
Widest Paths and Global Propagation in Bounded Value Iteration 363

Algorithm 4: A construction of PATH : S♦1 → S+ for Lemma 4.8
1 Sv ← {1}, PATH(1) ← 1

2 while S♦1 \ Sv �= ∅ do
3 Choose a pair of states (sc, sp) that satisfies the following:

sc ∈ S \ Sv, sp ∈ Sv, V (G)(sc) = maxs∈S\Sv V (G)(s), and
for an optimal action a at sc in M, sp ∈ post(sc, a)

4 PATH(sc) ← sc · PATH(sp), Sv ← Sv ∪ {sc}
5 return PATH

for this paid price (namely the information lost in the rough encoding) is that
the resulting data structure (WG) allows fast global analysis via the widest path
problem. Our experiment results in Sect. 5 demonstrate that this rough yet global
approximation can make upper bounds quickly converge.

4.3 Soundness and Convergence

In Algorithm 3, an SG G is turned into an MDP Mi and then to a WG Wi.
Our claim is that computing a widest path in Wi gives the next upper bound Ui

in the iteration. Here we prove the following correctness properties: soundness
(V (G) ≤ Ui) and convergence (Ui → V (G) as i → ∞).

We start with a technical lemma. The choice of the MDP M(G,Av′) and
the value function V (G) (for G, not for M(G,Av′)) in the statement is subtle; it
turns out to be just what we need.

Lemma 4.8. Let G be as in Algorithm 3, and Av′ : S → 2A be a Minimizer
restriction (Definition 4.2). Let s0 ∈ S♦1 be a state with a non-zero value (Def-
inition 2.5). Consider the MDP M(G,Av′) (Definition 4.1), for which we write
simply M. Then there is a finite path π = s0a0s1a1 . . . an−1sn in M that satisfies
the following.

– The path π reaches 1, that is, sn = 1.
– Each action is optimal in M with respect to V (G), that is,

(
Xai

(
V (G)

))
(si) =

maxa∈Av′(si)

(
Xa

(
V (G)

))
(si) for each i ∈ [0, n − 1].

– The value function V (G) does not decrease along the path, that is, V (G)(si) ≤
V (G)(si+1) for each i ∈ [0, n − 1].

Proof. We construct a function PATH : S♦1 → S+ by Algorithm 4. It is clear
that PATH assigns a desired path to each s0 ∈ S♦1. In particular, V (G) does
not decrease along PATH(s0) since always a state with a smaller value of V (G)
is prepended.

It remains to be shown that, in Line 3, a required pair (sc, sp) is always
found. Let Sv � S♦1 be a subset with 1 ∈ Sv; here Sv is a proper subset of S♦1

since otherwise we should be already out of the while loop (Line 2).

364 K. Phalakarn et al.

Let Smax = {s ∈ S \ Sv | V (G)(s) = maxs′∈S\Sv V (G)(s′)}. Since Sv � S♦1,
we have ∅ = Smax ⊆ S♦1 and thus V (G)(s) > 0 for each s ∈ Smax. We also have
1 ∈ Smax since 1 ∈ Sv.

We argue by contradiction: assume that for any s ∈ S \ Sv, s′ ∈ Sv, we have
s′ ∈ post(s, as), where as is any optimal action at s in M with respect to V (G).

Now let s ∈ Smax be an arbitrary element. It follows that V (G)(s) > 0.
V (G)(s) ≤ (

Xas

(
V (G)

))
(s)

using Lemma 4.6; here as is an optimal action at s in M with respect to V (G),

=
∑

s′∈S\Sv
δ(s, as, s′) · V (G)(s′)

by the assumption that s′ �∈ post(s, as) for each s′ ∈ Sv

≤ ∑
s′∈S\Sv

δ(s, as, s′) · V (G)(s)

since s ∈ Smax and hence V (G)(s′) ≤ V (G)(s)

= V (G)(s) since
∑

s′∈S\Sv
δ(sc, a, s′) = 1. (10)

Therefore both inequalities in the above must be equalities. In particular, for
the second inequality (in (10)) to be an equality, we must have the weight for
each suboptimal s′ to be 0. That is, δ(s, as, s

′) = 0 for each s′ ∈ (S \ Sv) \ Smax.
The above holds for arbitrary s ∈ Smax. Therefore, for any strategy that is

optimal in M with respect to V (G), once a play is in Smax, it never comes out
of Smax, hence the play never reaches 1. Moreover, an optimal strategy in M
with respect to V (G) is at least as good as an optimal strategy for Maximizer
in G (with respect to V (G)), that is, the latter reaches 1 no more often than the
former. This follows from Lemma 4.6. Altogether, we conclude that a Maximizer
optimal strategy in G does not lead any s ∈ Smax to 1, i.e., V (M)(s) = 0 for
each s ∈ Smax. Now we come to a contradiction. ��

In the following lemma, we use the value function V (G) in the position of f
in Definition 4.7. This cannot be done in actual execution of Algorithm 4: unlike
Ui−1 in Algorithm 3, the value function V (G) is not known to us. Nevertheless,
the lemma is an important theoretical vehicle towards soundness of Algorithm 3.

Lemma 4.9. Let G be the game in Algorithm 3, and Av′ : S → 2A be
a Minimizer restriction (Definition 4.2). Let M = M(G,Av′), and W =
WLcPg

(M, V (G)
)
. Then, for each state s ∈ S, we have WPW(W)(s,1) ≥

V (G)(s).

Proof. In what follows, we let the WG W = WLcPg

(M, V (G)
)

be denoted by
W = (S,E,w). Let π = s0a0s1a1 . . . an−1sn be a path of the MDP M such
that sn = 1, each action is optimal in M with respect to V (G), and V (G)(si) ≤
V (G)(si+1) for each i ∈ [0, n − 1]. Existence of such a path π is shown by
Lemma 4.8. Let π′ = s0s1 . . . sn−11 be the path in the WG W induced by π—we
simply omit actions.

Widest Paths and Global Propagation in Bounded Value Iteration 365

The path π′ satisfies the following, for each i ∈ [0, n − 1].
w(si, si+1) = max

{ (
Xa

(
V (G)

))
(si)

∣
∣ a ∈ Av′(si), si+1 ∈ post(si, a)

}
by Definition 4.7

=
(
Xai

(
V (G)

))
(si) since ai is optimal wrt. V (G);

note that ai ∈ Av′(si), si+1 ∈ post(si, ai) hold since π is a path in M
= maxa∈Av′(s)

(
Xa

(
V (G)

))
(si) since ai is optimal wrt. V (G)

≥ V (G)(si) by Lemma 4.6.

This observation, combined with V (G)(s0) ≤ V (G)(s1) ≤ · · · ≤ V (G)(sn) (by
the definition of π), implies that the width of the path π′ is at least V (G)(s0).
The widest path width is no smaller than that. ��
Theorem 4.10 (soundness). In Algorithm 3, V (G) ≤ Ui holds for each i ∈ N.

Proof. We let the function

min
{

U, WPW
(WLcPg

(M(G,Av′), U
))

(,1)
}

: S −→ [0, 1]
denoted by T (Av′, U) : S −→ [0, 1],

clarifying its dependence on Av′ and U : S → [0, 1]. Clearly, for each i ∈ N, we
have Ui = T (AvLi

, Ui−1).

The rest of the proof is by induction. It is trivial if i = 0 (U0 = �).

Ui+1 = T (AvLi
, Ui)

≥ T (AvLi
, V (G)) by ind. hyp., and T (AvLi

,) is monotone

= min
{

V (G), WPW
(WLcPg

(M(G,AvLi
), V (G)

))
(,1)

}

= V (G) by Lemma 4.9.

��
It is clear that Ui decreases with respect to i (U0 ≥ U1 ≥ · · ·), by the presence

of min in Line 8. It remains to show the following.

Theorem 4.11 (convergence). In Algorithm 3, let the while loop iterate for-
ever. Then Ui → V (G) as i → ∞.

Proof. We give a proof using the infinitary pigeonhole principle. The proof is
nonconstructive—it is not suited for analyzing the speed of convergence, for
example—but the proof becomes simpler.

In what follows, we let Xσ : (S → [0, 1]) → (S → [0, 1]) denote the Bellman
operator on an MDP M induced by a strategy σ, i.e., (Xσf)(s) := (Xσ(s)f)(s).
The MC obtained from an MDP M by fixing a strategy σ is denoted by Mσ.

Towards the statement of the theorem, for each i ∈ N, we choose a (posi-
tional) strategy σi in the MDP Mi as follows.

366 K. Phalakarn et al.

– For each s ∈ S♦1, take the widest path WPath(Wi,1)(s) = ss1 . . .1 in Wi

from s to 1 (Definition 2.8). Such a path from s to 1 exists—otherwise we
have Ui(s) = 0, hence V (G)(s) = 0 by Theorem 4.10.
Let σi(s) be an action that justifies the first edge in the chosen widest path,
that is, a ∈ Avi(s) such that s1 ∈ post(s, a).

– For each s ∈ S \ S♦1, σi(s) is freely chosen from Avi(s).

It is then easy to see that

WPW(Wi)(s) ≤ (Xσi
Ui−1)(s) for each i ∈ N and s ∈ S♦1. (11)

Indeed, by the definition of σi, the right-hand side is the weight of the first edge
in the chosen widest path. This must be no smaller than the widest path width,
that is, the width of the chosen path.

Now, since there are only finitely many strategies for the SG G, the same
is true for the MDPs M0,M1, . . . that are obtained from G by restricting
Minimizer’s actions. Therefore, by the infinitary pigeonhole principle, there are
infinitely many i0 < i1 < · · · such that σi0 = σi1 = · · · =: σ†. Moreover, we
can choose them so that they are all beyond iM in Lemma 4.5, in which case we
have

V (Mσ†
im

) ≤ V (G) for each m ∈ N. (12)

Indeed, Minimizer’s actions are already optimized in Mi (Lemma 4.5), and thus
the only freedom left for σ† is to choose suboptimal actions of Maximizer’s.

In what follows, we cut down the domain of discourse from S → [0, 1] to
S♦1 → [0, 1], i.e., 1) every function of the type f : S → [0, 1] is now seen as the
restriction over S♦1, and 2) the Bellman operator only adds up the value of the
input function over S♦1, namely it is now defined by X̂af(s) =

∑
s′∈S♦1

δ(s, a, s′)·
f(s′). The operator X̂σ is also defined in a similar way to Xσ.

Now proving convergence in S♦1 → [0, 1] suffices for the theorem. Indeed,
for each i ≥ iM, we have V (Mi)(s) = V (G)(s) = 0 for each s ∈ S \ S♦1. This
implies that there is no path from s to 1 in Mi, thus neither in the WG Wi.
Therefore Ui ≤ WPW(Wi) = 0.

A benefit of this domain restriction is that the Bellman operator X̂σ has a
unique fixed point in S♦1 → [0, 1] if the set of non-sink states in Mσ is exactly
S♦1, i.e., V (Mσ)(s) > 0 holds if and only if s ∈ S♦1. Furthermore, this unique
fixed point is the value function V (Mσ) restricted to S♦1 ⊆ S [4, Theorem 10.19].
Therefore V (Mσ) is computed by the gfp Kleene iteration, too:

� ≥ X̂σ� ≥ (X̂σ)2� ≥ · · · −→ V (Mσ) in the space S♦1 → [0, 1]. (13)

We show the following by induction on m.

Uim
≤ (X̂σ†)m� for each m ∈ N. (14)

Widest Paths and Global Propagation in Bounded Value Iteration 367

It is obvious for m = 0. For the step case, we have the following. Notice that the
inequality (11) holds in the restricted domain for i ≥ iM .

Uim+1 ≤ WPW(Wim+1) by Line 8 of Algorithm 3

≤ X̂σ†Uim+1−1 by (11)

≤ X̂σ†Uim
by monotonicity of X̂σ† , decrease of Ui and im < im+1

≤ (X̂σ†)m+1� by the induction hypothesis.

We have proved (14) which proves infi Ui ≤ infm(X̂σ†)m�.
Lastly, we prove that V (Mσ†

im
)(s) > 0 holds if and only if s ∈ S♦1 for each

m ∈ N, and thus σ† follows the characterization in (13). This proves

inf
i

Ui ≤ V (Mσ†
im

) for each m ∈ N. (15)

Implication to the right is clear as Minimizer restriction is done optimally in
Mim

. Conversely, if s ∈ S♦1, then there is a path from s to 1 in Wim
. Let

WPath(Wim
,1)(s) = s0s1 . . . sk, where s0 = s, k ∈ N and sk = 1. Then by the

property of WPath and σ†, we have δ(sj , σ
†(sj), sj+1) > 0 for each j < k. Thus,

the probability that the finite path WPath(Wim
,1)(s) is obtained by running

Mσ†
im

starting from s, which is apparently at most V (Mσ†
im

)(s), is nonzero. Hence
we have implication to the left.

Combining (12), (15) and Theorem 4.10, we obtain the claim. ��

5 Experiment Results

Experiment Settings. We compare the following four algorithms.

– WP is our BVI algorithm via widest paths. It avoids end component (EC)
computation by global propagation of upper bounds.

– DFL is the implementation of the main algorithm in [20]. It relies on EC
computation for deflating.

– DFL m is our modification of DFL, where some unnecessary repetition of EC
computation is removed.

– DFL BRTDP is the learning-based variant of DFL. It restricts bound update
to those states which are visited by simulations. See [20] for details.

The latter three—coming from [20]—are the only existing BVI algorithms
for SGs with a convergence guarantee, to the best of our knowledge. The imple-
mentation of DFL and DFL BRTDP is provided by the authors of [20].

The four algorithms are implemented on top of PRISM-games [21] version
2.0. We used the stopping threshold ε = 10−6. The experiments were conducted
on Dell Inspiron 3421 Laptop with 4.00 GB RAM and Intel(R) Core(TM) i5-
3337U 1.80 GHz processor.

In the implementations of DFL and DFL BRTDP, the deflating operation is
applied only once every five iterations [20, Sect. B.3]. Following this, our WP also

368 K. Phalakarn et al.

solves the widest path problem (Line 8) only once every five iterations, while
other operations are applied in each iteration.

For input SGs, we took four models from the literature: mdsm [11], cloud [6],
teamform [12] and investor [22]. In addition, we used our model manyECs—an
artificial model with many ECs—to assess the effect of ECs on performance. The
model manyECs is presented in the appendix in [24]. Each of these five models
comes with a model parameter N .

There is another model called cdmsn in [20]. We do not discuss cdmsn since
all the algorithms (ours and those from [20]) terminated within 0.001 seconds.

Results. The number i of iterations and the running time for each algorithm and
each input SG is shown in Table 1. For DFL BRTDP, the ratio of states visited
by the algorithm is shown in percentage; the smaller it is, the more efficient
the algorithm is in reducing the state space. Each number for DFL BRTDP (a
probabilistic algorithm) is the average over 5 runs.

Table 1. Experimental results, comparing WP (our algorithm) with those in [20]. N
is a model parameter (the bigger the more complex). #states, #trans, #EC show the
numbers of states, transitions and ECs in the SG, respectively. itr is the number i
of iterations at termination; time is the execution time in seconds. For each SG, the
fastest algorithm is shaded in green. The settings that did not terminate are shaded in
gray; TO is time out (6 h), OOM is out of memory, and SO is stack overflow.

model N #states #trans #EC DFL DFL m DFL BRTDP WP

itr time itr time itr visit% time itr time

mdsm 3 62245 151143 1 121 3 121 4 17339 49.3 15 120 5

4 335211 882765 1 125 15 125 47 91301 42.1 86 124 38

cloud 5 8842 60437 4421 7 7 7 1 167 6.9 14 7 <1

6 34954 274965 17477 11 177 11 5 41 0.6 3 11 1

7 139402 1237525 69701 11 19721 11 62 41 0.2 4 11 5

teamform 3 12475 15228 2754 2 <1 2 <1 972 49.0 137 2 <1

4 96665 116464 19800 2 <1 2 <1 4154 34.6 9603 2 <1

5 907993 1084752 176760 2 <1 2 <1 TO 2 <1

investor 50 211321 673810 29690 441 184 441 249 TO 364 48

100 807521 2587510 114390 801 3318 OOM TO 688 736

manyECs 500 1004 3007 502 6 7 6 7 TO 5 <1

1000 2004 6007 1002 6 51 6 51 TO 5 <1

5000 10004 30007 5002 SO SO TO 5 <1

Discussion. We observe consistent performance advantage of our algorithm
(WP). Even in the mdsm model where the DFL algorithms do not suffer from
EC computation (#EC is just 1), WP’s performance is comparable to DFL. The
cloud model is where the learning-based approach in [20] works well—see visit%
that are very small. Our WP performs comparably against DFL BRTDP, too.

The performance advantage of our WP algorithm is eminent, not only in the
artificial model of manyECs (where WP is faster by magnitudes), but also in

Widest Paths and Global Propagation in Bounded Value Iteration 369

the realistic model investor that comes from a financial application scenario [22].
The results for these two models suggest that WP is indeed advantageous when
EC computation poses a bottleneck for other algorithms.

Overall, we observe that our WP algorithm can be the first choice when it
comes to solving SGs: for some models, it runs much faster than other algorithms;
for other models, even if the performances of other algorithms differs a lot, WP’s
performance is comparable with the best algorithm.

6 Conclusions and Future Work

In this paper, we presented a new BVI algorithm for solving stochastic games. It
features global propagation of upper bounds by widest paths, via a novel encod-
ing of the problem to a suitable weighted graph. This way we avoid computation
of end components that often penalizes the performance of the other BVI-based
algorithms. Our experimental comparison with known BVI algorithms for SGs
demonstrates the efficiency of our algorithm. For correctness of the algorithm,
we presented proofs for soundness and convergence.

Extending the current algorithm for more advanced settings is future work—
this is much like the results in [20] are extended and used in [2,3,16]. In doing so,
we hope to make essential use of structures that are unique to those advanced
problem settings. Another important direction is to push forward the idea of
global propagation in verification and synthesis, seeking further instances of
the idea. Finally, pursuing the global propagation idea in the context of rein-
forcement learning—where problems are often formalized using MDPs and the
Bellman operator is heavily utilized—may open up another fruitful collaboration
between formal methods and statistical machine learning.

Acknowledgment. The authors are supported by ERATO HASUO Metamathemat-
ics for Systems Design Project (No. JPMJER1603), JST; I.H. is supported by Grant-
in-Aid No. 15KT0012, JSPS. Thanks are due to Maximilian Weininger and Edon Kel-
mendi for sharing their implementation, and to Pranav Ashok and David Sprunger for
useful discussions and comments.

References

1. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on
graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp.
112–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-
6 13

2. Ashok, P., Kretinsky, J., Weininger, M.: Approximating values of generalized-
reachability stochastic games. CoRR abs/1908.05106 (2019). http://arxiv.org/abs/
1908.05106

3. Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4 29

https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-642-10631-6_13
http://arxiv.org/abs/1908.05106
http://arxiv.org/abs/1908.05106
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29

370 K. Phalakarn et al.

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

6. Calinescu, R., Kikuchi, S., Johnson, K.: Compositional reverification of probabilis-
tic safety properties for large-scale complex IT systems. In: Calinescu, R., Garlan,
D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539, pp. 303–329. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34059-8 16

7. Chatterjee, K., Dvorák, W., Henzinger, M., Svozil, A.: Near-linear time algorithms
for streett objectives in graphs and MDPS. In: Fokkink, W., van Glabbeek, R.
(eds.) 30th International Conference on Concurrency Theory CONCUR 2019, 27–
30 August 2019, Amsterdam, the Netherlands. LIPIcs, vol. 140, pp. 7:1–7:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.CONCUR.2019.7

8. Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic
games. In: D’Agostino, G., La Torre, S. (eds.) Proceedings of Second International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2011,
Minori, Italy, 15–17 June 2011. EPTCS, vol. 54, pp. 74–86 (2011). https://doi.org/
10.4204/EPTCS.54.6

9. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating
büchi games and maximal end-component decomposition. J. ACM (JACM) 61(3),
15 (2014)

10. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0 7

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic ver-
ification of competitive stochastic systems. Formal Methods Syst. Design 43(1),
61–92 (2013). https://doi.org/10.1007/s10703-013-0183-7

12. Chen, T., Kwiatkowska, M., Parker, D., Simaitis, A.: Verifying team formation
protocols with probabilistic model checking. In: Leite, J., Torroni, P., Ågotnes, T.,
Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp.
190–207. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22359-
4 14

13. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992). https://doi.org/10.1016/0890-5401(92)90048-K

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995). https://doi.org/10.1145/210332.210339

15. De Alfaro, L.: Formal verification of probabilistic systems. Citeseer (1997)
16. Eisentraut, J., Kretinsky, J., Rotar, A.: Stopping criteria for value and strategy iter-

ation on concurrent stochastic reachability games. CoRR abs/1909.08348 (2019).
http://arxiv.org/abs/1909.08348

17. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987). https://doi.org/10.1145/
28869.28874

18. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theoret. Comput. Sci. 735, 111–131 (2018)

19. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manage. Sci.
12(5), 359–370 (1966). https://doi.org/10.1287/mnsc.12.5.359

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-642-34059-8_16
https://doi.org/10.4230/LIPIcs.CONCUR.2019.7
https://doi.org/10.4230/LIPIcs.CONCUR.2019.7
https://doi.org/10.4204/EPTCS.54.6
https://doi.org/10.4204/EPTCS.54.6
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1145/210332.210339
http://arxiv.org/abs/1909.08348
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1287/mnsc.12.5.359

Widest Paths and Global Propagation in Bounded Value Iteration 371

20. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

21. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Int. J.
Softw. Tools Technol. Transf. 20(2), 195–210 (2017)

22. McIver, A., Morgan, C.: Results on the quantitative μ-calculus qmμ. ACM Trans.
Comput. Log. 8(1), 3 (2007). https://doi.org/10.1145/1182613.1182616

23. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In:
Raedt, L.D., Wrobel, S. (eds.) Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, 7–11 August 2005.
ACM International Conference Proceeding Series, vol. 119, pp. 569–576. ACM
(2005). https://doi.org/10.1145/1102351.1102423

24. Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest paths and global propa-
gation in bounded value iteration for stochastic games. arXiv preprint (2020)

25. Svorenová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. Eur. J. Control 30, 15–30 (2016). https://doi.org/10.1016/j.
ejcon.2016.04.009

26. Ujma, M.: On Verication and Controller Synthesis for Probabilistic Systems at
Runtime. Ph.D. thesis, Wolfson College, University of Oxford (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1145/1182613.1182616
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1016/j.ejcon.2016.04.009
http://creativecommons.org/licenses/by/4.0/

Checking Qualitative Liveness Properties
of Replicated Systems with Stochastic

Scheduling

Michael Blondin1 , Javier Esparza2 , Martin Helfrich2 ,
Antońın Kučera3 , and Philipp J. Meyer2(B)

1 Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca

2 Technical University of Munich, Munich, Germany
{esparza,helfrich,meyerphi}@in.tum.de

3 Masaryk University, Brno, Czechia
tony@fi.muni.cz

Abstract. We present a sound and complete method for the verification
of qualitative liveness properties of replicated systems under stochastic
scheduling. These are systems consisting of a finite-state program, exe-
cuted by an unknown number of indistinguishable agents, where the next
agent to make a move is determined by the result of a random experi-
ment. We show that if a property of such a system holds, then there is
always a witness in the shape of a Presburger stage graph: a finite graph
whose nodes are Presburger-definable sets of configurations. Due to the
high complexity of the verification problem (non-elementary), we intro-
duce an incomplete procedure for the construction of Presburger stage
graphs, and implement it on top of an SMT solver. The procedure makes
extensive use of the theory of well-quasi-orders, and of the structural the-
ory of Petri nets and vector addition systems. We apply our results to a
set of benchmarks, in particular to a large collection of population pro-
tocols, a model of distributed computation extensively studied by the
distributed computing community.

Keywords: Parameterized verification · Liveness · Stochastic systems

1 Introduction

Replicated systems consist of a fully symmetric finite-state program executed by
an unknown number of indistinguishable agents, communicating by rendez-vous

Michael Blondin is supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Fonds de recherche
du Québec – Nature et technologies (FRQNT). Javier Esparza, Martin Helfrich and
Philipp J. Meyer have received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 787367 (PaVeS). Antońın Kučera is supported by the Czech Science
Foundation, grant No. 18-11193S.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 372–397, 2020.
https://doi.org/10.1007/978-3-030-53291-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_20&domain=pdf
http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0002-3191-8098
http://orcid.org/0000-0002-6602-8028
http://orcid.org/0000-0003-1334-9079
https://doi.org/10.1007/978-3-030-53291-8_20

Checking Qualitative Liveness Properties of Replicated Systems 373

or via shared variables [14,16,41,46]. Examples include distributed protocols and
multithreaded programs, or abstractions thereof. The communication graph of
replicated systems is a clique. They are a special class of parameterized systems,
i.e., infinite families of systems that admit a finite description in some suitable
modeling language. In the case of replicated systems, the (only) parameter is
the number of agents executing the program.

Verifying a replicated system amounts to proving that an infinite family of
systems satisfies a given property. This is already a formidable challenge, made
even harder by the fact that we want to verify liveness (more difficult than safety)
against stochastic schedulers. Loosely speaking, stochastic schedulers select the
set of agents that should execute the next action as the result of a random
experiment. Stochastic scheduling often appears in distributed protocols, and
in particular also in population protocols—a model much studied in distributed
computing with applications in computational biology1—that supplies many of
our case studies [9,58]. Under stochastic scheduling, the semantics of a replicated
system is an infinite family of finite-state Markov chains. In this work, we study
qualitative liveness properties, stating that the infinite runs starting at config-
urations of the system satisfying a precondition almost surely reach and stay
in configurations satisfying a postcondition. In this case, whether the property
holds or not depends only on the topology of the Markov chains, and not on the
concrete probabilities.

We introduce a formal model of replicated systems, based on multiset rewrit-
ing, where processes can communicate by shared variables or multiway synchro-
nization. We present a sound and complete verification method called Presburger
stage graphs. A Presburger stage graphs is a directed acyclic graphs with Pres-
burger formulas as nodes. A formula represents a possibly infinite inductive set
of configurations, i.e., a set of configurations closed under reachability. A node S
(which we identify with the set of configurations it represents) has the following
property: A run starting at any configuration of S almost surely reaches some
configuration of some successor S ′ of S, and, since S ′ is inductive, get trapped in
S ′. A stage graph labels the node S with a witness of this property in the form
of a Presburger certificate, a sort of ranking function expressible in Presburger
arithmetic. The completeness of the technique, i.e., the fact that for every prop-
erty of the replicated system that holds there exists a stage graph proving it,
follows from deep results of the theory of vector addition systems (VASs) [52–54].

Unfortunately, the theory of VASs also shows that, while the verification
problems we consider are decidable, they have non-elementary computational
complexity [33]. As a consequence, verification techniques that systematically
explore the space of possible stage graphs for a given property are bound to be
very inefficient. For this reason, we design an incomplete but efficient algorithm
for the computation of stage graphs. Inspired by theoretical results, the algorithm
combines a solver for linear constraints with some elements of the theory of well-
structured systems [2,39]. We report on the performance of this algorithm for a
large number of case studies. In particular, the algorithm automatically verifies

1 Under the name of chemical reaction networks.

374 M. Blondin et al.

many standard population protocols described in the literature [5,8,20,22,23,
28,31], as well as liveness properties of distributed algorithms for leader election
and mutual exclusion [3,40,42,44,50,59,61,64].

Related Work. The parameterized verification of replicated systems was first
studied in [41], where they were modeled as counter systems. This allows one to
apply many efficient techniques [11,24,37,47]. Most of these works are inherently
designed for safety properties, and some can also handle fair termination [38],
but none of them handles stochastic scheduling. To the best of our knowledge,
the only works studying parameterized verification of liveness properties under
our notion of stochastic scheduling are those on verification of population proto-
cols. For fixed populations, protocols can be verified with standard probabilistic
model checking [13,65], and early works follow this approach [28,31,60,63]. Sub-
sequently, an algorithm and a tool for the parameterized verification of popula-
tion protocols were described in [21,22], and a first version of stage graphs was
introduced in [23] for analyzing the expected termination time of population pro-
tocols. In this paper we overhaul the framework of [23] for liveness verification,
drawing inspiration from the safety verification technology of [21,22]. Compared
to [21,22], our approach is not limited to a specific subclass of protocols, and
captures models beyond population protocols. Furthermore, our new techniques
for computing Presburger certificates subsume the procedure of [22]. In compar-
ison to [23], we provide the first completeness and complexity results for stage
graphs. Further, our stage graphs can prove correctness of population protocols
and even more general liveness properties, while those of [23] can only prove
termination. We also introduce novel techniques for computing stage graphs,
which compared to [23] can greatly reduce their size and allows us to prove more
examples correct.

There is also a large body of work on parameterized verification via cut-
off techniques: one shows that a specification holds for any number of agents
iff it holds for any number of agents below some threshold called the cutoff
(see [6,26,30,34,46], and [16] for a comprehensive survey). Cut-off techniques
can be applied to systems with an array or ring communication structure, but
they require the existence and effectiveness of a cutoff, which is not the case
in our setting. Further parameterized verification techniques are regular model
checking [1,25] and automata learning [7]. The classes of communication struc-
tures they can handle are orthogonal to ours: arrays and rings for regular model
checking and automata learning, and cliques in our work. Regular model checking
and learning have recently been employed to verify safety properties [29], live-
ness properties under arbitrary schedulers [55] and termination under finitary
fairness [51]. The classes of schedulers considered in [51,55] are incomparable to
ours: arbitrary schedulers in [55], and finitary-fair schedulers in [51]. Further,
these works are based on symbolic state-space exploration, while our techniques
are based on automatic construction of invariants and ranking functions [16].

Checking Qualitative Liveness Properties of Replicated Systems 375

2 Preliminaries

Let N denote {0, 1, . . .} and let E be a finite set. A unordered vector over E is
a mapping V : E → Z. In particular, a multiset over E is an unordered vector
M : E → N where M(e) denotes the number of occurrences of e in M . The sets
of all unordered vectors and multisets over E are respectively denoted Z

E and
N

E . Vector addition, subtraction and comparison are defined componentwise.
The size of a multiset M is denoted |M | =

∑
e∈E M(e). We let E〈k〉 denote the

set of all multisets over E of size k. We sometimes describe multisets using a
set-like notation, e.g.M = �f, g, g� or equivalently M = �f, 2 · g� is such that
M(f) = 1, M(g) = 2 and M(e) = 0 for all e �∈ {f, g}.

Presburger Arithmetic. Let X be a set of variables. The set of formulas of Pres-
burger arithmetic over X is the result of closing atomic formulas, as defined in
the next sentence, under Boolean operations and first-order existential quan-
tification. Atomic formulas are of the form

∑k
i=1 aixi ∼ b, where ai and b are

integers, xi are variables and ∼ is either < or ≡m, the latter denoting the con-
gruence modulo m for any m ≥ 2. Formulas over X are interpreted on N

X . Given
a formula φ of Presburger arithmetic, we let �φ� denote the set of all multisets
satisfying φ. A set E ⊆ N

X is a Presburger set if E = �φ� for some formula φ.

2.1 Replicated Systems

A replicated system over Q of arity n is a tuple P = (Q,T), where T ⊆⋃n
k=0 Q〈k〉 × Q〈k〉 is a transition relation containing the set of silent transitions⋃n
k=0{(x,x) | x ∈ Q〈k〉)}2. A configuration is a multiset C of states, which we

interpret as a global state with C(q) agents in each state q ∈ Q.
For every t = (x,y) ∈ T with x = �X1,X2, . . . , Xk� and y = �Y1, Y2, . . . , Yk�,

we write X1X2 · · · Xk 	→ Y1Y2 · · · Yk and let •t def= x, t• def= y and Δ(t) def= t• − •t.
A transition t is enabled at a configuration C if C ≥ •t and, if so, can occur,
leading to the configuration C ′ = C +Δ(t). If t is not enabled at C, then we say
that it is disabled. We use the following reachability notation:

C
t−→ C ′ ⇐⇒ t is enabled at C and its occurrence leads to C ′,

C −→ C ′ ⇐⇒ C
t−→ C ′ for some t ∈ T,

C
w−→ C ′ ⇐⇒ C = C0

w1−−→ C1 · · · wn−−→ Cn = C ′ for some C0, C1, . . . , Cn ∈ N
Q,

C
∗−→ C ′ ⇐⇒ C

w−→ C ′ for some w ∈ T ∗.

Observe that, by definition of transitions, C −→ C ′ implies |C| = |C ′|, and
likewise for C

∗−→ C ′. Intuitively, transitions cannot create or destroy agents.
A run is an infinite sequence C0t1C1t2C2 · · · such that Ci

ti+1−−→ Ci+1 for
every i ≥ 0. Given L ⊆ T ∗ and a set of configurations C, we let

postL(C) def= {C ′ : C ∈ C, w ∈ L,C
w−→ C ′}, post∗(C) def= postT ∗(C),

preL(C) def= {C : C ′ ∈ C, w ∈ L,C
w−→ C ′}, pre∗(C) def= preT ∗(C).

2 In the paper, we will omit the silent transitions when giving replicated systems.

376 M. Blondin et al.

Stochastic Scheduling. We assume that, given a configuration C, a probabilistic
scheduler picks one of the transitions enabled at C. We only make the following
two assumptions about the random experiment determining the transition: first,
the probability of a transition depends only on C, and, second, every transition
enabled at C has a nonzero probability of occurring. Since C

∗−→ C ′ implies
|C| = |C ′|, the number of configurations reachable from any configuration C is
finite. Thus, for every configuration C, the semantics of P from C is a finite-state
Markov chain rooted at C.

Example 1. Consider the replicated system P = (Q,T) of arity 2 with states
Q = {AY,AN,PY,PN} and transitions T = {t1, t2, t3, t4}, where

t1 : AY AN 	→ PY PN, t2 : AY PN 	→ AY PY,

t3 : AN PY 	→ AN PN, t4 : PY PN 	→ PN PN.

Intuitively, at every moment in time, agents are either Active or Passive, and
have output Yes or No, which corresponds to the four states of Q. This system
is designed to satisfy the following property: for every configuration C in which
all agents are initially active, i.e., C satisfies C(PY) = C(PN) = 0, if C(AY) >
C(AN), then eventually all agents stay forever in the “yes” states {AY,PY}, and
otherwise all agents eventually stay forever in the “no” states {AN,PN}. �

2.2 Qualitative Model Checking

Let us fix a replicated system P = (Q,T). Formulas of linear temporal logic
(LTL) on P are defined by the following grammar:

ϕ ::= φ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ

where φ is a Presburger formula over Q. We look at φ as an atomic proposition
over the set N

Q of configurations. Formulas of LTL are interpreted over runs of
P in the standard way. We abbreviate ♦ϕ ≡ true U ϕ and �ϕ ≡ ¬♦¬ϕ.

Let us now introduce the probabilistic interpretation of LTL. A configuration
C of P satisfies an LTL formula ϕ with probability p if Pr[C,ϕ] = p, where
Pr[C,ϕ] denotes the probability of the set of runs of P starting at C that satisfy
ϕ in the finite-state Markov chain rooted at C. The measurability of this set of
runs for every C and ϕ follows from well-known results [65]. The qualitative model
checking problem consists of, given an LTL formula ϕ and a set of configurations
I, deciding whether Pr[C,ϕ] = 1 for every C ∈ I. We will often work with the
complement problem, i.e., deciding whether Pr[C,¬ϕ] > 0 for some C ∈ I.

In contrast to the action-based qualitative model checking problem of [35],
our version of the problem is undecidable due to adding atomic propositions over
configurations (see the full version of the paper [19] for a proof):

Theorem 1. The qualitative model checking problem is not semi-decidable.

It is known that qualitative model checking problems of finite-state proba-
bilistic systems reduces to model checking of non-probabilistic systems under an
adequate notion of fairness.

Checking Qualitative Liveness Properties of Replicated Systems 377

Definition 1. A run of a replicated system P is fair if for every possible step
C

t−→ C ′ of P the following holds: if the run contains infinitely many occurrences
of C, then it also contains infinitely many occurrences of C t C ′.

So, intuitively, if a run can execute a step infinitely often, it eventually will. It
is readily seen that a fair run of a finite-state transition system eventually gets
“trapped” in one of its bottom strongly connected components, and visits each
of its states infinitely often. Hence, fair runs of a finite-state Markov chain have
probability one. The following proposition was proved in [35] for a model slightly
less general than replicated systems; the proof can be generalized without effort:

Proposition 1 ([35, Prop. 7]). Let P be a replicated system, let C be a config-
uration of P, and let ϕ be an LTL formula. It is the case that Pr[C,ϕ] = 1 iff
every fair run of P starting at C satisfies ϕ.

We implicitly use this proposition from now on. In particular, we define:

Definition 2. A configuration C satisfies ϕ with probability 1, or just satisfies
ϕ, if every fair run starting at C satisfies ϕ, denoted by C |= ϕ. We let �ϕ�
denote the set of configurations satisfying ϕ. A set C of configurations satisfies
ϕ if C ⊆ �ϕ�, i.e., if C |= ϕ for every C ∈ C.

Liveness Specifications for Replicated Systems. We focus on a specific class of
temporal properties for which the qualitative model checking problem is decid-
able and which is large enough to formalize many important specifications. Using
well-known automata-theoretic technology, this class can also be used to verify
all properties describable in action-based LTL, see e.g. [35].

A stable termination property is given by a pair Π = (ϕpre, Φpost), where
Φpost = {ϕ1

post, . . . , ϕ
k
post} and ϕpre, ϕ

1
post, . . . , ϕ

k
post are Presburger formulas over

Q describing sets of configurations. Whenever k = 1, we sometimes simply write
Π = (ϕpre, ϕpost). The pair Π induces the LTL property

ϕΠ
def= ♦

k∨

i=1

�ϕi
post.

Abusing language, we say that a replicated system P satisfies Π if �ϕpre� ⊆ �ϕΠ�,
that is, if every configuration C satisfying ϕpre satisfies ϕΠ with probability 1.
The stable termination problem is the qualitative model checking problem for
I = �ϕpre� and ϕ = ϕΠ given by a stable termination property Π = (ϕpre, Φpost).

Example 2. Let us reconsider the system from Example 1. We can formally spec-
ify that all agents will eventually agree on the majority output Yes or No. Let
ΠY = (ϕY

pre, ϕ
Y
post) and ΠN = (ϕN

pre, ϕ
N
post) be defined by:

ϕY
pre = (AY > AN ∧ PY + PN = 0), ϕY

post = (AN + PN = 0),

ϕN
pre = (AY ≤ AN ∧ PY + PN = 0), ϕN

post = (AY + PY = 0).

The system satisfies the property specified in Example 1 iff it satisfies ΠY and
ΠN. As an alternative (weaker) property, we could specify that the system always
stabilizes to either output by Π = (ϕY

pre ∨ ϕN
pre, {ϕY

post, ϕ
N
post}). �

378 M. Blondin et al.

3 Stage Graphs

In the rest of the paper, we fix a replicated system P = (Q,T) and a stable
termination property Π = (ϕpre, Φpost), where Φpost = {ϕ1

post, . . . , ϕ
k
post}, and

address the problem of checking whether P satisfies Π. We start with some basic
definitions on sets of configurations.

Definition 3 (inductive sets, leads to, certificates)

– A set of configurations C is inductive if C ∈ C and C → C ′ implies C ′ ∈ C.
– Let C, C′ be sets of configurations. We say that C leads to C′, denoted C � C′,

if for all C ∈ C, every fair run from C eventually visits a configuration of C′.
– A certificate for C � C′ is a function f : C → N satisfying that for every

C ∈ C \ C′, there exists an execution C
∗−→ C ′ such that f(C) > f(C ′).

Note that certificates only require the existence of some executions decreasing
f , not for all of them to to decrease it. Despite this, we have:

Proposition 2. For all inductive sets C, C′ of configurations, it is the case that:
C leads to C′ iff there exists a certificate for C � C′.

The proof, which can be found in the full version [19], depends on two prop-
erties of replicated systems with stochastic scheduling. First, every configuration
has only finitely many descendants. Second, for every fair run and for every finite
execution C

w−→ C ′, if C appears infinitely often in the run, then the run contains
infinitely many occurrences of C

w−→ C ′. We can now introduce stage graphs:

Definition 4 (stage graph). A stage graph of P for the property Π is a
directed acyclic graph whose nodes, called stages, are sets of configurations sat-
isfying the following conditions:

1. every stage is an inductive set;
2. every configuration of �ϕpre� belongs to some stage;
3. if C is a non-terminal stage with successors C1, . . . , Cn, then there exists a

certificate for C � (C1 ∪ · · · ∪ Cn);
4. if C is a terminal stage, then C |= ϕi

post for some i.

The existence of a stage graph implies that P satisfies Π. Indeed, by con-
ditions 2–3 and repeated application of Proposition 2, every run starting at a
configuration of �ϕpre� eventually reaches a terminal stage, say C, and, by con-
dition 1, stays in C forever. Since, by condition 4, all configurations of C satisfy
some ϕi

post, after its first visit to C every configuration satisfies ϕi
post.

Example 3. Figure 1 depicts stage graphs for the system of Example 1 and the
properties defined in Example 2. The reader can easily show that every stage C is
inductive by checking that for every C ∈ C and every transition t ∈ {t1, . . . , t4}
enabled at C, the step C

ti−→ C ′ satisfies C ′ ∈ C. For example, if a configuration
satisfies AY > AN, so does any successor configuration. �

Checking Qualitative Liveness Properties of Replicated Systems 379

AY > AN

Cert.: AY + AN

AY > 0, AN = 0
Cert.: PN

AN + PN = 0

Stage graph for ΠY

AY ≤ AN, PY = 0 ∨ AN + PN > 0
Cert.: AY + AN

AY = 0, AN > 0
Cert.: PY

AY + AN = 0, PN > 0
Cert.: PY

AY + PY = 0

Stage graph for ΠN

Fig. 1. Stage graphs for the system of Example 1.

The following proposition shows that stage graphs are a sound and complete
technique for proving stable termination properties.

Proposition 3. System P satisfies Π iff it has a stage graph for Π.

Proposition 3 does not tell us anything about the decidability of the sta-
ble termination problem. To prove that the problem is decidable, we introduce
Presburger stage graphs. Intuitively these are stage graphs whose stages and
certificates can be expressed by formulas of Presburger arithmetic.

Definition 5 (Presburger stage graphs)

– A stage C is Presburger if C = �φ� for some Presburger formula φ.
– A bounded certificate for C � C′ is a pair (f, k), where f : C → N and k ∈ N,

satisfying that for every C ∈ C \ C′, there exists an execution C
w−→ C ′ such

that f(C) > f(C ′) and |w| ≤ k.
– A Presburger certificate is a bounded certificate (f, k) satisfying f(C) =

n ⇐⇒ ϕ(C, n) for some Presburger formula ϕ(x, y).
– A Presburger stage graph is a stage graph whose stages and certificates are

all Presburger.

Using a powerful result from [36], we show that: (1) P satisfies Π iff it has a
Presburger stage graph for Π (Theorem 2); (2) there exists a denumerable set of
candidates for a Presburger stage graph for Π; and (3) there is an algorithm that
decides whether a given candidate is a Presburger stage graph for Π (Theorem 3).
Together, (1–3) show that the stable termination problem is semi-decidable. To
obtain decidability, we observe that the complement of the stable termination
problem is also semi-decidable. Indeed, it suffices to enumerate all initial config-
urations C |= ϕpre, build for each such C the (finite) graph GC of configurations
reachable from C, and check if some bottom strongly connected component B
of GC satisfies B �|= ϕi

post for all i. This is the case iff some fair run starting at
C visits and stays in B, which in turn is the case iff P violates Π.

380 M. Blondin et al.

Theorem 2. System P satisfies Π iff it has a Presburger stage graph for Π.

We observe that testing whether a given graph is a Presburger stage graph
reduces to Presburger arithmetic satisfiability, which is decidable [62] and whose
complexity lies between 2-NEXP and 2-EXPSPACE [15]:

Theorem 3. The problem of deciding whether an acyclic graph of Presburger
sets and Presburger certificates is a Presburger stage graph, for a given stable
termination property, is reducible in polynomial time to the satisfiability problem
for Presburger arithmetic.

4 Algorithmic Construction of Stage Graphs

At the current state of our knowledge, the decision procedure derived from Theo-
rem 3 has little practical relevance. From a theoretical point of view, the TOWER-
hardness result of [33] implies that the stage graph may have non-elementary size
in the system size. In practice, systems have relatively small stage graphs, but,
even so, the enumeration of all candidates immediately leads to a prohibitive
combinatorial explosion.

For this reason, we present a procedure to automatically construct (not guess)
a Presburger stage graph G for a given replicated system P and a stable termi-
nation property Π = (ϕpre, Φpost). The procedure may fail, but, as shown in the
experimental section, it succeeds for many systems from the literature.

The procedure is designed to be implemented on top of a solver for the exis-
tential fragment of Presburger arithmetic. While every formula of Presburger
arithmetic has an equivalent formula within the existential fragment [32,62],
quantifier-elimination may lead to a doubly-exponential blow-up in the size of
the formula. Thus, it is important to emphasize that our procedure never requires
to eliminate quantifiers: If the pre- and postconditions of Π are supplied as
quantifier-free formulas, then all constraints of the procedure remain in the exis-
tential fragment.

We give a high-level view of the procedure (see Algorithm 1), which uses
several functions, described in detail in the rest of the paper. The procedure
maintains a workset WS of Presburger stages, represented by existential Pres-
burger formulas. Initially, the only stage is an inductive Presburger overapprox-
imation PotReach(�ϕpre�) of the configurations reachable from �ϕpre� (PotReach
is an abbreviation for “potentially reachable”). Notice that we must necessarily
use an overapproximation, since post∗(�ϕpre�) is not always expressible in Pres-
burger arithmetic3. We use a refinement of the overapproximation introduced
in [22,37], equivalent to the overapproximation of [24].

In its main loop (lines 2–9), Algorithm 1 picks a Presburger stage S from
the workset, and processes it. First, it calls Terminal(S, Φpost) to check if S is
terminal, i.e., whether S |= ϕi

post for some ϕi
post ∈ Φpost . This reduces to checking

3 This follows easily from the fact that post∗(ψ) is not always expressible in Presburger
arithmetic for vector addition systems, even if ψ denotes a single configuration [43].

Checking Qualitative Liveness Properties of Replicated Systems 381

Algorithm 1: procedure for the construction of stage graphs.
Input: replicated system P = (Q, T), stable term. property Π = (ϕpre, Φpost)
Result: a stage graph of P for Π

1 WS ← {PotReach(�ϕpre�)}
2 while WS �= ∅ do
3 remove S from WS

4 if ¬Terminal(S, Φpost) then
5 U ← AsDead(S)

6 if U �= ∅ then
7 WS ← WS ∪ {IndOverapprox(S, U)}
8 else
9 WS ← WS ∪ Split(S)

the unsatisfiability of the existential Presburger formula φ ∧ ¬ϕi
post, where φ is

the formula characterizing S. If S is not terminal, then the procedure attempts to
construct successor stages in lines 5–9, with the help of three further functions:
AsDead, IndOverapprox, and Split. In the rest of this section, we present the
intuition behind lines 5–9, and the specification of the three functions. Sections 5,
6 and 7 present the implementations we use for these functions.

Lines 5–9 are inspired by the behavior of most replicated systems designed by
humans, and are based on the notion of dead transitions, which can never occur
again (to be formally defined below). Replicated systems are usually designed to
run in phases. Initially, all transitions are alive, and the end of a phase is marked
by the “death” of one or more transitions, i.e., by reaching a configuration at
which these transitions are dead. The system keeps “killing transitions” until no
transition that is still alive can lead to a configuration violating the postcondi-
tion. The procedure mimics this pattern. It constructs stage graphs in which if
S ′ is a successor of S, then the set of transitions dead at S ′ is a proper superset
of the transitions dead at S. For this, AsDead(S) computes a set of transitions
that are alive at some configuration of S, but which will become dead in every
fair run starting at S (line 5). Formally, AsDead(S) returns a set U ⊆ Dead(S)
such that S |= ♦dead(U), defined as follows.

Definition 6. A transition of a replicated system P is dead at a configuration
C if it is disabled at every configuration reachable from C (including C itself).
A transition is dead at a stage S if it is dead at every configuration of S. Given
a stage S and a set U of transitions, we use the following notations:

– Dead(S): the set of transitions dead at S;
– �dis(U)�: the set of configurations at which all transitions of U are disabled;
– �dead(U)�: the set of configurations at which all transitions of U are dead.

Observe that we can compute Dead(S) by checking unsatisfiability of a
sequence of existential Presburger formulas: as S is inductive, we have Dead(S) =

382 M. Blondin et al.

{t | S |= dis(t)}, and S |= dis(t) holds iff the existential Presburger formula
∃C : φ(C) ∧ C ≥ •t is unsatisfiable, where φ is the formula characterizing S.

The following proposition, whose proof appears in the full version [19], shows
that determining whether a given transition will eventually become dead, while
decidable, is PSPACE-hard. Therefore, Sect. 7 describes two implementations of
this function, and a way to combine them, which exhibit a good trade-off between
precision and computation time.

Proposition 4. Given a replicated system P, a stage S represented by an exis-
tential Presburger formula φ and a set of transitions U , determining whether
S |= ♦dead(U) holds is decidable and PSPACE-hard.

If the set U returned by AsDead(S) is nonempty, then we know that every
fair run starting at a configuration of S will eventually reach a configuration
of S ∩ �dead(U)�. So, this set, or any inductive overapproximation of it, can
be a legal successor of S in the stage graph. Function IndOverapprox(S, U)
returns such an inductive overapproximation (line 7). To be precise, we show in
Sect. 5 that �dead(U)� is a Presburger set that can be computed exactly, albeit in
doubly-exponential time in the worst case. The section also shows how to com-
pute overapproximations more efficiently. If the set U returned by AsDead(S) is
empty, then we cannot yet construct any successor of S. Indeed, recall that we
want to construct stage graphs in which if S ′ is a successor of S, then Dead(S ′)
is a proper superset of Dead(S). In this case, we proceed differently and try to
split S:

Definition 7. A split of some stage S is a set {S1, . . . ,Sk} of (not necessarily
disjoint) stages such that the following holds:

– Dead(Si) ⊃ Dead(S) for every 1 ≤ i ≤ k, and
– S =

⋃k
i=1 Si.

If there exists a split {S1, . . . ,Sk} of S, then we can let S1, . . . ,Sk be the
successors of S in the stage graph. Observe that a stage may indeed have a split.
We have Dead(C1 ∪C2) = Dead(C1)∩Dead(C2), and hence Dead(C1 ∪C2) may be
a proper subset of both Dead(C1) and Dead(C2):

Example 4. Consider the system with states {q1, q2} and transitions ti : qi 	→ qi

for i ∈ {1, 2}. Let S = {C | C(q1) = 0 ∨ C(q2) = 0}, i.e., S is the (inductive)
stage of configurations disabling either t1 or t2. The set {S1,S2}, where Si =
{C ∈ S | C(qi) = 0}, is a split of S satisfying Dead(Si) = {ti} ⊃ ∅ = Dead(S). �

The canonical split of S, if it exists, is the set {S ∩ �dead(t)� | t /∈ Dead(S)}.
As mentioned above, Sect. 5 shows that �dead(U)� can be computed exactly
for every U , but the computation can be expensive. Hence, the canonical split
can be computed exactly at potentially high cost. Our implementation uses an
underapproximation of �dead(t)�, described in Sect. 6.

Checking Qualitative Liveness Properties of Replicated Systems 383

5 Computing and Approximating �dead(U)�

We show that, given a set U of transitions,

– we can effectively compute an existential Presburger formula describing the
set �dead(U)�, with high computational cost in the worst case, and

– we can effectively compute constraints that overapproximate or underapprox-
imate �dead(U)�, at a reduced computational cost.

Downward and Upward Closed Sets. We enrich N with the limit element ω
in the usual way. In particular, n < ω holds for every n ∈ N. An ω-configuration
is a mapping Cω : Q → N ∪ {ω}. The upward closure and downward closure
of a set Cω of ω-configurations are the sets of configurations ↑ Cω and ↓ Cω,
respectively defined as:

↑ Cω def= {C ∈ N
Q | C ≥ Cω for some Cω ∈ Cω},

↓ Cω def= {C ∈ N
Q | C ≤ Cω for some Cω ∈ Cω}.

A set C of configurations is upward closed if C = ↑ C, and downward closed if
C = ↓ C. These facts are well-known from the theory of well-quasi orderings:

Lemma 1. For every set C of configurations, the following holds:

1. C is upward closed iff C is downward closed (and vice versa);
2. if C is upward closed, then there is a unique minimal finite set of configurations

inf(C), called its basis, such that C = ↑ inf(C);
3. if C is downward closed, then there is a unique minimal finite set of ω-

configurations sup(C), called its decomposition, such that C = ↓ sup(C).

Computing �dead(U)� Exactly. It follows immediately from Definition 6 that
both �dis(U)� and �dead(U)� are downward closed. Indeed, if all transitions of
U are disabled at C, and C ′ ≤ C, then they are also disabled at C ′, and clearly
the same holds for transitions dead at C. Furthermore:

Proposition 5. For every set U of transitions, the (downward) decomposition
of both sup(�dis(U)�) and sup(�dead(U)�) is effectively computable.

Proof. For every t ∈ U and q ∈ •t, let Cω
t,q be the ω-configuration such that

Cω
t,q(q) = •t(q) − 1 and Cω

t,q(p) = ω for every p ∈ Q \ {q}. In other words, Cω
t,q

is the ω-configuration made only of ω’s except for state q which falls short from
•t(q) by one. This ω-configurations captures all configurations disabled in t due
to an insufficient amount of agents in state q. We have:

sup(�dis(U)�) = {Cω
t,q : t ∈ U, q ∈ •t}.

The latter can be made minimal by removing superfluous ω-configurations.
For the case of sup(�dead(U)�), we invoke [45, Prop. 2] which gives a proof for

the more general setting of (possibly unbounded) Petri nets. Their procedure is
based on the well-known backwards reachability algorithm (see, e.g., [2,39]). ��

384 M. Blondin et al.

Since sup(�dead(U)�) is finite, its computation allows to describe �dead(U)�
by the following linear constraint4:

∨

Cω∈sup(�dead(U)�)

∧

q∈Q

[C(q) ≤ Cω(q)] .

However, the cardinality of sup(�dead(U)�) can be exponential [45, Remark for
Prop. 2] in the system size. For this reason, we are interested in constructing
both under- and over-approximations.

Overapproximations of �dead(U)�. For every i ∈ N, define �dead(U)�i as:

�dead(U)�0 def= �dis(U)� and �dead(U)�i+1 def= preT (�dead(U)�i) ∩ �dis(U)�.

Loosely speaking, �dead(U)�i is the set of configurations C such that every con-
figuration reachable in at most i steps from C disables U . We immediately have:

�dead(U)� =
∞⋂

i=0

�dead(U)�i.

Using Proposition 5 and the following proposition, we obtain that �dead(U)�i is
an effectively computable overapproximation of �dead(U)�.

Proposition 6. For every Presburger set C and every set of transitions U , the
sets preU (C) and postU (C) are effectively Presburger.

Recall that function IndOverapprox(S, U) of Algorithm 1 must return an
inductive overapproximation of �dead(U)�. Since �dead(U)�i might not be induc-
tive in general, our implementation uses either the inductive overapproxima-
tions IndOverapproxi(S, U) def= PotReach(S ∩ �dead(U)�i), or the exact value
IndOverapprox∞(S, U) def= S ∩ �dead(U)�. The table of results in the experimen-
tal section describes for each benchmark which overapproximation was used.

Underapproximations of �dead(U)�: Death Certificates. A death certifi-
cate for U in P is a finite set Cω of ω-configurations such that:

1. ↓ Cω |= dis(U), i.e., every configuration of ↓ Cω disables U , and
2. ↓ Cω is inductive, i.e., postT (↓ Cω) ⊆ ↓ Cω.

If U is dead at a set C of configurations, then there is always a certificate that
proves it, namely sup(�dead(U)�). In particular, if Cω is a death certificate for
U then ↓ Cω ⊆ �dead(U)�, that is, ↓ Cω is an underapproximation of �dead(U)�

Using Proposition 6, it is straightforward to express in Presburger arithmetic
that a finite set Cω of ω-configurations is a death certificate for U :

Proposition 7. For every k ≥ 1 there is an existential Presburger formula
DeathCertk(U, Cω) that holds iff Cω is a death certificate of size k for U .

4 Observe that if Cω(q) = ω, then the term “C(q) ≤ ω” is equivalent to “true”.

Checking Qualitative Liveness Properties of Replicated Systems 385

6 Splitting a Stage

Given a stage S, we try to find a set Cω
1 , . . . , Cω

� of death certificates for transitions
t1, . . . , t� ∈ T \ Dead(S) such that S ⊆ ↓ Cω

1 ∪ · · · ∪ ↓ Cω
� . This allows us to split

S into S1, . . . ,S�, where Si
def= S ∩ ↓ Cω

i .
For any fixed size k ≥ 1 and any fixed 	, we can find death certificates

Cω
1 , . . . , Cω

� of size at most k by solving a Presburger formula. However, the
formula does not belong to the existential fragment, because the inclusion check
S ⊆ ↓ Cω

1 ∪· · ·∪↓ Cω
� requires universal quantification. For this reason, we proceed

iteratively. For every i ≥ 0, after having found Cω
1 , . . . , Cω

i we search for a pair
(Ci+1, Cω

i+1) such that

(i) Cω
i+1 is a death certificate for some ti+1 ∈ T \ Dead(S);

(ii) Ci+1 ∈ S ∩ ↓ Cω
i+1 \ (↓ Cω

1 ∪ · · · ∪ ↓ Cω
i).

An efficient implementation requires to guide the search for (Ci+1, Cω
i+1), because

otherwise the search procedure might not even terminate, or might split S into
too many parts, blowing up the size of the stage graph. Our search procedure
employs the following heuristic, which works well in practice. We only consider
the case k = 1, and search for a pair (Ci+1, C

ω
i+1) satisfying (i) and (ii) above,

and additionally:

(iii) all components of Cω
i+1 are either ω or between 0 and maxt∈T,q∈Q

•t(q) − 1;
(iv) for every ω-configuration Cω, if (Ci+1, C

ω) satisfies (i)–(iii), then Cω
i+1 ≤ Cω;

(v) for every pair (C,Cω), if (C,Cω) satisfies (i)–(iv), then Cω ≤ Cω
i+1.

Condition (iii) guarantees termination. Intuitively, condition (iv) leads to cer-
tificates valid for sets U ⊆ T \ Dead(S) as large as possible. So it allows us to
avoid splits that, loosely speaking, do not make as much progress as they could.
Condition (v) allows us to avoid splits with many elements because each element
of the split has a small intersection with S.

An example illustrating these conditions is given in the full version [19].

7 Computing Eventually Dead Transitions

Recall that the function AsDead(S) takes an inductive Presburger set S as input,
and returns a (possibly empty) set U ⊆ Dead(S) of transitions such that S |=
♦dead(U). This guarantees S � �dead(U)� and, since S is inductive, also S �
S ∩ �dead(U)�.

By Proposition 4, deciding if there exists a non-empty set U of transitions such
that S |= ♦dead(U) holds is PSPACE-hard, which makes a polynomial reduction to
satisfiability of existential Presburger formulas unlikely. So we design incomplete
implementations of AsDead(S) with lower complexity. Combining these imple-
mentations, the lack of completeness essentially vanishes in practice.

The implementations are inspired by Proposition 2, which shows that S �
�dead(U)� holds iff there exists a certificate f such that:

∀C ∈ S \ �dead(U)� : ∃C
∗−→ C ′ : f(C) > f(C ′). (Cert)

386 M. Blondin et al.

To find such certificates efficiently, we only search for linear functions f(C) =∑
q∈Q a(q) · C(q) with coefficients a(q) ∈ N for each q ∈ Q.

7.1 First Implementation: Linear Ranking Functions

Our first procedure computes the existence of a linear ranking function.

Definition 8. A function r : S → N is a ranking function for S and U if for
every C ∈ S and every step C

t−→ C ′ the following holds:

1. if t ∈ U , then r(C) > r(C ′); and
2. if t /∈ U , then r(C) ≥ r(C ′).

Proposition 8. If r : S → N is a ranking function for S and U , then there
exists k ∈ N such that (r, k) is a bounded certificate for S � �dead(U)�.

Proof. Let M be the minimal finite basis of the upward closed set �dead(U)�.
For every configuration D ∈ M , let σD be a shortest sequence that enables some
transition of tD ∈ U from D, i.e., such that D

σD−−→ D′ tD−−→ D′′ for some D′, D′′.
Let k

def= max{|σDtD| : D ∈ M}.
Let C ∈ S \ �dead(U)�. Since C ∈ �dead(U)�, we have C ≥ D for some

D ∈ M . By monotonicity, we have C
σD−−→ C ′ tD−−→ C ′′ for some configurations C ′

and C ′′. By Definition 8, we have r(C) ≥ r(C ′) > r(C ′′), and so condition (Cert)
holds. As |σDtD| ≤ k, we have that (r, k) is a bounded certificate. ��

It follows immediately from Definition 8 that if r1 and r2 are ranking func-
tions for sets U1 and U2 respectively, then r defined as r(C) def= r1(C) + r2(C)
is a ranking function for U1 ∪ U2. Therefore, there exists a unique maximal set
of transitions U such that S � �dead(U)� can be proved by means of a ranking
function. Further, U can be computed by collecting all transitions t ∈ Dead(S)
such that there exists a ranking function rt for {t}. The existence of a linear
ranking function rt can be decided in polynomial time via linear programming,
as follows. Recall that for every step C

u−→ C ′, we have C ′ = C + Δ(u). So, by
linearity, we have rt(C) ≥ rt(C ′) ⇐⇒ rt(C ′ − C) ≤ 0 ⇐⇒ rt(Δ(u)) ≤ 0.
Thus, the constraints of Definition 8 can be specified as:

a · Δ(t) < 0 ∧
∧

u∈Dead(S)

a · Δ(u) ≤ 0,

where a : Q → Q≥0 gives the coefficients of rt, that is, rt(C) = a · C, and
a · x

def=
∑

q∈Q a(q) · x(q) for x ∈ N
Q. Observe that a solution may yield a

function whose codomain differs from N. However, this is not an issue since we
can scale it with the least common denominator of each a(q).

Checking Qualitative Liveness Properties of Replicated Systems 387

7.2 Second Implementation: Layers

Transitions layers were introduced in [22] as a technique to find transitions that
will eventually become dead. Intuitively, a set U of transitions is a layer if (1) no
run can contain only transitions of U , and (2) U becomes dead once disabled; the
first condition guarantees that U eventually becomes disabled, and the second
that it eventually becomes dead. We formalize layers in terms of layer functions.

Definition 9. A function 	 : S → N is a layer function for S and U if:

C1. 	(C) > 	(C ′) for every C ∈ S and every step C
t−→ C ′ with t ∈ U ; and

C2. �dis(U)� = �dead(U)�.

Proposition 9. If 	 : S → N is a layer function for S and U , then (, 1) is a
bounded certificate for S � �dead(U)�.

Proof. Let C ∈ S \ �dead(U)�. By condition C2, we have C �∈ �dis(U)�. So there
exists a step C

u−→ C ′ where u ∈ U . By condition C1, we have 	(C) > 	(C ′), so
condition (Cert) holds and (, 1) is a bounded certificate.

Let S be a stage. For every set of transitions U ⊆ Dead(S) we can construct a
Presburger formula lin-layer(U,a) that holds iff there there exists a linear layer
function for U , i.e., a layer function of the form 	(C) = a · C for a vector of
coefficients a : Q → Q≥0. Condition C1, for a linear function 	(C), is expressed
by the existential Presburger formula

lin-layer-fun(U,a) def=
∧

u∈U

a · Δ(u) < 0.

Condition C2 is expressible in Presburger arithmetic because of Proposition 5.
However, instead of computing �dead(U)� explicitly, there is a more efficient
way to express this constraint. Intuitively, �dis(U)� = �dead(U)� is the case if
enabling a transition u ∈ U requires to have previously enabled some transition
u′ ∈ U . This observation leads to:

Proposition 10. A set U of transitions satisfies �dis(U)� = �dead(U)� iff it
satisfies the existential Presburger formula

dis-eq-dead(U) def=
∧

t∈T

∧

u∈U

∨

u′∈U

•t + (•u � t•) ≥ •u′

where x � y ∈ N
Q is defined by (x � y)(q) def= max(x(q) − y(q), 0) for x,y ∈ N

Q.

This allows us to give the constraint lin-layer(U,a), which is of polynomial size:

lin-layer(U,a) def= lin-layer-fun(U,a) ∧ dis-eq-dead(U).

388 M. Blondin et al.

7.3 Comparing Ranking and Layer Functions

The ranking and layer functions of Sects. 7.1 and 7.2 are incomparable in power,
that is, there are sets of transitions for which a ranking function but no layer
function exists, and vice versa. This is shown by the following two systems:

P1 = ({A,B,C}, {t1 : AB 	→ C C, t2 : A 	→ B, t3 : B 	→ A}),
P2 = ({A,B}, {t4 : A B 	→ A A, t5 : A 	→ B}).

Consider the system P1, and let S = N
Q, i.e., S contains all configurations.

Transitions t2 and t3 never become dead at �A� and can thus never be included
in any U . Transition t1 eventually becomes dead, as shown by the linear ranking
function r(C) = C(A) + C(B) for U = {t1}. But for this U , the condition C2
for layer functions is not satisfied, as �dis(U)� � �A,A�

t2−→ �A,B� �∈ �dis(U)�,
so �dis(U)� �= �dead(U)�. Therefore no layer function exists for this U .

Consider now the system P2, again with S = N
Q, and let U = {t5}. Once

t5 is disabled, there is no agent in A, so both t4 and t5 are dead. So �dis(U)� =
�dead(U)�. The linear layer function 	(C) = C(A) satisfies lin-layer-fun(U,a),
showing that U eventually becomes dead. As C

t4t5−−→ C for C = �A,B�, there is
no ranking function r for this U , which would need to satisfy r(C) < r(C).

For our implementation of AsDead(S), we therefore combine both
approaches. We first compute (in polynomial time) the unique maximal set U
for which there is a linear ranking function. If this U is non-empty, we return it,
and otherwise compute a set U of maximal size for which there is a linear layer
function.

8 Experimental Results

We implemented the procedure of Sect. 4 on top of the SMT solver Z3 [57], and
use the Owl [48] and HOA [12] libraries for translating LTL formulas. The result-
ing tool automatically constructs stage graphs that verify stable termination
properties for replicated systems. We evaluated it on two sets of benchmarks,
described below. The first set contains population protocols, and the second
leader election and mutual exclusion algorithms. All tests where performed on
a machine with an Intel Xeon CPU E5-2630 v4 @ 2.20 GHz and 8GB of RAM.
The results are depicted in Fig. 2 and can be reproduced by the certified arti-
fact [18]. For parametric families of replicated systems, we always report the
largest instance that we were able to verify with a timeout of one hour. For
IndOverapprox, from the approaches in Sect. 5, we use IndOverapprox0 in the
examples marked with * and IndOverapprox∞ otherwise. Almost all constructed
stage graphs are a chain with at most 3 stages. The only exceptions are the stage
graphs for the approximate majority protocols that contained a binary split and
5 stages. The size of the Presburger formulas increases with increasing size of the
replicated system. In the worst case, this growth can be exponential. However,
the growth is linear in all examples marked with *.

Checking Qualitative Liveness Properties of Replicated Systems 389

Population protocols (correctness)
Parameters |Q| |T | Time

Broadcast [31,22] *
2 1 < 1s

Majority (Example 1)[22] *
4 4 < 1s

Majority [23, Ex. 3] *
5 6 < 1s

Majority [5] (“fast & exact”)
m=13, d=1 16 136 4s
m=21, d=1 (TO: 23,1) 24 300 466s
m=21, d=20 (TO: 23,22) 62 1953 3301s

Flock-of-birds [28,22] *: x ≥ c

c = 20 21 210 5s
c = 40 41 820 45s
c = 60 61 1830 341s
c = 80 (TO: c = 90) 81 3240 1217s

Flock-of-birds [20, Sect. 3]: x ≥ c

c = 60 8 18 15s
c = 90 9 21 271s
c = 120 (TO: c = 127) 9 21 2551s

Flock-of-birds [31,22, threshold-n] *: x ≥ c

c = 10 11 19 < 1s
c = 15 16 29 1s
c = 20 (TO: c = 25) 21 39 18s

Threshold [8][22, vmax=c + 1] *: a · x ≥ c

c = 2 28 288 7s
c = 4 44 716 26s
c = 6 60 1336 107s
c = 8 (TO: c = 10) 76 2148 1089s

Threshold [20] (“succinct”): a · x ≥ c

c = 7 13 37 2s
c = 31 17 55 11s
c = 127 21 73 158s
c = 511 (TO: c = 1023) 25 91 2659s

Remainder [22] *: a · x ≡m c

m = 5 7 20 < 1s
m = 15 17 135 34s
m = 20 (TO: m = 25) 22 230 1646s

Population protocols (stable cons.)
Parameters |Q| |T | Time

Approx. majority [27] (Cell cycle sw.) *
3 4 < 1s

Approx. majority [51] (Coin game) *
k = 3 2 4 < 1s

Approx. majority [56] (Moran proc.) *
2 2 < 1s

Leader election/Mutex algorithms
Processes |Q| |T | Time

Leader election [44] (Israeli-Jalfon)
20 40 80 7s
60 120 240 1493s
70 (TO: 80) 140 280 3295s

Leader election [42] (Herman)
21 42 42 9s
51 102 102 300s
81 (TO: 91) 162 162 2800s

Mutex [40] (Array)
2 15 95 2s
5 33 239 5s
10 (TO: 11) 63 479 938s

Mutex [59] (Burns)
2 11 75 1s
4 19 199 119s
5 (TO: 6) 23 279 2232s

Mutex [3] (Dijkstra)
2 19 196 66s
3 (TO: 4) 27 488 3468s

Mutex [50] (Lehmann Rabin)
2 19 135 3s
5 43 339 115s
9 (TO: 10) 75 611 2470s

Mutex [61] (Peterson)
2 13 86 2s

Mutex [64] (Szymanski)
2 17 211 10s
3 (TO: 4) 24 895 667s

Fig. 2. Columns |Q|, |T |, and Time give the number of states and non-silent tran-
sitions, and the time for verification. Population protocols are verified for an infinite
set of configurations. For parametric families, the smallest instance that could not be
verified within one hour is shown in brackets, e.g. (TO: c = 90). Leader election and
mutex algorithms are verified for one configuration. The number of processes leading
to a timeout is given in brackets, e.g. (TO: 10).

390 M. Blondin et al.

Population Protocols. Population protocols [8,9] are replicated systems
that compute Presburger predicates following the computation-as-consensus
paradigm [10]. Depending on whether the initial configuration of agents sat-
isfies the predicate or not, the agents of a correct protocol eventually agree on
the output “yes” or “no”, almost surely. Example 1 can be interpreted as a
population protocol for the majority predicate AY > AN, and the two stable
termination properties that verify its correctness are described in Example 2. To
show that a population protocol correctly computes a given predicate, we thus
construct two Presburger stage graphs for the two corresponding stable termi-
nation properties. In all these examples, correctness is proved for an infinite set
of initial configurations.

Our set of benchmarks contains a broadcast protocol [31], three majority
protocols (Example 1, [23, Ex. 3], [5]), and multiple instances of parameterized
families of protocols, where each protocol computes a different instance of a
parameterized family of predicates5. These include various flock-of-birds protocol
families ([28], [20, Sect. 3], [31, threshold-n]) for the family of predicates x ≥ c
for some constant c ≥ 0; two families for threshold predicates of the form a ·x ≥
c [8,20]; and one family for remainder protocols of the form a · x ≡m c [22].
Further, we check approximate majority protocols ([27,56], [51, coin game]). As
these protocols only compute the predicate with large probability but not almost
surely, we only verify that they always converge to a stable consensus.

Comparison with [22]. The approach of [22] can only be applied to so-called
strongly-silent protocols. However, this class does not contain many fast and
succinct protocols recently developed for different tasks [4,17,20].

We are able to verify all six protocols reported in [22]. Further, we are
also able to verify the fast Majority [5] protocol as well as the succinct pro-
tocols Flock-of-birds [20, Sect. 3] and Threshold [20]. All three protocols are not
strongly-silent. Although our approach is more general and complete, the time to
verify many strongly-silent protocol does not differ significantly between the two
approaches. Exceptions are the Flock-of-birds [28] protocols where we are faster
([22] reaches the timeout at c = 55) as well as the Remainder and the Flock-of-
birds-threshold-n protocols where we are substantially slower ([22] reaches the
timeout at m = 80 and c = 350, respectively). Loosely speaking, the approach of
[22] can be faster because they compute inductive overapproximations using an
iterative procedure instead of PotReach. In some instances already a very weak
overapproximation, much less precise than PotReach, suffices to verify the result.
Our procedure can be adapted to accommodate this (it essentially amounts to
first running the procedure of [22], and if it is inconclusive then run ours).

Other Distributed Algorithms. We have also used our approach to verify arbitrary
LTL liveness properties of non-parameterized systems with arbitrary communi-
cation structure. For this we apply standard automata-theoretic techniques and

5 Notice that for each protocol we check correctness for all inputs; we cannot yet
automatically verify that infinitely many protocols are correct, each of them for all
possible inputs.

Checking Qualitative Liveness Properties of Replicated Systems 391

construct a product of the system and a limit-deterministic Büchi automaton
for the negation of the property. Checking that no fair runs of the product are
accepted by the automaton reduces to checking a stable termination property.

Since we only check correctness of one single finite-state system, we can also
apply a probabilistic model checker based on state-space exploration. However,
our technique delivers a stage graph, which plays two roles. First, it gives an
explanation of why the property holds in terms of invariants and ranking func-
tions, and second, it is a certificate of correctness that can be efficiently checked
by independent means.

We verify liveness properties for several leader election and mutex algorithms
from the literature [3,40,42,44,50,59,61,64] under the assumption of a proba-
bilistic scheduler. For the leader election algorithms, we check that a leader is
eventually chosen; for the mutex algorithms, we check that the first process
enters its critical section infinitely often.

Comparison with PRISM [49]. We compared execution times for verification by
our technique and by PRISM on the same models. While PRISM only needs a
few seconds to verify instances of the mutex algorithms [3,40,50,59,61,64] where
we reach the time limit, it reaches the memory limit for the two leader election
algorithms [42,44] already for 70 and 71 processes, which we can still verify.

9 Conclusion and Further Work

We have presented stage graphs, a sound and complete technique for the ver-
ification of stable termination properties of replicated systems, an important
class of parameterized systems. Using deep results of the theory of Petri nets,
we have shown that Presburger stage graphs, a class of stage graphs whose cor-
rectness can be reduced to the satisfiability problem of Presburger arithmetic,
are also sound and complete. This provides a decision procedure for the verifica-
tion of termination properties, which is of theoretical nature since it involves a
blind enumeration of candidates for Presburger stage graphs. For this reason, we
have presented a technique for the algorithmic construction of Presburger stage
graphs, designed to exploit the strengths of SMT-solvers for existential Pres-
burger formulas, i.e., integer linear constraints. Loosely speaking, the technique
searches for linear functions certifying the progress between stages, even though
only the much larger class of Presburger functions guarantees completeness.

We have conducted extensive experiments on a large set of benchmarks. In
particular, our approach is able to prove correctness of nearly all the standard
protocols described in the literature, including several protocols that could not
be proved by the technique of [22], which only worked for so-called strongly-
silent protocols. We have also successfully applied the technique to some self-
stabilization algorithms, leader election and mutual exclusion algorithms.

Our technique is based on the mechanized search for invariants and ranking
functions. It avoids the use of state-space exploration as much as possible. For
this reason, it also makes sense as a technique for the verification of liveness
properties of non-parameterized systems with a finite but very large state space.

392 M. Blondin et al.

References

1. Abdulla, P.A.: Regular model checking. Int. J. Softw. Tools Technol. Transf. 14(2),
109–118 (2012). https://doi.org/10.1007/s10009-011-0216-8

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems
for infinite-state systems. In: Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, LICS 1996, New Brunswick, New Jersey, USA, 27–30
July 1996, pp. 313–321. IEEE Computer Society (1996). https://doi.org/10.1109/
LICS.1996.561359

3. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 56

4. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in population protocols.
SIGACT News 49(3), 63–73 (2018). https://doi.org/10.1145/3289137.3289150

5. Alistarh, D., Gelashvili, R., Vojnovic, M.: Fast and exact majority in population
protocols. In: Georgiou, C., Spirakis, P.G. (eds.) Proceedings of the 34th ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, 21–23 July 2015, pp. 47–56. ACM (2015). https://doi.org/10.
1145/2767386.2767429

6. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed
networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015, Part II. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6 30

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

8. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. In: Chaudhuri, S., Kutten,
S. (eds.) Proceedings of the 23rd Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, 25–28 July
2004, pp. 290–299. ACM (2004). https://doi.org/10.1145/1011767.1011810

9. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006). https://doi.org/10.1007/s00446-005-0138-3

10. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007). https://doi.org/10.
1007/s00446-007-0040-2

11. Athanasiou, K., Liu, P., Wahl, T.: Unbounded-thread program verification using
thread-state equations. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 516–531. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 35

12. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

13. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
14. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction

for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 64–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 9

https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/978-3-662-47666-6_30
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-642-02658-4_9
https://doi.org/10.1007/978-3-642-02658-4_9

Checking Qualitative Liveness Properties of Replicated Systems 393

15. Berman, L.: The complexitiy of logical theories. Theoret. Comput. Sci. 11, 71–77
(1980). https://doi.org/10.1016/0304-3975(80)90037-7

16. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.:
Decidability of Parameterized Verification. Synthesis Lectures on Distributed Com-
puting Theory. Morgan & Claypool Publishers (2015). https://doi.org/10.2200/
S00658ED1V01Y201508DCT013

17. Blondin, M., Esparza, J., Genest, B., Helfrich, M., Jaax, S.: Succinct population
protocols for presburger arithmetic. In: Proceedings of 37th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2020, 10–13 March 2020,
Montpellier, France. LIPIcs, vol. 154, pp. 40:1–40:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.40

18. Blondin, M., Esparza, J., Helfrich, M., Kučera, A., Meyer, P.J.: Artifact evaluation
VM and instructions to generate experimental results for the CAV20 paper: check-
ing Qualitative Liveness Properties of Replicated Systems with Stochastic Schedul-
ing. figshare:12295982 (2020). https://doi.org/10.6084/m9.figshare.12295982.v2

19. Blondin, M., Esparza, J., Helfrich, M., Kučera, A., Meyer, P.J.: Checking
qualitative liveness properties of replicated systems with stochastic scheduling.
arXiv:2005.03555 [cs.LO] (2020). https://arxiv.org/abs/2005.03555

20. Blondin, M., Esparza, J., Jaax, S.: Large flocks of small birds: on the minimal
size of population protocols. In: Proceedings of 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, 28 February - 3 March 2018, Caen,
France. LIPIcs, vol. 96, pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018). https://doi.org/10.4230/LIPIcs.STACS.2018.16

21. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of population
protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS,
vol. 10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96145-3 34

22. Blondin, M., Esparza, J., Jaax, S., Meyer, P.J.: Towards efficient verification of
population protocols. In: Schiller, E.M., Schwarzmann, A.A. (eds.) Proceedings
of 36th ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, 25–27 July 2017, pp. 423–430. ACM (2017). https://doi.
org/10.1145/3087801.3087816

23. Blondin, M., Esparza, J., Kučera, A.: Automatic analysis of expected termination
time for population protocols. In: Schewe, S., Zhang, L. (eds.) Proceedings of 29th
International Conference on Concurrency Theory, CONCUR 2018, 4–7 September
2018, Beijing, China. LIPIcs, vol. 118, pp. 33:1–33:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.33

24. Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous
petri nets. ACM Trans. Comput. Log. (TOCL) 18(3), 24:1–24:28 (2017). https://
doi.org/10.1145/3105908

25. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

26. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81(1), 13–31 (1989). https://doi.org/
10.1016/0890-5401(89)90026-6

27. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2(1), 656 (2012). https://doi.org/10.1038/srep00656
pagebreak

https://doi.org/10.1016/0304-3975(80)90037-7
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.6084/m9.figshare.12295982.v2
http://arxiv.org/abs/2005.03555
https://arxiv.org/abs/2005.03555
https://doi.org/10.4230/LIPIcs.STACS.2018.16
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.4230/LIPIcs.CONCUR.2018.33
https://doi.org/10.1145/3105908
https://doi.org/10.1145/3105908
https://doi.org/10.1007/10722167_31
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1038/srep00656

394 M. Blondin et al.

28. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of popu-
lation protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16023-3 19

29. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Stewart, D., Weissenbacher, G. (eds.) Proceed-
ings of 17th International Conference on Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 76–83. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102244

30. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-
8 18

31. Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for
the verification of population protocols. In: Proceedings of 31st International Con-
ference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota,
USA, 20–24 June 2011, pp. 215–224. IEEE Computer Society (2011). https://doi.
org/10.1109/ICDCS.2011.36

32. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7, 91–99 (1972)

33. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachabil-
ity problem for petri nets is not elementary. In: Charikar, M., Cohen, E. (eds.)
Proceedings of 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 24–33. ACM (2019). https://
doi.org/10.1145/3313276.3316369

34. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003). https://doi.org/10.1142/S0129054103001881

35. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Model checking population pro-
tocols. In: Lal, A., Akshay, S., Saurabh, S., Sen, S. (eds.) Proceedings of 36th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2016, Chennai, India, 13–15 December 2016. LIPIcs,
vol. 65, pp. 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.27

36. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Inf. 54(2), 191–215 (2017). https://doi.org/10.1007/s00236-016-0272-
3

37. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 40

38. Esparza, J., Meyer, P.J.: An SMT-based approach to fair termination analysis.
In: Kaivola, R., Wahl, T. (eds.) Proceedings of 15th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
27–30 September 2015, pp. 49–56. IEEE (2015)

39. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!.
Theoret. Comput. Sci. 256(1–2), 63–92 (2001). https://doi.org/10.1016/S0304-
3975(00)00102-X

https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.27
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X

Checking Qualitative Liveness Properties of Replicated Systems 395

40. Fribourg, L., Olsén, H.: Reachability sets of parameterized rings as regular lan-
guages. In: Moller, F. (ed.) Proceedings of 2nd International Workshop on Veri-
fication of Infinite State Systems, Infinity 1997, Bologna, Italy, 11–12 July 1997.
Electronic Notes in Theoretical Computer Science, vol. 9, p. 40. Elsevier (1997).
https://doi.org/10.1016/S1571-0661(05)80427-X

41. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681

42. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990).
https://doi.org/10.1016/0020-0190(90)90107-9

43. Hopcroft, J.E., Pansiot, J.: On the reachability problem for 5-dimensional vector
addition systems. Theoret. Comput. Sci. 8, 135–159 (1979). https://doi.org/10.
1016/0304-3975(79)90041-0

44. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Dwork, C. (ed.) Proceedings of 9th Annual ACM
Symposium on Principles of Distributed Computing, PODC 1990, Quebec City,
Quebec, Canada, 22–24 August 1990, pp. 119–131. ACM (1990). https://doi.org/
10.1145/93385.93409

45. Jancar, P., Purser, D.: Structural liveness of petri nets is expspace-hard and decid-
able. Acta Inf. 56(6), 537–552 (2019). https://doi.org/10.1007/s00236-019-00338-
6

46. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

47. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 14:1–14:29 (2014). https://
doi.org/10.1145/2629608

48. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34

49. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

50. Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In: White, J., Lipton, R.J.,
Goldberg, P.C. (eds.) Proceedings of 8th Annual ACM Symposium on Principles
of Programming Languages, POPL 1981, Williamsburg, Virginia, USA, January
1981, pp. 133–138. ACM Press (1981). https://doi.org/10.1145/567532.567547

51. Lengál, O., Lin, A.W., Majumdar, R., Rümmer, P.: Fair termination for parame-
terized probabilistic concurrent systems. In: Legay, A., Margaria, T. (eds.) TACAS
2017, Part I. LNCS, vol. 10205, pp. 499–517. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54577-5 29

52. Leroux, J.: Vector addition systems reachability problem (a simpler solution). In:
Voronkov, A. (ed.) Proceedings of the Alan Turing Centenary Conference, Turing
100, Manchester, UK, 22–25 June 2012. EPiC Series in Computing, vol. 10, pp.
214–228. EasyChair (2012). https://doi.org/10.29007/bnx2

53. Leroux, J.: Presburger vector addition systems. In: Proceedings of 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, 25–28 June 2013. pp. 23–32. IEEE Computer Society (2013). https://
doi.org/10.1109/LICS.2013.7

https://doi.org/10.1016/S1571-0661(05)80427-X
https://doi.org/10.1145/146637.146681
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1145/93385.93409
https://doi.org/10.1145/93385.93409
https://doi.org/10.1007/s00236-019-00338-6
https://doi.org/10.1007/s00236-019-00338-6
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/567532.567547
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.29007/bnx2
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2013.7

396 M. Blondin et al.

54. Leroux, J.: Vector addition system reversible reachability problem. Log. Methods
Comput. Sci. 9(1) (2013). https://doi.org/10.2168/LMCS-9(1:5)2013

55. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS,
vol. 9780, pp. 112–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 7

56. Moran, P.A.P.: Random processes in genetics. Math. Proc. Cambridge Philos. Soc.
54(1), 60–71 (1958). https://doi.org/10.1017/S0305004100033193

57. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

58. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94–102 (2015). https://doi.org/10.
1145/2678280

59. Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala University (2000)
60. Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing popu-

lation protocols. In: Proceedings of 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering, TASE 2008, 17–19 June 2008, Nan-
jing, China, pp. 185–192. IEEE Computer Society (2008). https://doi.org/10.1109/
TASE.2008.8

61. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3), 115–116 (1981). https://doi.org/10.1016/0020-0190(81)90106-X

62. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du Ier Congrès des mathématiciens des pays slaves, pp. 192–201 (1929)

63. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

64. Szymanski, B.K.: A simple solution to Lamport’s concurrent programming problem
with linear wait. In: Lenfant, J. (ed.) Proceedings of 2nd International Conference
on Supercomputing, ICS 1988, Saint Malo, France, 4–8 July 1988, pp. 621–626.
ACM (1988). https://doi.org/10.1145/55364.55425

65. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of 26th Annual Symposium on Foundations of Computer
Science, FOCS 1985, Portland, Oregon, USA, 21–23 October 1985, pp. 327–338.
IEEE Computer Society (1985). https://doi.org/10.1109/SFCS.1985.12

https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2678280
https://doi.org/10.1145/2678280
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1145/55364.55425
https://doi.org/10.1109/SFCS.1985.12

Checking Qualitative Liveness Properties of Replicated Systems 397

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Stochastic Games with Lexicographic
Reachability-Safety Objectives

Krishnendu Chatterjee1 , Joost-Pieter Katoen3 , Maximilian Weininger2 ,
and Tobias Winkler3(B)

1 IST Austria, Klosterneuburg, Austria
2 Technical University of Munich,

Munich, Germany
3 RWTH Aachen University, Aachen, Germany

tobias.winkler@cs.rwth-aachen.de

Abstract. We study turn-based stochastic zero-sum games with lexi-
cographic preferences over reachability and safety objectives. Stochas-
tic games are standard models in control, verification, and synthesis
of stochastic reactive systems that exhibit both randomness as well as
angelic and demonic non-determinism. Lexicographic order allows to con-
sider multiple objectives with a strict preference order over the satisfac-
tion of the objectives. To the best of our knowledge, stochastic games
with lexicographic objectives have not been studied before. We estab-
lish determinacy of such games and present strategy and computational
complexity results. For strategy complexity, we show that lexicographi-
cally optimal strategies exist that are deterministic and memory is only
required to remember the already satisfied and violated objectives. For
a constant number of objectives, we show that the relevant decision
problem is in NP ∩ coNP, matching the current known bound for sin-
gle objectives; and in general the decision problem is PSPACE-hard and
can be solved in NEXPTIME ∩ coNEXPTIME. We present an algorithm
that computes the lexicographically optimal strategies via a reduction
to computation of optimal strategies in a sequence of single-objectives
games. We have implemented our algorithm and report experimental
results on various case studies.

1 Introduction

Simple stochastic games (SGs) [26] are zero-sum turn-based stochastic games
played over a finite state space by two adversarial players, the Maximizer and
Minimizer, along with randomness in the transition function. These games allow
the interaction of angelic and demonic non-determinism as well as stochastic
uncertainty. They generalize classical models such as Markov decision processes
(MDPs) [39] which have only one player and stochastic uncertainty. An objective

This research was funded in part by the TUM IGSSE Grant 10.06 (PARSEC), the
German Research Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded
Verification”, the ERC CoG 863818 (ForM-SMArt), the Vienna Science and Technology
Fund (WWTF) Project ICT15-003, and the RTG 2236 UnRAVeL.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 398–420, 2020.
https://doi.org/10.1007/978-3-030-53291-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_21&domain=pdf
http://orcid.org/0000-0002-4561-241X
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-0163-2152
http://orcid.org/0000-0003-1084-6408
https://doi.org/10.1007/978-3-030-53291-8_21

Stochastic Games with Lexicographic Reachability-Safety Objectives 399

specifies a desired set of trajectories of the game, and the goal of the Maximizer
is to maximize the probability of satisfying the objective against all choices of
the Minimizer. The basic decision problem is to determine whether the Maxi-
mizer can ensure satisfaction of the objective with a given probability threshold.
This problem is among the rare and intriguing combinatorial problems that are
NP ∩ coNP, and whether it belongs to P is a major and long-standing open
problem. Besides the theoretical interest, SGs are a standard model in con-
trol and verification of stochastic reactive systems [4,18,31,39], as well as they
provide robust versions of MDPs when precise transition probabilities are not
known [22,45].

The multi-objective optimization problem is relevant in the analysis of sys-
tems with multiple, potentially conflicting goals, and a trade-off must be consid-
ered for the objectives. While the multi-objective optimization has been exten-
sively studied for MDPs with various classes of objectives [1,28,39], the problem
is notoriously hard for SGs. Even for multiple reachability objectives, such games
are not determined [23] and their decidability is still open.

This work considers SGs with multiple reachability and safety objectives with
lexicographic preference order over the objectives. That is, we consider SGs with
several objectives where each objective is either reachability or safety, and there
is a total preference order over the objectives. The motivation to study such lex-
icographic objectives is twofold. First, they provide an important special case of
general multiple objectives. Second, lexicographic objectives are useful in many
scenarios. For example, (i) an autonomus vehicle might have a primary objective
to avoid clashes and a secondary objective to optimize performance; and (b) a
robot saving lives during fire in a building might have a primary objective to
save as many lives as possible, and a secondary objective to minimize energy con-
sumption. Thus studying reactive systems with lexicographic objectives is a very
relevant problem which has been considered in many different contexts [7,33]. In
particular non-stochastic games with lexicographic objectives [6,25] and MDPs
with lexicographic objectives [47] have been considered, but to the best of our
knowledge SGs with lexicographic objectives have not been studied.

In this work we present several contributions for SGs with lexicographic
reachability and safety objectives. The main contributions are as follows.

– Determinacy. In contrast to SGs with multiple objectives that are not deter-
mined, we establish determinacy of SGs with lexicographic combination of
reachability and safety objectives.

– Computational complexity. For the associated decision problem we establish
the following: (a) if the number of objectives is constant, then the decision
problem lies in NP ∩ coNP, matching the current known bound for SGs with
a single objective; (b) in general the decision problem is PSPACE-hard and
can be solved in NEXPTIME ∩ coNEXPTIME.

– Strategy complexity. We show that lexicographically optimal strategies exist
that are deterministic but require finite memory. We also show that mem-
ory is only needed in order to remember the already satisfied and violated
objectives.

400 K. Chatterjee et al.

– Algorithm. We present an algorithm that computes the unique lexicographic
value and the witness lexicographically optimal strategies via a reduction to
computation of optimal strategies in a sequence of single-objectives games.

– Experimental results. We have implemented the algorithm and present exper-
imental results on several case studies.

Technical Contribution. The key idea is that, given the lexicographic order of the
objectives, we can consider them sequentially. After every objective, we remove
all actions that are not optimal, thereby forcing all following computation to
consider only locally optimal actions. The main complication is that local opti-
mality of actions does not imply global optimality when interleaving reachability
and safety, as the latter objective can use locally optimal actions to stay in the
safe region without reaching the more important target. We introduce quantified
reachability objectives as a means to solve this problem.

Related Work. We present related works on: (a) MDPs with multiple objectives;
(b) SGs with multiple objectives; (c) lexicographic objectives in related models;
and (d) existing tool support.

(a) MDPs with multiple objectives have been widely studied over a long
time [1,39]. In the context of verifying MDPs with multiple objectives, both
qualitative objectives such as reachability and LTL [29], as well as quanti-
tative objectives, such as mean payoff [8,13], discounted sum [17], or total
reward [34] have been considered. Besides multiple objectives with expecta-
tion criterion, other criteria have also been considered, such as, combination
with variance [9], or multiple percentile (threshold) queries [8,20,32,41].
Practical applications of MDPs with multiple objectives are described
in [2,3,42].

(b) More recently, SGs with multiple objectives have been considered, but the
results are more limited [43]. Multiple mean-payoff objectives were first
examined in [5] and the qualitative problems are coNP-complete [16]. Some
special classes of SGs (namely stopping SGs) have been solved for total-
reward objectives [23] and applied to autonomous driving [24]. However,
even for the most basic question of solving SGs with multiple reachability
objectives, decidability remains open.

(c) The study of lexicographic objectives has been considered in many differ-
ent contexts [7,33]. Non-stochastic games with lexicographic mean-payoff
objectives and parity conditions have been studied in [6] for the synthe-
sis of reactive systems with performance guarantees. Non-stochastic games
with multiple ω-regular objectives equipped with a monotonic preorder,
which subsumes lexicographic order, have been studied in [12]. Moreover,
the beyond worst-case analysis problems studied in [11] also considers pri-
mary and secondary objectives, which has a lexicographic flavor. MDPs
with lexicographic discounted-sum objectives have been studied in [47], and
have been extended with partial-observability in [46]. However, SGs with
lexicographic reachability and safety objectives have not been considered so
far.

Stochastic Games with Lexicographic Reachability-Safety Objectives 401

(d) PRISM-Games [37] provides tool support for several multi-player multi-
objective settings. MultiGain [10] is limited to generalized mean-payoff
MDPs. Storm [27] can, among numerous single-objective problems, solve
Markov automata with multiple timed reachability or expected cost objec-
tives [40], multi-cost bounded reachability MDPs [35], and it can provide
simple strategies for multiple expected reward objectives in MDPs [28].

Structure of this Paper. After recalling preliminaries and defining the problem
in Sect. 2, we first consider games where all target sets are absorbing in Sect. 3.
Then, in Sect. 4 we extend our insights to general games, yielding the full algo-
rithm and the theoretical results. Finally, Sect. 5 describes the implementation
and experimental evaluation. Section 6 concludes.

2 Preliminaries

Notation. A probability distribution on a finite set A is a function f : A → [0, 1]
such that

∑
x∈A f(x) = 1. We denote the set of all probability distributions on A

by D(A). Vector-like objects x are denoted in a bold font and we use the notation
xi for the i-th component of x. We use x<n as a shorthand for (x1, . . . ,xn−1).

2.1 Basic Definitions

ProbabilisticModels. In this paper, we consider (simple) stochastic games [26],
which are defined as follows. Let L = {a, b, . . .} be a finite set of actions labels.

Definition 1 (SG). A stochastic game (SG) is a tuple G = (S�, S♦,Act, P)
with S := S� � S♦ �= ∅ a finite set of states, Act : S → 2L \ {∅} defines finitely
many actions available at every state, and P : S × L → D(S) is the transition
probability function. P (s, a) is undefined if a /∈ Act(s).

We abbreviate P (s, a)(s′) to P (s, a, s′). We refer to the two players of the game
as Max and Min and the sets S� and S♦ are the Max- and Min-states, respectively.
As the game is turn based, these sets partition the state space S such that in
each state it is either Max’s or Min’s turn. The intuitive semantics of an SG is
as follows: In every turn, the corresponding player picks one of the finitely many
available actions a ∈ Act(s) in the current state s. The game then transitions
to the next state according to the probability distribution P (s, a). The winning
conditions are not part of the game itself and need to be further specified.

Sinks, Markov Decision Processes and Markov Chains. A state s ∈ S is
called absorbing (or sink) if P (s, a, s) = 1 for all a ∈ Act(s) and Sinks(G) denotes
the set of all absorbing states of SG G. A Markov Decision Process (MDP) is
an SG where either S♦ = ∅ or S� = ∅, i.e. a one-player game. A Markov Chain
(MC) is an SG where |Act(s)| = 1 for all s ∈ S. For technical reasons, we allow
countably infinite state spaces S for both MDPs and MCs.

402 K. Chatterjee et al.

Strategies. We define the formal semantics of games by means of paths and
strategies. An infinite path π is an infinite sequence π = s0a0s1a1 · · · ∈ (S ×L)ω,
such that for every i ∈ N, ai ∈ Act(si) and si+1 ∈ {s′ | P (si, ai, s

′) > 0}.
Finite paths are defined analogously as elements of (S ×L)∗ ×S. Note that when
considering MCs, every state just has a single action, so an infinite path can be
identified with an element of Sω.

A strategy of player Max is a function σ : (S × L)∗ × S� → D(L) where
σ(πs)(s′) > 0 only if s ∈ Act(s). It is memoryless if σ(πs) = σ(π′s) for all
π, π′ ∈ (S × L)∗. More generally, σ has memory of class-size at most m if the
set (S × L)∗ can be partitioned in m classes M1, . . . ,Mm ⊆ (S × L)∗ such that
σ(πs) = σ(π′s) for all 1 ≤ i ≤ m, π, π′ ∈ Mi and s ∈ S�. A memory of class-size
m can be represented with
log(m)� bits.

A strategy is deterministic if σ(πs) is Dirac for all πs. Strategies that are both
memoryless and deterministic are called MD and can be identified as functions
σ : S� → L. Notice that there are at most |L|S� different MD strategies, that is,
exponentially many in S�; in general, there can be uncountably many strategies.

Strategies τ of player Min are defined analogously, with S� replaced by S♦.
The set of all strategies of player Max is denoted with ΣMax, the set of all MD
strategies with ΣMD

Max, and similarly ΣMin and ΣMD
Min for player Min.

Fixing a strategy σ of one player in a game G yields the induced MDP Gσ.
Fixing a strategy τ of the second player too, yields the induced MC Gσ,τ . Notice
that the induced models are finite if and only if the respective strategies use
finite memory.

Given an (induced) MC Gσ,τ , we let P
σ,τ
s be its associated probability mea-

sure on the Borel-measurable sets of infinite paths obtained from the standard
cylinder construction where s is the initial state [39].

Reachability and Safety. In our setting, a property is a Borel-measurable
set Ω ⊆ Sω of infinite paths in an SG. The reachability property Reach (T)
where T ⊆ S is the set Reach (T) = {s0s1 . . . ∈ Sω | ∃i ≥ 0: si ∈ T}. The set
Safe (T) = Sω \Reach (T) is called a safety property. Further, for sets T1, T2 ⊆ S
we define the until property T1 U T2 = {s0s1 . . . ∈ Sω | ∃i ≥ 0: si ∈ T2 ∧ ∀j <
i : sj ∈ T1}. These properties are measurable (e.g. [4]). A reachability or safety
property where the set T satisfies T ⊆ Sinks(G) is called absorbing. For the safety
probabilities in an (induced) MC, it holds that Ps(Safe (T)) = 1−Ps(Reach (T)).
We highlight that an objective Safe (T) is specified by the set of paths to avoid,
i.e. paths satisfying the objective remain forever in S \ T .

