
has shown that ZRA is potentially the best performing algorithm to solve parity
games in practice, and here we provide more evidence that this is indeed the
case. We also give evidence that C++ implementations for this task are hardly
ever outperformed in practice. Finally, we also show that choosing the right com-
puter architecture is key to achieve optimal performance, and in particular that
in the case of modern GPU technologies, such a choice can make a significant
difference in practice – in our study, leading to the development of the, as of
today, most efficient parallel implementation/solver for parity games.
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Abstract. Various techniques have been proposed to accelerate explicit-
state model checking with GPUs, but none address the compact storage
of states, or if they do, at the cost of losing completeness of the checking
procedure. We investigate how to implement a tree database to store
states as binary trees in GPU memory. We present fine-grained parallel
algorithms to find and store trees, experiment with a number of GPU-
specific configurations, and propose a novel hashing technique, called
Cleary-Cuckoo hashing, which enables the use of Cleary compression on
GPUs. We are the first to assess the effectiveness of using a tree database,
and Cleary compression, on GPUs. Experiments show processing speeds
of up to 131 million states per second.

Keywords: Explicit state space exploration, finite-state machines, GPU.

1 Introduction

Major advances in computation increasingly need to be obtained via parallel soft-
ware, as Moore’s Law is ending [30]. In the last decade, GPUs have been success-
fully applied to accelerate various computations relevant for model checking, such
as probability computations for probabilistic model checking [8,25,48], counter-
example construction [54], state space decomposition [52], parameter synthesis
for stochastic systems [12], and SAT solving [34–38,40,43,56,57]. VoxLogicA-
GPU applies model checking to analyse (medical) images [9].

In the earliest work on GPU explicit state space exploration, GPUs performed
part of the computation, specifically successor generation [18, 19] and property
checking once the state space has been generated [5]. This was promising, but
the data copying between main and GPU memory and the computations on
the CPU were detrimental for performance. The first tool that performed the
entire exploration on a GPU was GPUexplore [33, 50, 51, 53]. It was later
extended to support LTL model checking [49]. A similar exploration engine was
later proposed in [55]. An approach that applied a GPU to explore the state
space of Promela models, i.e., the models for the Spin model checker [21], was
presented in [6]. This was later adapted to the swarm checker Grapple [16],
which can efficiently explore very large state spaces, but at the cost of losing
completeness. Finally, the model checker ParaMoC for pushdown systems was
presented in [46, 47].
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The above techniques demonstrate the potential for GPU acceleration of state
space exploration and (explicit-state) model checking, being able to accelerate
those procedures tens to hundreds of times, but they all have serious practical
limitations. Several limit the size of state vectors to 64 bits [6, 55] or the size
of transition encodings to 64 bits [46, 47]. GPUexplore does not efficiently
support models with variables [50, 53]. When adding variables, the amount of
memory needed rapidly grows, due to the growing input model and inefficient
state storage. Grapple requires less memory, but uses bitstate hashing. This
rules out the ability to detect that all reachable states have been explored, which
is crucial to prove the absence of undesired behaviour. ParaMoC verifies push-
down systems, but does not support concurrency, and abstracts away data.

Contributions. We propose how to perform memory-efficient complete state
space exploration on a GPU for concurrent Finite-State Machines (FSMs) with
data. To make this possible, we are the first to investigate the storage of binary
trees in GPU hash tables, propose new algorithms to find and store trees in a
fine-grained parallel fashion, experiment with a number of GPU-specific config-
urations, and propose a novel hashing technique called Cleary-Cuckoo hashing,
which enables the use of Cleary compression [13,15] on GPUs. To achieve this, we
have to tackle the following challenges: 1) CPU-based algorithms are recursive,
but GPUs are not suitable for recursion, and 2) accessing GPU global memory,
in which the hash tables reside, is slow. This work marks an important step
to pioneer practical GPU accelerated model checking, as it can be extended to
checking functional properties of models with data, and paves the way to inves-
tigate the use of Binary Decision Diagrams [29] for symbolic model checking.

The structure of the paper is as follows. In Section 2, we discuss related
work on GPU hash tables. Section 3 presents background information on GPU
programming, and Section 4 contains an overview of the state space exploration
engine. Section 5 addresses the challenges when designing a GPU tree table, and
presents our new algorithms. Experimental results are given in Section 6, and in
Section 7, conclusions and our future work plans are discussed.

2 Related Work

An overview of related work on GPU acceleration of model checking is given in
Section 1. In the current section, we focus on hash tables [14] for the GPU. In
explicit state space exploration, states are typically stored in a hash table. Such
a table is often implemented as an array, where the elements represent the hash
table buckets. A recent survey of GPU hash tables [31] identifies that when using
integer data items and unordered insertions and queries, Cuckoo hashing [41]
is (currently) the best option, compared to techniques such as chaining [3] or
robin hood hashing [20], and the Cuckoo hashing of [1] is particularly effective.
In Cuckoo hashing, collisions, i.e., situations where a data item e is hashed to
an already occupied bucket, are resolved by evicting the encountered item e′,
storing e, and moving e′ to another bucket. A fixed number of m hash functions
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is used to have multiple storage options for each item. Item look-up and storage
is therefore limited to m memory accesses, but can lead to chains of evictions.
In [1], it is demonstrated that with four hash functions, a hash table needs
around 1.25N buckets to store N items.1 Recent research [4] has demonstrated
that using larger buckets, spanning multiple elements, that still fit in the GPU
cache line is beneficial for performance, and increases the average load factor,
i.e., how much the hash table can be filled until an item cannot be inserted, to
99%. We address this in detail in Section 3. However, in [4], an older NVIDIA
GPU of the Volta architecture was used (2017), while more recent GPUs are
supposedly less susceptible to optimisations exploiting the cache line. In this
work, we experimentally assess this for hash table buckets.

