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1 Editorial
Katharina Morik

Jörg Rahnenführer
Christian Wietfeld

This is the third book of a series of books dedicated to the results of the DFG Collabora-
tive Research Center 876 on “Machine Learning under Resource Constraints”. The first
book of the series discusses fundamental innovations in the theory and algorithms of
machine learning. The second book covers the use of machine learning in physics. This
volume focuses on applications of the machine learning approaches presented in Book
1. Themain idea is to demonstrate with specific examples howmachine learning has be-
come essential as well as practical in solving real-life problems from diverse application
areas, ranging frommedicine and robotics to road traffic and communication networks.
Various real-life example applications show the significant impact of using tailored
machine learning methods to improve the performance of the respective processes
and systems. A key boundary condition imposed by the real-life environments is that
resources, such as energy, storage, computing power, computing time, etc., are often
limited and that the practicability of the proposed machine learning solutions depends
on the efficient use of those resources. Therefore, the success of the solutions discussed
in this book must not only be measured in terms of performance gains but, at the same
time, in terms of their resource efficiency and corresponding sustainability. For many
domain experts, the sheer multitude of machine learning approaches makes it difficult
to choose the “right” ones for a particular problem. While the availability of software
tools lowers the entry barrier to use machine learning methods by non-experts, the
application examples contained in this book demonstrate that truly significant impacts
can often only be achieved by an interdisciplinary combination of domain knowledge
and the appropriate usage of machine learning methods. Accordingly, this book aims
to promote proficiency in the use of machine learning methods beyond the quick wins
of arbitrarily using whatever approach happens to be in fashion. The applications de-
scribed in this book will touch upon a multitude of machine learning options covering
the complete process chain from data acquisition, feature extraction, model selection
via various learning approaches tomodel verification andmodel validation. It will show,
for example, that while the deep learning approaches popular today can be beneficial
for many problems in some areas, alternative methods such as ensemble learning with
random forests are more accurate with much less resource utilization in other areas.
The first part of the book addresses the application area of health and medicine. After
an overview of machine learning in medicine provided by the invited authors Catherine
Jutzeler and Karsten Borgwardt, a number of results from the CRC 876 are presented,
covering virus detection, protein analysis, and cancer diagnostics and therapy. The
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2 | 1 Editorial

second part of the book is dedicated to the application of machine learning for industry
use cases. On the one hand, machine learning enables proactive quality assessments;
on the other, its application for precise localization, energy harvesting, and swarm
control demonstrates the potential of embedding machine learning methods in almost
any element of the manufacturing and logistics process of present and future industry
environments. In the third part of the book, various examples illustrate the significant
potential of machine learning for smart city and traffic use cases, such as the prediction
of traffic flows, the privacy-preserving detection of vehicle flows, and resource-efficient
crowd sensing in smart cities.

The fourth part of the book is about improving the performance of communication
networks through machine learning. This includes new approaches for highly resource-
efficient vehicle-to-cloud communications as well as machine learning-enabled mobile
data network analytics and proper dimensioning of 5G network slices. As many appli-
cations of machine learning involve personal data and may affect privacy concerns,
this book also includes a chapter on a general methodology to classify and handle
privacy aspects of data management as part of the machine learning process chain.
This focus on the data handling complements the privacy-preserving machine learning
techniques. With this broad spectrum of application and practical implementation ex-
amples, we hope that this bookwill serve domain experts fromdiverse application areas
as inspiration for the use of machine learning for their application-specific problems.
To maximize the impact, many of the presented solutions are provided as open source
published together with open data sets, allowing for reproducibility and sustainable
transfer. At the same time, machine learning experts are expected to be motivated by
the impressive impact of their work on real-life problems to further expand themachine
learning solution space in terms of accuracy and resource efficiency.

Dortmund, 14.10.2022
Katharina Morik, Jörg Rahnenführer and Christian Wietfeld



2 Health / Medicine

2.1 Machine Learning in Medicine

Catherine Jutzeler
Karsten Borgwardt

Abstract: The combination of machine learning and population-scale health data holds
the potential to revolutionize disease diagnosis and prognosis as well as to enable
personalized predictions of therapy responses. The foundation for this unique op-
portunity is the ever-increasing amount of complex high-dimensional health data,
from the molecular level of genome sequences to the level of image phenotypes and
health history, that is available in digital form and at high resolution for cohorts of
hundreds of thousands—and soonmillions—of individuals. Machine learning promises
to be a key technology in the generation of new knowledge from this big health data,
by detecting new statistical dependencies in large and multisource medical datasets.
These new data-driven insights may drastically improve our abilities to predict disease
onset early, define sub-types of diseases, and model disease progression and patient
heterogeneity at an unprecedented level of detail, thereby supporting clinical decisions.
Nevertheless, the practical implementation of the vision of machine learning-guided
precision medicine faces considerable clinical challenges that have to be addressed
in the future. In this contribution, we will describe the envisioned role of machine
learning in the context of healthcare, critically discuss the challenges faced in terms of
the implementation in the clinical routine, and outline future directions of this growing
field.

2.1.1 Introduction: The Envisioned Role of Machine Learning in Precision Medicine

Precision medicine envisions that medical diagnosis, prognosis, and interventions can
be tailored to the clinical, molecular, and genetic signature of individual patients [278].
One promising path towards precision medicine is to exploit the explosion of health
data with modern computational approaches, in particular machine learning. Machine
learning can be leveraged to detect hidden signals in digital health data (e.g., risk
factors), uncover patterns or associations with certain diseases, and evaluate the out-
come of treatments or interventions. Applications of machine learning have also been
proposed to facilitate early disease recognition, refine diagnosis and prognosis, sup-
port therapy decisions, and improve biomedical data management. An ever-increasing
amount of data, from the molecular level of genome sequences to the level of image
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phenotypes and health history, is available for rapidly growing cohorts of individuals.
A prime example is the UK Biobank [658], which makes health data (genetic, molecular,
imaging, clinical data) of more than half amillion healthy people and patients available
to the global research community. Exploring population-scale health data presents
enormous opportunities for understanding disease mechanisms, ameliorating therapy
outcomes, and ultimately improving healthcare. Machine learning and artificial intelli-
gence offer the methods to mine and analyse the vast amounts of high-dimensional
digital health data. For instance, designing computational models of diseases opens
new opportunities to refine our understanding of diseases and their subtypes, discover
novel biomarkers for early disease detection, and guide clinical decisions. A crucial step
towards realizing the vision of precision and eventually personalized medicine, will be
the ability of machine learning algorithms to simultaneously compute and consider a
multitude of patient characteristics. The problem is exacerbated by the fact that current
machine learning applications are often restricted by (1) a lack of patient data, let alone
patient data with temporally-resolved clinical phenotypes; by (2) massive missingness
in longitudinal, multi-modal patient data; by (3) the enormous effort required to com-
bine data from different hospitals, with legal, information technology (IT), and data
engineering challenges.

The remainder of this contribution will provide an overview of machine learning
applications in the field of medicine, with a special emphasis on early disease recogni-
tion, diagnosis, prognosis, and therapy decisions. Moreover, we will critically discuss
the challenges of machine learning-guided applications in the context of medicine and
health care in general. Lastly, we conclude with an outlook of what the future may hold
for machine learning-driven applications in the different areas of health care, such as
diagnosis, prognosis, and therapy development.

2.1.2 Overview of Common Topics in Machine Learning in Medicine

The notion of advancing medicine by means of computation is almost as old as digital
computers [438]. When deployed into the clinical routine, machine learning-guided
approaches can facilitate early disease recognition, refine diagnosis and prognosis,
support therapy decisions, and improve biomedical data management [161]. In this
section, we discuss studies that illustrate the potential role of machine learning to
tackle these tasks.

2.1.3 Automation of Diagnoses and Treatment

Depending on the disease type, time is often a limiting factor for the diagnosis and
initiation of effective treatment. This is particularly true for patients facing serious
medical conditions (e.g., cardiovascular complications, sepsis, cancer), which require
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immediate attention and timely clinical decisions. A delay in the diagnostic work-up
puts the patient at risk because the medical condition can get worse the longer it
remains undiagnosed and untreated. To accelerate the diagnostic workup the medical
field has increasingly used automation in diagnostics, surgical planning, and therapy
selection (Table 2.1). Nowadays, machine learning models play an important role in
the development and implementation of automation processes in the clinical routine.
Large clinical datasets provide ample amounts of ’raw’ data from which machine
learning algorithms can derive clinically relevant insights that can inform the diagnosis
or treatment selection of a patient. Specific examples, which will be discussed in
detail, are the timely identification of circulatory failure [293], automatic antimicrobial
resistance prediction [722], cancer tumor recognition in radiology images [28, 123], and
automation of treatment planning in oncology [713].

A prominent example for automated diagnosis is circulatory failure, which occurs
when the arterial pressure and capillary stream are reduced for a prolonged period
of time [89]. Subsequently, the functions of supplied organs are impaired or in the
worst case even lost. As circulatory failure is common in critically ill patients, moni-
toring of circulatory function is an indispensable aspect of the patient management
in the Intensive Care Unit (ICU). Short-term effects of circulatory failure are usually
reversible, whereas repeated or extended episodes of low arterial pressure adversely
affect outcomes and worsen the prognosis [184, 537]. Therefore, the early recognition
of circulatory failure is of highest priority. Conventional alarm systems to detect circu-
latory failure do not utilize comprehensive patient information, which often lead to
alarms that are non-specific or false [553, 619]. False or unspecific alarms can trigger
“alarm fatigue” among intensive care practitioners [97]. In the ICU, large quantities of
measurements from multiple monitoring systems are generated that carry clinically rel-
evant information. While too complex to analyze for a human brain, machine learning
applications thrive in data-rich environments, such as the ICU. Leveraging clinical and
ICU monitoring data, Hyland and colleagues show that a machine learning algorithm
based on an array of demographic, physiological, and clinical information is able to
predict the circulatory failure of ICU patients several hours prior to its onset [293]. Their
early-warning system outperforms current conventional threshold-based systems and
has a significantly lower false-alarm rate. In order to learn to detect deterioration events
from monitoring data, which are indicative of circulatory failure, different state-of-the-
art supervised machine learning techniques were employed, including Light Gradient
Boosting Machine (lightGBM) [315], Logistic Regression [283], and Long Short-Term
Memory (LSTM) based recurrent neural network model [277]. When implemented in the
clinic, suchmachine learning guidedmulti-modal early-warning systems are a first step
towards (semi-) automation of the identification of patients at risk for the development
of circulatory failure in the ICU, while avoiding “alarm fatigue” among the clinical staff.

In addition to the early recognition of circulatory failure or other serious conditions
(e.g., sepsis), a major challenge faced by intensive care practitioners is the escalating
rates of antibiotic resistance in ICU patients. The administration of antibiotics is up to
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Tab. 2.1: Selected examples of proposed machine learning approaches that could guide the automa-
tion of early detection, disease diagnosis, and treatment planning.

Disease Automated task Input data Analytical methods used

Antibiotic
resistance [722]

Diagnostic and
treatment support

MALDI-TOF mass spec-
tra and antimicrobial
resistance profiles, de-
mographics

Logistic Regression,
Light Gradient Boosting
Machine, Multilayer
Perceptron Deep Neural
Network

Circulatory
failure [293]

Early detection Physiological parame-
ters, blood values, vitals,
monitoring data, demo-
graphics

Light Gradient Boost-
ing Machine, Logistic
Regression, and Long
Short-Term Memory
based Recurrent Neural
Network model

COVID-19 [487] Detection X-ray images, demo-
graphics, clinical data

Deep Learning, Convolu-
tional Neural Network

Diabetic
retinopathy [364]

Early detection Fundoscope images, dia-
betic retinopathy images

Deep Learning, Convolu-
tional Neural Network

Hyperlipidemia [760] Diagnosis Blood parameters, urine
parameters, biochemical
test parameters, blood
sugar parameters, and
glycosylated hemoglobin
parameters

1-D Convolutional Neural
Network

Laparoscopic
robotic surgery [35]

Surgical path
planning

Gall bladder images Reinforcement Learning

Multiple
sclerosis [659]

Detection Brain MRI images, clini-
cal data

Deep Learning, Convolu-
tional Neural Network

Plastic and
reconstructive
surgery [329]

Diagnosis and surgi-
cal planning

3D face surface scans, de-
mographics

Linear Regression, Ridge
Regression, Least-Angle
Regression, and Least Ab-
solute Shrinkage and Se-
lection Operator Regres-
sion, Support Vector Ma-
chine

Prostate
cancer [569]

Therapy selection Prostate cancer images,
clinical data

Deep Learning Neural
Networks

Prostate
cancer [464]

Therapy selection,
dose optimization

Prostate cancer
computed tomography
images, clinical data

Generative Adversarial
Network
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ten times higher in ICU patients compared with non-ICU patients [542]. Moreover, the
proportion of antimicrobial resistant isolateswas found to be considerably higher in ICU
patients than in patients on general medical floors [27]. Antibiotic resistance substan-
tially adds to the morbidity, mortality, and healthcare cost related to infections in the
ICU [118]. Timely initiation of effective antimicrobial treatment has emerged as a critical
determinant of outcome in patients with bacterial infections. The selection of optimal
treatment warrants an exact characterization of the underlying pathogen, including the
determining of resistance profiles. As time is of the essence, streamlining the antimi-
crobial resistance profiling is imperative. Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight (MALDI-TOF) mass spectrometry (MS) has become the standard rapid
technology for the identification of microbial species, at least in specialised centers.
Multiple studies have suggested that machine learning algorithms could be used to
thoroughly exploit the information contained in MALDI-TOF MS spectra in order to
expedite species identification and antimicrobial resistance determination [723]. How-
ever, there is a lack of comprehensive information on marker mass for all existing
pathogens and antibiotics, impeding the interpretation of MALDI-TOF spectra. In a
seminal study, Weis and colleagues used machine learning to harness the full potential
of MALDI-TOF MS of microbial isolates to predict antimicrobial resistance [722]. Both of
the implemented machine learning algorithms, Light Gradient Boosting Machine and a
multilayer perceptron deep neural network, could reliably identify antimicrobial resis-
tance of clinically important pathogens, including Staphylococcus aureus (S. aureus),
Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Moreover, high
predictive performance was observed for individual species–antibiotic combinations,
such as ceftriaxone resistance in E. coli and K. pneumoniae and oxacillin resistance
in S. aureus [722]. A retrospective clinical trial further demonstrated the clinical ben-
efit of machine learning guided antibiotic resistance profiling. Based on the results
provided by machine learning algorithms, the empiric antibiotic regimes would have
changed for a subset of patients (≈ 15%). Importantly, such a change would have been
beneficial for the majority of patients. This study constitutes the first step of automatic
phenotype determination, which promises to accelerate the diagnostic work up and
guide treatment selection. Consequently, this will reduce the time from diagnosis to
initiation of antibiotic treatment for ICU patients.

Another medical condition that will likely benefit from machine learning guided
automated diagnosis is lung cancer, which is the world’s the leading cause of cancer-
related deaths [45]. Despite recent advances in the treatment of lung cancer, the overall
5-year survival is still low for advanced stages with distant metastases [616]. Initial
symptoms of lung cancer tend to be unspecific (e.g., coughing, fatigue) and thus, are
easy to dismiss as inconsequential. Consequently, the majority of patients present at
an advanced disease stage when curative treatment is out of reach. Early diagnosis
of lung cancer is thus imperative to increase the likelihood of survival and treatment
success [45]. A successful strategy to significantly reduce the mortality is the regular
screening of at-risk populations [338]. Yet, up to one third of lung nodules are missed
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at the initial screening, likely owing to low the sensitivity and specificity of current
screening methods as well as the limits of human vision. Imaging (e.g., X-ray, computer
tomography [CT], or positron emission tomography-computerized tomography [PET-
CT]) is an integral part of the diagnostic workup for lung cancer. Evaluation of the
images is based on a number of imaging attributes, including the nodule size, density,
and growth [511]. The detection of informative imaging features is a prime example
of an area in which machine learning and artificial intelligence can excel and be of
great value to the clinicians in terms of precision and time effectiveness. In particular,
approaches based on deep learning [236], a branch of artificial intelligence, are an
intriguing option for automating the complex image analysis to detect subtle alterations
that specialists might overlook. In a seminal study, Ardila and colleagues developed
three-dimensional Convolutional Neural Network (CNN) models that perform end-to-
end analysis of CT images of pathology-confirmed lung cancer images [28]. Importantly,
the model learns the features of interest as opposed to previous models that use hand-
engineered features. Learning features have been repeatedly shown to be superior
to hand-engineered features [415, 554]. The developed model was demonstrated to
generate highly accurate patient-levelmalignancy risk predictions,whichhas important
potential for clinical relevance. If clinically validated, the results of this study may
represent a step toward automated image evaluation for risk malignancy estimation by
means of deep learning. Importantly, though deep learning systems might outperform
human specialists on some diagnostic tasks, they will not replace the radiologists but
provide diagnostic guidance. When making a clinical decision, clinicians take into
account a variety of factors that are not necessarily captured in the input data used by
the machine learning model.

Along with early disease detection and phenotype detection, machine learning
based automation has been demonstrated to be useful in the context of treatment
planning. One striking example is Automated Therapy Planning (ATP) in patients with
cancer that require radiotherapy [713]. The treatment success is highly dependent on the
quality of the treatment plan. Inverse planning, a trial-and-error iterative process [512],
is conventionally used to tailor radiotherapy treatment to the individual patients–a
strategy that is strenuous and burdensome for patients. Machine learning and deep
learning have gained momentum in the field as they are thought to improve the quality
and efficiency of radiotherapy treatment planning. Specifically, the learning capability
of these techniques enable oncologists to tailor the treatment plans to individual pa-
tients based on patient-specific anatomical features and by incorporating knowledge
from optimization methods or physicians’ behaviors. A variety of machine learning and
deep learning techniques, from Artificial Neural Networks (ANN) [716], Convolutional
Neural Networks (CNNs) [480], to Generative Adversarial Networks (GANs) [236], have
been explored and incorporated in the different stages of radiotherapy treatment plan-
ning [44, 395, 570, 603]. While these methods promise to refine the therapy planning of
various types of cancer, there are some issues relating to patient safety as well as legal
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and ethical responsibilities that have to be considered before deep learning-based ATP
can be implemented in the clinical routine.

2.1.4 Biomarker Discovery

Biomarker discovery, the search for measurable and reproducible indicators of spe-
cific clinical states, has been a major research avenue in recent years. A biomarker
constitutes a measurable and reproducible indicator of specific clinical state or re-
sponse to an intervention. In addition to refining disease diagnosis and prognosis [103,
139, 286], biomarkers of all sorts (e.g., molecular, digital, imaging) are instrumental
in discovering and defining therapeutic targets [211, 601]. Data from various sources,
including electronic health records, patient monitoring, and imaging, can be lever-
aged for biomarker discovery. With the emergence of affordable and time-efficient
high-throughput molecular and gene expression profiling technologies (e.g., DNA mi-
croarrays and RNA sequencing) [282], the search space for biomarkers has reached
unprecedented dimensions and complexity. The challenging nature of these datasets
(e.g., high dimensionality with large number of noisy features and low sample size)
require suitable computational models that thrive in these complex, data-rich envi-
ronments. In light of that, a variety of machine learning-guided biomarker discovery
strategies have gained great popularity across different fields of medicine [112, 362, 456,
667] (Table 2.2).

At the core of biomarker discovery is the search for markers that can discriminate
between samples or clinical characteristics of diseased patients and those of healthy
subjects. Biomarker discovery is equivalent to feature selection in machine learning
[595]. Feature selection algorithms are intended to reduced the dimensionality of the
feature space by removing non-informative and redundant features, while retaining
the informative features [595]. In general, feature selection algorithms can be used
to (i) modify representations of data by extracting informative variables (i.e., feature
extraction), (ii) create probabilistic models of disease progression, and (iii) determine
what specific piece of (unknown) information, for instance laboratory tests, will be
most valuable in optimizing the predictive ability of a model. Broadly speaking, there
are two major strategies of feature selection. The first is univariate feature selection
that investigates each feature one by one to determine the strength of the relationship
with the outcome variable. Popular univariate feature selection methods include linear
mixed models [416], support vector machine [764], and kernel-based measures [142].
Variants of these models tackle the challenging problem of feature selection from time
series data [91, 92, 320] and can account for covariates or confounders [23, 419]. The
second major strategy is multivariate feature selection, which considers whole groups
of features together. Commonmultivariate prediction models are Lasso regression mod-
els , tree ensembles (i.e., gradient boosting trees) [315], support vector machines, and
Gaussian processes with kernels for comparing time series [430], neural networks from
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Tab. 2.2: Selected examples of machine learning applications in the context of biomarker discovery.

Disease Use of biomarker Input data Analytical methods used

Alzheimer’s disease
[456]

Disease
progression

MRI brain images, clini-
cal data

Logistic Regression, Sup-
port Vector Machine

Autism [173] Disease diagnosis Functional connectivity,
structural connectiv-
ity, behavioral data,
and brain activation
measures

RecursiveCluster Elimina-
tion based Support Vec-
tor Machine

COVID-19 [428] Mortality prediction Laboratory values, demo-
graphics, medical history

Support Vector Machine

COVID-19 [590] Mortality prediction Laboratory data, clinical
data, demographics

Cox Proportional Hazard
Model

Dermatitis [211] Disease type
discrimination

Transcriptomics, skin
biopsies, clinical data

Multi-island Adaptive Ge-
netic Algorithm, Principle
Component Analysis

Diabetes [261] Prediction of
disease
progression

Physiological, biochemi-
cal, and sequencing data

Decision Trees, Logis-
tic Regression, Linear
Discriminant Analysis,
K-Nearest Neighbors
Classifier, Gaussian
Naïve Bayes, and Sup-
port Vector Machine

Huntington’s
disease [538]

Early detection Structural and functional
MRI, diffusion weighted-
imaging scans

Linear Discriminant Anal-
ysis, Support Vector Ma-
chine

Lung cancer [734] Early detection Plasma metabolomic
data

AdaBoost, K-nearest
neighbor, Naïve Bayes,
Neural Network, Random
Forest, Support Vector
Machine

Prostate
cancer [284]

Screening and diag-
nosis

Microarray data, cancer
tissue

Artificial neural network

Prostate
cancer [139]

Diagnosis and prog-
nosis

Proteomic data Random Forest, Brute
Force

Sepsis [454] Early detection Physiological param-
eters, blood values,
vitals, monitoring data,
demographics

Gaussian Process Tem-
poral Convolutional
Networks and Dynamic
Time Warping

Traumatic brain in-
jury [448]

Diagnosis Structural MRI data, clini-
cal data, demographics

Principle Component
Analysis, Random Forest

Tuberculosis [363] Disease detection Chest X-Ray images, ra-
diology reports, clinical
data

Convolutional Neural Net-
works
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deep learning (long short-term memory [277], gated recurrent units [135], temporal con-
volutional networks [38], and attention models [702]. Several of these techniques have
been successfully applied to clinical outcome prediction over recent years, especially
in the area of intensive care research [216, 293, 454, 455].

The ongoing coronavirus disease (COVID-19) pandemic has been a shining example
of how machine learning can support and even guide the biomarker discovery. At the
beginning of the pandemic, there were no recommendations or guidelines in place
on how to manage COVID-19 patients or identify patients at risk. As a consequence,
physicians in emergency and intensive care units were deemed to improvise on an indi-
vidual patient level and administer off-label treatments. This was particularly difficult
for patients who appeared to be on a disease trajectory towards recovery, but suddenly
deteriorate at a speed that does not allow for timely targeted management. COVID-19
has been associated with a high ‘failure-to-rescue’ rate (i.e., number of deaths of a
patient following a complication) [618]. Further complicating COVID-19 disease man-
agement was the limited understanding of the different clinical phenotypes associated
with COVID-19 [672] and how forthcoming mutations of SARS-CoV-2 will modify the
clinical manifestation and/or responses to current off-label treatments. In combatting
the COVID-19 pandemic, massive global efforts have been undertaken to determine
factors that are associated with the clinical presentation of the disease and its progres-
sion [88, 205, 575], in-hospital mortality risk [428, 742], and treatment response [396].
With the availability of COVID-19-related clinical, imaging, and multi-omics data, clin-
ically relevant biomarker signatures can be determined by means of computational
modeling [428, 430, 590]. A recent study leveraged electronic clinical trial data from 69
hospitals to develop a risk-scoring system for assessing COVID-19 related in-hospital
mortality risk [590]. Awide range of biomarkers (age, pre-existing cardiovascular issues,
blood markers) were found to be significantly associated with mortality outcomes.

In conclusion, machine learning-driven applications can be found across various
medical disciplines and bear great potential to advance health care as a whole. Never-
theless, it is important to mention that there are many challenges (e.g., data privacy,
quality of the data, generalizability of the models) that have to be tackled on the road
to the clinical implementation.

2.1.5 Biomedical Data Management

As data collection and volume surges, machine learning has emerged as a key player in
the datamanagement, easing the burdenof querying data source, aswell as the curation
and governance of data. In the context of healthcare, machine learning-guided data
management ranges from genome assembly to managing national electronic health
record systems. In general, data management is a labor- and time-intensive task that
often involves repetitive steps, which can be (partially) automated bymeans of machine
learning (Table 2.3). Machine learning algorithms pursue threemajor data management



12 | 2 Health / Medicine

goals: automation of time-consuming and iterative development tasks (cataloging data,
mapping sources to targets, data preprocessing), optimization of system performance
(table-join approaches), and capacity management (workload-aware autoscaling).

For instance, preparing and cleaning the raw data and making it suitable for sub-
sequent analysis is an integral part of creating any statistical or machine learning
model. Data preprocessing entails different steps: datasets requests, data fusion, and
data anomaly detection. Defining the quality of the data is an important step as it
will directly impact the performance and reliability of machine learning algorithms.
Anomaly detection aims to identify observations or data elements that raise suspicions
as they significantly deviate from the majority of the data. Anomalous data can be
indicative of the data-quality issues, nonstandard data, or outliers. Machine learning
algorithms have the potential to automatically detect and remediate data-quality is-
sues [138]. Specific examples of machine learning applied to anomaly detection and
data cleaning are clustering [641], classification [707, 739], autoregression [758], and
Bayesian statistics [162].

Tab. 2.3: Data management tasks that can be optimized by machine learning algorithms.

Task Explanation

Data cataloging and curation To override manual data labeling by using automatic
labeling [202]

Data preprocessing, anomaly detection To identify missing data, help identify and fix in-
correct labels [620, 641, 758]; to identify observa-
tions or data elements that raise suspicions because
they significantly deviate from the majority of the
data [641]

Data mapping To match fields frommultiple datasets into a manage-
able and harmonized system [66]

Feature engineering To create candidate features out of a dataset from
which the best can be selected and used for train-
ing [221]

2.1.6 Challenges for Machine Learning Methods in the Context of Health Care

Computational innovations are bound to transform health care. Nevertheless, there are
a number of challenges that have to be tackled in order to successfully adopt machine
learning in the clinical setting. The challenges concern data quality (e.g., missing data,
outliers), learning while preserving privacy, the interpretability and generalizability of
machine learning models, and clinical implementation. In the following section, we
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will elaborate on some of these challenges and potential mitigation strategies.

Missing Data One of the most common machine learning challenges faced is the
occurrence of missing data in digital health datasets. There is a multitude of reasons
whymissing data occur, ranging from (human) data-entry error, missingmeasurements,
dropouts in clinical studies, and merging unrelated data, to software errors in the
data processing pipeline [285, 646, 663]. Missing data can have a significant effect
on the data quality, lead to application performance degradation, cause analytical
issues, and bias outcomes. In the context of medicine, the latter has been previously
associated with misdiagnosis, wrong treatment decisions, and even discrimination
of marginalized groups [656, 744]. Moreover, most state-of-the-art machine learning
models require complete input variables. Missing data is typically handled by either
the deletion of all data for an observation that has one or more missing values or the
replacement with estimated values (i.e., imputation) [177]. A variety of methods have
been developed that can account for different levels of sparsity in the data as well as
efficiently handle missing information (Figure 2.1). Popular machine learning algo-
rithms include k-nearest neighbors [50], multi-task Gaussian processes [729], random
forest–based approaches [647, 670], matrix factorization [341, 692], discriminative deep
learning methods [64], and generative deep learning methods [469, 596, 749]. Another
elegant strategy of handling missing data is the use of end-to-end models that impute
and predict jointly, such as Gaussian process adapter [393] and interpolation-prediction
networks [610], and models that do not require imputation and can act on irregular
data directly, including attention models and gated recurrent unit-decay [702, 725]. For
a comprehensive review on the problem of missing values and strategies for handling
missing data, see [188].

Outlier Detection Another noteworthy challenge is how to detect and handle out-
liers in a dataset. Outliers are defined as observations that raise suspicion because
they deviate markedly from other observations in the given dataset. Common causes
of the occurrence of outliers in digital health datasets include, measurement error,
data entry error, sampling error, and natural outliers. A special category of outliers are
the intentional outliers, which are dummy outliers created to assess the efficiency of
detection methods. It is important to note that outliers are inherently different from
noise, which is commonly defined as a random error or variance. The outlier is part of
the data and can even carry (clinically) important information, while noise is simply
a random error (e.g., mislabeled data, missing data). Detecting outliers in a dataset
is a highly relevant task as outliers can impact the distribution of the data, increase
the error variance, reduce the power of statistical tests, introduce bias, influence esti-
mates, and impact key assumptions of statistical tests. A multitude of statistical and
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Fig. 2.1: Strategies for handling missing data.

machine learning methods exists for the task of outlier detection, including k-nearest
neighbor [290], linear regression, naive Bayes [541], decision trees [620], and support
vector machines [764]. The classic distance-based methods are empirically highly suc-
cessful [104, 330, 759]. For instance, they might deem certain patients outliers if they
are distant from other patients in the dataset. A patient is deemed an outlier if they are
distant from a randomly drawn subset of historic patients (Figure 2.2). This scheme is
extremely scalable, as it requires only the computation of distances between the patient
and the small subset of historic patients, even for large clinical data warehouses. The
size of the sample can even be explicitly optimized.

Learning while Preserving Privacy Data privacy has become one of the most im-
portant issues of our time. A breach of personal information can infringe fundamental
rights and freedoms of an individual, including the risk of being identified and disclo-
sure of personal (health) data. Data privacy breaches, such as the Facebook Cambridge
Analytica scandal [287], have made patients and their caregivers reluctant to share
sensitive and personal information. In response, data-privacy concerns have taken
center stage and countries around the world have implemented legislation, such as the
European Union’s General Data Protection Regulation (GDPR) [706] and the California
Consumer Privacy Act (CCPA) [488]. Medical questions that are tackled by a data-driven
approach often require access to sensitive, personal information.

Major efforts have been undertaken to develop privacy-preserving machine learn-
ing algorithms that keep the patients details secure without compromising the model’s
performance [533, 719, 736]. Federated learning [394, 745] addresses some of these
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Fig. 2.2: Illustration of the goal of abnormality detection in COVID-19 patients (left panel). The
electronic health record of a new patient P5 is checked for being abnormal relative to all patients in
the clinical data warehouse (here patients P1-P4) (center panel). Relevant features are extracted to
compare the similarity of the new patient to previous patients. The features describing a patient are
referred to as patient embeddings (right panel). Based on the (dis)similarity of the new patient to
previous patients, an abnormality score is computed. In this example, the abnormality score is the
distance to the most similar patient in the database, which is largest for P5 (0.97).

concerns through training algorithms collaboratively without requiring exchange of
raw data. In federated learning, the model parameters are handled centrally. To over-
come this “concentration of power”, swarm learning was recently introduced [719]. The
principle of swarm learning is to build the machine learning models independently
on data from individual sites (e.g., hospitals) and share the model parameters via a
so-called swarm network. With this approach, swarm learning secures data sovereignty
while preserving privacy and confidentiality. Data mining is another popular discipline
in medical data science concerned with preservation of privacy [12, 18]. Also known as
knowledge discovery in data, data mining is the process of automatically uncovering
novel patterns and trends in big data that would otherwise remain hidden [137]. In
the recent years, data mining has been successfully applied in a variety of medical
disciplines: detection of diabetes [36], cancer prognosis prediction [572], biomarker
discovery [244], sepsis [91], and prediction of stroke mortality [186]. As data privacy
should be preserved at all costs, numerous privacy-preserving data-mining methods
have been developed. These include randomization [183], classification [130], cluster-
ing [229], association rule [539], K-anonymity [134], L-diverse [425], distributed privacy
preservation [182], condensation [10], and cryptographic [376, 501]. A comprehensive
survey on the contributions of privacy preserving data mining techniques can be found
in [16, 567].

Access to data generated within the healthcare systems is often restricted due to
privacy and confidentially concerns. A strategy to make sensitive health data available
is to de-identify or anonymize the data by deleting or encoding identifiers that link
individuals (e.g., names and patient identifier), by perturbating the data (e.g., applying
round-numbering methods and adding random noise), by swapping data (e.g., shuf-
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fling dataset attribute values), or by generalizing information (e.g., grouping variables).
Even with these de-identifcation efforts, it remains extremely difficult to guarantee that
the re-identification of individual patients is not possible. A promising mitigation strat-
egy is to generate synthetic, representative, data that can be safely shared. Synthetic
data can both be used to augment datasets and generate artificial, but realistic patient
data that can be shared, even across geographical and political borders. For this form
of synthetic data generation, Generative Adversarial Networks (GANs) [235] are well
suited. Briefly, GANs are a type of deep learning model that consists of two networks
one called the generator and the other called the discriminator. These two networks are
simultaneously trained competitively, as in a zero-sum game framework. The generator
learns how to map from a latent space to a data distribution of interest, i.e., generate
candidates of synthetic patients, and the discriminator evaluates the candidates
distinguishing from the true distribution. In the context of clinical data, medical GAN
(medGAN) [117] is a recent approach that can generate high-dimensional discrete
variables via a combination of variational autoencoders (VAEs) and GAN. Furthermore,
medical Wasserstein (medWGAN) and boundary-seeking GAN (medBGAN) improved
the performance of medGAN to generate synthetic data from the “Medical Information
Mart for Intensive Care” database and the Taiwan National Health Insurance Research
Database [144]. Instead of a general GAN, medWGAN uses an improved generative
network namedWGAN-GP, where the model overcomes the issue of fails to converge
in some settings owing to the use of the weight-clipping technique using gradient
penalty [43]. Finally, medBGAN improves GAN training to create new samples that lie
on the decision boundary of the discriminator at each update [43].

Interpretability and Generalizability of Models In addition to being applied in
complex high-stakes settings such as medicine, machine learning algorithms are also
becoming increasingly complex in terms of their architecture. At times, these algorithms
become so complex that the humans forfeit comprehension of the underlying models
or how variables are jointly related to make predictions. Modern machine learning
algorithms are commonly referred to as “black boxes”. The alleged black box nature
constitutes a major barrier to the adoption of machine learning in the clinical routine.
But what is the reason for not trusting a machine learning model that has been proven
to perform well and can accurately diagnose patients? “The problem is that a single
metric, such as classification accuracy, is an incomplete description of most real-world
tasks” [179]. The interpretability ofmachine learningmodels is critical to understand the
accuracy of findings, identify variables that drive the predictions, improve model per-
formance, guarding against embedded bias, and debug models. Medicine is among the
domains where scientists are often compelled to implement simpler and interpretable
machine learning models (e.g., linear models or decision trees) as every decision being
taken by the model has to be interpretable. Clinical staff needs to understand why a
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machine learning algorithm generates the results it does (i.e., interpretability) and
ideally how it arrives at its conclusions (i.e., explainability) [190]. Better interpretability
might come at the expense of model performance. As biological associations are hardly
ever of a linear nature, complex models, including ensembles and neural networks,
typically result in more accurate performance. Incomplete interpretability is often com-
pensated with judgement, knowledge provided by domain experts (e.g., clinicians),
rigorous monitoring, and diligent understanding of the data used. The development
of methods to enhance the interpretability of machine learning models is a vivid area
of investigations. As a matter of fact, numerous model-agnostic interpretation tools
exist that can be applied to any supervised machine learning model [529]. There are
two major categories of model-agnostic methods. First, local methods that describe
individual predictions and secondly, global methods that explain how features af-
fect the prediction as a whole. Table 2.4 provides an overview of common local and
global model-agnostic methods. These model-agnostic interpretability methods allow
researchers to interpret the results of (complex) machine learning models and can pave
the way for the implementation of such models in the clinical routine.

Tab. 2.4: Common local and global model-agnostic interpretation methods of machine learning
models. For a comprehensive overview on interpretable machine learning, see [453].

Local methods Global methods

Individual Conditional Expectation (ICE) [233] Partial Dependence Plot (PDP) [213]
Local Surrogate (LIME) [527] Accumulated Local Effects (ALE) Plot [25]
Counterfactual Explanations [711] Feature Interaction [214]
Scoped Rules (Anchors) [528] Functional Decompositon [281]
Shapley Values [661] Permutation Feature Importance [102]
SHAP (SHapley Additive exPlanations) [661] Global Surrogate [152]

Apart from being interpretable, generalizability is a desired attribute of machine learn-
ing algorithms. Generalizable refers to the ability of a trained algorithm to perform well
on unseen data. One particularly elusive challenge regards generalizability across differ-
ent patient groups [489]. There are numerous examples of promising machine learning
applications that struggled when applied to diverse populations. Google, for instance,
introduced a machine learning algorithm for the diagnosis of diabetic retinopathy that
performed poorly in India [7]. This is likely attributable to the fact that the algorithm
was developed, trained, and evaluated on a dataset that lacked the necessary ethno-
racial and demographic diversity. Another example of unintended effects of artificial
intelligence is an algorithm that was developed to detect skin cancer on images of skins.
While the algorithm performed well on fair skin, it was not able to reliably diagnose
lesions on darker skin [240].



18 | 2 Health / Medicine

These examples highlight the importance of data from diverse groups (i.e., in terms
of sex, ethnic background, and race) are fundamental to realize universal precision
medicine. The reality, however, is that data is often derived from a worryingly small
and homogeneous sample of the population (e.g., white male individuals). As a result,
ethnoracial disparities are evident in many patient populations and include differences
in access to care, time to diagnosis, treatment, and mortality [545, 566, 748]. In order to
eliminate bias and create fairness and equity, scientists have to be conscious of bias that
can occur at different levels, namely data collection and selection, model development
and evaluation, as well as model deployment and clinical implementation. Data is
driving force behind any machine learning and artificial intelligence algorithm. That
is why, the data underlying the development and evaluation of algorithms must be
unbiased and representative of the target populations to avoid generating or perpetu-
ating biases that may worsen patient outcomes. Often bias is rooted in systematically
skewed data collection, e.g., through clinical trials predominantly carried out with
white male participants, or the reliance on historical data that might have been subject
to biased data generation or clinical practices. To mitigate bias in the data, diverse and
well balanced study populations are crucial for any collection and/or selection of data
(e.g., clinical trials, registry, electronic health records). Particular attention should be
paid to ethnoracial diversity, sex/gender balance, socioeconomic equity, and other
social, and ethical, determinants of disease and access to healthcare. Assuming that
the available data is unbiased, researchers have to carefully select the data variables to
avoid introducing a bias in the phase of algorithm development.

If possible, algorithms can be tested on different patient populations for both
scientific and ethical performance. Ideally, the development, evaluation, and clinical
implementation of algorithms is done in liaison with clinicians to ensure that the
algorithms do not exhibit bias in the clinical setting. Lastly, the healthcare system, in
which machine learning tools are implemented, is an important entry point of bias.
Awareness of inherent biases of machine learning assisted tools among healthcare
professionals is pivotal to mitigate bias. This starts by ensuring equitable patient access
to the technology, and then diligently observing how it performs in diverse populations
and underrepresented communities. Any bias noticed should immediately be reported
to an appropriate committee at the hospital, which can then communicate with the
developers. Understanding bias inherent in medical technology allows clinicians to
question the accuracy of the technology if the results do not meet the expectations
from their clinical expertise.

Clinical Implementation and Validation Considerable technological progress has
been made over the last decades with machine learning applications transforming the
clinical decision making and how health resources (e.g., data) are managed. Neverthe-
less, the greatest challenge of machine learning applications is not the medical utility,
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but rather the implementation in the clinical routine. While these developments are
crucial to advance health care, they raise a number of ethical and legal ethical concerns
that machine learning and artificial intelligence might harm patients and/or clinicians.
Technological and diagnostic failures can lead to adverse events or seriously harm
patients. It is not yet clear who is liable for malfunctions in, or erroneous decisions
made by artificial intelligence-based clinical tools that result in inaccurate or delayed
diagnosis [510]. The attribution of accountability becomes evenmore complicatedwhen
an artificial intelligence-based clinical tool gives a wrong treatment recommendation,
yet the clinician makes the final decision. Is the clinician liable or can the liability be
delegated to a company or person that engineered the tool? In [510], Price et al. provide
an overview of potential scenarios and associated probable legal outcomes related to AI
use in clinical practice. Under the current law, clinicians are shielded from liability as
long as they do not deviate from the standard of care [532]. As a consequence, clinicians
are advised to utilize machine learning-guided tools to support and confirm existing
decision-making processes as opposed to solely relying on computational algorithm
output for diagnosis or treatment selection [441]. The complexity further increases
when considering that there are multiple stakeholders in the ecosystem of liability,
including the healthcare institutions that purchase and implement computational
algorithms.

2.1.7 Future Directions of Machine Learning in Medicine

The accelerating generation of unparalleled amounts of health data will lead to funda-
mental changes in medicine and health care. Machine learning applications are poised
to play an increasingly prominent role in medicine. Specifically, they will facilitate
early disease recognition, refine diagnosis and prognosis, support therapy decisions,
and streamline biomedical data management. Importantly, machine learning-guided
systems will not replace clinicians or therapists, but will augment their efforts and time
to care for patients thanks to guidance for clinical decision-making and the automation
of time-consuming and repetitive tasks. As of yet, many barriers exist to the adoption
of such applications in the clinical routine. In the coming years, the data explosion will
continue and reach unparalleled dimensions, including the number of patients (e.g.,
UK Biobank), the length of time series (e.g., ICU monitoring data, wearable devices),
and the breadth of data type (frommolecular to higher-level phenotypes). This affluence
of rich datasets will open new avenues for machine learning-driven applications to
assist in clinical decision-making. In addition to refining clinical processes, machine
learning and artificial intelligence will also play a pivotal role in other important areas
of biomedical research, such as protein structure prediction, molecule design, drug
discovery, or single-cell research. A groundbreaking example is the recently introduced
machine learning approach AlphaFold [308], which performs predictions of protein
structurewith unprecedented accuracy, by incorporating physical and biological knowl-
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edge. Besides the technological advances and the availability of vast amounts of data,
overcoming the challenges of handling missing data and outliers, preserving privacy,
interpretability, and clinical application will be critical for the adoption of machine
learning-supported guidance tools in clinical routine.
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Abstract: Amid the accelerating spread of viral diseases throughout the world, the
rapid detection of pathogens is of essential importance. Viruses can be transmitted very
quickly via contacts in public transportation or at large social events. Therefore, a rapid
virus test system for such crowded locations is highly desirable. The plasmon-assisted
microscopy of nano-objects (PAMONO) sensor is one such analytical instrument. The
sensor required the development of software and optomechanical parts to detect viruses
in complex biological liquids.While the focus lies on viral particles, other nanoparticles
can also be analyzed by employing a similar principle. The latter issue vastly expands
the potential application field of the PAMONO sensor. The developed methods are
tailored to the spatiotemporal characteristics of the underlying sensor system, making
use of the adaptivity of machine learning approaches. As a result, 80 nm to 300nm
particles can be detected in signalswith different types of imaging artifacts and different
resolutions, reaching accuracies of over 80% with respect to the expected particle
counts of test samples. For mobile use as a rapid test system, resource-saving and
real-time capability are of similar importance to make the device accessible in as many
application areas as possible. Multi-objective optimization in terms of detection quality
and energy consumption was applied to demonstrate that the usage as a mobile system
is feasible.

2.2.1 Introduction

For the detection of nanoparticles such as virus particles a device that can make them
perceptible is required. Such a device is the PAMONO sensor [385, 607], which pumps a
liquid or air sample through a flow cell to reveal the particles of interest contained in it.
This is achieved by making use of what is known as the Surface Plasmon Resonance
(SPR) phenomenon [340].

Special proteins—antibodies—immobilized on a gold sensor filmhelp to accomplish
the specificity of viral particle detection. Particles that bind to the antibodies cause
local changes in the reflection conditions near the surface of the film. Due to locally
increased reflection, particle binding events become detectable by a charge-coupled
device (CCD) [389] integrated into the PAMONO sensor.
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The limits of a manual analysis are reached quickly, when trying to identify particle
signals. Even after enhancing the visibility of particles in the recorded images by pre-
processing, finding particle regions is a tedious and time-consuming task for a human
observer. Test analyses determined that it takes an expert approximately two days to
accurately analyze a dataset for an experiment of around 4000 images with varying
results for different particle sizes, different levels of disturbances, and different human
observers [613]. This time range, the need for visually trained experts, and the devia-
tions in the subjective perception of different persons predestine this task to become
the subject of automated analysis to enable the PAMONO sensor to be used as a rapid
test.

To reduce manual interactions and to enable quick testing by non-expert users,
more adaptive solutions from the field of deep learning were developed to adapt to
specific signal characteristics while tolerating deviations that inevitably occur between
different recordings when operating outside a controlled environment.

While manual interactions are shifted from on-site usage to training time, these
approaches make actual on-site testing faster. The challenge which arises in return is
the high amount of manually annotated training data to learn the patterns of interest.
At the same time, the recording and annotation of new experiments cause material
and time costs. This is a problem that is worth addressing since it can be observed in
various tasks of medical data analysis. Dealing with the limited availability of training
data while leveraging the generalization of machine learning is, therefore, a key aspect
in this area.

There are three major challenges to be addressed when detecting nanoparticles
in samples: dealing with varying artifact characteristics and intensities, real-time ca-
pability, and the feasibility of mobile usage. Considering the on-site operation, the
concept of mobility again contains the aspect of resource optimization in terms of
computing power and energy consumption. We present an approach for multi-objective
optimization of parameters in the employed algorithms. This optimization can target
high detection accuracy or low energy consumption. Alternative approaches based
on deep learning overcome the need for defining specific operators by learning them
from more general functions. The aspects of the application under natural conditions,
including the analysis of physical particle sizes, are viewed with particular attention.
The analysis of physical particle sizes is also described in that context. It can provide a
more accurate classification of the contained particles and enables plausibility checks
by taking domain knowledge about the specific types of particles into account.

Here is a short overview of the sections below: Section 2.2.2 provides details on the
different types of particles. The setup of the PAMONO sensor is detailed in Section 2.2.3.
Section 2.2.4 describes the underlying data characteristics and the classic and deep
learning-based methods for the detection of nanoparticles. Section 2.2.5 presents an
approach developed for the multi-objective optimization of parameters used in an
operator. Section 2.2.6 describes aspects of the application in natural environments
with particular emphasis on determining the size of the analyzed particles and an ap-
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proach that increases the robustness of image analyses based on generative adversarial
networks. Finally, Section 2.2.7 provides an outlook on potential approaches to improve
the hardware and software of the PAMONO sensor.

2.2.2 Types of Detectable Nanoparticles

It is firstworth notingwhich types of particles the PAMONOsensor can analyze. Different
physical and biological characteristics can be spotted, that are attributable to biologi-
cal Nanoparticles (bio-NPs). Besides particles of interest such as viruses, Virus-Like
Particles (VLPs) [754], and Extracellular Vesicles (EVs) [504, 505], there are interfering
objects can also be observed, such as lipid and protein agglomerates, which are often
considered contaminating substances hampering the bio-analytical examination of
samples.

While viruses are well-recognized as the smallest infectious agents containing only
one type of nucleic acid, Ribonucleic Acid (RNA), or Deoxyribonucleic Acid (DNA) [332],
VLPs, and extracellular vesicles are significantly less analyzed. It is important to high-
light the key difference between VLPs and viruses: VLPs do not possess any nucleic
acids and, thus, lack a principal opportunity to reproduce themselves in the host organ-
ism. On the other hand, VLPs carry the same antigens (molecules considered foreign
by the immune system) on their surface as the corresponding native viruses [754]. Thus,
VLPs in science can serve as a safe and reliable model of dangerous viruses since VLPs
efficientlymimic the structural properties of corresponding viruses but cannot replicate.
In practice, VLPs are well known as commercial medical products serving as a basis for
vaccines [754].

Another group of bio-NPs, Extracellular Vesicles (EVs), have recently started to
attract the attention of scientists and physicians. EVs are submicro- and nano-sized
vesicles released by the majority of cells [505]. Another principal feature of EVs is their
ability to carry different molecules inside as well as on their surface. Among such active
molecules are hormones, growth factors, active peptides, and nucleic acids [505]. Their
cargo makes EVs active messengers participating in intercellular communication and
reflecting cellular status under normal conditions or during the pathological processes.
Moreover, the abundance of EVs in body fluids such as blood or saliva drew the attention
of clinicians and medical researchers, who harness EVs as a means of drug delivery or
to estimate their potential as biomarkers of the progression of a disease.

However, any analysis of bio-NP samples for scientific and practical needs requires
the selection of reliable techniques and instruments. Certainly, bio-NPs have to be
swiftly characterized for their abundance in a sample and their size. From a different
perspective, biochemical information regarding their surface antigens (proteins) and
their content is of interest as well. A simultaneous quantification and determination of
the sizes of bio-NPs canbe achievedby theprinciple of surface plasmon resonance (SPR).
The plasmon-assisted microscopy of nano-objects (PAMONO) sensor, which exploits
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this principle, is an instrument for label-free and specific detection of individual bio-
NPs in solutions [245, 772]. In the following section, the sensor and the underlying
principle for visualizing particle signals are introduced in more detail.

2.2.3 PAMONO Sensor

Surface plasmons can be thought of as propagating electron density waves. These
waves can be excited by incident light (usually by an incident laser beam) in a thin
metal film at a dielectric-metal interface. It is precisely this thin metal film that serves
as a sensor surface. Surface Plasmon Resonance (SPR) is a physical phenomenon that
served as a basis for the development of the PAMONO sensor.

Conventional SPR biosensors deal with measurements of the layers of bio-
molecules formed onto the sensor surface, and thus, conventional SPR sensors are not
applicable for the detection of individual Nanoparticles (NPs). By contrast, the special
quality of the PAMONO sensor is exactly the ability to detect the binding of individual
NPs to the gold sensor surface [772]. Kretschmann’s scheme of plasmon excitation is
utilized in the PAMONO sensor as well as in the majority of conventional commercial
SPR-based biosensors [350]. However, there are specific issues that distinguish the
PAMONO sensor from known conventional SPR biosensors. In Kretschmann’s scheme,
shown in Figure 2.3, a p-polarized light (polarization of the electric field occurs in the
plane of incidence) illuminates a glass prism with a very thin (tens of nanometers)
noble metal film deposited on the base of the prism. Often a superluminescent diode or
a diode laser is used as a source of light [350]. Surface Plasmons (SPs) are excited as
propagating electron density waves at the metal-dielectric interface in the presence of
p-polarized incidence light at a particular angle [328, 577, 693]. This event occurs when
the energy of an incidence beam transforms into electron-polaritons within the thin
metal film deposited on the prism. SPs excited along themetal-dielectric interface result
in a substantial reduction of the reflection intensity. In turn, this fact leads to changed
reflection conditions, which are extremely sensitive to any refractive index changes
occurring close to the metal-dielectric interface [577]. Such changes can be caused by
the adsorption of molecules onto the metal film surface. SPR-based biosensors harness
this trait and enable the analysis of interactions between bio-molecules immobilized
onto the metal film surface and their counterparts in the analyzed liquid sample. Such
analysis can be performed in real time and without labeling the target molecules. Thus,
it is not surprising that conventional SPR biosensors are actively used to measure
binding constants and the kinetics of bio-molecular interactions, and to perform
concentration measurements [577].

The PAMONO sensor also harnesses the most convenient scheme of plasmon ex-
citation: Kretschmann’s configuration [350]. Figure 2.4 shows a photograph of the
device setup and the flow cell as the core of the apparatus. The entire device fits into a
suitcase-sized enclosure.
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Fig. 2.3: Schematic setup of the PAMONO sensor (left), abstract view of a used antibody coating (top
right), preprocessed image of an attached particle clearly visible as a bright elliptic region (bottom
right, left image), and the average pixel intensities of this area over time (bottom right, right image);
modified from [669].

Moreover, the events preceding the substantial reduction of the reflected light as well
as the events leading to the restoration of reflection are similar for the PAMONO sensor
and conventional SPR-based sensors. In the case of the PAMONO sensor, such events
occur locally, in the spot of NP binding, not on the entire sensor surface as it happens in
the case of classic SPR sensors [773]. A developed model [773] explains key differences
in physics between the detection of bio-molecule layer formation (classic SPR sensor)
and individual NPs (PAMONO sensor). Polystyrene NPs were employed as a model
system [245]. The use of these particles helped to demonstrate linear dependency
between the number of signals detected by the PAMONO sensor and the concentration
of particles in liquid samples. In turn, this fact confirmed the applicability of the
PAMONO sensor for the concentrationmeasurements of NPs, inwhichNP concentration
is expressed as a number of particles in a volume unit [245]. The work of Shpacovitch
and colleagues [608] focused on the bio-analytical features of the PAMONO sensor and
demonstrated the ability of the PAMONO sensor to detect not only HIV-VLPs (100−-
140 nm) but also influenza A viral particles (80−-120 nm).

The selectivity studies were performed in phosphate buffered saline (PBS buffer)
employing specially engineered HIV-VLPs of two types: one containing target protein on
the surface and one lacking it [608]. Under these conditions, the selectivity of HIV-VLPs
binding to the PAMONO gold sensor surface reached 90% without special treatment of
the sensor surface with substances preventing the binding of non-target VLPs [608].
Moreover, the ability of the PAMONO sensor to work with biological samples containing
serum was also demonstrated [608].
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(a) The real setup of the PAMONO sensor corresponding to
the schematic setup shown in Figure 2.3. The case of the
instrument is approximately the size of a suitcase.

(b) The flow cell with mounted gold-coated
glass plate attached to a prism base. The
tubing system serves to guide a liquid sample
into and out of the flow cell.

Fig. 2.4: Photos of the PAMONO sensor (a) as a whole and of the flow cell (b) as the heart of the
device individually.

Further work [609] proved the power of the PAMONO sensor for the detection of the
other type of bio-NPs: extracellular vesicles. The authors employed cysteine-conjugated
protein A/G for the functionalization of the PAMONO sensor surface. This was done
to allow for the elution of bio-NPs captured on the sensor surface and, thus, enable a
post-PAMONO analysis [609]. Moreover, the PAMONO sensor was capable of supply-
ing sufficient information for the sizing of studied polystyrene nanoparticles. Such
information could be extracted from the intensity step signal caused by NP binding.
It is important to mention that the Nanoparticle Tracking Analysis (NTA) instrument
Malvern Panalytical NanoSight LM10¹was used as a reference method in the studies
performed with the PAMONO sensor. Thus, it was also necessary to verify the accuracy
of the LM10 instrument before its use in the studies. This work was performed by Usfoor
and colleagues [696]. It was demonstrated that NP size measurements performed by
the LM10 device are quite accurate, but concentrations were not determined precisely.
Moreover, the NTA analysis of bio-NPs requires the labeling procedure of target parti-
cles, while the PAMONO sensor provides results employing a label-free approach. In
detail, the drawbacks and advantages of the PAMONO sensor and other SPR-based plat-
forms for the sizing, quantification, and biochemical analysis of extracellular vesicles
are given in a review work [606]. One of the advantages of the PAMONO sensor is the
possibility of NP quantification without prior calibration, as as shown by Kuzmichev
and colleagues [361].

The analysis of sensor data requires the use of robust detection algorithms that can
adapt to data variations in real use cases. Approaches that incorporate this criterion
are presented in the following sections.

1 Malvern Panalytical NanoSight LM10, https://www.malvernpanalytical.com/en/products/product-
range/nanosight-range/nanosight-lm10, accessed 31 March 2022.

https://www.malvernpanalytical.com/en/products/product-range/nanosight-range/nanosight-lm10
https://www.malvernpanalytical.com/en/products/product-range/nanosight-range/nanosight-lm10
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2.2.4 Automated Nanoparticle Detection

Based on the challenges of nanoparticle detection, a signal model was developed to
represent the individual components of the total signal

I(x, y, t) = B(x, y) · A(x, y, t) · P(x, y, t) + R(x, y, t) (2.1)

which consists of the background signal B, which is constant within a recorded im-
age, an artifact signal A, the signal of interest P, and a residuum R, which includes
random noise [614]. Figure 2.5 shows an example of an unprocessed recording and
the corresponding image in which the contained particle signal is made visible in a
preprocessing step by removing the background B and reducing the noise R. This is
achieved using a sliding-window approach that averages signal values, amplifies pixel
intensities increasing over time, and weakens constant or falling intensities. Subse-
quently, a dynamic contrast enhancement is applied in some approaches to further
emphasize particle signals [733]. After that, the regions of interest can be spotted as
elliptical areas that are brighter than their environments. Based on the presented sig-
nal model, the goal of the automated detection is to make the pixel values of signals
of interest Pmore distinguishable from their surroundings. Typically this is done by
employing approaches that attempt to highlight particles directly and, in some cases,
by weakening artifact signals beforehand.

