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queue for the traversal not only depends on the cumulated costs to reach a vertex in
the graph but also on the expected costs to reach the goal from this vertex. Bound by
Minkowski’s inequality, whereas ||x + y||p ≤ ||x||p + ||y||p (known as triangle inequality
for p = 2), A* prunes the search space in comparisonwith Dijkstra’s Algorithm. A sound
heuristic for the remaining cost estimation is the geographical distance that is always
lower than the road-based distance.

In the case of static cost functions, contraction hierarchies [223] are a data structure
that speeds up the A* algorithm and enables trip calculation in large traffic networks.
Instead of searching the shortest path directly within the traffic network, contraction
hierarchies reduce the search space to the most important connections. In a prepro-
cessing step, these important segments are identified (based on the topology), and the
network is extended by edges between these important links.

In contrast to regular road networks, public transportation data enhances a spatial
graph with temporal data by adding timetable information. A trip T serves a sequence
of stops stops(T) = (s1, . . . , sn), si ∈ S. T connects two stops sa and sb if and only if
stop(T, sa) < stop(T, sb). If multiple trips contain the exact same sequence of stops,
they form a line [47].

A common approach is to model the dynamic into the graph G and then to apply
Dijkstra’s algorithm. This results in a time-extended and time-dependent model. In the
time-extended model, every transit node is split into multiple vertices for each event
(arrival, transit, and departure). The time-dependent model assigns every transit node
one vertex, and arcs encode temporal constraints.

A data structure and algorithm, Transfer Patterns, introduced by Hannah [48] is
considered state of the art in public transport routing. Based on the assumption that
during a day, there are only a few optimal routes from stop s to stop t that differ only
in the time they take place. In a preprocessing phase, optimal routes are computed
as a sequence of transfer stations, neglecting the time component and information
about intermediate stations. For each origin and target destination a directed acyclic
graph is saved, containing all routes starting with the destination and containing all
intermediate stations until the origin is reached.

In a realistic route planning scenario, various delays occur amongst the public
transport vehicles. In contrast to vehicular traffic, trams and trains cannot overtake each
other, and vehicles in transit networks wait for connections (e.g., connecting trains).
This causes delays to propagate differently than vehicular traffic jams. In addition,
two modes of transportation may share the same physical resource (e.g., buses or
trams riding on a vehicular street). Thus, two forms of delays in transit networks are
distinguished in literature: 1) a vehicle is late due to its own reasons, and 2) other
vehicles are late caused by the former [462].

Several models for transit delays are reported in the literature. The work in [175]
assumes independence. By contrast, [232] allows delays to cumulate. Sophisticated
models incorporate dependencies among the vehicles into the delay [276]. In [439], the
delays are analyzed visually.
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In a trip planning application, real-time predictions of delay are the main benefit, as
future delays may influence the route choice. Thus, we highlight two recent works on
delay prediction and delay recognition: [217] applies queueing theory and assumes
delays to aggregate, and [774] detects delays and unexpected vehicle movement in real
time from the GPS traces.

In thiswork, we do not focus on the prediction but assume thatwe have information
on delays of vehicles (in the commonly used GTFS real-time data format) either from
vehicle observations or predictions.

With such dynamics, the trip computation becomes more difficult. Though a previ-
ous publication [47] states that transfer patterns are delay robust, this only holds as
long as no new transfers are enabled by the delay. In the likely case that novel transfers
are enabled, the existing transfer patterns do not represent this information and cannot
result in the optimal transit route.

Transfer Patterns were introduced in [48]. The method comprises a data structure
and an algorithm for fast transit route computation. In a preprocessing step, all possible
connections are pre-computed and stored in a compressed format. For each public
transport line, a table is stored, denoting in the columns the stops along the line. In
this way, it holds the maximal possible route without changes.

Our approach to the dynamics of the transit information is to incorporate potential
delay information already in the pre-computation phase, and add additional transfer
possibilities to the DAGs created during transfer pattern creation.

As we aim to apply the transit route computations in an industrial context, we
extend the capabilities of the existing open-source platform OpenTripPlanner (OTP).
Our dynamic transfer patterns outperform the algorithms previously available in OTP
A* [258] and RAPTOR [165] by an order of magnitude [411].

4.1.4 Control and Planning of Individual Actions

Urban areas are increasingly subject to congestions. Most navigation systems and
algorithms that avoid these congestions consider drivers independently and can, thus,
cause novel congestions at unexpected places. The precomputation of optimal trips
(Nash equilibrium) could be a solution to the problem but due to its static nature is of
no practical relevance. By contrast, we describe an approach to avoid traffic jams with
dynamic self-organizing trip planning.