Besides buckets, we also consider Cuckoo hashing as used in [1, 4], but we
are the first to investigate the storage of binary trees, and the use of Cleary
compression to store more data in less space. Libraries offering GPU hash tables,
such as [23], do not offer these capabilities. Furthermore, we are the first to
investigate the impact of using larger buckets for binary tree storage embedded
in a state space exploration engine.

The model checker GPUexplore [11, 50, 53] uses multiple hash functions
to store a state. State evictions are never performed, as each state is stored in
a sequence of integers, making it not possible to store states atomically. This
can lead to storing duplicate states, which tends to be worsened when states
are evicted, making Cuckoo hashing not practical [51]. Besides compact state
storage, a second benefit of using trees with each node being stored in a single
integer is that it allows arbitrarily large states to be stored atomically, i.e., a
state is stored the moment the root of its tree is stored.

Because we store trees, with the individual nodes referencing each other,
we do not consider alternative storage approaches, such as using a list that
is repeatedly sorted, even though Alcantara et al. identified that using radix-
sort [32] is competitive to hashing [1].

3 GPU programming

CUDA2 is a programming interface that enables general purpose programming
for a GPU. It has been developed and continues to be maintained by NVIDIA
since 2007. In this work, we use CUDA with C++. Therefore, we use CUDA
terminology when we refer to thread and memory hierarchies.

The left part of Fig. 1 gives an overview of a GPU architecture. For now,
ignore the bold-faced words and the pseudo-code. A GPU consists of a finite
number of streaming multiprocessors (SM), each containing hundreds of cores.
For instance, a Titan RTX, which we used for this work, has 72 SMs containing
together 4,608 cores. A programmer can implement functions, named kernels, to

1 This refers to the single-level version of their Cuckoo hashing [1], which we consider
in this work. Their two-level version is more complex and less efficient.

2 https://developer.nvidia.com/cuda-zone.

https://developer.nvidia.com/cuda-zone
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Fig. 1: State space exploration on a GPU architecture.

be executed by a predefined number of GPU threads. Parallelism is achieved by
having these threads work on different parts of the data.

When a kernel is launched, threads are grouped into blocks, usually of a size
equal to a power of two, often 512 or 1,024. Each block is executed by one SM, but
an SM can interleave the execution of many blocks. When a block is executed, the
threads inside are scheduled for execution in smaller groups of 32 threads called
warps. A warp has a single program counter, i.e., the threads in a warp run in
lock-step through the program. This concept is referred to as Single Instruction
Multiple Threads (SIMT): each thread executes the same instructions, but on
different data. The threads in a warp may also follow diverging program paths,
leading to a reduction in performance. For instance, if the threads of a warp
encounter an if C then P1 else P2 construct, and for some, but not all, C

holds, all threads will step through the instructions of both P1 and P2, but each
thread only executes the relevant instructions.

GPU threads can use atomic instructions to manipulate data atomically, such
as a compare-and-swap on 32- and 64-bit integers: atomicCAS(addr, compare,
val) atomically checks whether at address addr, the value compare is stored. If
so, it is updated to val, otherwise no update is done. The actual value read at
addr is returned.

There are various types of memory on a GPU. The global memory is the
largest of these, 24 GB in the case of the Titan RTX, and is used to copy data
between the host (CPU-side) and the device (GPU-side). It can be accessed by
all GPU threads, and has a high bandwidth, but also a high latency. Having
many threads executing a kernel helps to hide this latency; the cores can rapidly
switch contexts to interleave the execution of multiple threads, and whenever
a thread is waiting for the result of a memory access, the core uses that time
to execute another thread. Another way to improve memory access times is by
ensuring that the accesses of a warp are coalesced : if the threads in a warp try to
fetch a consecutive block of memory in size not larger than the cache line (128
bytes for a Titan RTX), then the time needed to access that block is the same
as the time needed to access an individual memory address.

Other types of memory are shared memory and registers. Shared memory is
fast on-chip memory with a low latency, that can be used as block-local memory;
the threads of a block can share data with each other via this memory. In a Titan
RTX, each block can use up to 49,152 bytes of shared memory. Register memory
is the fastest, and is used to store thread-local data. It is very small, though,
and allocating too much memory for thread-local variables may result in data
spilling over into global memory, which can dramatically limit the performance.

SM n

global memory (state storage)

shared mem. (state cache)

threads (successor generation)
SM 0

shared mem. (state cache)

threads (successor generation)
while there are unexplored states:
    - select set of unexplored states S
        (mark them explored)
    - for all successors s' of all s ∈ S:
          - store s' in the (local) state cache
    - sync. cache with global memory
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Finally, the threads in a warp can communicate very rapidly with each other
by means of intra-warp instructions. There are various instructions, such as
shuffle to distribute register data among the threads and ballot to distribute
the results of evaluating a predicate. Since CUDA 9.0, threads can be partitioned
into cooperative groups. If these groups have a size that completely divides the
warp size, i.e., it is a power of two smaller than or equal to 32, then the threads
in a group can use intra-warp instructions among themselves.

In Section 2, we mentioned the use of buckets in a GPU hash table. When a
hash table is divided into buckets, each containing 1 < n ≤ 32 elements, that still
fit in the cache line, then cooperative groups of n threads each can be created,
and the threads in a group can work together for the fetching and updating
of buckets. This results in more coalesced memory accesses and reduces thread
divergence. However, it also means that fewer tasks can be performed in parallel,
and starting with the Turing architecture (2018), which the Titan RTX is built
on, NVIDIA has been working on making computations less reliant on coalesced
memory accessing.

4 GPU state space exploration

Slco. For this work, we extended the state space exploration engine of GPU-
explore 2.0 [53] to support models of finite-state concurrent systems written
in the Simple Language of Communicating Objects (Slco), version 2.0 [44]. An
Slco model consists of a finite number of FSMs. The FSMs can communicate
via globally shared variables, and each FSM can have its own local variables.
Variables can be of type Bool, Byte and (32-bit) Integer, and there is support
for arrays of these types. We refer with (system) states s, s′, . . . to entire states of
the system, and with FSM states σ, σ′, . . . to the states of an individual FSM. A
system state is essentially a vector, containing all the information that together
defines a state of the system, i.e., the current states of the FMSs and the values
of the variables.