From the algorithmic point of view, the detection of nanoparticle signals on pre-
processed images can be seen as a combined task consisting of blob detection [639]
and time series analysis as particles can only be reliably recognized when their spatial
features like region size and shape as well as their temporal behavior are taken into
account. The characteristic temporal behavior, which can be described as a step-like
curve, is shown in Figure 2.6 for two images from sets with different particle sizes. From
the algorithmic point of view, the detection of nanoparticle signals on preprocessed
images can be seen as a combined task consisting of blob detection [639] and time series
analysis. This is because particles can only be reliably recognized when their spatial
features like region size and shape as well as their temporal behavior are taken into
account. The characteristic temporal behavior, which can be described as a step-like
curve, is shown in Figure 2.6 for two images from sets with different particle sizes.
The origin of the temporal characteristics lies in the way a particle of interest interacts
with the antibody layer. When such a particle attaches to it, it remains in contact for a
prolonged time. It is assumed that, in the time of one recording, particles of interest
stay attached permanently while other particles only cause short-time peaks in the
measured intensities as their physical shape does not match the specific antibodies
applied to the gold film (see Section 2.2.3).

A closer look at intensity curves belonging to particles of different sizes reveals
that a larger particle causes a higher intensity difference

I(x, y, tj) − I(x, y, ti), ti < tj
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(a) Unprocessed (b) Preprocessed

Fig. 2.5: Comparison of (a) an unprocessed, recorded image and (b) the same image after preprocess-
ing, which enables detecting particles as ellipsoids with high pixel intensities compared with the
background. The particle that can be seen in the preprocessed image can hardly be detected in the
unprocessed image data. To improve the visibility of particles, the preprocessing has to make use of
temporal information from a time window around the current frame.
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(a) Intensity of an 80nm particle over time.
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(b) Intensity of a 200nm particle over time.

Fig. 2.6: Exemplary comparison of two signals over time belonging to different particle sizes.

for a position (x, y) and times ti , tj than a smaller particle. With smaller particle sizes,
the particle signal P becomes weaker, while inaccurate adjustments of the optical
instruments, less clean samples, and increasing external influence imposed on the
device increase the intensities of the artifact signal A and the residuum R. This results
in a lower signal-to-noise ratio (SNR) [127]

SNR(P, Q) = |μ(P) − μ(Q)|
σ(P) (2.2)

that is determinedbasedon theparticle signals P and thenon-particle signalsQ := A∪R,
where μ is the average value and σ is the standard deviation of a set of intensity values.
While not suitable for analyzing structured artifacts, themeasurement can illustrate the
visibility of particles in an image that predominantly contains random noise besides
the particle signals. A low SNR value indicates a bad detectability of particles caused
by a low intensity of particle signals P or a high intensity of random noise R. Specifying
a metric indicating the strength of the influence of structured artifacts would require



2.2 Virus Detection | 29

Parameter Optimization

GPGPU Image Processing Pipeline

Image Synthesis

Pattern Detector Pattern Classifier

Real Sensor 
Images

Particle
Candidates

Feature Extraction

Candidates
with Features

Classified
Candidates

Output

Offline

Real-time

Input

Time-Series 
Template Analysis

Spatial Template 
Analysis

Fuzzy Logic Rules

Polygon Shape 
Features

Spatial Intensity
Features

Spatial-temporal 
intensity features

Preprocessing

Background 
Elimination

Intensity
Normalization

Noise Reduction

K-Nearest-
Neighbor

Support Vector
Machine

Random Forrest

Fully Convolutional
Neural Network

Convolutional
Neural Network

Fig. 2.7: An abstract processing pipeline for PAMONO images showing different methods that can be
used for preprocessing, pattern detection, candidate feature extraction, and classification [385].

a more complex definition that is less interpretable. For this reason, the SNR value is
used when a directly understandable indication of particle visibility is desired.

2.2.4.1 Stages of Detection
With respect to the characteristics described in Section 2.2.4, different methods exploit-
ing spatial and temporal features for nanoparticle detection were evaluated. Figure 2.7
shows the stages of an abstract detection pipeline containing alternative approaches
for the different stages. In general, the task of automated nanoparticle detection can be
divided into different subtasks. The first step of any presented detection approach is
preprocessing with the goal of image restoration based on a signal model. In addition,
image enhancement techniques are used to improve the distinguishability between
particles and other signals. With the preprocessed images at hand, a segmentation of
the image areas and the detection of candidate regions takes place, which is summa-
rized as the pattern detector. Then a feature extractionmethod determines features that
are used in a pattern classifier to check the properties of candidates so that non-particle
candidates can be filtered out.

The whole pipeline can be optimized for a specific criterion using the offline pa-
rameter optimization described in Section 2.2.5.1.

For preprocessing images, a sliding-window method with a fixed window size in
different variations [399, 733], as well as a constant background removal method [613],
have shown to be effective in different approaches. Depending on the downstream
algorithm for detection, additional noise reduction techniques such as Gaussian or
median filtering [613], wavelet denoising [401], brightness correction [399], or dynamic
contrast enhancement [733] are used to provide a better separability between particles
and other signals.

While a variety of approaches is applicable for subsequent tasks, different ap-
proaches offer diverse strengths and weaknesses for different data characteristics. The
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Fig. 2.8: Example of a classic pipeline for the detection of nanoparticles based on template matching
and time-series analysis for the generation of particle candidates and the evaluation of polygon
shape features in a random forest approach for classification (adapted from [399]).

following are available operations for the subtasks of particle detection. An appropriate
selection of operations is presented in Section 2.2.5.1.

For the task of pattern detection, (fuzzy) template matching in different vari-
ants [399, 400, 401, 613] and convolutional network approaches [387, 733, 746] were
developed. With particle candidate regions generated by the pattern detector, feature
extractors obtain spatial or spatiotemporal features, which are then evaluated by a
pattern classifier. Extractors generate, for example, polygon shape features like the
covered area or the circularity of a polygon [399] ormeasures describing representations
in other spaces like the Fourier or wavelet space [746].

Evaluated classifiers are, for example, k-nearest-neighbor [615], support vector
machines (SVM) [615], random forests [387], and convolutional neural networks [387,
733].

In the end, a connection between regions to single particle traces distributed over
consecutive frames is established. This is particularly important when counting the
detected particles is desired instead of just detecting if particles are present at all.

A concrete example of a classic detection pipeline is shown in Figure 2.8. It utilizes
template detection and fuzzy time series analysis [399] for pattern recognition and
classifies particle candidate patches with random forests based on polygon shape
features.

Template matching, which has proven effective in various examples, uses a pre-
viously recorded particle region as the predefined template patch T to detect similar
regions of the same size in the current image I. This is done by calculating a normalized
cross-correlation

R(x, y) =
∑︀

x′ ,y′ T(x
′, y′)I(x + x′, y + y′)

√︁∑︀
x′ ,y′ T(x′, y′)2 +

∑︀
x′
∑︀

y′ I(x + x′, y + y′)2
.

for each pixel position (x,y) in the imagewith the template patch [100, 399]. In simplified
terms, the template patch is moved over the image while the correlation of the template
patch with the underlying image area is determined at each position.

Although using classic methods like template matching with optimally adjusted
parameters can lead to high detection accuracies, slightly outperforming some neural
network approaches [385], it has to be noted that this is only possible if the parameters
are individually optimized for each change in the setup and, in the worst case, for
each dataset [385, 613]. This is a disadvantage for use as a rapid test on-site since
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Fig. 2.9:Modification of the classic detection pipeline shown in Figure 2.8 for the use of neural
networks. Template matching, time-series analysis, and the random forest classifier were replaced
by a neural network. These replaced modules are colored green.

changes in the characteristics of artifacts have to be covered without the need for
manual adjustments for each dataset. This demand leads to the employment of neural
network approaches, which are presented in the following section.

2.2.4.2 Spatiotemporal Deep Learning
The detection of signals of interest from a real-world measurement always comes with
irregularities. Changes in the environmental influence have to be taken into account,
as well as the varying cleanliness of the samples. Dealing with these influences re-
quires a technique that can adapt to the changes while concentrating on the typical
characteristics of the particles of interest. At this point, the advantages of deep learning-
based methods can be exploited. Instead of adjusting to a restricted scenario, a deep
learning-based approach can take advantage of previous recordings by using them to
approximate patterns that are typical for a particle of interest. Rather than calculat-
ing the features based on a static method, neural networks choose from a large set of
possible feature extraction operations limited only by the number of freely learnable
parameters and their architecture. Several deep learning approaches have been applied
to the PAMONO recordings to evaluate their detection performance [385, 387, 733, 746].

Deep Learning Integration Into the Detection Pipeline There are different ar-
chitectures of neural networks that can be integrated into the pipeline presented in
Section 2.2.4.1. One pipeline modification using neural networks created to improve the
flexibility of particle detection is presented in Figure 2.9. Several modules of the former
pipeline shown in Figure 2.8 are replaced by neural networks for spatial or temporal
classification of the respective inputs.

The key difference between the deep learning approach and the use of more direct
methods like template matching is the way the parameters are used. By the layer-
wise connection of learnable operators, this adaptation takes place on lower levels,
such as edge detection, as well as on higher levels where possible particle shapes
learned from training data can be correlated with a given image. For this purpose,
backpropagation [264] is used in combination with a loss function, which in this case
is the cross-entropy loss that is predicted in the current training step [387]. The whole
process aims at the minimization of the evaluated loss functions, that is, the creation
of a minimal divergence between predicted and expected classes.
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The presented versionwith parts of the operations replaced by neural networkswas able
to achieve results on data with a median SNR value of 0.7 (see Equation 2.2) for images
that were mainly affected by random noise. With the classic pipeline, this level was
only possible on datasets with a median SNR value of 1.25. Although achieving slightly
worse results compared with a template-matching approach which was optimized for
each dataset separately, the neural networks can cover different situations without
having to be adjusted anew [385, 733]. This property is highly desirable when handling
shifts in the data characteristics, which are described in more detail in Section 2.2.6.2.

Deep Learning-Focused Pipeline The modified pipeline described in the previous
paragraph increases the adaptability to changed characteristics of nanoparticle signals
by replacing some classic operators with neural networks. At the same time, the modi-
fied structure still relies on inflexible methods for the extraction of candidate regions
and patch extraction. The next step towards a completely adaptable structure is the
employment of a neural network that is capable of proposing candidate regions by
itself. In this way, different sizes of particle regions can be taken into account while
learning the characteristic features of particles. When evaluating the architecture on
datasets with different characteristics due to changing optical instruments and differ-
ent image resolutions, accuracies of over 80% could be achieved without adjusting
parameters between analyses [733]. The pipeline which was proposed to achieve this
goal is illustrated in Figure 2.10. It puts a stronger focus on the use of learned func-
tionalities. The first step of detection with this approach is the spatial prediction of
candidate regions in sliding window-preprocessed images. The downstream filtering
of the candidates takes the temporal changes in pixel intensities into account and
decides whether it corresponds to a characteristic of interest. Each of the two steps is
learned using a neural network. The precise implementation of the spatial predictor is
based on a Mask R-CNN [263], which has already been shown to be capable of handling
the task of nuclei detection [302, 752, 761]. The Mask R-CNN itself uses a ResNet-50
Feature Pyramid Network [414] to generate abstract features for downstream detections.
In terms of the classic pipeline shown in Figure 2.8, this functionality can be called
a pattern detector. To speed up the training process and improve the generalization
capability, we employ the concept of transfer learning and use the initial weights of a
ResNet model pretrained on the Microsoft Common Objects in Context [415] dataset.
Since the more universal, low-level patterns used for the detection process are already
set, the training process can focus on adjusting the weights in the last layers containing
high-level features. An additional advantage of the used network is that it is not bound
to one specific tile size as in previous approaches. Rather, it can determine the sizes of
particle regions from a given set of possible dimensions. This results in higher flexibility
while retaining the possibility of restricting accepted sizes to a specific range based on
external knowledge.
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Fig. 2.10: Architecture of the spatiotemporal pipeline for particle detection. It preprocesses the
recorded image stream in two ways, each fitting to its downstream task, predicts particle regions
for each image, and connects these regions to countable particle traces stretching over multiple,
consecutive frames [733].

The temporal filter network is kept simple, consisting of three fully connected layers
with intermediate activation functions. It checks if the temporal view of the candidate
region fits a particle signal and sorts out artifact signals that resemble the signals of
interest spatially only for a short time. The still hand-crafted, fixed parts of the detection
process can be found in two places: the preprocessing and the connection of confirmed
particle regions to countable particle traces. By learning the core functionalities of the
detection task, this approach was able to reach accuracies of over 80% with respect
to the expected particle counts of the test sets, which contained signals of 80 nm to
200nm particles with different recording qualities, image sizes, and particle region
sizes. The sets originate from different development stages of the PAMONO sensor, so
setups with different optical instruments and camera configurations were included.
The possibility of taking these differences into account indicates the high flexibility of
the proposed solution.

In summary, classicalmethods such as templatematching canworkwell for particle
detection methods if they are specifically adapted to the specific imaging conditions.
On the other hand, deep learning approaches provide better adaptability to distinct
conditions with the drawback that they usually require a large amount of training data.
However, specialized training approaches or the incorporation of domain knowledge
can reduce the necessary training data. An examplemethod dealing with this challenge
explicitly is presented in Section 2.2.6.3.
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Fig. 2.11: The SynOpSis approach for automatic parameter adjustment. The optimization process
tries to approximate the optimal parameters for the detection methods. Training is done on previ-
ously analyzed data. The amount of test data is increased artificially by a synthetic combination of
background and particle signals of different training datasets. In the end, only the parameters of the
detection method are changed without increasing the calculation complexity at test time [613].

2.2.5 Optimization

Most of the methods that can be used for object detection and other image-processing
algorithms require suitable parameter values to be identified and set for improved detec-
tion. When trying to determine the best parameter settings for the detection of particles
for a given algorithm or even for a complete pipeline as described in Section 2.2.4, the
limit of what can be accomplished manually is reached quickly. A method utilizing
a genetic optimization approach to handle this search automatically is presented in
Section 2.2.5.1. Section 2.2.5.2 focuses on the possibilities of specialized optimization
targeting an energy-efficient execution.

2.2.5.1 Algorithmic Optimization
A method that was developed for the purpose of automatic parameter selection is
the SynOpSis (synthesis/ optimization/ analysis) approach [613], which is illustrated
schematically in Figure 2.11. It makes use of previous examples and synthetic augmen-
tations based on new combinations of particle signals and background signals from
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different datasets to artificially increase the number of available images for training
and testing. With a given interval of plausible values for the underlying parameters, it is
run repeatedly with different parameter choices and with the goal of approximating the
ideal settings for the given data. In particular, the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [163], a multi-objective optimization approach, is exploited to find
Pareto-optimal settings for the parameters used in the detection algorithms [613]. After
that, the parameters that lead to the best results based on a predefined criterion are
chosen for the single stages of the pipeline. While the optimization itself has to execute
the detection pipeline after each optimization step, the actual detection is not slowed
down. The reason for that is that after the optimization is done, the parameters are just
transferred to the corresponding algorithmswithout conducting additional calculations
while the actual detection takes place. Despite the benefits of tuning the algorithms
to some training data, the optimization is limited to the given feature extractors and
the parameter sets that are presented to it. A problem with this can appear when the
selected operators fit a specific situation instead of generalizing, as can happen with
template-matching approaches [385, 613].

2.2.5.2 Resource Optimization
The focus of resource optimization for the task at hand can vary depending on the
concrete application scenario, while several goals can hinder each other in their ful-
fillment. Depending on the place of use, the energy efficiency of the used calculation
platform can be highly important as a reliable external power supply can not be as-
sumed everywhere. An energy-efficient device can thus cover a wider range of operating
locations and provide better portability in general, as with lower energy consumption,
smaller computing platforms like embedded systems can be operated for some time
over by a battery. For this purpose, work on this subject could demonstrate a concept
for balancing between a reduction of the overall energy consumption resulting in a
higher battery lifetime and a shorter execution time [403]. The computations were
either executed locally on a mobile graphics processing unit (GPU) or offloaded over
a wireless network to transfer the sensor images as well as computation requests to
a server. A complete offloading of computations was compared with an alternative
in which the method can select the calculations that are offloaded based on a given
objective such as energy-saving or a low execution time. For this purpose, a calculation
of the consumed energy is required. This is achieved using the energy model

etotal = pGPU · tGPU + pGPU · tCPU + pLTE · tLTE

which is based on the average powers pGPU, pGPU, and pLTE of GPU, CPU, and the
communication and the corresponding times tGPU, tGPU and tLTE [403]. The result can
be used to approximate the time that an algorithm can run with one charge. Although
LTE was chosen as the communication technique, the energy model can be transferred
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to other communication standards. To compute the overall runtime

ttotal = tGPU + tCPU + tLTE + tServer − tParallel
the time tServer needed by the server and the time tParallel, which can be saved by parallel
operations on the client and the server, are also taken into account.

Using simulation software to simulate different hardware setups such as more
powerful andmore energy-efficient GPUalternatives, a share of 90%of the energy could
be saved compared with the configuration with the fastest calculation while optimizing,
with the goal of a low overall execution time, a speedup of 55, that is to say, a division of
the execution time by 55, could be achieved in comparison to the most energy-efficient
configuration [403]. It was also observed that using the most power-efficient GPUs in
the example setups did not lead to the most power-efficient total configuration. Instead,
a GPU with more computing capacity could calculate results faster, leading to a lower
total energy consumption [403]. Additionally, it was recognized that the usage of a GPU,
in general, can reduce energy consumption significantly compared with an execution
purely on a CPU [402].

2.2.6 Application in Real-World Scenarios

Besides the direct optimization of the detection methods to a specific data basis, there
are further factors to consider in a real-world scenario.

2.2.6.1 Identification and Influence of Particle Size Distributions
While the most important task of the PAMONO sensor is to decide whether particles
of interest are present in a sample, the determination of physical particle sizes brings
additional advantages. A size distribution gives more information on the detected par-
ticles and enables plausibility checks helping to uncover outliers caused by impurities
in the sample. Domain knowledge can be used for this purpose: since the device is
adjusted beforehand to a specific particle type corresponding to the applied antibody
coating, the expected range of particle sizes is known.

In tests with samples containing different, well-defined particle sizes, it could be
demonstrated that the PAMONO sensor can be used to distinguish the different sizes
from each other. The quality of the predicted size distributions was also compared with
a commercial device showing that the predictions based on the PAMONO sensor rank
at the same level of size prediction quality. For this purpose, the difference between
the median signal intensity before and after a particle attaches is calculated. When
comparing two particle sizes, this difference is proportional to the difference in signal
intensities. An example of this is shown in Figure 2.6. A visualization of the analyses
with the PAMONO sensor and, for comparison, a commercial nanoparticle tracking
device for samples containing 100nm, 200nm, and 300nm particles, as well as one
mixture containing all three sizes, can be seen in Figure 2.12.
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Fig. 2.12: Determined physical particle sizes for four different suspensions analyzed with (from left
to right): 100 nm particles, 200 nm, 300nm, and a composition of 100 nm and 200nm and 300nm
particles. The top row shows reference distributions obtained with the commercial Malvern LM10
device while the bottom row shows the results of the PAMONO sensor [609].

The soft accuracy value of detected particle size distributions can be evaluated with

ar =
|{e ∈ E

⃒⃒
|cpred(e) − ccorr(e)| ≤ r}|

|E|

calculating the share of predicted sizes cpred that approximately match the correct size
class ccorr for each patch e ∈ E of an analyzed image.

With the chosendivision into classes of 10 nm, the classification of a 100nmparticle
into say, the size class 80 nm, is tolerated with r = 2. At the same time, a prediction of
130 nm would be considered a false value for a 100nm particle as a class interval of
10 nm together with r = 2 results in a tolerance of 20 nm. In an evaluation, particles of
the sizes 80nm, 100nm, and 200nm were analyzed. With classes of 10 nm intervals,
an accuracy of over 70% was reached for r = 2 [386].

In general, the PAMONO sensor can be calibrated by measuring the signal intensi-
ties of standardized particle sizes to map the measured values of temporal intensity
steps to physical size. When changes are applied to the optical components of the
sensor setup, the procedure has to be executed again as they can lead to a general shift
in the measured signal intensities.

2.2.6.2 Detection of Viral Infections
The PAMONO sensor is designed to be usable as a rapid test for detecting viral infections
on-site.When considered for use at an airport, a city center, or the entrance of a stadium,
however, additional requirements emerge. For use as a rapid test on-site, the device
has to be transportable to different places, which is fulfilled by the sensor case being
suitcase-sized. Energy efficiency can be important for enabling the execution on an
embedded device and use at otherwise poorly accessible places. A possible solution
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for miniaturization was evaluated using the Hardkernel Odroid-XU3 and Odroid-XU4
single-board computers as a basis for calculations [399]. Although execution times are
increasing, the ability to calculate and manage calculation offloading on embedded
devices was demonstrated to be feasible [399]. The related method of computation
offloading is described in Section 2.2.5.2.

2.2.6.3 Dealing With Imaging Artifacts
The amplification of imaging artifacts has to be expected when targeting a real-world
application of the PAMONO sensor. Therefore, an essential aspect of reliable detection
is the robustness of algorithms against imaging artifacts.

These artifacts originate from different sources. On the hardware side, there is
the imperfection of the optical instruments and their adjustments. The smoothness of
the gold film and its coating also influence the quality of the signals of interest. For
example, scratches and other irregularities on the surface cause visible artifacts in
the recordings. Another source that has to be considered is the limited and varying
cleanliness of samples in real use cases. For example, air bubbles and dust particles in
saliva or sputum samples cannot be avoided completely. In general, changing external
influences have to be expected when targeting an application at places where the
constancy of laboratory conditions cannot be achieved.

With variations of artifact types, such as line-like or wave-like structures, regions
of constant intensities, pulsating regional patterns, or random noises, a detection has
to tolerate both unstructured and structured artifacts.

This combination causes classic noise reduction methods to yield insufficient
results. At the same time, changing patterns and intensities of artifacts also pose a
problem for learning methods since many related approaches require a high amount of
training data, especially when artifact characteristics differ in the recorded images.

Recent work tackles both problems by increasing the robustness of an existing
learning approach relying only on a small amount of labeled training data.

This is achieved through a generative adversarial network (GAN) [237] that is not
directly involved in the detection process but learns to simulate real artifact patterns to
improve the detector before the actual detection takes place. Synthetically generated
artifacts are used to overlay training images for the detection network. In this way, the
detector learns how to tolerate the induced artifacts [547]. In addition, the architecture
of the detection network itself does not need to be changed, so there is no decrease in
the speed of the detection process.

The training of the GAN is not free from the demand of training data, but it uses
reference images. These images are characterized by the fact that they do not contain
particles of interest but only show imaging artifacts. The advantage of using this type
of recordings instead of those carrying particle signals is that no physical test particles
are required. This saves time and material costs and eliminates the risk of reproduc-
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ing particle signals in the generated artifact images, as particles do not occur in the
reference images. It is therefore ensured that only artifacts are learned.

Having demonstrated that it can produce realistic images with sufficient variation
even with a small amount of training data, the StyleGAN2-ADA [312] was employed as
the specific GAN architecture. While this GAN requires fixed-size training images and
produces fixed-size images, different sensor configurations lead to different sizes of
recorded images. Therefore, the GAN-based approach composes multiple patches of a
fixed side length to cover the area of an annotated image for the training of the detector.
As an illustration of the whole process, Figure 2.13 shows the generation of synthetic
artifact signals and their usage in the training of the detection network.

Training a simple segmentation networkwith a downstream object detection shows
the improvement in the robustness against artifacts when using the presented, GAN-
based approach.

Two configurations were evaluated to compare the results with and without over-
laying synthetic artifacts. The first configuration contained one dataset with particles
of interest and only weak and unstructured artifacts. The second one uses the same
dataset but adds synthetic artifacts generated by a GAN trained with reference images.
Both employ the same test datasets, which contain different types and intensities of
artifacts. After training two identical U-Net [544] architectures, each with one of the
configurations, a clear difference becomes visible. While the training results without
synthetic artifacts yield poor results, overlaying the images improved the mean F1 score
by 22% [547]. While improvements can be seen for all types of artifacts, they are most
significant for images with structured artifacts of high intensities.

The GAN-based approach shows similarities to the approach presented in Sec-
tion 2.2.5.1, as both create mixtures of particle signals and other signals from different
datasets. The difference becomes clear when considering that the GAN-based gener-
ation does not directly use the limited set of natural images but artificially creates
an arbitrary number of additional images in a learning process. This procedure can
significantly increase the variability of the training images.

2.2.7 Current Research and Outlook

The techniques around thePAMONOsensor are expected tobenefit from further research
and development in the area of robust object detection. At the same time, it is worth
evaluating an extension of the applications beyond virus detection, for which the sensor
also forms a suitable basis. For each of the two perspectives, current and planned
investigations are described below.
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Fig. 2.13: Schematic representation of overlaying training images with generative adversarial net-
work (GAN)-generated artifacts from composite tiles. The PAMONO sensor is used to record samples
without particles of interest (upper part) and samples including such particles (lower part) for the
training process. The trained detection model is then used to search for particles in images where
their presence is unknown. Dashed arrows show the path of images in the evaluation process, while
solid arrows represent the path of images in the training process. The images in dotted boxes visual-
ize the single steps by examples. The yellow boxes illustrate the start and end of the pipeline, green
boxes represent data, and blue boxes mark algorithms [547].

2.2.7.1 Improvements of Detection Capabilities
Amethod to improve the overall results concerns the physical setup of the sensor. With
the rotation of the prism and the position of the camera objective influencing the signal
quality, the appropriate adjustmentsmust be realized before a recording. Although good
results can be achieved by manual adjustments, there are limits to human accuracy
when tuning the optical parts. For this reason, a sensor-actuator control system is
targeted to determine an optimal setting automatically and to adjust the components
in feedback with the resulting image signals.

In any case, further development in the direction of an on-site application should
consider the need for high robustness of the methods against external disturbances
to ensure a reliable and widely available rapid test. While the synthetic generation of
artifacts presented in Section 2.2.6.3 showed improvements in the detection robustness,
temporal dynamics are not specifically taken into account. By including temporal
information, further improvements in the robustness can be assumed.

A different way of improving results is the incorporation of domain knowledge. The
knowledge regarding a specific pathogen suggests the inclusion of particle counts per
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Fig. 2.14: Examples of different artifact characteristics in preprocessed images after the application
of dynamic contrast enhancement.

image area as additional information. When a reference value for a usual concentration
of those particles is known, the separation between samples with and without particles
of interest can be improved based on an infection-specific concentration threshold.
Although this option has not yet been quantitatively evaluated, it promises to improve
reliability in practical applications.

A promising area of future exploration of mobile concepts for the execution of
detection methods is the evaluation of embedded and other mobile devices. For ex-
ample, the use of Field-Programmable Gate Arrays (FPGA), which are presented in
Section 6.1 in Volume 1, promises to reduce power consumption while keeping the
system size small. Another interesting work, which addresses hardware improvements,
is the evaluation of learning approaches on modern memories in Section 7.2 in Volume
1. It focuses on the aspect of energy-saving in different approaches by targeting an
optimal use of memory technologies.

2.2.7.2 Perspective Applications of the PAMONO Sensor
The PAMONO sensor proved its power in the characterization of viruses and Virus-Like
Particles (VLPs). The latter is especially important since VLPs are often used as medical
products and serve as a basis for different vaccines. Under these circumstances, the
PAMONO sensor can be applied as an analytical instrument for quality controls during
routine production of VLP-based vaccines, estimating the size and concentration of
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producedNPs in real time. Further, the PAMONO sensor represents a valuable analytical
instrument for the characterization of extracellular vesicles (EVs). In theory, the PA-
MONO sensor does not simply enable the sizing and quantification of EVs; it also helps
to gain information about their surface markers and the molecules transported inside
EVs. Nowadays, EVs earn growing interest as a means of intercellular communication.
Acting this way, EVs can potentially serve as drug-delivering vesicles and as biomarkers
of the cellular status. In this case, the ability of the PAMONO sensor to characterize EVs
without labeling is a promising opportunity. Moreover, the PAMONO sensor may serve
as a platform for the development of cell-based assays. In this case, the status of cells
cultured on the sensor surface can be estimated via the cellular production of EVs and
soluble mediators measured by the PAMONO sensor.
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Abstract: The past decade has seen unprecedented progress in the survival chances of
cancer patients as a consequence of new treatments targeting tumor-specific cellular
processes, which have been uncovered by molecular genetic analyses. From a data
analysis perspective, the main challenge is the high dimensionality and multimodality
of the genetic data relative to the small sample sizes (numbers of patients). From
a computational perspective, the analysis of high volumes of data (about 100GB of
sequencing data for an individual tumor genome) currently requires high-powered
computational resources and still remains challenging in the very short time frames
that are desired to start treatment immediately.

We discuss two avenues of progress. First, we presentmethods that are able to extract
most of the genetic variants froma sequenced tumor genome, but require only 2% to 5%
of the computational resources compared with the current state-of-the-art procedures.

Second, we discuss a versatile unified statistical model for distinguishing true vari-
ants from technical artifacts of the DNA sequencing process.

Using analyses of paired samples from primary and relapse neuroblastoma tumors,
we are able to extract patterns of tumor evolution that are correlated with cancer
progression and the escape of tumors from therapeutic intervention.

As a result, a novel risk classification of neuroblastoma has been established based
on genomic and mutational data.

2.3.1 Introduction

Cancer patients nowadays receive precise diagnosis and personalized therapy based
on their individual molecular genetic data.

Here, we report on the analysis of DNA data from patients with neuroblastoma, a
solid tumor typically occurring in children.

Diagnostics and prognoses are based on DNA sequencing, currently ranging from
a few hundred targeted genes to entire genomes requiring 100GB per patient in the
near future.

Identifying relevant variants in the DNA that serve as biomarkers to distinguish
between different risk classes, or primary tumors from relapses, or treatable versus
non-treatable tumors, is and remains challenging, but every step of progress in this
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Fig. 2.15: Left: Evolutionary tree derived from binary features (presence/absence of informative sin-
gle nucleotide variants) of a primary neuroblastoma tumor and several relapse samples taken from
different tissues and at different times from the same patient [583]. Right: Illustration of evolution of
tumor heterogeneity under therapy over time [588].

field helps to make better treatment decisions in the long run. The following molecular
features derived from genomic data are of primary interest: (1) single nucleotide muta-
tions (or variants, SNVs), (2) short insertions or deletions of DNA, (3) large structural
variants (e.g., chromosomal translocations), (4) copy number changes (gain or loss
of genetic material in tumor cells), (5) epigenetic changes, such as DNAmethylation
changes, and (6) differences in gene expression.

Over the past years, we have developed feature extraction workflows and data anal-
ysis processes for each type of feature mentioned above. For data analysis workflows in
general, but especially in medicine, reproducibility of derived data from raw data is of
utmost importance. The basis of each of these processes is our workflow management
system called Snakemake [345, 450], which is now widely used worldwide, as it guar-
antees reproducibility in particular for large-scale DNA sequence analysis workflows.
Furthermore, the Bioconda package repository [242] was founded by one of us (JK) and
now, with widespread community support, acts as a central repository for semantically
versioned bioinformatics software, which is made available in a reproducible way.

In the following, for simplicity, we focus on the first type of features (SNVs), but
these findings also translate to the other variant types, if appropriately adjusted. In
particular, we discuss whether we can determine genomic variants that distinguish
primary neuroblastomas from those that re-occur after therapy (referred to as relapses
or relapse samples). The latter are responsible for adverse disease courses and are
currently considered to be incurable. It was therefore highly encouraging that we were
able to identify several genes with recurrent mutations present only in relapse samples
[583]. Figure 2.15 summarizes some of our key findings on tumor heterogeneity after
relapse (left side) and illustrates the tumor evolution process (right side). It is mainly
this developing molecular heterogeneity of tumor cells under treatment that currently
prohibits effective long-term therapies.

The main resource constraints for this setting and similar situations are a limited
number n of samples (patients) versus an extremely high number p of potential features
(e.g., each potential variant in the genome observed in at least one sample).
So we face two challenges in particular:
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1. resource-efficient detection of candidates of variants (Section 2.3.2)
2. accurate classification of candidates in each sample (true variant vs. noise, techni-

cal artefact, etc.; Section 2.3.3)

2.3.2 Resource-Efficient Detection of Variant Candidates

Standard genetic mutation or variant analysis starts with an extremely compute-
intensive step: the localization of every single sequenced DNA fragment (or “read”;
there are literally millions of DNA reads in a single dataset) in the genome, and a
pairwise comparison between the fragment and the genomic sequence. Such pairwise
alignments are the basis of variant calling: many reads showing a certain difference
at the same position compared with the reference genome, this provides convincing
evidence that the sequenced genome contains a specific genetic variant at that position,
either in both inherited chromosome copies (homozygous variant) or in just one (het-
erogzygous variant). To be precise, complex statistical models and tests are necessary
to distinguish true variants from possible technical artifacts (see Section 2.3.3).

This first localization and comparison step is performed by so-called read mappers,
such as BWA-mem [391], bowtie2 [371], minimap2 [390], or PEANUT [344]. Extensive
parallelism on both multi-core systems and GPUs keep the (wall clock) time of this
step within a few hours. However, the overall CPU work consists of many CPU days or
months for a single dataset, consuming considerable energy.

It is therefore of high interest to develop more resource-frugal methods to achieve
the same task, or at least a large fraction of it. We explored alignment-free methods
as an alternative to the above mapping and alignment-based method. In particular,
we propose to use short DNA strings of length k (so-called k-mers) to directly detect
potential single-nucleotide variants, as we now describe.

2.3.2.1 Genome Preprocessing
We first preprocess the reference genome.
1. Select an appropriate value for k, such that most k-mers are unique in the reference

genome. Our studies indicate that 21 ≤ k ≤ 31works well for the human genome
[517].

2. Build a (very large) hash table of k-mers in the human reference genome and the
number of times that they occur. We need to take into account that double-stranded
DNA is equivalent to its reverse complement.

3. Mark the unique k-mers; they point to a unique position in the genome.
4. Among the unique k-mers, mark those that are robustly unique against single

substitutions, i.e., those for which no Hamming-distance-1 neighbor also occurs in
the genome. The resulting robustly unique k-mers do not only point to a unique
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location in the genome; they also cannot easily be changed into k-mers that occur
at a different genomic location.

The alignment-free methods work either exclusively on the robustly unique k-mers or
on all unique k-mers, giving the information from the robustly unique k-mers a higher
weight. This pre-processing step has to be performed only once for any genome version.

We found that multi-way bucketed Cuckoo hash tables are ideally suited for the
task, as they allow relatively quick construction times and yield very fast lookup times
later. There are smooth trade-off options between lower memory usage and even faster
lookup times.

In a preliminary study [756], we designed and implemented these hash tables for
a simpler application than variant calling: xenograft sorting. Here, a human tumor is
engrafted into another organism (typically a mouse) to be able to study its evolution
and response to different therapies. When such a tumor is sequenced, one obtains a
mixture between human and mouse DNA reads, so that all reads have to be assigned to
the organism of origin before proceeding further. This assignment is called xenograft
sorting. Even though human andmouse are quite similar on a genetic level, they can be
sufficiently well distinguished on the k-mer level. We presented a classification method
based on k-mer hash tables, as outlined above, with extremely high accuracy, but using
much less CPU work than previous methods: less than 25% of comparable hash-based
methods and less than 5% of classical alignment-based methods [756]. We additionally
showed that the placement of keys in the hash table can be optimized to yield optimal
average look-up times (based on the number of randommemory accesses, i.e., likely
cache misses), saving 10% to 15% of CPU work for each sample (after a 48 CPU hour
optimization procedure that has to be run only once) [757].

2.3.2.2 Basic Alignment-Free Variant Calling
The underlying idea of this method is as follows:We count all the k-mers in a sequenced
sample and produce a histogram of the count values. A typical (unique) k-mer should
have a copy number of two (in a diploid genome) when no variant is present. We
therefore analyze the histogram of observed k-mer counts (Figure 2.16) from the sample.
The leftmost peak (counts near zero) can be explained by rare k-mers due to sequencing
errors or contamination; we can attempt to correct these, or ignore them entirely. We fit
a negative-binomial mixture model to the remaining peaks occurring at equidistant
counts. The main peak corresponds to a copy number of 2 in a diploid genome (from
k-mers present in both the maternal and paternal chromosome set).

The initial analysis is restricted to the robustly unique k-mers from the reference
genome. We expect that each such k-mer has a copy number of either 0 (homozygous
variant), 1 (heterozygous variant) or 2 (no variant) in the sample. Higher copy numbers
could be explained by segmental duplications, which we do not consider at this point.
If we suspect a variant, we look for isolated single nucleotide variants, i.e., k-mers with
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Fig. 2.16: Illustration of a k-mer count histogram, relating observed k-mer counts (x-axis) to their
frequency (y-axis; logarithmic). The leftmost peak (close to zero) represents noise and erroneous
k-mers, mostly due to sequencing errors. The main peak (near 80, approximately the sequencing
coverage of this example) corresponds to the standard copy number of 2. The shoulder (near 40)
then corresponds to a copy number of 1 and consists of k-mers that are part of heterozygous isolated
mutations. This histogram was created from a control sample; in a tumor sample, more irregularities,
especially additional peaks at higher copy numbers, can be expected.

a Hamming distance of 1 to the reference k-mer, among the k-mers in the sample. If
we find a unique one (with the expected copy number), we store the pair of reference
k-mer and modified k-mer as a candidate for a variant.

This process can be implemented very efficiently, and in addition, it can be trivially
parallelized. It yields candidates for Single Nucleotide Variants (SNVs) that then can
be checked by statistical methods (see next section). It can also reliably detect copy
number variants on long segments. However, it cannot easily detect more complex
variants, such as two SNVs in close proximity, short indels, or structural variants: Here
translating k-mer information into an exact variant is more difficult, but can resort to
alignment-based methods for the local regions around areas with suspicious k-mer
frequency structure.

Perspectives Alignment-free variant calling is still an active research area, and while
we made contributions to the underlying data structures (engineered Cuckoo hash
tables) and were successful in calling selected SNVs, further ideas are necessary to call
larger classes of variants reliably. Possible approaches include using locality sensitive
hashing, in particular min-hashing, instead of exact k-mer hashing, combined with
hybrid methods between alignment-free and alignment-based approaches. To assess the
potential of min-hashing-based methods, we conducted a detailed statistical feasibility
study, examining when it is useful to include known variants into a k-mer-based read
mapper (and when not; see [515]), paving the way for novel approaches.
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2.3.3 A Unified Statistical Model for Genomic Variant vs. Artifact Classification

We present an extension and generalization of a latent variable model originally pub-
lished by Köster, Dijkstra, Marschall, and Schönhuth [342].

For this, we consider a set S of samples. Samples can be related with each other in
three ways.
1. There can be clonal inheritance between two samples s1, s2 ∈ S: sample s1 inherits

all constitutive genetic variants of sample s2. In addition, the tissues of origin of
both samplesmayhavedeveloped their own somaticmutations during their lifetime
until sequencing.

2. There can be Mendelian inheritance [443] between samples s1, s2, s3 ∈ S: the indi-
vidual of origin of sample s1 inherits constitutive genetic variants of two parental
individuals (s2 and s3).

3. A sample s ∈ S can be contaminated with a fraction of another sample s′ ∈ S.

We represent the three relationships in a directed graph G = (S, Ic , Im , C) (the sample
graph) with edge types Ix ⊆ S × S for clonal (x = c) and Mendelian (x = m) inheritance
as well as C ⊆ S × S for contamination. The corresponding contamination fraction can
be obtained with c : C → [0, 1].

The above representation can be used to model the three classical cases of genomic
variant calling: single-sample or population calling (the graph has no edges) [171],
pedigree based family variant calling (Mendelian inheritance edges) [171], and calling
of tumor/normal sample combinations (clonal inheritance and contamination edges)
[342]. Importantly though, instead of being limited to these, it can reach beyond them
by combining the mechanisms into more complex scenarios.

2.3.3.1 Variables and Notation
Observed Variables For each potential genomic variant of interest, we observe se-
quencing read data Zs = (Zs1, ..., Zsk). If the read data consists of so-called paired-end
reads (each investigated DNA fragment is sequenced from both ends), each observation
in Zsi ∈ Zs is a tuple Zsi ∈ ({A,C,G,T}+, {A,C,G,T}+,N), with the first and the second
element denoting the nucleotide sequence of the read and the last element denoting
the so-called observed insert size, that is, the number of bases from the leftmost to
the rightmost covered base when aligning the read pair to the most likely position of
origin on the reference genome of the investigated species. If the read data consists of
so-called single-end reads (each investigated DNA fragment is sequenced just from one
end), each observation Zsi ∈ Z is simply the nucleotide sequence of the read, in other
words Zsi ∈ {A,C,G,T}+.

Latent Variables The central readout of our model is the allele frequency in each
sample s, denoted as latent variable θs ∈ [0, 1]. For each read observation i, there is
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a binary latent variable ξ si with ξ si = 1 denoting that the observation originates from
the variant allele (i.e., from a genome copy hosting the variant under consideration)
and ξ si = 0 denoting that the read originates from the reference allele (i.e., from a
genome copy hosting exactly the same sequence as in the reference genome of the
corresponding species). In addition, a binary latent variable ωsi , denoting whether the
observation has been aligned to the correct (ωsi = 1) location of origin in the reference
genome, is used.

Extensions for Bias Estimation The model can be further extended in order to esti-
mate biases in additionally observed properties of the read data, that is, the strand, the
read position supporting the variant, the read orientation, and whether the alignment
against the reference genome covers the entire read. Biases from an equal distribution
in the observed values of variant supporting reads for any of these properties typically
indicate an artifact. For clarity and brevity, we omit the integration of these biases in
our model here. An integration of strand bias can be already found in [342].

2.3.3.2 Latent Variable Model
In the following, we briefly introduce the latent variable model used for calculating
allele frequency likelihoods that has been published recently [342], and then provide a
generalization of the method. When evaluating if a read deviates from the reference
genome, two types of uncertainty are to be considered. First, there is alignment uncer-
tainty: often, a read can be aligned at multiple loci in the reference genome (also see
Section 2.3.2).

Depending on their similarity, there is more or less certainty about the optimal
positioning of the read. Read mappers and alignment tools, such as BWA [391], report
this uncertainty as mapping quality (MAPQ), which can be translated into a probability
πsi associated with each read observation Zsi to be aligned to the correct locus. Second,
there is typing uncertainty: the observed read sequence is not a perfect representation of
the true DNA fragment that has been sequenced, but instead a measurement entailing
potential errors and artifacts. The DNA sequencing machine provides an estimate of
the certainty of each reported base as the so-called base quality, which can again be
translated into a probability of the reported base to be correct. In addition, depending
on the sequencing technology, there are known rates of false insertions or deletions
of bases in the reported read sequences, as remarked on for example by Schirmer,
D’Amore, Ijaz, Hall, and Quince [578].

We now model the relationships between our observed and latent variables, while
taking above mentioned uncertainties into account. For each observation Zsi in sample
s, we handle alignment uncertainty by defining the distribution of the latent variable
ωi as

ωsi ∼ Bernoulli(πsi ). (2.3)
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The distribution of the latent variable ξ si depends on the expected fraction of observa-
tions from the variant allele. If s is not contaminated by another sample, we define

ξ si ∼ Bernoulli(θsτ). (2.4)

Thereby, τ ∈ [0, 1] denotes a sampling bias that occurs because it is usually harder to
obtain observations from the variant allele: it is harder to align, and depending on the
size of the variant, harder to obtain reads that sufficiently cover it [342]. If, in contrast,
s is contaminated by a s′ (i.e., e = (s, s′) ∈ C) with fraction α = c(e) we define

ξ si ∼ Bernoulli(αθsτ + (1 − α)θs′τ). (2.5)

In other words, the expected fraction of observations from the variant allele becomes a
mixture of the allele frequencies in s and s′.

Then, typing uncertainty can be modeled as

Zsi | ξ si , ωsi ∼

⎧
⎪⎪⎨
⎪⎪⎩

pi if ξ si = 1, ωsi = 1
ai if ξ si = 0, ωsi = 1
oi if ξ si = 0, ωsi = 0.

(2.6)

Here, ai , pi , and oi are probability distributions modeling the case that the observation
comes from a genome copy where the variant is present (pi), absent (ai), or from a
different locus (oi). These can be computed using Pair Hidden Markov models, which
essentially realign the read sequence against the sequence of reference and alterna-
tive allele while statistically considering sequencing error rates, as shown in Köster,
Dijkstra, Marschall, and Schönhuth [342] for deletions and insertions. Since then, via
analogous approaches, our model has been extended to also support all other common
variant types ranging from small (SNV, MNV) to structural variants such as inversions,
duplications, and arbitrary chains of breakpoints.

By combining the above relations, themodel can be used to calculate the likelihood
of a given combination of allele frequencies of samples S = {s1, . . . , sn} as

Pr(Zs1 , . . . , Zsn | θs1 , . . . , θsn ) =
n∏︁

j=1

|Zsj |∏︁

i=1
Pr(Zsji | θs1 , . . . , θsn ) (2.7)

while assuming independence between the read observations. Note that the computa-
tion of the likelihood function is linear in the total number of read observations, as we
have shown previously [342].

2.3.3.3 Prior Distribution
The prior probability of a given allele frequency combination θs1 , . . . , θsn in our gener-
alized model can be computed by considering the dependencies between the samples
modeled by the sample graph G (see beginning of Section 2.3.3). In addition, we assume
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that for each sample s ∈ S, a ploidy ρs ∈ N (which may differ by chromosome, e.g.,
it may be sex-specific), a somatic effective mutation rate μs ∈ [0, 1], and a germline
mutation rate νs ∈ [0, 1] are known. For calculating a prior probability, the key is to
explain the total allele frequency θs by a germline allele frequency ιs and a somatic
allele frequency |θs − ιs|. Usually, one of the two will be zero, such that variants are
explained either by germline or by somaticmutation, but combinations thereof can also
happen in rare cases. From the known ploidy ρs of a sample sj ∈ S, we can calculate
the set of possible germline allele frequencies ζs ⊆ [0, 1]ρs+1. For example, for ρs, we
obtain ζs = {0, 0.5, 1}; in other words, any germline variants may occur either in no,
one allele (0.5 or 50%), or two alleles (1.0 or 100%). The prior probability can then
be calculated by recursively exploring all possible explanations of a given total allele
frequency combination.

For a combination of germline and somatic allele frequencies we can then distinguish
between the following cases:
1. All samples that are not direct descendants of other samples (have no incoming

edges in Ic and Im in the graph G) are considered a population and the prior proba-
bility of their combination of germline allele frequencies is calculated, as defined
by DePristo et al. [171], based on a so-called heterozygosity (i.e., the expected
proportion of heterozygous sites in the genome), which is usually known for the
investigated species.

2. For any sample s ∈ S that inherits clonally from another sample s′ ∈ S, we calculate
the prior probability for the somatic allele frequency f = |θs − ιs′ | according to the
method of Williams, Werner, Barnes, Graham, and Sottoriva [730], who report a
formula for the expected cumulative number of somatic mutations per frequency.
The latter can be translated into the corresponding density by normalizing with the
genome size g and taking the first derivative, resulting in h(f ) = μ

f 2·g for f > 0. In
order to also be able to calculate the probability for f = 0, we define a reasonably
small ϵ and define h(0) = 1 −

∫︀ 1
ϵ h(f )df .

3. For any sample s ∈ S that inherits in a Mendelian [443] way from two parents
s′ ∈ S and s′′ ∈ S, we first calculate the number of expected constitutive alternative
alleles in the child and the parents by multiplying the ploidy with the respective
germline allele frequency, i.e., ρs · ιs. We then sum over the probabilities of all
cases of inheriting chromosomes with or without the variant allele from the par-
ent samples that could explain the expected constitutive alternative alleles. The
individual probabilities can be calculated by modeling an urn drawing process
without replacement, yielding a hypergeometric distribution. Finally, additional
somatic variation, i.e., cases where θsj − ιsj ̸= 0, are handled by multiplying the
corresponding prior probability for the somatic allele frequency.

4. Finally, sometimes it might not be possible to formulate prior assumptions about
allele frequencies of a sample s ∈ S. In such cases we specify an allele frequency
universe Us ⊆ [0, 1] for a sample and assume a uniform distribution.
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By taking the product over the priors for individual or groups of samples derived from
distinguishing the above three cases, the prior probability for any combination of
germline and somatic allele frequencies can be obtained.

2.3.3.4 Variant Calling Grammar
The above model is implemented in the software Varlociraptor (https://varlociraptor.
github.io). Varlociraptor offers a variant calling grammar that allows to define a scenario
that configures all aspects of the model (prior parameters, sample graph) via a textual
representation in YAML format (YAML Ain’t Markup Language; https://yaml.org/). A
scenario consists of the following sections.

Species In this section, general prior knowledge about the investigated species is
defined, such as the heterozygosity (see Section 2.3.3.3) and the ploidy (number of
chromosome copies in a cell). The latter may be defined with sex-specific exceptions
(such as the X and Y chromosome distribution in humans).

Samples In this section, the samples and their dependencies (i.e., the sample graph)
are defined. For each sample, it is necessary to either define an allele frequency universe
(leading to a uniform prior across the defined frequencies) or the sex. In the latter case,
ploidy and heterozygosity are taken from the species definition and used to configure
the prior accordingly. Each sample may be annotated with a contamination by another
sample in a given fraction (this can be used to define the common case of having a
tumor sample that also contains healthy normal tissue). Finally, each sample may
define a type of inheritance (Mendelian or clonal), while referring to the corresponding
parental samples.

Events The heart of a scenario is formed by the definition of mutational events of
interest. These can be used to define any kind of Boolean logic expressions over allele
frequencies (discrete or intervals) in the given samples.

An example for a scenario modeling the calling of variants in a patient for which
a normal healthy blood sample, a tumor sample, and a relapse sample is used can
be seen in Figure 2.17. Here, for simplicity, we have initially not defined any prior
knowledge regarding mutation rates etc., thereby modeling a uniform distribution
over the defined allele frequency universes. An equivalent scenario including this kind
of prior knowledge is shown in Figure 2.18. Here, it can be seen that we are able to
define inheritance between the normal and the tumor sample. For the relapse sample,
although in principle it should inherit mutations from the tumor sample, it is unknown
to what extent this happens, because usually only one or a few subclones survive the
therapy. Hence, we refrain from specifying an inheritance between the tumor and the
relapse, and instead impose a uniform prior on the possible allele frequencies in the
relapse sample.

https://varlociraptor.github.io
https://varlociraptor.github.io
https://yaml.org/
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b

c

samples:

  normal:

    resolution: 5

    universe: "{0.0,0.5,1.0} | ]0.0,0.5["

  tumor:

    resolution: 100

    universe: "[0.0,1.0]"

    contamination:

      by: normal

      fraction: 0.25

  relapse:

    resolution: 100

    universe: "[0.0,1.0]"

    contamination:

      by: normal

      fraction: 0.53

events:

  germline:        "normal:{0.5,1.0}"

  somatic_normal:  "normal:]0.0,0.5["

  somatic_tumor:   "normal:0.0 & tumor:]0.0,1.0]"

  somatic_relapse: "normal:0.0 & tumor:0.0 & relapse:]0.0,1.0]"

a

Fig. 2.17: Example of a Varlociraptor scenario specification to distinguish between germline variants
and those occurring as somatic events in the primary or relapse sample. (a) Scenario definition
via Varlociraptors variant calling grammar. The first section defines the three involved samples
normal healthy blood, primary tumor, and relapse after therapy, along with their contaminations and
expected allele frequency universe. The second section defines the events of interest via Boolean
logic formulas. (b) The resulting structure of the latent variable model, automatically derived from
the scenario definition. (c) Visualization of the expected allele frequencies in the three samples for
each defined event.

2.3.4 Application and Results

It was previously shown that Varlociraptor is able to significantly improve the recall,
while precisely controlling the false discovery rate without the need to tune any tech-
nical filter parameters in the absence of a biological interpretation [342]. Here, we
illustrate the application of the model by re-analyzing the aforementioned previously
published neuroblastoma dataset [583]. In this manuscript, we analyzed genomic data
from 17 neuroblastomas, for which DNA was available from the primary tumor and
the tumor at relapse. Obtaining the sequence of the entire coding region of the hu-
man genome (usually referred to as the “exome”) was especially useful for modeling
intra-tumor heterogeneity and clonal tumor evolution.

We use the normal-tumor-relapse model formulation from Figure 2.18 and para-
metrize it as follows. The effective somatic mutation rate in the tumor sample is set
to 2.93 · 10−6. This roughly models the expectation of at most 100 de-novo somatic
mutations in typical neuroblastoma tumors found in our original study [583].

Since somaticmutation can also appear in the normal tissue, we set the correspond-
ing effective somatic mutation rate to 2.8 · 10−7, as reported by Oota [485]. Finally, the
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species:

 heterozygosity: 0.001

 genome-size: 3.1e9

 ploidy:

   female:

     all: 2

     X: 2

     Y: 0

   male:

     all: 2

     X: 1

     Y: 1

samples:

 normal:

   sex: female

   somatic-effective-mutation-rate: 2.8e-7

 tumor:

   sex: female

   somatic-effective-mutation-rate: 2.93e-6

   inheritance:

     clonal:

       from: normal

   contamination:

     by: normal

     fraction: 0.1

 relapse:

   resolution: 100

   universe: "[0.0,1.0]"

   contamination:

     by: normal

     fraction: 0.53

events:

 germline:        "normal:{0.5,1.0}"

 somatic_normal:  "normal:]0.0,0.5["

 somatic_tumor:   "normal:0.0 & tumor:]0.0,1.0]"

 somatic_relapse: "normal:0.0 & tumor:0.0 & relapse:]0.0,1.0]"

Fig. 2.18: Extension of the Varlociraptor scenario specification in Figure 2.17 to include prior knowl-
edge. We define the species (here Homo sapiens) in terms of genome size, heterozygosity (expected
fraction of heterozygous loci), and sex-specific ploidy (number of chromosome copies). In addition,
we model known somatic mutation rates, and define that the tumor inherits germline mutations from
the normal sample.

tumor and the relapse sample tissue is usually contaminated by healthy cells. We use
the amounts of contamination reported in the original study [583].

Workflow Analyzing sequencing data for genomic variants entails a variety of steps,
which we outline in Figure 2.19. The entire analysis is implemented as a Snakemake
workflow [343].

First, raw reads are processed by (a) trimming so-called sequencing adapters, (b)
mapping them to the reference genome of the corresponding species, (c) removing
putative duplicates from the Polymerase Chain Reaction (PCR), and (d) recalibrating
base qualities. Sequencing adapters (a) are non-biological artifacts of the sequencing
process. Since they are known beforehand, they can be removed from the reads by
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Fig. 2.19: Schematic representation of applied genomic variant calling workflow. Nodes represent
original or derived data (gray labels in the left column), arrows represent processing steps (black
labels in the left column).

performing an error-tolerant alignment between each read and the known sequence.
We use Cutadapt to perform this step [431]. By mapping reads to the reference genome
(b), we obtain the correct order and individual differences of each read compared with
the representative genome of the underlying species. The resulting read alignments
already contain all necessary observations for applying the Varlociraptor model. In
order to obtain a signal of sufficient strength, sequencing protocols often entail the
amplification of the DNA material via polymerase chain reaction [24]. The result is that
there can be multiple reads from the same DNA fragment. Since Varlociraptor assumes
each read to be an independent observation, it is important to remove such putative
PCR duplicates, which we achieved using Picard tools [500]. Finally, the sequencing
process sometimes causes artifacts to appear next to certain motifs [19]. In (d), we
therefore use the base recalibration process from the Genome Analysis ToolKit (GATK
[171]), which systematically investigates base alteration causing motifs and recalibrates
the per base confidence scores in each sequencing read to reflect the uncertainty about
whether an altered base is a true signal or a motif-induced artifact.

Second, the aligned reads are used to generate candidate variants. We use the tools
Freebayes [222] and Delly [523] for this purpose. While the former covers small variants
that can be covered by a single read (SNVs, MNVs, small insertions and deletions), the
latter covers large, structural variants (large insertions and deletion, inversion, and
duplications). Importantly, while both Freebayes and Delly provide their own statistical
models for calling variants, we utilize them to generate candidate hypotheses. Both
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Fig. 2.20:Mutational burden of patient 1 from Schramm et al. [583] in the primary tumor (left) and
relapse sample (right). The horizontal axis shows the minimum allele frequency, vertical axis shows
the mutational burden as number of coding somatic mutations (calculated as expected value over
the posterior probability for having a somatic mutation) per megabase of coding genome. The colors
represent different types of mutations (see legend).

models are designed only for specific cases and are not generic enough to handle the
composition of samples available in this dataset.

