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Abstract 

Chemical crosslinking-mass spectrometry (XL-MS) is a valuable technique for gaining 

insights into protein structure and the organization of macromolecular complexes. XL-MS 

data yields inter-residue restraints that can be compared with high-resolution structural data. 

Distances greater than the crosslinker spacer-arm can reveal lowly-populated “excited” 

states of proteins/protein assemblies, or crosslinks can be used as restraints to generate 

structural models in the absence of structural data. Despite increasing uptake of XL-MS, 

there are few tools to enable rapid and facile mapping of XL-MS data onto high-resolution 

structures or structural models. PyXlinkViewer is a user-friendly plugin for PyMOL v2 that 

maps intra-protein, inter-protein and dead-end crosslinks onto protein structures/models and 

automates the calculation of inter-residue distances for the detected crosslinks. This enables 

rapid visualisation of XL-MS data, assessment of whether a set of detected crosslinks is 

congruent with structural data, and easy production of high-quality images for publication. 
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1. Introduction  

Chemical crosslinking-mass spectrometry (XL-MS) is a powerful tool to derive structural 

information on proteins/protein assemblies, including transient or weak interactions 

necessary for biological function (1-3). XL-MS workflows begin by treatment of a purified 

protein/protein complex, lysate or intact cell with an appropriate XL reagent. All crosslinkers 

have the same basic architecture, comprising two reactive groups (e.g. NHS-esters that 

primarily react with amines (4)), or radical based crosslinkers (such as diazirines (5) that 

react non-specifically) separated by a spacer arm (1-3). This spacer arm confers a distance 

constraint that can be used for comparison with high-resolution structures, structural 

modelling, model validation or the detection of lowly-populated states not captured by other 

methods.  

 

After crosslinking, the proteins are digested (e.g. with trypsin) and the inter-protein, intra-

protein and dead-end (where only one of the two reactive groups react with the protein and 

the other remains unreacted or is quenched by solvent) crosslinked peptides must then be 

detected. These peptides are of relatively low abundance compared to their non-crosslinked 

counterparts, so much work has focused on developing analytical workflows to enable 

crosslink detection (e.g. using enrichment protocols (6), incorporating MS-cleavable groups 

in the spacer arm that yield diagnostic fragment ions (7), and developing specialised 

informatics tools (8)). The detected crosslinks can be mapped onto protein 

sequences/networks (e.g. using xVis (9) or xiNET (10)) or protein structures for comparison 

with other data. Current tools for XL-MS data visualisation include XLinkAnalyzer (11), a 

plugin for Chimera (12), as well as tools for the calculation and visualisation of crosslinks  as 

solvent accessible surface distance (SASD) paths (Xwalk (13), Jwalk (14) and DynamXL 

(15)). However, no plugin exists for the commonly used PyMOL molecular graphics system. 
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Here we present PyXlinkViewer, a tool for mapping chemical crosslinks onto a protein 

structure or structural model visualised within the PyMOL v2 molecular graphics system. 

PyXlinkViewer automates the display of inter-protein and intra-protein crosslinks and 

measures the Cα-Cα inter-residue Euclidean distances for each crosslink. These values can 

then be compared with the upper distance limit imposed by the crosslinker used. 

PyXlinkViewer also displays residues modified with dead-end crosslinks, which can probe for 

chemical accessibility and be used to score structural models (16), hence our tool can also 

be used to easily visualise data from a range of other covalent labelling/footprinting 

workflows (e.g. fast photochemical oxidation of proteins (17), carbene labelling (18) or other 

side-chain-specific probes (19)). We envisage that this versatile tool will be a useful addition 

to XL-MS and other covalent labelling-MS workflows. 
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2. Results 

We have developed the PyXlinkViewer plugin to enable rapid, simple visualisation of inter-

residue chemical crosslinks and dead-end crosslinks mapped onto a protein structure or 

structural model visualised within PyMOL v2. The source code, plugin installation file, 

example data, and user manual are freely available under a GNU General Public License at 

https://github.com/BobSchiffrin/PyXlinkViewer. 