An FSM transition tr = σ
st−→ σ′ indicates that the FSM can change state

from σ to σ′ iff the associated statement st is enabled. A statement is either an
assignment, an expression or a composite. Each can refer to the variables in the
scope of the FSM. An assignment is always enabled, and assigns a value to a
variable, an expression is a predicate that acts as a guard: it is enabled iff it eval-
uates to true. Finally, a composite is a finite sequence of statements st0; . . . ; stn,
with st0 being either an expression or an assignment, and st1, . . . , stn being as-
signments. A composite is enabled iff its first statement is enabled. A transition

tr = σ
st−→ σ′ can be fired if it is enabled, which results in the FSM atomically

moving from state σ to state σ′, and any assignments of st being executed in
the specified order. When tr is fired while the system is in a state s, then after
firing, the system is in state s′, which is equal to s, apart from the fact that σ
has been replaced by σ′, and the effect of st has been taken into account. We
call s′ a successor of s.
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The formal semantics of Slco defines that each transition is executed atom-
ically, i.e., cannot be interrupted by the execution of other transitions. The
FSMs execute concurrently, using an interleaving semantics. Finally, the FSMs
may have non-deterministic behaviour, i.e., at any point of execution, an FSM
may have several enabled transitions.

State space exploration. Given an Slco model with n FSMs, first, CUDA
functions f1, . . . fn are generated, using a new code generator, that take as input
a state s, and produce as output the successors of s which can be reached by
firing a transition enabled in s of the ith FSM. When the state space is generated,
each state s can be analysed in parallel by n threads t1, . . . , tn, where each ti
executes fi to obtain some of the successors of s.

Fig. 1 presents how the different components of the state space exploration
engine map on a GPU. We explain how the engine works insofar is needed.
For more details, we refer the reader to [50, 51, 53]. Even though the type of
input model has changed, as GPUexplore only supports models without data
variables, the core of the engine has remained the same.

In the global memory, a large hash table (we call it G) is maintained to store
the states visited so far. At the start, the initial state of the input model is stored
in G. Each state in G has a Boolean flag new, indicating whether the state has
already been explored, i.e., whether or not its successors have been constructed.

On the right in Fig. 1, the state space exploration algorithm is explained from
the perspective of a thread block. While the block can find unexplored states in
G, it selects some of those for exploration. In fact, every block has a work tile
residing in its shared memory, of a fixed size, which the block tries to fill with
unexplored states at the start of each exploration iteration. Such an iteration is
initiated on the host side by launching the exploration kernel. States are marked
as explored when added by threads to their tile.

Next, every block processes its tile. For this, each thread in the block is
assigned to a particular state/FSM combination. Each thread accesses its desig-
nated state in the tile, and analyses the possibilities for its designated FSM to
change state, as explained before. Hence, the threads in a group can generate
successors for a single state in parallel.

The generated successors are stored in a block-local state cache, which is a
hash table in the shared memory. This avoids repeated accessing of global mem-
ory, and local duplicate detection filters out any duplicate successors generated
at the block-level. Once the tile has been processed, the threads in the block
together scan the cache once more, and store the new states in G if they are
not already present. When states require no more than 32 or 64 bits in to-
tal (including the new flag), they can simply be stored atomically in G using
compare-and-swap. However, sufficiently large systems have states consisting of
more than 64 bits. In this paper, we therefore focus on working with these larger
states, and consider storing them as binary trees.
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Fig. 2: An example of storing state vectors as binary trees.

5 A Compact GPU Tree Database

5.1 CPU Tree Storage

The number of data variables in a model, and their types, can have a drastic effect
on the size of the states of that model. For instance, each 32-bit integer variable in
a model requires 32 bits in each state. As the amount of global memory on a GPU
is limited, we need to consider techniques to store states in a memory-efficient
way. One technique that has proven itself for CPU-based model checkers is tree
compression [7], in which system states are stored as binary trees. A single hash
table can be used to store all tree nodes [27]. Compression is achieved by having
the trees share common subtrees. Its success relies on the observation that states
and their successors tend to be different in only a few data elements. In [27],
it is experimentally assessed that tree compression compresses better than any
other compression technique identified by the authors for explicit state space
exploration. They observe that the technique works well for a multi-threaded
exploration engine. Moreover, they propose an incremental variant that has a
considerably improved runtime performance, as it reduces the number of required
memory accesses to a number logarithmic in the length of the state vector.

Fig. 2 shows an example of applying tree compression to store four state
vectors. The black circles should be ignored for now. Each letter represents a
part of the state vector that is k bits in length. We assume that in k bits, also
a pointer to a node can be stored, and that each node therefore consists of 2k
bits. The vector <A,B,C,D,E> is stored by having a root node with a left leaf
sibling <A,B>, and the right sibling being a non-leaf that has both a left leaf
sibling <C,D>, and the element E. In total, storing this tree requires 8k bits. To
store the vector <A’,B,C’,D,E>, we cannot reuse any of these nodes, as <A’,B>
and <C’,D> have not been stored yet. This means that all pointers have to be
updated as well, and therefore, a new root and a new non-leaf containing E are
needed. Again, 8k bits are needed. For <A,B’,C,D,E’>, we have to store a new
node <A,B’> and a new root, and a new non-leaf storing E’, but the latter can
point to the already existing node <C,D>. Hence, only 6k bits are needed to
store this vector. Finally, for <A’,B,C,D,E’>, we only need to store a new root
node, as all other nodes already exist, resulting in only needing 2k bits. It has
been demonstrated that as more and more state vectors are stored, eventually
new vectors tend to require 2k bits each [26, 27].