2.2 Stochastic Lexicographic Reachability-Safety Games

SGs with lexicographic preferences are a straightforward adaptation of the ideas
of e.g. [46] to the game setting. The lexicographic order on R

n is defined as
x ≤lex y iff xi ≤ yi where i ≤ n is the greatest position such that for all j < i
it holds that xj = yj . The position i thus acts like a tiebreaker. Notice that for
arbitrary sets X ⊆ [0, 1]n, suprema and infima exist in the lexicographic order.

Stochastic Games with Lexicographic Reachability-Safety Objectives 403

p

q

r

s

t

u

v w

S1

S2

(a)

p

q

r

s

t

u

v w

S1

S2

(b)

Fig. 1. (a) An example of a stochastic game. Max-states are rendered as squares
� and Min-states as rhombs ♦. Probabilistic choices are indicated with small cir-
cles. In this example, all probabilities equal 1/2. The absorbing lex-objective Ω =
{Reach (S1) , Safe (S2)} is indicated by the thick green line around S1 = {s, t} and the
dotted red line around S2 = {t, u}. Self-loops in sinks are omitted. (b) Restriction of
the game to lex-optimal actions only.

Definition 2 (Lex-Objective and Lex-Value). A lexicographic reachability-
safety objective (lex-objective, for short) is a vector Ω = (Ω1, . . . , Ωn) such that
Ωi ∈ {Reach (Si) ,Safe (Si)} with Si ⊆ S for all 1 ≤ i ≤ n. We call Ω absorb-
ing if all the Ωi are absorbing, i.e., if Si ⊆ Sinks(G) for all 1 ≤ i ≤ n. The lex-
(icographic)value of Ω at state s ∈ S is defined as:

Ω vlex(s) = sup
σ∈ΣMax

inf
τ∈ΣMin

P
σ,τ
s (Ω) (1)

where P
σ,τ
s (Ω) denotes the vector (Pσ,τ

s (Ω1), . . . , Pσ,τ
s (Ωn)) and the suprema and

infima are taken with respect to the order ≤lex on [0, 1]n.

Thus the lex-value at state s is the lexicographically supremal vector of prob-
abilities that Max can ensure against all possible behaviors of Min. We will prove
in Sect. 4.3 that the supremum and infimum in (1) can be exchanged; this prop-
erty is called determinacy. We omit the superscript Ω in Ω vlex if it is clear from
the context. We also omit the sets ΣMax and ΣMin in the suprema in (1), e.g. we
will just write supσ.

Example 1 (SGs and lex-values). Consider the SG sketched in Fig. 1a with the
lex-objective Ω = {Reach (S1) ,Safe (S2)}. Player Max must thus maximize the
probability to reach S1 and, moreover, among all possible strategies that do so,
it must choose one that maximizes the probability to avoid S2 forever. �

Lex-Value of Actions and Lex-Optimal Actions. We extend the notion of
value to actions. Let s ∈ S be a state. The lex-value of an action a ∈ Act(s) is

404 K. Chatterjee et al.

defined as vlex(s, a) =
∑

s′ P (s, a, s′)vlex(s′). If s ∈ S�, then action a is called
lex-optimal if vlex(s, a) = maxb∈Act(s) vlex(s, b). Lex-optimal actions are defined
analogously for states s ∈ S♦ by considering the minimum instead of the maxi-
mum. Notice that there is always at least one optimal action because Act(s) is
finite by definition.

Example 2 (Lex-value of actions). We now intuitively explain the lex-values of
all states in Fig. 1a. The lex-value of sink states s, t, u and w is determined by
their membership in the sets S1 and S2. E.g., vlex(s) = (1, 1), as it is part of
the set S1 that should be reached and not part of the set S2 that should be
avoided. Similarly we get the lex-values of t, u and w as (1, 0), (0, 0) and (0, 1)
respectively. State v has a single action that yields (0, 0) or (0, 1) each with
probability 1/2, thus vlex(v) = (0, 1/2).

State p has one action going to s, which would yield (1, 1). However, as p is a
Min-state, its best strategy is to avoid giving such a high value. Thus, it uses the
action going downwards and vlex(p) = vlex(q). State q only has a single action
going to r, so vlex(q) = vlex(r).

State r has three choices: (i) Going back to q, which results in an infinite
loop between q and r, and thus never reaches S1. So a strategy that commits
to this action will not achieve the optimal value. (ii) Going to t or u each with
probability 1/2. In this case, the safety objective is definitely violated, but the
reachability objective achieved with 1/2. (iii) Going to t or v each with probability
1/2. Similarly to (ii), the probability to reach S1 is 1/2, but additionally, there is
a 1/2 · 1/2 chance to avoid S2. Thus, since r is a Max-state, its lex-optimal choice
is the action leading to t or v and we get vlex(r) = (1/2, 1/4). �

Notice that with the kind of objectives considered, we can easily swap the
roles of Max and Min by exchanging safety objectives with reachability and vice
versa. It is thus no loss of generality to consider subsequently introduced notions
such as optimal strategies only from the perspective of Max.

Definition 3 (Lex-Optimal Strategies). A strategy σ ∈ ΣMax is lex-optimal
for Ω if for all s ∈ S, vlex(s) = infτ ′ P

σ,τ ′
s (Ω). A strategy τ of Min is a lex-

optimal counter-strategy against σ if P
σ,τ
s (Ω) = infτ ′ P

σ,τ ′
s (Ω).

We stress that counter-strategies of Min depend on the strategy chosen by Max.

Locally Lex-Optimal Strategies. An MD strategy σ of Max (Min, resp.) is
called locally lex-optimal if for all s ∈ S� (s ∈ S♦, resp.) and a ∈ Act(s), we
have σ(s)(a) > 0 implies that action a is lex-optimal. Thus, locally lex-optimal
strategies only assign positive probability to lex-optimal actions.

Convention. For the rest of the paper, unless stated otherwise, we use G =
(S�, S♦,Act, P) to denote an SG and Ω = (Ω1, . . . , Ωn) is a suitable (not neces-
sarily absorbing) lex-objective, that is Ωi ∈ {Reach (Si) ,Safe (Si)} with Si ⊆ S
for all 1 ≤ i ≤ n.

Stochastic Games with Lexicographic Reachability-Safety Objectives 405

3 Lexicographic SGs with Absorbing Targets

In this section, we show how to compute the lexicographic value for SGs where
all target sets are absorbing. We first show various theoretical results in Sect. 3.1
upon which the algorithm for computing the values and optimal strategies pre-
sented in Sect. 3.2 is then built. The main technical difficulty arises from inter-
leaving reachability and safety objectives. In Sect. 4, we will reduce solving gen-
eral (not necessarily absorbing) SGs to the case with absorbing targets.

3.1 Characterizing Optimal Strategies

This first subsection derives a characterization of lex-optimal strategies in terms
of local optimality and an additional reachability condition (Lemma2 further
below). It is one of the key ingredients for the correctness of the algorithm
presented later and also gives rise to a (non-constructive) proof of existence of
MD lex-optimal strategies in the absorbing case.

We begin with the following lemma that summarizes some straightforward
facts we will frequently use. Recall that a strategy is locally lex-optimal if it only
selects actions with optimal lex-value.

Lemma 1. The following statements hold for any absorbing lex-objective Ω:

(a) If σ ∈ ΣMD
Max is lex-optimal and τ ∈ ΣMD

Min is a lex-optimal counter strategy
against σ, then σ and τ are both locally lex-optimal. (We do not yet claim
that such strategies σ, τ always exist.)

(b) Let G̃ be obtained from G by removing all actions (of both players) that are
not locally lex-optimal. Let ṽlex be the lex-values in G̃. Then ṽlex = vlex.

Proof (Sketch). Both claims follow from the definitions of lex-value and lex-
optimal strategy. For (b) in particular, we show that a strategy using actions
which are not lex-optimal can be transformed into a strategy that achieves a
greater (lower, resp.) value. Thus removing the non lex-optimal actions does not
affect the lex-value. See [19, Appendix A.1] for more technical details. ��

Example 3 (Modified game G̃). Consider again the SG from Fig. 1a. Recall the
lex-values from Example 1. Now we remove the actions that are not locally lex-
optimal. This means we drop the action that leads from p to s and the action
that leads from r to t or u (Fig. 1b). Since these actions were not used by the
lex-optimal strategies, the value in the modified SG is the same as that of the
original game. �
Example 4 (Locally lex-optimal does not imply globally lex-optimal). Note that
we do not drop the action that leads from r to q, because vlex(r) = vlex(q), so this
action is locally lex-optimal. In fact, a lex-optimal strategy can use it arbitrarily
many times without reducing the lex-value, as long as eventually it picks the
action leading to t or v. However, if we only played the action leading to q, the

406 K. Chatterjee et al.

lex-value would be reduced to (0, 1) as we would not reach S1, but would also
avoid S2.

We stress the following consequence of this: Playing a locally lex-optimal
strategy is not necessarily globally lex-optimal. It is not sufficient to just restrict
the game to locally lex-optimal actions of the previous objectives and then solve
the current one. Note that in fact the optimal strategy for the second objec-
tive Safe (S2) would be to remain in {p, q}; however, we must not pick this
safety strategy, before we have not “tried everything” for all previous reachabil-
ity objectives, in this case reaching S1. �

This idea of “trying everything” for an objective Reach (Si) is equivalent to
the following: either reach the target set Si, or reach a set of states from which
Si cannot be reached anymore. Formally, let Zeroi = {s ∈ S | vlex

i (s) = 0} be the
set of states that cannot reach the target set Si anymore. Note that it depends
on the lex-value, not the single-objective value. This is important, as the single-
objective value could be greater than 0, but a more important objective has to
be sacrificed to achieve it.

We define the set of states where we have “tried everything” for all reacha-
bility objectives as follows:

Definition 4 (Final Set). For absorbing Ω, let R<i = {j < i | Ωj =
Reach (Sj)}. We define the final set F<i =

⋃
k∈R<i

Sk ∪ ⋂
k∈R<i

Zerok with
the convention that F<i = S if R<i = ∅. We also let F = F<n+1.

The final set contains all target states as well as the states that have lex-value 0
for all reachability objectives; we need the intersection of the sets Zerok, because
as long as a state still has a positive probability to reach any target set, its
optimal behaviour is to try that.

Example 5 (Final set). For the game in Fig. 1, we have Zero1 = {u, v, w} and
thus F = Zero1 ∪ S1 = {s, t, u, v, w}. An MD lex-optimal strategy of Max must
almost-surely reach this set against any strategy of Min; only then it has “tried
everything”. �

The following lemma characterizes MD lex-optimal strategies in terms of
local lex-optimality and the final set.

Lemma 2. Let Ω be an absorbing lex-objective and σ ∈ ΣMD
Max. Then σ is lex-

optimal for Ω if and only if σ is locally lex-optimal and for all s ∈ S we have

∀τ ∈ ΣMD
Min : P

σ,τ
s (Reach (F)) = 1. (�)

Proof (Sketch). The “if ”-direction is shown by induction on the number n of tar-
gets. We make a case distinction according to the type of Ωn: If it is safety, then
we prove that local lex-optimality is already sufficient for global lex-optimality.
Else if Ωn is reachability, then intuitively, the additional condition (�) ensures
that the strategy σ indeed “tries everything” and either reaches the target Sn or

Stochastic Games with Lexicographic Reachability-Safety Objectives 407

eventually a state in Zeron where the opponent Min can make sure that Max can-
not escape. The technical details of these assertions rely on a fixpoint characteri-
zation of the reachability probabilities combined with the classic Knaster-Tarski
Fixpoint Theorem [44] and are given in [19, Appendix A.2].

For the “only if ”-direction recall that lex-optimal strategies are necessarily
locally lex-optimal by Lemma 1 (a). Further let i be such that Ωi = Reach (Si)
and assume for contradiction that σ remains forever within S \ (Si ∪Zeroi) with
positive probability against some strategy of Min. But then σ visits states with
positive lex-value for Ωi infinitely often without ever reaching Si. Thus σ is not
lex-optimal, contradiction. ��

Finally, this characterization allows us to prove that MD lex-optimal strate-
gies exist for absorbing objectives.

Theorem 1. For an absorbing lex-objective Ω, there exist MD lex-optimal
strategies for both players.

Proof (Sketch). We consider the subgame G̃ obtained by removing lex-sub-
optimal actions for both players and then show that the (single-objective) value
of Reach (F) in G̃ equals 1. An optimal MD strategy for Reach (F) exists [26];
further, it is locally lex-optimal, because we are in G̃, and it reaches F almost
surely. Thus, it is lex-optimal for Ω by the “if ”-direction of Lemma 2. See [19,
Appendix A.3] for more details on the proof. ��

3.2 Algorithm for SGs with Absorbing Targets

Theorem 1 is not constructive because it relies on the values vlex without show-
ing how to compute them. Computing the values and constructing an optimal
strategy for Max in the case of an absorbing lex-objective is the topic of this
subsection.

Definition 5 (QRO). A quantified reachability objective (QRO) is deter-
mined by a function q : S′ → [0, 1] where S′ ⊆ S. For all strategies σ and τ ,
we define:

P
σ,τ
s (Reach (q)) =

∑

t∈S′
P

σ,τ
s ((S \ S′) U t) · q(t).

Intuitively, a QRO generalizes its standard Boolean counterpart by additionally
assigning a weight to the states in the target set S′. Thus the probability of a
QRO is obtained by computing the sum of the q(t), t ∈ S′, weighted by the
probability to avoid S′ until reaching t. Note that this probability does not
depend on what happens after reaching S′; so it is unaffected by making all
states in S′ absorbing.

In Sect. 4, we need the dual notion of a quantified safety property, defined as
P

σ,τ
s (Safe (q)) = 1−P

σ,τ
s (Reach (q)); intuitively, this amounts to minimizing the

reachability probability.

408 K. Chatterjee et al.

Remark 1. A usual reachability property Reach (S′) is a special case of a quan-
tified one with q(s) = 1 for all s ∈ S′. Vice versa, quantified properties can be
easily reduced to usual ones defined only by the set S′: Convert all states t ∈ S′

into sinks, then for each such t prepend a new state t′ with a single action a
and P (t′, a, t) = q(t) and P (t′, a,⊥) = 1 − q(t) where ⊥ is a sink state. Finally,
redirect all transitions leading into t to t′. Despite this equivalence, it turns out
to be convenient and natural to use QROs.

Example 6 (QRO). Example 4 illustrated that solving a safety objective after a
reachability objective can lead to problems, as the optimal strategy for Safe (S2)
did not use the action that actually reached S1. In Example 5 we indicated that
the final set F = {s, t, u, v, w} has to be reached almost surely, and among those
states the ones with the highest safety values should be preferred. This can be
encoded in a QRO as follows: Compute the values for the Safe (S2) objective for
the states in F . Then construct the function q2 : F → [0, 1] that maps all states
in F to their safety value, i.e., q2 : {s �→ 1, t �→ 0, u �→ 0, v �→ 1/2, w �→ 1}. �

Thus using QROs, we can effectively reduce (interleaved) safety objectives
to quantified reachability objectives:

Lemma 3 (Reduction Safe → Reach). Let Ω be an absorbing lex-objective
with Ωn = Safe (Sn), qn : F → [0, 1] with qn(t) = vlex

n (t) for all t ∈ F where
F is the final set (Definition 4), and Ω′ = (Ω1, . . . , Ωn−1,Reach (qn)). Then:
Ω vlex = Ω ′

vlex.

Proof (Sketch). By definition, Ω vlex(s) = Ω ′
vlex(s) for all s ∈ F , so we only

need to consider the states in S \ F . Since any lex-optimal strategy for Ω or Ω′

must also be lex-optimal for Ω<n, we know by Lemma 2 that such a strategy
reaches F<n almost-surely. Note that we have F<n = F , as the n-th objective,
either the QRO or the safety objective, does not add any new states to F . The
reachability objective Reach (qn) weighs the states in F with their lexicographic
safety values vlex

n . Thus we additionally ensure that in order to reach F , we use
those actions that give us the best safety probability afterwards. In this way we
obtain the correct lex-values vlex

n even for states in S \F . See [19, Appendix A.4]
for the full technical proof. ��
Example 7 (Reduction Safe → Reach). Recall Example 6. By the preceding
Lemma 3, computing supσ infτ P

σ,τ
s (Reach (S1) ,Reach (q2)) yields the correct

lex-value vlex(s) for all s ∈ S. Consider for instance state r in the running exam-
ple: The action leading to q is clearly suboptimal for Reach (q2) as it does not
reach F . Both other actions surely reach F . However, since q2(t) = q2(u) = 0
while q2(v) = 1/2, the action leading to u and v is preferred over that leading to
t and u, as it ensures the higher safety probability after reaching F . �

We now explain the basic structure of Algorithm 1. More technical details
are explained in the proof sketch of Theorem2 and the full proof is in [19,
Appendix A.5]. The idea of Algorithm1 is, as sketched in Sect. 3.1, to consider
the objectives sequentially in the order of importance, i.e., starting with Ω1.

Stochastic Games with Lexicographic Reachability-Safety Objectives 409

Algorithm 1. Solve absorbing lex-objective
Input: SG G, absorbing lex-objective Ω = (Ω1, . . . , Ωn)

Output: Vector of lex-values vlex, MD lex-optimal strategy σ for Max
1: procedure SolveAbsorbing(G, Ω)

2: initialize vlex and σ arbitrarily

3: ˜G ← G � Consider whole game in the beginning.

4: for 1 ≤ i ≤ n do

5: (v, σ̃) ← SolveSingleObj(˜G, Ωi)
6: if Ωi = Safe (Si) then

7: F<i ← final set with respect to ˜G and Ω <i � see Def. 4
8: qi(s) ← v(s) for all s ∈ F<i � see Def. 5

9: (v, σQ) ← SolveSingleObj(˜G, Reach (qi))
10: end if

11: ˜G ← restriction of ˜G to optimal actions w.r.t. v

12: vlex
i ← v

13: for s ∈ S do
14: if (Ωi = Reach (Si) and v(s) > 0) or (Ωi = Safe (Si) and s ∈ F<i) then
15: σ(s) ← σ̃(s) � Strategy improvement
16: else if Ωi = Safe (Si) and s /∈ F<i

17: σ(s) ← σQ(s)
18: end if
19: end for
20: end for

return (vlex, σ)
21: end procedure

The i-th objective is solved (Lines 5–10) and the game is restricted to only the
locally optimal actions (Line 11). This way, in the i-th iteration of the main
loop, only actions that are locally lex-optimal for objectives 1 through (i−1)
are considered. Finally, we construct the optimal strategy and update the result
variables (Lines 12–19).

Theorem 2. Given an SG G and an absorbing lex-objective Ω = (Ω1, . . . , Ωn),
Algorithm 1 correctly computes the vector of lex-values vlex and an MD lex-
optimal strategy σ for player Max. It needs n calls to a single objective solver.

Proof (Sketch).

– G̃-invariant: For i > 1, in the i-th iteration of the loop, G̃ is the original SG
restricted to only those actions that are locally lex-optimal for the targets 1 to
(i−1); this is the case because Line 11 was executed for all previous targets.

– Single-objective case: The single-objective that is solved in Line 5 can be
either reachability or safety. We can use any (precise) single-objective solver
as a black box, e.g. strategy iteration [36]. Recall that by Remark 1, it is no
problem to call a single-objective solver with a QRO since there is a trivial
reduction.

– QRO for safety: If an objective is of type reachability, no further steps
need to be taken; if on the other hand it is safety, we need to ensure that
the problem explained in Example 4 does not occur. Thus we compute the
final set F<i for the i-th target and then construct and solve the QRO as in
Lemma 3.

410 K. Chatterjee et al.

– Resulting strategy: When storing the resulting strategy, we again need to
avoid errors induced by the fact that locally lex-optimal actions need not be
globally lex-optimal. This is why for a reachability objective, we only update
the strategy in states that have a positive value for the current objective;
if the value is 0, the current strategy does not have any preference, and we
need to keep the old strategy. For safety objectives, we need to update the
strategy in two ways: for all states in the final set F<i, we set it to the safety
strategy σ̃ (from Line 5) as within F<i we do not have to consider the previous
reachability objectives and therefore must follow an optimal safety strategy.
For all states in S \ F<i, we set it to the reachability strategy from the QRO
σQ (from Line9). This is correct, as σQ ensures almost-sure reachability of F<i

which is necessary to satisfy all preceding reachability objectives; moreover
σQ prefers those states in F<i that have a higher safety value (cf. Lemma 3).

– Termination: The main loop of the algorithm invokes SolveSingleObj for
each of the n objectives. ��

4 General Lexicographic SGs

We now consider Ω where Si ⊆ Sinks(G) does not necessarily hold. Section 4.1
describes how we can reduce these general lex-objectives to the absorbing case.
The resulting algorithm is given in Sect. 4.2 and the theoretical implications in
Sect. 4.3.

4.1 Reducing General Lexicographic SGs to SGs with Absorbing
Targets

In general lexicographic SG, strategies need memory, because they need to
remember which of the Si have already been visited and behave accordingly.
We formalize the solution of such games by means of stages. Intuitively, one can
think of a stage as a copy of the game with less objectives, or as the sub-game
that is played after visiting some previously unseen set Si.

Definition 6 (Stage). Given an arbitrary lex-objective Ω = (Ω1, . . . ,Ωn) and
a set I ⊆ {i ≤ n}, a stage Ω(I) is the objective vector where the objectives Ωi

are removed for all i ∈ I.
For state s ∈ S, let Ω(s) = Ω({i | s ∈ Si}). If a stage contains only one

objective, we call it simple.

Example 8 (Stages). Consider the SG in Fig. 2a. As there are two objectives,
there are four possible stages: The one where we consider both objectives (the
region denoted with Ω in Fig. 2b), the simple ones where we consider only one of
the objectives (regions Ω({1}) and Ω({2})), and the one where both objectives
have been visited. The last stage is trivial since there are no more objectives,
hence we do not depict it and do not have to consider it. The actions of q and
r are omitted in the Ω-stage, as upon visiting these states, a new stage begins.

Stochastic Games with Lexicographic Reachability-Safety Objectives 411

p

q

r

S1

S2

(a)

Ω

Ω({1})

Ω({2})

p

q

r

p

q

r

p

q

r

(b)

Fig. 2. (a) SG with non-absorbing lex-objective Ω = (Reach (S1) , Reach (S2)). (b) The
three stages identified by the sub-objectives Ω, Ω({1}) = (Reach (S2)) and Ω({2}) =
(Reach (S1)). The two stages on the right are both simple.

Consider the simple stages: in stage Ω({1}), q has value 0, as it is a Min-state
and will use the self-loop to avoid reaching r ∈ S2. In stage Ω({2}), both p and
r have value 1, as they can just go to the target state q ∈ S1. Combining this
knowledge, we can get an optimal strategy for every state. In particular, note
that an optimal strategy for state p needs memory: First go to r and thereby
reach stage Ω({2}). Afterwards, go from r to p and now, on the second visit
in a different stage, use the other action in p to reach q. In this example, we
observe another interesting fact about lexicographic games: it can be optimal to
first satisfy less important objectives. �

In the example, we combined our knowledge of the sub-stages to find the
lex-values for the whole lex-objective. In general, the values for the stages are
numbers in [0, 1]. Thus we reuse the idea of quantified reachability and safety
objectives, see Definition 5.

For all 1 ≤ i ≤ n, let qi :
⋃

j≤n Sj → [0, 1] by defined by:

qi(s) =

⎧
⎪⎨

⎪⎩

1 if s ∈ Si and else:
Ω (s)vlex

i (s) if Ωi is reachability
1 − Ω (s)vlex

i (s) if Ωi is safety.

To keep the correct type of every objective, we let qΩ = (type1(q1), . . . , typen(qn))
where for all 1 ≤ i ≤ n, typei = Reach if Ωi = Reach (Si) and else typei = Safe if

412 K. Chatterjee et al.

Ωi = Safe (Si). So we have now reduced a general lexicographic objective Ω to a
vector of quantitative objectives qΩ. Lemma 4 shows that this reduction preserves
the values.

Lemma 4. For arbitrary lex-objectives Ω it holds that Ω vlex = qΩ vlex.

Proof (Sketch). We write S =
⋃

j≤n Sj for the sake of readability in this sketch.
By induction on the length n of the lex-objective Ω, it is easy to show that the
equation holds in states s ∈ S, i.e., Ω vlex(s) = qΩ vlex(s). For a state s which is
not contained in any of the Sj , and for any strategies σ, τ we have the following
equation

P
σ,τ
s (Reach (Si)) =

∑

πt∈Pathsfin(S)

P
σ,τ
s (πt) · P

σ,τ
πt (Reach (Si))

where Pathsfin(S) = {πt ∈ ((S \ S) × L)∗ × S | t ∈ S} denotes the set of
all finite paths to a state in S in the Markov chain Gσ,τ and P

σ,τ
s (πt) is the

probability of such a path when Gσ,τ starts in s. From this we deduce that in
order to maximize the left hand size of the equation in the lexicographic order,
we should play such that we prefer reaching states in S where qi has a higher
value; that is, we should maximize the QRO Reach (qi). The argument for safety
is similar and detailed in [19, Appendix A.6]. ��

The functions qi involved in qΩ all have the same domain
⋃

j≤n Sj . Hence
we can, as mentioned below Definition 5, consider qΩ on the game where all
states in

⋃
j≤n Sj are sinks without changing the lex-value. This is precisely

the definition of an absorbing game, and hence we can compute qΩ vlex using
Algorithm 1 from Sect. 3.2.

4.2 Algorithm for General SG

Algorithm 2 computes the lex-value Ω vlex for a given lexicographic objective Ω
and an arbitrary SG G. We highlight the following technical details:

– Reduction to absorbing case: We just have seen, that once we have the
quantitative objective vector qΩ, we can use the algorithm for absorbing SG
(Line 12).

– Computing the quantitative objective vector: To compute qΩ, the
algorithm calls itself recursively on all states in the union of all target sets
(Line 5–7). We annotated this recursive call “With dynamic programming”,
as we can reuse the results of the computations. In the worst case, we have to
solve all 2n − 1 possible non-empty stages. Finally, given the values Ω (s)vlex

for all s ∈ ⋃
j≤n Sj , we can construct the quantitative objective (Line 9 and

11) that is used for the call to SolveAbsorbing.
– Termination: Since there are finitely many objectives in Ω and in every

recursive call at least one objective is removed from consideration, eventually
we have a simple objective that can be solved by SolveSingleObj (Line 3).

Stochastic Games with Lexicographic Reachability-Safety Objectives 413

Algorithm 2. Solve general lex-objective
Input: SG G, lex-objective Ω = (Ω1, . . . , Ωn)
Output: Lex-values Ω vlex, lex-optimal σ ∈ ΣMax with memory of class-size ≤ 2n − 1
1: procedure SolveLex(G, Ω)
2: if Ω is simple then
3: return SolveSingleObj(G, Ω1)
4: end if

5: for s ∈ ⋃
j≤n Sj do

6:
(

Ω (s)vlex, Ω (s)σ
)

← SolveLex(G, Ω(s)) � With dynamic programming

7: end for
8: for 1 ≤ i ≤ n do

9: Let qi :
⋃

j≤n Sj → [0, 1], qi(s) ←

⎧
⎪⎨

⎪⎩

1 if s ∈ Si and else:
Ω (s)vlex

i (s) if type(Ωi) = Reach

1 − Ω (s)vlex
i (s) if type(Ωi) = Safe

10: end for
11: qΩ ← (type1(q1), . . . , typen(qn))

12: (qΩ vlex, qΩ σ) ← SolveAbsorbing(G, qΩ)
13: σ ← adhere to qΩ σ until some s ∈ ⋃

j≤n Sj is reached. Then adhere to Ω (s)σ.

14: return (qΩ vlex, σ)
15: end procedure

– Resulting strategy: The resulting strategy is composed in Line 13: It
adheres to the strategy for the quantitative query qΩ σ until some s ∈ ⋃

j≤n Sj

is reached. Then, to achieve the values promised by qi(s) for all i with s /∈ Si,
it adheres to Ω (s)σ, the optimal strategy for stage Ω(s) obtained by the
recursive call.

Corollary 1. Given an SG G and an arbitrary lex-objective Ω = (Ω1, . . . , Ωn),
Algorithm2 correctly computes the vector of lex-values vlex and a deterministic
lex-optimal strategy σ of player Max which uses memory of class-size ≤ 2n − 1.
The algorithm needs at most 2n−1 calls to SolveAbsorbing or SolveSingleObj.

Proof. Correctness of the algorithm and termination follows from the discussion
of the algorithm, Lemma 4 and Theorem 2. ��

4.3 Theoretical Implications: Determinacy and Complexity

Theorem 3 below states that lexicographic games are determined for arbitrary
lex-objectives Ω. Intuitively, this means that the lex-value is independent from
the player who fixes their strategy first. Recall that this property does not hold
for non-lexicographic multi-reachability/safety objectives [23].

Theorem 3 (Determinacy). For general SG G and lex-objective Ω, it holds
for all s ∈ S that:

vlex(s) = sup
σ

inf
τ

P
σ,τ
s (Ω) = inf

τ
sup

σ
P

σ,τ
s (Ω).

414 K. Chatterjee et al.

Proof. This statement follows because single-objective games are determined [26]
and Algorithm 2 obtains all values by either solving single-objective instances
directly (Line 3) or calling Algorithm 1, which also reduces everything to
the single-objective case (Line 5 of Algorithm 1). Thus the sup-inf values vlex

returned by the algorithm are in fact equal to the inf-sup values. ��
By analyzing Algorithm2, we also get the following complexity results:

Theorem 4 (Complexity). For any SG G and lex-objective Ω =
(Ω1, . . . , Ωn):

1. Strategy complexity: Deterministic strategies with 2n − 1 memory-classes
(i.e., bit-size n) are sufficient and necessary for lex-optimal strategies.

2. Computational complexity: The lex-game decision problem (vlex(s0) ≥lex x?)
is PSPACE-hard and can be solved in NEXPTIME ∩ coNEXPTIME. If n is a
constant or Ω is absorbing, then it is contained in NP ∩ coNP.

Proof. 1. For each stage, Algorithm 2 computes an MD strategy for the quanti-
tative objective. These strategies are then concatenated whenever a new stage
is entered. Equivalently, every stage has an MD strategy for every state, so
as there are at most 2n − 1 stages (since there are n objectives), the strat-
egy needs at most 2n − 1 states of memory; these can be represented with
n bits. Intuitively, we save for every target set whether it has been visited.
The memory lower bound already holds in non-stochastic reachability games
where all n targets have to be visited with certainty [30].

2. The work of [41] shows that in MDPs, it is PSPACE-hard to decide if n
targets can be visited almost-surely. This problem trivially reduces to ours.
For the NP upper bound, observe that there are at most 2n − 1 stages, i.e., a
constant amount if n is assumed to be constant (or even just one stage if Ω is
absorbing). Thus we can guess an MD strategy for player Max in every stage.
The guessed overall strategy can then be checked by analyzing the induced
MDP in polynomial time [29]. The same procedure works for player Min and
since the game is determined, we have membership in coNP. In the same way
we obtain the NEXPTIME ∩ coNEXPTIME upper bound in the general case
where n is arbitrary. ��
We leave the question whether PSPACE is also an upper bound open. The

main obstacle towards proving PSPACE-membership is that it is unclear if the
lex-value – being dependent on the value of exponentially many stages in the
worst-case – may actually have exponential bit-complexity.

5 Experimental Evaluation

In this section, we report the results of a series of experiments made with a
prototypical implementation of our algorithm.

Stochastic Games with Lexicographic Reachability-Safety Objectives 415

CaseStudies. We have considered the following case studies for our experiments:

Dice. This example is shipped with PRISM-games [37] and models a simple
dice game between two players. The number of throws in this game is a
configurable parameter, which we instantiate with 10, 20 and 50. The game
has three possible outcomes: Player Max wins, Player Min wins or draw. A
natural lex-objective is thus to maximize the winning probability and then
the probability of a draw.

Charlton. This case study [24] is also included in PRISM-games. It models an
autonomous car navigating through a road network. A natural lex-objective
is to minimize the probability of an accident (possibly damaging human life)
and then maximize the probability to reach the destination.

Hallway (HW). This instance is based on the Hallway example standard in
the AI literature [15,38]. A robot can move north, east, south or west in a
known environment, but each move only succeeds with a certain probability
and otherwise rotates or moves the robot in an undesired direction. We extend
the example by a target wandering around based on a mixture of probabilis-
tic and demonic non-deterministic behavior, thereby obtaining a stochastic
game modeling for instance a panicking human in a building on fire. More-
over, we assume a 0.01 probability of damaging the robot when executing
certain movements; the damaged robot’s actions succeed with even smaller
probability. The primary objective is to save the human and the secondary
objective is to avoid damaging the robot. We use square grid-worlds of sizes
5 × 5, 8 × 8 and 10 × 10.

Avoid the Observer (AV). This case study is inspired by a similar example in
[14]. It models a game between an intruder and an observer in a grid-world.
The grid can have different sizes as in HW, and we use 10 × 10, 15 × 15
and 20 × 20. The most important objective of the intruder is to avoid the
observer, its secondary objective is to exit the grid. We assume that the
observer can only detect the intruder within a certain distance and otherwise
makes random moves. At every position, the intruder moreover has the option
to stay and search to find a precious item. In our example, this occurs with
probability 0.1 and is assumed to be the third objective.

Implementation and Experimental Results. We have implemented our
algorithm within PRISM-games [37]. Since PRISM-games does not provide an
exact algorithm to solve SGs, we used the available value iteration to implement
our single-objective blackbox. Note that since this value iteration is not exact
for single-objective SGs, we cannot compute the exact lex-values. Nevertheless,
we can still measure the overhead introduced by our algorithm compared to a
single-objective solver.

In our implementation, value iteration stops if the values do not change
by more than 10−8 per iteration, which is PRISM’s default configuration. The
experiments were conducted on a 2.4 GHz Quad-Core Intel c© CoreTM i5 pro-
cessor, with 4 GB of RAM available to the Java VM. The results are reported
in Table 1. We only recorded the run time of the actual algorithms; the time

416 K. Chatterjee et al.

needed to parse and build the model is excluded. All numbers are rounded to
full seconds. All instances (even those with state spaces of order 106) could be
solved within a few minutes.

Table 1. Experimental Results. The two leftmost columns of the table show the type
of the lex-objective, the name of the case studies, possibly with scaling parameters,
and the number of states in the model. The next three columns give the verification
times (excluding time to parse and build the model), rounded to full seconds. The final
three columns provide the average number of actions for the original SG as well as all
considered subgames G̃ in the main stage, and lastly the fraction of stages considered,
i.e. the stages solved by the algorithm compared to the theoretically maximal possible
number of stages (2n − 1).

Model |S| Time Avg. actions Stages

Lex. First All G G̃
R – R

Dice[10] 4,855 <1 <1 <1 1.42 1.41 1/3

Dice[20] 16,915 <1 <1 <1 1.45 1.45 1/3

Dice[50] 96,295 3 2 2 1.48 1.48 1/3

S – R

Charlton 502 <1 <1 <1 1.56 1.07 3/3

R – S

HW[5 × 5] 25,000 10 7.15 7 2.44 1.02 3/3

HW[8 × 8] 163,840 152 117 117 2.50 1.01 3/3

HW[10 × 10] 400,000 548 435 435 2.52 1.01 3/3

S–R–R

AV[10 × 10] 106,524 15 <1 10 2.17 1.55, 1.36 4/7

AV[15 × 15] 480,464 85 <1 50 2.14 1.52, 1.36 4/7

AV[20 × 20] 1,436,404 281 3 172 2.13 1.51, 1.37 4/7

The case studies are grouped by the type of lex-objective, where R indicates
reachability, S safety. For each combination of case study and scaling parameters,
we report the state size in column |S|, three different model checking runtimes,
the average number of actions in the original and all considered restricted games,
and the fraction of stages considered, i.e. the stages solved by the algorithm
compared to the theoretically maximal possible number of stages (2n − 1).

We compare the time of our algorithm on the lexicographic objective (Lex.)
to the time for checking the first single objective (First) and the sum of checking
all single objectives (All). We see that the runtimes of our algorithm and checking
all single objectives are always in the same order of magnitude. This shows that
our algorithm works well in practice and that the overhead is often small. Even
on SGs of non-trivial size (HW[10× 10] and AV[20× 20]), our algorithm returns
the result within a few minutes.

Stochastic Games with Lexicographic Reachability-Safety Objectives 417

Regarding the average number of actions, we see that the decrease in the
number of actions in the sub-games G̃ obtained by restricting the input game to
optimal actions varies: For example, very few actions are removed in the Dice
instances, in AV we have a moderate decrease and in HW a significant decrease,
almost eliminating all non-determinism after the first objective. It is our intuition
that the less actions are removed, the higher is the overhead compared to the
individual single-objective solutions. Consider the AV and HW examples: While
for AV[20 × 20], computing the lexicographic solution takes 1.7 times as long as
all the single-objective solutions, it took only about 25% longer for HW[10×10];
this could be because in HW, after the first objective only little nondeterminism
remains, while in AV also for the second and third objectives lots of choices have
to be considered. Note that the first objective sometimes (HW), but not always
(AV) needs the majority of the runtime.

We also see that the algorithm does not have to explore all possible stages.
For example, for Dice we always just need a single stage, because the SG is
absorbing. For charlton and HW all stages are relevant for the lex-objective,
while for AV 4 of 7 need to be considered.

6 Conclusion and Future Work

In this work we considered simple stochastic games with lexicographic reacha-
bility and safety objectives. Simple stochastic games are a standard model in
reactive synthesis of stochastic systems, and lexicographic objectives let one
consider multiple objectives with an order of preference. We focused on the
most basic objectives: safety and reachability. While simple stochastic games
with lexicographic objectives have not been studied before, we have presented
(a) determinacy; (b) strategy complexity; (c) computational complexity; and
(d) algorithms; for these games. Moreover, we showed how these games can
model many different case studies and we present experimental results for them.

There are several directions for future work. First, for the general case closing
the complexity gap (NEXPTIME∩coNEXPTIME upper bound and PSPACE lower
bound) is an open question. Second, the study of lexicographic simple stochastic
games with more general objectives, e.g., quantitative or parity objectives poses
interesting questions. In particular, in the case of parity objectives, there are
some indications that the problem is significantly harder: Consider the case of
a reachability-safety lex-objective. If the lex-value is (1, 1) then both objectives
can be guaranteed almost surely. Since almost-sure safety is sure safety, our
results imply that sure safety and almost-sure reachability can be achieved with
constant memory. In contrast, for parity objectives the combination of sure and
almost-sure requires infinite-memory (e.g, see [21, Appendix A.1]).

References

1. Altman, E.: Constrained Markov Decision Processes. CRC Presss, Boca Raton
(1999)

418 K. Chatterjee et al.

2. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS, pp. 1:1–1:10 (2014)

3. Baier, C., et al.: Probabilistic model checking and non-standard multi-objective
reasoning. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 1–16.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 1

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 256–271. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 22

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

7. Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice
under uncertainty. Econometrica J. Econ. Soc. 59(1), 61–79 (1991)

8. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. LMCS 10(1) (2014).
https://doi.org/10.2168/LMCS-10(1:13)2014

9. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for sta-
bility in Markov decision processes. In: LICS, pp. 331–340 (2013)

10. Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: MultiGain: a controller syn-
thesis tool for MDPs with multiple mean-payoff objectives. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 181–187. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 12

11. Bruyère, V., Filiot, E., Randour, M., Raskin, J.: Meet your expectations with
guarantees: beyond worst-case synthesis in quantitative games. Inf. Comput. 254,
259–295 (2017)

12. Bruyère, V., Hautem, Q., Raskin, J.: Parameterized complexity of games with
monotonically ordered omega-regular objectives. CoRR abs/1707.05968 (2017)

13. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–
484. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77050-3 39

14. Chatterjee, K., Chmeĺık, M.: POMDPs under probabilistic semantics. Artif. Intell.
221, 46–72 (2015). https://doi.org/10.1016/j.artint.2014.12.009

15. Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure
reachability in POMDPs. Artif. Intell. 234, 26–48 (2016). https://doi.org/10.1016/
j.artint.2016.01.007

16. Chatterjee, K., Doyen, L.: Perfect-information stochastic games with generalized
mean-payoff objectives. In: LICS. pp. 247–256. ACM (2016)

17. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verifi-
cation in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45221-5 17

18. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. J. Com-
put. Syst. Sci. 78(2), 394–413 (2012)

19. Chatterjee, K., Katoen, J.P., Weininger, M., Winkler, T.: Stochastic games with
lexicographic reachability-safety objectives. CoRR abs/2005.04018 (2020). http://
arxiv.org/abs/2005.04018

https://doi.org/10.1007/978-3-642-54804-8_1
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.2168/LMCS-10(1:13)2014
https://doi.org/10.1007/978-3-662-46681-0_12
https://doi.org/10.1007/978-3-540-77050-3_39
https://doi.org/10.1016/j.artint.2014.12.009
https://doi.org/10.1016/j.artint.2016.01.007
https://doi.org/10.1016/j.artint.2016.01.007
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-45221-5_17
http://arxiv.org/abs/2005.04018
http://arxiv.org/abs/2005.04018

Stochastic Games with Lexicographic Reachability-Safety Objectives 419

20. Chatterjee, K., Kret́ınská, Z., Kret́ınský, J.: Unifying two views on multiple mean-
payoff objectives in Markov decision processes. LMCS 13(2) (2017). https://doi.
org/10.23638/LMCS-13(2:15)2017

21. Chatterjee, K., Piterman, N.: Combinations of qualitative winning for stochastic
parity games. CoRR abs/1804.03453 (2018). http://arxiv.org/abs/1804.03453

22. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval Markov chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp.
302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-
9 22

23. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

24. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: an application to autonomous urban driving. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol.
8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40196-1 28

25. Colcombet, T., Jurdzinski, M., Lazic, R., Schmitz, S.: Perfect half space games.
In: Logic in Computer Science, LICS 2017, pp. 1–11 (2017)

26. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224
(1992). https://doi.org/10.1016/0890-5401(92)90048-K

27. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part
II. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 31

28. Delgrange, F., Katoen, J.-P., Quatmann, T., Randour, M.: Simple strategies in
multi-objective MDPs. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol.
12078, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45190-5 19

29. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. LMCS 4(4) (2008). https://doi.org/
10.2168/LMCS-4(4:8)2008

30. Fijalkow, N., Horn, F.: The surprizing complexity of generalized reachability games.
arXiv:1010.2420 [cs], October 2010

31. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York
(1997). https://doi.org/10.1007/978-1-4612-4054-9

32. Filar, J., Krass, D., Ross, K.: Percentile performance criteria for limiting average
Markov decision processes. IEEE Trans. Autom. Control. 40(1), 2–10 (1995)

33. Fishburn, P.C.: Exceptional paper – lexicographic orders, utilities and decision
rules: a survey. Manag. Sci. 20(11), 1442–1471 (1974)

34. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 11

35. Hartmanns, A., Junges, S., Katoen, J.-P., Quatmann, T.: Multi-cost bounded
reachability in MDP. In: Beyer, D., Huisman, M. (eds.) TACAS 2018, Part II.
LNCS, vol. 10806, pp. 320–339. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89963-3 19

36. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manag. Sci.
12(5), 359–370 (1966). https://doi.org/10.1287/mnsc.12.5.359

https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.23638/LMCS-13(2:15)2017
http://arxiv.org/abs/1804.03453
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-540-78499-9_22
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.2168/LMCS-4(4:8)2008
http://arxiv.org/abs/1010.2420
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1287/mnsc.12.5.359

420 K. Chatterjee et al.

37. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. STTT
20(2), 195–210 (2018). https://doi.org/10.1007/s10009-017-0476-z

38. Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially
observable environments: scaling up. In: ICML, pp. 362–370. Morgan Kaufmann
(1995)

39. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

40. Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objec-
tives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426,
pp. 140–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 7

41. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. Form. Methods Syst. Des. 50(2–3), 207–248 (2017).
https://doi.org/10.1007/s10703-016-0262-7

42. Roijers, D.M., Whiteson, S.: Multi-objective decision making. Synth. Lect. Artif.
Intell. Mach. Learn. 11(1), 1–129 (2017)

43. Svorenová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. Eur. J. Control 30, 15–30 (2016). https://doi.org/10.1016/j.
ejcon.2016.04.009

44. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math. 5(2), 285–309 (1955). https://doi.org/10.2140/pjm.1955.5.285

45. Weininger, M., Meggendorfer, T., Křet́ınský, J.: Satisfiability bounds for ω-regular
properties in bounded-parameter Markov decision processes. In: CDC (2019, to
appear)

46. Wray, K.H., Zilberstein, S.: Multi-objective POMDPs with lexicographic reward
preferences. In: IJCAI, pp. 1719–1725. AAAI Press (2015)

47. Wray, K.H., Zilberstein, S., Mouaddib, A.: Multi-objective MDPs with conditional
lexicographic reward preferences. In: AAAI, pp. 3418–3424. AAAI Press (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.2140/pjm.1955.5.285
http://creativecommons.org/licenses/by/4.0/

Qualitative Controller Synthesis for
Consumption Markov Decision Processes

Frantǐsek Blahoudek1, Tomáš Brázdil2, Petr Novotný2, Melkior Ornik3,
Pranay Thangeda3(B), and Ufuk Topcu1

1 The University of Texas at Austin, Austin, USA
frantisek.blahoudek@gmail.com,

utopcu@utexas.edu
2 Masaryk University, Brno, Czech Republic

{xbrazdil,petr.novotny}@fi.muni.cz
3 University of Illinois at Urbana-Champaign, Urbana, USA

{mornik,pranayt2}@illinois.edu

Abstract. Consumption Markov Decision Processes (CMDPs) are
probabilistic decision-making models of resource-constrained systems. In
a CMDP, the controller possesses a certain amount of a critical resource,
such as electric power. Each action of the controller can consume some
amount of the resource. Resource replenishment is only possible in spe-
cial reload states, in which the resource level can be reloaded up to
the full capacity of the system. The task of the controller is to prevent
resource exhaustion, i.e. ensure that the available amount of the resource
stays non-negative, while ensuring an additional linear-time property. We
study the complexity of strategy synthesis in consumption MDPs with
almost-sure Büchi objectives. We show that the problem can be solved
in polynomial time. We implement our algorithm and show that it can
efficiently solve CMDPs modelling real-world scenarios.

1 Introduction

In the context of formal methods, controller synthesis typically boils down to
computing a strategy in an agent-environment model, a nondeterministic state-
transition model where some of the nondeterministic choices are resolved by the
controller and some by an uncontrollable environment. Such models are typi-
cally either two-player graph games with an adversarial environment or Markov
decision process (MDPs); the latter case being apt for modelling statistically
predictable environments. In this paper, we consider controller synthesis for
resource-constrained MDPs, where the computed controller must ensure, in addi-
tion to satisfying some linear-time property, that the system’s operation is not
compromised by a lack of necessary resources.

This work was partially supported by NASA under Early Stage Innovations grant No.
80NSSC19K0209, and by DARPA under grant No. HR001120C0065. Petr Novotný is
supported by the Czech Science Foundation grant No. GJ19-15134Y.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 421–447, 2020.
https://doi.org/10.1007/978-3-030-53291-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_22

422 F. Blahoudek et al.

Resource-Constrained Probabilistic Systems. Resource-constrained systems need
a supply of some resource (e.g. power) for steady operation: the interruption
of the supply can lead to undesirable consequences and has to be avoided. For
instance, an autonomous system, e.g. an autonomous electric vehicle (AEV), is
not able to draw power directly from an endless source. Instead, it has to rely on
an internal storage of the resource, e.g. a battery, which has to be replenished
in regular intervals to prevent resource exhaustion. Practical examples of AEVs
include driverless cars, drones, or planetary rovers [8]. In these domains, resource
failures may cause a costly mission failure and even safety risks. Moreover, the
operation of autonomous systems is subject to probabilistic uncertainty [54].
Hence, in this paper, we study the resource-constrained strategy synthesis prob-
lem for MDPs.

Models of Resource-Constrained Systems & Limitations of Current Approaches.
There is a substantial body of work in the area of verification of resource-
constrained systems [3,5,7,9,11,23,38,39,53,58]. The typical approach is to
model them as finite-state systems augmented with an integer-valued counter
representing the current resource level, i.e. the amount of the resource present
in the internal storage. The resource constraint requires that the resource level
never drops below zero.1 In the well-known energy model [11,23], each transi-
tion is labelled by an integer, and performing an �-labelled transition results in
� being added to the counter. Thus, negative numbers stand for resource con-
sumption while positive ones represent re-charging by the respective amount.
Many variants of both MDP and game-based energy models were studied, as
detailed in the related work. In particular, [26] considers controller synthesis for
energy MDPs with qualitative Büchi and parity objectives. The main limita-
tion of energy-based agent-environment models is that in general, they are not
known to admit polynomial-time controller synthesis algorithms. Indeed, already
the simplest problem, deciding whether a non-negative energy can be maintained
in a two-player energy game, is at least as hard as solving mean-payoff graph
games [11]; the complexity of the latter being a well-known open problem [45].
This hardness translates also to MDPs [26], making polynomial-time controller
synthesis for energy MDPs impossible without a theoretical breakthrough.

Consumption models, introduced in [14], offer an alternative to energy mod-
els. In a consumption model, a non-negative integer, cap, represents the maxi-
mal amount of the resource the system can hold, e.g. the battery capacity. Each
transition is labelled by a non-negative number representing the amount of the
resource consumed when taking the transition (i.e., taking an �-labelled transi-
tion decreases the resource level by �). The resource replenishment is different
from the energy approach. The consumption approach relies on the fact that
reloads are often atomic events, e.g. an AEV plugging into a charging station
and waiting to finish the charging cycle. Hence, some states in the consump-
tion model are designated as reload states, and whenever the system visits a

1 In some literature, the level is required to stay positive as opposed to non-negative,
but this is only a matter of definition: both approaches are equivalent.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 423

reload state, the resource level is replenished to the full capacity cap. Modelling
reloads as atomic events is natural and even advantageous: consumption mod-
els typically admit more efficient analysis than energy models [14,47]. However,
consumption models have not yet been considered in the probabilistic setting.

Our Contribution. We study strategy synthesis in consumption MDPs with Büchi
objectives. Our main theoretical result is stated in the following theorem.

Theorem 1. Given a consumption MDP M with a capacity cap, an initial
resource level 0 ≤ d ≤ cap, and a set T of accepting states, we can decide,
in polynomial time, whether there exists a strategy σ such that when playing
according to σ, the following consumption-Büchi objectives are satisfied:

– Starting with resource level d, the resource level never2 drops below 0.
– With probability 1, the system visits some state in T infinitely often.

Moreover, if such a strategy exists then we can compute, in polynomial time, its
polynomial-size representation.

For the sake of clarity, we restrict to proving Theorem 1 for a natural sub-class
of MDPs called decreasing consumption MDPs, where there are no cycles of zero
consumption. The restriction is natural (since in typical resource-constrained
systems, each action – even idling – consumes some energy, so zero cycles are
unlikely) and greatly simplifies presentation. In addition to the theoretical analy-
sis, we implemented the algorithm behind Theorem1 and evaluated it on several
benchmarks, including a realistic model of an AEV navigating the streets of
Manhattan. The experiments show that our algorithm is able to efficiently solve
large CMDPs, offering a good scalability.

Significance. Some comments on Theorem 1 are in order. First, all the numbers
in the MDP, and in particular the capacity cap, are encoded in binary. Hence,
“polynomial time” means time polynomial in the encoding size of the MDP itself
and in log(cap). In particular, a naive “unfolding” of the MDP, i.e. encoding the
resource levels between 0 and cap into the states, does not yield a polynomial-
time algorithm, but an exponential-time one, since the unfolded MDP has size
proportional to cap. We employ a value-iteration-like algorithm to compute min-
imal energy levels with which one can achieve the consumption-Büchi objectives.

A similar concern applies to the “polynomial-size representation” of the strat-
egy σ. To satisfy a consumption-Büchi objective, σ generally needs to keep track
of the current resource level. Hence, under the standard notion of a finite-memory
(FM) strategy (which views FM strategies as transducers), σ would require mem-
ory proportional to cap, i.e. a memory exponentially large w.r.t. size of the input.
However, we show that for each state s we can partition the integer interval
[0, . . . , cap] into polynomially many sub-intervals Is

1 , . . . , Is
k such that, for each

1 ≤ j ≤ k, the strategy σ picks the same action whenever the current state is
2 In our model, this is equivalent to requiring that with probability 1, the resource

level never drops below 0.

424 F. Blahoudek et al.

s and the current resource level is in Is
j . As such, the endpoints of the intervals

are the only extra knowledge required to represent σ, a representation which
we call a counter selector. We instrument our main algorithm so as to compute,
in polynomial time, a polynomial-size counter selector representing the witness
strategy σ.

Finally, we consider linear-time properties encoded by Büchi objectives over
the states of the MDP. In essence, we assume that the translation of the specifica-
tion to the Büchi automaton and its product with the original MDP model of the
system were already performed. Probabilistic analysis typically requires the use
of deterministic Büchi automata, which cannot express all linear-time properties.
However, in this paper we consider qualitative analysis, which can be performed
using restricted versions of non-deterministic Büchi automata that are still pow-
erful enough to express all ω-regular languages. Examples of such automata
are limit-deterministic Büchi automata [51] or good-for-MDPs automata [41].
Alternatively, consumption MDPs with parity objectives could be reduced to
consumption-Büchi MPDs using the standard parity-to-Büchi MDP construc-
tion [25,30,32,33]. We abstract from these aspects and focus on the technical
core of our problem, solving consumption-Büchi MDPs.

Consequently, to our best knowledge, we present the first polynomial-time
algorithm for controller synthesis in resource-constrained MDPs with ω-regular
objectives.

Related Work. There is an enormous body of work on energy models. Stem-
ming from the models introduced in [11,23], the subsequent work covered energy
games with various combinations of objectives [10,12,13,18,20,21,27,48], energy
games with multiple resource types [15,24,28,31,37,43,44,57] or the variants of
the above in the MDP [17,49], infinite-state [1], or partially observable [34] set-
tings. As argued previously, the controller synthesis within these models is at
least as hard as solving mean-payoff games. The paper [29] presents polynomial-
time algorithms for non-stochastic energy games with special weight structures.
Recently, an abstract algebraic perspective on energy models was presented
in [22,35,36].

Consumption systems were introduced in [14] in the form of consumption
games with multiple resource types. Minimizing mean-payoff in automata with
consumption constraints was studied in [16].

Our main result requires, as a technical sub-component, solving the resource-
safety (or just safety) problem in consumption MDPs, i.e. computing a strategy
which prevents resource exhaustion. The solution to this problem consists (in
principle) of a Turing reduction to the problem of minimum cost reachability
in two-player games with non-negative costs. The latter problem was studied
in [46], with an extension to arbitrary costs considered in [19] (see also [40]).
We present our own, conceptually simple, value-iteration-like algorithm for the
problem, which is also used in our implementation.

Elements of resource-constrained optimization and minimum-cost reachabil-
ity are also present in the line of work concerning energy-utility quantiles in
MDPs [4–7,42]. In this setting, there is no reloading in the consumption- or

Qualitative Controller Synthesis for Consumption Markov Decision Processes 425

energy-model sense, and the task is typically to minimize the total amount of
the resource consumed while maximizing the probability that some other objec-
tive is satisfied.

Paper Organization & Outline of Techniques. After the preliminaries (Sect. 2),
we present counter selectors in Sect. 3. The next three sections contain the three
main steps of our analysis. In Sect. 4, we solve the safety problem in consump-
tion MDPs. The technical core of our approach is presented in Sect. 5, where we
solve the problem of safe positive reachability : finding a resource-safe strategy
which ensures that the set T of accepting states is visited with positive probabil-
ity. Solving consumption-Büchi MDPs then, in principle, consists of repeatedly
applying a strategy for safe positive reachability of T , ensuring that the strat-
egy is “re-started” whenever the attempt to reach T fails. Details are given
in Sect. 6. Finally, Sect. 7 presents our experiments. Due to space constraints,
most technical proofs were moved to the full version.

2 Preliminaries

We denote by N the set of all non-negative integers and by N the set N ∪ {∞}.
Given a set I and a vector v ∈ N

I
of integers indexed by I, we use v(i) to denote

the i-component of v. We assume familiarity with basic notions of probability
theory. In particular, a probability distribution on an at most countable set X is
a function f : X → [0, 1] s.t.

∑
x∈X f(x) = 1. We use D(X) to denote the set of

all probability distributions on X.

Definition 1 (CMDP). A consumption Markov decision process (CMDP) is
a tupleM = (S,A,Δ,C,R, cap) where S is a finite set of states, A is a finite set
of actions, Δ : S × A → D(S) is a total transition function, C : S × A → N is a
total consumption function, R ⊆ S is a set of reload states where the resource
can be reloaded, and cap is a resource capacity.

Figure 1 shows a visual representation of an CMDP. We denote by M(R′) for
R′ ⊆ S the CMDP obtained from M by changing the set of reloads to R′. For

s1

s2

s5

s3s4

a2, 2

a1,2, 1
a1, 5

1
2

1
2

a1,2, 1

a1,2, 2

a1,2, 1

Distributions in are indicated by gray num-
bers (we leave out 1 when an action has only one
successor), and the cost of an action follows its
name in the edge labels. Actions labeled by a1 2
represent that and C are defined identically for
both actions a1 and a2. The blue background in-
dicates a target set T s2 , while the double
circles represent the reload states.

Fig. 1. CMDP M = ({s1, s2, s3, s4, s5}, {a1, a2}, Δ, C, {s2, s5}, 20). Details are given
on the right.

426 F. Blahoudek et al.

s ∈ S and a ∈ A, we denote by Succ(s, a) the set {t | Δ(s, a)(t) > 0}. A path is a
(finite or infinite) state-action sequence α = s1a1s2a2s3 · · · ∈ (S×A)ω∪(S ·A)∗ ·S
such that si+1 ∈ Succ(si, ai) for all i. We define αi = si and Act i(α) = ai. We
use α..i for the finite prefix s1a1 . . . si of α, αi.. for the suffix siai . . . , and αi..j

for the infix siai . . . sj . A finite path is a cycle if it starts and ends in the same
state and is simple if none of its infixes forms a cycle. The length of a path α is
the number len(α) of actions on α and len(α) = ∞ if α is infinite.

A CMDP is decreasing if for every cycle s1a1s2 . . . ak−1sk there exists
1 ≤ i < k such that C(si, ai) > 0. Throughout this paper we consider only
decreasing CMDPs. The only place where this assumption is used are the proofs
of Theorem 4 and Theorem 8.

An infinite path is called a run. We typically name runs by variants of the
symbol �. The set of all runs in M is denoted RunsM. A finite path is called
history. The set of all possible histories of M is histM or simply hist . We use
last(α) for the last state of α. Let α be a history with last(α) = s1 and β =
s1a1s2a2 . . .; we define a joint path as α � β = αa1s2a2

A strategy for M is a function σ : histM → A assigning to each history an
action to play. A strategy is memoryless if σ(α) = σ(β) whenever last(α) =
last(β). We do not consider randomized strategies in this paper, as they are
non-necessary for qualitative ω-regular objectives on finite MDPs [30,32,33].

A computation ofM under the control of a given strategy σ from some initial
state s ∈ S creates a path. The path starts with s1 = s. Assume that the current
path is α and let si = last(α) (we say thatM is currently in si). Then the next
action on the path is ai = σ(α) and the next state si+1 is chosen randomly
according to Δ(si, ai). Repeating this process ad infinitum yields an infinite
sample run �. We say that � is σ-compatible if it can be produced using this
process, and s-initiated if it starts in s. We denote the set of all σ-compatible,
s-initiated runs by CompM(σ, s).

We denote by P
σ
M,s(A) the probability that a sample run from CompM(σ, s)

belongs to a given measurable set of runs A. For details on the formal construc-
tion of measurable sets of runs as well as the probability measure P

σ
M,s see [2].

Throughout the paper, we drop the M subscripts in symbols whenever M is
known from the context.

2.1 Resource: Consumption, Levels, and Objectives

We denote by cap(M) the battery capacity in the MDP M. A resource is
consumed along paths and can be reloaded in the reload states up to the
full capacity. For a path α = s1a1s2 . . . we define the consumption of α as
cons(α) =

∑len(α)
i=1 C(si, ai) (since the consumption is non-negative, the sum is

always well defined, though possibly diverging). Note that cons does not consider
reload states at all. To accurately track the remaining amount of the resource,
we use the concept of a resource level.

Definition 2 (Resource level). Let M be a CMDP with a set of reload states
R, let α be a history, and let 0 ≤ d ≤ cap(M) be an integer called initial load.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 427

Then the energy level after α initialized by d, denoted by RLMd (α) or simply
as RLd(α), is defined inductively as follows: for a zero-length history s we have
RLMd (s) = d. For a non-zero-length history α = βat we denote c = C(last(β), a),
and put

RLMd (α) =

⎧
⎪⎨

⎪⎩

RLMd (β) − c if last(β) 	∈ R and c ≤ RLMd (β) 	= ⊥
cap(M) − c if last(β) ∈ R and c ≤ cap(M) and RLMd (β) 	= ⊥
⊥ otherwise

Consider M from Fig. 1 and the history α(i) = (s1a2s5a2)is1 with i as a
parameter. We have cons(α(i)) = 3i and at the same time, following the induc-
tive definition of RLd(α(i)) we have RL2(α(i)) = 19 for all i ≥ 1 as the resource
is reloaded every time in s5. This generalizes into the following. Let α be a his-
tory and let f, l ≥ 0 be the minimal and maximal indices i such that αi ∈ R,
respectively. For RLd(α) 	= ⊥, it holds RLd(α..i) = d − cons(α..i) for all i ≤ f
and RLd(α) = cap(M) − cons(αl..). Further, for each history α and d such that
e = RLd(α) 	= ⊥, and each history β suitable for joining with α it holds that
RLd(α � β) = RLe(β).

A run � is d-safe if and only if the energy level initialized by d is a
non-negative number for each finite prefix of ρ, i.e. if for all i > 0 we have
RLd(�..i) 	= ⊥. We say that a run is safe if it is cap(M)-safe. The next lemma
follows immediately from the definition of an energy level.

Lemma 1. Let � = s1a1s2 . . . be a d-safe run for some d and let α be a history
such that last(α) = s1. Then the run α � � is e-safe if RLe(α) ≥ d.

Example 1. Recall the CMDP and the parameterized history α(i) from above.
We know that RL2(α(i)) = 19 for all i. Therefore, a strategy that always picks
a2 in s1 is d-safe in s1 for all d ≥ 2. On the other hand, a strategy that always
picks a1 in s1 is not d-safe in s1 for any 0 ≤ d ≤ 20 = cap(M) because for all
runs � that visit s3 at least three times before s2 we have RLd(�) = ⊥.

Objectives. An objective is a set of runs. The objective SafeRuns(d) contains
exactly d-safe runs. Given a target set T ⊆ S and i ∈ N, we define Reachi

T =
{� ∈ Runs | �j ∈ T for some 1 ≤ j ≤ i + 1} to be the set of all runs that
reach some state from T within the first i steps. We put ReachT =

⋃
i∈N

Reachi
T .

Finally, the set BüchiT = {� ∈ Runs | �i ∈ T for infinitely many i ∈ N}.

Problems. We solve three main qualitative problems for CMDPs, namely safety,
positive reachability, and Büchi.

Let us fix a state s and a target set of states T . We say that a strategy σ is
d-safe in s if Comp(σ, s) ⊆ SafeRuns(d). We say that σ is T -positive d-safe in s
if it is d-safe in s and P

σ
s (ReachT) > 0, which means that there exists a run in

Comp(σ, s) that visits T . Finally, we say that σ is T -Büchi d-safe in a state s if
it is d-safe in s and P

σ
s (BüchiT) = 1.

The vectors Safe, SafePRT (PR for “positive reachability”), and SafeBüchiT

of type N

S
contain, for each s ∈ S, the minimal d such that there exists a strategy

428 F. Blahoudek et al.

that is d-safe in s, T -positive d-safe in s, and T -Büchi d-safe in s, respectively,
and ∞ if no such strategy exists.

The problems we consider for a given CMDP are:

– Safety: compute the vector Safe and a strategy that is Safe(s)-safe in every
s ∈ S.

– Positive reachability: compute the vector SafePRT and a strategy that is
T -positive SafePRT (s)-safe in every state s.

– Büchi: compute SafeBüchiT and a strategy that is T -Büchi SafeBüchiT (s)-
safe in every state s.

Example 2. Now consider again the d-safe strategy from Example 1 that always
picks a2; such a strategy is 2-safe in s1, but is not useful if we attempt to
eventually reach T . Hence memoryless strategies are not sufficient in our setting.
Consider, instead, a strategy σ that picks a1 in s1 whenever the current resource
level is at least 10 and picks a2 otherwise. Such a strategy is 2-safe in s1 and
guarantees reaching s2 with a positive probability: we need at least 10 units of
energy to return to s5 in the case we are unlucky and picking a1 leads us to
s3. If we are lucky, a1 leads us to s2 by consuming just 5 units of the resource,
witnessing that σ is T -positive. As a matter of fact, during every revisit of s5

there is a 1
2 chance of hitting s2 during the next try, so σ actually ensures that

s2 is visited with probability 1.

Solving a CMDP is substantially different from solving a consumption 2-
player game [14]. Indeed, imagine that in M from Fig. 1, the outcome of the
action a1 from state s1 is resolved by an adversarial player. In such a game, the
strategy σ does not produce any run that reaches s2. In fact, there would be no
strategy that guarantees reaching T in a 2-player game like this at all.

The strategy σ from our example uses finite memory to track the resource
level exactly. We describe an efficient representation of such strategies in the
next section.

3 Counter Strategies

In this section, we define a succinct representation of finite-memory strategies
via so called counter selectors. Under the standard definition, a strategy σ is a
finite memory strategy, if σ can be encoded by a memory structure, a type of
finite transducer. Formally, a memory structure is a tuple μ = (M,nxt , up,m0)
where M is a finite set of memory elements, nxt : M × S → A is a next action
function, up : M ×S×A×S → M is a memory update function, and m0 : S → M
is the memory initialization function. The function up can be lifted to a function
up∗ : M × hist → M as follows.

up∗(m, α) =

{
m if α = s has length 0

up
(
up∗(m, β), last(β), a, t

)
if α = βat for some a ∈ A and t ∈ S

The structure μ encodes a strategy σμ such that for each history α = s1a1s2 . . . sn

we have σμ(α) = nxt
(
up∗(m0(s1), α), sn

)
.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 429

In our setting, strategies need to track energy levels of histories. Let us fix
an CMDP M = (S,A,Δ,C,R, cap). A non-exhausted energy level is always
a number between 0 and cap(M), which can be represented with a binary-
encoded bounded counter. We call strategies with such counters finite counter
(FC) strategies. An FC strategy selects actions to play according to selection
rules.

Definition 3 (Selection rule). A selection rule ϕ for M is a partial function
from the set {0, . . . , cap(M)} to A. Undefined value for some n is indicated by
ϕ(n) = ⊥.

We use dom(ϕ) = {n ∈ {0, . . . , cap(M)} | ϕ(n) 	= ⊥} to denote the domain
of ϕ and we use RulesM or simply Rules for the set of all selection rules for M.
Intuitively, a selection according to rule ϕ selects the action that corresponds to
the largest value from dom(ϕ) that is not larger than the current energy level.
To be more precise, if dom(ϕ) consists of numbers n1 < n2 < · · · < nk, then the
action to be selected in a given moment is ϕ(ni), where ni is the largest element
of dom(ϕ) which is less then or equal to the current amount of the resource. In
other words, ϕ(ni) is to be selected if the current resource level is in [ni, ni+1)
(putting nk+1 = ∞).

Definition 4 (Counter selector). A counter selector for M is a function
Σ : S → Rules.

A counter selector itself is not enough to describe a strategy. A strategy
needs to keep track of the energy level throughout the path. With a vector
r ∈ {0, . . . , cap(M)}S of initial resource levels, each counter selector Σ defines a
strategy Σr that is encoded by the following memory structure (M,nxt , up,m0)
with a ∈ A being a globally fixed action (for uniqueness). We stipulate that
⊥ < n for all n ∈ N.

– M = {⊥} ∪ {0, . . . , cap(M)}.
– Let m ∈ M be a memory element, let s ∈ S be a state, let n ∈ dom(Σ(s)) be

the largest element of dom(Σ(s)) such that n ≤ m. Then nxt(m, s) = Σ(s)(n)
if n exists, and nxt = a otherwise.

– The function up is defined for each m ∈ M,a ∈ A, s, t ∈ S as follows.

up(m, s, a, t) =

⎧⎪⎨
⎪⎩

m − C(s, a) if s �∈ R and C(s, a) ≤ m �= ⊥
cap(M) − C(s, a) if s ∈ R and C(s, a) ≤ cap(M) and m �= ⊥
⊥ otherwise.

– The function m0 is m0(s) = r(s).

A strategy σ is a finite counter (FC) strategy if there is a counter selector
Σ and a vector r such that σ = Σr. The counter selector can be imagined as
a finite-state device that implements σ using O(log(cap(M))) bits of additional
memory (counter) used to represent numbers 0, 1, . . . , cap(M). The device uses
the counter to keep track of the current resource level, the element ⊥ represent-
ing energy exhaustion. Note that a counter selector can be exponentially more
succinct than the corresponding memory structure.

430 F. Blahoudek et al.

Example 3. Consider again the CMDP M in Fig. 1 and a counter selector Σ
defined as follows: Let ϕ be a selection rule with dom(ϕ) = {0, 10} such that
ϕ(0) = a2 and ϕ(10) = a1. Then let ϕ′ be a selection rule such that dom(ϕ′) =
{0} and ϕ(0) = a1. Finally, let Σ be a counter selector such that Σ(s1) = ϕ
and Σ(si) = ϕ′ for all i 	= 1. Then, for a vector of initial resource levels r, the
strategy σ informally described in Example 2 can be formally represented by
putting σ = Σr. Note that for any r with r(s1) ≥ 2, r(s2) ≥ 0, r(s3) ≥ 5,
r(s4) ≥ 4, and r(s5) ≥ 0 and for any state s ofM the strategy Σr is r(s)-safe in
s.

4 Safety

In this section, we present an algorithm that computes, for each state, the mini-
mal value d (if it exists) such that there exists a d-safe strategy from that state.
We also provide the corresponding strategy. In the remainder of the section we
fix an MDP M.

A d-safe run has the following two properties: (i) It consumes at most d units
of the resource (energy) before it reaches the first reload state, and (ii) it never
consumes more than cap(M) units of the resource between 2 visits of reload
states. To ensure (ii), we need to identify a maximal subset R′ ⊆ R of reload
states for which there is a strategy σ that, starting in some r ∈ R′, can always
reach R′ again (within at least one step) using at most cap(M) resource units.
The d-safe strategy we seek can be then assembled from σ and from a strategy
that suitably navigates towards R′, which is needed for (i).

In the core of both properties (i) and (ii) lies the problem of minimum cost
reachability. Hence, in the next subsection, we start with presenting necessary
results on this problem.

4.1 Minimum Cost Reachability

The problem of minimum cost reachability with non-negative costs was stud-
ied before [46]. Here we present a simple approach to the problem used in our
implementation and most of the technical details are available in the full version.

Definition 5. Let T ⊆ S be a set of target states, let α = s1a1s2 . . . be a finite
or infinite path, and let 1 ≤ f be the smallest index such that sf ∈ T . We define
consumption of α to T as ReachConsM,T (α) = cons(α..f) if f exists and we set
ReachConsM,T (α) = ∞ otherwise. For a strategy σ and a state s ∈ S we define
ReachConsM,T (σ, s) = sup�∈Comp(σ,s) ReachConsM,T (�).
A minimum cost reachability of T from s is a vector defined as

MinReachM,T (s) = inf
{
ReachConsM,T (σ, s) | σ is a strategy for M}

.

Intuitively, d = MinReachT (s) is the minimal initial load with which some
strategy can ensure reaching T with consumption at most d, when starting

Qualitative Controller Synthesis for Consumption Markov Decision Processes 431

in s. We say that a strategy σ is optimal for MinReachT if we have that
MinReachT (s) = ReachConsT (σ, s) for all states s ∈ S.

We also define functions ReachCons+
M,T and the vector MinReach+

M,T in a
similar fashion with one exception: we require the index f from definition of
ReachConsM,T (α) to be strictly larger than 1, which enforces to take at least
one step to reach T .

For the rest of this section, fix a target set T and consider the following
functional F :

F (v)(s) =

{
mina∈A

(
C(s, a) + maxt∈Succ(s,a) v(t)

)
s 	∈ T

0 s ∈ T

F is a simple generalization of the standard Bellman functional used for
computing shortest paths in graphs. The proof of the following Theorem is rather
standard and moved to the full version of the paper.

Theorem 2. Denote by n the length of the longest simple path inM. Let xT be
a vector such that xT (s) = 0 if s ∈ T and xT (s) = ∞ otherwise. Then iterating
F on xT yields a fixpoint in at most n steps and this fixpoint equals MinReachT .

To compute MinReach+
M,T , we construct a new CMDP M̃ fromM by adding

a copy s̃ of each state s ∈ S such that dynamics in s̃ is the same as in s; i.e. for
each a ∈ A, Δ(s̃, a) = Δ(s, a) and C(s̃, a) = C(s, a). We denote the new state
set as S̃. We don’t change the set of reload states, so s̃ is never in T , even if s

is. Given the new CMDP M̃ and the new state set as S̃, the following lemma is
straightforward.

Lemma 2. Let M be a CMDP and let M̃ be the CMDP constructed as above.
Then for each state s of M it holds MinReach+

M,T (s) = MinReach
˜M,T

(s̃).

4.2 Safely Reaching Reload States

In the following, we use MinInitConsM (read minimal initial consumption) for
the vector MinReach+

M,R – minimal resource level that ensures we can surely
reach a reload state in at least one step. By Lemma 2 and Theorem 2 we can
construct M̃ and iterate the operator F for |S| steps to compute MinInitConsM.
Note that S is the state space ofM since introducing the new states into M̃ did
not increase the length of the maximal simple path. However, we can avoid the
construction of M̃ and still compute MinInitConsM using a truncated version
of the functional F , which is the approach used in our implementation. We first
introduce the following truncation operator:

�x�M(s) =

{
x(s) if s 	∈ R,

0 if s ∈ R.

432 F. Blahoudek et al.

Algorithm 1: Algorithm for computing MinInitConsM.
Input: CMDP M = (S, A, Δ, C,R, cap)
Output: The vector MinInitConsM

1 initialize x ∈ N

S
to be ∞ in every component;

2 repeat
3 xold ← x;
4 foreach s ∈ S do

5 c ← mina∈A

{
C(s, a) + maxs′∈Succ(s,a)�xold �M(s′)

}
;

6 if c < x(s) then
7 x(s) ← c;

8 until xold = x;
9 return x

Then, we define a truncated functional G as follows:

G(v)(s) = min
a∈A

(

C(s, a) + max
s′∈Succ(s,a)

�v �M(s′)
)

.

The following lemma connects the iteration of G on M with the iteration of F
on M̃.

Lemma 3. Let ∞ ∈ N

S
be a vectors with all components equal to ∞. Consider

iterating G on ∞ inM and F on xR in M̃. Then for each i ≥ 0 and each s ∈ R
we have Gi(∞)(s) = F i(xR)(s̃) and for every s ∈ S \ R we have Gi(∞)(s) =
F i(xR)(s).

Algorithm 1 uses G to compute the vector MinInitConsM.

Theorem 3. Algorithm 1 correctly computes the vector MinInitConsM. More-
over, the repeat-loop terminates after at most |S| iterations.

4.3 Solving the Safety Problem

We want to identify a set R′ ⊆ R such that we can reach R′ in at least 1 step
and with consumption at most cap = cap(M), from each r ∈ R′. This entails
identifying the maximal R′ ⊆ R such that MinInitConsM(R′) ≤ cap for each
r ∈ R′. This can be done by initially setting R′ = R and iteratively removing
states that have MinInitConsM(R′) > cap, from R′, as in Algorithm 2.

Theorem 4. Algorithm 2 computes the vector SafeM in polynomial time.

Proof. The algorithm clearly terminates. Computing MinInitConsM(Rel) on line
5 takes a polynomial number of steps per call due to Theorem3 and sinceM(Rel)
has asymptotically the same size as M. Since the repeat loop performs at most
|R| iterations, the complexity follows.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 433

Algorithm 2: Computing the vector SafeM.
Input: CMDP M
Output: The vector SafeM

1 cap ← cap(M);
2 Rel ← R; ToRemove ← ∅;
3 repeat
4 Rel ← Rel � ToRemove;
5 mic ← MinInitConsM(Rel);
6 ToRemove ← {r ∈ Rel | mic(r) > cap};

7 until ToRemove = ∅;
8 foreach s ∈ S do
9 if mic(s) > cap then out(s) = ∞;

10 else out(s) = mic(s);

11 return out

As for correctness, we first prove that out ≤ SafeM. It suffices to prove
for each s ∈ S that upon termination, mic(s) ≤ SafeM(s) whenever the
latter value is finite. Since MinInitConsM′(s) ≤ SafeM′(s) for each MDP
M′ and each its state such that SafeM′(s) < ∞, it suffices to show that
SafeM(Rel) ≤ SafeM is an invariant of the algorithm (as a matter of fact, we
prove that SafeM(Rel) = SafeM). To this end, it suffices to show that at every
point of execution SafeM(t) = ∞ for each t ∈ R \ Rel : indeed, if this holds,
no strategy that is safe for some state s 	= t can play an action a from s such
that t ∈ Succ(s, a), so declaring such states non-reloading does not influence the
SafeM-values. So denote by Rel i the contents of Rel after the i-th iteration. We
prove, by induction on i, that SafeM(s) = ∞ for all s ∈ R \ Rel . For i = 0 we
have R = Rel , so the statement holds. For i > 0, let s ∈ R \ Rel i, and let σ be
any strategy. If some run from Comp(σ, s) visits a state from R\Rel i−1, then σ is
not cap-safe, by induction hypothesis. Now assume that all such runs only visit
reload states from Rel i−1. Then, since MinInitConsM(Reli−1)(s) > cap, there
must be a run � ∈ Comp(σ, s) with ReachCons+

Reli−1
(�) > cap. Assume that � is

cap-safe in s. Since we consider only decreasing CMDPs, � must infinitely often
visit a reload state (as it cannot get stuck in a zero cycle). Hence, there exists
an index f > 1 such that �f ∈ Rel i−1, and for this f we have RLcap(�..f) = ⊥,
a contradiction. So again, σ is not safe in s. Since there is no safe strategy from
s, we have SafeM(s) = ∞.

Finally, we need to prove that upon termination, out ≥ SafeM. Informally,
per the definition of out, from every state s we can ensure reaching a state of
Rel by consuming at most out(s) units of the resource. Once in Rel , we can
ensure that we can again return to Rel without consuming more than cap units
of the resource. Hence, when starting with out(s) units, we can surely prevent
resource exhaustion. �
Definition 6. We call an action a safe in a state s if one of the following
conditions holds:

434 F. Blahoudek et al.

– s 	∈ R and C(s, a) + maxt∈Succ(s,a) SafeM(t) ≤ SafeM(s); or
– s ∈ R and C(s, a) + maxt∈Succ(s,a) SafeM(t) ≤ cap(M).

Note that by the definition of SafeM, for each state s with SafeM(s) < ∞ there is
always at least one action safe in s. For states s s.t. SafeM(s) = ∞, we stipulate
all actions to be safe in s.

Theorem 5. Any strategy which always selects an action that is safe in the
current state is SafeM(s)-safe in every state s. In particular, in each consumption
MDP M there is a memoryless strategy σ that is SafeM(s)-safe in every state s.
Moreover, σ can be computed in polynomial time.

Proof. The first part of the theorem follows directly from Definition 6,
Definition 2 (resource levels), and from definition of d-safe runs. The second
part is a corollary of Theorem4 and the fact that in each state, the safe strategy
from Definition 6 can fix one such action in each state and thus is memoryless.
The complexity follows from Theorem 4. �
Example 4. Consider again the M from Fig. 1. Algorithm 1 returns, for input
M, the vector mic = (2, 1, 5, 4, 3). Algorithm 2 reuses mic on line 5 and returns
it unchanged. Hence, the vector mic equals SafeM. The strategies described in
Example 1 witness that Safe(s1) ≤ 2. Here we see that there is no strategy that
would be 1-safe in s1.

5 Positive Reachability

In this section, we focus on strategies that are safe and such that at least one
run they produce visits a given set T ⊆ S of targets. The main contribution of
this section is Algorithm 3 used to compute such strategies as well as the vector
SafePRM,T of minimal initial resource levels for which such a strategy exist. As
before, for the rest of this section we fix a CMDP M.

We define a function SPR-ValM : S × A × N

S → N (SPR for safe positive
reachability) s.t. for all s ∈ S, a ∈ A, and x ∈ N

S
we have

SPR-ValM(s, a,x) = C(s, a) + min
t∈Succ(s,a)

{
max

{
x(t),SafeM(t′) | t′ ∈ Succ(s, a), t′ �= t

}}

The max operator considers, for given t, the value x(t) and the values needed to
survive from all possible outcomes of a other than t. Let v = SPR-ValM(s, a,x)
and t the outcome selected by min. Intuitively, v is the minimal amount of
resource needed to reach t with at least x(t) resource units, or survive if the
outcome of a is different from t.

We now define a functional whose fixed point characterizes SPR-ValM,T . We
first define a two-sided version of the truncation operator from the previous
section: the operator � · �M such that

�x �M(s) =

⎧
⎪⎨

⎪⎩

∞ if x(s) > cap(M)
x(s) if x(s) ≤ cap(M) and s 	∈ R
0 if x(s) ≤ cap(M) and s ∈ R

Qualitative Controller Synthesis for Consumption Markov Decision Processes 435

Using the functions SPR-Val and � · �M, we now define an auxiliary operator A
and the main operator B as follows.

AM(r)(s) =

{
SafeM(s) if s ∈ T

mina∈A (SPR-ValM(s, a, r)) otherwise;

BM(r) = �AM(r) �M

Let SafePRi
T be the vector such that for a state s ∈ S the number d =

SafePRi
T (s) is the minimal number � such that there exists a strategy that

is �-safe in s and produces at least one run that visits T within first i steps.
Further, we denote by yT a vector such that

yT (s) =

{
SafeM(s) if s ∈ T

∞ if s 	∈ T

The following lemma can proved by a rather straightforward but technical
induction.

Lemma 4. Consider the iteration of BM on the initial vector yT . Then for each
i ≥ 0 it holds that Bi

M(yT) = SafePRi
M,T .

The following lemma says that iterating BM reaches a fixed point in a polynomial
number of iterations. Intuitively, this is because when trying to reach T , it doesn’t
make sense to perform a cycle between two visits of a reload state (as this can
only increase the resource consumption) and at the same time it doesn’t make
sense to visit the same reload state twice (since the resource is reloaded to the
full capacity upon each visit). The proof is straightforward and is omitted in the
interest of brevity. Detailed proofs for Lemma4 and Lemma 5 are available in
the full version of the paper.

Lemma 5. Let K = |R| + (|R| + 1) · (|S| − |R| + 1). Taking the same initial
vector yT as in Lemma 4, we have BK

M(yT) = SafePRM,T .

The computation of SafePRM,T and of the associated witness strategy is pre-
sented in Algorithm 3.

Example 5. Consider again the CMDPM from Fig. 1. After one iteration of the
loop on line 5, we have r = (10, 0,∞,∞,∞), as r is only finite for s2 before
this iteration. In the next iteration, we have r = (10, 0,∞, 12, 0). Thus, the
next iteration changes the value for s1 to 2 and in the end, we end up with
r = (2, 0, 4, 5, 0). The iteration with r(s1) = 10 influences the selector Σ. Note
that the computed r and Σ match those mentioned in Example 3.

Theorem 6. The Algorithm 3 always terminates after a polynomial number of
steps, and upon termination, r = SafePRM,T .

436 F. Blahoudek et al.

Algorithm 3: Positive reachability of T in M
Input: CMDP M with states S, set of target states T ⊆ S
Output: The vector SafePRM,T , coreresponding rule selector Σ

1 r ← {∞}S ;
2 foreach s ∈ S s.t. SafeM(s) < ∞ do
3 Σ(s)(SafeM(s)) ← arbitrary action safe in s

4 foreach t ∈ T do r(t) ← SafeM(t) ;
5 repeat
6 rold ← r;
7 foreach s ∈ S \ T do
8 a(s) ← arg mina∈A SPR-Val(s, a, rold);
9 r(s) ← mina∈A SPR-Val(s, a, rold);

10 r ← � r �M;
11 foreach s ∈ S \ T do
12 if r(s) < rold(s) then
13 Σ(s)(r(s)) ← a(s);

14 until rold = r;
15 return r, Σ

Proof. The repeat loop on lines 1–4 initialize r to yT . The repeat loop on lines
5–14 then iterates the operator B. By Lemma 5, the iteration reaches a fixed
point in at most K steps, and this fixed point equals SafePRM,T . The complexity
bound follows easily, since K is of polynomial magnitude.

The most intricate part of our analysis is extracting a strategy that is T -positive
SafePRM,T (s)-safe in every state s.

Theorem 7. Let v = SafePRM,T . Upon termination of Algorithm 3, the com-
puted selector Σ has the property that the finite counter strategy Σv is, for each
state s ∈ S, T -positive v(s)-safe in s. That is, a polynomial-size finite counter
strategy for the positive reachability problem can be computed in polynomial time.

The rest of this section is devoted to the proof of Theorem 7. The complexity fol-
lows from Theorem 6. Indeed, since the algorithm has a polynomial complexity,
also the size of Σ is polynomial. The correctness proof is based on the following
invariant of the main repeat loop: the finite counter strategy π = Σr has these
properties:

(a) Strategy π is SafeM(s)-safe in every state s ∈ S; in particular, we have for
l = min{r(s), cap(M)} that RLl(α) 	= ⊥ for every finite path α produced
by π from s.

(b) For each state s ∈ S such that r(s) ≤ cap(M) there exists a π-compatible
finite path α = s1a1s2 . . . sn such that s1 = s and sn ∈ T and such that
“the resource level with initial load r(s) never decreases below r along α”,
which means that for each prefix α..i of α it holds RLr(s)(α..i) ≥ r(si).

Qualitative Controller Synthesis for Consumption Markov Decision Processes 437

The theorem then follows from this invariant (parts (a) and the first half of (b))
and from Theorem 6. We start with the following support invariant, which is
easy to prove.

Lemma 6. The inequality r ≥ SafeM is an invariant of the main repeat-loop.

Proving Part (a) of the Main Invariant. We use the following auxiliary lemma.

Lemma 7. Assume that Σ is a counter selector such that for all s ∈ S such
that Safe(s) < ∞:

(1.) Safe(s) ∈ dom(Σ(s)).
(2.) For all x ∈ dom(Σ(s)), for a = Σ(s)(x) and for all t ∈ Succ(s, a) we have

RLx(sat) = d − C(s, a) ≥ Safe(t) where d = x for s /∈ R and d = cap(M)
otherwise.

Then for each vector y ≥ Safe the strategy π = Σy is Safe(s)-safe in every state s.

Proof. Let s be a state such that y(s) < ∞. It suffices to prove that for every π-
compatible finite path α started in s it holds ⊥ 	= RLy(s)(α). We actually prove
a stronger statement: ⊥ 	= RLy(s)(α) ≥ Safe(last(α)). We proceed by induction
on the length of α. If len(α) = 0 we have RLy(s)(α) = y(s) ≥ SafeM(s) ≥ 0.
Now let α = β � t1at2 for some shorter path β with last(β) = t1 and a ∈ A,
t1, t2 ∈ S. By induction hypothesis, l = RLy(s)(β) ≥ SafeM(t1), from which it
follows that SafeM(t1) < ∞. Due to (1.), it follows that there exists at least one
x ∈ dom(Σ(t1)) such that x ≤ l. We select maximal x satisfying the inequality
so that a = Σ(t1)(x). We have that RLy(s)(α) = RLl(t1at2) by definition and
from (2.) it follows that ⊥ 	= RLx(t1at2) ≥ Safe(t2) ≥ 0. All together, as l ≥ x
we have that RLy(s)(α) ≥ RLx(t1at2) ≥ Safe(t2) ≥ 0. �

Now we prove the part (a) of the main invariant. We show that throughout
the execution of Algorithm 3, Σ satisfies the assumptions of Lemma 7. Property
(1.) is ensured by the initialization on line 3. The property (2.) holds upon first
entry to the main loop by the definition of a safe action (Definition 6). Now
assume that Σ(s)(r(s)) is redefined on line 13, and let a be the action a(s).

We first handle the case when s 	∈ R. Since a was selected on line 8, from the
definition of SPR-Val we have that there is t ∈ Succ(s, a) such that after the
loop iteration,

r(s) = C(s, a) + max{rold (t),Safe(t′) | t �= t′ ∈ Succ(s, a)} ≥ C(s, a) + max
t′∈Succ(s,a)

SafeM(t′),

(1)
the latter inequality following from Lemma 6. Satisfaction of property (2.) in s
then follows immediately from the Eq. (1).

438 F. Blahoudek et al.

If s ∈ R, then (1) holds before the truncation on line 10, at which point
r(s) < cap(M). Hence, cap(M) − C(s, a) ≥ maxt∈Succ(s,a) SafeM(t) as required
by (2.). From Lemmas 6 and 7 it follows that Σr is SafeM(s)-safe in every state
s. This finishes the proof of part (a) of the invariant.

Proving Part (b) of the Main Invariant. Clearly, (b) holds after initialization.
Now assume that an iteration of the main repeat loop was performed. Denote
by πold the strategy Σrold and by π the strategy Σr. Let s be any state such that
r(s) ≤ cap(M). If r(s) = rold(s), then we claim that (b) follows directly from the
induction hypothesis: indeed, we have that there is an s-initiated πold -compatible
path α ending in a target state s.t. the rold(s)-initiated resource level along α
never drops rold , i.e. for each prefix β of α it holds RLrold (s)(β) ≥ rold(last(β)).
But then β is also π-compatible, since for each state q, Σ(q) was only redefined
for values smaller than rold(q).

The case when r(s) < rold(s) is treated similarly. As in the proof of part
(a), denote by a the action a(s) assigned on line 13. There must be a state t ∈
Succ(s, a) s.t. (1) holds before the truncation on line 10. In particular, for this t
it holds RLr(s)(sat) ≥ rold(t). By induction hypothesis, there is a t-initiated πold -
compatible path β ending in T satisfying the conditions in (b). We put α = sat�β.
Clearly α is s-initiated and reaches T . Moreover, it is π-compatible. To see this,
note that Σr(s)(r(s)) = a; moreover, the resource level after the first transition is
e(t) = RLr(s)(sat) ≥ rold(t), and due to the assumed properties of β, the rold(t)-
initiated resource level (with initial load e(t)) never decreases below rold along β.
Since Σ was only re-defined for values smaller than those given by the vector rold ,
π mimics πold along β. Since r ≤ rold , we have that along α, the r(s)-initiated
resource level never decreases below r. This finishes the proof of part (b) of the
invariant and thus also the proof of Theorem 7. �

6 Büchi

This section proofs Theorem 1 which is the main theoretical result of the paper.
The proof is broken down into the following steps.

(1.) We identify a largest set R′ ⊆ R of reload states such that from each r ∈ R′

we can reach R′ again (in at least one step) while consuming at most cap
resource units and restricting ourselves only to strategies that (i) avoid R\R′

and (ii) guarantee positive reachability of T in M(R′).
(2.) We show that SafeBüchiM,T = SafePRM(R′),T and that the corresponding

strategy (computed by Algorithm 3) is also T -Büchi SafeBüchiM,T (s)-safe
for each s ∈ S.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 439

Algorithm 4: Almost-sure Büchi reachability of T in M.
Input: CMDP M = (S, A, Δ, C,R, cap), target states T ⊆ S
Output: The largest set Rel ⊆ R such that SafePRM(Rel),T (r) ≤ cap for all

r ∈ Rel .
1 Rel ← R; ToRemove ← ∅;
2 repeat
3 Rel ← Rel � ToRemove;
4 (reach, Σ) ← SafePRM(Rel), T ;

5 ToRemove ← {r ∈ Rel | reach(r) > cap};

6 until ToRemove = ∅;
7 return reach, Σ

Algorithm 4 solves (1.) in a similar fashion as Algorithm 2 handled safety. In each
iteration, we declare as non-reloading all states from which positive reachability
of T and safety within M(Rel) cannot be guaranteed. This is repeated until we
reach a fixed point. The number of iterations is clearly bounded by |R|.
Theorem 8. Let M = (S,A,Δ,C,R, cap) be a CMDP and T ⊆ S be a target
set. Moreover, let R′ be the contents of Rel upon termination of Algorithm 4 for
the input M and T . Finally let r and Σ be the vector and the selector returned
by Algorithm 3 for the inputM and T . Then for every state s, the finite counter
strategy σ = Σr is T -Büchi r(s)-safe in s in both M(R′) and M. Moreover, the
vector r is equal to SafeBüchiM,T .

Proof. We first show that σ is T -Büchi r(s)-safe in M(R′) for all s ∈ S with
r(s) ≤ cap. Clearly it is r(s)-safe, so it remains to prove that T is visited infinitely
often with probability 1. We know that upon every visit of a state r ∈ R′, σ
guarantees a future visit to T with positive probability. As a matter of fact, since
σ is a finite memory strategy, there is δ > 0 such that upon every visit of some
r ∈ R′, the probability of a future visit to T is at least δ. AsM(R′) is decreasing,
every s-initiated σ-compatible run must visit the set R′ infinitely many times.
Hence, with probability 1 we reach T at least once. The argument can then be
repeated from the first point of visit to T to show that with probability 1 ve
visit T at least twice, three times, etc. ad infinitum. By the monotonicity of
probability, P

σ
M,s(BüchiT) = 1.

It remains to show that r ≤ SafeBüchiM,T . Assume that there is a state
s ∈ S and a strategy σ′ such that σ′ is d-safe in s for some d < r(s) =
SafePRM(R′),T (s). We show that this strategy is not T -Büchi d-safe in M. If
all σ′-compatible runs reach T , then there must be at least one history α pro-
duced by σ′ that visits r ∈ R \ R′ before reaching T (otherwise d ≥ r(s)).

440 F. Blahoudek et al.

Then either (a) SafePRM,T (r) = ∞, in which case any σ′-compatible extension
of α avoids T ; or (b) since SafePRM(R′),T (r) > cap, there must be an extension
of α that visits, between the visit of r and T , another r′ ∈ R \ R′ such that
r′ 	= r. We can then repeat the argument, eventually reaching the case (a) or
running out of the resource, a contradiction with σ′ being d-safe. �

We can finally proceed to prove Theorem 1.

Proof (of Theorem 1). The theorem follows immediately from Theorem 8 since
we can (a) compute SafeBüchiM,T and the corresponding strategy σT in poly-
nomial time (see Theorem 7 and Algorithm 4); (b) we can easily check whether
d ≥ SafeBüchiM,T (s), if yes, than σT is the desired strategy σ; and (c) repre-
sent σT in polynomial space as it is a finite counter strategy represented by a
polynomial-size counter selector. �

7 Implementation and Case Studies

We implemented the presented algorithms in Python and released it as an
open-source tool called FiMDP (Fuel in MDP) available at https://github.com/
xblahoud/FiMDP. The docker artifact is available at https://hub.docker.com/r/
xblahoud/fimdp and can be run without installation via the Binder project [50].
We investigate the practical behavior of our algorithms using two case studies:
(1) An autonomous electric vehicle (AEV) routing problem in the streets of
Manhattan modeled using realistic traffic and electric car energy consumption
data, and (2) a multi-agent grid world model inspired by the Mars Helicopter
Scout [8] to be deployed from the planned Mars 2020 rover. The first scenario
demonstrates the utility of our algorithm for solving real-world problems [59],
while the second scenario studies the algorithm’s scalability limits.

The consumption-Büchi objective can be also solved by a naive approach
that encodes the energy constraints in the state space of the MDP, and solves
it using techniques for standard MDPs [33]. States of such an MDP are tuples
(s, e) where s is a state of the input CMDP and e is the current level of energy.
Naturally, all actions that would lead to states with e < 0 lead to a special sink
state. The standard techniques rely on decomposition of the MDP into maximal
end-components (MEC). We implemented the explicit encoding of CMDP into
MDP, and the MEC-decomposition algorithm.

All computations presented in the following were performed on a PC with
Intel Core i7-8700 3.20 GHz 12 core processor and a RAM of 16 GB running
Ubuntu 18.04 LTS. All running times are means from at least 5 runs and the
standard deviation was always below 5% among these runs.

https://github.com/xblahoud/FiMDP
https://github.com/xblahoud/FiMDP
https://hub.docker.com/r/xblahoud/fimdp
https://hub.docker.com/r/xblahoud/fimdp

Qualitative Controller Synthesis for Consumption Markov Decision Processes 441

7.1 Electric Vehicle Routing

I1 I2
east, 0

p3 a, c3

p2 a, c2

p1 a, c1

Fig. 2. (Top:) Street network in
the considered area. Charging sta-
tions are red, one way roads green,
and two-way roads blue. (Bot-
tom:) Transition from intersection
I1 to I2 with stochastic consump-
tion. The small circles are dummy
states. (Color figure online)

We consider the area in the middle of Man-
hattan, from 42nd to 116th Street, see Fig. 2.
Street intersections and directions of feasible
movement form the state and action spaces
of the MDP. Intersections in the proximity of
real-world fast charging stations [56] represent
the set of reload states.

After the AEV picks a direction, it reaches
the next intersection in that direction deter-
ministically with a stochastic energy consump-
tion. We base our model of consumption on
distributions of vehicle travel times from the
area [55] and conversion of velocity and travel
times to energy consumption [52]. We dis-
cretize the consumption distribution into three
possible values (c1, c2, c3) reached with cor-
responding probabilities (p1, p2, p3). We then
model the transition from one intersection (I1)
to another (I2) using additional dummy states
as explained in Fig. 2.

The corresponding CMDP has 7378 states
and 8473 actions. For a fixed set of 100 ran-
domly selected target states, Fig. 3 shows influ-
ence of requested capacity on running times for
(a) strategy for Büchi objective using CMDP
(our approach), and (b) MEC-decomposition
for the corresponding explicit MDP. With con-
stant number of states, our algorithm runs rea-

0 50 100 150 200
0

2

4

capacity

co
m
p
tim
e
(s
ec
)

(a) CMDP

0 50 100 150 200
0

100

200

capacity

(b) explicit

0 20 40 60
0

5

10

15

capacity

(c) combined

CMDP
MEC-decomp.

Fig. 3. Mean computation times for a fixed target set of size 100 and varying capacity:
(a) CMDP – computating Büchi objective via CMDP, (b) explicit – computating
MEC decomposition of the explicit MDP, (c) combined – (a) and (b) combined for
small capacity values.

