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ABSTRACT  

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson’s 

disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important 

pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent 

Parkinson’s disease risk factor. They are associated with loss of activity of a key enzyme involved 

in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal 

α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid 

membrane composition of fibroblasts isolated from control subjects, patients with idiopathic 

Parkinson’s disease (iPD) and Parkinson patients carrying the L444P GBA mutation (PD-GBA) 

was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed 

significantly from that of control and iPD cells. It was characterized by an overall increase in 

sphingolipid levels. It also featured a significant change in the proportion of ceramide, 

sphingomyelin and hexosylceramide molecules with shorter and longer hydrocarbon chain length; 

levels of shorter-chain molecules were increased while the percent of longer-chain sphingolipids 

was decreased in PD-GBA lipid extracts. The extent of this shift was correlated to the degree of 

reduction of fibroblast glucocerebrosidase activity. In a second set of experiments, lipid extracts 

from control and PD-GBA fibroblasts were added to incubations of recombinant α-synuclein. The 

kinetics of α-synuclein aggregation, as assessed by the binding of thioflavin T to amyloid 

structures, was significantly accelerated after addition of PD-GBA extracts as compared to control 

samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-

synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by 

shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched 

of shorter-chain sphingolipids. Taken together, findings of this study indicate that the L444P GBA 

mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid 
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profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered 

lipid profile, which includes an increased content of shorter-chain sphingolipids, could also be an 

indicator of increased risk for α-synuclein aggregate pathology. Shorter-chain molecules may act 

as preferred reactants during lipid-induced α-synuclein fibrillation.  

 

KEYWORDS: Fibroblasts, GBA, α-synuclein, lipidomics, Parkinson’s Disease 

 

ABBREVIATIONS: αS = α-synuclein; CE = cholesterol ester; Cer = ceramide; CerS = 

ceramide synthase; Chol = cholesterol; CL = cardiolipin; DAG = diacylglycerol; GBA = 

glucocerebrosidase 1 gene; GCase = glucocerebrosidase; GluCer = Glucosylceramide; GluSph = 

glucosylsphingosine; HexCer = hexosylceramide; iPSC = induced pluripotent stem cells; LPA = 

lyso-phosphatidate; LPC = lyso-phosphatidylcholine; LPE = lyso-phosphatidylethanolamine; 

LPG = lyso-phosphatidylglycerol; LPI = lyso-phosphatidylinositol; LPS = lyso-

phosphatidylserine; PA = phosphatidate; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PG = phosphatidylglycerol; PI = phosphatidylinositol; PS = 

phosphatidylserine; SL = sphingolipid; SM = sphingomyelin; TAG = triacylglycerol; ThT = 

thioflavin T 
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INTRODUCTION 

Mutations of the glucocerebrosidase 1 (GBA) gene have long been associated with Gaucher’s 

disease but also represent the commonest known genetic risk factor for Parkinson’s disease 

(Schapira, 2015; Ryan et al., 2019). Parkinson risk is significantly higher in mutation carriers, with 

variable odds ratios that depend on the specific GBA mutation and racial characteristics of the 

population tested (Zhang et al., 2018). Disease penetrance also varies with age and has been 

estimated to range from 10 to 30% in mutation carriers aged 50 to 80 years old (Anheim et al., 

2012). Clinical features are indistinguishable between Parkinson patients carrying GBA mutations 

(PD-GBA) and patients affected by idiopathic Parkinson’s Disease (iPD), as underscored by 

investigations showing that a significant proportion of “iPD” patients (approximately 5-10%), once 

specifically tested, were in fact carriers of GBA mutations (Neumann et al., 2009; Sidransky et al., 

2009; Alcalay et al., 2012; Schapira, 2015). Genotype-phenotype correlation studies have 

confirmed the similarities in clinical and pathological manifestations between PD-GBA and iPD. 

They have also revealed that PD-GBA is characterized by a slightly earlier disease onset and higher 

prevalence of cognitive impairment and other non-motor symptoms (Neumann et al., 2009; 

Brockmann et al., 2011; Winder-Rhodes et al., 2013). Different GBA mutations may be associated 

with different clinical phenotypes, with more severe parkinsonian features and a more aggressive 

disease course affecting PD-GBA patients carrying specific “severe” variants, such as the p-L444P 

mutation (Gan-Or et al., 2015; Cilia et al., 2016).   

GBA encodes the lysosomal enzyme glucocerebrosidase (GCase), and GBA mutations cause 

a decrease in GCase activity and GCase-catalyzed hydrolysis of glucosylceramide (GluCer) to 

glucose and ceramide (Cer). Loss of GCase activity has been reported in the brain and blood of 

PD-GBA patients as well as in patient-derived cells, such as skin fibroblasts and dopaminergic 
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neurons generated from induced pluripotent stem cells (iPSCs) (Gegg et al., 2012; Schöndorf et 

al., 2014; Alcalay et al., 2015; Aflaki et al., 2016; Sanchez-Martinez et al., 2016; Collins et al., 

2018; Moors et al., 2019). Decreased GCase activity would be expected to result in an 

accumulation of GCase substrates as seen, for example, in iPSCs from PD-GBA patients containing 

higher levels of GluCer and glucosylsphingosine (GluSph) (Schöndorf et al., 2014; Aflaki et al., 

2016). It is noteworthy, however, that due to the close interrelationship between pathways of lipid 

metabolism and the central role played by Cer in sphingolipid (SL) homeostasis, lower GCase 

activity is likely to have broader consequences on cell lipid composition and, in particular, SL 

synthesis, maintenance and breakdown (Fig. 1) (Futerman and Platt, 2017). To date, only limited 

information is available from lipidomic analyses of cell or tissue samples from PD-GBA patients 

(Gegg et al., 2012; Schöndorf et al., 2014; Aflaki et al., 2016). More detailed and comprehensive 

studies are, therefore, warranted for the identification of PD-GBA lipid signatures. These studies 

could also shed light upon the role that specific changes in lipid profile may play in increasing the 

risk for PD pathology.  