To emphasise that GPU tree compression has to be implemented vastly dif-
ferently from the typical CPU approach, we first explain the latter, and the
incremental approach [27]. Checking for the presence of a tree and storing it if
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<A,B,C,D,E> <A',B,C',D,E>
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Algorithm 1: Tree-based Find-or-put, CPU version.
1 function findorput-cpu(node t* G, node t node):
2 if has-left-sibling(node) and is-updated(left-sibling(node)) then
3 node.left ← findorput-cpu(G, left-sibling(node))
4 if has-right-sibling(node) and is-updated(right-sibling(node)) then
5 node.right ← findorput-cpu(G, right-sibling(node))
6 addr ← store(G, node)
7 return addr

not yet present is typically done by means of recursion (outlined by Alg. 1). For
now, ignore the red underlined text. The store function returns the address
of the given node in G, if present, otherwise it stores the node and returns its
address, and the findorput-cpu function first recursively checks whether the
siblings of the node are stored, and if not, stores them, after which the node
itself is stored. A node has pointers left and right to addresses of G, and there
are functions to check for the existence of, and retrieve the siblings of a node.

In the incremental approach, when creating a successor s′ of a state s, the
tree for s, say T (s), is used as the basis for the tree T (s′). When T (s′) is created,
each node inside it is first initialised to the corresponding node in T (s), and the
leaves are updated for the new tree. This ‘updated’ status propagates up: when
a non-leaf has an updated sibling, its corresponding G pointer must be updated
when T (s′) is stored in G, but for any non-updated sibling, the non-leaf can
keep its G pointer. When incorporating the red underlined text in Alg. 1, the
incremental version of the function is obtained. With this version, tree storage
often results in fewer calls to store, i.e., fewer memory accesses.

There are two main challenges when considering GPU incremental tree stor-
age: 1) Recursion is detrimental to performance, as call stacks are stored in global
memory (and with thousands of threads, a lot of memory would be needed for
call stacks), and 2) The nodes of a tree tend to be spread all over the hash table,
potentially leading to many random accesses. To address these, we propose a
procedure in which threads in a block store sets of trees together in parallel.

5.2 GPU Tree Generation

When states are represented by trees, the tile of each thread block cannot store
entire states, but it can store the roots of trees. To speed up successor generation,
and avoid repeated uncoalesced global memory accessing, the trees of those roots
are retrieved and stored in the shared memory (state cache) by the thread block.
Once this has been done, successor generation can commence.

Fig. 3 shows an example of the state cache evolving over time as a thread
generates the successor s′ =<A,B’,C,D,E’> of s =<A,B,C,D,E>, with the trees
as in Fig. 2. Each square represents a k-bit cache entry. In addition to two entries
needed to store a node, we also use one (grey) entry to store two cache pointers
or indices, and assume that k bits suffice to store two pointers (in practice, we
use k = 32, which is enough, given the small size of the state cache). Hence, every
pair of white squares followed by a grey square constitutes one cache slot. Initially
(shown at the top of the figure), the tile has a cache pointer to the root of s, of
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Fig. 3: Successor generation: deriving <A,B’,C,D,E’> from <A,B,C,D,E>.

which we know that it contains the G addresses a0 and a1 to refer to its siblings.
In turn, this root points, via its cache pointers, to the locally stored copies of
its siblings. The non-leaf one contains the global address a2. A leaf has no cache
pointers, denoted by ‘-’. When creating s′, first, the designated thread constructs
the leaf <A,B’>, by executing the appropriate generated CUDA function (see
Section 4), and stores it in the cache. In Fig. 3, it is coloured black, to indicate
that it is marked as new. Next, the thread creates a copy of <a2,E>, together
with its cache pointers, and updates it to <a2,E’>. Finally it creates a new root,
with cache pointers pointing to the newly inserted nodes. This root still has
global address gaps to be filled in (the ‘?’ marks), since it is still unknown where
the new nodes will be stored in G.

The reason that we store global addresses in the cache is not to access the
nodes they point to, but to achieve incremental tree storage: in the example, as
the global address a2 is stored in the cache, there is no need to find <C,D> in
G when the new tree is stored; instead, we can directly construct <a2,E’>. This
contributes to limiting the number of required global memory accesses.

Note that there is no recursion. Given a model, the code generator determines
the structure of all state trees, and based on this, code to fetch all the nodes of a
tree and to construct new trees is generated. As we do not consider the dynamic
creation and destruction of FSMs, all states have the same tree structure.

5.3 GPU Tree Storage at Block Level

Once a block has finished generating the successors of the states referred to by
its tile, the state cache content must be synchronised with G. Alg. 2 presents how
this is done. The findorput-many function is executed by all threads in the
block simultaneously. It consists of an outer while-loop (l.5-28), that is executed
as long as there is work to be done. The code uses a cooperative group called bg,
which is created to coincide with the size of a bucket (bucketsize). When no
buckets are used, these groups can be interpreted as consisting of only a single
thread each. At l.4, the offset of each thread is determined, i.e., its ID inside
its group, ranging from 0 to the size of the group.

Every thread that still has work to do (l.5) enters the for-loop of l.7-27, in
which the content of the state cache is scanned. The parallel scanning works
as follows: every thread first considers the node at position tid− offset of the
cache, with tid being the thread’s block-local ID. This node is assigned to the
thread with bg ID 0. If that index is still within the cache limits, all threads of

Tile: Cache:
E A B - C D -

E A B - C D - A B' -

E A B - E' C D - A B' -

? ? E A B - E' C D - A B' -

time
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Algorithm 2: Tree-based Find-or-put-many, at thread block level.
1 device function findorput-many(node t* G):
2 node t p, q; index t addr; bool work to do ← true; bool ready; byte ballot result
3 auto bg ← tiled-partition〈bucketsize〉(this-thread-block())
4 byte offset ← bg.thread-rank()
5 while work to do do
6 work to do ← false
7 for i← tid − offset; i < CACHE SIZE; i← i + BLOCK SIZE do
8 ready ← false
9 if i + offset < CACHE SIZE then