442 F. Blahoudek et al.

sonably fast for all capacities and the running time stabilizes for cap > 95; this is
not the case for the explicit approach where the number of states keeps growing
(52747 for cap = 95) as well as the running time. The decomposition to MECs
is slightly faster than solving Büchi using CMDP for the small capacities (Fig. 3
(c)), but MECs decomposition is only a part of the solution and running the full
algorithm for Büchi would most likely diminish this advantage.

7.2 Multi-agent Grid World

We use multi-agent grid world to generate CMDP with huge number of states
to study the scalability limits of the proposed algorithms. We model the rover
and the helicopter of the Mars 2020 mission with the following realistic con-
siderations: the rover enjoys infinite energy while the helicopter is restricted by
batteries recharged at the rover. These two vehicle jointly operate on a mission
where the helicopter reaches areas inaccessible to the rover. The outcomes of
the helicopter’s actions are deterministic while those of the rover—influenced
by terrain dynamics—are stochastic. For a grid world of size n, this system can
be naturally modeled as a CMDP with n4 states. Figure 4 shows the running
times of the Büchi objective for growing grid sizes and capacities in CMDP. We
observe that the increase in the computational time of CMDP follows the growth
in the number of states roughly linearly, and our implementation deals with an
MDP with 1.6×105 states in no more than seven minutes. The figure also shows
the running time for the MEC decomposition of the corresponding explicit MDP
when the capacity is 10 and, for certain smaller, computationally feasible grid
sizes, when the capacity is 20.

0 5 10 15 20
0

200

400

0 5 10 15 20
0

1,000

2,000

0 5 10 15 20
0

500

1,000

1,500

grid size

co
m
p
tim
e
(s
ec
)

(a) CMDP

y = x4

grid size

(b) explicit

grid size

(c) combined

cap = 10
cap = 20
cap = 100 cap = 10

cap = 20

CMDP
MEC-decomp.

Fig. 4. Mean computation times for varying grid sizes and of size capacities: (a)
CMDP – computating Büchi objective via CMDP, the gray line shows the correspond-
ing growth in the number of states on separate scale, (b) explicit – computating MEC
decomposition of the explicit MDP, (c) combined – combined computation time for
a capacity of 10.

Qualitative Controller Synthesis for Consumption Markov Decision Processes 443

8 Conclusion and Future Work

We presented a first study of consumption Markov decision processes (CMDPs)
with qualitative ω-regular objectives. We developed and implemented a
polynomial-time algorithm for CMDPs with an objective of probability-1 satis-
faction of a given Büchi condition. Possible directions for the future work are
extensions to quantitative analysis (e.g. minimizing the expected resource con-
sumption), stochastic games, or partially observable setting.

Acknowledgements. We acknowledge the kind help of Vojtěch Forejt, David Klaška,
and Martin Kučera in the discussions leading to this paper.

References

1. Abdulla, P.A., Atig, M.F., Hofman, P., Mayr, R., Kumar, K.N., Totzke, P.: Infinite-
state energy games. In: Joint Meeting of the 23rd EACSL Annual Conference on
Computer Science Logic and the 29th Annual ACM/IEEE Symposium on Logic
in Computer Science, pp. 7:1–7:10 (2014)

2. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Academic
Press, San Diego (2000)

3. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 203–221. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95582-7 12

4. Baier, C., Chrszon, P., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility anal-
ysis of probabilistic systems with exogenous coordination. In: de Boer, F., Bon-
sangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp.
38–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6 3

5. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 24

6. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilis-
tic model checking for energy-utility analysis. In: van Breugel, F., Kashefi, E.,
Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash
Panangaden. LNCS, vol. 8464, pp. 96–123. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-06880-0 5

7. Baier, C., Dubslaff, C., Klüppelholz, S., Leuschner, L.: Energy-utility analysis for
resilient systems using probabilistic model checking. In: Ciardo, G., Kindler, E.
(eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 20–39. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07734-5 2

8. Balaram, B., et al.: Mars helicopter technology demonstrator. In: AIAA Atmo-
spheric Flight Mechanics Conference (2018)

9. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 595–606 (2014)

10. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints. In: 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 61–70. ACM (2010)

https://doi.org/10.1007/978-3-319-95582-7_12
https://doi.org/10.1007/978-3-319-90089-6_3
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1007/978-3-319-07734-5_2

444 F. Blahoudek et al.

11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85778-5 4

12. Bouyer, P., Hofman, P., Markey, N., Randour, M., Zimmermann, M.: Bounding
average-energy games. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS,
vol. 10203, pp. 179–195. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54458-7 11

13. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-energy
games. Acta Informatica 55(2), 91–127 (2018)

14. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis
for consumption games with multiple resource types. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 8

15. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 40

16. Brázdil, T., Klaška, D., Kučera, A., Novotný, P.: Minimizing running costs in con-
sumption systems. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 30

17. Brázdil, T., Kučera, A., Novotný, P.: Optimizing the expected mean payoff in
energy Markov decision processes. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 32–49. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46520-3 3

18. Brenguier, R., Cassez, F., Raskin, J.-F.: Energy and mean-payoff timed games. In:
17th International Conference on Hybrid Systems: Computation and Control, pp.
283–292 (2014)

19. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: Pseudopolynomial itera-
tive algorithm to solve total-payoff games and min-cost reachability games. Acta
Informatica 54(1), 85–125 (2017)

20. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.: Faster algorithms for
mean-payoff games. Form. Methods Syst. Des. 38(2), 97–118 (2011)

21. Bruyère, V., Hautem, Q., Randour, M., Raskin, J.-F.: Energy mean-payoff games.
In: 30th International Conference on Concurrency Theory, pp. 21:1–21:17 (2019)

22. Cachera, D., Fahrenberg, U., Legay, A.: An ω-algebra for real-time energy prob-
lems. Log. Methods Comput. Sci. 15(2) (2019)

23. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45212-6 9

24. Chaloupka, J.: Z-reachability problem for games on 2-dimensional vector addition
systems with states is in P. Fundamenta Informaticae 123(1), 15–42 (2013)

25. Chatterjee, K.: Stochastic ω-regular games. Ph.D. thesis, University of California,
Berkeley (2007)

26. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision pro-
cesses. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
206–218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-
0 21

27. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012)

https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-662-54458-7_11
https://doi.org/10.1007/978-3-662-54458-7_11
https://doi.org/10.1007/978-3-642-31424-7_8
https://doi.org/10.1007/978-3-642-14162-1_40
https://doi.org/10.1007/978-3-319-08867-9_30
https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1007/978-3-642-22993-0_21

Qualitative Controller Synthesis for Consumption Markov Decision Processes 445

28. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: 30th Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pp. 505–516 (2010)

29. Chatterjee, K., Henzinger, M., Krinninger, S., Nanongkai, D.: Polynomial-time
algorithms for energy games with special weight structures. In: 20th Annual Euro-
pean Symposium on Algorithms, pp. 301–312 (2012)

30. Chatterjee, K., Jurdziński, M., Henzinger, T.: Quantitative stochastic parity
games. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 121–
130 (2004)

31. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-
dimensional quantitative objectives. Acta informatica 51(3–4), 129–163 (2014)

32. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

33. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1998)

34. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 22

35. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy
problems I - continuous Kleene ω-algebras. Acta Cybernetica 23(1), 203–228 (2017)

36. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy
problems II - the algebra of energy functions. Acta Cybernetica 23(1), 229–268
(2017)

37. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp.
95–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23283-1 9

38. Fahrenberg, U., Legay, A.: Featured weighted automata. In: 5th International FME
Workshop on Formal Methods in Software Engineering, pp. 51–57 (2017)

39. Fijalkow, N., Zimmermann, M.: Cost-parity and cost-Streett games. In: 32nd
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, pp. 124–135 (2012)

40. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 11

41. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. TACAS
2020. LNCS, vol. 12078, pp. 306–323. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45190-5 17

42. Herrmann, L., Baier, C., Fetzer, C., Klüppelholz, S., Napierkowski, M.: Formal
parameter synthesis for energy-utility-optimal fault tolerance. In: Bakhshi, R.,
Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds.) EPEW 2018. LNCS,
vol. 11178, pp. 78–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02227-3 6

43. Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted
and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4 15

https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-030-45190-5_17
https://doi.org/10.1007/978-3-030-45190-5_17
https://doi.org/10.1007/978-3-030-02227-3_6
https://doi.org/10.1007/978-3-030-02227-3_6
https://doi.org/10.1007/978-3-642-39698-4_15

446 F. Blahoudek et al.

44. Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in
pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47666-6 21

45. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

46. Khachiyan, L., et al.: On short paths interdiction problems: total and node-wise
limited interdiction. Theory Comput. Syst. 43(2), 204–233 (2008)

47. Klaška, D.: Complexity of Consumption Games. Bachelor’s thesis, Masaryk Uni-
versity (2014)

48. Larsen, K.G., Laursen, S., Zimmermann, M.: Limit your consumption! Finding
bounds in average-energy games. In: 14th International Workshop Quantitative
Aspects of Programming Languages and Systems, pp. 1–14 (2016)

49. Mayr, R., Schewe, S., Totzke, P., Wojtczak, D.: MDPs with energy-parity objec-
tives. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, pp.
1–12 (2017)

50. Jupyter, P., et al.: Binder 2.0 - reproducible, interactive, sharable environments for
science at scale. In: 17th Python in Science Conference, pp. 113–120 (2018)

51. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 17

52. Straubel, J.B.: Roadster efficiency and range (2008). https://www.tesla.com/blog/
roadster-efficiency-and-range

53. Sugumar, G., Selvamuthukumaran, R., Dragicevic, T., Nyman, U., Larsen, K.G.,
Blaabjerg, F.: Formal validation of supervisory energy management systems for
microgrids. In: 43rd Annual Conference of the IEEE Industrial Electronics Society,
pp. 1154–1159 (2017)

54. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

55. Uber Movement: Traffic speed data for New York City (2019). https://movement.
uber.com/

56. United States Department of Energy. Alternative fuels data center (2019). https://
afdc.energy.gov/stations/

57. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin,
J.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput.
241, 177–196 (2015)

58. Wognsen, E.R., Hansen, R.R., Larsen, K.G., Koch, P.: Energy-aware scheduling of
FIR filter structures using a timed automata model. In: 19th International Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems, pp. 1–6
(2016)

59. Zhang, H., Sheppard, C.J.R., Lipman, T.E., Moura, S.J.: Joint fleet sizing and
charging system planning for autonomous electric vehicles. IEEE Trans. Intell.
Transp. Syst. (2019)

https://doi.org/10.1007/978-3-662-47666-6_21
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17
https://www.tesla.com/blog/roadster-efficiency-and-range
https://www.tesla.com/blog/roadster-efficiency-and-range
https://movement.uber.com/
https://movement.uber.com/
https://afdc.energy.gov/stations/
https://afdc.energy.gov/stations/

Qualitative Controller Synthesis for Consumption Markov Decision Processes 447

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

STMC: Statistical Model Checker with
Stratified and Antithetic Sampling

Nima Roohi1(B) , Yu Wang2 , Matthew West3, Geir E. Dullerud3,
and Mahesh Viswanathan3

1 University of California, San Diego, USA
nroohi@ucsd.edu

2 Duke University, Durham, USA
yw354@duke.edu

3 University of Illinois at Urbana-Champaign,
Urbana, USA

{mwest,dullerud,vmahesh}@illinois.edu

Abstract. STMC is a statistical model checker that uses antithetic and
stratified sampling techniques to reduce the number of samples and,
hence, the amount of time required before making a decision. The tool
is capable of statistically verifying any black-box probabilistic system
that PRISM can simulate, against probabilistic bounds on any property
that PRISM can evaluate over individual executions of the system. We
have evaluated our tool on many examples and compared it with both
symbolic and statistical algorithms. When the number of strata is large,
our algorithms reduced the number of samples more than 3 times on
average. Furthermore, being a statistical model checker makes STMC able
to verify models that are well beyond the reach of current symbolic model
checkers. On large systems (up to 1014 states) STMC was able to check
100% of benchmark systems, compared to existing symbolic methods in
PRISM, which only succeeded on 13% of systems. The tool, installation
instructions, benchmarks, and scripts for running the benchmarks are all
available online as open source.

1 Introduction

Statistical model checking (SMC) plays an important role in verifying proba-
bilistic temporal logics on cyber-physical systems [1,14,15]. In SMC, we treat
the objective bounded temporal specifications as statistical hypothesis, and infer
their correctness with high confidence from samples of the systems. Compared
to analytic approaches, statistical model checkers rely only on samples from the
systems, and hence are more scalable to large real-world problems with compli-
cated stochastic behavior [3,6,18].

To our knowledge, all existing SMC tools use independent samples. Admit-
tedly, independent sampling is easy to implement, and it is the only option
when the model is completely unknown. However, as shown recently in [24,25],
if the model is partially known, then we can exploit this knowledge to generate
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 448–460, 2020.
https://doi.org/10.1007/978-3-030-53291-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_23&domain=pdf
http://orcid.org/0000-0003-2025-0528
http://orcid.org/0000-0002-0431-1039
https://doi.org/10.1007/978-3-030-53291-8_23

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 449

semantically negatively correlated samples to increase the sample efficiency in
SMC. In [24,25], we present the stratified and antithetic sampling techniques for
discrete-time Markov chains (DTMC). In this work, we extend the technique
to continuous-time Markov chains (CTMC), and implement the corresponding
SMC algorithms in the tool STMC. The tool is evaluated on several case studies
under hundreds of different scenarios, some of which are well beyond the capa-
bilities of current symbolic model checkers. The results show that the sample
efficiency can be significantly improved by using semantically negatively corre-
lated sampling, instead of independent sampling.

This work also provides experimental comparisons between our SMC method
and common symbolic model checking methods. Since we use large values for
parameters in our case studies, it is no surprise that symbolic engines fail on
many of them. However, without our results, the meaning of the word “large” is
unclear. Our results give a good understanding of what is currently beyond the
capabilities of symbolic engines in a popular tool like PRISM. Next, restricting
our attention to the cases in which symbolic engines successfully terminate, our
results give us a helpful comparison between symbolic and statistical verification
times. It is well-known that symbolic algorithms do not scale well, while statisti-
cal ones do. However, that knowledge alone does not give us any insight into how
much more or less time a symbolic method requires compared to a statistical one.
Finally, when a symbolic method terminates, one might argue that its result is
far more valuable than the result of a statistical approach since statistical meth-
ods can produce incorrect results. Unfortunately, that is not entirely true. Since
the complexity of solving a problem is too high in practice, many symbolic algo-
rithms, including those in PRISM, employ an iterative method to approximate
probabilities. This approximation can be far from the actual probability, leading
to incorrect model checking results (e.g., [5]).

Related Work. Among the existing statistical model checkers, PRISM [4,12], MRMC
[10], VESTA [19], YMER [27], and COSMOS [2] only support independent sampling
on DTMC, CTMC, or other more general probabilistic models. PLASMA [9] also
supports importance sampling. In importance sampling, although samples may
have different weights, they are still generated independently. To our knowl-
edge, our tool STMC is the only existing statistical model checker that employs
semantically negatively related sampling on DTMC and CTMC.

2 Stratified and Antithetic Sampling

Stratified and antithetic samplings are two approaches for generating negatively
correlated random samples. When using stratified sampling to draw n samples
from a distribution, we divide the support into sets with equal measure, and
then draw one sample from each partition. When using antithetic sampling, a
random seed is first drawn from x ∈ [0, 1], and then two correlated samples are
generated using x and 1 − x, respectively. Figures 1 and 2 compare independent
and stratified sampling for 625 samples that we drew from the joint distribution

450 N. Roohi et al.

of two random variables. In Fig. 1, each variable is uniformly distributed in [0, 1],
and in Fig. 2, each variable is exponentially distributed with rate 3 (we only show
samples that are within the unit square). It is clear that the stratified samples
are (visually) better distributed in both figures.

(a) Independent (b) Stratified

Fig. 1. Uniform distribution

(a) Independent (b) Stratified

Fig. 2. Exponential distribution

We have shown in [24] that by choosing a proper representation of a Markov
chain, the stratified sampling technique can be applied to generate semantically
negatively correlated sample paths. This technique reduces the sampling cost for
statistically verifying temporal formulas. In the rest of this section, we list two
algorithms: Stratified sampling of a CTMC, and stratified sequential probability
ratio test for a CTMC. The antithetic variants are simpler and we do not present
them here for the lack of space. Compared to our algorithms in [24], there are
two main differences. First, we present these algorithms for CTMCs instead of
DTMCs, as they are slightly more involved. Second, for the stratified sampling
of a CTMC, our algorithm supports stratification over multiple steps directly.

Algorithm 1 shows the pseudo-code for stratified sampling of a CTMC; to
obtain a stratified sampling algorithm for DTMC, we only need to remove π2,
index2, offset 2, rate, r2, and r3. It takes two inputs: ψ, a temporal formula that
we want to evaluate on every sampled path, and strata sizes , the number of
strata at every step. This is a non-empty list of positive integers. Let K be the
length of this list, and N be the product of its elements. If the ith item of the
list is n then the number of strata at steps i, i + K, i + 2K, i + 3K, . . . must
be n.1 The algorithm simultaneously simulates N paths and terminates after
the value of ψ on all these paths are known. Inside the main loop, simulation
is performed incrementally, K steps at a time. Random permutations π1, π2,
and variables index1, index2 are used to make simulations of every K steps and
random numbers r1 and r2 (defined later in the code) independent of each other.
The number of strata at every step is an input to this algorithm. Using that
number, variables offset 1 and offset 2 determine which strata we should use at
step s. Finally, r2 is a uniformly distributed stratified sample in [0, 1). However,

1 The current version of PRISM only handles one initial state for simulation. Therefore,
there will be no stratification for initializing paths.

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 451

we need an exponentially distributed stratified sample, which is precisely what
−ln(1−r2)/rate gives us.

Algorithm 2 shows pseudo-code for statistical verification of CTMC and
DTMC using stratified samples. The algorithm is quite simple. It keeps sam-
pling using Algorithm 1 and computes the average and variance of the values
it receives until a termination condition is satisfied. Checking the termination
conditions after every step suggests using an online algorithm for computing the
mean and variance of samples. We use Welford’s online algorithm [26] in our
implementation.

Algorithm 1 Stratified Sampling for CTMC
1 // Take stratified samples and return fraction of samples that satisfy ψ.
2 // Param ψ is an LTL formula.
3 // Param strata sizes is a non−empty list of positive integers .
4 function stratified sampling(ψ, strata sizes)
5 val K = strata sizes .length // Length of the list
6 val N = strata sizes .product // Product of elements in the list
7 val paths = initialize N paths // index starts at 0
8 val evals = initialize N evaluators // incrementally evaluate ψ on paths
9 // Evaluation in the condition of the while loop is performed by PRISM

10 while(∃ j∈{0,...,N−1}, evals[j](path[j])=’unknown’)
11 val π1 = random permutation of 0,1,...,N−1
12 val π2 = random permutation of 0,1,...,N−1
13 for(i ← 0,...,N−1)
14 vars index1, index2 = π1[i], π2[i]
15 for(s ← 0,...,K−1)
16 val size = strata sizes [s] // number of strata at step s
17 vals offset 1, offset2 = index1%size, index2%size
18 index1, index2 /= size
19 val rate = rate of last state in path[i] // by PRISM

20 val r1 = rnd(0,1) / size + offset1 / size // rnd(0,1) ∈ [0,1)
21 val r2 = rnd(0,1) / size + offset2 / size
22 val r3 = −ln(1−r2) / rate // stratified exponentially distributed
23 Simulate one step in path[i] using r1 and r3 // by PRISM

24 return number of paths that satisfy ψ / N

Finally, one can extend the following results from [24] to include CTMC.

Theorem 1. Let ψ be a bounded LTL formula.

1. The output of Algorithm 1 has the same expected value as the probability of
a random path satisfying ψ.

2. If ψ is of the form ψ1UIψ2, such that the set of states satisfying ψ2 is a subset
of the same set for ψ1, then the satisfaction values of different paths simulated
by Algorithm 1 are non-positively correlated.

Theorem 2. The sampling cost of Algorithm 2 is asymptotically no more than
the sampling cost of SPRT [20] using i.i.d. samples.

452 N. Roohi et al.

3 Tool Architecture

We have implemented our algorithms in Scala and published it under the
GNU General Public License v3.0. The tool can be downloaded from https://
github.com/nima-roohi/STMC/, where installation instructions, benchmarks,
and scripts for running the benchmarks are located. We use PRISM to load models
from files, simulate them, and evaluate simulated paths against non-probabilistic
bounded temporal properties. Therefore, STMC is capable of statistically verify-
ing any model, as long as it can be simulated by PRISM, and bounded temporal
properties can be evaluated on single executions of that model. Figure 3 shows
STMC at a very high level. Boxes marked with ‘P’ are where we directly use PRISM.

Algorithm 2 Stratified Sequential Probability Ratio Test
1 // Verify P≤tψ using stratified sampling.
2 // Param t is the input threshold
3 // Param ψ is an LTL formula (non−probabilistic).
4 // Param strata sizes is a non−empty list of positive integers.
5 // Param min iter is the minimum number of iters. the algorithm should take.
6 // Param α is Type−I error probability (must satisfy 0 < α < 1

2
).

7 // Param β is Type−II error probability (must satisfy 0 < β < 1
2
).

8 // Param δ is half of the size of indifference region.
9 function stratified SPRT(P≤tψ, strata sizes, min iter, α, β, δ)

10 var iter = 1
11 var μ = 0 // average of stratified sampling return values
12 var σ = 0 // standard deviation of stratified sampling return values
13 while(true)
14 iter++
15 val x = stratified sampling(ψ,strata sizes)
16 update μ and σ using x // e.g. Welford’s online algorithm [27]
17 if iter > min iter then

18 if μ − t < − σ2

2δ iter ln 1−α
β

then return true // accept P≤tψ

19 if μ − t > σ2

2δ iter ln 1−β
α

then return false // reject P≤tψ

Executions of STMC are configured through different options/switches. The
most basic options are help, which prints out a list of switches for both STMC
and PRISM, and stmc, which enables the tool (without stmc, everything will
be passed to PRISM, pretty much like STMC was not there in the first place).
Statistical verification is enabled using option sim; it is always required when
stmc is used. The sampling method is specified using option smp method or sm.
Possible values for the sampling method are independent, antithetic, and
stratified. Using option hyp test method or hm, users also have to specify a
hypothesis testing method that they would like to use. Supported values for this
option are currently SPRT, TSPRT, GLRT, and SSPRT. SPRT is used for the sequen-
tial probability ratio test [20]. This algorithm has already been implemented in
PRISM and in our experience it has a very similar performance to our imple-
mentation (SPRT in Sect. 4 refers to the implementation from PRISM). We use
our implementation for the next option, TSPRT. Sequential probability ratio test
assumes that the actual probability is not within the δ-neighborhood of the input

https://github.com/nima-roohi/STMC/
https://github.com/nima-roohi/STMC/

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 453

Fig. 3. Architecture of STMC. Boxes marked with letter ‘P’ use PRISM directly. N is the
number of strata, K is the length of strata-size list (see option strata size below).

threshold. If this assumption is not satisfied, then the algorithm does not guar-
antee any error probability. TSPRT, which stands for Ternary SPRT, solves this
problem by introducing a third possible answer: TOO CLOSE. The algorithm was
introduced in [28]. Without assuming that the actual probability is not within
the δ-neighborhood of the input threshold, TSPRT guarantees Type-I and Type-II
error probabilities are bounded by the input parameters α and β, respectively.
Furthermore, it guarantees that if the actual probability and the input threshold
are not δ-close, then the probability of returning TOO CLOSE is less than another
input parameter γ; we call this Type-III error probability. The sequential prob-
ability ratio test was originally developed for simple hypotheses, and the test is
not necessarily optimal when composite hypotheses are used [13]. To overcome
this problem, the generalized likelihood ratio test (GLRT) was designed in [7].
The algorithm does not require an indifference region as an input parameter
and provides guarantees on Type-I and Type-II error probabilities asymptoti-
cally. The main issue with this test is that since probabilistic error guarantees
are asymptotic, for the test to perform reasonably well in practice (i.e., respect
the input error parameters), a correct minimum number of samples must be
given as an extra input parameter. If this parameter is too large then the num-
ber of samples will be unnecessarily high, and if the parameter is too small then
the actual error probability of the algorithm could be close to 0.5, even though

454 N. Roohi et al.

the input error parameters are set to, for example, 10−7. The last possible value
for hyp test method is SSPRT, which stands for Stratified SPRT. This option is
used whenever stratified or antithetic samplings are desired.

When stratification is used, the number of strata should be specified using
option strata size or ss. It is a comma-separated list of positive integers. For
example, 4, 4, 4, 4, 4, 4 specifies 4 strata for six consecutive steps (4096 total), and
4096 specifies 4096 strata for every single step. Note that in both of these exam-
ples, stratified sampling simultaneously takes 4096 sample paths, which requires
more memory. However, we saw in our experiments that for non-nested temporal
formulas, at most two states of each path are stored into memory. Therefore,
even larger strata sizes should be possible. This was the most challenging part of
the implementation, because the simulator engine in PRISM is written assuming
that paths are sampled one by one. However, if we followed the same approach
in STMC, we would have to store every random number that was previously gen-
erated, which increased the amount of memory used for simulation from O(1) to
O(N ×L), where N is the number of strata and L is the maximum length of sim-
ulated paths. By simulating the paths simultaneously, we only use O(N) bytes
of memory. Next, Type-I, Type-II, Type-III, and half of the size of the indif-
ference region are specified using alpha, beta,2 gamma and delta, respectively
(not every algorithm uses all of these parameters). Finally, most algorithms that
use variance in their termination condition, require help when sample variance
remains zero after the first few iterations. STMC uses min iter for this purpose,
and PRISM uses simvar.

4 Experimental Results

We evaluated our algorithms on 10 different sets of examples. Each set contains
four variations of the same problem with varying parameters and, hence, various
sizes, and each of those variations includes four symbolic tests as well as 16
statistical ones. Furthermore, we repeat each of the statistical tests 20 times, to
compute 95% confidence intervals for time and number of samples taken by the
statistical algorithms. This gives us a total of 800 tests and 12 960 runs to obtain
results for those tests. Regarding the stratified sampling, for each variation, we
consider 13 settings in 4 groups. Each group uses a different number of strata: 2,
16, 256, and 4096. When the number of strata is more than 2, we also consider
different possibilities for how to divide strata among different steps. For example,
when 256 strata are used, 2561 means every step has 256 strata, but different
steps are independent of each other. On the other hand, 28 means every step has
only two strata, but stratification is performed over every 8 consecutive steps.

For the sake of space, we only present 15% of our results in this paper. Full
experimental results are available at https://nima-roohi.github.io/STMC/#/
benchmarks. Also, all the benchmark source files, along with scripts for run-
ning them, can be obtained from the tool’s repository page https://github.com/
nima-roohi/STMC/. The parameters we chose resulted in large systems, and
2 To the best of our knowledge, PRISM always assumes α = β.

https://nima-roohi.github.io/STMC/#/benchmarks
https://nima-roohi.github.io/STMC/#/benchmarks
https://github.com/nima-roohi/STMC/
https://github.com/nima-roohi/STMC/

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 455

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e 13
m

26
.6

s
2

m
51

.9
s

4
m

8.
2

s
O

ut
O

f
M

em
or

y
E

rr
or

15
.7

s
16

.8
s

19
.8

s

20
.3

s

19
.5

s
18

.3
s

15
.5

s

21
.5

s
19

.1
s

13
.0

s
12

.4
s

17
.9

s
16

.3
s

11
.6

s
13

.7
s

15
.8

s

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es 21
2.

7
k

21
2.

8
k

18
3.

1
k

18
3.

1
k

18
2.

2
k

16
3.

4
k

12
2.

2
k

17
8.

5
k

16
0.

0
k

10
9.

1
k

94
.1

k

13
2.

9
k

11
3.

9
k

82
.9

k
90

.5
k

73
.1

k

(a) N: 90, K: 5, States: 113 384 792, Transitions: 180 005 807

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e
T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

O
ut

O
f
M

em
or

y
E

rr
or

13
.2

s
13

.2
s 16

.1
s

15
.7

s

16
.4

s
14

.9
s

12
.3

s

16
.2

s
14

.2
s

10
.6

s
11

.7
s

16
.2

s
11

.5
s

12
.2

s
10

.1
s

13
.8

s

S
P

R
T

G
L
R
T

A
n t

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es 21
1.

4
k

21
3.

1
k

18
3.

1
k

18
4.

3
k

18
3.

7
k

16
4.

1
k

12
4.

8
k

17
0.

8
k

15
2.

8
k

10
8.

1
k

10
2.

2
k

14
1.

3
k

98
.3

k
94

.6
k

65
.9

k
72

.1
k

(b) N: 150, K: 11, States: 1 849 234 352, Transitions: 2 944 935 077

Fig. 4. NAND multiplexing (DTMC - macOS) [17]

significant time has been spent to run and collect the results. To perform our
experiments faster, we ran all of our tests using four processes (using option ‘-mt
4’). We also divided out our 10 sets of examples into two groups and ran each set
on one of two machines. One of them is running Ubuntu 18.04 with an i7-8700
CPU 3.2 GHz and 16 GB memory, and the other one is running macOS Mojave
with an i7 CPU 3.5 GHz and 32 GB memory. STMC’s webpage contains a short
description for each example and a link to another page for the full explanation.
We end this section with a few notes regarding our results.

1. Like any statistical test that is run in a black-box setting, we need to assume
simulation of every path will eventually terminate. In fact, PRISM uses the
parameter simpathlen, with 10 000 as its default value, to restrict the maxi-
mum number of simulation steps in each path. Currently, simpathlen can be
as large as 263 − 1, which is more than enough in most practical applications.

456 N. Roohi et al.

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e
23

.1
s

56
.3

s
1

m
18

.9
s

O
ut

O
f
M

em
or

y
E

rr
or 50
.6

s
50

.5
s

43
.4

s

32
.3

s

37
.6

s
35

.0
s

35
.7

s

43
.3

s
41

.7
s

40
.5

s
52

.2
s

1
m

7.
6

s
1

m
0.

3
s

55
.4

s
57

.0
s

8.
9

s

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es 20
5.

6
k

20
5.

0
k

16
6.

0
k

16
7.

4
k

16
9.

5
k

16
3.

9
k

16
3.

8
k

16
7.

0
k

16
7.

4
k

16
2.

0
k

11
2.

5
k

16
1.

4
k

15
4.

0
k

13
9.

7
k

14
5.

4
k

20
.7

k

(a) MAX COUNT: 10 000, States: 8 451 788, Transitions: 35 677 505

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e
T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

O
ut

O
f
M

em
or

y
E

rr
or

52
.0

s
54

.4
s

42
.1

s

43
.7

s

49
.7

s
47

.6
s

47
.6

s 1
m

0.
0

s
52

.0
s

55
.5

s
40

.6
s

52
.0

s
53

.4
s

1
m

1.
9

s
46

.7
s

14
.6

s

S
P

R
T

G
L
R
T

A
n t

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es 20
4.

8
k

20
7.

9
k

16
8.

8
k

16
6.

1
k

16
8.

6
k

16
4.

1
k

16
1.

7
k

17
1.

3
k

16
9.

3
k

16
4.

5
k

11
4.

7
k

13
5.

0
k

13
9.

7
k

16
2.

8
k

13
1.

1
k

27
.9

k
(b) MAX COUNT: 1 000 000, States: about 845 017 880, Transitions: about 3 567 075 050

Fig. 5. Embedded control system (CTMC - Ubuntu) [11,16]

2. To make the configurations less in favor of statistical algorithms, we used
small values for α, β, and δ in our benchmarks (between 0.0001 and 0.001).
Also, we have estimated the actual probabilities using a symbolic model
checker or using a statistical algorithm in PRISM and set the threshold close
to the actual probability. These settings cause the statistical algorithms to
take more samples, which indeed makes it possible for us to observe the effect
of antithetic and stratification on the number of samples. As a side effect, we
did not observe any performance benefits of GLRT over SPRT.

3. In many of our examples, the variance is particularly high when strata size is
4096. This is because in our benchmarks, whenever 4096 strata are used, we
set the minimum number of iterations to 2 (i.e., 8192 samples). This means
that when the average number of samples in our results is, for example, around
20 000, only 5 iterations have been taken on average, and every iteration adds
or removes about 20% of the samples from the test.

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 457

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e 1
m

36
.5

s
29

.1
s 45

.1
s

O
ut

O
f
M

em
or

y
E

rr
or

58
.5

s
59

.7
s

40
.7

s

1
m

2.
5

s

52
.0

s
46

.1
s

40
.3

s 53
.1

s
37

.0
s

37
.3

s
34

.9
s

47
.9

s
34

.7
s

32
.0

s
27

.6
s

25
.8

s

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es
54

.9
k

55
.5

k
31

.0
k 38

.2
k

39
.5

k
29

.8
k

22
.9

k

36
.2

k
24

.0
k

19
.7

k
16

.9
k

28
.5

k
22

.5
k

19
.0

k
16

.0
k

11
.7

k

(a) c: 1 023, States: 2 096 128, Transitions: 7 328 771

M
T

B
D

D
S
p
ar

se
H

yb
ri

d
E

xp
li
ci

t

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

T
im

e
T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

28
m

6.
3

s
T
er

m
in

at
ed

A
ft

er
30

M
in

ut
es

O
ut

O
f
M

em
or

y
E

rr
or

4
m

59
.5

s
4

m
44

.7
s

2
m

58
.2

s

3
m

31
.3

s

3
m

14
.6

s
2

m
32

.3
s

2
m

5.
1

s

3
m

17
.6

s
2

m
29

.9
s

1
m

30
.1

s
1

m
32

.2
s

2
m

25
.2

s
1

m
44

.9
s

2
m

9.
8

s
1

m
28

.9
s

2
m

9.
1

s

S
P

R
T

G
L
R
T

A
nt

it
h
et

ic 21 24 42 16
1 28 44 16
2

25
61 21
2 46 16
3

64
2

40
96

1

2 16 256 4096
Stratified

A
ve

ra
ge

#
Sa

m
pl

es
55

.6
k

56
.1

k
31

.6
k 38

.7
k

39
.3

k
30

.2
k

22
.9

k

39
.3

k
28

.5
k

16
.8

k
16

.5
k

27
.9

k
19

.5
k

21
.9

k
14

.3
k

17
.6

k

(b) c: 4 095, States: 33 550 336, Transitions: 117 395 459

Fig. 6. Tandem queueing network (CTMC - macOS) [8]

4. In general, the more strata we use, the greater reduction in the number of
samples we observe. Also, the performance of antithetic sampling is similar to
the case of using only two strata. Our best results are obtained when 40961 is
used for the number of strata. For example, in Fig. 5a, comparing SPRT and
40961 strata shows almost ten times reduction in the average number of sam-
ples. The tool’s webpage contains an example in which stratification reduces
variance to 0. This results in the termination of the algorithm immediately
after a minimum number of samples have been taken, giving us 3 orders of
magnitude reduction in the number of samples.

5 Conclusion

We presented our new tool called STMC for statistical model checking of dis-
crete and continuous Markov chains. It uses antithetic and stratified sampling

458 N. Roohi et al.

to improve the performance of a test. We evaluated our tool on hundreds of
examples. Our experimental results show that our techniques can significantly
reduce the number of samples and hence, the amount of time required for a test.
For example, when 40961 strata were used, our algorithms reduced the num-
ber of samples more than 3 times on average. We have implemented our tool
in PRISM, and published it online under GNU General Public License v3.0. We
would like to extend STMC to support other stratification-based algorithms. In
particular, stratified sampling in model checking Markov decision processes, and
temporal properties that are defined on the sequence of distributions generated
by different types of Markov chains (see [21–23] for examples).

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

2. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statis-
tical model checker for the hybrid automata stochastic logic. In: 2011 Eighth Inter-
national Conference on Quantitative Evaluation of SysTems, pp. 143–144 (2011)

3. Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Statistical Model-Checking for
Autonomous Vehicle Safety Validation. In: SIA Simulation Numérique. Société des
Ingénieurs de l’Automobile (2017)

4. Basu, S., Ghosh, A.P., He, R.: Approximate model checking of PCTL involving
unbounded path properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 326–346. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10373-5 17

5. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quanti-
tative probabilistic model checking through rational search. In: Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, FMCAD 2017,
pp. 92–99. FMCAD Inc., Austin (2017)

6. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012. LNCS, vol. 7609, pp. 388–404. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34026-0 29

7. Fan, J., Zhang, C., Zhang, J.: Generalized likelihood ratio statistics and Wilks
phenomenon. Ann. Stat. 29(1), 153–193 (2001)

8. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains. In: Plateau, B.,
Stewart, W., Silva, M. (eds.) Proceedings of the 3rd International Workshop on
Numerical Solution of Markov Chains (NSMC 1999), pp. 188–207. Prensas Uni-
versitarias de Zaragoza (1999)

9. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5 37

10. Katoen, J., Khattri, M., Zapreevt, I.S.: A Markov reward model checker. In: Second
International Conference on the Quantitative Evaluation of Systems (QEST 2005),
pp. 243–244 (2005)

11. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by
probabilistic model checking. Control. Eng. Pract. 15(11), 1427–1434 (2006)

https://doi.org/10.1007/978-3-642-10373-5_17
https://doi.org/10.1007/978-3-642-10373-5_17
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-3-642-34026-0_29
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-28756-5_37

STMC: Statistical Model Checker with Stratified and Antithetic Sampling 459

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

13. Lai, T.L.: Sequential Analysis: Some Classical Problems and New Challenges. Sta-
tistica Sinica 11(2), 303–351 (2001)

14. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 1

15. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

16. Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for reliability predic-
tion. Commun. Reliab. Maint. Serv. 1(2), 9–20 (1994)

17. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating the reliability
of NAND multiplexing with PRISM. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 24(10), 1629–1637 (2005)

18. Roohi, N., Wang, Y., West, M., Dullerud, G.E., Viswanathan, M.: Statistical ver-
ification of the Toyota powertrain control verification benchmark. In: 20th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC),
pp. 65–70. ACM (2017)

19. Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and ana-
lyzer for probabilistic systems. In: Second International Conference on the Quan-
titative Evaluation of Systems, pp. 251–252 (2005)

20. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

21. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.: A Mori-Zwanzig
and MITL based approach to statistical verification of continuous-time dynamical
systems. In: International Federation of Automatic Control (IFAC PapersOnLine),
vol. 48, no. 27, pp. 267–273 (2015)

22. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.: Statistical ver-
ification of dynamical systems using set oriented methods. In: Hybrid Systems:
Computation and Control (HSCC), pp. 169–178 (2015)

23. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.: Verifying
continuous-time stochastic hybrid systems via Mori-Zwanzig model reduction. In:
2016 IEEE 55th Conference on Decision and Control (CDC), pp. 3012–3017 (2016)

24. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.E.: Statistical Ver-
ification of PCTL Using Antithetic and Stratified Samples. Form. Methods Syst.
Des. 54, 145–163 (2019). https://doi.org/10.1007/s10703-019-00339-8

25. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.E.: Statistical ver-
ification of PCTL using stratified samples. In: 6th IFAC Conference on Analysis
and Design of Hybrid Systems (ADHS), IFAC-PapersOnLine, vol. 51, pp. 85–90
(2018)

26. Welford, B.P.: Note on a method for calculating corrected sums of squares and
products. Technometrics 4(3), 419–420 (1962)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/s10703-019-00339-8

460 N. Roohi et al.

27. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

28. Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/11609773_10
http://creativecommons.org/licenses/by/4.0/

AMYTISS: Parallelized Automated
Controller Synthesis for Large-Scale

Stochastic Systems

Abolfazl Lavaei1(B), Mahmoud Khaled2,
Sadegh Soudjani3, and Majid Zamani1,4

1 Department of Computer Science,
LMU Munich, Munich, Germany

lavaei@lmu.de
2 Department of Electrical Engineering, TU Munich, Munich, Germany

3 School of Computing, Newcastle University, Newcastle upon Tyne, UK
4 Department of Computer Science, University of Colorado Boulder, Boulder, USA

Abstract. In this paper, we propose a software tool, called AMYTISS,
implemented in C++/OpenCL, for designing correct-by-construction
controllers for large-scale discrete-time stochastic systems. This tool is
employed to (i) build finite Markov decision processes (MDPs) as finite
abstractions of given original systems, and (ii) synthesize controllers for
the constructed finite MDPs satisfying bounded-time high-level prop-
erties including safety, reachability and reach-avoid specifications. In
AMYTISS, scalable parallel algorithms are designed such that they sup-
port the parallel execution within CPUs, GPUs and hardware accelera-
tors (HWAs). Unlike all existing tools for stochastic systems, AMYTISS
can utilize high-performance computing (HPC) platforms and cloud-
computing services to mitigate the effects of the state-explosion prob-
lem, which is always present in analyzing large-scale stochastic systems.
We benchmark AMYTISS against the most recent tools in the literature
using several physical case studies including robot examples, room tem-
perature and road traffic networks. We also apply our algorithms to a
3-dimensional autonomous vehicle and 7-dimensional nonlinear model of
a BMW 320i car by synthesizing an autonomous parking controller.

Keywords: Parallel algorithms · Finite MDPs · Automated controller
synthesis · Discrete-time stochastic systems · High performance
computing platform

1 Introduction

1.1 Motivations

Large-scale stochastic systems are an important modeling framework to describe
many real-life safety-critical systems such as power grids, traffic networks, self-
driving cars, and many other applications. For this type of complex systems,

A. Lavaei and M. Khaled—Authors have contributed equally.
This work was supported in part by the H2020 ERC Starting Grant AutoCPS (grant
agreement No. 804639).

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 461–474, 2020.
https://doi.org/10.1007/978-3-030-53291-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_24

462 A. Lavaei et al.

automating the controller synthesis procedure to achieve high-level specifica-
tions, e.g., those expressed as linear temporal logic (LTL) formulae [24], is inher-
ently very challenging mainly due to their computational complexity arising from
uncountable sets of states and actions. To mitigate the encountered difficulty,
finite abstractions, i.e., systems with finite state sets, are usually employed as
replacements of original continuous-space systems in the controller synthesis pro-
cedure. More precisely, one can first abstract a given continuous-space system by
a simpler one, e.g., a finite Markov decision process (MDP), and then perform
analysis and synthesis over the abstract model (using algorithmic techniques
from computer science [3]). Finally, the results are carried back to the original
system, while providing a guaranteed error bound [5,13–21,23].

Unfortunately, construction of finite MDPs for large-scale complex systems
suffers severely from the so-called curse of dimensionality : the computational
complexity grows exponentially as the number of state variables increases. To
alleviate this issue, one promising solution is to employ high-performance com-
puting (HPC) platforms together with cloud-computing services to mitigate the
state-explosion problem. In particular, HPC platforms have a large number of
processing elements (PEs) and this significantly affects the time complexity when
serial algorithms are parallelized [7].

1.2 Contributions

The main contributions and merits of this work are:

(1) We propose a novel data-parallel algorithm for constructing finite MDPs
from discrete-time stochastic systems and storing them in efficient dis-
tributed data containers. The proposed algorithm handles large-scale
systems.

(2) We propose a parallel algorithm for synthesizing discrete controllers using
the constructed MDPs to satisfy safety, reachability, or reach-avoid specifi-
cations. More specifically, we introduce a parallel algorithm for the iter-
ative computation of Bellman equation in standard dynamic program-
ming [26,27].

(3) Unlike the existing tools in the literature, AMYTISS accepts bounded distur-
bances and natively supports both additive and multiplicative noises with
different practical distributions including normal, uniform, exponential, and
beta.

We apply the proposed implementations to real-world applications including
robot examples, room temperature and road traffic networks, and autonomous
vehicles. This extends the applicability of formal methods to some safety-
critical real-world applications with high dimensions. The results show remark-
able reductions in the memory usage and computation time outperforming all
existing tools in the literature.

We provide AMYTISS as an open-source tool. After compilation,
AMYTISS is loaded via pFaces [10] and launched for parallel execution

AMYTISS: Parallelized Automated Controller Synthesis 463

within available parallel computing resources. The source of AMYTISS
and detailed instructions on its building and running can be found in:
https://github.com/mkhaled87/pFaces-AMYTISS

Due to lack of space, we provide details of traditional serial and proposed
parallel algorithms, case studies, etc. in an arXiv version of the paper [12].

1.3 Related Literature

There exist several software tools on verification and synthesis of stochastic
systems with different classes of models. SReachTools [30] performs stochastic
reachability analysis for linear, potentially time-varying, discrete-time stochas-
tic systems. ProbReach [25] is a tool for verifying the probabilistic reachability for
stochastic hybrid systems. SReach [31] solves probabilistic bounded reachability
problems for two classes of models: (i) nonlinear hybrid automata with para-
metric uncertainty, and (ii) probabilistic hybrid automata with additional ran-
domness for both transition probabilities and variable resets. Modest Toolset [6]
performs modeling and analysis for hybrid, real-time, distributed and stochastic
systems. Two competitions on tools for formal verification and policy synthesis
of stochastic models are organized with reports in [1,2].

FAUST2 [29] generates formal abstractions for continuous-space discrete-time
stochastic processes, and performs verification and synthesis for safety and reach-
ability specifications. However, FAUST2 is originally implemented in MATLAB
and suffers from the curse of dimensionality due to its lack of scalability for
large-scale models. StocHy [4] provides the quantitative analysis of discrete-time
stochastic hybrid systems such that it constructs finite abstractions, and per-
forms verification and synthesis for safety and reachability specifications.

AMYTISS differs from FAUST2 and StocHy in two main directions. First,
AMYTISS implements novel parallel algorithms and data structures targeting
HPC platforms to reduce the undesirable effects of the state-explosion problem.
Accordingly, it is able to perform parallel execution in different heterogeneous
computing platforms including CPUs, GPUs and HWAs. Whereas, FAUST2 and
StocHy can only run serially on one CPU, and consequently, it is limited to
small systems. Additionally, AMYTISS can handle the abstraction construction
and controller synthesis for two and a half player games (e.g., stochastic systems
with bounded disturbances), whereas FAUST2 and StocHy only handle one and
a half player games (e.g., disturbance-free systems).

Unlike all existing tools, AMYTISS offers highly scalable, distributed execu-
tion of parallel algorithms utilizing all available processing elements (PEs) in any
heterogeneous computing platform. To the best of our knowledge, AMYTISS is
the only tool of its kind for continuous-space stochastic systems that is able to
utilize all types of compute units (CUs), simultaneously.

We compare AMYTISS with FAUST2 and StocHy in Table 1 in detail in terms
of different technical aspects. Although there have been some efforts in FAUST2

and StocHy for parallel implementations, these are not compatible with HPC plat-
forms. Specifically, FAUST2 employs some parallelization techniques using parallel

https://github.com/mkhaled87/pFaces-AMYTISS

464 A. Lavaei et al.

Table 1. Comparison between AMYTISS, FAUST2 and StocHy based on native features.

Aspect FAUST2 StocHy AMYTISS

Platform CPU CPU All platforms

Algorithms Serial on HPC Serial on HPC Parallel on HPC

Model Stochastic control
systems: linear, bilinear

Stochastic hybrid
systems: linear, bilinear

Stochastic control
systems: nonlinear

Specification Safety, reachability Safety, reachability Safety, reachability,
reach-avoid

Stochasticity Additive noise Additive noise Additive & multiplicative
noises

Distribution Normal, user-defined Normal, user-defined Normal, uniform,
exponential, beta,
user-defined

Disturbance Not supported Not supported Supported

for-loops and sparse matrices inside Matlab, and StocHy uses Armadillo, a multi-
threaded library for scientific computing. However, these tools are not designed for
the parallel computation on HPC platforms. Consequently, they can only utilize
CPUs and cannot run on GPUs or HWAs. In comparison, AMYTISS is developed
in OpenCL, a language specially designed for data-parallel tasks, and supports
heterogeneous computing platforms combining CPUs, GPUs and HWAs.

Note that FAUST2 and StocHy do not natively support reach-avoid specifica-
tions in the sense that users can explicitly provide some avoid sets. Implementing
this type of properties requires some modifications inside those tools. In addi-
tion, we do not make a comparison here with SReachTools since it is mainly for
stochastic reachability analysis of linear, potentially time-varying, discrete-time
stochastic systems, while AMYTISS is not limited to reachability analysis and
can handle nonlinear systems as well.

Note that we also provide a script in the tool repository1 that converts
the MDPs constructed by AMYTISS into PRISM-input-files [11]. In particular,
AMYTISS can natively construct finite MDPs from continuous-space stochastic
control systems. PRISM can then be employed to perform the controller synthesis
for those classes of complex specifications that AMYTISS does not support.

2 Discrete-Time Stochastic Control Systems

We formally introduce discrete-time stochastic control systems (dt-SCS) below.

Definition 1. A discrete-time stochastic control system (dt-SCS) is a tuple

Σ = (X,U,W, ς, f) , (1)
1 https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/export

PrismMDP.m.

https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/exportPrismMDP.m
https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/interface/exportPrismMDP.m

AMYTISS: Parallelized Automated Controller Synthesis 465

where,

– X ⊆R
n is a Borel space as the state set and (X,B(X)) is its measurable space;

– U ⊆R
m is a Borel space as the input set;

– W ⊆R
p is a Borel space as the disturbance set;

– ς is a sequence of independent and identically distributed (i.i.d.) random vari-
ables from a sample space Ω to a measurable set Vς

ς := {ς(k) : Ω → Vς , k ∈ N};

– f : X×U×W → X is a measurable function characterizing the state evolution
of the system.

The state evolution of Σ, for a given initial state x(0) ∈ X, an input sequence
ν(·) : N → U , and a disturbance sequence w(·) : N → W , is characterized by the
difference equations

Σ : x(k + 1) = f(x(k), ν(k), w(k)) + Υ (k), k ∈ N, (2)

where Υ (k) := ς(k) with Vς = R
n for the case of the additive noise, and Υ (k) :=

ς(k)x(k) with Vς equals to the set of diagonal matrices of the dimension n for
the case of the multiplicative noise [22]. We keep the notation Σ to indicate both
cases and use respectively Σa and Σm when discussing these cases individually.

We should mention that our parallel algorithms are independent of the noise
distribution. For an easier presentation of the contribution, we present our algo-
rithms and case studies based on normal distributions but our tool natively
supports other practical distributions including uniform, exponential, and beta.
In addition, we provide a subroutine in our software tool so that the user can still
employ the parallel algorithms by providing the density function of the desired
class of distributions.

Remark 1. Our synthesis is based on a max-min optimization problem for two
and a half player games by considering the disturbance and input of the system
as players [9]. Particularly, we consider the disturbance affecting the system
as an adversary and maximize the probability of satisfaction under the worst-
case strategy of a rational adversary. Hence, we minimize the probability of
satisfaction with respect to disturbances, and maximize it over control inputs.

One may be interested in analyzing dt-SCSs without disturbances (cf. case stud-
ies). In this case, the tuple (1) reduces to Σ = (X,U, ς, f), where f : X×U → X,
and the Eq. (2) can be re-written as

Σ : x(k + 1) = f(x(k), ν(k)) + Υ (k), k ∈ N. (3)

Note that input models in this tool paper are given inside configuration text files.
Systems are described by stochastic difference equations as (2)–(3), and the user
should provide the right-hand-side of equations2. In the next section, we formally
define MDPs and discuss how to build finite MDPs from given dt-SCSs.
2 An example of such a configuration file is provided at: https://github.com/mkhaled

87/pFaces-AMYTISS/blob/master/examples/ex-toy-safety/toy2d.cfg.

https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/examples/ex_toy_safety/toy2d.cfg
https://github.com/mkhaled87/pFaces-AMYTISS/blob/master/examples/ex_toy_safety/toy2d.cfg

466 A. Lavaei et al.

3 Finite Markov Decision Processes (MDPs)

A dt-SCS Σ in (1) is equivalently represented by the following MDP [8, Propo-
sition 7.6]:

Σ =(X,U,W, Tx),
where the map Tx : B(X) × X × U × W → [0, 1], is a conditional stochastic
kernel that assigns to any x ∈ X, ν ∈ U , and w ∈ W, a probability measure
Tx(·|x, ν, w). The alternative representation as the MDP is utilized in [28] to
approximate a dt-SCS Σ with a finite MDP ̂Σ using an abstraction algorithm.
This algorithm first constructs a finite partition of the state set X = ∪iXi, the
input set U = ∪iUi, and the disturbance set W = ∪iWi. Then representative
points x̄i ∈ Xi, ν̄i ∈ Ui, and w̄i ∈ Wi are selected as abstract states, inputs,
and disturbances. The transition probability matrix for the finite MDP ̂Σ is also
computed as

T̂x(x′|x, ν, w) = Tx(Ξ(x′)|x, ν, w), ∀x, x′ ∈ X̂, ∀ν ∈ Û ,∀w ∈ Ŵ , (4)

where the map Ξ : X → 2X assigns to any x ∈ X, the corresponding partition
element it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi. Since X̂, Û and Ŵ are finite
sets, T̂x is a static map. It can be represented with a matrix and we refer to it,
from now on, as the transition probability matrix.

For a given logic specification ϕ and accuracy level ε, the discretization
parameter δ can be selected a priori such that

|P(Σ � ϕ) − P(̂Σ � ϕ)| ≤ ε, (5)

where ε depends on the horizon of formula ϕ, the Lipschitz constant of the
stochastic kernel, and the state discretization parameter δ (cf. [28, Theorem 9]).
We refer the interested reader to the arXiv version [12] for more details.

In the next sections, we propose novel parallel algorithms for the construction
of finite MDPs and the synthesis of their controllers.

4 Parallel Construction of Finite MDPs

In this section, we propose an approach to efficiently compute the transition
probability matrix T̂x of the finite MDP ̂Σ, which is essential for any controller
synthesis procedure, as we discuss later in Sect. 5.

4.1 Data-Parallel Threads for Computing T̂X

The serial algorithm for computing T̂x is presented in Algorithm 1 in the arXiv
version [12]. Computations of mean μ = f(x̄i, ν̄j , w̄k, 0), PDF(x |μ,Σ), where
PDF stands for probability density functions and Σ is a noise covariance matrix,
and of T̂x all do not share data from one inner-loop to another. Hence, this
is an embarrassingly data-parallel section of the algorithm. pFaces [10] can be
utilized to launch necessary number of parallel threads on the employed hardware
configuration (HWC) to improve the computation time of the algorithm. Each
thread will eventually compute and store, independently, its corresponding values
within T̂x.

AMYTISS: Parallelized Automated Controller Synthesis 467

4.2 Less Memory for Post States in T̂X

T̂x is a matrix with the dimension of (nx×nν ×nw, nx). The number of columns is
nx as we need to compute and store the probability for each reachable partition
element Ξ(x′

l), corresponding to the representing post state x′
l. Here, we consider

the Gaussian PDFs for the sake of a simpler presentation. For simplicity, we now
focus on the computation of tuple (x̄i, ν̄j , w̄k). In many cases, when the PDF is
decaying fast, only partition elements near μ have high probabilities of being
reached, starting from x̄i and applying an input ν̄j .

We set a cutting probability threshold γ ∈ [0, 1] to control how many partition
elements around μ should be stored. For a given mean value μ, a covariance
matrix Σ and a cutting probability threshold γ, x ∈ X is called a PDF cutting
point if γ = PDF(x|μ,Σ). Since Gaussian PDFs are symmetric, by repeating
this cutting process dimension-wise, we end up with a set of points forming a
hyper-rectangle in X, which we call it the cutting region and denote it by X̂Σ

γ .
This is visualized in Fig. 1 in the arXiv version [12] for a 2-dimensional system.
Any partition element Ξ(x′

l) with x′
l outside the cutting region is considered to

have zero probability of being reached. Such approximation allows controlling
the sparsity of the columns of T̂x. The closer the value of γ to zero, the more
accurate T̂x in representing transitions of ̂Σ. On the other hand, the closer the
value of γ to one, less post state values need to be stored as columns in T̂x. The
number of probabilities to be stored for each (x̄i, ν̄j , w̄k) is then |X̂Σ

γ |.
Note that since Σ is fixed prior to running the algorithm, number of columns

needed for a fixed γ can be identified before launching the computation. We can
then accurately allocate a uniform fixed number of memory locations for any
tuple (x̄i, ν̄j , w̄k) in T̂x. Hence, there is no need for a dynamic sparse matrix data
structure and T̂x is now a matrix with a dimension of (nx × nν × nw, |X̂Σ

γ |).

4.3 A Parallel Algorithm for Constructing Finite MDP ̂Σ

We present a novel parallel algorithm (Algorithm 2 in the arXiv version [12])
to efficiently construct and store T̂x as a successor. We employ the discussed
enhancements in Subsect. 4.1 and 4.2 within the proposed algorithm. We do not
parallelize the for-loop in Algorithm 2, Step 2, to avoid excessive parallelism (i.e.,
we parallelize loops only over X and U , but not over W). Note that, practically,
for large-scale systems, |X̂ × Û | can reach up to billions. We are interested in the
number of parallel threads that can be scheduled reasonably by available HW
computing units.

5 Parallel Synthesis of Controllers

In this section, we employ dynamic programming to synthesize controllers for
constructed finite MDPs ̂Σ satisfying safety, reachability, and reach-avoid prop-
erties [26,27]. The classical serial algorithm and its proposed parallelized version
are respectively presented as Algorithms 3 and 4 in the arXiv version [12]. We

468 A. Lavaei et al.

should highlight that the parallelism here mainly comes from the parallelization
of matrix multiplication and the loop over time-steps cannot be parallelized due
to the data dependency. More details can be found in the arXiv version.

5.1 On-the-Fly Construction of T̂X

In AMYTISS, we also use another technique that further reduces the required
memory for computing T̂x. We refer to this approach as on-the-fly abstractions
(OFA). In OFA version of Algorithm 4 [12], we skip computing and storing
the MDP T̂x and the matrix T̂0x (i.e., Steps 1 and 5). We instead compute the
required entries of T̂x and T̂0x on-the-fly as they are needed (i.e., Steps 13 and
15). This significantly reduces the required memory for T̂x and T̂0x but at the
cost of repeated computation of their entries in each time step from 1 to Td. This
gives the user an additional control over the trade-off between the computation
time and memory.

5.2 Supporting Multiplicative Noises and Practical Distributions

AMYTISS natively supports multiplicative noises and practical distributions such
as uniform, exponential, and beta distributions. The technique introduced in
Subsect. 4.2 for reducing the memory usage is also tuned for other distributions
based on the support of their PDFs. Since AMYTISS is designed for extensi-
bility, it allows also for customized distributions. Users need to specify their
desired PDFs and hyper-rectangles enclosing their supports so that AMYTISS
can include them in the parallel computation of T̂x. Further details on specifying
customized distributions are provided in the README file.

AMYTISS also supports multiplicative noises as introduced in (2). Currently,
the memory reduction technique of Subsect. 4.2 is disabled for systems with mul-
tiplicative noises. This means users should expect larger memory requirements for
systems with multiplicative noises. However, users can still benefit from the pro-
posedOFAversion to compensate for the increase inmemory requirement.Weplan
to include this feature for multiplicative noises in a future update of AMYTISS.
Note that for a better demonstration, previous sections were presented by the addi-
tive noise and Gaussian normal PDF to introduce the concepts.

6 Benchmarking and Case Studies

AMYTISS is self-contained and requires only a modern C++ compiler. It sup-
ports all major operating systems: Windows, Linux and Mac OS. Once compiled,
utilizing AMYTISS is a matter of providing text configuration files and launch-
ing the tool. AMYTISS implements scalable parallel algorithms that run on top
of pFaces [10]. Hence, users can utilize computing power in HPC platforms and
cloud computing to scale the computation and control the computational com-
plexities of their problems. Table 2 lists the HW configuration we use to bench-
mark AMYTISS. The devices range from local devices in desktop computers to
advanced compute devices in Amazon AWS cloud computing services.

AMYTISS: Parallelized Automated Controller Synthesis 469

Table 2. HW configurations for benchmarking AMYTISS.

Id Description PEs Frequency

CPU1 Local machine: Intel Xeon E5-1620 8 3.6 GHz

CPU2 Macbook Pro 15: Intel i9-8950HK 12 2.9 GHz

CPU3 AWS instance c5.18xlarge: Intel Xeon Platinum 8000 72 3.6 GHz

GPU1 Macbook Pro 15 laptop laptop: Intel UHD Graphics 630 23 0.35 GHz

GPU2 Macbook Pro 15 laptop: AMD Radeon Pro Vega 20 1280 1.2 GHz

GPU3 AWS p3.2xlarge instance: NVIDIA Tesla V100 5120 0.8 GHz

Table 3 shows the benchmarking results running AMYTISS with these HWCs
for several case studies and makes comparisons between AMYTISS, FAUST2, and
StocHy. We employ a machine with Windows operating system (Intel i7@3.6 GHz
CPU and 16 GB of RAM) for FAUST2, and StocHy. It should be mentioned that
FAUST2 predefines a minimum number of representative points based on the
desired abstraction error, and accordingly the computation time and memory
usage reported in Table 3 are based on the minimum number of representative
points. In addition, to have a fair comparison, we run all the case studies with
additive noises since neither FAUST2 nor StocHy supports multiplicative noises.

To show the applicability of our results to large-scale systems, we apply our
techniques to several physical case studies. We synthesize controllers for 3- and
5-dimensional room temperature networks to keep temperatures in a comfort
zone. Furthermore, we synthesize controllers for road traffic networks with 3
and 5 dimensions to keep the density of the traffic below some desired level.
In addition, we apply our algorithms to a 2-dimensional nonlinear robot and
synthesize controllers satisfying safety and reach-avoid specifications. Finally,
we consider 3- and 7-dimensional nonlinear models of an autonomous vehicle
and synthesize reach-avoid controllers to automatically park the vehicles. For
details of case studies, see the arXiv version [12].

Table 3 presents a comparison between AMYTISS, FAUST2 and StocHy w.r.t
the computation time and required memory. For each HWC, we show the time in
seconds to solve the problem. Clearly, employing HWCs with more PEs reduces
the time to solve the problem. This is a strong indication for the scalability of
the proposed algorithms. Since AMYTISS is the only tool for stochastic systems
that can utilize the reported HWCs, we do not compare it with other similar
tools.

In Table 3, first 13 rows, we also include the benchmark provided in StocHy
[4, Case study 3]. Table 4 in the arXiv version [12] shows an additional compar-
ison between StocHy and AMYTISS on a machine with the same configuration
as the one employed in [4] (a laptop having an Intel Core i7 − 8550U CPU
at 1.80GHz with 8 GB of RAM). StocHy suffers significantly from the state-
explosion problem as seen from its exponentially growing computation time.
AMYTISS, on the other hand, outperforms StocHy and can handle bigger sys-
tems using the same hardware.

470 A. Lavaei et al.

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

b
et

w
ee

n
A

M
Y

T
IS

S
,

FA
U

S
T

2
a
n
d

S
to

cH
y

b
a
se

d
o
n

th
ei

r
n
a
ti

v
e

fe
a
tu

re
s

fo
r

se
v
er

a
l

(p
h
y
si

ca
l)

ca
se

st
u
d
ie

s.
C

S
B

re
fe

rs
to

th
e

co
n
ti

n
u
o
u
s-

sp
a
ce

b
en

ch
m

a
rk

p
ro

v
id

ed
in

[4
].

†r
ef

er
s

to
ca

se
s

w
h
en

w
e

ru
n

A
M

Y
T

IS
S

w
it

h
th

e
O

F
A

a
lg

o
ri

th
m

.
N

/
M

re
fe

rs
to

th
e

si
tu

a
ti

o
n

w
h
en

th
er

e
is

n
o
t

en
o
u
g
h

m
em

o
ry

to
ru

n
th

e
ca

se
st

u
d
y.

N
/
S

re
fe

rs
to

th
e

la
ck

o
f
n
a
ti

v
e

su
p
p
o
rt

fo
r

n
o
n
li
n
ea

r
sy

st
em

s.
(K

x
)

re
fe

rs
to

a
n

1
0
0
0
-t

im
es

sp
ee

d
u
p
.
T

h
e

p
re

se
n
te

d
sp

ee
d
u
p

is
th

e
m

a
x
im

u
m

sp
ee

d
u
p

va
lu

e
a
cr

o
ss

a
ll

re
p
o
rt

ed
d
ev

ic
es

.
T

h
e

re
q
u
ir

ed
m

em
o
ry

u
sa

g
e

a
n
d

co
m

p
u
ta

ti
o
n

ti
m

e
fo

r
FA

U
S
T

2
a
n
d

S
to

cH
y

a
re

re
p
o
rt

ed
fo

r
ju

st
co

n
st

ru
ct

in
g

fi
n
it

e
M

D
P

s.
T

h
e

re
p
o
rt

ed
ti

m
es

a
n
d

m
em

o
ri

es
a
re

re
sp

ec
ti

v
el

y
in

se
co

n
d
s

a
n
d

M
B

,
u
n
le

ss
o
th

er
u
n
it

s
a
re

d
en

o
te

d
.

P
ro

b
le

m
S
p
e
c
.

|X̂
×

Û
|

T
d

A
M

Y
T

IS
S

(t
im

e
)

F
A
U

S
T

2
fS

to
cH

y
S
p
e
e
d
u
p

w
.r

.t

M
e
m

.
C

P
U

1
C

P
U

2
C

P
U

3
G

P
U

1
G

P
U

2
G

P
U

3
M

e
m

.
T

im
e

M
e
m

.
T

im
e

F
A
U

S
T

S
to

cH
y

2
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
4

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
1

≤
1
.0

0
.0

0
2

8
.5

0
.0

1
5

2
0

x
1
5
0

x

3
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
8

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
1

≤
1
.0

0
.0

0
2

8
.5

0
.0

8
2
0

x
8
0
0

x

4
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
6

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
2

≤
1
.0

0
.0

1
8
.5

0
.1

7
5
0

x
8
5
0

K
x

5
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
3
2

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
3

≤
1
.0

0
.0

1
8
.7

0
.5

4
3
3

x
1
.8

K
x

6
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
6
4

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
0
6

4
.2

5
1

1
.2

9
.6

2
.1

7
2
.0

K
x

3
.6

K
x

7
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
2
8

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
1
2

3
8
.2

6
6

1
2
.9

9
.5

7
5

K
x

7
.9

K
x

8
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
2
5
6

6
≤

1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
2
6

3
4
4
.3

3
7

2
6
.6

4
0
.5

1
4
.2

K
x

1
5
.6

K
x

9
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
5
1
2

6
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

0
5
7

3
G

B
5
0
1

8
0
.7

1
7
1
.6

8
7
.8

K
x

3
0
.1

K
x

1
0
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
0
2
4

6
4
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

1
2
2

N
/
M

2
9
7
.5

3
8
5
.5

N
/
A

3
2

K
x

1
1
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
2
0
4
8

6
1
6
.0

1
.0

9
1
2

≤
1
.0

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

2
8
4

N
/
M

1
G

B
1
7
0
8
.2

N
/
A

6
0

K
x

1
2
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
4
0
9
6

6
6
4
.0

4
.3

0
2
9

4
.1

9
6
9

≤
1
.0

≤
1
.0

≤
1
.0

0
.0

6
2
4

N
/
M

4
G

B
1
1
2
1
6

N
/
A

1
7
9

K
x

1
3
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
8
1
9
2

6
2
5
6
.0

1
8
.6

8
1

1
9
.3

7
4

1
.8

5
1
5

1
.6

8
0
2

≤
1
.0

0
.1

2
7
7

N
/
M

N
/
A

≥
2
4
h

N
/
A

≥
6
7
6

K
x

1
4
-d

S
to

c
H

y
C

S
B

S
a
fe

ty
1
6
3
8
4

6
1
0
2
4
.0

8
1
.6

4
7

9
4
.7

5
0

7
.9

9
8
7

7
.3

4
8
9

6
.1

6
3
2

0
.2

7
3
9

N
/
M

N
/
A

≥
2
4
h

N
/
A

≥
3
2
0

K
x

2
-d

R
o
b
o
t†

S
a
fe

ty
2
0
3
4
0
1

8
≤

1
.0

8
.5

2
9
9

5
.0

9
9
1

0
.7

5
7
2

≤
1
.0

≤
1
.0

0
.0

1
5
4

N
/
A

N
/
A

N
/
A

N
/
A

2
-d

R
o
b
o
t

R
.A

v
o
id

7
4
1
3
2
1

1
6

4
8
2
.1

6
4
8
.5

9
3

1
8
.5

5
4

4
.5

1
2
7

2
.5

3
1
1

3
.4

3
5
3

0
.3

0
8
3

N
/
S

N
/
S

N
/
A

N
/
A

2
-d

R
o
b
o
t†

R
.A

v
o
id

7
4
1
3
2
1

1
6

4
.2

4
8
4

1
3
2
.1

0
4
1
.8

6
5

1
1
.7

4
5

5
.3

1
6
1

3
.6

2
6
4

0
.1

3
0
1

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

R
o
o
m

T
e
m

p
.

S
a
fe

ty
7
7
7
6

8
6
.4

4
5
1

0
.1

0
7
2

0
.0

9
1
5

0
.0

1
2
0

≤
1
.0

≤
1
.0

0
.0

0
1
8

3
.1

2
1
2
4
7

N
/
M

6
9
2

K
x

N
/
A (c

o
n
ti
n
u
ed

)

AMYTISS: Parallelized Automated Controller Synthesis 471

T
a
b
le

3
.
(c

o
n
ti
n
u
ed

)

P
ro

b
le

m
S
p
e
c
.

|X̂
×

Û
|

T
d

A
M

Y
T

IS
S

(t
im

e
)

F
A
U

S
T

2
fS

to
cH

y
S
p
e
e
d
u
p

w
.r

.t

M
e
m

.
C

P
U

1
C

P
U

2
C

P
U

3
G

P
U

1
G

P
U

2
G

P
U

3
M

e
m

.
T

im
e

M
e
m

.
T

im
e

F
A
U

S
T

S
to

cH
y

3
-d

R
o
o
m

T
e
m

p
.†

S
a
fe

ty
7
7
7
6

8
≤

1
.0

0
.5

7
0
1

0
.3

4
2
2

0
.0

6
2
7

≤
1
.0

≤
1
.0

0
.0

0
2
8

N
/
A

N
/
A

N
/
A

N
/
A

5
-d

R
o
o
m

T
e
m

p
.

S
a
fe

ty
2
7
9
9
3
6

8
3
3
3
8
.4

2
0
0
.0

0
1
0
7
.9

3
1
9
.3

7
6

1
0
.0

8
4

N
/
M

1
.8

6
6
3

2
G

B
3
2
4
8

N
/
M

1
7
4
0

x
N

/
A

5
-d

R
o
o
m

T
e
m

p
.†

S
a
fe

ty
2
7
9
9
3
6

8
1
.3

6
7
1
6
.8

4
3
5
8
.2

3
6
3
.7

5
8

3
0
.1

3
1

2
2
.3

3
4

0
.5

6
3
9

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

R
o
a
d

T
ra

ffi
c

S
a
fe

ty
2
1
2
5
7
6
4

1
6

1
7
6
5
.7

2
9
.2

0
0

1
3
1
.3

0
3
.0

5
0
8

5
.7

3
4
5

1
0
.2

3
4

1
.2

8
9
5

N
/
M

N
/
M

N
/
A

N
/
A

3
-d

R
o
a
d

T
ra

ffi
c
†

S
a
fe

ty
2
1
2
5
7
6
4

1
6

1
4
.1

9
1
6
0
.4

5
4
1
2
.7

9
1
3
.6

3
2

1
2
.7

0
7

1
1
.6

5
7

0
.3

0
6
2

N
/
A

N
/
A

N
/
A

N
/
A

5
-d

R
o
a
d

T
ra

ffi
c

S
a
fe

ty
6
8
8
4
1
4
7
2

7
8
7
9
7
.4

N
/
M

5
3
7
.9

1
3
8
.6

3
5

N
/
M

N
/
M

4
.3

9
3
5

N
/
M

N
/
M

N
/
A

N
/
A

5
-d

R
o
a
d

T
ra

ffi
c
†

S
a
fe

ty
6
8
8
4
1
4
7
2

7
3
9
3
.9

1
1
4
8
.5

1
5
2
5
.1

9
5
.7

6
7

4
4
.2

8
5

3
6
.4

8
7

0
.7

3
9
7

N
/
A

N
/
A

N
/
A

N
/
A

3
-d

V
e
h
ic

le
R

.A
v
o
id

1
5
2
8
0
6
5

3
2

1
6
1
4
.7

2
.5

h
1
.1

h
8
7
1
.8

9
8
9
8
.3

8
2
7
1
.4

1
1
0
.2

3
5

N
/
S

N
/
S

N
/
A

N
/
A

3
-d

V
e
h
ic

le
†

R
.A

v
o
id

1
5
2
8
0
6
5

3
2

1
1
.1

7
2
.8

h
1
.9

h
8
7
9
.7

8
9
0
3
.2

6
1
3
.5

5
1
0
7
.6

8
N

/
A

N
/
A

N
/
A

N
/
A

7
-d

B
M

W
3
2
0
i

R
.A

v
o
id

3
9
3
7
5
0
0

3
2

1
0
1
6
9
.4

N
/
M

≥
2
4
h

2
1
.5

h
N

/
M

N
/
M

8
2
5
.6

2
N

/
S

N
/
S

N
/
A

N
/
A

7
-d

B
M

W
3
2
0
i†

R
.A

v
o
id

3
9
3
7
5
0
0

3
2

3
0
.6

4
≥

2
4
h

≥
2
4
h

≥
2
4
h

≥
2
4
h

≥
2
4
h

1
2
5
1
.7

N
/
A

N
/
A

N
/
A

N
/
A

472 A. Lavaei et al.

As seen in Table 3, AMYTISS outperforms FAUST2 and StocHy in all the case
studies (maximum speedups up to 692000 times). Moreover, AMYTISS is the only
tool that can utilize the available HW resources. The OFA feature in AMYTISS
reduces dramatically the required memory, while still solves the problems in a
reasonable time. FAUST2 and StocHy fail to solve many of the problems since
they lack the native support for nonlinear systems, they require large amounts
of memory, or they do not finish computing within 24 hours.

Note that considering only dimensions of systems can be sometimes mislead-
ing. In fact, number of transitions in MDPs (|X̂ × Û |) can give a better judg-
ment on the size of systems since it directly affects the memory/time needed for
solving the problem. For instance in Table 3, the number of transitions for the
14-dimensional case study is 16384, while for the 5-dimensional room temper-
ature example is 279936 transitions (i.e., almost 17 times bigger). This means
AMYTISS can clearly handle much larger systems than existing tools.

Acknowledgment. The authors would like to thank Thomas Gabler for his help
in implementing traditional serial algorithms for the purpose of analysis and then
comparing with the parallel ones.

References

1. Abate, A., et al.: ARCH-COMP19 category report: stochastic modelling. EPiC
Ser. Comput. 61, 62–102 (2019)

2. Abate, A., et al.: ARCH-COMP18 category report: Stochastic modelling. In:
ARCH@ ADHS, pp. 71–103 (2018)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochastic
processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 14

5. Haesaert, S., Soudjani, S.: Robust dynamic programming for temporal logic control
of stochastic systems. CoRR abs/1811.11445 (2018). http://arxiv.org/abs/1811.
11445

6. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

7. Jaja, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Boston (1992)
8. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997).

https://doi.org/10.1007/b98838
9. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Dis-

crete time stochastic hybrid dynamical games: Verification & controller synthesis.
In: Proceedings of the 50th IEEE Conference on Decision and Control and Euro-
pean Control Conference, pp. 6122–6127 (2011)

10. Khaled, M., Zamani, M.: pFaces: an acceleration ecosystem for symbolic control.
In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 252–257 (2019)

https://doi.org/10.1007/978-3-030-17465-1_14
http://arxiv.org/abs/1811.11445
http://arxiv.org/abs/1811.11445
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/b98838

AMYTISS: Parallelized Automated Controller Synthesis 473

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

12. Lavaei, A., Khaled, M., Soudjani, S., Zamani, M.: AMYTISS: parallelized auto-
mated controller synthesis for large-scale stochastic system. arXiv:2005.06191, May
2020

13. Lavaei, A., Soudjani, S., Majumdar, R., Zamani, M.: Compositional abstractions
of interconnected discrete-time stochastic control systems. In: Proceedings of the
56th IEEE Conference on Decision and Control, pp. 3551–3556 (2017)

14. Lavaei, A., Soudjani, S., Zamani, M.: Compositional synthesis of finite abstrac-
tions for continuous-space stochastic control systems: a small-gain approach. In:
Proceedings of the 6th IFAC Conference on Analysis and Design of Hybrid Sys-
tems, vol. 51, pp. 265–270 (2018)

15. Lavaei, A., Soudjani, S., Zamani, M.: From dissipativity theory to compositional
construction of finite Markov decision processes. In: Proceedings of the 21st ACM
International Conference on Hybrid Systems: Computation and Control, pp. 21–30
(2018)

16. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction-based synthesis
of general MDPs via approximate probabilistic relations. arXiv: 1906.02930 (2019)

17. Lavaei, A., Soudjani, S., Zamani, M.: Compositional construction of infinite
abstractions for networks of stochastic control systems. Automatica 107, 125–137
(2019)

18. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction-based synthesis
for networks of stochastic switched systems. Automatica 114, 108827 (2020)

19. Lavaei, A., Soudjani, S., Zamani, M.: Compositional abstraction of large-scale
stochastic systems: a relaxed dissipativity approach. Nonlinear Anal. Hybrid Syst.
36, 100880 (2020)

20. Lavaei, A., Soudjani, S., Zamani, M.: Compositional (in)finite abstractions for
large-scale interconnected stochastic systems. IEEE Trans. Autom. Control. (2020).
https://doi.org/10.1109/TAC.2020.2975812

21. Lavaei, A., Zamani, M.: Compositional construction of finite MDPs for large-scale
stochastic switched systems: a dissipativity approach. In: Proceedings of the 15th
IFAC Symposium on Large Scale Complex Systems: Theory and Applications
52(3), 31–36 (2019)

22. Li, W., Todorov, E., Skelton, R.E.: Estimation and control of systems with mul-
tiplicative noise via linear matrix inequalities. In: Proceedings of the American
Control Conference, pp. 1811–1816 (2005)

23. Mallik, K., Schmuck, A., Soudjani, S., Majumdar, R.: Compositional synthesis of
finite-state abstractions. IEEE Trans. Autom. Control. 64(6), 2629–2636 (2019)

24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57 (1977)

25. Shmarov, F., Zuliani, P.: ProbReach: verified probabilistic delta-reachability for
stochastic hybrid systems. In: Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pp. 134–139 (2015)

26. Soudjani, S.: Formal abstractions for automated verification and synthesis of
stochastic systems. Ph.D. thesis, Technische Universiteit Delft, The Netherlands
(2014)

27. Soudjani, S., Abate, A.: Adaptive and sequential gridding procedures for the
abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst.
12(2), 921–956 (2013)

https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
http://arxiv.org/abs/2005.06191
http://arxiv.org/abs/1906.02930
https://doi.org/10.1109/TAC.2020.2975812

474 A. Lavaei et al.

28. Soudjani, S., Abate, A., Majumdar, R.: Dynamic Bayesian networks as formal
abstractions of structured stochastic processes. In: Proceedings of the 26th Inter-
national Conference on Concurrency Theory, pp. 1–14 (2015)

29. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic Processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

30. Vinod, A.P., Gleason, J.D., Oishi, M.M.: SReachTools: a MATLAB stochastic
reachability toolbox. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 33–38 (2019)

31. Wang, Q., Zuliani, P., Kong, S., Gao, S., Clarke, E.M.: SReach: a probabilistic
bounded delta-reachability analyzer for stochastic hybrid systems. In: Roux, O.,
Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 15–27. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23401-4 3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-319-23401-4_3
http://creativecommons.org/licenses/by/4.0/

PRISM-games 3.0: Stochastic Game
Verification with Concurrency,

Equilibria and Time

Marta Kwiatkowska1, Gethin Norman2,
David Parker3(B), and Gabriel Santos1

1 Department of Computing Science,
University of Oxford, Oxford, UK
2 School of Computing Science,

University of Glasgow, Glasgow, UK
3 School of Computer Science,

University of Birmingham, Birmingham, UK
d.a.parker@cs.bham.ac.uk

Abstract. We present a major new release of the PRISM-games model
checker, featuring multiple significant advances in its support for veri-
fication and strategy synthesis of stochastic games. Firstly, concurrent
stochastic games bring more realistic modelling of agents interacting in a
concurrent fashion. Secondly, equilibria-based properties provide a means
to analyse games in which competing or collaborating players are driven
by distinct objectives. Thirdly, a real-time extension of (turn-based)
stochastic games facilitates verification and strategy synthesis for sys-
tems where timing is a crucial aspect. This paper describes the advances
made in the tool’s modelling language, property specification language
and model checking engines in order to implement this new functional-
ity. We also summarise the performance and scalability of the tool, and
describe a selection of case studies, ranging from security protocols to
robot coordination, which highlight the benefits of the new features.

1 Introduction

Quantitative verification and strategy synthesis are powerful techniques for the
modelling and analysis of computerised systems which require reasoning about
quantitative aspects such as probability, time or resource usage. They can be used
either to produce formal guarantees about a system’s behaviour, for example
relating to its safety, reliability or efficiency, or to synthesise controllers which
ensure that such guarantees will be met at runtime. Examples of applications
where these techniques have been used include power controllers, unmanned
aerial vehicles, autonomous driving and communication protocols.

As computing systems increasingly involve concurrently acting autonomous
agents, game-theoretic approaches are becoming widespread in computer sci-
ence as a faithful modelling abstraction. These techniques can be used to reason
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 475–487, 2020.
https://doi.org/10.1007/978-3-030-53291-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_25

476 M. Kwiatkowska et al.

about the competitive or collaborative behaviour of multiple rational agents or
entities with distinct goals or objectives. Applications include designing a defence
strategy against attackers in a cybersecurity context or building controllers for
autonomous robots operating in an unknown or potentially malicious environ-
ment. More broadly, game theory techniques such as mechanism design can be
used to design protocols that are robust in the context of selfish participants, for
example by incorporating incentive/reward schemes. They have been successfully
deployed in diverse contexts such as network routing [29], auction design [10],
public good provisioning [15] and ranking or recommender systems [30].

However, designing game-theoretic systems correctly is a challenge, in view
of the complexity of behaviours arising from the interactions between autonomy,
concurrency and quantitative rewards. This motivates the development of for-
mal verification techniques to check their correctness and synthesise correct-by-
construction strategies for them. Furthermore, many of these applications require
reasoning about stochasticity : protocols may employ randomisation, e.g., for reli-
able dissemination across a network, or to minimise the impact of information
leakage to an observer; autonomous robots operate in uncertain environments
and may use unreliable hardware components or noisy sensors; and data-driven
systems such as ranking or navigation systems rely on learnt probabilistic models
for their execution.

These challenges have inspired the development of PRISM-games [22], a
model checking tool for stochastic games. To date, it supports verification and
strategy synthesis for turn-based stochastic multi-player games (TSGs) using
a variety of objectives, expressed in the temporal logic rPATL (probabilistic
alternating-time temporal logic with rewards) [8]. This allows specification of
zero-sum objectives relating to one coalition of players trying to maximise a
probabilistic or reward-based objective, while the remaining players form a sec-
ond coalition trying to minimise the objective. It has also been extended to
include (zero-sum) multi-objective properties and additional reward measures
such as long-run average and ratio reward [22]. These methods have been suc-
cessfully applied to several case studies such as autonomous vehicles, user-centric
networks, temperature control and an aircraft electric power system [21,23,32].

In this paper, we present PRISM-games 3.0, which significantly extends its
predecessor’s functionality in several ways [18–20]. First, it supports the mod-
elling and analysis of concurrent stochastic multi-player games (CSGs). Previous
versions of the tool supported TSGs, in which it is assumed that each state of
the game is controlled by a specific player. CSGs allow players to make decisions
simultaneously, without knowledge of each other’s choices, providing a more real-
istic model of concurrent execution and decision making. For this, we extend the
PRISM-games modelling language, allowing the user to specify concurrency and
synchronisation among agents, as well as to associate rewards to either joint or
single actions.

In the first instance, PRISM-games now supports verification and strategy
synthesis for CSGs using zero-sum specifications in rPATL [19], which we extend
to accommodate instantaneous rewards. The second major addition to the tool is

PRISM-games 3.0 477

the possibility of reasoning about equilibria-based properties, which allow play-
ers to have distinct, not necessarily conflicting objectives. We extend rPATL
to express properties relating to (subgame perfect) social-welfare optimal Nash
equilibria (SWNE) [20]. This provides synthesis of strategies for all players (or
coalitions) from which there is no incentive for any of them to unilaterally devi-
ate in any state of the game, and where the combined probabilities or rewards
are maximised (or minimised).

Thirdly, PRISM-games now adds support for probabilistic timed multi-player
games (TPTGs) [18] (currently just the turn-based variant of the model). These
extend stochastic multi-player games with real-valued clocks, in the style of
(probabilistic) timed automata. This allows real-time aspects of a system to be
more accurately modelled. Using the digital clocks approach [18], timed models
are automatically translated to discrete-time models in order to be verified.

In this paper, we describe the key enhancements made to the tool, notably
to its modelling and property specification languages. We also summarise the
results, algorithms and implementation of the verification and strategy synthesis
techniques developed [18–20] to support the new functionality. We then describe
a selection of case studies which showcase the advantages of the new features,
and summarise the performance and scalability of the tool.

PRISM-games is open source and runs on all major operating systems. It is
available from the tool’s website [34]. Supporting material for the paper, includ-
ing a virtual machine that allows easy running of the tool and reproduction of
the results presented in Sect. 4, can be found at [33].

Related Tools. Other model checking tools have been developed to provide
support for games. For non-stochastic games, model checking tools such as
PRALINE [5], EAGLE [31] and EVE [16] support Nash equilibria [27], as does
MCMAS-SLK [6] via strategy logic. Uppaal Stratego [11] is a tool that uses
machine learning, model checking and simulation for the synthesis of strategies
for stochastic priced timed games. GAVS+ [9] is a general-purpose tool for algo-
rithmic game solving, supporting TSGs and (non-stochastic) concurrent games,
but not CSGs. GIST [7] allows the analysis of ω-regular properties on proba-
bilistic games, but again focuses on turn-based, not concurrent, games. General
purpose tools such as Gambit [26] can compute a variety of equilibria but not
for stochastic games.

2 Modelling and Property Specification Languages

2.1 Modelling Concurrent and Timed Games

The new features in PRISM-games 3.0 have required some significant enhance-
ments to the language used to specify models. For the addition of real-time
aspects (i.e., TPTGs), the changes are a straightforward combination of the
existing language features for specifying TSGs in PRISM-games (player spec-
ifications and mapping of model states to them) and for probabilistic timed
automata in PRISM (clock variables, module invariants, guards and clock resets).

478 M. Kwiatkowska et al.

We therefore focus in this paper on the specification of CSGs, where the language
changes are more fundamental.

PRISM-games has an existing language for specifying TSGs, which is an
extension of the native PRISM modelling language [22]. Components of the
system to be modelled are encapsulated as modules, whose states are defined
by a set of finite-range variables and whose behaviour is specified using action-
labelled guarded commands. In a state, one or more modules can execute a
command to make a transition: if the guard (a predicate over state variables) is
satisfied, the state can be modified (probabilistically) by applying the updates of
the command. Multiple modules can execute simultaneously if their commands
are labelled with the same action.

1 csg
2 // Player specification
3 player p1 mac1 endplayer
4 player p2 mac2 endplayer
5 // Max energy per user
6 const int emax;
7 // User 1
8 module mac1
9 s1 : [0..1] init 0; // Has user 1 sent?

10 e1 : [0.. emax] init emax; // Energy level of user 1
11 [w1] true -> (s1 ’=0); // Wait
12 [t1] e1 >0 -> (s1 ’=c ’?0:1) & (e1 ’=e1 -1); // Transmit
13 endmodule
14 // Define second user using module renaming
15 module mac2 = mac1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule

1 // Probability qi for transmission success when i users send
2 const double q1;
3 const double q2;
4 // Channel (computes joint transmission probabilities)
5 module channel
6 c : bool init false; // Did a collision occur during transmission?
7 [t1 ,w2] true -> q1:(c’=false) + (1-q1):(c’=true); // User 1 transmits
8 [w1 ,t2] true -> q1:(c’=false) + (1-q1):(c’=true); // User 2 transmits
9 [t1 ,t2] true -> q2:(c’=false) + (1-q2):(c’=true); // Both transmit

10 endmodule

1 // Reward structures
2 rewards "mess1" // Number of messages sent by user 1
3 s1=1 : 1;
4 endrewards
5 rewards "mess2" // Number of messages sent by user 2
6 s2=1 : 1;
7 endrewards
8 rewards "send2" // Number of times users 1 and 2 transmit simultaneously
9 [t1 ,t2] true : 1;

10 endrewards

Fig. 1. An example PRISM-games 3.0 CSG model of medium access control.

CSGs cannot naturally be modelled with this approach for several reasons:
(i) players need to be able to concurrently choose between multiple commands
with different action labels; (ii) the update performed by one player may be
different depending on the action chosen by another player; (iii) when multiple

PRISM-games 3.0 479

players execute, variables may need to be updated according to an arbitrary
probability distribution, rather than being limited to the product of separate
distributions specified locally by individual modules.

Figure 1 shows an example of the PRISM-games 3.0 modelling language,
which we use to illustrate some of its new features. It models a probabilistic
version of the medium access control problem, previously described in [5]. Two
users share a communication channel. At each time step, user maci (i = 1, 2)
can choose between transmitting a message (ti) or waiting (wi). Variable si
tracks whether a user successfully sent its message in the last time step and ei
represents its energy level: transmissions can only occur when energy is positive.
A third component is the channel channel, modelled by Boolean variable c
denoting whether a collision occurred on the last transmission attempt.

The first difference (with respect to modelling of TSGs) is the player specifi-
cation: players are associated with modules (rather than states). In the example,
module maci constitutes player i. Modules with no nondeterministic choice (like
channel) do not need to be tied to a player.

In each state of the CSG, each player chooses between enabled commands
of the corresponding modules; if no command is enabled, the player idles. The
players move simultaneously so transitions are labelled with lists of action labels
[a1, . . . , an]. So the guarded command notation is extended accordingly: note how
the channel’s behaviour depends on which actions the two users take (the same
principle applies when specifying reward structures; see send2). Furthermore,
variable updates within a command can now be dependent on the updated values
of other variables, provided there are no cyclic dependencies. See for example
(s1’=c’?0:1), which updates s1 depending on whether there was a channel
collision (reflected in c’, the updated value of c). We use this mechanism to
model interference on the channel: module channel specifies a joint probability
distribution which is used to update variables s1 and s2 simultaneously.

2.2 Property Specification

PRISM-games 3.0 also extends the language used to specify properties for verifi-
cation and strategy synthesis. The previous version already supported zero-sum
queries for TSGs using the logic rPATL, which combines the game logic ATL
with reward-based extensions of the probabilistic logic PCTL. Again, for the new
real-time models, it is relatively easy to combine the existing rPATL notation
with real-valued time bounds. So, we focus here on the case of CSGs, and in
particular equilibria-based properties.

We compute values or synthesise strategies which are social-welfare optimal
Nash equilibria (SWNE), i.e., which maximise (or minimise) the sum of the values
associated to the objectives for each player, but from which there is no incentive
for any of them to unilaterally deviate in any state of the game. We express such
properties by adding to rPATL the + operator, which is then used to denote the
sum of the values associated to both bounded and unbounded objectives.

When using the rewards operator in equilibria-based properties, we can rea-
son about cumulative (C�k), instantaneous (I=k) and expected reachability (F)

480 M. Kwiatkowska et al.

objectives. For properties with the probability operator, we support bounded and
unbounded reachability using the temporal operators next (X), eventually (F)
and until (U). In order to express zero-sum properties for CSGs, we have imple-
mented all the previous temporal operators for probabilistic queries and a subset
of the rPATL operators reported in [8] for reward-based queries, adding to that
the instantaneous reward operator.

Finally, following the style of rPATL we separate players into coalitions with
the syntax 〈〈coalition〉〉, in order to specify the player or association of players for
which we seek to maximise or minimise the values for a given zero-sum property.
For equilibria-based properties, given that we maximise/minimise the sum, we
use the same operator to separate players in different coalitions using a colon,
while players in the same coalition are separated by a comma.

The following are examples of both zero-sum and equilibria-based properties
for the medium access CSG model described in Fig. 1.

– 〈〈p1〉〉Pmax=?[s2=0 U s1=1] – what is the maximum probability user 1 can
ensure of being the first to transmit, regardless of the behaviour of user 2?

– 〈〈p2〉〉Rmess2�2.0 [F e2=0] – can user 2 ensure the expected number of messages it
sends before running out of energy is at least 2, whatever user does?

– 〈〈p1:p2〉〉max�2(P[F s1=1] + P[F s2=1]) – if each user’s objective is to send
their packet with the maximum probability, is it possible for them to collab-
orate and both transmit their packets with probability 1?

– 〈〈p1:p2〉〉max=?(P[s2=0 U s1=1] + P[s1=0 U s2=1]) – what is the sum of
SWNE values if each user tries to maximise the probability of being the first
to successfully transmit?

– 〈〈p1:p2〉〉max=?(Rmess1[F e1=0] + Rmess2[C�k]) – what is the sum of SWNE
values if user 1 tries to maximise the expected number of packets before
running out of energy and user 2 maximises the expected number of packets
in the first k steps?

3 Verification and Strategy Synthesis Algorithms

3.1 Zero-Sum Properties for CSGs

When verifying zero-sum properties of CSGs, PRISM-games makes use of the
model checking algorithms described in [19], which were based on the methods
formulated in [2,3]. We rely on value iteration and classical convergence criteria
to approximate/compute the values for all states of the game under study, and
on solving a linear program to compute a minimax strategy at each state. This
corresponds to solving a matrix game, which represents a one-shot zero-sum
game for the actions of each player in a state. For unbounded properties, the
solutions of the matrix games are used to synthesise an optimal (memoryless and
randomised) strategy for each player. Prior to this numerical solution phase, we
find and remove the states for which the optimal expected reward values are
infinite by using the qualitative algorithms developed in [1].

PRISM-games 3.0 481

Our current implementation uses the LPsolve [24] library to solve the matrix
games at each state. CSGs are built and stored in a explicit-state fashion using an
extension of PRISM’s Java-implemented explicit (sparse-matrix based) engine.

3.2 Equilibria-Based Properties for CSGs

For equilibria-based properties of CSGs, PRISM-games implements the methods
described in [20]. We rely on value iteration and backwards induction to approx-
imate/compute values and synthesise strategies that are SWNE. For unbounded
properties, we can only compute values that are ε-Nash equilibria, since Nash
equilibria are not guaranteed to exist. At each state, we solve a bimatrix game,
which is a representation of a one-shot nonzero-sum game and is a linear com-
plementarity problem. We solve these games via labelled polytopes, finding all
equilibria values through an SMT-based implementation, for which we use third-
party SMT solvers Z3 [12] and Yices [13]. We make use of a precomputation step
of finding and removing dominated strategies in order to minimise the number
of calls to the solver.

Unlike zero-sum properties, the synthesised strategies for bounded and
unbounded equilibria-based properties require (finite) memory. This is needed
due to the fact that a player’s choices may change once their objectives have been
satisfied. We synthesise strategies by combining the strategy vectors computed
for each bimatrix game and the strategy generated by computing optimal values
for the MDP resulting from playing the game after either goal has been met. As
we use value iteration to approximate values for infinite-horizon properties, we
can only synthesise ε-Nash strategy profiles.

3.3 Turn-Based Probabilistic Timed Games

Verification and strategy synthesis of TPTGs relies on the algorithms from [18],
which use the digital clocks approach that has been a developed for a variety
of real-time models. A translation, at the level of the PRISM-games modelling
languages, automatically converts the problem of analysing a TPTG into one of
solving a (discrete-time) TSG, for which PRISM-games’s existing engines can
be used. Time-bounded properties are handled by automatically integrating a
timing clock into the model prior to translation. As in the rest of PRISM-games,
TSGs are also built and solved using the Java-based explicit engine.

4 Case Studies and Experimental Results

The features added in PRISM-games 3.0 have been used for over 10 new case
studies across a wide range of application domains, including computer security
(intrusion detection, radio jamming, non-repudiation), communication protocols
(medium access control, Aloha), incentive schemes for cooperative networking,
multi-robot navigation problems and processor task scheduling. Details can be
found in [18–20] and on the case studies section of the PRISM-games website [35].

482 M. Kwiatkowska et al.

Supporting material is at [33]. In this section, we showcase four selected case
studies that demonstrate the benefits of the tool’s new functionality. We also
include a discussion of the scalability and performance of the tool.

Future Markets Investor. This example models two investors playing against
the stock market. Investors choose when to invest or to cash in, and the stock
market can decide to bar investments at certain points; fluctuations in share
values are modelled stochastically. PRISM-games can, for example, synthesise
optimal strategies for the two investors to maximise their expected joint profit
over time, acting against the stock market which aims to minimise it.

1 2 3 4 5 6 7 8 9
7.5

8

8.5

9

9.5

10

10.5

Number of months

M
a
x

c
o
m

b
in

e
d

p
ro

fi
t

CSG

TSG

(a) Future markets investor: avoiding
unrealistic strategy choices using CSGs

9 10 11 12 13 14
0.2

0.4

0.6

0.8

1

k

A
v
e
ra

g
e

su
c
c
e
ss

p
ro

b
a
b
il
it
y

Equilibria

Zero-sum

(b) Robot coordination: using equilib-
ria for mutually beneficial navigation plans

0 4 8 12 16 20
0

0.02

0.04

0.06

0.08

0.1

T

M
a
x
.
p
ro

b
a
b
il
it
y

o
f
a
tt

a
ck TPTG

PTA

(c) Non-repudiation: Attack & defence
strategies in a timed, randomised protocol

1.6 1.65 1.7 1.75 1.8

1

3

5

7

9

10.5

f

E
x
p
e
c
te

d
in

d
iv

id
u
a
l
p
ro

fi
t

Player 1

Player 2

(d) Public good game: Tuning incentive
parameter f by synthesising equilibria

Fig. 2. Results illustrating the benefits of the new verification and strategy synthe-
sis techniques implemented in PRISM-games 3.0; see Sect. 4 for details. (Color figure
online)

Figure 2(a) shows the results obtained for this property using both a turn-
based stochastic game (TSG) and a concurrent stochastic game (CSG). The
former leads to unrealistic modelling as the market can see the choices made
by the investors and gain an unfair advantage: the values in the blue plot in
Fig. 2(a) are artificially low. In the CSG model, using PRISM 3.0, decisions are
taken simultaneously, yielding the correct strategies and values (red plot).

PRISM-games 3.0 483

Robot Coordination. Our next example models two robots navigating in
opposite directions across a 10-by-10 grid as a CSG. Obstacles which hinder
the robots as they move from location to location are modelled stochastically;
and if the robots collide, both of them fail in their attempt to reach their goal.
We use PRISM-games to find navigation strategies for the two robots, where
each robot does not know the choice being made by the other at each step.

The objective for each robot is to navigate successfully, so we maximise the
average probability (across the two robots) of success. Figure 2(b) shows the best
value that can be achieved within a fixed period of k moves across the grid. One
robot aiming single-handedly to achieve this goal performs reasonably well (blue
plot), but we can achieve better collective performance by using PRISM-games
to synthesise a (social welfare Nash) equilibrium strategy (red plot).