Third, we use Varlociraptor to (a) extract observations for each sample and each
candidate variant and (b) apply the model as defined in the corresponding scenario for
each patient in the study data.

Fourth, we (a) annotate the variant calls from Varlociraptor with their impact on
proteins via the VEP tool [440] and (b) filter them for those that are of interest. In this
case, we strive for three disjoint sets of variants
1. Variants that have been previously described as pathogenic or likely pathogenic in

other studies.
2. Variants with high impact on the protein but which have not been previously

described by other studies.
3. Variants with moderate impact on the protein but which have not been previously

described by other studies.

Finally, we separately control the local false discovery rate for somatic variants in either
the tumor or the relapse sample on each of the three sets.

Insights In the following,we summarize themost important insights from reanalyzing
the study data with this workflow.

Figure 2.20 shows the mutational burden as a curve over the minimum allele
frequency on an example patient. It can be seen that the burden for higher frequencies
in general increases in the relapse sample compared with the tumor sample. This
supports the hypothesis that the relapse sample originates from a subclone of the tumor
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sample, which has survived therapy. Thus, one can expect that resistance-inducing
mutations in the relapse sample becomemore abundant. Our findings contribute to the
emerging view of resistance to cancer therapies as an evolutionary process. Selection
of surviving clones results in mutational fingerprints that are specific for resistant or
recurrent tumors. A better understanding of these genetic fingerprints is a prerequisite
for identifying markers allowing early detection of resistance or tumor recurrence and
enabling timely adjustment of therapies to further improve the survival and cure of
cancer patients.

Future work entails the interpretation of individual recurrent deleterious gene and
pathway alterations across the analyzed samples. Moreover, we aim to further improve
the prior model of Varlociraptor such that assumptions about subclonal inheritance
patterns can be incorporated as well.

Finally, we will combine the statistical approach of Varlociraptor with alignment
free methods, as outlined in Section 2.3.2. Since Varlociraptor has to perform a realign-
ment of read sequences anyway (see Section 2.3.3.2), we may replace the initial read
alignment with an alignment free approach that yields a rough positioning of reads
on the reference genome so that they can be selected for validating a given candidate
variant with Varlociraptor. For this, it is necessary to accurately estimate the alignment
uncertainty from the k-mer hits via, say, the strategy proposed in our previous work on
PEANUT [344]. Finally, the detection of candidate variants with alignment free methods
has to be extended beyond single nucleotide variants. Here, a possible strategy might
be a hybrid approach where aberrations in k-mer counts are translated into an exact
variant call by (a) collecting the causing reads, (b) assembling them into one or more
consensus sequences [114], and (c) aligning these against the reference genome to
determine the nature of the variant.
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2.4 Bayesian Analysis for Dimensionality and Complexity
Reduction

Zeyu Ding
Katja Ickstadt

Alexander Munteanu

Abstract: In this contribution, we will present Bayesian approaches for dimensionality
and complexity reduction in the context of health-related problems. Following an in-
troduction to Bayesian analysis in general, we will first show two examples of Bayesian
variable selection methods for reducing the number of variables, one for binary data
with an application to Single Nucleotide Polymorphisms (SNPs) for the HapMap dataset,
and one for time-to-event endpoints with an application to glioblastoma data from
the Cancer Genome Atlas. Second, we will present an approach for reducing statistical
models, where we transfer the Merge & Reduce principle to maintain statistical sum-
maries in streaming models. The variable selection approaches as well as the Merge &
Reduce approach are important steps towards resource-aware data analyses.

2.4.1 Introduction

Machine learning obtains predictions by constructing a predictive model. Many ma-
chine learning algorithms are built on black-box models, as opposed to statistical
learning, which is more concerned with the statistical properties of the model, such
as the distribution of the variables and its parameters. In this section, we focus on
the problem of data- and dimensionality-reduction in Bayesian statistics. Bayesian
regression does not assume a fixed optimal solution for a dataset as in the frequentist
case, but introduces a distribution over the parameter space. The likelihood function
models the information that comes from the data, and the prior distribution models
problem-specific prior knowledge. Our goal is to explore and characterize the posterior
distribution, which, as a consequence of Bayes’ theorem, is a compromise between the
observed data situation and the prior knowledge that we assume for the parameters. For
very large and high-dimensional datasets and settings where computational resources
are scarce, the posterior distribution is hard to obtain. In general, our work focuses on
algorithmic approaches that can be implemented in streaming and distributed environ-
ments to reduce the underlying problem in order to enhance the scalability of modern
Bayesian regression approaches. In this contribution, we particularly concentrate on
biomedical applications. Depending on the large-scale high-dimensional problems at
hand, our interest centers around a) reducing the number of observations, b) reduc-
ing the number of variables, or c) reducing the underlying statistical model. Task a)
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comprises approaches such as sketching or coreset methods. We have made various
contributions on this topic; see, e.g., Geppert et al. [226] or Munteanu et al. [463]. For
more details on this topic, see Section 3.2 in Volume 1 (“Coresets and Sketches for
Regression Problems on Data Streams and Distributed Data”). Task b) is particularly
relevant for high-dimensional settings in which the number of variables exceeds the
number of observations. This is the main problem in many genetic applications. We
will present two variable selection approaches for reducing the number of variables,
one in the context of a single data source for Bayesian (logic) regression, one in the
context of integrating multiple genomic data sources in a Bayesian Cox model. For task
c) of reducing statistical models, we transfer the Merge & Reduce principle to maintain
statistical summaries in streaming models (Geppert et al. [227]). We can compute the
necessary results for a regression model by analyzing them blockwise and combining
the summaries of each block in a structured way; more details are given in Section 2.4.3.

2.4.2 Variable Selection

The variable selection topic is one of the central problems in modern statistics. In some
fields, researchers are often faced with the problem that the number of variables is
larger than the sample size, which is commonly known as the p larger than n problem.
In this case, training statistical models directly on the original dataset may lead tomany
problems, such as overfitting or the inability to use the Ordinary Least Squares (OLS)
regression method. Therefore, selecting only those variables that are truly informative
becomes a very important step in the process of constructing a model.

A popular approach for variable selection is to make the model sparse by forcing
the coefficients of some variables to be zero or converge to zero during the regression
process by L1 or L2 regularization. Another often-used approach is usually seen in the
ensemble algorithm: all variables are first included in themodel, and then the variables
are ranked according to their importance by a variable importance measure, and the
variables that have an impact on the dependent variable are selected after modeling.
The following two approaches are well suited for medical applications: a variable
importance measure approach employed prior to model building, and a regularized
modeling approach using suitable priors and a stochastic search for variable selection.

2.4.2.1 Variable Selection for High-dimensional Binary Data
For high-dimensional binary data, e.g., genetic marker data, interactions between
variables are often more important than main effects, which increases the number
of variables even further. In this section, we describe how to use so-called leverage
scores and cross-leverage scores as measures of variable importance to select subsets of
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explanatory variables while retaining valuable interactions. The leverage and cross-
leverage scores are also compared with the more popular variable selection criteria
correlation coefficients and p-values for univariate linear regressions. In contrast to
common variable selection criteria, our approach focuses on variable selection prior to
building the model. For more details on our method, see Parry et al. [492].

Obtaining the leverage and the cross-leverage scores requires the calculation of the
hat matrix of the data matrix, which is a projection matrix that carries the information
about the impact of variables instead of observations or responses.
For a data design matrix X and response vector y, we set

X̃ = [X, y]T ∈ R(p+1)×n (2.8)

and obtain the hat matrix

H = X̃(X̃T X̃)−1X̃T ∈ R(p+1)×(p+1). (2.9)

Calculating the hatmatrix requires the calculation of the inversematrix (X̃T X̃)−1, which
is not a stable calculation (see, e.g., Geppert et al. [226]). An alternative method is to
obtain the hat matrix by QR-decomposition.

The ith element on the main diagonal of the hat matrix for the first p elements
i = 1, . . . , p is an importance measure of the ith variable, and is also known as its
leverage score (see, e.g., Drineas et al. [181]). The cross-leverage scores are obtained by
the off-diagonal elements of a hat matrix (Chatterjee and Hadi [122]) and describe the
mutual influence of the ith variable on the jth one for j = 1, . . . , p and on the response
variable for j = p + 1.

When selecting the most important variables prior to building the model, one
important consideration is howmany variables should be included in the pre-selection.
Parry et al. [492] point out, based on the available literature, that using O(n ln n) is a
valid indicator for the optimal number of the pre-selected variables and that choosing
that many variables allows the subsampled data matrix to remain at full rank.

For studying the relationship between binary variables as well as their interactions
with respect to a response of interest, Ruczinski et al. [550] developed the so-called
logic regression, an adaptation of a generalized linear regression model. In logic regres-
sion, the binary variables are not employed directly as independent variables, but are
combined using the logical operators ∧ (and), ∨ (or), and the negation !. The resulting
Boolean expressions Li are called logic trees, and the corresponding logic regression
model can be written as:

g(E(y)) = β0 +
T∑︁

i=1
βiLi , (2.10)

where g(·) is the link function of the generalized linear model and Li for i ∈ 1, . . . , T
are the Boolean combinations of the binary variables. In our genetic application, we
employed the logit link function. Themodels are fittedwith an iterative search algorithm
based on Simulated Annealing (see, e.g., [550]).



2.4 Bayesian Analysis for Dimensionality and Complexity Reduction | 61

While logic regression models are well suited for analyzing the association of binary
variables and their interactions with a response, a drawback is that they can handle
only a limited number of variables. Here, our approach using leverage or cross-leverage
scores is helpful, since it reduces the number of independent variables prior to the
analysis, while keeping the most influential ones.

We evaluate our approach using simulated data from different scenarios as well
as the real HapMap dataset. We compare the leverage and cross-leverage scores for
variable selection with correlation coefficients and p-values as selection criteria. In our
simulation study, we have created different data scenarios in order to explore the ability
of these variable selection measures to select the correct variable when the number
of independent variables and the sample sizes vary. We also study these measures for
main effects and for the presence of different higher-order interactions.

The genetic HapMap data was collected as part of an international collaboration to
develop a haplotype map of the human genome. The subset considered in our work is
available in the R-package SNPassoc [234]. For our analysis, we considered 7648 human
single-nucleotide polymorphisms (SNPs) employed as binary variables for n = 120
individuals from two separate ethnic groups. The dependent variable was set to 1when
an individual is from central Europe (CEU), and 0 when it belongs to the Yoruba group
(YRI) that inhabits western Africa.

For the simulated data, we show the results by plotting the distributions of lever-
age scores and cross-leverage scores for the different scenarios (see Parry et al. [492]).
The leverage scores perform better in selecting important variables when only main
effects are present, whereas cross-leverage scores distinguish variables of higher-order
interactions better. A change in the number of variables p did not have much effect on
the overall performance of the two measures when the number of irrelevant variables
increased. By contrast, when the sample size increases, both scores for the informative
variables increase while both measures for the irrelevant variables decrease, meaning
that more samples make it easier to find the truly informative variables for both mea-
sures. Moreover, we compare the leverage and cross-leverage scores to the correlation
coefficients and to p-values.

We also propose and investigate a way of combining cross-leverage scores and
leverage scores by selecting the variables using these twometrics separately and taking
the union of all selected variables. We show that this combined approach is superior to
using just one metric alone (see Parry et al. [492]).

For the HapMap data we present here a raster plot (see Figure 2.21). It is a graphical
representation of a matrix containing SNP data, where the rows correspond to indi-
viduals and the columns correspond to SNPs. We take subsets of size ⌈120ln(120)⌉ =
575 of the most important SNPs using cross-leverage scores (CLS), leverage scores (LS),
correlations (COR), and p-values, respectively to be comparable. We can easily distin-
guish the two groups using cross-leverage scores; thus, the selected SNPs can be used
to classify individuals of the two groups. Using leverage scores, it is almost impossible
to distinguish the two groups. The variables selected using correlation coefficients or
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Fig. 2.21: Raster plots of all 120 subjects from two continental regions with respect to a subset
of 575 out of 7648 SNPs (green/light pink denotes homozygotic individuals and white denotes
heterozygotic individuals), selected using CLS, LS, COR, and p-values, respectively.

p-values show hints of blocks corresponding to the two groups, but much less than
those selected by the cross-leverage scores.

Based on our simulation study and the real data example, cross-leverage scores
turn out to be a promising tool for variable selection prior to model building, especially
in the presence of higher-order interactions, and leverage scores prove useful for select-
ing main effects. A combination of leverage and cross-leverage scores usually further
improves variable selection.

2.4.2.2 Variable Selection for High-Dimensional Survival Data
In the following, we briefly summarize a Bayesian approach that combines the recent
progress in the following areas in one model:
1. analyzing time-to-event data in high dimensions
2. variable selection in a high-dimensional setting, and
3. integration of several data sources.

Here, we give a brief overview. For more details on this research, see Treppmann et al.
[691].

We usually encounter time-to-event endpoints or survival data in cancer studies.
To analyze them, Cox [149] created the semi-parametric proportional hazards regres-
sion model that considers the relation between covariates and the hazard function.
Therefore, the Cox model has often been applied to low-dimensional data. However,
in biological applications with genomic data, we often deal with high-dimensional
settings with more variables than subjects. This shows the need for a high-dimensional
survival time model. With this in mind, Lee et al. [382] developed a Bayesian version of
the Cox model for right-censored survival data, where high dimensions are treated by a
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regularization of the regression coefficient vector via Laplace priors. Another contribu-
tion to survival prediction for high-dimensional data based on the Cox model in this
volume is presented by Rahnenführer et al. in Section 2.5.

A second aspect resulting from a huge number of variables is the need for variable
selection. In a high-dimensional setting, common methods like best subset selection
as well as backward and forward selection prove to be unsuitable for various reasons.
Bayesian techniques provide a good alternative to search stochastically over the entire
parameter space, especially as they implicitly address model uncertainty. One example
is the stochastic search variable selection (SSVS) by George and McCulloch [224], an
approach commonly used in regression analyses. It is a flexible and intuitive procedure
that uses data augmentation for the selection task and includes shrinkage.

Moreover, the Bayesian setting provides a way for incorporating additional data
sources. The interest in such integrative statistical analyses is growing steadily, as
technological progress makes it possible to collect different genome-wide data system-
atically. The integration of more than one information source can lead to an improve-
ment in the performance of risk prediction models and, therefore, to a more detailed
understanding of the biology of diseases. For a recent overview of integrative Bayesian
analyses in molecular biology, see Ickstadt et al. [295].

In conclusion, our approach combines the variable selection procedure of George
and McCulloch [224] with the Cox proportional hazards model of Lee et al. [382] in one
Bayesian model and integrates a further data source by means of an informed prior.

Asmentioned, for right-censored survival data in high dimensions with the number
of variables p being (much) larger than the number of subjects n, Lee et al. [382] de-
veloped a Bayesian variant of the semiparametric proportional hazards model λ(t|x) =
h0(t) · exp(xTβ) by Cox [149]. Here, h0(t) denotes the underlying baseline hazard func-
tion, t the survival time of a person with covariable vector x = (x1, ..., xp)T , and
β = (β1, ..., βp)T the vector of regression coefficients. By a finite partitioning of the time
axis, 0 < s0 < s1 < s2 < ... < sJ with sJ > tr , ∀r = 1, ..., n, such that the breaks are
points where at least one event occurs, and the last event lies inside the last interval,
Lee et al. [382] obtain the following grouped likelihood introduced by Burridge [110]:

L(D|β, h) ∝
J∏︁

j=1

(︃
exp

(︃
− hj ·

∑︁

l∈(Rj−Dj)

exp(xTl β)
)︃

·
∏︁

ξ∈Dj

(︁
1 − exp

(︁
−hj · exp(xTξ β)

)︁)︁)︃
(2.11)

hj ∼ Γ(a0 j − a0 j−1, c0)
with a0 j = c0 · H*(sj) and c0 > 0, j = 1, ..., J.

In this context, D = {(x,Rj ,Dj) : j = 1, ..., J} denotes the observed data, with Rj being
the risk set andDj being the event set regarding the jth interval. In case of choosing a
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Weibull distribution for the monotonously increasing function H*(t) (with H*(0) = 0),
we obtain H*(t) = η0 · tκ0 with hyperparameters (η0, κ0).

For the variable selection, we apply the SSVS procedure of George and McCulloch
[224]. Under the assumption that the variances of the regression coefficients of variables
included in the model are equal, the prior distribution for βi conditioned on γi has the
following form:

βi|γi ∼ (1 − γi) · N(0, τ2) + γi · N(0, c2b · τ2), i = 1, ..., p, (2.12)

with small τ2 > 0 and c2b > 1. Following the concept of data augmentation (Tanner and
Wong, 1987 [673]), the indicator vector γ states whether the associated variables are
included in the model or not.

Inference is based on Markov Chain Monte Carlo (MCMC) algorithms. For updating
the full conditional distribution P(βi|β−i , γ, h,D) with

β−i = (β1, . . . , βi−1, βi+1, . . . , βp)T (2.13)

we use the special random walk Metropolis-Hastings method with adaptive jumping
rules proposed by Lee et al. [382]. Moreover, the conditional distributions P(γiti =
1|βit , σit , γit−i) with γit−i = (γit1 , ..., γiti−1, γiti+1, ..., γitp )T are derived by means of the
Bernoulli distribution. The full conditional distribution P(hj|h−j , β, γ,D) with h−j =
(h1, ...hi−1, hi+1, ..., hJ)T is approximable by a Gamma distribution. To update β, γ and
h iteratively according to the full conditional distributions described above, a Gibbs
sampler is appropriate.

In addition to a simulation study, which will not be discussed here, we applied
our method to a dataset of glioblastoma multiforme (GBM) patients, retrieved from
the Cancer Genome Atlas [471] database. In adults, glioblastoma is the most frequent
and the most rapidly growing brain tumor. The used dataset comprises 210 patients
and includes survival and gene expression data as well as associated copy number
variation (CNV) data, which are used to construct an informative prior. We restrict
the analysis to the 1000 genes that show the greatest variance in their values. The
underlying assumption is that genes with low variability are probably not well suited to
distinguish between patients with a good and patients with a poor survival prognosis.
We divide the dataset into a training dataset for the model fitting of 140 patients and a
test dataset for the evaluation of 70 patients.

For the analysis, we assume a prior expected number of selected variables of k = 20.
We construct an informative prior such that the prior inclusion probability πCNVi of the
ith variable is proportional to its standard deviation σCNVi of the copy number variation
data for the associated genomic region across patients. Thus πCNVi is defined as

πCNVi = k · σCNVi∑︀p
j=1 σCNVj

, i = 1, ..., p. (2.14)

For comparison purposes, we use the non-informative prior π = (k/p, ..., k/p)T .
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In the course of the evaluation,we consider theposteriormeans and standarddeviations
of the parameters β and γ. To decide which variables to select, we first determine the
mean model size pm by rounding the average of selected variables per iteration. Then
we select the pm variables with the highest selection probability.

We conduct a combined analysis of five Markov chains, each with a length of
100 000 of which the first 10% are removed as burn-in.

The simulation result from Table 1 in Section 2 in Treppmann et al. [691] shows that
the posterior selection probabilities differ greatly depending onwhether the informative
or uninformative prior was used. Only three genes are among the pm = 10 (uninfor-
mative) or pm = 9 variables (informative prior) with the highest posterior selection
probability in both cases.

To evaluate the goodness of the prediction, we consider prediction error curves
and determine the integrated Brier score [241, 589] in comparison with the Kaplan-
Meier estimator without any covariates (reference approach). This shows that in the
case of the informative prior, our model improves the prediction performance relative
to the reference approach, while this is not observed for the uninformative prior. The
examination of trace plots to the simulatedMCMC chains indicates that the chainsmove
quickly into desired regions of the model space and exhibit good mixing performance.

Both in our application to glioblastoma data and in our simulation study, we have
shown that the inclusion of a second data source has distinct potential for improvement
in terms of prediction quality. However, this is only the case if the second data source
provides an informative prior. This requires that variables with an increased prior
selection probability tend to be truly associated with the response. However, since this
is usually not known in practice, a comparison with the model using an uninformative
prior is always appropriate.

Due to the Bayesian modeling, we obtain full inference, especially concerning
the posterior selection probabilities. The joint analysis of all variables offers the great
advantage that posterior selection probabilities of whole sets of variables can be con-
sidered. One example would be a group of genes that has been shown to be particularly
influential in previous studies.

Since in MCMC approaches there is usually a trade-off between the computational
cost and the accuracy of the results, efficient programming is of particular importance.
We recently re-implemented our approach in Python, eliminating some inefficiencies
of our previous implementation of the algorithm in R.

2.4.3 Merge & Reduce for Statistical Models

Datasets with a massive number of observations have become more and more common,
making scalability a major challenge for modern data analysis. For many statistical
methods, these amounts of data lead to an enormous consumption of resources. A
prominent example is linear regression, an important statistical tool in both Bayesian
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and frequentist settings. On very large datasets, regression analysis becomes increas-
ingly demanding with regard to running time and memory consumption, making the
analysis tedious or even impossible. We propose a method called Merge & Reduce to ad-
dress these scalability limitations in regression analyses. Merge & Reduce is well known
in computer science and has mainly been used for transforming static data structures
to dynamic ones with little overhead (Bentley and Saxe [56]). Instead of reducing the
data to approximate the full dataset with respect to some model, we propose using the
statistical models derived from small batches as concise summaries. Combining these
statistical models via the Merge & Reduce framework, we can turn an offline algorithm
into a data stream algorithm.

Here, we focus on streaming to deal with massive datasets, where a data stream
algorithm is given an input stream of items, like numerical values, vectors, or edges of a
graph at a high rate. The algorithm is allowed tomake only one single pass over the data.
As the items arrive one by one, it maintains a summary of the data that was observed
so far in the form of, say, subsample or a summary statistic. Despite our focus on a
streaming-setting, we stress that the Merge & Reduce scheme can also be implemented
in distributed environments.

Our contribution is to develop the first Merge & Reduce scheme that works directly
on statisticalmodels.We showhow to design and implement this general scheme for the
special cases of (Bayesian) linear models, Gaussian mixture models, and generalized
linear regression models in Geppert et al. [227]. Here, we will restrict ourselves to
Bayesian linear models and evaluate the resulting streaming algorithm on simulated
datasets. We demonstrate that we obtain stable regression models from large data
streams and that the Merge & Reduce schemes produce little overhead.

2.4.3.1 Method
In our Merge & Reduce method for statistical data analysis, we iteratively load as many
observations into the memory as we can afford. On each of these blocks, we apply a
classical algorithm to obtain, say, the parameters of a statistical model, some (sufficient)
statistics or a summary of the presented data; in short, a model. Models are merged
according to certain rules, eventually resulting in a final model that combines the
information from all subsets. Merge & Reduce leads to stable results, where every
observation enters the final model with equal weight, thus ensuring that the order of
the data blocks does not bias the outcome toward single observations.

In order to design a streaming algorithm for a specific statistical analysis task, we
need to choose an appropriate model as a summary statistic for each block of data. The
two main ingredients that we need to implement for this particular choice of a model
are calledmerge and reduce.
1. Let M1,M2 be the models obtained from the analysis of data blocks B1, B2, then

the output of merge(M1,M2) is a model M for the union B1 ∪ B2 of the input data
blocks.
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2. Let M be a model for data block B that has become too large, i.e., |M| ≥ 2T for
some threshold T (e.g., by repeated merge operations), then reduce(M) computes
a model M′ of size |M′| ≤ T for the same block B.

Summarizing the statistical analysis and implementing the Merge & Reduce functions
on statistical models are not trivial undertakings. The approach heavily depends on
the statistical method employed and on the representation chosen to store the model.
Here, we present the novel, general concept and discuss how to design the Merge &
Reduce functions for the example of linear regressionindexRegression!linear in the
Bayesian setting.

We first describe how the Merge & Reduce functions interact in a structured way
to perform the statistical analysis task on the data block-by-block while maintaining
a model for the whole subset of data presented so far. The data structure consists of
L = O(log(n/nb)) = O(log n) buckets for a sufficiently small block size nb to fit into the
main memory of the machine. The buckets store one statistical model each. Initially,
they are all empty. One bucket, the working bucket B0, is dedicated to store the model
for the current batch of data, while each of the other buckets Bi stores one model on
its corresponding level i ∈ {1, ..., L} of a binary tree structure formed by the merge
operations, see Figure 2.22. The data structure works in the following way. First, we
read one block of data of size nb. We perform the statistical data analysis on this block
only. The model that summarizes the analysis is stored into B0. We begin to propagate
the model in the tree structure from bottom to top by repeatedly executing Merge &
Reduce operations on each level. If B1 is empty, then we just copy the model from B0
to B1 and empty B0. Otherwise, we have two models that are siblings in the tree, so
we merge the two into B0, empty B1 and proceed with B2. Again, if it is empty, the
model from B0 is stored in B2 and the propagation terminates. Otherwise, we have
two siblings that can be merged and propagated to the next higher level in the tree.
In general, the propagation stops as soon as the bucket on the current level is empty.
When this happens, the update of the data structure has completed, and we can move
on to reading and analyzing the next block of input data. This is repeated until the end
of the stream. Notice that except for the additional working bucket, we need to store at
most one bucket on each level at a time, since two siblings are merged immediately.

A linear regression model is given by

Y = Xβ + ϵ, (2.15)

where Y ∈ Rn is the dependent variable and X ∈ Rn×d is the design matrix containing
the observations x1, ..., xd of the independent variables. The error term ϵ is assumed
to be unobservable and is usually modeled by a normal N(0, σϵ) distribution, β ∈ Rd

is the unknown parameter vector of regression coefficients that we wish to estimate. In
Bayesian regression, β is assumed to be random and follows a distribution. Interest
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Fig. 2.22: Illustration of the Merge & Reduce principle taken from Geppert et al. [227]. The data is
presented in the form of a stream and subdivided into Blocks 1 through 6 of equal size. Models M1
to M11 are numbered in order of their creation throughout the execution. Arrows between models
indicate the Merge & Reduce operations. Sibling models are deleted right after their parents’ cre-
ation. Thus, only one model is stored on each level, i.e., in buckets B1 to B3, at a time. The working
bucket B0 acts on all levels, eventually holding the final model after postprocessing at the end of the
stream.

centers around the posterior distribution of the parameters that can be written as

ppost(β|X, Y) ∝ L(Y|X, β) · ppre(β). (2.16)

Thus the posterior distribution ppost can be seen as the product of the prior distribution
ppre and the likelihood functionL of the parameters. Inmany cases, the posterior distri-
bution cannot be obtained directly by analytical means, but must be approximated by
some sampling approaches. The most popular method is to apply Markov Chain Monte
Carlo (MCMC) random sampling, but this requires a very large number of simulations.
When the sample size is also very large, such sampling simulations are demanding in
terms of computer memory and computing speed.

We will apply the Merge & Reduce method to Bayesian linear regression. Since we
use the MCMC method to approximate the posterior distributions of the parameters
β, for each estimated parameter βj, we collect the mean x̄j, the median x̃.5, the lower
and upper quartiles x̃.25 and x̃.75, 2.5% and 97.5% quantiles x̃.025 and x̃.975, and the
standard deviation σj of the posterior distributions. Then, the collected statistics can
be summarized as

S = (x̄1, . . . , x̄d , x̃p,1, . . . , x̃p,d , σ1, . . . , σd), (2.17)
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where p ∈ {0.025, 0.25, 0.5, 0.75, 0.975}. We use a weighted average of the statistics
to merge these statistics vectors, and the weights are dependent on the size of the
sample.

2.4.3.2 Simulation and Results
Themain parameters used to generate datasets for the simulation study are the number
of observations n, the number of variables d and the standard deviation σϵ of the error
term ϵ. Different numbers of observations per block nb are also chosen. The setup of
the simulation study and the parameter values are similar to those in the simulation
study in Geppert et al. [226].

In this study, all assumptions of a linear regression model are met. A varying
fraction of the variables has an influence (large or small) on the dependent variable,
while the remainder is not important for the explanation of Y.

We evaluate the Merge & Reduce approach by calculating the squared Euclidean
distances e2m of the statistics in S, specified in Equation 2.17, between the original model
and theMerge &Reducemodel for all simulationmodelsm = 1, . . . ,M. If the Euclidean
distance is close to 0, then the Merge & Reduce approach approximates the results of
the original model accurately. We see in Figure 2.23 that, as the ratio nd

d increases, the
difference between the medians, obtained from the Merge & Reduce approach and from
the Bayesian original model, evaluated by their squared Euclidean distance, is quite
small. The majority of the squared distances is close to 0. For more details on the results
of other summary statistics of the posterior distributions, see Geppert et al. [227].

2.4.3.3 Conclusion and Outlook
Merge & Reduce is suitable for Bayesian regression models. The goodness of the ap-
proximation depends on the ratio of observations per block and variables nd

d and the
goodness of fit of the original model. The first condition can easily be controlled by the
data analyst, especially in a setting with large n. The second condition may require
care when building the model.

For the implementation of the Merge & Reduce approach in principle, it is only
necessary to choose an appropriate statistical model and to implement Merge & Reduce
operations for this specific type of model. However, the design of such operations is
not trivial in general. In particular, we showed in Geppert et al. [227] how to design
such operations for the case of Bayesian linear regression, Gaussian mixture models,
and generalized linear models. Implementing the Merge & Reduce approach for the
Bayesian Cox model is a next step in future work.
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Fig. 2.23: The figure, taken from Geppert et al. [227], shows a scatterplot of the effect of obser-
vations per block per variable nb

d on squared Euclidean distances e2m , (m = 1, . . . ,M) between
posterior medians for the Bayesian Merge & Reduce approach. The x- and y-axes are drawn on a
logarithmic scale, and observations are drawn as partially transparent points: gray points mean
single observations; black points represent multiple observations at roughly the same location. The
vertical dashed line is at 0.1.

2.4.4 Overall Conclusion

We are concerned with several issues that arise when dealing with insufficient compu-
tational resources. In this contribution, we show ways of reducing high-dimensional
data and simplifying complex models in the context of biomedical applications.

In the first two sections, we introduce variable selection strategies in two different
high-dimensional datasettings. In the first scenario, we describe a variable importance
measure approach for genetic SNP data, employed prior to model building. In the
second scenario, we formulate a variable selection strategy for high-dimensional time-
to-event data integrating several data sources in the context of a Bayesian Cox model.
In the third section, we use the Merge & Reduce approach for massive data to analyze
and build statistical models on small batches separately and recombine them in order
to cope with the problems of limited running time and insufficient memory.

All approaches in this contribution improve the efficiency of statistical learning
when facing the limited computational resources of host devices. They reduce the com-
putation time, energyconsumption, and memoryusage of learning individual models
without losing the high accuracy of the model. This, in turn, allows us to analyze more
complex models on massive data with an efficient use of computational resources.
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2.5 Survival Prediction and Model Selection

Jörg Rahnenführer
Michel Lang
Jakob Richter

Abstract: Survival analysis comprises statistical methods for time-to-event data. The
main prediction tasks include the estimation of the influence of prognostic factors
for, say, medical treatments, and the modelling and prediction of survival times using
regression models. In recent years, in molecular medicine, many omics technologies
have been developed, generating complex high-dimensional genetic data that can be
used as predictors.

For such complex tasks, the selection of the best prediction method out of a large set
of candidates, along with potential feature selection and hyperparameter optimization,
represents an optimization task under resource constraints. In this section, approaches
for tackling the model selection problem in survival analysis are presented, specifically
using Bayesian optimization and addressing feature selection for high-dimensional
data.

2.5.1 Introduction

Inmedicine, times to events are compared between groups to estimate the effect of prog-
nostic factors and medical treatments, and regression models are used to model and
predict survival times of cells, animals, or patients. For two decades, high-dimensional
genetic and genomic variables have been generated and analyzed as potential predic-
tive and prognostic factors in biological and medical scenarios. The very large number
of variables requires developing and using tailored methods to describe the complex
relationships. Popular modeling approaches are based on penalized regression meth-
ods, gradient boosting methods, survival trees, and survival forests, often combined
with suitable feature selection methods.

In recent years, machine learning approaches were used to find the best survival
method from a large set of candidates. Efficient approaches are required, since it is
crucial that runtimes especially in resampling scenarios withmany repeated estimation
tasks be kept short, especially for complex high-dimensional predictor settings. In
CRC 876, we applied modern Bayesian optimization (BO) [303] techniques to efficiently
identify the best survival prediction method, by modeling the relationship between
the choice of the survival prediction method (as well as its hyperparameters) and its
performance or quality, using so-called surrogate functions. On several lung cancer
datasets the new approach was superior to established benchmark approaches [367,
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369]. After a short introduction into the analysis of time-to-event data in Section 2.5.2,
model selection for survival analysis is discussed in Section 2.5.3. To solve this task,
various R packages were implemented both for the general candidate selection and for
parallelization, as presented in Section 2.5.6.

The same principle idea was used in a scenario, where survival predictions for a
specific cancer dataset are to be improved, by adding data from similar datasets. This is
a frequent situation in, say, cancer survival analysis, where patient numbers in clinical
trials are limited due to ethical, financial, and administrative reasons, but similar
treatments are applied, e.g., in other clinical centers. However, simply adding similar
datasets to the one of interest potentially deteriorates the predictions, due to structural
differences between the datasets. Instead, one can estimate dataset-specific weights
that determine how strong these datasets should be considered. In CRC 876, we applied
BO to determine such optimal weights for inclusion of the respective observations
in appropriate weighted likelihood-based modelling approaches [531], as shown in
Section 2.5.4 below. In two other projects related to feature selection, we developed
improved methods based on two-fold subsampling schemes [383] and benchmarked
filter methods against each other for high-dimensional data [95]. These analyses are
described in Section 2.5.5.

2.5.2 Analysis of Time-to-Event Data

Survival analysis, also called event-time analysis, deals with the analysis of times to
certain events and is used in many application fields. In medicine, the overall survival
(OS) of patients is often of direct interest. Alternatively, Progression-Free Survival (PFS)
is frequently analyzed, which includes Event-Free Survival (EFS) and recurrence-free
survival. An important property of survival data is that they are often not fully ob-
servable, such as when patients in a clinical trial have not yet experienced the event
of interest at the time the trial ends and the data is analyzed. This situation is called
right-censoring, since for patients without an observed event, the survival time must
be greater than or equal to the time until the end of the study. Depending on the type of
missing information, many other censoring mechanisms are defined and considered in
the analysis techniques.

Specialized statistical methods for analyzing survival data have been developed
and are widely used in literature and in practice. Most prominent are the Kaplan-
Meier estimator for estimating survival curves under right-censoring, the log-rank test
for comparing survival between patient groups, and the Cox proportional hazards
model [149] for estimating survival dependent on a number of explanatory variables,
such as tumor size or age in oncological studies.

In regard to the evaluation of performance, seemingly obvious approaches lead to
wrong interpretations of the results. For example, simply predicting the event indicator
that indicates if a patient has survived until the end of the study, neglects the different
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time intervals that have passed since the patients entered the study. By contrast, meth-
ods based on hazard rates that model the instantaneous failure rates at different time
points can cope with the censoring mechanisms. Alternatively, parametric likelihood
methods that consider the missing information can also be used.

For evaluating the prediction accuracy of survival models, several suitable mea-
sures have been developed. Concordance statistics, in particular Harrell’s C-index and
the area under the (time-dependent) ROC curve, are the most popular measures. How-
ever, they consider only the discrimination ability of a survival model and not the
calibration. This means that monotone transformations of predicted values of survival
outcomes do not change the concordance score, which limits the interpretability of the
score for clinicians. Alternatively, the Brier score is also widely used. It considers both
calibration and discrimination, but interpretation is also difficult. An advantage is that
it can be related to a time-specified horizon. A discussion of these important properties
and an adaptation of the Brier score can be found in Kattan and Gerds [313].

In preclinical and clinical studies, genetic factors are of interest, and modern high-
throughput technologies provide many thousand potential explanatory variables. Even
the popular but controversial rule of thumb that the number of events per variable
should be at least 10 cannot be used as a basis for sample size planning. Instead,
tailored statistical and machine learning approaches are required. Aspects to consider
for model selection in this scenario are discussed in the next subsection.

2.5.3 Model Selection for Survival Analysis

Model selection in survival analysis, compared with model selection in classical ma-
chine learning setups such as regression or classification, presents numerous additional
challenges.

First, instead of having to solve a learning task with many observations (e.g. pa-
tients) and comparatively few variables, in survival analysis we often face a low sample
size problem. Even worse, with the rise of omics technologies, thousands to hundreds
of thousands of genetic features need to be included in the analysis to be able to iden-
tify the most important genes. However, most machine learning or statistical learning
algorithms have been designed and heavily optimized for a large sample size n, and
usually have worse than quadratic runtime in the number of features p. For this reason
alone, we often face runtime issues in the n ≪ p scenario.

Second, a dual objective is often pursued, and the predictive performance of the
models is not the only target criterion. Instead, it is desired to identify the important
features (clinical covariates, genetic dispositions, or genes) in the givenmedical context.
A good predictive performance often ensures that the model describes the data in a
meaningful way, which is the prerequisite for extracting a set of important features. This
restricts the analysis to models that either come with an embedded feature selection or
models that still work reasonably well after a feature filter has been applied.
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Third, all performance measures in survival analysis require a large enough test set to
yield performance values that lead to reliable statements. For example, the popular
C-index mentioned above assesses the ranking of the predictions for survival in the test
set by comparing it with the true, observed ranking of survival times (while correcting
for censoring). Obviously, having too few observations in the set results in a high
variance of the performance estimator. Since usually only a few hundred observations
are available in total per dataset, the number of repetitions must be increased during
resampling in order to account for the larger variance. Of course, this exacerbates the
runtime problems one is already facing.

These points taken together form a hard tuning problem with the following charac-
teristics:
1. The models form a black box from the perspective of the tuner, as there are no

known derivations. Therefore, the optimization problem itself is also called “black
box”.

2. To assess the predictive performance of a hyperparameter configuration θ and its
resulting model, the data needs to be split into a training set and an independent
test set. This introduces stochastic components into our tuning problem at the
latest (some learners are non-deterministic either way).

3. The search space spanned by the hyperparameters to be tuned usually includes
both numerical and categorical variables. This precludes the use of many tuners
derived from discrete and steady optimization.

4. Each model fit is potentially resource demanding, in terms of computational time,
memory requirements, or communication costs. The key word here is “potentially”.
Some models, e.g., a simple Cox model augmented with an aggressive feature filter,
can easily be fitted in less than a minute even with n = 200 observations and p =
106 variables (features). Other learners, such as support vector machines, require
a complete day for the same task on the same hardware while simultaneously
consuming several orders of magnitude more memory. Obviously, the resource
requirements are very heterogeneous, which should be taken into account during
the mandatory parallelization.

5. Last but not least, during hyperparameter optimization, we generally have to deal
with an additional type of censoring (besides the censoring of the survival times):
It is not unusual that the learner implementations crash from time to time due,
say, to numerical problems. And since the tuning is usually distributed on larger
computation sites with shared and contested resources, computational jobs can hit
a wall time and be killed by a scheduler. In such a case, the missing performance
score must be imputed with a number to continue with the tuning, and it is unclear
which value to choose.

Over the last decade, special strategies addressing the difficulties of hyperparameter
optimization have emerged. An overview is given by Bischl et al. [68]. Roughly speaking,
hyperparameter optimization is about finding the configuration θ of a model, which
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leads to the best predictive performance (evaluated on an independent test set). If
the evaluation of a single configuration is sufficiently expensive with regard to com-
putational resources like runtime, every evaluation counts, which also means that
rather wasteful optimization methods are not applicable. This applies, among others,
to Evolutionary Algorithms (EAs). EAs usually require many hundreds of configurations
before being able to make the first targeted decisions. Instead, a tuner that optimizes
more aggressively from the start is needed.

One tuner that addresses all the problems of the outlined expensive black-box
optimization problem is iterated F-racing [421]. The basic idea of F-racing is to race a
population of configurations against each other, and to eliminate in each iteration can-
didates that are underperforming based on a Friedman test. Iterated F-racing extends
this approach by assuming a probability distribution over the search space. This distri-
bution gets updated iteratively so as to be centered around some elite configurations.
We applied this tuning approach to a broad range of survival pipelines (consisting of
the feature filter and the survival model) [369]. The benchmark considers 12 different
datasets of four breast cancer cohorts where each dataset consists of clinical and/or
genetic variables (features). The architecture of the pipeline, i.e. the choice of filter
and the choice of model, is encoded as virtual hyperparameters passed to the tuner.
This way, dominated combinations of filters and models are getting fewer evaluations,
giving the tuner more opportunity to exploit hyperparameters of more promising com-
binations. As a baseline, four reasonable approaches that are popular in practice but
are arguably less computationally intensive have been evaluated. To the best of our
knowledge, this was the largest benchmark of survival models up to that point. In
comparison with the baseline approach, the tuning yields significantly better results
in terms of the C-index. The caveat is the effort to archive the results: with more than
10 000 hyperparameter evaluations, the tuning cannot be applied easily on new data
or cohorts.

Another tunerwhichperfectly fits the requirements of hyperparameter optimization
in survival analysis is Model-Based Optimization (MBO). Its performance has been
verified by Lang [367] where the benchmark study from Lang, Kotthaus, Marwedel,
Weihs, Rahnenführer, and Bischl [369] has been extended, with more datasets, more
filters, more models, and more time budget.

Figure 2.24 visualizes the survival probability in the included cohorts. Although the
studies are all on lung cancer, and share the same set of clinical and genetic features,
they differ considerably with respect to survival times. This is a frequently observed
characteristic, and makes the careless merging of the datasets into a larger dataset with
more observations inappropriate. As a result, in this domain, it is usually not possible
to configure a single model to perform sufficiently well on all cohorts. Instead, for each
cohort, tuning starts from zero. One goal of the analysis was to thin out the portfolio
of methods to consider for a new tuning run. If, e.g., only two pipelines consisting
of a filter and a model have to be tried, the computational effort required for tuning
is significantly reduced, rendering the tuning for new cohorts on a single computer
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Fig. 2.24: Plot of Kaplan-Meier estimators including confidence bounds for the survival time S(t),
stratified by the cohorts that are included in [367]. In the Kaplan-Meier plots, the time t is plotted
against the estimated proportion of patients still alive at t. Lines represent survival curves of the
seven cohorts. A vertical drop in a curve indicates an event, and a plus on a curve means that an
observation was censored at this time.

possible and therefore applicable for practice. This has been systematically analyzed
by Lang [367]. Parts of the results are summarized in Figure 2.25. Additionally, the mean
ranks of filters and learners have been analyzed and revealed the following important
take-home messages in the context of the datasets analyzed:
– If one base learner has to be chosen, random survival forests perform best on

average.
– One of the most popular approaches due to its embedded feature selection–fitting

a Cox proportional hazards model with a LASSO penalty (L1)–performs the worst
on average.

– Tuning over multiple base algorithms jointly with MBO results in the best perfor-
mance on average.

– Tuning each pipeline individually and picking the best performing pipeline (ap-
proach BenchOpt in Figure 2.25) in a second step is not only a waste of computa-
tional resources; it also leads to overoptimistic performance estimates. As each
tuning run is stochastic, and the pipelines often perform comparably well, picking
the best configuration is determined by the stochastic noise to some degree. This
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Fig. 2.25: Resulting average C-index on independent test sets of multiple algorithms, stratified
by cohort. All base algorithms are individually tuned together, jointly with the choice of filter and
the filter’s hyperparameters. MBO tunes over all filters and algorithms simultaneously. BenchOpt
expresses the resulting performance on an independent test set after picking the best performing
base algorithm on the training data [367].

is in particular a very alarming result, as the described manual benchmarking is
common practice.

The heterogeneous runtimes (or more general, the heterogeneous resource demands)
have been addressed by Richter, Kotthaus, Bischl, Marwedel, Rahnenführer, and Lang
[530] and Kotthaus et al. [346]. Instead of fitting only a single surrogate model, guiding
the optimization to areas with the best predictive performance, multiple surrogate
models are fitted in each iteration. On the one hand, the usual surrogate based on the
observed predicted performance is calculated. On the other, one or more surrogate
models for computational resources are fitted, e.g., one surrogate for the runtime and
one surrogate describing the memory consumption. As a result, we can query the
models for the estimated predictive performance and the estimated resource demands
for all hyperparameter configurations. All the information is fed into a scheduler that
selects a subset of the configurations and maps them to multiple CPUs or workers
based on their priority (as derived from the estimated predicted performance) while
minimizing the idle times (based on the estimated runtime).
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2.5.4 Weighted Subgroup Selection for Survival Analysis

Obtaining a reliable predictionmodel for a specific cancer subgroup or cohort s* is often
difficult due to a limited sample size and, in survival analysis, due to potentially high
censoring rates. Sometimes similar data from other patient subgroups is available, e.g.,
from other clinical centers. Simple pooling of all subgroups can decrease the variance
of the predicted parameters of the prediction models, but also increase the bias due to
heterogeneity between the cohorts.

Different approaches exist to improve the predictive quality by including data
from other patient subgroups in a weighted fashion. One possible way is to include
one further weighted subgroup, as proposed by Weyer and Binder [726]. Alternatively,
individualweights for each patient can be estimated from the training data, as described
by Bickel et al. [63]. The idea is that weightsmatch the joint distribution of the combined
data to the distribution in each subgroup, such that a patient who is likely to belong to
the target subgroup receives a higher weight in the subgroup-specific model. Weights
correspond to the conditional probability of belonging to the target subgroup s* given
the observed covariates and outcome divided by the prior probability for s*. The former
is estimated from the training data by multi-class classification, and the latter by the
relative frequency of s*.

The goal is to optimize the predictive performance of our model for the target
subgroup s*. Including data from additional subgroups in the training data should
increase the predictive performance of the target subgroup. Accordingly, this forms a
combinatorial optimization problem where additional subgroups must be chosen to
maximize the predictive performance.

However, completely abstaining from using certain subgroup data seems overly
drastic since theremight be relevant information contained in each additional subgroup
data. Luckily, most machine learning methods and also those that can be used for
time-to-event data allow observational weights. This allows us to give a low weight to
observations that do not represent our problem. However, finding an optimal weight
for each observation is exceedingly complex. Instead, we introduce subgroup weights
as presented by Richter et al. [531]. The observation weight is then determined by
the subgroup membership of each observation. This enables the inclusion of certain
subgroups with a specific weight. Hence, including additional data in a weighted way
might lead to a better solution than the binary choice of including a subgroup with full
weight or not at all.

By introducing subgroup weights, we relaxed the combinatorial problem into a nu-
merical optimization problem. However, setting those subgroup weights in an optimal
way remains a difficult optimization problem. First, each additional subgroup leads to
a further weight parameter that has to be chosen optimally. Second, the evaluation of
a weight parameter combination can take fairly long, since the datasets themselves
tend to be rather large, especially when they include high-dimensional genetic mea-
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surements in the scenario of survival analysis. In this case, it becomes infeasible to try
out many weight parameter combinations in order to find an optimal one.

Therefore, we can apply state-of-the art optimization methods for expensive black-
box problems such as MBO (model-based optimization) in order to find the optimal
subgroup weights without the cost of having to evaluate hundreds of different weight
parameter combinations. For our evaluation,we optimize the subgroup-specificweights
w(g) in the weighted Cox model. Note that in Section 2.5.3 a study was reported where
random survival forests performed on average better than fitting a Cox proportional
hazards model with a LASSO penalty. However, here we use the much more frequently
used penalized regression approach to evaluate the potential improvement due to the
weighted analysis.

Weighted CoxModel Assume the observed data of the patient i consists of the tuples
(ti , δi), the covariate vectors xi = (xi1, . . . , xip)′ ∈ Rp, and the subgroup membership
si ∈ {1, . . . , S} with S being the total number of available subgroups, and i = 1, . . . , n.
ti denoting the observed time of patient i, the minimum of the event time, and the
censoring time. δi indicates whether a patient experienced an event (δi = 1) or was
(right-)censored (δi = 0). As mentioned above, one of the most popular regression
models in survival analysis is the Cox proportional hazards model [149]. It models the
hazard rate h(t|xi) of a patient at time t as

h(t|xi) = h0(t) · exp(β′xi) = h0(t) · exp

⎛
⎝

p∑︁

j=1
βjxij

⎞
⎠ ,

where h0(t) is the baseline hazard rate, and β = (β1, . . . , βp)′ is the unknown parameter
vector. The parameters are estimated by maximizing the partial log-likelihood [326,
Chapter 8.3]. A version of the partial log-likelihood that uses observation weights is
introduced in [726]:

l(β) =
n∑︁

i=1
δiwi

(︃
β′xi − ln

[︁ n∑︁

k=1
1(ti≤tk)wk exp

(︁
β′xk

)︁ ]︁)︃
. (2.18)

Instead of an individual weight for each patient, we introduce an individual weight
for each subgroup. Therefore, we assign the same weight to each patient of the same
subgroup:

wi =
{︃
1, if si = s*

w(g), if si = g, g ∈ {1, . . . , S} \ s*
(2.19)

where w(g) ∈ [0, 1] is the specific weight for the subgroup g, and s* is the subgroup for
which we want to obtain predictions. Patients for subgroup s* enter with full weight 1
in the prediction model.
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Standard subgroup analysis is based only on the patients in the subgroup of interest
(target subgroup s*), which corresponds to wi = 0 for all patients not belonging to s*. A
combined model that pools patients from all subgroups corresponds to wi = 1 for all
patients.

In high-dimensional settings where the number of covariates p is typically much
larger than the sample size n, standard maximum likelihood cannot be used for pa-
rameter estimation, since it does not result in a unique solution. Therefore, we add a
LASSO penalty [677] to the partial log-likelihood. Lasso regression performs feature
selection and yields a sparse model solution. The resulting maximization problem of
the penalized partial log-likelihood is given by

β̂ = argmax
β

⎧
⎨
⎩l(β) − λ ·

p∑︁

j=1
|βj|

⎫
⎬
⎭ .

The LASSO penalization parameter λ is optimized through an internal 10-fold cross-
validation.

Evaluation We are interested in maximizing the predictive performance for a target
subgroup s*. The predictive performance of the weighted Cox model is evaluated using
the C-index. For the evaluation of the model for a given target subgroup s*, a dataset
that contains S subgroups, and a subgroup weight vector w = (w(1), . . . , w(S−1)), we
conduct a modified 10-fold cross-validation. The validation data should only contain
the target subgroup, becausewe are only interested in the predictive performance on the
target subgroup. In order to obtain the 10 necessary splits for the cross-validation, we
only divide the data of the target subgroup into 10 chunks. To obtain the prediction for
one chunk, all remaining 9 chunks plus all observations from the additional subgroups
are combined to the training dataset. By performing the modified cross-validation,
we obtain an estimation on the C-index for the given combination of dataset, target
subgroup and subgroup weight vector.

Now, the goal is to find the subgroup weight vector that maximizes the C-index.
This optimization problem can be solved with MBO, with a search space [0, 1]S−1 that
directly maps to the weight vector. The acquisition function that selects the next weight
vector to be evaluated should take into consideration that results are not deterministic.
Therefore, we proposed the augmented expected improvement [288], which is well
suited for such scenarios. For the Gaussian process regression within the Bayesian
optimization, we proposed the Matern 3/2 kernel with an estimated nugget effect to
account for the noisy response of our objective.

The benefit of optimizing the subgroup weights is twofold: First, the resulting
optimal subgroup weight vector does not only maximize the C-index for the target
subgroup; it also allows drawing conclusions about the similarity of certain subgroups.
If a certain subgroup weight is small, it can be assumed that this subgroup does not
have a similar relationship between the explanatory variables and the event times as
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the target subgroup. Second, as shown by Richter et al. [531], the predictive performance
of the method does not deteriorate if additional subgroups are included that contain
inconsistent data.

Benefits could arise from using the penalization of the weights, which would allow
researchers to completely exclude data with weights close to zero. Then the model
becomes computationally cheaper and possibly more stable. Finally, the presented
approach can be used for any situation where data is pooled from different cohorts and
a machine learning method is used that supports observational weights.

2.5.5 Feature Selection for High Dimensional Data

The problem of feature selection is particularly important in the domain of high dimen-
sional data, as already described in detail in Section 2.5.3. One challenging problem
in this context is the stability of feature selection. Some learners can be restricted to
using only a small subset of the thousands of available features, and learners can be
combined with a feature filter to achieve the same in a generic fashion. However, the set
of selected features is often highly variable. For example, if a Cox proportional hazard
model is extended with an L1 penalty λ tuned to include only up to 20 features in a
3-fold cross-validation, the resulting three sets of selected features can be pairwise
disjoint. This has a simple reason: if two features x1 and x2 are highly correlated, they
are also comparably good predictors. If the model has to choose between x1 and x2, a
few observations can tip the scales in one direction or the other. If the dataset is now
resampled and these observations are removed from the training set, the scale can
easily swing in the other direction. This is particularly annoying because in this way
no features can be reliably selected for a later analysis, such as a biological analysis.

Lee et al. [383] tackle this problem in two ways: First, a special extension to the
LASSO regression is used. The preconditioned LASSO [495] is a two-step procedure
designed to address the problems of high bias in LASSO estimates. Second, the pre-
conditioned LASSO is embedded in a two-fold subsampling procedure to improve the
stability of the feature selection via model averaging and extra shrinking of covariates
based on the selection probability in the inner subsampling.

The approach has been applied to datasets on neuroblastoma, lung adenocar-
cinoma, and breast cancer. Both predictive performance (measured by the C-index)
and stability (measured by the Jaccard index and the Kuncheva index) are improved.
However, the comparison with popular univariate selection methods does not provide
a clear picture.

Another take on this topic was presented by Bommert et al. [95], where more
than 20 filter methods are benchmarked against each other for high-dimensional data.
Although this work is based on classification data, there is no reason why the core
results should not be transferable to survival problems, and confirming this is currently
work in progress. One key result is shown in Figure 2.26. There are clear groups of



82 | 2 Health / Medicine

Fig. 2.26: Rank correlations between the feature selection order, for all pairs of a large set of filter
methods, averaged across several datasets by the arithmetic mean. The filter methods are ordered
by average linkage hierarchical clustering using the mean rank correlation as a similarity measure
[95].

feature filters available. Filters from the same group are expected to give very similar
results across different datasets. Therefore, instead of including more than 20 filters
into the machine learning pipeline, it is sufficient to thin out this portfolio to a smaller
set. Additionally, the filters have been analyzed regarding performance and stability to
provide general recommendations for feature filtering in high-dimensional settings.

2.5.6 Software

Many machine learning frameworks exist that can be conveniently employed for model
selection or feature selection. However, most of these frameworks have a strong focus
on classification and regression. Support for survival analysis is often not existent or
insufficient. For proper evaluation, two frameworks have been extended to support
time-to-event data.

First, the R package mlr [69] has been extended with an object for survival tasks,
including the most common survival learners and survival measures. By building upon
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the existing infrastructure for resampling and tuning, survival learners can be tuned
with state-of-the-art tuners such asmodel-based optimization. For larger tasks, i.e. tasks
with thousands of features of genetic data, parallelization of the benchmark experi-
ments is mandatory. The package BatchJobs [67] and its successor batchtools [368]
provide the bridge between mlr and managed high-performance computing clusters,
allowing to compute comprehensive benchmarks on hundreds of CPUs simultaneously.
In this way they can define and execute exhaustive benchmark studies, such as those
from Lang, Kotthaus, Marwedel, Weihs, Rahnenführer, and Bischl [369], Lang [367] and
Richter et al. [531].

The second framework extended for survival analysis is mlr3 [370], the successor of
mlr. The extension package mlr3proba [640] provides a general framework for proba-
bilistic regression. Compared with the survival capabilities of mlr, mlr3proba connects
much more learners and, even more importantly, connects and implements much more
survival measures. Additionally, mlr3proba can be embedded in the infrastructure of
the mlr3pipelines [65] package, which provides a language to build complex machine
learning workflows as directed acyclic graphs. mlr3pipelines is also used to convert
and unify the many predict types of survival models: while some models return a linear
prediction vector, others return a continuous ranking, relative risks, or a complete
time-dependent distribution such as individual survival function estimates. mlr3proba
provides several pipeline operators for converting between predict types or even for
composing multiple types.

Thanks to the unified interface of mlr3 and mlr3proba, it is directly possible to
use state-of-the-art methods to optimize the hyperparameters of the survival meth-
ods via mlr3tuning. Especially in the survival context, data preprocessing is often
a crucial step. Decisions on how to configure the preprocessing should be included
in this optimization process to obtain an unbiased estimate of the predictive perfor-
mance. Modeling preprocessing through mlr3pipelines allows the building of a whole
pipeline that can be resampled and optimized. To obtain an unbiased estimate of the
performance of a pipeline identified through optimization, the whole optimization can
be resampled, resulting in a nested resampling setting. Multi-criteria optimization is
also supported, e.g. to tune for predictive performance, sparsity, and feature selection
stability simultaneously by connecting the stabm [94] package.