10 p ← cache[i + offset]
11 if is-new-leaf(p) then ready ← true
12 else if is-new-nonleaf(p) then
13 if left-gap(p) then
14 cache[i + offset] ← set-left-gaddr(p, cache[left-caddr(p)])
15 if right-gap(p) then
16 cache[i + offset] ← set-right-gaddr(p, cache[right-caddr(p)])
17 if ¬(left-or-right-gap(p)) then ready ← true
18 else work to do ← true

19 ballot result ← bg.ballot(ready)
20 while ballot result do
21 lane ← find-first-set(ballot result) - 1; q ← bg.shuffle(p, lane)
22 addr ← findorput-single(bg, G, q)
23 if offset = lane then
24 ready ← false
25 if addr = FULL then signal hash table full
26 else set-gaddr(cache[i], addr)

27 ballot result ← bg.ballot(ready)

28 work to do ← bg.ballot(work to do)

bg have to move along, regardless of whether they have a node to check or not.
At the next iteration of the for-loop, the thread jumps over BLOCK SIZE nodes
as long as the index is within the cache limits.

The main goal of this loop is to check which nodes are ready for synchroni-
sation with G. Initially, this is the case for all nodes without global address gaps
(see Subsection 5.2). Each thread first checks whether its own index is still within
the cache limits (l.9). If so, the node p is retrieved from the cache at l.10. If it is
a new leaf, ready is set to true, to indicate that the active thread is ready for
storage (l.11). If the node is a new non-leaf (l.12), it is checked whether the node
still has global address gaps. If it has a gap for the left sibling (l.13), this left sib-
ling is inspected via the cache pointer to this sibling (retrieved with the function
left-caddr (l.14)). The function set-left-gaddr checks whether the cache
pointers of that sibling have been replaced by a global memory address, and if
so, uses that address to fill the gap. The same is done for the right sibling at
l.15-16. If, after these operations, the node p contains no gaps (l.17), ready is
set to true. If the node still contains a gap, another loop iteration is required,
hence work to do is set to true (l.18).

At l.19, the threads in the group perform a ballot, resulting in a bit sequence
indicating for which threads ready is true. As long as this is the case for at least
one thread, the while-loop at l.20-27 is executed. The function find-first-
set identifies the least significant bit set to 1 in ballot result (l.21), and
the shuffle instruction results in all threads in bg retrieving the node of the
corresponding bg thread. This node is subsequently stored by bg, by calling
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findorput-single (l.22) (explained later). Finally, the thread owning the node
(l.23) resets its ready flag (l.24), and if the hash table is considered full, reports
this globally (l.25). Otherwise, it records the global address of the stored node
(l.26). After that, ballot result is updated (l.27). Finally, once the for-loop is
exited, the bg threads determine whether they still have more work to do (l.28).

5.4 Single Node Storage at Bucket Group Level

In this section, we address how individual nodes are stored by a cooperative
group bg. Before we explain the algorithm for this, Alg. 3, in detail, we consider
our options for hashing, and propose a novel combination of existing techniques.

In Section 2, we argued that Cuckoo hashing is very effective on a GPU.
However, as it frequently moves elements, it is not suitable for a single hash
table, since the non-leaves of a tree refer to the positions of other nodes. We
address this by maintaining two hash tables, one for tree roots, and one for
the other nodes, as done in [26]. The roots are then not referred to, and hence
Cuckoo hashing can be applied on the root table.

In fact, when using two hash tables, we can be even more memory-efficient.
In [26], it was shown that Cleary tables [13, 15] can be very effective to store
state spaces. To handle collisions in Cleary tables, order-preserving bidirectional
linear probing [2] is used, which involves moving nodes to preserve their order.
This makes Cleary tables, like Cuckoo hashing, not suitable to store entire trees,
but they can be used to store the roots of the trees. In a Cleary table for roots
of size 2k, each root r is hashed (bit scrambled) with a hash function h to a 2k
bit sequence, from which w < k bits are taken to be used as the address to store
r in a table with exactly 2w buckets, and at this position, the remaining 2k−w
bits (the remainder) are actually stored. To enable decompression, h must be
invertible; given a remainder and an address, h−1 can be applied to obtain r.

In a multi-threaded CPU context, this approach scales well [26], but the
parallel approach of [26, 45] divides a Cleary table into regions, and sometimes,
a region must be locked by a thread to safely reorder nodes. Unfortunately, the
use of any form of locking, also fine-grained locking implemented with atomic
operations, is detrimental for GPU performance. Further, the absence of coherent
caches in GPUs means that expensive global memory accesses may be needed
when a thread repeatedly checks the status of an acquired lock.

As an elegant alternative, we propose Cleary-Cuckoo hashing, which combines
Cleary compression with Cuckoo hashing. We use m hash functions that are
invertible (as with Cuckoo hashing) and capable of scrambling the bits of a
root to a 2k bit sequence (as in Cleary tables). When we apply a function hi
(0 ≤ i < m) on a root r, we get a 2k bit sequence, of which we use w bits for an
address d, and store at d the remainder r′ consisting of 2k − w + dlog2(m)e+ 1
bits. The dlog2(m)e bits are needed to store the ID of the used hash function
(i), and the final bit is needed to indicate that the root is new (unexplored). It
is possible to retrieve r by applying h−1i on d and r′ without the hash function
ID and the new bit. When a collision occurs, the encountered root is evicted,



A GPU Tree Database for Many-Core Explicit State Space Exploration 695

Algorithm 3: Single node find-or-put, at bucket group level.
1 device function index t findorput-single(tile t bg, node t* G, node t p):
2 node t q; index t addr
3 (q, addr) ← fop-cuckoo-root(bg, G, p)
4 for i← 0; q 6= p and i < MAX EVICT; i← i + 1 do
5 (q, addr) ← fop-cuckoo-root(bg, G, q)
6 return (i = MAX EVICT? FULL; addr)