Non-repudiation. Next we consider a non-repudiation protocol [25], which per-
mits an originator O to transfer information to a recipient R while guaranteeing
non-repudiation, i.e., that neither O nor R can deny that they participated in
the transfer. Here, both probability (the protocol is randomised) and time (the
protocol relies on acknowledgement time-outs) are essential ingredients for check-
ing correctness. Furthermore, we model the two participants of the protocol as
opposing players, resulting in a TPTG model.

To verify the protocol, we check the worst-case probability that a malicious
recipient R can obtain the information being transferred within time T . This can
be done with a PTA model (as in [28]) but, with a timed game model, we can also
analyse counter-strategies of the honest participant. The results (see Fig. 2(c))
show that, while it is not possible to prevent the information being received, it
is possible to delay it (the red plot shows lower probabilities for higher times).
Note that the bound T is an actual time bound, unlike the examples above,
where step-bounded properties measure the number of steps or rounds.

Public Good Game. Lastly, we show a new case study modelling a public
good game, a well studied model of social choice in economics where participants
repeatedly decide how much of an endowment to keep for themselves or to share
it with the other players. The total shared by the players is boosted by a factor
f in order to incentivise sharing and then divided equally between the players.

Figure 2(d) shows results from a 2-player game, modelled as a CSG. Player
choices are necessarily concurrent, to avoid cheating. We also need to use equi-
libria since the players have distinct individual goals (maximising personal
expected profit). Figure 2(d) shows the values for each player in a synthesised
optimal (social welfare Nash) equilibrium for varying f . Changes in f affect
both the resulting profit and potential inequalities between players in equilib-
ria, indicating the subtleties involved when tuning parameters in an incentive
mechanism and the usefulness of analysing this with PRISM-games.

Scalability and Performance. Finally, we show some experimental results for
a representative selection of larger examples, to give an indication of the scal-
ability and performance of PRISM-games 3.0. Table 1 shows a range of models
(the first 4 are CSGs; the last is a TPTG), the statistics for each one (number of

484 M. Kwiatkowska et al.

Table 1. Model statistics for some of the case studies.

Case study Players States

transitions

Constr.

time(s)

Property Verif.

time(s)

Robot

coordination

2 159,202

10,765,010

30.94 〈〈p1〉〉Pmax=?[¬c U�kg1] 114.5

2 159,202

10,765,010

39.00 〈〈p1:p2〉〉max=?(P[¬c U�kg1]+P[¬c U�k g2]) 1,080

Future markets

investors

3 1,398,441

7,374,616

51.2 〈〈i1〉〉Rmax=?[Fc cashed1] 1,030

3 478,761

2,265,560

13.47 〈〈i1:i2〉〉max=?(R[F c1]+R[F c2]) 13,110

User-centric

networks

7 2,993,308

11,392,196

198.6 〈〈user〉〉Rmax=?[Fc services=K] 1,061

Aloha 3 556,168

2,401,113

15.7 〈〈p2, p3〉〉Rmin=?[F sent2,3] 317.8

3 3,334,681

17,834,254

146.1 〈〈p1:p2,p3〉〉min=?(R[F s1]+R[F s2,3]) 3,129

Task graph

scheduling

2 659,948

1,798,198

11.16 〈〈sched〉〉Rmax=?[F done] 89.7

players, states, transitions) and the time taken to build and verify the model for
some example properties on a 2.10 GHz Intel Xeon with 8 GB of JVM memory.

Verification of CSGs is more computationally expensive than for TSGs sup-
ported in earlier versions of the tool, but PRISM-games 3.0 is able to build and
analyse CSGs with more than 3 million states on relatively modest hardware.
The majority of the time is spent solving (bi)matrix games, which is done repeat-
edly for all states of the model. Hence, the number of choices per state, which
dictates the size of these games, has a greater impact on performance than for
TSGs. Unsurprisingly, equilibria properties are slower than zero-sum ones. For
both types of property, the number of players in the game does not have a major
impact since they are grouped into coalitions yielding a 2-player game to solve.
For TPTGs, the digital clocks translation is fast since it is done syntactically,
and then a TSG is solved whose size depends on several factors, primarily the
number of locations and the magnitude of any time bound in the property.

5 Conclusions

We have presented PRISM-games 3.0, which adds three major new features:
(i) concurrent stochastic games; (ii) synthesis of equilibria; and (iii) timed prob-
abilistic games. The usefulness of these has been illustrated on several newly
created or extended applications.

CSGs are considerably more expensive to solve than their turn-based coun-
terparts and a key challenge is efficiently solving the matrix game at each state,
which is itself a non-trivial optimisation problem. For equilibria, the main dif-
ficulty is finding an optimal equilibrium, which currently relies on iteratively
restricting the solution search space. Both problems are sensitive to the limita-
tions and issues of floating-point arithmetic, particularly equilibria computation,
and might benefit from arbitrary precision representations. Recent research has

PRISM-games 3.0 485

also pointed out the shortcomings of only using a lower bound approximation as
a stopping criterion for value iteration, as it can lead to inaccuracies [4,14,17].
The impact of similar issues on model checking for games is still to be studied.

A range of further challenges exist for future work. These include provid-
ing support for multi-coalitional properties and implementing other techniques
for equilibria computation. For timed games, we plan to investigate concurrent
variants, and also zone-based solution techniques. More broadly speaking, partial
information variants of games would be a useful addition.

Acknowledgements. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 834115) and the EPSRC Programme Grant on Mobile
Autonomy (EP/M019918/1).

References

1. de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: LICS 2000,
pp. 141–154 (2000)

2. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. Theor.
Comput. Sci. 386(3), 188–217 (2007)

3. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J.
Comput. Syst. Sci. 68(2), 374–397 (2004)

4. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

5. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 63

6. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

7. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: a solver
for probabilistic games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 57. pub.ist.ac.at/gist/

8. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Form. Methods Syst. Des. 43(1), 61–92
(2013)

9. Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: an open platform
for the research of algorithmic game solving. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 258–261. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 22. sourceforge.net/projects/gavsplus/

10. Cramton, P., Shoham, Y., Steinberg, R.: An overview of combinatorial auctions.
SIGecom Exch. 7, 3–14 (2007)

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-642-39799-8_63
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-642-14295-6_57
https://doi.org/10.1007/978-3-642-14295-6_57
http://pub.ist.ac.at/gist/
https://doi.org/10.1007/978-3-642-19835-9_22
https://doi.org/10.1007/978-3-642-19835-9_22
http://sourceforge.net/projects/gavsplus/

486 M. Kwiatkowska et al.

11. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16. people.cs.aau.dk/marius/stratego/

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24. github.com/Z3Prover/z3

13. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49. yices.csl.sri.com

14. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

15. Hauser, O., Hilbe, C., Chatterjee, K., Nowak, M.: Social dilemmas among unequals.
Nature 572, 524–527 (2019)

16. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: EVE: a tool for temporal
equilibrium analysis. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 551–557. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01090-4 35. github.com/eve-mas/eve-parity

17. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for sim-
ple stochastic games: stopping criterion and learning algorithm. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 36

18. Kwiatkowska, M., Norman, G., Parker, D.: Verification and control of turn-based
probabilistic real-time games. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C.,
Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from
Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 379–396.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9 22

19. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automated verification
of concurrent stochastic games. In: McIver, A., Horvath, A. (eds.) QEST 2018.
LNCS, vol. 11024, pp. 223–239. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99154-2 14

20. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Equilibria-based probabilis-
tic model checking for concurrent stochastic games. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 298–315. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8 19

21. Kwiatkowska, M., Parker, D., Simaitis, A.: Strategic analysis of trust models for
user-centric networks. In: Proceedings of the SR’13, EPTCS, vol. 112, pp. 53–60.
Open Publishing Association (2013)

22. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games 2.0: a tool for multi-
objective strategy synthesis for stochastic games. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 560–566. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 35

23. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Softw.
Tools Technol. Transf. 20(2), 195–210 (2018)

24. LPSolve (version 5.5). lpsolve.sourceforge.net/5.5/
25. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted

third party. In: Proceedings of the 2nd Workshop on Security in Communication
Networks (1999)

26. McKelvey, R., McLennan, A., Turocy, T.: Gambit: Software tools for game theory,
version 16.0.1 (2016). gambit-project.org

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
http://people.cs.aau.dk/marius/stratego/
https://doi.org/10.1007/978-3-540-78800-3_24
http://github.com/Z3Prover/z3
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://yices.csl.sri.com
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.1007/978-3-030-01090-4_35
http://github.com/eve-mas/eve-parity
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-030-31175-9_22
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-319-99154-2_14
https://doi.org/10.1007/978-3-030-30942-8_19
https://doi.org/10.1007/978-3-662-49674-9_35
http://lpsolve.sourceforge.net/5.5/
http://gambit-project.org

PRISM-games 3.0 487

27. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci 36, 48–49
(1950)

28. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43(2), 164–190 (2013). https://doi.org/10.
1007/s10703-012-0177-x

29. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49, 236–259
(2002)

30. Tennenholtz, M., Kurland, O.: Rethinking search engines and recommendation
systems: a game theoretic perspective. Commun. ACM 62, 66–75 (2019)

31. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification
of nash equilibria in concurrent games. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 583–594. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 34

32. Wiltsche, C.: Assume-guarantee strategy synthesis for stochastic games. Ph.D.
thesis, University of Oxford (2015)

33. Supporting materials and artifact. prismmodelchecker.org/files/cav20pg3/
34. PRISM-games website. prismmodelchecker.org/games/
35. PRISM-games case studies. prismmodelchecker.org/games/casestudies.php

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/s10703-012-0177-x
https://doi.org/10.1007/978-3-319-25150-9_34
https://doi.org/10.1007/978-3-319-25150-9_34
http://prismmodelchecker.org/files/cav20pg3/
http://prismmodelchecker.org/games/
http://prismmodelchecker.org/games/casestudies.php
http://creativecommons.org/licenses/by/4.0/

Optimistic Value Iteration

Arnd Hartmanns1(B) and Benjamin Lucien Kaminski2

1 University of Twente,
Enschede, The Netherlands
arnd.hartmanns@utwente.nl

2 University College London, London, UK
b.kaminski@ucl.ac.uk

Abstract. Markov decision processes are widely used for planning and
verification in settings that combine controllable or adversarial choices
with probabilistic behaviour. The standard analysis algorithm, value iter-
ation, only provides lower bounds on infinite-horizon probabilities and
rewards. Two “sound” variations, which also deliver an upper bound,
have recently appeared. In this paper, we present a new sound app-
roach that leverages value iteration’s ability to usually deliver good lower
bounds: we obtain a lower bound via standard value iteration, use the
result to “guess” an upper bound, and prove the latter’s correctness. We
present this optimistic value iteration approach for computing reacha-
bility probabilities as well as expected rewards. It is easy to implement
and performs well, as we show via an extensive experimental evaluation
using our implementation within the mcsta model checker of the Modest
Toolset.

1 Introduction

Markov decision processes (MDP, [30]) are a widely-used formalism to represent
discrete-state and -time systems in which probabilistic effects meet controllable
nondeterministic decisions. The former may arise from an environment or agent
whose behaviour is only known statistically (e.g. message loss in wireless com-
munication or statistical user profiles), or it may be intentional as part of a
randomised algorithm (such as exponential backoff in Ethernet). The latter may
be under the control of the system—then we are in a planning setting and typi-
cally look for a scheduler (or strategy, policy) that minimises the probability of
unsafe behaviour or maximises a reward—or it may be considered adversarial,
which is the standard assumption in verification: we want to establish that the
maximum probability of unsafe behaviour is below, or that the minimum reward
is above, a specified threshold. Extensions of MDP cover continuous time [11,26],

The authors are listed alphabetically. This work was partly performed while author
B. L. Kaminski was at RWTH Aachen University, Aachen, Germany. This work was
supported by ERC Advanced Grant 787914 (FRAPPANT), DFG Research Training
Group 2236 (UnRAVeL), and NWO VENI grant no. 639.021.754.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 488–511, 2020.
https://doi.org/10.1007/978-3-030-53291-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_26&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0001-5185-2324
https://doi.org/10.1007/978-3-030-53291-8_26

Optimistic Value Iteration 489

and the analysis of complex formalisms such as stochastic hybrid automata [13]
can be reduced to the analysis of MDP abstractions.

The standard algorithm to compute optimal (maximum or minimum) prob-
abilities or reward values on MDP is value iteration (VI). It implicitly computes
the corresponding optimal scheduler, too. It keeps track of a value for every state
of the MDP, locally improves the values iteratively until a “convergence” crite-
rion is met, and then reports the final value for the initial state as the overall
result. The initial values are chosen to be an underapproximation of the true
values (e.g. 0 for all states in case of probabilities or non-negative rewards). The
final values are then an improved underapproximation of the true values. For
unbounded (infinite-horizon) properties, there is unfortunately no (known and
practical) convergence criterion that could guarantee a predefined error on the
final result. Still, probabilistic model checkers such as Prism [24] report the final
result obtained via simple relative or absolute global error criteria as the defini-
tive probability. This is because, on most case studies considered so far, value
iteration in fact converges fast enough that the (relative or absolute) difference
between the reported and the true value approximately meets the error ε spec-
ified for the convergence criterion. Only relatively recently has this problem of
soundness come to the attention of the probabilistic verification and planning
communities [7,14,28]. First highlighted on hand-crafted counterexamples, it has
by now been found to affect benchmarks and real-life case studies, too [3].

The first proposal to compute sound reachability probabilities was to use
interval iteration (II [15], first presented in [14]). The idea is to perform two
iterations concurrently, one starting from 0 as before, and one starting from 1.
The latter improves an overapproximation of the true values, and the process can
be stopped once the (relative or absolute) difference between the two values for
the initial state is below the specified ε, or at any earlier time with a correspond-
ingly larger but known error. Baier et al. extended interval iteration to expected
accumulated reward values [3]; here, the complication is to find initial values
that are guaranteed to be an overapproximation. The proposed graph-based
(i.e. not numerical) algorithm in practice tends to compute conservative initial
values from which many iterations are needed until convergence. More recently,
sound value iteration (SVI) [31] improved upon interval iteration by computing
upper bounds on-the-fly and performing larger value improvements per itera-
tion, for both probabilities and expected rewards. However, we found SVI tricky
to implement correctly; some edge cases not considered by the algorithm as pre-
sented in [31] initially caused our implementation to deliver incorrect results or
diverge on very few benchmarks. Both II and SVI fundamentally depend on the
MDP being contracting ; this must be ensured by appropriate structural trans-
formations, e.g. by collapsing end components, a priori. These transformations
additionally complicate implementations, and increase memory requirements.

Our Contribution. We present (in Sect. 4) a new algorithm to compute sound
reachability probabilities and expected rewards that is both simple and practi-
cally efficient. We first (1) perform standard value iteration until “convergence”,
resulting in a lower bound on the value for every state. To this we (2) apply
specific heuristics to “guess”, for every state, a candidate upper bound value.

490 A. Hartmanns and B. L. Kaminski

Further value iterations (3) then confirm (if all values decrease) or disprove
(if all values increase, or lower and upper bounds cross) the soundness of the
upper bounds. In the latter case, we perform more lower bound iterations with
reduced ε before retrying from step 2. We combine classic results from domain
theory with specific properties of value iteration to show that our algorithm ter-
minates. In problematic cases, many retries may be needed before termination,
and performance may be worse than interval or sound value iteration. However,
on many existing case studies, value iteration already worked well, and our app-
roach attaches a soundness proof to its result with moderate overhead. We thus
refer to it as optimistic value iteration (OVI). In contrast to II and SVI, it also
works well for non-contracting MDP, albeit without a general termination guar-
antee. Our experimental evaluation in Sect. 5 uses all applicable models from
the Quantitative Verification Benchmark Set [21] to confirm that OVI indeed
performs as expected. It uses our publicly available implementations of II, SVI,
and now OVI in the mcsta model checker of the Modest Toolset [20].

Related Work. In parallel to [15], the core idea behind II was also presented in [7]
(later improved in [2]), embedded in a learning-based framework that manages to
alleviate the state space explosion problem in models with a particular structure.
In this approach, end components are statistically detected and collapsed on-the-
fly. II has recently been extended to stochastic games in [23], offering deflating
as a new alternative to collapsing end components in MDP. Deflating does not
require a structural transformation, but rather extra computation steps in each
iteration applied to the states of all (a priori identified) end components.

The only known convergence criterion for pure VI was presented in [9, Sect.
3.5]: if we run VI until the absolute error between two iterations is less than a
certain value α, then the computed values at that point are within α of the true
values, and can in fact be rounded to the exact true values (as implemented in
the rational search approach [5]). However, α cannot be freely chosen; it is a
fixed number that depends on the size of the MDP and the largest denominator
of the (rational) transition probabilities. The number of iterations needed is
exponential in the size and the denominators. While not very useful in practice,
this establishes an exponential upper bound on the number of iterations needed
in unbounded-horizon VI. Additionally, Balaji et al. [4] recently showed the
computations in finite-horizon value iteration to be EXPTIME-complete.

As an alternative to the iterative numeric road, guaranteed correct results
(modulo implementation errors) can be obtained by using precise rational arith-
metic. It does not combine too well with iterative methods like II or SVI due
to the increasingly small differences between the values and the actual solution.
The probabilistic model checker Storm [10] thus combines topological decom-
position, policy iteration, and exact solvers for linear equation systems based on
Gaussian elimination when asked to use rational arithmetic [22, Section 7.4.8].
The disadvantage is the significant runtime cost for performing the unlimited-
precision calculations, limiting such methods to relatively smaller MDP.

The only experimental evaluations using large sets of benchmarks that we
are aware of compared VI with II to study the overhead needed to obtain sound

Optimistic Value Iteration 491

Fig. 1. Example MDP

Table 1. VI and OVI example on Me

i v(s0) u(s0) v(s1) u(s1) v(s2) u(s2) error α

0 0 0 0 0.05

1 0.1 0 0.4 0.4 0.05

2 0.18 0.4 0.4 0.4 0.05

3 0.4 0.4 0.4 0.22 0.05

4 0.42 0.47 0.4 0.45 0.4 0.45 0.02 0.05

5 0.436 0.47 0.4 0.45 0.4 0.45 0.016

6 0.4488 0.4 0.4 0.0128 0.008

7 0.45904 0.4 0.4 0.01024 0.008

8 0.467232 0.4 0.4 0.008192 0.008

9 0.4737856 0.5237856 0.4 0.45 0.4 0.45 0.0065536 0.008

10 0.47902848 0.51902848 0.4 0.45 0.4 0.45 0.00524288

results via II [3], and II with SVI to show the performance improvements of
SVI [31]. The learning-based method with deflation of [2] does not compete
against II and SVI; its aim is rather in dealing with state space explosion (i.e.
memory usage). Its performance was evaluated on 16 selected small (<400 k
states) benchmark instances in [2], showing absolute errors on the order of 10−4

on many benchmarks with a 30-min timeout. SVI thus appears the most compet-
itive technique in runtime and precision so far. Consequently, in our evaluation
in Sect. 5, we compare OVI with SVI, and II for reference, using the default
relative error of 10−6, including large and excluding clearly acyclic benchmarks
(since they are trivial even for VI), with a 10-min timeout which is rarely hit.

2 Preliminaries

R
+
0 is the set of all non-negative real numbers. We write {x1 �→ y1, . . . } to

denote the function that maps all xi to yi, and if necessary in the respective
context, implicitly maps to 0 all x for which no explicit mapping is specified.
Given a set S, its powerset is 2S . A (discrete) probability distribution over S is
a function μ ∈ S → [0, 1] with countable support spt(μ) def= { s ∈ S | μ(s) > 0 }
and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the set of all probability distributions over S.

Markov Decision Processes (MDP) combine nondeterministic choices as in
labelled transition systems with discrete probabilistic decisions as in discrete-time
Markov chains (DTMC). We define them formally and describe their semantics.

Definition 1. A Markov decision process (MDP) is a triple M = 〈S, sI , T 〉
where S is a finite set of states with initial state sI ∈ S and T : S → 2Dist(R+

0 ×S)

is the transition function. T (s) must be finite and non-empty for all s ∈ S.

For s ∈ S, an element of T (s) is a transition, and a pair 〈r, s′〉 ∈ spt(T (s)) is
a branch to successor state s′ with reward r and probability T (s)(〈r, s′〉). Let
M (s′

I) be M but with initial state s′
I , and M0 be M with all rewards set to zero.

492 A. Hartmanns and B. L. Kaminski

Example 1. Figure 1 shows our example MDP Me. We draw transitions as lines
to an intermediate node from which branches labelled with probability and
reward (if not zero) lead to successor states. We omit the intermediate node
and probability 1 for transitions with a single branch, and label some transitions
to refer to them in the text. Me has 5 states, 7 transitions, and 10 branches.

In practice, higher-level modelling languages like Modest [17] are used to specify
MDP. The semantics of an MDP is captured by its paths. A path represents a
concrete resolution of all nondeterministic and probabilistic choices. Formally:

Definition 2. A finite path is a sequence πfin = s0 μ0 r0 s1 μ1 r1 . . . μn−1rn−1sn

where si ∈ S for all i ∈ { 0, . . . , n } and ∃μi ∈ T (si) : 〈ri, si+1〉 ∈ spt(μi) for all
i ∈ { 0, . . . , n − 1 }. Let |πfin| def= n, last(πfin) def= sn, and rew(πfin) def=

∑n−1
i=0 ri.

Πfin is the set of all finite paths starting in sI . A path is an analogous infinite
sequence π, and Π is the set of all paths starting in sI . We write s ∈ π if
∃ i : s = si, and π→G for the shortest prefix of π that contains a state in G ⊆ S,
or ⊥ if π contains no such state. Let rew(⊥) def= ∞.

A scheduler (or adversary, policy or strategy) only resolves the nondeterministic
choices of M . For this paper, memoryless deterministic schedulers suffice [6].

Definition 3. A function s : S → Dist(R+
0 × S) is a scheduler if, for all s ∈ S,

we have s(s) ∈ T (s). The set of all schedulers of M is S(M).

Given an MDP M as above, let M |s = 〈S, sI , T |s〉 with T |s(s) = { s(s) } be the
DTMC induced by s. Via the standard cylinder set construction [12, Sect. 2.2] on
M |s, a scheduler induces a probability measure P

M
s on measurable sets of paths

starting in sI . For goal state g ∈ S, the maximum and minimum probability
of reaching g is defined as PM

max(� g) = sups∈S P
M
s ({π ∈ Π | g ∈ π }) and

PM
min(� g) = infs∈S P

M
s ({π ∈ Π | g ∈ π }), respectively. The definition extends

to sets G of goal states. Let RM
G : Π → R

+
0 be the random variable defined by

RM
G (π) = rew(π→G) and let E

M
s (G) be the expected value of RM

G under P
M
s .

Then the maximum and minimum expected reward to reach G is defined as
EM

max(G) = sups E
M
s (G) and EM

min(G) = infs E
M
s (G), respectively. We omit the

superscripts for M when they are clear from the context. From now on, whenever
we have an MDP with a set of goal states G, we assume that they have been made
absorbing, i.e. for all g ∈ G we only have a self-loop: T (g) = { { 〈0, g〉 �→ 1 } }.

Definition 4. An end component of M as above is a (sub-)MDP 〈S′, T ′, s′
I〉

where S′ ⊆ S, T ′(s) ⊆ T (s) for all s ∈ S′, if μ ∈ T ′(s) for some s ∈ S′ and
〈r, s′〉 ∈ spt(μ) then r = 0, and the directed graph with vertex set S′ and edge
set { 〈s, s′〉 | ∃μ ∈ T ′(s) : 〈0, s′〉 ∈ spt(μ) } is strongly connected.

3 Value Iteration

The standard algorithm to compute reachability probabilities and expected
rewards is value iteration (VI) [30]. In this section, we recall its theoretical
foundations and its limitations regarding convergence.

Optimistic Value Iteration 493

1 function GSVI(M = 〈S, sI , T 〉, S?, v, α, diff)
2 repeat
3 error := 0
4 foreach s ∈ S? do
5 vnew := Φ(v)(s) // iterate lower bound
6 if vnew > 0 then error := max(error , diff (v(s), vnew))
7 v(s) := vnew

8 until error ≤ α

Algorithm 1. Gauss-Seidel value iteration

3.1 Theoretical Foundations

Let V = { v | v : S → R
+
0 ∪ {∞}} be a space of vectors of values. It can easily

be shown that 〈V, 〉 with

v w if and only if ∀ s ∈ S : v(s) ≤ w(s)

forms a complete lattice, i.e. every subset V ⊆ V has a supremum (and an
infimum) in V with respect to . We write v ≺ w for v w ∧ v �= w and v �∼ w
for ¬(v w ∨ w v).

Minimum and maximum reachability probabilities and expected rewards can
be expressed as the least fixed point of the Bellman operator Φ : V → V given by

Φ(v) def= λ s.

{
optμ∈T (s)

∑
〈r,s′〉∈spt(μ) μ(s′) · (r + v(s′)) if s ∈ S?

d if s �∈ S?

where opt ∈ {max, min } and the choice of both S? ⊆ S and d depends on
whether we wish to compute reachability probabilities or expected rewards. In
any case, the Bellman operator Φ can be shown to be Scott-continuous [1], i.e.
in our case: for any subset V ⊆ V, we have Φ(sup V) = supΦ(V).

The Kleene fixed point theorem for Scott-continuous self-maps on complete
lattices [1,27] guarantees that lfpΦ, the least fixed point of Φ, indeed exists. Note
that Φ can still have more than one fixed point. In addition to mere existence
of lfp Φ, the Kleene fixed point theorem states that lfp Φ can be expressed by

lfp Φ = lim
n→∞ Φn(0̄) (1)

where 0̄ ∈ V is the zero vector and Φn(v) denotes n-fold application of Φ to v.
Equation 1 is the basis of VI: the algorithm iteratively constructs a sequence of
vectors

v0 = 0̄ and vi+1 = Φ(vi),

which converges to the sought-after least fixed point. This convergence is mono-
tonic: for every n ∈ N, we have Φn(0̄) Φn+1(0̄) and hence Φn(0̄) lfp Φ. In
particular, Φn(0̄)(sI) is an underapproximation of the sought-after quantity for
every n. Note that iterating Φ on any underapproximation v lfp Φ (instead
of 0̄) will still converge to lfp Φ and Φn(v) lfp Φ will hold for any n.

494 A. Hartmanns and B. L. Kaminski

Gauss-Seidel Value Iteration. Algorithm 1 shows the pseudocode of a VI imple-
mentation that uses the so-called Gauss-Seidel optimisation: Whereas standard
VI needs to store two vectors vi and vi+1, Gauss-Seidel VI stores only a single
vector v and performs updates in place. This does not affect the correctness of
VI, but may speed up convergence depending on the order in which the loop
in line 4 considers the states in S?. The error metric diff is used to check for
convergence.

VI for Probabilities. For determining reachability probabilities, we operate
on M0 and set S? = S \G and d = 1. Then the corresponding Bellman operator
satisfies

(lfp Φ)(s) = PM(s)

opt (� G),

and VI will iteratively approximate this quantity from below. The corresponding
call to Algorithm 1 is GSVI(M0, S \ G, { s �→ 0 | s ∈ S \ G } ∪ { s �→ 1 | s ∈
G }, α, diff).

VI for Expected Rewards. For determining the expected reward EM(s)

opt (G), we
operate on M and first have to determine the set S∞ of states from which the
minimum (if opt = max) or maximum (if opt = min) probability to reach G is
less than 1.1 If sI ∈ S∞, then the result is ∞ due to the definition of rew(⊥).
Otherwise, we choose S? = S \ S∞ and d = ∞. Then, for opt = max, the least
fixed point of the corresponding Bellman operator satisfies

(lfp Φ)(s) = EM(s)

opt (G).

Again, VI underapproximates this quantity. The same holds for opt = min if
M does not have end components containing states other than those in G and
S∞. The corresponding call to Algorithm1 is GSVI(M , S \ S∞, { s �→ 0 | s ∈
S \ S∞ } ∪ { s �→ ∞ | s ∈ S∞ }, α, diff).

3.2 Uniqueness of Fixed Points

lfp Φ may not be unique for two reasons: states that cannot reach G under the
optimal scheduler may take any value (causing fixed points greater than lfpΦ for
Pmin and Pmax), and states in end components may take values higher than lfpΦ.
The latter affects Pmax (higher fixed points) and Emin (lower fixed points).

Example 2. In Me of Fig. 1, s1 and s2 and the two transitions in-between form
an end component. For PMe

max(� { s+ }), v = { s �→ 1 } is a non-least fixed point
for the corresponding Bellman operator; with appropriate values for s1 and s2,
we can obtain fixed points with any v(s0) > 0.5 of our choice. Similarly, we have
EM

min({ s+, s− }) = 0.6 (by scheduling b in s0), but due to the end component
(with only zero-reward transitions by definition), the fixed point is s.t. v(s0) = 0.
1 This can be done via Algs. 2 (for S1

min) and 4 (for S1
max) of [12], respectively. These

algorithms do not consider the probabilities, but only whether there is a transition
and branch (with positive probability) from one state to another or not. We thus
call them graph-based algorithms, as opposed to numeric algorithms like VI itself.

Optimistic Value Iteration 495

VI works for Pmin, Pmax, and Emax with multiple fixed points: we anyway seek
lfpΦ and start from a (trivial) underapproximation. For Emin, (zero-reward) end
components need to be collapsed: we determine the maximal end components
using algorithms similar to [15, Alg. 1], then replace each of them by a sin-
gle state, keeping all transitions leading out of the end component. We refer to
this as the ECC transformation. However, such end components rarely occur in
case studies for Emin since they indicate Zeno behaviour w.r.t. to the reward.
As rewards are often associated to time progress, such behaviour would be
unrealistic.

To make the fixed points unique, for Emax and Emin we fix the values of all
states in G to 0. For Pmin, we precompute the set S0

min of states that reach G with
minimum probability 0 using Alg. 1 of [12], then fix their values to 0. For Pmax,
we analogously use S0

max via Alg. 3 of [12]. For Pmax and Emin, we additionally
need to remove end components via ECC. In contrast to the precomputations,
ECC changes the structure of the MDP and is thus more memory-intensive.

3.3 Convergence

VI and GSVI will not reach a fixed point in general, except for special cases
such as acyclic MDP. It is thus standard to use a convergence criterion based on
the difference between two consecutive iterations (lines 6 and 8) to make GSVI
terminate: we either check the absolute error, i.e.

diff = diffabs
def= λ 〈vold , vnew 〉. vnew − vold ,

or the relative error, i.e.

diff = diffrel
def= λ 〈vold , vnew 〉. (vnew − vold)/vnew .

By default, probabilistic model checkers like Prism and Storm use diffrel and
α = 10−6. Upon termination of GSVI, v is then closer to the least fixed point,
but remains an underapproximation. In particular, α has, in general, no relation
to the final difference between v(sI) and Popt(� G) or Eopt(G), respectively.

Example 3. Consider MDP Me of Fig. 1 again with G = { s+ }. The first four
rows in the body of Table 1 show the values for v after the i-th iteration of the
outer loop of a call to GSVI(M0

e , { s0, s1, s2 },max, { s+ �→ 1 } ∪ { s �→ 0 | s �=
s+ }, 0.05, diffabs). After the fourth iteration, GSVI terminates since the error is
less than α = 0.05; at this point, we have Pmax(� s+) − v(s0) = 0.08 > α.

To obtain a value within a prescribed error ε of the true value, we can com-
pute an upper bound in addition to the lower bound provided by VI. Interval
iteration (II) [3,15] does so by performing, in parallel, a second value itera-
tion on a second vector u that starts from a known overapproximation. For
probabilities, the vector 1̄ = { s �→ 1 } is a trivial overapproximation; for
rewards, more involved graph-based algorithms need to be used to precom-
pute (a very conservative) one [3]. II terminates when diff (v(sI), u(sI)) ≤ 2ε

496 A. Hartmanns and B. L. Kaminski

Table 2. Preprocessing requirements of value iteration variants

Type VI II and SVI OVI

Pmin – S0
min –

Pmax – S0
max + ECC ECCa

Emin S1
max + ECC S1

max + ECC S1
max + ECC

Emax S1
min S1

min S1
min

aECC preprocessing for OVI is needed to guar-
antee termination in theory, however we have not
yet found a case study where OVI diverges with-
out ECC.

and returns vII = 1
2 (u(sI) + v(sI)). With vtrue = Popt(� G), II thus guaran-

tees that vII ∈ [vtrue − ε · vtrue , vtrue + ε · vtrue] and analogously for expected
rewards. However, to ensure termination, II requires a unique fixed point: u con-
verges from above to the greatest fixed point gfp Φ, thus for every MDP where
diff ((lfp Φ)(sI), (gfp Φ)(sI)) > 2ε, II diverges. For Pmax, we have gfp Φ(sec) = 1
for all sec in end components, thus II tends to diverge when there is an end
component. Sound value iteration (SVI) [31] is similar, but uses a different app-
roach to derive upper bounds that makes it perform better overall, and that
eliminates the need to precompute an initial overapproximation for expected
rewards. However, SVI still requires unique fixed points.

We summarise the preprocessing requirements of VI, II, and SVI in Table 2.
With unique fixed points, we can transform Pmin into Pmax by making S0

min states
absorbing and setting G to S0

min, and Pmax into Emax by a similar transformation
adding reward 1 to entering G. Most of the literature on VI variants works in
such a setting and describes the Pmax or Emax case only. Since OVI also works
with multiple fixed points, we have to consider all four cases individually.

4 Optimistic Value Iteration

We now present a new, practical solution to the convergence problem for
unbounded reachability and expected rewards. It exploits the empirical obser-
vation that on many case studies VI delivers results which are roughly α-close
to the true value—it only lacks the ability to prove it. Our approach, optimistic
value iteration (OVI), extends standard VI with the ability to deliver such a
proof.

The key idea is to exploit a property of the Bellman operator Φ and its Gauss-
Seidel variant as in Algorithm1 to determine whether a candidate vector is a
lower bound, an upper bound, or neither. The foundation is basic domain theory:
by Scott-continuity of Φ it follows that Φ is monotonic, meaning v w implies
Φ(v) Φ(w). A principle called Park induction [29] for monotonic self-maps on
complete lattices yields the following induction rules: For any u ∈ V,

Optimistic Value Iteration 497

1 function OVI(M = 〈S, sI , T 〉, S?, v, ε, α, diff)
2 GSVI(M, S?, v, α, diff) // perform standard value iteration
3 u := { s �→ diff +(s) | s ∈ S? }, viters := 0 // guess candidate upper bound
4 while viters < 1

α
do // start verification phase

5 up∀ := true, down∀ := true, viters := viters + 1, error := 0
6 foreach s ∈ S? do
7 vnew := Φ(v)(s), unew := Φ(u)(s) // iterate both bounds
8 if vnew > 0 then error := max { error , diff (v(s), vnew) }
9 if unew < u(s) then // upper value decreased:

10 u(s) := unew , up∀ := false // update u with new lower unew

11 else if unew > u(s) then // upper value increased:
12 down∀ := false // discard new higher unew

13 v(s) := vnew // update v with new value vnew

14 if v(s) > u(s) then goto line 17 // lower bound crossed u

15 if down∀ then return 1
2
(u(sI) + v(sI)) // u is inductive upper bound

16 else if up∀ then goto line 17 // u is inductive lower bound

17 return OVI(M, S?, v, ε, error
2

, diff) // retry with reduced α

Algorithm 2. Optimistic value iteration

Φ(u) u implies lfp Φ u. (2)
and u Φ(u) implies u gfp Φ. (3)

Thus, if we can construct a candidate vector u s.t. Φ(u) u, then u is in fact an
upper bound on the sought-after lfpΦ. We call such a u an inductive upper bound.
Optimistic value iteration uses this insight and can be summarised as follows:

1. Perform value iteration on v until “convergence” w.r.t. α.
2. Heuristically determine a candidate upper bound u.
3. If Φ(u) u, then v lfp Φ u.

– If diff (v(sI), u(sI)) ≤ 2ε, terminate and return 1
2

(
u(sI) + v(sI)

)
.

4. If u Φ(u) or u �∼ v, then reduce α and go to step 1.
5. Set v to Φ(v), u to Φ(u), and go to step 3.

The resulting procedure in more detail is shown as Algorithm2. Starting from the
same initial vectors v as for VI, we first perform standard Gauss-Seidel value iter-
ation (in line 2). We refer to this as the iteration phase of OVI. After that, vector
v is an improved underapproximation of the actual probabilities or reward values.
We then “guess” a vector u of upper values from the lower values in v (line 3). The
guessing heuristics depends on diff : if diff = diffabs , then we use

diff +(s) =

{
0 if v(s) = 0
v(s) + ε otherwise;

498 A. Hartmanns and B. L. Kaminski

if diff = diffrel , then
diff +(s) = v(s) · (1 + ε).

We cap the result at 1 for Pmin and Pmax. These heuristics have three important
properties: (H1) v(s) = 0 implies diff +(s) = 0, (H2) diff (v(s), diff +(s)) ≤ 2ε,
and (H3) diff (v(s), diff +(s)) > 0 unless v(s) = 0 or v(s) = 1 for Pmin and Pmax.

Then the verification phase starts in line 4: we perform value iteration on the
lower values v and upper values u at the same time, keeping track of the direction
in which the upper values move. For u, line 7 and the conditions around line 10
mean that we actually use operator Φmin(u) = λs. min(Φ(u)(s), u(s)). This may
shorten the verification phases, and is crucial for our termination argument. A
state s is blocked if Φ(u)(s) > Φmin(u)(s) and unblocked if Φ(u)(s) < u(s) here.

If, in some iteration, no state was blocked (line 15), then we had Φ(u) u
before the start of the iteration. We thus know by Eq. 2 that the current u is
an inductive upper bound for the values of all states, and the true value must
be in the interval [v(sI), u(sI)]. By property H2, our use of Φmin for u, and the
monotonicity of Φ as used on v, we also know that diff (v(sI), u(sI)) ≤ 2ε, so we
immediately terminate and return the interval’s centre vI = 1

2 (u(sI) + v(sI)).
The true value vtrue = (lfp Φ)(sI) must then be in [vI − ε · vtrue , vI + ε · vtrue].

If, in some iteration, no state was unblocked (line 16), then again by Park
induction we know that u gfpΦ. If we are in a situation of unique fixed points,
this also means u lfp Φ, thus the current u is no upper bound: we cancel
verification and go back to the iteration phase to further improve v before trying
again. We do the same if v crosses u: then u(s) < v(s) ≤ (lfp Φ)(s) for some s,
so this u was just another bad guess, too.

Otherwise, we do not yet know the relationship between u and lfp Φ, so we
remain in the verification phase until we encounter one of the cases above, or
until we exceed the verification budget of 1

α iterations (as checked by the loop
condition in line 4). This budget is a technical measure to ensure termination.

Optimisation. In case the fixed point of Φ is unique, by Park induction (via
Eq. 3) we know that u Φ(u) implies that u is a lower bound on lfp Φ. In
such situations of single fixed points, we can—as an optimisation—additionally
replace v by u before the goto in line 16.

Heuristics. OVI relies on heuristics to gain an advantage over alternative meth-
ods such as II or SVI; it cannot be better on all MDP. Concretely, we can choose

1. a stopping criterion for the iteration phase,
2. how to guess candidate upper values from the result of the iteration phase, and
3. how much to reduce α when going back from verification to iteration.

Algorithm 2 shows the choices made by our implementation. We employ the
standard stopping criteria used by probabilistic model checkers for VI, and the
“weakest” guessing heuristics that satisfies properties H1, H2, and H3 (i.e. guess-
ing any higher values would violate one of these properties). The only arbitrary

Optimistic Value Iteration 499

choice is how to reduce α, which we at least halve on every retry. We experi-
mentally found this to be a good compromise on benchmarks that we consider
in Sect. 5, where

(a) reducing α further causes more and potentially unnecessary iterations in
GSVI (continuing to iterate when switching to the verification phase would
already result in upper values sufficient for termination), and

(b) reducing α less results in more verification phases (whose iterations are
computationally more expensive than those of GSVI) being started before
the values in v are high enough such that we manage to guess a u with
lfp Φ u.

Example 4. We now use the version of Φ to compute Pmax and call

OVI(M0
e , { s0, s1, s2 }, { s+ �→ 1 } ∪ { s �→ 0 | s �= s+ }, 0.05, 0.05, diffabs).

Table 1 shows the values in v and u during this run, assuming that we use non-
Gauss-Seidel iterations. The first iteration phase lasts from i = 0 to 4. At this
point, u is initialised with the values shown in italics. The first verification phase
needs only one iteration to realise that u is actually a lower bound (to a fixed
point which is not the least fixed point, due to the uncollapsed end component).
Blocked states are marked with a bar; unblocked states have a lower u-value
than in the previous iteration. We resume GSVI from i = 6. The error in GSVI
is again below α, which had been reduced to 0.008, during iteration i = 9. We
thus start another verification phase, which immediately (in one iteration) finds
the newly guessed vector u to be an upper bound, with diff (v(s0), u(s0)) < 2ε.

4.1 Termination of OVI

We showed above that OVI returns an ε-correct result when it terminates. We
now show that it terminates in all cases except for Pmax with multiple fixed
points. Note that this is a stronger result than what II and SVI can achieve.

Let us first consider the situations where lfp Φ is the unique fixed point of Φ.
First, GSVI terminates by Eq. 1. Let us now write vi and ui for the vectors u
and v as they are at the beginning of verification phase iteration i. We know
that v0 u0. We distinguish three cases relating the initial guess u0 to lfp Φ.

1. u0 �∼ lfpΦ or u0 ≺ lfpΦ, i.e. there is a state s with u0(s) < (lfpΦ)(s). Since we
use Φmin on the upper values, it follows ui(s) ≤ u0(s) < (lfpΦ)(s) for all i. By
Eq. 1, there must thus be a j such that vj(s) > uj(s), triggering a retry with
reduced α in line 14. Such a retry could also be triggered earlier in line 16.
Due to the reduction of α and Eq. 1, every call to GSVI will further increase
some values in v or reach v = lfpΦ (in special cases), and for some subsequent
guess u we must have u0(s) < u(s). Consequently, after some repetitions of
this case 1, we must eventually guess a u with lfp Φ u.

500 A. Hartmanns and B. L. Kaminski

Fig. 2. DTMC Md

Table 3. Nontermination of OVI on M ′
e without

ECC

i v(s0) u(s0) v(s1) u(s1) v(s2) u(s2) error α

0 0 0 0 0.05

1 0.1 0 0.25 0.25 0.05

2 0.18 0.25 0.375 0.25 0.05

3 0.25 0.375 0.4375 0.125 0.05

4 0.375 0.4375 0.46875 0.125 0.05

5 0.4375 0.5375 0.46875 0.56875 0.484375 0.584375 0.0625 0.05

6 0.46875 0.5375 0.484375 0.56875 0.4921875 0.56875 0.03125

7 0.484375 0.5375 0.4921875 0.56875 0.49609375 0.56875 0.015625

2. lfp Φ ≺ u0. Observe that operators Φ and Φmin are local [9], i.e. a state’s
value can only change if a direct successor’s value changes. In particular, a
state’s value can only decrease (increase) if a direct successor’s value decreases
(increases). If ui(s) < ui−1(s), then s cannot be blocked again in any later
iteration j > i: for it to become blocked, a successor’s upper value would
have to increase, but Φmin ensures non-increasing upper values for all states.
Analogously to Eq. 1, we know that [3, Lemma 3.3 (c)]

lfp Φ u implies lim
n→∞ Φn

min(u) = lfp Φ

(for the unique fixpoint case, since [3] assumes contracting MDP as usual).
Thus, for all states s, there must be an i such that ui(s) < ui−1(s); in conse-
quence, there is also an iteration j where no state is blocked any more. Then
the condition in line 15 will be true and OVI terminates.

3. lfp Φ u0 but not lfp Φ ≺ u0, i.e. there is a state s with u0(s) = (lfp Φ)(s).
If there is an i where no state, including s, is blocked, then OVI terminates
as above. For Pmin and Pmax, if u0(s) = 1, s cannot be blocked, so we can
w.l.o.g. exclude such s. For other s not to be blocked in iteration i, we must
have ui(s′) = (lfp Φ)(s′) for all states s′ reachable from s under the optimal
scheduler, i.e. all of those states must reach the fixed point. This cannot be
guaranteed on general MDP. Since this case is a very particular situation
unlikely to be encountered in practice with our heuristics, OVI adopts a
pragmatic solution: it bounds the number of iterations in every verification
phase (cf. line 4). Due to property H3 of our heuristics, u0(s) = (lfp Φ)(s)
requires v0(s) < (lfp Φ)(s), thus some subsequent guess u will have u(s) >
u0(s), and eventually we must get a u with lfp Φ ≺ u, which is case 2. Since
we strictly increase the iteration bound on every retry, we will eventually
encounter case 2 with a sufficiently high bound for termination.

Three of the four situations with multiple fixed points reduce to the correspond-
ing unique fixed point situation due to property H1 of our guessing heuristics:

1. For Pmin, recall from Sect. 3.2 that the fixed point is unique if we fix the
values of all S0

min states to 0. In OVI without preprocessing, such states are

Optimistic Value Iteration 501

in S?, thus they initially have value 0. Φ will not increase their values, neither
will guessing due to H1, and neither will Φmin. Thus OVI here operates on a
sublattice of 〈V, 〉 where the fixed point of Φ is unique.

2. For Emin, after the preprocessing steps of Table 2, we only need to fix the
values of all goal states to 0. Then the argument is the same as for Pmin.

3. For Emax, we reduce to a unique fixed point sublattice in the same way, too.

The only case where OVI may not terminate is for Pmax without ECC. Here, end
components may cause states to be permanently blocked. However, we did not
encounter this on any benchmark used in Sect. 5, so in contrast to e.g. II, OVI
is still practically useful in this case despite the lack of a termination guarantee.

Example 5. We turn Me of Fig. 1 into M ′
e by replacing the c-labelled transition

from s2 by transition { 〈0, s2〉 �→ 1
2 , 〈0, s+〉 �→ 1

4 , 〈1, s−〉 �→ 1
4 }, i.e. we can now go

from s2 back to s2 with probability 1
2 and to each of s+, s− with probability 1

4 .
The probability-1 transition from s2 to s1 remains. Then Table 3 shows a run of
OVI for Pmax with diffabs and α = 0.1. s0 is forever blocked from iteration 6 on.

4.2 Variants of OVI

While the core idea of OVI rests on classic results from domain theory, Algo-
rithm2 includes several particular choices that work together to achieve good
performance and ensure termination. We sketch two variants to motivate these
choices.

First, let us use Φ instead of Φmin for the upper values, i.e. move the assign-
ment u(s) := unew down into line 13. Then we cannot prove termination because
the arguments of case 2 for lfp Φ ≺ u0 no longer hold. Consider DTMC Md of
Fig. 2 and Pmax(� s+) = Pmin(� s+). Let

u = { s0 �→ 0.2, s1 �→ 1, s+ �→ 1, s− �→ 0 } � { s0 �→ 1
9 , s1 �→ 1

9 , . . . } = lfp Φ.

Iterating Φ, we then get the following sequence of pairs 〈u(s0), u(s1)〉:

〈0.2, 1〉, 〈1, 0.12〉, 〈0.12, 0.2〉, 〈0.2, 0.112〉, 〈0.112, 0.12〉, 〈0.12, 0.1112〉, . . .

Observe how the value of s0 increases iff s1 decreases and vice-versa. Thus we
never encounter an inductive upper or lower bound. In Algorithm2, we use
Gauss-Seidel VI, which would not show the same effect on this model; however,
if we insert another state between s0 and s1 that is updated last, Algorithm2
would behave in the same alternating way. This particular u is contrived, but
we could have guessed one with a similar relationship of the values leading to
similar behaviour.

An alternative that allows us to use Φ instead of Φmin is to change the
conditions that lead to retrying and termination: We separately store the initial
guess of a verification phase as u0, and then compare each newly calculated u
with u0. If u u0, then we know that there is an i such that u = Φi(u) u0.

502 A. Hartmanns and B. L. Kaminski

Φi retains all properties of Φ needed for Park induction, so this would also be
a proof of lfp Φ u. The other conditions and the termination proofs can be
adapted analogously. However, this variant needs ≈50 % more memory (to store
an additional vector of values), and we found it to be significantly slower than
Algorthm 2 and the first variant on almost all benchmark instances of Sect. 5.

5 Experimental Evaluation

We have implemented interval iteration (II) (using the “variant 2” approach of [3]
to compute initial overapproximations for expected rewards), sound value iter-
ation (SVI), and now optimistic value iteration (OVI) precisely as described in
the previous section, in the mcsta model checker of the Modest Toolset [20],
which is publicly available at modestchecker.net. It is cross-platform, imple-
mented in C#, and built around the Modest [17] high-level modelling language.
Via support for the Jani format [8], mcsta can exchange models with other tools
like Epmc [18] and Storm [10]. Its performance is competitive with Storm and
Prism [16]. We tried to spend equal effort performance-tuning our VI, II, SVI,
and OVI implementations to avoid unfairly comparing highly-optimised OVI
code with näıve implementations of the competing algorithms.

In the following, we report on our experimental evaluation of OVI using
mcsta on all applicable models of the Quantitative Verification Benchmark Set
(QVBS) [21]. All models in the QVBS are available in Jani and can thus be
used by mcsta. Most are parameterised, and come with multiple properties of
different types. Aside from MDP models, the QVBS also includes DTMCs (which
are a special case of MDP), continuous-time Markov chains (CTMC, for which
the analysis of unbounded properties reduces to checking the embedded DTMC),
Markov automata (MA [11], on which the embedded MDP suffices for unbounded
properties), and probabilistic timed automata (PTA [26], some of which can
be converted into MDP via the digital clocks semantics [25]). We use all of
these model types. The QVBS thus gives rise to a large number of benchmark
instances: combinations of a model, a parameter valuation, and a property to
check. For every model, we chose one instance per probabilistic reachability and
expected-reward property such that state space exploration did not run out of
memory and VI took at least 10 s where possible. We only excluded

– 2 models with multiple initial states (which mcsta does not yet support),
– 4 PTA with open clock constraints (they cannot be converted to MDP),
– 29 probabilistic reachability properties for which the result is 0 or 1 (they are

easily solved by the graph-based precomputations and do not challenge VI),
– 16 instances for which VI very quickly reaches the fixed point, which indicates

that (the relevant part of) the MDP is acyclic and thus trivial to solve,
– 3 models for which no parameter valuation allowed state space exploration

to complete without running out of memory or taking more than 600 s,
– 7 instances where, on the largest state space we could explore, no iterative

algorithm took more than 1 s (which does not allow reliable comparisons), and
– the oscillators model due to its very large model files,

http://www.modestchecker.net/

Optimistic Value Iteration 503

Fig. 3. OVI runtime and iteration count compared to VI (probabilistic reachability)

As a result, we considered 38 instances with probabilistic reachability and 41
instances with expected-reward properties, many comprising several million
states.

We ran all experiments on an Intel Core i7-4790 workstation (3.6–4.0 GHz)
with 8 GB of memory and 64-bit Ubuntu Linux 18.04. By default, we request a
relative half-width of ε = 10−6 for the result probability or reward value, and
configure OVI to use the relative-error criterion with α = 10−6 in the iteration
phase. We use a 600 s timeout (“TO”). Due to the number of instances, we show
most results as scatter plots like in Fig. 3. Each such plot compares two methods
in terms of runtime or number of iterations. Every point 〈x, y〉 corresponds to
an instance and indicates that the method noted on the x-axis took x seconds
or iterations to solve this instance while the method noted on the y-axis took
y seconds or iterations. Thus points above the solid diagonal line correspond
to instances where the x-axis method was faster (or needed fewer iterations);
points above (below) the upper (lower) dotted diagonal line are where the x-axis
method took less than half (more than twice) as long or as many iterations.

5.1 Comparison with VI

All methods except VI delivered correct results up to ε. VI offers low runtime at
the cost of occasional incorrect results, and in general the absence of any guaran-
tee about the result. We thus compare with VI separately to judge the overhead
caused by performing additional verification, and possibly iteration, phases. This
is similar to the comparison done for II in [3]. Figures 3 and 4 show the results.
The unfilled shapes indicate instances where VI produced an incorrect result. In
terms of runtime, we see that OVI does not often take more than twice as long
as VI, and frequently requires less than 50% extra time. On several instances
where OVI incurs most overhead, VI produces an incorrect result, indicating

504 A. Hartmanns and B. L. Kaminski

Fig. 4. OVI runtime and iteration count compared to VI (expected rewards)

that they are “hard” instances for value iteration. The unfilled CTMCs where
OVI takes much longer to compute probabilities are all instances of the embedded
model; the DTMC on the x-axis is haddad-monmege, an adversarial model built
to highlight the convergence problem of VI in [14]. The problematic cases for
expected rewards include most MA instances, the two expected-reward instances
of the embedded CTMC, and again haddad-monmege. In terms of iterations, the
overhead of OVI is even less than in runtime.

5.2 Comparison with II and SVI

We compare the runtime of OVI with the runtime of II and that of SVI separately
for reachability probabilities (shown in Fig. 5) and expected rewards (shown in
Fig. 6). As shown in Table 2, OVI has almost the same requirements on precom-
putations as VI, while II and SVI require extra precomputations and ECC for
reachability probabilities. The precomputations and ECC need extra runtime
(which turned out to be negligible in some cases but significant enough to cause
a timeout in others) prior to the numeric iterations. However, doing the pre-
computations can reduce the size of the set S?, and ECC can reduce the size
of the MDP itself. Both can thus reduce the runtime needed for the numeric
iterations. For the overall runtime, we found that none of these effects domi-
nates the other over all models. Thus sometimes it may be better to perform
only the required precomputations and transformations, while on other models
performing all applicable ones may lead to lower total runtime. For reachabil-
ity probabilities, we thus compare OVI, II, and SVI in two scenarios: once in
the default (“std”) setting of mcsta that uses only required preprocessing steps

Optimistic Value Iteration 505

Fig. 5. OVI runtime compared to II and SVI (probabilities)

(without ECC for OVI; we report the total runtime for preprocessing and iter-
ations), and once with all of them enabled (“pre”, where we report only the
runtime for numeric iterations, plus the computation of initial upper bounds in
case of II).

For probabilistic reachability, we see in Fig. 5 that there is no clear winner
among the three methods in the “std” setting (top plots). In some cases, the
extra precomputations take long enough to give an advantage to OVI, while in
others they speed up II and SVI significantly, compensating for their overhead.
The “pre” setting (bottom), in which all three algorithms operate on exactly the
same input w.r.t. to MDP M and set S?, however, shows a clearer picture: now
OVI is faster, sometimes significantly so, than II and SVI on most instances.

506 A. Hartmanns and B. L. Kaminski

Fig. 6. OVI runtime compared to II and SVI (expected rewards)

Expected-reward properties were more challenging for all three methods (as
well as for VI, which produced more errors here than for probabilities). The
plots in Fig. 6 paint a very clear picture of OVI being significantly faster for
expected rewards than II (which suffers from the need to precompute initial
upper bounds that then turn out to be rather conservative), and faster (though
by a lesser margin and with few exceptions) than SVI.

In Fig. 7, we give a summary view combining the data from Figs. 3 to 6. For
each algorithm, we plot the instances sorted by runtime, i.e. a point 〈x, y〉 on the
line for algorithm z means that some instance took y seconds to solve via z, and
there are x instances that z solves in less time. Note in particular that the times
are not cumulative. The right-hand plot zooms into the left-hand one. We clearly
see the speedup offered by OVI over SVI and especially II. Where the scatter
plots merely show that OVI often does not obtain more than a 2× speedup
compared to SVI, these plots provide an explanation: the VI line is a rough

Fig. 7. Summary comparison to VI, II, and SVI, instances ordered by runtime

Optimistic Value Iteration 507

Fig. 8. Influence of ε/α on runtime (expected rewards, relative error)

Fig. 9. Runtime comparison with absolute error (expected rewards)

bound on the performance that any extension of VI can deliver. Comparing the
SVI and VI lines, over much of the plot’s range, OVI thus cannot take less than
half the runtime of SVI without outperforming VI itself.

5.3 On the Effect of ε and α

We also compared the four algorithms for different values of ε and, where appli-
cable, α. We show a selection of the results in Fig. 8. The axis labels are of the
form “algorithm, ε/α”. On the left, we see that the runtime of OVI changes if we
set α to values different from ε, however there is no clear trend: some instances
are checked faster, some slower. We obtained similar plots for other combinations
of α values, with only a slight tendency towards longer runtimes as α > ε. mcsta
thus uses α = ε as a default that can be changed by the user.

In the middle, we study the impact of reducing the desired precision by
setting ε to 10−3. This allows OVI to speed up by factors mostly between 1 and
2; the same comparison for SVI and II resulted in similar plots, however VI was
able to more consistently achieve higher speedups. When we compare the right
plot with the right-hand plot of Fig. 6, we consequently see that the overall result
of our comparison between OVI and SVI does not change significantly with the
lower precision, although OVI does gain slightly more than SVI.

508 A. Hartmanns and B. L. Kaminski

5.4 Comparing Relative and Absolute Error

In Fig. 9, we show comparison plots for the runtime when using diffabs instead
of diffrel . Requiring absolute-error-correct results may make instances with low
result values much easier and instances with high results much harder. We chose
ε = 10−2 as a compromise, and the leftmost plot confirms that we indeed chose
an ε that keeps the expected-reward benchmarks on average roughly as hard
as with 10−6 relative error. In the middle and right plots, we again see OVI
compared with II and SVI. Compared to Fig. 6, both II and SVI gain a little,
but there are no significant differences overall. Our experiments thus confirm that
the relative performance of OVI is stable under varying precision requirements.

5.5 Verification Phases

On the right, we show histograms
of the number of verification phases
started (top, from 1 phase on the
left to 20 on the right) and the per-
centage of iterations that are done
in verification phases (bottom) over
all benchmark instances (probabilities
and rewards). We see that, in the vast
majority of cases, we need few verifi-
cation attempts, with many succeed-
ing in the first attempt, and most iter-
ations are performed in the iteration
phases.

6 Conclusion

We have presented optimistic value iteration (OVI), a new approach to making
non-exact probabilistic model checking via iterative numeric algorithms sound
in the sense of delivering results within a prescribed interval around the true
value (modulo floating-point and implementation errors). Compared to inter-
val (II) and sound value iteration (SVI), OVI has slightly stronger termination
guarantees in presence of multiple fixed points, and works in practice for max.
probabilities without collapsing end components despite the lack of a guarantee.
Like II, it can be combined with alternative methods for dealing with end com-
ponents such as the new deflating technique of [23]. OVI is a simple algorithm
that is easy to add to any tool that already implements value iteration, and it
is fast, further closing the performance gap between VI and sound methods.

Acknowledgments. The authors thank Tim Quatmann (RWTH Aachen) for fruitful
discussions when the idea of OVI initially came up in late 2018, and for his help in
implementing and optimising the SVI implementation in mcsta.

Optimistic Value Iteration 509

Data Availability. A dataset to replicate our experimental evaluation is archived and
available at DOI 10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc [19].

References

1. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3, pp. 1–168. Oxford University Press (1994). http://www.cs.bham.ac.
uk/∼axj/pub/papers/handy1.pdf (corrected and expanded version)

2. Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4 29

3. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

4. Balaji, N., Kiefer, S., Novotný, P., Pérez, G.A., Shirmohammadi, M.: On the
complexity of value iteration. In: 46th International Colloquium on Automata,
Languages, and Programming (ICALP). LIPIcs, vol. 132, pp. 102:1–102:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.102

5. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quan-
titative probabilistic model checking through rational search. In: FMCAD, pp.
92–99. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102246

6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

7. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

8. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. TACAS. LNCS 10206, 151–168
(2017). https://doi.org/10.1007/978-3-662-54580-5 9

9. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0 7

10. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

11. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.
1109/LICS.2010.41

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

13. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011). https://doi.org/10.1145/1967701.1967710

https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.23919/FMCAD.2017.8102246
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1145/1967701.1967710

510 A. Hartmanns and B. L. Kaminski

14. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11439-2 10

15. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016.12.
003

16. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3 5

17. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

18. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

19. Hartmanns, A.: Optimistic value iteration (artifact). 4TU.Centre for Research Data
(2019). https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

21. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

22. Hensel, C.: The probabilistic model checker Storm: symbolic methods for proba-
bilistic model checking. Ph.D. thesis, RWTH Aachen University, Germany (2018)

23. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

26. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

27. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

28. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In:
ICML, ACM International Conference Proceeding Series, vol. 119, pp. 569–576.
ACM (2005). https://doi.org/10.1145/1102351.1102423

https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1145/1102351.1102423

Optimistic Value Iteration 511

29. Park, D.: Fixpoint induction and proofs of program properties. Mach. Intell. 5
(1969)

30. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics. Wiley, New York (1994)

31. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_37
http://creativecommons.org/licenses/by/4.0/

PrIC3: Property Directed Reachability
for MDPs

Kevin Batz1(B) , Sebastian Junges2 , Benjamin Lucien Kaminski3 ,
Joost-Pieter Katoen1 , Christoph Matheja4 , and Philipp Schröer1

1 RWTH Aachen University, Aachen, Germany
kevin.batz@cs.rwth-aachen.de

2 University of California, Berkeley, USA
3 University College London, London, UK

4 ETH Zürich, Zürich, Switzerland

Abstract. IC3 has been a leap forward in symbolic model checking. This
paper proposes PrIC3 (pronounced pricy-three), a conservative exten-
sion of IC3 to symbolic model checking of MDPs. Our main focus is
to develop the theory underlying PrIC3. Alongside, we present a first
implementation of PrIC3 including the key ingredients from IC3 such as
generalization, repushing, and propagation.

1 Introduction

IC3. Also known as property-directed reachability (PDR) [23], IC3 [13] is a sym-
bolic approach for verifying finite transition systems (TSs) against safety prop-
erties like “bad states are unreachable”. It combines bounded model checking
(BMC) [12] and inductive invariant generation. Put shortly, IC3 either proves that
a set B of bad states is unreachable by finding a set of non-B states closed under
reachability—called an inductive invariant—or refutes reachability ofB by a coun-
terexample path reaching B. Rather than unrolling the transition relation (as in
BMC), IC3 attempts to incrementally strengthen the invariant “no state in B is
reachable” into an inductive one. In addition, it applies aggressive abstraction to
the explored state space, so-called generalization [36]. These aspects together with
the enormous advances in modern SAT solvers have led to IC3’s success. IC3 has
been extended [27,38] and adapted to software verification [19,44]. This paper
develops a quantitative IC3 framework for probabilistic models.

MDPs. Markov decision processes (MDPs) extend TSs with discrete probabilistic
choices. They are central in planning, AI as well as in modeling randomized dis-
tributed algorithms. A key question in verifying MDPs is quantitative reachability:
“is the (maximal) probability to reach B atmost λ? ”.Quantitative reachability [5,6]

This work has been supported by the ERC Advanced Grant 787914 (FRAPPANT),
NSF grants 1545126 (VeHICaL) and 1646208, the DARPA Assured Autonomy pro-
gram, Berkeley Deep Drive, and by Toyota under the iCyPhy center.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 512–538, 2020.
https://doi.org/10.1007/978-3-030-53291-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_27&domain=pdf
http://orcid.org/0000-0001-8705-2564
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0001-5185-2324
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9151-0441
http://orcid.org/0000-0002-4329-530X
https://doi.org/10.1007/978-3-030-53291-8_27

PrIC3: Property Directed Reachability for MDPs 513

reduces to solving linear programs (LPs). Various tools support MDP model check-
ing, e.g., Prism [43], Storm [22], modest [34], and EPMC [31]. The LPs are mostly
solved using (variants of) value iteration [8,28,35,51]. Symbolic BDD-based MDP
model checking originated two decades ago [4] and is rather successful.
Towards IC3 for MDPs. Despite the success of BDD-based symbolic methods
in tools like Prism, IC3 has not penetrated probabilistic model checking yet. The
success of IC3 and the importance of quantitative reachability in probabilistic
model checking raises the question whether and how IC3 can be adapted—not just
utilized—to reason about quantitative reachability in MDPs. This paper addresses
the challenges of answering this question. It extends IC3 in several dimensions to
overcome these hurdles, making PrIC3—to our knowledge—the first IC3 frame-
work for quantitative reachability in MDPs1. Notably, PrIC3 is conservative: For
a threshold λ = 0, PrIC3 solves the same qualitative problem and behaves (almost)
the same as standard IC3. Our main contribution is developing the theory under-
lying PrIC3, which is accompanied by a proof-of-concept implementation.

Challenge 1 (Leaving the Boolean domain). IC3 iteratively computes frames,
which are over-approximations of sets of states that can reach B in a bounded
number of steps. For MDPs, Boolean reachability becomes a quantitative reach-
ability probability. This requires a shift: frames become real-valued functions
rather than sets of states. Thus, there are infinitely many possible frames—even
for finite-state MDPs—just as for infinite-state software [19,44] and hybrid sys-
tems [54]. Additionally, whereas in TSs a state reachable within k steps remains
reachable on increasing k, the reachability probability in MDPs may increase.
This complicates ensuring termination of an IC3 algorithm for MDPs. �
Challenge 2 (Counterexamples �= single paths). For TSs, a single cycle-free path2

to B suffices to refute that “B is not reachable”. This is not true in the proba-
bilistic setting [32]. Instead, proving that the probability of reaching B exceeds
the threshold λ requires a set of possibly cyclic paths—e.g., represented as a
sub-MDP [15]—whose probability mass exceeds λ. Handling sets of paths as
counterexamples in the context of IC3 is new. �
Challenge 3 (Strengthening). This key IC3 technique intuitively turns a proof
obligation of type (i) “state s is unreachable from the initial state sI ” into
type (ii) “s’s predecessors are unreachable from sI ”. A first issue is that in the
quantitative setting, the standard characterization of reachability probabilities
in MDPs (the Bellman equations) inherently reverses the direction of reasoning
(cf. “reverse” IC3 [53]): Hence, strengthening turns (i) “s cannot reach B” into
(ii) “s’s successors cannot reach B”.

A much more challenging issue, however, is that in the quantitative setting
obligations of type (i) read “s is reachable with at most probability δ”. However,

1 Recently, (standard) IC3 for TSs was utilized in model checking Markov chains [49] to
on-the-fly compute the states that cannot reach B.

2 In [38], tree-like counterexamples are used for non-linear predicate transformers in
IC3.

514 K. Batz et al.

the strengthened type (ii) obligation must then read: “the weighted sum over
the reachability probabilities of the successors of s is at most δ”. In general,
there are infinitely many possible choices of subobligations for the successors of
s in order to satisfy the original obligation, because—grossly simplified—there
are infinitely many possibilities for a and b to satisfy weighted sums such as
1
3a + 2

3b ≤ δ. While we only need one choice of subobligations, picking a good
one is approximately as hard as solving the entire problem altogether. We hence
require a heuristic, which is guided by a user-provided oracle. �
Challenge 4 (Generalization). “One of the key components of IC3 is [inductive]
generalization” [13]. Generalization [36] abstracts single states. It makes IC3
scale, but is not essential for correctness. To facilitate generalization, systems
should be encoded symbolically, i.e., integer-valued program variables describe
states. Frames thus map variables to probabilities. A first aspect is how to effec-
tively present them to an SMT-solver. Conceptually, we use uninterpreted func-
tions and universal quantifiers (encoding program behavior) together with linear
real arithmetic to encode the weighted sums occurring when reasoning about
probabilities. A second aspect is more fundamental: Abstractly, IC3’s general-
ization guesses an unreachable set of states. We, however, need to guess this set
and a probability for each state. To be effective, these guesses should moreover
eventually yield an inductive frame, which is often highly nonlinear. We propose
three SMT-guided interpolation variants for guessing these maps. �

Structure of this Paper. We develop PrIC3 gradually: We explain the underlying
rationale in Sect. 3. We also describe the core of PrIC3—called PrIC3H—which
resembles closely the main loop of standard IC3, but uses adapted frames and ter-
mination criteria (Challenge 1). In line with Challenge 3, PrIC3H is parameterized
by a heuristic H which is applied whenever we need to select one out of infinitely
many probabilities. No requirements on the quality of H are imposed. PrIC3H is
sound and always terminates: If it returns true, then the maximal reachability
probability is bounded by λ. Without additional assumptions about H, PrIC3H
is incomplete: on returning false, it is unknown whether the returned sub-
MDP is indeed a counterexample (Challenge 2). Section 4 details strengthening
(Challenge 3). Section 5 presents a sound and complete algorithm PrIC3 on top
of PrIC3H. Section 6 presents a prototype, discusses our chosen heuristics, and
addresses Challenge 4. Section 7 shows some encouraging experiments, but also
illustrates need for further progress.

Related Work. Just like IC3 has been a symbiosis of different approaches,
PrIC3 has been inspired by several existing techniques from the verification of
probabilistic systems.

BMC. Adaptions of BMC to Markov chains (MCs) with a dedicated treatment
of cycles have been pursued in [57]. The encoding in [24] annotates sub-formulae
with probabilities. The integrated SAT solving process implicitly unrolls all paths
leading to an exponential blow-up. In [52], this is circumvented by grouping
paths, discretizing them, and using an encoding with quantifiers and bit-vectors,

PrIC3: Property Directed Reachability for MDPs 515

but without numerical values. Recently, [56] extends this idea to a PAC algorithm
by purely propositional encodings and (approximate) model counting [17]. These
approaches focus on MCs and are not mature yet.

Invariant Synthesis. Quantitative loop invariants are key in analyzing proba-
bilistic programs whose operational semantics are (possibly infinite) MDPs [26].
A quantitative invariant I maps states to probabilities. I is shown to be an
invariant by comparing I to the result of applying the MDP’s Bellman operator
to I. Existing approaches for invariant synthesis are, e.g., based on weakest pre-
expectations [33,39,40,42,46], template-based constraint solving [25], notions of
martingales [3,9,16,55], and solving recurrence relations [10]. All but the last
technique require user guidance.

Abstraction. To combat state-space explosion, abstraction is often employed.
CEGAR for MDPs [37] deals with explicit sets of paths as counterexamples.
Game-based abstraction [30,41] and partial exploration [14] exploit that not all
paths have to be explored to prove bounds on reachability probabilities.

Statistical Methods and (deep) Reinforcement Learning. Finally, an avenue that
avoids storing a (complete) model are simulation-based approaches (statistical
model checking [2]) and variants of reinforcement learning, possibly with neural
networks. For MDPs, these approaches yield weak statistical guarantees [20], but
may provide good oracles.

2 Problem Statement

Our aim is to prove that the maximal probability of reaching a set B of bad
states from the initial state sI of a Markov decision process M is at most some
threshold λ. Below, we give a formal description of our problem. We refer to [7,50]
for a thorough introduction.

Definition 1 (MDPs). A Markov decision process (MDP) is a tuple M =
(S, sI , Act, P), where S is a finite set of states, sI ∈ S is the initial state, Act
is a finite set of actions, and P : S × Act × S → [0, 1] is a transition proba-
bility function. For state s, let Act (s) = {a ∈ Act | ∃s′ ∈ S : P (s, a, s′) > 0}
be the enabled actions at s. For all states s ∈ S, we require |Act (s) | ≥ 1 and∑

s′∈S P (s, a, s′) = 1. �
For this paper, we fix an MDP M = (S, sI , Act, P), a set of bad states B ⊆ S,
and a threshold λ ∈ [0, 1]. The maximal3 (unbounded) reachability probability
to eventually reach a state in B from a state s is denoted by Prmax (s |= ♦B).
We characterize Prmax (s |= ♦B) using the so-called Bellman operator. Let MN

denote the set of functions from N to M . Anticipating IC3 terminology, we call
a function F ∈ [0, 1]S a frame. We denote by F [s] the evaluation of frame F for
state s.
3 Maximal with respect to all possible resolutions of nondeterminism in the MDP.

516 K. Batz et al.

Definition 2 (Bellman Operator). For a set of actions A ⊆ Act, we define
the Bellman operator for A as a frame transformer ΦA : [0, 1]S → [0, 1]S with

ΦA (F) [s] =

⎧
⎨

⎩

1, if s ∈ B

max
a∈A

∑

s′∈S

P (s, a, s′) · F [s′] , if s /∈ B .

We write Φa for Φ{a}, Φ for ΦAct, and call Φ simply the Bellman operator. �
For every state s, the maximal reachability probability Prmax (s |= ♦B) is then
given by the least fixed point of the Bellman operator Φ. That is,

∀ s : Prmax (s |= ♦B) =
(
lfp Φ

)
[s] ,

where the underlying partial order on frames is a complete lattice with ordering

F1 ≤ F2 iff ∀ s ∈ S : F1[s] ≤ F2[s] .

In terms of the Bellman operator, our formal problem statement reads as follows:

Given an MDP M with initial state sI , a set B of bad states, and a threshold
λ ∈ [0, 1],

prove or refute that Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ λ .

Whenever Prmax (sI |= ♦B) ≤ λ indeed holds, we say that the MDP M is safe
(with respect to the set of bad states B and threshold λ); otherwise, we call it
unsafe.

Fig. 1. The MDP M serving as a running example.

Recovery Statement 1. For λ = 0, our problem statement is equivalent to
the qualitative reachability problem solved by (reverse) standard IC3, i.e, prove
or refute that all bad states in B are unreachable from the initial state sI .

Example 1. The MDP M in Fig. 1 consists of 6 states with initial state s0 and
bad states B = {s5}. In s2, actions a and b are enabled; in all other states, one
unlabeled action is enabled. We have Prmax (s0 |= ♦B) = 2/3. Hence, M is safe
for all thresholds λ ≥ 2/3 and unsafe for λ < 2/3. In particular, M is unsafe for
λ = 0 as s5 is reachable from s0. �

PrIC3: Property Directed Reachability for MDPs 517

3 The Core PrIC3 Algorithm

The purpose of PrIC3 is to prove or refute that the maximal probability to reach
a bad state in B from the initial state sI of the MDP M is at most λ. In this
section, we explain the rationale underlying PrIC3. Moreover, we describe the
core of PrIC3—called PrIC3H—which bears close resemblance to the main loop
of standard IC3 for TSs.

Because of the inherent direction of the Bellman operator, we build PrIC3
on reverse IC3 [53], cf. Challenge 3. Reversing constitutes a shift from rea-
soning along the direction initial-to-bad to bad-to-initial. While this shift is
mostly inessential to the fundamentals underlying IC3, the reverse direction
is unswayable in the probabilistic setting. Whenever we draw a connection to
standard IC3, we thus generally mean reverse IC3.

3.1 Inductive Frames

IC3 for TSs operates on (qualitative) frames representing sets of states of the TS
at hand. A frame F can hence be thought of as a mapping4 from states to {0, 1}.
In PrIC3 for MDPs, we need to move from a Boolean to a quantitative regime.
Hence, a (quantitative) frame is a mapping from states to probabilities in [0, 1].

For a given TS, consider the frame transformer T that adds to a given input
frame F ′ all bad states in B and all predecessors of the states contained in F ′.
The rationale of standard (reverse) IC3 is to find a frame F ∈ {0, 1}S such that
(i) the initial state sI does not belong to F and (ii) applying T takes us down
in the partial order on frames, i.e.,

(i) F [sI] = 0 and (ii) T (F) ≤ F .

Intuitively, (i) postulates the hypothesis that sI cannot reach B and (ii) expresses
that F is closed under adding bad states and taking predecessors, thus affirming
the hypothesis.

Analogously, the rationale of PrIC3 is to find a frame F ∈ [0, 1]S such that
(i) F postulates that the probability of sI to reach B is at most the threshold
λ and (ii) applying the Bellman operator Φ to F takes us down in the partial
order on frames, i.e.,

(i) F [sI] ≤ λ and (ii) Φ(F) ≤ F .

Frames satisfying the above conditions are called inductive invariants in IC3. We
adopt this terminology. By Park’s Lemma [48], which in our setting reads

Φ(F) ≤ F implies lfp Φ ≤ F ,

4 In IC3, frames are typically characterized by logical formulae. To understand IC3’s
fundamental principle, however, we prefer to think of frames as functions in {0, 1}S

partially ordered by ≤.

518 K. Batz et al.

an inductive invariant F would indeed witness that Prmax (sI |= ♦B) ≤ λ,
because

Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ F [sI] ≤ λ .

If no inductive invariant exists, then standard IC3 will find a counterexample:
a path from the initial state sI to a bad state in B, which serves as a witness
to refute. Analogously, PrIC3 will find a counterexample, but of a different kind:
Since single paths are insufficient as counterexamples in the probabilistic realm
(Challenge 2), PrIC3 will instead find a subsystem of states of the MDP witnessing
Prmax (sI |= ♦B) > λ.

3.2 The PrIC3 Invariants

Analogously to standard IC3, PrIC3 aims to find the inductive invariant by main-
taining a sequence of frames F0 ≤ F1 ≤ F2 ≤ . . . such that Fi[s] overapprox-
imates the maximal probability of reaching B from s within at most i steps.
This i-step-bounded reachability probability Prmax (

s |= ♦≤iB
)

can be character-
ized using the Bellman operator: Φ(0) is the 0-step probability; it is 1 for every
s ∈ B and 0 otherwise. For any i ≥ 0, we have

Prmax (
s |= ♦≤iB

)
=

(
Φi

(
Φ(0)

))
[s] =

(
Φi+1 (0)

)
[s] ,

where 0, the frame that maps every state to 0, is the least frame of the underlying
complete lattice. For a finite MDP, the unbounded reachability probability is then
given by the limit

Prmax (s |= ♦B) =
(
lfp Φ

)
[s]

(∗)
=

(
lim

n→∞
Φn (0)

)
[s] = lim

n→∞
Prmax

(
s |= ♦≤nB

)
,

where (∗) is a consequence of the well-known Kleene fixed point theorem [45].
The sequence F0 ≤ F1 ≤ F2 ≤ . . . maintained by PrIC3 should frame-wise

overapproximate the increasing sequence Φ(0) ≤ Φ2 (0) ≤ Φ3 (0) Pictorially:

F0 ≤ F1 ≤ F2 ≤ . . . ≤ Fk

≤ ≤ ≤ ≤

0 ≤ Φ (0) ≤ Φ2 (0) ≤ Φ3 (0) ≤ . . . ≤ Φk+1 (0)

However, the sequence Φ(0) , Φ2 (0) , Φ3 (0) , . . . will never explicitly be
known to PrIC3. Instead, PrIC3 will ensure the above frame-wise overapprox-
imation property implicitly by enforcing the so-called PrIC3 invariants on the
frame sequence F0, F1, F2, Apart from allowing for a threshold 0 ≤ λ ≤ 1 on
the maximal reachability probability, these invariants coincide with the standard
IC3 invariants (where λ = 0 is fixed). Formally:

PrIC3: Property Directed Reachability for MDPs 519

Definition 3 (PrIC3 Invariants). Frames F0, . . . , Fk, for k ≥ 0, satisfy the
PrIC3 invariants, a fact we will denote by PrIC3Inv (F0, . . . , Fk), if all of the
following hold:

1. Initiality : F0 = Φ(0)
2. Chain Property : ∀ 0 ≤ i < k : Fi ≤ Fi+1

3. Frame-safety : ∀ 0 ≤ i ≤ k : Fi[sI] ≤ λ
4. Relative Inductivity : ∀ 0 ≤ i < k : Φ (Fi) ≤ Fi+1 �

The PrIC3 invariants enforce the above picture: The chain property ensures F0 ≤
F1 ≤ . . . ≤ Fk. We have Φ(0) = F0 ≤ F0 by initiality. Assuming Φi+1 (0) ≤
Fi as induction hypothesis, monotonicity of Φ and relative inductivity imply
Φi+2 (0) ≤ Φ(Fi) ≤ Fi+1.

By overapproximating Φ(0) , Φ2 (0) , . . . , Φk+1 (0), the frames F0, . . . , Fk in
effect bound the maximal step-bounded reachability probability of every state:

Lemma 1. Let frames F0, . . . , Fk satisfy the PrIC3 invariants. Then

∀ s ∀ i ≤ k : Prmax (
s |= ♦≤iB

) ≤ Fi[s].

In particular, Lemma1 together with frame-safety ensures that the maximal
step-bounded reachability probability of the initial state sI to reach B is at
most the threshold λ.

As for proving that the unbounded reachability probability is also at most λ,
it suffices to find two consecutive frames, say Fi and Fi+1, that coincide:

Lemma 2. Let frames F0, . . . , Fk satisfy the PrIC3 invariants. Then

∃ i < k : Fi = Fi+1 implies Prmax (sI |= ♦B) ≤ λ .

Proof. Fi = Fi+1 and relative inductivity yield Φ(Fi) ≤ Fi+1 = Fi, rendering
Fi inductive. By Park’s lemma (cf. Sect. 3.1), we obtain lfp Φ ≤ Fi and—by
frame-safety—conclude

Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ Fi[sI] ≤ λ . �

3.3 Operationalizing the PrIC3 Invariants for Proving Safety

Lemma 2 gives us a clear angle of attack for proving an MDP safe: Repeatedly
add and refine frames approximating step-bounded reachability probabilities for
more and more steps while enforcing the PrIC3 invariants (cf. Definition 3.2) until
two consecutive frames coincide.

Analogously to standard IC3, this approach is taken by the core loop PrIC3H
depicted in Algorithm 1; differences to the main loop of IC3 (cf. [23, Fig. 5])
are highlighted in red. A particular difference is that PrIC3H is parameterized
by a heuristic H for finding suitable probabilities (see Challenge 3). Since the
precise choice of H is irrelevant for the soundness of PrIC3H, we defer a detailed
discussion of suitable heuristics to Sect. 4.

520 K. Batz et al.

Data: MDP M, set of bad states B, threshold λ
Result: true or false and a subset of the states of M

1 F0 ← Φ (0); F1 ← 1; k ← 1; oldSubsystem ← ∅;
2 while true do
3 success, F0, . . . , Fk, subsystem ← StrengthenH (F0, . . . , Fk);
4 if ¬success then returnfalse, subsystem;
5 Fk+1 ← 1;
6 F0, . . . , Fk+1 ← Propagate (F0, . . . , Fk+1);
7 if ∃ 1 ≤ i ≤ k : Fi = Fi+1 then returntrue, ;
8 if oldSubsystem = subsystem then returnfalse, subsystem;
9 k ← k + 1; oldSubsystem ← subsystem;

10 end
Algorithm 1: PrIC3H (M, B, λ)

As input, PrIC3H takes an MDP M = (S, sI , Act, P), a set B ⊆ S of bad
states, and a threshold λ ∈ [0, 1]. Since the input is never changed, we assume
it to be globally available, also to subroutines. As output, PrIC3H returns true
if two consecutive frames become equal. We hence say that PrIC3H is sound if
it only returns true if M is safe.

We will formalize soundness using Hoare triples. For precondition φ, postcon-
dition ψ, and program P , the triple

{
φ

}
P

{
ψ

}
is valid (for partial correctness)

if, whenever program P starts in a state satisfying precondition φ and termi-
nates in some state s′, then s′ satisfies postcondition ψ. Soundness of PrIC3H
then means validity of the triple

{
true

}
safe, ← PrIC3H (M, B, λ)

{
safe ⇒ Prmax (sI |= ♦B) ≤ λ

}
.

Let us briefly go through the individual steps of PrIC3H in Algorithm 1 and
convince ourselves that it is indeed sound. After that, we discuss why PrIC3H
terminates and what happens if it is unable to prove safety by finding two equal
consecutive frames.

How PrIC3H works. Recall that PrIC3H maintains a sequence of frames
F0, . . . , Fk which is initialized in l. 1 with k = 1, F0 = Φ(0), and F1 = 1, where
the frame 1 maps every state to 1. Every time upon entering the while-loop in
terms l. 2, the initial segment F0, . . . , Fk−1 satisfies all PrIC3 invariants (cf. Def-
inition 3), whereas the full sequence F0, . . . , Fk potentially violates frame-safety
as it is possible that Fk[sI] > λ.

In l. 3, procedure StrengthenH—detailed in Sect. 4—is called to restore all
PrIC3 invariants on the entire frame sequence: It either returns true if suc-
cessful or returns false and a counterexample (in our case a subsystem of the
MDP) if it was unable to do so. To ensure soundness of PrIC3H, it suffices that
StrengthenH restores the PrIC3 invariants whenever it returns true. Formally,
StrengthenH must meet the following specification:

PrIC3: Property Directed Reachability for MDPs 521

Definition 4. Procedure StrengthenH is sound if the following Hoare triple is
valid:

{
PrIC3Inv (F0, . . . , Fk−1) ∧ Fk−1 ≤ Fk ∧ Φ(Fk−1) ≤ Fk

}

success, F0, . . . , Fk, ← StrengthenH (F0, . . . , Fk)
{

success ⇒ PrIC3Inv (F0, . . . , Fk)
}
.

If StrengthenH returns true, then a new frame Fk+1 = 1 is created in l. 5. After
that, the (now initial) segment F0, . . . , Fk again satisfies all PrIC3 invariants,
whereas the full sequence F0, . . . , Fk+1 potentially violates frame-safety at Fk+1.
Propagation (l. 6) aims to speed up termination by updating Fi+1[s] by Fi[s] iff
this does not violate relative inductivity. Consequently, the previously mentioned
properties remain unchanged.

If StrengthenH returns false, the PrIC3 invariants—premises to Lemma 2 for
witnessing safety—cannot be restored and PrIC3H terminates returning false
(l. 4). Returning false (also possible in l. 8) has by specification no affect on
soundness of PrIC3H.

In l. 7, we check whether there exist two identical consecutive frames. If
so, Lemma 2 yields that the MDP is safe; consequently, PrIC3H returns true.
Otherwise, we increment k and are in the same setting as upon entering the loop,
now with an increased frame sequence; PrIC3H then performs another iteration.
In summary, we obtain:

Theorem 1 (Soundness of PrIC3H). If StrengthenH is sound and Propagate
does not affect the PrIC3 invariants, then PrIC3H is sound, i.e., the following
triple is valid:
{
true

}
safe, ← PrIC3H (M, B, λ)

{
safe =⇒ Prmax (sI |= ♦B) ≤ λ

}

PrIC3H Terminates for Unsafe MDPs. If the MDP is unsafe, then there
exists a step-bound n, such that Prmax (

sI |= ♦≤nB
)

> λ. Furthermore, any
sound implementation of StrengthenH (cf. Definition 4) either immediately termi-
nates PrIC3H by returning false or restores the PrIC3 invariants for F0, . . . , Fk.
If the former case never arises, then StrengthenH will eventually restore the
PrIC3 invariants for a frame sequence of length k = n. By Lemma1, we have
Fn[sI] ≥ Prmax (

sI |= ♦≤nB
)

> λ contradicting frame-safety.

PrIC3H Terminates for Safe MDPs. Standard IC3 terminates on safe finite
TSs as there are only finitely many different frames, making every ascending
chain of frames eventually stabilize. For us, frames map states to probabilities
(Challenge 1), yielding infinitely many possible frames even for finite MDPs.
Hence, StrengthenH need not ever yield a stabilizing chain of frames. If it contin-
uously fails to stabilize while repeatedly reasoning about the same set of states,
we give up. PrIC3H checks this by comparing the subsystem StrengthenH oper-
ates on with the one it operated on in the previous loop iteration (l. 8).

Theorem 2. If StrengthenH and Propagate terminate, then PrIC3H terminates.

522 K. Batz et al.

Recovery Statement 2. For qual. reachability (λ = 0), PrIC3H never termi-
nates in l. 8.

PrIC3H is Incomplete. Standard IC3 either proves safety or returns false
and a counterexample—a single path from the initial to a bad state. As single
paths are insufficient as counterexamples in MDPs (Challenge 2), PrIC3H instead
returns a subsystem of the MDP M provided by StrengthenH. However, as argued
above, we cannot trust StrengthenH to provide a stabilizing chain of frames.
Reporting false thus only means that the given MDP may be unsafe; the
returned subsystem has to be analyzed further.

The full PrIC3 algorithm presented in Sect. 5 addresses this issue. Exploiting
the subsystem returned by PrIC3H, PrIC3 returns true if the MDP is safe;
otherwise, it returns false and provides a true counterexample witnessing that
the MDP is unsafe.

Example 2. We conclude this section with two example executions of PrIC3H
on a simplified version of the MDP in Fig. 1. Assume that action b has been
removed. Then, for every state, exactly one action is enabled, i.e., we consider a
Markov chain. Figure 2 depicts the frame sequences computed by PrIC3H (for a
reasonable H) on that Markov chain for two thresholds: 5/9 = Prmax (s0 |= ♦B)
and 9/10. In particular, notice that proving the coarser bound of 9/10 requires
fewer frames than proving the exact bound of 5/9. �

Fig. 2. Two runs of PrIC3H on the Markov chain induced by selecting action a in Fig. 1.
For every iteration, frames are recorded after invocation of StrengthenH.

4 Strengthening in PrIC3H

When the main loop of PrIC3H has created a new frame Fk = 1 in its previous
iteration, this frame may violate frame-safety (Definition 3.3) because of Fk[sI] =
1 �≤ λ. The task of StrengthenH is to restore the PrIC3 invariants on all frames
F0, . . . , Fk. To this end, our first obligation is to lower the value in frame i = k for
state s = sI to δ = λ ∈ [0, 1]. We denote such an obligation by (i, s, δ). Observe
that implicitly δ = 0 in the qualitative case, i.e., when proving unreachability.
An obligation (i, s, δ) is resolved by updating the values assigned to state s in all
frames F1, . . . , Fi to at most δ. That is, for all j ≤ i, we set Fj [s] to the minimum

PrIC3: Property Directed Reachability for MDPs 523

1 Q ← {(k, sI , λ)} ;
2 while Q not empty do
3 (i, s, δ) ← Q.popMin(); /* pop obligation with minimal frame

index */
4 if i = 0 ∨ (s ∈ B ∧ δ < 1) then

/* possible counterexample given by subsystem
consisting of states popped from Q at some point */

5 return false, , Q.touched();
/* check whether Fi[s] ← δ violates relative inductivity */

6 if ∃a ∈ Act (s) : Φa (Fi−1) [s] > δ then for such an a
7 δ1, . . . , δn ← H (s, a, δ) ;
8 {s1, . . . , sn} ← Succs(s, a);
9 Q.push ((i − 1, s1, δ1) , . . . , (i − 1, sn, δn) , (i, s, δ));

10 else /* resolve (i, s, δ) without violating relative
inductivity */

11 F1[s] ← min (F1[s], δ) ; . . . ; Fi[s] ← min (Fi[s], δ);
12 end
13 (/* Q empty; all obligations have been resolved */) return

true, F0, . . . , Fk, Q.touched();
Algorithm 2: StrengthenH (F0, . . . , Fk)

of δ and the original value Fj [s]. Such an update affects neither initiality nor the
chain property (Definitions 3.1, 3.2). It may, however, violate relative inductivity
(Definition 3.4), i.e., Φ(Fi−1) ≤ Fi. Before resolving obligation (i, s, δ), we may
thus have to further decrease some entries in Fi−1 as well. Hence, resolving
obligations may spawn additional obligations which have to be resolved first to
maintain relative inductivity. In this section, we present a generic instance of
StrengthenH meeting its specification (Definition 4) and discuss its correctness.

StrengthenH by Example. StrengthenH is given by the pseudo code in
Algorithm 2; differences to standard IC3 (cf. [23, Fig. 6]) are highlighted in red.
Intuitively, StrengthenH attempts to recursively resolve all obligations until either
both frame-safety and relative inductivity are restored for all frames or it detects
a potential counterexample justifying why it is unable to do so. We first consider
an execution where the latter does not arise:

Example 3. We zoom in on Example 2: Prior to the second iteration, we have
created the following three frames assigning values to the states s0, s5:

F0 = (0, 0, 0, 0, 1), F1 = (5/9, 1, 1, 1, 1, 1), and F2 = 1.

To keep track of unresolved obligations (i, s, δ), StrengthenH employs a priority
queue Q which pops obligations with minimal frame index i first. Our first step is
to ensure frame-safety of F2, i.e., alter F2 so that F2[s0] ≤ 5/9; we thus initialize
the queue Q with the initial obligation (2, s0, 5/9) (l. 1). To do so, we check
whether updating F2[s0] to 5/9 would invalidate relative inductivity (l. 6). This
is indeed the case:

524 K. Batz et al.

Φ(F1) [s0] = 1/2 · F1[s1] + 1/2 · F1[s2] = 1 �≤ 5/9.

To restore relative inductivity, StrengthenH spawns one new obligation for each
relevant successor of s0. These have to be resolved before retrying to resolve the
old obligation.5

In contrast to standard IC3 , spawning obligations involves finding suitable
probabilities δ (l. 7). In our example this means we have to spawn two obligations
(1, s1, δ1) and (1, s2, δ2) such that 1/2 · δ1 + 1/2 · δ2 ≤ 5/9. There are infinitely
many choices for δ1 and δ2 satisfying this inequality. Assume some heuristic H
chooses δ1 = 11/18 and δ2 = 1/2; we push obligations (1, s1, 11/18), (1, s2, 1/2),
and (2, s0, 5/9) (ll. 8, 9). In the next iteration, we first pop obligation (1, s1, 11/18)
(l. 3) and find that it can be resolved without violating relative inductivity (l. 6).
Hence, we set F1[s1] to 11/18 (l. 11); no new obligation is spawned. Obligation
(1, s2, 1/2) is resolved analogously; the updated frame is F1 = (5/9, 11/18, 1/2, 1).
Thereafter, our initial obligation (2, s0, 5/9) can be resolved; relative inductivity
is restored for F0, F1, F2. Hence, StrengthenH returns true together with the
updated frames. �

StrengthenH is Sound. Let us briefly discuss why Algorithm 2 meets the speci-
fication of a sound implemenation of StrengthenH (Definition 4): First, we observe
that Algorithm 2 alters the frames—and thus potentially invalidates the PrIC3
invariants—only in l. 11 by resolving an obligation (i, s, δ) with Φ(Fi−1) [s] ≤ δ
(due to the check in l. 6).
Let F 〈s �→ δ〉 denote the frame F in which F [s] is set to δ, i.e.,

F 〈s �→ δ〉 [s′] =

{
δ, if s′ = s,

F [s′], otherwise.

Indeed, resolving obligation (i, s, δ) in l. 11 lowers the values assigned to state s
to at most δ without invalidating the PrIC3 invariants:

Lemma 3. Let (i, s, δ) be an obligation and F0, . . . , Fi, for i > 0, be frames with
Φ(Fi−1) [s] ≤ δ. Then PrIC3Inv (F0, . . . , Fi) implies

PrIC3Inv
(

F0

〈
s �→ min (F0[s], δ)

〉
, . . . , Fi

〈
s �→ min (Fi[s], δ)

〉)
.

Crucially, the precondition of Definition 4 guarantees that all PrIC3 invariants
except frame safety hold initially. Since these invariants are never invalidated due
to Lemma3, Algorithm 2 is a sound implementation of StrengthenH if it restores
frame safety whenever it returns true, i.e., once it leaves the loop with an empty
obligation queue Q (ll. 12–13). Now, an obligation (i, s, δ) is only popped from
Q in l. 3. As (i, s, δ) is added to Q upon reaching l. 9, the size of Q can only
ever be reduced (without returning false) by resolving (i, s, δ) in l. 11. Hence,
Algorithm 2 does not return true unless it restored frame safety by resolving,
amongst all other obligations, the initial obligation (k, sI , λ). Consequently:
5 We assume that the set Succs(s, a) = {s′ ∈ S | P (s, a, s′) > 0} of relevant

a-successors of state s is returned in some arbitrary, but fixed order.

PrIC3: Property Directed Reachability for MDPs 525

Lemma 4. Procedure StrengthenH is sound, i.e., it satisfies the specification in
Definition 4.

Theorem 3. Procedure PrIC3H is sound, i.e., satisfies the specification in
Theorem 1.

We remark that, analogously to standard IC3, resolving an obligation in l. 11
may be accompanied by generalization. That is, we attempt to update the values
of multiple states at once. Generalization is, however, highly non-trivial in a
probabilistic setting. We discuss three possible approaches to generalization in
Sect. 6.2.

StrengthenH Terminates. We now show that StrengthenH as in Algorithm 2
terminates. The only scenario in which StrengthenH may not terminate is if it
keeps spawning obligations in l. 9. Let us thus look closer at how obligations are
spawned: Whenever we detect that resolving an obligation (i, s, δ) would violate
relative inductivity for some action a (l. 6), we first need to update the values
of the successor states s1, . . . , sn ∈ Succs(s, a) in frame i−1, i.e., we push the
obligations (i−1, s1, δ1), . . . , (i−1, sn, δn) which have to be resolved first (ll. 7–9).
It is noteworthy that, for a TS, a single action leads to a single successor state
s1. Algorithm 2 employs a heuristic H to determine the probabilities required
for pushing obligations (l. 7). Assume for an obligation (i, s, δ) that the check
in l. 6 yields ∃a ∈ Act (s) : Φa (Fi−1) [s] > δ. Then H takes s, a, δ and reports
some probability δj for every a-successor sj of s. However, an arbitrary heuristic
of type H : S × Act × [0, 1] → [0, 1]∗ may lead to non-terminating behavior:
If δ1, . . . , δn = Fi−1[s1], . . . Fi−1[sn], then the heuristic has no effect. It is thus
natural to require that an adequate heuristic H yields probabilities such that
the check Φa (Fi−1) [s] > δ in l. 6 cannot succeed twice for the same obligation
(i, s, δ) and same action a. Formally, this is guaranteed by the following:

Definition 5. Heuristic H is adequate if the following triple is valid (for any
frame F):

{
Succs(s, a) = s1, . . . , sn

}

δ1, . . . , δn ← H(s, a, δ)
{

Φa

(
F 〈s1 �→ δ1〉 . . . 〈sn �→ δn〉) [s] ≤ δ

}
�

Details regarding our implementation of heuristic H are found in Sect. 6.1.
For an adequate heuristic, attempting to resolve an obligation (i, s, δ) (ll. 3

– 11) either succeeds after spawning it at most |Act(s)| times or StrengthenH
returns false. By a similar argument, attempting to resolve an obligation (i >
0, s,) leads to at most

∑
a∈Act(s) |{s′ ∈ S | P (s, a, s′) > 0}| other obligations

of the form (i−1, s′,). Consequently, the total number of obligations spawned
by Algorithm 2 is bounded. Since Algorithm 2 terminates if all obligations have
been resolved (l. 12) and each of its loop iterations either returns false, spawns
obligations, or resolves an obligation, we conclude:

526 K. Batz et al.

Lemma 5. StrengthenH(F0, . . . , Fk) terminates for every adequate heuristic H.

Recovery Statement 3. Let H be adequate. Then for qualitative reachability
(λ = 0), all obligations spawned by StrengthenH as in Algorithm 2 are of the
form (i, s, 0).

StrengthenH returns false. There are two cases in which StrengthenH fails to
restore the PrIC3 invariants and returns false. The first case (the left disjunct
of l. 4) is that we encounter an obligation for frame F0. Resolving such an
obligation would inevitably violate initiality ; analogously to standard IC3, we
thus return false.