 

2.1 Plugin design and installation 

PyXlinkViewer is a cross-platform plugin for PyMOL v2 written in Python 3, which can be run 

on Linux, macOS, or Microsoft Windows operating systems. It has a dedicated graphical 

user-interface (GUI) (Figure 1) designed using QtDesigner v4.8.6. PyXlinkViewer is supplied 

as a ZIP file, with installation easily achieved using PyMOL’s plugin manager. A detailed 

User Manual is available with the software. The code only imports modules present in the 

standard PyMOL v2 and Python 3 libraries, so no external dependencies need to be 

installed.   

 

2.2 Data import 

After manual curation of an appropriate XL-MS dataset using dedicated XL-MS analysis 

software (8), the data are prepared as a list of crosslinks and dead-ends for use in 

PyXlinkViewer. This approach enables the user to curate their dataset and filter it based on 

the score of the detected crosslinks (each data analysis software package uses a different 

scoring algorithm) prior to data visualisation. The file format required is that used by the 

existing tool Jwalk (14) (see User Manual) and allows maximum user control of the data 

displayed (see example data). This format details the residue numbers and chain identifiers 

of both residues involved in a crosslink. To visualise dead-end or covalent 

labelling/footprinting data, only one residue/chain identifier is included in each entry (see 

example data). There are a number of different file formats generated by the various XL-MS 
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data processing tools (8). However, recently a XL-MS file conversion utility has been created 

(20), and a standard XL-MS data format proposed. The object-orientated design of 

PyXlinkViewer allows for simple extension to support a standard file format if adopted by the 

XL-MS community. 

 

2.3 Data visualisation using PyXlinkViewer 

After opening a data file, a table of crosslinks is populated and the inter-residue Cα-Cα 

Euclidian distances are calculated and displayed (Figure 1). The upper distance threshold 

imposed by the spacer arm can be set, and the number of crosslinks that are 

satisfied/violated by this distance threshold is displayed. Crosslinks and dead-ends are 

drawn as lines between residue Cα atoms, or spheres at residue Cα atoms, respectively. 

Often residues are missing from the PDB files of protein structures (e.g. if they are 

disordered/unresolved by X-ray crystallography or cryogenic electron microscopy). If a 

residue involved in a crosslink is not present in the structure loaded into PyXlinkViewer, a 

warning message is printed in the PyMOL command window that the crosslink cannot be 

shown, which may draw attention to disordered regions involved in a protein interaction.  

 

A number of visualisation options can be changed in the GUI, including the colour and width 

of the drawn crosslinks. The user can also show or hide different crosslink types (i.e. inter-

protein, intra-protein and dead-end). The XL table in the PyXlinkViewer GUI and the data 

visualised in the PyMOL display are automatically updated when the user makes any 

changes to the visualisation options (see User Manual). Each XL is drawn as a separate 

PyMOL object, labelled with the chain and residue IDs involved, so can be individually 

shown/hidden using the PyMOL GUI or command line. The data can be exported as a CSV 

file for further interrogation. 

 

2.4 Visualising XL-MS data for monomeric proteins and multimeric assemblies 
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To demonstrate the power of PyXlinkViewer, we highlight here its use with two publically 

available XL-MS datasets.  

 

Firstly, we demonstrate the PyXlinkViewer workflow using intra-protein crosslinks detected in 

the chaperone SurA (Figure 2). SurA comprises three domains, a core domain (made of an 

N-terminal and C-terminal region), and two PPIase domains, P1 and P2 (Figure 2). SurA 

was crosslinked with the reagent DSBU, which contains two NHS-ester reactive groups (that 

primarily react with Lys residues and protein N-termini, but also with Ser, Thr, Tyr), and has 

been shown to crosslink residues up to ~27-30 Å apart (Cα-Cα Euclidean distances) (21). Of 

the 32 intra-protein crosslinks detected, 13 were incompatible with the crystal structure when 

using a Euclidian distance cut-off of 27 Å, as determined using PyXlinkViewer. 8 crosslinks 

in SurA involved residues missing from the PDB structure (as detected by PyXlinkViewer) 

which were subsequently built using MODELLER (22). As a PyMOL object is created for 

each crosslink, intra-domain and/or inter-domain crosslinks could easily be individually 

selected for display. While only 2/13 intra-domain crosslinks were incompatible with the 

crystal structure, most of the inter-domain crosslinks (11/19) were between residues greater 

than 27 Å apart. The data provided evidence that in solution SurA populates conformations 

in which the P2 domain is much to the core and P1 domains than suggested by the crystal 

structure (23; 24). 