2.5.7 Conclusion

The analysis of survival data requires the use of adequate statistical methodology,
especially when it comes to accounting for missing information due to censoring.
Corresponding methods are available and established. However, for modern high-
dimensional data increasingly being generated today, omics data in particular, addi-
tional challenges emerge. Estimating predictionmodels often requires elaborate feature
selection and hyperparameter optimization. For this task, Bayesian optimization meth-
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ods provide a beneficial solution. They can efficiently identify models with competitive
prediction accuracy out of a large set of candidate models. Of great importance is the
availability and use of software frameworks for reproducible analysis pipelines. One
valuable example is the widely used R package mlr3, which provides efficient, object-
oriented programming on the building blocks of machine learning, together with its
extension package mlr3proba, which provides a general framework for probabilistic
regression, including many popular survival models and survival measures.
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Abstract: Proteins have manifold functions in living cells, including structural integrity,
transport, defense against pathogens, or message transmission, to name but a few.
Recent advances inMachine Learning appear to have solved the protein foldingproblem,
i.e., how to obtain the three-dimensional functional protein structure from the amino
acid sequence of the protein. However, proteins rarely act alone, but instead perform
their functions together with other proteins in so-called protein complexes. Quantifying
the similarity between two protein complexes is essential for numerous applications,
e.g., for database searches of complexes that are similar to a given input complex.While
similarity measures have been extensively studied on single proteins and on protein
families, there is little work on modeling and computing the similarity between protein
complexes yet. Because protein complexes can be naturally modeled as graphs, graph
similarity measures may be used, but these are often computationally hard to obtain
and do not take typical properties of protein complexes into account. We introduce
a parametric family of similarity measures based on Weisfeiler-Leman labeling see
"The Weisfeiler-Leman Algorithm for Machine Learning with Graphs" in Section 4.2 in
Volume 1. Based on simulated complexes, we show that the defined family of similarity
measures is in good agreement with edit similarity, a similarity measure derived from
graph edit distance, though it can be computedmore efficiently. Moreover, in contrast to
graph edit similarity, the proposed measures allow for an efficient similarity search in
large volumes of protein complex data. It can therefore be used as a basis for large-scale
machine learning applications.

2.6.1 Introduction

Proteins fulfill manifold tasks in living cells, but they rarely act alone. Indeed, most
cellular functions are enabled only when proteins physically interact with other pro-
teins, forming protein complexes. DNA transcription is a typical example, where RNA
polymerase II, general transcription factors, cell type specific transcription regulators,
and mediator proteins interact.
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Understanding protein complex formation and function is one of the big challenges of
cell biology, and is approached by both experimental techniques and computational
modeling. While the constituent protein sequences can be obtained from the genome,
the computational prediction of real protein complexes from protein interaction net-
works appears to be much more difficult [61, 643], and we presently face a lack of
experimental datasets on verified real protein complexes. Fortunately, new experimen-
tal technologies such as high-resolution protein-protein docking are about to enhance
our understanding of complexes significantly in the near future [348, 490].

When studying biological entities such as protein sequences or protein complexes,
a fundamental task is to define a measure of similarity between two such entities. For
protein sequences, there is a well-established theory based on scoring matrices and
alignment scores [496]. For protein complexes, it appears that no systematic effort to
quantify similarity has been made yet. The purpose of the present article is therefore to
discuss the different options for defining a similaritymeasure on protein complexes and
for proposing a reasonable and computationally tractable definition of protein complex
similarity. Establishing a similarity measure is not only important fundamentally, but
there are many immediate applications.
Database search In the database search problem we are given a query complex and a

large collection (database) of complexes, and the task is to find the complexes in
the database whose similarity to the query exceeds a given threshold.

Comparing predictions Several complex prediction methods predict putative com-
plexes by locating dense regions in a protein interaction network [180, 272, 424,
497], and for comparing complexes predicted by different algorithms, it is of interest
to compute a maximum-weight matching between the output of two algorithms,
where the weighting is given by a similarity function.

Summarizing and clustering When simulating complex formation based on avail-
able knowledge such as possible interactions and interaction constraints, it is
helpful to aggregate the simulation output to focus on frequently seen or typi-
cal complexes, ignoring small differences. Aggregation or clustering by similarity
thereby reduces data size and complexity. Such a task requires quantifying the
similarity between two protein complexes.

When there are tens of thousands of different complexes subject to pairwise comparison,
a similarity measure must be efficiently computable.

This contribution is based on a conference paper by the authors [644], adapted by
permission from Springer Nature; Copyright© 2019 Springer Nature Switzerland AG.

2.6.1.1 Models for Protein Complexes
We first discuss models for protein complexes at different levels of detail, namely the
set,multiset, and graphmodels.
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While intuition suggests that protein complexes can be naturally described as graphs
with proteins as vertices and physical interactions as edges, there are in fact different
ways to formally describe a protein complex. We start with a given set P of all proteins
of an organism, the building blocks of the complexes.
Set In its most simple form, a protein complex can be defined as a set (in themathemat-

ical sense, i.e., without multiplicities) of proteins, i.e., as a subset {p1, p2, . . . , pn}
of P. Sets neither capture the multiplicities nor the nature of the physical interac-
tions between the constituent proteins of a complex. Some experimental techniques
only give set-type information, and several existing databases only provide this
type of information, e.g., the CORUM database [551].

Multiset Formally, a multiset is a function C : P → N0 that assigns a multiplicity to
each protein p ∈ P with C(p) = 0 for proteins p that are not part of the complex.
We also use the multiset notation C = {{p1, p1, p2}} to express that C(p1) = 2,
C(p2) = 1 and C(p) = 0 for all other p ∈ P. Defining a protein complex as a multiset
of proteins gives a more accurate representation of the complex, but still does not
consider the interaction topology.

Graph To add more information, we can define a protein complex as an undirected
graph C = (V , E, ℓ) with labeled vertices V, such that each vertex v ∈ V represents
a protein and hence has a label ℓ(v) ∈ P, each edge e ∈ E ⊆ V × V represents a
physical interaction between the corresponding proteins, such that E is symmetric
and C is connected. The graph description provides the interaction topology. We
call this representation a protein complex graph and define its size as |C| := |V|+ |E|.
In the following, we use the terms protein complex and protein complex graph
interchangeably.

A remark is in order to avoid confusion with protein interaction networks. Our definition
of the graphmodel of protein complexes is formally identical to the definition of protein
interaction network. However, there are important differences. The protein complex
graph represents an assembly composed of multiple proteins that physically bind
and co-exist in one temporal and physical space, while a protein interaction network
represents proteins thatmay interact at some point of time,where individual interaction
time points may be different. Hence, the protein complex graphs considered in this
work typically consist of only a few vertices and edges, while interaction networks are
much larger.

For the set andmultiset models, a similarity measure is readily given by the Jaccard
similarity (see Section 2.6.2.1). For graphs, various techniques exist such as graph
kernels [353] or graph matching [741]. A particularly intuitive approach is the graph edit
distance, which has been proposed for pattern recognition tasks more than 30 years
ago [574]. A graph edit distance between graphs C and C′ measures the total costs of
the edit operations required to transform C into C′. Defining similarity via graph edit
operations appears natural, but has computational disadvantages, as the graph edit
distance generalizes the classical maximum common subgraph problem [109], which
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is NP-complete [220] and hard to approximate with given guarantees [311]. Therefore,
a large number of heuristics for computing the graph edit distance without provable
guarantees have been proposed. A particular successful class of heuristics derives
the edit costs from the solution of a linear sum assignment problem [90, 352, 535].
Recently several elaborate exact algorithms for computing the graph edit distance
have been proposed, but are still limited to small graphs [132, 239, 388]. The binary
linear programming formulation of [388] allows researchers to compare graphs of
moderate size using highly-optimized general purpose solvers. However, when we want
to compare many complexes, evaluating the edit distance between all pairs becomes
infeasible in practice.

We therefore propose an efficient alternative. We define a family of similarity mea-
sures on graphs using the Jaccard similarity, which can be efficiently computed and
even more efficiently estimated with locality-sensitive hashing techniques. Taking the
graph structure into account is achieved by theWeisfeiler-Leman labeling of the vertices
[724], propagating vertex labels between neighbors. This approach is different from
recent work that approximates and bounds the graph edit distance [534] and has the
advantage of scaling better to large-scale studies.

We find that the Weisfeiler-Leman (WL) similarity approximates edit similarity
well, but can be computed much more efficiently. In addition, in large-scale database
searches for complexes similar to a given query complex, we obtain an additional speed-
up by an order of magnitude when filtering for high WL similarity using min-hashing.
Finally, we discuss limitations and possible extensions of this work.

2.6.2 Methods

Our goal is to define a similarity measure between protein complexes that captures not
only the (multisets of the) constituent proteins, but also the interaction topology (graph
structure). We introduce a parameterized family of similarity measures on protein
complexes, which are based on multiset comparisons of vertex labels in the graph
representation and take the local neighborhood of each protein into account by using
Weisfeiler-Leman labels.

2.6.2.1 Jaccard Similarity of Sets and Multisets
To compare sets or multisets, Jaccard similarity coefficients are an established quantity.

Let M ⊆ U and M′ ⊆ U be two subsets of a common universe U. Then the Jaccard
similarity between M and M′ is defined as

Jset(M,M′) := |M ∩M′|
|M ∪M′| ∈ [0, 1] . (2.20)

This definition is extended to multisets as follows. Recall that multisets M and M′ are
functions U → N0, assigning multiplicities M(o) and M′(o) to each object o ∈ U. (The
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set definition can be seen as the special case where the value set is only {0, 1} instead
of N0.) Then the Jaccard similarity between M and M′ is defined as

Jmultiset(M,M′) :=
∑︀

o∈U min{M(o),M′(o)}∑︀
o∈U max{M(o),M′(o)} ∈ [0, 1] . (2.21)

The definition of Jmultiset can be reduced to that of Jset by augmenting the element names
with a running index in each multiset. For example,

Jmultiset({{A, A, B, C, C}}, {{A, C, C, C}}) = Jset({A1 , A2 , B1 , C1 , C2}, {A1 , C1 , C2 , C3}) .

Using this transformation, sketching techniques like min-hashing [105] that primarily
work on sets can be extended to multisets.

2.6.2.2 A Parametric Family of Protein Complex Similarity Measures
Instead of comparing (protein complex) graphs directly by their labels and graph
topology, we extract and compare multisets of derived features that represent local
neighborhood information. Encoding the local structure surrounding a vertex is a gen-
eral method widely used in graphmatching andmachine learning with graphs. Various
concepts and techniques for this have been proposed, e.g., the k-hop neighborhood
[319, 459], or the k-sphere neighborhood [37]. Weisfeiler and Leman developed an itera-
tive label refinement procedure to derive a canonical graph representation for graph
isomorphism testing [724]. The same procedure is often used to define graph similarities
or graph kernels [602]. This approach recently became popular in machine learning for
its expressivity and favorable algorithmic properties. Several highly efficient graph ker-
nels based on Weisfeiler-Leman refinement have been proposed [351, 602], and several
graph neural networks were shown to be at most as expressive as the Weisfeiler-Leman
method [737].

The technique works as follows. Initially, the feature multiset of a graph consists
of the union of all vertex labels, i.e., the protein names. After the initialization, the
vertex labels are iteratively augmented by the labels of the neighboring vertices from
the previous iteration, thereby encoding the (local) graph structure in the vertex labels.
As previously mentioned, we label the vertices of graphs with the protein names; so
two vertices that refer to the same protein type are labeled identically. Thus, the initial
feature multiset is identical to the multiset representation as described above. Let us
now formally define the process.

Definition 1 (Weisfeiler-Leman labeling). Let C = (V , E, ℓ0) be a graphwith label func-
tion ℓ0 : V → L0 := P, where P is the initial set of vertex labels (e.g., protein names for
protein complex graphs). Furthermore, let N(v) := {u | {v, u} ∈ E} denote the neigh-
bors of vertex v ∈ V. Then, the Weisfeiler-Leman labeling of iteration i is defined as a
re-labeling of the graph. It replaces the current labeling function ℓi−1 : V → Li−1 with
a new labeling function ℓi : V → Li. The value of ℓi for a vertex v ∈ V is recursively
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A Protein complex C B Multiset representation
 
multiset of node labels
 
WL0(C)={{ 
       CDC42, CDC42, PAK4,
       PIK3CD, PIK3R1, 
       PIK3R1, VAV1 }}
 
Compressed Representation: 
{{0,0,1,2,3,3,4}}

C WL feature set of iteration 1
 
label(node) = (node label, 
                        compressed neighbor node labels)
WL1(C)={{ 
       (0,{{0,1,3}}), (0,{{0,3,4}}), 
       (1,{{0}}), (2,{{3}}), (3,{{0}}),
       (3,{{0,2}}), (4,{{0}}) }}
 
Compressed Representation: 
{{5,6,7,8,9,10,11}}

PIK3CD PIK3R1

PIK3R1

VAV1CDC42

PAK4CDC42

Fig. 2.27: Example of a protein complex and its representations. The colors highlight the labels of
an example node in WL0(C) and WL1(C). A: Graph representation of protein complex C. B:Multiset
representation of C which is equal to WL0(C). C: Result of the first WL iteration.

defined as
ℓi(v) := ( ℓi−1(v),

{︀
{ℓi−1(u) | u ∈ N(v)

}︀
} ). (2.22)

Note that the second component of the new label is a multiset.

To avoid increasingly complex labels consisting of nested multisets, label compres-
sion is performed after each step. This is achieved by applying an injective function,
which maps a pair consisting of a label and a multiset of labels of the form given in
Equation 2.22 to an integer label. The label compression step must be consistent across
multiple graphs in order to construct comparable feature sets. If all graphs in the dataset
are known from the beginning, we can sort all the multisets of one iteration, identify
the identical pairs, and assign them to the same new integer label. This step can be
realized in time linear in the total number of edges of all graphs by applying variants of
bucket sort [602]. A less efficient, but more flexible approach, which is suitable even
when the graphs are only revealed successively, is to manage the injective map used for
label compression in a hash table.

Given the Weisfeiler-Leman labeling function for any iteration i, we can now define
the multiset of Weisfeiler-Leman features for iteration i.

Definition 2 (Weisfeiler-Leman feature set). Let C = (V , E, ℓ0) be a graph with label
function ℓ0 : V → L0 = P, where P is the initial set of vertex labels. Then, the Weisfeiler-
Leman features of iteration i are defined as multiset WLi(C) =

{︀
{ℓi(v) | v ∈ V

}︀
}.

Note that WL0(C) always corresponds to the initial multiset of labels (protein names).
Accordingly, WL1(C) integrates the neighborhood labels of each node. Figure 2.27
shows an example protein complex graph, together with the associated feature sets
WL0(C) and WL1(C). A node and its neighborhood are highlighted in red and blue to
demonstrate the relation between WL0(C) and WL1(C).

We use the Jaccard coefficient to obtain a normalized similarity based on multiset
intersection.We apply the Jaccard coefficient to the feature sets of each iteration individ-
ually and compute a convex combination of the results. Let w = (wi)i≥0 be a sequence of
non-negative weights with

∑︀
i≥0 wi = 1. We quantify the weighted similarity between



2.6 Protein Complex Similarity | 91

two labeled graphs C and C′ by

Sw(C, C′) :=
∑︁

i≥0
wi · Jmultiset(WLi(C),WLi(C′)), (2.23)

where Jmultiset is given by Equation 2.21. This defines a family of similarity measures
between labeled graphs with values in [0, 1], parameterized by the weight vector w =
(w0, w1, . . . ).

It is easy to see that, as long as w0 > 0, we have Sw(C, C′) = 0 if and only if the label
sets of C and C′ are disjoint. If Sw(C, C′) < 1, the graphs are not isomorphic. However,
Sw(C, C′) = 1 does not necessarily imply that C and C′ are isomorphic even if wi > 0 for
all i. There exist examples of non-isomorphic graphs G, G′ withWLi(G) = WLi(G′) for all
i ≥ 0. (As a simple example, take G to be a cycle of six vertices, and G′ to be two cycles of
three vertices, all with the same label.) On the other hand, there exist classes of graphs,
suchas theCR-graphs, forwhich the implication “Sw(C, C′) = 1 ⇒ C, C′ are isomorphic”
is true if wi > 0 for all i [31]. Moreover, the implication holds with high probability for
random graphs (without vertex labels) even when wi = 0 for all i ≥ 3 [34].

In our application scenario, we may assume that most protein complexes are non-
adversarial graphs with sufficiently simple structure and expressive initial labels such
that their Weisfeiler-Leman features are appropriate to characterize their similarity. In
fact, we put forward the hypothesis that using a single iteration is frequently sufficient
for practical purposes, and we set wi := 0 for i ≥ 2 in our computational experiments
(see Results) and only have a single free parameter w1 ∈ [0, 1] that defines w0 := 1−w1.
In this case, Sw1 is efficiently computable: a proof of the following lemma can be found
in the work of [602].

Lemma 3. For w1 ∈ [0, 1], each of the one-parameter similarity measures

Sw1 (C, C′) := (1 − w1) · Jmultiset(WL0(C),WL0(C′))

+ w1 · Jmultiset(WL1(C),WL1(C′))

can be computed in O(|C| + |C′|) time, where |C| = |V| + |E|.

2.6.2.3 A Similarity Measure Based on Graph Edit Distance
To compare the family of Weisfeiler-Leman multiset-based similarity measures defined
above with graph edit distance, we state a formal definition of the edit-based similarity.
We allow the following elementary operations to edit a graph: vertex deletion, vertex
insertion, vertex relabeling, edge deletion, and edge insertion. A sequence (o1, . . . , ok)
of such edit operations that transforms a graph G into another graph H is called an edit
path from G to H. Each operation o is assigned a cost c(o), which is zero for substituting
vertices and edges with the same label. We use a cost of 1 for all operations except
vertex relabeling, which has a cost of 2, corresponding to one deletion and one insertion
(leaving the edges in place). Note that deleting or inserting a vertex of degree k otherwise
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has cost k + 1 for deleting k edges and the vertex itself. We denote the set of all possible
edit paths from G to H by Υ(G, H).

Definition 4. Let G and H be labeled graphs. The graph edit distance from G to H is
defined by

d(G, H) = min

{︃ k∑︁

i=1
c(oi) | (o1, . . . , ok) ∈ Υ(G, H)

}︃
. (2.24)

Intuitively, the graph edit distance preserves a subgraph G′ of G that is also contained
in H using zero-cost substitutions, deletes the vertices and edges in G that are not in
G′, and then inserts vertices and edges to obtain an isomorphic copy of H. Therefore all
non-zero costs can be attributed to the elements that are in one of the graphs, but not in
their common subgraph. In this sense the graph edit distance is similar to the symmetric
difference of two sets. This observation motivates the following normalized similarity
measure derived from the graph edit distance. We define the graph edit similarity as

Sg(G, H) :=
|G| + |H| − d(G, H)
|G| + |H| + d(G, H) ∈ [0, 1] , (2.25)

where |G| := |V(G)| + |E(G)|. Note that the graph edit distance between G and H is at
most |G| + |H|, which is achieved by deleting all vertices and edges of G and inserting
all vertices and edges of H. In this case the graph edit similarity is zero. Similarly,
Sg(G, H) = 1 if and only if d(G, H) = 0. In this respect the similarity measure resembles
the Jaccard similarity. In fact, the following lemma shows that, if the edges are not
taken into account, the graph edit similarity equals the multiset Jaccard similarity.
Therefore, the graph edit similarity can indeed be seen as a natural extension of the
multiset Jaccard similarity to graph structured data.

Lemma 5. For two vertex-labeled graphs G, H, let C, D denote their respective label
multiset. For the edge-free graphs G′ = (V(G), ∅) and H′ = (V(H), ∅) it holds that
Sg(G′, H′) = Jmultiset(C, D).

Proof. An optimal graph edit path is obtained as follows: We substitute the vertices
with common labels free of cost, which are Z =

∑︀
p∈P min{C(p), D(p)} in total. We

delete the remaining |G′| − Z vertices in G′ and insert |H′| − Z vertices to obtain an
isomorphic copy of H′ at a total cost of |G′| + |H′| − 2Z = d(G, H). Instead we may also
substitute up to | |G′| − |H′| | vertices, each at cost two, which results in the same total
cost. Using the fact that |G′| =

∑︀
p∈P C(p) and |H′| =

∑︀
p∈P D(p), we obtain the result
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by calculating

Sg(G′, H′) =
|G′| + |H′| − d(G′, H′)
|G′| + |H′| + d(G′, H′) =

Z
|G′| + |H′| − Z

= Z∑︀
p∈P C(p) +

∑︀
p∈P D(p) − Z

=
∑︀

p∈P min{C(p), D(p)}
∑︀

p∈P C(p) + D(p) −min{C(p), D(p)}

=
∑︀

p∈P min{C(p), D(p)}
∑︀

p∈Pmax{C(p), D(p)} = Jmultiset(C, D) .

2.6.2.4 Database Searches
An important application of a similarity measure S(·, ·) is for similarity searches in large
databases. When searching for similar protein complexes to a given input complex
(“query” Q) in a large database, one can perform a linear scan and compute S(Q, C) for
each complex C in the database and report those with S(Q, C) ≥ T for a given threshold
T. However, computing S(Q, C) exactlymay be computationally expensive, and inmany
cases, a quickly computable upper or lower bound can be used as an initial filter.

In Section 2.6.3, we evaluate the proposed similarity measure Sw1 against graph
edit similarity Sg, and for database searches we use individual filtering techniques as
described in this section.

Weisfeiler-Leman Similarity For Sw, a speed-up is possible usingmin-hashing [105],
which is a locality-sensitive hashing scheme for the Jaccard similarity between sets that
can be extended to multisets, as described in Section 2.6.2.1. We use a simple approach
that maps the WLi(C) multisets to integer hash values hi,j(C) using a large number
(j = 1, . . . , K) of different random hash functions. The exact Sw(Q, C) value is only
computed if any of the hash values agrees with that of the query, i.e., if hi,j(C) = hi,j(Q)
for any i = 0, 1 and j = 1, . . . , K. The number K of hash functions is chosen such that
the false negative error rate is lower than a given probability threshold (0.01).

Graph Edit Similarity The graph edit distance is widely used for searching graph
databases and several approaches tailored to this task have been proposed [132, 323,
397, 712, 755, 768, 769, 770]. These methods typically follow a filter-verification approach
[755]. In the filter phase, efficiently computable lower bounds on the graph edit distance
are used to eliminate dissimilar graphs. The remaining graphs are then verified using
upper bounds on the graph edit distance and, if necessary, by an exact algorithm to
obtain the final result. The methods can be categorized according to different criteria.
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Several methods compute a lower bound for every graph in the database [132, 323, 755],
while the others use an index data structure to find candidates without scanning the
whole database. The lower bounds are often derived from overlapping substructures,
while somemethods partition the graphs into disjoint parts [323, 397, 769]. Recently, the
large number of proposed lower and upper bounds were systematically studied in an
extensive experimental evaluation according to their running time and tightness [90].

Most of the above mentioned algorithms assume a uniform edit cost function and
cannot directly be applied to solve database search problems with respect to the graph
edit similarity as defined in Equation 2.25: To make graph similarity compatible with
the Jaccard index, we use a cost of 2 instead of 1 for vertex relabeling. Nevertheless,
several of the efficiently computable bounds for uniform graph edit distance can be
generalized for this case, and we have implemented such generalizations (see below).
Then, by substituting d(G, H) in Equation 2.25 by known lower (upper) bounds on the
graph edit distance, we obtain upper (lower) bounds for the graph edit similarity.

Since the vertex labels denoting proteins are highly specific when comparing pro-
tein complexes, we derive a first lower bound on the graph edit distance from the
cardinality of the symmetric difference of the two vertex label multisets [323, 768]. This
is equivalent to using Jmultiset as an upper bound for the graph edit similarity.

As a second lower boundweuse amore expensive approachbased on the linear sum
assignment problem, which was shown to provide a good trade-off between tightness
and running time [90]. The assignment instance is defined on the vertices of the two
graphs, where additional dummy vertices are introduced that represent vertex insertion
and deletion. The costs for assigning individual vertices is made up of the costs for
substituting the vertex label and the cost of an optimal assignment between the incident
edges [535]. Since we do not consider edge labels, the assignment cost matrix can be
computed in quadratic time (cf. heuristic BRANCH-CONST in [90]) and the instance can be
solved in cubic time. The cost of the assignment instance serves as a lower bound on the
graph edit distance. Following [535], we obtain an upper bound from the cost of the edit
path derived from the assignment. If this is not sufficient for verification, we compute
the exact graph edit distance using the binary linear programming formulation of [388].

2.6.3 Results

2.6.3.1 Hypothesis
Wehypothesize that finite truncations of theWeisfeiler-Leman-based family of similarity
measures Sw (defined in Equation 2.23), in particular Sw1 (Lemma 3), are in good
agreement with the edit similarity (defined in Equation 2.25) for typical protein complex
graphs. Especially Sw1 has the advantage that it can be efficiently computed.
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2.6.3.2 Experimental Setup
We have implemented the similarity measures based on Weisfeiler-Leman labeling
and the graph edit similarity in Java 8. To compute the exact graph edit distance, we
used a recent binary linear programming formulation [388] and solved the instances
using Gurobi 7.5.2. All experiments were run on 18-core Intel Xeon E5-2699 CPUs with
2.3 GHz and 512 GB RAM, using 64-bit Ubuntu Linux 18.04. Our analysis is available as
a Snakemake workflow [345] on github (https://github.com/BiancaStoecker/complex-
similarity-evaluation).

2.6.3.3 Data Generation
As mentioned in the introduction (Section 2.6.1), obtaining graphs from real protein
complexes is difficult at the moment, because experimental techniques that resolve
the (graph) topology of the complexes are still in the developmental stage. Therefore
we resort to the simulation of complexes, based on two types of knowledge: possible
physical protein-protein interactions, formalized by a protein interaction network, and
constraints between protein interactions. Especially the second type of information
allows us to simulate more realistic complexes than what we would get from interaction
networks alone.

Formally, a protein interaction network is an undirected graph N = (P, I), where P
is the set of protein types of a cell (or an organism), and I ⊂ P × P indicates the pairs of
protein types that may potentially physically interact. Since N describes the entirety of
possible interactions, any protein complex can be seen as a connected subgraph of N.

Protein interactions are not independent of each other, but interdependent. Those
interaction dependencies are generated by twomajormechanisms: allosteric regulation,
inwhich the capability of a protein to bind other proteins is affected by a conformational
change upon one interaction [374], and steric hindrance, which prevents proteins from
binding to identical or nearly identical protein domains, leading to mutual exclusive-
ness of interactions [573]. The dependencies between interactions constrain the set
of possible protein complexes and their assembly paths. One possible model for this
are constrained protein interaction networks, where the protein interaction network is
enhanced by the interaction dependencies (constraints) modeled as propositional logic
formulas [649]. With constrained protein interaction networks, we can stochastically
simulate complex formation based on the available knowledge and obtain a detailed
interaction topology (which proteins physically interact) for each complex.

For the simulation, a constrained protein interaction network was generated from
the human adhesome protein network and a set of interaction dependencies obtained
from protein domain interaction databases and manual curation (for details, see [649]).
Then, protein complex assembly was simulated in a step-wise process, with association
and dissociation rates calibrated to fit the complex size distribution of the CORUM
database [551], until reaching convergence. The obtained complexes mimic the size
distribution of known complexes, while also providing information about the actual

https://github.com/BiancaStoecker/complex-similarity-evaluation
https://github.com/BiancaStoecker/complex-similarity-evaluation
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Tab. 2.5: Properties of the 2 242972 simulated protein complex graphs. There are 717 distinct ver-
tex labels (protein names), the most frequent ones being ’GRB2’ occurring 100009 times, EGFR
occurring 84 706 times, and ’CRK’ occurring 83 117 times. The least frequent labels are ’PHF20’ (55×),
’CDYL’ (63×), and ’PHF20L1’ (75×). The average label frequency is 14561.6. The right table shows how
the number of distinct labels increases with WL iterations; here |WL≤i| refers to the cardinality of the
set of all labels up to the i-th WL iteration.

Quantity Average Min Max

|V| 4.655 3 126
|E| 3.655 2 125

Degree 1.570 1 28
Diameter 2.709 2 28
Density 0.530 0.016 0.667

Label set sizes

|WL0| 717
|WL≤1| 461657
|WL≤2| 4114569
|WL≤3| 9237071
|WL≤4| 14703231

Fig. 2.28: Three exemplary pairs of protein complexes. Each labeled node is a protein instance,
each edge a protein interaction, and solid black vs. dashed red edges distinguish between the
two complexes. A: Edit similarity 0.714; WL similarity in [0.4, 0.75] depending on weight w1. B:
Edit similarity 0.838; WL similarity 1.0 (independent of w1). C: Edit similarity 0.9; WL similarity in
[0.667, 0.818] depending on w1.

physical interactions happening inside the complex, an information that is currently
not yet available for real data. Over 2.2 million protein complex graphs were simulated
in this way. Some statistics are given in Table 2.5: Most simulated graphs are small
and tree-like (|V| = |E| + 1) and consist of low-degree nodes. We were able to verify
that all distinct simulated graphs can be distinguished by WL labels after at most two
iterations.

To evaluate theWeisfeiler-Leman based similarity (“WL similarity”) against the edit
distance based similarity (“edit similarity”), we computed both measures on selected
pairs of simulated complexes.

2.6.3.4 Illustrating examples
Wefirst consider three exemplary pairs (Figure 2.28 A–C) with edit similarities of approx-
imately 0.7, 0.8 and 0.9, respectively, the latter being the most similar observed pair.
Our simulation has been calibrated to yield complexes of a realistic size distribution
that additionally reflect all currently known interaction dependencies. However, since
this data is likely incomplete and we also did not consider the law of mass action, we
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Fig. 2.29: Comparison of edit similarity and WL similarity. A and D: Scatterplot between edit simi-
larity and WL similarity for weight w1 = 0.59 with maximum Pearson correlation (A) and w1 = 0.31
with maximum cosine similarity (D), including marginal distributions and least-squares regression
line. Each point represents a pair of complexes. B: Pearson correlation coefficient between edit and
WL similarity as function of w1. The maximum 0.946 occurs for w1 = 0.59 (scatterplot A). E: Cosine
similarity as a function of w1. The maximum 0.983 occurs for w1 = 0.31 (scatterplot D). C and F:
Heatmap showing the Pearson correlation (C) and cosine similarity (F) over weights w1 and w2 when
using 2 WL iterations and w0 = 1 − (w1 + w2) ≥ 0.

do not claim that the particular combination of proteins in these examples is likely to
occur in reality. The examples are therefore only meant to illustrate the behavior of
the two measures and give an intuition of cases where WL similarity fails to properly
approximate edit similarity.

In example A, an additional protein (PTPN3) is added to an existing complex, a
linear chain of 3 proteins. The edit similarity is 10/14 = 0.714, the WL similarity is
between 0.75 for w1 = 0 and 0.4 for w1 = 1. Because the edit similarity is between the
extreme WL similarities, there exists a unique weight w*1 ≈ 0.102, for which WL and
edit similarities agree for this particular complex pair. Example B is a noteworthy case,
because the WL similarity is 1.0, independently of w1, because the vertex labels are
identical even after the first Weisfeiler-Leman iteration. (Further iterations would show
a difference.) The edit similarity is 20/24 = 0.83, which is obtained by attaching ALB
to the other LRP2 protein. In example C, one protein is replaced by another one in a
fairly large complex. The edit similarity (0.905) is relatively high and outside the WL
similarity range between 0.667 for w1 = 1 and 0.818 for w1 = 0.
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2.6.3.5 Large-Scale Comparison
For the following comparison, we considered only a stratified subset of all possible
pairs for the analysis, because calculating the edit similarity is computationally costly.
To obtain candidate pairs, we considered all pairs of complexes that have at most 20
proteins (larger complexes are so rare that high similarities are unlikely), that have a
size difference of protein multisets of at most 10, and that share at least one protein.
Thesewere sorted in descending order according to the number of shared proteins. Then
the edit similarity was computed on the first 500 000 candidate pairs, and the similarity
values were grouped into bins of width 0.1. Because most pairs of complexes share a
small number of proteins, we findmany pairs with small edit similarity (but none in the
range [0.0, 0.1[ because we required one common protein) and fewer pairs with edit
similarity above 0.5. To achieve a uniform distribution among bins for the comparison,
we randomly selected 1000 pairs from each bin, excluding the bin [0.9, 1.0[ which
contained a single pair. This yielded 8000 pairs of complexes from 8 bins.

Because most protein complexes are small and do not exhibit properties of ex-
amples B or C of Figure 2.29, the overall agreement between WL similarity and edit
similarity is high. For each of the selected complex pairs, we computed the exact edit
similarity and the WL similarity for each weight w1 ∈ W := {0.0, 0.01, . . . , 1.0} and
w0 := 1 − w1. Let e be the vector of edit similarity values and s(w1) the corresponding
vector of WL similarity values using weight w1 for WL in the first WL iteration. To com-
pare the similarity measures, we calculated both the Pearson correlation coefficient and
the cosine similarity of e and s(w1) for allw1 ∈ W. As can be seen from Figure 2.29B, the
highest Pearson correlation values occur for w1 between 0.56 and 0.62. The maximum
Pearson correlation coefficient of 0.946 is obtained for w1 = 0.59. Figure 2.29A shows
the scatter plot between the similarities for this weight. For the cosine similarity, the
maximum value is reached for weight w1 = 0.31, but the function is less peaked, and
all values of w1 < 0.6 lead to high agreement (Figure 2.29E).

To quantify the possible benefit of additional WL iterations (and hence a larger
space of possible weight vectors), we first repeated the calculations with an additional
second WL iteration. We calculated the similarity measure for all weight combinations
(w1, w2) ∈ W × W with w0 := 1 − (w1 + w2) ≥ 0 and w0 + w1 + w2 = 1. The Pearson
correlation and cosine similarity over the weights w1 and w2 are shown in Figure 2.29 C
and F. The weight combinations that lead to maximum correlations all have w2 =
0 and therefore are the same as in the similarity measure without second iteration
(Figure 2.29 A and D). Therefore, the additional WL iteration provided no benefit for
approximating edit similarity.

Overall, we find good agreement between edit similarity and WL similarity for
appropriate values of w1; values around w1 = 0.5 yield both high Pearson correlation
and cosine similarity.
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2.6.3.6 Runtime Comparison
To study the practical running time of both similarity measures, two different settings
were evaluated. In the first setting, all pairwise similarities in a subset of the dataset
were computed. This setting is a typical sub-task of clustering or machine learning
tasks on metric distances. In the second setting, the database search application was
evaluated. Given a set of query complexes and a similarity threshold, similar complexes
in the dataset were searched.

Pairwise Similarities Wemeasured the time required to compute all 10 000 pairwise
similarities for a subset of 100 graphs, drawn at random from the dataset described in
Section 2.6.3.3. For the Weisfeiler Leman-based similarities, the computation can be
divided into two steps. In the first step, the Weisfeiler-Leman feature vectors are com-
puted for each of the 100 graphs (WL-FV). In the second step, they are used to compute
the similarity values between all 10 000 pairs (WL-SIM). Thus, the computational costly
part is computed only once for each graph, while the quadratic number of comparisons
is lightweight. This kind of preprocessing is not possible for the graph edit similarity,
where each pairwise similarity computation is costly (GES).

Figure 2.30 shows the violin plot of the measured times for each single feature
vector and pairwise similarity calculation. Running times are shown separately for
one and two WL iterations (WL-[FV|SIM]-[1|2]; GES). As expected, the calculation with
two WL iterations is slower than using only one iteration, but the difference is small.
Most importantly, we observe that a single graph edit similarity computation is two
to four orders of magnitude slower than a single Weisfeiler Leman-based similarity
computation (median of over 106 vs. approx. 103 ns, but extreme outliers are visible
from the violin plots).While Figure 2.30 shows the times for single-instance calculations,
Table 2.6 shows the total times for all 100 (FV) and 10 000 (SIM) calculations. For
Weisfeiler-Leman similarity, we observe that computing the feature sets dominates
the running time. (This eventually changes if more graphs are considered since the
WL-FV time grows linearly but the WL-SIM time grows quadratically with the size of the
dataset.) Overall, the GES computation is slower bymore than four orders of magnitude,
which is influenced by a few extremely slow GES computations.

Database Search We used the entire set of graphs described in Section 2.6.3.3 as a
database and 500 randomly selected graphs as queries. For theWeisfeiler Leman-based
similarities, we evaluated a linear scan over the database (wl_linear) and the min-
hashing speed-updescribed in Section 2.6.2.4 (wl_minhash)with false negative rate 0.01
and weights w0 = w1 = 1/2. Times were measured separately for the Weisfeiler-Leman
feature set calculation, the hash table creation (for wl_minhash only), and the queries
itself. For the graph edit similarity (ges), a linear scan over the database is prohibitive
and hashing schemes are not readily available. Therefore, we employed the filter-
verification approach described in Section 2.6.2.4 and measured the time for filtering
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Fig. 2.30: Running times. Violin plots of wall-clock times for computing each of the 10 000 pairwise
graph edit similarities (GES), the 100 Weisfeiler-Leman sets (WL-FV) and their 10 000 pairwise Jac-
card coefficients (WL-SIM) with either one or two Weisfeiler-Leman iteration(s) in three independent
runs. The time axis is logarithmic.

Tab. 2.6: Total running times for each of three runs in seconds. WL-Total = sum(WL-FV) + sum(WL-
SIM) for either 1 or 2 Weisfeiler-Leman iteration(s). Here sum() refers to the sum over the 100 feature
vector calculations (WL-FV) and 10000 similarity calculations (WL-SIM) whose time distribution is
depicted in Figure 2.30.

Time [s] Run 1 Run 2 Run 3

GES 851.222 809.087 845.883
WL-Total-1 0.050 0.056 0.045
WL-Total-2 0.066 0.071 0.055
sum(WL-FV-1) 0.005 0.006 0.005
sum(WL-SIM-1) 0.045 0.050 0.040
sum(WL-FV-2) 0.008 0.006 0.006
sum(WL-SIM-2) 0.058 0.065 0.049
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Fig. 2.31: Running time comparison of the three approaches wl_minhash (purple), wl_linear (green),
and ges (blue) for a database search with 500 queries and a database of ≈ 2million complexes.

and verification separately. All three algorithms were run with the similarity thresholds
0.6, 0.7, 0.8 and 0.9 and each run was repeated three times. Further, each run was
executed using only a single CPU core for better comparability of CPU time usage; in
practice, many database complexes can be evaluated in parallel, independently of each
other. The results are shown in Figure 2.31.

It can be seen that wl_minhash and wl_linear need a similar amount of time for the
feature vector calculation, but the query time is much smaller for wl_minhash because
only a small fraction of the database complexes needs to be evaluated. These savings
outweigh by far the additional indexing time required to build the hash tables, even
for only 500 queries. Therefore, wl_minhash will scale even better to larger numbers
of queries. The filter-verification approach of the graph edit similarity (ges) is slightly
faster than wl_linear for thresholds 0.7, 0.8, and 0.9, because using the similarity
bounds often suffices for a decision and the actual graph edit distance does not need
to be computed often. For threshold 0.6, however, many verifications and hence ex-
act computations are necessary; so the running time for ges increases above that of
wl_linear.
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2.6.4 Discussion

Our original motivation to consider protein complex similarity was to reduce the size of
the simulation output of our constrained protein interaction network simulator [649]
via clustering, and we were surprised to see that apparently, no similarity measures
have been proposed explicitly for protein complexes in the literature. Depending on
the underlying representation (set, multiset, or graph), different alternatives suggest
themselves. However,most graph-basedmeasures are both theoretically and practically
hard to compute for larger complexes or for large amounts of complexes.While different
tractable graph similarity measures [705] and an approximate graph edit distance [534]
have been developed, none of these appear to be specifically tailored to the properties
of protein complexes (often less than ten vertices; sparse).

Our proposal to define the similarity as a convex combination of two Jaccard coeffi-
cients (protein label multiset and Weisfeiler-Leman label multiset after one iteration)
has several beneficial properties. We have shown that it can approximate edit-based
similarity with high Pearson correlation and cosine similarity, and at the same time,
that it can be computedmuchmore efficiently. Further, for weight w0 = 1 of the 0-thWL
iteration, WL similarity reduces to the natural similarity measure of the multiset repre-
sentation. Our framework hence allows for a smooth transition between multiset and
graph representation. The comparison with an edit-based similarity seems to indicate
that the protein label multiset plays an important role if one wants to approximate the
edit similarity, the first WL iteration provides additional graph information, and the sec-
ond WL iteration does not provide further benefits, probably because most complexes
consist of few proteins. In addition, in large-scale similarity searches, using Jaccard
coefficients allows us to efficiently pre-filter for high similarity using locality-sensitive
hashing. In combination with the preprocessing abilities discussed in the experimental
running time comparison, this allows for very fast search queries, clusterings, and
other applications that rely on intensive distance computations.

In the present work, we have not considered individual similarity between vertex
labels (i.e., protein types): We treat two labels as either equal or distinct. While it is
relatively straightforward to allow arbitrary label similarities in the graph edit distance
framework, and, via Equation 2.25, in the graph similarity framework, this generaliza-
tion appears less straightforward for WL similarity and will be investigated in future
work.

Fromabiological point of view, a high similarity value between twoprotein complex
graphs should indicate a high probability that the complexes share biological functions
and can (partially) substitute each other in a cellular process. If comprehensive func-
tional information were available, we could use it for evaluating different similarity
measures and decide which ones best capture the biological reality. At present, when
not even the interaction topology of most complexes has been determined, such an
evaluation is unfeasible, but this may change in the future.
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Abstract: Industry 4.0 is the connecting element of all contributions in this chapter.
The notion of a physical thing moving within an industrial process unites the research
presented. Logistics is a driving force behind Industry 4.0 developments and that the
concept of a cyber-physical twin is one of its fundamental building blocks. This keynote
introduces and develops the mindset for fully appreciating the following contributions.
They range from the creation of a steelbar to autonomous swarms of drones, providing
a wide-ranging selection of current developments.

3.1.1 Introduction

The term “Industry 4.0” heralds a fourth industrial revolution. The factory of the future
is built upon a hyper-connected, smart, and autonomous infrastructure. It promises to
deliver high adaptability with optimal use of resources. Industry 4.0 is expected to bring
considerable benefits for production sites, factory equipment suppliers, and business
software providers, on both the productivity and the revenue side. Under Industry
4.0, digitization penetrates all areas of industrial process chains–from production to
distribution to recycling and waste management–and is thus spurring expectations
and ideas regarding the future design and implementation of processes, facilities, and
systems.

3.1.2 Industry 4.0

Amid the wide variety of views on the term Industry 4.0, this keynote adheres to the
German concept of a Plattform Industrie 4.0. According to this, the term Industry 4.0
“stands for the fourth industrial revolution, a new stage in the organization and control
of the entire value chain” and is intended to establish a link to the three previous
industrial revolutions. Many authors refer to Industry 4.0 collectively as the digital
transformation of the manufacturing sector. A comprehensive overview of the field is
given in [279], [548], and [697].

As the term revolution suggests, the transformation is likely to present a variety
of opportunities for an economy that can deal with the disruption that comes with
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profound change. In addition, the successful implementation of Industry 4.0 concepts
and technologies requires the ability to easily change business processes with regard
to new requirements. This sense of a high adaptability calls for the creation of a kind of
“deep transparency” to efficiently evaluate decision-making situations. The basic vision
of Industry 4.0 thus stems from the age-old desire for the constant availability of all
relevant information about all physical objects at all levels of industrial process chains.
Technologically, this “deep transparency” is to be achieved through the massive use of
low-cost sensor technology. To ensure constant availability of information, state-of-the-
art communication technologies provide the means for both networking the production
technology and networking between the hierarchical levels of the IT architecture. From
a business perspective, the hope is that this comprehensive networking will give rise to
highly adaptable supply-chain networks that can organize and optimize themselves
and thereby also form the basis for a wide range of business model innovations (cf.
[372], [189]).

Concepts
Industry 4.0 encompasses various concepts that not only cover different technologies,
but also affect various structural aspects of the organization within a company and
between companies.

The constant availability of information requires a smooth exchange of data within
the entire value creation network through the integration of physical objects and IT
systems. This gives rise to the concepts of vertical and horizontal integration. Vertical
integration describes the creation of a coherent network for objects and systems within
a company. All internal IT systems are interconnected via harmonized interfaces that
serve to exchangedata betweena single sensor, a productionmachine, or theproduction
planning system. Horizontal integration takes place across the entire value creation
network. The vertically integrated IT systems of customers, suppliers, or the company’s
own distributed sites are integrated into a horizontal system landscape. This enables
the exchange of information in real-time across company boundaries (cf. [310], [548]).

While the goal of constant availability of information can theoretically be achieved
through a centralized approach, Industry 4.0 explicitly recognizes the geographically
distributed nature of the value creation network. This is covered by the concepts of
decentralized control and autonomous behavior of physical objects. These concepts
encompass two important aspects. On the one hand, the disruptive dissolution of
centralized, rigidly planned control systems is necessary simply from the point of view
of transmission and computing power due to the large amounts data that are to be
delivered in real-time. On the other hand, decentralized control enables the use of
autonomous, automated decision support systems. Based on the available data, these
systems should support human decisions or make them partially autonomous (cf. [617]).

The digitization of all physical objects is reflected in the concept of Cyber-Physical
Systems (CPS). These are created by combining a purely physical systemwith computing
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power, memory and a communication interface. In the context of Industry 4.0, this
combination enables the creation of smart products, production tools and machines as
part of the production process. CPS are expected to generate very large amounts of data,
which in turn requires the on-demand availability of decentralized, high computing
capacity and methods for processing and analyzing the information.

Several CPSs are the building blocks of the concept of Cyber-Physical Production
Systems (CPPS). These are production systems that use CPSs and newly defined in-
terfaces between machines and between humans and machines to accomplish the
production task. CPPS are designed to enable decentralized, semi-autonomous, cross-
enterprise production control (cf. [437], [617]).

Another concept related to Industry 4.0 is end-to-end digital engineering. It encom-
passes the digital mapping of the entire physical production process in a company,
from product development to product completion. All planning, control andmonitoring
processes are constructed and simulated in a virtual environment. The basis is a digital
image of the factory with all its physical objects. This includes production facilities,
personnel, products and other working and operating resources that are present in the
real factory (cf. [617]).

Maturity Levels
The idea of Industry 4.0 is often reduced to a visionary description that represents an
already fully realized implementation of all concepts. Although almost all the technolo-
gies that would be necessary for successful implementation are already available, it
is often only the right combination of approaches and solutions that brings positive
results for a company.
The “Acatech Industrie 4.0 Maturity Index” describes a maturity-based development
path towards a fully developed Industry 4.0 capability (cf. [584]):
– The first two development levels are not seen as part of Industry 4.0 per se, but

form the basis for all further levels. Computerization refers to the isolated use
of information technologies, while connectivity refers to the networking of these
isolated systems. Both terms cover the first and second levels of the maturity model.

– The third level describes the ability to perceive through extensive equipment of
physical objects with sensor technology. This enables the comprehensive collection
of data points about interrelated processes. The aim of this stage is to generate the
ability to create an up-to-date digital model of reality at any time.

– The fourth development stage describes a state of transparency in which, building
on the third development stage, interrelationships and causes become comprehen-
sible through the analysis and interpretation of these interrelationships.

– The fifth level describes the presence of forecasting capability. For this purpose,
the system is equipped with the ability to simulate dynamic processes. On this
basis, automated simulation experiments can be carried out that depict different
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future scenarios. The evaluation of the experimental results leads to the forecasting
capability of the system.

– At the sixth level, adaptability, the forecasts are used to derive decisions indepen-
dently and implement suitable measures automatically.

These six developmental levels represent a development path for the Industry 4.0
capability of a company (see Figure 3.1). In addition, the development levels provide a
reference point for classifying existing Industry 4.0 technologies (cf. [584]).

Connectivity Perception Transparency Forecasting Adaptability

1 2 3 4 5 6

Be
ne

fit

Digitization Industry 4.0

Computerization

Fig. 3.1:Maturity Index for Industry 4.0.

3.1.3 The Role of AI in Industry 4.0

From the perspective of Industry 4.0, AI technologies can be used to enable a company
for reaching the higher levels of the maturity index. AI technology is intended to enable
technical systems to autonomously perceive their environment based relying on the data
available to them. In particular, it can be used to locate and identify physical objects
and determine their state. The subsequent interpretation of the perceived objects and
the meaning of their state as well as the relationships between the objects shall help to
achieve the necessary transparency for reasoning about industrial process chains. The
automatic creation and updating of simulation models for an automated continuous
prediction system, as envisioned for the fifth maturity level, could be supported using
certain AI methods such as imitation learning.
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While AI is sometimes understood in its function as a technological form of human
decision-making capability, in the context of Industry 4.0 it is not necessarily intended
to directly copy human behavior. On the one hand, AI is intended to achieve the classic
goal of automating industrial processes: cost reduction, time savings, quality assurance,
etc. On the other hand, AI technologies are expected tomanage the emerging complexity
of the vast amounts of data coming in from the newly deployed Industry 4.0 sensor
systems. To some extent, AI systems may solve problems, discover unexpected issues,
or reduce complex situations by uncovering associations in the data hidden to the
human eye.

The Data Crisis
However, AI technologies are not “magic fairy dust”, but are limited by the underlying
data and mathematical models used to try to solve a specific problem [377].

One of themost important engineering issues for the successful use of AI technology
in Industry 4.0, especially machine learning methods, is therefore the management
of the underlying data collection and its representation in a database. Generating an
error-free and uninterrupted data stream is a prerequisite for successful operation.
If the data is inconsistent and of poor quality, the digital images of physical objects
cannot represent the true physical state. Predictions and decisions made on the basis
of such a virtual model would then also be of poor quality.

The design of any Industry 4.0 data stream begins with developing a fundamental,
ontological notion about the true nature of the physical object in question. Critical
factors are the physical attributes of the object and the selection of sensors as well as
the programming of the transformation of sensor data into semantically correct obser-
vations. The overarching challenge is that in many places the tools to adequately assess
these aspects are still lacking. In particular, in many cases 80% of the time building a
system is spent on data collection and cleaning, a situation that has been called the data
crisis [377]. “The main reason for the data crisis is the increasing interconnectedness
of computers. Access to data is therefore easy and cheap, but its quality is often poor.
What we need are cheap data streams of high quality. This means that efficient methods
for improving and verifying data quality must be developed.”[377] This crisis becomes
even more apparent when considering continuous data acquisition by a multitude
of sensors, as envisaged for Industry 4.0 systems. Challenges include monitoring the
quality of the data stream throughout the life cycle of an Industry 4.0 system and the
ability to respond appropriately to changes in the underlying assumptions made at the
beginning of the design process.
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3.1.4 From Digital to Cyber-Physical Twin

In response to the data crisis, the development of a system should more closely link
the design of data acquisition with the design of the physical objects concerned. This
results in the concept of the digital twin , which combines the connectivity of a CPS
with the virtual representation of objects in end-to-end digital engineering. The concept
of the digital twin focuses in particular on the quality of data transmission between the
physical and the virtual counterpart.

Like the Industry 4.0 maturity index for companies, the literature on digital twins
knows different implementation levels for the digitization of physical objects [354]. The
development stages are differentiated according to the degree of automation:
– A digital model has a purely manual data transmission. It can be, for example, a

simulation model of a planned factory, a mathematical model of a new product or
another model of a physical object that is stored digitally.

– A digital shadow automates the data flow between the physical and the virtual
object. Any change in the state of the physical object is transferred and applied to
the state of the digital object.

– The digital twin eliminates all manual data transfers. It extends the concept of
digital shadow by automating the flow of data directed to the physical object.

In order to be able to map data automatically onto the virtual object, correct identi-
fication of the physical object is a prerequisite for both the digital shadow and the
digital twin. In addition, the complete elimination of manual data transmission makes
the design of data reception at the physical object particularly relevant. Necessary
conditions for the digital twin can be described as follows:
– The data of the virtual object must be able to be received and processed automati-

cally at the physical object.
– A physical object can only be part of a digital twin if it can be perceived separately

from other objects.
– A perceived physical object must be uniquely identifiable so that the captured

sensor data can be assigned to the correct virtual object.

The concrete technical implementation of the identification can vary. It can be done by
observation, e.g. by a scanner reading 2D barcodes. It can also be done by communica-
tion, e.g. via radio transmission, where recognition and identification result from the
defined standards of radio transmission, i.e. how receiver and transmitter can identify
each other is defined by communication protocols.

Many of today’s Industry 4.0 applications can be classified under the concept of
the digital shadow. One example is a low-cost tracker that is built into the bottom of
a pallet and records data about the pallet’s current location, movement, impacts and
temperature profile. This data is sent over the cellular network to a server where the
corresponding digital shadow is located (cf. [354]).
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Cyber-Physical Twin
Due to the very general metaphor, digital twins can vary greatly in size and complexity.
Therefore, the application areas and the possible types of digital twins can be very
broad. In particular, there is no distinction between individual physical objects and
large, complex systems. The term digital twin can describe a system that includes only
a small object or an entire factory. In the case of a large system such as a factory, a
central, monolithic approach in the form of a central database would reach its obvious
technical limits.

For use in an Industry 4.0 environment, a special class of digital twins is therefore
required that provides for a decentralized, modular architecture based on individual
physical objects. Their networking should enable scalable, adaptable systems that sup-
port autonomous behavior. This new extended concept can be called a cyber-physical
twin . It has the following additional characteristics:
– The physical object is considered to be a self-contained and relatively small entity.

Its physical extent can be confined to a finite space, and it has a definite location.
It is fundamentally mobile, even if it remains in a particular place for a long time.

– The transmission path to the physical object is primarily for changing its behavior
rather than issuing direct commands. All behavioral changes are first made to the
digital object, with the physical object adjusting its internal behavior accordingly.
The behavioral changes can be made by transmitting parameters, compiled source
code, or other behavioral data (e.g., a trained neural network).

– The physical object acts largely autonomously and makes local decisions where
possible.

– The physical object monitors its environment and can trigger an update process
in the virtual image when situations arise in the physical world that require it to
adjust its behavior.

– Cyber-physical twins are designed as multi-agent systems that communicate in
both the physical and virtual worlds.

Figure 3.2 shows the concept of two cyber-physical twins negotiating with each other
in the physical and virtual environments. Note that communication between the envi-
ronments takes place via an exclusive link between the physical and virtual objects to
ensure synchronization of the twins.
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Fig. 3.2: Cyber-physical twin concept

Although not all cyber-physical twins are controlled by AI, the challenges for software
and hardware engineering are similar, as high-quality data streams are required in
both cases.

The mobility of the physical object is required for the adaptability of an Industry
4.0 system, as it can then change the arrangement of its components. It follows that the
embedded computer system of the physical object is in principle resource-constrained,
while the computer system in which the virtual object runs is considered unconstrained.

3.1.5 An Excursion into Logistics

Since the introduction of Industry 4.0, the area of logistics has been considered its
outstanding application domain. In no other area of industry is such a fundamental
change expected in the near future. On the one hand, many of the central technical
and social challenges are directly or indirectly linked to logistics and efficient supply
chain management. On the other hand, this is due to the rapid development of Industry
4.0 technologies. In addition to global data processing capabilities, resource-efficient
sensor hardware, communication technologies, and embedded systems are increas-
ingly usable on a large industrial scale. This enables widespread rollout at the level of
individual logistics objects (cf. [164]).

In the context of an increasingly volatile production and trade environment, the
topology of logistics networks and thus the location of an individual logistics node, such
as a transshipment point or a distribution center, can no longer be permanently fixed.
In fact, the idea of a fixed, ideal location has not been viable for many years. A logistics
network and its nodes must constantly adapt to new circumstances. Therefore, logistics
centers should be able to relocate on their own in the future. This rules out many forms
of traditional, technical infrastructures and underscores the need to introduce new
concepts such as the cyber-physical twin (cf. [279]).

To an increasing extent, swarms of autonomous vehicles will take over intra-
company transport. In production systems, the arrangement of workstations can thus
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be changed at any time. The vehicles’ virtual software agents negotiate orders and
business processes, while the physical software agents negotiate movement paths and
constantly exchange their locations and those of new stations or storage locations.
Autonomous vehicles are able to approach the racks and move bins or pallets in and
out. There is virtually no stationary conveyor system in this vision.

Fig. 3.3: Cyber-physical twins managing warehousing tasks in a supply-chain

Even the shelf and each bin within it can become part of a cyber-physical twin. The
bins in the warehouse handle inventory management, check minimum stock levels,
and order replenishment (see Figure 3.3). They communicate with shelf displays and
transport vehicles. The classic, RFID-based “Internet of Things,” as it was devised at
the turn of the millennium, is literally getting eyes, ears, arms, and legs.

Direct challenges quickly arise from such all-encompassing networking of physical
and virtual objects. Although the absolute amount of data has been increasing signifi-
cantly in all areas of the economy for a long time, the massive increase in the collection
and processing of logistics process data is becoming one of the central challenges to be
mastered. The potential for AI applications in cyber-physical twins handling complex
logistics processes is significant. From predicting arrival times in transportation and
production logistics to dispatching logistics networks and the coming high-frequency
logistics, distributed AI solutions can automate and autonomize complex processes
that were previously closed to classic control methods. It is expected that AIs will be
able to learn how to cope with the complexity of a large number of cyber-physical twins
representing logistics objects.
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3.1.6 Resource-Constrained Smart Objects That Can Move

The contributions in this chapter address four key areas associated with physical ob-
jects in Industry 4.0 systems: the creation of things, their localization, the resource
constraints of objects once they become mobile and smart, and their behavior with
respect to each other.