The second case (the right disjunct of l. 4) is that we encounter an obligation
(i, s, δ) for a bad state s ∈ B with a probability δ < 1 (though, obviously,
all s ∈ B have probability =1). Resolving such an obligation would inevitably
prevents us from restoring relative inductivity : If we updated Fi[s] to δ, we would
have Φ(Fi−1) [s] = 1 > δ = Fi[s]. Notice that, in contrast to standard IC3, this
second case can occur in PrIC3:

Example 4. Assume we have to resolve an obligation (i, s3, 1/2) for the MDP in
Fig. 1. This involves spawning obligations (i−1, s4, δ1) and (i−1, s5, δ2), where
s5 is a bad state, such that 1/3 · δ1 + 2/3 · δ2 ≤ 1/2. Even for δ1 = 0, this is only
possible if δ2 ≤ 3/4 < 1. �

StrengthenH Cannot Prove Unsafety. If standard IC3 returns false, it
proves unsafety by constructing a counterexample, i.e., a single path from the
initial state to a bad state. If PrIC3 returns false, there are two possible reasons:
Either the MDP is indeed unsafe, or the heuristic H at some point selected prob-
abilities in a way such that StrengthenH is unable to restore the PrIC3 invariants
(even though the MDP might in fact be safe). StrengthenH thus only returns
a potential counterexample which either proves unsafety or indicates that our
heuristic was inappropriate.

Counterexamples in our case consist of subsystems rather than a single path
(see Challenge 2 and Sect. 5). StrengthenH hence returns the set Q.touched()
of all states that eventually appeared in the obligation queue. This set is a
conservative approximation, and optimizations as in [1] may be beneficial. Fur-
thermore, in the qualitative case, our potential counterexample subsumes the
counterexamples constructed by standard IC3:

Recovery Statement 4. Let H0 be the adequate heuristic mapping every state
to 0. For qual. reachability (λ = 0), if success = false is returned by
StrengthenH0

(F0, . . . , Fk), then Q.touched() contains a path from the initial to
a bad state.6

6 Q.touched() might be restricted to only contain this path by some simple adaptions.

PrIC3: Property Directed Reachability for MDPs 527

Data: global MDP M, set of bad states B, threshold λ
Result: true iff Prmax (sI |= ♦B) ≤ λ

1 Ω ← Initialize(); touched ← {sI};
2 do
3 H ← CreateHeuristic(Ω); safe, subsystem ← PrIC3H();
4 if safe then return true ;
5 if CheckRefutation(subsystem) then return false ;
6 touched ← Enlarge(touched, subsystem);
7 Ω ← Refine(Ω, touched);
8 while touched 	= S;
9 return Ω(sI) ≤ λ
Algorithm 3: PrIC3: The outermost loop dealing with possibly imprecise
heuristics

5 Dealing with Potential Counterexamples

Recall that our core algorithm PrIC3H is incomplete for a fixed heuristic H: It
cannot give a conclusive answer whenever it finds a potential counterexample
for two possible reasons: Either the heuristic H turned out to be inappropriate
or the MDP is indeed unsafe. The idea to overcome the former is to call PrIC3H
finitely often in an outer loop that generates new heuristics until we find an
appropriate one: If PrIC3H still does not report safety of the MDP, then it is
indeed unsafe. We do not blindly generate new heuristics, but use the potential
counterexamples returned by PrIC3H to refine the previous one.

Let consider the procedure PrIC3 in Algorithm 3 which wraps our core
algorithm PrIC3H in more detail: First, we create an oracle Ω: S → [0, 1]
which (roughly) estimates the probability of reaching B for every state. A per-
fect oracle would yield precise maximal reachability probabilites, i.e., Ω(s) =
Prmax (s |= ♦B) for every state s. We construct oracles by user-supplied methods
(highlighted in blue). Examples of implementations of all user-supplied methods
in Algorithm 3 are discussed in Sect. 7.

Assuming the oracle is good, but not perfect, we construct an adequate
heuristic H selecting probabilities based on the oracle7 for all successors of a
given state: There are various options. The simplest is to pass-through the ora-
cle values. A version that is more robust against noise in the oracle is discussed
in Sect. 6. We then invoke PrIC3H. If PrIC3H reports safety, the MDP is indeed
safe by the soundness of PrIC3H.

Check Refutation. If PrIC3H does not report safety, it reports a subsystem
that hints to a potential counterexample. Formally, this subsystem is a subMDP
of states that were ‘visited’ during the invocation of StrengthenH.

Definition 6 (subMDP). Let M = (S, sI , Act, P) be an MDP and let S′ ⊆ S
with sI ∈ S′. We call MS′ = (S′, sI , Act, P ′) the subMDP induced by M and
S′, where for all s, s′ ∈ S′ and all a ∈ Act, we have P ′(s, a, s′) = P (s, a, s′). �
7 We thus assume that heuristic H invokes the oracle whenever it needs to guess some

probability.

528 K. Batz et al.

A subMDP MS′ may be substochastic where missing probability mass never
reaches a bad state. Definition 1 is thus relaxed: For all states s ∈ S′ we require
that

∑
s′∈S′ P (s, a, s′) ≤ 1.If the subsystem is unsafe, we can conclude that the

original MDP M is also safe.

Lemma 6. If M′ is a subMDP of M and M′ is unsafe, then M is also unsafe.

The role of CheckRefutation is to establish whether the subsystem is indeed a
true counterexample or a spurious one. Formally, CheckRefutation should ensure:

{
true

}
res ← CheckRefutation (subsystem)

{
res = true ⇔ Msubsystem unsafe

}
.

Again, PrIC3 is backward compatible in the sense that a single fixed heuristic is
always sufficient when reasoning about reachability (λ = 0).

Recovery Statement 5. For qualitative reachability (λ = 0) and the heuristic
H0 from Recovery Statement 4, PrIC3 invokes its core PrIC3H exactly once.

This statement is true, as PrIC3H returns either safe or a subsystem containing
a path from the initial state to a bad state. In the latter case, CheckRefutation
detects that the subsystem is indeed a counterexample which cannot be spurious
in the qualitative setting.

We remark that the procedure CheckRefutation invoked in l. 5 is a classical
fallback; it runs an (alternative) model checking algorithm, e.g., solving the set
of Bellman equations, for the subsystem. In the worst case, i.e., for S′ = S, we
thus solve exactly our problem statement. Empirically (Table 1) we observe that
for reasonable oracles the procedure CheckRefutation is invoked on significantly
smaller subMDPs. However, in the worst case the subMDP must include all
paths of the original MDP, and then thus coincides.

Refine Oracle. Whenever we have neither proven the MDP safe nor unsafe, we
refine the oracle to prevent generating the same subsystem in the next invocation
of PrIC3H. To ensure termination, oracles should only be refined finitely often.
That is, we need some progress measure. The set touched overapproximates all
counterexamples encountered in some invocation of PrIC3H and we propose to
use its size as the progress measure. While there are several possibilities to update
touched through the user-defined procedure Enlarge (l. 6), every implementation
should hence satisfy

{
true

}
touched′ ← Enlarge(touched,)

{ |touched′| >

|touched|}. Consequently, after finitely many iterations, the oracle is refined
with respect to all states. In this case, we may as well rely on solving the char-
acteristic LP problem:

Lemma 7. The algorithm PrIC3 in Algorithm 3 is sound and complete if
Refine(Ω, S) returns a perfect oracle Ω (with S is the set of all states).

Weaker assumptions on Refine are possible, but are beyond the scope of this
paper. Moreover, the above lemma does not rely on the abstract concept that
heuristic H provides suitable probabilities after finitely many refinements.8

8 One could of course now also create a heuristic that is trivial for a perfect oracle and
invoke PrIC3H with the heuristic for the perfect oracle, but there really is no benefit
in doing so.

PrIC3: Property Directed Reachability for MDPs 529

6 Practical PrIC3

So far, we gave a conceptual view on PrIC3, but now take a more practical stance.
We detail important features of effective implementations of PrIC3 (based on our
empirical evaluation). We first describe an implementation without generaliza-
tion, and then provide a prototypical extension that allows for three variants of
generalization.

6.1 A Concrete PrIC3 Instance Without Generalization

Input. We describe MDPs using the Prism guarded command language9, exem-
plified in Fig. 3. States are described by valuations to m (integer-valued) program
variables vars, and outgoing actions are described by commands of the form

[] guard -> prob1 : update1 & ... & probk : updatek

If a state satisfies guard, then the corresponding action with k branches exists;
probabilities are given by probi, the successor states are described by updatei,
see Fig. 3b.

Fig. 3. Illustrative Prism-style probabilistic guarded command language example

Encoding. We encode frames as logical formulae. Updating frames then corre-
sponds to adding conjuncts, and checking for relative inductivity is a satisfiability
call. Our encoding is as follows: States are assignments to the program variables,
i.e., States = Z

m. We use various uninterpreted functions, to whom we give
semantics using appropriate constraints. Frames10 are represented by uninter-
preted functions Frame : States → R satisfying Frame (s) = d implies F [s] ≥ d.
Likewise, the Bellman operator is an uninterpreted function Phi : States → R

such that Phi (s) = d implies Φ(F) [s] ≥ d. Finally, we use Bad : States → B with
Bad (s) iff s ∈ B.

Among the appropriate constraints, we ensure that variables are within their
range, bound the values for the frames, and enforce Phi (s) = 1 for s ∈ B.
We encode the guarded commands as exemplified by this encoding of the first
command in Fig. 3:

∀ s ∈ States : ¬Bad (s) ∧ s[c] < 20
=⇒ Phi (s) = 0.1 · Frame ((s[c], 1)) + 0.9 · Frame ((s[c] + 1, s[f])) .

9 Preprocessing ensures a single thread (module) and no deadlocks.
10 In each operation, we only consider a single frame.

530 K. Batz et al.

In our implementation, we optimize the encoding. We avoid the uninterpreted
functions by applying an adapted Ackerman reduction. We avoid universal quan-
tifiers, by first observing that we always ask whether a single state is not induc-
tive, and then unfolding the guarded commands in the constraints that describe
a frame. That encoding grows linear in the size of the maximal out-degree of the
MDP, and is in the quantifier-free fragment of linear arithmetic (QFLRIA).

Heuristic. We select probabilities δi by solving the following optimization prob-
lem, with variables xi, range(xi) ∈ [0, 1], for states si ∈ Succs(s, a) and
oracle Ω11.

minimize
k∑

i
si �∈B

∣
∣
∣
∣
∣

xi
∑k

j=1 xj

− Ω(si)∑n
j=1 Ω(sj)

∣
∣
∣
∣
∣

s.t. δ =
k∑

i=1

P (s, a, si) ·
{

1, if si ∈ B,

xi, else.

The constraint ensures that, if the values xi correspond to the actual reacha-
bility probabilities from si, then the reachability from state s is exactly δ. A
constraint stating that δ ≥ . . . would also be sound, but we choose equality
as it preserves room between the actual probability and the threshold we want
to show. Finally, the objective function aims to preserve the ratio between the
suggested probabilities.

Repushing and Breaking Cycles. Repushing [23] is an essential ingredient of both
standard IC3 and PrIC3. Intuitively, we avoid opening new frames and spawning
obligations that can be deduced from current information. Since repushing gener-
ates further obligations in the current frame, its implementation requires that the
detection of Zeno-behavior has to be moved from PrIC3H into the StrengthenH
procedure. Therefore, we track the histories of the obligations in the queue. Fur-
thermore, once we detect a cycle we first try to adapt the heuristic H locally
to overcome this cyclic behavior instead of immediately giving up. This local
adaption reduces the number of PrIC3H invocations.

Extended Queue. In contrast to standard IC3, the obligation queue might contain
entries that vary only in their δ entry. In particular, if the MDP is not a tree, it
may occur that the queue contains both (i, s, δ) and (i, s, δ′) with δ > δ′. Then,
(i, s, δ′) can be safely pruned from the queue. Similarly, after handling (i, s, δ), if
some fresh obligation (i, s, δ′′ > δ) is pushed to the queue, it can be substituted
with (i, s, δ). To efficiently operationalize these observations, we keep an addi-
tional mapping which remains intact over multiple invocations of StrengthenH.
We furthermore employed some optimizations for Q.touched() aiming to track
potential counterexamples better. After refining the heuristic, one may want to
reuse frames or the obligation queue, but empirically this leads to performance
degradation as the values in the frames are inconsistent with behavior suggested
by the heuristic.
11 If max Ω(sj) = 0, we assume ∀j.Ω(sj) = 0.5. If δ = 0, we omit rescaling to allow∑

xj = 0.

PrIC3: Property Directed Reachability for MDPs 531

6.2 Concrete PrIC3 with Generalization

So far, frames are updated by changing single entries whenever we resolve obli-
gations (i, s, δ), i.e., we add conjunctions of the form Fi[s] ≤ δ. Equivalently, we
may add a constraint ∀s′ ∈ S : Fi[s′] ≤ p{s}(s′) with p{s}(s) = δ and p{s} = 1
for all s′ �= s.

Generalization in IC3 aims to update a set G (including s) of states in a frame
rather than a single one without invalidating relative inductivity. In our setting,
we thus consider a function pG : G → [0, 1] with pG(s) ≤ δ that assigns (possibly
different) probabilities to all states in G. Updating a frame then amounts to
adding the constraint

∀ s ∈ States : s ∈ G =⇒ Frame (s) ≤ pG(s).

Standard IC3 generalizes by iteratively “dropping” a variable, say v. The set G
then consists of all states that do not differ from the fixed state s except for
the value of v.12 We take the same approach by iteratively dropping program
variables. Hence, pG effectively becomes a mapping from the value s[v] to a
probability. We experimented with four types of functions pG that we describe
for Markov chains. The ideas are briefly outlined below; details are beyond the
scope of this paper.

Constant pG. Setting all s ∈ G to δ is straightforward but empirically not helpful.

Linear Interpolation. We use a linear function pG that interpolates two points.
The first point (s[v], δ) is obtained from the obligation (i, s, δ). For a second
point, consider the following: Let Com be the unique13 command active at state
s. Among all states in G that are enabled in the guard of Com, we take the
state s′ in which s′[v] is maximal14. The second point for interpolation is then
(s′[v],Φ(Fi−1) [s′]). If the relative inductivity fails for pG we do not generalize
with pG, but may attempt to find other functions.

Polynomial Interpolation. Rather than linearly interpolating between two points,
we may interpolate using more than two points. In order to properly fit these
points, we can use a higher-degree polynomial. We select these points using
counterexamples to generalization (CTGs): We start as above with linear inter-
polation. However, if pG is not relative inductive, the SMT solver yields a model
with state s′′ ∈ G and probability δ′′, with s′′ violating relative inductivity, i.e.,
Φ(Fi−1) [s′′] > δ′′. We call (s′′,Φ(Fi−1) [s′′]) a CTG, and (s′′[v],Φ(Fi−1) [s′′]))
is then a further interpolation point, and we repeat.

Technically, when generalizing using nonlinear constraints, we use real-valued
arithmetic with a branch-and-bound-style approach to ensure integer values.

12 Formally, G = {s′ | for all v′ ∈ vars \ {v} : s′(v′) = s(v′)}.
13 Recall that we have a Markov chain consisting of a single module.
14 This implicitly assumes that v is increased. Adaptions are possible.

532 K. Batz et al.

Hybrid Interpolation. In polynomial interpolation, we generate high-degree poly-
nomials and add them to the encoding of the frame. In subsequent invoca-
tions, reasoning efficiency is drastically harmed by these high-degree polyno-
mials. Instead, we soundly approximate pG by a piecewise linear function, and
use these constraints in the frame.

7 Experiments

We assess how PrIC3 may contribute to the state of the art in probabilistic model
checking. We do some early empirical evaluation showing that PrIC3 is feasible.
We see ample room for further improvements of the prototype.

Implementation. We implemented a prototype15 of PrIC3 based on Sect. 6.1 in
Python. The input is represented using efficient data structures provided by the
model checker Storm. We use an incremental instance of Z3 [47] for each frame,
as suggested in [23]. A solver for each frame is important to reduce the time
spent on pushing the large frame-encodings. The optimization problem in the
heuristic is also solved using Z3. All previously discussed generalizations (none,
linear, polynomial, hybrid) are supported.

Oracle and Refinement. We support the (pre)computation of four different types
of oracles for the initialization step in Algorithm 3: (1) A perfect oracle solving
exactly the Bellman equations. Such an oracle is unrealistic, but interesting from
a conceptual point. (2) Relative frequencies by recording all visited states during
simulation. This idea is a naïve simplification of Q-learning. (3) Model checking
with decision diagrams (DDs) and few value iterations. Often, a DD representa-
tion of a model can be computed fast, and the challenge is in executing sufficient
value iterations. We investigate whether doing few value iterations yields a valu-
able oracle (and covers states close to bad states). (4) Solving a (pessimistic) LP
from BFS partial exploration. States that are not expanded are assumed bad.
Roughly, this yields oracles covering states close to the initial states.

To implement Refine (cf. Algorithm 3, l. 7), we create an LP for the subMDP
induced by the touched states. For states whose successors are not in the touched
states, we add a transition to B labeled with the oracle value as probability. The
solution of the resulting LP updates the entries corresponding to the touched
states.

For Enlarge (cf. Algorithm 3, l. 6), we take the union of the subsystem and
the touched states. If this does not change the set of touched states, we also add
its successors.

Setup. We evaluate the run time and memory consumption of our prototype
of PrIC3. We choose a combination of models from the literature (BRP [21],
ZeroConf [18]) and some structurally straightforward variants of grids (chain,
double chain; see [11, Appendix A]). Since our prototype lacks the sophisticated
15 The prototype is available open-source from https://github.com/moves-rwth/PrIC3.

https://github.com/moves-rwth/PrIC3

PrIC3: Property Directed Reachability for MDPs 533

preprocessing applied by many state-of-the-art model checkers, it is more sen-
sitive to the precise encoding of a model, e.g., the number of commands. To
account for this, we generated new encodings for all models. All experiments
were conducted on an single core of an Intel® Xeon® Platinum 8160 proces-
sor. We use a 15min time-limit and report TO otherwise. Memory is limited to
8GB; we report MO if it is exceeded. Apart from the oracle, all parameters of
our prototype remain fixed over all experiments. To give an impression of the
run times, we compare our prototype with both the explicit (Stormsparse) and
DD-based (Stormdd) engine of the model checker Storm 1.4, which compared
favourably in QComp [29].

Results. In Table 1, we present the run times for various invocations of our pro-
totype and Oracle 416. In particular, we give the model name and the number of
(non-trivial) states in the particular instance, and the (estimated) actual proba-
bility to reach B. For each model, we consider multiple thresholds λ. The next 8
columns report on the four variants of PrIC3 with varying generalization schemes.
Besides the scheme with the run times, we report for each scheme the number of
states of the largest (last) subsystem that CheckRefutation in Algorithm 3, l. 5
was invoked upon (column |sub|). The last two columns report on the run times
for Storm that we provide for comparison. In each row, we mark with purple
MDPs that are unsafe, i.e., PrIC3 refutes these MDPs for the given threshold λ.
We highlight the best configurations of PrIC3.

Discussion. Our experiments give a mixed picture on the performance of our
implementation of PrIC3. On the one hand, Storm significantly outperforms
PrIC3 on most models. On the other hand, PrIC3 is capable of reasoning about
huge, yet simple, models with up to 1012 states that Storm is unable to analyze
within the time and memory limits. There is more empirical evidence that PrIC3
may complement the state-of-the-art:

First, the size of thresholds matters. Our benchmarks show that—at least
without generalization—more “wiggle room” between the precise maximal reach-
ability probability and the threshold generally leads to a better performance.
PrIC3 may thus prove bounds for large models where a precise quantitative
reachability analysis is out of scope.

Second, PrIC3 enjoys the benefits of bounded model checking. In some cases,
e.g., ZeroConf for λ = 0.45, PrIC3 refutes very fast as it does not need to
build the whole model.

Third, if PrIC3 proves the safety of the system, it does so without relying on
checking large subsystems in the CheckRefutation step.

Fourth, generalization is crucial. Without generalization, PrIC3 is unable to
prove safety for any of the considered models with more than 103 states. With
generalization, however, it can prove safety for very large systems and thresholds
close to the exact reachability probability. For example, it proved safety of the

16 We explore min{|S|, 5000} states using BFS and Storm.

534 K. Batz et al.

Table 1. Empirical results. Run times are in seconds; time out = 15min.

|S| Prmax (sI |= ♦B)λ w/o |sub|lin |sub|pol |sub|hyb |sub|StormsparseStormdd

BRP 103 0.035 0.1 TO – TO – TO – TO – <0.1 0.12

0.01 51.3 324 125.8324 TO – MO – <0.1 0.18

0.005 10.9 188 38.3 188 TO – MO – <0.1 0.1

ZeroConf 104 0.5 0.9 TO – TO – 0.4 0 0.1 0 <0.1 296.8

0.52 TO – TO – 0.2 0 0.2 0 <0.1 282.6

0.45 <0.1 1 <0.11 <0.1 1 <0.11 <0.1 300.2

109 ∼0.55 0.9 TO – TO – 3.7 0 MO – MO TO

0.75 TO – TO – 3.4 0 MO – MO TO

0.52 TO – TO – TO – TO – MO TO

0.45 <0.1 1 <0.11 <0.1 1 <0.11 MO TO

Chain 103 0.394 0.9 18.8 0 60.2 0 1.2 0 0.3 0 <0.1 <0.1

0.4 20.1 0 55.4 0 0.9 0 TO – <0.1 <0.1

0.35 91.8 431 119.5431 TO – TO – <0.1 <0.1

0.3 46.1 357 64.0 357 TO – TO – <0.1 <0.1

104 0.394 0.9 TO – TO – 1.6 0 0.3 0 <0.1 4.5

0.4 TO – TO – 1.4 0 TO – <0.1 4.9

0.3 TO – TO – TO – TO – <0.1 4.9

10120.394 0.9 TO – TO – 6.4 0 MO – MO TO

0.4 TO – TO – 6.0 0 MO – MO TO

Double chain103 0.215 0.9 528.1 0 828.80 203.3 0 0.6 0 <0.1 <0.1

0.3 588.4 0 TO – 138.3 0 0.5 0 <0.1 <0.1

0.216 597.40 TO – 765.8 0 MO – <0.1 <0.1

0.15 TO – TO – TO – TO – <0.1 <0.1

104 0.22 0.3 TO – TO – 17.5 0 0.5 0 0.2 2.6

0.24 TO – TO – 16.8 0 MO – 0.2 2.7

107 2.6E−4 4E−3 TO – TO – TO – MO – TO TO

2.7E−4TO – TO – 281.20 MO – TO TO

Chain benchmark with 1012 states for a threshold of 0.4 which differs from the
exact reachability probability by 0.006.

Fifth, there is no best generalization. There is no clear winner out of the con-
sidered generalization approaches. Linear generalization always performs worse
than the other ones. In fact, it performs worse than no generalization at all.
The hybrid approach, however, occasionally has the edge over the polyno-
mial approach. This indicates that more research is required to find suitable
generalizations.

In [11, Appendix A], we also compare the additional three types of oracles
(1–3). We observed that only few oracle refinements are needed to prove safety ;
for small models at most one refinement was sufficient. However, this does not
hold if the given MDP is unsafe. DoubleChain with λ = 0.15, for example, and
Oracle 2 requires 25 refinements.

8 Conclusion

We have presented PrIC3—the first truly probabilistic, yet conservative, exten-
sion of IC3 to quantitative reachability in MDPs. Our theoretical development

PrIC3: Property Directed Reachability for MDPs 535

is accompanied by a prototypical implementation and experiments. We believe
there is ample space for improvements including an in-depth investigation of
suitable oracles and generalizations.

References

1. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07317-0_3

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

3. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartin-
gales: an efficient approach to termination of probabilistic programs. In: PACMPL
2(POPL), pp. 34:1–34:32 (2018)

4. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the kronecker repre-
sentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_27

5. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_28

6. Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91908-9_21

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_8

9. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_3

10. Bartocci, E., Kovács, L., Stankovič, M.: Automatic generation of moment-based
invariants for prob-solvable loops. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.)
ATVA 2019. LNCS, vol. 11781, pp. 255–276. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3_15

11. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: Pric3:
Property directed reachability for MDPS. ArXiv e-prints (2020). https://arxiv.org/
abs/2004.14835

12. Biere, A.: Bounded model checking, Handbook of Satisfiability. Frontiers in Arti-
ficial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15
https://arxiv.org/abs/2004.14835
https://arxiv.org/abs/2004.14835
https://doi.org/10.1007/978-3-642-18275-4_7

536 K. Batz et al.

14. Brázdil, T., Chatterjee, K., Chmelík, M., Forejt, V., Křetínský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

15. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Trans. Comput. Logist. 12(1),
1:1–1:49 (2010)

16. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34

17. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: IJCAI, pp. 689–695. AAAI Press (2015)

18. Cheshire, S., Aboba, B., Guttman, E.: Dynamic configuration of ipv4 link-local
addresses. RFC 3927, 1–33 (2005)

19. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. FMSD 49(3), 190–218 (2016)

20. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03421-4_22

21. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44804-7_3

22. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9_31

23. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. FMCAD Inc. (2011)

24. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a
novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78929-1_13

25. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys—On a Quest for Probabilistic Loop
Invariants. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST
2013. LNCS, vol. 8054, pp. 193–208. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40196-1_17

26. Gretz, F., Katoen, J.-P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

27. Gurfinkel, A., Ivrii, A.: Pushing to the top. In: FMCAD, pp. 65–72. IEEE (2015)
28. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.

Theor. Comput. Sci. 735, 111–131 (2018)
29. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Křetínský, J.,

Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of
tools for the analysis of quantitative formal models. In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 69–92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_5

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-642-40196-1_17
https://doi.org/10.1007/978-3-642-40196-1_17
https://doi.org/10.1007/978-3-030-17502-3_5

PrIC3: Property Directed Reachability for MDPs 537

30. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2_30

31. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9_22

32. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. Software Eng. 35(2), 241–257 (2009)

33. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.-P.: Aiming low is harder: Induction
for lower bounds in probabilistic program verification. In: PACMPL 4(POPL),
37:1–37:28 (2020)

34. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

35. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. CAV. LNCS, Springer
(2020). [to appear]

36. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,
pp. 157–164. IEEE (2013)

37. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1_16

38. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

39. Kaminski, B.L.: Advanced Weakest Precondition Calculi for Probabilistic Pro-
grams. Ph.D. thesis, RWTH Aachen University, Germany (2019). http://
publications.rwth-aachen.de/record/755408/files/755408.pdf

40. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–
30:68 (2018)

41. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. FMSD 36(3),
246–280 (2010)

42. Kozen, D.: A probabilistic PDL. In: STOC, pp. 291–297. ACM (1983)
43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

44. Lange, T., Neuhäußer, M.R., Noll, T., Katoen, J.-P.: IC3 software model checking.
In: STTT, vol. 22, pp. 135–161 (2020)

45. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

46. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

47. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-642-31612-8_13
http://publications.rwth-aachen.de/record/755408/files/755408.pdf
http://publications.rwth-aachen.de/record/755408/files/755408.pdf
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-540-78800-3_24

538 K. Batz et al.

48. Park, D.: Fixpoint induction and proofs of program properties. Machine intelligence
5, 59–78 (1969)

49. Polgreen, E., Brain, M., Fränzle, M., Abate, A.: Verifying reachability properties
in Markov chains via incremental induction. CoRR abs/1909.08017 (2019)

50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)

51. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

52. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic
approximation of the bounded reachability probability in large Markov chains.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_30

53. Seufert, T., Scholl, C.: Sequential verification using reverse PDR. MBMV. pp. 79–
90. Shaker Verlag (2017)

54. Suenaga, K., Ishizawa, T.: Generalized property-directed reachability for hybrid
systems. In: Beyer, D., Zufferey, D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp.
293–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39322-9_14

55. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in probabilistic programs. In: Lahiri, S.K., Wang, C. (eds.)
ATVA 2018. LNCS, vol. 11138, pp. 476–493. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01090-4_28

56. Vazquez-Chanlatte, M., Rabe, M.N., Seshia, S.A.: A model counter’s guide to
probabilistic systems. CoRR abs/1903.09354 (2019)

57. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time markov chains using bounded model checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-93900-9_29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-10696-0_30
https://doi.org/10.1007/978-3-030-39322-9_14
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-540-93900-9_29
http://creativecommons.org/licenses/by/4.0/

Synthesis

Good-Enough Synthesis

Shaull Almagor1(B) and Orna Kupferman2

1 Department of Computer Science, Technion, Haifa, Israel
shaull@cs.technion.ac.il

2 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il

Abstract. We introduce and study good-enough synthesis (ge-
synthesis) – a variant of synthesis in which the system is required to sat-
isfy a given specification ψ only when it interacts with an environments
for which a satisfying interaction exists. Formally, an input sequence x
is hopeful if there exists some output sequence y such that the induced
computation x⊗y satisfies ψ, and a system ge-realizes ψ if it generates a
computation that satisfies ψ on all hopeful input sequences. ge-synthesis
is particularly relevant when the notion of correctness is multi-valued
(rather than Boolean), and thus we seek systems of the highest possible
quality, and when synthesizing autonomous systems, which interact with
unexpected environments and are often only expected to do their best.

We study ge-synthesis in Boolean and multi-valued settings. In both,
we suggest and solve various definitions of ge-synthesis, corresponding
to different ways a designer may want to take hopefulness into account.
We show that in all variants, ge-synthesis is not computationally harder
than traditional synthesis, and can be implemented on top of existing
tools. Our algorithms are based on careful combinations of nondeter-
ministic and universal automata. We augment systems that ge-realize
their specifications by monitors that provide satisfaction information. In
the multi-valued setting, we provide both a worst-case analysis and an
expectation-based one, the latter corresponding to an interaction with a
stochastic environment.

1 Introduction

Synthesis is the automated construction of a system from its specification: given
a specification ψ, typically by a linear temporal logic (LTL) formula over sets
I and O of input and output signals, the goal is to construct a finite-state
system that satisfies ψ [9,20]. At each moment in time, the system reads an
assignment, generated by the environment, to the signals in I, and responds
with an assignment to the signals in O. Thus, with every input sequence, the
system associates an output sequence. The system realizes ψ if ψ is satisfied in
all the interactions of the system, with all environments [5].

S. Almagor—Supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant agreement No. 837327.
O. Kupferman—Supported in part by the Israel Science Foundation, grant No. 2357/19.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 541–563, 2020.
https://doi.org/10.1007/978-3-030-53291-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_28&domain=pdf
http://orcid.org/0000-0001-9021-1175
http://orcid.org/0000-0003-4699-6117
https://doi.org/10.1007/978-3-030-53291-8_28

542 S. Almagor and O. Kupferman

In practice, the requirement to satisfy the specification in all environments is
often too strong. Accordingly, it is common to add assumptions on the behavior
of the environment. An assumption may be direct, say given by an LTL formula
that restricts the set of possible input sequences [8], less direct, say a bound on
the size of the environment [13] or other resources it uses, or conceptual, say
rationality from the side of the environment, which may have its own objectives
[11,14]. We introduce and study a new type of relaxation of the requirement to
satisfy the specification in all environments. The idea behind the relaxation is
that if an environment is such that no system can interact with it in a way that
satisfies the specification, then we cannot expect our system to succeed. In other
words, the system has to satisfy the specification only when it interacts with
environments in which this mission is possible. This is particularly relevant when
synthesizing autonomous systems, which interact with unexpected environments
and often replace human behavior, which is only expected to be good enough
[28], and when the notion of correctness is multi-valued (rather than Boolean),
and thus we seek high-quality systems.

Before we explain the relaxation formally, let us consider a simple example,
and we start with the Boolean setting. Let I = {req} and O = {grant}. Thus,
the system receives requests and generates grants. Consider the specification
ψ = GF(req ∧ grant) ∧ GF(¬req ∧ ¬grant). Clearly, ψ is not realizable, as an
input sequence need not satisfy GFreq or GF¬req . However, a system that always
generates a grant upon (and only upon) a request, ge-realizes ψ, in the sense
that for every input sequence, if there is some interaction with it with which ψ
is satisfied, then our system generates such an interaction.

Formally, we model a system by a strategy f : (2I)+ → 2O, which given
an input sequence x = i0 · i1 · i2 · · · ∈ (2I)ω, generates an output sequence
f(x) = f(i0) · f(i0 · i1) · f(i0 · i1 · i2) · · · ∈ (2O)ω, inducing the computation
x⊗ f(x) = (i0 ∪ f(i0)) · (ii ∪ f(i0 · i1)) · (i2 ∪ f(i0 · i1 · i2)) · · · ∈ (2I∪O)ω, obtained
by “merging” x and f(x). In traditional realizability, a system realizes ψ if ψ
is satisfied in all environments. Formally, for all input sequences x ∈ (2I)ω,
the computation x ⊗ f(x) satisfies ψ. For our new notion, we first define when
an input sequence x ∈ (2I)ω is hopeful, namely there is an output sequence
y ∈ (2O)ω such that the computation x⊗y satisfies ψ. Then, a system ge-realizes
ψ if ψ is satisfied in all interactions with hopeful input sequences. Formally, for
all x ∈ (2I)ω, if x is hopeful, then the computation x ⊗ f(x) satisfies ψ.

Since LTL is Boolean, synthesized systems are correct, but there is no refer-
ence to their quality. This is a crucial drawback, as designers would be willing to
give up manual design only if automated-synthesis algorithms return systems of
comparable quality. Addressing this challenge, researchers have developed quan-
titative specification formalisms. For example, in [4], the input to the synthesis
problem includes also Mealy machines that grade different realizing systems.
In [1], the specification formalism is the multi-valued logic LTL[F], which aug-
ments LTL with quality operators. The satisfaction value of an LTL[F] formula
is a real value in [0, 1], where the higher the value, the higher the quality in
which the computation satisfies the specification. The quality operators in F can

Good-Enough Synthesis 543

prioritize and weight different scenarios. The synthesis algorithm for LTL[F]
seeks systems with a highest possible satisfaction value. One can consider either
a worst-case approach, where the satisfaction value of a system is the satisfaction
value of its computation with the lowest satisfaction value [1], or a stochastic
approach, where it is the expected satisfaction value, given a distribution of the
inputs [2].

Consider, for example, an acceleration controller of an autonomous car. Nor-
mally, the car should maintain a relatively constant speed. However, in order
to optimize travel time, if a long stretch of road is visible and is identified as
low-risk, the car should accelerate. Conversely, if an obstacle or some risk factor
is identified, the car should decelerate. Clearly, the car cannot accelerate and
decelerate at the same time. We capture this desired behavior with the following
LTL[F] formula over the inputs {safe, obs} and outputs {acc, dec}:

ψ = G(safe → (acc ⊕ 2
3

Xacc)) ∧ G(obs → (dec ⊕ 3
4

Xdec)) ∧ G(¬(acc ∧ dec)).

Thus, in order to get satisfaction value 1, each detection of a safe stretch should
be followed by an acceleration during two transactions, with a preference to the
first (by the semantics of the weighted average ⊕λ operator, the satisfaction
value of safe → (acc ⊕ 2

3
Xacc) is 1 when safe is followed by two accs, 2

3 when it
is followed by one acc, and 1

3 if it is followed by one acc with a delay), and each
detection of an obstacle should be followed by a deceleration during two trans-
actions, with a (higher) preference to the first. Clearly, ψ is not realizable with
satisfaction value 1, as for some input sequences, namely those with simultane-
ous or successive occurrences of safe and obs, it is impossible to respond with the
desired patterns of acceleration or declaration. Existing frameworks for synthe-
sis cannot handle this challenge. Indeed, we do not want to add an assumption
about safe and obs occurring far apart. Rather, we want our autonomous car
to behave in an optimal way also in problematic environments, and we want,
when we evaluate the quality of a car, to take into an account the challenge
posed by the environment. This is exactly what high-quality ge-synthesis does:
for each input sequence, it requires the synthesized car to obtain the maximal
satisfaction value that is possible for that input sequence.

We show that in the Boolean setting, ge-synthesis can be reduced to synthesis
of LTL with quantification of atomic propositions [26]. Essentially, ge-synthesis
of ψ amounts to synthesis of (∃O.ψ) → ψ. We show that by carefully switching
between nondeterminisitc and universal automata, we can solve the ge-synthesis
problem in doubly-exponential time, thus it is not harder than traditional syn-
thesis. Also, our algorithm is Safraless, thus no determinization and parity games
are needed [15,17].

A drawback of ge-synthesis is that we do not actually know whether the
specification is satisfied. We describe two ways to address this drawback. The
first goes beyond providing satisfaction information and enables the designer to
partition the specification into a strong component, which is guaranteed to be
satisfied in all environments, and a weak component, which is guaranteed to be
satisfied only in hopeful ones. The second way augments ge-realizing systems

544 S. Almagor and O. Kupferman

by “satisfaction indicators”. For example, we show that when a system is lucky
to interact with an environment that generates a prefix of an input sequence
such that, when combined with a suitable prefix of an output sequence, the
specification becomes realizable, then ge-synthesis guarantees that the system
indeed responds with a suitable prefix of an output sequence. Moreover, it is
easy to add to the system a monitor that detects such prefixes, thus indicating
that the specification is going to be satisfied in all environments. Additional
monitors we suggest detect prefixes after which the satisfaction becomes valid
or unsatisfiable.

We continue to the quantitative setting. We parameterize hope by a satis-
faction value v ∈ [0, 1] and say that an input sequence x ∈ (2I)ω is v-hopeful for
an LTL[F] formula ψ if an interaction with it can generate a computation that
satisfies ψ with value at least v. Formally, there is an output sequence y ∈ (2O)ω

such that [[x⊗y, ψ]] ≥ v, where for a computation w ∈ (2I∪O)ω, we use [[w,ψ]] to
denotes the satisfaction value of ψ in w. As we elaborate below, while the basic
idea of ge-synthesis, namely “input sequences with a potential to high quality
should realize this potential” is as in the Boolean setting, there are several ways
to implement this idea.

We start with a worst-case approach. There, a strategy f : (2I)+ → 2O

ge-realizes an LTL[F] formula ψ if for all input sequences x ∈ (2I)ω, if x is v-
hopeful, then [[x ⊗ f(x), ψ]] ≥ v. The requirement can be applied to a threshold
value or to all values v ∈ [0, 1]. For example, our autonomous car controller
has to achieve satisfaction value 1 in roads with no simultaneous or successive
occurrences of safe and obs, and value 3

4 in roads that violate the latter only
with some obs followed by safe. We then argue that the situation is similar
to that of high-quality assume guarantee synthesis [3], where richer relations
between a quantitative assumption and a quantitative guarantee are of interest.
In our case, the assumption is the hopefulness level of the input sequence, namely
[[x,∃O.ψ]], and the guarantee is the satisfaction value of the specification in the
generated computation, namely [[x ⊗ f(x), ψ]]. When synthesizing, for example,
a robot controller (e.g., vacuum cleaner) in a building, the doors to rooms are
controlled by the environment, whereas the movement of the robot by the system.
A measure of the performance of the robot has to take into an account both the
number of “hopeful rooms”, namely these with an open door – a projection of
this number on [0, 1] serves as the assumption, and the number of room cleaned
– which induces the guarantee. We assume that the desired relation between the
assumption and the guarantee is given by a function comb : [0, 1]× [0, 1] → [0, 1],
which can capture implication, difference, or ratio.

We continue with an analysis of the expected performance of the system.
We do so by assuming a stochastic environment, with a known distribution on
the input sequences. We introduce and study two measures for high-quality ge-
synthesis in a stochastic environment. In the first, termed expected ge-synthesis,
all input sequences are sampled, yet the satisfaction value in each input sequence
takes its hopefulness level into account, for example by a comb function as
in the assume-guarantee setting. In the second, termed conditional expected

Good-Enough Synthesis 545

ge-synthesis, only hopeful input sequences are sampled. For both approaches,
our synthesis algorithm is based on the high-quality LTL[F] synthesis algorithm
of [2], which is based on an analysis of deterministic automata associated with
the different satisfaction values of the LTL[F] specification. Here too, the com-
plexity stays doubly exponential. In addition, we extend the synthesized systems
with guarantees for satisfaction and monitors indicating satisfaction in various
satisfaction levels.

2 Preliminaries

Consider two finite sets I and O of input and output signals, respectively. For
two words x = i0 · i1 · i2 · · · ∈ (2I)ω and y = o0 · o1 · o2 · · · ∈ (2I)ω, we define
x ⊗ y as the word in (2I∪O)ω obtained by merging x and y. Thus, x ⊗ y =
(i0 ∪ o0) · (i1 ∪ o1) · (i2 ∪ o2) · · · . The definition is similar for finite x and y of the
same length. For a word w ∈ (2I∪O)ω, we use w|I to denote the projection of w
on I. In particular, (x ⊗ y)|I = x.

A strategy is a function f : (2I)+ → 2O. Intuitively, f models the interaction
of a system that generates in each moment in time a letter in 2O with an environ-
ment that generates letters in 2I . For an input sequence x = i0 · i1 · i2 · · · ∈ (2I)ω,
we use f(x) to denote the output sequence f(i0)·f(i0 ·i1)·f(i0 ·i1 ·i2) · · · ∈ (2O)ω.
Then, x ⊗ f(x) ∈ (2I∪O)ω is the computation of f on x. Note that the environ-
ment initiates the interaction, by inputting i0. Of special interest are finite-state
strategies, induced by finite state transducers. Formally, an I/O-transducer is
T = 〈I,O, S, s0,M, τ〉, where S is a finite set of states, s0 ∈ S is an initial
state, M : S × 2I → S is a transition function, and τ : S → 2O is a labelling
function. For x = i0 · i1 · i2 · · · ∈ (2I)∗, let M∗(x) be the state in S that T
reaches after reading x. Thus is, M∗(ε) = s0 and for every j ≥ 0, we have that
M∗(i0 · i1 · i2 · · · ij) = M(M∗(i0 · i1 · i2 · · · ij−1), ij). Then, T induces the strategy
fT : (2I)+ → 2O, where for every x ∈ (2I)+, we have that fT (x) = τ(M∗(x)).
We use T (x) and x ⊗ T (x) to denote the output sequence and the computation
of T on x, respectively, and talk about T realizing a specification, referring to
the strategy fT .

We specify on-going behaviors of reactive systems using the linear tempo-
ral logic LTL [19]. Formulas of LTL are constructed from a set AP of atomic
proposition using the usual Boolean operators and temporal operators like G
(“always”), F (“eventually”), X (“next time”), and U (“until”). Each LTL for-
mula ψ defines a language L(ψ) = {w : w |= ψ} ⊆ (2AP)ω. We also use automata
on infinite words for specifying and reasoning about on-going behaviors. We use
automata with different branching modes (nondeterministic, where some run has
to be accepting; universal, where all runs have to be accepting; and determin-
istic, where there is a single run) and different acceptance conditions (Büchi,
co-Büchi, and parity). We use the three letter acronyms NBW, UCW, DPW,
and DFW, to refer to nondeterministic Büchi, universal co-Büchi, deterministic
parity, and deterministic finite word automata, respectively. Given an LTL for-
mula ψ over AP , one can constructs an NBW Aψ with at most 2O(|ψ|) states

546 S. Almagor and O. Kupferman

such that L(Aψ) = L(ψ) [27]. Constructing an NBW for ¬ψ and then dualizing
it, results in a UCW for L(ψ), also with at most 2O(|ψ|) states. Determinization
[23] then leads to a DPW for L(ψ) with at at most 22O(|ψ|)

states and index
2O(|ψ|). For full definitions of LTL, automata, and their relation, see [12].

Consider an LTL formula ψ over I ∪O. We say that ψ is realizable if there is
a finite-state strategy f : (2I)+ → 2O such that for all x ∈ (2I)ω, we have that
x ⊗ f(x) |= ψ. That is, the computation of f on every input sequence satisfies
ψ. We say that a word x ∈ (2I)ω is hopeful for ψ if there is y ∈ (2O)ω such that
x⊗y |= ψ. Then, we say that ψ is good-enough realizable (ge-realizable, for short)
if there is a finite-state strategy f : (2I)+ → 2O such that for every x ∈ (2I)ω

that is hopeful for ψ, we have that x⊗f(x) |= ψ. That is, if there is some output
sequence whose combination with x satisfies ψ, then the computation of f on
x satisfies ψ. The LTL ge-synthesis problem is then to decide whether a given
LTL formula is ge-realizable, and if so, to return a transducer that ge-realizes it.
Clearly, every realizable specification is ge-realizable – by the same transducer.
We say that ψ is universally satisfiable if all input sequences are hopeful for ψ.
It is easy to see that for universally satisfiable specifications, realizability and
ge-realizability coincide. On the other hand, as demonstrated in Sect. 1, there
are specifications that are not realizable and are ge-realizable.

Example 1. Let I = {p} and O = {q}. Consider the specification ψ = GF((Xp)∧
q)∧GF((X¬p)∧ ¬q). Clearly, ψ is not realizable, as an input sequence x ∈ (2I)ω

is hopeful for ψ iff x |= GFp ∧ GF¬p. Since the system has to assign a value to q
before it knowns the value of Xp, it seems that ψ is also not ge-realizable. As we
show below, however, the specification ψ is ge-realizable. Intuitively, it follows
from the fact that hopeful input sequences consists of alternating p-blocks and
(¬p)-blocks. Then, by outputting ¬q in p-blocks and outputting q in (¬p)-blocks,
the system guarantees that each last position in a (¬p)-block satisfies q∧Xp and
each last position in a p-block satisfies (¬q)∧Xp. Formally, ψ is ge-realized by the
transducer T = 〈{p}, {q}, {s0, s1}, s0,M, τ〉, where M(s0, ∅) = M(s1, ∅) = s0,
M(s0, {p}) = M(s1, {p}) = s1, τ(s0) = {q}, and τ(s1) = ∅. ��

3 LTL Good-Enough Synthesis

Recall that a strategy f : (2I)+ → 2O ge-realizes an LTL formula ψ if its
computations on all hopeful input sequences satisfy ψ. Thus, for every input
sequence x ∈ (2I)ω, either x⊗y �|= ψ for all y ∈ (2O)ω, or x⊗f(x) |= ψ. The above
suggests that algorithms for solving LTL ge-synthesis involve existential and
universal quantification over the behavior of output signals. The logic EQLTL
extends LTL by allowing existential quantification over atomic propositions [26].
We refer here to the case the atomic propositions are the signals in I ∪ O, and
the signals in O are existentially quantified. Then, an EQLTL formula is of the
form ∃O.ψ, and a computation w ∈ (2I∪O)ω satisfies ∃O.ψ iff there is y ∈ (2O)ω

such that w|I ⊗ y |= ψ. Dually, AQLTL extends LTL by allowing universal
quantification over atomic propositions. We consider here formulas of the form

Good-Enough Synthesis 547

∀O.ψ, which are equivalent to ¬∃O.¬ψ. Indeed, a computation w ∈ (2I∪O)ω

satisfies ∀O.ψ iff for all y ∈ (2O)ω, we have that w|I ⊗ y |= ψ. Note that in both
the existential and universal cases, the O-component of w is ignored. Accordingly,
we sometimes interpret EQLTL and AQLTL formulas with respect to input
sequences x ∈ (2I)ω. Also note that both EQLTL and AQLTL increase the
expressive power of LTL. For example, the EQLTL formula ∃q.q ∧ X¬q ∧ G(q ↔
XXq) ∧ G(q → p) states that p holds in all even positions of the computation,
which cannot be specified in LTL [29].

Theorem 1. The LTL ge-synthesis problem is 2EXPTIME-complete.

Proof. We start with the upper bound. Given an LTL formula ψ over I ∪ O, we
describe an algorithm that returns a transducer T that ge-realizes ψ, or declares
that no such transducer exists.

It is not hard to see that T ge-realizes ψ iff T realizes ϕ = ψ ∨ ∀O.¬ψ.
Indeed, an input sequence x ∈ (2I)ω is hopeful for ψ iff x |= ∃O.ψ, and so
the specification ϕ requires all hopeful input sequences to satisfy ψ. A naive
construction of an NBW for ϕ involves a universal projection of the signals in
O in an automaton for ¬ψ, and results in an NBW that is doubly exponential.
In order to circumvent the extra exponent, we construct an NBW A¬ϕ for ¬ϕ,
and then dualize it to get a UCW for ϕ, as follows.

Let A¬ψ be an NBW for L(¬ψ) and A∃O.ψ be an NBW for L(∃O.ψ). Thus,
A∃O.ψ is obtained from an NBW Aψ for L(ψ) by existentially projecting its
transitions on 2I . In more details, if Aψ = 〈2I∪O, Q,Q0, δ, α〉, then A∃O.ψ =
〈2I∪O, Q,Q0, δ

′, α〉, where for all q ∈ Q and i ∪ o ∈ 2I∪O, we have δ′(q, σ) =⋃
o∈2O{δ(q, (σ ∩ I) ∪ o)}.

Let A¬ϕ be an NBW for the intersection of A¬ψ and A∃O.ψ. We can define
A¬ϕ as the product of A¬ψ and A∃O.ψ, possibly using the generalized Büchi
acceptance condition (see Remark 1), thus its size is exponential in ψ. The
language of A¬ϕ is then {w ∈ (2I∪O)ω : w �|= ψ and w |= ∃O.ψ}. We then solve
usual synthesis for the complementing UCW. Its language is {w ∈ (2I∪O)ω :
w |= ψ or w |= ∀O.¬ψ}, as required. By [17], the synthesis problem for UCW
can be solved in EXPTIME, and we are done.

The lower bound follows from the 2EXPTIME-hardness of LTL realizability
[22]. The hardness proof there constructs, given a 2EXPTIME Turing machine
M , an LTL formula ψ that is realizable iff M accepts the empty tape. Since all
input sequences are hopeful for ψ, realizability and ge-realizability coincide, and
we are done. ��

Note that working with a UCW not only handles the universal quantification
for free but also has the advantage of a Safraless synthesis algorithm – no deter-
minization and parity games are needed [15,17]. Also note that the algorithm
we suggest in the proof of Theorem 1 can be generalized to handle specifications
that are arbitrary positive Boolean combinations of EQLTL formulas.

Remark 1 [Products and optimizations]. Throughout the paper, we con-
struct products of automata whose state space is 2cl(ψ), and states correspond

548 S. Almagor and O. Kupferman

to maximal consistent subsets of cl(ψ), possibly in the scope of an existential
quantifier of O. Accordingly, the product can be minimized to include only con-
sistent pairs. Also, since traditional-synthesis algorithms, in particular the Safra-
less algorithms we use, can handle automata with generalized Büchi and co-Büchi
acceptance condition, we need only one copy of the product. ��

Remark 2 [Determinancy of the ge-synthesis game]. Determinancy of
games implies that in traditional synthesis, a specification ψ is not I/O-realizable
iff ¬ψ is O/I-realizable This is useful, for example when we want to synthesize
a transducer of a bounded size and proceed simultaneously, aiming to synthe-
size either a system transducer that realizes ψ or an environment transducer
that realizes ¬ψ [17]. For ge-synthesis, simple dualization does not hold, but we
do have determinancy in the sense that (∃O.ψ) → ψ is not I/O-realizable iff
(∃O.ψ) ∧ ¬ψ is O/I-realizable. Accordingly, ψ is not ge-realizable iff the envi-
ronment has a strategy that generates, for each output sequence y ∈ (2O)ω, a
helpful input sequence x ∈ (2I)ω such that x ⊗ y |= ¬ψ. In the full version, we
formalize and study this duality further. ��

4 Guarantees in Good-Enough Synthesis

A drawback of ge-synthesis is that we do not actually know whether the specifi-
cation is satisfied. In this section we describe two ways to address this drawback.
The first way goes beyond providing satisfaction information and enables the
designer to partition the specification into to a strong component, which should
be satisfied in all environments, and a weak component, which should be satis-
fied only in hopeful ones. The second way augments ge-realizing transducers by
flags, raised to indicate the status of the satisfaction.

4.1 ge-Synthesis with a Guarantee

Recall that ge-realizability is suitable especially in settings where we design a
system that has to do its best in all environments. ge-synthesis with a guarantee
is suitable in settings where we want to make sure that some components of the
specification are satisfied in all environment. Accordingly, a specification is an
LTL formula ψ = ψstrong ∧ ψweak . When we ge-synthesize ψweak with guarantee
ψstrong , we seek a transducer T that realizes ψstrong and ge-realizes ψweak . Thus,
for all input sequences x ∈ (2I)ω, we have that x ⊗ T (x) |= ψstrong , and if x is
hopeful for ψweak , then x ⊗ T (x) |= ψstrong .

Theorem 2. The LTL ge-synthesis with guarantee problem is 2EXPTIME-
complete.

Proof. Consider an LTL formula ψ = ψstrong ∧ ψweak over I ∪ O. It is not hard
to see that a transducer T ge-realizes ψweak with guarantee ψstrong iff T realizes
ϕ = ψstrong ∧((∃O.ψweak) → ψweak). We can then construct a UCW Aϕ for L(ϕ)
by dualizing an NBW for its negation ¬ψstrong ∨ ((∃O.ψweak) ∧ ¬ψweak), which

Good-Enough Synthesis 549

can be constructed using techniques similar to those in the proof of Theorem 1.
We then proceed with standard synthesis for Aϕ. Note that the approach is
Safraless. Taking an empty (that is, True) guarantee, a lower bound follows
from the 2EXPTIME-hardness of LTL ge-synthesis. ��

4.2 Flags by a ge-Realizing Transducer

For a language L ⊆ (2I∪O)ω and a finite word w ∈ (2I∪O)∗, let Lw = {w′ ∈
(2I∪O)ω : w · w′ ∈ L}. That is, Lw is the language of suffixes of words in L that
have w as a prefix. We say that a word w ∈ (2I∪O)∗ is green for L if Lw is
realizable. Then, a word x ∈ (2I)∗ is green for L if there is y ∈ (2O)∗ such that
x ⊗ y is green for L. When a system is lucky to interact with an environment
that generates a green input sequence, we want the system to react in a way
that generates a green prefix, and then realizes the specification. Formally, we
say that a strategy f : (2I)+ → 2O green realizes L if for every x ∈ (2I)+, if x
is green for L, then x ⊗ f(x) is green for L.1,2 We say that a word w ∈ (2I∪O)∗

is light green for L if Lw is universally satisfiable, thus all input sequences are
hopeful for Lw. A word x ∈ (2I)∗ is light green for L if there is y ∈ (2O)∗

such that x ⊗ y is light green for L. It is not hard to see that for ge-realizable
languages, green and light green coincide. Indeed, if L is universally satisfiable
and ge-realizable, then L is realizable.

Theorem 3. ge-realizability is strictly stronger than green realizability.

Proof. We first prove that every strategy f : (2I)+ → 2O that ge-realizes a
specification ψ also green realizes ψ. Consider x ∈ (2I)+ that is green for ψ.
By definition, there is y ∈ (2O)+ such that Lx⊗y is realizable. Then, for every
x′ ∈ (2I)ω, there is y′ ∈ (2O)ω such that x′ ⊗ y′ in Lx⊗y. Hence, for every
x′ ∈ (2I)ω, we have that x · x′ is hopeful. Therefore, as f ge-realizes ψ, we have
that (x · x′) ⊗ f(x · x′) |= ψ. Thus, x ⊗ f(x) is green, and so f green realizes ψ.

We continue and describe a specification that is green realizable and not ge-
realizable. Let I = {p} and O = {q}. Consider the specification ψ = G((Xp) ↔
q). Clearly, ψ is not realizable, as the system has to commit a value for q before
a value for Xp is known. Likewise, no word w ∈ (2I∪O)∗ is green for ψ, and so no
finite input sequence x ∈ (2I)∗ is green for ψ. Hence, every strategy (vacuously)
green realizes ψ. On the other hand, for every input sequences x ∈ (2I)ω there
is an output sequence y ∈ (2O)ω such that x ⊗ y |= ψ. Thus, all input sequences
are hopeful for ψ. Thus, synthesis and ge-synthesis coincide for ψ, which is not
ge-realizable. ��

Theorem 3 brings with it two good news. The first is that a ge-realizing
transducer has the desired property of being also green realizing. The second has
1 Note that while the definition of green realization does not refer to ε directly, we

have that ε is green iff L is realizable, in which case all x ∈ (2I)∗ are green.
2 While synthesis corresponds to finding a winning strategy for the system, green syn-

thesis can be viewed as a subgame-perfect best-response strategy, where the system
does its best in every subgame, even if it loses the overall game.

550 S. Almagor and O. Kupferman

to do with our goal of providing the user with information about the satisfaction
status, in particular raising a green flag whenever a green prefix is detected.
By Theorem 3, such a flag indicates that the computation generated by our
ge-realizing transducer satisfies the specification. A naive way to detect green
prefixes for a specification ψ is to solve the synthesis problem for ψ by solving
a game on top of a DPW Dψ for ψ. The winning positions in the game are
states in Dψ. By defining them as accepting states, we can obtain from Dψ a
DFW for green prefixes. Then, we run this DFW in parallel with the ge-realizing
transducer, and raise the green flag whenever a green prefix is detected. This,
however, requires a generation of Dψ and a solution of parity games. Below we
describe a much simpler way, which makes use of the fact that our transducer
ge-realizes the specification.

Recall that if L is universally satisfiable and ge-realizable, then L is realiz-
able. Accordingly, given a transducer T that ge-realizes ψ, we can augment it
with green flags by running in parallel a DFW that detects light-green prefixes.
As we argue below, constructing such a DFW only requires an application of the
subset construction on top of an NBW for the existential projection of ψ on 2I .

Lemma 1. Given an LTL formula ψ over I ∪ O, we can construct a DFA S of
size 22O(|ψ|)

such that L(S) = {x ∈ (2I)∗ : x is light green for L(ψ)}.

Proof. Let Aψ = 〈2I∪O, Q, δ,Q0, α〉 be an NBW for L(ψ), and let Bψ = 〈2I , Q,
δ′, Q0, α〉 be its existential projection on 2I . Thus, for every q ∈ Q and i ∈ 2I , we
have δ′(q, i) =

⋃
o∈2O δ(q, i ∪ o). We define the DFW S = 〈2I , 2Q,M, {Q0}, F 〉,

where M follows the subset construction of Bψ: for every S ∈ 2Q and i ∈ 2I ,
we have M(S, i) =

⋃
s∈S δ′(s, i). Then, F = {S ∈ 2Q : L(BS

ψ) = (2I)ω}. Observe
that S rejects x ∈ (2I)∗ iff there is x′ ∈ (2I)ω such that for all y ∈ (2O)∗ and
y′ ∈ (2O)ω, no state in δ(Q0, x ⊗ y) accepts x′ ⊗ y′. Thus, S rejects x iff x is
not light green, and accepts it otherwise. Note that the definition of F involves
universality checking, possibly via complementation, yet no determinization is
required, and the size of S is 22O(|ψ|)

. ��

Note that once we reach an accepting state in S, we can make it an accepting
loop. Indeed, once a green prefix is detected, then all prefixes that extend it are
green. Accordingly, once the green flag is raised, it stays up. Also note that if
an input sequence is not hopeful for ψ, then none of its prefixes is light green
for ψ. The converse, however, is not true: an input sequence may be hopeful
and still have no light green prefixes. For example, taking I = {p}, the input
sequence {p}ω is hopeful for Gp, yet none of its prefixes is green light, as it can
be extended to an input sequence with ¬p.

Green flags provide information about satisfaction. Two additional flags of
interest are related to safety and co-safety properties:

– A word w ∈ (2I∪O)∗ is red for L if Lw = ∅. A word x ∈ (2I)∗ is red for L if
for all y ∈ (2O)∗, we have that x⊗y is red for L. Thus, when the environment
generates x, then no matter how the system responds, L is not satisfied.

Good-Enough Synthesis 551

– a word w ∈ (2I∪O)∗ is blue for L when Lw = (2I∪O)ω, and then define a word
x ∈ (2I)∗ as blue for L if there is y ∈ (2O)∗ such that x ⊗ y is blue for L.
Thus, when the environment generates x, the system can respond in a way
that guarantees satisfaction no matter how the interaction continues.

A monitor that detects red and blue prefixes for L can be added to a trans-
ducer that ge-realizes L. As has been the case with the monitor for green prefixes,
its construction is based on applying the subset construction on an NBW for L
[16]. Also, once a red or blue flag is raised, it stays up. In a way analogous to
green realizability, we seek a transducer that ge-realizes the specification and
generates a red prefix only if all interactions generate a red prefix, and generates
a blue prefix whenever this is possible. In the full version, we show that while
ge-realization implies red realization, it may conflict with blue realization.

5 High-Quality Good-Enough Synthesis

ge-synthesis is of special interest when the satisfaction value of the specification
is multi-valued, and we want to synthesize high-quality systems. We start by
defining the multi-valued logic LTL[F], which is our multi-valued specification
formalism. We then study LTL[F] ge-synthesis, first in a worst-case approach,
where the satisfaction value of a transducer is the satisfaction value of its com-
putation with the lowest satisfaction value, and then in a stochastic approach,
where it is the expected satisfaction value, given a distribution of the inputs.

5.1 The Logic LTL[F]

Let AP be a set of Boolean atomic propositions and let F ⊆ {f : [0, 1]k → [0, 1] :
k ∈ IN} be a set of quality operators. An LTL[F] formula is one of the following:

– True, False, or p, for p ∈ AP .
– f(ψ1, ..., ψk), Xψ1, or ψ1Uψ2, for LTL[F] formulas ψ1, . . . , ψk and a function

f ∈ F .

The semantics of LTL[F] formulas is defined with respect to infinite computa-
tions over AP . For a computation w = w0, w1, . . . ∈ (2AP)ω and position j ≥ 0,
we use wj to denote the suffix wj , wj+1, The semantics maps a computation
w and an LTL[F] formula ψ to the satisfaction value of ψ in w, denoted [[w,ψ]].
The satisfaction value is in [0, 1] and is defined inductively as follows.

– [[w, True]] = 1 and [[w, False]] = 0.
– For p ∈ AP , we have that [[w, p]] = 1 if p ∈ w0, and [[w, p]] = 0 if p �∈ w0.
– [[w, f(ψ1, ..., ψk)]] = f([[w,ψ1]], ..., [[w,ψk]]).
– [[w,Xψ1]] = [[w1, ψ1]].
– [[w,ψ1Uψ2]] = max

i≥0
{min{[[wi, ψ2]], min

0≤j<i
[[wj , ψ1]]}}.

The logic LTL can be viewed as LTL[F] for F that models the usual Boolean
operators. In particular, the only possible satisfaction values are 0 and 1. We
abbreviate common functions as described below. Let x, y, λ ∈ [0, 1]. Then,

552 S. Almagor and O. Kupferman

• ¬x = 1 − x • x ∨ y = max{x, y} • x ∧ y = min{x, y}
• x → y = max{1 − x, y} • �λx = λ · x • x ⊕λ y = λ · x + (1 − λ) · y

The realizability problem for LTL[F] is an optimization problem: For an
LTL[F] specification ψ and a transducer T , we define the satisfaction value
of ψ in T , denoted [[T , ψ]], by min{[[x ⊗ T (x), ψ]] : x ∈ (2I)ω}, namely the
satisfaction value of ψ in the worst-case. Then, the synthesis problem is to find,
given ψ, a transducer that maximizes its satisfaction value. Moving to a decision
problem, given ψ and a threshold value v ∈ [0, 1], we say that ψ is v-realizable
if there exists a transducer T such that [[T , ψ]] ≥ v, and the synthesis problem
is to find, given ψ and v, a transducer T that v-realizes ψ.

For an LTL[F] formula ψ, let V (ψ) be the set of possible satisfaction values
of ψ in arbitrary computations. Thus, V (ψ) = {[[w,ψ]] : w ∈ (2AP)ω}.

Theorem 4 [1]. Consider an LTL[F] formula ψ.

– |V (ψ)| ≤ 2|ψ|.
– For every predicate P ⊆ [0, 1], there exists an NBW AP

ψ such that L(AP
ψ) =

{w : [[w,ψ]] ∈ P}. Furthermore, AP
ψ has at most 2O(|ψ|2) states [1].

As with LTL, we define the existential and universal extensions EQLTL[F]
and AQLTL[F] of LTL[F]. Here too, we consider the case AP = I ∪O, with the
signals in O being quantified. Then, [[w,∃O.ψ]] = maxy∈(2O)ω{[[w|I ⊗ y, ψ]]} and
[[w,∀O.ψ]] = miny∈(2O)ω{[[w|I ⊗ y, ψ]]}.

Remark 3 [On the semantics of EQLTL[F]]. It is tempting to interpret an
expression like [[w,∃O.ψ]] ≤ v as “there exists an output sequence y such that
[[wI ⊗ y, ψ]] ≤ v”. By the semantics of ∃O.ψ, however, [[w,∃O.ψ]] ≤ v actually
means that maxy∈(2O)ω [[wI ⊗ y, ψ]] ≤ v. Thus, the correct interpretation is “for
all output sequences y, we have that [[wI ⊗ y, ψ]] ≤ v”. ��

5.2 LTL[F] ge-Synthesis

For a value v ∈ [0, 1], we say that x is v-hopeful for ψ if there is y ∈ (2O)ω such
that [[x ⊗ y, ψ]] ≥ v. We study two variants of LTL[F] ge-synthesis:

– In LTL[F] ge-synthesis with a threshold, the input is an LTL[F] formula
ψ and a value v ∈ [0, 1], and the goal is to generate a transducer whose
computation on every input sequence that is v-hopeful has satisfaction value
at least v. Formally, a function f : (2I)+ → 2O ge-realizes ψ with threshold
v if for every x ∈ (2I)ω, if x is v-hopeful, then [[x ⊗ f(x), ψ]] ≥ v.

– In LTL[F] ge-synthesis, the input is an LTL[F] formula ψ, and the goal is
to generate a transducer whose computation on every input sequence has the
highest possible satisfaction value for this input sequence. Formally, a function
f : (2I)+ → 2O ge-realizes ψ if for every x ∈ (2I)ω and value v ∈ [0, 1], if x
is v-hopeful, then [[x ⊗ f(x), ψ]] ≥ v.

Good-Enough Synthesis 553

In the Boolean case, the two variants coincide, taking v = 1. Indeed, then,
for every x ∈ (2I)ω, if x is hopeful, then x ⊗ f(x) has to satisfy ψ. We note that
ge-realization with a threshold is not monotone, in the sense that decreasing the
threshold need not lead to ge-realization. Indeed, the lower is the threshold v,
the more input sequences are v-helpful (see Example 2). Accordingly, we do not
search for a maximal threshold, and rather may ask about a desired threshold
or about ge-synthesis without a threshold.

Solving the ge-synthesis problem, a naive combination of the automata con-
struction of Theorem 4 with the projection technique of Theorem 1, corresponds
to an erroneous semantics of EQLTL[F], as noted in Remark 3. Before describing
our construction, it is helpful to state the correct (perhaps less intuitive) inter-
pretation of existential and universal quantification in the quantitative setting:

Lemma 2. For every LTL[F] formula ψ and an input sequence x ∈ (2I)ω, we
have that [[x,∃O.ψ]] = 1 − [[x,∀O.¬ψ]]. Accordingly, for every value v ∈ [0, 1], we
have that [[x,∃O.ψ]] < v iff [[x,∀O.¬ψ]] > 1 − v.

Proof. By definition, [[x,∃O.ψ]] = maxy∈(2O)ω [[x ⊗ y, ψ]] = 1 − miny∈(2O)ω 1 −
[[x ⊗ y, ψ]] = 1 − miny∈(2O)ω [[x ⊗ y,¬ψ]] = 1 − [[x,∀O.¬ψ]]. Then, [[x,∃O.ψ]] < v
iff 1 − [[x,∃O.ψ]] > 1 − v iff [[x,∀O.¬ψ]] > 1 − v. ��

Consider an LTL[F] formula ψ, a value v ∈ [0, 1], and an input sequence
x ∈ (2I)ω. Recall that x is v-hopeful for ψ if there is y ∈ (2O)ω such that [[x ⊗
y, ψ]] ≥ v. Equivalently, [[x,∃O.ψ]] ≥ v. Indeed, [[x,∃O.ψ]] = maxy∈(2O)ω [[x⊗y, ψ]],
which is greater or equal to v iff there is y ∈ (2O)ω such that [[x ⊗ y, ψ]] ≥ v.
Hence, x is not v-hopeful for ψ if [[x,∃O.ψ]] < v. Equivalently, by Lemma 2,
[[x,∀O.¬ψ]] > 1 − v. Accordingly, for a strategy f : (2I)+ → 2O, an input
sequence x ∈ (2I)ω, and a value v ∈ [0, 1], we say that f is v-good for x with
respect to ψ, if [[x ⊗ f(x), ψ]] ≥ v or [[x,∀O.¬ψ]] > 1 − v.

Example 2. Let I = {p} and O = {q}. Consider the LTL[F] formula ψ =
(� 1

4
p ∨ � 1

2
q). Checking for which values v a strategy f is v-good for x with

respect to ψ, we examine whether [[x ⊗ f(x),� 1
4
p ∨ � 1

2
q]] ≥ v or [[x,∀q.¬(� 1

4
p ∨

� 1
2
q)]] > 1 − v. Since ψ refers only to the first position in the computation,

it is enough to examine x0 and f(x0). For example, if x0 = ∅ and f(x0) = ∅,
then [[x ⊗ f(x),� 1

4
p ∨ � 1

2
q]] = 0, [[x,∃q.� 1

4
p ∨ � 1

2
q]] = max{0, 1

2} = 1
2 , and

[[x,∀q.¬(� 1
4
p∨� 1

2
q)]] = min{1, 1− 1

2} = 1
2 . Hence, f is v-good for x with respect

to ψ if v = 0 or v > 1
2 , thus v ∈ {0} ∪ (1

2 , 1]. Similarly, we have the following.

– If x0 = ∅ and f(x0) = {q} then f is v-good for x when v ∈ [0, 1].
– If x0 = {p} and f(x0) = ∅ then f is v-good for x when v ∈ [0, 1

4] ∪ (1
2 , 1].

– If x0 = {p} andf(x0) = {q} then f is v-good for x when v ∈ [0, 1].

Theorem 5. The LTL[F] ge-synthesis with threshold problem is 2EXPTIME-
complete.

554 S. Almagor and O. Kupferman

Proof. We show we can adjust the upper bound described in the proof of Theo-
rem 1 to the multi-valued setting. Given an LTL[F] formula ψ over I ∪O and a
threshold v ∈ [0, 1], we describe an algorithm that returns a transducer T that
ge-realizes ψ with threshold v, or declares that no such transducer exists.

By definition, we have that T ge-realizes ψ with threshold v if for every
input sequence x, we have that fT is v-good for x with respect to ψ. Thus,
[[x⊗ fT (x), ψ]] ≥ v or [[x,∀O.¬ψ]] > 1− v. We construct a UCW whose language
is {w ∈ (2I∪O)ω : [[w,ψ]] ≥ v or [[w,∀O.¬ψ]] > 1 − v}.

Let A<v
ψ be an NBW for {w : [[w,ψ]] < v} and A≥v

∃O.ψ be an NBW for {w :
[[w,∃O.ψ]] ≥ v}. Thus, A≥v

∃O.ψ is obtained from an NBW A≥v
ψ for {w : [[w,ψ]] ≥ v}

by existentially projecting its transitions on 2I . By Theorem 4, both A<v
ψ and

A≥v
∃O.ψ are of size exponential in ψ.

Let Bv
ψ be an NBW for the intersection of A<v

ψ and A≥v
∃O.ψ. The language

of Bv
ψ is then {w ∈ (2I∪O)ω : [[w,ψ]] < v and [[w,∃O.ψ]] ≥ v}. We then solve

usual synthesis for the complementing UCW, whose language is {w ∈ (2I∪O)ω :
[[w,ψ]] ≥ v or [[w,∀O.¬ψ]] > 1 − v}, as required. By [17], the synthesis problem
for UCW can be solved in EXPTIME.

The lower bound follows from the 2EXPTIME-hardness of LTL ge-
realizability. ��

Theorem 6. The LTL[F] ge-synthesis problem is 2EXPTIME-complete.

Proof. We start with the upper bound. Given an LTL[F] specification ψ over
I ∪ O, we describe an algorithm that returns a transducer T that ge-realizes ψ
or declares that no such transducer exists.

As discussed above, a transducer T ge-realizes ψ iff for every input sequence
x ∈ (2I)ω and value v ∈ [0, 1], we have that fT is v-good for x with respect to
ψ. Accordingly, we construct a UCW whose language is

⋂
v∈V (ψ){w ∈ (2I∪O)ω :

[[w,ψ]] ≥ v or [[w,∀O.¬ψ]] > 1 − v}.
For v ∈ V (ψ), let Bv

ψ be an NBW for {w : [[w,¬ψ]] ≥ v and [[w,∃O.ψ]] ≥ v},
as constructed in the proof of Theorem 5, and let B be the union of Bv

ψ for all
v ∈ V (ψ). By Theorem 4, the size of V (ψ) is exponential in ψ, and thus so is
the size of B. We then solve usual synthesis for the complementing UCW, whose
language is as required. By [17], the synthesis problem for UCW can be solved
in EXPTIME. The lower bound follows from the 2EXPTIME-hardness of LTL
ge-realizability. ��

Remark 4 [Tuning hope down]. The quantitative setting allows the designer
to tune down “satisfaction by hoplessness”: rather than synthesizing ψ∨∀O.¬ψ,
we can have a factor λ and synthesize ψ ∨�λ∀O.¬ψ. In Sect. 5.3 below we study
additional ways to refer to hopefulness levels.

5.3 LTL[F] Assume-Guarantee ge-Synthesis

In Sect. 5.2, we seek a transducer T such that for a given or for all values v ∈ [0, 1]
and input sequences x ∈ (2I)ω, if [[x,∃O.ψ]] ≥ v then [[x ⊗ T (x), ψ]] ≥ v. In this

Good-Enough Synthesis 555

section we measure the quality of a transducer T by analyzing richer relations
between [[x,∃O.ψ]] and [[x ⊗ T (x), ψ]]. The setting has the flavor of quantitative
assume-guarantee synthesis [3]. There, the specification consists of a multi-valued
assumption A, which in our case is ∃O.ψ, and a multi-valued guarantee G, which
is our case is ψ.

There are different ways to analyze the relation between [[x,∃O.ψ]] and
[[x ⊗ T (x), ψ]]. To this end, we assume that we are given a function comb :
[0, 1]× [0, 1] → [0, 1] that given the satisfaction values of ∃O.ψ and of ψ, outputs
a combined satisfaction value. We assume that comb is decreasing in the first
component and increasing in the second component. This corresponds to the
intuition that a lower satisfaction value of ∃O.ψ and a higher satisfaction value
of ψ both yield a higher overall score. Also, since [[x,∃O.ψ]] ≥ [[x ⊗ T (x), ψ]] for
all x ∈ (2I)ω, we assume that the first component is greater than or equal to the
second. Finally, we require comb to be efficiently computed. Some natural comb
functions include:

– The quantitative implication function: comb(A,G) = max{1 − A,G}. This
captures the quantitative notion of the implication (∃O.ψ) → ψ.

– The (negated) difference function: comb(A,G) = 1 − (A − G). This captures
how far the satisfaction value for the given computation is from the best
satisfaction value. Since A ≥ G, the range of the function is indeed [0, 1].

– The ratio function, given by some normalization to [0, 1] of the function
comb(A,G) = G

A , which captures the “relative success” with respect to the
best possible satisfaction value.

The choice of an appropriate comb function depends on the setting. Implica-
tion is in order when harsh environments may outweigh the actual performance
of the system. For example, if our specification measures the uptime of a server
in a cluster, then environments that cause very frequent power failures render
the server unusable, as the overhead of reconnecting it outweighs its usefulness.
In such a case, being shut down is better than continuously trying to recon-
nect, and so we give a higher satisfaction value for the server being down, which
depends only on the environment. Then, as demonstrated with the cleaning robot
in Sect. 1, the difference and ratio functions are fairly natural when measuring
“realization of potential”. We now describe a more detailed example when these
measures are in order.

Example 3. Consider a controller for an elevator in an n-floor building. The
environment sends to the controller requests, by means of a truth assignment to
I = {1, . . . , n}, indicating the subset of floors in which the elevator is requested.
Then, the controller assigns values to O = {up, down}, directing the elevator to
go up, go down, or stay. The satisfaction value of the specification ψ reflects
the waiting time of the request with the slowest response: it is 0 when this
time is more than 2n, and is 1 when the slowest request is granted immediately.
Sure enough, there is no controller that attains satisfaction value 1 on all input
sequences, and so ψ is not realizable with satisfaction value 1. Also, adding
assumptions about the behavior of the environment is not of much interest. Using

556 S. Almagor and O. Kupferman

AG ge-realizability, we can synthesize a controller that behaves in an optimal
way. For example, using the difference function, we measure the performance of
the controller on an input sequence x ∈ (2I)ω with respect to the best possible
performance on x. Note that such a best performance needs a look-ahead on
requests yet to come, which is indeed the satisfaction value of ∃O.ψ in x. Thus,
the assumption [[x,∃O.ψ]] actually gives us the performance of a good-enough
off-line controller. Accordingly, using the ratio function, we can synthesize a
system with the best competitive ratio for an on-line interaction [7]. ��

Given an LTL[F] formula ψ and a function comb, we define the ge-AG-
realization value of ψ in a transducer T by min{comb([[x,∃O.ψ]], [[x⊗T (x), ψ]]) :
x ∈ (2I)ω}. Then, our goal in AG ge-realizability is to find, given an LTL[F]
formula ψ and a function comb, the maximal value v ∈ [0, 1] such that there
exists a transducer T whose AG ge-realization value of ψ is v. The AG ge
-synthesis problem is then to find such a transducer.

We start by solving the decision version of AG ge-realizability.

Theorem 7. The problem of deciding, given an LTL[F] formula ψ, a function
comb, and a threshold v ∈ [0, 1], whether there exists a transducer T whose AG
ge-realization value of ψ is v, is 2EXPTIME-complete.

Proof. Recall that V (ψ) is the set of possible satisfaction values of ψ (and
hence of ∃O.ψ), and that by Theorem 4, we have that |V (ψ)| ≤ 2|ψ|. Let
Gv = {〈v1, v2〉 ∈ V (ψ) × V (ψ) : comb(v1, v2) ≥ v}. Intuitively, G is the set
of satisfaction-value pairs 〈[[w,∃O.ψ]], [[w,ψ]]〉 that are allowed to be generated
by a transducer whose AG ge-realization value of ψ is at least v. By defini-
tion, AG ge-realization of ψ with value v coincides with realization of the lan-
guage Lv = {w ∈ (2I∪O)ω : comb([[w,∃O.ψ]], [[w,ψ]]) ≥ v}. By the monotonicity
assumption on comb, for every 〈v1, v2〉 ∈ Gv, we have that 〈v′

1, v
′
2〉 ∈ G for every

v′
1 ≤ v1 and v′

2 ≥ v2. Hence, we can write Lv =
⋃

〈v1,v2〉∈Gv
{w ∈ (2I∪O)ω :

[[w,∃O.ψ]] ≤ v1 and [[w,ψ]] ≥ v2}, and proceed to construct an NBW for Lv

by taking the union of NBWs Av1,v2 for all 〈v1, v2〉 ∈ Gv, each of which is the
product of NBWs A≤v1

∃O.ψ and A≥v2
ψ , as in the proof of Theorem 5.

Aiming to proceed Safralessly, we can also construct a UCW for Lv, as fol-
lows. First, note that by the monotonicity of comb, for every 〈v1, v2〉 ∈ V (ψ) ×
V (ψ) we have that 〈v1, v2〉 ∈ Gv iff for every 〈u1, u2〉 ∈ V (ψ) × V (ψ) \ Gv, we
have that v1 < u1 or v2 > u2. Hence, Lv =

⋂
〈u1,u2〉∈V (ψ)×V (ψ)\Gv

{w ∈ (2I∪O)ω :
[[w,∃O.ψ]] < u1 or [[w,ψ]] > u2}, and so by dualization we have (2I∪O)ω \ Lv =⋃

〈u1,u2〉∈V (ψ)×V (ψ)\Gv
{w ∈ (2I∪O)ω : [[w,∃O.ψ]] ≥ u1 and [[w,ψ]] ≤ u2}. Hence,

we can obtain a UCW for Lv by dualizing an NBW that is the union of NBWs
Au1,u2 , for all 〈u1, u2〉 ∈ V (ψ) × V (ψ) \ Gv, each of which is the product of
NBWs A≥u1

∃O.ψ and A≤u2
ψ .

Observe that in all cases, the size of the NBW is 2O(|ψ|). Indeed, there are at
most 22|ψ| pairs in the union, and, by Theorem 4, the size of the NBW for each
pair is 2O(|ψ|).

The lower bound follows from the 2EXPTIME-hardness of LTL ge-
realizability. ��

Good-Enough Synthesis 557

By Theorem 4, the number of possible satisfaction values for ψ is at most
2|ψ|. Thus, the number of possible values for comb(A,G), where A and G are
satisfaction values of ψ, is at most 22|ψ|. Using binary search over the image of
comb, we can use Theorem 7 to obtain the following.

Corollary 1. The AG ge-synthesis problem can be solved in doubly-exponential
time.

Remark 5 [ge-synthesis as a special case of AGge-synthesis]. The two
approaches taken in Sect. 5.2 can be captured by an appropriate comb function.
Indeed, for ge-synthesis with a threshold, we can use the function comb with
comb(A,G) = 1 if A ≥ v → G ≥ v, and comb(A,G) = 0 otherwise. For ge-
synthesis (without a threshold), we can use the function comb with comb(A,G) =
1 if A = G, and comb(A,G) = 0 otherwise (recall that A ≥ G by definition).
However, the solution described in Sect. 5.2 is simpler than the one described
here for the general case. ��

5.4 LTL[F] ge-Synthesis in Stochastic Environments

The setting of LTL[F] ge-synthesis studied in Sects. 5.2 and 5.3 takes the dif-
ferent satisfaction values into an account, but is binary, in the sense that a spec-
ification is either (possibly AG) ge-realizable, or is not. In particular, in case
the specification is not ge-realizable, synthesis algorithms only return “no”. In
this section we add a quantitative measure also to the underlying realizability
question. We do so by assuming a stochastic environment, with a known distri-
bution on the inputs sequences, and analyzing the expected performance of the
system.

For completeness, we remind the reader of some basics of probability theory.
For a comprehensive reference see e.g., [25]. Let Σ be a finite alphabet, and
let ν be some probability distribution over Σω. For example, in the uniform
distribution over (2I)ω, the probability space is induced by sampling each letter
with probability 2−|I|, corresponding to settings in which each signal in I always
holds in probability 1

2 . We assume ν is given by a finite Markov Decision Process
(MDP). That is, ν is induced by the distribution of each letter i ∈ 2I at each time
step, determined by a finite stochastic control process that takes into account also
the outputs generated by the system (see [2] for the precise model). A random
variable is then a function X : Σω → R. When X has a finite image V , which
is the case in our setting, its expected value is E[X] =

∑
v∈V v · Pr(X−1(v)).

Intuitively, E[X] is the “average” value that X attains. Next, consider an event
E ⊆ Σω. The conditional expectation of X with respect to E is E[X|E] =
E[1EX]
Pr(E) , where 1EX is the random variable that assigns X(w) to w ∈ E and 0 to

w �∈ E. Intuitively, E[X|E] is the average value that X attains when restricting
to words in E, and normalizing according to the probability of E itself.

We continue and review the high-quality synthesis problem [2], where the ge
variant is not considered. There, the environment is assumed to be stochastic
and we care for the expected satisfaction value of an LTL[F] specification in

558 S. Almagor and O. Kupferman

the computations of a transducer T , assuming some given distribution on the
inputs sequences. Formally, let XT ,ψ : (2I)ω → R be a random variable that
assigns each sequence x ∈ (2I)ω of input signals with [[T (x), ψ]]. Then, when the
sequences in (2I)ω are sampled according to a given distribution ν of (2I)ω, we
define [[T , ψ]]ν = E[XT ,ψ]. Since ν is fixed, we omit it from the notation and use
[[T , ψ]] in the following.

Remark 6 [Relating LTL ge-synthesis with stochastic LTL[F] synthesis]
Given an LTL formula ψ, we can view it as an LTL[F] formula with possible
satisfaction values {0, 1}, apply to it high-quality synthesis a-la [2], and find a
transducer T that maximizes E[XT ,ψ]. An interesting observation is that if T
ge-realizes ψ, then it also maximizes E[XT ,ψ]. Indeed, all input sequences that
can contribute to the expected satisfaction value, do so. ��

We introduce and study two measures for high-quality synthesis in a stochas-
tic environment. In the first, termed expected ge-synthesis, all input sequences
are sampled, yet the satisfaction value in each input sequence takes its hopeful-
ness level into account. In the second, termed conditional expected ge-synthesis,
only hopeful input sequences are sampled.

We start with expected ge-synthesis. There, instead of associating each
sequence x ∈ (2I)ω with [[x ⊗ T (x), ψ]], we associate it with Xcomb

T ,ψ =
comb([[x,∃O.ψ]], [[x ⊗ T (x), ψ]]}, where comb is as described in Sect. 5.3, thus
capturing the assume-guarantee semantics of quantitative ge-synthesis. Then,
we define [[T , ψ]]comb = E[Xcomb

T ,ψ]. For example, taking comb as implication,
we have Xcomb

T ,ψ = max{[[x ⊗ T (x), ψ]], [[x,∀O.¬ψ]]}, capturing the semantics of
(∃O.ψ) → ψ.

Then, in conditional expected ge-synthesis, we consider ∃O.ψ as an envi-
ronment assumption, and factor it in using conditional expectation, param-
eterized by a threshold v ∈ [0, 1]. Formally, let ∃O.ψ ≥ v denote the event
{x ∈ (2I)ω : [[x,∃O.ψ]] ≥ v}. Then, we define [[T , ψ]]cond(v) = E[XT ,ψ|∃O.ψ ≥ v],
assuming the event ∃O.ψ ≥ v has a strictly positive probability.

In [2], it is shown that the high-quality synthesis problem can be solved in
doubly-exponential time, also in the presence of environment assumptions. In
the solution, the first step is the translation of the involved formulas to DPWs.
In order to extract from [2] the results relevant to us, we describe them by means
of discrete quantitative specifications, defined as follows. A discrete quantitative
specification Ψ over I ∪O is given by means of a sequence A1, . . . ,An of DPWs,
with (2I∪O)ω = L(A1) ⊇ L(A2) ⊇ . . . ⊇ L(An), and sequence 0 ≤ v1 < . . . <
vn ≤ 1 of values. For every w ∈ (2I∪O)ω, the satisfaction value of w in Ψ , denoted
[[w,Ψ]], is max{vi : w ∈ L(Ai)}. We refer to n as the depth of Ψ .

Theorem 8 ([2]). Consider a discrete quantitative specification Ψ over I ∪ O.
Let n be its depth and m be the size of the largest DPW in Ψ . For a transducer
T , let XT be a random variable that assigns a word x ∈ (2I)ω with [[x⊗T (x), Ψ]].

1. We can synthesize a transducer T that maximizes E[XT] in time mn.

Good-Enough Synthesis 559

2. Given a DPW B over 2I such that Pr(L(B)) > 0, we can synthesize a trans-
ducer T that maximizes E[XT |B] in time mn · k, where k is the size of B.

We can now state the main results of this section.

Theorem 9. Consider an LTL[F] formula ψ.

1. Given a function comb, we can find in doubly-exponential time a transducer
that maximizes [[T , ψ]]comb.

2. Given a threshold v ∈ [0, 1], we can find in doubly-exponential time a trans-
ducer that maximizes [[T , ψ]]cond(v).

Proof. Let v1 < v2 < . . . < vn be the possible satisfaction values of ψ (and
hence also of ∃O.ψ and of ∀O.ψ). By Theorem 4, we have that n ≤ 2|ψ|. For
each vi, we can construct a DPW D≥vi

comb(∃O.ψ,ψ) as in Theorem 7. It is not hard to

see that the discrete quantitative specification given by the DPWs D≥vi

comb(∃O.ψ,ψ)

and the values vi, for 1 ≤ i ≤ n, is qual to the specification comb(∃O.ψ, ψ).
Thus, by Theorem 8 (1), we can find a transducer that maximizes E[XT] in time
(22O(|ψ|)

)2
|ψ|

= 22O(|ψ|)
.

Next, given v ∈ [0, 1], we can check whether Pr(∃O.ψ > v) > 0, for example
by converting a DPW D≥v

∃O.ψ to an MDP, and reasoning about its Ergodic-
components. Then, by Theorem 8 (2), we can find a transducer that maximizes
E[XT |∃Oψ > v], in time (22O(|ψ|)

)2
|ψ| · 22O(ψ)

= 22O(|ψ|)
. ��

Corollary 2. The (possibly conditional) expected ge-synthesis problem for
LTL[F] can be solved in doubly-exponential time.

5.5 Guarantees in High-Quality ge-Synthesis

As in the Boolean setting, also in the high-quality one we would like to add to a
ge-realizing transducer guarantees and indications about the satisfaction level.
As we detail below, the quantitative setting offers many possible ways to do so.

High-Quality ge-Synthesis with Guarantees. We consider specifications of
the form ψ = ψstrong ∧ψweak , where essentially, we seek a transducer that realizes
ψstrong and (possibly AG) ge-realizes ψweak . Maximizing the realization value of
ψstrong may conflict with maximizing the ge-realization value of ψweak , and there
are different ways to trade-off the two goals. Technically, in the decision-problem
variant, we are given two thresholds v1, v2 ∈ [0, 1], and we seek a transducer T
that realizes ψstrong with value at least v1, and ge-realizes ψweak with value at
least v2. Then, one may start, for example, by maximizing the value v1, and then
find the maximal value v2 that may be achieved simultaneously. Alternatively,
one may prefer to maximize v2, or some other combination of v1 and v2. Also,
it is possible to decompose ψ further, to several strong and weak components,
each with its desired threshold.

The solutions in the different settings all involve a construction of a UCW
A≥v1

ψstrong
, and its product with the automata constructed in the solutions for the

560 S. Almagor and O. Kupferman

different ge-synthesis variants. We thus have the following. We note that when
the solution for ψweak is Safraless, we can use a UCW for ψstrong to maintain a
Safraless construction.

Theorem 10. The problem of LTL[F] high-quality ge-synthesis with a guar-
antee can be solved in doubly-exponential time.

Flags by a High-Quality ge-Realizing Transducer. In the quantitative
setting, we parameterized the flags raised by the ge-realizing transducer by
values in [0, 1], indicating the announced satisfaction level. Thus, rather than
talking about prefixes being green, red, or blue, we talk about them being v-
green, v-red, and v-blue, for v ∈ [0, 1], which essentially means that a satisfaction
value of at least v is guarantees (in green and blue flags) or is impossible (in red
ones). We can think of those as “degrees” of green, red, and blue. Below, we
formalize this intuition and argue that even an augmentation of a transducer
that ge-realizes ψ by flags for all values in V (ψ) leaves the problem in doubly-
exponential time.

A quantitative language over 2I∪O is L : (2I∪O)ω → [0, 1]. For a quantitative
language L and a word w ∈ (2I∪O)∗, we define Lw as the quantitative language
where for all w′ ∈ (2I∪O)ω, we have Lw(w′) = L(w · w′). For a value v ∈ [0, 1],
a word w ∈ (2I∪O)∗ is v-green for L if Lw is v-realizable. That is, there is a
transducer T such that [[T,Lw]] ≥ v. A word x ∈ (2I)∗ is v-green for L if there is
y ∈ (2O)∗ such that x⊗y is v-green for L. Thus, when the environment generates
x, the system can respond in a way that would guarantee v-realizability. Finally,
we say that L is green realizable if there is a strategy f : (2I)+ → 2O that for
every threshold v and for every input x ∈ (2I)+ that is v-green for L, we have that
x⊗f(x) is v-green for L. It is not hard to see that Theorem 3 carries over to the
quantitative setting, thus quantitative optimal realizability is strictly stronger
than quantitative green realizability. In particular, if a transducer T optimally
realizes an LTL[F] formula ψ, then T also green realizes ψ. In the full version,
we describe quantitative definitions also for red and blue prefixes, and describe
monitors for the detection of the various types of prefixes.

6 Discussion

We introduced and solved several variants of ge-synthesis. Our complexity
results are tight and show that ge-synthesis is not more complex than tradi-
tional synthesis. In practice, however, traditional synthesis algorithms do not
scale well, and much research is devoted for the development of methods and
heuristics for coping with the implementation challenges of synthesis. A natu-
ral future research direction is to extend these heuristics and methods for ge-
synthesis. We mention here two specific examples.

Efficient synthesis algorithms have been developed for fragments of LTL [21].
Most notable is the GR(1) fragment [18], which supports assume-guarantee rea-
soning, and for which synthesis has an efficient symbolic solution. Adding exis-
tential quantification to GR(1) specifications, which is how we handled LTL

Good-Enough Synthesis 561

ge-synthesis, is not handled by its known algorithms, and is an interesting chal-
lenge. The success of SAT-based model-checking have led to the development of
SAT-based synthesis algorithms [6], where the synthesis problem is reduced to
satisfiability of a QBF formula. The fact the setting already includes quantifiers
suggests it can be extended to ge-synthesis. A related effort is bounded synthe-
sis algorithms [13,24], where the synthesized systems are assumed to be of a
bounded size and can be represented symbolically [10].

References

1. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
J. ACM 63(3), 24:1–24:56 (2016)

2. Almagor, S., Kupferman, O.: High-quality synthesis against stochastic environ-
ments. In: Proceedings of 25th Annual Conference of the European Association for
Computer Science Logic, LIPIcs, vol. 62, pp. 28:1–28:17 (2016)

3. Almagor, S., Kupferman, O., Ringert, J.O., Velner, Y.: Quantitative assume guar-
antee synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427,
pp. 353–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-
9 19

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

5. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
Handbook of Model Checking, pp. 921–962. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-10575-8 27

6. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: Sat-based methods
for circuit synthesis. In: Proceedings of 14th International Conference on Formal
Methods in Computer-Aided Design, pp. 31–34. IEEE (2014)

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

8. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 14

9. Church, A.: Logic, arithmetics, and automata. In: Proceedings of International
Congress of Mathematicians, vol. 1962, pp. 23–35. Institut Mittag-Leffler (1963)

10. Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14295-6 33

11. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 16

12. Kupferman, O.: Automata theory and model checking. In: Clarke, E., Henzinger,
T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 107–151.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 4

13. Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for
bounded systems and environments. In: Proceedings of 28th Symposium on The-
oretical Aspects of Computer Science, pp. 615–626 (2011)

https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-319-63390-9_19
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-12002-2_16
https://doi.org/10.1007/978-3-319-10575-8_4

562 S. Almagor and O. Kupferman

14. Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments.
Ann. Math. Artif. Intell. 78(1), 3–20 (2016). https://doi.org/10.1007/s10472-016-
9508-8

15. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 6

16. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

17. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of 46th
IEEE Symposium on Foundations of Computer Science, pp. 531–540 (2005)

18. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

19. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13, 45–60 (1981)

20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of 16th ACM Symposium on Principles of Programming Languages, pp. 179–190
(1989)

21. Alur, R., La Torre, S., Madhusudan, P.: Playing games with boxes and diamonds.
In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 128–143.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7 8

22. Rosner, R.: Modular synthesis of reactive systems. Ph.D thesis, Weizmann Institute
of Science (1992)

23. Safra, S.: On the complexity of ω-automata. In: Proceedings of 29th IEEE Sym-
posium on Foundations of Computer Science, pp. 319–327 (1988)

24. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 33

25. Sheldon, R.: A First Course in Probability. Pearson Education India, Delhi (2002)
26. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi

automata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237
(1987)

27. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

28. Winnicott, D.W.: Playing and Reality. Penguin, Harmondsworth (1971)
29. Wolper, P.: Temporal logic can be more expressive. In: Proceedings of 22nd IEEE

Symposium on Foundations of Computer Science, pp. 340–348 (1981)

https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1007/s10472-016-9508-8
https://doi.org/10.1007/11817963_6
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/978-3-540-45187-7_8
https://doi.org/10.1007/978-3-540-75596-8_33

Good-Enough Synthesis 563

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Synthesizing JIT Compilers
for In-Kernel DSLs

Jacob Van Geffen1(B), Luke Nelson1, Isil Dillig2, Xi Wang1,
and Emina Torlak1

1 University of Washington, Seattle, USA
jsvg@cs.washington.edu

2 University of Texas at Austin, Austin, USA

Abstract. Modern operating systems allow user-space applications to
submit code for kernel execution through the use of in-kernel domain spe-
cific languages (DSLs). Applications use these DSLs to customize system
policies and add new functionality. For performance, the kernel executes
them via just-in-time (JIT) compilation. The correctness of these JITs
is crucial for the security of the kernel: bugs in in-kernel JITs have led
to numerous critical issues and patches.

This paper presents JitSynth, the first tool for synthesizing veri-
fied JITs for in-kernel DSLs. JitSynth takes as input interpreters for
the source DSL and the target instruction set architecture. Given these
interpreters, and a mapping from source to target states, JitSynth syn-
thesizes a verified JIT compiler from the source to the target. Our key
idea is to formulate this synthesis problem as one of synthesizing a per-
instruction compiler for abstract register machines. Our core technical
contribution is a new compiler metasketch that enables JitSynth to
efficiently explore the resulting synthesis search space. To evaluate Jit-
Synth, we use it to synthesize a JIT from eBPF to RISC-V and compare
to a recently developed Linux JIT. The synthesized JIT avoids all known
bugs in the Linux JIT, with an average slowdown of 1.82× in the perfor-
mance of the generated code. We also use JitSynth to synthesize JITs
for two additional source-target pairs. The results show that JitSynth
offers a promising new way to develop verified JITs for in-kernel DSLs.

Keywords: Synthesis · Just-in-time compilation · Symbolic execution

1 Introduction

Modern operating systems (OSes) can be customized with user-specified pro-
grams that implement functionality like system call whitelisting, performance
profiling, and power management [11,12,24]. For portability and safety, these
programs are written in restricted domain-specific languages (DSLs), and the
kernel executes them via interpretation and, for better performance, just-in-time
(JIT) compilation. The correctness of in-kernel interpreters and JITs is crucial
for the reliability and security of the kernel, and bugs in their implementations
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 564–586, 2020.
https://doi.org/10.1007/978-3-030-53291-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_29

Synthesizing JIT Compilers for In-Kernel DSLs 565

have led to numerous critical issues and patches [15,30]. More broadly, embed-
ded DSLs are also used to customize—and compromise [6,18]—other low-level
software, such as font rendering and anti-virus engines [8]. Providing formal guar-
antees of correctness for in-kernel DSLs is thus a pressing practical and research
problem with applications to a wide range of systems software.

Prior work has tackled this problem through interactive theorem proving. For
example, the Jitk framework [40] uses the Coq interactive theorem prover [38] to
implement and verify the correctness of a JIT compiler for the classic Berkeley
Packet Filter (BPF) language [24] in the Linux kernel. But such an approach
presents two key challenges. First, Jitk imposes a significant burden on DSL
developers, requiring them to implement both the interpreter and the JIT com-
piler in Coq, and then manually prove the correctness of the JIT compiler with
respect to the interpreter. Second, the resulting JIT implementation is extracted
from Coq into OCaml and cannot be run in the kernel; rather, it must be run
in user space, sacrificing performance and enlarging the trusted computing base
(TCB) by relying on the OCaml runtime as part of the TCB.

This paper addresses these challenges with JitSynth, the first tool for syn-
thesizing verified JIT compilers for in-kernel DSLs. JitSynth takes as input
interpreters for the source DSL and the target instruction set architecture (ISA),
and it synthesizes a JIT compiler that is guaranteed to transform each source
program into a semantically equivalent target program. Using JitSynth, DSL
developers write no proofs or compilers. Instead, they write the semantics of
the source and target languages in the form of interpreters and a mapping from
source to target states, which JitSynth trusts to be correct. The synthesized
JIT compiler is implemented in C; thus, it can run directly in the kernel.