7 device function (node t, index t) fop-cuckoo-root(tile t bg, node t* G, node t p):
8 comprnode t cp, cq; node t q
9 hs← get-hash-start(p); byte offset ← bg.thread-rank()

10 for i← 0; i < NUM HASH FUNCTIONS; i← i + 1 do
11 (addr, cp) ← addr-compr-root(p, h(hs+i) mod NUM HASH FUNCTIONS)

12 (cq, pos) ← ht-find(bg, offset, G, addr, cp)
13 if cq = cp then return (p, addr + pos)
14 if cq = EMPTY then
15 hs ← h(hs+i) mod NUM HASH FUNCTIONS

16 break

17 if i = NUM HASH FUNCTIONS then (cp, addr) ← addr-compr-root(p, hs)
18 (cq, pos) = ht-insert-cuckoo(bg, offset, G, addr, cp)
19 if cq 6= EMPTY and cq 6= cp then
20 q ← get-decompr-root(cq, addr)
21 return (q, addr + pos)

22 return (p, addr + pos)

decompressed, and stored again using the hash function next in line for that root.
We refer to the application of Cleary compression to roots as root compression.

Alg. 3 presents one version of the findorput-single function, to which a
call in Alg. 2 is redirected when a root is provided. Here, G is a Cleary-Cuckoo
table that is only used to store roots. In findorput-single, a second function
fop-cuckoo-root (l.7-22) is called repeatedly, as long as nodes are evicted
or until the pre-configured MAX EVICT has been reached, which prevents infinite
eviction sequences (l.4). The function fop-cuckoo-root returns the address
where the given node was found or stored, and a node, which is either the node
that had to be inserted or the one that was already present.

In the fop-cuckoo-root function, lines highlighted in purple are specific for
root compression, i.e., Cleary compression of roots, while the green highlighted
lines concern Cuckoo hashing, addressing node eviction. The ID of the first
hash function to be used for node p, encoded in p itself, is stored in hs (l.9),
and each thread determines its bg offset. Next, the thread iterates over the hash
functions, starting with function hs (l.10-16). The G address and node remainder
are computed at l.11. If the node is new, the remainder is marked as new. If
root compression is not used, we have p = cp. Then, the function ht-find is
called to check for the presence of the remainder in the bucket starting at addr

(l.12). If ht-find returns the remainder, then it was already present (l.13), and
this can be returned. Note that the returned address is (addr + pos), i.e., the
offset at which the remainder can be found inside the bucket is added to addr.
Alternatively, if EMPTY is returned, the node is not present and the bucket is not
yet full. In this case, a bucket has been found where the node can be stored. The
used hash function is stored in hs (l.15) and the for-loop is exited (l.16).

At l.17, if a suitable bucket for insertion has not been found, the initial hs is
selected again. At l.18, the function ht-insert-cuckoo is called to insert cp.
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Algorithm 4: Single node insertion, at bucket group level.
1 device function (comprnode t, index t) ht-insert-cuckoo(tile t bg, byte offset, node t*
G, index t addr, comprnode t cp):

2 comprnode t cq ← G[addr + offset]; byte ballot result ← bg.ballot(cq = cp)
3 if ballot result then return (cp, find-first-set(ballot result) - 1)
4 while ballot result ← bg.ballot(cq = EMPTY) do
5 if offset = find-first-set(ballot result) - 1 then
6 cq ← atomicCAS(G[addr + offset], EMPTY, cp)
7 cq ← bg.shuffle(cq, find-first-set(ballot result) - 1)
8 if cq = EMPTY or cq = cp then return (cq, find-first-set(ballot result) - 1)
9 cq ← G[addr + offset]

10 byte i← get-eviction-pos(cp)
11 if offset = i then cq ← atomicExch(G[addr + offset], cp)
12 cq ← bg.shuffle(cq, i)
13 return (cq, i)

This function is presented in Alg. 4. Finally, if a value other than the original
remainder cp or EMPTY is returned, another (remainder of a) node has been
evicted, which is decompressed and returned at l.20-21. Otherwise, p is returned
with its address (l.22). When Cuckoo hashing is not used, evictions do not occur,
and at l.20-21, it is returned that the bucket is full.

Finally, we present ht-insert-cuckoo in Alg. 4. The function ht-find is
not presented, but it is almost equal to l.2-3 of Alg. 4. At l.2, each thread in
bg reads its part of the bucket G[addr + offset], and checks if it contains cp,
the remainder of p. If it is found anywhere in the bucket, the remainder with its
position is returned (l.3). In the while-loop at l.4-9, it is attempted to insert cp
in an empty position. In every iteration, an empty position is selected (l.5) and
the corresponding thread tries to atomically insert cp (l.6). At l.7, the outcome
is shared among the threads. If it is either EMPTY or the remainder itself, it can
be returned (l.8). Otherwise, the bucket is read again (l.9). If insertion does not
succeed, l.10 is reached, where a hash function is used by get-eviction-pos to
hash cp to a bucket position. The corresponding thread exchanges cp with the
node stored at that position (l.11). After the evicted node has been shared with
the other threads (l.12), it is returned together with its position (l.13).

6 Experiments

We implemented a code generator in Python, using textX [17] and Jinja2,3

that accepts an Slco model and produces CUDA C++ code to explore its state
space. The code is compiled with CUDA 11.4 targeting compute capability 7.5.
Experiments were conducted on a machine running Linux Mint 20 with a
4-core Intel Core i7-7700 3.6 GHz, 32GB RAM, and a Titan RTX GPU.

The goal of the experiments is to assess how fast GPU next state computation
with the tree database is w.r.t. 1) the various options we have for hashing, 2)
state-of-the-art CPU tools, and 3) other GPU tools. For 2), we compare with
multi-core Depth-First Search (DFS) of Spin 6.5.1 [22] and (explicit-state) multi-
core Breadth-First Search (BFS) of LTSmin 3.0.2 [24, 28].

3 https://palletsprojects.com/p/jinja/.

https://palletsprojects.com/p/jinja/
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Fig. 4: Speed obtained by different GPU configurations.