 

In order to demonstrate PyXlinkViewer’s functions on a larger, multicomponent complex, we 

chose to visualise a XL-MS dataset obtained for the OCCM complex (Figure 3a), a helicase 

loading intermediate in DNA replication (14 subunits, ~1 MDa, 1132 Lys-Lys crosslinks) (25; 

26). On mapping the crosslinks to the cryoEM structure of OCCM (25), PyXlinkViewer 

identified that many of the crosslinks (625/1132) involved residues that were not present in 

the cryoEM structure. Of those that could be displayed, 77/507 were between residues 

greater than 27 Å apart in the structure. Using PyXlinkViewer’s ability to selectively display 

intra-chain or inter-chain XLs (Figure 3b,c), it was easily possible to see that the violated 
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intra-chain XLs are between the domains of multi-domain protein components of OCCM. 

Notably, violated intra-protein crosslinks were detected in the three proteins Cdc6, Mcm3 

and Cdt1, suggesting some inter-domain motions/reorganisation in these proteins in the 

complex (Figure 3c) Additionally, it was easily discernible that many of the violated inter-

protein XLs involved regions of different proteins within the complex that are not in defined 

secondary structure. Combined, these two examples of SurA and OCCM demonstrate that 

PyXlinkViewer can be used to visualise both large and small XL-MS datasets to rapidly gain 

structural/functional insights into proteins and their assemblies. 

3. Discussion 

Recent enhancements in XL-MS protocols (6; 27; 26), new crosslinker designs (28), and 

refined bioinformatics approaches (8), have ensured XL-MS is a key tool in the structural 

biologist’s armory of methods for determination of the structure and dynamics of proteins 

and their complexes both in vitro and in vivo. Computational modelling methods using XL-

MS restraints are being constantly improved (15; 29; 14; 16), but a vital, final step in this 

pipeline is the comparison of structures/structural models with XL-MS data. This is 

necessary for model validation and data presentation. PyXlinkViewer is the first PyMOL 

plugin specifically designed to simply map crosslinks onto high-resolution 

structures/structural models, which is key for increasing the throughput of integrative 

structural studies. For reasons of speed and clarity, PyXlinkViewer calculates and displays 

Euclidean distances for each inter-residue XL. However, solvent accessible surface 

distances (SASDs) can be a more reliable indicator of whether or not a cross-link is satisfied 

(13; 14), and routines which take into account side-chain dynamics have also been 

developed (15). However, calculation of SASDs is currently ~5 orders of magnitude slower 

than for Euclidian distances (14), potentially prohibiting this approach when dealing with 

large numbers of crosslinks and/or structural models. The object-orientated design of 

PyXlinkViewer allows for extension of functionality in the future, including possible 

calculation and display of SASDs. 
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Discriminating between inter- and intra-subunit crosslinks in homooligomeric complexes 

remains an area of significant challenge. PyXlinkViewer allows the user to explicitly specify 

PDB chain identifiers for each residue pair in the input file, therefore all possible crosslinks 

can be displayed on the structure. This gives the user an opportunity to visually compare the 

distances of possible inter- and intra-subunit crosslinks for the same residue pair from 

different subunits and assess which are most compatible with the crosslinked peptides 

detected by MS. Experiments involving the detection of crosslinks between ‘light’ (14N) and 

‘heavy’ (15N-labeled) subunits in a homooligomer, can also assist in discriminating between 

inter- and intra-subunit crosslinks (30-32). 