At first glance, synthesizing a JIT compiler seems intractable. Even the sim-
plest compiler contains thousands of instructions, whereas existing synthesis tech-
niques scale to tens of instructions.To tackle this problem in our setting,we observe
that in-kernel DSLs are similar to ISAs: both take the form of bytecode instructions
for an abstract register machine, a simple virtual machine with a program counter,
a few registers, and limited memory store [40]. We also observe that in practice,
the target machine has at least as many resources (registers and memory) as the
source machine; and that JIT compilers for such abstract register machines per-
form register allocation statically at compile time. Our main insight is that we can
exploit these properties to make synthesis tractable through decomposition and
prioritization, while preserving soundness and completeness.

JitSynth works by decomposing the JIT synthesis problem into the problem
of synthesizing individual mini compilers for every instruction in the source lan-
guage. Each mini compiler is synthesized by generating a compiler metasketch [7],
a set of ordered sketches that collectively represent all instruction sequences in
the target ISA. These sketches are then solved by an off-the-shelf synthesis tool
based on reduction to SMT [39]. The synthesis tool ensures that the target
instruction sequence is semantically equivalent to the source instruction, accord-
ing to the input interpreters. The order in which the sketches are explored is key
to making this search practical, and JitSynth contributes two techniques for
biasing the search towards tightly constrained, and therefore tractable, sketches
that are likely to contain a correct program.

566 J. Van Geffen et al.

First, we observe that source instructions can often be implemented with
target instructions that access the same parts of the state (e.g., only registers).
Based on this observation, we develop read-write sketches, which restrict the
synthesis search space to a subset of the target instructions, based on a sound and
precise summary of their semantics. Second, we observe that hand-written JITs
rely on pseudoinstructions to generate common target sequences, such as loading
immediate (constant) values into registers. We use this observation to develop
pre-load sketches, which employ synthesized pseudoinstructions to eliminate the
need to repeatedly search for common target instruction subsequences.

We have implemented JitSynth in Rosette [39] and used it to synthesize JIT
compilers for three widely used in-kernel DSLs. As our main case study, we used
JitSynth to synthesize a RISC-V [32] compiler for extended BPF (eBPF) [12],
an extension of classic BPF [24], used by the Linux kernel. Concurrently with
our work, Linux developers manually built a JIT compiler for the same source
and target pair, and a team of researchers found nine correctness bugs in that
compiler shortly after its release [28]. In contrast, our JIT compiler is verified by
construction; it supports 87 out of 102 eBPF instructions and passes all the Linux
kernel tests within this subset, including the regression tests for these nine bugs.
Our synthesized compiler generates code that is 5.24× faster than interpreted
code and 1.82× times slower than the code generated by the Linux JIT. We also
used JitSynth to synthesize a JIT from libseccomp [10], a policy language for
system call whitelisting, to eBPF, and a JIT from classic BPF to eBPF. The
synthesized JITs avoid previously found bugs in the existing generators for these
source target pairs, while incurring, on average, a 2.28–2.61× slowdown in the
performance of the generated code.

To summarize, this paper makes the following contributions:

1. JitSynth, the first tool for synthesizing verified JIT compilers for in-kernel
DSLs, given the semantics of the source and target languages as interpreters.

2. A novel formulation of the JIT synthesis problem as one of synthesizing a
per-instruction compiler for abstract register machines.

3. A novel compiler metasketch that enables JitSynth to solve the JIT synthesis
problem with an off-the-shelf synthesis engine.

4. An evaluation of JitSynth’s effectiveness, showing that it can synthesize
verified JIT compilers for three widely used in-kernel DSLs.

The rest of this paper is organized as follows. Section 2 illustrates JitSynth
on a small example. Section 3 formalizes the JIT synthesis problem for in-kernel
DSLs. Section 4 presents the JitSynth algorithm for generating and solving
compiler metasketches. Section 5 provides implementation details. Section 6 eval-
uates JitSynth. Section 7 discusses related work. Section 8 concludes.

2 Overview

This section provides an overview of JitSynth by illustrating how it synthesizes
a toy JIT compiler (Fig. 1). The source language of the JIT is a tiny subset of

Synthesizing JIT Compilers for In-Kernel DSLs 567

Fig. 1. Subsets of eBPF and RISC-V used as source and target languages, respectively,
in our running example: R[r] denotes the value of register r; M [a] denotes the value at
memory address a; ⊕ denotes concatenation of bitvectors; superscripts (e.g., 032) denote
repetition of bits; sext32(x) and sext64(x) sign-extend x to 32 and 64 bits, respectively;
and extract(i, j, x) produces a subrange of bits of x from index i down to j.

eBPF [12] consisting of one instruction, and the target language is a subset of
64-bit RISC-V [32] consisting of seven instructions. Despite the simplicity of our
languages, the Linux kernel JIT used to produce incorrect code for this eBPF
instruction [27]; such miscompilation bugs not only lead to correctness issues, but
also enable adversaries to compromise the OS kernel by crafting malicious eBPF
programs [40]. This section shows how JitSynth can be used to synthesize a JIT
that is verified with respect to the semantics of the source and target languages.

In-Kernel Languages. JitSynth expects the source and target languages to be
a set of instructions for manipulating the state of an abstract register machine
(Sect. 3). This state consists of a program counter (pc), a finite sequence of
general-purpose registers (reg), and a finite sequence of memory locations (mem),
all of which store bitvectors (i.e., finite precision integers). The length of these
bitvectors is defined by the language; for example, both eBPF and RISC-V
store 64-bit values in their registers. An instruction consists of an opcode and
a finite set of fields, which are bitvectors representing either register identifiers
or immediate (constant) values. For instance, the addi32 instruction in eBPF
has two fields: dst is a 4-bit value representing the index of the output register,
and imm32 is a 32-bit immediate. (eBPF instructions may have two additional
fields src and off , which are not shown here as they are not used by addi32).
An abstract register machine for a language gives meaning to its instructions:
the machine consumes an instruction and a state, and produces a state that is
the result of executing that instruction. Figure 1 shows a high-level description
of the abstract register machines for our languages.

JitSynth Interface. To synthesize a compiler from one language to another,
JitSynth takes as input their syntax, semantics, and a mapping from source
to target states. All three inputs are given as a program in a solver-aided host
language [39]. JitSynth uses Rosette as its host, but the host can be any lan-
guage with a symbolic evaluation engine that can reduce the semantics of host

568 J. Van Geffen et al.

programs to SMT constraints (e.g., [37]). Figure 2 shows the interpreters for the
source and target languages (i.e., emulators for their abstract register machines),
as well as the state-mapping functions regST, pcST, and memST that JitSynth
uses to determine whether a source state σS is equivalent to a target state
σT . In particular, JitSynth deems these states equivalent, denoted by σS

∼=
σT , whenever reg(σT)[regST(r)] = reg(σS)[r], pc(σT) = pcST(pc(σS)), and
mem(σT)[memST(a)] = mem(σS)[a] for all registers r and memory addresses a.

Fig. 2. Snippets of inputs to JitSynth: the interpreters for the source (eBPF) and
and target (RISC-V) languages and state-mapping functions.

Decomposition into Per-instruction Compilers. Given these inputs, JitSynth
generates a per-instruction compiler from the source to the target language. To
ensure that the resulting compiler is correct (Theorem 1), and that one will be
found if it exists (Theorem 2), JitSynth puts two restrictions on its inputs.
First, the inputs must be self-finitizing [39], meaning that both the interpreters
and the mapping functions must have a finite symbolic execution tree when
applied to symbolic inputs. Second, the target machine must have at least as
many registers and memory locations as the source machine; these storage cells
must be as wide as those of the source machine; and the state-mapping functions
(pcST, regST, and memST) must be injective. Our toy inputs satisfy these
restrictions, as do the real in-kernel languages evaluated in Sect. 6.

Synthesis Workflow. JitSynth generates a per-instruction compiler for a given
source and target pair in two stages. The first stage uses an optimized com-
piler metasketch to synthesize a mini compiler from every instruction in the
source language to a sequence of instructions in the target language (Sect. 4).

Synthesizing JIT Compilers for In-Kernel DSLs 569

The second stage then simply stitches these mini compilers into a full C com-
piler using a trusted outer loop and a switch statement. The first stage is a core
technical contribution of this paper, and we illustrate it next on our toy example.

Metasketches. To understand how JitSynth works, consider the basic problem
of determining if every addi32 instruction can be emulated by a sequence of
k instructions in toy RISC-V. In particular, we are interested in finding a pro-
gram Caddi32 in our host language (which JitSynth translates to C) that takes
as input a source instruction s = addi32 dst , imm32 and outputs a semanti-
cally equivalent RISC-V program t = [t1, . . . , tk]. That is, for all dst , imm32 ,
and for all equivalent states σS

∼= σT , we have run(s, σS ,ebpf-interpret) ∼=
run(t, σT ,rv-interpret), where run(e, σ, f) executes the instruction inter-
preter f on the sequence of instructions e, starting from the state σ (Definition 3).

We can solve this problem by asking the host synthesizer to search for Caddi32

in a space of candidate mini compilers of length k. We describe this space with
a syntactic template, or a sketch, as shown below:

(define (compile-addi32 s) ; Returns a list of k instruction holes, to be
(define dst (ebpf-insn-dst s)) ; filled with toy RISC-V instructions. Each
(define imm (ebpf-insn-imm s)) ; hole represents a set of choices, defined
(list (??insn dst imm) ...)) ; by the ??insn procedure.

(define (??insn . sf) ; Takes as input source instruction fields and
(define rd (??reg sf)) ; uses them to construct target field holes.
(define rs1 (??reg sf)) ; ??reg and ??imm field holes are bitvector
(define rs2 (??reg sf)) ; expressions over sf and arbitrary constants.
(choose* ; Returns an expression that chooses among
(rv-insn lui rd rs1 rs2 (??imm 20 sf)) ; lui, addiw,
... ; ..., and
(rv-insn sb rd rs1 rs2 (??imm 12 sf)))) ; sb instructions.

Here, (??insn dst imm) stands for a missing expression—a hole—that
the synthesizer needs to fill with an instruction from the toy RISC-V language. To
fill an instruction hole, the synthesizer must find an expression that computes the
value of the target instruction’s fields. JitSynth limits this expression language
to bitvector expressions (of any depth) over the fields of the source instruction
and arbitrary bitvector constants.

Given this sketch, and our correctness specification for Caddi32, the synthesizer
will search the space defined by the sketch for a program that satisfies the specifi-
cation. Below is an example of the resulting toy compiler from eBPF to RISC-V,
synthesized and translated to C by JitSynth (without the outer loop):

void compile(struct bpf_insn *insn, struct rv_insn *tgt_prog) {
switch (insn->op) {
case BPF_ADDI32:

tgt_prog[0] = /* lui x6, extract(19, 0, (imm + 0x800) >> 12) */
rv_lui(6, extract(19, 0, (insn->imm + 0x800) >> 12));

tgt_prog[1] = /* addiw x6, x6, extract(11, 0, imm) */
rv_addiw(6, 6, extract(11, 0, insn->imm));

tgt_prog[2] = /* add rd, rd, x6 */
rv_add(regmap(insn->dst), regmap(insn->dst), 6);

tgt_prog[3] = /* slli rd, rd, 32 */
rv_slli(regmap(insn->dst), regmap(insn->dst), 32);

tgt_prog[4] = /* srli rd, rd, 32 */
rv_srli(regmap(insn->dst), regmap(insn->dst), 32);

break;
}

}

Once we know how to synthesize a compiler of length k, we can easily extend
this solution into a naive method for synthesizing a compiler of any length.

570 J. Van Geffen et al.

We simply enumerate sketches of increasing lengths, k = 1, 2, 3, . . ., invoke the
synthesizer on each generated sketch, and stop as soon as a solution is found (if
ever). The resulting ordered set of sketches forms a metasketch [7]—i.e., a search
space and a strategy for exploring it—that contains all candidate mini compilers
(in a subset of the host language) from the source to the target language. This
naive metasketch can be used to find a mini compiler for our toy example in
493 min. However, it fails to scale to real in-kernel DSLs (Sect. 6), motivating
the need for JitSynth’s optimized compiler metasketches.

Compiler Metasketches. JitSynth optimizes the naive metasketch by extending
it with two kinds of more tightly constrained sketches, which are explored first.
A constrained sketch of size k usually contains a correct solution of a given size
if one exists, but if not, JitSynth will eventually explore the naive sketch of
the same length, to maintain completeness. We give the intuition behind the two
optimizations here, and present them in detail in Sect. 4.

First, we observe that practical source and target languages include similar
kinds of instructions. For example, both eBPF and RISC-V include instructions
for adding immediate values to registers. This similarity often makes it possible
to emulate a source instruction with a sequence of target instructions that access
the same part of the state (the program counter, registers, or memory) as the
source instruction. For example, addi32 reads and writes only registers, not
memory, and it can be emulated with RISC-V instructions that also access only
registers. To exploit this observation, we introduce read-write sets, which sum-
marize, soundly and precisely, how an instruction accesses state. JitSynth uses
these sets to define read-write sketches for a given source instruction, includ-
ing only target instructions that access the state in the same way as the source
instruction. For instance, a read-write sketch for addi32 excludes both lb and
sb instructions because they read and write memory as well as registers.

Second, we observe that hand-written JITs use pseudoinstructions to sim-
plify their implementation of mini compilers. These are simply subroutines or
macros for generating target sequences that implement common functionality.
For example, the Linux JIT from eBPF to RISC-V includes a pseudoinstruction
for loading 32-bit immediates into registers. JitSynth mimics the way hand-
written JITs use pseudoinstructions with the help of pre-load sketches. These
sketches first use a synthesized pseudoinstruction to create a sequence of concrete
target instructions that load source immediates into scratch registers; then, they
include a compute sequence comprised of read-write instruction holes. Apply-
ing these optimizations to our toy example, JitSynth finds a mini compiler for
addi32 in 5 s—a roughly 6000× speedup over the naive metasketch.

3 Problem Statement

This section formalizes the compiler synthesis problem for in-kernel DSLs. We
focus on JIT compilers, which, for our purposes, means one-pass compilers [11].
To start, we define abstract register machines as a way to specify the syntax

Synthesizing JIT Compilers for In-Kernel DSLs 571

and semantics of in-kernel languages. Next, we formulate our compiler synthesis
problem as one of synthesizing a set of sound mini compilers from a single source
instruction to a sequence of target instructions. Finally, we show that these mini
compilers compose into a sound JIT compiler, which translates every source
program into a semantically equivalent target program.

Abstract Register Machines. An abstract register machine (ARM) provides a
simple interface for specifying the syntax and semantics of an in-kernel language.
The syntax is given as a set of abstract instructions, and the semantics is given
as a transition function over instructions and machine states.

An abstract instruction (Definition 1) defines the name (op) and type signa-
ture (F) of an operation in the underlying language. For example, the abstract
instruction (addi32 , r �→ Reg , imm32 �→ BV (32)) specifies the name and signa-
ture of the addi32 operation from the eBPF language (Fig. 1). Each abstract
instruction represents the (finite) set of all concrete instructions that instantiate
the abstract instruction’s parameters with values of the right type. For example,
addi32 0, 5 is a concrete instantiation of the abstract instruction for addi32. In
the rest of this paper, we will write “instruction” to mean a concrete instruction.

Definition 1 (Abstract and Concrete Instructions). An abstract instruc-
tion ι is a pair (op,F) where op is an opcode and F is a mapping from fields
to their types. Field types include Reg, denoting register names, and BV (k),
denoting k-bit bitvector values. The abstract instruction ι represents all concrete
instructions p = (op, F) with the opcode op that bind each field f ∈ dom(F) to a
value F (f) of type F(f). We write P (ι) to denote the set of all concrete instruc-
tions for ι, and we extend this notation to sets of abstract instructions in the
usual way, i.e., P (I) =

⋃
ι∈I P (ι) for the set I.

Instructions operate on machine states (Definition 2), and their semantics are
given by the machine’s transition function (Definition 3). A machine state consists
of a program counter, a map from register names to register values, and a map from
memory addresses to memory values. Each state component is either a bitvector or
a map over bitvectors, making the set of all states of an ARM finite. The transition
function of an ARM defines an interpreter for the ARM’s language by specifying
how to compute the output state for a given instruction and input state. We can
apply this interpreter, together with the ARM’s fuel function, to define an execu-
tion of the machine on a program and an initial state. The fuel function takes as
input a sequence of instructions and returns a natural number that bounds the
number of steps (i.e., state transitions) the machine can make to execute the given
sequence. The inclusion of fuel models the requirement of in-kernel languages for
all program executions to terminate [40]. It also enables us to use symbolic exe-
cution to soundly reduce the semantics of these languages to SMT constraints, in
order to formulate the synthesis queries in Sect. 4.5.

Definition 2 (State). A state σ is a tuple (pc, reg ,mem) where pc is a value,
reg is a function from register names to values, and mem is a function from
memory addresses to values. Register names, memory addresses, and all values

572 J. Van Geffen et al.

are finite-precision integers, or bitvectors. We write |σ| to denote the size of
the state σ. The size |σ| is defined to be the tuple (r,m, kpc , kreg , kmem), where
r is the number of registers in σ, m is the number of memory addresses, and
kpc, kreg , and kmem are the width of the bitvector values stored in the pc, reg,
and mem, respectively. Two states have the same size if |σi| = |σj |; one state is
smaller than another, |σi| ≤ |σj |, if each element of |σi| is less than or equal to
the corresponding element of |σj |.

Definition 3 (Abstract Register Machines and Executions). An
abstract register machine A is a tuple (I, Σ, T , Φ) where I is a set of abstract
instructions, Σ is a set of states of the same size, T : P (I) → Σ → Σ is a tran-
sition function from instructions and states to states, and Φ : List(P (I)) → N

is a fuel function from sequences of instructions to natural numbers. Given a
state σ0 ∈ Σ and a sequence of instructions p drawn from P (I), we define the
execution of A on p and σ0 to be the result of applying T to p at most Φ(p)
times. That is, A(p, σ0) = run(p, σ0, T , Φ(p)), where

run(p, σ, T , k) =

{
σ, if k = 0 or pc(σ) �∈ [0, |p|)
run(p, T (p[pc(σ)], σ), T , k − 1), otherwise.

Synthesizing JIT Compilers for ARMs. Given a source and target ARM, our
goal is to synthesize a one-pass JIT compiler that translates source programs
to semantically equivalent target programs. To make synthesis tractable, we fix
the structure of the JIT to consist of an outer loop and a switch statement
that dispatches compilation tasks to a set of mini compilers (Definition 4). Our
synthesis problem is therefore to find a sound mini compiler for each abstract
instruction in the source machine (Definition 5).

Definition 4 (Mini Compiler). Let AS = (IS , ΣS , TS , ΦS) and AT =
(IT , ΣT , TT , ΦT) be two abstract register machines, ∼= an equivalence relation
on their states ΣS and ΣT , and C : P (ι) → List(P (IT)) a function for some
ι ∈ IS. We say that C is a sound mini compiler for ι with respect to ∼= iff

∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι). σS
∼= σT ⇒ AS(p, σS) ∼= AT (C(p), σT)

Definition 5 (Mini Compiler Synthesis). Given two abstract register
machines AS = (IS , ΣS , TS , ΦS) and AT = (IT , ΣT , TT , ΦT), as well as an
equivalence relation ∼= on their states, the mini compiler synthesis problem is to
generate a sound mini compiler Cι for each ι ∈ IS with respect to ∼=.

The general version of our synthesis problem, defined above, uses an arbi-
trary equivalence relation ∼= between the states of the source and target machines
to determine if a source and target program are semantically equivalent. Jit-
Synth can, in principle, solve this problem with the naive metasketch described
in Sect. 2. In practice, however, the naive metasketch scales poorly, even on small
languages such as toy eBPF and RISC-V. So, in this paper, we focus on source

Synthesizing JIT Compilers for In-Kernel DSLs 573

and target ARMs that satisfy an additional assumption on their state equiva-
lence relation: it can be expressed in terms of injective mappings from source to
target states (Definition 6). This restriction enables JitSynth to employ opti-
mizations (such as pre-load sketches described in Sect. 4.4) that are crucial to
scaling synthesis to real in-kernel languages.

Definition 6 (Injective State Equivalence Relation). Let AS and AT be
abstract register machines with states ΣS and ΣT such that |σS | ≤ |σT | for
all σS ∈ ΣS and σT ∈ ΣT . Let M be a state mapping (Mpc ,Mreg ,Mmem)
from ΣS and ΣT , where Mpc multiplies the program counter of the states in
ΣS by a constant factor, Mreg is an injective map from register names in ΣS

to those in ΣT , and Mmem is an injective map from memory addresses in ΣS

to those in ΣT . We say that two states σS ∈ ΣS and σT ∈ ΣT are equivalent
according to M, written σS

∼=M σT , iff Mpc(pc(σS)) = pc(σT), reg(σS)[r] =
reg(σT)[Mreg(r)] for all register names r ∈ dom(reg(σS)), and mem(σS)[a] =
mem(σT)[Mmem(a)] for all memory addresses a ∈ dom(mem(σS)). The binary
relation ∼=M is called an injective state equivalence relation on AS and AT .

Soundness of JIT Compilers for ARMs. Finally, we note that a JIT compiler
composed from the synthesized mini compilers correctly translates every source
program to an equivalent target program. We formulate and prove this theorem
using the Lean theorem prover [25].

Theorem 1 (Soundness of JIT compilers). Let AS = (IS , ΣS , TS , ΦS) and
AT = (IT , ΣT , TT , ΦT) be abstract register machines, ∼=M an injective state
equivalence relation on their states such that Mpc(pc(σS)) = Npcpc(σS), and
{C1, . . . , C|IS |} a solution to the mini compiler synthesis problem for AS, AT ,
and ∼=M where ∀s ∈ P (ι). |Ci(s)| = Npc. Let C : P (IS) → List(P (IT)) be a
function that maps concrete instructions s ∈ P (ι) to the compiler output Cι(s)
for ι ∈ IS. If s = s1, . . . , sn is a sequence of concrete instructions drawn from
IS, and t = C(s1) · . . . · C(sn) where · stands for sequence concatenation, then
∀σS ∈ ΣS , σT ∈ ΣT . σS

∼=M σT ⇒ AS(s, σS) ∼=M AT (t, σT).

4 Solving the Mini Compiler Synthesis Problem

This section presents our approach to solving the mini compiler synthesis prob-
lem defined in Sect. 3. We employ syntax-guided synthesis [37] to search for an
implementation of a mini compiler in a space of candidate programs. Our core
contribution is an effective way to structure this space using a compiler metas-
ketch. This section presents our algorithm for generating compiler metasketches,
describes its key subroutines and optimizations, and shows how to solve the
resulting sketches with an off-the-shelf synthesis engine.

4.1 Generating Compiler Metasketches

JitSynth synthesizes mini compilers by generating and solving metasketches [7].
A metasketch describes a space of candidate programs using an ordered set of

574 J. Van Geffen et al.

syntactic templates or sketches [37]. These sketches take the form of programs
with missing expressions or holes, where each hole describes a finite set of can-
didate completions. JitSynth sketches are expressed in a host language H that
serves both as the implementation language for mini compilers and the specifica-
tion language for ARMs. JitSynth expects the host to provide a synthesizer for
completing sketches and a symbolic evaluator for reducing ARM semantics to
SMT constraints. JitSynth uses these tools to generate optimized metasketches
for mini compilers, which we call compiler metasketches.

Figure 3 shows our algorithm for generating compiler metasketches. The algo-
rithm, CMS, takes as input an abstract source instruction ι for a source machine
AS , a target machine AT , and a state mapping M from AS to AT . Given
these inputs, it lazily enumerates an infinite set of compiler sketches that col-
lectively represent the space of all straight-line bitvector programs from P (ι) to
List(P (IT)). In particular, each compiler sketch consists of k target instruction
holes, constructed from field holes that denote bitvector expressions (over the
fields of ι) of depth d or less. For each length k and depth d, the CMS loop
generates three kinds of compiler sketches: the pre-load, the read-write, and the
naive sketch. The naive sketch (Sect. 4.2) is the most general, consisting of all
candidate mini compilers of length k and depth d. But it also scales poorly, so
CMS first yields the pre-load (Sect. 4.4) and read-write (Sect. 4.3) sketches. As
we will see later, these sketches describe a subset of the programs in the naive
sketch, and they are designed to prioritize exploring small parts of the search
space that are likely to contain a correct mini compiler for ι, if one exists.

Fig. 3. Compiler metasketch for the abstract source instruction ι, source machine AS ,
target machine AT , and state mapping M from AS to AT .

4.2 Generating Naive Sketches

The most general sketch we consider, Naive(k, d, ι,AS ,AT ,M), is shown in
Fig. 4. This sketch consists of k instruction holes that can be filled with any
instruction from IT . An instruction hole chooses between expressions of the form
(opT ,H), where opT is a target opcode, and H specifies the field holes for that
opcode. Each field hole is a bitvector expression (of depth d) over the fields of
the input source instruction and arbitrary bitvector constants. This lets target
instructions use the immediates and registers (modulo M) of the source instruc-
tion, as well as arbitrary constant values and register names. Letting field holes

Synthesizing JIT Compilers for In-Kernel DSLs 575

include constant register names allows the synthesized mini compilers to use tar-
get registers unmapped by M as temporary, or scratch, storage. In essence, the
naive sketch describes all straight-line compiler programs that can make free use
of standard C arithmetic and bitwise operators, as well as scratch registers.

The space of such programs is intractably large, however, even for small
inputs. For instance, it includes at least 2350 programs of length k = 5 and
depth d ≤ 3 for the toy example from Sect. 2. JitSynth therefore employs
two effective heuristics to direct the exploration of this space toward the most
promising candidates first, as defined by the read-write and pre-load sketches.

Fig. 4. Naive sketch of length k and maximum depth d for ι, AS , AT , and M. Here,
Expr creates an expression in the host language, using M to map from source to target
register names and memory addresses; Choose(E) is a hole that chooses an expression
from the set E; and Field(τ, d, E) is a hole for a bitvector expression of type τ and
maximum depth d, constructed from arbitrary bitvector constants and expressions E.

4.3 Generating Read-Write Sketches

The read-write sketch, RW(k, d, ι,AS ,AT ,M), is based on the observation that
many practical source and target languages provide similar functionality, so a
source instruction ι can often be emulated with target instructions that access
the same parts of the state as ι. For example, the addi32 instruction from eBPF
reads and writes only registers (not, e.g., memory), and it can be emulated with
RISC-V instructions that also touch only registers (Sect. 2). Moreover, note that
the semantics of addi32 ignores the values of its src and off fields, and that
the target RISC-V instructions do the same. Based on these observations, our
optimized sketch for addi32 would therefore consists of instruction holes that
allow only register-register instructions, with field holes that exclude src and off .
We first formalize this intuition with the notion of read and write sets, and then
describe how JitSynth applies such sets to create RW sketches.

576 J. Van Geffen et al.

Read and Write Sets. Read and write sets provide a compact way to summarize
the semantics of an abstract instruction ι. This summary consists of a set of
state labels, where a state label is one of Lreg , Lmem , and Lpc (Definition 7).
Each label in a summary set represents a state component (registers, memory,
or the program counter) that a concrete instance of ι may read or write during
some execution. We compute three such sets of labels for every ι: the read set
Read(ι), the write set Write(ι), and the write set Write(ι, f) for each field f of
ι. Figure 5 shows these sets for the toy eBPF and RISC-V instructions.

Fig. 5. Read and write sets for the addi32, lui, and sb instructions from Fig. 1.

The read set Read(ι) specifies which components of the input state may
affect the execution of ι (Definition 8). For example, if Read(ι) includes Lreg ,
then some concrete instance of ι produces different output states when executed
on two input states that differ only in register values. The write set Write(ι)
specifies which components of the output state may be affected by executing
ι (Definition 9). In particular, if Write(ι) includes Lreg (or Lmem), then exe-
cuting some concrete instance of ι on an input state produces an output state
with different register (or memory) values. The inclusion of Lpc is based on a
separate condition, designed to distinguish jump instructions from fall-through
instructions. Both kinds of instructions change the program counter, but fall-
through instructions always change it in the same way. So, Lpc ∈ Write(ι) if two
instances of ι can write different values to the program counter. Finally, the field
write set, Write(ι, f), specifies the parts of the output state are affected by the
value of the field f ; Ln ∈ Write(ι, f) means that two instances of ι that differ
only in f can produce different outputs when applied to the same input state.

JitSynth computes all read and write sets from their definitions, by using
the host symbolic evaluator to reduce the reasoning about instruction semantics
to SMT queries. This reduction is possible because we assume that all ARM
interpreters are self-finitizing, as discussed in Sect. 2.

Definition 7 (State Labels). A state label is an identifier Ln where n is a
state component, i.e., n ∈ {reg ,mem, pc}. We write N for the set of all state
components, and L for the set of all state labels. We also use state labels to
access the corresponding state components: Ln(σ) = n(σ) for all n ∈ N .

Definition 8 (Read Set). Let ι ∈ I be an abstract instruction in (I, Σ, T , Φ).
The read set of ι, Read(ι), is the set of all state labels Ln ∈ L such that ∃p ∈
P (ι).∃Lw ∈ Write(ι).∃σa, σb ∈ Σ. (Ln(σa) �= Ln(σb) ∧ (

∧
m∈N\{n} Lm(σa) =

Lm(σb)) ∧ Lw(T (p, σa)) �= Lw(T (p, σb)).

Synthesizing JIT Compilers for In-Kernel DSLs 577

Definition 9 (Write Set). Let ι ∈ I be an abstract instruction in (I, Σ, T , Φ).
The write set of ι, Write(ι), includes the state label Ln ∈ {Lreg , Lmem} iff
∃p ∈ P (ι).∃σ ∈ Σ.Ln(σ) �= Ln(T (p, σ)), and it includes the state label Lpc iff
∃pa, pb ∈ P (ι).∃σ ∈ Σ.Lpc(T (pa, σ)) �= Lpc(T (pb, σ)).

Definition 10 (Field Write Set). Let f be a field of an abstract instruc-
tion ι = (op,F) in (I, Σ, T , Φ). The write set of ι and f , Write(ι, f),
includes the state label Ln ∈ L iff ∃pa, pb ∈ P (ι).∃σ ∈ Σ. (pa.f �= pb.f) ∧
(
∧

g∈dom(F)\{f} pa.g = pb.g) ∧ Ln(T (pa, σ)) �= Ln(T (pb, σ)), where p.f denotes
F (f) for p = (op, F).

Using Read and Write Sets. Given the read and write sets for a source instruction
ι and target instructions IT , JitSynth generates the RW sketch of length k and
depth d by modifying the Naive algorithm (Fig. 4) as follows. First, it restricts
each target instruction hole (line 7) to choose an instruction ιT ∈ IT with
the same read and write sets as ι, i.e., Read(ι) = Read(ιT) and Write(ι) =
Write(ιT). Second, it restricts the target field holes (line 9) to use the source
fields with the matching field write set, i.e., the hole for a target field fT uses the
source field f when Write(ιT , ft) = Write(ι, f). For example, given the sets from
Fig. 5, the RW instruction holes for addi32 exclude sb but include lui, and
the field holes for lui use only the dst and imm source fields. More generally,
the RW sketch for addi32 consists of register-register instructions over dst and
imm, as intended. This sketch includes 2290 programs of length k = 5 and depth
d ≤ 3, resulting in a 260 fold reduction in the size of the search space compared
to the Naive sketch of the same length and depth.

4.4 Generating Pre-load Sketches

The pre-load sketch, PLD (k, d, ι,AS ,AT ,M), is based on the observation that
hand-written JITs use macros or subroutines to generate frequently used target
instruction sequences. For example, compiling a source instruction with immedi-
ate fields often involves loading the immediates into scratch registers, and hand-
written JITs include a subroutine that generates the target instructions for per-
forming these loads. The pre-load sketch shown in Fig. 6 mimics this structure.

In particular, PLD generates a sequence of m concrete instructions that
load the (used) immediate fields of ι, followed by a sequence of k − m instruc-
tion holes. The instruction holes can refer to both the source registers (if any)
and the scratch registers (via the arbitrary bitvector constants included in the
Field holes). The function Load(Expr(p.f),AT ,M) returns a sequence of target
instructions that load the immediate p.f into an unused scratch register. This
function itself is synthesized by JitSynth using a variant of the RW sketch.

As an example, the pre-load sketch for addi32 consists of two Load instruc-
tions (lui and addiw in the generated C code) and k−2 instruction holes. The
holes choose among register-register instructions in toy RISC-V, and they can
refer to the dst register of addi32, as well as any scratch register. The resulting
sketch includes 2100 programs of length k = 5 and depth d ≤ 3, providing a 2190

fold reduction in the size of the search space compared to the RW sketch.

578 J. Van Geffen et al.

Fig. 6. Pre-load sketch of length k and maximum depth d for ι, AS , AT , and M.
The Load(E, AT , M) function returns a sequence of target instructions that load the
immediate value described by the expression E into an unused scratch register; see
Fig. 4 for descriptions of other helper functions.

4.5 Solving Compiler Metasketches

JitSynth solves the metasketch CMS(ι,AS ,AT ,M) by applying the host syn-
thesizer to each of the generated sketches in turn until a mini compiler is found.
If no mini compiler exists in the search space, this synthesis process runs forever.
To check if a sketch S contains a mini compiler, JitSynth would ideally ask the
host synthesizer to solve the following query, derived from Definitions 4–6:

∃C ∈ S. ∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι).σS
∼=M σT ⇒ AS(p, σS) ∼=M AT (C(p), σT)

But recall that the state equivalence check ∼=M involves universally quantified
formulas over memory addresses and register names. In principle, these inner-
most quantifiers are not problematic because they range over finite domains
(bitvectors) so the formula remains decidable. In practice, however, they lead to
intractable SMT queries. We therefore solve a stronger soundness query (Defini-
tion 11) that pulls these quantifiers out to obtain the standard ∃∀ formula with
a quantifier-free body. The resulting formula can be solved with CEGIS [37],
without requiring the underlying SMT solver to reason about quantifiers.

Definition 11 (Strongly Sound Mini Compiler). Let AS = (IS , ΣS , TS ,
ΦS) and AT = (IT , ΣT , TT , ΦT) be two abstract register machines, ∼=M an injec-
tive state equivalence relation on their states ΣS and ΣT , and C : P (ι) →

Synthesizing JIT Compilers for In-Kernel DSLs 579

List(P (IT)) a function for some ι ∈ IS. We say that C is a strongly sound
mini compiler for ιM with respect to ∼= iff

∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι), a ∈ dom(mem(σS)), r ∈ dom(reg(σS)).
σS

∼=M,a,r σT ⇒ AS(p, σS) ∼=M,a,r AT (C(p), σT)

where ∼=M,a,r stands for the ∼=M formula with a and r as free variables.

The JitSynth synthesis procedure is sound and complete with respect to this
stronger query (Theorem 2). The proof follows from the soundness and complete-
ness of the host synthesizer, and the construction of the compiler metasketch.
We discharge this proof using Lean theorem prover [25].

Theorem 2 (Strong soundness and completeness of JitSynth). Let C =
CMS(ι,AS ,AT ,M) be the compiler metasketch for the abstract instruction ι,
machines AS and AT , and the state mapping M. If JitSynth terminates and
returns a program C when applied to C, then C is a strongly sound mini compiler
for ι and AT (soundness). If there is a strongly sound mini compiler in the most
general search space {Naive(k, d, ι,AS ,AT ,M) | k, d ∈ N}, then JitSynth will
terminate on C and produce a program (completeness).

5 Implementation

We implemented JitSynth as described in Sect. 2 using Rosette [39] as our
host language. Since the search spaces for different compiler lengths are dis-
joint, the JitSynth implementation searches these spaces in parallel [7]. We use
Φ(p) = length(p) as the fuel function for all languages studied in this paper.
This provides sufficient fuel for evaluating programs in these languages that are
accepted by the OS kernel. For example, the Linux kernel requires eBPF pro-
grams to be loop-free, and it enforces this restriction with a conservative static
check; programs that fail the check are not passed to the JIT [13].

6 Evaluation

This section evaluates JitSynth by answering the following research questions:

RQ1: Can JitSynth synthesize correct and performant compilers for real-world
source and target languages?
RQ2: How effective are the sketch optimizations described in Sect. 4?

6.1 Synthesizing Compilers for Real-World Source-Target Pairs

To demonstrate the effectiveness of JitSynth, we applied JitSynth to synthe-
size compilers for three different source-target pairs: eBPF to 64-bit RISC-V,
classic BPF to eBPF, and libseccomp to eBPF. This subsection describes our
results for each of the synthesized compilers.

580 J. Van Geffen et al.

Fig. 7. Execution time of eBPF benchmarks on the HiFive Unleashed RISC-V devel-
opment board, using the existing Linux eBPF to RISC-V compiler, the JitSynth
compiler, and the Linux eBPF interpreter. Measured in processor cycles.

eBPF to RISC-V. As a case study, we applied JitSynth to synthesize a com-
piler from eBPF to 64-bit RISC-V. It supports 87 of the 102 eBPF instruc-
tion opcodes; unsupported eBPF instructions include function calls, endianness
operations, and atomic instructions. To validate that the synthesized compiler is
correct, we ran the existing eBPF test cases from the Linux kernel; our compiler
passes all test cases it supports. In addition, our compiler avoids bugs previously
found in the existing Linux eBPF-to-RISC-V compiler in Linux [27]. To evalu-
ate performance, we compared against the existing Linux compiler. We used the
same set of benchmarks used by Jitk [40], which includes system call filters from
widely used applications. Because these benchmarks were originally for classic
BPF, we first compile them to eBPF using the existing Linux classic-BPF-to-
eBPF compiler as a preprocessing step. To run the benchmarks, we execute the
generated code on the HiFive Unleashed RISC-V development board [35], mea-
suring the number of cycles. As input to the filter, we use a system call number
that is allowed by the filter to represent the common case execution.

Figure 7 shows the results of the performance evaluation. eBPF programs com-
piled by JitSynth JIT compilers show an average slowdown of 1.82× compared
to programs compiled by the existing Linux compiler. This overhead results from
additional complexity in the compiled eBPF jump instructions. Linux compil-
ers avoid this complexity by leveraging bounds on the size of eBPF jump offsets.
JitSynth-compiled programs get an average speedup of 5.24× compared to inter-
preting the eBPF programs. This evidence shows that JitSynth can synthesize
a compiler that outperforms the current Linux eBPF interpreter, and nears the
performance of the Linux compiler, while avoiding bugs.

Classic BPF to eBPF. Classic BPF is the original, simpler version of BPF used
for packet filtering which was later extended to eBPF in Linux. Since many
applications still use classic BPF, Linux must first compile classic BPF to eBPF
as an intermediary step before compiling to machine instructions. As a second
case study, we used JitSynth to synthesize a compiler from classic BPF to
eBPF. Our synthesized compiler supports all classic BPF opcodes. To evalu-
ate performance, we compare against the existing Linux classic-BPF-to-eBPF

Synthesizing JIT Compilers for In-Kernel DSLs 581

OpenSSH NaCl QEMU Chrome Firefox vsftpd Tor
Benchmark

0

10

20

30

40
In

st
ru

ct
io

ns
ex

ec
ut

ed
Classic BPF to eBPF benchmarks

Linux
JitSynth

ctags lepton libreoffice openssh vsftpd
Benchmark

0

100

200

300

In
st

ru
ct

io
ns

ex
ec

ut
ed

libseccomp to eBPF benchmarks

libseccomp
JitSynth

Fig. 8. Performance of code generated by JitSynth compilers compared to existing
compilers for the classic BPF to eBPF benchmarks (left) and the libseccomp to eBPF
benchmarks (right). Measured in number of instructions executed.

compiler. Similar to the RISC-V benchmarks, we run each eBPF program with
input that is allowed by the filter. Because eBPF does not run directly on hard-
ware, we measure the number of instructions executed instead of processor cycles.

Figure 8 shows the performance results. Classic BPF programs generated by
JitSynth compilers execute an average of 2.28× more instructions than those
compiled by Linux.

Libseccomp to eBPF. libseccomp is a library used to simplify construction of
BPF system call filters. The existing libseccomp implementation compiles to
classic BPF; we instead choose to compile to eBPF because classic BPF has
only two registers, which does not satisfy the assumptions of JitSynth. Since
libseccomp is a library and does not have distinct instructions, libseccomp itself
does not meet the definition of an abstract register machine; we instead introduce
an intermediate libseccomp language which does satisfy this definition. Our full
libseccomp to eBPF compiler is composed of both a trusted program to translate
from libseccomp to our intermediate language and a synthesized compiler from
our intermediate language to eBPF.

To evaluate performance, we select a set of benchmark filters from real-world
applications that use libseccomp, and measure the number of eBPF instructions
executed for an input the filter allows. Because no existing compiler exists from
libseccomp to eBPF directly, we compare against the composition of the existing
libseccomp-to-classic-BPF and classic-BPF-to-eBPF compilers.

Figure 8 shows the performance results. libseccomp programs generated by
JitSynth execute 2.61× more instructions on average compared to the existing
libseccomp-to-eBPF compiler stack. However, the synthesized compiler avoids
bugs previously found in the libseccomp-to-classic-BPF compiler [16].

6.2 Effectiveness of Sketch Optimizations

In order to evaluate the effectiveness of the search optimizations described in
Sect. 4, we measured the time JitSynth takes to synthesize each of the three
compilers with different optimizations enabled. Specifically, we run JitSynth in

582 J. Van Geffen et al.

Compiler Naive sketch RW sketch PLD sketch

eBPF to RISC-V X X 44.4h
classic BPF to eBPF X X 1.2h
libseccomp to eBPF 4.0h 43.5m 7.1m

Fig. 9. Synthesis time for each source-target pair, broken down by set of optimizations
used in the sketch. An X indicates that synthesis either timed out or ran out of memory.

three different configurations: (1) using Naive sketches, (2) using RW sketches,
and (3) using PLD sketches. For each configuration, we ran JitSynth with
a timeout of 48 hours (or until out of memory). Figure 9 shows the time to
synthesize each compiler under each configuration. Note that these figures do
not include time spent computing read and write sets, which takes less than
11 min for all cases. Our results were collected using an 8-core AMD Ryzen 7
1700 CPU with 16 GB memory, running Racket v7.4 and the Boolector [29]
solver v3.0.1-pre.

When synthesizing the eBPF-to-RISC-V compiler, JitSynth runs out of
memory with Naive sketches, reaches the timeout with RW sketches, and com-
pletes synthesis with PLD sketches. For the classic-BPF-to-eBPF compiler, Jit-
Synth times out with both Naive sketches and RW sketches. JitSynth only
finishes synthesis with PLD sketches. For the libseccomp-to-eBPF compiler, all
configurations finish, but JitSynth finishes synthesis about 34× times faster
with PLD sketches than with Naive sketches. These results demonstrate that
the techniques JitSynth uses are essential to the scalability of JIT synthesis.

7 Related Work

JIT Compilers for In-kernel Languages. JIT compilers have been widely used
to improve the extensibility and performance of systems software, such as OS
kernels [8,11,12,26]. One notable system is Jitk [40]. It builds on the CompCert
compiler [20] to compile classic BPF programs to machine instructions. Both
Jitk and CompCert are formally verified for correctness using the Coq interac-
tive theorem prover. Jitk is further extended to support eBPF [36]. Like Jitk,
JitSynth provides formal correctness guarantees of JIT compilers. Unlike Jitk,
JitSynth does not require developers to write either the implementation or
proof of a JIT compiler. Instead, it takes as input interpreters of both source
and target languages and state-mapping functions, using automated verification
and synthesis to produce a JIT compiler.

An in-kernel extension system such as eBPF also contains a verifier, which
checks for safety and termination of input programs [13,40]. JitSynth assumes a
well-formed input program that passes the verifier and focuses on the correctness
of JIT compilation.

Synthesizing JIT Compilers for In-Kernel DSLs 583

Synthesis-Aided Compilers. There is a rich literature that explores generating
and synthesizing peephole optimizers and superoptimizers based on a given ISA
or language specification [4,9,14,17,23,33,34]. Bansal and Aiken described a
PowerPC-to-x86 binary translator using peephole superoptimization [5]. Chloro-
phyll [31] applied synthesis to a number of compilation tasks for the GreenAr-
rays GA144 architecture, including code partitioning, layout, and generation.
JitSynth bears the similarity of translation between a source-target pair of
languages and shares the challenge of scaling up synthesis. Unlike existing work,
JitSynth synthesizes a compiler written in a host language, and uses compiler
metasketches for efficient synthesis.

Compiler Testing. Compilers are complex pieces of software and are known
to be difficult to get right [22]. Recent advances in compiler testing, such as
Csmith [41] and EMI [42], have found hundreds of bugs in GCC and LLVM
compilers. Alive [19,21] and Serval [28] use automated verification techniques to
uncover bugs in the LLVM’s peephole optimizer and the Linux kernel’s eBPF
JIT compilers, respectively. JitSynth complements these tools by providing a
correctness-by-construction approach for writing JIT compilers.

8 Conclusion

This paper presents a new technique for synthesizing JIT compilers for in-kernel
DSLs. The technique creates per-instruction compilers, or compilers that inde-
pendently translate single source instructions to sequences of target instructions.
In order to synthesize each per-instruction compiler, we frame the problem as
search using compiler metasketches, which are optimized using both read and
write set information as well as pre-synthesized load operations. We implement
these techniques in JitSynth and evaluate JitSynth over three source and tar-
get pairs from the Linux kernel. Our evaluation shows that (1) JitSynth can
synthesize correct and performant compilers for real in-kernel languages, and (2)
the optimizations discussed in this paper make the synthesis of these compilers
tractable to JitSynth. As future in-kernel DSLs are created, JitSynth can
reduce both the programming and proof burden on developers writing compil-
ers for those DSLs. The JitSynth source code is publicly available at https://
github.com/uw-unsat/jitsynth.

References

1. Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 2006

2. Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2011

3. Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2014

https://github.com/uw-unsat/jitsynth
https://github.com/uw-unsat/jitsynth

584 J. Van Geffen et al.

4. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) [1], pp. 394–403 (2006)

5. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Pro-
ceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), San Diego, CA, pp. 177–192, December 2008

6. Blazakis, D.: Interpreter exploitation: Pointer inference and JIT spraying. In: Black
Hat DC, Arlington, VA, February 2010

7. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: Proceedings of the 43rd ACM Symposium on Principles of Program-
ming Languages (POPL), St. Petersburg, FL, pp. 775–788, January 2016

8. Chen, H., et al.: Security bugs in embedded interpreters. In: Proceedings of the
4th Asia-Pacific Workshop on Systems, 6 p. Singapore (2013)

9. Davidson, J.W., Fraser, C.W.: Automatic generation of peephole optimizations.
In: Proceedings of the SIGPLAN Symposium on Compiler Construction, Montreal,
Canada, pp. 111–116, June 1984

10. Edge, J.: A library for seccomp filters, April 2012. https://lwn.net/Articles/
494252/

11. Engler, D.R.: VCODE: a retargetable, extensible, very fast dynamic code genera-
tion system. In: Proceedings of the 17th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Philadephia, PA, pp. 160–170,
May 1996

12. Fleming, M.: A thorough introduction to eBPF, December 2017. https://lwn.net/
Articles/740157/

13. Gershuni, E., et al.: Simple and precise static analysis of untrusted Linux kernel
extensions. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Phoenix, AZ , pp. 1069–1084,
June 2019

14. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI) [2], pp. 62–73 (2011)

15. Horn, J.: Issue 1454: arbitrary read+write via incorrect range tracking in eBPF,
January 2018. https://bugs.chromium.org/p/project-zero/issues/detail?id=1454

16. Horn, J.: libseccomp: incorrect compilation of arithmetic comparisons, March 2019.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1769

17. Joshi, R., Nelson, G., Randall, K.: Denali: a goal-directed superoptimizer. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, pp. 304–314, June 2002

18. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Proceedings
of the 40th IEEE Symposium on Security and Privacy, San Francisco, CA, pp. 19–
37, May 2019

19. Lee, J., Hur, C.K., Lopes, N.P.: AliveInLean: a verified LLVM peephole optimiza-
tion verifier. In: Proceedings of the 31st International Conference on Computer
Aided Verification (CAV), New York, NY, pp. 445–455, July 2019

20. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

21. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Portland, OR, pp.
22–32, June 2015

https://lwn.net/Articles/494252/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1454
https://bugs.chromium.org/p/project-zero/issues/detail?id=1769

Synthesizing JIT Compilers for In-Kernel DSLs 585

22. Marcozzi, M., Tang, Q., Donaldson, A., Cadar, C.: Compiler fuzzing: how
much does it matter? In: Proceedings of the 2019 Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Athens, Greece, October 2019

23. Massalin, H.: Superoptimizer: a look at the smallest program. In: Proceedings of
the 2nd International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Palo Alto, CA, pp. 122–126, October
1987

24. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: Proceedings of the Winter 1993 USENIX Technical Conference,
San Diego, CA, pp. 259–270, January 1993

25. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

26. Myreen, M.O.: Verified just-in-time compiler on x86. In: Proceedings of the 37th
ACM Symposium on Principles of Programming Languages (POPL), pp. 107–118.
Association for Computing Machinery, New York, January 2010

27. Nelson, L.: bpf, riscv: clear high 32 bits for ALU32 add/sub/neg/lsh/r-
sh/arsh, May 2019. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=1e692f09e091

28. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling sym-
bolic evaluation for automated verification of systems code with serval. In: Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
Huntsville, Ontario, Canada, pp. 225–242, October 2019

29. Niemetz, A., Preiner, M., Biere, A.: Boolector 20 system description. J. Satisfiabil.
Boolean Model. Comput. 9, 53–58 (2014). (published 2015)

30. Paul, M.: CVE-2020-8835: linux kernel privilege escalation via improper eBPF pro-
gram verification, April 2020. https://www.thezdi.com/blog/2020/4/8/cve-2020-
8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification

31. Phothilimthana, P.M., Jelvis, T., Shah, R., Totla, N., Chasins, S., Bodik, R.:
Chlorophyll: synthesis-aided compiler for low-power spatial architectures. In: Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) [3], pp. 396–407 (2014)

32. RISC-V Foundation: The RISC-V Instruction Set Manual, Volume I: Unprivileged
ISA, Document Version 2019121, December 2019

33. Sasnauskas, R., et al.: Souper: a synthesizing superoptimizer, November 2017.
https://arxiv.org/abs/1711.04422

34. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceedings
of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, pp. 305–316, March
2013

35. SiFive: SiFive FU540-C000 manual, v1p0, April 2018. https://www.sifive.com/
boards/hifive-unleashed

36. Sobel, L.: eJitk: extending Jitk to eBPF, May 2015. https://css.csail.mit.edu/6.
888/2015/papers/ejitk sobel.pdf

37. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) [1], pp. 404–415 (2006)

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e692f09e091
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e692f09e091
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://arxiv.org/abs/1711.04422
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unleashed
https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf
https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf

586 J. Van Geffen et al.

38. The Coq Development Team: The Coq Proof Assistant, version 8.9.0, January
2019. https://doi.org/10.5281/zenodo.2554024

39. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) [3], pp. 530–541 (2014)

40. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: a trustworthy in-
kernel interpreter infrastructure. In: Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Broomfield, CO, pp.
33–47, October 2014

41. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) [2], pp. 283–294 (2011)

42. Zhang, Q., Sun, C., Su, Z.: Skeletal program enumeration for rigorous compiler
testing. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Barcelona, Spain, pp. 347–361 June
2017

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.2554024
http://creativecommons.org/licenses/by/4.0/

Program Synthesis Using
Deduction-Guided Reinforcement

Learning

Yanju Chen1(B), Chenglong Wang2, Osbert Bastani3, Isil Dillig4,
and Yu Feng1(B)

1 University of California, Santa Barbara, Santa Barbara, CA 93106, USA
{yanju,yufeng}@cs.ucsb.edu

2 University of Washington, Seattle, WA 98115, USA
clwang@cs.washington.edu

3 University of Pennsylvania, Philadelphia, PA 19104, USA
obastani@seas.upenn.edu

4 The University of Texas at Austin, Austin, TX 78712, USA
isil@cs.utexas.edu

Abstract. In this paper, we present a new program synthesis algorithm
based on reinforcement learning. Given an initial policy (i.e. statistical
model) trained off-line, our method uses this policy to guide its search
and gradually improves it by leveraging feedback obtained from a deduc-
tive reasoning engine. Specifically, we formulate program synthesis as a
reinforcement learning problem and propose a new variant of the pol-
icy gradient algorithm that can incorporate feedback from a deduction
engine into the underlying statistical model. The benefit of this app-
roach is two-fold: First, it combines the power of deductive and statisti-
cal reasoning in a unified framework. Second, it leverages deduction not
only to prune the search space but also to guide search. We have imple-
mented the proposed approach in a tool called Concord and experimen-
tally evaluate it on synthesis tasks studied in prior work. Our compari-
son against several baselines and two existing synthesis tools shows the
advantages of our proposed approach. In particular, Concord solves
15% more benchmarks compared to Neo, a state-of-the-art synthesis
tool, while improving synthesis time by 8.71× on benchmarks that can
be solved by both tools.

1 Introduction

Due to its potential to significantly improve both programmer productivity and
software correctness, automated program synthesis has gained enormous popu-
larity over the last decade. Given a high-level specification of user intent, most
modern synthesizers perform some form of backtracking search in order to find a

This work was sponsored by the National Science Foundation under agreement number
of 1908494, 1811865 and 1910769.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 587–610, 2020.
https://doi.org/10.1007/978-3-030-53291-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_30

588 Y. Chen et al.

Fig. 1. Overview of our synthesis algorithm

program that satisfies the specification. However, due to the enormous size of the
search space, synthesizers additionally use at least one of two other techniques,
namely deduction and statistical reasoning, to make this approach practical. For
example, many recent synthesis techniques use lightweight program analysis or
logical reasoning to significantly prune the search space [18,19,39,53]. On the
other hand, several recent approaches utilize a statistical model (trained off-line)
to bias the search towards programs that are more likely to satisfy the speci-
fication [2,4,7,19]. While both deductive and statistical reasoning have been
shown to dramatically improve synthesis efficiency, a key limitation of existing
approaches is that they do not tightly combine these two modes of reasoning.
In particular, although logical reasoning often provides very useful feedback at
synthesis time, existing synthesis algorithms do not leverage such feedback to
improve their statistical model.

In this paper, we propose a new synthesis algorithm that meaningfully com-
bines deductive and statistical reasoning. Similar to prior techniques, our app-
roach starts with a statistical model (henceforth called a policy) that is trained
off-line on a representative set of training problems and uses this policy to guide
search. However, unlike prior techniques, our method updates this policy on-line
at synthesis time and gradually improves the policy by incorporating feedback
from a deduction engine.

To achieve this tight coupling between deductive and statistical reasoning,
we formulate syntax-guided synthesis as a reinforcement learning (RL) problem.
Specifically, given a context-free grammar for the underlying DSL, we think of
partial (i.e., incomplete) programs in this DSL as states in a Markov Decision
Process (MDP) and actions as grammar productions. Thus, a policy of this
MDP specifies how a partial program should be extended to obtain a more
specific program. Then, the goal of our reinforcement learning problem is to
improve this policy over time as some partial programs are proven infeasible by
an underlying deduction engine.

While the framework of reinforcement learning is a good fit for our problem,
standard RL algorithms (e.g., policy gradient) typically update the policy based
on feedback received from states that have already been explored. However, in
the context of program synthesis, deductive reasoning can also provide feedback
about states that have not been explored. For example, given a partial program
that is infeasible, one can analyze the root cause of failure to infer other infeasible

Program Synthesis Using Deduction-Guided Reinforcement Learning 589

programs [18,54]. To deal with this difficulty, we propose an off-policy reinforce-
ment learning algorithm that can improve the policy based on such additional
feedback from the deduction engine.

As shown schematically in Fig. 1, our synthesis algorithm consists of three
conceptual elements, indicated as “Take action”, “Deduce”, and “Update pol-
icy”. Given the current policy π and partial program P , “Take action” uses π
to expand P into a more complete program P ′. Then, “Deduce” employs exist-
ing deductive reasoning techniques (e.g., [18,32]) to check whether P ′ is feasible
with respect to the specification. If this is not the case, “Update policy” uses the
feedback provided by the deduction engine to improve π. Specifically, the policy
is updated using an off-policy variant of the policy gradient algorithm, where the
gradient computation is adapted to our unique setting.

We have implemented the proposed method in a new synthesis tool called
Concord and empirically evaluate it on synthesis tasks used in prior work
[2,18]. We also compare our method with several relevant baselines as well as
two existing synthesis tools. Notably, our evaluation shows that Concord can
solve 15% more benchmarks compared to Neo (a state-of-the-art synthesis tool),
while being 8.71× faster on benchmarks that can be solved by both tools. Fur-
thermore, our ablation study demonstrates the empirical benefits of our proposed
reinforcement learning algorithm.

To summarize, this paper makes the following key contributions:

– We propose a new synthesis algorithm based on reinforcement learning that
tightly couples statistical and deductive reasoning.

– We describe an off-policy reinforcement learning technique that uses the out-
put of the deduction engine to gradually improve its policy.

– We implement our approach in a tool called Concord and empirically
demonstrate its benefits compared to other state-of-the-art tools as well as
ablations of our own system.

The rest of this paper is structured as follows. First, we provide some back-
ground on reinforcement learning and MDPs (Sect. 2) and introduce our prob-
lem formulation in Sect. 3. After formulating the synthesis problem as an MDP
in Sect. 4, we then present our synthesis algorithm in Sect. 5. Sections 6 and 7
describe our implementation and evaluation respectively. Finally, we discuss
related work and future research directions in Sect. 8 and 9.

2 Background on Reinforcement Learning

At a high level, the goal of reinforcement learning (RL) is to train an agent, such
as a robot, to make a sequence of decisions (e.g., move up/down/left/right) in
order to accomplish a task. All relevant information about the environment and
the task is specified as a Markov decision process (MDP). Given an MDP, the
goal is to compute a policy that specifies how the agent should act in each state
to maximize their chances of accomplishing the task.

590 Y. Chen et al.

In the remainder of this section, we provide background on MDPs and
describe the policy gradient algorithm that our method will build upon.

Markov Decision Process. We formalize a Markov decision process (MDP)
as a tuple M = (S,SI ,ST ,A,F ,R), where:

– S is a set of states (e.g., the robot’s current position),
– SI is the initial state distribution,
– ST is a set of the final states (e.g., a dead end),
– A is a set of actions (e.g., move up/down/left/right),
– F : S × A → S is a set of transitions,
– R : S → R is a reward function that assigns a reward to each state (e.g., 1

for reaching the goal and 0 otherwise).

In general, transitions in an MDP can be stochastic; however, for our setting,
we only consider deterministic transitions and rewards.

Policy. A policy for an MDP specifies how the agent should act in each state.
Specifically, we consider a (stochastic) policy π : S×A → R, where π(S,A) is the
probability of taking action A in state S. Alternatively, we can also think of π
as a mapping from states to distributions over actions. Thus, we write A ∼ π(S)
to denote that action A is sampled from the distribution for state s.

Rollout. Given an MDP M and policy π, a rollout is a sequence of state-action-
reward tuples obtained by sampling an initial state and then using π to make
decisions until a final state is reached. More formally, for a rollout of the form:

ζ = ((S1, A1, R1), ..., (Sm−1, Am−1, Rm−1), (Sm, ∅, Rm)),

we have Sm ∈ ST , S1 ∼ SI (i.e., S1 is sampled from an initial state), and, for
each i ∈ {1, ...,m − 1}, Ai ∼ π(Si), Ri = R(Si), and Si+1 = F(Si, Ai).

In general, a policy π induces a distribution Dπ over the rollouts of an MDP
M. Since we assume that MDP transitions are deterministic, we have:

Dπ(ζ) =
m−1∏

i=1

π(Si, Ai).

RL Problem. Given an MDP M, the goal of reinforcement learning is to com-
pute an optimal policy π∗ for M. More formally, π∗ should maximize cumulative
expected reward :

π∗ = arg max
π

J(π)

where the cumulative expected reward J(π) is computed as follows:

J(π) = Eζ∼Dπ

[
m∑

i=1

Ri

]

Program Synthesis Using Deduction-Guided Reinforcement Learning 591

Policy Gradient Algorithm. The policy gradient algorithm is a well-known
RL algorithm for finding optimal policies. It assumes a parametric policy family
πθ with parameters θ ∈ R

d. For example, πθ may be a deep neural network
(DNN), where θ denotes the parameters of the DNN. At a high level, the policy
gradient algorithm uses the following theorem to optimize J(πθ) [48]:

Theorem 1. We have

∇θJ(πθ) = Eζ∼Dπθ
[�(ζ)] where �(ζ) =

m−1∑

i=1

⎛

⎝
m∑

j=i+1

Rj

⎞

⎠ ∇θ log πθ(Si, Ai).

(1)

In this theorem, the term ∇θ log πθ(Si, Ai) intuitively gives a direction in the
parameter space that, when moving the policy parameters towards it, increases
the probability of taking action Ai at state Si. Also, the sum

∑m
j=i+1 Rj is the

total future reward after taking action Ai. Thus, �(ζ) is just the sum of different
directions in the parameter space weighted by their corresponding future reward.
Thus, the gradient ∇θJ(πθ) moves policy parameters in a direction that increases
the probability of taking actions that lead to higher rewards.

Based on this theorem, we can estimate the gradient ∇θJ(πθ) using rollouts
sampled from Dπθ

:

∇θJ(πθ) ≈ 1
n

n∑

k=1

�(ζ(k)), (2)

where ζ(k) ∼ Dπθ
for each k ∈ {1, ..., n}. The policy gradient algorithm uses

stochastic gradient ascent in conjunction with Eq. (2) to maximize J(πθ) [48].

3 Problem Formulation

In this paper, we focus on the setting of syntax-guided synthesis [1]. Specifically,
given a domain-specific language (DSL) L and a specification φ, our goal is to
find a program in L that satisfies φ. In the remainder of this section, we formally
define our synthesis problem and clarify our assumptions.

DSL. We assume a domain-specific language L specified as a context-free gram-
mar L = (V,Σ,R, S), where V,Σ denote non-terminals and terminals respec-
tively, R is a set of productions, and S is the start symbol.

Definition 1 (Partial program). A partial program P is a sequence P ∈
(Σ ∪ V)∗ such that S

∗⇒ P (i.e., P can be derived from S via a sequence of
productions). We refer to any non-terminal in P as a hole hole, and we say that
P is complete if it does not contain any holes.

592 Y. Chen et al.

S → N | L
N → 0 | . . . | 10 | xi

L → xi | take(L, N) | drop(L, N) | sort(L)
| reverse(L) | add(L, L) | sub(L, L) | sumUpTo(L)

Fig. 2. A simple programming language used for illustration. Here, take (resp. drop)
keeps (resp. removes) the first N elements in the input list. Also, add (resp. sub)
compute a new list by adding (resp. subtracting) elements from the two lists pair-wise.
Finally, sumUpTo generates a new list where the i’th element in the output list is the
sum of all previous elements (including the i’th element) in the input list.

Given a partial program P containing a hole H, we can fill this hole by
replacing H with the right-hand-side of any grammar production r of the form
H → e. We use the notation P

r⇒ P ′ to indicate that P ′ is the partial program
obtained by replacing the first occurrence of H with the right-hand-side of r,
and we write Fill(P, r) = P ′ whenever P

r⇒ P ′.

Example 1. Consider the small programming language shown in Fig. 2 for
manipulating lists of integers. The following partial program P over this DSL
contains three holes, namely L1, L2, N1:

add(L1, take(L2, N1))

Now, consider the production r ≡ L → reverse(L). In this case, Fill(P, r)
yields the following partial program P ′:

add(reverse(L1), take(L2, N1))

Program Synthesis Problem. Given a specification φ and language L =
(V,Σ,R, S), the goal of program synthesis is to find a complete program P

such that S
∗⇒ P and P satisfies φ. We use the notation P |= φ to indicate that

P is a complete program that satisfies specification φ.

Deduction Engine. In the remainder of this paper, we assume access to a
deduction engine that can determine whether a partial program P is feasible
with respect to specification φ. To make this more precise, we introduce the
following notion of feasibility.

Definition 2 (Feasible partial program). Given a specification φ and lan-
guage L = (V,Σ,R, S), a partial program P is said to be feasible with respect to
φ if there exists any complete program P ′ such that P

∗⇒ P ′ and P ′ |= φ.

In other words, a feasible partial program can be refined into a complete
program that satisfies the specification. We assume that our deduction oracle
over-approximates feasibility. That is, if P is feasible with respect to specification
φ, then Deduce(P, φ) should report that P is feasible but not necessarily vice
versa. Note that almost all deduction techniques used in the program synthesis
literature satisfy this assumption [18,19,21,27,53].

Program Synthesis Using Deduction-Guided Reinforcement Learning 593

Example 2. Consider again the DSL from Fig. 2 and the specification φ defined
by the following input-output example:

[65, 2, 73, 62, 78]
→ [143, 129, 213, 204, 345]

The partial program add(reverse(x), take(x,N)) is infeasible because, no mat-
ter what production we use to fill non-terminal N , the resulting program cannot
satisfy the provided specification for the following reason:

– Given a list l and integer n where n < length(l), take(l, n) returns the first
n elements in l. Thus, the length of take(l, n) is smaller than that of l.

– The construct reverse(l) reverses its input; thus, the size of the output list
is the same as its input.

– Finally, add(l1, l2) constructs a new list by adding the elements of its input
lists pair-wise. Thus, add expects the two input lists to be the same size.

– Since the outputs of reverse and take do not have the same size, we cannot
combine them using add.

Several techniques from prior work (e.g., [18,19,39,53]) can prove the infeasi-
bility of such partial programs by using an SMT solver (provided specifications
are given for the DSL constructs).

Beyond checking feasibility, some deduction techniques used for synthesis
can also provide additional information [18,32,54]. In particular, given a partial
program P that is infeasible with respect to specification φ, several deduction
engines can generate a set of other infeasible partial programs P1, . . . , Pn that
are infeasible for the same reason as P . To unify both types of feedback, we
assume that the output of the deduction oracle O is a set S of partial programs
such that S is empty if and only if O decides that the partial program is feasible.

This discussion is summarized by the following definition:

Definition 3 (Deduction engine). Given a partial program P and specifica-
tion φ, Deduce(P, φ) yields a set of partial programs S such that (1) if S �= ∅,
then P is infeasible, and (2) for every P ′ ∈ S, it must be the case that P ′ is
infeasible with respect to φ.

Example 3. Consider again the same infeasible partial program P given in Exam-
ple 2. Since drop(l, n) drops the first n elements from list l (where n < length(l)),
it also produces a list whose length is smaller than that of the input. Thus, the
following partial program P ′ is also infeasible for the same reason as P :

P ′ ≡ add(reverse(x), drop(x,N))

Thus, Deduce(P, φ) may return the set {P, P ′}.

4 MDP Formulation of Deduction-Guided Synthesis

Given a specification φ and language L = (V,Σ,R, S), we can formulate the
program synthesis problem as an MDP Mφ = (S,SI ,ST ,A,F ,R), where:

594 Y. Chen et al.

– States S include all partial programs P such that S
∗⇒ P as well as a special

label ⊥ indicating a syntactically ill-formed partial program
– SI places all probability mass on the empty program S, i.e.,

SI(P) =
{

1 if P = S
0 if P �= S

– ST includes complete programs as well as infeasible partial programs, i.e.,

P ∈ ST ⇐⇒ IsComplete(P) ∨ Deduce(P, φ) �= ∅ ∨ P = ⊥
– Actions A are exactly the productions R for the DSL
– Transitions F correspond to filling a hole using some production i.e.,

F(P, r = (H → e)) =
{⊥ if H is not a hole in P

Fill(P, r) otherwise

– The reward function penalizes infeasible programs and rewards correct solu-
tions, i.e.,

R(P) =

⎧
⎪⎨

⎪⎩

1 if P |= φ

−1 if P = ⊥ ∨ Deduce(P, φ) �= ∅ ∨ (IsComplete(P) ∧ P �|= φ)
0 otherwise.

Observe that our reward function encodes the goal of synthesizing a complete
program P that satisfies φ, while avoiding the exploration of as many infeasible
programs as possible. Thus, if we have a good policy π for this MDP, then a
rollout of π is likely to correspond to a solution of the given synthesis problem.

Example 4. Consider the same specification (i.e., input-output example) φ from
Example 2 and the DSL from Example 1. The partial program

P ≡ add(reverse(x), take(x,N))

is a terminal state of Mφ since Deduce(P, φ) yields a non-empty set, and we
have R(P) = −1. Thus, the following sequence corresponds to a rollout of Mφ:

(S, S → L, 0), (L, L → add(L, L), 0), (add(L1, L2), L → reverse(L), 0)
(add(reverse(L1), L2), L → x, 0), (add(reverse(x), L), L → take(L, N), 0)
(add(reverse(x), take(L, N)), L → x, 0), (add(reverse(x), take(x, N)), ∅, −1).

Simplified Policy Gradient Estimate for Mφ. Since our synthesis algo-
rithm will be based on policy gradient, we will now derive a simplified policy
gradient for our MDP Mφ. First, by construction of Mφ, a rollout ζ has the
form

(P1, r1, 0), ..., (Pm, ∅, q)

Program Synthesis Using Deduction-Guided Reinforcement Learning 595

where q = 1 if Pm |= φ and q = −1 otherwise. Thus, the term �(P) from Eq. 1
can be simplified as follows:

�(Pm) =
m−1∑

i=1

q · ∇θ log πθ(Pi, ri), (3)

where Pm ∼ Dπθ
is a final state (i.e., complete program or infeasible partial

program) sampled using πθ. Then, Eq. 1 is equivalently

∇θJ(πθ) ≈ 1
n

n∑

k=1

�(P (k)), (4)

where P (k) ∼ Dπθ
for each k ∈ {1, ..., n}.

5 RL-Based Synthesis Algorithm

In this section, we describe our synthesis algorithm based on reinforcement learn-
ing. Our method is an off-policy variant of the standard (on-policy) policy gra-
dient algorithm and incorporates additional feedback – in the form of other
infeasible programs – provided by the deduction engine when improving its pol-
icy parameters. We first give a high-level overview of the synthesis algorithm
and then explain how to update the policy.

5.1 Overview of Synthesis Algorithm

Our RL-based synthesis algorithm is presented in Fig. 3. In addition to specifi-
cation φ and domain-specific language L, this algorithm also takes as input an
initial policy π0 that has been trained off-line on a representative set of train-
ing problems.1 In each iteration of the main synthesis loop, we first obtain a
rollout of the current policy by calling the GetRollout procedure at line 7.
Here, each rollout either corresponds to a complete program P or an infeasible
partial program. If P is complete and satisfies the specification, we return it as
a solution in line 8. Otherwise, we use feedback C provided by the deduction
engine to improve the current policy (line 9). In the following subsections, we
explain the GetRollout and UpdatePolicy procedures in more detail.

5.2 Sampling Rollouts

The GetRollout procedure iteratively expands a partial program, starting
from the start symbol S of the grammar (line 11). In each iteration (lines 12–
19), we first check whether the current partial program P is feasible by calling
Deduce. If P is infeasible (i.e., C is non-empty), then we have reached a terminal

1 We explain how to train this initial policy in Sect. 6.

596 Y. Chen et al.

1: procedure Synthesize(L, φ, π0)
2: input: Domain-specific language L = (V, Σ, R, S)
3: input: Specification φ; initial policy π0

4: output: Complete program P such that P |= φ

5: πθ ← π0

6: while true do
7: (P, C) ← GetRollout(L, φ, πθ)
8: if C = ∅ then return P
9: else πθ ← UpdatePolicy(πθ, C)

10: procedure GetRollout(L, φ, πθ)
11: P ← S
12: while true do
13: C ← Deduce(P, φ)
14: if C �= ∅ then return (P, C)
15: choose r ∼ πθ(P) ∧ Lhs(r) ∈ Holes(P)
16: P ← Fill(P, r)
17: if IsComplete(P) then
18: if P |= φ then return (P, ∅)
19: else return (P, {P})

20: procedure UpdatePolicy(πθ, C)
21: for k ∈ {1, ..., n′} do
22: P (k) ∼ Uniform(C)

23: θ′ ← θ + η
∑n′

k=1 �(P (k)) · Dπθ
(P (k))

1/|C|
24: return πθ′

Fig. 3. Deduction-guided synthesis algorithm based on reinforcement learning

state of the MDP; thus, we return P as the final state of the rollout. Otherwise,
we continue expanding P according to the current policy πθ. Specifically, we
first sample an action (i.e., grammar production) r that is applicable to the
current state (i.e., the left-hand-side of r is a hole in P), and, then, we expand
P by calling the Fill procedure (defined in Sect. 3) at line 16. If the resulting
program is complete, we have reached a terminal state and return P ; otherwise,
we continue expanding P according to the current policy.

5.3 Improving the Policy

As mentioned earlier, our algorithm improves the policy by using the feedback
C provided by the deduction engine. Specifically, consider an infeasible program
P explored by the synthesis algorithm at line 7. Since Deduce(P, φ) yields a
set of infeasible programs, for every program P ′ ∈ C, we know that the reward
should be −1. As a consequence, we should be able to incorporate the rollout
used to construct P into the policy gradient estimate based on Eq. (3). However,
the challenge to doing so is that Eq. (4) relies on on-policy samples – i.e., the

Program Synthesis Using Deduction-Guided Reinforcement Learning 597

programs P (k) in Eq. (4) must be sampled using the current policy πθ. Since
P ′ ∈ C is not sampled using πθ, we cannot directly use it in Eq. (4).

Instead, we use off-policy RL to incorporate P ′ into the estimate of
∇θJ(πθ) [28]. Essentially, the idea is to use importance weighting to incorpo-
rate data sampled from a different distribution than Dπθ

. In particular, suppose
we are given a distribution D̃ over final states. Then, we can derive the following
gradient:

∇θJ(πθ) = EP∼Dπθ
[�(P)] (5)

= EP∼D̃

[
�(P) · Dπθ

(P)
D̃(P)

]

Intuitively, the importance weight Dπθ
(P)

D̃(P)
accounts for the fact that P is sampled

from the “wrong” distribution.
Now, we can use the distribution D̃ = Uniform(Deduce(P ′, φ)) for a ran-

domly sampled final state P ′ ∼ Dπθ
. Thus, we have2:

Theorem 2. The policy gradient is

∇θJ(πθ) = EP ′∼Dπθ
,P∼Uniform(Deduce(P ′,φ))

[
�(P) · Dπθ

(P)
1/|Deduce(P ′, φ)|

]
. (6)

Proof. Note that

∇θJ(πθ) = EP ′∼Dπθ
[∇θJ(πθ)]

= EP ′∼Dπθ
,P∼Uniform(Deduce(P ′,φ))

[
�(P) · Dπθ

(P)
1/|Deduce(P ′, φ)|

]
,

as claimed. ��
The corresponding estimate of ∇θJ(πθ) is given by the following equation:

∇θJ(θ) ≈ 1
n

n∑

k=1

1
n′

n′∑

k′=1

�(P (k,k′)) · Dπθ
(P (k,k′))

1/|Deduce(P (k), φ)| ,

where P (k) ∼ D̃ and P (k,k′) ∼ Uniform(Deduce(P (k), φ)) for each k ∈ {1, ..., n}
and k′ ∈ {1, ..., n′}. Our actual implementation uses n = 1, in which case this
equation can be simplified to the following:

∇θJ(θ) ≈ 1
n′

n′∑

k′=1

�(P) · Dπθ
(P (k′))

1/|Deduce(P, φ)| , (7)

2 Technically, importance weighting requires that the support of D̃ contains the sup-
port of Dπθ . We can address this issue by combining D̃ and Dπθ—in particular, take
D̃(P) = (1 − ε) · Uniform(Deduce(P ′, φ))(P) + ε · Dπθ (P), for any ε > 0.

598 Y. Chen et al.

where P ∼ D̃ and P (k′) ∼ Uniform(Deduce(P, φ)) for each k′ ∈ {1, ..., n′}.
Now, going back to our synthesis algorithm from Fig. 3, the UpdatePolicy

procedure uses Eq. 7 to update the policy parameters θ. Specifically, given a set
C of infeasible partial programs, we first sample n′ programs P (1), . . . , P (n′) from
C uniformly at random (line 22). Then, we use the probability of each P (k) being
sampled from the current distribution Dπθ

to update the policy parameters to
a new value θ′ according to Eq. 7.

Example 5. Suppose that the current policy assigns the following probabilities
to these state, action pairs:

πθ((add(reverse(x), L)), L → take(L,N)) = 0.3
πθ((add(reverse(x), L)), L → drop(L,N)) = 0.3
πθ((add(reverse(x), L)), L → sumUpTo(L)) = 0.1

Furthermore, suppose that we sample the following rollout using this policy:

P ≡ add(reverse(x), take(x,N)),

This corresponds to an infeasible partial program, and, as in Example 3,
Deduce(P , φ) yields {P, P ′} where P ′ ≡ add(reverse(x), drop(x,N)). Using
the gradients derived by Eq. 7, we update the policy parameters θ to θ′. The
updated policy now assigns the following probabilities to the same state, action
pairs:

πθ′((add(reverse(x), L)), L → take(L,N)) = 0.15
πθ′((add(reverse(x), L)), L → drop(L,N)) = 0.15
πθ′((add(reverse(x), L)), L → sumUpTo(L)) = 0.2

Observe that the updated policy makes it less likely that we will expand the
partial program add(reverse(x), L)) using the drop production in addition to
the take production. Thus, if we reach the same state add(reverse(x), L) during
rollout sampling in the next iteration, the policy will make it more likely to
explore the sumUpTo production, which does occur in the desired program

add(reverse(x), sumUpTo(x))

that meets the specification from Example 2.

6 Implementation

We have implemented the proposed algorithm in a new tool called Concord
written in Python. In what follows, we elaborate on various aspects of our imple-
mentation.

Program Synthesis Using Deduction-Guided Reinforcement Learning 599

6.1 Deduction Engine

Concord uses the same deduction engine described by Feng et al. [18]. Specif-
ically, given a partial program P , Concord first generates a specification ϕ of
P by leveraging the abstract semantics of each DSL construct. Then, Concord
issues a satisfiability query to the Z3 SMT solver [15] to check whether ϕ is con-
sistent with the provided specification. If it is not, this means that P is infeasible,
and Concord proceeds to infer other partial programs that are also infeasible
for the same reason as P . To do so, Concord first obtains an unsatisfiable core
ψ for the queried formula, and, for each clause ci of ψ originating from DSL con-
struct fi, it identifies a set Si of other DSL constructs whose semantics imply ci.
Finally, it generates a set of other infeasible programs by replacing all fi’s in the
current program with another construct drawn from its corresponding set Si.

6.2 Policy Network

Architecture. As shown by Fig. 4, Concord represents its underlying policy
using a deep neural network (DNN) πθ(r | P), which takes as input the current
state (i.e., a partial program P) and outputs a probability distribution over
actions (i.e., productions r in the DSL). We represent each program P as a flat
sequence of statements and use a recurrent neural network (RNN) architecture,
as this is a natural choice for sequence inputs. In particular, our policy network
is a gated recurrent unit (GRU) network [13], which is a state-of-the-art RNN
architecture. Our policy network has one hidden layer with 256 neurons; this
layer is sequentially applied to each statement in the partial program together
with the latent vector from processing the previous statement. Once the entire
partial program P has been encoded into a vector, πθ has a final layer that
outputs a distribution over DSL productions r based on this vector.

Spec
Encoder

GRU
(t=0)

GRU
(t=1)

GRU
(t=2)

S L→ L add(L1,L2)→ L reverse(L)→

L add(L1,L2)

S L add(L1, L2)

……

fill fill fill

add(reverse(L1),L2)

Fig. 4. The architecture of the policy network showing how to roll out the partial
program in Example 4.

Pretraining the Initial Policy. Recall from Sect. 5 that our synthesis algo-
rithm takes a input an initial policy network that is updated during the synthesis

600 Y. Chen et al.

process. One way to initialize the the policy network would be to use a stan-
dard random initialization of the network weights. However, a more effective
alternative is to pretrain the policy on a benchmark suite of program synthesis
problems [44]. Specifically, consider a representative training set Xtrain of syn-
thesis problems of the form (φ, P), where φ is the specification and P is the
desired program. To obtain an initial policy, we augment our policy network to
take as input an encoding of the specification φ for the current synthesis problem
– i.e., it has the form πθ(r | P, φ).3 Then, we use supervised learning to train πθ

to predict P given φ—i.e.,

θ0 = arg max
θ

∑

(φ,P)∈Xtrain

|P |−1∑

i=1

πθ(ri | Pi, φ).

We optimize θ using stochastic-gradient descent (SGD) on this objective.
Given a new synthesis problem φ, we use πθ0 as the initial policy. Our RL

algorithm then continues to update the parameters starting from θ0.

6.3 Input Featurization

As standard, we need a way to featurize the inputs to our policy network – i.e.,
the statements in each partial program P , and the specification φ. Our current
implementation assumes that statements are drawn from a finite set and featur-
izes them by training a different embedding vector for each kind of statement.
While our general methodology can be applied to different types specifications,
our implementation featurizes the specification under the assumption that it
consists of input-output examples and uses the same methodology described by
Balog et al. [2].

6.4 Optimizations

Our implementation performs a few optimization over the algorithm presented
in Sect. 5. First, since it is possible to sample the same rollout multiple times,
our implementation uses a hash map to check whether a rollout has already been
explored. Second, in different invocations of the GetRollout procedure from
Fig. 3, we may end up querying the feasibility of the same state (i.e., partial
program) many times. Since checking feasibility requires a potentially-expensive
call to the SMT solver, our implementation also memoizes the results of feasi-
bility checks for each state. Finally, similar to Chen et al. [11], we use a 3-model
ensemble to alleviate some of the randomness in the synthesis process and return
a solution as soon as one of the models in the ensemble finds a correct solution.

7 Evaluation

In this section, we describe the results from our experimental evaluation, which
is designed to answer the following key research questions:
3 Including the specification as an input to πθ is unnecessary if we do not use pre-

training, since φ does not change for a single synthesis problem.

Program Synthesis Using Deduction-Guided Reinforcement Learning 601

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

#Benchmarks

T
im

e
Concord

Neo

DeepCoder

Fig. 5. Comparison between Concord, Neo, and DeepCoder

1. How does Concord compare against existing synthesis tools?
2. What is the impact of updating the statistical model during synthesis? (i.e.,

is reinforcement learning actually useful)?
3. How important is the proposed off-policy RL algorithm compared to standard

policy gradient?
4. How important is it to get feedback from the deduction engine when updating

the policy?

Benchmarks. We evaluate the proposed technique on a total of 100 synthesis
tasks used in prior work [2,18]. Specifically, these synthesis tasks require perform-
ing non-trivial transformations and computations over lists using a functional
programming language. Since these benchmarks have been used to evaluate both
Neo [18] and DeepCoder [2], they provide a fair ground for comparing our app-
roach against two of the most closely-related techniques. In particular, note that
DeepCoder uses a pre-trained deep neural network to guide its search, whereas
Neo uses both statistical and logical reasoning (i.e., statistical model to guide
search and deduction to prune the search space). However, unlike our proposed
approach, neither Neo nor DeepCoder update their statistical model during
synthesis time.

Training. Recall that our algorithm utilizes a pre-trained initial policy. To gen-
erate the initial policy, we use the same methodology described in DeepCoder [2]
and adopted in Neo [18]. Specifically, we randomly generate both programs and
inputs, and we obtain the corresponding output by executing the program. Then,
we train the DNN model discussed in Sect. 6 on the Google Cloud Platform with
a 2.20 GHz Intel Xeon CPU and an NVIDIA Tesla K80 GPU using 16 GB of
memory.

602 Y. Chen et al.

7.1 Comparison Against Existing Tools

To answer our first research question, we compare Concord against both Neo
and DeepCoder on the 100 synthesis benchmarks discussed earlier. The result of
this comparison is shown in Fig. 5, which plots the number of benchmarks solved
within a given time limit for each of the three tools. As we can see from this
figure, Concord outperforms DeepCoder and Neo both in terms of synthesis
time as well as the number of benchmarks solved within the 5-min time limit.
In particular, Concord can solve 82% of these benchmarks with an average
running time of 36 s, whereas Neo (resp. DeepCoder) solves 71% (resp. 32%)
with an average running time of 99 s (resp. 205 s). Thus, we believe these results
answer our first research question in a positive way.

7.2 Ablation Study

To answer our remaining research questions, we perform an ablation study in
which we compare Concord against three variants:

– Concord-noRL: This variant does not use reinforcement learning to update
its policy during synthesis. However, it still uses the pre-trained policy to
guide search, and it also uses deduction to prune infeasible partial programs.
In other words, Concord-noRL is the same as the synthesis algorithm from
Fig. 3 but it does not invoke the UpdatePolicy procedure to improve its
policy during synthesis.

– Concord-NoDeduce: This variant uses reinforcement learning; however, it
does not incorporate feedback from the deduction engine. That is, rather
than checking feasibility of partial programs, it instead samples complete
programs and uses the percentage of passing input-output examples as the
reward signal. Note that this variant of Concord essentially corresponds to
the technique proposed by Si et al. [44].4

– Concord-StandardPG: Recall that our algorithm uses an off-policy variant
of the standard policy gradient algorithm to incorporate additional feedback
from the deduction engine. To evaluate the benefit of our proposed approach,
we created a variant called Concord-StandardPG that uses the standard (i.e.,
on-policy) policy gradient algorithm. In other words, ConcordStandardPG
implements the same synthesis algorithm from Fig. 3 except that it uses
Theorem 1 to update θ instead of Theorem 2.

The results from this evaluation are summarized in Table 1. Here, the first
column labeled “# solved” shows the number of solved benchmarks, and the
second column shows percentage improvement over Neo in terms of benchmarks
solved. The third column shows average synthesis time for benchmarks that can

4 We reimplement the RL algorithm proposed in [44] since we cannot directly compare
against their tool. Specifically, the policy network in their implementation is tailored
to their problem domain.

Program Synthesis Using Deduction-Guided Reinforcement Learning 603

Table 1. Results of ablation study result comparing different variants.

solved Delta to Neo Avg. time (s) Speedup over Neo

Concord-noRL 56 −21% 48 1.63×
Concord-NoDeduce 65 −8% 21 3.66×
Concord-StandardPG 65 −8% 27 2.88×
Concord 82 +15% 9 8.71×

be solved by all variants and Neo. Finally, the last column shows speed-up in
terms of synthesis time compared to Neo.

As we can see from this table, all variants are significantly worse than Con-
cord in terms of the number of benchmarks that can be solved within a 5-min
time limit5. Furthermore, as we can see from the column labeled “Delta to Neo”,
all of our proposed ideas are important for improving over the state-of-the-art,
as Neo outperforms all three variants but not the full Concord system, which
solves 15% more benchmarks compared to Neo.

Next, looking at the third column of Table 1, we see that all three variants of
Concord are significantly slower compared to Concord in terms of synthesis
time. While both Concord and all of its variants outperform Neo in terms of
synthesis time (for benchmarks solved by all tools), Concord by far achieves
the greatest speed-up over Neo.

In summary, the results from Table 1 highlight that all of our proposed ideas
(i.e., (1) improving policy at synthesis time; (2) using feedback from deduction;
and (3) off-policy RL) make a significant difference in practice. Thus, we conclude
that the ablation study positively answers our last three research questions.

8 Related Work

In this section, we survey prior work that is closely related to the techniques
proposed in this paper.

Program Synthesis. Over the past decade, there has been significant inter-
est in automatically synthesizing programs from high-level expressions of user
intent [2,6,21,23,25,39,40,46]. Some of these techniques are geared towards
computer end-users and therefore utilize informal specifications such as input-
output examples [23,40,50], natural language [24,42,55,56], or a combina-
tion of both [10,12]. On the other hand, program synthesis techniques geared
towards programmers often utilize additional information, such as a program
sketch [17,36,46,49] or types [33,39] in addition to test cases [20,30] or logical
specifications [6,49]. While the synthesis methodology proposed in this paper

5 To understand the improvement brought by the pre-trainedd policy, we also conduct
a baseline experiment by using randomly initialized policy in Concord. Given the
setting, Concord can solve as many as 27% of the benchmarks in the given 5-min
time limit.

604 Y. Chen et al.

can, in principle, be applied to a broad set of specifications, the particular fea-
turization strategy we use in our implementation is tailored towards input-output
examples.

Deduction-Based Pruning. In this paper, we build on a line of prior work on
using deduction to prune the search space of programs in a DSL [18,19,21,39,53].
Some of these techniques utilize type-information and type-directed reasoning
to detect infeasible partial programs [20–22,37,39]. On the other hand, other
approaches use some form of lightweight program analysis to prune the search
space [18,19,53]. Concretely, Blaze uses abstract interpretation to build a
compact version space representation capturing the space of all feasible pro-
grams [53]; Morpheus [19] and Neo [18] utilize logical specifications of DSL
constructs to derive specifications of partial programs and query an SMT solver
to check for feasibility; Scythe [50] and Viser [51] use deductive reasoning to
compute approximate results of partial programs to check their feasibility. Our
approach learns from deduction feedback to improve search efficiency. As men-
tioned in Sect. 6, the deductive reasoning engine used in our implementation is
similar to the latter category; however, it can, in principle, be used in conjunction
with other deductive reasoning techniques for pruning the search space.

Learning from Failed Synthesis Attempts. The technique proposed in this
paper can utilize feedback from the deduction engine in the form of other infea-
sible partial programs. This idea is known as conflict-driven learning and has
been recently adopted from the SAT solving literature [5,57] to program syn-
thesis [18]. Specifically, Neo uses the unsat core of the program’s specification
to derive other infeasible partial programs that share the same root cause of
failure, and, as described in Sect. 6, we use the same idea in our implementation
of the deduction engine. While we use logical specifications to infer other infea-
sible programs, there also exist other techniques (e.g., based on testing [54]) to
perform this kind of inference.

Machine Learning for Synthesis. This paper is related to a long line of work
on using machine learning for program synthesis. Among these techniques, some
of them train a machine learning model (typically a deep neural network) to
directly predict a full program from the given specification [12,16,34,35]. Many
of these approaches are based on sequence-to-sequence models [47], sequence
to tree models [56], or graph neural networks [41] commonly used in machine
translation.

A different approach, sometimes referred to as learning to search, is to train a
statistical model that is used to guide the search rather than directly predict the
target program. For example, DeepCoder [2] uses a deep neural network (DNN)
to predict the most promising grammar productions to use for the given input-
output examples. Similarly, R3NN [38] and NGDS [26] use DNNs to predict
the most promising grammar productions conditioned on both the specification
and the current partial program. In addition, there has been work on using
concrete program executions on the given input-output examples to guide the
DNN [11,52]. Our technique for pretraining the initial policy network is based

Program Synthesis Using Deduction-Guided Reinforcement Learning 605

on the same ideas as these supervised learning approaches; however, their initial
policies do not change during the synthesis algorithm, whereas we continue to
update the policy using RL.

While most of the work at the intersection of synthesis and machine learn-
ing uses supervised learning techniques, recent work has also proposed using
reinforcement learning to speed up syntax-guided synthesis [8,29,31,44] These
approaches are all on-policy and do not incorporate feedback from a deduction
engine. In contrast, in our problem domain, rewards are very sparse in the pro-
gram space, which makes exploration highly challenging in a on-policy learning
setting. Our approach addresses this problem using off-policy RL to incorporate
feedback from the deduction engine. Our ablation study results demonstrate that
our off-policy RL is able to scale to more complex benchmarks.

Reinforcement Learning for Formal Methods. There has been recent inter-
est in applying reinforcement learning (RL) to solve challenging PL problems
where large amounts of labeled training data are too expensive to obtain. For
instance, Si et al. use graph-based RL to automatically infer loop invariants [43],
Singh et al. use Q-learning (a different RL algorithm) to speed up program anal-
ysis based on abstract interpretation [45], Dai et al. [14] uses meta-reinforcement
learning for test data generation, and Chen et al. [9] uses RL to speed up rela-
tional program verification. However, these approaches only use RL offline to
pretrain a DNN policy used to guide search. In contrast, we perform reinforce-
ment learning online during synthesis. Bastani et al. has used an RL algorithm
called Monte-carlo tree search (MCTS) to guide a specification inference algo-
rithm [3]; however, their setting does not involve any kind of deduction.

9 Conclusion and Future Work

We presented a new program synthesis algorithm based on reinforcement learn-
ing. Given an initial policy trained off-line, our method uses this policy to guide
its search at synthesis time but also gradually improves this policy using feedback
obtained from a deductive reasoning engine. Specifically, we formulated program
synthesis as a reinforcement learning problem and proposed a new variant of the
policy gradient algorithm that is better suited to solve this problem. In addition,
we implemented the proposed approach in a new tool called Concord and eval-
uated it on 100 synthesis tasks taken from prior work. Our evaluation shows that
Concord outperforms a state-of-the-art tool by solving 15% more benchmarks
with an average speedup of 8.71×. In addition, our ablation study highlights the
advantages of our proposed reinforcement learning algorithm.

There are several avenues for future work. First, while our approach is appli-
cable to different DSLs and specifications, our current implementation focuses
on input-output examples. Thus, we are interested in extending our implemen-
tation to richer types of specifications and evaluating our method in application
domains that require such specifications. Another interesting avenue for future
work is to integrate our method with other types of deductive reasoning engines.

606 Y. Chen et al.

In particular, while our deduction method is based on SMT, it would be inter-
esting to try other methods (e.g., based on types or abstract interpretation) in
conjunction with our proposed RL approach.

References

1. Alur, R., et al.: Syntax-guided synthesis. IEEE (2013)
2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:

learning to write programs. In: Proceedings of International Conference on Learn-
ing Representations. OpenReview (2017)

3. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Active learning of points-to specifi-
cations. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 678–692 (2018)

4. Bavishi, R., Lemieux, C., Fox, R., Sen, K., Stoica, I.: AutoPandas: neural-backed
generators for program synthesis. PACMPL 3(OOPSLA), 168:1–168:27 (2019)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning
SAT solvers. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, pp. 131–153 (2009)

6. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 467–481 (2017)

7. Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Generative code mod-
eling with graphs. In: ICLR (2019)

8. Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar
and reinforcement learning for neural program synthesis. In: ICLR (2018)

9. Chen, J., Wei, J., Feng, Y., Bastani, O., Dillig, I.: Relational verification using
reinforcement learning. PACMPL 3(OOPSLA), 14:11–14:130 (2019)

10. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions (2019)

11. Chen, X., Liu, C., Song, D.: Execution-guided neural program synthesis. In: ICLR
(2018)

12. Chen, Y., Martins, R., Feng, Y.: Maximal multi-layer specification synthesis. In:
Proceedings of the ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2019, Tallinn, Estonia, 26–30 August 2019, pp. 602–612 (2019)

13. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

14. Dai, H., Li, Y., Wang, C., Singh, R., Huang, P., Kohli, P.: Learning transfer-
able graph exploration. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, Vancouver, BC, Canada, 8–14 December 2019, pp. 2514–2525 (2019). http://
papers.nips.cc/paper/8521-learning-transferable-graph-exploration

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.R., Kohli, P.:
RobustFill: neural program learning under noisy I/O. In: Proceedings of the 34th
International Conference on Machine Learning, vol. 70, pp. 990–998. JMLR.org
(2017)

http://arxiv.org/abs/1406.1078
http://papers.nips.cc/paper/8521-learning-transferable-graph-exploration
http://papers.nips.cc/paper/8521-learning-transferable-graph-exploration
https://doi.org/10.1007/978-3-540-78800-3_24

Program Synthesis Using Deduction-Guided Reinforcement Learning 607

17. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics
programs from hand-drawn images. In: Advances in Neural Information Processing
Systems, pp. 6059–6068 (2018)

18. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: Proceedings of Conference on Programming Language Design
and Implementation, pp. 420–435 (2018)

19. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. In: Pro-
ceedings of Conference on Programming Language Design and Implementation,
pp. 422–436. ACM (2017)

20. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.: Component-based synthesis
for complex APIs. In: Proceedings of Symposium on Principles of Programming
Languages, pp. 599–612. ACM (2017)

21. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15–17 June 2015, pp. 229–239 (2015)

22. Frankle, J., Osera, P., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, 20–22 January 2016, pp. 802–815 (2016)

23. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of Symposium on Principles of Programming Languages,
pp. 317–330. ACM (2011)

24. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Mapping language to code in
programmatic context. In: Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium, 31 October–4 November
2018, pp. 1643–1652 (2018). https://www.aclweb.org/anthology/D18-1192/

25. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of International Conference on Software Engineer-
ing, pp. 215–224. ACM/IEEE (2010)

26. Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-
guided deductive search for real-time program synthesis from examples. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, 30 April–3 May 2018, Conference Track Proceedings (2018). https://
openreview.net/forum?id=rywDjg-RW

27. Lee, M., So, S., Oh, H.: Synthesizing regular expressions from examples for intro-
ductory automata assignments. In: Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts and Experiences, pp.
70–80 (2016)

28. Levine, S., Koltun, V.: Guided policy search. In: International Conference on
Machine Learning, pp. 1–9 (2013)

29. Liang, C., Norouzi, M., Berant, J., Le, Q.V., Lao, N.: Memory augmented policy
optimization for program synthesis and semantic parsing. In: Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018,
pp. 10015–10027 (2018). http://papers.nips.cc/paper/8204-memory-augmented-
policy-optimization-for-program-synthesis-and-semantic-parsing

30. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for
patch generation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pp. 727–739 (2017)

https://www.aclweb.org/anthology/D18-1192/
https://openreview.net/forum?id=rywDjg-RW
https://openreview.net/forum?id=rywDjg-RW
http://papers.nips.cc/paper/8204-memory-augmented-policy-optimization-for-program-synthesis-and-semantic-parsing
http://papers.nips.cc/paper/8204-memory-augmented-policy-optimization-for-program-synthesis-and-semantic-parsing

608 Y. Chen et al.

31. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept
learner: interpreting scenes, words, and sentences from natural supervision. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, 6–9 May 2019 (2019). https://openreview.net/forum?id=rJgMlhRctm

32. Martins, R., Chen, J., Chen, Y., Feng, Y., Dillig, I.: Trinity: an extensible synthesis
framework for data science. Proc. VLDB Endow. 12(12), 1914–1917 (2019)

33. Miltner, A., Maina, S., Fisher, K., Pierce, B.C., Walker, D., Zdancewic, S.: Syn-
thesizing symmetric lenses. Proc. ACM Program. Lang. 3(ICFP), 1–28 (2019)

34. Neelakantan, A., Le, Q.V., Abadi, M., McCallum, A., Amodei, D.: Learning a nat-
ural language interface with neural programmer. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Con-
ference Track Proceedings (2017). https://openreview.net/forum?id=ry2YOrcge

35. Neelakantan, A., Le, Q.V., Sutskever, I.: Neural programmer: inducing latent pro-
grams with gradient descent. In: 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track
Proceedings (2016). http://arxiv.org/abs/1511.04834

36. Nye, M.I., Hewitt, L.B., Tenenbaum, J.B., Solar-Lezama, A.: Learning to infer
program sketches. In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019, pp. 4861–
4870 (2019). http://proceedings.mlr.press/v97/nye19a.html

37. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 619–630
(2015)

38. Parisotto, E., Mohamed, A.R., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-
symbolic program synthesis. In: ICLR (2017)

39. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: Proceedings of Conference on Programming Language Design
and Implementation, pp. 522–538 (2016)

40. Polozov, O., Gulwani, S.: FlashMeta: a framework for inductive program synthesis.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
Part of SPLASH 2015, Pittsburgh, PA, USA, 25–30 October 2015, pp. 107–126
(2015)

41. Shin, E.C., Allamanis, M., Brockschmidt, M., Polozov, A.: Program synthesis and
semantic parsing with learned code idioms. In: Advances in Neural Information
Processing Systems, pp. 10824–10834 (2019)

42. Shin, R., Allamanis, M., Brockschmidt, M., Polozov, O.: Program synthesis and
semantic parsing with learned code idioms. In: NeurIPS (2019)

43. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, Montréal, Canada, 3–8 December 2018, pp. 7762–7773 (2018)

44. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)

45. Singh, G., Püschel, M., Vechev, M.T.: Fast numerical program analysis with rein-
forcement learning. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, 14–17 July 2018, Proceedings, Part I, pp. 211–229 (2018)

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=ry2YOrcge
http://arxiv.org/abs/1511.04834
http://proceedings.mlr.press/v97/nye19a.html

Program Synthesis Using Deduction-Guided Reinforcement Learning 609

46. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combi-
natorial sketching for finite programs. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, 21–25 October 2006, pp. 404–415
(2006)

47. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

48. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems, pp. 1057–1063 (2000)

49. Torlak, E., Bod́ık, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2014, Edinburgh, United Kingdom, 09–11 June 2014, pp.
530–541 (2014)

50. Wang, C., Cheung, A., Bodik, R.: Synthesizing highly expressive SQL queries from
input-output examples. In: Proceedings of Conference on Programming Language
Design and Implementation, pp. 452–466. ACM (2017)

51. Wang, C., Feng, Y., Bod́ık, R., Cheung, A., Dillig, I.: Visualization by example.
PACMPL 4(POPL), 49:1–49:28 (2020). https://doi.org/10.1145/3371117

52. Wang, C., Huang, P., Polozov, A., Brockschmidt, M., Singh, R.: Execution-guided
neural program decoding. CoRR abs/1807.03100 (2018). http://arxiv.org/abs/
1807.03100

53. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
In: Proceedings of Symposium on Principles of Programming Languages, pp. 63:1–
63:30. ACM (2018)

54. Wang, Y., Dong, J., Shah, R., Dillig, I.: Synthesizing database programs for schema
refactoring. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, 22–26
June 2019, pp. 286–300 (2019)

55. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: SQLizer: query synthesis from
Natural Language. In: Proceedings of International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 63:1–63:26. ACM (2017)

56. Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z., Radev, D.: Syn-
taxSQLNet: syntax tree networks for complex and cross-domain text-to-SQL task.
In: Proceedings of EMNLP. Association for Computational Linguistics (2018)

57. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: Proceedings of International Conference
on Computer-Aided Design, pp. 279–285. IEEE Computer Society (2001)

https://doi.org/10.1145/3371117
http://arxiv.org/abs/1807.03100
http://arxiv.org/abs/1807.03100

610 Y. Chen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Manthan: A Data-Driven Approach
for Boolean Function Synthesis

Priyanka Golia1,2(B), Subhajit Roy1, and Kuldeep S. Meel2

1 Computer Science and Engineering, Indian Institute of Technology Kanpur,
Kanpur, India

{pgolia,subhajit}@cse.iitk.ac.in
2 School of Computing, National University of Singapore, Singapore, Singapore

meel@comp.nus.edu.sg

Abstract. Boolean functional synthesis is a fundamental problem in
computer science with wide-ranging applications and has witnessed a
surge of interest resulting in progressively improved techniques over the
past decade. Despite intense algorithmic development, a large number of
problems remain beyond the reach of the state of the art techniques.