The first three contributions deal with the genesis of a thing long before it be-
comes intelligent or autonomous. Using the example of steel production, machine
learning methods are used to investigate how the act of physical separation creates
a self-contained entity from a primordial mass and how this separated thing can be
assigned to a concrete class by determining or predicting certain properties. An early
prediction of undesirable developments enables a controlling intervention in the pro-
duction process (Section 3.2). The second contribution is dedicated to challenges for
machine learning techniques that arise in the context of changing, physical aggregate
states (Section 3.3). Combining expert knowledge and collected data in simulation is
the topic of the third contribution (Section 3.4).

The fourth contribution deals with the automated localization of things–a basic
prerequisite for a continuously (self-)perceiving infrastructure that supports flexible
(self-)control of processes. Industry 4.0 thus requires a comprehensive ability to observe
physical object movements. Wireless ultra-wideband localization is an example of the
technical solution to this task in indoor environments (Section 3.5). In this case, the
radio medium is the limiting resource that affects the accuracy and scalability of the
application. The contribution is related both to the smart city concept (see Chapter 4),
which deals with a cross-location infrastructure based on future wireless technologies,
and to communication networks (see Chapter 5).

The fifth contribution is motivated by smart things that can move. Free mobility is
at its core a deeply logistic property (“the ideal logistic space is empty”). It is also the
main cause of resource constraints in terms of energy supply, computational capability
and communication for embedded systems. The topic of “Indoor Photovoltaic Energy
Harvesting” (Section 3.6) deals in depth with the requirements for ultra-low power
devices and their modeling. An important application of this technology is the stan-
dardized logistics container, which becomes smart by an embedded ultra-low power
computer system. Such smart containers are destined to be one of the key building
blocks of Industry 4.0: they are the external interface for the non-smart things that they
contain.

The last contribution deals with the behavior of smart and in principle au-
tonomously moving things. It is based on the development of a micro-UAV drone
swarm (Section 3.7). The resource constraints of the small drones place high demands
on the system architecture. The contribution describes the setup of a testbed envi-
ronment in which simulation and the physical world are tightly coupled. The drones
negotiate their individual movements through simple rules that mimic natural swarm
behavior. It is shown how individual rules can be replaced by knowledge learned in
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a simulation. The drone swarm testbed illustrates the challenges of developing au-
tonomous swarm systems for Industry 4.0. Since these systemswill increasingly be used
across companies in business-critical areas in the future, the issue of data protection
in multi-agent systems will also become important in this context (cf. Section 6.1).
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3.2 Quality Assurance in Interlinked Manufacturing Processes

Jochen Deuse
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Abstract: Interlinked manufacturing processes are characterized by the dependence of
downstream process steps on the previous ones. If it can be predicted that a particular
workpiece will not reach the desired quality, anticipatory measures can be taken early
in the process. By its prediction, machine learning saves resources, both in processing
and in the material. One example is the model-based quality prediction in electron-
ics manufacturing on a Surface Mount Technology (SMT) production line. Here, the
application of a learned classifier predicting the quality must be fast so that, say, the
routing of a piece may be changed. Hence, machine learning itself needs to save its
resources, in this case runtime. Another example is the hot rolling mill process for steel
bars production. There, several sensors and process parameters deliver process data
that need to be aligned and useful features are to be extracted from the resulting stream
automatically, in real time. Here, machine learning saves testing time in the factory’s
quality inspection process.

3.2.1 Introduction

Undetected quality deviations passing through the entire manufacturing chain have
a severe impact on internal failure costs due to the increasing rejection and rework-
ing of defective products without being labeled as defective. Therefore, early quality
prediction of a specific workpiece indicates whether it will reach the required quality
requirements or if some anticipatory measures should be executed in a timely man-
ner to save resources (e.g. time, material) resulting in rejection or further processing.
However, due to technological and temporal restrictions, physical product quality in-
spections are limited to the final process step. In this context, data mining andmachine
learning techniques can be used to predict the intermediate product’s quality, thus
gaining transparency on quality properties of intermediate process steps and enabling
real-time process adaptation to sustainably increase its efficiency [339, 654].

In general, process modeling can be done on three levels [654]: process under-
standing; designing better processes and equipment; and online process control in
real time. Online control requires integrating data from different sensors at different
steps in the process, taking into account the communication between sensors and even
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integrating different models in real time. Over the last decades, the majority of works
were focused around the first two levels, where models based on domain knowledge
have been developed. More recently, with the emergence of the “industrial Internet
of Things” or “Industry 4.0” (see Section 3.1), the adoption of different monitoring
technologies using sensor technologies [155, 156], has offered new opportunities for
applying data-driven approaches for processmodeling, in general, and for intermediate
quality prediction, in particular.

This section is about making Intermediate Quality Prediction (IQP) along a process
chain by embedding data analysis directly into the manufacturing chain. We start by
showing how IQP using data mining and machine learning can be integrated into
a comprehensive Intelligent Manufacturing Process Control (IMPC) framework for
industrial applications. Section 3.2.3 dives deeply into the steps of data analysis. These
steps include a detailed description of the data acquisition process, cleansing, the
choice of data representation, extracting the right features, , modeling, and evaluation.
A framework for processing data streams with the right level of abstraction in real-time,
in addition to the real-time management of many machine learning models, is also
presented. It glues diverse contributions of data mining and modeling together to form
an application.

We present two real-world case studies in Section 3.2.4, startingwith the description
of the production process and data acquisition followed by modeling and deployment.
The first case study addresses the use of data mining in an electronics production
environment for the purpose of reducing the quality inspection volume. The case study
is conducted on a Surface Mount Technology (SMT) manufacturing line in the Siemens
plant in Amberg. Themotivation is to relieve the optical end-of-line test, consisting of an
X-ray inspection system. The second case study consists of a hot rolling mill process. It
showcases the importance of embedded data analytics. The system is developed in close
collaboration with experts in machining, production, and the steel mill. Data analysis
results are validated by domain experts. The conclusion summarizes our findings and
gives an outlook for future research work.

3.2.2 Intermediate Quality Prediction in Intelligent Manufacturing Process Control

Different quality-related tasks for the application of data mining and machine learning
in manufacturing can be distinguished [335]: description of product/process quality;
modeling of the product quality; quality prediction; and parameters/process optimiza-
tion.

In literature, there are several standardized procedures for the implementation of
data mining or machine learning in general and one approach for optimizing quality-
related tasks in particular. Four widely used process models include the Knowledge
Discovery in Databases (KDD), the Cross-Industry Standard Process for Data Mining
(CRISP-DM), the 5-step SEMMAmodel by SAS, and the 5A model by SPSS [121, 201, 484,
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668]. The general framework for continuously monitoring and optimizing a process
under quality considerations is known as IMPC [339]. A characteristic feature of the
models mentioned is that they are very similar in terms of their basic objectives and
structure. The procedures are subdivided into distinct iterative phases that differ in
terms of the number and the content of the respective phases. While the IMPC solely
focuses on the technical perspective of a dataminingproject, someothermodels include
a phase for elaborating the business cases, which indicates the necessary involvement
of expert knowledge in every data science project.

Product or process quality description is usually the first step to be performed,
especially in the context of highly complex manufacturing systems with non-linear
interactions between the different process steps [579]. This model can be based on a
physical model designed by domain experts, or it can be a data-driven model using
machine learning techniques. The model is subsequently used to predict the quality of
new unseen products. Following these predictions, a variety of measures for process
optimization can be applied [405, 579, 654]. These measures include early control
interventions, optimization of process parameters setting, stabilization of processes,
dynamization of inspection plans, and the design of model-based inspection processes.

The IMPC introduces data mining techniques to perform IQP and adjust further
production processing steps according to the results of the IQP. The IMPC consists of
different functional modules that can be summarized as follows [339]:
1. Data acquisition and storage
2. Intermediate Quality Prediction-IQP
3. Process optimization

While the first module seems to be a prerequisite for building the IMPC, modules 2–3
represent the different process control stages.

The IMPC itself can be realized following two different paradigms. The first one is
based on an online optimization of the process based on the current observed state of
the process in order to compensate for previous process deviations. Such a decision is
made following the domain knowledge provided by production experts and engineers.
The second one is a data-driven approach where the first and second modules are
integrated into the decision support system. The second type of process control relies
on estimating the quality of the intermediate product in real time.Anticipatorymeasures
are taken to prevent possible predicted process deviations. The modular design of the
entire process control approach is detailed in Figure 3.4.

The IMPC concept can be viewed as a separate building block in a company’s
process control landscape [339]. The IMPC does not introduce any change in the process
or production structure. However, it generates recommendations in process planning
and optimization. Therefore, the focus is brought on analyzing processing states in real
time and forecasting the intermediate product’s quality properties. This knowledge is
used for either deriving recommendations on whether the product should be processed
any further or for stopping the processing of the product early, since the final quality
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Fig. 3.4: Intelligent manufacturing process control model.

requirements will not be met, or for optimizing the next processing step’s parameters
to align the product with the required quality standards.

The IMPC requires information on the current processing state and parameters that
are gained from the first module, in addition to information on historical processing
data. Data is most often collected from sensors implanted to monitor some process
variables. Collected data has to be preprocessed and meaningful features should be
extracted to be fed afterwards into a quality prediction model in order to assess the
intermediate product’s quality correctly. Hence, the Intermediate Quality Prediction
IQP module translates all available information irrespective of its actual meaning into
a quality assessment. This is done by means of data mining, i.e., supervised learning
models [339, 654]. The result of the IQP module can then be applied to decision rules or
recommendations on process optimization. The process optimization module is the
final step in implementing the IMPC model. As described above, it aims at adjusting
the parameters of upcoming process steps in such a way that quality deviations caused
by previous processing steps are compensated in the remainder of the process chain. It
is worth mentioning that when it comes to decision rules following the results of the
prediction of intermediate products’ quality, even more knowledge is required, includ-
ing domain knowledge and artificial test-beds (e.g. process simulations) to validate the
correctness and feasibility of the process optimization recommendations.

In the following sections, we will discuss in detail available methods for data
analysis and quality modeling using machine learning.

3.2.3 Methods for Data Mining from Sensor Data

The dynamic evolving nature of manufacturing processes poses multiple challenges
for data mining from sensor data [654]. For instance, different scenarios may occur,
sensors and machines may fail, some deviations in processing steps could be observed
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and products may take different routes through the process chain. With such events,
difficult challenges on how data should be collected, stored, and preprocessed arise.
Additionally, adaptive extraction and selection of which features may be relevant for
the prediction task, are necessary. Moreover, to generate intermediate products’ quality
predictions in real time, stream data mining methods and online management of many
machine learning models should be established. The following sections will discuss
such problems and available methods in more detail. The structure of the section is
depicted in Figure 3.5. It is based on the IQP process steps and comprises standardized
procedures that are common steps in every quality-related data-mining task.

Intermediate Quality Prediction-IQP

• Detection and 
Handling of Faulty 
Sensor Readings

• Detection and 
Handling of Changes

• Different Alignments
and Calibration

• Aggregation and
Summarization

• Segmentation
• Symbolic

Representation
• Method Trees

• Mapping of Value 
Series to a Fixed-
Length Vector and 
Concatenation

Data preprocessing and Feature extraction

Feature ExtractionData Representation Data Preprocessing

Modeing

• One Class Learning
• Class Rebalancing 

Methods
• Ensemble Learning

Learning in the 
Presence of Class 

Imbalance

Stream Mining &
Online Management of 

Many Models

Supervised Learning
Unsupervised Learning

Fig. 3.5: Specification of the IQP process with regard to common steps in quality-related data mining
tasks.

3.2.3.1 Data Acquisition and Storage
In intelligent manufacturing systems, data is most often collected using various sensing
technologies [339, 405, 654]. The continuous measurements of sensors form an indexed
stream of countably infinite data items xi. Every data item contains an index, e.g., a
timestamp, and can contain an arbitrary number of values and value types such as
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images, strings, or numbers. A segment of this streamwith length n and only numerical
values forms a value series that canbedefined [445] as amapping x : N → R×Cm;m ∈ N,
where each element xi of a value series with length n is an ordered pair (di , wi).di ∈ N
is called the index component and wi ∈ R × Cm the value component. It is called a
time series if the index dimension represents a temporal order. The value component
is written using a complex number value space instead of a real number value space
in order to formalize sensor readings and their transformations in the same form. In
classification tasks (e.g. quality prediction) the goal of a machine learning model is to
learn a functional mapping f (x) : R → y : Nn, where y formally denotes the class label
of the process measurements. In general, this task is named a multi-class classification
task. The special case of binary classification occurs when the class label consists of
only two complementary classes, say, the Not Ok (NOk) class and the Ok class.

3.2.3.2 Data Preprocessing
In manufacturing environments, sensors may deliver wrong readings or might expe-
rience failure periods [474]. Their readings are most of the time noisy. Henceforth,
collected data may contain irrelevant readings, be wrongly aligned, or have different
resolutions. In an offline setting, such cases can simply be excluded from the analysis
or corrected. By contrast, the embedded real-time analysis of data must somehow de-
tect such cases in an automated fashion and react accordingly. The first analysis step
therefore usually consists of cleaning the sensor data.

Detection and Handling of Faulty Sensor Readings Faulty sensor readings such as
sensor readings lying outside physically meaningful ranges need to be detected. Nev-
ertheless, faulty readings may overlap with the normal data, requiring the automatic
detection of faulty patterns using supervised learning techniques (see Section 3.2.3.5)
[654]. However, if the faults are not highly frequent, it is difficult to detect them based
on available training examples. Models for anomaly detection can be of great help in
this context by describing only the normal data. They mark patterns deviating largely
from the distribution as anomalies. Nevertheless, the correct definition of parameters,
like threshold values, remains difficult with only a few noisy examples. Furthermore, it
can be difficult even for domain experts to identify such examples correctly. There are
several possible ways on how to handle missing values after being detected including
replacement by their predecessor values or auto-regressive moving average approaches
[98] or imputation based on predictive models that are trained on other existing val-
ues. Additionally, the production process itself might introduce some level of noise
to sensor data. If the underlying noise model is known, it should be used. Otherwise,
measurements should be filtered and smoothed [405, 654].

Detection and Handling of Changes Deviations and changes in sensor readings
may also be explained by intended changes in the underlying hardware, such as when
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new production equipment and new or different calibrations of sensors are introduced.
Based on the type of changes, it must be decided which of the trainedmodels need to be
updated and how. Without any models describing such changes, methods for concept
drift detection can be applied and it has to be decided if already trained prediction
models must be updated and how these models should be managed [564]. More details
are provided in Section 3.2.3.10. Incremental training methods, like streaming methods
(see Section 3.2.3.9), can be used to integrate such changes into the trained models
automatically.

Different Alignments and Calibration Different data alignments can be observed
due to different data sampling strategies and sampling frequencies from sensor record-
ings. Themeasurement frequency of a data source is defined by the number of times the
source delivers data per time unit. The higher the desired sampling frequency, the more
memory it uses. The association and integration of data from many sensors require
their synchronization with the environment description. The environment description
is characterized by the adequate time of measurement. To obtain a precise synchro-
nization, a sufficiently accurate global time of measurement for the different sensors
is required to be defined or derived using synchronization techniques [309]. In this
context, a multi-sensors data fusion system has to cope with different and varying
measurement frequencies, measurement latencies, and asynchronous measurement
times.

Synchronization techniques can be divided into two main families: deterministic
and non-deterministic. In a deterministic setting, themeasurement times of each sensor
have to be known in advance and synchronization is performed on the slowest sensor
using aggregation techniques [309]. In a non-deterministic setting, sensors are assumed
to be asynchronous and there is no knowledge about measurement times or latencies.
In the process recordings, different frequencies might be used. In such situations,
recursive filtering approaches such as the Kalman filter or recursive autoregressive
filters can be used for synchronization [291].

In addition, different hypotheses for drawing data samples from sensors may also
lead to a mismatch in the sense of learning from different underlying distributions.
Therefore, sensor data has to be calibrated (e.g. adjustment of sensor parameters,
features, raw data cuts for out-ranging measurements using classification or clustering
techniques) [654].

3.2.3.3 Data Representation
As it will be shown in the case of steel production (Section 3.2.4.2), a single run through
the process chain can be represented by a set of time series with different lengths and
offsets, which may overlap in time, contain different numbers of segments at different
levels of granularity, stem fromdifferentmachines, and sensors andmay also be entirely
missing for optional processing steps.
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Many common data analysis methods cannot work directly on such sets of time series;
rather, they require that all observations to be represented by fixed-length feature
vectors. Here, we discuss how the raw series values can be transformed to fixed-Length
vectors and concatenated into one single representation.

Mapping of Value Series to a Fixed-Length Vector and Concatenation The goal
is to transform raw sensor data into fixed-length vectors in order to make standard
learning techniques applicable. We start by reserving enough space for the records of
each sensor in a single fixed-length numerical vector. Original series values are then
indexed by predefined positions in this vector. For themapping, themaximum length of
the time series needs to be knownbeforehand. For the projection, the original time series
values might need to be rescaled, e.g., by interpolation. As a result, the application of
the most popular distance-based data analysis algorithm becomes possible.

A difficult question is which values to assign to portions where no processing took
place.Wemay simply fillmissingportionswith zeros or the last recorded value.However,
filling with zero values can lead to inaccurate evaluation with several popular distance
measures, including Euclidean distance. For example, both series would be marked
as highly dissimilar by Euclidean distance, although both blocks (A and B) can have
a similar quality. In such a case, the correct mapping between similar feature vectors
and similar labels would be altered. Reserving the same portion for both finishing rolls
(sensors 5 and 6) in the fixed-length vector seems to solve the problem, but it does not
take into account that both finishing rolls might have different properties, e.g., value
scales, which usually require a careful data calibration [654]. Instead of transforming all
series values to a fixed-length vector, another option would be to use distance measures
that can handle value series with different lengths, such as the Dynamic Time Warping
(DTW) [461] or the Longest Common Subsequence (LCSS) distance [160]. In principle,
two main approaches, for transforming the original time series appropriately, exist.
The first approach simply concatenates all time series belonging to the processing of
single manufactured pieces (e.g. a single steel block). The second approach consists of
calculating distance values for each time series of each sensor independently and then
summing them up to a total distance.

3.2.3.4 Feature Extraction and Selection
Instead of using a raw data stream, we can characterize production processes by a
devised set of features extracted from raw data. The transformation of the raw data into
a feature vector should maximize the prediction accuracy and increases the resource
awareness of the machine learning algorithms by reducing the dimensionality and the
amount of stored data. (See Chapter 1 in Volume 1.) The challenge in this task consists
of the huge search space (i.e. exponential size) over all the possible transformations.
Traditional approaches are based on manual feature extraction to build features one
at a time using data analysis and domain knowledge. While these approaches are
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accessible and interpretable to users, they are tedious, time-consuming, error-prone,
and usually not adaptive to data changes. In this context, automatic feature engineer-
ing appears to be a promising way to go. It consists of automatically extracting and
generating a large number of features and selecting an effective subset of these features
to ensure better performance of the machine learning algorithm. Many works have been
conducted for automated feature engineering in literature either by automating the
whole process [594],[445], or by focusing on particular steps such as feature extraction,
feature generation [314] or feature selection [582].

The following sections present a non-exhaustive list of transformation and fea-
ture extraction methods that look especially promising in the context of production
processes.

Aggregation and Summarization Aggregation and summarization methods for
streaming time series data reduce the amount of collected data as much as possible
and try to retain its most important patterns. The simplest type of aggregation is based
on the calculation of summary statistics such as minimum and maximum values, the
mean, median, standard deviation, percentiles, and histograms. Such simple features
can already encode sufficient information for the learner and sometimes outperform
sophisticated methods [654]. More sophisticated methods search other representations
of the time series based on time series transformations. These include the Discrete
Fourier Transform (DFT) [445] and the Discrete Wavelet Transformation (DWT) [445].

Segmentation The salient features approach by Candan, Rossini, Sapino, and Wang
[115] transfers ideas from the segmentation of two-dimensional images and the ex-
traction of Scale Invariant Feature Transformation features (SIFT) from images to the
space of one-dimensional value series. Salient points in the series, which are points
that deviate much from their surrounding values, are used for segmenting the series.
Then, from each segment, characterizing features are extracted. The method deter-
mines salient points at different resolutions, allowing for a description of value series
at different levels of granularity. One segmentation approach was developed in the
context of the steel production use case (Section 3.2.4.2), which determines segments
based on domain knowledge and signals from machines in the process chain [654].
After segmentation, different statistics are computed on the segments such as themean,
the standard deviation, and the minimum and maximum values. Other features are
differences between values and histograms. The biggest advantage is that the approach
allows for the combination of many features in a highly interpretable manner [654],
since the feature transformation is handled in a multivariate manner in the sense that
features from different value series and their parts are combined together. For example,
a classification rule that is formed based on such features may be: “Predict a steel block
as defective if it was heated for less than one hour at 900 degrees and if the maximum
rolling force in the first rolling step exceeds the value of 10 000”. The approach has
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already been used successfully for the identification of coarse-grained patterns such as
processing modes (see Section 3.2.4.2).

Symbolic Representation SAX (Symbolic Aggregate Approximation) [413] first deter-
mines the elements of a sequence C = (c1; · · · ; cn) by piece-wise aggregate approxima-
tion and maps them to a new sequence C′ with w < n:

c′i =
n
w

n
w i∑︁

j= n
w (i−1)+1

cj (3.1)

The elements c′i are then discretized by mapping them to a fixed number of symbols,
keeping the upper bounded Euclidean distance between all series. A gradient-based
approach for the symbolization of streaming sensor data was introduced by Morik and
Wessel [458]. This approach was originally applied in the context of text mining and
has been successfully used in areas such as text classification or intrusion detection.

Method Trees All of the aforementioned methods, with different parameter settings
and combinations, are useful for extracting functional features from value series. In-
stead of trying and combining all the existing methods and different parameter values
manually, Mierswa and Morik [445] developed an automatic representation learning
method that optimizes the composition of a representation for best classification learn-
ing. Basis transformations, filters, mark-ups, and a generalized windowing present
elementary methods that are combined in the form of a method tree. The tree applies
the operators (nodes) in a breadth-first manner to transform the original value series.
The root of each tree consists of a windowing function, while the children of each parent
node are operator chains representing basis transformations, filters, and a finishing
function. Learning the feature extraction tree is performed by a genetic programming
algorithm. The method can be used for the analysis of time series from production
processes. However, its demand for stratified datasets with respect to the labels is
not always met by the production data. The method had been implemented within
RapidMiner.

3.2.3.5 Modeling
The following sections give a short overview of widely used methods that are assumed
to be of special relevance for the embedded data analysis in production processes.

3.2.3.6 Supervised Learning
The most popular task in the context of Supervised Learning is inferring functions
representing the relationship between a set of explanatory variables (i.e. features) and
a response target variable which can be discrete (i.e. classification) or continuous (i.e.
regression), also known as function learning. Let X be a set of possible explanatory
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variables, Y be a set of possible target values and D an unknownprobability distribution
on X, Y. Let further H be a set of possible functions. Given examples(x, y) ∈ X × Y,
drawn from D, where y = f (x) for an unknown function f , the goal is to find a function
h ∈ H : X → Y, such that the error erD(h, f ) is minimized.

In the case of a production process, explanatory variables are feature extracted from
sensormeasurements (i.e. records for a given steel block) and y ∈ Y is the corresponding
quality label to be predicted. Examples of learning functions h ∈ H include Decision
Trees, K-Nearest Neighbour (kNN), Naive Bayes and, Support Vector Machines (SVM).
For a detailed in-depth overview of such methods, see Hastie et al. [260].

The aforementioned methods assume that all training data is available in batches.
Hence, they cannot be trained during the manufacturing process, and their models
require to be retrained if concepts change. In case of the absence of concept drifts,
models can be trained offline but deployed online for the prediction.

3.2.3.7 Unsupervised Learning
If no labels are provided, unsupervised learningmethodsmay be employed to reveal the
most prominent patterns in the data. Cluster analysis [300] tries to group observations,
following a similarity measure. The number of clusters k is usually a user-defined
hyper-parameter. A well-known clustering algorithm is k-means [426]. Dimensionality
reduction techniques such as principal component analysis (PCA), aim at simplifying
high-dimensional datasets. Some of them may be used for better data visualization,
like SOMs [654], which map high-dimensional input vectors to a low-dimensional grid.
Vectors that are similar to each other in the input space lie close to each other on the
grid. SOMs have also been used for analyzing the data in the steel production case
study (see Section 3.2.4.2). The biggest disadvantage of unsupervised methods is that,
without any labeled data, their results can only be validated by domain experts.

3.2.3.8 Learning in the Presence of Class Imbalance
Class imbalance occurs when data classes are not equally frequent. Generally, it occurs
when some classes represent rare events, while the other classes represent the coun-
terpart of these events. Rare events, especially those that may have a negative impact,
often require informed and prompt decision-making. However, the class imbalance
is known to induce a learning bias towards majority classes, which implies a poor
detection of minority classes. For example, production processes with high-quality
standards usually output more high-quality goods. Similarly, certain events, like ma-
chine or sensor failures, may only occur rarely. In such cases, many positive examples
but only a few or even no examples of the negative class are available. Measuring
class imbalance performance in classification tasks based on the accuracy leads to
the problem that the metric is biased towards the majority class. Class imbalance can
be mitigated using different methods including one-class learning, class rebalancing
methods, and ensemble learning.
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One Class Learning One way of handling class imbalance is to treat minority class
instances as outliers or anomalies and majority class instances as the normal class
using the task of one class learning [460]. Tax and Duin [675] propose a Support Vector
Data Description (SVDD) that computes a spherical boundary around the given data
points. The diameter of the enclosing ball and thereby the volume of the training data
falling within the ball can be chosen by the user. Observations inside the ball are then
classified as normal whereas those outside the ball are treated as outliers or anomalies.
Schölkopf et al. [581] have proposed the 1-Class SVM, which separates all training
examples with a maximummargin from the origin. An active approach to such data
domain descriptions generalizes this approach [238].

Class Rebalancing Methods Several methods have been proposed to handle the
class imbalance problem using resampling of the data [563]. Resampling strategies
rebalance the data in order to mitigate the effect of the bias of machine learning models
towards the majority class [125]. Resampling methods are considered to be flexible
and are widely used since they are independent of the selected classifier. The class
imbalance problem can also be solved using algorithmic modifications of existing
machine learning classifiers, e.g., support vector machines, k-nearest neighbors, or
neural networks. Modifications can be introduced by enhancing the discriminatory
power of the classifiers towards the minority class using kernel transformation to
increase the separability of the original training space [219].

Cost-sensitive learning can also be applied in the context of class imbalance bymod-
ifying the loss functions to increase miss-classification costs of the minority samples
[322].

Learning Ensembles in the Presence of Class Imbalance Combining classifiers
in ensemble frameworks is another common approach to handle the class imbalance
problem [563].Within ensemble-based classifiers, we can distinguish fourmain families.
The first family includes resampling based ensembles. An ensemble of classifiers is
created after training base classifiers on balanced datasets obtained with a resampling
technique. In the second family, the ensemble is built based on boosting [576] after
applying a data resampling strategy (e.g. SMOTEBoost [126]).Within the third family, we
find Bagging-based ensembles [101] (e.g. UnderBagging, OverBagging, SMOTEBagging
[715]).

Recently, we proposed a probabilistic ensemble method to handle the class im-
balance explicitly at training time [563]. Unlike existing ensemble methods for class
imbalance, which use either data-driven or randomized approaches for their construc-
tion, our method leverages both directions. On the one hand, ensemble members are
constructed from randomized subsets of training data. On the other hand, we design
different scenarios of class imbalance for the unknown test data. For each of the re-
sulting scenarios, an ensemble is obtained by combining random sampling with an



126 | 3 Industry 4.0

estimate of the relative importance of specific loss functions. The final predictions are
generated by computing a weighted average over the individual ensemble predictions.
In contrast to existing methods, this approach does not attempt to correct imbalanced
datasets. Instead, it has been shown how imbalanced data sets can facilitate classifica-
tion, given a limited range of true class frequencies. This method promotes diversity
among ensemble members and is insensitive to certain parameter settings.

3.2.3.9 Stream Mining
To copewith real-time evolving production systems, every step of the analysis should be
applied and handled in an online fashion. Whereas learning an effective representation
needs to be run offline as shown above with model trees, using the learned extraction
must be applied online. Many applications demand the transformation of the raw
sensor data, the deployment of the model, and sometimes even the model update and
the detection of novel events being performed online. Change detection is usually done
by updating themodel with every new arriving data item or learning amodel on a batch
of the most recent data items [218].

The biggest challenge in applying classical stream mining settings to production
processes is, that the labels are usually measured at the end of the process chain.
Hence, at each point in time we predict the final quality. For the time series starting
with ti0 and ending with tie, we have the observations xti0, ...xtia , ...xtie, but only the
final quality measurement ytie. Hence, at each observation point we predict the final
quality. The model f uses p extracted features from x ∈ X (i.e. f (ϕ1(x), · · · , ϕp(x)) = y).
Assume ti0 to be the starting time of the process pi, tie its end, and tia the actual time
instant, one possible approach is to segment the time series and learn an individual
model on every single segment to predict the final quality. This approach is useful when
important events can not be identified in time andmemory constraints are imposed, i.e.,
training models on time series subsequences instead of considering all the historical
data. If it is possible to identify important events within the corresponding step of the
process occurring at a given time instant tic, then every feature extracted from the
segment [ti0, tic] can be used to learn a model. It is therefore possible to generate the
first prediction of the label if tia > tic.

A second approach consists of using a combination of static and statistical features,
like theminimum,maximum, or average of the time series. The static data won’t change
over the complete process and the probability of change of the statistical features will
decrease to the end of the process. That means, that there exists an index tis, where the
prediction error is bounded by

(︀
f̂ (ϕ1([ti0, tis]), · · · , ϕp([ti0, tis])) − y

)︀2 ≤ ξ . Another
approach would be to use one or a set of algorithms, that predict the set of features for
the unseen part of the time series [tia , tie] and train a model on the full feature set to
predict the quality label. The overall prediction will therefore be strongly dependent
on the accuracy level of the feature prediction.
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3.2.3.10 Online Management of Many Models
As it is mentioned in streammining, machine learning models can be trained offline
and deployed in real time to generate quality predictions. It may also happen that the
stream-mining setting requires the training of many models on different parts of the
data, e.g., different segments of the time series (see Section 3.2.3.9). In addition, the
increasing individualization of products and processes may result in small heteroge-
neous groups of observations. Learning distinct models is then necessary to represent
each group of observations and capture its underlying properties. Therefore, efficient
online management of manymodels should be established through the dynamic combi-
nation of many models built to comply with detected changes in the data by adaptively
changing their combination and integration rules in real time. The dynamic combina-
tion can formally be established with adaptive ensemble methods that are built as a
weighted combination of distributions characterizing the target concepts and enabling
flexible management of the models from the individual model selection to the weighted
aggregation of many models [561, 562, 564, 565]. The application of adaptive ensemble
methods is made in connection with concept changes detection in the data that enable
the ensemble update on different levels (i.e. base models selection [561], informed base
models/ ensemble parameters adaption (i.e. after a detection of a concept drift) [562]).

In this context, we have proposed an adaptive ensemble selection framework that
manages online two main ensemble construction stages: pruning and integration [564].
Since the performance of ensemble-based models changes over time, it is also consid-
ered to be subject to concept drifts. A drift detection mechanism is employed to exclude
models whose performance becomes significantly worse compared with the remaining
models and to identify the top base models in terms of performance. Performance is
evaluated in this context using a custom measure based on the Pearson Correlation
(i.e. commonly used to deal with time series data between base models forecast and
target time series on a sliding window validation set. After each drift detection, top
base models are identified. Since diversity is a fundamental component in ensemble
methods, we perform a second stage selection through clustering model outputs. Clus-
ters and top base models are updated after each drift detection (i.e. whenever an alarm
is triggered by our drift detection). At each cluster computation, the models that belong
to the cluster representatives are selected. In a final step, the selected models’ outputs
are combined together using a sliding-window weighted average.

We have also developed a framework for online ensemble aggregation using deep
reinforcement learning for time series forecasting [562, 565]. There, we leverage a
deep reinforcement learning framework for learning linearly weighted ensembles as
a meta-learning method. In this framework, the combination policy in ensembles is
modeled as a sequential decision-making process and an actor-critic model, that aims
at learning the optimal weights in a continuous action space, is used. The policy is
updated following a drift detection mechanism for tracking performance shifts of the
ensemble model over time [562].
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These frameworks were developed initially to manage forecasting models and can be
applied to predicting continuous quality-related measures over time, but can also be
transferred to classification models operating in streaming environments.

3.2.4 Case Studies

The following case studies highlight different facets of the introduced theoretical frame-
work and give a decisive impression of how the described methods can be applied in
practice, in order to solve quality-related problems. However, not all concepts have
been validated in the particular industrial environment. In the SMT manufacturing
use case, the steps of data acquisition and storage, learning in the presence of class
imbalance as well as feature extraction and modeling are explained. Lastly, the process
optimization in the SMT line is described. In the hot rolling mill process, the data
acquisition and storage are highlighted, since the processing of the sensory data was
relatively challenging due to incomplete sensory measurements and other factors. Also,
the feature extraction and modeling phase are explained.

3.2.4.1 Model-Based Quality Prediction in Electronics Manufacturing
The case study of electronics production covers the production of programmable logic
controllers of the Simatic type. At the end of the soldering process, the correct position
of soldered components is checked. This is accomplished by an Automatic Optical
Inspection (AOI) for variants with visible connection points (pins) and by an X-ray
inspection for variants with the pins underneath the components from two different
perspectives (X1 and X2). The Printed Circuit Boards (PCB) are placed on a panel and
are tested in a pool test by placing 48 PCBs in eight Fields Of View (FOV). The number
of pins on each PCB are 79 and 52 for X1 and X2 directions, respectively. A typical
PCB board is illustrated in Figure 3.6 to showcase one typical product variant that is
manufactured using the SMT technology. Due to the long inspection time as well as
the large number of units produced, X-ray inspection is a bottleneck in the production
of PCBs, especially when considering the 100% inspection, i.e. the testing of every
PCB, that is conducted and the constantly growing demand for programmable logic
controllers [579].

For this case study, the focus has been narrowed to one product variant, its respec-
tive manufacturing line, and the data sources of SPI and X-ray inspection.

Data Acquisition and Storage Historic datasets from Serial Peripheral Interface (SPI)
and X-ray are matched by different manufacturing databases via a unique identifier.
Resolving the use case at the pin level, where each pin is assigned a quality label, is a
low-dimensionalmachine learning task aswas shownby [580] since only sevendifferent
features are mapped to one categorical class label. However, from a process perspective,
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Fig. 3.6: The image illustrates a PCB board from the X1 direction that is manufactured using SMT.

the quality test is not feasible on a pin level and the process data is aggregated to the
FOV level. The dimensionality of the process data thereby increases dramatically. The
considered dataset consists of numeric SPI features (see Table 3.1) and a binary X-ray
label on the aggregation level of FOVs, which is formalized as a binary classification
task. The features characterizing each pin are summarized in Table 3.1.

Tab. 3.1: Descriptive PCB features on the pin level.

SPI feature Unit

Height %
Shape 2D %
Shape 3D %
Surface %
Volume %
Offset X μm
Offset Y μm

Historical datasets for a period of five production months are used for the case study.
In total, 1 461 037 321 data points are parsed, of which 800 parts per million (ppm) are
NOk.

Non-representative datasets, which, for example, are recorded under obsolete
process configurations or during manufacturing trials, are eliminated using expert
knowledge. The result is a prepared and cleaned training dataset for subsequent mod-
eling, including a unique identifier, all relevant features and the quality label, which
can be continuous or discrete depending on the applied measurement method.
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Learning in the Presence of Class Imbalance The considered use case constitutes
an extraordinary case of class imbalance. When using no specific countermeasures, the
classifier degenerates due to frequent misclassifications of the minority class. Classify-
ing the defect class as OK is often unacceptable in an industrial environment. Therefore,
specific measurements are chosen in order to increase the performance of the algorithm
on the NOk class. To rebalance the dataset, a combination of different resampling
techniques are examined, such as oversampling (SMOTE, random oversampling) and
undersampling (random undersampling). Furthermore, the output class-membership
probability threshold is systematically tuned in order to achieve a better trade-off
between both the precision and recall of the classifier.

Feature Extraction and Model Learning Initially, the PCB process data was de-
scribed on the pin level. Process expertise led to the conclusion that aggregation to the
FOV level is necessary so that each FOV consisted of either 79 pins in the X1 direction,
or 52 pins in the X2 directionwith seven features for each pin.While [580] results on the
FOV level were not promising, further experiments are conducted. One direction is to
reduce the dimensionality using automatic feature extraction methods in combination
with machine learning models. For this we use the Rapidminer extension Value Series
Plugin. This reduces the dimensionality of the process data for X1 from 553 features to
240 features and from 364 features to 50 features for X2.

Model Evaluation The training of themodels takes place in anested structure of inner
and outer cross validation andhyper-parameter optimization. As the a priori selection of
adequate algorithms is not achievable in a generalized way, different learning methods
and algorithms are tested and evaluated for each individual application [579], including
Gradient Boosting Trees (GBT), Random Forest (RF), and Multilayer Perceptron (MLP),
which is based on fully connected neurons that compute a complete weighted sum
in the affine transformation stage of the connections. These methods are used as a
baseline for the experiments. Opposed to a fully connected neuron, a 1-Dimensional
Convolutional Neural Network (1D-CNN) is based on the principle of weight sharing on
all connection units. For example, in the discrete one-dimensional (1D) case: (d*K)(x) =∑︀

a I(x − a)K(a) is a convolution of a data sample d with the kernel (or filter) K [767].
A 1D-CNN with a kernel size of k = 3 is used in order to integrate knowledge from the
direct neighborhood of pins in question into the learning process. Two convolutions
are stacked and, additionally, dropout with a rate of d = 0.5 is used for regularization.
The most discriminative features are obtained by combining max pooling and two
consecutive dense layers. The best performing rebalancing technique on this use case
is random oversampling which is applied before feeding the data to the classifiers. The
summarized results can be found in Table 3.2.

The model results indicate that the overall performance of the classifiers is modest
when it comes to overall correctness. TheGBTmodel shows the overall best performance,
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Tab. 3.2: Cross-validated classification results.

Metric Recall(NOk) Recall(Ok) Accuracy

RF 69.83% 53.76% 73.46%
GBT 73.98% 39.70% 43.26%
MLP 16.08% 95.13% 80.15%
1D-CNN 75.4% 43.85% 74.71%

but the difficulty in this use case is the high-class imbalance rate. It appears that the
distribution of the NOk class is not accurately represented by the classifiers or only at
the cost of a lower recall on the Ok class. However, from a practical perspective, the
1D CNN can be used in order to reduce the testing effort of the X-ray machine, which
can save up to 75.4% of testing volume, which is shown in Table 3.2 as the recall of
the NOk class. Surprisingly, the experiments using feature selection methods do not
improve the performance as we expected even though the dimensionality is reduced. It
appears that in this use case, every individual pin has to be considered, summarizing
the data through statistic features leads to an information loss. Lastly, since deep
learningmodels usually lack interpretability, it is not clearwhichdiscriminative features
led the classifier to draw its conclusion. By contrast, tree-based methods offer more
interpretability. Therefore, the decision for a specific model is also a question of its
accuracy and to some extent its interpretability by domain experts.

Process Optimization The model deployment is achieved through organizational
integration into the inspection planning process. As described by [580], the models
were trained on a cloud infrastructure and stored on an edge device close to the process
to reduce latency and bandwidth issues. Here, the inspection strategy determines the
role of the model with respect to inspection planning and design. While an inspection,
exclusively based on the prediction model, requires high confidence in the model and
extremely high model accuracy to reach or exceed the level of conventional inspection
principles, hybrid approaches seem promising for the current state of development. The
inspection reliability is given by the combination of quality prediction and conventional
inspection. The introduction of quality prediction in quality assurance can facilitate the
generation of additional added value by reducing physical inspection volume without
sacrificing inspection reliability. Two different strategies can be deduced depending on
the trustworthiness of the model. Either only those parts are subjected to a physical
inspection whose prediction result was Ok or whose result was NOk. As the class
imbalance of datasets in the quality context is usually quite high, selecting only NOk
predicted parts to undergo the physical inspection offers vastly superior potential
savings.
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3.2.4.2 Real-Time Quality Prediction in a Hot Rolling Mill Process
In the hot rolling mill case study, steel blocks move through a process chain to become
bars. The process chain is shown in Figure 3.7. First, the blocks are heated for 15 hours
in five different heating zones of a furnace. They are then rolled at the block roll and
the first finishing roll. The rolling in the second roll is optional.Heating!
furnace

Block!
roll

Finishing 
roll 1

Finishing 
roll 2 Cutting Ultrasonic 

tests

1 2 3 4

Fig. 3.7: Sensor measurements for two different blocks.©[2016] Springer. Reprinted, with permis-
sion, from [654].

Each block usually moves over a single roll several times, where the number of rolling
steps, each taking a few seconds, is determined. The blocks are finally cut into smaller
bars whose quality is assessed using an ultrasonic test, several days later. Online
measurements on how the blocks are processed are provided by sensors installed along
the production chain. The sensors measure various physical qualities including the
air temperature, rolling force, rolling speed, and the height of the roll, with 10Hz. The
ultrasonic test results indicate the amount of material containing defects for each bar.
It is impossible to assess the physical quality of hot steel blocks or smaller bars at
intermediate steps of the process chain. The blocks must cool down before their final
quality can be tested in an ultrasonic test. Quality deviations are assessed on specific
internal quality parameters such as location, manifestation, and frequency of core and
border displays [404]. In cases where some of the blocks are, for example, wrongly
heated, energy,material, and humanworkforce arewasted if they nevertheless continue
the process chain. Therefore, the goal of the case study is to identify quality-related
patterns in the sensor data, and to predict the final quality of steel blocks in real-time,
hence detecting NOk blocks as early as possible. Energy savings can be achieved if,
following the quality prediction, blocks with estimated defects are sorted out from
the process early enough or reinserted again in previous steps. In addition, it may
happen that the required final quality can be reached by adjusting the parameters of
subsequent processing stations [339].

In the following, we describe in more detail which sensor measurements are
recorded and how they are stored, preprocessed, and analyzed in the context of the
given case study. See also the Section 3.3, which presents a novel learning method
inspired by exactly this use case.
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Data Acquisition and Storage During the period of one year, over one billion mea-
surements from 30 different sensor types are collected during the processing of about
10 000 steel blocks, together with the corresponding quality information. Among the
readings are the air temperature for each furnace zone, rolling speed, force, position,
and temperature. Domain experts consider these to be the most relevant quality-related
parameters. For validation purposes and guaranteeing the reproducibility of results, all
data has been stored in a single SQL database. A Java tool was developed for reading
and importing the raw data delivered in different files and formats. Once imported,
sensor measurements can be exported based on filters written in SQL to CSV files, that
contain all measurements recorded by a particular sensor during the processing of a
single steel block. For the preprocessing of time series data in production environments,
a highly modular process has been developed and implemented with Rapidminer [405,
654]. The following sections provide a summary of the procedure and results already
presented in [404, 654]. At first, all value series are cleansed by cutting away irrelevant
parts where no processing happened, as discussed in Section 3.2.3.2. In addition, data
measurements that lie outside meaningful ranges are marked as outliers and replaced
by their predecessor value.

Afterwards, the time series are segmented based on background knowledge as
described in Section 3.2.3.3. In the case of the heating furnace, for instance, the five
different heating zones make up natural borders for the segments. Similarly, individual
rolling steps are natural divisions for all series stemming from the three different rolls.

FeatureExtractionandModel Learning Each segment in the time series is described
by several statistics, and mapped to portions of a fixed-length vector. The 60000 raw
series values recorded for each steel block are aggregated to about 2000 features. The
resulting dataset can then be fed to common feature selection and learning algorithms.
For 470 processes, the mapping of the resulting cut bars to the steel blocks could be
established. The feature vectors of these processes have then been used for comparing
diverse machine learning methods: Naive Bayes, Decision Trees, k-NN, and the SVM
[404, 654]. It has been shown that including features about the individual segments
decreases accuracy in comparison to including global information about the value
series and segments. Features of individual segments were therefore excluded for the
following analysis, resulting in 218 remaining features.

Model Evaluation Even with extracted and selected features, none of the classifiers
mentioned is able to reach abetter prediction accuracy than the baseline,whichpredicts
the majority label. For getting a better impression of the data, the feature vectors were
mapped to a two-dimensional Self-Organizing Maps (SOM) (Figure 3.8) where points
close to each other have similar features (see Section 3.2.3.4). The shading is used to
indicate a weighted distance between the points, where lighter shades represent larger
distances. In the SOM on the left-hand side, the points represent the feature vectors of
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production processes and their colors indicate the final quality of the resulting steel
bars as Ok (red) and NOk (blue). In many cases, NOk bars are very close to Ok ones
(see also the zoomed area in Figure 3.8), which means they have highly similar features.
As a result, the features extracted so far do not suffice to correctly classify low and
high-quality processes.

Fig. 3.8: Similarity relationships between feature vectors.©[2016] Springer. Reprinted, with permis-
sion, from [654].

In comparison, the SOM on the right-hand side of Figure 3.8 shows the final size of the
produced bars. As it seems, the extracted features are highly correlated with distinct
operational production modes for the different bar sizes. The hypothesis could be
verified by training a decision tree on features of the first finishing roll. The accuracy as
estimated by a 10-fold cross-validation is 90%, while k-NN (k = 11) even achieves 97%.
Most important for the decision is the position of the roll (sensor 501). This indicates
the height of the roll and naturally implies the pressure on the block. This correlates
with the size of blocks after milling, expressed by 1V , 2V , .... Domain experts have
verified that the results reflect the real operational model in the rolling mill. That the
features are correlated with distinct operational modes and not the quality could mean
that large absolute quantitative differences between the modes, i.e. the global patterns,
overshadow local patterns. The clustering with SOMs thus gives important hints for
improving the quality prediction. For instance, in the future, separate models for the
modes could be trained, more scale-invariant features could be extracted, or the value
series could be better normalized.

As the results demonstrate, data analysis methods are capable of detecting mean-
ingful patterns in production processes. Even though identifying the exact features
that are relevant for the prediction task is sometimes not straightforward, as already
discussed in Section 3.2.3.4, each insight into the data can be useful for providing new
ideas for better feature extraction and process understanding that can be validated
afterward by interaction with domain experts.
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3.2.5 Conclusion and Future Outlook

This contribution gave an overview of data mining for Industry 4.0. The first sections
offer a general guideline for applications similar to ours. In Section 3.2.2, we present
the need for intermediate quality prediction in order to reduce material and energy
consumption and how it can be integrated into an IMPC module in order to prepare
factories for the adequate use of data mining techniques in a quality-related context.
Carefully going through all the steps of the data-mining process in Section 3.2.3, we
present a large variety of methods for each step. The contribution presents two real-
world case studies in Section 3.2.4: quality prediction in electronics manufacturing
(Section 3.2.4.1) and in a hot rolling mill process (Section 3.2.4.2). Both use cases demon-
strate the benefits of real-time embedded data analysis in the production chain for
quality prediction.

A new application of multiclass time series classification predicts the quality of a
bolt in a real-world automotive industry use case. Shorter subsequences of time series
were determined that already allowed to train a model achieving high recall and F-
measure (both 97%) for almost all of the 8 classes except for the two that were only
present in 1% or 5% of the data. Detecting the quality as early as possible enables to do
corrective actions, thus avoiding costly rework and waste of resources through further
processing of defective components. Moreover, anticipating the type of defect helps to
estimate the reworking time to correct it, which varies from 5 seconds to 5 hours [557].

Another more recent study is about saving quality testing efforts in surface mount
technology. Since it would take too much time to assess the quality at pin level, the
quality information of the panels is aggregated at a FOV level, which corresponds to
the aggregation level of the X-ray inspection. One FOV consists of 6 PCB and is denoted
as "NOk" if one PCB is detected as defective, whereas it is declared as "Ok" when all
PCBs are defect-free. In addition to excellent recall and accuracy, the trained model
was explained using a heat map [558]. This is an important step into the interpretability
of learned models, but further work is needed.

Despite several success stories, there are still limitations that slow down the appli-
cation of the developed machine learning-based solutions in the industry. The first of
the two most-important obstacles that are still in the way of machine learning adoption
in real environments is the lack of reliable labeled data in many manufacturing scenar-
ios. Data gathering, data fusion from heterogeneous sources, and data cleaning require
ongoing efforts. The second is that the internal organization of companies needs to
integrate computer scientists with a qualification in machine learning into the higher
levels of engineering departments. The social integration of employees with diverse
backgrounds not only at the board of directors is a challenging task, but it is necessary
to benefit from the full potential of machine learning.
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3.3 Label Proportion Learning

Marco Stolpe
Katharina Morik

Abstract: For the interlinked process of producing steel bars, quality information is
given in statistical form for whole charges of blocks, i.e. we know the fraction of blocks
which had quality related problems. This poses a new kind of problem for machine
learning, since almost all supervised learning methods assume to be given labels for
individual observations instead of groups. The problem of learning from fractions of
labels has become known as the problem of learning from label proportions. In this
contribution, the learningproblemandexistingmethods for solving it are introduced, as
well as a clustering-based method called Learning from Label Proportions by Clustering
(LLPC) developed in the context of project B3. It is demonstrated that LLPC outperforms
methods that were considered the state of the art at that time in terms of prediction and
runtime performance. Moreover, the relation to resource-constrained learning settings
such as distributed learning is shown.

3.3.1 Introduction

In smart manufacturing, it can be difficult to track products through the whole process
chain. For instance, in the interlinked production process of hot rolling, the temperature
of steel blocks is so high that they cannot be stamped or equippedwith RFID chips. Once
cut to smaller rods, tracking object identity, i.e. which rods belonged to which block in
which customer order (or batch), can therefore become a big technical challenge. In the
steel-rolling scenario, quality labels are usually given as percentages for whole batches,
but not for individual blocks. This is similar to other industries, in which due to cost
reasons only the quality of a small sample is checked. Depending on the estimated
fraction of faulty products, either the whole batch needs to be thrown away, checked
again, or it is accepted that a very small fraction of faulty products is delivered to the
customer. An interesting question is if we can check only a sample, but nevertheless
derive information about the properties of individual products. Moreover, can we sort
out some rods already during the production process itself, before the quality check?
To put it in more general terms: can we derive a model that assigns correct labels to
individual products based on their properties, if we are only given the proportions of
each label for different batches of products?

The aforementioned problem of learning from label proportions (LLP) not only
has applications in industry, but in application areas as diverse as privacy-preserving
data mining, election forecasting, bank customer classification, bankruptcy predic-
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tion, or marine litter beaching prediction. Especially relevant for us is its relationship
to resource-constrained distributed learning settings. Distributed machine learning
receives subsets of the overall data in two ways, horizontally and vertically. Horizon-
tally partitioned data are separating sets of observations with all their features, for
instance, the sales of different shops each offering the same items. By contrast, vertical
partitioning means that each location senses a different subset of features. This is a
common scenario in the Internet of Things [653]. Our steel rolling scenario is of this
kind. It also appears, for instance, in traffic prediction problems (see also Section 4.1).
Here, we might like to reduce communication costs by transmitting only aggregated
label information between nodes. Again, the question is, if we can learn a model that is
sufficiently accurate in assigning class labels to individual instances, based only on
aggregated label information.

The problem of LLP not only deviates from that of supervised learning, where we
learn from individually labeled training examples, but also from many other learning
settings known inmachine learning anddatamining. It is different from semi-supervised
learning [120], where we are given at least some examples that are labeled. It is not
strictly unsupervised learning, since we are given at least some additional information
about labels. It is different from anomaly and outlier detection, where we might know
about observations that belong to a normal class. It comes close tomultiple instance
learning [731], where whole bags of observations are either labeled as positive or neg-
ative. However, LLP is not exactly the same problem, since we are not given binary
information on each bag, but real-valued statistical information about the labels in
each bag.

In Section 3.3.2, the task of LLP is defined more formally. Then, Section 3.3.3 gives
an overview of related work. In Section 3.3.4, we discuss the difficulty of the problem
from a Bayesian perspective. Afterwards, Section 3.3.5 defines loss functions for the
scenario. Section 3.3.6 introduces a clustering approach and variants that minimize
aforementioned loss functions. In Section 3.3.7, we compare the algorithm’s prediction
performance and runtime to other existing methods. Finally, Section 3.3.8 concludes
and gives a short summary.

3.3.2 The Problem of Learning from Label Proportions

To the best of our knowledge,Musicant et al. were the first who formally formulated both
the classification and regression tasks of the problem [466]. We extend their problem
definition tomulti-class problems and relate it to the unknown joint distributionP(X, Y)
from which all observations and labels are drawn.

Definition 1 (Learning from label proportions (LLP)). Let X be an instance space and
Y be a space of categorical class labels Y1, . . . , Yl. Let P(X, Y) be an unknown joint
distribution on the instances and class labels. In the setting of learning from label
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Labeled examples (unknown)

Unlabeled examples (known)
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h = 3

l = 2
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Fig. 3.9: Example for given bags of observations, a label proportion matrix, and related notations

proportions, we are given a sample of N unlabeled observations X = ⟨x1, . . . , xN⟩ with
X ⊆ X, drawn i.i.d. from P(X). Let yi ∈ Y be the individual class label for observation xi,
where Y ⊆ Y. The individual labels are unknown. Instead, we are given a partitioning
of X into h disjunct bags B1, . . . , Bh and for each bag Bu and label Yv, we are given the
proportion πuv ∈ [0, 1] of observations with that label in bag Bu. Only based on this
information, we seek a function (model) f̂ : X → Y that predicts the label y ∈ Y for an
observation x ∈ X drawn i.i.d. from P, such that the expected risk

Rexp =
∫︁

ℓ(Y, f̂ (X))dP(X, Y)

is minimized. Here, ℓ is a convex loss function ℓ : Y × Y → R+
0 which measures the cost

of assigning the wrong label to individual observations.

The given label proportions πuv can more conveniently be written as a h × l matrix
Π = (πuv), where the values in a row Πu,· = (πu1, . . . , πul) sum up to one. The frequency
count μuv of observations with label Yv ∈ Y in bag Bu can easily be reconstructed by
multiplying the label proportion πuv with bag size |Bu|.

The proportion η(Π, Yv) of label Yv over the whole sample can then be calculated
from Π as the sum of the frequency counts for bag u, divided by the total number of
observations N:

η(Π, Yv) =
1
N

h∑︁

u=1
μuv . (3.2)

Figure 3.9 gives an example of the notations previously introduced, the division of
observations into disjunct bags, and the label proportion matrix as derived from the
original (now unknown) labels.
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3.3.3 Related Work

When starting the work on LLP in 2010, only a few publications on the topic were
available. In the following, we’ll discuss related work insofar as it has been relevant
for comparison with the clustering approach we published at that time [651] [652]
and which is going to be presented in this contribution. Since its publication, our
approach has been cited more than 70 times according to Google Scholar and even
more works on the problem setting have appeared. For instance, different clustering
methods have been applied [154]. Fish andReyzin cast light on the theoretical properties
of the problem in the context of probably approximately correct (PAC) learning [209]
(for an easy introduction into PAC learning see Mitchell [447]). Saket et al. present an
approach that does not rely on the underlying distributions of the bags, and give some
guarantees for any learner [571]. However, they do not cover multiclass learning as we
do here. Kobayashi and colleagues show estimation bounds for multiclass LLP [333].
A probabilistic method for LLP is developed to estimate the individual votes during
presidential US elections [660]. Also new applications are dealt with such as bank
customer classification [513], marine litter beaching prediction [273], and bankruptcy
prediction [133].

Related Semi-Supervised Methods There are some approaches that seem similar
to the scenario of LLP, but are actually semi-supervised learning tasks. For instance,
Dara et al. first cluster the given data with SOMs and then label the resulting clus-
ters [159]. However, labeled observations are given, which are usually not available
when learning from label proportions. Demiriz et al. adapt the k-means optimization
problem to respect labeled data [167]. Again, this is a semi-supervised setting, with
labeled observations.

Basic Methods To the best of our knowledge, Kueck and Freitas were the first who
introduced the problem of LLP by proposing a probabilistic model based on group
statistics that is trained by an efficient Markov-Chain-Monte-Carlo (MCMC) sampling
algorithm [357]. Musicant et al. were the first who defined the problem of learning from
aggregate values for regression and classification tasks in amore formal way [466]. They
modify well-known methods such as k-NN [13], backpropagation neural networks [447]
and the linear SVM [700] to respect the given label proportions. Their experimental
results focus on regression tasks, while we are mainly interested in classification.