Mechanisms contributing to PD pathogenesis in carriers of GBA mutations are not fully 

understood. Of likely relevance, however, is evidence indicating a reciprocal relationship between 

GCase activity and intracellular levels and toxic properties of α-synuclein (αS) (Mazzulli et al., 

2011; Schapira et al., 2014). αS is a key player in the pathogenesis of PD. It is a major component 

of Lewy bodies and Lewy neurites, the intraneuronal inclusions pathognomonic of iPD (Spillantini 

et al., 1997). Furthermore, single-point and multiplication mutations of the αS gene are causally 

associated with familial forms of parkinsonism (Polymeropoulos et al., 1997; Nussbaum, 2018; 

Bandres-Ciga et al., 2020). The tendency of αS to assemble into oligomeric and fibrillar aggregates 

is thought to be a gain of toxic function involved in inclusion formation and other 

neurodegenerative effects. Interestingly, loss of GCase activity, as induced by GBA mutations, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375048
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

causes intracellular accumulation of monomeric as well as aggregated αS (Mazzulli et al., 2011; 

Schöndorf et al., 2014; Aflaki et al., 2016; Yang et al., 2017, 2020; Gündner et al., 2019). Increased 

αS levels are in turn capable of reducing GCase activity, giving rise to a reciprocal self-amplifying 

cycle of protein accumulation and enzyme inhibition (Mazzulli et al., 2011; Gegg et al., 2012; Yap 

et al., 2013; Schapira et al., 2014). Changes in lipid composition caused by loss of GCase activity 

may also contribute to this chain of toxic events triggered by GBA mutations and involving αS. 

This possibility is supported by findings showing that αS-lipid interactions modulate protein 

aggregation, can promote αS assembly and accelerate the rate of αS amyloid formation (Zhu and 

Fink, 2003; Martinez et al., 2007; Franceschi et al., 2011; Galvagnion et al., 2015, 2016; Grey et 

al., 2015; Gaspar et al., 2018).  

The aim of the present study was twofold. First, we performed a comprehensive lipidomic 

analysis of membrane preparations from human fibroblasts and compared data in cells from control 

individuals versus cells from iPD patients without GBA mutations and PD-GBA patients carrying 

the L444P mutation. Results revealed that loss of GCase activity in PD-GBA fibroblasts was 

associated with a specific lipid profile. This profile featured differences in SL levels and SL acyl 

chain composition, including a higher proportion of molecules with shorter hydrocarbon chain 

length. Subsequent experiments assessed the potential link between PD-GBA-related lipid changes 

and αS aggregation. Findings provided evidence of such a relationship, showing accelerated 

formation of amyloid fibrils after incubations of αS in the presence of lipids extracted from PD-

GBA fibroblasts. Data also showed that co-assembly of SL with αS occurred during the fibrillation 

process and involved preferentially SL with shorter chain length. 
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MATERIALS AND METHODS 

Fibroblasts 

Collection and use of human tissue were done in agreement with the principles of the Declaration 

of Helsinki. Fibroblasts were obtained from skin biopsies that were performed at the IRCCS 

Mondino Foundation under a research protocol previously approved by the institutional Ethic 

Committee. Informed consent was obtained from all subjects who underwent the procedure. 

Fibroblast cultures were grown in RPMI-1640 Medium (Sigma Aldrich) with 10% serum (Sigma 

Aldrich), 2 mM L-Glutamine (Sigma Aldrich), 100 µg/mL streptomycin and 100 units/mL 

penicillin. Analyses were carried out at low culture passages, and disease and control cultures were 

matched for passage number. 

 
GCase activity assay 
 
Fibroblasts were trypsinized and re-suspended in lysis buffer (0.1 M sodium citrate, 0.1% Triton 

X-100, 6.7 mM sodium taurocholate). The resulting cell suspensions were lysed by sonication at 

4°C, and lysates were incubated on ice for 20 minutes before being centrifuged at 15,000 g for 15 

minutes. The supernatants were collected into new tubes and their protein content determined using 

bicinchoninic acid assay. Lysates were then diluted to a protein concentration of 0.1 µg/µL with 

assay buffer (0.1 M sodium citrate, 0.1% Triton X-100, 6.5 mM sodium taurocholate, 2.5 mM 4-

methylumbelliferyl β-D-glucopyranoside) and incubated in non-binding plates (Corning 3881) 

while shaking (300 rpm) at 37°C. Fluorescence was measured using a FLUOstar Omega plate 

reader (BMG) with excitation/emission filters of 355-20 / 460 nm. The fluorescence of 25 µM 4-

methylumbelliferone was measured under the same conditions and used to convert fluorescence 

units into µM of 4-methylumbelliferone. GCase activity was calculated using the following 

equation: 
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𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑦	(𝑛𝑚𝑜𝑙/ℎ/𝑚𝑔) = 	
Δ𝑓𝑙
Δ𝑡

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 × [𝑝𝑟𝑜𝑡𝑒𝑖𝑛]  

where =>?
=@

 is the change in fluorescence intensity per hour (fluorescence unit / h), standard is the 

fluorescence (fluorescence unit / µM) of 4-methylumbelliferone and [protein] is the total protein 

concentration in the sample (0.1 mg/mL). 