Motivated by the progress in machine learning, we propose Manthan,
a novel data-driven approach to Boolean functional synthesis. Manthan
views functional synthesis as a classification problem, relying on advances
in constrained sampling for data generation, and advances in automated
reasoning for a novel proof-guided refinement and provable verification.
On an extensive and rigorous evaluation over 609 benchmarks, we demon-
strate that Manthan significantly improves upon the current state of
the art, solving 356 benchmarks in comparison to 280, which is the
most solved by a state of the art technique; thereby, we demonstrate an
increase of 76 benchmarks over the current state of the art. Furthermore,
Manthan solves 60 benchmarks that none of the current state of the art
techniques could solve. The significant performance improvements, along
with our detailed analysis, highlights several interesting avenues of future
work at the intersection of machine learning, constrained sampling, and
automated reasoning.

1 Introduction

Given an existentially quantified Boolean formula ∃Y F (X,Y) over the set of
variables X and Y , the problem of Boolean functional synthesis is to compute a
vector of Boolean functions, denoted by Ψ(X) = 〈ψ1(X), ψ2(X), . . . , ψ|Y |(X)〉,
and referred to as Skolem function vector, such that ∃Y F (X,Y) ≡ F (X,Ψ(X)).
In the context of applications, the sets X and Y are viewed as inputs and outputs,
and the formula F (X,Y) is viewed as a functional specification capturing the
relationship between X and Y , while the Skolem function vector Ψ(X) allows
one to determine the value of Y for the given X by evaluating Ψ . The study of

The open source tool is available at https://github.com/meelgroup/manthan.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 611–633, 2020.
https://doi.org/10.1007/978-3-030-53291-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_31&domain=pdf
https://github.com/meelgroup/manthan
https://doi.org/10.1007/978-3-030-53291-8_31

612 P. Golia et al.

Boolean functional synthesis traces back to Boole [12], and over the decades, the
problem has found applications in a wide variety of domains such as certified
QBF solving [8,9,36,41], automated program repair [27], program synthesis [44],
and cryptography [35].

Theoretical investigations have demonstrated that there exist instances where
Boolean functional synthesis takes super-polynomial time. On the other hand,
practical applicability has necessitated the development of algorithms with pro-
gressively impressive scaling. The algorithmic progress for Boolean functional
synthesis has been driven by a diverse set of techniques: (i) the usage of incre-
mental determinization employing the several heuristics in state-of-the-art Con-
flict Driven Clause Learning (CDCL) solvers [41], (ii) usage of decomposition
techniques employing the progress in knowledge compilation [6,19,28,45], and
(iii) Counter-Example Guided Abstraction Refinement (CEGAR)-based tech-
niques relying on usage of SAT solvers as black boxes [4–6,28]. While the state
of the art techniques are capable of handling problems of complexity beyond
the capability of tools a decade ago, the design of scalable algorithms capable of
handling industrial problems remains the holy grail.

In this work, we take a step towards the above goal by proposing a novel
approach, called Manthan, at the intersection of machine learning, constrained
sampling, and automated reasoning. Motivated by the unprecedented advances
in machine learning, we view the problem of functional synthesis through the lens
of multi-class classification aided by the generation of the data via constrained
sampling and employ automated reasoning to certify and refine the learned func-
tions. To this end, the architecture of Manthan comprises of the following three
novel techniques:

Data Generation. The state of the art machine learning techniques use train-
ing data represented as a set of samples where each sample consists of valu-
ations to features and the corresponding label. In our context, we treat X as
the features and Y as labels. Unlike the standard setup of machine learning
wherein for each assignment to X, there is a unique label, i.e. assignment
to Y , the relationship between X and Y is captured by a relation and not
necessarily a function. To this end, we design a weighted sampling strategy
to generate a representative data set that can be fitted using a compactly
sized classifier. The weighted sampling strategy, implemented using state of
the constrained sampler, seeks to uniformly sample input variables (X) while
biasing the valuations of output variables towards a particular value.

Dependency-Driven Classifier for Candidates. Given training data viewed
as a valuation of features (X) and their corresponding labels (Y), a natural
approach from machine learning perspective would be to perform multi-class
classification to obtain Y = h(X), where h is a symbolic representation of the
learned classifier. Such an approach, however, can not ensure that h can be
expressed as a vector of Boolean functions. To this end, we design a depen-
dency aware classifier to construct a vector of decision trees corresponding to
each Yi, wherein each decision tree is expressed as a Boolean function.

Manthan: A Data-Driven Approach for Boolean Function Synthesis 613

Proof-Guided Refinement. Since machine learning techniques often produce
good but inexact approximations, we augment our method with automated
reasoning techniques to verify the correctness of decision tree-based candidate
Skolem functions. To this end, we perform a counterexample driven refine-
ment approach for candidate Skolem functions.
To fully utilize the impressive test accuracy attained by machine learning
models, we design a proof-guided refinement approach that seeks to identify
and apply minor repairs to the candidate functions, in an iterative manner,
until we converge to a provably correct Skolem function vector. In a departure
from prior approaches utilizing the Shannon expansion and self-substitution,
we first use a MaxSAT solver to determine potential repair candidates, and
employ unsatisfiability cores obtained from the infeasibility proofs captur-
ing the reason for current candidate functions to meet the specification, to
construct a good repair.

Finally, We perform an extensive evaluation over a diverse set of benchmarks
with state-of-the-art tools, viz. C2Syn [4], BFSS [5], and CADET [39]. Of 609
benchmarks, Manthan is able to solve 356 benchmarks while C2Syn, BFSS, and
CADET solve 206, 247, and 280 benchmarks respectively. Significantly, Manthan
can solve 60 benchmarks beyond the reach of all the other existing tools extend-
ing the reach of functional synthesis tools. We then perform an extensive empir-
ical evaluation to understand the impact of different design choices on the per-
formance of Manthan. Our study reveals several surprising observations arising
from the inter-play of machine learning and automated reasoning.

Manthan owes its runtime performance to recent advances in machine learn-
ing, constrained sampling, and automated reasoning. Encouraged by Manthan’s
scalability, we will seek to extend the above approach to related problem domains
such as automated program synthesis, program repair, and reactive synthesis.

The rest of the paper is organized as follows: We first introduce notations and
preliminaries in Sect. 2. We then discuss the related work in Sect. 3. In Sect. 4 we
present an overview of Manthan and give an algorithmic description in Section
5. We then describe the experimental methodology and discuss results in Sect. 6.
Finally, we conclude in Sect. 7.

2 Notations and Preliminaries

We use lower case letters (with subscripts) to denote propositional variables and
upper case letters to denote a subset of variables. The formula ∃Y F (X,Y) is
existentially quantified in Y , where X = {x1, · · · , xn} and Y = {y1, · · · , ym}.
For notational clarity, we use F to refer to F (X,Y) when clear from the context.
We denote V ars(F) as the set of variables appearing in F (X,Y). A literal is a
boolean variable or its negation. We often abbreviate universally (resp. existen-
tially) quantified variables as universal (resp. existential) variables.

A satisfying assignment of a formula F (X,Y) is a mapping σ : V ars(F) →
{0, 1}, on which the formula evaluates to True. For V ⊆ V ars(F), σ[V] rep-
resents the truth values of variables in V in a satisfying assignment σ of F .

614 P. Golia et al.

We denote the set of all witnesses of F as RF . For a formula in conjunctive nor-
mal form, the unsatisfiable core(UnsatCore) is a subset of clauses of the formula
for which no satisfying assignment exists.

We use F (X,Y)|yi=b to denote substitutions: a formula obtained after sub-
stituting every occurrence of yi in F (X,Y) by b, where b can be a constant (0 or
1) or a formula. The operator ite(condition,exp1,exp2) is used to represent the
if-else case: if the condition is true, then it returns exp1, else it returns exp2.

A variable yi is considered as a positive unate if and only if F (X,Y)|yi=0 ∧
¬F (X,Y)|yi=1 is UNSAT and a negative unate if and only if F (X,Y)|yi=1 ∧
¬F (X,Y)|yi=0 is UNSAT [5].

Given a function vector 〈ψ1, . . . , ψm〉 for the vector of variables 〈y1, . . . ym〉
such that ψi is the function corresponding to yi, we say that there exists a partial
order ≺d over the variables {y1, . . . ym} such that yi ≺d yj if ψi depends on yj .

In decision tree learning, a fraction of incorrectly assigned labels refer to the
impurity. We use Gini Index [38] as a measure of impurity for a class label.
The impurity decrease at a node is the difference of its impurity to the mean of
impurities of its children. The minimum impurity decrease is a hyper-parameter
used to control the maximum allowable impurity at the leaf nodes, thereby
providing a lever for how closely the classifier fits the training data.

Given a propositional formula F (X,Y) and a weight function W (·) assigning
non-negative weights to every literal, we refer to the weight of a satisfying assign-
ment σ, denoted as W (σ), as the product of weights of all the literals appearing
in σ, i.e., W (σ) =

∏
l∈σ W (l). A sampler A(·, ·) is a probabilistic generator that

guarantees ∀σ ∈ RF , Pr [A(F,Bias) = σ] ∝ W (σ).
We use a function Bias that takes a mapping from a sequence of variables to

the desired weights of their positive literals, and assigns corresponding weights
to each of the positive literals. We use a simpler notation, Bias(a,b) to denote
that positive literals corresponding to all universal variables are assigned a weight
a and positive literals corresponding to all existential variables are assigned a
weight b. For example, Bias(0.5, 0.9) assigns a weight of 0.5 to the positive
literals of the universally quantified variables and 0.9 to the positive literals of
the existentially quantified variables.

Problem Statement: Given a Boolean specification F (X,Y) between set
of inputs X = {x1, · · · , xn} and vector of outputs Y = 〈y1, · · · , ym〉, the
problem of Skolem function synthesis is to synthesize a function vector Ψ =
〈ψ1(X), · · · , ψm(X)〉 such that yi ↔ ψi(X) and ∃Y F (X,Y) ≡ F (X,Ψ). We
refer to Ψ as the Skolem function vector and ψi as the Skolem function for yi.

A variable yi is called self-substituted variable, if the Skolem function ψi

corresponding to yi is set to F (X,Y)|yi=1 [19].
Given a formula ∃Y F (X,Y) and a Skolem function vector Ψ , we refer to

E(X,Y, Y ′) as an error formula [28], where Y ′ = {y′
1, · · · , y′

|Y |}, and Y ′ �= Y .

E(X,Y, Y ′) = F (X,Y) ∧ ¬F (X,Y ′) ∧ (Y ′ ↔ Ψ) (1)

Manthan: A Data-Driven Approach for Boolean Function Synthesis 615

We use the following theorems from prior work:

Theorem 1 ([28]). Ψ is a Skolem function if and only if E(X,Y, Y ′) is UNSAT.

Theorem 2 ([5]). If yi is positive(resp negative) unate in F (X,Y), then ψi = 1
(resp ψi = 0) is the Skolem function for yi.

3 Related Work

The origins of the problem of Boolean functional synthesis traces back to Boole’s
seminal work [12], which was subsequently rigorously pursued, albeit focused on
decidability, by Lowenheim and Skolem [33]. The complexity theoretic studies
have shown that there exist instances where Boolean functional synthesis takes
super polynomial time and was also shown that there exist instances for which
polynomial size Skolem function vector does not suffice unless Polynomial Hier-
archy (PH) collapses [5].

Motivated by the success of the CEGAR (Counter-Example Guided Abstrac-
tion Refinement) approach in model checking, CEGAR-based approaches have
been pursued in the context of synthesis as well, where the key idea is to use
a Conflict-Driven Clause Learning (CDCL) SAT solver to verify and refine the
candidate Skolem functions [4–6,28].

Another line of work has focused on the representation of specification, i.e.,
F (X,Y), in representations that are amenable to efficient synthesis for a class
of functions. The early approaches focused on ROBDD representation building
on the functional composition approach proposed by Balabanov and Jiang [8].
Building on Tabajara and Vardi’s ROBDD-based approach [45], Chakraborty
et al. extended the approach to factored specifications [14]. It is worth men-
tioning that factored specifications had earlier been pursued in the context
of CEGAR-based approaches. Motivated by the success of knowledge compi-
lation in the field of probabilistic reasoning, Akshay et al. achieved a significant
breakthrough over a series of papers [5,6,28] to propose a new negation normal
form, SynNNF [4]. The generalization and a functional specification presented
in SynNNF is amenable to efficient functional synthesis [4]. Another line of work
focused on the usage of incremental determinization to incrementally construct
the Skolem functions [25,30,36,39,41].

Several approaches have been proposed for the particular case when the speci-
fication, ∃Y F (X,Y) is valid, i.e., ∀X∃Y F (X,Y) is True. Inspired by the sequen-
tial relational decomposition, Chakraborty et al. [14] recently proposed an app-
roach focused on viewing each CNF clause of the specification consisting of input
and output clauses and employing a cooperation-based strategy. The progress in
modern CDCL solvers has led to an exploration of usage of heuristics for prob-
lems in complexity classes beyond NP. This has led to work on the extraction
of Skolem functions from the proofs constructed for the formulas expressed as
∀X∃Y F (X,Y) [8,9].

The performance of Manthan crucially depends on its ability to employ
constrained sampling, which has witnessed a surge of interest with approaches

616 P. Golia et al.

ranging from those based on hashing-based techniques [15], knowledge compila-
tion [24,42], augmentation of SAT solvers with heuristics [43].

The recent success of machine learning has led to several attempts to the
usage of machine learning in several related synthesis domains such as program
synthesis [7], invariant generation, decision-tree for functions in Linear Inte-
ger Arithmetic theory using pre-specified examples [18], strategy synthesis for
QBF [26]. Use of data-driven approaches for invariant synthesis has been inves-
tigated in the ICE learning framework [17,20,21] aimed with data about the
program behavior from test executions, it proposes invariants by learning from
data, checks for inductiveness and, on failure, extend the data by the gener-
ated counterexamples. The usage of proof-artifacts such as unsat cores has been
explored in verification since early 2000s [23] and in program repair in Wolver-
ine [46], while MaxSAT has been used in program debugging in [10,29].

4 Manthan: An overview

In this section, we provide an overview of our proposed framework, Manthan,
before divulging into core algorithmic details in the following section. Manthan
takes in a function specification, represented as F (X,Y), and returns a Skolem
function vector Ψ(X) such that ∃Y F (X,Y) ≡ F (X,Ψ(X)). As shown in Fig. 1
Manthan consists of following three phases:

1. Preprocess employs state-of-the-art pre-processing techniques on F to com-
pute a partial Skolem function vector.

2. LearnSkF takes in the pre-processed formula and uses constrained samplers,
and classification techniques to compute candidate Skolem functions for all
the variables in Y .

3. Refine performs verification and proof-guided refinement procedure wherein
a SAT solver is employed to verify the correctness of candidate functions and
a MaxSAT solver in conjunction with a SAT solver is employed to refine the
candidate functions until the entire candidate Skolem function vector passes
the verification check.

Fig. 1. Overview of Manthan

We now provide a high-level description of different phases to highlight
the technical challenges, which provides context for several algorithmic design
choices presented in the next section.

Manthan: A Data-Driven Approach for Boolean Function Synthesis 617

4.1 Phase 1: Preprocess

Preprocess focuses on pre-processing of the formula to search for unates among
the variables in Y ; if yi is positive (resp. negative) unate, then ψi = 1(resp. 0)
suffices as a Skolem function. We employ the algorithmic routine proposed by
Akshay et al. [5] to drive this preprocessing.

4.2 Phase 2: LearnSkF

LearnSkF views the problem of functional synthesis through the lens of machine
learning where the learned machine learning model for classification of a variable
yi can be viewed as a candidate Skolem function for yi. We gather training
data about the function’s behavior by exploiting the progress in constrained
sampling to sample solutions of F (X,Y). Recall that F (X,Y) defines a relation
(and not necessarily a function) between X and Y , and the machine learning
techniques typically assume the existence of function between features and labels,
necessitating the need for sophisticated sampling strategy as discussed below.
Moving on to features and labels, since we want to learn Y in terms of X, we
view X as a set of features while assignments to Y as a set of class labels.

The off-the-shelf classification techniques typically require that the size of
training data is several times larger than the size of possible class labels, which
would be prohibitively large for the typical problems involving more than thou-
sand variables. To mitigate the requirement of large training data, we make note
of two well-known observations in functional synthesis literature: (1) the Skolem
function ψi for a variable yi typically does not depend on all the variables in X,
(2) A Skolem function vector Ψ where ψi depends on variable yj is a valid vector
if the Skolem function ψj is not dependent on yi (i.e., acyclic dependency), i.e.,
there exists a partial order ≺d over {y1, . . . ym}.

The above observations lead us to design an algorithmic procedure where
we learn candidate Skolem functions as decision trees in an iterative manner,
i.e., one yi at a time, thereby allowing us to constrain ourselves to the binary
classification. The learned classifier can then be represented as the disjunction
of all the paths from the root to the leaves in the learnt decision tree. We update
the set of possible features for a given yi depending on the candidate functions
generated so far, i.e., valuation of X variables and Y variables, which are not
dependent on yi. Finally, we compute the candidate Skolem function for yi as
the disjunction of labels along edges for all the paths from the root to leaf nodes
with label 1. Once, we have the candidate Skolem function vector Ψ , we obtain
a valid linear extension, TotalOrder , of the partial order ≺d in accordance to Ψ .

Before moving on to the next phase, we return to the formulation of sampling.
The past few years have witnessed the design of uniform [15,42], and weighted
samplers [24], and one wonders what kind of sampler should we choose to gen-
erate samples for training data. A straightforward choice would be to perform
uniform sampling over X and Y , but the relational nature of specification, F ,
between X and Y offers interesting challenges and opportunities. Recall while F
specifies a relation between X and Y , we are interested in a Skolem function, and

618 P. Golia et al.

we would like to tailor our sampling subroutines to allow discovery of Skolem
functions with small description given the relationship between description and
sample complexity. To this end, consider X = {x1, x2} and Y = {y1}, and let
F := (x1 ∨x2 ∨ y1). Note that F has 7 solutions over X ∪Y , out of which y1 = 0
appears in 3 solutions while y1 = 1 appears in 4. Also, note that there are several
possible Skolem functions such as y1 = ¬(x1 ∧ x2). Now, if we uniformly sample
solutions of F over x1, x2, y1, i.e. Bias(0.5, 0.5), we would see (almost) equal
number of samples with y1 = 0 and y1 = 1. A closer look at F reveals that it is
possible to construct a Skolem function by knowing that the only case where y1

cannot be assigned 0 is when x1 = x2 = 0. To encode this intuition, we propose a
novel idea of collecting samples with weighted sampling, i.e., Bias(0.5, q) where q
is chosen in a multi-step process of first drawing a small set of samples with both
q = 0.9 and q = 0.1, and then drawing rest of the samples by fixing the value
of q following analysis of an initial set of samples. To the best of our knowledge,
this is the first application of weighted sampling in the context of synthesis, and
our experimental results point to several interesting avenues of future work.

4.3 Phase 3: Refine

The candidate Skolem functions generated in LearnSkF may not always be the
actual Skolem functions. Hence, we require a verification check to see if candidate
Skolem functions are indeed correct; if not, the generated counterexample can be
used to repair it. The verification query constructs an error formula E(X,Y, Y ′)
(Formula 1): if unsatisfiable, the candidate Skolem function vector is indeed a
Skolem function vector and the procedure can terminate; else, when E(X,Y, Y ′)
is SAT, the solution of E(X,Y, Y ′) is used to identify and refine the erring
functions among the candidate Skolem function vector.

In contrast to prior techniques that apply Shannon expansion or self-
substitution, the refinement strategy in Manthan is guided by the view that the
candidate function vector from the LearnSkF phase is almost correct, and hence,
attempts to identify and apply a series of minor repairs to the erring functions
to arrive at the correct Skolem function vector. To this end, Manthan uses two
key techniques: fault localization and repair synthesis. Let us assume that σ is a
satisfying assignment of E(X,Y, Y ′) and referred to as counterexample for the
current candidate Skolem function vector Ψ .

Fault Localization. In order to identify the initial candidates to repair for the
counterexample σ, Manthan attempts to identify a small number of Skolem func-
tions (correspondingly Y variables) whose outputs must undergo a change for the
formula to behave correctly on σ; in other words, it makes a best-effort attempt
to ensure that most of the Skolem functions (correspondingly Y variables) can
retain their current output on σ while satisfying the formula. Manthan encodes
this problem as a partial MaxSAT query with F (X,Y) ∧ (X ↔ σ[X]) as a hard
constraint and (Y ↔ σ[Y ′]) as soft constraints. All Y variables whose valuation
constraint (Y ↔ σ[Y ′]) does not hold in the MaxSAT solution are identified as
erring Skolem functions that may need to be repaired.

Manthan: A Data-Driven Approach for Boolean Function Synthesis 619

Repair Synthesis. Let yk be the variable corresponding to the erring func-
tion, ψk, identified in the previous step. To synthesize a repair for the function,
Manthan applies a proof-guided strategy: it constructs a formula Gk(X,Y), such
that if Gk(X,Y) is unsatisfiable then ψk must undergo a change. The Unsat-
Core of Gk(X,Y) provides a reason that explains the discrepancy between the
specification and the current Skolem function.

Gk(X,Y) = (yk ↔ σ[y′
k]) ∧ F (X,Y) ∧ (X ↔ σ[X]) ∧ (Ŷ ↔ σ[Ŷ])

where Ŷ ⊂ Y and Ŷ = {TotalOrder[index(yk) + 1], · · · ,TotalOrder[|Y |]} (2)

Manthan uses the UnsatCore to constructs a repair formula, say β, as a
conjunction over literals in the unsatisfiable core; if ψk is true with the current
valuation of X and Ŷ , Manthan updates the function ψk by conjoining it with
the negation of repair formula (ψk ← ψk ∧ ¬β); otherwise, Manthan updates the
function ψk, by disjoining it with the repair formula (ψk ← ψk ∨ β).

Self-substitution for Poorly Learnt Functions. Some Skolem functions are
difficult to learn through data. In our implementation, the corresponding vari-
ables escape the LearnSkF phase with poor candidate functions, thereby requiring
a long sequence of incremental repairs for convergence. To handle such scenar-
ios, we make the following observation: though synthesizing Skolem functions
via self-substitution [19] can lead to an exponential blowup in the worst case,
it is inexpensive if the number of variables synthesized via this technique is
small. We use this observation to quickly synthesize a Skolem function for an
erring variable if we detect its candidate function is poor (detected by compar-
ing the number of times it enters refinement against an empirically determined
threshold). Of course, this heuristic does not scale well if the number of such
variables is large; in our experiments, we found less than 20% of the instances
solved required self-substitution, and for over 75% of these instances, only one
variable needed self-substitution. We elaborate more on the empirical evidence
on the success of this heuristic in Sect. 6. A theoretical understanding of the
learnability of Boolean functions from data seems to be an interesting direction
for future work.

5 Manthan: Algorithmic Description

In this section, we present a detailed algorithmic description of Manthan, whose
pseudocode is presented in Algorithm 1. Manthan takes in a formula F (X,Y) as
input and returns a Skolem vector Ψ . The algorithm starts off by preprocessing
(line 1) the formula F (X,Y) to get the unates (U) and their corresponding
Skolem functions (Ψ). Next, it invokes the sampler (line 2) to collect a set of
samples(Σ) as training data for the learning phase.

For each of the existential variables that are not unates, Manthan attempts
to learn candidate Skolem functions (lines 4–5). To generate a variable order,

620 P. Golia et al.

Algorithm 1: Manthan(F (X,Y))
1 Ψ, U ← Preprocess(F (X, Y))
2 Σ ← GetSamples(F (X, Y))
3 D ← ∅
4 foreach yj ∈ Y \ U do
5 ψj , D ← CandidateSkF(Σ, F (X, Y), yj , D)
6 TotalOrder ← FindOrder(D)
7 repeat
8 E(X, Y, Y ′) ← F (X, Y) ∧ ¬F (X, Y ′) ∧ (Y ′ ↔ Ψ)
9 ret, σ ← CheckSat(E(X, Y, Y ′))

10 if ret = SAT then
11 Ψ ← RefineSkF(F (X, Y), Ψ, σ,TotalOrder)

12 until ret = UNSAT
13 Ψ ← Substitute(F (X, Y), Ψ,TotalOrder)
14 return Ψ

CandidateSkF uses a collection of sets d1, · · · , d|Y | ∈ D, such that yi ∈ dj indi-
cates that yj depends on yi. Next, the FindOrder routine (line 6) construct
TotalOrder of the Y variables in accordance to the dependencies in D. The
verification and refinement phase (line 8) commences by constructing the error
formula and launching the verification check (line 9). If the error formula is sat-
isfiable, the counterexample model (σ) is used to refine the formula. Once the
verification check is successful, the refinement phase ends and the subroutine
Substitute is invoked to recursively substitute all yi ∈ Y appearing in Skolem
functions with their corresponding Skolem functions such that only X variables
entirely describe all Skolem functions. The strict variable ordering enforced above
ensures that Substitute always succeeds and does not get stuck in a cycle. Finally,
the Skolem function vector Ψ is returned.

It is worth noting that Manthan can successfully solve an instance with-
out having to necessarily execute all the phases. In particular, if U = Y , then
Manthan terminates after Preprocess (i.e., line 1). Similarly, if the CheckSat return
UNSAT during the first iteration of loop (lines 8–11), then Manthan does not
invoke RefineSkF.

We now discuss each subroutine in detail. The pseudocode for Preprocess,
GetSamples and Substitute is deferred to technical report [22].

Preprocess: We perform the pre-processing step as described in [5], which per-
forms SAT queries on the formulas constructed as specified in Theorem 2.

GetSamples: GetSamples takes F (X,Y) as input and returns a subset of satis-
fying assignments of F (X,Y). GetSamples first generates a small set of samples
(500) with Bias(0.5, 0.9) and calculates mi for all yi, mi is a ratio of number of
samples with yi being 1 to the total number of samples. Similarity, GetSamples
generates 500 samples with Bias(0.5, 0.1) and calculates ni for all yi, ni is a ratio

Manthan: A Data-Driven Approach for Boolean Function Synthesis 621

Algorithm 2: CandidateSkF(Σ,F (X,Y), yj ,D)

1 featset ← X
2 foreach yk ∈ Y \ yj do
3 if yj /∈ dk then
4 featset ← featset ∪ yk /* if yk is not dependent on yj */

5 feat, lbl ← Σ↓featset, Σ↓yj

6 t ← CreateDecisionTree(feat, lbl)
7 foreach n ∈ LeafNodes(t) do
8 if Label(n) = 1 then
9 π ← Path(t, root, n)

10 ψj ← ψj ∨ π

11 foreach yk ∈ ψj do
12 dj ← dj ∪ yk ∪ dk

13 return ψj , D

of number of samples with yi being 0 to the total number of samples. Finally,
GetSamples generates required number of samples with Bias(0.5, q); for a yi, q is
mi if both mi and ni are in range 0.35 to 0.65, else q is 0.9.

CandidateSkF: CandidateSkF, presented in Algorithm 2, assumes access to fol-
lowing three subroutines:

1. CreateDecisionTree takes the feature and label sets as input (training data)
and returns a decision tree t. We use the ID3 algorithm [38] to construct a
decision tree t where the internal node of t represents a feature on which
a decision is made, the branches represent partitioning of the training data
on the decision, and the leaf nodes represent the classification outcomes (i.e
class labels). The ID3 algorithm iterates over the training data, and in each
iteration, it selects a new attribute to extend the tree by a new decision node:
the selected attribute is one that causes the maximum drop in the impurity
of the resulting classes; we use Gini Index [38] as the measure of impurity.
The algorithm, then, extends the tree by the selected decision and continues
extending building the tree. The algorithm terminates on a path if either it
exhausts all attributes for decisions, or the impurity of the resulting classes
drop below a (user-specified) impurity decrease parameter.

2. Label takes a leaf node of the decision tree as input and returns the class label
corresponding to the node.

3. Path takes a tree t and two nodes of t (node a and node b) as input and
outputs a conjunction of literals in the path from node a to node b in t.

As we seek to learn Boolean functions, we employ binary classifiers with class
labels 0 and 1. CandidateSkF shows our algorithm for extracting a Boolean func-
tion from the decision trees: lines 2–4 find a feature set (featset) to predict yj .
The feature set includes all X variables and the subset of Y variables that are
not dependent on yj . CandidateSkF creates decision tree t using samples Σ over

622 P. Golia et al.

the feature set. Lines 7–10 generate candidate Skolem function ψj by iterating
over all the leaf nodes of t. In particular, if a leaf node is labeled with 1, the
candidate function is updated by disjoining with the formula returned by sub-
routine Path. CandidateSkF also updates dj in D, dj is set of all Y variables on
which, yj depends. If yj depends on yk, then by transitivity yj also depends on
dk; in line 12, CandidateSkF updates dj accordingly.

FindOrder: FindOrder takes D as an input to output a valid linear extension of the
partial order ≺d defined over {y1, . . . ym} with respect to the candidate Skolem
function vector Ψ .

Algorithm 3: RefineSkF(F (X,Y), Ψ, σ,TotalOrder)
1 H ← F (X, Y) ∧ (X ↔ σ[X]); S ← (Y ↔ σ[Y ′])
2 Ind ← MaxSATList(H, S)
3 foreach yk ∈ Ind do

4 Ŷ ← {TotalOrder[index(yk) + 1], · · · ,TotalOrder[|Y |]}
5 if CheckSubstitute(yk) then

6 ψk ← DoSelfSubstitution(F (X, Y), yk, Y \ Ŷ)
7 else

8 Gk ← (yk ↔ σ[y′
k]) ∧ F (X, Y) ∧ (X ↔ σ[X]) ∧ (Ŷ ↔ σ[Ŷ])

9 ret, ρ ← CheckSat(Gk)
10 if ret = UNSAT then
11 C ← FindCore(Gk)
12 β ← ∧

l∈C

ite((σ[l] = 1), l, ¬l)

13 ψk ← ite((σ[y′
k] = 1), ψk ∧ ¬β, ψk ∨ β)

14 else

15 foreach yt ∈ Y \ Ŷ do
16 if ρ[yt] 	= σ[y′

t] then
17 Ind ← Ind.Append(yt)

18 σ[yk] ← σ[y′
k]

19 return Ψ

RefineSkF: RefineSkF is invoked with a counterexample σ. RefineSkF first per-
forms fault localization to find the initial set of erring candidate functions; to
this end, it calls the MaxSATList subroutine (line 2) with F (X,Y)∧ (X ↔ σ[X])
as hard-constraints and (Y ↔ σ[Y]) as soft-constraints. MaxSATList employs a
MaxSAT solver to find the solution that satisfies all the hard constraints and
maximizes the number of satisfied soft constraints, and then returns a list (Ind)
of Y variables such that for each of the variables appearing in (Ind) the corre-
sponding soft-constraint was not satisfied by the optimal solution returned by
MaxSAT solver.

Manthan: A Data-Driven Approach for Boolean Function Synthesis 623

Since candidate Skolem function corresponding to the variables in Ind needs
to refine, RefineSkF now attempts to synthesize a repair for each of these candi-
date Skolem functions. Repair synthesis loop (lines 3–19) starts off by collecting
the set of Y variables, Ŷ , on which yk of Ind can depend on as per the order-
ing constraints (line 4). Next, it invokes the subroutine CheckSubstitute, which
returns True if the candidate function corresponding to yk has been refined more
than a chosen threshold times (fixed to 10 in our implementation), and the cor-
responding decision tree constructed during execution CandidateSkF has exactly
one node. If CheckSubstitute returns true, RefineSkF calls DoSelfSubstitution to
perform self-substitution. DoSelfSubstitution takes a formula F (X,Y), an exis-
tentially quantified variable yk and a list of variables which depends on yk and
performs self substitution of yk with constant 1 in the formula F (X,Y) [28].

If CheckSubstitute returns false, RefineSkF attempts a proof-guided repair for
yk. RefineSkF calls CheckSat in line 9 on Gk, which corresponds to formula 2:
if Gk is SAT, then CheckSat returns a satisfying assignment(ρ) of Gk in σ, else
CheckSat returns unsatisfiable in the result, ret.

1. If ret is UNSAT, we proceed to refine ψk such that for ψk(X �→ σ[X], Ŷ �→
σ[Ŷ]) = σ[yk]. Ideally, we would like to apply a refinement that generalizes
to potentially other counter-examples, i.e. solutions of E(X,Y, Y ′). To this
end, RefineSkF calls FindCore with Gk; FindCore returns the list of variables
(C) that occur in the clauses of UnsatCore of Gk. Accordingly, the algorithm
constructs a repair formula β as a conjunction of literals in σ corresponding
to variables in C (line 12). If σ[y′

k] is 1, then ψk is ψk with conjunction of
negation of β and if σ[y′

k] is 0, then ψk is ψk with disjunction of β.
2. If ret is SAT and ρ is a satisfying assignment of Gk, then there exists a

Skolem function vector such that the value of ψk agrees with σ[yk] for the
valuation of X and Ŷ set to σ[X] and σ[Ŷ]. However, for any yt ∈ Y \ Ŷ if
σ[y′

t] �= ρ[y′
t], then for such a yt, the Skolem function corresponding to yt may

need to refine . Therefore, RefineSkF adds yt to list of candidates to refine,
Ind. Note that since σ |= E(X,Y, Y ′), there exists at least one iteration of
the loop (lines 3–18) where ret is UNSAT.

Substitute: To return the Skolem functions in terms of only X, Manthan invokes
Substitute subroutine. For each yj of Y variable, Substitute consider Y variables
that occurs later in TotalOrder as Ŷ . Then, for each yi of Ŷ ; it substitutes
corresponding Skolem function ψi in the Skolem function ψj of yj .

An example to illustrate our algorithm is deferred to the technical report [22].

6 Experimental Results

We evaluate the performance of Manthan on the union of all the benchmarks
employed in the most recent works [4,5],which includes 609 benchmarks from
different sources: Prenex-2QBF track of QBFEval-17 [2], QBFEval-18 [3], dis-
junctive [6], arithmetic [45] and factorization [6]. We ran all the tools as per

624 P. Golia et al.

the specification laid out by their authors. We used Open-WBO [34] for our
MaxSAT queries and PicoSAT [11] to compute UnsatCore. We used PicoSAT
for its ease of usage and we expect further performance improvements by upgrad-
ing to one of the state of the art SAT solvers. We have used the Scikit-Learn
[37] to create decision trees in LearnSkF phase of Manthan. We have also used
ABC [31] to represent and manipulate Boolean functions. To allow for the input
formats supported by the different tools, we use the utility scripts available with
the BFSS distribution [5] to convert each of the instances to both QDIMACS
and Verilog formats. For Manthan, unless otherwise specified, we set the num-
ber of samples according to heuristic based on |Y | as described in Sect. 6.3 and
minimum impurity decrease to 0.005. All our experiments were conducted on a
high-performance computer cluster with each node consisting of a E5-2690 v3
CPU with 24 cores and 96 GB of RAM, with a memory limit set to 4 GB per
core. All tools were run in a single-threaded mode on a single core with a timeout
of 7200 s.

The objective of our experimental evaluation was two-fold: to understand the
impact of various design choices on the runtime performance of Manthan and to
perform an extensive comparison of runtime performance vis-a-vis state of the
art synthesis tools. In particular, we sought to answer the following questions:

1. How does the performance of Manthan compare with state of the functional
synthesis engines?

2. How do the usage of different sampling schemes and the quality of samplers
impact the performance of Manthan?

3. What is the impact of LearnSkF on the performance of Manthan?
4. What is the distribution of the time spent in each phase of Manthan?
5. How does using MaxSAT solver to identify the potential erring Skolem func-

tions impacts on the performance of Manthan?
6. How does employing self-substitution for some Skolem functions impact

Manthan?

We observe that Manthan significantly improves upon state of the art, and
solves 356 benchmarks while the state of the art tool can only solve 280; in
particular, Manthan solves 60 more benchmarks that could not be solved by
any of the state of the art tools. To put the runtime performance statistics in
a broader context, the number of benchmarks solved by techniques developed
over the past five years range from 206 to 280, i.e., a difference of 74, which is
same as an increase of 76 (i.e., from 280 to 356) due to Manthan.

Our experimental evaluation leads to interesting conclusions and several
directions for future work. We observe that the performance of Manthan is sen-
sitive to different sampling schemes and the underlying samplers; in fact, we
found that biased sampling yields better results than uniform sampling. This
raises interesting questions on the possibility of designing specialized samplers
for this task. Similarly, we observe interesting trade offs between the number
of samples and the minimum impurity decrease in LearnSkF. The diversity of
our extensive benchmark suite produces a nuanced picture with respect to time
distribution across different phases, highlighting the critical nature of each of the

Manthan: A Data-Driven Approach for Boolean Function Synthesis 625

phases to the performance of Manthan. Manthan shows significant performance
improvement by using MaxSAT solver to identify candidates to refine. Manthan
also has significant performance improvement with self substitution in terms of
the required number of refinements.

6.1 Comparison with Other Tools

We now present performance comparison of Manthan with the current state
of the art synthesis tools, BFSS [5], C2Syn [4], BaFSyn [14] and the current
state of the art 2-QBF solvers CADET [39],CAQE [40] and DepQBF [32]. The
certifying 2-QBF solver produces QBF certificates, that can be used to extract
Skolem functions [8]. Developers of BaFSyn and DepQBF confirmed that the
tools produce Skolem function for only valid instances, i.e. when ∀X∃Y F (X,Y)
is valid. Note that the current version of CAQE does not support certification
and we have used CAQE version 2 for the experiments after consultation with
the developers of CAQE.

Table 1. No. of benchmarks solved by different tools

Total BaFSyn CAQE DepQBF C2Syn BFSS CADET Manthan All tools

609 13 54 59 206 247 280 356 476

We present the number of instances solved Table 1. Out of 609 benchmarks,
the most number of instances solved by any of the remaining techniques is 280
while Manthan is able to solve 356 instances – a significant improvement over
state of the art. We will focus on top 4 synthesis tools from Table 1 for further
analysis.

For a deeper analysis of runtime behavior, we present the cactus plot in
Fig. 2: the number of instances are shown on the x-axis and the time taken
on the y-axis; a point (x, y) implies that a solver took less than or equal to y
seconds to find Skolem function of x instances on a total of 609 instances. An
interesting behavior predicted by cactus plot and verified upon closer analysis is
that for instances that can be solved by most of the tools, the initial overhead due
to a multi-phase approach may lead to relatively larger runtime for Manthan.
However, with the rise in empirically observed hardness of instances, one can
observe the strengths of the multi-phase approach. Overall, Manthan solves 76
more instances than the rest of the remaining techniques.

We show a pairwise comparison of Manthan vis-a-vis other techniques in
Table 2. The second row of the table lists the number of instances that were solved
by the technique in the corresponding column but not by Manthan while the
third row lists the number of instances that were solved by Manthan but not the
corresponding technique. First, we observe that Manthan solves 163, 194, and 187
instances that are not solved by C2Syn, BFSS, and CADET respectively. Though

626 P. Golia et al.

0 50 100 150 200 250 300 350 400
Instances

0

1000

2000

3000

4000

5000

6000

7000

C
P

U
-T

im
e(

s)

MANTHAN
CADET
BFSS
C2Syn

Fig. 2. Manthan versus competing tools for Skolem function synthesis

Table 2. Manthan vs other state-of-the-art tools

C2Syn BFSS CADET All Tools

Manthan
Less 13 85 111 122
More 163 194 187 60

BFSS and CADET solve more than 80 instances that Manthan does not solve,
they are not complementary; there are only 121 instances that can be solved by
either BFSS or CADET but Manthan fails to solve. A closer analysis of Manthan’s
performance on these instances revealed that the decision trees generated by
CandidateSkF were shallow, which is usually a sign of significant under-fitting.
On the other hand, there are 130 instances that Manthan solves, but neither
CADET nor BFSS can solve. These instances have high dependencies between
variables that Manthan can infer from the samples en route to predicting good
candidate Skolem functions. Akshay et al. [4] suggest that C2Syn is an orthogonal
approach to BFSS. Manthan solves 81 instances that neither C2Syn nor BFSS
is able to solve, and these tools together solve 86 instances that Manthan fails
to solve. Overall, Manthan solves 60 instances beyond the reach of any of the
above state of the art tools.

6.2 Impact of the Sampling Scheme

To analyze the impact of the adaptive sampling and the quality of distributions
generated by underlying samplers, we augmented Manthan with samples drawn
from different samplers for adaptive and non-adaptive sampling. In particular,
we employed QuickSampler [16], KUS [42], UniGen2 [15], and BiasGen1. The

1 BiasGen is developed by Mate Soos and Kuldeep S. Meel, and is pending publication.

Manthan: A Data-Driven Approach for Boolean Function Synthesis 627

samplers KUS and UniGen2 could only produce samples for mere 14 and 49
benchmarks respectively within a timeout of 3600 s. Hence, we have omitted
KUS and UniGen2 from further analysis. We also experimented with a naive
enumeration of solution using off-the-shelf SAT solver, CryptoMiniSat [43]. It is
worth noting that QuickSampler performs worse than BiasGen for uniformity
testing using Barbarik [13]. In our implementation, we had to turn off the vali-
dation phase of QuickSampler to allow generation number of samples within a
reasonable time. To statistically validate our intuition described in Sect. 4, we
performed adaptive sampling using BiasGen. We use AdaBiasGen to refer to the
adaptive sampling implementation.

Table 3 presents the performance of Manthan with different samplers listed in
Column 1. The columns 2, 3, and 4 lists the number of instances that were solved
during the execution of respective phases: Preprocess, LearnSkF, and Refine.
Finally, column 5 lists the total number of instances solved. Two important find-
ings emerge from Table 3: Firstly, as the quality of samplers improve, so does the
performance of Manthan. In particular, we observe that with the improvement in
the quality of samples leads to Manthan solving more instances in LearnSkF. Sec-
ondly, we see a significant increase in the number of instances that can be solved
due to LearnSkF with samples from AdaBiasGen. It is worth remarking that one
should view the adaptive scheme proposed in Sect. 4 to be a proof of concept
and our results will encourage the development of more complex schemes.

Fig. 3. Heatmap of # instances
solved. (Color figure online)

Sampler
No. of instances solved

#Solved
Preprocess LearnSkF Refine

CryptoMiniSat 66 14 191 271
QuickSampler 66 28 181 275

BiasGen 66 51 228 345
AdaBiasGen 66 66 224 356

Table 3. Manthan with different samplers

6.3 Impact of LearnSkF

To analyze the impact of different design choices in LearnSkF, we analyzed the
performance of Manthan for different samples (1000, 5000 and 10000) generated
by GetSamples and for different choices of minimum impurity decrease (0.001,
0.005, 0.0005). Figure 3 shows a heatmap on the number of instances solved on
each combination of the hyperparameters; the closer the color of a cell is to the
red end of the spectrum, the better the performance of Manthan.

At the first look, Fig. 3 presents a puzzling picture: It seems that increasing
the number of samples does not improve the performance of Manthan. On a closer
analysis, we found that the increase in the number of samples leads to an increase
in the runtime of CandidateSkF but without significantly increasing the number

628 P. Golia et al.

of instances solved during LearnSkF. The runtime of CandidateSkF is dependent
on the number of samples and |Y |. On the other hand, we see an interesting
trend with respect to minimum impurity decrease where the performance first
improves and then degrades. A plausible explanation for such a behavior is that
with an increase in minimum impurity decrease, the generated decision trees
tend to underfit while significantly low values of minimum impurity decrease
lead to overfitting. We intend to study this in detail in the future.

Based on the above observations, we set the value of minimum impurity
decrease to 0.005 and set the number of samples to (1) 10000 for |Y | < 1200,
(2) 5000 for 1200 < |Y | ≤ 4000, and (3) 1000 for |Y | > 4000.

6.4 Division of Time Taken Across Different Phases

To analyze the time taken by different phases of Manthan across different cat-
egories of the benchmarks, we normalize the time taken for each of the four
core subroutines, Preprocess, GetSamples, CandidateSkF, and RefineSkF, for every
benchmark that was solved by Manthan such that the sum of time taken for each
benchmark is 1. We then compute the mean of the normalized times across dif-
ferent categories instances. Figure 4 shows the distribution of mean normalized
times for different categories: Arithmetic, Disjunction, Factorization, QBFEval,
and all the instances.

Fig. 4. Fraction of time spent in different phases in Manthan over different classes of
benchmarks. (Color figure online)

The diversity of our benchmark suite shows a nuanced picture and shows
that the time taken by different phases strongly depends on the family of
instances. For example, the disjunctive instances are particularly hard to sam-
ple and an improvement in the sampling techniques would lead to significant
performance gains. On the other hand, a significant fraction of runtime is spent
in the CandidateSkF subroutine indicating the potential gains due to improve-
ment in decision tree generation routines. In all, Fig. 4 identifies the categories

Manthan: A Data-Driven Approach for Boolean Function Synthesis 629

of instances that would benefit from algorithmic and engineering improvements
in Manthan’s different subroutines.

6.5 Impact of Using MaxSAT

In RefineSkF, Manthan invokes the MaxSATList subroutine, which calls MaxSAT
solver to identify the potential erring Skolem functions. To observe the impact of
using MaxSAT solver to identify the candidates to refine, we did an experiment
with Manthan, without MaxSATList subroutine call. For all yi, where σ[yi] �= σ[y′

i]
were considered as candidates to refine. Manthan without MaxSATList subroutine
call solved 204 instances that represents a significant drop in the number of solved
instances by Manthan with MaxSATList subroutine.

6.6 Impact of Self-substitution

To understand the impact of self-substitution, we profile the behavior of can-
didate Skolem functions with respect to number of refinements for two of our
benchmarks; pdtpmsmiim-all-bit and pdtpmsmiim. In Fig. 5, we use histograms
with the number of candidate Skolem functions on y-axis and required number
of refinements on x-axis. A bar of height a i.e y = a at b i.e x = b in Fig. 5
represents that a candidate Skolem functions converged in b refinements. The
histograms show that only a few Skolem functions require a large number of
refinements: the tiny bar towards the right end in Fig. 5a represents that for the
benchmark pdtpmsmiim-all-bit only 1 candidate Skolem function required more
than 60 refinements whereas all other candidate Skolem functions needed less
than 15 refinements. Similarly, for the benchmark pdtpmsmiim, Fig. 5b shows
that only 1 candidate Skolem function was refined more than 15 times, whereas
all other Skolem functions required less than 5 refinements. We found similar
behaviors in many of our other benchmarks.

Based on the above trend and an examination of the decision trees corre-
sponding to these instances, we hypothesize that some Skolem functions are
hard to learn through data. For such functions, the candidate Skolem function
generated from the data-driven phase in Manthan tends to be poor, and hence
Manthan requires a long series of refinements for convergence. Since our refine-
ment algorithm is designed for small, efficient corrections, we handle such hard
to learn Skolem functions by synthesizing via self-substitution. Manthan detects
such functions via a threshold on the number of refinements, which is empiri-
cally determined as 10, to identify hard to learn instances and sets them up for
self-substitution.

In our experiments, we found 75 instances out of 356 solved instances required
self-substitution, and for 51 of these 75 instances, only one variable under-
goes self-substitution. Table 4 shows the impact of self-substitution for five of
our benchmarks: Manthan has significant performance improvement with self-
substitution in terms of the required number of refinements, which in turns
affects the overall time. Note that Manthan can refine multiple candidates in a
single RefineSkF call. For the first four benchmarks, all the other Skolem function

630 P. Golia et al.

(a) Benchmark pdtpmsmiim-all-bit: plot
for no. of Skolem functions vs required no.
of refinements

(b) Benchmark pdtpmsmiim: plot for no.
of Skolem functions vs required no. of re-
finements

Fig. 5. The plots to show the required number of refinements for the candidate Skolem
functions.

except the poor candidates were synthesized earlier than 10 refinement iteration,
and at the 10th refinement iteration the poor candidate functions hit our thresh-
old for self-substitution. Taking the case of the last benchmark, all the other
Skolem functions for it were synthesized earlier than 40 refinement cycles, and
the last 16 iterations were only needed for 2 of the poor candidate functions to
hit our threshold for self-substitution. Note that self-substitution can lead to an
exponential blowup in the size of the formula, but it works quite well in our
design as most Skolem functions are learnt quite well in the LearnSkF phase.

Table 4. Manthan : Impact of self substitution

Benchmarks
∃Y F (X, Y)

|X| |Y |
No. of Refinements Time(s)
Self-Substitution Self-Substitution

Without With Without With

kenflashpo2-all-bit 71 32 319 10 35.88 19.22
eijkbs1512 316 29 264 10 42.88 32.35

pdtpmsmiim-all-bit 429 30 313 10 72.75 36.08
pdtpmssfeistel 1510 68 741 10 184.11 115.07
pdtpmsmiim 418 337 127 56 1049.29 711.48

Manthan: A Data-Driven Approach for Boolean Function Synthesis 631

7 Conclusion

Boolean functional synthesis is a fundamental problem in Computer Science with
a wide variety of applications. In this work, we propose a novel data-driven app-
roach to synthesis that employs constrained sampling techniques for generation
of data, machine learning for candidate Skolem functions, and automated rea-
soning to verify and refine to generate Skolem functions. Our approach achieves
significant performance improvements. As pointed out in Sects. 5 and 6, our
work opens up several interesting directions for future work at the intersection
of machine learning, constrained sampling, and automated reasoning.

Acknowledgment. We are grateful to the anonymous reviewers and Dror Fried for
constructive comments that significantly improved the final version of the paper. We
are grateful to Mate Soos for tweaking BiasGen to support Manthan. We are indebted
to S. Akshay, Supratik Chakraborty, and Shetal Shah for their patient responses to our
tens of queries regarding prior work.

This work was supported in part by National Research Foundation Singapore under
its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004] and AI Singapore Pro-
gramme [AISG-RP-2018-005], and NUS ODPRT Grant [R-252-000-685-13]. The com-
putational work for this article was performed on resources of the National Supercom-
puting Centre, Singapore: https://www.nscc.sg [1].

References

1. ASTAR, NTU, NUS, SUTD: National Supercomputing Centre (NSCC) Singapore
(2018). https://www.nscc.sg/about-nscc/overview/

2. QBF solver evaluation portal 2017. http://www.qbflib.org/qbfeval17.php
3. QBF solver evaluation portal 2018. http://www.qbflib.org/qbfeval18.php
4. Akshay, S., Arora, J., Chakraborty, S., Krishna, S., Raghunathan, D., Shah, S.:

Knowledge compilation for boolean functional synthesis. In: Proc. of FMCAD
(2019)

5. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
boolean functional synthesis? In: Proc. of CAV (2018)

6. Akshay, S., Chakraborty, S., John, A.K., Shah, S.: Towards parallel boolean func-
tional synthesis. In: Proc. of TACAS (2017)

7. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Proc. of FMCAD (2013)

8. Balabanov, V., Jiang, J.H.R.: Resolution proofs and skolem functions in QBF
evaluation and applications. In: Proc. of CAV (2011)

9. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. In:
Proc. of FMCAD (2012)

10. Bavishi, R., Pandey, A., Roy, S.: To be precise: regression aware debugging. In:
Proc. of OOPSLA (2016)

11. Biere, A.: PicoSAT essentials. Proc. of JSAT (2008)
12. Boole, G.: The mathematical analysis of logic. Philosophical Library (1847)
13. Chakraborty, S., Meel, K.S.: On testing of uniform samplers. In: Proc. of AAAI

(2019)

https://www.nscc.sg
https://www.nscc.sg/about-nscc/overview/
http://www.qbflib.org/qbfeval17.php
http://www.qbflib.org/qbfeval18.php

632 P. Golia et al.

14. Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional synthesis via
input-output separation. In: Proc. of FMCAD (2018)

15. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
SAT witness generator. In: Proc. of DAC (2014)

16. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: Proc. of ICSE (2018)

17. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-
ing for synthesizing invariants and contracts. In: Proc. of OOPSLA (2018)

18. Fedyukovich, G., Gupta, A.: Functional synthesis with examples. In: Proc. of CP
(2019)

19. Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-based boolean functional synthesis.
In: Proc. of CAV (2016)

20. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust framework for
learning invariants. In: Proc. of CAV (2014)

21. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Proc. of POPL (2016)

22. Golia, P., Roy, S., Meel, K.S.: Manthan: A data driven approach for boolean func-
tion synthesis (2020). https://arxiv.org/abs/2005.06922

23. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
underapproximation-widening for multi-process systems. In: Proc. of POPL (2005)

24. Gupta, R., Sharma, S., Roy, S., Meel, K.S.: WAPS: Weighted and projected sam-
pling. In: Proc. of TACAS (2019)

25. Heule, M.J., Seidl, M., Biere, A.: Efficient extraction of skolem functions from
QRAT proofs. In: Proc. of FMCAD (2014)

26. Janota, M.: Towards generalization in QBF solving via machine learning. In: Proc.
of AAAI (2018)

27. Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectication and debugging
of combinational circuits with lut insertions. Proc. of IPSJ T-SLDM (2014)

28. John, A.K., Shah, S., Chakraborty, S., Trivedi, A., Akshay, S.: Skolem functions
for factored formulas. In: Proc. of FMCAD (2015)

29. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proc. of PLDI (2011)

30. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Proc. of SAT (2007)

31. Logic, B., Group, V.: ABC: A system for sequential synthesis and verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/

32. Lonsing, F., Egly, U.: Depqbf 6.0: A search-based QBF solver beyond traditional
QCDCL. In: Proc. of CADE (2017)

33. Löwenheim, L.: Über die auflösung von gleichungen im logischen gebietekalkul.
Mathematische Annalen (1910)

34. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver.
In: Proc. of SAT (2014)

35. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning (2000)

36. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Proc. of SAT (2012)

37. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Proc. of Machine Learning Research (2011)

https://arxiv.org/abs/2005.06922
http://www.eecs.berkeley.edu/~alanmi/abc/

Manthan: A Data-Driven Approach for Boolean Function Synthesis 633

38. Quinlan, J.R.: Induction of decision trees. Proc. of Machine learning (1986)
39. Rabe, M.N.: Incremental determinization for quantier elimination and functional

synthesis. In: Proc. of CAV (2019)
40. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proc. of FMCAD

(2015)
41. Rabe, M.N., Tentrup, L., Rasmussen, C., Seshia, S.A.: Understanding and extend-

ing incremental determinization for 2QBF. In: Proc. of CAV (2018)
42. Sharma, S., Gupta, R., Roy, S., Meel, K.S.: Knowledge compilation meets uniform

sampling. In: Proc. of LPAR (2018)
43. Soos, M.: msoos/cryptominisat (2019). https://github.com/msoos/cryptominisat
44. Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program verication and

program synthesis. STTT (2013)
45. Tabajara, L.M., Vardi, M.Y.: Factored boolean functional synthesis. In: Proc. of

FMCAD (2017)
46. Verma, S., Roy, S.: Synergistic debug-repair of heap manipulations. In: Proc. of

ESEC/FSE (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/msoos/cryptominisat
http://creativecommons.org/licenses/by/4.0/

Decidable Synthesis of Programs
with Uninterpreted Functions

Paul Krogmeier(B) , Umang Mathur , Adithya Murali , P. Madhusudan,
and Mahesh Viswanathan

University of Illinois at Urbana-Champaign, Champaign, USA
{paulmk2,umathur3,adithya5,madhu,vmahesh}@illinois.edu

Abstract. We identify a decidable synthesis problem for a class of pro-
grams of unbounded size with conditionals and iteration that work over
infinite data domains. The programs in our class use uninterpreted func-
tions and relations, and abide by a restriction called coherence that was
recently identified to yield decidable verification. We formulate a pow-
erful grammar-restricted (syntax-guided) synthesis problem for coherent
uninterpreted programs, and we show the problem to be decidable, iden-
tify its precise complexity, and also study several variants of the problem.

1 Introduction

Program synthesis is a thriving area of research that addresses the problem
of automatically constructing a program that meets a user-given specifica-
tion [1,21,22]. Synthesis specifications can be expressed in various ways: as
input-output examples [19,20], temporal logic specifications for reactive pro-
grams [44], logical specifications [1,4], etc. Many targets for program synthesis
exist, ranging from transition systems [31,44], logical expressions [1], imperative
programs [51], distributed transition systems/programs [38,43,45], filling holes
in programs [51], or repairs of programs [49].

A classical stream of program synthesis research is one that emerged from a
problem proposed by Church [13] in 1960 for Boolean circuits. Seminal results
by Büchi and Landweber [9] and Rabin [48] led to a mature understanding of
the problem, including connections to infinite games played on finite graphs and
automata over infinite trees (see [18,32]). Tractable synthesis for temporal logics
like LTL, CTL, and their fragments was investigated and several applications
for synthesizing hardware circuits emerged [6,7].

In recent years, the field has taken a different turn, tackling synthesis of
programs that work over infinite domains such as strings [19,20], integers [1,51],
and heaps [47]. Typical solutions derived in this line of research involve (a)
bounding the class of programs to a finite set (perhaps iteratively increasing the
class) and (b) searching the space of programs using techniques like symmetry-
reduced enumeration, SAT solvers, or even random walks [1,4], typically guided

Paul Krogmeier and Mahesh Viswanathan are partially supported by NSF CCF
1901069. Umang Mathur is partially supported by a Google PhD Fellowship.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 634–657, 2020.
https://doi.org/10.1007/978-3-030-53291-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_32&domain=pdf
http://orcid.org/0000-0002-6710-9516
http://orcid.org/0000-0002-7610-0660
http://orcid.org/0000-0002-6311-1467
https://doi.org/10.1007/978-3-030-53291-8_32

Decidable Synthesis of Programs with Uninterpreted Functions 635

by counterexamples (CEGIS) [28,34,51]. Note that iteratively searching larger
classes of programs allows synthesis engines to find a program if one exists, but
it does not allow one to conclude that there is no program that satisfies the
specification. Consequently, in this stream of research, decidability results are
uncommon (see Sect. 7 for some exceptions in certain heavily restricted cases).

In this paper we present, to the best of our knowledge, the first decidability
results for program synthesis over a natural class of programs with iteration/re-
cursion, having arbitrary sizes, and which work on infinite data domains. In
particular, we show decidable synthesis of a subclass of programs that use unin-
terpreted functions and relations.

Our primary contribution is a decidability result for realizability and syn-
thesis of a restricted class of imperative uninterpreted programs. Uninterpreted
programs work over infinite data models that give arbitrary meanings to their
functions and relations. Such programs satisfy their assertions if they hold along
all executions for every model that interprets the functions and relations. The
theory of uninterpreted functions and relations is well studied—classically, in
1929, by Gödel, where completeness results were shown [5] and, more recently,
its decidable quantifier-free fragment has been exploited in SMT solvers in com-
bination with other theories [8]. In recent work [39], a subclass of uninterpreted
programs, called coherent programs, was identified and shown to have a decid-
able verification problem. Note that in this verification problem there are no
user-given loop invariants; the verification algorithm finds inductive invariants
and proves them automatically in order to prove program correctness.

In this paper, we consider the synthesis problem for coherent uninterpreted
programs. The user gives a grammar G that generates well-formed programs in
our programming language. The grammar can force programs to have assert
statements at various points which collectively act as the specification. The pro-
gram synthesis problem is then to construct a coherent program, if one exists,
conforming to the grammar G that satisfies all assertions in all executions when
running on any data model that gives meaning to function and relation symbols.

Our primary result is that the realizability problem (checking the existence of
a program conforming to the grammar and satisfying its assertions) is decidable
for coherent uninterpreted programs. We prove that the problem is 2EXPTIME-
complete. Further, whenever a correct coherent program that conforms to the
grammar exists, we can synthesize one. We also show that the realizability/syn-
thesis problem is undecidable if the coherence restriction is dropped. In fact
we show a stronger result that the problem is undecidable even for synthesis of
straight-line programs (without conditionals and iteration)!

Coherence of programs is a technical restriction that was introduced in [39]. It
consists of two properties, both of which were individually proven to be essential
for ensuring that program verification is decidable. Intuitively, the restriction
demands that functions are computed on any tuple of terms only once and that
assumptions of equality come early in the executions. In more recent work [41],
the authors extend this decidability result to handle map updates, and applied
it to memory safety verification for a class of heap-manipulating programs on

636 P. Krogmeier et al.

forest data-structures, demonstrating that the restriction of coherence is met in
practice by certain natural and useful classes of programs.

Note that automatic synthesis of correct programs over infinite domains
demands that we, at the very least, can automatically verify the synthesized
program to be correct. The class of coherent uninterpreted programs identified
in the work of [39] is the only natural class of programs we are aware of that has
recursion and conditionals, works over infinite domains, and admits decidable
verification. Consequently, this class is a natural target for proving a decidable
synthesis result.

The problem of synthesizing a program from a grammar with assertions is
a powerful formulation of program synthesis. In particular, the grammar can
be used to restrict the space of programs in various ways. For example, we can
restrict the space syntactically by disallowing while loops. Or, for a fixed n, by
using a set of Boolean variables linear in n and requiring a loop body to strictly
increment a counter encoded using these variables, we can demand that loops
terminate in a linear/polynomial/exponential number of iterations. We can also
implement loops that do not always terminate, but terminate only when the data
model satisfies a particular property, e.g., programs that terminate only on finite
list segments, by using a skeleton of the form: while (x �= y){ ... ; x := next(x)}.
Grammar-restricted program synthesis can express the synthesis of programs
with holes, used in systems like Sketch [50], where the problem is to fill holes
using programs/expressions conforming to a particular grammar so that the
assertions in the program hold. Synthesizing programs or expressions using
restricted grammars is also the cornerstone of the intensively studied SyGuS
(syntax-guided synthesis) format [1,52]1.

The proof of our decidability result relies on tree automata, a callback to clas-
sical theoretical approaches to synthesis. The key idea is to represent programs
as trees and build automata that accept trees corresponding to correct programs.
The central construction is to build a two-way alternating tree automaton that
accepts all program trees of coherent programs that satisfy their assertions. Given
a grammarG of programs (which has to satisfy certain natural conditions), we show
that there is a regular set of program trees for the language of allowed programs
L(G). Intersecting the automata for these two regular tree languages and check-
ing for emptiness establishes the upper bound. Our constructions crucially use the
automaton for verifying coherent uninterpreted programs in [39] and adapt ideas
from [35] for building two-way automata over program trees. Our final decision
procedure is doubly-exponential in the number of program variables and linear in
the size of the grammar. We also prove a matching lower bound by reduction from
the acceptance problem for alternating exponential-space Turing machines. The
reduction is non-trivial in that programs (which correspond to runs in the Turing
machine)must simulate sequences of configurations, each ofwhich is of exponential
size, by using only polynomially-many variables.

1 Note, however, that both Sketch and SyGuS problems are defined using functions
and relations that are interpreted using standard theories like arithmetic, etc., and
hence of course do not have decidable synthesis.

Decidable Synthesis of Programs with Uninterpreted Functions 637

Recursive Programs, Transition Systems, and Boolean Programs: We
study three related synthesis problems. First, we show that our results extend to
synthesis of call-by-value recursive uninterpreted programs (with a fixed number
of functions and fixed number of local/global variables). This problem is also
2EXPTIME-complete but is more complex, as even single executions simulated
on the program tree must be split into separate copies, with one copy executing
the summary of a function call and the other proceeding under the assumption
that the call has returned in a summarized state.

We next examine a synthesis problem for transition systems. Transition sys-
tems are similar to programs in that they execute similar kinds of atomic state-
ments. We allow the user to restrict the set of allowable executions (using regular
sets). Despite the fact that this problem seems very similar to program synthesis,
we show that it is an easier problem, and coherent transition system realizabil-
ity and synthesis can be solved in time exponential in the number of program
variables and polynomial in the size of the automata that restrict executions.
We prove a corresponding lower bound to establish EXPTIME-completeness of
this problem.

Finally, we note that our results also show, as a corollary, that the grammar-
restricted realizability/synthesis problem for Boolean programs (resp. execution-
restricted synthesis problem for Boolean transition systems) is decidable and is
2EXPTIME-complete (resp. EXPTIME-complete). These results for Boolean pro-
grams are themselves new. The lower bound results for these problems hence
show that coherent program/transition-system synthesis is not particularly
harder than Boolean program synthesis for uninterpreted programs. Grammar-
restricted Boolean program synthesis is an important problem which is addressed
by many practical synthesis systems like Sketch [50].

Due to space restrictions, we present only proof gists for main results in the
paper. All the complete proofs can be found in our technical report [30].

2 Examples

We will begin by looking at several examples to gain some intuition for uninter-
preted programs.

Example 1. Consider the program in Fig. 1 (left). This program has a hole
‘〈〈 ?? |Cannot . . . 〉〉’ that we intend to fill with a sub-program so that the entire
program (together with the contents of the hole) satisfies the assertion at the
end. The sub-program corresponding to the hole is allowed to use the variable
cipher as well as some additional variables y1, . . . , yn (for some fixed n), but is
not allowed to refer to key or secret in any way. Here we also restrict the hole
to exclude while loops. This example models the encryption of a secret message
secret with a key key. The assumption in the second line of the program models

638 P. Krogmeier et al.

cipher := enc(secret, key);
assume(secret = dec(cipher, key));
〈〈 ?? | Cannot refer to secret or key 〉〉;
assert(z = secret)

Decrypting a ciphertext

assume(T �= F);
if (x = T) then b := T else b := F;
〈〈 ?? | Cannot refer to x or b 〉〉;
assert(y = b)

Synthesis with incomplete information

Fig. 1. Examples of programs with holes

the fact that the secret message can be decrypted from cipher and key. Here,
the functions enc and dec are uninterpreted functions, and thus the program we
are looking for is an uninterpreted program. For such a program, the assertion
“assert(z = secret)” holds at the end if it holds for all models, i.e, for all
interpretations of enc and dec and for all initial values of the program variables
secret, key, cipher, and y1, . . . , yn. With this setup, we are essentially asking
whether a program that does not have access to key can recover secret. It is
not hard to see that there is no program which satisfies the above requirement.
The above modeling of keys, encryption, nonces, etc. is common in algebraic
approaches to modeling cryptographic protocols [15,16].

Example 2. The program in Fig. 1 (right) is another simple example of an unre-
alizable specification. The program variables here are x, b, and y. The hole in this
partial program is restricted so that it cannot refer to x or b. It is easy to phrase
the question for synthesis of the complete program in terms of a grammar. The
restriction on the hole ensures that the synthesized code fragment can neither
directly check if x = T, nor indirectly check via b. Consequently, it is easy to see
that there is no program for the hole that can ensure y is equal to b. We remark
that the code at the hole, apart from not being allowed to examine some vari-
ables, is also implicitly prohibited from looking at the control path taken to reach
the hole. If we could synthesize two different programs depending on the control
path taken to reach the hole, then we could set y := T when the then-branch is
taken and set y := F when the else-branch is taken. Program synthesis requires
a control-flow independent decision to be made about how to fill the hole. In this
sense, we can think of the hole as having only incomplete information about the
executions for which it must be correct. This can be used to encode specifica-
tions using complex ghost code, as we show in the next examples. In Sect. 6, we
explore a slightly different synthesis problem, called transition system synthesis,
where holes can be differently instantiated based on the history of an execution.

Example 3. In this example, we model the synthesis of a program that checks
whether a linked list pointed to by some node x has a key k. We model a next
pointer with a unary function next and we model locations using elements in
the underlying data domain.

Our formalism allows only for assert statements to specify desired pro-
gram properties. In order to state the correctness specification for our desired

Decidable Synthesis of Programs with Uninterpreted Functions 639

list-search program, we interleave ghost code into the program skeleton; we dis-
tinguish ghost code fragments by enclosing them in dashed boxes . The skele-
ton in Fig. 2 has a loop that advances the pointer variable x along the list until
NIL is reached. We model NIL with an immutable program variable. The first
hole ‘〈〈 ?? 1 〉〉’ before the while-loop and the second hole ‘〈〈 ?? 2 〉〉’ within the
while-loop need to be filled so that the assertion at the end is satisfied. We use
three ghost variables in the skeleton: gans, gwitness, and gfound. The ghost variable
gans evaluates to whether we expect to find k in the list or not, and hence at the
end the skeleton asserts that the Boolean variable b computed by the holes is
precisely gans. The holes are restricted to not look at the ghost variables.

assume(T �= F);
gfound := F;

〈〈 ?? 1 〉〉;
while(x �= NIL) {

if (gans �= T) then
assume(key(x) �= k);

else if (gwitness = x) then {
assume (key(x) = k);
gfound := T;

};

〈〈 ?? 2 〉〉;
x := next(x);

}
assume (gans = T ⇒ gfound = T);

assert b = T ⇐⇒ gans = T

Fig. 2. Skeleton with ghost code

Now, notice that the skeleton needs to
check that the answer gans is indeed correct.
If gans is not T, then we add the assumption
that key(x) �= k in each iteration of the loop,
hence ensuring the key is not present. For
ensuring correctness in the case gans = T,
we need two more ghost variables gwitness
and gfound. The variable gwitness witnesses the
precise location in the list that holds the key
k, and variable gfound indicates whether the
location at gwitness belongs to the list pointed
to by x. Observe that this specification can
be realized by filling ‘〈〈 ?? 1 〉〉’ with “b := F”
and ‘〈〈 ?? 2 〉〉’ with “if key(x) = k then b :=
T”, for instance. Furthermore, this program
is coherent [39] and hence our decision pro-
cedure will answer in the affirmative and syn-
thesize code for the holes.

In fact, our procedure will synthesize a representation for all possible ways
to fill the holes (thus including the solution above) and it is therefore possible
to enumerate and pick specific solutions. It is straightforward to formulate a
grammar which matches this setup. As noted, we must stipulate that the holes
do not use the ghost variables.

Example 4. Consider the same program skeleton as in Example 3, but let us add
an assertion at the end: “assert (b = T ⇒ z = gwitness)”, where z is another
program variable. We are now demanding that the synthesized code also find a
location z, whose key is k, that is equal to the ghost location gwitness, which is
guessed nondeterministically at the beginning of the program. This specification
is unrealizable: for a list with multiple locations having the key k, no matter
what the program picks we can always take gwitness to be the other location
with key k in the list, thus violating the assertion. Our decision procedure will
report in the negative for this specification.

Example 5 (Input/Output Examples). We can encode input/output examples by
adding a sequence of assignments and assumptions that define certain models at

640 P. Krogmeier et al.

the beginning of the program grammar. For instance, the sequence of statements
in Fig. 3 defines a linked list of two elements with different keys.

assume(x1 �= NIL);
x2 := next(x1);
assume(x2 �= NIL);
assume(next(x2) = NIL);
k1 := key(x1);
k2 := key(x2);
assume(k1 �= k2)

Fig. 3. An example model

We can similarly use special variables to define
the output that we expect in the case of each model.
And as we saw in the ghost code of Fig. 2, we
can use fresh variables to introduce nondetermin-
istic choices, which the grammar can use to pick
an example model nondeterministically. Thus when
the synthesized program is executed on the chosen
model it computes the expected answer. This has
the effect of requiring a solution that generalizes
across models. See [30] for a more detailed example.

3 Preliminaries

In this section we define the syntax and semantics of uninterpreted programs
and the (grammar-restricted) uninterpreted program synthesis problem.

Syntax. We fix a first order signature Σ = (F ,R), where F and R are sets
of function and relation symbols, respectively. Let V be a finite set of program
variables. The set of programs over V is inductively defined using the following
grammar, with f ∈ F , R ∈ R (with f and R of the appropriate arities), and
x, y, z1, . . . , zr ∈ V .

〈stmt〉V ::= skip | x := y | x := f(z1, . . . , zr) |
assume

(〈cond〉V

) | assert
(〈cond〉V

) | 〈stmt〉V ; 〈stmt〉V |
if

(〈cond〉V

)
then 〈stmt〉V else 〈stmt〉V | while

(〈cond〉V

) 〈stmt〉V

〈cond〉V ::= x = y | R(z1, . . . , zr) | 〈cond〉V ∨ 〈cond〉V | ¬〈cond〉V

Without loss of generality, we can assume that our programs do not use relations
(they can be modeled with functions) and that every condition is either an
equality or disequality between variables (arbitrary Boolean combinations can
be modeled with nested if−then−else). When the set of variables V is clear
from context, we will omit the subscript V from 〈stmt〉V and 〈cond〉V .

Program Executions. An execution over V is a finite word over the alphabet

ΠV = {“x := y”, “x := f(z)”,“assume(x = y)”, “assume(x �= y)”,

“assert(⊥)” | x, y ∈ V, z ∈ V r, f ∈ F}.
The set of complete executions for a program p over V , denoted Exec(p), is

a regular language. See [30] for a straightforward definition. The set PExec(p)
of partial executions is the set of prefixes of complete executions in Exec(p). We
refer to partial executions as simply executions, and clarify as needed when the
distinction is important.

Decidable Synthesis of Programs with Uninterpreted Functions 641

Semantics. The semantics of executions is given in terms of data models. A
data model M = (U, I) is a first order structure over Σ comprised of a universe
U and an interpretation function I for the program symbols. The semantics of an
execution π over a data model M is given by a configuration σ(π,M) : V → U
which maps each variable to its value in the universe U at the end of π. This
notion is straightforward and we skip the formal definition (see [39] for details).
For a fixed program p, any particular data model corresponds to at most one
complete execution π ∈ Exec(p).

An execution π is feasible in a data model M if for every prefix ρ = ρ′ ·
assume(x ∼ y) of π (where ∼ ∈ {=, �=}), we have σ(ρ′,M)(x) ∼ σ(ρ′,M)(y).
Execution π is said to be correct in a data model M if for every prefix of π of
the form ρ = ρ′ · assert(⊥), we have that ρ′ is not feasible, or infeasible in M.
Finally, a program p is said to be correct if for all data models M and executions
π ∈ PExec(p), π is correct in M.

3.1 The Program Synthesis Problem

We are now ready to define the program synthesis problem. Our approach will
be to allow users to specify a grammar and ask for the synthesis of a program
from the grammar. We allow the user to express specifications using assertions
in the program to be synthesized.

Grammar Schema and Input Grammar. In our problem formulation, we
allow users to define a grammar which conforms to a schema, given below.
The input grammars allow the usual context-free power required to describe
proper nesting/bracketing of program expressions, but disallow other uses of the
context-free power, such as counting statements.

S → if (x = y)

then u := v T u := v

T → else

T → ; u := v T u := v ;

Fig. 4. Grammar with counting

For example, we disallow the grammar in
Fig. 4. This grammar has two non-terminals S
(the start symbol) and T . It generates programs
with a conditional that has the same number
of assignments in the if and else branches. We
assume a countably infinite set PN of nontermi-
nals and a countably infinite set PV of program
variables. The grammar schema S over PN and
PV is an infinite collection of productions:

S =

⎧
⎪⎪⎨

⎪⎪⎩

“P → x := y”, “P → x := f(z)”,
“P → assume(x ∼ y)”, “P → assert(⊥)”,
“P → skip”, “P → while (x ∼ y) P1”,
“P → if (x ∼ y) thenP1 elseP2”, “P → P1; P2”

∣
∣
∣
∣
∣
∣
∣
∣

P, P1, P2 ∈ PN
x, y ∈ PV, z ∈ PV r

∼ ∈ {=, �=}

⎫
⎪⎪⎬

⎪⎪⎭

An input grammar G is any finite subset of the schema S, and it defines a
set of programs, denoted L(G). We can now define the main problem addressed
in this work.

642 P. Krogmeier et al.

Definition 1 (Uninterpreted Program Realizability and Synthesis).
Given an input grammar G, the realizability problem is to determine whether
there is an uninterpreted program p ∈ L(G) such that p is correct. The synthesis
problem is to determine the above, and further, if realizable, synthesize a correct
program p ∈ L(G).

Example 6. Consider the program with a hole from Example 1 (Fig. 1, left). We
can model that synthesis problem in our framework with the following grammar.

S → P1;P2;P〈〈 ?? 〉〉;P3 P〈〈 ?? 〉〉 → 〈stmt〉V〈〈 ?? 〉〉
P1 → “cipher := enc(secret, key)” P3 → “assert(z = secret)”
P2 → “assume(secret = dec(cipher, key))”

Here, V〈〈 ?? 〉〉 = {cipher, y1, . . . , yn} and the grammar 〈stmt〉V〈〈 ?? 〉〉 is that
of Sect. 3, restricted to loop-free programs. Any program generated from this
grammar indeed matches the template from Fig. 1 (left) and any such program
is correct if it satisfies the last assertion for all models, i.e., all interpretations
of the function symbols enc and dec and for all initial values of the variables in
V = V〈〈 ?? 〉〉 ∪ {key, secret}.

4 Undecidability of Uninterpreted Program Synthesis

Since verification of uninterpreted programs with loops is undecidable [39,42],
the following is immediate.

Theorem 1. The uninterpreted program synthesis problem is undecidable.

We next consider synthesizing loop-free uninterpreted programs (for which
verification reduces to satisfiability of quantifier-free EUF) from grammars con-
forming to the following schema:

Sloop-free = S\{“P → while (x ∼ y) P1” | P, P1 ∈ PN, x, y ∈ PV,∼ ∈ {=, �=}}

Theorem 2. The uninterpreted program synthesis problem is undecidable for
the schema Sloop-free.

This is a corollary of the following stronger result: synthesis of straight-line
uninterpreted programs (conforming to schema SSLP below) is undecidable.

SSLP = Sloop-free \ {“P → if(x ∼ y) thenP1 elseP2” | P, P1, P2 ∈ PN,

x, y ∈ PV, ∼ ∈ {=, �=}}
Theorem 3. The uninterpreted program synthesis problem is undecidable for
the schema SSLP.

In summary, program synthesis of even straight-line uninterpreted programs,
which have neither conditionals nor iteration, is already undecidable. The notion
of coherence for uninterpreted programs was shown to yield decidable verification
in [39]. As we’ll see in Sect. 5, restricting to coherent programs yields decidable
synthesis, even for programs with conditionals and iteration.

Decidable Synthesis of Programs with Uninterpreted Functions 643

5 Synthesis of Coherent Uninterpreted Programs

In this section, we present the main result of the paper: grammar-restricted pro-
gram synthesis for uninterpreted coherent programs [39] is decidable. Intuitively,
coherence allows us to maintain congruence closure in a streaming fashion when
reading a coherent execution. First we recall the definition of coherent execu-
tions and programs in Sect. 5.1 and also the algorithm for verification of such
programs. Then we introduce the synthesis procedure, which works by construct-
ing a two-way alternating tree automaton. We briefly discuss this class of tree
automata in Sect. 5.2 and recall some standard results. In Sects. 5.3, 5.4 and 5.5
we describe the details of the synthesis procedure, argue its correctness, and
discuss its complexity. In Sect. 5.6, we present a tight lower bound result.

5.1 Coherent Executions and Programs

The notion of coherence for an execution π is defined with respect to the terms
it computes. Intuitively, at the beginning of an execution, each variable x ∈ V
stores some constant term x̂ ∈ C. As the execution proceeds, new terms are
computed and stored in variables. Let TermsΣ be the set of all ground terms
defined using the constants and functions in Σ. Formally, the term corresponding
to a variable x ∈ V at the end of an execution π ∈ Π∗

V , denoted T(π, x) ∈
TermsΣ , is inductively defined as follows. We assume that the set of constants C
includes a designated set of initial constants V̂ = {x̂ | x ∈ V } ⊆ C.

T(ε, x) = x̂ x ∈ V
T(π·“x := y”, x) = T(π, y) x, y ∈ V

T(π·“x := f(z1, . . . , zr)”, x) = f(T(π, z1), . . . ,T(π, zr)) x, z1, . . . , zr ∈ V
T(π·a, x) = T(π, x) otherwise

We will use T(π) to denote the set {T(π′, x) | x ∈ V, π′ is a prefix of π}.
A related notion is the set of term equality assumptions that an execution

accumulates, which we formalize as α : π → P(TermsΣ × TermsΣ), and define
inductively as α(ε) = ∅, α(π·“assume(x = y)”) = α(π) ∪ {(T(π, x),T(π, y))},
and α(π·a) = α(π) otherwise.

For a set of term equalities A ⊆ TermsΣ × TermsΣ , and two ground terms
t1, t2 ∈ TermsΣ , we say t1 and t2 are equivalent modulo A, denoted t1 ∼=A t2, if
A |= t1 = t2. For a set of terms S ⊆ TermsΣ , and a term t ∈ TermsΣ we write
t ∈A S if there is a term t′ ∈ S such that t ∼=A t′. For terms t, s ∈ TermsΣ , we say
s is a superterm modulo A of t, denoted t �A s if there are terms t′, s′ ∈ TermsΣ

such that t ∼=A t′, s ∼=A s′ and s′ is a superterm of t′.
With the above notation in mind, we now review the notion of coherence.

Definition 2 (Coherent Executions and Programs [39]). An execution π ∈
Π∗

V is said to be coherent if it satisfies the following two conditions.

Memoizing. Let ρ = ρ′ ·“x := f(y)” be a prefix of π. If tx = T(ρ, x) ∈α(ρ′) T(ρ′),
then there is a variable z ∈ V such that tx ∼=α(ρ′) tz, where tz = T(ρ′, z).

644 P. Krogmeier et al.

Early Assumes. Let ρ = ρ′ · “assume(x = y)” be a prefix of π, tx = T(ρ′, x)
and ty = T(ρ′, y). If there is a term s ∈ T(ρ′) such that either tx �α(ρ′) s
or ty �α(ρ′) s, then there is a variable z ∈ V such that s ∼=α(ρ′) tz, where
tz = T(ρ′, z).

A program p is coherent if every complete execution π ∈ Exec(p) is coherent.

The following theorems due to [39] establish the decidability of verifying
coherent programs and also of checking if a program is coherent.

Theorem 4 ([39]). The verification problem for coherent programs, i.e. check-
ing if a given uninterpreted coherent program is correct, is decidable.

Theorem 5 ([39]). The problem of checking coherence, i.e. checking if a given
uninterpreted program is coherent, is decidable.

The techniques used in [39] are automata theoretic. They allow us to con-
struct an automaton Aexec

2, of size O(2poly(|V |)), which accepts all coherent
executions that are also correct.

To give some intuition for the notion of coherence, we illustrate simple exam-
ple programs that are not coherent. Consider program p0 below, which is not
coherent because it fails to be memoizing.

p0
Δ= x := f(y); x := f(x); z := f(y)

The first and third statements compute f(ŷ), storing it in variables x and z,
respectively, but the term is dropped after the second statement and hence is
not contained in any program variable when the third statement executes. Next
consider program p1, which is not coherent because it fails to have early assumes.

p1
Δ= x := f(w); x := f(x); y := f(z); y := f(y); assume(w = z)

Indeed, the assume statement is not early because superterms of w and z, namely
f(ŵ) and f(ẑ), were computed and subsequently dropped before the assume.

Intuitively, the coherence conditions are necessary to allow equality informa-
tion to be tracked with finite memory. We can make this stark by tweaking the
example for p1 above as follows.

p′
1

Δ= x := f(w); x := f(x) · · · x := f(x)︸ ︷︷ ︸
n times

;

y := f(z); y := f(y) · · · y := f(y)
︸ ︷︷ ︸

n times

; assume(w = z)

Observe that, for large n (e.g. n > 100), many terms are computed and dropped
by this program, like f42(x̂) and f99(ŷ) for instance. The difficulty with this

2 We use superscripts ‘ ’ and ‘ ’ for word and tree automata, respectively.

Decidable Synthesis of Programs with Uninterpreted Functions 645

program, from a verification perspective, is that the assume statement entails
equalities between many terms which have not been kept track of. Imagine trying
to verify the following program

p2
Δ= p′

1; assert(x = y)

Let πp′
1

∈ Exec(p′
1) be the unique complete execution of p′

1. If we examine the
details, we see that tx = T(πp′

1
, x) = f101(ŵ) and ty = T(πp′

1
, y) = f101(ẑ). The

assertion indeed holds because tx ∼={(ŵ,ẑ)} ty. However, to keep track of this fact
requires remembering an arbitrary number of terms that grows with the size
of the program. Finally, we note that the coherence restriction is met by many
single-pass algorithms, e.g. searching and manipulation of lists and trees.

5.2 Overview of the Synthesis Procedure

Our synthesis procedure uses tree automata. We consider tree representations
of programs, or program trees. The synthesis problem is thus to check if there is
a program tree whose corresponding program is coherent, correct, and belongs
to the input grammar G.

The synthesis procedure works as follows. We first construct a top-down tree
automaton AG that accepts the set of trees corresponding to the programs gen-
erated by G. We next construct another tree automaton Acc, which accepts all
trees corresponding to programs that are coherent and correct. Acc is a two-way
alternating tree automaton that simulates all executions of an input program tree
and checks that each is both correct and coherent. In order to simulate longer
and longer executions arising from constructs like while-loops, the automaton
traverses the input tree and performs multiple passes over subtrees, visiting the
internal nodes of the tree many times. We then translate the two-way alternat-
ing tree automaton to an equivalent (one-way) nondeterministic top-down tree
automaton by adapting results from [33,53] to our setting. Finally, we check
emptiness of the intersection between this top-down automaton and the gram-
mar automaton AG . The definitions for trees and the relevant automata are
standard, and we refer the reader to [14] and to our technical report [30].

5.3 Tree Automaton for Program Trees

Every program can be represented as a tree whose leaves are labeled with basic
statements like “x := y” and whose internal nodes are labeled with constructs
like while and seq (an alias for the sequencing construct ‘;’), which have sub-
programs as children. Essentially, we represent the set of programs generated
by an input grammar G as a regular set of program trees, accepted by a non-
deterministic top-down tree automaton AG . The construction of AG mimics the
standard construction for tree automata that accept parse trees of context free
grammars. The formalization of this intuition is straightforward, and we refer the
reader to [30] for details. We note the following fact regarding the construction
of the acceptor of program trees from a particular grammar G.

Lemma 1. AG has size O(|G|) and can be constructed in time O(|G|). �

646 P. Krogmeier et al.

5.4 Tree Automaton for Simulating Executions

We now discuss the construction of the two-way alternating tree automaton
Acc that underlies our synthesis procedure. A two-way alternating tree automa-
ton consists of a finite set of states and a transition function that maps tuples
(q,m, a) of state, incoming direction, and node labels to positive Boolean formu-
las over pairs (q′,m′) of next state and next direction. In the case of our binary
program trees, incoming directions come from {D,UL, UR}, corresponding to
coming down from a parent, and up from left and right children. Next directions
come from {U,L,R}, corresponding to going up to a parent, and down to left
and right children.

The automaton Acc is designed to accept the set of all program trees that
correspond to correct and coherent programs. This is achieved by ensuring that
a program tree is accepted precisely when all executions of the program it rep-
resents are accepted by the word automaton Aexec (Sect. 5.1). The basic idea
behind Acc is as follows. Given a program tree T as input, Acc traverses T and
explores all the executions of the associated program. For each execution σ, Acc

keeps track of the state that the word automaton Aexec would reach after read-
ing σ. Intuitively, an accepting run of Acc is one which never visits the unique
rejecting state of Aexec during simulation.

We now give the formal description of Acc = (Qcc, Icc, δcc
0 , δcc

1 , δcc
2), which

works over the alphabet ΓV described in Sect. 5.3.

States. Both the full set of states and the initial set of states for Acc coincide
with those of the word automaton Aexec. That is, Qcc = Qexec and Icc = {qexec

0 },
where qexec

0 is the unique starting state of Aexec.

Transitions. For intuition, consider the case when the automaton’s control is in
state q reading an internal tree node n with one child and which is labeled by a =
“while(x = y)”. In the next step, the automaton simultaneously performs two
transitions corresponding to two possibilities: entering the loop after assuming
the guard “x = y” to be true and exiting the loop with the guard being false. In
the first of these simultaneous transitions, the automaton moves to the left child
n·L, and its state changes to q′

1, where q′
1 = δexec(q, “assume(x = y)”). In the

second simultaneous transition, the automaton moves to the parent node n·U
(searching for the next statement to execute, which follows the end of the loop)
and changes its state to q′

2, where q′
2 = δexec(q, “assume(x �= y)”). We encode

these two possibilities as a conjunctive transition of the two-way alternating
automaton. That is, δcc

1 (q,m, a) =
(
(q′

1, L) ∧ (q′
2, U)

)
.

For every i,m, a, we have δi(qreject,m, a) = ⊥, where qreject is the unique,
absorbing rejecting state of Aexec. Below we describe the transitions from all
other states q �= qreject. All transitions δi(q,m, a) not described below are ⊥.

Transitions from the Root. At the root node, labeled by “root”, the automa-
ton transitions as follows:

δcc
1 (q,m, root) =

{
(q, L) if m = D

true otherwise

Decidable Synthesis of Programs with Uninterpreted Functions 647

A two-way tree automaton starts in the configuration where m is set to D.
This means that in the very first step the automaton moves to the child node
(direction L). If the automaton visits the root node in a subsequent step (marking
the completion of an execution), then all transitions are enabled.

Transitions from Leaf Nodes. For a leaf node with label a ∈ Γ0 and state q,
the transition of the automaton is δcc

0 (q,D, a) = (δexec(q, a), U). That is, when
the automaton visits a leaf node from the parent, it simulates reading a in Aexec

and moves to the resulting state in the parent node.

Transitions from “while” Nodes. As described earlier, when reading a node
labeled by “while(x ∼ y)”, where ∼ ∈ {=, �=}, the automaton simulates both
the possibility of entering the loop body as well as the possibility of exiting the
loop. This corresponds to a conjunctive transition:

δcc
1 (q,m, “while(x ∼ y)”) = (q′, L

) ∧ (
q′′, U)

where q′ = δexec(q, “assume(x ∼ y)”)
and q′′ = δexec(q, “assume(x �∼ y)”)

Above, �∼ refers to “ = ” when ∼ is “ �= ”, and vice versa. The first conjunct
corresponds to the execution where the program enters the loop body (assuming
the guard is true), and thus control moves to the left child of the current node,
which corresponds to the loop body. The second conjunct corresponds to the
execution where the loop guard is false and the automaton moves to the parent
of the current tree node. Notice that, in both the conjuncts above, the direction
in which the tree automaton moves does not depend on the last move m of the
state. That is, no matter how the program arrives at a while statement, the
automaton simulates both the possibilities of entering or exiting the loop body.

Transitions from “ite” Nodes. At a node labeled “ite(x ∼ y)”, when coming
down the tree from the parent, the automaton simulates both branches of the
conditional:

δcc
2 (q,D, “ite(x ∼ y)”) = (q′, L) ∧ (q′′, R)

where q′ = δexec(q, “assume(x ∼ y)”)
and q′′ = δexec(q, “assume(x �∼ y)”)

The first conjunct in the transition corresponds to simulating the word automa-
ton on the condition x ∼ y and moving to the left child, i.e. the body of the
then branch. Similarly, the second conjunct corresponds to simulating the word
automaton on the negation of the condition and moving to the right child, i.e.
the body of the else branch.

648 P. Krogmeier et al.

Now consider the case when the automaton moves up to an ite node from
a child node. In this case, the automaton moves up to the parent node (hav-
ing completed simulation of the then or else branch) and the state q remains
unchanged:

δcc
2 (q,m, “ite(x ∼ y)”) = (q, U) m ∈ {UL, UR}

Transitions from “seq” Nodes. In this case, the automaton moves either to
the left child, the right child, or to the parent, depending on the last move. It
does not change the state component. Formally,

δcc
2 (q,m, “seq”) =

⎧
⎪⎨

⎪⎩

(q, L) if m = D

(q,R) if m = UL

(q, U) if m = UR

The above transitions match the straightforward semantics of sequencing two
statements s1; s2. If the automaton visits from the parent node, it next moves
to the left child to simulate s1. When it finishes simulating s1, it comes up from
the left child and enters the right child to begin simulating s2. Finally, when
simulation of s2 is complete, the automaton moves to the parent node, exiting
the subtree.

The following lemma asserts the correctness of the automaton construction
and states its complexity.

Lemma 2. Acc accepts the set of all program trees corresponding to correct,
coherent programs. It has size |Acc| = O(2poly(|V |)), and can be constructed in
O(2poly(|V |)) time. �

5.5 Synthesis Procedure

The rest of the synthesis procedure goes as follows. We first construct a nondeter-
ministic top-down tree automaton Acc-td such that L(Acc-td) = L(Acc). An adap-
tation of results from [33,53] ensures that Acc-td has size |Acc-td| = O(22poly(|V |)

)
and can be constructed in time O(22poly(|V |)

). Next we construct a top-down
nondeterministic tree automaton A such that L(A) = L(Acc-td) ∩ L(AG) =
L(Acc)∩L(AG), with size |A | = O(22poly(|V |) ·|G|) and in time O(|Acc-td|·|AG |) =
O(22poly(|V |) · |G|). Finally, checking emptiness of A can be done in time
O(|A |) = O(22poly(|V |) · |G|). If non-empty, a program tree can be constructed.

This gives us the central upper bound result of the paper.

Theorem 6. The grammar-restricted synthesis problem for uninterpreted
coherent programs is decidable in 2EXPTIME, and in particular, in time doubly
exponential in the number of variables and linear in the size of the input gram-
mar. Furthermore, a tree automaton representing the set of all correct coherent
programs that conform to the grammar can be constructed in the same time. �

Decidable Synthesis of Programs with Uninterpreted Functions 649

5.6 Matching Lower Bound

Our synthesis procedure is optimal. We prove a 2EXPTIME lower bound for the
synthesis problem by reduction from the 2EXPTIME-hard acceptance problem
of alternating Turing machines (ATMs) with exponential space bound [12]. Full
details of the reduction can be found in [30].

Theorem 7. The grammar-restricted synthesis problem for coherent uninter-
preted programs is 2EXPTIME-hard.

6 Further Results

In this section, we give results for variants of uninterpreted program synthesis
in terms of transition systems, Boolean programs, and recursive programs.

6.1 Synthesizing Transition Systems

Here, rather than synthesizing programs from grammars, we consider instead the
synthesis of transition systems whose executions must belong to a regular set.
Our main result is that the synthesis problem in this case is EXPTIME-complete,
in contrast to grammar-restricted program synthesis which is 2EXPTIME-
complete.

Transition System Definition and Semantics. Let us fix a set of program
variables V as before. We consider the following finite alphabet

ΣV = {“x := y”, “x := f(z)”, “assert(⊥)”, “check(x = y)” | x, y,∈ V, z ∈ V r}

Let us define ΓV ⊆ ΣV to be the set of all elements of the form “check(x = y)”,
where x, y ∈ V . We refer to the elements of ΓV as check letters.

A (deterministic) transition system TS over V is a tuple (Q, q0,H, λ, δ),
where Q is a finite set of states, q0 ∈ Q is the initial state, H ⊆ Q is the set
of halting states, λ : Q → ΣV is a labeling function such that for any q ∈ Q, if
λ(q) = “assert(⊥)” then q ∈ H, and δ : (Q \ H) → Q ∪ (Q × Q) is a transition
function such that for any q ∈ Q \ H, δ(q) ∈ Q × Q iff λ(q) ∈ ΓV.

We define the semantics of a transition system using the set of executions that
it generates. A (partial) execution π of a transition system TS = (Q, q0,H, λ, δ)
over variables V is a finite word over the induced execution alphabet ΠV (from
Sect. 3) with the following property. If π = a0a1 . . . an with n ≥ 0, then there
exists a sequence of states qj0 , qj1 , . . . , qjn

with qj0 = q0 such that (0 ≤ i ≤ n):

– If λ(qji
) /∈ ΓV then ai = λ(qji

), and if i < n then qji+1 = δ(qji
).

– Otherwise

{
either ai = “assume(x = y)” and i < n ⇒ qji+1 = δ(qji

) �1,
or ai = “assume(x �= y)” and i < n ⇒ qji+1 = δ(qji

) �2

650 P. Krogmeier et al.

In the above, we denote pair projection with �, i.e., (t1, t2) �i= ti, where
i ∈ {1, 2}. A complete execution is an execution whose corresponding final state
(qn above) is in H. For any transition system TS, we denote the set of its
executions by Exec(TS) and the set of its complete executions by CompExec(TS).
The notions of correctness and coherence for transition systems are identical to
their counterparts for programs.