 

PyXlinkViewer also enables visualisation of dead-end crosslinks and data from other 

covalent labelling workflows (e.g. those that target specific amino acid residues (19), or 

radical labeling methods such as fast photochemical oxidation of proteins [FPOP] which 

labels promiscuously (33; 17)). A number of software tools have been designed to enable 

the identification of residues that have been covalently labeled (34; 35). The data from these 

analyses can easily be converted to a format compatible with import to PyXlinkViewer. 

However, it should be noted that for reagents/techniques that label many types of residues, 

e.g. FPOP, it remains analytically challenging to determine at the residue level the site of the 

modification. Nevertheless, data from covalent labelling has shown promise as an input for 

structural modelling (36-38). To demonstrate the data input requirements for covalent 

labelling/ dead-end XL data we have also included example data from FPOP analysis of the 

protein β2-microglobulin (17) (see example data).  Whilst dead-end crosslinking data are 

often discarded from analysis, especially when XL-MS is used to aid structural modelling, 

there is emerging evidence of their importance as probes for chemical accessibility. Indeed 

they can be used as restraints in modelling pipelines and as a tool for the scoring of 

structural models of proteins (36; 16). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.154773doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.154773
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
	

In conclusion, PyXlinkViewer is a versatile plugin for PyMOL v2 that enables rapid 

interrogation of a XL-MS dataset by mapping crosslinks onto a structure and calculating their 

inter-residue distances. As PyXlinkViewer functions within PyMOL v2, publication quality 

figures depicting XL-MS data can be made with ease. We envisage that PyXlinkViewer will 

be a key tool for the expanding number of researchers using XL-MS to interrogate the 

functional mechanisms of proteins and protein assemblies. 
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Figure 1.  PyXlinkViewer graphical user interface. A PyMOL object containing the protein 

structure(s) for which the crosslinking data is to be visualised is first selected (top left). The 

crosslinking data file is then opened and the crosslinks are displayed on the structure in the 

PyMOL viewer and in the table in the PyXlinkViewer GUI. The user can edit the threshold 

value used to determine if a crosslink is satisfied or violated (determined from the structure 

of the crosslinking reagent). Check boxes control the display of various crosslink types 

(satisfied, violated, inter-chain, intra-chain, mono-links) in both the PyMOL viewer and in the 

table in the PyXlinkViewer GUI. The colours and sizes of the displayed crosslinks can be 

easily modified and a data export function is included. 
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Figure 2. Visualisation of SurA intra-protein crosslinks using PyXlinkViewer. SurA has 

a three domain architecture, comprising the core domain (grey/orange), and two PPIase 

domains, P1 (green) and P2 (yellow). In the crystal structure of SurA (PDB: 1M5Y), the P2 

domain is spatially separated from the core and P1 domains (23). (a) All detected crosslinks. 

(b) Intra-domain crosslinks. (c-e) Crosslinks detected between the (c) Core-P1, (d) Core-P2, 

and (e) P1-P2 domains. These data suggest that the P2 domain populates conformations in 

solution closer to the core and P1 domains than suggested by the crystal structure. 
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Crosslinks are coloured blue or red, if they are satisfied or violated, respectively, using a Cα-

Cα Euclidean distance threshold of 27 Å. 
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Figure 3. PyXlinkViewer enables rapid visualisation of 507 crosslinks within the 14 

component ~1 MDa OCCM complex (PDB: 5V8F (25)). 1132 crosslinks were detected in 

the dataset (26), 625 of which involved residues that were not present in the PDB structure 

and are therefore not shown here. (a) All crosslinks mapped to the structure of OCCM. (b) 

Violated inter-chain crosslinks. (c) Violated intra-chain crosslinks. Crosslinks are coloured 

blue or red, if they are satisfied or violated, respectively, using a Cα-Cα Euclidean distance 

threshold of 27 Å. Each subunit is shown in a different colour in this figure. Three subunits 

are labelled in (c) as the intra-protein crosslinks detected here suggest some inter-domain 

motions.   
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