 

Western Blot analysis 

Fibroblasts were trypsinized and resuspended in lysis buffer with protease inhibitors. Cell lysates 

were incubated on ice with shaking and then centrifuged at 16,000 g for 15 min. The supernatants 

were transferred to fresh tubes, and lysates containing 30 µg of protein were electrophoresed on a 

NuPageTM 4–12% Bis-Tris Protein gel (Thermo Fisher Scientific). Proteins were transferred to a 

PVDF membrane (Amersham), blocked in 5% BSA and treated with primary and secondary 

antibodies. Antibody binding was detected using an ECL chemiluminescence kit. The following 

antibodies were used: glucocerebrosidase (ab55080 Abcam, dilution 1:1000) and β-actin (ab8227, 

Abcam, dilution 1:7500). 

 

Lipid extraction for mass spectrometry lipidomics 

Mass spectrometry-based lipid analysis was performed by Lipotype GmbH (Dresden, Germany) 

as described (Sampaio et al., 2011). Lipids were extracted using a two-step chloroform/methanol 

procedure (Ejsing et al., 2009). Samples were spiked with internal lipid standard mixture 

containing: cardiolipin 16:1/15:0/15:0/15:0 (CL), Cer 18:1;2/17:0, diacylglycerol 17:0/17:0 

(DAG), hexosylceramide 18:1;2/12:0 (HexCer), lyso-phosphatidate 17:0 (LPA), lyso-

phosphatidylcholine 12:0 (LPC), lyso-phosphatidylethanolamine 17:1 (LPE), lyso-
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phosphatidylglycerol 17:1 (LPG), lyso-phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 

17:1 (LPS), phosphatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0 (PC), 

phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 (PG), 

phosphatidylinositol 16:0/16:0 (PI), phosphatidylserine 17:0/17:0 (PS), cholesterol ester 20:0 (CE), 

sphingomyelin 18:1;2/12:0;0 (SM), triacylglycerol 17:0/17:0/17:0 (TAG) and cholesterol D6 

(Chol). After extraction, the organic phase was transferred to an infusion plate and dried in a speed 

vacuum concentrator. First-step dry extract was re-suspended in 7.5 mM ammonium acetate in 

chloroform/methanol/propanol (1:2:4, V:V:V) and 2nd-step dry extract in 33% ethanol solution of 

methylamine in chloroform/methanol (0.003:5:1; V:V:V). All liquid handling steps were 

performed using Hamilton Robotics STARlet robotic platform with the Anti Droplet Control 

feature for organic solvents pipetting. 

 

MS data acquisition 

Samples were analysed by direct infusion on a QExactive mass spectrometer (Thermo Scientific) 

equipped with a TriVersa NanoMate ion source (Advion Biosciences). Samples were analysed in 

both positive and negative ion modes with a resolution of Rm/z=200=280000 for MS and 

Rm/z=200=17500 for MSMS experiments, in a single acquisition. MSMS was triggered by an 

inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments (Surma et 

al., 2015). Both MS and MSMS data were combined to monitor CE, DAG and TAG ions as 

ammonium adducts; PC, PC O-, as acetate adducts; and CL, PA, PE, PE O-, PG, PI and PS as 

deprotonated anions. MS only was used to monitor LPA, LPE, LPE O-, LPI and LPS as 

deprotonated anions; Cer, HexCer, SM, LPC and LPC O- as acetate adducts and cholesterol as 

ammonium adduct of an acetylated derivative (Liebisch et al., 2006). 
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Data analysis and post-processing 

Data were analysed with in-house developed lipid identification software based on LipidXplorer 

(Herzog et al., 2011, 2012). Data post-processing and normalization were performed using an in-

house developed data management system. Only lipid identifications with a signal-to-noise ratio 

>5, and a signal intensity 5-fold higher than in corresponding blank samples were considered for 

further data analysis. 

 

Aggregation kinetics measurements 

Recombinant WT aS was produced as previously described (Galvagnion et al., 2015). For each 

fibroblast line, lipids were extracted from one million cells resuspended in 200 µL PBS using 1 

mL chloroform:methanol mixture (10:1, v:v). The organic phase was then evaporated and the lipids 

incubated in the presence of 50 µM aS and 50 µM Thioflavin-T in MES buffer (10 mM MES, pH 

5.0, 0.01% sodium azide) at 37°C in high binding plates (Corning 3601) under quiescent 

conditions. The fluorescence intensity was measured on a FLUOstar Omega plate reader (BMG) 

with excitation/emission filters of 448-10 / 482-10 nm. 