The Transition System Synthesis Problem. We consider transition system
specifications that place restrictions on executions (both partial and complete)
using two regular languages S and R. Executions must belong to the first lan-
guage S (which is prefix-closed) and all complete executions must belong to the
second language R. A specification is given as two deterministic automata AS

and AR over executions, where L(AS) = S and L(AR) = R. For a transition sys-
tem TS and specification automata AS and AR, whenever Exec(TS) ⊆ L(AS)
and CompExec(TS) ⊆ L(AR) we say that TS satisfies its (syntactic) specifica-
tion. Note that this need not entail correctness of TS. Splitting the specification
into partial executions S and complete executions R allows us, among other
things, to constrain the executions of non-halting transition systems.

Definition 3 (Transition System Realizability and Synthesis). Given a
finite set of program variables V and deterministic specification automata AS

(prefix-closed) and AR over the execution alphabet ΠV , decide if there is a cor-
rect, coherent transition system TS over V that satisfies the specification. Fur-
thermore, produce one if it exists.

Since programs are readily translated to transition systems (of similar size),
the transition system synthesis problem seems, at first glance, to be a prob-
lem that ought to have similar complexity. However, as we show, it is crucially
different in that it allows the synthesized transition system to have complete
information of past commands executed at any point. We will observe in this
section that the transition system synthesis problem is EXPTIME-complete.

To see the difference between program and transition system synthesis, con-
sider program skeleton P from Example 2 in Sect. 2. The problem is to fill the
hole in P with either y := T or y := F. Observe that when P executes, there are
two different executions that lead to the hole. In grammar-restricted program
synthesis, the hole must be filled by a sub-program that is executed no matter
how the hole is reached, and hence no such program exists. However, when we
model this problem in the setting of transition systems, the synthesizer is able
to produce transitions that depend on how the hole is reached. In other words, it
does not fill the hole in P with uniform code. In this sense, in grammar-restricted
program synthesis, programs have incomplete information of the past. We cru-
cially exploited this difference in the proof of 2EXPTIME-hardness for grammar-
restricted program synthesis (see [30]). No such incomplete information can be
enforced by regular execution specifications in transition system synthesis, and
indeed the problem turns out to be easier: transition system realizability and
synthesis are EXPTIME-complete.

Decidable Synthesis of Programs with Uninterpreted Functions 651

Theorem 8. Transition system realizability is decidable in time exponential in
the number of program variables and polynomial in the size of the automata
AS and AR. Furthermore, the problem is EXPTIME-complete. When realizable,
within the same time bounds we can construct a correct, coherent transition sys-
tem whose partial and complete executions are in L(AS) and L(AR), respectively.

6.2 Synthesizing Boolean Programs

Here we observe corollaries of our results when applied to the more restricted
problem of synthesizing Boolean programs.

In Boolean program synthesis we interpret variables in programs over the
Boolean domain {T, F}, and we disallow computations of uninterpreted func-
tions and the checking of uninterpreted relations. Standard Boolean functions
like ∧ and ¬ are instead allowed, but note that these can be modeled using
conditional statements. We allow for nondeterminism with a special assignment
“b := *”, which assigns b nondeterministically to T or F . As usual, a program
is correct when it satisfies all its assertions.

Synthesis of Boolean programs can be reduced to uninterpreted program
synthesis using two special constants T and F . Each nondeterministic assign-
ment is modeled by computing a next function on successive nodes of a linked
list, accessing a nondeterministic value by computing key on the current node,
and assuming the result is either T or F . Since uninterpreted programs must
satisfy assertions in all models, this indeed captures nondeterministic assign-
ment. Further, every term ever computed in such a program is equivalent to T
or F (by virtue of the interleaved assume statements), making the resulting
program coherent. The 2EXPTIME upper bound for Boolean program synthe-
sis now follows from Theorem 6. We further show that, perhaps surprisingly,
the 2EXPTIME lower bound from Sect. 5 can be adapted to prove 2EXPTIME-
hardness of Boolean program synthesis.

Theorem 9. The grammar-restricted synthesis problem for Boolean programs is
2EXPTIME-complete, and can be solved in time doubly-exponential in the number
of variables and linear in the size of the input grammar. �

Thus synthesis for coherent uninterpreted programs is no more complex
than Boolean program synthesis, establishing decidability and complexity of a
problem which has found wide use in practice—for instance, the synthesis tool
Sketch solves precisely this problem, as it models integers using a small number
of bits and allows grammars to restrict programs with holes.

6.3 Synthesizing Recursive Programs

We extend the positive result of Sect. 5 to synthesize coherent recursive pro-
grams. The setup for the problem is very similar. Given a grammar that identi-
fies a class of recursive programs, the goal is to determine if there is a program
in the grammar that is coherent and correct.

652 P. Krogmeier et al.

The syntax of recursive programs is similar to the non-recursive case, and
we refer the reader to [30] for details. In essence, programs are extended with a
new function call construct. Proofs are similar in structure to the non-recursive
case, with the added challenge of needing to account for recursive function calls
and the fact that Aexec becomes a (visibly) pushdown automaton rather than a
standard finite automaton. This gives a 2EXPTIME algorithm for synthesizing
recursive programs; a matching lower bound follows from the non-recursive case.

Theorem 10. The grammar-restricted synthesis problem for uninterpreted
coherent recursive programs is 2EXPTIME-complete. The algorithm is doubly
exponential in the number of program variables and linear in the size of the
input grammar. Furthermore, a tree automaton representing the set of all cor-
rect, coherent recursive programs that conform to the grammar can be constructed
in the same time.

7 Related Work

The automata and game-theoretic approaches to synthesis date back to a prob-
lem proposed by Church [13], after which a rich theory emerged [9,18,32,48].
The problems considered in this line of work typically deal with a system react-
ing to an environment interactively using a finite set of signals over an infinite
number of rounds. Tree automata over infinite trees, representing strategies, with
various infinitary acceptance conditions (Büchi, Rabin, Muller, parity) emerged
as a uniform technique to solve such synthesis problems against temporal logic
specifications with optimal complexity bounds [31,38,44,45]. In this paper, we
use an alternative approach from [35] that works on finite program trees, using
two-way traversals to simulate iteration. The work in [35], however, uses such
representations to solve synthesis problems for programs over a fixed finite set of
Boolean variables and against LTL specifications. In this work we use it to syn-
thesize coherent programs that have finitely many variables working over infinite
domains endowed with functions and relations.

While decidability results for program synthesis beyond finite data domains
are uncommon, we do know of some results of this kind. First, there are decid-
ability results known for synthesis of tranducers with registers [29]. Transducers
interactively read a stream of inputs and emit a stream of outputs. Finite-state
tranducers can be endowed with a set of registers for storing inputs and doing
only equality/disequality comparisons on future inputs. Synthesis of such trans-
ducers for temporal logic specifications is known to be decidable. Note that,
although the data domain is infinite, there are no functions or relations on data
(other than equality), making it a much more restricted class (and grammar-
based approaches for syntactically restricting transducers has not been stud-
ied). Indeed, with uninterpreted functions and relations, the synthesis problem
is undecidable (Theorem 1), with decidability only for coherent programs. In [11],
the authors study the problem of synthesizing uninterpreted terms from a gram-
mar that satisfy a first-order specification. They give various decidability and

Decidable Synthesis of Programs with Uninterpreted Functions 653

undecidability results. In contrast, our results are for programs with conditionals
and iteration (but restricted to coherent programs) and for specifications using
assertions in code.

Another setting with a decidable synthesis result over unbounded domains is
work on strategy synthesis for linear arithmetic satisfiability games [17]. There it
is shown that for a satisfiability game, in which two players (SAT and UNSAT)
play to prove a formula is satisfiable (where the formula is interpreted over the
theory of linear rational arithmetic), if the SAT player has a winning strategy
then a strategy can be synthesized. Though the data domain (rationals) is infi-
nite, the game consists of a finite set of interactions and hence has no need for
recursion. The authors also consider reachability games where the number of
rounds can be unbounded, but present only sound and incomplete results, as
checking who wins in such reachability games is undecidable.

Tree automata techniques for accepting finite parse trees of programs was
explored in [37] for synthesizing reactive programs with variables over finite
domains. In more recent work, automata on finite trees have been explored
for synthesizing data completion scripts from input-output examples [55], for
accepting programs that are verifiable using abstract interpretations [54], and
for relational program synthesis [56].

The work in [36] explores a decidable logic with ∃∗∀∗ prefixes that can be
used to encode synthesis problems with background theories like arithmetic.
However, encoding program synthesis in this logic only expresses programs of
finite size. Another recent paper [27] explores sound (but incomplete) techniques
for showing unrealizability of syntax-guided synthesis problems.

8 Conclusions

We presented foundational results on synthesizing coherent programs with unin-
terpreted functions and relations. To the best of our knowledge, this is the first
natural decidable program synthesis problem for programs of arbitrary size which
have iteration/recursion, and which work over infinite domains.

The field of program synthesis lacks theoretical results, and especially decid-
ability results. We believe our results to be the first of their kind to fill this
lacuna, and we find this paper exciting because it bridges the worlds of pro-
gram synthesis and the rich classical synthesis frameworks of systems over finite
domains using tree automata [9,18,32,48]. We believe this link could revitalize
both domains with new techniques and applications.

Turning to practical applications of our results, several questions require
exploration in future work. First, one might question the utility of programs
that verify only with respect to uninterpreted data domains. Recent work [10] has
shown that verifying programs using uninterpreted abstractions can be extremely
effective in practice for proving programs correct. Also, recent work by Mathur
et al. [40] explores ways to add axioms (such as commutativity of functions,
axioms regarding partial orders, etc.) and yet preserve decidability of verifi-
cation. The methods used therein are compatible with our technique, and we

654 P. Krogmeier et al.

believe our results can be extended smoothly to their decidable settings. A more
elaborate way to bring in complex theories (like arithmetic) would be to marry
our technique with the iterative automata-based software verification technique
pioneered by work behind the Ultimate tool [23–26]; this won’t yield decidable
synthesis, but still could result in complete synthesis procedures.

The second concern for practicality is the coherence restriction. There is
recent work by Mathur et al. [41] that shows single-pass heap-manipulating pro-
grams respect a (suitably adapted) notion of coherence. Adapting our technique
to this setting seems feasible, and this would give an interesting application of
our work. Finally, it is important to build an implementation of our procedure
in a tool that exploits pragmatic techniques for constructing tree automata, and
the techniques pursued in [54–56] hold promise.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, D: Information and Com-
munication Security, vol. 40, pp. 1–25. IOS Press (2015)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp.
202–211. ACM, New York (2004). https://doi.org/10.1145/1007352.1007390

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

4. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

5. Bauer-Mengelberg, S.: über die vollständigkeit des logikkalküls. J. Symb. Log.
55(1), 341–342 (1990). https://doi.org/10.2307/2274974

6. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electr. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

8. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74113-8

9. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969). https://doi.org/10.2307/1994916

10. Bueno, D., Sakallah, K.A.: euforia: complete software model checking with unin-
terpreted functions. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol.
11388, pp. 363–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11245-5 17

11. Caulfield, B., Rabe, M.N., Seshia, S.A., Tripakis, S.: What’s decidable about
syntax-guided synthesis? CoRR abs/1510.08393 (2015)

12. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981). https://doi.org/10.1145/322234.322243

13. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Summaries of talks presented at the Summer Institute for Symbolic Logic Cornell
University, 1957, 2nd edn., J. Symb. Log. 28(4), 30–50. 3a–45a. (1960)

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/3208071
https://doi.org/10.2307/2274974
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.2307/1994916
https://doi.org/10.1007/978-3-030-11245-5_17
https://doi.org/10.1007/978-3-030-11245-5_17
https://doi.org/10.1145/322234.322243

Decidable Synthesis of Programs with Uninterpreted Functions 655

14. Comon, H., et al.: Tree automata techniques and applications (2007). https://tata.
gforge.inria.fr. Accessed 29 Jun 2020

15. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

16. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004).
https://doi.org/10.3233/JCS-2004-12203

17. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. PACMPL
2(POPL), 61:1–61:30 (2018). https://doi.org/10.1145/3158149

18. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
Lecture Notes in Computer Science, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

19. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: POPL, pp. 317–330. ACM (2011). https://doi.org/10.1145/1925844.
1926423

20. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Commun. ACM 55(8), 97–105 (2012). https://doi.org/10.1145/2240236.
2240260

21. Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.,
Zorn, B.G.: Inductive programming meets the real world. Commun. ACM 58(11),
90–99 (2015). https://doi.org/10.1145/2736282

22. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017)

23. Heizmann, M., et al.: Ultimate automizer with smtinterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 53

24. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

25. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2010, pp. 471–482. ACM, New York (2010). https://doi.
org/10.1145/1706299.1706353

26. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

27. Hu, Q., Breck, J., Cyphert, J., D’Antoni, L., Reps, T.: Proving unrealizability for
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 335–352. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 18

28. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inf.
54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

29. Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transduc-
ers. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 494–510.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 29

30. Krogmeier, P., Mathur, U., Murali, A., Madhusudan, P., Viswanathan, M.: Decid-
able synthesis of programs with uninterpreted functions. CoRR abs/1910.09744
(2019). http://arxiv.org/abs/1910.09744

https://tata.gforge.inria.fr
https://tata.gforge.inria.fr
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.3233/JCS-2004-12203
https://doi.org/10.1145/3158149
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2736282
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1145/1706299.1706353
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1007/978-3-030-01090-4_29
http://arxiv.org/abs/1910.09744

656 P. Krogmeier et al.

31. Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open systems in
reactive environments: control and synthesis. In: Palamidessi, C. (ed.) CONCUR
2000. LNCS, vol. 1877, pp. 92–107. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44618-4 9

32. Kupferman, O., Piterman, N., Vardi, M.Y.: An automata-theoretic approach to
infinite-state systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification.
LNCS, vol. 6200, pp. 202–259. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13754-9 11

33. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about
infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol.
1855, pp. 36–52. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 7

34. Löding, C., Madhusudan, P., Neider, D.: Abstract learning frameworks for syn-
thesis. In: Chechik, M., Raskin, J.F. (eds.) LTACAS 2016. LNCS, vol. 9636, pp.
167–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 10

35. Madhusudan, P.: Synthesizing reactive programs. In: CSL. LIPIcs, vol. 12, pp.
428–442. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011). https://doi.
org/10.4230/LIPIcs.CSL.2011.428

36. Madhusudan, P., Mathur, U., Saha, S., Viswanathan, M.: A decidable fragment
of second order logic with applications to synthesis. In: Ghica, D., Jung, A. (eds.)
27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 119, pp. 31:1–31:19. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.
4230/LIPIcs.CSL.2018.31

37. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, pp. 283–294. ACM, New York (2011). https://
doi.org/10.1145/1926385.1926419

38. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local speci-
fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 396–407. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 33

39. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of unin-
terpreted programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (2019).
https://doi.org/10.1145/3290359

40. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS,
vol. 12079, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45237-7 10

41. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proc. ACM Pro-
gram. Lang. 4(POPL), 1–29 (2019). https://doi.org/10.1145/3371103

42. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 79–96. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 6

43. Muscholl, A., Walukiewicz, I.: Distributed synthesis for acyclic architectures. In:
FSTTCS. LIPIcs, vol. 29, pp. 639–651. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639

44. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989). https://doi.org/10.1145/75277.75293

https://doi.org/10.1007/3-540-44618-4_9
https://doi.org/10.1007/3-540-44618-4_9
https://doi.org/10.1007/978-3-642-13754-9_11
https://doi.org/10.1007/978-3-642-13754-9_11
https://doi.org/10.1007/10722167_7
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://doi.org/10.4230/LIPIcs.CSL.2018.31
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1145/3290359
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1145/3371103
https://doi.org/10.1007/978-3-540-30579-8_6
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1145/75277.75293

Decidable Synthesis of Programs with Uninterpreted Functions 657

45. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757. IEEE Computer Society (1990). https://doi.org/10.1109/
FSCS.1990.89597

46. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.
52(4), 264–268 (1946). https://doi.org/10.1090/S0002-9904-1946-08555-9

47. Qiu, X., Solar-Lezama, A.: Natural synthesis of provably-correct data-structure
manipulations. PACMPL 1(OOPSLA), 65:1–65:28 (2017). https://doi.org/10.
1145/3133889

48. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston (1972)

49. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. SIGPLAN Not. 48(6), 15–26 (2013). https://
doi.org/10.1145/2499370.2462195

50. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15(5),
475–495 (2013). https://doi.org/10.1007/s10009-012-0249-7

51. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006). https://
doi.org/10.1145/1168857.1168907

52. SyGuS: Syntax guided synthesis. https://sygus.org/
53. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,

Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055090

54. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
Proc. ACM Program. Lang. 2(POPL), 63:1–63:30 (2017). https://doi.org/10.1145/
3158151

55. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, pp. 195–213. ACM, New York (2016). https://doi.org/10.1145/2983990.
2984030

56. Wang, Y., Wang, X., Dillig, I.: Relational program synthesis. Proc. ACM Program.
Lang. 2(OOPSLA), 155:1–155:27 (2018). https://doi.org/10.1145/3276525

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1145/3133889
https://doi.org/10.1145/3133889
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://sygus.org/
https://doi.org/10.1007/BFb0055090
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/2983990.2984030
https://doi.org/10.1145/3276525
http://creativecommons.org/licenses/by/4.0/

Must Fault Localization for Program
Repair

Bat-Chen Rothenberg and Orna Grumberg(B)

Technion - Israel Institute of Technology, Haifa, Israel
{batg,orna}@cs.technion.ac.il

Abstract. This work is concerned with fault localization for automated
program repair.

We define a novel concept of a must location set. Intuitively, such a set
includes at least one program location from every repair for a bug. Thus,
it is impossible to fix the bug without changing at least one location from
this set. A fault localization technique is considered a must algorithm if it
returns a must location set for every buggy program and every bug in the
program. We show that some traditional fault localization techniques are
not must.

We observe that the notion of must fault localization depends on the
chosen repair scheme, which identifies the changes that can be applied
to program statements as part of a repair. We develop a new algorithm
for fault localization and prove that it is must with respect to commonly
used schemes in automated program repair.

We incorporate the new fault localization technique into an existing
mutation-based program repair algorithm. We exploit it in order to prune
the search space when a buggy mutated program has been generated.
Our experiments show that must fault localization is able to significantly
speed-up the repair process, without losing any of the potential repairs.

1 Introduction

Fault localization and automated program repair have long been combined. Tra-
ditionally, given a buggy program, fault localization suggests locations in the
program that might be the cause of the bug. Repair then attempts to change
those suspicious locations in order to eliminate the bug.

Bad fault localization may cause a miss of potential repairs, if it is too restric-
tive, or cause an extra work, if it is too permissive. Studies have shown that for
test-based repair imprecise fault localizations happen very often in practice [27].
This identifies the need for fault localization that can narrow down the space of
candidates while still promising not to lose potential causes for a bug.

In this work, we define the concept of a must location set. Intuitively, such a
set includes at least one location from every repair for the bug. Thus, it must be

This research was partially supported by the Technion Hiroshi Fujiwara cyber secu-
rity research center and the Israel cyber bureau and partially by the Israel Science
Foundation.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 658–680, 2020.
https://doi.org/10.1007/978-3-030-53291-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_33&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_33

Must Fault Localization for Program Repair 659

used for repair. In other words, it is impossible to fix the bug using only
locations outside this set. A fault localization technique is considered a must
algorithm if it returns a must location set for every buggy program and every
bug in the program.

To demonstrate the importance of the must notion, consider the program in
Fig. 1 for computing the absolute value of a variable x. The program is buggy
since the assertion in location 4 is violated when initially x = -1. Intuitively, a
good repair would replace the condition (x < -1) in location 2 with condition
x <= -1. Our must fault localization, defined formally in the paper, will include
location 2 in the must location set. In contrast, the fault localization techniques
defined for instance in [14,21] do not include 2 in their location sets: They are
not must and may miss optional repairs.

Our first observation regarding must notions is that their definition should
take into account the repair scheme under consideration. A repair scheme iden-
tifies the changes that can be applied to program statements as part of a repair.
A scheme can allow, for instance, certain syntactic changes in a condition (e.g.
replacing < with >) or in the right-hand-side expression of an assignment (e.g.
replacing + by -). A particular location set can be a must set using one scheme,
but non-must using another. We further discuss this observation when presenting
our formal definition of a must fault localization.

The setting of our work is as follows. Our approach is formula-based rather
than test-based. We handle simple C-programs, with specification given as asser-
tions in the code. Similarly to bounded model checking tools (e.g. [8]), the pro-
gram and the negated specification are translated to a set of constraints, whose
conjunction forms the program formula. This formula is satisfiable if and only
if the program violates an assertion, in which case a satisfying assignment (also
called a model) is returned.

We focus on a simple repair scheme of syntactic changes, as described above.
We assume that the user prefers repairs that are as close to the original program
as possible and will want to get several repair suggestions. Thus, we return all
minimal repairs (minimal in the number of changes applied to the program
code).

Once the notion of must fault localization is defined, we develop a new algo-
rithm for fault localization and prove that it is must with respect to syntactic
mutation schemes. The input to the algorithm is a program formula ϕ and a
model μ for ϕ, representing a buggy execution of the program. Our approach is
based on a dynamic-slicing-like algorithm that computes dependencies.

For a variable v in ϕ, its slice F is computed based on dynamic dependencies
among variables in ϕ, whose values influence the value of v in μ. Informally, F is
a must location set that contains all assignment to the variables that v depends
upon. Some assignment from F thus must be changed in order to eliminate the
bug associated with μ.

We incorporated the new fault localization technique into an existing
mutation-based program repair algorithm [38]. In [38], the repair scheme is based
on a predefined set of mutations. Given a buggy program P , the goal of the
algorithm is to return all minimal repairs for P . The algorithm goes through

660 B.-C. Rothenberg and O. Grumberg

iterations of generate-validate, where the generate part produces a mutated pro-
gram of P and the validate part checks whether it is bounded-correct. The
bottleneck of the algorithm is the size of the search space, consisting of all pos-
sible mutated programs of P . In [38], the search space has been pruned when
the generated mutated program has been successfully validated. No pruning has
been applied otherwise.

In this work, we exploit our novel must fault localization in order to prune
the search space when a buggy mutated program P ′ has been generated (i.e.
validation failed). In this case, we compute the must location set F of P ′. We
can now prune from the search space any mutated program whose F locations
are identical to those of P ′. This is because, by the property of must location
set, it is guaranteed that the bug cannot be repaired without changing a location
in F . Thus, a large set of buggy mutated programs is pruned, without the need
for additional validation and without losing any minimally repaired program. It
should be noted that the smaller F is, the larger the pruned set is. Our exper-
imental results confirm the effectiveness of this pruning by showing significant
speedups.

To summarize, the contributions of this work are:

1. We define a novel notion of must fault localization with respect to a repair
scheme. We show that many of the formula-based techniques are not must.

2. We present a novel fault localization technique and prove that it is must for
the scheme of syntactic mutations. Our technique also has other advantages,
such as low-complexity and incrementality.

3. We show how our new fault localization technique can be incorporated into
an existing mutation-based program repair algorithm for pruning its search
space. The technique is applied iteratively, whenever a generated mutated
program is found to be incorrect.

4. We implemented the algorithm of repair with fault localization as part of
the open source tool AllRepair. Our experimental results show that fault-
localization is able to significantly speed-up the repair process, without losing
any of the potential repairs.

2 Motivating Example

procedure absValue(x)
1: abs := x
2: if x < -1 then
3: abs := -x
4: assert (abs >= 0)

Fig. 1. A buggy program

Figure 1 presents a simple program for com-
puting the absolute value of a variable x. The
result is computed in the variable abs, and
the specification states, using an assertion on
line 4, that in the end abs should always
be non-negative. Unfortunately, the program
has a bug. The true branch of the if is intended to flip the sign of x whenever
x is negative, but it accidentally misses the case where x is −1. As a result, if
x is −1, the wrong branch of the if is taken, and the assertion is reached with
abs = −1, which causes a violation.

Must Fault Localization for Program Repair 661

Clearly, it is desirable that line number 2 be returned when running fault
localization on this bug, as a human written repair is likely to change the con-
dition on this line from x < −1 to x <= -1 or x < 0. But, as we will show next,
some of the existing formula-based fault localization techniques do not include
this line in their result.

The error trace representing the bug for input I = {x ← −1} is π =< 1, 2, 4 >
(this is the sequence of program locations visited when executing the program
on I). The MAX-SAT-based fault localization technique of [21] and the error-
invariant-based technique of [14] use a formula called the extended trace formula
in order to find faulty statements along the error trace. The extended trace
formula for the bug in question is

(x = −1)
︸ ︷︷ ︸

Input

∧ (abs = x) ∧ (x ≥ −1)
︸ ︷︷ ︸

Computation

∧ (abs ≥ 0)
︸ ︷︷ ︸

Assertion

This formula encodes three things: a) that the input remains I, b) that the
computation is as the trace dictates, and, c) that the assertion holds at the
end. Therefore, the formula is unsatisfiable. Both [21] and [14] intuitively look
for explanations of its unsatisfiability, and therefore decide that the statement
(x ≥ −1) on line 2 is irrelevant; The formula remains unsatisfiable even if the
constraint (x ≥ −1) is removed.

Even the method of [6], which suggests a flow-sensitive encoding of the
extended trace formula, with the goal of including all statements affecting
control-flow decisions that are relevant to the bug, classifies the statement on
line 2 as irrelevant. This is because the error trace does not include any location
from the body of the branch that was taken (in our case it is the else branch,
which is empty), in which case the flow-sensitive formula remains identical to
the traditional formula.

The dynamic slicing method of [2,23] also fails to include line 2 in its result.
This method computes the set of statements influencing the evaluation of the
assertion along the trace, using data and control dependency relations. A state-
ment st1 is data dependent on st2 iff st1 uses a variable x, and st2 is the last
to assign a value to x along the trace. In our example, the assertion on line 4
is data dependent only on the statement in line 1, which in itself is not data
dependent on any other statement. A statement st1 is control dependent on a
conditional statement st2 iff st1 is inside the body of either branch of st2. None of
the statements along our error trace is control dependent on another statement.
The slice, which is the set of lines returned, is computed using the transitive
closure of these relations. Thus, for our example, only line 1 is part of the slice.

In this example, we have seen how many different fault localization techniques
fail to include a statement that is relevant, i.e., where a modification could be
made for the bug to be fixed. In contrast, the set of locations returned by our
technique for this example is {1, 2}. The fact that our technique includes line 2
is not a coincidence: We show that, intuitively, whenever a repair can be made
by making changes to a single line, this line must be included in the result.

662 B.-C. Rothenberg and O. Grumberg

proc. foo(x, w)
1: t := 0
2: y := x - 3
3: z := x + 3
4: if (w > 3) then
5: t := z + w
6: assert (t < x)
7: y := y + 10

8: assert (y > z)

proc. simFoo(x, w)
t := 0
y := x - 3
z := x + 3
g := w > 3
if (g) then

t := z + w
assert (t < x)
y := y + 10

assert (y > z)

proc. SSAFoo(x, w)
t0 := 0
y0 := x0 - 3
z0 := x0 + 3
g0 := w0 > 3
t1 := z0 + w0
assert (g0 → t1 < x0)
y1 := y0 + 10
t2 := g0 ? t1 : t0
y2 := g0 ? y1 : y0
assert (y2 > z0)

ϕfoo = {
t0 = 0,
y0 = x0 − 3,
z0 = x0 + 3,
g0 = w0 > 3,
t1 = z0 + w0,

y1 = y0 + 10,
t2 = ite(g0, t1, t0),
y2 = ite(g0, y1, y0),
¬(y2 > z0) ∨ ¬(g0 → t1 < x0)
}

Fig. 2. Example of the translation process of a simple program

In general, whenever a repair can be made by making changes to a set of lines,
at least one of them must be included in the result.

3 Preliminaries

3.1 Programs and Error Traces

For our purposes, a program is a sequential program composed of standard state-
ments: assignments, conditionals, loops and function calls, all with their standard
semantics. Each statement is located at a certain location (or line) li, and all
statements are defined over the set of program variables X.

In addition to the standard statements, a program may also contain assume
statements of the form assume(bexpr), and assert statements of the form
assert(bexpr). In both cases bexpr is a boolean expression over X. If an assume
or an assert statement is located in li, execution of the program stops whenever
location li is reached in a state where bexpr is evaluated to false. In the case
of an assertion, this early termination has the special name assertion violation,
and it is an indication that an error has occurred.

A program P has a bug on input I if an assertion violation occurs during the
execution of P on I. Otherwise, the program is correct for I.1 Whenever P has
a bug on I, this bug is associated with an error trace, which is the sequence of
statements visited during the execution of P on I.

3.2 From Programs to Program Formulas

In this section we explain how a program is translated into a set of constraints,
whose conjunction constitutes the program formula. In addition to constraints
representing assignments and conditionals, such a formula includes constraints
representing assumptions and a constraint representing the negated conjunction
of all assertions. Thus, a satisfying assignment (a model) of the program formula

1 Alternatively, one could assume to know the desired output of the program for I
and define a bug on I as a case where the program outputs the wrong value for I.

Must Fault Localization for Program Repair 663

represents an execution of the program that satisfies all assumption but violates
at least one assertion. Such an execution is a counterexample.

The translation, following [8], goes through four stages. We refer to the exam-
ple in Fig. 2 to demonstrate certain steps.

1. Simplification: Complex constructs of the language are replaced with equiv-
alent simpler ones. Also, branch conditions are replaced with fresh boolean
variables. In the example, the if condition (w > 3) is assigned to a fresh
boolean variable g. Branching is then done based on the value of g, instead
of (w > 3).

2. Unwinding: The body of each loop and each function is inlined wb times. The
set of executions of the new program is called the wb-executions of P .

3. Conversion to SSA: The program is converted to static single assignment
(SSA) form, which means that each variable in the new program is assigned
at most once. This is done by replacing all variables with indexed variables,
and increasing the index of a variable whenever it appears on the left-hand-
side of an assignment. In the example, the first assignment to t is replaced
by an assignment to t0 and the second, by an assignment to t1. Since t
is assigned inside a conditional statement and is used after the statement,
the if-then-else assignment t2 := g0?t1:t0 is inserted in order to determine
which copy of t should be used after the conditional statement. These special
if-then-else assignments are called Φ-assignments. In the example, there is
also a Φ-assignment for y (y2=g0?y1:y0).
Note that, assertions are also expressed by means of indexed variables. The
specific indices in the assertion indicate the location in the execution in which
the assertion is checked. In addition, if an assumption or an assertion is
located within an if statement with branch condition g, then it is implied by
g if it is within the then part of the if and is implied by ¬g, if it is within the
else part. In the example, assert (t < x) is encoded by (g0 → t1 < x0).

4. Conversion to SMT constraints: Once the program is in SSA form, conver-
sion to SMT is straightforward: An assignment x:=e is converted to the con-
straint x = e; A Φ-assignment x:= b?x1:x2 is converted to the constraint
(x = ite(b, x1, x2)), which is an abbreviation of ((b∧x = x1)∨ (¬b∧x = x2));
An assume statement assume(bexpr) is converted to the constraint bexpr,
and an assert statement assert(bexpr) is converted to the constraint ¬bexpr
(since a model of the SMT formula should correspond to an assertion viola-
tion).
If the program includes several assertions, then they are converted to one
constraint, representing the negation of their conjunction. In the example,
the two assertions are converted to the following constraint:

¬(y2 > z0) ∨ ¬(g0 → t1 < x0).

We say that a constraint encodes the statement it came from and we partition
constraints into three sets, Sassign, Sphi and Sdemand, based on what they
encode. Sassign contains constraints encoding assignments, including those
originated from assigning a fresh boolean variable with a branching condition;

664 B.-C. Rothenberg and O. Grumberg

Sphi - encoding Φ-assignments; and Sdemand - encoding demands from assert
and assume statements. In particular, it encodes the negated conjunction of
all assertions.

The triple (Sassign, Sphi, Sdemand) is called a program constraint set. The
program constraint set we get from a program P when using wb as an unwinding
bound is denoted CSwb

P . The program formula ϕwb
P , is the conjunction of all

constraints in all three sets of CSwb
P :

ϕwb
P = (

∧

s∈Sassign

s) ∧ (
∧

s∈Sphi

s) ∧ (
∧

s∈Sdemand

s).

Theorem 1 ([9]). A program P is wb-violation free iff the formula ϕwb
P is unsat-

isfiable.

For simplicity of notation, in the rest of the paper we omit the superscript wb.
Since the program formula is the result of translating an SSA program, the

formula is defined over indexed variables. Further, each constraint in Sassign

corresponds to the single variable, which is assigned in the statement encoded
by the constraint.

4 Must Fault Localization

In this section, we precisely define when a location should be considered relevant
for a bug. This definition is motivated by a repair perspective, taking into account
which changes can be made to statements in order to repair a bug.

In order to define the changes allowed, we use repair schemes. A repair scheme
S is a function from statements to sets of statements. An S-patch for a program
P is a set of pairs of location and statement {(l1, str1), · · · , (lk, strk)}, for which
the following holds: for all 1 ≤ i ≤ k, let sti be the statement in location li in
P , then stri ∈ S(sti). The patch is said to be defined over the set of locations
{l1, · · · , lk}. Applying an S-patch τ to a program P means replacing for every
location li in τ , the statement sti with stri . This results in an S-patched program
of P . The set of all S-patched programs created from a program P is the S-search
space of P .

Let P be a program with a bug on input I, and S be a repair scheme. An
S-repair for I is an S-patched program that is correct for I. An S-repairable set
is a set of locations F such that there exists an S-repair defined over F . An S-
repairable set is minimal if removing any location from it makes it no longer an
S-repairable set. A location is S-relevant if it is a part of a minimal S-repairable
set.2

In this paper, we focus on two repair schemes that are frequently used
for automated program repair: the arbitrary scheme (Sarb) and the mutation
scheme (Smut). Both schemes only manipulate program expressions, but the

2 We sometimes omit S from notations where S is clear from context.

Must Fault Localization for Program Repair 665

mutation scheme is more restrictive than the arbitrary scheme: Sarb(st) is the
set of all options to replace the expression of st3 with an arbitrary expression,
while Smut(st) only contains statements where the expression in st is mutated
according to a set of simple syntactic rules. The rules we consider are replacing
a + operator with a - operator, and vice versa, replacing a < operator with a
> operator, and vice versa, and increasing or decreasing a numerical constant
by 1.4

Example 1. In this example we demonstrate how different repair schemes define
different sets of relevant locations. Consider again the foo program from Fig. 2.
This program has a bug on input I = x ← 0, w ← 0. The error trace associated
with the bug is 〈1, 2, 3, 4, 8〉 (the assertion on line 8 is violated).

The location set {3, 4} is a minimal Smut-repairable set: It is an Smut-
repairable set because applying the Smut-patch {(3, z:=x-3), (4, w<3)}, results
in an Smut-patched program that is correct for I. This set is also minimal,
because none of the Smut-patches defined over {3} or {4} alone is an Smut-repair
for I: Each one of the Smut-patches {(3, z:=x-3)}, {(3, z:=x+4)}, {(3, z:=x+2)},
{(4, w<3)}, {(4, w>4)}, {(4, w>2)} results in an assertion violation for I.

On the other hand, {3, 4} is not a minimal Sarb-repairable set: For example,
the Sarb-patch {(3, z:=-6)} is an Sarb-repair for I. Note that, the Sarb-patch
only needs to repair the bug, and not the program. That is, it is sufficient that
there is no assertion violation on the specific input I, even though an assertion
could be violated in the Sarb-patched program on another input.

The set of all minimal Sarb-repairable sets is {{2}, {3}, {4, 5}}. Therefore,
the set of Sarb-relevant statements is {2, 3, 4, 5}. The set of all minimal Smut-
repairable sets is {{2, 3}, {3, 4}}. Therefore, the set of Smut-relevant statements
is {2, 3, 4}.

Fault localization should focus the programmer’s attention on locations that
are relevant for the bug. But, returning the exact set of S-relevant locations,
as defined above, can be computationally hard. In practice, what many fault
localization algorithms return is a set of locations that may be relevant: The
returned locations have a higher chance of being S-relevant than those who are
not, but there is no guarantee that all returned locations are S-relevant, nor
that all S-relevant locations are returned. We call such an algorithm may fault
localization. In contrast, we define must fault localization, as follows:

Definition 1 (S-must location set). An S-must location set is a set of loca-
tions that contains at least one location from each minimal S-repairable set.5

3 If st is an assignment, its expression is its right-hand-side. If st is a conditional
statement, its expression is its condition.

4 This simple definition of the mutation scheme is used only for simplicity of presenta-
tion. Our implementation supports a much richer set of mutation rules, as explained
in Sect. 7.

5 This is, in fact, a hitting set of the set of all minimal S-repairable sets.

666 B.-C. Rothenberg and O. Grumberg

Definition 2 (S-must fault localization). An S-must fault localization algo-
rithm is an algorithm that for every program P and every buggy input I, returns
an S-must location set.

Note that, an S-must location set is not required to contain all S-relevant
locations, but only one location from each minimal S-repairable set. Still, this is
a powerful notion since it guarantees that no repair is possible without including
at least one element from the set.

Also note, that the set of all locations visited by P during its execution on
I is always an S-must location set. This is because any S-patch where none of
these locations is included is definitely not an S-repair, since the same assertion
will be violated along the same path. However, this set of locations may not be
minimal. In the sequel, we aim at finding small S-must location sets.

Example 2. Continuing the previous example, the set {2, 3, 4} is an Sarb-must
location set, and also an Smut-must location set. In contrast, the set {2, 3} is
only an Smut-must location set, but not an Sarb-must location set, since it does
not contain any location from the Sarb-minimal repairable set {4, 5}. The set
{2} is neither an Sarb-must location set nor an Smut-must location set.

Example 3. Consider again the absValue procedure of Fig. 1. The set {2} is an
Smut-minimal repairable set and an Sarb-minimal repairable set for the bug in
question. Therefore, we can say that all algorithms that were shown in Sect. 2
not to include the location 2 in their result [2,6,14,21,23], are neither Sarb-must
nor Smut-must fault localization algorithms.

5 Fault Localization Using Program Formula Slicing

In this section we formally define the notion of slicing. Based on this, we present
an algorithm for computing must fault localization for Sarb and Smut.

5.1 Program Formula Slicing

A central building block in our fault localization technique is slicing. But, we do
not define slicing in terms of the program directly, but in terms of the program
formula representing it, instead. The input to the slicing algorithm is a program
formula ϕ, a model μ of it, and a variable v. Recall that ϕ is a conjunction of
constraints from Sassign, Sphi and Sdemand (see Sect. 3.2). The goal of the slicing
algorithm is to compute the slice of the variable v with respect to ϕ and μ.
Intuitively, this slice includes the set of all constraints that influence the value
v gets in μ.

Similar to traditional slicing, it is easy to define the slice as the reflexive-
transitive closure of a dependency relation. But, unlike traditional slicing, which
defines dependencies between statements, our dependency relation is between
variables of the formula. These variables are indexed. Each originates from a
variable of the underlying SSA program, where it was assigned at most once.

Must Fault Localization for Program Repair 667

y1

y0

x0

y2

t1

z0

g0

w0

t2

t0

g0

¬g0

g0

¬g0

y1

y0

x0

y2

t1

z0

g0

w0

t2

t0

g0

¬g0

g0

¬g0

SDG DDϕ,μ, µ[g0] = false
InfluenceV arsϕ,μ(y2)

Fig. 3. Illustration of the static and dynamic dependency relations of the foo

procedure

We refer to variables never assigned as input variables, and denote the set con-
taining them by InputV ars. A variable v that was assigned once is called a
computed variable, and the (unique) constraint encoding the assignment to it is
denoted Assign(v). The set of all computed variables is denoted ComputedV ars.
We also denote by vars(e) the set of variables that appear in a formula or expres-
sion e.

Definition 3 (Static Dependency). The static dependency relation of a pro-
gram formula ϕ is SDϕ ⊆ vars(ϕ) × vars(ϕ) s.t.

SDϕ = {(v1, v2) | ∃e s.t. (v1 = e) ∈ Sassign, v2 ∈ vars(e)}∪

{(v, b), (v, v1), (v, v2)| (v = ite(b, v1, v2)) ∈ Sphi}
.

The left-hand-side of Fig. 3 presents the graph for the static dependency
relation of the foo procedure of Fig. 2. The nodes in the graph are (indexed)
variables and there is an arrow from v1 to v2 iff (v1, v2) ∈ SDϕ .

Definition 4 (Dynamic Dependency). The dynamic dependency relation of
a program formula ϕ and a model μ of ϕ is DDϕ,μ ⊆ vars(ϕ) × vars(ϕ) s.t.

DDϕ,μ = {(v, v1) | ∃b, v2 s.t. (v = ite(b, v1, v2)) ∈ Sphi, μ[b] = true}

∪{(v, v2) | ∃b, v1 s.t. (v = ite(b, v1, v2)) ∈ Sphi, μ[b] = false}
∪{(v, b) | ∃v1, v2 s.t. (v = ite(b, v1, v2)) ∈ Sphi}

∪{(v, v1) | ∃e s.t. (v = e) ∈ Sassign, v1 ∈ vars(e)}
Note that, dynamic dependency includes only dependencies that coincide with
the specific model μ, which determines whether the then or the else direction

668 B.-C. Rothenberg and O. Grumberg

of the if is executed. Static dependency, on the other hand, takes both options
into account. Thus, DDϕ,μ ⊆ SDϕ for every model μ.

The bold arrows on the right-hand-side of Fig. 3 represent the relation DDϕ,μ

of the foo procedure, for any μ where μ[g0] = false.

Definition 5 (Influencing Variables). Given a program formula ϕ, a model
μ of it, and a computed variable v, the set of influencing variables of v with
respect to ϕ and μ is:

InfluenceV arsϕ,μ(v) = {v′ | (v, v′) ∈ (DDϕ,μ)∗}

The circled nodes on the right-hand-side of Fig. 3 represents the variables that
belong to InfluenceV arsϕ,μ(y2).

Definition 6 (Program Formula Slice). Given a program formula ϕ, a model
μ of it, and a computed variable v, the program formula slice of v with respect
to ϕ and μ is:

Sliceϕ,μ(v) = {Assign(v′) | v′ ∈ (InfluenceV arsϕ,μ(v) ∩ ComputedV ars)}

Thus, intuitively, Sliceϕ,μ(v) includes all constraints (in SSA form) encoding
assignments that influence the value of v in μ. More precisely, when considering
the conjunction of only the constraints of Sliceϕ,μ(v), as long as the value of all
input variables remains the same as in μ, the value of v will remain the same as
well. This is formalized in the following theorem, whose proof can be found in
the full version [39].

Theorem 2. For every ϕ, μ and v, the following holds:
⎡

⎣

∧

c∈Sliceϕ,μ(v)

c ∧
∧

vi∈InputV ars

(vi = μ[vi])

⎤

⎦ =⇒ (v = μ[v])

Continuing with our example of foo procedure,

Sliceϕ,μ(y2) = { y2 = ite(g0, y1, y0), y0 = x0 − 3, g0 = w0 > 3}.

5.2 Computing the Program Formula Slice

The computation of the program formula slice is composed of two steps. In the
first step, we build a graph based on the static dependency relation, SDϕ . In
the second step, we compute the slice Sliceϕ,μ(v) by computing the set of nodes
reachable from v in this graph, using a customized reachability algorithm, which
makes use of the model μ.

The graph built during the first step is called the Static Dependency Graph
(SDG) of ϕ. Nodes of this graph are variables of ϕ and edges are the static
dependencies of SDϕ . Edges are annotated using the function ψ, mapping every
static dependency (v, v′) to a boolean formula such that (v, v′) ∈ DDϕ,μ iff

Must Fault Localization for Program Repair 669

μ |= ψ[(v, v′)]. Specifically, for every constraint of the form (v = ite(b, v1, v2)) in
Sphi, the edge (v, v1) is annotated with b and the edge (v, v2) is annotated with
¬b. All other edges of the graph are annotated with true. See the left-hand-side
of Fig. 3. For simplicity all true annotations are omitted.

The algorithm for the second step is presented in Algorithm 1. This algorithm
gets a program formula ϕ, its SDG, a model μ of ϕ, and a variable v, and
computes Sliceϕ,μ(v). First, the set InfluenceV arsϕ,μ(v) is computed as the
set of nodes reachable from v in SDG, except that the reachability algorithm
traverses an edge (v, v′) only if μ |= ψ[(v, v′)]. Thus, an edge (v, v′) is traversed
iff (v, v′) ∈ DDϕ,μ, which means that the set of reachable nodes computed this
way is in fact InfluenceV arsϕ,μ(v). Finally, the slice Sliceϕ,μ(v) is the set of
constraints encoding assignments to variables in InfluenceV arsϕ,μ(v).

Algorithm 1. Compute The Program
Formula Slice
Input: a program formula ϕ, its SDG,

a model μ of ϕ and a variable v.
Output: Sliceϕ,μ(v).

Procedure
ComputeSlice(ϕ, SDG, μ, v)
1: V := ∅
2: ModelBasedDFS(SDG, v, μ, V)
3: Slice := {Assign(v′) | v′ ∈ V }
4: return Slice

Procedure
ModelBasedDFS(SDG, v, μ, V)
1: V := V ∪ {v}
2: for (v, w) ∈ E s.t. μ |= ψ[(v, w)] do
3: if w /∈ V then
4: ModelBasedDFS(SDG, w, μ, V)

Algorithm 2. FOrmula-Slicing-Fault-
Localization (FOSFL)

Input: A program formula ϕ of a
program P , and a model μ of ϕ.

Output: A set of statements F of P .

Procedure FOSFL(ϕ, μ)
1: SDG := ComputeDependencyGraph(ϕ)
2: demandFormula :=

∧
c∈Sdemand

c

3: V := ImportantV ars(demandFormula,μ)
4: S := ∅
5: for v ∈ V do
6: S := S ∪ ComputeSlice(ϕ, SDG, μ, v)

7: F := ∅
8: for c ∈ S ∩ Sassign do
9: F := F ∪ {Origin(c)}
10: return F

5.3 The Fault Localization Algorithm

Our fault localization algorithm is presented in Algorithm 2. The input to this
algorithm is a program formula ϕ of a program P , and a model μ of ϕ. The
model μ represents a buggy execution of P on an input I, and the algorithm
returns a set of locations, F , that is an Smut-must location set.

As before, we assume to know the origin of constraints in ϕ, and use the
sets Sassign, Sphi and Sdemand. Furthermore, here we also assume that for every
constraint c ∈ Sassign, we know exactly which program statement it came from.
We call this statement the origin of c, and denote it by Origin(c).

As a first step, the algorithm computes a set of variables V by calling the
procedure ImportantV ars. This procedure receives an SMT formula ϕ and a
model μ of ϕ, and reduces μ to a partial model of ϕ. A partial model of ϕ
w.r.t. μ is a partial mapping from variables of the formula to values, which is

670 B.-C. Rothenberg and O. Grumberg

consistent with μ and is sufficient to satisfy the formula. For example, for the
formula ϕ = (a = 0 ∨ b = 0) and the model μ = {a �→ 0, b �→ 1}, the valuation
{a �→ 0} is a partial model of ϕ. Procedure ImportantV ars will return the set
of variables that appear in the partial model ({a} in our example). Details of
this procedure are presented in the full version [39].

The formula passed to ImportantV ars in our case is the conjunction of all
demands in Sdemand. Recall that the set Sdemand contains constraints encoding
all conditions that need to be met for an assertion violation to happen: Condi-
tions from assumptions appear as is, while conditions from assertions are negated
and disjuncted (See Fig. 2. The last constraint on the right-hand-side represents
the disjunction of the negated assertions). Therefore, the set of variables V ,
returned by ImportantV ars, is such that as long as their values in μ remain
the same, this conjunction will still be satisfied, which means that an assertion
violation will still occur.

To make sure that their values do not remain the same, we use slicing: The
algorithm proceeds by computing the program formula slice for each of the vari-
ables in V using Algorithm 1. All slices are united into the combined set S. This
set represents all constraints that if remain the same, then all the variables in
V maintain their value. Thus, at least one element from S must be included in
any repair.

Note that, by first applying ImportantV ars, we reduce the number of vari-
ables whose value should be preserved in order to maintain the bug. The smaller
this number, the smaller F is. We will explain the usefulness of a small F in
Sect. 6.

Finally, we need to translate the constraints in S back to statements of P .
Because of how the slicing algorithm works, constraints in S may belong to either
Sassign or Sphi. If they belong to Sphi, we ignore them, because they encode the
control-flow structure of the program, rather than a particular statement. Oth-
erwise, we add the origin of the constraint, which is a statement of the program,
to the set of returned locations, F . Note that, several different constraints may
have the same origin, for example due to loop unwinding. In such a case, it is
sufficient for one constraint encoding the statement st to be included in S, for
st to be included in F . A proof for the following theorem can be found in the
full version [39].

Theorem 3. Algorithm FOSFL is an Sarb-must and also an Smut-must fault
localization algorithm.

5.4 Incremental Fault Localization

It is often necessary to apply fault localization to several bugs in the same pro-
gram, or even to several programs with different bugs. Therefore, it is desired
that the fault localization algorithm be incremental, which means that the com-
putation effort of each fault localization attempt should be proportional to the
changes made from the previous attempt. In other words, we should avoid re-
computation whenever possible, taking advantage of the fact that the program
remains the same, or at least remains similar.

Must Fault Localization for Program Repair 671

Algorithm FOSFL can be easily made incremental for the case of different
bugs of the same program. In this case, several successive calls are made to
the algorithm using the same program formula ϕ, but with different models of
it. Since the static dependency relation SDϕ depends solely on the program
formula, and not on the model, we can avoid re-computing the SDG for each
call. Instead, we can compute the SDG once, upfront, and whenever FOSFL
is called, simply skip the first line. We call the incremental version of FOSFL
Incremental-Formula-Slicing-Fault-Localization (I-FOSFL).

Note that I-FOSFL is useful not only for fault localization of different bugs
of the same program, but also whenever the SDG remains the same during
successive fault localization calls. This is the case when considering different
mutated programs P ′ of the same program P , since every change to P ′ replaces
an expression e with an expression e′ over the same variables. Thus, the SDG
remains the same, since the static dependency relation, in fact, only depends on
vars(e), and not on e itself6.

6 Program Repair with Iterative Fault Localization

In [38], a mutation-based algorithm for program repair, named AllRepair, was
presented. This algorithm uses the mutation scheme in order to repair programs
with respect to assertions in the code. Unlike fault localization, where the moti-
vation is repairing a bug for a specific input, program repair aims at repairing the
program for all inputs. To avoid confusion, we refer to a repair for all inputs as a
full repair. In [38], the notion of a full repair is bounded: loops are unwound wb
times, and a program is considered fully repaired if no assertion is violated along
executions with at most wb unwindings. A program that is not fully repaired
is said to be buggy. For the rest of this section, we refer to an Smut-patch as a
patch, and to an Smut-patched program as a mutated program.

As its name implies, the goal of AllRepair is to obtain all minimal fully
repaired mutated programs, where minimality refers to the patch used in the
program. It goes through an iterative generate-validate process. The generate
phase chooses a mutated program from the search space, and the validate phase
checks whether this program is fully repaired, by solving its program formula.
The mutated program is fully repaired iff the formula is unsatisfiable.

The generate-validate process is realized using an interplay between a SAT
solver and an SMT solver. The SAT solver is used for the generate stage. For
every mutation M and line l, there is a boolean variable BM (l), which is true
if and only if mutation M is applied to line l. A boolean formula is constructed
and sent to the SAT solver, where each satisfying assignment corresponds to
a program in the search space. The SMT solver is used for the validate stage.
The program formula of the mutated program is solved to check if it is buggy

6 This is true for Smut but not for Sarb, since the latter allows to replace an expression
e with an expression e′ over different variables.

672 B.-C. Rothenberg and O. Grumberg

Find an
unexplored

mutated program P M

Generate

Solve ϕP M

to determine if
P M is fully repaired

Validate

Fault localization

output
P M

P M unsat

ϕP M , μ
s.t.

μ |= ϕP M

satblock all
P ′ s.t.

P M ≡F P ′ F

block all P ′ s.t. P M � P ′

Fig. 4. Algorithm fl-AllRepair: Mutation-based program repair with iterative fault
localization. The notation P M ≡F P ′ means that P M and P ′ agree on the content of
all locations in F . The notation P M � P ′ means that the patch used for creating P ′

is a superset of the patch used for creating P M .

or not. To achieve minimality, when a mutated program created using a patch τ
is fully repaired, every mutated program created using a patch τ ′, with τ ⊆ τ ′,
is blocked.

Example 4. Let PM be a fully repaired mutated program obtained by applying
the patch τ , consisting of mutating line l1 using mutation M1 and mutating
line l2 using mutation M2. Then blocking any superset of τ will we done by
adding to the boolean formula representing the search space, the blocking clause
¬(BM1(l1) ∧ BM2(l2)), which means “either do not apply M1 to l1 or do not
apply M2 to l2”. This clause blocks any mutated program with τ ⊆ τ ′.

Blocking such programs prunes the search space, but only in a limited way. No
pruning occurs when the mutated program is buggy.

In this paper, we extend the algorithm of [38] with a fault localization compo-
nent. The goal of the new component is to prune the search space by identifying
sets of mutated programs that are buggy, without inspecting each of the indi-
vidual programs in the set.

Figure 4 shows the program repair algorithm with the addition of fault local-
ization. In the new algorithm, called fl-AllRepair, whenever a mutated pro-
gram is found to be buggy during the validation step, its program formula is
passed to the fault localization component along with the model obtained when
solving the formula. The fault localization component returns a set of locations
F , following the I-FOSFL algorithm. Since this set is guaranteed to be an Smut-
must location set, at least one of the locations in it should be changed for the
bug to be fixed. Consequently, all mutated programs in which all locations from
F remain unchanged are blocked from being explored in the future. As before,
blocking is done by adding a blocking clause that disallows such programs.

Example 5. Let PM be a buggy mutated program for which F consists of
{l1, l2, l3}, where l1 was mutated with M1, l2 was not mutated, and l3 was mutated
with M3. The blocking clause ¬BM1(l1)∨¬BOriginal(l2)∨¬BM3(l3) will be added

Must Fault Localization for Program Repair 673

to the boolean formula representing the search space of mutated programs. It
restricts the search space to those mutated programs that either do not apply
mutation M1 to l1, or do mutate l2 or do not apply M3 to l3. This will prune from
the search space all mutated programs which are identical to PM on the locations
in F . Note that smaller F will result in a larger set of pruned programs.

Proposition 1. Algorithm fl-AllRepair is sound and complete.

7 Experimental Results

We have implemented our fault localization technique and its integration
with mutated-based program repair in the tool AllRepair, available at
https://github.com/batchenRothenberg/AllRepair. In this section, we present
experiments evaluating the contribution of the new fault localization component
to the program repair algorithm. We refer to the algorithm of [38], without fault
localization, as AllRepair, and to the algorithm presented in this paper as FL-
AllRepair. Both algorithms search for minimal wb-violation free programs, and
both are sound and complete. Thus, for every buggy program and every bound
wb, both algorithms will eventually produce the same list of repairs.

The difference between the algorithms lies in the repair loop. In case a mutated
program is found to be buggy, the AllRepair algorithm will only block the one pro-
gram, while the FL-AllRepair algorithm might block a set of programs. Therefore,
the number of repair iterations required to cover the search space can only decrease
using the FL-AllRepair algorithm. On the other hand, the cost of each iteration
with fault localization is strictly higher than without it. Our goal in this evaluation
is to check if the use of fault localization pays off. That is, to check if repairs are
produced faster using FL-AllRepair than using AllRepair.

Benchmarks. For our evaluation, we have used programs from two benchmarks:
TCAS and Codeflaws. The TCAS benchmark is part of the Siemens suite [12],
and is frequently used for program repair evaluation [5,34,38]. The TCAS pro-
gram implements a traffic collision avoidance system for aircrafts, and consists
of approximately 180 lines of code. We have used all 41 faulty versions of the
benchmark in our experiments.

The Codeflaws benchmark [41] is also a well-known and widely used bench-
mark for program repair. Programs in this benchmark are taken from buggy user
submissions to the programming contest site Codeforces7. In each program, a
user tries to solve a programming problem published as part of a contest on the
site. The programming problems are varied, and also the users have a diverse
level of expertise. The benchmark also provides correct versions for all buggy
versions, which are used to classify bug types by computing the syntactic differ-
ence. For our experiments we randomly chose 13 buggy versions classified with
bug types that can be fixed using mutations. The size of the chosen programs
ranges from 17 to 44 lines of code.
7 http://codeforces.com/.

https://github.com/batchenRothenberg/AllRepair
http://codeforces.com/

674 B.-C. Rothenberg and O. Grumberg

Mutations. The mutations used in AllRepair (and accordingly in FL-AllRepair)
is a subset of themutations used in [37].Wedefine twomutation levels, where level 1
contains only a subset of the mutations available in level 2. Thus, level 1 involves
easier computation but may fail more often in finding repairs.

Level 1 Level 2

{+, −}, {/, %} {+, −, ∗}, {/, %}
{>, >=},
{<, <=}

{>, >=, <, <=}, {==, ! =}

{||, & & }
{>>, <<},{&, |, ˆ}

C → C +1, C → C −1, C → −C,
C → 0

Table 1. Partition of mutations to levels

Table 1 shows the list of muta-
tions used in each mutation level.
For example, for the category of
arithmetic operator replacement,
in mutation level 1, the table
specifies two sets: {+,−} and
{/,%}. This means that a + can
be replaced by a − , and vice
versa, and that the operators /, %
can be replaced with each other.
Constant manipulation mutations
apply to a numeric constant and include increasing its value by 1 (C → C +1),
decreasing it by 1 (C → C −1), setting it to 0 (C → 0) and changing its sign
(C → −C).

Setting. All of our experiments were run on a Linux 64-bit Ubuntu 16.0.4 virtual
machine with 1 CPU, 4 GB of RAM and 40 GB of storage, provided using the
Vmware vRA service8. For each of the buggy versions in our benchmarks we have
experimented with both mutation levels 1 and 2. For the Codeflaws benchmarks we
additionally experimented with different unwinding bounds: 2 (entering the loop
once), 5, 8 and 10. This experiment is irrelevant to the TCAS benchmarks since
the TCAS program does not contain loops or recursive calls. Overall we had 186
combinations of buggy programs, mutation levels and unwinding bounds. We refer
to each such combination as an input. For each input, we run both the AllRepair
and the FL-AllRepair algorithms with a timeout of 10 minutes and a mutation size
limit of 2 (i.e., at most two mutations could be applied at once).

7.1 Results

In total, 131 different repairs were found during our experiments, for 60 different
inputs (for several inputs there was more than one possible repair). In this count,
we treat repairs fixing the same program in the same way as different, if they were
produced using different mutation levels or unwinding bounds. This is because
our evaluation is concerned with the time to find these repairs, and both the
mutation level and the unwinding bound greatly influence this time.

Because the time to produce a repair sometimes varied in several orders of
magnitude depending on the input, we have chosen to split repairs into three
categories: fast, intermediate, and slow, and examine the time difference sepa-
rately for each category. Splitting repairs to categories was done according to
the time it took to find them using the AllRepair algorithm. If that time was

8 https://www.vmware.com/il/products/vrealize-automation.html.

https://www.vmware.com/il/products/vrealize-automation.html

Must Fault Localization for Program Repair 675

(a) Fast repairs (< 5s)

0

5

10
AR

FLAR

(b) Medium repairs (5 − 240s)

0

20

40

60 AR

FLAR

(c) Slow repairs (> 240s)

0

600

1,200

1,800

2,400

3,000 AR

FLAR

Fig. 5. Time to find each repair using AllRepair (AR) and FL-AllRepair (FLAR). Each
x value represents a single repair, and the corresponding y values represent the time, in
seconds, it took to find that repair using both algorithms. Note that the graphs differ
in the y axis scale.

under 5 seconds, the repair was considered fast. If it was over 4 minutes, it was
considered slow, and otherwise it was considered intermediate.

Figure 5 shows a comparison of the time, in seconds, it took to find repairs
in both algorithms. There are three graphs, according to our three categories. In
all graphs, each x value represents a single repair, where the corresponding blue
dot in the y axis represents the time it took to find that repair using AllRepair,
and the red square represents the time using FL-AllRepair. So, whenever the
blue dot is above the red square, FL-AllRepair was faster in finding that repair,
and the y difference represents the time saved.

For the fast category (Fig. 5a), there is no clear advantage to FL-AllRepair.
The majority of the repairs in this category are produced in less than a second
using both algorithms. For the remaining repairs, there appears to be as many
cases where FL-AllRepair is faster as when it is slower. But, in all cases where
there is a time difference, in either direction, it is only of a few seconds.

For the intermediate category (Fig. 5b), the advantage of FL-AllRepair is
starting to become clear. There are now only 4 repairs (out of 20) for which
FL-AllRepair is slower. Also, on average, it is slower by 4 seconds, but faster by
10 seconds. Finally, for the slow category (Fig. 5c), there is an obvious advantage
to FL-AllRepair. First, it is able to find 6 repairs exclusively, while AllRepair
reaches a time-out. Also, for the remaining 27 repairs, FL-AllRepair is faster in
all cases but one. The time difference is now also very significant: FL-AllRepair
is faster by 1512 seconds (around 25 minutes) on average.

To sum up, the results show that in many cases our algorithm FL-AllRepair
is able to save time in finding repairs. The savings are especially significant in

676 B.-C. Rothenberg and O. Grumberg

cases where it takes a long time to produce the repair using the original AllRepair
algorithm, and these are the cases where time savings are most needed.

7.2 Comparison with Other Repair Methods

The TCAS benchmark was recently used also in [34], where AllRepair’s per-
formance was compared to that of four other automated repair tools: Angelix
[29], GenProg [26], FoRenSiC [5] and Maple [34]. AllRepair was found
to be faster by an order of magnitude than all of the compared tools, taking
only 16.9 seconds to find a repair on average, where the other tools take 1540.7,
325.4, 360.1, and 155.3 seconds, respectively. Since in our experiments on TCAS
fl-AllRepair was faster than AllRepair on average (and even when it was
slower it was only by a few seconds), we conclude that fl-AllRepair also com-
pares favorably to these other tools.

In terms of repairability, the repair scheme used by AllRepair (and fl-
AllRepair) is limited compared to the other tools: AllRepair only uses muta-
tions on expressions while Angelix, FoRenSiC and Maple allow replacing an
expression with a template (e.g., a linear combination of variables), which is
then filled out to create a repair. GenProg allows modifying a statement as
well as deleting it or adding a statement after it. Therefore, the other tools are
inherently capable of producing repairs in more cases than AllRepair.

In the case of TCAS, the study showed that AllRepair is able to find
repairs for 18 versions (a result that we confirm in our experiments as well),
while Angelix, GenProg, FoRenSiC and Maple found 32, 11, 23 and 26,
respectively. But, what the study also showed, is that in repair methods that
are based on tests, in many cases the repair found only adhered to the test-
suite, but was not correct when inspected manually. When counting only correct
repairs, AllRepair finds repairs for 18 versions (all of AllRepairs repairs
are correct), while Angelix, GenProg, FoRenSiC and Maple find 9, 0, 15
and 26, respectively. Since fl-AllRepair is able to find all repairs found by
AllRepair, the same results also apply to fl-AllRepair.

8 Related Work

Dynamic slicing has been widely used for fault localization in the past [16,36,
43,45–47]. But, as we have seen, traditional notations of dynamic slicing [2,23]
are not must (with respect to neither of the presented schemes), and thus, the
above techniques may fail to include relevant locations in their results.

Other approaches for fault localization include spectrum-based (SBFL) [1,
13,20,31,44], mutation-based (MBFL) [15,18,30,35] and formula-based (FBFL)
[7,14,17,21,40]. Both SBFL and MBFL techniques compute the suspiciousness of
a statement using coverage information from failing and passing test executions.
MBFL uses, in addition, information on how test results change after applying
different mutations to the program. Both SBFL and MBFL techniques can be
seen as may fault localization techniques, in nature: they return locations that

Must Fault Localization for Program Repair 677

are likely to be relevant to the failing execution, based on all executions. We
see may fault localization techniques as orthogonal to ours (and to must fault
localization techniques in general), since in the trade-off between returning a
small set of locations, and returning one that is guaranteed to contain all relevant
statements, may techniques prefer the first, while must techniques prefer the
second. In the context of repair, there are interesting applications for both.

FBFL techniques represent an error trace using an SMT formula and analyze
it to find suspicious locations. These techniques include using error invariants
[6,14,17,40], maximum satisfiability [21,24,25], and weakest preconditions [7].
What we were able to show in this paper, is that the methods of [6,14,21] are
not must. In contrast, we believe (though we do not prove it) that the methods
of [7,24,25] are must. But, what [7,24,25] have in common is that they use the
semantics of the error trace or the program. Though semantic information can
help to further minimize the number of suspicious locations, retrieving it involves
using expensive solving-based procedures. Our approach, on the other hand,
uses only syntactic information, which makes the fault localization computation
relatively cheap; No SMT solving is needed. Thus, these approaches can be seen
as complementary to ours.

In the literature there is also a wide range of techniques for automated pro-
gram repair using formal methods [4,10,19,22,29,32,33,42]. Both [11] and [37]
also use fault localization followed by applying mutations for repair. But, unlike
this work, fault localization is applied only for the original program. Also, nei-
ther the Tarantula fault localization used in [11] nor the dynamic slicing used
in [37] carries the guarantee of being a must fault localization. The tool MUT-
APR [3] fixes binary operator faults in C programs, but only targets faults that
require one line modification. The tools FoREnSiC [5] and Maple [34] repair
C programs with respect to a formal specification, but they do so by replacing
expressions with templates, which are then patched and analysed. SemGraft
[28] conducts repair with respect to a reference implementation, but relies on
tests for SBFL fault localization of the original program.

9 Conclusion

In this work we define a novel notion of must fault localization, that carefully
identifies program locations that are relevant for a bug, so that the set is suffi-
ciently small but is guaranteed not to miss desired repairs. We also show that
the notion of must fault localization should be defined with respect to the repair
scheme in use. We show that our notion of must fault localization is particularly
useful in pruning the search space of a specific mutation-based repair algorithm.

To the best of our knowledge, we are the first to investigate the widely-used
notion of fault localization and to suggest criteria for evaluating its different
implementation.

678 B.-C. Rothenberg and O. Grumberg

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.C.: An evaluation of similarity coeffi-
cients for software fault localization. In: Proceedings of the 12th Pacific Rim Inter-
national Symposium on Dependable Computing, PRDC 2006, pp. 39–46 (2006)

2. Agrawal, H., Horgan, J.R.: Dynamic Program Slicing. In: PLDI, pp. 246–256 (1990)
3. Assiri, F.Y., Bieman, J.M.: MUT-APR: MUTation-based automated program

repair research tool. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC,
vol. 887, pp. 256–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
03405-4 17

4. Attie, P.C., Dak, K., Bab, A.L., Sakr, M.: Model and program repair via SAT
solving. ACM Trans. Embed. Comput. Syst. 17(2), 1–25 (2017)

5. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G., Könighofer, R., Raik, J.,
Repinski, U., Sülflow, A.: FoREnSiC– an automatic debugging environment for C
programs. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp.
260–265. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-
3 24

6. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
189–208. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 13

7. Christakis, M., Heizmann, M., Mansur, M.N., Schilling, C., Wüstholz, V.: Seman-
tic fault localization and suspiciousness ranking. In: Vojnar, T., Zhang, L. (eds.)
TACAS 2019. LNCS, vol. 11427, pp. 226–243. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17462-0 13

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

9. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the Design Automation
Conference, 2003, pp. 368–371. IEEE (2003)

10. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
383–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 21

11. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: 2010 Third International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 65–74. IEEE (2010)

12. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empir. Softw. Eng.
10(4), 405–435 (2005)

13. Eric Wong, W., Debroy, V., Choi, B.: A family of code coverage-based heuristics
for effective fault localization. J. Syst. Softw. 83(2), 188–208 (2010)

14. Ermis, E., Schäf, M., Wies, T.: Error invariants. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 187–201. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 17

15. Gong, P., Zhao, R., Li, Z.: Faster mutation-based fault localization with a novel
mutation execution strategy. In: Proceedings of the 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation Workshops, ICSTW
2015, pp. 1–10. IEEE (2015)

https://doi.org/10.1007/978-3-030-03405-4_17
https://doi.org/10.1007/978-3-030-03405-4_17
https://doi.org/10.1007/978-3-642-39611-3_24
https://doi.org/10.1007/978-3-642-39611-3_24
https://doi.org/10.1007/978-3-642-35873-9_13
https://doi.org/10.1007/978-3-642-35873-9_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-030-17462-0_13
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-642-32759-9_17

Must Fault Localization for Program Repair 679

16. Hofer, B., Wotawa, F.: Spectrum enhanced dynamic slicing for better fault local-
ization. ECAI 242, 420–425 (2012)

17. Holzer, A., Schwartz-Narbonne, D., Tabaei Befrouei, M., Weissenbacher, G., Wies,
T.: Error invariants for concurrent traces. In: Fitzgerald, J., Heitmeyer, C., Gnesi,
S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 370–387. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48989-6 23

18. Hong, S., Lee, B., Kwak, T., Jeon, Y., Ko, B., Kim, Y., Kim, M.: Mutation-based
fault localization for real-world multilingual programs. In: ASE, pp. 464–475 (2015)

19. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 23

20. Jones, J., Harrold, M., Stasko, J.: Visualization for fault localization. In: Proceed-
ings of ICSE 2001 Workshop on Software Visualization, pp. 71–75 (2001)

21. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI, pp. 437–446 (2011)

22. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 13

23. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29, 155–163
(1988)

24. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of multi-fault programs. J. Inf. Process. 24, 88–98 (2016)

25. Lamraoui, S.-M., Nakajima, S., Hosobe, H.: Hardened flow-sensitive trace formula
for fault localization. In: ICECCS (2015)

26. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method
for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

27. Liu, K., Koyuncu, A., Bissyande, T.F., Kim, D., Klein, J., Le Traon, Y.: You
cannot fix what you cannot find! An investigation of fault localization bias in
benchmarking automated program repair systems. In: ICST, pp. 102–113 (2019)

28. Mechtaev, S., Nguyen, M.-D., Noller, Y., Grunske, L., Roychoudhury, A.: Semantic
program repair using a reference implementation. In: ICSE (2018)

29. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: ICSE (2016)

30. Moon, S., Kim, Y., Kim, M., Yoo, S.: Ask the mutants: mutating faulty programs
for fault localization. In: ICST (2014)

31. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 1–32 (2011)

32. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 772–781. IEEE Press (2013)

33. Nguyen, T.V., Weimer, W., Kapur, D., Forrest, S.: Connecting program synthesis
and reachability: automatic program repair using test-input generation. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 301–318. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 17

34. Nguyen, T.-T., Ta, Q.-T., Chin, W.-N.: Automatic program repair using formal
verification and expression templates. In: Enea, C., Piskac, R. (eds.) VMCAI 2019.
LNCS, vol. 11388, pp. 70–91. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-11245-5 4

35. Papadakis, M., Traon, Y.L.: Metallaxis-FL: mutation-based fault localization.
Softw. Test. Verif. Reliab. 21(3), 195–214 (2015)

https://doi.org/10.1007/978-3-319-48989-6_23
https://doi.org/10.1007/11513988_23
https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-662-54577-5_17
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1007/978-3-030-11245-5_4

680 B.-C. Rothenberg and O. Grumberg

36. Qian, J., Xu, B.: Scenario oriented program slicing. In: Proceedings of the ACM
Symposium on Applied Computing, pp. 748–7752 (2008)

37. Repinski, U., Hantson, H., Jenihhin, M., Raik, J., Ubar, R., Guglielmo, G.D.,
Pravadelli, G., Fummi, F.: Combining dynamic slicing and mutation operators for
ESL correction. In: 2012 17th IEEE European Test Symposium (ETS), pp. 1–6.
IEEE (2012)

38. Rothenberg, B.-C., Grumberg, O.: Sound and complete mutation-based program
repair. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 593–611. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6 36

39. Rothenberg, B.-C., Grumberg, O.: Must fault localization for program
repair. https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/
MustFaultLocalizationForProgramRepairCav2020.pdf, May 2020. A full version of
the CAV 2020 paper of the same title

40. Schäf, M., Schwartz-Narbonne, D., Wies, T.: Explaining inconsistent code. In:
ESEC/FSE, pp. 521–531 (2013)

41. Tan, S.H., Yi, J., Yulis, Mechtaev, S., Roychoudhury, A.: Codeflaws: A program-
ming competition benchmark for evaluating automated program repair tools. In:
Proceedings of the 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion, ICSE-C 2017, pp. 180–182 (2017)

42. von Essen, C., Jobstmann, B.: Program repair without regret. Form. Methods Syst.
Des. 47(1), 26–50 (2015). https://doi.org/10.1007/s10703-015-0223-6

43. Wang, Y., Patil, H., Pereira, C., Lueck, G., Gupta, R., Neamtiu, I.: DrDebug:
deterministic replay based cyclic debugging with dynamic slicing. In: Proceedings
of the 12th ACM/IEEE International Symposium on Code Generation and Opti-
mization, CGO 2014, pp. 98–108 (2014)

44. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

45. Wotawa, F.: Fault localization based on dynamic slicing and hitting-set compu-
tation. In: Proceedings of the International Conference on Quality Software, pp.
161–170 (2010)

46. Zhang, X., Gupta, N., Gupta, R.: A study of effectiveness of dynamic slicing in
locating real faults. Empir. Softw. Eng. 12(2), 143–160 (2007)

47. Zhang, X., Gupta, N., Gupta, R.: Locating faulty code by multiple points slicing.
Softw. Pract. Exp. 39(7), 661–699 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-319-48989-6_36
https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/MustFaultLocalizationForProgramRepairCav2020.pdf
https://batg.cswp.cs.technion.ac.il/wp-content/uploads/sites/78/2020/05/MustFaultLocalizationForProgramRepairCav2020.pdf
https://doi.org/10.1007/s10703-015-0223-6
http://creativecommons.org/licenses/by/4.0/

Author Index

Albert, Elvira I-177
Almagor, Shaull II-541
Arcak, Murat I-556

Backes, John I-165
Bak, Stanley I-3, I-18, I-66
Barrett, Clark I-137, I-403
Bastani, Osbert II-587
Batz, Kevin II-512
Baumeister, Jan II-28
Bazille, Hugo II-304
Bendík, Jaroslav I-439
Beneš, Nikola I-569
Berdine, Josh II-225
Berrueco, Ulises I-165
Beyer, Dirk II-165
Blackshear, Sam I-137
Blahoudek, František II-15, II-421
Blondin, Michael II-372
Bray, Tyler I-165
Brázdil, Tomáš II-421
Brim, Daniel I-165
Brim, Luboš I-569
Brotherston, James II-203
Buiras, Pablo I-225
Büning, Julian I-376

Češka, Milan I-653
Chang, Kai-Chieh I-543
Chatterjee, Krishnendu II-398
Chau, Calvin I-653
Cheang, Kevin I-137
Chen, Mingshuai II-327
Chen, Xin I-582
Chen, Yanju II-587
Chen, YuTing II-101
Chiu, Johnathan I-122
Çirisci, Berk I-350
Cook, Byron I-165
Costa, Diana II-203

D’Antoni, Loris II-3
Dai, Hanjun II-151

Dai, Liyun I-415
Daly, Ross I-403
Dang, Hoang-Hai II-225
Devonport, Alex I-556
Dill, David L. I-137
Dillig, Isil II-564, II-587
Donovick, Caleb I-403
Dreyer, Derek II-225
Dross, Claire II-178
Dullerud, Geir E. II-448
Duret-Lutz, Alexandre II-15
Dwyer, Matthew B. I-97

Elbaum, Sebastian I-97
Elboher, Yizhak Yisrael I-43
Enea, Constantin I-350
Esparza, Javier II-372

Fan, Chuchu I-629
Farzan, Azadeh I-350
Feng, Shenghua II-327
Feng, Yu II-587
Finkbeiner, Bernd II-28, II-40, II-64
Fremont, Daniel J. I-122

Gacek, Andrew I-165
Gan, Ting I-415
Genest, Blaise II-304
Gieseking, Manuel II-64
Gocht, Stephan I-463
Golia, Priyanka II-611
Gopinathan, Kiran II-279
Gordillo, Pablo I-177
Gottschlich, Justin I-43
Grieskamp, Wolfgang I-137
Grumberg, Orna II-658
Guanciale, Roberto I-225
Gurfinkel, Arie II-101

Haas, Thomas II-349
Hahn, Christopher II-40
Hanrahan, Pat I-403
Hartmanns, Arnd II-488

Hasuo, Ichiro II-349
Hecking-Harbusch, Jesko II-64
Helfrich, Martin II-3, II-372
Henzinger, Thomas A. I-275
Herbst, Steven I-403
Hobbs, Kerianne I-66
Hobor, Aquinas II-203
Hofmann, Jana II-40
Horowitz, Mark I-403
Houshmand, Farzin I-324
Huang, Chao I-543
Hunt Jr., Warren A. I-485

Jaber, Nouraldin I-299
Jacobs, Swen I-225, I-299
Jagannathan, Suresh I-251
Jegourel, Cyrille II-304
Jhala, Ranjit I-165
Johnson, Taylor T. I-3, I-18, I-66
Junges, Sebastian II-512

Kadlecaj, Jakub I-569
Kaminski, Benjamin Lucien II-488, II-512
Kanig, Johannes II-178
Katoen, Joost-Pieter II-398, II-512
Katz, Guy I-43
Khaled, Mahmoud I-556, II-461
Klimis, Vasileios II-126
Kölbl, Martin I-529
Kragl, Bernhard I-275
Křetínský, Jan II-3, I-653
Krogmeier, Paul II-634
Kučera, Antonín II-372
Kulkarni, Milind I-299
Kupferman, Orna II-541
Kwiatkowska, Marta II-475

Laprell, David I-376
Lavaei, Abolfazl II-461
Lesani, Mohsen I-324
Leue, Stefan I-529
Li, Xiao I-324
Li, Xuandong I-582
Lin, Chung-Wei I-543
Lin, Wang I-582
Lindner, Andreas I-225
Luckow, Kasper I-165

Madhusudan, P. II-634
Mann, Makai I-403
Manzanas Lopez, Diego I-3
Margineantu, Dragos D. I-122
Matheja, Christoph II-512
Mathur, Umang II-634
McLaughlin, Sean I-165
McMillan, Kenneth L. II-190
Meel, Kuldeep S. I-439, I-463, II-611
Menon, Madhav I-165
Meyer, Philipp J. II-372
Miller, Kristina I-629
Mitra, Sayan I-629
Mukherjee, Prasita I-251
Murali, Adithya II-634
Musau, Patrick I-3
Mutluergil, Suha Orhun I-350

Nagar, Kartik I-251
Naik, Aaditya II-151
Naik, Mayur II-151
Nelson, Luke II-564
Nemati, Hamed I-225
Nguyen, Luan Viet I-3
Norman, Gethin II-475
Novotný, Petr II-421

O’Hearn, Peter II-225
Olderog, Ernst-Rüdiger II-64
Ornik, Melkior II-421
Osipychev, Denis I-122

Padon, Oded II-190
Parisis, George II-126
Park, Daejun I-151
Park, Junkil I-137
Parker, David II-475
Pastva, Samuel I-569
Peebles, Daniel I-165
Peng, Chao I-582
Phalakarn, Kittiphon II-349
Pugalia, Ujjwal I-165

Qadeer, Shaz I-137, I-275

Raad, Azalea II-225
Ramneantu, Emanuel II-3
Reus, Bernhard II-126

682 Author Index

Rodríguez, César I-376
Roohi, Nima II-448
Rosu, Grigore I-151
Rothenberg, Bat-Chen II-658
Roy, Subhajit II-611
Rubio, Albert I-177
Rungta, Neha I-165

Šafránek, David I-569
Sahai, Shubham I-201
Samanta, Roopsha I-299
Sankaranarayanan, Sriram I-604, II-327
Santos, Gabriel II-475
Schemmel, Daniel I-376
Schett, Maria A. I-177
Schirmer, Sebastian II-28
Schlesinger, Cole I-165
Schodde, Adam I-165
Schröer, Philipp II-512
Schwenger, Maximilian II-28
Sergey, Ilya II-279
Seshia, Sanjit A. I-122, II-255
Setaluri, Rajsekhar I-403
Shoham, Sharon II-101
Shriver, David I-97
Si, Xujie II-151
Siegel, Stephen F. II-77
Sinha, Rohit I-201
Slivovsky, Friedrich I-508
Slobodova, Anna I-485
Song, Le II-151
Soos, Mate I-463
Soudjani, Sadegh II-461
Spiessl, Martin II-165
Stanley, Daniel I-403
Strejček, Jan II-15
Subramanyan, Pramod I-201
Sun, Jun II-304

Takisaka, Toru II-349
Tanuku, Anvesh I-165
Temel, Mertcan I-485
Tentrup, Leander II-40

Thangeda, Pranay II-421
Topcu, Ufuk II-421
Torens, Christoph II-28
Torlak, Emina II-564
Tran, Hoang-Dung I-3, I-18, I-66
Truong, Lenny I-403

Van Geffen, Jacob II-564
Varming, Carsten I-165
Vazquez-Chanlatte, Marcell II-255
Vediramana Krishnan, Hari Govind II-101
Villard, Jules II-225
Viswanathan, Deepa I-165
Viswanathan, Mahesh II-448, II-634

Wagner, Christopher I-299
Wang, Chenglong II-587
Wang, Xi II-564
Wang, Yu II-448
Wehrle, Klaus I-376
Weininger, Maximilian II-3, II-398
West, Matthew II-448
Wickerson, John II-203
Wies, Thomas I-529
Winkler, Tobias II-398

Xia, Bican I-415
Xiang, Weiming I-3, I-18
Xu, Dong I-97
Xue, Bai I-415, II-327

Yan, Yihao II-77
Yang, Xiaodong I-3
Yang, Zhengfeng I-582

Zamani, Majid I-556, II-461
Zhan, Naijun I-415, II-327
Zhang, Keyi I-403
Zhang, Yi I-151
Zhang, Yifang I-582
Zhong, Jingyi Emma I-137
Zhu, Qi I-543
Zohar, Yoni I-137

Author Index 683

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	I Model Checking
	Automata Tutor v3
	1 Introduction
	2 Automata Tutor in a Nutshell
	3 Design
	3.1 University and Course Management
	3.2 New Problem Types
	3.3 Automatic Problem Generation

	4 Implementation and Scalability
	5 Evaluation and User Study
	6 Conclusion
	References

	Seminator 2 Can Complement Generalized Büchi Automata via Improved Semi-determinization
	1 Introduction
	2 Improvements in Semi-determinization
	3 Implementation and Usage
	4 Experimental Evaluation
	4.1 Semi-determinization
	4.2 Complementation

	5 Conclusion
	References

	RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft
	1 Introduction
	1.1 Related Work

	2 Setup
	2.1 Mission
	2.2 Non-Intrusive Instrumentation
	2.3 StreamLAB
	2.4 FPGA as Monitoring Platform
	2.5 RTLola Specifications
	2.6 VHDL Synthesis

	3 Results
	4 Conclusion
	References

	Realizing -regular Hyperproperties
	1 Introduction
	2 Preliminaries
	3 -Regular Hyperproperties
	3.1 The Expressiveness of HyperQPTL

	4 HyperQPTL Realizability
	4.1 No Universal Trace Quantifier
	4.2 Single Universal Trace Quantifier
	4.3 Multiple Universal Trace Quantifiers

	5 Experiments
	6 Conclusion
	References

	AdamMC: A Model Checker for Petri Nets with Transits against Flow-LTL
	1 Introduction
	2 Petri Nets with Transits and Flow-LTL
	3 Application Areas
	4 Verifying Updates of Software Defined Networks
	4.1 Network Topology, Configurations, and Updates
	4.2 Data Plane and Control Plane as Petri Net with Transits
	4.3 Assumptions and Requirements

	5 Algorithms and Optimizations
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Action-Based Model Checking: Logic, Automata, and Reduction
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Büchi Automata
	2.3 Labeled Transition Systems

	3 Interruptible Properties
	3.1 Definition and Examples
	3.2 Decidability of Interruptibility of LTL Formulas
	3.3 Generation of Interruptible LTL Formulas
	3.4 Decidability of Interruptibility of Büchi Automata

	4 On-the-Fly Partial Order Reduction
	4.1 General Theory and Soundness Theorem
	4.2 Ample Sets for a Parallel Composition of LTSs

	5 Related Work
	6 Experimental Results and Conclusions
	References

	Global Guidance for Local Generalization in Model Checking
	1 Introduction
	2 Background
	3 Global Guidance of Local Proofs
	4 Global Guidance for Linear Integer Arithmetic
	4.1 Linear Integer Arithmetic: Background
	4.2 Lemma Selection
	4.3 Subsume Rule for LIA
	4.4 Concretize Rule for LIA
	4.5 Conjecture Rule for LIA
	4.6 Putting It All Together

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Towards Model Checking Real-World Software-Defined Networks
	1 Introduction
	2 Software-Defined Network Model
	2.1 Formal Model Definition
	2.2 SDN Model Components
	2.3 Guarded Transitions
	2.4 Specification Language

	3 Model Checking
	3.1 Contextual Partial-Order Reduction
	3.2 State Representation

	4 Experimental Evaluation
	4.1 Performance Comparison
	4.2 Model Expressivity

	5 Conclusion
	References

	I Software Verification
	Code2Inv: A Deep Learning Framework for Program Verification
	1 Introduction
	2 Background
	3 Framework
	4 Evaluation
	5 Conclusion
	References

	MetaVal: Witness Validation via Verification
	1 Introduction
	2 Preliminaries
	3 Approach
	3.1 From Witnesses to Programs
	3.2 Programs from Violation Witnesses
	3.3 Programs from Correctness Witnesses

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Recursive Data Structures in SPARK
	1 Introduction
	2 Support for Pointers
	3 Recursive Data Structures
	4 Borrowing Ownership
	5 Describing the Borrow Relation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Ivy: A Multi-modal Verification Tool for Distributed Algorithms
	1 Introduction
	1.1 Related Work

	2 A Modular Language for Decidable Reasoning
	2.1 Modularity and Decidability

	3 Verification Tactics
	3.1 Invariant Checking with SMT
	3.2 Eager Abstraction and Model Checking
	3.3 Liveness-to-Safety Transformation
	3.4 Logical Tactics

	4 Light-Weight Formal Methods
	4.1 Compositional Specification-Based Testing
	4.2 Bounded and Finite-State Model Checking

	5 Extracting Efficient Executable Code
	6 Conclusion
	References

	Reasoning over Permissions Regions in Concurrent Separation Logic
	1 Introduction
	2 Motivating Examples
	2.1 Weak vs. Strong Separation and the Distribution Principle
	2.2 Nominal Labelling and the Combination Principle
	2.3 The Jump Modality

	3 Separation Logic with Labels and Permissions (SLLP)
	4 Logical Principles of SLLP
	5 Concurrent Program Verification Examples
	5.1 Parallel Read
	5.2 Parallel Tree Processing (Le and Hobor ch13LespsHobor:18)
	5.3 Cross-thread Data Transfer

	6 Conclusions and Future Work
	References

	Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic
	1 Introduction
	2 Proof of a Bug
	3 Incorrectness Separation Logic (ISL)
	4 The ISL Model
	4.1 The Footprint Theorem
	4.2 Differences with the Classic (Over-Approximate) Theory

	5 Begin-Anywhere, Intra-procedural Symbolic Execution
	6 Context, Related Work and Conclusions
	References

	I Stochastic Systems
	Maximum Causal Entropy Specification Inference from Demonstrations
	1 Introduction
	1.1 Related Work

	2 Problem Setup
	2.1 Specification Inference from Demonstrations

	3 Leveraging Inverse Reinforcement Learning
	3.1 Inverse Reinforcement Learning (IRL)
	3.2 Maximum Causal Entropy IRL
	3.3 Non-Markovian Rewards
	3.4 Specifications as Non-Markovian Rewards
	3.5 Computing Maximum Causal Entropy Specification Policies
	3.6 Task Specification Rewards

	4 Constructing and Characterizing T
	4.1 Size of B
	4.2 Constructing B
	4.3 Evaluating Demonstrations
	4.4 Run-Time Analysis

	5 Additional Model Refinements
	5.1 Conditioning on Valid Actions
	5.2 Choice of Binary Co-Domain
	5.3 Variable Episode Lengths (with Discounting)

	6 Experiment
	7 Conclusion and Future Work
	References

	Certifying Certainty and Uncertainty in Approximate Membership Query Structures
	1 Introduction
	2 Motivating Example
	2.1 The Basics of Bloom Filters
	2.2 Properties of Bloom Filters

	3 Encoding AMQs in Coq
	3.1 Probability Monad
	3.2 Representing Properties of Bloom Filters
	3.3 Reasoning About Hash Operations

	4 Ceramist at Large
	4.1 AMQHash Interface
	4.2 The AMQ Interface
	4.3 Counting Bloom Filters Through Ceramist
	4.4 Proofs About False Positive Probabilities by Reduction

	5 Proof Automation for Probabilistic Sums
	5.1 The Normal Form for Composed Probabilistic Computations
	5.2 Probabilistic Summation Patterns
	5.3 A Simple Proof of Generalised No False Negatives Theorem

	6 Overview of the Development and More Case Studies
	6.1 Quotient Filter
	6.2 Blocked AMQ

	7 Discussion and Related Work
	8 Conclusion
	References

	Global PAC Bounds for Learning Discrete Time Markov Chains
	1 Introduction
	2 Background
	2.1 PAC-Learning for Properties
	2.2 Monte-Carlo Estimation and Algorithm of Chen

	3 Related Work
	4 Problem Statement
	5 Learning for a Time-to-failure Property
	5.1 Frequency Estimation of a DTMC
	5.2 PAC Bounds for a Time-to-failure Property

	6 Learning for the Full CTL Logic
	6.1 Learning DTMCs with Laplace Smoothing
	6.2 Conditioning and Probability Bounds
	6.3 Optimality of the Conditioning
	6.4 PAC Bounds for j |W(i,j) - A(i,j)|
	6.5 A Matrix W Accurate for all CTL properties
	6.6 Algorithm

	7 Evaluation and Discussion
	7.1 Evaluation on Crafted Models
	7.2 Evaluation on Large Models

	8 Conclusion
	References

	Unbounded-Time Safety Verification of Stochastic Differential Dynamics
	1 Introduction
	2 Problem Formulation
	3 Reducing -Safety to T-Safety
	3.1 Exponentially Decreasing Bound on the Tail Failure Probability
	3.2 Bounding the Failure Probability over [0, T]

	4 Synthesizing Stochastic Barrier Certificates Using SDP
	5 Implementation and Experimental Results
	6 Conclusion
	References

	Widest Paths and Global Propagation in Bounded Value Iteration for Stochastic Games
	1 Introduction
	1.1 Stochastic Game (SG)
	1.2 Value Iteration (VI)
	1.3 Bounded Value Iteration (BVI) and End Components
	1.4 Contribution: Global Propagation in BVI with Widest Paths
	1.5 Related Works
	1.6 Organization

	2 Preliminaries
	2.1 Stochastic Games
	2.2 The Widest Path Problem

	3 (Bounded) Value Iteration
	3.1 Bellman Operator and Value Iteration
	3.2 Bounded Value Iteration

	4 Our Algorithm: Bounded Value Iteration with Upper Bounds Given by Widest Paths
	4.1 Player Reduction: From SGs to MDPs
	4.2 Local Propagation: From MDPs to WGs
	4.3 Soundness and Convergence

	5 Experiment Results
	6 Conclusions and Future Work
	References

	Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling
	1 Introduction
	2 Preliminaries
	2.1 Replicated Systems
	2.2 Qualitative Model Checking

	3 Stage Graphs
	4 Algorithmic Construction of Stage Graphs
	5 Computing and Approximating "494A971 dead(U)"594B979
	6 Splitting a Stage
	7 Computing Eventually Dead Transitions
	7.1 First Implementation: Linear Ranking Functions
	7.2 Second Implementation: Layers
	7.3 Comparing Ranking and Layer Functions

	8 Experimental Results
	9 Conclusion and Further Work
	References

	Stochastic Games with Lexicographic Reachability-Safety Objectives
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Stochastic Lexicographic Reachability-Safety Games

	3 Lexicographic SGs with Absorbing Targets
	3.1 Characterizing Optimal Strategies
	3.2 Algorithm for SGs with Absorbing Targets

	4 General Lexicographic SGs
	4.1 Reducing General Lexicographic SGs to SGs with Absorbing Targets
	4.2 Algorithm for General SG
	4.3 Theoretical Implications: Determinacy and Complexity

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Qualitative Controller Synthesis for Consumption Markov Decision Processes
	1 Introduction
	2 Preliminaries
	2.1 Resource: Consumption, Levels, and Objectives

	3 Counter Strategies
	4 Safety
	4.1 Minimum Cost Reachability
	4.2 Safely Reaching Reload States
	4.3 Solving the Safety Problem

	5 Positive Reachability
	6 Büchi
	7 Implementation and Case Studies
	7.1 Electric Vehicle Routing
	7.2 Multi-agent Grid World

	8 Conclusion and Future Work
	References

	STMC: Statistical Model Checker with Stratified and Antithetic Sampling
	1 Introduction
	2 Stratified and Antithetic Sampling
	3 Tool Architecture
	4 Experimental Results
	5 Conclusion
	References

	AMYTISS: Parallelized Automated Controller Synthesis for Large-Scale Stochastic Systems
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Related Literature

	2 Discrete-Time Stochastic Control Systems
	3 Finite Markov Decision Processes (MDPs)
	4 Parallel Construction of Finite MDPs
	4.1 Data-Parallel Threads for Computing X
	4.2 Less Memory for Post States in X
	4.3 A Parallel Algorithm for Constructing Finite MDP "0362

	5 Parallel Synthesis of Controllers
	5.1 On-the-Fly Construction of X
	5.2 Supporting Multiplicative Noises and Practical Distributions

	6 Benchmarking and Case Studies
	References

	PRISM-games 3.0: Stochastic Game Verification with Concurrency, Equilibria and Time
	1 Introduction
	2 Modelling and Property Specification Languages
	2.1 Modelling Concurrent and Timed Games
	2.2 Property Specification

	3 Verification and Strategy Synthesis Algorithms
	3.1 Zero-Sum Properties for CSGs
	3.2 Equilibria-Based Properties for CSGs
	3.3 Turn-Based Probabilistic Timed Games

	4 Case Studies and Experimental Results
	5 Conclusions
	References

	Optimistic Value Iteration
	1 Introduction
	2 Preliminaries
	3 Value Iteration
	3.1 Theoretical Foundations
	3.2 Uniqueness of Fixed Points
	3.3 Convergence

	4 Optimistic Value Iteration
	4.1 Termination of OVI
	4.2 Variants of OVI

	5 Experimental Evaluation
	5.1 Comparison with VI
	5.2 Comparison with II and SVI
	5.3 On the Effect of and
	5.4 Comparing Relative and Absolute Error
	5.5 Verification Phases

	6 Conclusion
	References

	PrIC3: Property Directed Reachability for MDPs
	1 Introduction
	2 Problem Statement
	3 The Core PrIC3 Algorithm
	3.1 Inductive Frames
	3.2 The PrIC3 Invariants
	3.3 Operationalizing the PrIC3 Invariants for Proving Safety

	4 Strengthening in PrIC3H
	5 Dealing with Potential Counterexamples
	6 Practical PrIC3
	6.1 A Concrete PrIC3 Instance Without Generalization
	6.2 Concrete PrIC3 with Generalization

	7 Experiments
	8 Conclusion
	References

	I Synthesis
	Good-Enough Synthesis
	1 Introduction
	2 Preliminaries
	3 LTL Good-Enough Synthesis
	4 Guarantees in Good-Enough Synthesis
	4.1 ge-Synthesis with a Guarantee
	4.2 Flags by a ge-Realizing Transducer

	5 High-Quality Good-Enough Synthesis
	5.1 The Logic LTL[F]
	5.2 LTL[F] ge-Synthesis
	5.3 LTL[F] Assume-Guarantee ge-Synthesis
	5.4 LTL[F] ge-Synthesis in Stochastic Environments
	5.5 Guarantees in High-Quality ge-Synthesis

	6 Discussion
	References

	Synthesizing JIT Compilers for In-Kernel DSLs
	1 Introduction
	2 Overview
	3 Problem Statement
	4 Solving the Mini Compiler Synthesis Problem
	4.1 Generating Compiler Metasketches
	4.2 Generating Naive Sketches
	4.3 Generating Read-Write Sketches
	4.4 Generating Pre-load Sketches
	4.5 Solving Compiler Metasketches

	5 Implementation
	6 Evaluation
	6.1 Synthesizing Compilers for Real-World Source-Target Pairs
	6.2 Effectiveness of Sketch Optimizations

	7 Related Work
	8 Conclusion
	References

	Program Synthesis Using Deduction-Guided Reinforcement Learning
	1 Introduction
	2 Background on Reinforcement Learning
	3 Problem Formulation
	4 MDP Formulation of Deduction-Guided Synthesis
	5 RL-Based Synthesis Algorithm
	5.1 Overview of Synthesis Algorithm
	5.2 Sampling Rollouts
	5.3 Improving the Policy

	6 Implementation
	6.1 Deduction Engine
	6.2 Policy Network
	6.3 Input Featurization
	6.4 Optimizations

	7 Evaluation
	7.1 Comparison Against Existing Tools
	7.2 Ablation Study

	8 Related Work
	9 Conclusion and Future Work
	References

	Manthan: A Data-Driven Approach for Boolean Function Synthesis
	1 Introduction
	2 Notations and Preliminaries
	3 Related Work
	4 Manthan: An overview
	4.1 Phase 1: Preprocess
	4.2 Phase 2: LearnSkF
	4.3 Phase 3: Refine

	5 Manthan: Algorithmic Description
	6 Experimental Results
	6.1 Comparison with Other Tools
	6.2 Impact of the Sampling Scheme
	6.3 Impact of LearnSkF
	6.4 Division of Time Taken Across Different Phases
	6.5 Impact of Using MaxSAT
	6.6 Impact of Self-substitution

	7 Conclusion
	References

	Decidable Synthesis of Programs with Uninterpreted Functions
	1 Introduction
	2 Examples
	3 Preliminaries
	3.1 The Program Synthesis Problem

	4 Undecidability of Uninterpreted Program Synthesis
	5 Synthesis of Coherent Uninterpreted Programs
	5.1 Coherent Executions and Programs
	5.2 Overview of the Synthesis Procedure
	5.3 Tree Automaton for Program Trees
	5.4 Tree Automaton for Simulating Executions
	5.5 Synthesis Procedure
	5.6 Matching Lower Bound

	6 Further Results
	6.1 Synthesizing Transition Systems
	6.2 Synthesizing Boolean Programs
	6.3 Synthesizing Recursive Programs

	7 Related Work
	8 Conclusions
	References

	Must Fault Localization for Program Repair
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Programs and Error Traces
	3.2 From Programs to Program Formulas

	4 Must Fault Localization
	5 Fault Localization Using Program Formula Slicing
	5.1 Program Formula Slicing
	5.2 Computing the Program Formula Slice
	5.3 The Fault Localization Algorithm
	5.4 Incremental Fault Localization

	6 Program Repair with Iterative Fault Localization
	7 Experimental Results
	7.1 Results
	7.2 Comparison with Other Repair Methods

	8 Related Work
	9 Conclusion
	References

	Author Index