In our implementation, we use 32 invertible hash functions. Root compression
(cmp) can be turned on or off. When selected, we have a root table with 232

elements, 32 bits each, and a non-root table with 229 elements, 64 bits each.
This enables storing 58-bit roots (two pointers to the non-root table) in 58 −
32 + �log2(32)� + 1 = 32 bits. When using buckets with more than one element
(cmp+bu), we have root buckets of size 8, and non-root buckets of size 16. The
non-root buckets make full use of the cache line, but the root buckets do not.
Making the latter larger means that too many bits for root addressing are lost
for root compression to work (the remainders will be too large).

Root compression allows turning Cuckoo hashing on (cmp(+bu)+cu) or off
(cmp(+bu)). When it is off, essentially Cleary-Cuckoo is still performed, except
that evictions are not allowed, meaning that hashing fails as soon as all possible
32 buckets for a node are occupied.

In the configuration bu, neither root compression nor Cuckoo hashing is
applied. We use one table with 230 64-bit elements and buckets of size 16. For
reasons related to storing global addresses in the state cache, we cannot make
the table larger. The 32 hash functions are used without allowing evictions.

Finally, multiple iterations can be run per kernel launch. Shared memory is
wiped when a kernel execution terminates, but the state cache content can be
reused from one iteration to the next when a kernel executes multiple iterations,
by which trees already in the cache do not need to be fetched again from the
tree database. We identified 30 iterations to be effective in general (i30), and
experimented with a single iteration per kernel launch (i1).

With the CPU tools, we performed reachability analysis on 1- and 4-core
configurations, denoted by Sp-1 and Sp-4 for Spin, and Lm-1 and Lm-4 for
LTSmin. We only enabled state compression and basic reachability (without
property checking), to favour fast exploration of large state spaces.

For benchmarks, we used models from the Beem benchmarks [42] of con-
current systems, translated to Slco and Promela (for Spin). We scaled some
of them up to have larger state spaces. Those are marked in Table 1 with ‘+’.
Timeout is set to 3600 seconds for all benchmarks.
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Table 1: Millions of states per second for various reachability tools and configura-
tions. Pink cells: out of memory. Yellow cells: timeout. Green cell: best average.
o.m.: out of memory at initialisation. SU: speedup of (cmp + i30) vs. (Lm-1).

Input CPU tools GPUexplore + Slco Configurations

Model States Sp-1 Sp-4 Lm-1 Lm-4 Bits CR
bu cmp cmp + bu cmp + cu cmp cmp + cu SU

+ i1 + i1 + i1 + i1 + i30 + i30

adding.20+ 84,709,120 1.128 3.223 1.211 3.938 100 1.96 49.597 56.793 48.879 36.934 74.026 47.694 61x

adding.50+ 529,767,730 0.856 o.m. 1.354 5.356 100 1.96 48.403 103.872 77.243 49.625 131.444 57.968 97x

anderson.6 18,206,917 0.623 1.362 0.516 1.309 122 1.82 14.814 16.035 13.647 11.265 34.111 17.649 62x

anderson.7 538,699,029 0.599 o.m. 0.448 1.583 141 2.75 9.309 21.192 14.244 10.426 22.326 10.435 41x

at.5 31,999,440 0.646 1.495 0.653 1.880 85 1.86 19.894 29.158 23.633 18.204 38.457 21.375 59x

at.6 160,589,600 0.454 0.869 0.695 2.387 85 1.90 17.901 38.275 27.275 19.498 38.418 20.359 55x

at.7 819,243,816 0.527 o.m. 0.666 2.372 97 1.98 12.415 23.629 17.381 13.194 22.329 13.378 34x

at.8+ 3,739,953,204 0.534 o.m. 0.555 1.817 97 1.97 5.452 7.246 7.593 11.698 7.287 11.854 13x

bakery.5 7,866,401 1.400 2.570 0.410 0.904 140 2.51 11.504 7.838 7.585 6.407 19.362 12.782 47x

bakery.7 29,047,471 1.228 2.592 0.580 1.618 140 2.49 13.236 9.361 9.021 7.698 29.783 17.456 51x

bakery.8 841,696,300 0.760 1.269 0.690 2.436 140 2.40 3.745 29.410 23.957 17.116 32.778 18.215 48x

elevator2.3 7,667,712 0.554 1.099 0.463 0.985 189 3.96 4.890 3.259 3.185 2.817 6.261 4.827 14x

elevator2.4 91,226,112 0.263 0.561 0.623 1.945 213 3.97 3.025 3.746 2.907 3.087 3.267 2.703 5x

elevator2.5+ 1,016,070,144 0.189 o.m. 0.473 1.630 317 5.95 1.540 1.871 1.545 1.520 1.839 1.491 4x

frogs.4 17,443,219 1.044 2.228 0.553 1.423 219 3.49 8.423 10.253 8.686 7.767 11.549 8.168 21x

frogs.5 182,772,126 0.531 1.048 0.751 2.630 251 3.84 6.766 9.573 8.214 6.898 9.846 6.943 13x

lamport.6 8,717,688 1.277 1.375 0.490 1.096 96 1.91 11.813 5.126 5.225 4.697 27.966 19.335 57x

lamport.7 38,717,846 1.001 1.822 0.672 1.979 116 1.98 18.176 23.205 18.915 16.170 34.321 20.641 51x

lamport.8 62,669,317 0.917 1.776 0.698 2.194 116 1.98 17.717 25.947 21.015 17.132 35.387 20.864 50x

loyd.2 362,880 1.278 0.758 0.255 0.497 90 1.05 7.339 4.204 4.220 3.723 3.243 3.930 13x

loyd.3 239,500,800 0.633 o.m. 0.650 2.338 114 1.96 18.268 44.073 28.970 26.556 48.328 28.248 74x

mcs.5 60,556,519 0.706 0.615 0.453 1.489 148 2.97 14.504 24.498 19.537 14.710 29.635 15.912 65x