 

Statistics 

Data are expressed as mean ± SEM (standard error of the mean). Unpaired t-test (two-tailed P 

value) was used for comparisons of means between two groups (control vs. PD, PD vs. PD-GBA 

and control vs. PD-GBA).  Statistical analysis was performed using GraphPad Prism v8, GraphPad 

Software, CA, USA. Correlations were analysed with Pearson correlation analysis. Statistical 

significance was set at P < 0.05.  
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RESULTS 

GBA mutation and GCase activity in human fibroblasts 

Fibroblasts were generated from skin biopsies of 4 control subjects with no history of neurological 

disorders (2 males and 2 females), 4 iPD patients (2 males and 2 females) and 5 PD-GBA patients 

carrying a heterozygous L444P GBA mutation (3 males and 2 females). Average age of onset of 

clinical manifestations was 57 ± 3.5 and 47 ± 4.3 years in the iPD and PD-GBA groups, 

respectively, consistent with an earlier disease onset of GBA-associated PD (Schapira, 2015). 

GCase protein levels, as assessed by western blot analysis of lysed cells, were unchanged between 

the control and the two patient groups (Fig. 2A and B). GCase enzyme activity was also similar in 

fibroblasts from control subjects and iPD patients, but was significantly decreased by 

approximately 25% in fibroblasts from PD-GBA patients (Fig. 2C). 

 

Lipidome of human fibroblasts 

Mass spectrometry after direct infusion (“shotgun lipidomics”) was used for the first time to 

perform a comprehensive quantitative and qualitative analysis of the lipid composition of 

fibroblasts from control subjects and Parkinson’s Disease patients with and without a GBA 

mutation. The lipidome of control cells mainly consisted of phospholipids (74.5% of total lipids), 

Chol (19%), SL (4.2%) and glycerides (1.6%) (Fig. 3A-D). A detailed quantification of 

phospholipid species is reported in Supplementary Fig. 1. The 4.2 per cent of total SL was 

comprised of 3.6%, 0.4% and 0.2% SM, Cer and HexCer, respectively (Fig 3E-G).  

Fibroblast lipid composition did not differ significantly between control subjects and iPD 

patients (Fig. 3 and Supplementary Fig. 1). Specific changes were instead observed in the lipidome 

of cells from PD-GBA patients. In these cells, the most prominent variation concerned the levels 
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of total SL that were significantly increased by approximately 25% (Fig. 3D). The percent of 

specific SL species, namely SM, Cer and HexCer, also tended to be higher in PD-GBA fibroblasts, 

although these changes did not reach statistical significance (Fig. 3E-G). Levels of cholesterol and 

glycerides were similar to control values, whereas a small but significant 3% decrease in the percent 

of total phospholipids was detected in samples from PD-GBA patients (Fig. 3A).  

 

Chemical properties of sphingolipids in human fibroblasts 

Our lipidomic analysis of human fibroblasts also assessed levels of specific SL molecules and, in 

particular, identified and quantified SM, Cer and HexCer molecules with different hydrocarbon 

chain length and degree of unsaturation. Data showed that most SL (80-90% of SM, Cer and 

HexCer) had either 34 (C34) or 42 (C42) hydrocarbons (Fig. 4A, C and D).  SM with 34 

hydrocarbons and a single double bond (SM 34:1; 18:1/16:0) and SM with 42 hydrocarbons and 

two double bonds (SM 42:2; 18:1/24:1) were the two main SM species detected in our fibroblast 

preparations; they accounted for approximately 55% and 15%, respectively, of the total SM levels 

(Fig. 4B). Other abundant SL molecules were Cer 34:1 (18:1/16:0) and Cer 42:1 (18:1/24:0), which 

accounted for 40% and 25% of all Cer (Fig. 4D), and HexCer 34:1 (18:1/16:0) and HexCer 42:1 

(18:1/24:0), representing 20% and 35% of the total HexCer (Fig. 4F).  

Potential changes in SL with shorter and longer hydrocarbon chains were then compared 

between control cells and fibroblasts from iPD and PD-GBA patients. Levels of C34 and C42 

sphingolipids were not significantly different in control vs. iPD-derived preparations (Fig. 4A, C 

and E). In contrast, when measurements were compared between PD-GBA vs. control or iPD 

fibroblasts, data revealed an increase in short-chain (C34) SM, Cer and HexCer and a consistent 

reduction of long-chain (C42) SM, Cer and HexCer (Fig. 4A, C and E). A comparison of levels of 
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specific SL molecules confirmed these differences. SM 34:1, Cer 34:1 and HexCer 34:1 were all 

increased by 15-35% in mutation-carrying vs. control and/or iPD fibroblasts (Fig. 4B, D and F). In 

the same PD-GBA cells, measurements of SM 42:2, Cer 42:1 and HexCer 42:1 showed a decrease 

that ranged between 25% and 50% (Fig. 4B, D and F). 