MeanMap and LaplacianMeanMap TheMeanMapmethodwe use for comparisons
in Section 3.3.7 has been proposed byQuadrianto et al. [514]. It estimates the conditional
class probability P(Y|X, θ⃗) by conditional exponential models, using a joint feature
map ϕ that maps observations and labels into a new feature space. The parameters
θ⃗ can be estimated by solving a convex maximization problem for the conditional
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log-likelihood. The conditional log-likelihood in turn can be expressed in terms of
the so-called mean operator, which can be expanded into bag-wise and label-wise
components. The unknowns in this formulation can then be found by solving a system
of linear equations, without knowing the individual labels. This is possible by making a
homogeneity assumption, which states the conditional independence of feature vectors
from bags, given the label. Once the mean operator is estimated, the parameter vector
θ⃗ can be derived by standard methods for maximum likelihood estimation. It is shown
that Mean Map outperforms kernel density estimation, discriminative sorting, and
MCMC [357].

Patrini et al. relax Mean Map’s restrictive homogeneity assumption such that when-
ever bags are similar to each other, it is assumed that also their feature vectors are
similarly distributed, given the label [494]. The relaxed assumption is encoded into a
regularized least-squares minimization problem, which can be rewritten in matrix form
by the Laplacian of a symmetric matrix whose entries consist of the similarities between
bags. The solution to the stated optimization problem can then be obtained in closed
form. On ten datasets from the UCI standard repository [32], LMM and AMM outperform
Mean Map, Invcal, and the ∝SVM in terms of prediction performance and runtime.
However, since LLM is not kernelized and can only find linear decision boundaries, the
results and LLM cannot be directly compared with the non-linear clustering algorithm
introduced in Section 3.3.6.

Inverse Calibration Rüping proposes the Inverse Calibration (Invcal) method [552].
The regression SVM (SVR) is converted into a probabilistic classifier by applying a
scaling function σ to the outputs. According to the author, it is sufficient that the
predictions of the classifier approximate the given label proportions well on average,
for each bag. These constraints are integrated as auxiliary conditions into the standard
SVR optimization problem. As a large margin method, the formulation allows for the
reduction of model complexity, while the class probability estimates for each bag are
kept close to the given label proportions for each bag, up to some maximum tolerable
error. The primal problem can be transformed into its dual, and then solved with a
standard solver for quadratic optimization. It is shown empirically over twelve standard
datasets from the UCI repository that Invcal significantly outperforms Mean Map in
terms of prediction accuracy.

∝SVM Invcal treats the mean of each bag as some kind of super-instance, and gives
each bag a regression label that corresponds to the label proportions. Instead, the∝SVM
proposed by Yu et al. explicitly models the labels of individual observations [751]. The
label proportions, as calculated from labels assigned to individual observations, should
match the given label proportions as closely as possible. This criterion is encoded
as an additional term into the primal problem of the standard SVM. The task is to
find a vector of labels such that the loss over label proportions and the standard loss
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over individual observations are minimized. This ensures that observations lying on
the same side of the hyperplane will be assigned the same label, depending on the
particular values of the trade-off parameters C and Cπ. Although the formulation seems
intuitive, the optimization problem is a NP-hard non-convex integer programming
problem. The authors propose two different efficient algorithms for solving it, one
based on an alternating optimization strategy, and another based on convex relaxation.
In experiments, the∝SVM outperformed Mean Map and Invcal in terms of accuracy on
several datasets from the UCI standard repository. However, the authors do not report
which significance test they used. It should be noted that in the work by Patrini et al.
results are not always in favor of the∝SVM in comparison to Invcal, even on the same
datasets [494]. Moreover, Mean Map outperformed the ∝SVM in many cases, while
Invcal outperformed Mean Map in the work by Rüping [552].

AOC Kernel K-Means AOC Kernel k-means (AOC for Aggregate Output Classification)
introduced by Chen et al., called AOC-KK in the following, clusters the observations
such that clusters correspond to classes, and the assignment of observations to clusters
(classes) matches the given label proportions [131]. The authors present variants of
k-Means and kernel k-means [174], which is a kernelized version of the original k-means
algorithm. Here, the cluster centers can no longer be written in explicit form, but have
to be expressed in terms of a kernel function induced by some feature map ϕ.

In the objective function formulated, the first term is the same as in the original
optimization problem of kernel k-means, while the second term measures the deviance
between the given label proportions and those that would result from the current
assignment of observations to clusters (classes). In that way, the authors try to find
a good clustering, i.e. an assignment of observations to clusters (classes), such that
the within-cluster scatter is minimized, but at the same time that also the given label
proportions are matched as well as possible. The trade-off between the two criteria
can be controlled by parameter λ. As standard tools for convex optimization cannot
be used, the authors propose an alternating updating algorithm based on expectation
maximization (EM) [168]. On two datasets from the UCI standard repository, AOC-KK
outperforms k-NN and neural networks in terms of accuracy [466].

Although AOC-KK shares similarities with the clustering approach LLPC developed
in Section 3.3.6, there are some fundamental differences. The first is that AOC-KK
restricts the number of clusters to the number of classes, while LLPC allows for classes
being represented by more than one cluster. This allows for a better control of bias
vs. variance, by changing k. Another difference is that AOC-KK combines the loss over
label proportions with the original kernel k-means objective in the same objective
function, while LLPC first clusters observations as usual, and then tries to find a good
assignment of labels to the resulting clusters. LLPC thus has the advantage that it can
be used with arbitrary partitional clustering algorithms, while AOC-KK works only
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with k-means and kernel K-means. LLPC is compared to AOC-KK with a quadratic loss
function in Sect. 3.3.7.

Theoretical Results In an unpublished work, Yu et al. cast LLP into the PAC learn-
ability framework [750]. The authors prove that under certain conditions, the labels of
individual observations can be predicted well when the label proportions per bag can
be predicted well. The generalization error over bag proportions in turn can be bounded
by the empirical proportion error if the number of bags is large in relation to the Vapnik
Chervonenkis (VC) dimension of the underlying hypothesis class H ¹. The authors
further show that the probability for classifying instances correctly increases with the
purity of bags, i.e. if many instances per bag belong to the same class. In extreme cases,
where all label proportions are equal (i.e. they are the least pure), it can happen instead
that a hypothesis achieves zero bag proportion error, but nevertheless classifies all
instances incorrectly. The true error can be even further bounded by making additional
assumptions on the distribution of bags [750].

The aforementioned findings imply that special care must be taken when compar-
ing the performance of label proportion learning methods. For instance, it must be
ensured that algorithms are trained and validated on the exact same data splits. More-
over, since the individual bag distributions can play a big role for the performance of
algorithms, performance should be assessed over different diverse datasets and results
need to be tested for their significance, even more so than with traditional supervised
methods. That a method outperforms another does not mean then that it shows better
performance in an absolute sense, under all circumstances, but on average.

Other Works Hernández-González et al. apply a structural EM strategy to learn
Bayesian network classifiers from label proportions [274]. They compare their method
to Mean Map and report lower error rate of their method for four of seven domains.
However, the significance of results is not reported. Fan et al. introduced a generative
classifier called DNLP, which learns from label proportions by following a deep belief
network approach [198]. The authors compare their method to Mean Map and Invcal on
several standard datasets from the UCI repository. In terms of prediction performance,
they report no significant differences. However, the runtime of DNLP is much lower
than that of Mean Map and Invcal. Fan and Taylor combine convolutional neural net-
works (CNN) with probabilistic graphical models trained by an EM approach to learn
from label proportions in the context of ice and open water classification from image
data [199]. Their algorithm shows good performance in the context of the mentioned
application, but isn’t evaluated on other domains.

1 For an easy introductionwe recommendMitchell [447] explaining PAC learning and the VC dimension.
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3.3.4 Difficulty of the Problem

For getting a better idea about the difficulty of the problem, we discuss the problem of
LLP from a more Bayesian perspective and relate it to different kinds of better-known
learning tasks such as supervised, semi-supervised, and unsupervised learning.

For the supervised learning scenario, we can construct an optimal classifier, called
the optimal Bayes classifier, if the distribution P(X, Y) is known. From a Bayesian
perspective, a prediction model can be obtained from estimating the conditional class
density P(Y |X). Applying Bayes theorem, one recognizes that P(Y |X) may also be
estimated from other unknown densities—the class-conditional density P(X |Y) and
the class prior density P(Y):

P(Y |X) = P(X |Y) · P(Y)
P(X)

(3.3)

Here, P(X) doesn’t necessarily need to be known or estimated, since it can be calculated
from P(X |Y) and P(Y). P(Y)may be estimated directly from the data, if the number of
data points is high enough. Moreover, if the joint distribution P(X, Y) is known, as is
assumed by the optimal Bayes classifier, all other quantities can be derived from it. For
a given observation x ∈ X to classify, the optimal Bayes classifier would predict the
most probable class, which is also known as the MAP criterion. Here, optimal means
that the Bayes classifier is the best classifier over all possible classifiers for the given
data.

Best Case With respect to LLP, the class prior P(Yv) for label Yv can be estimated as
η(Π, Yv), the proportion of Yv. This is done, for instance, by the Mean Map method.
Finding a good estimate for P(X |Y), however, is at least as difficult as in the supervised
scenario and equates to it if each bag Bu only contains observations from a single class
and at least l bags contain observations from different classes. This scenario may be
called the best case, since in LLP, usually less information about individual labels is
given. Our intuition matches the findings of Yu et al. where it has been proven that the
probability of classifying instances correctly increases with the purity of the bags [750].
When each bag only contains examples from the same class, each bag is as pure as
possible.

Worst Case In theworst case, all label proportions πuv in matrix Π are equal, i.e. least
pure, and labels can only be guessed correctly with probability 1/l. If sample size is
large enough, the worst case can only occur if also all class priors P(Yv) are equal, and
the label does not depend on the bag, i.e. P(Y|u) = P(Y). Otherwise, we can estimate
P(Y) from the data and at least predict the class that has highest probability to occur
(i.e. the majority class). In this case, the probability for predicting the correct label
would be higher than 1/l.
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The worst case can only occur with large amounts of data, where the label proportions,
given as relative frequencies, will approach the true probabilities of classes in each bag,
or in the context of privacy-preserving data mining, where we have full control over the
formation of bags and want to make the problem as difficult as possible. In general, a
small number of large sized bags can make the problem more difficult, as Yu et al. have
shown [750]. For smaller random samples, we may usually expect slight deviations
of the proportions in matrix Π, which may help with making a correct decision about
class labels. For instance, when randomly uniformly sampling the 50 observations
per class from the well-known Iris dataset into bags, in many cases the clustering
approach developed in Section 3.3.6 classifies at least 96% of the observations correctly
on average.

Average Case In cases where observations have been sampled more or less randomly
into bags, a first intuition might be that bags that are more “pure”, i.e. that contain
more instances of the same class, provide more information. Yu et al. also show that
the probability of classifying individual instances correctly increases with the purity of
bags [750]. However, only an upper bound is shown for the probability of misclassifying
a fraction of individual observations incorrectly. In practice, cases may occur where we
perform well, despite label proportion matrix Π having high entropy, or badly, despite
Π having low entropy.

For instance, bags with low information content in terms of labelsmay nevertheless
provide information about the underlying distribution of observations, P(X). Getting
more information about P(X) by taking unlabeled observations into account as well
can increase prediction performance when only a few labeled examples are given [120].
Conversely, even if a bag has high information content in terms of labels, learningmight
not profit from it if the sample doesn’t represent the underlying data distribution.

For practical cases, it is therefore hard to find ameasure of problem difficulty.While
it is easy to measure the entropy of Π, it is difficult to measure how well bags reflect
the overall data distribution given a concrete sample, without knowing the underlying
data distribution—which is the crux of learning.

3.3.5 Loss and Risk

There are different possible ways to define loss functions over label proportions. First
we define measures of the quadratic deviation between the label proportions as being
derived from a previously trained prediction model f̂ and the given label proportions.
Applying the trained model to a set of observations xi ∈ X, the resulting label propor-
tions can be calculated by counting the number of observations xi with f̂ (xi) = Yv, in
each bag for each label Yv ∈ Y and dividing such counts by the size of their respective
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bag. This leads to a new matrix Γ f̂ , containing the model-based label proportions:

Γ f̂ = (γ f̂uv), γ f̂uv =
1

|Bu|
∑︁

x∈Bu

I(f̂ (x), Yv), I =
{︃

1 : f̂ (x) = Yv
0 : f̂ (x) ̸= Yv

. (3.4)

Similar to when defining a loss function for individual observations, it is now possible
to define a loss function over individual matrix entries by say, taking as loss the squared
error (πuv − γ f̂uv)2. The total deviance between Π and Γ f̂ can then be defined as the
average squared error over all matrix entries:

ℓMSE(Π, Γ f̂ ) =
1
hl

h∑︁

u=1

l∑︁

v=1
(πuv − γ f̂uv)2 (3.5)

The average squared error ℓMSE doesn’t take into account the relative group and class
sizes; nor can it catch the situation where two hypotheses f̂1 and f̂2 appear indistin-
guishable from each other, because the total error sum over all matrix entries is the
same. In practice, it can make sense to measure the error between Π and Γ f̂ by ℓΠ ,
which we define as the geometric mean of two different error measures ℓweight and ℓPrior
which deal with the previously mentioned disadvantages:

ℓΠ(Γ f̂ ) =
√︁

ℓweight(Π, Γ f̂ ) · ℓPrior(Π, Γ f̂ ) with (3.6)

ℓweight(Π, Γ f̂ ) =
1
hl

h∑︁

u=1

l∑︁

v=1
η(Π, Yv)

|Bu|
N (πuv − γ f̂uv)2 and (3.7)

ℓPrior(Π, Γ f̂ ) =
1
l

l∑︁

v=1

(︁
η(Π, Yv) − η(Γ f̂ , Yv)

)︁2
(3.8)

ℓweight weights the squared error of individual matrix entries by their relative group and
class size. ℓPrior measures how well a chosen hypothesis matches the class priors, as
estimated by η(Π, Yv). The choice to include the prior in the loss functionhas beenmade
based on empirical evaluations and a close examination of the label proportionmatrices
which have lead to misclassifications. What we have observed in our experiments
now has a theoretical justification. As shown by Yu et al., whenever a hypothesis
matches the class priors and observations in bags are distributed i.i.d., the probability
of misclassfiying a fraction of individual observations is bounded [750].

Moreover, if in addition to the label proportions, the true labels y(x) of a subset
T ⊆ X of observations x ∈ T are given, error criterion (Equation 3.6) can be easily
extended to include the average loss ℓT over these labeled training examples:

ℓΠ = 3
√︀

ℓweight · ℓPrior · ℓT with ℓT =
1
|T|
∑︁

x∈T
ℓ(y(x), f̂ (x)) (3.9)

Algorithms that optimize over ℓΠ can thereby easily consider also labeled observations
in addition to the given label proportions.
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3.3.6 Learning from Label Proportions by Clustering

The goal in LLP is to find a function f̂ that predicts the proportions of previously unseen
bags as well as possible, which in turn bounds the risk of misclassifying individual
observations, as shown by Yu et al. [750]. The authors pose this problem in terms of
empirical risk minimization. However, if we allow for arbitrarily complex hypotheses,
we can always match the given label proportions. In particular if we tried all different
possible labelings of observations exhaustively, we would always find a set of labelings
that minimizes one of the previously introduced loss functions. We would expect only a
few of such labelings to also minimize the empirical loss over individual observations,
i.e. we somehow need to control the capacity of our hypothesis class.

The particular LLP approach proposed in the following is based on the assumption
that observations lying close together in regions of the input space also share the same
class label. It first forms clusters of similar observations using an arbitrary partitional
clustering algorithm and respective distance measure. Instead of trying all possible
labelings of observations, the algorithm heuristically tries different labelings of clusters,
such that a loss function over label proportions is minimized. The capacity of the
hypothesis space can thus be controlled by varying the number of clusters k. A small
number of clusters leads to high bias, but low variance. A larger number of clusters
allows for ever smaller divisions of sample X, and therefore leads to low bias, but high
variance.

The assumption that clusters represent classes is not necessarily correct. Hastie et al.
demonstrate that especially the weighting of features can have an enormous influence
on clustering results [259]. In fact, one advantage of supervised methods over unsu-
pervised ones is that they can determine the relevance of features in relation to the
target variable. We therefore allow for a certain flexibility in distance measures. Such
measures should respect weights wj ∈ [0, 1] for each feature Aj, as given by a vec-
tor w⃗ = (w1, . . . , wd). Usually, such weights are specified by a domain expert. In the
clustering approach introduced in the following, however, the relevance weights can
be approximated automatically by an evolutionary strategy, based on one of the loss
functions defined in Section 3.3.5 (or other loss functions for LLP).

In the Section 3.3.6.1, the accompanying optimization problem is stated. Then, in
Section 3.3.6.2, an approach for solving it is described. The algorithm can be used with
different labeling strategies which are presented in Section 3.3.6.3. The approach’s
runtime is analysed in Section 3.3.6.4, while Section 3.3.6.5 explains how to classify
new examples, based on a set of labeled clusters.

3.3.6.1 Optimization Problem
Let the vector λ⃗C = (λ1, . . . , λk) with λj ∈ Y represent a labeling for a clustering
C = {C1, . . . , Ck}. Let f̂⃗λC : X → Y be a mapping that returns the label λi for a given
observation x ∈ Ci. Given a clustering C, we search for a labeling λ⃗C of the clusters
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that minimizes the error, according to some error measure ℓ⃗λC (Π, Γ f̂⃗λC
), between the

model-based label proportions Γ f̂⃗λC
and the known label proportions Π:

min
λ⃗C

ℓ⃗λC
(Π, Γ f̂⃗λC

) (3.10)

The error measure could be, for instance, the average squared error ℓMSE or a combined
error measure such as ℓΠ .

Let qw⃗ be a function which is able to assess the quality of a clustering based on a
similarity measure that respects feature weights. This usually means that observations
xi ∈ X are represented as d-dimensional feature vectors x⃗i = (xi1, . . . , xid)with xij ∈ R.
We are trying to solve the optimization problem

min
w⃗

ℓ⃗λC
(Π, Γ f̂⃗λ*

C

), λ⃗*C = argminλ⃗
C*
ℓ⃗λC

(Π, Γ f̂⃗λ
C*

), C* = argmaxCqw⃗(C) , (3.11)

i.e. we are searching for a clustering C* which maximizes qw⃗ and whose labeling λ⃗*C
minimizes ℓ⃗λC , for all possible weight vectors w⃗. As formulated, with arbitrary functions
qw⃗ and ℓ⃗λC

, the problem is non-convex. Since we want to allow for flexibility in the
choice of such functions, in the following we approximate solutions by an evolutionary
strategy.

3.3.6.2 The LLPC Algorithm
The LLPC (Learning from Label Proportions by Clustering) algorithm solves prob-
lem (3.11) by an evolutionary strategy. For each weight vector w⃗, the sub-optimization
problem of maximizing qw⃗ is solved by an inner clustering algorithm, where the par-
ticular qw⃗ depends on the algorithm. The only prerequisite for the clusterer is that it
returns disjunct clusters and respects different feature weights. The sub-optimization
problem (3.10) is independent from the clusterer and currently can be solved by different
labeling strategies, of which two are introduced in Section 3.3.6.3.

In more detail, LLPC takes a clustering algorithm clusterer, a labeling algorithm
labeler and an error measure ℓ⃗λC as parameters, in addition to Π, X,B = {B1, . . . , Bh}
and Y = {Y1, . . . , Yl}, which are related to the task of LLP, and a set of parameters
evo related to the evolutionary learning strategy. LLPC then approximates the optimal
weight vector and returns w⃗*, as well as the related clustering C* and labels λ⃗*C for the
clusters. The returned weights w⃗* can be interpreted as the importance of individual
features and thus give valuable additional information for the interpretation of cluster
models.

We use the evolutionary strategy described in [444]. The evolutionary strategy
starts with a random population P of normalized weight vectors w⃗, i.e. wj ∈ [0, 1].
For each individual in P, the clustering algorithm clusterer is called. The clusters are
labeled according to the given labeling algorithm labeler and the fitness is evaluated
by criterion ℓ⃗λC

. If the fitness is higher than the best fitness seen so far, the newly found



148 | 3 Industry 4.0

Algorithm 1: The LLPC algorithm
1 Function LLPC(Π,X,B,Y,clusterer,k, labeler,ℓ⃗λC ,evo)
2 best_fit := −∞; generation := 0 ;
3 Randomly initialize a population P of psize normalized weight vectors ;
4 while generation < maxgen do
5 for w⃗ ∈ P do
6 C := clusterer(X, k, w⃗) ;
7 (⃗λC, err) := labeler( C,B, Π, Y, ℓ⃗λC );
8 if best_fit < −err then
9 best_fit := −err; C* := C; λ⃗*C := λ⃗C; w⃗* := w⃗ ;

10 end
11 end
12 generation := generation + 1 ;
13 if generation < maxgen then
14 Pcopy := P ;
15 Gaussian mutation of weights in Pcopy with variance mutvar ;
16 Pchildren := Uniform crossover on P ∪ Pcopy with probability crossprob ;
17 P := Tournament selection with size tournsize on P ∪ Pcopy ∪ Pchildren ;
18 end
19 end
20 return C*, λ⃗*C, w⃗* ;
21 end function

clustering, labeling, and weight vector are memorized as the new best ones. In each
generation, the weight values in a copy of P are mutated by a Gaussian distribution and,
with a certain probability, exchanged with P by a crossover operator. The individuals
then take part in a tournament and only the best ones are kept in the next generation.
This process is repeated until the maximum number of generations as specified by the
user is reached.

Using an evolutionary strategy as a wrapper has the advantage that it is not nec-
essary to integrate the error measure ℓ⃗λC

into the optimization problem of the inner
clustering algorithm, as was done in AOC-KK. The clustering algorithm can thus be
treated as a black box and easily exchanged, without any further adaptation. It should
also be noted again that in contrast to AOC-KK, LLPC allows for classes being repre-
sented by more than just one cluster (k > l). Thereby LLPC allows for ever smaller
divisions of sample X, i.e. parameter k may be seen as a control parameter that trades
off bias against variance, as previously discussed.

The free choice of clustering algorithm allows for respecting different kinds of
data distributions. For example, LLPC was run successfully with k-means [426], kernel
k-means [174], EM clustering [168, 731], DBSCAN [191], PROCLUS [11] and Support Vector
Clustering (SVC) [55], without modification. Moreover, LLPC can be used with different
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error measures, such as criterion (Equation 3.9) that can respect individually labeled
examples.

LLPCmay therefore be looked at as ameta-algorithm for learning from label propor-
tions, which allows for the use of different clustering algorithms, labeling strategies and
loss functions. In a further step, one might also exchange the evolutionary algorithm.
For instance, it might be adapted to not only minimize ℓ⃗λC over weight vector w⃗, but
also over hyperparameters such as k in the case of k-means clustering, or C and the
RBF kernel γ in the case of SVC.

Algorithm 2: Labeling of clusters by local search with multistarts
1 Function LocalSearchMultiStart(C, μ, Π, k, Y, ℓ⃗λC , starts)
2 best = −∞ ;
3 for iteration ← 1, starts do
4 λ⃗C , λ⃗bestIterC

← (λ1 , . . . , λk) with λj ∈ Y chosen uniformly at random
5 start, bestIter ← −ℓ⃗λC (Π, Γ f̂⃗λC

); // calculate initial fitness
6 improving ← true ;
7 while improving do
8 for kpos ← 1, k do
9 // at each position . . .
10 for lpos ← 1, |Y| do
11 // . . . try all labels . . .
12 λkpos ← Ylpos ∈ Y ;
13 fitness ← −ℓ⃗λC (Π, Γ f̂⃗λC

) // calculate fitness

14 if fitness > bestIter then
15 λ⃗bestIter

C
← λ⃗C; start, bestIter ← fitness ;

16 break // leave both for loops
17 else
18 λkpos ← λbestIterkpos // reset to best label found at kpos so far
19 end
20 end
21 end
22 if bestIter = start then
23 // Nothing better found
24 improving ← false ;
25 end
26 end
27 if bestIter > best then
28 best ← bestIter; λ⃗best

C
← λ⃗bestIter

C
// remember best solution

29 end
30 end
31 return λ⃗best

C
, −best

32 End Function
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3.3.6.3 Labeling Strategies
The following two labeling algorithms solve the sub-optimization problem (3.10) and
can be used as the labeler in LLPC.

Exhaustive Labeling As long as k can be restricted to a small number and l = 2
for a binary classification problem, trying lk possible labelings for a clustering C is
no problem. In experiments (see Section 3.3.7), good solutions often were found for
6 ≤ k ≤ 12. For each labeling, we need to calculate err⃗λC . For error measures like ℓMSE or
ℓΠ , this takes linear time in the number of observations N. In case of the aforementioned
error measures, the calculations only involve basic operations such as count, addition,
multiplication, and division.

Local Search with Multistarts For cases where the number of clusters k > 12 or
the number of labels l > 2, a local search that is started multiple times with different
random combinations of labels is proposed. The local search greedily improves on
the current labeling of clusters by trying all possible labels at each component of the
labeling vector λ⃗C. Fitness measures how well the model-based label proportion matrix
Γ f̂ , as calculated from the current labeling, matches the given label proportions Π. If
the fitness improves, the search starts again from the first component of the labeling
vector λ⃗C. Otherwise, it resets the label at the current position kpos to the label of the
best (local) solution found so far. The best labeling found over all starts of the different
greedy searches is returned.

In each iteration, the greedy search runs until no further improvement is possible
(which is a stopping criterion). Moreover, at each step of the algorithm, the fitness
either improves or stays the same. Therefore, each search finds a local minimum. Since
the number of searches is finite, the returned labeling vector is also locally minimal.
Although, in contrast with the exhaustive labeling strategy, it cannot be guaranteed that
a globally optimal solution will be found, it has been demonstrated that the heuristic
labeling strategy performs well in real-world applications such as reducing communi-
cation costs in distributed machine learning applications [655].

3.3.6.4 Runtime Analysis
The user-specified parameters maxgen, psize and tournsize in LLPC are constants.
They do not depend on the number of observations N and limit the number of itera-
tions of the evolutionary strategy to be constant. As discussed in Section 3.3.6.3, the
asymptotic runtime of the labeling strategies is linear in N, as k and l are constants and
the evaluation of err⃗λC usually takes linear time. The asymptotic runtime of LLPC will
otherwise depend on the used cluster algorithm. For example, if we allow for approxi-
mate solutions and limit the number of iteration steps, k-means has a linear runtime.
Hence, overall LLPC has linear runtime, which makes it especially well suited for use
in resource-constrained settings such as applications in the Internet of Things settings.
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However, when used with an algorithm like kernel k-means, the runtime of LLPC can
also become quadratic, for instance.

3.3.6.5 Generating a Prediction Model
The LLPC algorithm returns labeled clusters of sample X. It is then possible to assign
labels to individual observations xi ∈ X with f̂⃗λC . The question is how to predict the
labels of new observations, i.e. how to transform a clustering into a prediction model.

In the case of clustering algorithms which return a model-based description of
clusters such as k-means which returns cluster means, one can simply use the model to
assign new observations to a cluster, and then predict the cluster’s corresponding class
label. For instance, in the case of k-means, one can assign new observations to their
closest cluster mean and predict the corresponding class label, by applying function
f̂⃗λC . Whenever a clustering algorithm is purely descriptive, i.e. in cases where it only
returns a clustering of X, but no model to assign new observations to clusters, one may
use a nearest neighbors approach such as k-NN for classification.

In general, one option for getting a prediction model after running LLPC is to train
a standard classifier such as Naïve Bayes [301] or a SVM [700], based on the current
labeled observations. Taking this approach, LLPC may be regarded as a preprocessing
step before modeling, in which the missing labels of observations in sample X are
restored, based on the given label proportions.

3.3.7 Evaluation

In this section, we evaluate the general method. Motivated by the steel scenario, the
method needs to be carefully evaluated in order to be trustfully applicable in diverse
industrial applications. Since the method is general, the LLPC algorithm is compared
with three state-of-the-art methods for LLP: the Mean Map [514] method, Inverse Cali-
bration (Invcal) [552], and AOC Kernel k-Means (AOC-KK) [131]. The comparisons are
performed using standard benchmark datasets or generated test data, as is usually
done.

LLPC iswritten in Java andhas been implemented in the formof several operators in
RapidMiner (https://rapidminer.com). All results are based on using fast k-means [187]
as an inner clustering operator, which is a variant of k-means utilizing the triangle
inequality for faster distance calculations. Observations xi ∈ X are represented as
d-dimensional feature vectors x⃗i = (xi1, . . . , xid)with xij ∈ R. As a distance measure
we have used the weighted Euclidean distance with weight vector w⃗ = (w1, . . . , wd)

dw⃗(x⃗i , x⃗
′
i) =

d∑︁

j=1
(wjxij − wjx′ij)2 (3.12)

https://rapidminer.com
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Tab. 3.3: UCI datasets used for the experiments.©[2011] Springer. Reprinted, with permission,
from [651].

Dataset N d Dataset N d

credita 690 42 sonar 208 60
vote 435 16 diabetes 768 8
colic 368 60 breast cancer 286 38
ionosphere 351 34 heartc 303 22

which weights each feature xij of example x⃗i differently. In all experiments, we used the
exhaustive labeling strategy (see Section 3.3.6.3) with loss function ℓΠ (see Section 3.3.5).
AOC-KK has been implemented using a combination of Java, RapidMiner, and Matlab.
For Mean Map and Invcal, R scripts were used, which were provided by the author of
Invcal [552].

3.3.7.1 Prediction Performance Experiments
The accuracy of LLPC, AOC-KK, Invcal, and Mean Map has been assessed on the eight
UCI [32] datasets shown in Table 3.3. Each possible value of a nominal feature has
been mapped to a binary numerical feature with values 0 or 1. Numerical features were
normalized to the [0, 1] interval. Table 3.3 shows the number of features d after this
preprocessing step.

In each single experiment, the accuracy has been assessed by a 10-fold cross-
validation. For LLP, we have partitioned the training set of a particular fold into bags of
size σ, by uniform sampling of observations. While such uniform sampling might not
reflect the way in which bags are formed in a real-world setting, it allows for a more
homogeneous interpretation of results across different datasets than domain-specific
sampling based on feature values.We tried several bag sizes σ: 2, 4, 8, 16, 32, 64, and 128
(with the last bag smaller than σ, if necessary). The label proportions were calculated
and the individual labels removed. In each fold, the accuracy of the learned prediction
model has then been calculated on a labeled test set.

The kernel methods Mean Map, Invcal, and AOC-KK have been tested with the
linear kernel, polynomial kernels of degree 2 and 3, and radial basis kernels (γ = 0.01,
0.1 and 1.0). LLPC has been tested for cluster sizes k ∈ [2, 12]. As parameters for the
evolutionary strategy, we used maxgen = 10, psize = 25, mutvar = 1.0, crossprob =
0.3 and tournsize = 0.25. Running LLPC with k-means provides a prediction model
consisting of cluster means with associated class labels. The same is true for AOC-
KK. However, the cluster methods also assign labels to each observation in sample X,
allowing for a subsequent training of other classifiers, as described in Section 3.3.6.5.
Based on such labeled examples, we have trained models for Naïve Bayes [301], k-
NN [13], decision trees [516], random forests [102], and the SVM [700] with linear and
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radial basis kernel. The model parameters of each method have been optimized by a
grid or evolutionary search.

The combination of all datasets, bag sizes, classifiers, their variants and parameters
results in a total of 13 216 experiments: 672 for Mean Map and Invcal, 2688 for AOC-KK,
and 9856 for LLP. For bag sizes 16, 32, 64 and 128 on the datasets colic and sonar,
and for bag size 128 on credita, we conducted additional experiments with LLP for
maxgen = 5 and psize = 100. In some cases, we achieved better prediction accuracy.
All experiments took about three weeks. Theywere run in parallel on up to sixmachines
with an AMD Dual-Core or Quad-Core Opteron 2220 processor and a maximum of 4GB
main memory.

3.3.7.2 Prediction Performance Results
Figure 3.10 contains plots of the highest achieved accuracies for all datasets and bag
sizes, based on the best performing models of LLPC, AOC-KK, Invcal, and Mean Map,
over all conducted experiments. LLPC shows a higher accuracy than Invcal formany bag
sizes on the datasets credita, vote, colic, sonar, and breast cancer. On credita,
vote, ionosphere, sonar, and diabetes, the variance of accuracy between bag sizes
is smaller for LLPC compared with the other methods. Mean Map performs worse than
LLPC and Invcal in many cases. The performance of AOC-KK varies, depending on the
dataset. It shows good performance on breast cancer and heartc, but not on the
others. Except for the breast cancer and vote datasets and a few other accuracy
values, the overall accuracy of allmethods decreases with a larger bag size. The results
thus confirm the theory: with larger sizes of bags, without increasing the size of sample
X, learning becomes more difficult.

The statistical significance of results can be assessed with the adjusted version
of the Friedman test, as proposed by [169]. The test is a non-parametric equivalent of
ANOVA and ranks the classifiers for each dataset separately. Under the null-hypothesis,
the average ranks of the classifiers should be equal. For comparing LLPC to all others,
we proceeded with the two-tailed Bonferroni-Dunn test as a post-hoc test.

Table 3.4 can be understood as a summary of the detailed plots shown in Figure 3.10,
giving a better understanding and overview of LLPC’s overall performance. The table
shows the average ranks of the compared classifiers and their difference to LLPC’s rank.
Each rank was calculated based on the best performing models (including the standard
classifiers), over all conducted experiments. The table also shows the critical difference
(CD) values for the Bonferroni-Dunn test. The CD for σ = 128 is different, because Mean
Map was not included in the comparison, due to missing values. LLPC has the highest
rank in six cases, for σ > 2. At the 10%-level, LLPC is significantly better than AOC-KK
for σ = 8, better than Invcal for σ = 128 and better than Mean Map for σ = 4, 8, 32,
and 64. In all other cases, LLPC performs equivalently.
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Fig. 3.10: Highest accuracies for all datasets and bag sizes, over all 13 216 runs of LLPC, AOC-KK,
Invcal, and Mean Map (plus the additional runs of LLPC with maxgen = 5 and psize = 100).
Some values for Mean Map and bag size 128 are missing in the plots, due to an error in the R script.
©[2011] Springer. Reprinted, with permission, from [651].
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Tab. 3.4: Average ranks of classifiers by bag size, and their difference to LLPC’s rank, based on the
best models for each dataset and bag size. Positive difference values indicate a better performance
of LLPC. Highest ranks and significant differences (higher than CD) at the 10%-level are marked in
bold.©[2011] Springer. Reprinted, with permission, from [651].

σ 2 4 8 16 32 64 128

Average Ranks

LLPC 2.500 1.875 1.500 1.875 1.625 1.375 1.375
AOC-KK 2.000 2.750 3.000 2.875 2.625 2.375 2.000
Invcal 2.000 1.875 2.375 2.125 2.125 2.275 2.625
Mean Map 3.500 3.500 3.125 3.125 3.625 3.875 -

Differences, CD<128=1.4317, CD128=0.98

AOC-KK -0.500 0.875 1.500 1.000 1.000 1.000 0.625
Invcal -0.500 0.000 0.875 0.250 0.500 1.000 1.250
Mean Map 1.000 1.625 1.625 1.250 2.000 2.500 -

LLPC

(a)

LLPC

(b)

Fig. 3.11: Average runtime and accuracy of 10-fold cross-validations with LLPC, Invcal, Mean Map,
and AOC-KK on several samples of random data. The data was generated for a two Gaussian mixture
classification problem (N = 10000, d = 10, feature values normalized to [0, 1]).©[2011] Springer.
Reprinted, with permission, from [651].

3.3.7.3 Runtime Comparison
For an empirical runtime comparison of the algorithms, we have generated random
data for a two Gaussian mixture classification problem (10 000 observations and 10
features, with values normalized to [0, 1]). Then, the average runtime for training and
the accuracy of the classifiers for 10-fold cross validation has been assessed for different
samples of the data, with varying sizes (see Figure 3.11). The bag size for LLP has been
σ = 16 for all runs. A radial basis kernel with γ = 0.1 has been used for the kernel
methods. LLPC has been run with the exhaustive labeling strategy and fast k-means
(k = 6), with parameters maxgen = 3, psize = 25, mutvar = 1.0, crossprob = 0.3
and tournsize = 0.25 for the evolutionary optimization. Both LLPC and AOC-KK used
the cluster mean model for prediction.
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LLPC shows a high prediction performance for all sample sizes. Moreover, LLPC has the
lowest runtime. However, since themethods are implemented in different programming
languages (Java, Matlab, R), one should not compare the absolute times, but the slope
of the curves. The curve of LLPC’s runtime is very flat and almost a straight line, while
the slopes of the other curves indicate runtimes that are faster growing. The results
empirically demonstrate LLPC’s small runtime, which makes the algorithm well suited
for resource-constraint settings, especially since centroid cluster models also have a
small memory footprint.

3.3.8 Summary and Conclusions

We have presented an approach for LLP known as the Learning from Label Proportions
by Clustering (LLPC) algorithm. The approach is general enough to accommodate for
the use of different clustering algorithms, labeling strategies, and loss functions. With
k-means as the inner clustering algorithm and a constant number of iterations, LLPC
has only linear worst-case training time and its cluster mean models are small and fast
to apply. In comparison with state-of-the-art methods, which need more training time,
the cluster mean models show a significantly higher or equivalent prediction accuracy
in the conducted experiments. By training other classifiers on the labeled clusters, the
highest achieved accuracy of LLPC is significantly higher for even more bag sizes. Here,
LLPC has the highest average rank for all σ > 2. In addition, LLPC has other beneficial
properties of which, to the best of our knowledge, other approaches don’t possess all at
once: LLPC can handle (1) non-linear decision boundaries, depending on the choice of
clustering algorithm, (2) multiple classes, (3) additionally given labeled observations,
and (4) it can weight the relevance of features.

LLP has relevance for real-world applications such as guaranteeing the privacy of
democratic free elections, or the reconstruction of labels for objects that are hard to
track, like those in smart manufacturing. Due to the small memory footprint and fast
application of centroid clustermodels, as well as a linear training time, LLPC is alsowell
suited for running on resource-constrained devices in the Internet of Things, like edge
devices in distributed computing. It has been developed for a series of processing steps
in a steel rollingmill allowing for the early quality prediction during the processing (see
Section 3.2.4.2). It also has been applied successfully in the field of traffic prediction (see
Section 4.1), where it was used to reduce communication costs in a vertically-distributed
machine learning setting [655].

Parts of this contribution were previously published in conference proceedings by
Springer [651], [654] and in the first author’s dissertation [652].
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3.4 Simulation and Machine Learning
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Abstract: The integration of sensor and simulation data for Machine Learning (ML)
has become a hot topic. On the one hand, machine learning in the form of Active
Learning (AL) allows running exactly those simulations that are needed for predicting
future events based on the analysis of explanatory variables. Since simulation is a time-
consuming process, we save computational resources by selecting the most informative
simulation configurations. On the other hand, simulations represent expert knowledge,
so that joining simulation and machine learning from observations leads to better
predictions.

The combination of simulation and machine learning has been successfully used
to optimize milling processes. Regarding undesirable vibrations of milling tools, a
learning-based prediction of a stability criterion is realized. Furthermore, forces of
milling operations are predicted using a developed data fusion of sensor and simulation
data. Apart from forecasting process characteristics directly, machine learning also
identifies parameter values for simulation models. In particular, the machine tool
dynamics of a geometric physically based milling simulation system are successfully
parametrized for different poses of the machine tool axes to reduce the number of
calibration measurements required.

3.4.1 Introduction

In production engineering, many challenges arise regarding process design due to
the high complexity and huge variety of engagement situations between the cutting
tool and the workpiece to be machined [20]. For milling processes, different process
parameter values can lead to different results for the machined component. Especially
in the aerospace industry, where deep cavities have to be milled when machining
structural components, the required long and slender milling tools can be susceptible
to undesirable vibrations that can negatively affect the machined workpiece surface
and can lead to increased tool wear. The tool wear can in turn influence the dynamic
process behavior [20, 275].

Simulations can support the design of such processes [728]. There are different
simulation approaches. Finite element (FE)-based methods represent complex interac-
tions between the cutting edges of the tool and the machined material by numerical
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approximations of differential equations [676]. Since the material is constantly being
removed from the workpiece, the resulting high degrees of the deformation require
relatively small simulation time steps. As a consequence, the simulation runtimes are
high and only a few tooth engagements can be simulated in a reasonable time which
makes the transfer to complex and long-running processes challenging [208]. By con-
trast, using geometric physically based simulation approaches, entire processes can be
investigated [728]. This is due to the use of simple surrogate models to represent the
tool and workpiece. However, this entails that complex interactions, such as tool wear,
cannot be modeled reasonably. Moreover, while such methods are significantly faster
than FE-based approaches, they are still not real-time capable.

In the context of Industry 4.0, the vision of realizing self-optimizing machining
systems by incorporating machine learning methods has emerged recently and started
to attract the attention of the manufacturing community [449]. By using these methods,
predictions of process characteristics for unseen input data can be achieved in real-
time [128, 491]. Several investigations can be found in literature, which focus on the
prediction of different process characteristics for milling operations using machine
learning methods, e.g. surface roughness [337, 384, 536], process forces [498, 699], or
chatter vibrations [482, 690]. Furthermore, over the past decade, fusing multiple sensor
signals has been a popular approach to increase the information gain for different tasks,
especially for tool condition monitoring [230, 717, 765].

The predictive accuracy of machine learning models can be further improved by
combining sensor data with simulation results. Denkena, Dittrich, and Uhlich [170]
trained a model using support vector regression. Simulated and measured data are
used as features to predict shape deviations of the workpiece. The simulated data is
calculated using measured values of the axis positions of the tool. Plakhotnik et al.
[503] combined sensor data, such as machine axis positions and spindle torque, with
results from computer-aided design and geometry simulations to visualize specific
process characteristics and support process design. Peng, Bergs, Schraknepper, Klocke,
and Döbbeler [498] utilized FE-based simulations and measurements to train a tool
wear-dependent cutting force model based on neural networks.

In this section, different aspects concerning the combination of simulation tech-
niques and machine learning are discussed. As shown in Figure 3.12, it is analyzed
how simulations can be replaced by machine learning models to enable real-time
predictions [560]. The models learned on simulation data can then be refined by a
selected number of experimentally acquired data to close the gap between simulation
and experiment, which may be caused by the simplifications of simulation models. In
this context, to improve resource efficiency, experiments should only be performed for
scenarios whose inclusion is expected to maximize the improvement of the prediction
accuracy of the models.

The research concerning AL involves two real-world applications. Reducing the
computational resources of an expensive FE simulation is studied in the field of tunnel-
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Fig. 3.12: Concept of combining simulation and machine learning [560].

ing (Section 3.4.3.1). The cheaper geometric physical simulation for sampling training
data is studied when refining a model for milling (Section 3.4.3.2).

Another focus of the investigation is the fusion of simulation results with sensor
data to predict future process characteristics for milling operations [206]. To this end,
different fusion strategies are evaluated and compared for the milling application
(Section 3.4.4). Furthermore, the first results are obtained for the integration of machine
learning methods into a geometric physically based simulation system in order to learn
pose-dependent dynamic models [207]. Using ML for initializing simulation models is
illustrated by applications in milling (Section 3.4.5.1) and grinding (Section 3.4.5.2).

3.4.2 Simulation of NC-Milling Processes

Inmilling applications,weuse a geometric physically based simulation system [728]. For
the tool and workpiece model, the Constructive Solid Geometry (CSG) [210] technique is
used. Thereby, the tool model can be realized by modeling the envelope of the rotating
tool by combining simple geometric primitives throughBoolean operators. Formodeling
the initial workpiece, the use of a cuboid is usually appropriate. The movement of the
tool is defined by discrete positions along an NC path, which can also be used on a real
machine. The step size between the tool positions is the feed per tooth defined by the
process under consideration. The workpiece geometry of the i-th feed per tooth

Wi = W0 \
i−1⋃︁

j=0
Tj (3.13)
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is the difference between the model of the initial workpieceW0 and the union of the
tool models Tj , j = 0, . . . , i −1 for all previously processed discrete tool positions along
the cutting path. The intersection betweenWi and Ti represents the chip shape of the
i-th cutting operation. For the calculation of process forces, this chip shape is sampled
by rays that have their origin on the rotational axis of the tool. At each ray, the equation

Fi = b · ki · d0 ·
(︂
d
d0

)︂1−mi

,

d0 = 1mm, i ∈ {c, n, t} [321] (3.14)

is evaluated to calculate process forces in cutting, normal, and tangential directions.
Here, d represents the chip thickness, b the width of the cutting segments defined by
the rays, and kc, mc, kn, mn, kt, and mt the parameters to be calibrated. Using the
directional information of the rays, the force vectors can be transformed into a global co-
ordinate system in x-, y- and z-directions. To simulate tool vibrations, a set of decoupled
damped harmonic oscillators represents the dynamic behavior of the machine-spindle-
tool system. The parameter values of these oscillators have to be determined using
measurements in advance so that deflections in x- and y-directions can be calculated
as a vibration-induced displacement of the tool relative to the workpiece [662].

3.4.3 Learning from Simulation

As it was mentioned before, even though geometric physically based simulations allow
for the investigation of long-running milling processes in a reasonable runtime [728],
they are not yet real-time capable. As a result, predictions can be generated only for
process configurations that have been simulated beforehand. By contrast, ML models
can be evaluated in real time and, thus, offer the opportunity to predict future unknown
events based on an analysis of past data [128] or to classify the current process state,
using a set of features extracted from measured data [366]. Therefore, new trends
in applied ML aim to replace simulations with ML surrogate models that are more
appropriate for real-time applications [116, 212, 559, 560]. In such a manner, not only
predictions are generated in real time, but computational resources required for running
simulations are also saved.

3.4.3.1 Active Learning for Simulation Data Acquisition
For the simulation of processes that exhibit a high degree of visco-elasticity or elasto-
plasticity, numerical simulation methods that require high computational resources
are often necessary [116, 212, 559]. Hence, we want to reduce the amount of data that is
required to build an accurate surrogate ML model. The same idea was broached in the
literature with AL. Starting from a small and non-optimal training set, AL procedures
aim at selecting unlabeled data points whose inclusion in the training set improves
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the performance of the ML model iteratively [593]. In this context, we develop an AL
approach that selects the least amount of simulation configurations to learn an accurate
surrogate ML model [559].

One simulation scenario is defined by a given combination of simulation input
parameters and considered as a data instance characterized by a set of features. When
the simulation runs for a given scenario, it is called a labeled data instance; otherwise,
it is called an unlabeled data instance. The active selection can also be decided based
on the label proportions of the instances that have so far been generated. In this case,
the problem is formulated as Active Class Selection (for more details see Section 5.2.2
in Volume 2).We want to reduce the cost of running process simulations for collecting
labeled training data instances. Hence, our Hybrid AL approach (HDAL) combines
error-based with distance-based methods to select the minimal number of simulation
scenarios that are necessary to build an accurate ML model. We start by randomly
selecting a small set of simulation scenarios (i.e. configurations) to run. Then, our
framework operates in three stages. First, it trains the ML model on the available
labeled scenarios. Second, it computes the training error measures of the ML model
for each individual scenario in the labeled set. This step allows us to identify input
data regions where the ML model is weak (i.e. uncertain about the label) and probably
would need to see more samples from these regions for a better generalization. We
select the labeled scenarios with the highest estimated error rates. In the third stage, we
determine the closest unlabeled scenarios to these labeled scenarios. The assumption
is that two close data instances probably share similar characteristics and thus similar
estimated surrogate ML models. However, to avoid clustering problems around these
labeled scenarios (i.e. already investigated regions), we devise a “min-max” selection
procedure that chooses the furthest ones from the closest unlabeled scenarios. The
entire process is iterated until a stopping criterion is met. The stopping criteria for AL
procedures is still an open research question. It can be set according to a maximum
budget of iterations or when the model accuracy improvement on an independent
calibration/validation set over the last iterations becomes insignificant.

We use a 3D FE simulation designed specifically for process-oriented computational
simulations of shield tunnelling processes [116] to validate our framework. The simula-
tion models predict soil displacements over time in different measuring points during
tunnel excavation given two machine input parameters, namely the grouting and sup-
port pressures. Each scenario results in a time series with 64 item steps of displacement
observations over 154monitoring surface points. 20 scenarios are initially selected for
training. 130 scenarios are considered unlabeled and 10 are used for testing. The goal
is to replace the simulation with an ML model to forecast future soil displacements. To
do so, we use Vector Autoregressive with Exogenous time series features (VARX) as a
surrogate ML model [559]. For VARX setting, the input data consists of the set of time
series of settlements of the surface monitoring points (i.e. measured in millimeters),
plus the time series records of the grouting and the support pressures (i.e. measured in
Pa) of the machines, considered as exogenous variables. A L1-regularization is applied
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to estimate the model coefficients. The VARX model is retrained with each update of
the training set at each AL iteration. Our study shows the ability of our framework
in reducing the number of training scenarios required for training up to 60% while
improving the prediction accuracy up to 20%.

3.4.3.2 Active Learning for Model Building
Active learning can be applied not only to reduce data annotation costs (i.e. reducing
the number of simulation configurations to run) but also as an informed sampling
procedure to accurately learn the ML surrogate model. The surrogate model should be
able to represent the capabilities of the simulation correctly and applied afterward in an
online setting to predict process characteristics. Since the quality of ML model depends
largely on the training data, we exploit the interaction between the surrogate MLmodel
and the simulation using AL to actively and iteratively sample from the simulation data.

In this context, in order to control milling processes in real time by adapting the
process parameter values, we develop a novel ML framework based on a geometric
physically based simulation of NC-milling process (cf. Section 3.4.2) [560]. We choose
to focus more specifically on building a ML model to predict the Poincaré diameter,
which is considered as a process stability criterion for a given simulation scenario,
characterized by a given input spindle speed. Parts of this section are already published
by the authors [206, 560].

Our experimental use case is a face milling process using a fixed width of cut of
2mm, an increasing depth of cut from 0mm to 1mm, a feed per tooth of 0.1mm and
varying values for the spindle speed between 3000min−1 and 15000min−1. For the
tool, a torus cutting tool with a diameter of 6mm and a corner radius of 1mm is used
to machine aluminum alloy 7075.

The proposed framework consists of a weighted ensemble of Multilayer Percep-
trons (MLPs) trained on different subsets of features. In addition, an AL procedure is
simultaneously used to iteratively design the optimal training set from the generated
simulation data. A forecast for the Poincaré diameter is delivered every P1 millisec-
onds for the next future P2 milliseconds. This is achieved by training a committee of
MLPs, each on a distinct subset of process features [129]. Each model member of the
committee is an online regression model, where the expected Poincaré diameter is
assumed to be a function of the historical values of the time series features, namely the
forces in the three-dimensional global coordinate system Fx, Fy, and Fz, the deflections
in the bi-dimensional space Dx and Dy and the expected values of the chip volume.
Since many configurations (i.e. various spindle speed values) are simulated, an AL
approach based on the Query By Committee (QBC) paradigm [129] is used to iteratively
add simulation configurations, whose inclusion in the training set should improve the
prediction accuracy. The final prediction output is computed by a weighted average
over the committee members’ outputs. The main steps of the framework are illustrated
in Figure 3.13.
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Fig. 3.13: Data acquisition and prediction framework [560].

Pool-Based Active Learning with QBC The output of the simulation depends to a
large extent on the input value for the spindle speed. The goal is to identify simulation
configurations whose inclusion in the training set improves the accuracy of the surro-
gate ML model. One way to do this is to carefully design the training set by controlling
the selection of training simulation configurations using AL. This control is given by a
problem-dependent heuristic, e.g., the decrease of the estimated prediction error on a
test set if a given configuration or a pool of configurations are added to the training set.
One of the most popular AL approaches is built based on the QBC paradigm [593].

A committee of learners is built following different assumptions on subspaces
of instances, which may easily lead to a huge number of hypotheses to cover and
quickly become computationally intractable for real applications [442]. It can also be
built on disjoint subsets of features [129], usually generated by the Random Subspace
Generation (RSG) approach [129], which may also lead to an intractable number of
hypotheses. In our approach, each feature subspace represents one characteristic of
the original process (cf. Figure 3.13)[560]. The QBC procedure selects the simulation
configuration on which the committee members’ predictions are maximally split. First,
each committee member is trained on an initial small set of simulation configurations
Ni. Then, at each iteration, the set of Nc candidate configurations is sorted according
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to a disagreement measure for each simulation configuration cs:

f csQBC = log

⎛
⎝

q∑︁

j=1

1
n

n∑︁

t=1
(ŷcst − ŷ

cs
t,j)

2

⎞
⎠ , (3.15)

where ŷcst,j is the predicted value by the committee member j at the instant t, and ŷcst is
the estimated result of the committee composed of qmodels, on the scenario cs and
obtained as follows: ŷcst = 1

q
∑︀q

j=1(ŷ
cs
t,j). From the sorted configurations, the first Ns are

selected to be added to the training set. This entire process is iterated until a stopping
criterion is met, e.g. a maximum number of configurations in the training set is reached,
or the accuracy improvement on an independent calibration/validation set over the
last iterations becomes insignificant. To output the final predictions, we use the already
trained committee of MLPs and aggregate them in a weighted ensemble model. The
weights are computed offline using a normalized version of the loss of the model on
the training set. During the AL procedure, the weights are updated with each update
of the training set. This mechanism may help to achieve a blind adaptation to drifting
characteristics in time series observations by adjusting the contribution of each model
in the final output [200]. Let M = {M1,M2, . . . ,Mq} be the committee of q MLPs and
ŷcst,j is the output of model Mj for a given simulation configuration cs at a time instant t.
The final prediction output is obtained with:

ŷcst+1 =
q∑︁

j=1

[︁(︀
1 − χj

)︀
ŷcst,j
]︁

∑︀q
j=1

(︁
1 − χj

)︁ : χj ∈ [0, 1], ∀j (3.16)

where χj is the error of model Mj on the recent obtained training set. To calculate such
error, the Normalized Mean Squared Error (NRMSE) is used:

NRMSEcs =

√︁∑︀n
t=1(ŷ

cs
t −y

cs
t )2

n⃒⃒
max(Ycs ) −min(Ycs )

⃒⃒ , (3.17)

where Ycs = {ycs1 , . . . , y
cs
t , . . . , y

cs
n } denote a time series of the Poincaré diameter for the

simulation scenario cs and ŷcst is the predicted Poincaré diameter at the given instant t.

Evaluation and Results The simulation generates one observation for each feature
with a frequency of 20 kHz, resulting in a step size of 0.05ms [560]. The simulation
configurations are generated for 240 different spindle speed values in the range of
3000min−1 to 15 000min−1 with a step size of 50min−1. The set of simulation config-
urations is randomly split into three independent sets. 180 are used for the training,
while 20 others served to build a validation set. The remaining 40 are kept for testing.
An aggregation period of P1 = 10ms is used for the preprocessing and a period of
P2 = 50ms is set as a forecasting horizon. TheMLPmodel parameters are tuned using a
grid-search procedure on the validation configurations. For the AL procedure, 50 from
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Fig. 3.14: (a) Active learning performance. (b) Comparison between test and predicted data. (c)
Depiction of Poincaré predictions in critical areas for three different spindle speeds [560].

the 180 simulation configurations of the training set are randomly selected to construct
the initial training set. From the remaining 130 configurations, 15 are added at each
iteration. A maximum number of 5 iterations is used as a stopping criterion. The subset
of features is constructed using two lagged values of each of the five characteristic
features Fx, Fy, Fz, Dx, and Dy. The corresponding spindle speed value, the time index,
and two future values of the chip volume are added to enrich each subset of features.

The results are presented from three perspectives [560]: 1) Figure 3.14(a) shows a
comparison between the AL approach, a random sampling, and the performance of the
ensemble, which is trained using the whole training set; 2) Figure 3.14(b) illustrates a
comparison between the predicted Poincaré diameter values and the computed values
on a subset of testing scenarios; 3) Figure 3.14(c) presents a comparison between the
test and the predicted data for three different spindle speeds.

Figure 3.14(a) illustrates the performance of the AL method. The AL approach
reaches almost the same performance as does training over the whole training set,
while using only 70%of the training set. The results show the advantage of designing an
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optimal training set especially when a large pool of simulation scenarios with randomly
chosen input parameters is available.

Figure 3.14(b) presents a comparison between the true and the forecasted Poincaré
diameter values and illustrates that the ensemble is capable of accurately forecasting
the Poincaré diameter in distinct scenarios and time periods.

Figure 3.14(c) shows that our framework predicts process instability in time or
earlier for three different spindle speeds. This highlights its usefulness for real-time
applications, where process parameter values should be monitored and adjusted to
avoid process instabilities.

3.4.4 Fusion Between Simulation and Sensor Data

In general, the integration of diverse data sources provides useful and enriched new
data. We refer to this combination as a data fusion process [502]. However, it presents
many challenges [468]. Fusing different sources can generate conflicts. The conflicts are
most often the result of incomplete, erroneous, and out-of-date records [468]. Another
challenge comes along with complex sequences that are multi-dimensional, multi-
modal and time-varying [331]. In addition, the process of data fusion may also lead to
larger amounts of data, which poses difficulties for online application [331]. Solving
these challenges requires not only substantial efforts and domain knowledge but also
scalable and principled fusion approaches that cope with real-time constraints.