mcs.6 332,544 1.240 0.244 0.181 0.331 156 2.75 6.037 3.003 3.097 2.751 3.446 3.131 19x

peterson.5 131,064,750 0.711 1.617 0.727 2.435 140 2.98 16.034 31.975 21.394 17.813 32.331 16.681 42x

peterson.6 174,495,861 0.852 0.756 0.720 2.451 140 2.98 15.503 32.725 22.975 17.198 34.902 17.030 45x

peterson.7 142,471,098 0.683 1.496 0.652 2.269 175 2.63 13.077 25.667 18.603 13.868 26.183 13.120 37x

phils.6 14,348,906 0.208 0.422 0.240 0.670 150 1.49 4.410 7.458 5.528 4.789 7.084 4.543 30x

phils.7 71,934,773 0.179 0.297 0.246 0.764 151 1.49 3.585 5.702 4.762 4.064 5.382 3.885 22x

phils.8 43,046,720 0.160 0.361 0.243 0.788 160 1.49 4.842 9.151 6.987 5.119 8.973 5.089 37x

szymanski.5 79,518,740 0.665 1.571 0.535 1.815 180 2.91 11.944 17.803 14.416 11.653 18.357 11.674 33x

Average 0.728 1.309 0.58 1.844 n/a 13.139 21.068 16.355 12.813 26.621 15.246 40x

Fig. 4 compares the speeds of the different GPU configurations in millions
of states per second, averaged over 5 runs. For each configuration, we sorted
the data to observe the overall trend. The higher the speed the better. The
cmp + i30 mode (without Cuckoo hashing or larger buckets) is the fastest for the
majority of models. On the other hand, it fails to complete exploration for at.8,
the largest state space with 3.7 billion states, due to running out of memory. If
Cuckoo hashing is enabled with root compression, all state spaces are successfully
explored, which confirms that higher load factors can be achieved [4]. However,
Cuckoo hashing negatively impacts performance, which contradicts [4]. Although
it is difficult to pinpoint the cause for this, it is clear that it results from our
hashing being done in addition to the exploration tasks, while in papers on GPU
hash tables [1, 4], hashing is analysed in isolation. With the extra variables and
operations needed for exploration, hashing should be lightweight, and Cuckoo
hashing introduces handling evictions. The more complex code is compiled to a
less performant program, even when evictions do not occur.

Table 1 compares GPU performance with Spin and LTSmin. We refer to
our tool as GPUexplore +Slco. From the results of Fig. 4, we selected a
set of configurations demonstrating the impact of the various options. For each
model, Bits and CR gives the state vector length in bits and the compression
ratio, defined as (number of roots × number of leaves per tree) / (number of
nodes). With the compression ratio, we measure how effective the node sharing
is, compared to if we had stored each state individually without sharing. In
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Table 2: Millions of states per second for various GPU tools.

Tool anderson.6 anderson.7 lamport.8 peterson.5 peterson.6 peterson.7 szymanski.5

Grapple 2.138 14.299 n/a 10.941 9.074 8.967 n/a
GPUexplore 2.0 15.863 8.737 33.063 16.874 16.705 13.581 26.454
GPUexplore + Slco (cmp+i30) 34.111 22.326 35.387 32.331 34.902 26.183 18.357

addition, the speed in millions of states per second is given. Regarding out of
memory, we are aware that Spin has other, slower, compression options, but we
only considered the fastest, to favour the CPU speeds. Times are restricted to
exploration; code generation and compilation always take a few seconds. The
best GPU results are highlighted in bold. To compute the speedup (SU), the
result of cmp + i30, the overall best configuration, has been divided by the Lm-1
result (the single-core configuration that completely explored all state spaces
except one). All GPU experiments have been done with 512 threads per block,
and 3,240 blocks (45 blocks per SM). We identified this configuration as being
effective for anderson.6, and used it for all models.

While LTSmin tends to achieve near-linear speed-ups (compare Lm-1 and
Lm-4), the speed of GPUexplore +Slco heavily depends on the model. For
some models, as the state spaces of instances become larger, the speed increases,
and for others, it decreases. The exact cause for this is hard to identify, and we
plan to work on further optimisations. For instance, the branching factor, i.e.,
average number of successors of a state, plays a role here, as large branching
factors favour parallel computation (many threads will become active quickly).

Our overall fastest configuration does not use larger buckets, nor Cuckoo
hashing. Regarding buckets, as already noted in Section 3, starting with the
Turing architecture, NVIDIA GPUs are less sensitive to uncoalesced accesses,
and our results confirm that. Performing fewer tasks in parallel seems to be more
harmful for performance than a larger number of uncoalesced accesses.

Finally, Table 2 compares GPUexplore +Slco with GPUexplore 2.0 and
Grapple. A comparison with ParaMoc was not possible, as it targets very dif-
ferent types of (sequential) models. The models we selected are those available
for at least two of the tools we considered. Unfortunately, Grapple does not
(yet) support reading Promela models. Instead, a number of models are en-
coded directly into its source code, and we were limited to checking only those
models. It can be observed that in the majority of cases, our tool achieves the
highest speeds, which is surprising, as the trees we use tend to lead to more global
memory accesses, but it is also encouraging to further pursue this direction.

7 Conclusions and Future Work

We discussed new algorithms to achieve a GPU tree database, which enables
memory-efficient explicit state space exploration for FSMs with data. We pro-
posed Cleary-Cuckoo hashing, which makes it possible to use, for the first time,
Cleary compression on GPUs. Experiments show processing speeds of up to 131
million trees per second. In the last decade, new GPUs have been increasingly
effective for state space exploration [10], and in the future, they are expected to
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be more capable of handling thread divergence, which still heavily occurs when
accessing G. Therefore, we are optimistic about further improvements. In the
future, we will focus on optimisations and verifying temporal logic formulae.

Data Availability Statement. The datasets generated and analysed during
the current study are available in the Zenodo repository [39].
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