 

Fibroblast sphingolipid composition and GCase activity 

Taken together, results obtained from our lipidomic analysis indicated that loss of GCase activity 

in PD-GBA fibroblasts was accompanied not only by an overall increase in SL levels but also 

higher levels of short-chain and lower levels of long-chain SL. In these cells, the ratios C34:C42 

SM, C34:C42 Cer and C34:C42 HexCer were indeed increased by 50%, 95% and 70%, 

respectively (Fig. 5A-C). To assess whether changes in acyl chain length were specific for SL 

molecules, levels of phospholipids with different carbon numbers were also measured and 

compared in control subjects and iPD and PD-GBA patients (Supplementary Fig. 2). Data showed 

small differences in the percent of specific phospholipid molecules among the three groups but no 

trend toward an increase in short-chain and decrease in long-chain phospholipids in fibroblast 

extracts from PD-GBA patients (Supplementary Fig. 2). To evaluate further the relationship 

between SL composition and GCase activity, C34:C42 SM, Cer and HexCer ratio values were 

calculated for each control, iPD and PD-GBA cell preparation and then plotted against the 

corresponding values of enzyme activity. This analysis revealed a significant inverse correlation. 

Higher enzyme activity was associated with a lower ratio and vice versa, supporting the conclusion 

that changes in GCase activity alter the content and relative proportion of short- and long-chain SL 

(Fig. 5D-F). The increase in C34:C42 SL ratio, as detected in our study, is therefore likely to be a 
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specific consequence of reduced GCase activity and a feature of altered lipid metabolism caused 

by the L444P GBA mutation.     

 

Relationship between fibroblast lipid composition and α-synuclein aggregation  

Specific lipid-αS interactions modulate αS aggregation (Zhu and Fink, 2003; Martinez et al., 2007; 

Franceschi et al., 2011; Galvagnion et al., 2015, 2016; Grey et al., 2015; Gaspar et al., 2018). The 

next set of experiments was therefore designed to test the hypothesis that differences in lipid 

composition observed in fibroblasts from PD-GBA patients may affect αS in vitro fibrillation. For 

these experiments, lipids were obtained from control (LIPIDcontrol) and PD-GBA (LIPIDPD-GBA) 

fibroblasts using the same extraction procedure that was employed for our lipidomic analysis. The 

kinetics of αS aggregation was monitored over a 90-min incubation time following the shift in 

fluorescence caused by the binding of thioflavin T (ThT) to amyloid structures. Addition of 

fibroblast-derived lipids, which were resuspended as vesicles, triggered αS aggregation as 

indicated by an increase in ThT fluorescence. Interestingly, kinetics curves of the ThT signal 

generated from PD-GBA samples were distinctly shifted to the left, with fluorescence rising and 

reaching its plateau at earlier time points (Fig. 6A). When reaction half-times (t ½) were plotted 

and compared between incubations of αS with LIPIDcontrol vs. LIPIDPD-GBA, a significantly lower t 

½ was observed under the latter condition, consistent with a pro-aggregation effect of LIPIDPD-GBA 

(Fig. 6B). 

Amyloid fibrils that were formed after incubations of αS with LIPIDcontrol or LIPIDPD-GBA 

were collected (at the time when ThT signals reached their plateau) and subjected to lipid 

extraction. Solvent mixtures were then analysed using mass spectrometry to determine if specific 

lipid molecules were co-assembled with αS fibrils (Hellstrand et al., 2013; Galvagnion et al., 2019). 
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Results showed that the composition of fibril-derived lipid mixtures consisted mainly of PC 

(approximately 75% of total lipids), DAG (10%) and SL (12%); the 12 per cent of total SL was 

comprised of 7.1%, 1.4% and 3.4% SM, Cer and HexCer, respectively (Fig. 7A). Lipid composition 

of αS fibrils did not differ significantly between samples collected after incubations with 

LIPIDcontrol or LIPIDPD-GBA (Fig. 7A). Fibril lipid mixtures were also analysed for the presence of 

short- and long-chain SL. Similar to results obtained from the lipidomic analysis of whole 

fibroblasts, most SL extracted from αS fibrils had 34 or 42 hydrocarbons (Fig. 7B-D). The relative 

proportion of short (C34)- and long (C42)-chain molecules was different, however, between whole 

fibroblast- vs. fibril-derived samples (cf. data in Fig. 4 and Fig. 7B-D). In particular, marked 

changes were observed in the percent of short- and long-chain SM and HexCer. C34 SM and C34 

HexCer represented approximately 60% and 20% of the total SM and HexCer levels in extracts of 

whole fibroblasts (Fig. 4A, G); they instead accounted for >90% of SM and HexCer that were 

extracted from amyloid fibrils after incubations of αS with either LIPIDcontrol or LIPIDPD-GBA (Fig. 

7B, D). On the other hand, levels of C42 SM and C42 HexCer, which accounted for a significant 

percent of total SM and HexCer in whole fibroblasts, were barely detected in lipid mixtures from 

αS fibrils. Taken together, these data indicate an enrichment of C34 SM and HexCer in fibril-

derived lipid extracts and are consistent with a high propensity of these short-chain molecules to 

interact with and be incorporated into amyloid fibrils during the process of αS aggregation. 
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DISCUSSION 

Results of this study indicate the potential value of patient-derived fibroblasts as an ex vivo system 

for the identification and monitoring of changes in lipid metabolism caused by GBA mutations. A 

unique lipid profile was detected by shotgun lipidomics of cultures from carriers of the severe 

L444P GBA mutation; this profile distinguished PD-GBA fibroblasts from cells that were obtained 

from control subjects as well as cells from iPD patients without GBA mutations. Detailed analyses 

revealed not only that levels of SL were increased but also that the ratio of short- over long-chain 

SL was distinctly altered in fibroblasts from mutation carriers, thus providing a new biological 

fingerprint of the mutation in these Parkinson’s Disease patients. An additional important finding 

of this study was that membrane lipids isolated from PD-GBA cultures were significantly more 

effective than lipids from control cells in triggering in vitro fibrillation of recombinant human αS. 