Process simulation can be viewed as background knowledge for domain experts.
Wewant to integrate this knowledge into themachine learning process and, at the same
time, use the simulation as an additional data source (i.e. generation of additional data
points/data features or annotation of existing data). In this context, we aim at fusing
both, simulation and sensor data, to predict active and passive forces in a real-time slot
milling process [22, 206]. In [22], we present a framework that allows combining real-
world observations collected from sensors and simulations at two levels: the data or the
model level. At the data level, observations and synthetic data are integrated to form an
enriched dataset for learning. At the model level, the models learned individually from
observed and simulated data are integrated using an ensemble technique. Establishing
a trade-off between model bias and variance, we perform an automatic selection of the
appropriate fusion level. Figure 3.15 shows a schematic illustration of the conducted
approach. Parts of this section are already published by the authors [22, 206].

To validate the developed framework, slot milling processes are conducted using a
width of cut and depth of cut of 2mm, a tilt angle of 30° [206]. A ball-end mill with a
diameter of 10mm and two cutting edges is used to machine AISI M3:2, hardened to ap-
prox. 62HRC. During thesemilling experiments, process forces in x-, y- and z-directions
are measured using a triaxial force dynamometer (Kistler 9257B) with a sampling fre-
quency of 20 kHz. The goal of the considered use case is to predict upcoming active
and passive forces, which are affected by tool wear. To this end, ten different process
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Fig. 3.15: Framework for synchronizing and fusing simulation and sensor data [206].

parameter configurations with varying values for the cutting speed and feed per tooth
are used. For each parameter configuration, 180 slots are milled in order to provoke
tool wear. After every twentieth machined slot, the width of flank wear is measured for
both cutting edges and averaged to obtain a value VBV which indicates the wear state
of the tool [206]. Intermediate values of VBB for all other slots i are interpolated by

̃︁VBiB =

⎧
⎨
⎩
̃︁VBi−1B + F iΣ ·(VB

j+1
B −VB

j
B)∑︀

k FkΣ
, if F iΣ > Fτ

̃︁VBi−1B , otherwise
, (3.18)

F iΣ = |F ix| + |F iy| + |F iz|, (3.19)

where i ̸= 0 and Fτ is a threshold that has to be defined in order to distinguish between
signal and noise. The values VBjB and VB

j+1
B are estimated by measurements between

which the interpolation is performed and k is the number of interpolated values between
these measured values. Using this approach, high force amplitudes are assumed to
induce a high load on the cutting edges, resulting in increased values for VBB [206].

3.4.4.1 Simulation-Sensor Data Mismatch Evaluation
The fusion of data collected from both sources into a single data representation is not
straightforward and data mismatch between both sources needs to be checked. Data
mismatch may mean that different data sources attribute different values to the same
instance. This can be addressed by ensuring the completeness and the correctness of
each data source [468].

The mismatch is often caused by different data alignments due to different data
sampling frequencies from simulations and measurements. This results in a time delay
between simulated and measured data. Therefore, data synchronization is required.
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In addition, the mismatch can be caused by learning from different underlying distribu-
tions. In fact, due to the simplified models in the simulation system and the negligence
of complex engagement behaviors, e.g. frictional effects, which are used to ensure a
reasonable runtime, non-negligible deviations between simulation data and measure-
ments of the corresponding process characteristics can occur, especially for process
forces or tool vibrations. This deviation can differ for different process parameter values.
As a result, a calibration of the simulation is required. Due to measurement noise and
uncertainties, the quantification of simulation accuracy is a challenging task.

Synchronization If both, simulated and sensor data, are acquired using the same
sampling frequency, only a constant time shift between each time series has to be
determined. This can be achieved, e.g., manually, using change points, estimated by
auto-regressive approaches [740] or by analyzing the continuous wavelet transform of
the time series. In the context of the latter approach, the transformed signal is given by:

W(a, b) = 1
|a|1/2

∞∫︁

−∞

Ξ(t)Ψ*
(︂
t − b
a

)︂
dt, (3.20)

where Ξ(t) is the original signal, Ψ*( t−ba ) represents the complex conjugate of a scaled
and translated mother wavelet Ψ(t), and a and b are the scale and translation parame-
ters, respectively. Each scale corresponds to a frequency, resulting in information about
the correlation between a given signal at a certain time instant and an investigated
frequency without the need to make a trade-off between time and frequency resolution,
which is a crucial issue of spectral analysis. In the milling application, the time-related
delay between the two investigated time series can be identified by the points in time
where the intensity of the wavelet transform at the tooth engagement frequency is
greater than zero.

Calibration For the considered geometric physically based simulation system, simu-
lation models can be calibrated using measurements as ground truth. This has to be
performed for each combination of the tool geometry and the workpiece material of the
regarded process. For simulated forces, for example, the parameters of the force model
ρ can be determined by applying an optimization procedure to minimize the squared
Euclidean distance between simulated and measured forces

ℓ(ρ) =
n∑︁

i=1

(︀
Fsen(ti) − Fsim(ρ, ti)

)︀2 , (3.21)

acquired using the same process parameter values for both, the machining process
and the corresponding simulation conduction. To this end, any optimization algorithm
could be applied to solve the minimization task. However, in practice, quasi-Newton
approaches often outperform other methods. Using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [113] optimization algorithm, for example, an approximation of the
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Hessian matrix Hk is estimated, which is updated at each iteration k of the procedure.
According to Newton’s method, the parameter values of the next iteration

ρk+1 = ρk + αksk (3.22)

are given by the line search along the descent direction

sk = −Hk∇L(ρk) (3.23)

by estimating αk through

α̂k = argmin
α

L(ρk + αsk). (3.24)

The update of Hk is performed by adding a rank-two correction

Hk+1 = Hk + auuT + bvvT , (3.25)

u = δk = ρk+1 − ρk , v = Hkγk = Hk∇L(ρk+1) −∇L(ρk) (3.26)

are typically chosen, so that the quasi-Newton condition

Hk+1γk = Hkγk + auuTγk + bvvTγk = δk (3.27)

is satisfied, resulting in

Hk+1 = Hk +
δkδTk
δTk γk

−
HkγkγTkHk
γTkHkγk

. (3.28)

3.4.4.2 Automatic Fusion-Level Selection
A sophisticated MLmodel should establish a trade-off between bias and variance. Such
statement gives a guidance on how to automate the decision for the fusion-level se-
lection. In fact, given a learned model f̂ that approximates an unknown true model f ,
the expected mean-squared error between the target variable y = f (x) and the model
predictions on an unseen sample x, can be decomposed into bias, variance, and an
irreducible error term [334]. One way to reduce the variance-type error is to use an
ensemble model [101], that combines many models into one single model using an
averaging technique [556]. Such a statement is derived from the ensemble error decom-
position into the average bias of the ensemble singlemodels, variance, and a covariance
term [694]. Brown,Wyatt, and Tino [106] have proven that when using an average-based
ensemble model f with equal weights (i.e. f =

∑︀N
i=1 wi fi , fi , i ∈ {1, · · · , N} are the

single models), the expected error decomposition is given by:

E
[︁(︀
f (x) − f (x)

)︀2]︁ = Bias2 + 1
N Var + (1 −

1
N )Covar, (3.29)
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where

Var = 1
N

N∑︁

i=1
E
[︀(︀
f̂i(x) − E

[︀
f̂i(x)

]︀)︀2]︀, (3.30)

Bias = 1
N

N∑︁

i=1

(︀
E
[︀
f̂i(x)

]︀
− E
[︀
f (x)

]︀)︀
, (3.31)

Covar = 1
N

N∑︁

i=1

N∑︁

j=1, j̸= i
E
[︀(︀
f̂i(x) − E

[︀
f̂i(x)

]︀)︀(︀
f̂j(x) − E

[︀
f̂j(x)

]︀)︀]︀
. (3.32)

The variance in Equation 3.29 is the average variance divided by the number of base
models N. When N is big enough, the variance term in Equation 3.29 will diminish.
However, Equation 3.29 states that also the averaged bias and covariance should be
taken into accountwhile addingmore andmoremodels. In our setting,weare concerned
with a small number of base models (i.e. mainly 2, one built on sensor data and the
other one on simulation data). In addition, the decision of the transition from a single
model to an ensemble has to be made. Therefore, it is more straightforward to deal with
the whole term 1

N Var + (1 −
1
N )Covar, as a variance-type error for the ensemble model

and the corresponding bias as the average bias of single models Bias, since

Bias
(︀
f
)︀
=
(︀
E
[︀
f
]︀
− f
)︀
=
(︀
E
[︀ N∑︁

i=1

1
N fi
]︀
− f
)︀
= Bias. (3.33)

The decision for the transition from a data-based fusion to amodel-based fusion should
be based on the level of the expected variance-type error together with the expected bias
of the data-based fusion model. Let fsimulation and fsensors, two models each trained on
simulation and sensors data, respectively, and a model ffus be trained using a data-
based fusion approach. From the decomposition in Equation 3.29, we can conclude
that themodel-based fusion using an averaged ensemble with equal weights contribute
to reducing the variance-type error compared to the data-based fusion model if

Covar(fsimulation, fsensors) ≤ τ, (3.34)

where the threshold τ = 2
(︀
Var(ffus) − Var(fsimulation)+Var(fsensors)

2
)︀
.

Equation 3.34 complies with the decomposition in Equation 3.29, stating that a
lower covariance is always desired to reduce the overall ensemble error. It also confirms
that enforcing a degree of diversity between the ensemble members through low covari-
ance is favorable as it reduces the ensemble ambiguity, presented in the more general
ensemble error decomposition schema [355]. Furthermore, once the single models are
trained and built, the average covariance term can be estimated entirely without any
knowledge of the true data labels or the real function f to be approximated. From
a practical point of view, this result confirms the usefulness of using simulation for
enriching data with samples that reflect different patterns than the ones observed with
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sensor data. This enrichment includes either new features that cannot be measured by
sensors or observations that cannot be detected with sensors.

The bias of the ensemblemodelwill be equal to the average bias of the singlemodels
in case of equal weights. So, it will achieve a lower bias than the single model with
the highest bias. If the covariance between single models is lower than the threshold
τ in Equation 3.34, then the system compares their average bias with the bias of the
data-based fusion model to check if the variance-type error reduction with the average
bias will establish a better bias-variance trade-off or not. If it is not, the system sticks to
the data-level fusion.

The systematic fusion-level selection is validated by the previously described slot
milling process [206]. We measure the process forces (Fa and Fp ) using sensors, aggre-
gate them using an aggregation period of 0.1ms, and predict the future expected forces
each 0.1ms for the next 10ms. Monitoring the milling process forces enables control of
both, process stability and quality [560]. 10 different process scenarios are investigated
by varying the input parameters, namely speed, and feed. The resulting length of the
time series for each scenario depended on the values of the input parameters and varied
from 13 250 to 54 500 observations. The simulation is used for feature enrichment by
generating features that typically cannot be measured during the process. For this
purpose, the chip volume, the sum of time of engagement, the feed, and the mean of
the cutting speeds are generated for each point in time to potentially enrich the feature
space of the force measurements [206].

After solving possible mismatches between the sources, a unified feature set is
created by joining new features generated by the simulation together with the lagged
sensor measurements of the forces as sensor features [206]. The Random Forest regres-
sor (RF) [101] is chosen for the prediction of Fa and Fp. The results are presented for
10 cross-validation folds, where 9 scenarios (i.e. time series) are kept for training and
1 scenario for testing for each fold [206]. The prediction error is evaluated using the
NRMSE (Equation 3.17). We used 5 lagged values for the time series of the forces as
sensor features. For each time step, lagged sensor values are joined together with the
simulation features for the current time step (i.e. simulation features are pre-calculated
and stored, and only sensor data is streaming). We have also devised a binary feature
based on the simulation features called the activity feature, which indicates the engage-
ment situation of the tool (0: no engagement, 1: engagement) and is added to the fused
set of features.

The results in Table 3.5 show that the feature-based fusion model outperformed
models trained separately on each data source. The feature-based fusion is automati-
cally selected as the best way to perform data fusion using simulation and sensor data
after empirically computing the threshold τ derived in Equation 3.34 for the covariance
and the average bias of the single models trained separately on each data source. Our
theoretical insights are validated by showing a comparison with the model-based fu-
sion [206]. These results are presented in Table 3.5. Furthermore, examples of empirical
evaluations of the covariance, the threshold τ derived in Equation 3.34, the average
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Tab. 3.5: Comparison between the NRMSE of predicted active and passive forces using different
methods.

Method RFSimulation RFSensors RF Feature-based fusion RFModel-based fusion

NRMSE Fa 15.29% ± 3.70% 24.24% ± 5.95% 9.95% ± 2.90% 16.25% ± 4.27%
NRMSE Fp 21.50% ± 11.15% 33.63% ± 5.38% 13.30% ± 6.30% 19.69% ± 5.37%

Tab. 3.6: Comparison between different measures for the fusion-level selection.

Measure Fa Fp

Covar (RFSimulation, RFSensors) 21.18 4750.80
Threshold τ 109.92 -13092.95
Average bias (RFSimulation, RFSensors) 782.50 13714.16
Bias (RF Feature-based fusion ) 121.21 3204.13
Var (RF Feature-based fusion ) 330.40 8614.31
Var (RFModel-based fusion ) 140.86 13367.52

bias of single models, and the empirical bias of the feature-based fusion model for
the predictions of Fa and Fp are shown in Table 3.6 to describe how the fusion level
selection is made. In addition, the model variances of the model-based (i.e. ensemble)
fusion and the feature-based fusion are reported. For Fa, the value of the covariance
between single models is lower than the threshold, which guarantees that computing
the ensemble model will reduce the variance type error and this is also confirmed by
the reported empirical variance values in Table 3.6. However, validating the covariance
threshold is not sufficient. The average bias of single models should also be compared
to the bias of the feature-based fusion model. Comparing these values clarifies whether
the model-based fusion will contribute to reducing the variance type error, but also
alters the bias by increasing it with approximately a factor of six. For Fp, the value of the
covariance between single models is higher than the threshold, which indicates that
computing the ensemble model will not contribute to reducing the variance type error.
In addition, the bias of the feature-based fusion is lower than the reported average bias.
This observation confirms that the model-based fusion will reduce neither the variance
nor the bias.

3.4.5 Initialization of Simulation Models Using ML Methods

First investigations are performedwith respect to the initialization of simulationmodels
using machine learning methods. To this end, two different simulation systems are
considered, which are developed to investigate the milling and grinding processes,
respectively. Parts of this section have already been published by the authors [207, 727].
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3.4.5.1 Learning of Frequency Response Functions and Compliance Models
The underlying system of a geometric physically based milling simulation (cf. Sec-
tion 3.4.2) models tool vibrations by a set of decoupled damped harmonic oscilla-
tors [662]. The parameters of these oscillators have to be calibrated by measurements of
the Frequency Response Function (FRF) of the consideredmachine-spindle-tool system,
acquired by impact hammer tests [325]. In addition, the dynamic behavior of this system
changes with different poses of the tool. The modeling is performed separately for all
considered spatial directions- Here this corresponded to the x- and y- directions. Each
oscillator is parameterized by identifying values for the modal mass mm, the natural
frequency fm, and the damping constant γm. The complex response function [207]

G(ωj)d =
Q∑︁

q=1

(︁
cos(ϕ(q)

d (ω)) · A(q)d (ω) + sin(ϕ(q)
d (ω)) · A(q)d (ω) · j

)︁
,

d ∈ {x, y},

A(ω) =
1
mm√︁(︀

ω2
m − ω2

)︀2 + 4 · γ2mω2
m

,

ϕ(ω) = tan−1
(︂

2γmω
ω2
m − ω2

)︂
,

ωm = 2πfm (3.35)

is represented by superposing the amplitude and phase of the parameterized oscillators
q for each angular frequency ω. By using measured FRFs, the loss function

ℓ =
∑︁

i

(︁
Ãt

(i) − Ãp
(i))︁2 +

∑︁

i

(︂
ϕ̃t

(i)
− ϕ̃p

(i)
)︂2

, (3.36)

can be derived, which is the sum of the squared deviations between the normalized
values of the calculated amplitudes Ãp and phase ϕ̃p and the normalized measured
data Ãt and ϕ̃t.

Two different learning tasks are pursued in the performed research. On the one
hand, pose-dependent FRFs are learned in order to reduce the measurement effort.
On the other hand, the resource- and time-consuming and only semi-automatic task
of calibrating the oscillator parameter values for different tool poses is replaced by
machine learning.

The amount of data needed to perform the investigations is obtained by frequency
response measurements in our laboratory for two different machine tools, Heller FT
4000 (M1) and DMG HSC 75 linear (M2), using a centrally composed statistical exper-
imental design with star points. A total of 46 and 49 poses are measured for M1 and
M2, respectively. An impulse hammer (Kister 8206) are used to excite a ball end mill
(Fraisa X7400) with a diameter of 10mm. The impulse response is measured by an
accelerometer (PCB Piezotronics 352C23) attached to the tool tip [207].
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Fig. 3.16: Predicted and measured FRFs for machine tool M1 [207].

As mentioned, two different objectives are investigated. For both objectives, let X be a
set of J × N features sampled from an unknown distributionD and Y be a set of K × N
targets labeled by a labeling function. The first objective involved the prediction of FRFs.
For this, the measured FRFs of all P considered measurement poses are discretized into
data points by the frequency resolution ∆f such that M is the number of frequencies
examined for each pose. Each of theN = P·M data points contains a number of K targets
that included compliance amplitude and phase shift for the x- and y-directions of the
machine coordinate system. Let J be the number of features consisting of the frequency
and the positions of the three axes defining the pose. For the second learning task,
which is the prediction of modal parameter values for given poses, let J consist of the
three pose-dependent features and N = P. For the targets, let K = 3 · (Qx +Qy), where Qx
and Qy are the number of oscillators in the x- and y-directions, respectively. Using this
approach, the learning task attempts to represent the relationship between different
interdependent oscillators of each compliance model across the two different vibration
directions as well. For both learning tasks, the goal is to find a learner h : X → Ywith
respect to the distributionD [207].

Figure 3.16 shows an exemplary comparison between measured and predicted
FRFs for two different poses using machine tool M1. The phases are predicted with
high accuracy in both x- and y-directions for both test poses. The amplitudes in the
x-direction are predicted with a nearly non-visible deviation from the measured curves
for both tests poses. There are two peaks visible in measured FRFs in y-the direction
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Data of fitted oscillators

Data of predicted oscillators
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Fig. 3.17: FRFs resulting from predicted and manually calibrated compliance models for machine tool
M2 [207].

in a frequency range of 1200Hz to 1700Hz, which are very distinct for P(2)X,Y,Z. For P
(1)
X,Y,Z

the second peak can hardly be detected. This behavior could be represented by the
model to a certain extent. In addition, the model also predicts a visible second peak for
the remaining test poses, but the differences in the distinction between the two peaks
across the poses can not be achieved. This effect is observed to be minimal in the data
examined and needs to be analyzed in more detail in future research activities. In order
to represent such behavior, more observations in which the fusion of peaks is present
and that can be considered for the training procedure would be necessary.

Figure 3.17 shows a comparison between FRFs that resulted from predicted and
manually calibrated compliancemodels in x- and y-direction for one specific pose using
machine tool M2. Generally, a high accordance is observed. Examining the zoomed-in
areas of the FRFs, it can be seen that the shape of the measured FRF can only be repre-
sented coarsely by the manual fitting procedure. Since the fitted oscillator parameter
values serve as target values for the learning task, the FRF, which is calculated based
on predicted oscillator parameter values, can not reproduce the measured behavior in
higher detail than the FRF that results from the fitting procedure. Nevertheless, there are
only small deviations between the fitted and predicted data. Therefore, the learning of
oscillator parameter values directly from given poses can be interpreted as successful.
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Fig. 3.18: Images of (a) measured depth information of grinding tool topographies and (b) the corre-
sponding segmentation mask [727].

3.4.5.2 Augmented Semantic Segmentation for the Digitization of Grinding Tools
The following results are based on the investigations of [727]. The stochastic nature of
grinding processes entails several challenges regarding process simulations. For mod-
eling grinding tools, the choice of the methods for representing the individual grains
and grain shapes have a significant influence on the accuracy of simulation results. Es-
pecially for single-grain scratch simulations and FE-based analyses, the identification
of grains that adequately represent the overall characteristics of the tool used is crucial.
In order to perform this identification successfully, an analysis of a huge amount of
grains that have to be manually separated from the bond, is necessary. We developed a
learning-based methodology, to automate this separation for digitized grinding tools
by semantic segmentation. We have focused in particular on evaluating the prediction
accuracy of the grain boundaries to be able to distinguish neighboring grains. This is
crucial for a subsequent automated extraction of the grains. Figure 3.18a visualizes the
measured depth information of grains in the bond. In addition, a manually generated
segmentation mask is shown in Figure 3.18b. For the semantic segmentation, a novel
neural network architecture [727] is developed, which is based on Fully Convolutional
Networks (FCN) [420] (see Figure 3.19). In contrast to conventional FCN architectures
found in literature, the channel information is gradually down-sampled by half in each
transposed convolution layer instead of performing a single reduction operation. In
addition, the up-sampling of the image dimensions is also spread across three twofold
up-sampling steps.

Out of 4678 grains, 500 are used for testing purposes [727]. For hyper-parameter
identification, random search [57] is used. In order to evaluate the prediction accuracy,
the pixel accuracy [420] PACC =

∑︀
i Nii/

∑︀
i Mi is used, where Nij is the number of

pixels of a class i which are predicted to belong to class j andMi =
∑︀

j Nij is the number
of pixels of class i. In addition, the boundary pixel accuracy (BPACC) is calculated as
the pixel accuracy of the boundary pixels of each grain, which are estimated using a
border following algorithm [665].

Figure 3.20 shows the results for grain segmentation for different numbers of grains
incorporated for training using the developed approach versus applying an FCN-8. The
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Max pooling Convolution Batch normalization
Transposed convolution Classification convolution

Fig. 3.19: FCN architecture including (a) the convolutional network, (b) a deconvolutional network
based on FCN-8, and (c) the developed approach for the deconvolutional network [727].

conventional FCN-8 delivers insufficient results for all three investigated numbers of
grains used for training. By contrast, using the developed FCN architecture, it is even
possible to distinguish closely neighboring grains, if 2575 or 4178 grains are used for
training [727].

To successfully train ML models, manual segmentation still has to be conducted
in order to establish the required feature/target correspondences. To this end, data
augmentation is used, to drastically reduce the necessary number of measurements.
Different image manipulation techniques [605], e.g., rotation, flipping, or noise injec-
tion, are combined in a random sequence, to increase the amount of training data. In
order to quantify the degree of augmentation, the augmentation factor per image (AFPI)
is used as the number of generated images for each image based on measurements in
a combined training set. Figure 3.21 shows the segmentation results using different
numbers of grains used for training and different values for the AFPI, for the PACC,
and the BPACC. The PACC value is higher the more grains are used and the higher the
AFPI is. However, for the BPACC, a local optimum can be identified, indicating that
high PACC values will not necessarily result in good segmentation results of the grain
boundaries. Furthermore, choosing the AFPI as low as possible results in significantly
lower training runtime [727]. Since grinding tools are constantly affected by tool wear
during the process, the transferability of the model corresponding to the local opti-
mum to different states of tool wear is also investigated. For further details, see the
corresponding publication [727].
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Fig. 3.20: Segmentation results using the developed approach in comparison with using an FCN-
8 [727].
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AFPI [727].

3.4.6 Summary and Conclusions

This contribution has presented investigations that highlight different aspects of the
combination of sensor and simulation data for scientific insights into machining. The
methods are illustrated by milling, grinding, and tunneling processes as case studies.
The main resource restriction in machining applications is processing time. Ensemble
learningmethods enable the real-time capability of simulated predictions.ML enhances
the simulation. Another resource, which is often restricted in real-world applications,
is (labeled) data. Various data fusion strategies were discussed to combine sensor and
simulation data for real-time predictions of process characteristics ofmilling operations.
Here, simulations and ML help each other.

In addition, ML methods were used to initialize simulation models, specifically the
dynamic model of a geometric physics-based milling simulation system and the tool
model of a grinding simulation. ML helps the simulation.
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The presented results emphasize the significant potential of combining sensor data,
simulation results, andMLmethods for the analysis and optimization of manufacturing
processes in the context of Industry 4.0.
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3.5 High-Precision Wireless Localization

Janis Tiemann

Abstract: Recent developments in Ultra-Wideband (UWB) wireless communication
enable wireless localization as a link between the digital and the physical world. With
the technological advances, the achievable precision and accuracy is increased dramat-
ically such that novel applications exploiting this precise cyber-physical link become
feasible. Autonomous swarms of robots, precise and scalable tracking of goods or
safety applications are within the reach of this potential. However, the increase in
communication required for such capabilities to become feasible is constrained by
bounds of channel utilization, energy consumption, and intelligent information dis-
tribution. Therefore, novel approaches for maximizing information and localization
throughput while minimizing channel utilization and power consumption and main-
taining precise localization results are crucial to overcoming technology barriers and
ultimately enabling a connected cyber-physical world. Promising approaches are novel
localization-specific protocols to coordinate channel access among localization targets
in order to achieve reliable data rates while minimizing actual power consumption.
Further, intelligent approaches are required to increase the achievable accuracy for
these resource-efficient localization approaches such as Time-Difference of Arrival
(TDOA). In those cases, additional parameters of the radio channel can be exploited
to obtain quality indicators for measurement and mitigate outliers or generally im-
prove the localization accuracy through adequate estimation. In the following, the
requirements of several applications are analyzed, and an overview of the solution
space in terms of channel utilization, energy efficiency, and accuracy is given. Based
on these requirements, solution approaches are presented to improve both channel
utilization and energy efficiency. Further, approaches to increase the achievable ac-
curacy in challenging environments are illustrated and evaluated. It is shown that
novel approaches for high-precision wireless localization enable novel applications by
employing localization-specific protocols and methods to improve the accuracy despite
challenging conditions.

3.5.1 Introduction: Precise, yet Scalable Wireless Localization

Wireless localization is seen as an enabler for many applications requiring a link be-
tween the physical and the digital world. Many approaches exist to achieve this connec-
tion utilizing a wide range of technologies. An overview of the capabilities in terms of
accuracy and range of those technologies is given in Figure 3.22. The diagram illustrates
the difference between widely adapted communication technologies, such as cellu-
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lar networks and consumer-grade wireless standards, and more application-targeted
standards, such as UWB. Early methods for localization were solely based on cell-id
and/or sector differentiation. However, novel approaches are capable of increasing
the accuracy for tracking and guiding applications. More dedicated localization sys-
tems like Global Navigation Satellite Systems (GNSS) can achieve exact localization
results but are limited to outdoor Line of Sight (LOS) operations, as they suffer severely
from multi-path fading. Here, UWB technology is key to overcoming the technology
barrier, enabling highly precise indoor localization through precise Time Of Arrival
(TOA) estimation. For localization methods enabled by 5G mmWave communications,
see Section 5.5.
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Fig. 3.22: Illustration of the field of localization capabilities of wireless communication technologies
in terms of accuracy, range, and place of usage.

Hence, a significant amount of research is challengedby this newly available technology.
Integrated UWB solutions enabled a new degree of accuracy in wireless localization. In
contrast to many signal strength-based methods, these TOA-based approaches emerged
as the most promising candidate for accurate and reliable measurements in the cen-
timeter range. Due to the usage of high bandwidths that enable sharp pulse-based
modulation, these UWB systems are capable of resolving many multi path-induced
errors in TOA estimation [228].

Due to this reason, research in several areas of application arose utilizing this
newly available connection between the digital and the analog world. One particular
area of interest is the field of massively scalable and low-power localization for logistics



182 | 3 Industry 4.0

in the Industry 4.0. Here, low-power localization devices are key to monitoring and
optimizing the whole production process, as illustrated in Figure 3.23.

For large-scale deployment, however, the scope of the most current research is
insufficient as it neglects scalability andmulti-user interference by utilizing localization
approaches that require the exchange of many messages. This introduces not only
significant resource usage in terms of channel utilization, but also requires substantial
usage of energy for message exchanges. In summary, the addressed points of this
section are listed as:
– Massive Multi-User Scalability
– Minimal Energy Consumption at the Mobile Units
– High Accuracy Suitable for Control-Grade Applications

3.5.2 Related Work: Evolution of wireless localization within CRC

The methodological continuity of the work within the CRC is illustrated by several
publications:
– UWB Indoor Positioning for UAVs (Unmanned Aerial Vehicles) [682] uses Two-

Way Ranging to enable UAV Indoor Navigation. Limitations in multi-user scalability
motivated further research.

– Multi-User Interference Analysis [685] is a detailed look into multi-user inter-
ference for UWB systems and wireless clock synchronization. Further analysis is
conducted in [687] which provides an analytical model for the interference.

– ATLAS - TDOA-Based Localization [684] overcomes multi-user scalability limita-
tions and presents an open-source approach.

– Scalable Multi-UAV Indoor Navigation [688] demonstrates the scalability and
accuracy for control-grade systems.
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Fig. 3.23: Illustration of a potential usage scenario.
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– Enhanced UAV Indoor Navigation [681] improves the precision and range for
control-grade systems.

– Further work provides an open-source extension ATLAS FaST to the ATLAS ap-
proach in order to improve energy efficiency and reliability [678, 679, 687].

– Finally, the PhD thesis Scalability, Real-Time Capabilities and Energy Efficiency
in Ultra-Wideband Localization incorporates and extends the key findings of the
research, see [683].

3.5.3 Approaches: Scalable, Real-Time Capable Energy Efficient Localization through
UWB

The following sections present approaches for high precision wireless localization
based on the work in [680, 683, 687]. The approaches are tailored to find a sweet spot in
the trade-off between multi-user scalability, energy efficiency, and achievable accuracy
for wireless localization. In a first step, the underlying ATLAS localization system is
highlighted briefly.
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Fig. 3.24: System architecture of the ATLAS RTLS utilizing the FaST scheduling approach. The ap-
proach is based on the robot operating system (ROS) to allow for flexible and modular design as well
as seamless integration with mobile robots.

3.5.3.1 ATLAS: Open-Source TDOA-Based Localization
In the context of the ATLAS Real-Time Localization System (RTLS), we propose building
upon the TDOA topology in which the mobile nodes transmit a single message and the
infrastructure receives (R-TDOA). Wireless clock synchronization is used to achieve a
common time base among the clocks of the static infrastructure-based anchor nodes.
Yet, random access is incapable of providing guaranteed update rates required bymany
robotic applications. Furthermore, with an increase of mobile nodes, the quality of
the localization will degrade due to missed synchronization frames, as pointed out in
[685]. This means that the real-time requirements for control-grade applications such
as indoor UAV navigation cannot be met at scale by random access.
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3.5.3.2 ATLAS FaST: Lightweight Scheduling for Control-Grade Applications
Based on previous work [684], we thus propose a novel lightweight scheduling protocol
that seamlessly integrates with the wireless clock synchronization needed for proper
operation, see [687]. As depicted in Figure 3.23, our approach aims to support scalable,
low-power, reliable, and real-time capable wireless localization. In the following, we
will document the approach and experimentally evaluate its capabilities in an industrial
setting. The open-source implementation provided will enable the usage of scalable
UWB localization in the robotics and automation community, see [678, 679].

Sync RA RA RA SA SA SA SA SA SASA SA

Masterframe

Subframe

RA: Random Access
SA: Scheduled Access

Fig. 3.25: Temporal structure of the ATLAS FaST localization specific Time Division Multiple Access
(TDMA) scheme. The structure utilizing subframes enables multiple spatially distributed synchroniza-
tion cells.

The publication [687] illustrates the continuity of the development of wireless local-
ization building upon the widely used Robot Operating System (ROS). In contrast to
previous work, which focuses mainly on plain localization aspects, a significant in-
crease in scalability and real-time capabilities is provided, presenting a method that
allows for scalable localization without degradation in the performance of the localiza-
tion results.

The proposed system architecture is depicted in Figure 3.24. The ATLAS Concentra-
tors are capable of connecting to multiple anchors and synchronize anchors through
direct connection.

The chosen TDOA topology used in our system design enables our mobile nodes to
be very energy efficient, as pointed out in Section 3.5.3.3. Only a single frame needs to
be transmitted in order to obtain a full localization result. However, if a guaranteed
update rate is desired, bi-directional communication, synchronization, and association
with the system’s scheduler are required. Through the modular system architecture, the
individual components can be developed independently, which significantly reduces
the time required to integrate application-specific features or competition-specific con-
straints. Asmentioned before, themodularity of this concept is illustrated in Figure 3.24.

To lower the overall system complexity, the synchronization request is the same
as any other positioning frame transmitted over the UWB channel. It consists of the
tags Extended Unique Identifier (EUI) and a sequence number that is increased with
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every new message. Depending of the application this message can be extended using
Inertial Measurement Unit (IMU) data or battery status.

After accessing the channel, the tag immediately goes back to sleep and waits
for the next sync frame. In the meantime, the anchor nodes receive and process the
requests. Successful random access requests are propagated to the scheduling engine
that has a database of pre-known period configurations and priorities from which it
can prepare a response through the requesting tags EUI. This procedure simplifies the
configuration overhead as the system is infrastructure-based. It also allows for seamless
graceful degradation of the update rate if the overall system capacity limit is reached.

3.5.3.3 ATLAS Low-Power Timekeeping under Resource Constraints
For randomaccess based schemes, proper absolute time-keeping is not required. For the
proposed scheduled access though, knowing the correct absolute time is of the essence.
However, maintaining the high-frequency clock of the transceivermodules is associated
with significant loss of power and therefore, battery life. Due to this reason, a concept
of time-keeping, synchronization, and constant calibration should be employed for
proper low-power operation in the scheduled scheme. This basic concept can be utilized
for real-world implementations in combination with ATLAS FaST to support future
low-power applications.

The transceiver should run in a mode that does not enable the high-frequency
clock sources and, thus, loses its absolute time knowledge. Therefore, the proposed
scheme employs intelligent switching between different clock sources to maintain the
transmission schedule in the mobile nodes.

Fig. 3.26: An approach for low-power association with the system controller.

The initial association procedure at the mobile node is depicted in Figure 3.26. τra is
the duration between the sync frame and random access, τp(k) the duration between
the response frame and the kth positioning frame, τm the duration of the master frame,
and k is the localization sample iterator. There are three main components of drawing
power from the battery: the transceiver, the host controller, and a Real-Time Clock
(RTC) within the host controller. Here, the internal RTC is used as the keeper of the
overall system clock. The transceiver oscillator is calibrated using two consecutive
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UWB synchronization frames. The resolution of the RTC is insufficient to calibrate upon
initial association. Here, the re-association should be utilized as it provides a sufficient
time-span enabling RTC drift calibration.

Fig. 3.27: Approach for low-power re-association with the system controller.

The typical re-association procedure, including the following transmissions, is depicted
in Figure 3.27 where Np is the positioning period exponent for a mobile node, Nsps the
number of slots per subframe and τs the slot duration. The transceiver and the host-
controller can be configured to a sleep state. An RTC timer can then be configured to
wake up the host controller for the next positioning frame. Here, the delays for waking
up the host controller and the transceiver need to be calibrated in the implementation
phase. The processing times and oscillator start-up times need to be accounted for.
Based on this, the RTC wake-up time can be configured. Although limited precision is
given by the RTC, which mostly runs at 32.768 kHz, the available resolution of around
30.52 µs is sufficient to stay within the margins of the scheduling scheme. However, the
potential error through clock-traversal needs to be accounted for in the slot-duration
dimensioning for the scheduled scheme.

3.5.3.4 Wireless Signal Assessment to Improve Overall Accuracy
Due to the utilization of a TDOA-based localization scheme, another variable in the
localization solution is introduced. Instead of rangings as with TWR-based localization,
TDOA utilizes the time difference of the arriving signal. Hence, the localization is
inherently more challenging. Therefore, countermeasures such as introduced in [680]
are required to obtain precise localization results.

One of the main benefits of UWB is the availability of additional information of the
received signal. Here, methods can be applied that leverage this information in order
to weigh the individual measurements. Figure 3.28 illustrates this concept. Here, the
ratio between the first path and the remaining energy of the channel impulse response
is taken in order to weigh the measurements in the Extended Kalman Filter (EKF) used
to obtain the localization results.
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Fig. 3.28: An approach for signal quality analysis to improve accuracy. Note that the depicted chan-
nel response is interpolated from ten experimentally recorded sets in which the resolution is 1 ns per
sample.

There are concepts that may be capable of extracting even more information such that
even passive localization or simultaneous localization andmapping in certain scenarios
are feasible. An initial evaluation of machine learning on these channel responses can
be found in [686].

3.5.4 Results

In order to evaluate the performance characteristics of the presented approaches, se-
lected evaluations based on the work in [683, 687] are discussed.

3.5.4.1 Scalability of the ATLAS FaST Approach
One of themain benefits of randomaccess is the simplicity of implementation due to the
lack of coordination. Tags can be implemented in a transmitter-only design, allowing
for a long battery lifetime through intermediate sleep modes. The main down-side,
however, is the lack of predictability. For many applications, especially in real-time
control of autonomous systems, defined update rates are required. Here, a higher overall
throughput is not directly useful, if long inter-arrival times are expected. Therefore,
systematic channel access is desirable.

With increased loads, low energy, battery-powered applications suffer from the
non-reception of localization frames. Therefore, the effective energy per position ratio
increases, leading to decreased efficiency. The ATLAS FaST scheme is designed to
overcome these issues. In the following, the achievable inter-arrival times and reliability
are analyzed. τ̂nf considers a processing time of τproc and the partial preamble reception
effect.
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The resulting throughput is the superposition of these individual effects that depend
highly on the implementation of the receiving side in practical systems. Due to the
unique characteristics of the UWB PHY, a non-destructive R-TDOA scheme is feasible
as the throughput does not degenerate with increased loads in the available ranges.
However, due to the non-reception of frames, the real-time capabilities for the localiza-
tion systems degrade as a defined update rate cannot be guaranteed. This is especially
severe for applications, requiring tight real-time constraints.
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Fig. 3.29: Experimental vs. analytical throughput analysis for R-TDOA-based localization in which the
infrastructure estimates the location.

ATLAS FaST overcomes this issue. Due to the slotted approach and the competition-free
channel access in the scheduled slots, the successful positioning throughput scales
linearly with the positioning frame load, as depicted in Figure 3.29. Here Npsdu is the
number of transmitted payload bits per packet, Nsfd the UWB start of frame delimiter
size in symbols, R the effective data rate, and fpr the mean pulse repetition frequency
on the physical layer. The slot duration τs is chosen such that there are 2048 available
slots per second. Non-reception due to noise-induced frame error rates were neglected
in this analysis as this will highly depend on the link budget the wireless localization
system planner will provide for the given setup. However, the variation of the number
of random access slots will define the upper bound of the system’s capacity.

Alongside the throughput of the proposed FaST approach, Figure 3.29 depicts an
analytical model for R-TDOA obtained in a scaled experiment. Here we can compare the
multiuser scalability of the proposed approach with the previous, random access-based
R-TDOA.
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It is clear that the scheduled approach allows greater throughput than that produced
by the same underlying positioning load using random access-based R-TDOA. Also,
the analytical model for the R-TDOA throughput matches the experiment closely. The
current implementation supports only static adjustment of the amount of random
access slots Nrasps; for optimal performance a dynamic adjustment would be necessary.
However, even when using a static set of six random access slots, FaST supports more
than 1000 mobile units at 1 Hz considering a high re-association interval.

3.5.4.2 Energy Utilization of Localization Schemes
In order to provide a simplified comparison between the energy consumption at the mo-
bile unit for different channel access schemes, the bar chart in Figure 3.30 summarizes
the results of this work relative to the mostly used Symmetrical Double-Sided Two-Way
Ranging (SDS-TWR)-based topology now considered state of the art.

Here, a minimal set of four anchors is the baseline for all topologies. Multiple
different ranging or localization schemes are considered: R-TDOA with random access
as introduced in the early ATLAS implementations [684]; T-TDOA as illustrated by
[256, 378] with transmitting anchors and a receiving-only mobile unit, similar to GNSS;
typical single-sided Two-Way Ranging (TWR), which requires a message exchange of
two messages per ranging; TWR with Multiple Acknowledgments (TWR-MA), utilizing
a repeated response to estimate clock offset; combined TWR, which orchestrates a TWR
exchange by pre-defined individual response time offsets for a set of anchors; and,
finally, symmetric double-sided TWR (SDS-TWR), which utilizes symmetric response
times to cancel out clock drift during ranging. The last one requires three messages for
basic SDS-TWR, but it can also be configured to report calculated ranges in SDS-TWR-R,
requiring another message at the end of each ranging. For the SDS-TWR topology no
reporting from the anchor side is considered. So the range information is available
only at the infrastructure side as it is using R-TDOA or FaST. But SDS-TWR-R considers
reporting and therefore consumes even more energy than plain SDS-TWR.

Keep in mind that the energy consumption of the TWR- and T-TDOA-based topolo-
gies increases linearly with the number of anchors in the setup, while the energy con-
sumption of R-TDOA-based localization is independent of the anchor count. Therefore,
it can be stated that even at the worst-case scenario the proposed topology outperforms
traditional TWR-based schemes in terms of scalability and energy usage.

By calculating the power per transmitted and received UWB frame for the
transceiver system and the fundamental requirements for the localization topolo-
gies, er can determine an idealized maximal battery life. An exemplary positioning
rate of 1Hz, a re-association period of 300 s, and a reliability look-ahead Nr = 1were
chosen.

The power consumption is calculated based on the datasheet of the DW1000
transceiver resulting in Etx=40.7mJ and Erx=76.9mJ. Note that the different PSDU
(Physical layer Service Data Unit) sizes, that are required for the different schemes
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are simplified to the lowest size of the R-TDOA scheme due to the implementation-
dependency of this value. The discrepancy between TDOA- and TWR-based schemes
would be even greater.
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Fig. 3.30: Exemplary analytical evaluation of energy utilization per localization approach. Note
that the main factor influencing the energy consumption is the amount of messages required per
localization result.

The resulting battery lifetime is depicted in Figure 3.30. The battery lifetime of the
T-TDOA- and TWR-based approaches is lower by orders of magnitude due to the de-
pendency on the number of anchor nodes Na inherent in those topologies. For the
R-TDOA-based approaches, the FaST results are close to those of random access, which
is the baseline for low power consumption at the mobile node because there is no
additional overhead. Therefore, it can be stated that through the planned scheduling
with infrequent synchronization, FaST is capable of tracking many low-power devices
without interfering with the real-time requirements for critical applications.

3.5.4.3 Accuracy
For the evaluation of the accuracy, several tracks were followed. One of the main contri-
butions were lab experiments evaluating the accuracy of the signal quality assessment
under motion capture tracking as published in [680]. To achieve internationally compa-
rable results, the participation in competitions is key, as it is the only way to benchmark
localization results comparably. In the following, based on [683], the participation in
two international competitions is highlighted briefly.
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The EvAAL competition alongside the Seventh International Conference on Indoor Posi-
tioning and Indoor Navigation (IPIN2016) in Alcalá de Henares, Madrid, Spain is used to
provide a comparable basis for localization systems in the context of robotic tracking.
In the fourth track, Indoor Mobile Robot Positioning, six teams registered. While four
teams registered in-track, two teams were out-of-track from within the organization
team andwere only evaluated for comparison. In [507, 549] the organization and results
of this competition are covered in detail.
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Fig. 3.31: Reconstructed competition results for the EvAAL 2016 as a bar chart. The official competi-
tion metrics were based on the third quartile Q(75%).

The goal of the competition was to localize a mobile robot following a predetermined
track that has to be obtained by the evaluated system. A set of four poles to mount
the system under evaluation was provided by the organizers to cover the 12m × 6m
evaluation area. The systems were evaluated sequentially so that one of the challenges
of this competition was a maximum set-up time of 30min that was extended to 45min
during the competition. The metric used for evaluation by the organizers is the third
quartile of the Euclidean distance to the track, due to the missing temporal component
of the evaluation setup.

A bar chart of the results is shown in Figure 3.31. In addition to the Q(75%) quantile
used for ranking, the mean absolute Euclidean error and the Q(90%) error are depicted.
It should be noted, that through the use of TDOA-based localization an additional
unknown error is introduced, which generally lowers the accuracy of these systems.
This has to be considered when comparing the ATLAS results and accuracy with the
TWR-based system of the TPM team.

It can be seen that the ATLAS approach, although utilizing TDOA instead of TWR,
can provide accurate robot tracking results and is, therefore, usable in the context of
real-time robotic movement tracking.

To evaluate the localization approach in a more challenging environment, we
participated in the fifth iteration of theMicrosoft Indoor Localization Competition (MILC)
co-located with the CPS-Week 2018 in Porto, Portugal. Previous competitions featured
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broad participation from science and industry, see [422, 423]. In this competition,
34 teams submitted abstracts, 26 systems officially registered, and 25 systems showed
up in Porto. However, only 22 systems could provide data and were evaluated.

The second category that used custom infrastructure such as UWB, was required
to report 3D locations. Up to ten anchor nodes were allowed in the evaluation area. The
teams had a time slot of 8 hours to set up and calibrate their systems.

The teams were evaluated using a mobile laser scanner-based ground-truth system.
The organizers allocated a 15min evaluation slot per team and fixed order. However,
during the competition, the handling was more dynamic so that teams with a non-
functioning system during their slot had the chance to debug their system and evaluate
it later. Furthermore, since the competition areawas themain staircase for the attendees
of the four conferences held during the evaluation, the systems had to cope with the
obstruction and interference of visitors and observers.

Fig. 3.32: Reconstructed bar chart of the mean 3D accuracies from the MILC 2018 data after temporal
alignment and elimination of the 25% largest errors for each team. Note the diversity of sensors for
the individual localization methods.

The organizers chose the mean Euclidean error as the metric for evaluation. This error,
however, is strongly influenced by the large outliers at the beginning of the evaluation
run. Furthermore, a temporal offset of around 1 s between the ground-truth and the
ATLAS-team result trajectory is observed. Due to this, additional errors were introduced
into the evaluation.

Note that with improved temporal alignment, the mean error of the ATLAS team
improves. Since it was desirable to compare the performance of the properly initialized
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ATLAS results from the rest of the teams, the mean of the best 75% of the temporally
aligned results was evaluated. In order to provide a fair basis for comparison, the best
75% of all teams were considered. Therefore, the analysis does not merely remove the
outliers but improves the results of all teams as depicted in the lowest bar chart.

As depicted in Figure 3.32, when considering the aforementioned points, the actual
performance of the ATLAS system is significantly better than indicated by the official
results. Even though the ATLAS system uses a TDOA-based approach, which has sig-
nificant downsides in accuracy, due to the proposed implementation, the results are
comparable and often better than the other TWR-based approaches.

3.5.5 Conclusion

This section presented the basic capabilities, challenges, and novel solutions for high
precision wireless localization. Here, the bounds in channel utilization, energy con-
sumption, and achievable accuracy are limiting factors for the feasibility of a wide
range of applications.

Therefore, novel approaches for maximizing information and localization through-
put while minimizing channel utilization and power consumption and maintaining
precise localization results were shown to overcome technology barriers and ultimately
enable a connected cyber-physical world. The ATLAS FaST scheduling scheme and
approaches for improving the achievable accuracy are highlighted.

It could be shown that based on these requirements, solution approaches are capa-
ble of improving both, channel utilization and energy efficiency. Further, approaches
to increase the achievable accuracy in challenging environments can be successfully
applied to improve TDOA localization accuracy.

In future work, challenges such as reducing the amount of required anchors, ad
hoc configuration, and in-depth signal quality assessment with machine learning is
envisioned. The potential for high precision localization enabled by the characteristics
of novel communication solutions such as new UWB standards along with 5G and
future 6G systems is huge.
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3.6 Indoor Photovoltaic Energy Harvesting

Mojtaba Masoudinejad

Abstract: Advancement in the field of electronics has enabled devices with ultra-low
power (ULP) demands. However, Industry 4.0 devices made of such components will
be empowered for long operational periods, specifically in remote or hardly accessible
environments. Scavenging energy from the environment is a very common technique
to tackle this energy supply issue. Different energy harvesting principles are available
that exchange energy from distinct forms into electric power. However, we focus on
Photovoltaic (PV) energy harvesting because it is the most mature technique.

In addition to the small size and weight limitation of Industry 4.0 and IoT devices,
which require constraints on the size of a PV cell, they are applied mostly in indoor
environments. Hence, the specific behavior of PV modules for indoor applications
under artificial lighting is analyzed here. Using a systematic data acquisition procedure,
typical PV models are adapted for the ULP harvesting environments. A normalization
procedure is introduced during parameter tuning because common techniques are not
applicable on PV modules when operating in low and ultra-low lighting conditions.
Guidelines are provided to assure the numerical stability of parameter tuning of models.

The second layer of a two-fold model represents the relation of tuned curves with
the environmental factors. Using a relative representation according to the highest
light intensity, these models can be applied for different conditions. Performance of
the overall model is evaluated on an extra dataset collected from a new environment
showing model errors less than 6% in the worst-case condition.

Parts of this section are taken from [434] with the consent of the author.

3.6.1 Introduction: Energy Harvesting

Energy is available in nature in a wide range of forms, from heat andmechanical energy
to the energy stored in electromagnetic waves and light photons. Any method which
enables scavenging these energies can be called energy harvesting and a transducer
that converts them into the desired form is an energy-harvesting device, or harvester
for short. Energy harvesting has a long history, since windmills, which convert wind
energy into mechanical energy to mill grains, date back to the 9th century. Nonetheless,
modern energy harvesting converts energy into electricity.

Wind, solar, Photovoltaic (PV), piezoelectric, thermal, radio frequency and tidal
energy harvesting are only some examples of modern energy-harvesting techniques.
However, techniques based on the conversion of light (specifically solar energy) into
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Fig. 3.33: I-V curve of a Sanyo/AM-1464 PV module measured under florescent light.

electricity are more mature than others due to long research and applications in diverse
fields. While the term solar is commonly known, it includes different principles for
converting the sunlight into the electricity. Nevertheless, PV is a specific form that
uses semiconductor materials and technologies converting light into electric energy. In
a simplified version, a PV transducer can be considered to use the inverse principle
of a Light Emitting Diode (LED). In addition to the maturity of PV harvesting, their
integration into the ULP Industry 4.0 hardware is the main reason we focus on them
below.

3.6.1.1 PV Energy Harvesting
“A PV transducer is a semiconductor device generating electrical power when illumi-
natedwith photons [434]”. These semiconductors have electrons in their valance energy
band, which is weakly bounded. This bound can be broken by any photon that has
higher energy than the band gap and causes movement of the electron to the conduc-
tion band. As long as enough photons are illuminated on the semiconductor surface,
a photon’s energy is converted into the flow of electrons to convert light into electric
energy. Due to the nature of this conversion, PV can generate Direct Current (DC). Con-
sequently, a PV harvester is an electric source, but not an ideal one. According to the
operational condition of the PVmodule it can act as either a voltage or a current source.
The common I-V behavior of a PV module is shown in Figure 3.33.

As can be seen in Figure 3.33, for a large portion of the voltages (mainly in the lower
range) the PV module acts as a current source while for most current values (in a small
voltage range) it acts as a voltage source. However, none of these sections are ideal
because they are pure vertical or horizontal lines. The bending point where the behavior
between source form changes is critical because the maximum power can be extracted
from the module at this specific point. Hence, it is called Maximum Power Point (MPP)
and techniques used to keep the operational point at this point are called Maximum
Power Point Tracking (MPPT). When Vh and Ih describe the harvested voltage and
current subsequently, MPP can be found mathematically from Equation 3.37.

∂Ph
∂Vh

= dIh
dVh

· Vh + Ih = 0, at: Vh = VM (3.37)
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Fig. 3.34: Equivalent 2 diodes circuit model of a PV transducer including parasitic resistances.

In addition to the MPP, there are two other critical points for a PV module including
the crossing from voltage and current axes: open-circuit and short-circuit values.

3.6.2 PV Transducer Model

While some applications require only knowledge of these three specific points, most
utilizations of PV systems require a more descriptive explanation of the whole I-V curve.
Based on the Shockley diode equation [62] as an outcome of work by Hall [254] and
Shockley et al. [604], a multi-diode model of this behavior is explained as:

Ih = Ig − Id1 − Id2 −
Vh + Ih · Rs

Rsh
, (3.38)

when Ig is the photo-generated current, Rs and Rsh are subsequently series and parallel
resistances. Diode’s current Id is defined as in Equation 3.39when * is the diode number.

Id* = Is* ·
[︂
exp

(︂
Vh + Ih · Rs
n* · Vt

)︂
− 1
]︂

(3.39)

In Equation 3.39, Is and n are saturation current and ideality factor of each diode. In
addition, Vt describes the thermal voltage from Vt = B · T/q when B is the Boltzmann’s
constant, T is the temperature in Kelvin, and q is the electric charge.

From the formulation in Equation 3.38, an Equivalent Circuit Model (ECM) can be
made for the reproduction of the source behavior of a PV module. This ECM shown in
Figure 3.34 is able to replicate characteristics of the PV cell, including its non-idealities
and resistances. However, according to the desired accuracy of the I-V curve replication,
it is possible to reduce the number of diodes into one. But some applications utilize
higher number of diodes to increase the degree of freedom for a better replication of
the curve.

Regardless of the number of diodes in a PV transducer’s model, this model has to
be fitted into the real curve of each module and light type. Consequently, the number
of parameters to tune differs according to the number of diodes. Moreover, a system
designer may even remove some parameters from the model in some applications.
Therefore, a general vector ψ will be used to represent these unknowns.

3.6.2.1 Parameter Tuning
There is a large body of research onmethods for tuningψ for each PVmodule. However,
they can be simply divided into numerical tuning and Algebraic Equation Set (AES)
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tuning. In numerical methods, a set of points on the I-V curve is measured and directly
used to solve an optimization problem to minimize the error. For an ideal case when
the whole I-V curve is measured, this can be formulated as error minimization when Îh
shows the current from the tuned model:

min
ψ

ℓ(ψ) =
Voc∫︁

0

|| Ih(Vh) − Îh(Vh ,ψ) ||2 dVh (3.40)

While this method can be explained in a simple way, its application has different
challenges. At first, a large set of measurements from the PV system is necessary in a
constant environmental condition. It can be especially challenging to keep the light
intensity constant for the whole measurement duration. Other issues are related to the
computational aspects of this method. On the one hand, a roughly computationally
intensive optimization has to be solved to reach a set of reliable values for parameters
in ψ. On the other, these methods are sensitive to the initial values used for these
parameters. Another issue that adds complexities to this utilization is finding the current
value for each voltage in the model. As seen in the model’s formulation, Equation 3.38
describes an implicit relation between voltage and current. Therefore, the calculation
of current requires either an explicit relation or has to be done in a numerical (iterative)
way. For the single-diode model, Femia et. al. [204] gives an explicit relation between
parameters using the Lambert function as:

Ih =
Rsh · (Ig + Is) − Vh

Rsh + Rs
− n
Rs
·W (θi) (3.41)

where Lambert W function is presented withW, and θi is:

θi =
Rsh · Rs

n · (Rs + Rsh)
· Is · exp

[︂
Rsh · Rs · (Ig + Is) + Rsh · Vt

n · (Rsh + Rs)

]︂
(3.42)

Although this simplifies the single-diode finding of the current in the model, the two
diodes model (which is more accurate) still requires a numerical solution for each
voltage value. Therefore, there is a numerical iterative function solving inside the
optimization in Equation 3.40, which is also solved in a numerical iterative sense itself.