This finding supports a mechanism of likely pathophysiological relevance linking changes in cell 

lipid composition caused by GBA mutations to αS aggregate pathology.  

A correlation was found between the unique lipid profile of PD-GBA fibroblasts and the 

activity of GCase that was significantly decreased in L444P mutation carriers as compared to 

control subjects and iPD patients. This latter finding, i.e. lack of GCase changes in Parkinson’s 

Disease patients without a GBA mutation, is consistent with data of earlier studies using control- 

and patient-derived fibroblasts (McNeill et al., 2014; Ambrosi et al., 2015; Sanchez-Martinez et 

al., 2016; Collins et al., 2018). It is apparently at odds, however, with the results of previous 

investigations in which GCase activity was measured and found to be lowered in brain tissue 

specimens from iPD as compared to control subjects (Gegg et al., 2012; Rocha et al., 2015; 

Huebecker et al., 2019). In contrast to neurons, fibroblasts do not express αS. Thus, a plausible 

explanation for the different results in fibroblasts and brain tissue may be that, in the latter, loss of 
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GCase activity specifically arises from a pathological accumulation of αS (Schapira et al., 2014). 

Consistent with this interpretation, a region-specific reduction of GCase activity has been reported 

in the brain of patients with sporadic PD; this effect was correlated with αS burden and early 

development of αS pathology (Murphy and Halliday, 2014). 

Reduced GCase activity in PD-GBA fibroblasts significantly affected SL content and 

metabolism, resulting in higher levels of total SL, enhanced amounts of short-chain SL molecules 

and decreased content of long-chain SL. Earlier studies have reported accumulation of SL and, in 

particular, GluCer and GluSph as a consequence of reduced GCase activity in cell lines (i.e. iPSC-

derived neurons) from Gaucher’s Disease and PD-GBA patients (Schöndorf et al., 2014; Aflaki et 

al., 2016). Our current data not only extend these observations but reveal for the first time that 

changes in acyl chain length of SL significantly contribute to the altered lipid profile of PD patients 

with GBA mutations. Interestingly, the hydrocarbon chain length of Cer, HexCer and SM molecules 

were all affected by a loss of GCase activity, underscoring the interrelated nature of SL metabolism 

and suggesting that an initial GCase impairment ultimately alters the function of other enzymes 

involved in this metabolism. Indeed, as indicated by the results of previous investigations, a shift 

from long- to short-chain SL may result from changes in the expression/activity of enzymes such 

as α-sphingomyelinase and ceramide synthases (CerS) (Imgrund et al., 2009; Ben-David et al., 

2011; Mosbech et al., 2014; van Smeden et al., 2014). For example, accumulation of short-chain 

C18 GluCer was observed in different brain regions of a Gaucher’s Disease mouse model 

(4L/PS/NA) homozygous for a mutant GCase (V394L [4L]) and expressing a prosaposin 

hypomorphic (PS-NA) transgene; this accumulation appeared to be correlated with the regional 

distribution of CerS1 and CerS2 (Jones et al., 2017). It is also noteworthy that a significant shift in 

Cer acyl chain composition toward shorter chain length was measured in the anterior cingulate 
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cortex of brains from iPD patients and attributed to an upregulation of CerS1 expression (Abbott 

et al., 2014). 

SL are bioactive molecules playing both structural and signalling roles in a range of cellular 

processes including cell growth, differentiation and migration, autophagy, inflammation, response 

to trophic factors and apoptosis (Lingwood and Simons, 2010; Lippincott-Schwartz and Phair, 

2010; Hannun and Obeid, 2018). Thus, by altering cellular SL composition, GBA mutations could 

have broad functional and pathological consequences, most of all within the brain where SM, 

HexCer and Cer molecules are particularly abundant and tightly regulated (O’Brien and Sampson, 

1965; Olsen and Færgeman, 2017). Structural and signalling functions of SL are also significantly 

affected by their saturation and length of acyl chain. In particular, accumulation of short-chain at 

the expenses of long-chain SL could alter the structural order of membrane lipid bilayers, modify 

membrane curvature and disrupt membrane fluidity (Niemelä et al., 2006; Ben-David and 

Futerman, 2010; Mencarelli and Martinez-Martinez, 2013). A switch from long- to short-chain 

molecules could also interfere with lipid-protein interactions at the plasma membrane level and 

affect signalling responses involved, for example, in lipid and protein trafficking and degradation 

and in cell death pathways (Sillence et al., 2002; Kroesen et al., 2003; Koivusalo et al., 2007; Sassa 

et al., 2012; Ali et al., 2013; Backman et al., 2018). 

Implications of the results of this study on mechanisms of αS pathology are particularly 

relevant not only due to the important role played by αS in Parkinson’s Disease pathogenesis but 

also in view of evidence linking GBA mutations to αS alterations. Findings of earlier investigations 

strongly support a relationship between GCase deficiency, increased levels of SL and accumulation 

and aggregation of αS in cells treated with a GCase inhibitor, iPSC-derived DA neurons from 

Gaucher’s Disease and PD-GBA patients and brain tissue from Gaucher’s Disease mouse models 

and GBA-mutant mice (Sun et al., 2005; Mazzulli et al., 2011; Sardi et al., 2011; Xu et al., 2011; 
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Cleeter et al., 2013; Schöndorf et al., 2014; Aflaki et al., 2016; Migdalska-Richards et al., 2017). 

An important role of lipid-αS interactions in pathogenetic processes triggered by GBA mutations 

is also suggested by earlier biochemical and biophysical studies showing that the chemical 

properties of lipids significantly affect the binding of αS to membranes and the kinetics of 

membrane-induced αS aggregation (Galvagnion, 2017). αS binds preferentially to membranes in a 

fluid state and with high curvature (Middleton and Rhoades, 2010; Galvagnion et al., 2016). 

Therefore, changes in membrane lipid composition that, as discussed above, could alter these 

biophysical features could also interfere with αS function and promote its toxic potential.  

Synthetic membrane preparations have been effectively used to gain insight into the 

properties of membranes with different lipid compositions. In an earlier study, formation of αS 

amyloid fibrils was compared in the presence of synthetic membranes composed of lipids with the 

same head group, i.e. phosphatidylserine, but with hydrocarbon chains of different length. The 

reported results showed that αS aggregation was significantly enhanced in the presence of lipids 

with shorter hydrocarbon chains (Galvagnion et al., 2016). Our present findings are in line with 

these earlier observations. Fibril formation was indeed accelerated when αS was incubated with 

membrane lipids from PD-GBA cells that contained higher levels of Cer, HexCer and SM 

molecules with shorter hydrocarbon chains. Short chain SM and HexCer species were also found 

to be enriched in lipid extracts from αS fibrils collected at the end of lipid/αS incubations. This 

latter new finding suggests that short chain SL have a high propensity to co-assemble with αS 

fibrils and may act as preferred reactants during lipid-induced αS amyloid formation.  

Extrapolation of results from ex vivo models (patient-derived fibroblasts) and in vitro 

experiments (incubations of αS with membrane lipids) to pathological processes always requires 

caution. Nevertheless, taken together, data of our study support the concept that changes in lipid 

chemical properties induced by GBA mutations are of likely pathophysiological relevance. Data 
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suggest, for example, that an altered lipid profile induced by loss of GCase activity may itself 

represent a risk factor for the development of αS aggregate pathology in carriers of GBA mutations. 

Findings of this study and follow-up investigations into the effects of GBA mutations on fibroblast 

lipid content also bear potential clinical implications. SL changes could conceivably be more 

pronounced in fibroblasts from PD-GBA patients as compared to aged-matched carriers without 

clinical manifestations. They may therefore be considered for diagnostic purposed as a biomarker 

of disease risk and disease conversion. Clinical trials are currently assessing safety and 

effectiveness of drugs capable of reversing a loss of GCase activity in PD-GBA patients (Mullin et 

al., 2020). As part of these trials, measurements of fibroblast lipid profile could be used as an 

indicator of therapeutic intervention and response and may help elucidate the relationship between 

GCase activity, membrane lipid composition and Parkinson’s disease progression. 
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FIGURES 

Figure 1 Simplified sphingolipid metabolic pathway. 
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Figure 2 GCase protein levels and activity in fibroblasts. Measurements were made in 

fibroblasts from control subjects and iPD and PD-GBA patients. (A) Western blots showing 

immunoreactivity for human GCase and β-actin. (B) Semi-quantitative analysis of band intensities 

of the blots shown in panel A. (C) Measurements of GCase activity in fibroblasts from the control 

(n = 4), iPD (n = 4) and PD-GBA (n = 5) groups.  Bars show mean values, and error bars are ± 

SEM. Unpaired t test comparing data in control subjects vs. values in the iPD or PD-GBA groups. 

Control vs. PD-GBA (*): P = 0.0258; F(4,3) = 3.734. 
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Figure 3 Lipid levels in control, iPD and PD-GBA fibroblasts. Levels of (A) phospholipids, (B) 

cholesterol, (C) diacyl glycerides and (D) total and (E-G) specific ((E) sphingomyelin, SM, (F) 

ceramide, Cer and (G) hexosylceramide, HexCer) sphingolipids were assayed in fibroblast lipid 

extracts. Measurements were made in extracts from control subjects (n = 4) and iPD (n = 4) and 

PD-GBA (n = 5) patients. Data are expressed as percentage of the total lipid content. Bars show 

mean values, and error bars are ± SEM. Unpaired t test was performed to compare data in the 

control vs. iPD and control vs. PD-GBA groups (*). Control vs. PD-GBA (*): Phospholipids [P = 

0.0130; F(4,3) = 7.330] and sphingolipids [P = 0.0485; F(4,3) = 4.766]. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375048
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 34	

Figure 4 Levels of sphingolipid molecules with different acyl chain length. Measurements of 

sphingomyelin (SM), ceramide (Cer) and hexosylceramide (HexCer) molecules were made in 

fibroblast lipid extracts from control subjects (n = 4) and iPD (n = 4) and PD-GBA (n = 5) patients. 