The computational complexity of the numerical method is the main reason for
most researchers to overcome this challenge by finding alternative routes for tuning
parameters in ψ. Using physical knowledge from the model is a common way to build
an AES that can be solved with less computation. From the general I-V relation and
basic knowledge about a PV system, several equations can be formulated:

at SC: Vh = 0 ⇒ Isc = Ig − Is
[︂
exp

(︂
Isc · Rs
n · Vt

)︂
− 1
]︂
− Isc · RsRsh

(3.43a)

at OC: Ih = 0 ⇒ 0 = Ig − Is
[︂
exp

(︂
Voc
n · Vt

)︂
− 1
]︂
− VocRsh

(3.43b)

at MPP: IM = Ig − Is
[︂
exp

(︂
VM + IM · Rs

n · Vt

)︂
− 1
]︂
− VM + IM · Rs

Rsh
(3.43c)
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It has to be noted that these equations are for a single-diodemodel but can be expanded
for the double-diode model as well. While open circuit and short circuit can be easily
measured, finding the MPP without any prior knowledge is not possible. However, it
is known that the MPP is mostly proportionate to the open circuit voltage (Voc) and
short circuit current (Isc). Hence, it is possible to simply measure the parameters at
these specific proportional values and use them in Equation 3.43c, though it introduces
a marginal error. The above equations are only a mathematical representation of the
exact points from the curve, which is somehow similar to the numerical method. Hence,
using the limited knowledge from this AES can provide a minimal fit to the model on
these specific points. Furthermore, even a single-diode model has a ψ with 5 values.
Consequently, this AES is under-determined and requires either more equations or a
reduction of some parameters. Although few researchers have experimented on models
with only 3 or 4 parameters, it is a well-established principle to use the derivation of the
model on keypoints to expand the AES. These equations for a single-diode model are:

(︂
dIh
dVh

)︂

Ih=0
= − Ig ·

[︂
1

n · Vt
·
(︂
1 +
(︂
dIh
dVh

)︂

I=0
· Rs
)︂
· exp

(︂
Voc
n · Vt

)︂]︂

− 1
Rsh

·

(︃
1 +
(︂
dIh
dVh

)︂

Ih=0
· Rs

)︃
(3.44)

(︂
dIh
dVh

)︂

Vh=0
= − Ig ·

[︃
1

n · Vt
·

(︃
1 +
(︂
dIh
dVh

)︂

Vh=0
· Rs

)︃
· exp

(︂
Isc · Rs
n · Vt

)︂]︃

− 1
Rsh

·

(︃
1 +
(︂
dIh
dVh

)︂

Vh=0
· Rs

)︃
(3.45)

(︂
dIh
dVh

)︂

MPP
= − Ig ·

[︂
1

n · Vt
·
(︂
1 +
(︂
dIh
dVh

)︂

MPP
· Rs
)︂
· exp

(︂
VM + IM · Rs

n · Vt

)︂]︂

− 1
Rsh

·
(︂
1 +
(︂
dIh
dVh

)︂

MPP
· Rs
)︂

(3.46)

Furthermore, the derivation of power according to the voltage is zero at MPP, which
leads to Equation 3.47.

(︂
∂Ph
∂Vh

)︂

MPP
= Vh ·

(︂
dIh
dVh

)︂

MPP
+ Ih = 0 ⇒

(︂
dIh
dVh

)︂

MPP
= − IMVM

(3.47)

Substituting this in Equation 3.46 adds Equation 3.48 as an additional equation to the
AES.

− IMVM
= − Ig ·

[︂
1

a · Vt
·
(︂
1 − IM

VM
· Rs
)︂
· exp

(︂
VM + IM · Rs

a · Vt

)︂]︂

− 1
Rsh

·
(︂
1 − IM

VM
· Rs
)︂

(3.48)

From all these equations, an AES with 7 equations can be made that are all explicit.
Nevertheless, in addition to the complexity of measuring MPP, the challenging task of
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finding the curve’s slope at keypoints is mandatory. Some simplified solutions suggest
calculating the slope from the slope of a line between keypoints, though it adds error
to the tuning performance. Therefore, further measurements are necessary to improve
the calculation of the slopes. Moreover, these equations fit the model’s formula to the
curve only for the measured keypoints and their derivation and cannot provide high
accuracy on other points. However, it is possible to measure any further point from
the curve and add it as a simple equation in the AES. As can be seen, both parameter
tunings have their advantages and disadvantages.

3.6.2.2 Environmental Factors
An I-V curve represents a PV module in a specific environmental condition according
to light intensity (E) and temperature (T). While the overall form of a curve remains, its
details, including keypoints and slopes, shift with these parameters. Therefore, a further
level of model is required to explain the effect of environmental factors. Some initial
models explain the changes in keypoint values due to the deviation in environmental
elements. Unfortunately, these models are not consistent in the literature and there
are different formulations for a single parameter. However, there is a similarity in the
methodology of these models due to their origin from PV operation in the solar light. In
these models, environmental factors are described in a relative sense according to a
reference condition, which is mostly the AM1.5 condition. It is described under a single
sun at 1000W/m2 with a perpendicular line of sight to the PV cell at 25 °C.

Few relations are available in the literature, which explains some of the parameters
in ψ according to the environmental factors. However, most of them use some kind
of simplification assumption and mostly explain a specific application case study.
Masoudinejad [434] reviews the state-of-the-art formulation for these parameters.

3.6.2.3 Indoor PV Energy Harvesting
Despite the maturity of PV energy harvesting and the availability of diverse techniques
for analysis and modeling, most of the available methods are based on the applications
under sunlight. By contrast, modern use cases, especially within the IoT and Indus-
try 4.0 realm, are in indoor areas with artificial lighting. Consequently, a revision of
the available methodologies and validation of their solutions is required. One of the
major difference in these fields is the scale of light intensity. Figure 3.35 provides an
overview. As can be seen, the light intensity in some industrial applications such as
PhyNetLab [197] as an industrial warehouse is multiple orders less than solar-based
applications. In addition to the light-intensity level, the indoor light spectrum has
many more forms and can differ according to the light source, building materials, and
surrounding environment. This difference in the spectrum between solar light and
typical indoor light sources can be seen in Figure 3.36.
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Fig. 3.35: Light intensity range in some common conditions. Reproduced from [146].
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Fig. 3.36: Left: outdoor solar light spectrum [479] and sun’s black body radiation at 5700K [703].
Right: measured indoor light spectrum of three different artificial lighting.

Differences between light sources directly affect the I-V curve of a PVmodule. Figure 3.37
provides an example. Although both light sources are from the same manufacturer
with the same specification and power, they produce dissimilar curves.

The only difference between these two sources is their color temperature, which
can be seen in their spectrum in Figure 3.38.

As can be seen, although integrative light intensity of both sources is equal at
248 lx, their color temperature difference is a consequence of a discrepancy in the form
of spectrum. Due to the non-uniform sensitivity of PV modules to each wavelength,
the produced I-V curve will be different for each specific condition. Consequently, not
only is an analysis of the PV behavior and modeling under artificial lighting necessary;
careful consideration is required as well.
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Fig. 3.37: I-V curve of a Solems PV module measured under cold and warm LED light. Both sources
are from the same manufacturer measured at: E =248 lx and T =299K.
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Fig. 3.38: Light spectrum measured under cold and warm white LED light both at 248 lx. In spite of
equal integrative value, the spectrum is different. Left: irradiance, Right: illuminance.

3.6.3 Indoor PV Modeling

The diversity of the indoor lighting types and the lack of reliable data from PV behavior
under indoor artificial lighting demand the collection of representative datasets for
them. This data can be used later to analyze the I-V curve for such lighting, for parame-
ters extraction through curve tuning and for formalizing the relation of them according
to the environmental factors.

The required information for each measurement of the PV in an indoor area in-
cludes the I-V curve and light-intensity information in addition to the temperature. For
measuring the I-V curve, a variable impedance has to be connected to the PV cell. Start-
ing from a very large value this impedance will decrease till the open circuit voltage is
reached. During this impedance sweep, voltage and current have to be measured simul-
taneously the whole time. This can be used to reproduce the curve. Such a procedure
can be applied by using a Source Measurement Unit (SMU).
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Fig. 3.39: Examples of measured I-V curves. Left: in normal space. Right: in PVNS.

There are multiple systems and devices for light intensity measurement. To have com-
bined information, both integrative measurement and spectrometry are used here.
Moreover, a closed environment with controlled light intensity is used to assure reliable
and reproducible lighting. Using a system with detailed explanation from [432, 433,
435] different datasets are collected, which are publicly accessible from [433].

These datasets will be used below to develop the models and explore indoor PV
behavior. However, there are two preliminary topics that need to be discussed before
modeling.

3.6.3.1 PV Normalized Space
Looking at the available indoor datasets, as can be seen in the example in Figure 3.39, re-
veals that signal ranges are in differentmagnitudes. This diversity can cause calculation
errors and add complexity to the numerical method calculations.

Therefore, PV Normalized Space (PVNS) is introduced to scale all curves into a
similar range and avoid numerical problems. This conversion can be simply applied by
converting the voltage and current of each curve according to its maximum referred to
as Voc and Isc, respectively. It has to be noted that resistances have to be scaled as well,
though because the parameter n does not have units it does not require any scaling. All
in all, the relation of all scaled parameters (shown by •) is:

P = P ×
[︁

1
Voc ,

1
Voc ,

Isc
Voc ,

Isc
Voc ,

1
Isc ,

1
Isc ,

1
Isc

]︁
, (3.49)

when:
P =

[︁
Vh , Vt , Rs , Rsh , Ih , Ig , Is

]︁T
. (3.50)

The effect of this scaling on the I-V curve can be seen in Figure 3.39 on the right. This
scaling highlights the differences on the form of the I-V curve as a consequence of
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Tab. 3.7: Bound suggestions for the PV model’s parameters in the PVNS.

Parameter Lower limit Upper limit Unit

Ig 0.9 1.1 [A]
Rs ϵ (Voc − VM )/IM [Ω]
Rsh VM/ (Isc − IM ) ∞ [Ω]
Is ϵ 1.1 [A]
n 1 10 [-]

different light ranges, which are not easily detectable on the original curve. Moreover,
it brings all available data into a uniform scale which helps to reduce the sensitivity to
the signal values in numerical methods.

3.6.3.2 Evaluation Criteria
Similar to the modeling procedures, an evaluation factor is required to quantify the
performance of a model. When replication of the I-V curve is desired, relative perfor-
mance factors are preferred due to the large signal range. Nonetheless, division to zero
at the open-circuit point can hinder calculating a relative factor without removing
this point. Unfortunately, open circuit is a keypoint and plays a critical role in any
model. Consequently, the Mean Absolute Normalized Error (MANE) is defined here as
in Equation 3.51. It normalizes the percentage absolute error according to the Isc to find
the mean value. This can be explained as the Mean Absolute Error for the I-V curve in
the PVNS as well.

MANE = 100
Isc · Voc

·
Voc∫︁

0

|δ (Ih)|dVh = 100 ·
1∫︁

0

|δ
(︀
Ih
)︀
|dVh (3.51)

or for the case of discrete measured data with m points:

MANE = 100
Isc · m

·
m∑︁

i=1
|δ (Ih)| =

100
m ·

m∑︁

i=1
|δ
(︀
Ih
)︀
|. (3.52)

3.6.3.3 IV Curve Parameter Tuning
In the first step of the modeling, ψ parameters have to be tuned for each I-V curve. For
this purpose, SWL, SCL, and IWL datasets from [433] are used. For the numerical tuning
method, as discussed in 3.6.2.1, the initial value used for each parameter plays a critical
role. After a large set of experiments, a general guideline can be provided as in Table 3.7
for the bounds on these parameters in the PVNS. Using these bounds, parameters for
all curves in datasets are tuned using least square method. This process is repeated for
both single- and double-diode models using 200 equidistant points along the voltage
axis, for each curve. Distribution of error for all cases is presented in Figure 3.40. As
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Fig. 3.40: Density of MANE distribution for all datasets using, the single-diode model (left) and
double-diode model (right).

could be estimated, double-diode model has a much better performance compared
with the single-diode counterpart. This can be simply argued because of extra tuning
parameters.

The application of the AES-based method on these datasets is computationally
simpler while it is very sensitive on the way that the slope of the curve is calculated.
However, comparing the results with the numerical method, AES-based tuning has
lower performance because of the extensive number of points in the numerical method.
Hence, tuned parameters from the numerical method continue to be used. Their distri-
bution according to the light intensity for the single- and double-diode models can be
seen subsequently in Figure 3.41 and Figure 3.42.
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Fig. 3.41: Changes in single-diode model parameters according to the light intensity for all datasets.
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As can be seen from these figures, the single-diode model parameters have a clear
relation to the light intensity and temperature. Although this holds for some parameters
of the double-diode model, others such as resistors and saturation currents show
abnormal behavior. This can hint at an over-dimensioning of the model with a second
diode that introduces parameters that are not actually part of the physical system.
Therefore, a hypothesis can be made that a secondary diode (or at least some of its
parameters) is not part of the physical model of the PV system under artificial lighting.
Hence, it improves the performance of the tuning but is no physically significant at
the higher level. This behavior is somehow similar to the principle of over-fitting in
machine learning, where the model focuses too much on the data, so that the overall
form gets lost. Nevertheless, this hypothesis cannot be proven at this stage (using
available data) without any further physical insight. Consequently, the single-diode
model will continue to be used here for the remaining part of themodeling of the indoor
PV system.

3.6.3.4 Modeling Effect of Environmental Factors
After tuning all parameters for the single-diode model, the next step is to formulate
the relation of each parameter with the environmental factors. However, since this is a
purely data-based modeling approach, the resulting models are empirical and will not
assure any physical insight. Yet, by building these models for all datasets that include
different PV technologies and light sources, the generalization of the model can be
kept to some extent. After testing diverse function types on the available data, these
relations are formulated as:

̃︀Ig = IgI*g
= αg1 · ̃︀E + αg2 · ∆T (3.53a)

̃︁Rs = RsR*s
= αs1 + αs4 · ∆T
αs2 + αs3 · ̃︀E

(3.53b)

̃︂Rsh =
Rsh
R*sh

=
αp1 + αp6 · ∆T

αp2 + ̃︀E
+ ln

(︁
αp3 · ̃︀E + αp5

)︁
(3.53c)

̃︀Is = IsI*s
= αi1 + αi2 · ̃︀E +

1

αi3 · ̃︀E
(︁
αi4+αi5·̃︀T)︁ + αi6 · ∆T (3.53d)

̃︀n = n
n* = αn1 + αn2 ·

̃︀E + 1

αn3 · ̃︀E
(︁
αn4+αn5·̃︀T)︁ + αn6 · ∆T (3.53e)

In these equations, parameter α shows a tuning factor for each dataset, while ̃︀• is
a representation of a relative parameter. Each relative parameter under a reference
condition is similar to the AM1.5 for the solar case. However, contrary to the solar case
with a unique reference point, there is no constant condition that can be defined for all
indoor environments. Hence, the point with maximum light intensity in each dataset is
used as a reference point and all its parameters are used as a base condition. Despite
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parameters whose relative value is found from a ratio, the difference of temperature is
more suitable for these formulations and is used in Equation 3.53.

Using these formulations, α is tuned for each dataset. As an example, the output
parameter for each light intensity in the SWL dataset is presented in Figure 3.43. It is
clear that these provided empirical models are able to replicate the behavior of each
parameter with a good accuracy.
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Fig. 3.43: Performance of models for parameters at different environmental conditions on the SWL
dataset including temperature effect.

It has to be noted that parameters of the I-V curve with maximum light intensity are
used here as the reference point. Also, it is advisable to remove the temperature factor
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for a dataset when the deviation of temperature is minimal and can be ignored. In this
way, the model can be simplified without reducing its performance.

3.6.4 Indoor PV Model Evaluation

So far, three available datasets have been used for the parameter tuning and environ-
mental factor modeling. Since the overall behavior of the models has been checked
on the same dataset, it can not guarantee a reliable performance for other conditions.
Therefore, an extra evaluation on a new dataset is beneficiary. Consequently, a new
set of data has been collected in the PhyNetLab, including 120 samples collected in
different positions, heights, and temperatures from different days. This set includes
light intensities between 244 lx to 494 lx and temperatures in the range of 298K to
302 K.

To avoid error due to the training during the tuning of α factors, 30%of samples are
selected randomly in a uniform distribution of the light intensity. Parameters for this
smaller set is extracted and used in a least square method to tune α in Equation 3.53.
Similar to the model itself, the highest light intensity in this subset is used as the
reference condition. The resulting formulations are used to find ψ parameters for the
remaining 70% of the data. Using these parameters, the resulting I-V curve is compared
with the real measured value to find the MANE presented in Figure 3.44.
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Fig. 3.44:MANE of model on the evaluation dataset. Only 30% of data (randomly selected, shown
with circles) was used for parameter tuning.

As can be seen, all errors are in a very small range, which shows reliable performance
from the empirical abstract level model on a new indoor environment. When repeating
the random selection subset, the worst case MANE is always less than 6%. Hence, the
overall modeling principle can be accepted and applied to other environments.
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3.6.5 Conclusion

This contribution has discussed the basic principles of the PV energy harvesting and
their modeling. After a short review of available PV models, we introduced tuning and
adapting a model for a PV transducer. We then discussed the differences between PV
behavior under solar light and artificial sources (used for indoor environments). Next
we determined the need for model development and evaluation specifically for indoor
PV harvesting.

It was shown that each light source and indoor environment has its particular
specifications due to differences in the light spectrum seen by a PV module. Therefore,
a new setup was presented to assure reliable, high accuracy, and reproducible indoor
PV behavior data. Using this data, a PV normalized space was introduced to enable
a unified modeling strategy, regardless of large differences in the signals within the
indoor environment. Furthermore, the mean absolute normalized error was introduced
as a non-compromised evaluation factor for model performance of each I-V curve.

Using the collected data, guidelines were provided for the boundary of tuning
parameters in I-V curve fitting. While parameters were tuned for single- and double-
diode models of a PV system, it has been shown that some parameters in the double
diodes model lack specific relation to the environmental factor. This led to a hypothesis
that the double-diode PVmodel includes more parameters than its real physical factors.
Therefore, these parameter(s) improve the fitting but with the price of loosing the
physical meaning. Hence, single-diode model data was used to develop empirical
models for each parameter according to the environmental factors. These models use
relative values according to a reference point which is simply selected as the data point
with the highest light intensity.

Finally, these models were tested using all available datasets, and a new set of
data was collected in a real-case scenario including 120 samples. The environmental
condition of this new scenario was tuned into the model using only 30% of data points
selected randomly. The application of this tunedmodel showed promising performance
with MANE of less than 6% in the worst-case scenario. Therefore, we showed that
adaptability of the developed models on new real world environments and their good
performance on predicting the I-V curve of a PV module in new environments.
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3.7 Micro-UAV Swarm Testbed for Indoor Applications

Nils Gramse
Moritz Roidl

Shrutarv Awasthi
Christopher Reining

Abstract: This contribution describes a testbed for the development of resource-
constrained micro-UAV (Unmanned Aerial Vehicle) swarms . The testbed architecture
combines external observation, visualization of logistic scenarios, and simulation
systems with a drone control unit. Swarm algorithms are implemented on the drones
to control their movements and enable their cooperation. A drone learns to perform a
warehousing task using reinforcement learning. In combinationwith swarm algorithms,
this behavior is extendable to a drone swarm. This work describes how drones can
be deployed to solve tasks in industrial settings. In addition, an automatic charging
station extends the runtime of the swarm.

3.7.1 Introduction

Drones are more formally known as unmanned aerial vehicles (UAVs) or unmanned
aircraft systems. They are battery-powered devices, that can be as large as an aircraft
or as small as the palm of a hand. A drone is an intelligent flying system with sensors
and actuators that can be remotely controlled or fly autonomously. Due to its high
adaptability, the use of drones is increasing acrossmany civil application domains. Over
the last decade, extensive research has been performed on consumer and commercial
drones. Due to the advances in microelectronics, sensors are steadily getting lighter,
smaller, more economical, smarter, and more accurate. As a result, drones are getting
smaller, more energy-efficient, and easier to operate [521]. Moreover, there is a growing
need to build small and resource-constrained drones that fit perfectly into the Industry
4.0 setting, where all intelligent devices are networked and can exchange their data
with each other [52].

3.7.2 Drones in Logistics

Drones have shown high potential in the logistics industry. Some have projected that
this market will grow by $29 billion by 2027with an annual growth rate of almost 20%
[721]. A 2018 study found that electric drone delivery was more efficient than trucks,
vans, passenger cars, and gasoline drones [650]. Electric drones are environmentally
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friendlier than other aerial vehicles when comparing CO2 emissions. Drones are a
potential substitute for traditional delivery methods, such as door-to-door or last-mile
delivery using trucks. The difference is that they do not consume fuel and do not
need infrastructure such as streets. However, drones still pose several safety hazards,
limiting their use in industries and outdoors. Some common safety hazards include
drones colliding with people, structures on the ground, and other drones [720]. Thus,
more research is required to make drones safe to use in urban and industrial settings.
Deploying drones for transporting goods to end users may transform the existing
transportation methods in large cities and rural areas. They might not completely
replace the traditional methods but will significantly impact this domain [521].

Warehouse management is an essential operation for most business activities
nowadays. Manual inventory has been the only option for a long time, but it poses
several challenges in terms of costs, inaccuracies, and safety [151]. Furthermore, in
the EU, warehousing and storage represent up to 15% of the current costs in logistics
[193]. Thus, there is a growing need to automate warehouse operations while ensuring
the warehouse flexibility and adaptability. Such automation is something automated
storage solutions made of mechanical conveyors such as high-bay warehouses and
automated small parts storage cannot achieve. However, drones could potentially
cater to this ever-increasing demand. There has been extensive research on drone
use in transporting goods outdoors, and the researches are available commercially
[418, 642]. However, large-sized drones cannot reach small, constricted spaces such as
warehouses. The key reasons are that GPS-based navigation systems are unavailable,
and the tolerances regarding collision avoidance and the time available for decision-
making are drastically lower. By contrast, small-sized drones can operate in the interiors
of warehouses and the narrow and high rows of shelves. Thus, one can integrate small-
sized drones into the supply chain to automate various intra-logistics operations. [525].

Research on deploying autonomous drones and robots for human-machine inter-
action in warehousing is still in its early stages. However, industries have pioneered
drones as extensions to their IoT environments or complement other data-gathering
processes. Most IoT devices have a limited battery life, are stationary, and thus can
collect the data of a specific location for a limited time. However, resource-constrained
small drones can gather data from dangerous areas and other fixed IoT devices. Subse-
quently, they can transmit all the collected data to a central station. Drones can also
aid in recharging IoT devices wirelessly or remotely. Thus, drones can be essential in
connecting IoT devices to the whole IoT ecosystem [21, 26, 417]. This work introduces a
testbed to replicate and experiment with any industrial scenario involving small-sized
resource-constrained drones working alongside humans. In addition, an automatic
charging station has been proposed, to ensure the continuous operation of drones.
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3.7.3 Application

A possible logistics application for resource-constrained drone swarms, especially
those that can recharge independently, is their use as a mobile surveillance system.
For instance, this drone swarm can be used in warehouses to protect the stored goods
from theft. The drones can then perch like birds on the existing trusses, high racks, and
steel beams and observe their surroundings. From their high positions, they can gather
a larger amount of data instead of low-power stationary IoT devices equipped with a
battery. A charging station enables the continuous operation of the drone swarm. If
a drone is low on battery, it automatically flies into the charging station, and another
fully charged drone takes over its tasks.

3.7.4 Swarm Algorithms

Swarm algorithms create a group dynamic similar to the swarm behavior of animals,
such as a flock of birds or a school of fish. Craig Reynolds developed a simulated swarm
behavior in 1987with the help of these observations [526]. In logistics systems, a swarm
algorithm is similar to traffic rules, which enable a smooth traffic flow by observing
the local environment with as little communication as possible between the vehicles.
One advantage of using swarm algorithms in logistics is that they do not require fixed
routes but can use all available spaces. This allows them to easily change the layout
and react to unpredictable events or disruptions. Furthermore, due to the modular
design of swarm algorithms, new behaviors can be added without altering the existing
ones. The paradigm of swarm behavior aims to enable several independent robots to
collaborate towards achieving a collective goal, acting as a swarm.

Swarm behavior, established by Reynolds, is implemented by three basic rules:
the cohesion rule, the alignment rule, and the separation rule [153]. Figure 3.45 shows
the rules schematically. The active agent in each case is the highlighted black triangle
with its current velocity vector. The remaining triangles represent other agents. The
highlighted velocity vector indicates the resulting vector adapted to satisfy the require-
ments of that rule. The white circles visualize the effective range of local perception of
the active agent. The black circle represents the center of all agents located in the local
perception.

The cohesion rule aims to move toward the swarm’s center. Thus, an agent tries to
point its velocity vector to the center of its local perception. The alignment rule ensures
that all agents within the range of local perception aim for the same direction of motion.
Finally, the separation rule states that a minimum distance to all neighbors [153] must
be maintained.
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Fig. 3.45: Schematic representation of the three basic rules for simulated swarm behavior [153].
Mobile obstacles are people moving with headgear, and static obstacles could be the charging
station, walls, or shelves.

Weighting the individual rules influences the appearance of the swarm behavior. For
example, if collisions must not occur under any circumstances, the separation rule
receives a high weighting. After assigning appropriate weights, the calculated velocity
vectors are summed up to a control vector, which determines the final movement
of an agent, as can be seen in Figure 3.45. The above three basic rules can also be
supplemented by other rules as seen in [483]. One of the advantages of swarm control
is that there is no need for the centralized control of each drone. Depending on the
implementation, each drone in the swarm can perceive its local environment by itself
and avoid collisions. Thus, it is possible to manoeuver an arbitrary number of drones
simultaneously without calculating a separate trajectory for each drone centrally. This
decentralized control makes the swarm implementation scalable.
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3.7.5 System Architecture of Drones

The drones used in this work are a custom design using the Crazyflie 2.0 as a base
platform [509]. Figure 3.46 shows the UAV used in this work. A single drone has a
size of 103x103x29mm and a total weight of 37.85 g. It can carry a payload of 64.85
g (compared with 15 g for an original Crazyflie drone). Thus, drones can use larger
batteries which increases the flight time. Furthermore, additional sensors such as
cameras and Lidar can also be mounted on the drone.

Fig. 3.46: Crazyflie 2.0 drones used in this work.

Four brushless DCmotors onwhich four rotorswith a diameter of 60mmaremounted in
reverse, comprise the propulsion system. Thus, the flow characteristics of the propellers
are not influenced negatively by the frame. In addition, the frame structure itself is
lightweight and built using fibre composite material.

The computing hardware consists of two microcontrollers. An STM32F405RG from
STMicroelectronics [648] is used as the main computing unit. It performs all computa-
tionally intensive calculations and control tasks of the drone. For this purpose, a 32-bit
ARM Cortex M4 with a clock frequency of 168MHz and a floating-point arithmetic unit
are used on the microcontroller. The SRAM has a capacity of 192 kB, and the flash mem-
ory holds 1MB of program code. An EEPROM of 8 kB is connected to the microcontroller
via the I²C bus to store static information.

A second microcontroller (nRF51) from Nordic Semiconductor is used for wireless
communication and as a powermanager. This microcontroller uses a 32-bit ARMCortex
M0, which clocks at 32MHz and has a 32 kB SRAM and a 128 kB flash memory. It has a
low idle power consumption of 3 µW [591]. The two microcontrollers communicate via
a UART interface.
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Fig. 3.47: System architecture for a drone swarm as a platform for data acquisition. The main compo-
nents with their interfaces and the interaction between all components are shown [509].

Functionalities of the entire system architecture of the drone swarm are realized on
various external systems, as seen in the Figure 3.47. Due to the loose interconnection of
the multiple systems in the architecture, they can be easily replaced.

The Robot Operating System (ROS) server is well suited for inter-process commu-
nication [457]. Therefore, it is a part of the high-level application layer for controlling
Crazyflie 2.0. Data from the MoCap system determines the absolute position and the
attitude of the drones. A unique marker configuration consisting of four markers is
pasted on every drone to identify each drone uniquely. The captured point cloud from
the MoCAP system generates set points for the drones and compensates for the drift of
the inertial measurement unit onboard the drone. All parameters converge in a ROS
server and are forwarded to the drone.

The main computation task performed onboard the drones is the calculation of the
flight parameters. A trajectory is computed from the set point and the state estimates in
a specified time. The set-point values are obtained through an Extended Kalman Filter
(EKF) to achieve a higher overall control accuracy. Trajectories can also be calculated
externally and transmitted directly to the drone.

Communication between the external systems and the drone happens via the
2.4 GHz ISM band. The CRTP (Crazyflie Real-Time Protocol) is designed to send data
packets without much overhead, thus minimizing the latency. The transmission speed
is configured to 250 kbit/s to prevent interference caused by the metal walls of our
research center and enable the transmitted signals to be decoded reliably by the drones.
The MQTT server transmits drone information from the ROS server to other subsystems.
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3.7.5.1 Recharge Station
Another adaptation is having the drones charged in a drone recharge station. Therefore,
two holders with which the drones can hang in the station for charging, are attached to
the drone frame. The charging current for the drone then flows via these holders. Thus,
a battery exchange is no longer necessary, enabling continuous operation.

The drone recharge station represents another external system. It is constructed
out of stainless steel rods and currently allows charging up to 32 drones distributed
over three floors. A 200W 5V/20A power supply feeds power to the recharge station.
The recharge station can be hung from the roof or fixed in another safe place. When the
drones land on the station, the charging of the drones starts automatically. Therefore,
the 24/7 operation of the drone swarm is achievable. If a drone is low on battery, it
automatically flies into the charging station, and another fully charged drone takes
over its tasks.

3.7.6 Testbed

The testbed was developed at the Chair of Material Handling andWarehousing research
center at TU Dortmund University. It is housed in a lightweight hall that is structurally
identical to conventional industrial buildings in the logistics sector and follows the
concept of a highly flexible development laboratory [478, 520]. Developing the testbed
aims to create an environment for simulating real warehouse scenarios. The testbed is
equipped with an infrastructure designed to prototype Cyber-Physical Systems (CPS)
accurately. While the test area remains free of permanently installed infrastructure, the
hall contains several permanently installed observation systems on the ceiling, walls,
and floor.
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(a) (b)

Fig. 3.48: General view of the testbed created in the research hall. (a) Person (wearing a headgear)
standing between the drone swarm during a test scenario (b) Charging station hanging from the roof.

3.7.6.1 Architecture
Figure 3.49 shows the architecture used to create the testbed. The architecture is similar
to the one used in [465]. The MoCap system consists of 46 infrared cameras manu-
factured by Vicon. It can track a substantial amount of appropriately marked objects
with an accuracy of 0.3mm and operates at a data transmission rate of up to 200Hz
with latencies of 4ms to 15ms. The observed experimental space is 22m long, 15m
wide and up to 3.5m to 4m high. The localization data is accessible to multiple clients
simultaneously over the network and provides the absolute position and attitude of
the marked objects in a three-dimensional space. Figure 3.48 shows a general view of
the testbed.
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Fig. 3.49: Architecture used for creating the testbed [465].

The testbed uses MQTT (Message Queuing Telemetry Transport) [292] to distribute
data between the subsystems in Figure 3.47. The simulation subsystem, designed as a
development platform, consists of a programmable 3D modelling environment. In this
work, Unity is used for 3D modelling. Unity generates virtual objects and scenes. All
objects in a scene are mapped into an inheritance tree, which can be manipulated or
extended using the C# programming language [307]. In addition to the common objects
of the 3Dmodelling environment, such as cameras or light sources, the C# script creates
custom objects.

The simulation subsystem comprises a laser projection system consisting of eight
Kvant Clubmax FB4 laser projectors [373]. The laser system generates both static and
dynamic projections of virtual objects from the simulation. Therefore, it is possible
to visualize complex algorithms [436]. Visualization can be done for demonstration
purposes and a better understanding of the complex behavior of an algorithm.
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All marked objects in the physical space are mirrored into the Unity 3D simulation envi-
ronment via theMoCap system. In addition to the representation of physical objects, the
simulation can contain any number of virtual objects. Virtual objects with no physical
representation aremirrored on the hall floor via the laser projection system. Unity sends
simple motion setpoints to the UAVs and receives the resulting positions of the UAVs
via the MoCap connection. The low-level control logic is performed onboard the UAVs.
UAVs and their trajectories can be simulated at an accelerated time in simulation-only
mode.

In this work, TensorFlow is used to develop machine learning algorithms. These
algorithms are coupled to the simulation environment via the ML-Agents toolkit [307].
The toolkit implements reinforcement learning on a drone and uses Unity as a training
environment. During training, the simulation is executed up to a hundred times faster.
The learned behavior in neural networks controls the drone using Unity. The current
system uses C# in the Unity simulation, Python and C++ for drone control based on the
ROS, and plain C on the embedded systems of the drones.

3.7.6.2 Drone Swarm Setup
The testbed described in the previous section simulates swarm control on a physi-
cal drone swarm. The current swarm at the research hall consists of up to 16 drones
controlled by an extended version of the open-source project [509]. Based on the archi-
tecture in Figure 3.47 a transport scenario in a warehouse is replicated.

The drone swarm flies in a test area indicated by the laser projection system. Hu-
mans can enter the test area if they wear laser protection glasses and headbands with
markers, so they get recognized by the swarm as a mobile obstacle. Humans can safely
move within the swarm as long as they move at moderate speeds. After takeoff, the
drones fly in the range between 1.5m and 2.6m in height.

Transport orders are created by the laser when amarked Frisbee disc gets thrown on
the ground in the test area. The transport order is generated as a virtual packet projected
by the laser system. The target for all orders is an area on the ground indicated by the
laser. The drone with the shortest path to the packet flies to it at a low altitude and picks
it up. The drone then delivers it to the target area at a low altitude and ascends back to
join the swarm. Multiple orders can be picked up by multiple drones simultaneously.

3.7.7 Reinforcement Learning for Micro-UAV Swarm

After successful simulation of the drone swarm in the testbed, we extended the capa-
bilities of the swarm by using machine learning to perform a warehouse task. This
work uses Reinforcement Learning (RL) algorithms. In RL, the algorithm is not given
examples of optimal outputs but instead discovers them by trial and error [70].
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The goal in RL is to find suitable actions for a given situation to maximize the reward.
In RL, an agent is an entity that acts based on a policy. The policy defines how an agent
behaves based on the observations it perceives at a given time. An agent is embedded
within an environment, and at a given instance, it is in a specific state. The value of
a given state refers to how rewarding it is to be in that state. From the current state,
the agent can take one of the sets of actions that can bring it to a new state, provide a
reward, or both. The agent’s main objective is to maximize the total cumulative reward
that it receives over the long run [664].

Reinforcement learning with drones is being extensively used for various applica-
tions such as drone tracking, and following the leader drone in a swarm [14], achieving
a decentralized control of a drone swarm [51], collision avoidance [518], and trajectory
planning [318]. This work shows that machine learning techniques such as RL can be
tested in the testbed environment created in the research hall.

3.7.7.1 Scenario
In this work, the task of transporting an object to the target area is simulated using
RL by a single drone as a proof of concept. A drone flying in the testbed is presented
with a virtual object. At first, the drone wanders around in the testbed, unsure what to
do. Eventually, it picks up the object and delivers it to the target area, getting a reward.
After multiple training sessions, the drone learns that picking up and delivering an
object is the best way to maximize the reward.

3.7.7.2 Implementation
The ML agent toolkit creates simulated environments using the Unity Editor and in-
teracts with them via a Python API [307]. The toolkit provides the ML-Agents SDK,
which contains the necessary functionality to define an environment within the Unity
Editor and the core C# scripts to build a learning pipeline. In this work, the task of
transporting orders, as described in Section 3.7.6.2, is simulated. The environment is
the testbed in the research hall, and the agent is the drone. Initially, the drone needs
to learn how much to rotate the motors enabling it to move some specific distance in
a particular direction. Then, the drone computes the relative distance between itself
and the target to decide what action to take next. The action of picking up the order
and delivering it to the target area earns the drone a positive reward. Drone receives
a fixed penalty (negative reward) for every other action. The goal is to maximize the
rewards and minimize the penalty. Thus, the drone learns to swiftly pick up and deliver
an object to avoid a heavy time penalty.

A hierarchical approach integrates the swarm algorithms with RL algorithms. The
swarm algorithms such as separation, cohesion, and obstacle avoidance have a higher
weightage which ensures collision-free flight and the safety of the persons in the testing
area.
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An RL technique called Proximal Policy Optimization (PPO) is used in this work. PPO is
a family of policy optimization methods that use multiple epochs of stochastic gradient
ascent to perform each policy update [587]. PPO uses a neural network to approximate
the ideal function that maps an agent’s observations to the best action an agent can
take in a given state. A simple neural network (developed in TensorFlow) with an
input layer, one hidden layer and an output layer is used. The network’s output is a
vector indicating the direction the drone should fly in. Agents can ask for decisions
from the policy either at a fixed or dynamic interval, as defined by the developer. The
PPO algorithm is implemented in TensorFlow and runs in a separate Python process.
Communication between Python and Unity takes place via a gRPC communication
[718] protocol and utilizes protobuf messages.

After training the RL agent for an hour, the trainedmodel is saved. The savedmodel
computes the actions of the drone in the testing phase. While testing, it is observed
that the Micro-UAV can perform the transport task successfully using RL. Moreover, a
hierarchical approach allows the swarm algorithms to be used with the RL algorithm.
The simulations were performed on a single drone, but can be extended to the entire
swarm.

3.7.8 Conclusion

This contribution describes a testbed for the development of resource-constrained
Micro-UAV swarms. The testbed architecture combines external observation, visualiza-
tion, and simulation systems with a drone control unit. The architecture in Figure 3.47
successfully integrates external systems with drones and ensures fast data exchange us-
ing radio signals. Swarm algorithms formulate a collision-free path for each drone. The
Micro-UAVs successfully perform a transportation task using reinforcement learning
in combination with swarm algorithms. Therefore, it is possible to integrate machine
learning into the current setup, which opens up new opportunities in the use of ma-
chine learning with resource-constrained drones. This work describes how drones can
be integrated into a process environment and operated in ameaningful way. In addition,
an automatic charging station extends the runtime of the swarm.

3.7.9 Future Work

Industrial use of micro-UAVs will increase as sensors become smaller andmore efficient
for the use ondrones. Thus, on-board sensorswill be used instead of aMoCAP system for
accurate localization in the future. Future works will include autonomous exploration
of an environment, which will involve the swarm creating a map from a safe starting
point and updating it in subsequent flights. The recharge station described in this paper
will form the basis for this work. Moreover, human-machine and machine-machine
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interaction will be developed in the hall to create a safe environment for humans to
work alongside drones.

Various ML algorithms could be implemented directly on the drones to enable
them to perform complex tasks. For example, ML could be used to learn the complex
drone trajectories and motion patterns and thus could help to reduce the dependence
on some of the systems in Figure 3.49. In the future, the different research halls could
be equipped with a 5G installation that allows the drone swarm to fly between halls.
Connecting the swarm via 5G to an already existing high-performance cluster forMLwill
enable larger-scale field studies for further development of the underlying algorithms.



4 Smart City and Traffic

4.1 Inner-City Traffic Flow Prediction with Sparse Sensors

Thomas Liebig

Abstract: The current traffic situation in urban areas and its forecasting are of interest
to various application scenarios, as cities become more crowded and jammed. But the
observation and monitoring of traffic situations are expensive, and thus estimates need
to be imputed for unobserved locations and predicted for future locations.

In this contribution, we focus on a situation-aware routing use case, which prevents
traffic jams. This system needs to take into account real-time estimates of unobserved
and future traffic and present several probabilistic approaches to estimating traffic
quantities.

4.1.1 Introduction: Problem Understanding

Traffic congestions are crucial problems of urban traffic, both for logistics, and pas-
senger traffic. Data-driven, dynamic control and a mobility shift to automated vehicles
could potentially ease current problems and lead to a mobility change in urban envi-
ronments.

However, traffic systems are complex real-time systems with multiple actors, so
control is difficult. Moreover, the observation of this process by measurements is sparse
and prone to local (spatio-temporal) validity. Several real-time imputation and predic-
tion steps are therefore prerequired, before the computation of meaningful dynamic
recommendations for control is possible.

However, if individual navigation could take the predictions of future traffic situa-
tions into account, one would be able to avoid congested road segments or to decide
on the best mode of travel in advance. Moreover, since some hazards such as traffic
jams often occur by excessively high traffic densities, situation-aware trip planning
would also cause fewer traffic congestions, and the infrastructure could be used more
efficiently.
The tasks posed by situation-dependent routing are
– the prediction of future traffic situations from sparse observations,
– the utilization of dynamic predictions in planning, and
– the evaluation and selection of individual actions.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785982-004
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In the following sections, we address these tasks one after the other and reflect the con-
tributions we made to these questions within the CRC 876. The contribution concludes
with a discussion that highlights future research directions.

4.1.2 Traffic Prediction from Sparse Observations

In data mining, learning a prediction model is a well-defined supervised learning task.
Given labeled observations x, y from a space X × Y, we train a model f : X → Y such
that the expected loss l between prediction f (x) and the truly observed label y becomes
minimal. With this model, the prediction in a certain situation can be obtained by the
application of the model to new data y = f (x).

However, the modeling process is highly dependent on the available data, and the
suitability of this approach depends on the entanglement of the modeled process.

In traffic control, we have a dynamic spatial process, and observed data is valid only
for a limited extent in space and time. Moreover, the basic assumption of the supervised
learning approach that the process repeats and, therefore, that past observations are
suitable to project the future, does not necessarily hold in general. Traffic control and
individual decisions depending on the expectation of future traffic behavior are counter
indicators of such assumptions.

Based on these difficulties, various approaches to model traffic exist for different
model assumptions, modes of transportation, and granularities.

4.1.2.1 Gas Kinetic Models
In contrast to the data-driven supervised learning approach, one could start by ob-
serving patterns and physical properties of traffic and representing these in models.
This model-driven approach is subject to the physics of transport and traffic theory.
One of the basic observable properties of traffic is that individual moving objects (cars,
pedestrians, etc.) do not disappear; rather, over time the number of objects entering
spatial regions equals the number of objects leaving this region.¹ By formulating of
this observation in a conservation law and deriving a general description model, we
obtain so-called gas-kinetic traffic models. Systems of differential equations model
traffic similar to any liquid or gas. Prominent examples of these models are the Burgers
Turbulence and the Navier Stokes Equation. In macroscopic traffic modeling (focusing
on traffic at gross granularity), gas kinetic models are often applied. A possible numeric
approximation is Force BasedModels, which update individual states of particles based
on impacting forces and inertia. The critics of these approaches to traffic modeling are
manifold [271]:

1 Note that this property requires a sufficiently long observation interval. For example in a living house
people tend to rest and stay at night, while in a car park vehicles are stored until departure.
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– If vehicles interact, the impulse and the kinetic energy are usually not preserved.
Thus, Newton’s Third law of motion (actio=reactio) is not applicable.

– The temperature of a vehicle fluid cannot be matched directly, as it is the variance
of the vehicle speed.

– Vehicular gases do not move on account of external pressure but are caused by the
inner intention to move at a certain speed.

– Due to the various movement targets, separate flows in different directions occur
and interact.

– Vehicular behavior is anisotropic.

4.1.2.2 Cellular Automaton
Cellular automata are a widely used model of physical processes. Introduced by Neu-
mann [473], a cellular automaton features discrete space and time, with transition
rules defining the future state of a cell based on its previous state and the state of its
neighbors. The advantage of cellular automatons over dynamics is their scalability.
Accordingly, boundary conditions are often implemented in a cellular automata model
because they have a natural interpretation at this level of description (e.g. particles
bouncing back on an obstacle). For trafficmodeling, the nagel-schreckenbergmodel
is widely used.

A cellular automaton models a Markov chain, and the conditional probabilities of
the future state are completely described by the current state. This Markov assumption
does not generally hold for traffic at all granularities. Consider the movement on a
highway or the queue at a traffic light. Without additional individual information on
the past, one could not tell whether a vehicle leaves the highway or continues, whether
the queue will start moving, and in which direction the cars turn at traffic lights.

4.1.2.3 Hierarchy of Motion and Dependency Models
Previous models describe traffic as a Markov process. Current traffic observation and a
fixed number of past observations suffice to predict the future. This approach neglects
the sociological and psychological aspects of traffic. Persons are traveling by purpose
and follow a certain plan to achieve this. Hoogendoorn thus defines the hierarchy of
motion [280], which represents the different aspects of trip planning.

Observed traffic combines individual traffic plans and thus has a complex depen-
dency structure which is hard to capture. Tobler‘s first law of geography [689] states that
in a spatio-temporal process, geographically close observations are more related than
distant observations. However, in traffic processes, this does not hold, as individual
movement paths often start in a living area, use a larger street, and branch back to a
tiny street where the working place is situated. So, the information about driving on a
highway might be less informative to predict the goal of a trip than considering the few
starting locations of the trajectory.
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The dependency structure of the traffic process can be represented in amodel as follows.
Given any evidence of the presence of a moving object at several locations xi , . . . , xj,
we may model the likelihood of being at other places p(xk , . . . , xl|xi , . . . , xj). If these
dependencies are formulated without any circular dependencies, the joint probability
distribution over the presence of a moving object at all locations factorizes as:

p(x1, . . . , xn) =
∏︁

i=1,...,n
p(xi|pa(xi))

where pa(xi) are the parents of xi in the above equation. This directed model is called a
Bayesian network and can be represented by a graphical model (a graph consisting of
vertices and connecting directed edges) encoding dependencies as arrows between the
random variables (the vertices) pa(xi) → xi. A Bayesian network consists of a structure,
given by the previous equation and the associated conditional probability tables for
each variable based on its ancestors.

The dependencymodel can be trained directly from data by comparing whether the
trained dependency model represents the same distribution as the traffic observations
using a suitable loss function to compare distributions, for example the Kullback-
Leibler-divergence. But due to the vast amount of random variables (one per address-
able location, e.g., a street segment), learning the model requires some relaxation
and approximation. In [406, 407], we propose an algorithm to learn spatial Bayesian
networks from traffic observations.

4.1.2.4 Gaussian Processes
By the central limit theorem, we know that observations converge towards a normal
distribution when repeated multiple times or given a sufficient observation time. In the
case ofmultidimensional observations (e.g., traffic counts at various locations in a street
network) this converges to a stationary multivariate normal distribution. Assuming
these traffic observations are generated by a probabilistic process, we can use the
knowledge of the joint probability distribution to impute observations for unobserved
locations (similar to the previous section). Under the assumptions described above, we
may assume the observations were generated by a multivariate Gaussian distribution.

P(f | X) = N(0, K)

The generating process is completely defined by the covariance between the variables.
Due to the finite number of traffic observations (e.g., measuring locations at street
segments), we can denote their pairwise covariances in a kernel matrix K.²When we
observe some of these locations, we may impute the value at the other locations using
the kernel matrix.

2 For an infinite number of observations, a kernel function had to be applied.
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The correlations in traffic values imposed by the traffic network can be represented
in the kernel K. Assuming that a person randomly moves on the traffic network, she
travels in the network fromone location to another. The dependency structure generated
by these random walks can be captured by the diffusion kernel [336], where L is the
combinatorial Laplacian of the adjacency matrix, and λ is a hyperparameter.

K =

[︃ ∞∑︁

m=1

λm
m! L

m
]︃

ij

= exp (λL)

This kernelmodels every route choice as equally likely. But knowledge of real trajectories
can be used to weight the adjacency matrix, and the correlation model can be detailed
further [409].

m = K̂u,−u
(︁
K̂−u,−u + σ2I

)︁−1
y

Σ = K̂u,u − K̂u,−u
(︁
K̂−u,−u + σ2I

)︁−1
K̂−u,u

A handy property of predictions made by a Gaussian process is that these predictions
are normal distributions and are not just expectations. Thus, we may quantify the un-
certainty of the predictions and use them to find near-optimal sensor placement [408].

However, the calculation of predictions requires an expensive matrix inversion
step. With some preprocessing, the data can be grouped into nearly independent local
chunks and the calculations can be distributed [111].

4.1.2.5 Markov Random Fields
In previously described time-dependentmodels (fluid dynamics and cellular automata),
the assumption is that future states are dependent on previous ones. This property
is called the Markov property. If we now consider a field of random variables, and
the Markov property holds for these variables, it is called a Markov Random Field
(MRF). A Markov random field is similar to a Bayesian network in its representation
of dependencies. The difference is that Bayesian networks are directed and acyclic,
whereas Markov networks are undirected and may be cyclic. Thus, a Markov network
can represent certain dependencies that a Bayesian network cannot (such as cyclic
dependencies). By contrast, it may not be able to represent certain dependencies that a
Bayesian network can (e.g., induced dependencies). The graph of a Markov random
field may be finite or infinite.

Any positive Markov random field can be written as an exponential family, such
that the full joined distribution can be written as

P(X = x) = C · exp < wk , fk >
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A multivariate normal distribution forms aMarkov random field with respect to a graph
G = (V , E) if a correlation of zero corresponds to missing edges in the graph.

A tailored method to model traffic withMarkov random fields is the spatio-temporal
random field [499], which penalizes complex structures in the learning process by
regularization and thus hold a sparse representation of the underlying distribution.
The Markov property holds over time: the next observation is completely defined by
current sensor readings. An application of this model to traffic is presented in [475].

4.1.2.6 Poisson Dependency Models
Empirical observations of spatial phenomena are often count values. For instance,
density is the number of objects in a spatial area and flow is the number of objects
passing a location in a given time interval. While previous probabilistic models primar-
ily model categorical data or multivariate normal distributed observations, Poisson
models seem to be a natural fit, as count values are neither binary nor continuous but
are discrete with a right-skewed distribution over an infinite range [249]. A possible
approach to combining graphical modeling with Poisson distributions is to use an
ensemble of poisson regression trees [249], each modeling a conditional Poisson
distribution. With this model, the underlying joint distribution is unknown and local
distributions might be inconsistent. Thus, Pseudo Gibbs Sampling [265] is required to
impute unobserved measurements from given evidence. This algorithm initializes the
unobserved variables arbitrarily at random and then updates these values according to
the conditional distribution given its parent variables. After a burn-in phase, which is
highly dependent on the initial distribution, this algorithm draws samples from the
joint distribution.

For the imputation of unobserved traffic values, this model outperforms expo-
nential models in [247]. On a massive dataset, training these dependency models is
challenging. In [451], the authors show how dependency networks can be trained on
core sets, a compressed dataset that can be used as a proxy for the original data. For
their algorithm, there is a proven guarantee that in the case of Gaussian dependency
networks, the size of the coreset is independent of the size of the dataset. This property
does not hold in general, i.e., for Poisson dependency networks, it does not hold.

4.1.2.7 Conditional Sum-Product Networks
The need for tractable inference in graphical Poissonmodels led to the adoption of sum-
product networks [506] in Poisson distributions [452]. The graphical structure of these
sum-product networks consists of a tree having alternating sum and product nodes in
the layers and Poisson-distributed random variables in the leaves. For inference, the
structure just needs to be traversed once from the bottom to the root. For training the
model, independences between sets of random variables are estimated. In case of no
independence, similar objects are grouped into clusters, and a sum-node is introduced.
In the case of independences, a product-node is constructed.
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For modeling traffic, a model that combines the physical properties (as represented
by a cellular automaton) with probabilistic data-driven models would be beneficial.
In [597, 598], we show how to model Markov processes with sum-product networks
by conditioning them on the previous time slice. The model can represent cellular
automaton, is data driven, and outperforms previous Poisson dependency networks
for traffic prediction.

4.1.2.8 Differentially Private Learning from Label Proportions
Traffic data is usually collected in a centralized manner, which results in high data
transfer and data protection risks. It is especially important that data protection risks
are addressed by institutions, due to the introduction of GDPR in all EU countries in
2018 [231]. Organizations want to use this data in order to gain more information or
predict future sensor states, e.g., “Will the traffic flow stay the same over the next 15–30
minutes?” Accordingly, they also have to be compliant with GDPR.

Therefore we extend the decentralized learning approach from [651, 655] by apply-
ing differential privacy to label proportions sent between the different decentralized
sensor devices resulting in a privacy-preserving algorithm. In general, the Learning
from Label Proportions (LLP) algorithm stays the same as proposed in [651]. Because
it is important to know the structure and flow of the algorithm, we will briefly consider
it further. There are m wireless sensor nodes (n1, n2, . . . nm), which store their mea-
surements in D(i) ∀i ∈ 1 . . . m. Each row in D(i) consists of [t − w, t]measurements,
where t denotes a timestamp and w is thewindow size of the last wmeasurements. Each
row is assigned a label, which is taken from a measured value from a future timestamp
t + r. In the first place, those measurements are split into batches B1, . . . , Bh where
h = ⌈|D(i)|/b⌉ and b denotes the size of the batches, in which D(i) will be divided. The
batches are then used to calculate label proportions for each batch. The generated label
proportions are sent to the closest c neighbors. Each node uses the received label pro-
portions to train c+1models fj(k), where k ∈ 1, . . . , c+1 and j is the current node. The
prediction is made by doing amajority voting of the c+1 trainedmodels. This approach
has the advantage that we can make use of more than only local measured data point
while keeping the bandwidth of transferred data low because only aggregated data
is sent between the nodes. However, privacy cannot be guaranteed by this approach.
Assuming we have traffic flow measurement values, with labels 0, 1, 2, 3, 4 and over a
time frame of size b only label 4 is present. Then, from the label proportion, it can be
inferred that everyone drove that fast during the period.

We solve this issue by applying differential privacy to the label proportions. Firstly,
we have to calculate the l1-sensitivity function to know, how much influence a single
data point can make on the output of a function f : D → R:

△f = max
D′ ,D′′∈D,

||D′−D′′||1=1

||f (D′) − f (D′′)||1 (4.1)
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For this scenario, D is the current batch Bi, and R is the resulting label count. Consid-
ering that we have a simple counting query, a single data point can have at most the
influence of 1 (see [185] example 3.1). Finally, we can use the Laplace distribution to
generate noise, which can be added to the label counts to be privacy-compliant under
ϵ-differential privacy [185]:

lap(x, σ, μ) = 1
2σ e

− |x−μ|
σ (4.2)

lap(x, △fϵ , 0) = ϵ
2△ f e

− |x−0|ϵ
△f (4.3)

In the formula above, the position parameter μ is set to 0, and the scale parameter is
set to △f

ϵ . These parameters have to be set like this to be compliant with the differential
privacy definition (proof can be found in [185] Theorem 3.6).

The modified algorithm for calculating label counts can be seen below. As men-
tioned before, the batches Bi are already generated, and possible labels Y are also
known. The output Q(j) contains differentially private label proportions for all batches.

Algorithm 3:
Input: B1, ..., Bh,Y
Output: Q(j)

1 Q(j) ← matrix(h, |Y|);
2 for i in 1..h do
3 for j in 1..|Y| do
4 Q(j)i,j ← sum(Bi == Yj);
5 end
6 // adding noise to label counts
7 m ← sum(Q(j)i);
8 for j in 1..|Y| do
9 Q(j)i,j ← Q(j)i,j + lap(e = 0, s = 1/ϵ);
10 clip Q(j)i,j to bounds [0.001,m];
11 normalize Q(j)i;
12 end
13 end

Initially, Q(j) is created with dimensions count batches (h) and count possible labels
(|Y|). Afterward, the label proportions are calculated iteratively for each batch as follows.
First, the label counts (see lines 3–5) and the total sum (see line 7) are calculated. Then
the Laplace noise, which is calculated by the sensitivity and ϵ, is applied. Afterward,
the new value is clipped to the maximum bounds to prevent values that are too large or
negative. Finally, the label counts with noise are normalized. The resulting proportion
is stored in Q(j).
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The proposed approach is based on the existing LLP algorithm to use the decentralized
properties and extend this approach by applying differential privacy to the transferred
data. This yields reduced data transfer and increased privacy [568].

4.1.3 Efficient Routing with Dynamic Predictions

In a changing world, geo-spatial data is subject to dynamic changes, and geo-
information systems are required to incorporate real-time updates in their analysis and
computations. In this section, we focus particularly on route-planning systems. While
in a static world, many algorithms exist to compute the (shortest) path from a starting
location to a target location efficiently (see Section 4.1.2), this problem becomes more
difficult in the case of multi-modal trip planning, as with public transport, because tem-
poral constraints, e.g., transit times and departure times, need to be incorporated. In
the real world, these static schedules are notmet, but delays occur [439], and deviations
from the schedule can be observed. The incorporation of this dynamic information in
route computation is beneficial, as it provides tractable travel recommendations to
the public. The dynamic information on the delays can be achieved by monitoring the
positions of the vehicles and by predicting future delays. This enables proactive trip
computation.

In this section,we focus on the tractability of dynamic transit computation. Existing
single-source shortest path computation algorithms for the dynamic transit problem
suffer from their long computation time. Transfer Pattern, a very fast route planning
algorithm for transit networks, does not guarantee soundness in case of real-time delay
information. Our approach [411] overcomes these shortcomings and introduces dynamic
transfer patterns, a data structure that encodes which novel transit possibilities are
enabled due to the delays.

In comparison with existing dynamic transit-routing schemes in the city of Warsaw,
we highlight the performance gain using our method. Our findings are implemented in
the commonly used open-source trip planning framework OpenTripPlanner.

Here, we focus on the point-to-point shortest path problem [49], where in a graph
G = (V , E) a path between a source s ∈ V and target t ∈ V needs to be found such
that the cumulative edgewise cost l(u, v), with(u, v) ∈ E ⊆ V × V along the path is
minimized.

The standard solution to the problem is Dijkstra’s algorithm [176]. Given the graph
G = (V , E) and s, t ∈ V, it initializes a queue of nodes Q = V and a distance function
over V × V with dist(s, s) = 0 and dist(s, v) = ∞, ∀v ̸ = s, v ∈ V. Until the queue is
empty, the node u with the smallest distance dist(s, u) is picked and removed from
Q. For each neighboring node of u, the distance is updated as follows: dist(s, v) :=
dist(s, u) + l(u, v), if the latter is smaller than the former. Dijkstra’s algorithm can be
sped up by running it simultaneously from both s and t until a common node u is hit.
In the slightly modified version of Dijkstra’s algorithm A* [258], the order in the priority-