(A, C and E) Levels of SM, Cer and HexCer with different hydrocarbon chain lengths (C-32 to C-

44) are shown as percent of the respective SM, Cer and HexCer total content. Bars show mean 

values, and error bars are ± SEM. Multiple t test was performed to compare means between two 

groups, control vs. iPD (+), control vs. PD-GBA (*) and iPD vs. PD-GBA (#). *,#P < 0.05; +++, ###P 

< 0.001. Control vs. PD-GBA (*): SM C-32 (P = 0.0269), SM C-34 (P = 0.0113), SM C-42 (P = 
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0.0154), Cer C-36 (P = 0.0188), Cer C-44 (P = 0.0197), HexCer C-34 (P = 0.0285). iPD vs. PD-

GBA (#, ###): SM C-34 (P = 0.0124), SM C-42 (P = 0.0144), Cer C-34 (P < 0.001). Control vs. iPD 

(+++): Cer C-36 (P < 0.001). (B) Levels of the two main SM molecules, SM 34:1 and SM 42:2, are 

shown as percent of the total SM content. #P < 0.05; **P < 0.005.  Control vs. PD-GBA (**): SM 

34:1 (P = 0.0034), SM 42:2 (P = 0.0024). iPD vs. PD-GBA (#): SM 34:1 (P = 0.0258), SM 42:2 (P 

= 0.0282). (D) Levels of the two main Cer molecules, Cer 34:1 and Cer 42:1, are shown as percent 

of the total Cer content. *,#P < 0.05; ###P < 0.001. Control vs. PD-GBA (*): Cer 42:1 (P = 0.0477). 

PD vs. PD-GBA (#, ###): Cer 34:1 (P < 0.001), Cer 42:1 (P = 0.0329). (F) Levels of the two main 

HexCer molecules, HexCer 34:1 and HexCer 42:1, are shown as percent of the total HexCer 

content. *P < 0.05. Control vs. PD-GBA (*): HexCer 34:1 (P = 0.029). 
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Figure 5 Correlation between the ratio short- over long-chain sphingolipids and GCase 

activity. (A-C) The ratios C-34:C-42 (percent C-34 over percent C-42) SM, C-34:C-42 Cer and C-

34:C-42 HexCer were calculated from lipid measurements made in fibroblasts from control 

subjects (n = 4) and iPD (n = 4) and PD-GBA (n = 5) patients. Bars show mean values, and error 

bars are ± SEM. Unpaired t test was performed to compare data in control vs. PD-GBA (*) and 

iPD vs. PD-GBA (#). *,#P < 0.05. Control vs. PD-GBA (*): SM C-34:C:42 [P = 0.0147; F(4,3) = 

1.504], Cer C34:C-42 [P = 0.0221, F(3,4) = 4.173]. iPD vs. PD-GBA (#): SM C-34:C:42 [P = 

0.0149; F(4,3) = 2.791], Cer C34:C-42 [P = 0.0352, F(4,3) = 2.246]. (D-F) C34:C42 SM, Cer and 

HexCer ratio values for each control (n = 4, black), iPD (n = 4, orange) and PD-GBA (n = 5, blue-

gray) fibroblast preparation were plotted against the corresponding values of GCase activity. 

Pearson correlation analysis was performed to assess the strength of the association between: C-

34:C:42 SM ratio and GCase activity (P = 0.0053; r = -0.7226), C-34:C-42 Cer ratio and GCase 
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activity (P = 0.1546; r = -0.4186) and C-34:C-42 HexCer ratio and GCase activity (P = 0.0020; r 

= -0.7729). 
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Figure 6 Kinetics of α-synuclein aggregation in the presence of fibroblast lipid extracts. (A) 

Thioflavin T fluorescence was measured as an indicator of amyloid fibril formation during 

incubations of α-synuclein in the presence of lipid extractrs from control (n = 4; black) and PD-

GBA (n = 4; blue-gray) fibroblast preparations. Kinetics curves are shown from two separate 

incubations of each subject/patient extract. (Β) Half-times of the reaction of α-synuclein fibril 

formation after addition of lipid extracts from control subjects (n = 4) and PD-GBA patients (n = 

4). Each circle represents the average of duplicate measurements. Bars show mean values, and 

error bars are ± SEM. Unpaired t test was performed to compare data. *P = 0.0248; F(3,3) = 8.102. 
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Figure 7 Lipid composition of α-synuclein fibrils. Amyloid fibrils were collected at the end of 

incubations of α-synuclein in the presence of fibroblast lipid extracts from control subjects (n = 4) 

and PD-GBA patients (n = 4). These fibrils were subjected to lipid extraction, and fibril lipid 

content was measured by mass spectrometry. (A) Data show the percent of lipid species, 

phosphatidylcholine (PC), diacyl glyceride (DAG), hexosylceramide (HexCer), sphingomyelin 

(SM) and ceramide (Cer), detected in extracts from α-synuclein fibrils. (B-D) Levels of SM, Cer 

and HexCer with different hydrocarbon chain lengths (C-32 to C-44) are shown as percent of the 

respective SM, Cer and HexCer total content. Bars show mean values, and error bars are ± SEM.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.11.09.375048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375048
http://creativecommons.org/licenses/by-nc-nd/4.0/