In [412], we apply reinforcement learning to learn dynamic weights for routing from
the decisions and feedback logs of the vehicles. In order to compare the routing regime
against others, the validation uses an open simulation environment (LuST) that allows
the reproduction of the traffic in Luxembourg for with varying penetration rates. All of
these experiments reveal that the performance of the traffic network is increased, and
the occurrence of traffic jams is reduced by applying our routing regime.
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Traffic closely resembles a bandit feedback learning environment (see [33] for an in-
troduction to bandit learning). Bandit learning is a reinforcement learning task where
the behavior of some blackbox (e.g., a bandit) should be learned only by the feed-
back we observe. Several actions can be taken (in the bandit problem, this equals
drawing an arm). However, only the result of the actions can be observed, and it is
unknown what would have happened otherwise. Vehicles serve as agents that move
in a road network. The actions are represented by the roads a vehicle can choose at
an intersection. Once a road is chosen, a reward will be assigned for that particular
road depending on its actual state. The reward for all other roads that could have been
chosen remains unknown. This lack of fully labeled data makes a supervised learning
approach particularly complex.

The Policy Optimizer for Exponential Models algorithm (POEM) [666] is able to learn
solely based on the reward values provided by the environment. Additionally, POEM
does not perform online learning but rather uses logged data. This abstraction is known
from bandit problems, which seek to optimize a reward from the sole information
gained after turning the arm of the bandit. This presents a more robust approach, since
a learned model can be thoroughly tested before deployment. The system will also
not evolve over time, which could lead to unpredictable behavior. This is particularly
undesirable in the context of vehicle routing.

In [666], POEM assigns a structured output to an arbitrary input based on its prob-
ability of being correct. Therefore, before applying POEM to congestion avoidance, a
suitable mapping of the routing problem to a policy h0, along with an input space X
and output space Y, must be modeled. Additionally, a cardinal loss feedback map-
ping δ is required, which serves as the reward function for all selected input/output
combinations.

The input space X was chosen as X := [0, 1]m. Here, each x⃗ = (x1, . . . , xm)T ∈ X
represents a feature vector of (normalized) sensor measurements for a road segment.
For instance, a road’s density, occupancy, mean speed, vehicle count, or waiting time
can be used. Any value not in [0, 1] was scaled using min-max scaling.

The output space must be a set of suitable, structured outputs. As POEM should be
applied to the problem of congestion control, a single label indicating whether a road
is congested or not already provides adequate results. Thus, let Y := {(0), (1)}, where
(0) indicates a road is not congested and (1) corresponds to congestion.

The policy h0(Y | x⃗) is a probability distribution over the output space. In other
words, it assigns a probability to each output y⃗ given any input x⃗ based on how likely y⃗ is
to be correct under conditions x⃗. Hence, predictions aremade by sampling y⃗ ∼ h0(Y | x⃗).
The goal of POEM is then to improve this policy. Initially, no such policy exists for the
constructed input and output spaces. This is a common problem when applying POEM.
Therefore, a default policy is used (compare [666]). Let h0 (⃗y | x⃗) := 0.5, meaning both
labels are assigned a probability of 0.5 for all x⃗.

Lastly, in order to improve an existing policy, POEM requires a cardinal loss feed-
back mapping δ : X × Y → R. This was achieved by applying one of the following



4.1 Inner-City Traffic Flow Prediction with Sparse Sensors | 237

two primitive congestion detection methods to the sensor readings: the primitive den-
sity congestion metric, δdensity, assumed a road to be congested when its density was
greater than one-seventh of its jam density [124]. The primitive mean speed congestion
metric δspeed would assume a road as congested when its mean speed was less than
ten kilometers per hour of its allowed maximum speed.

In order not only congestion but also reduce it, vehicles must receive frequent
information updates about the current state of the road network. Then, POEM is used
to predict the next state of the road network. This information will be used by vehicles
to bypass roads which are deemed congested. Thus, those results must also be applied
in a routing algorithm, such as Dijkstra or A*.

Let G = (V , E, c, q) be a graph representing a road network. Here, c and q are the
default cost and heuristic functions. Additionally, assume all vehicles have knowledge
about a congestion labeling policy h ∈ Hlin ∪ {h0} [666]. When using dynamic routing,
vehicles will receive updates about roads at regular intervals T ∈ N. The update can
then be written as uT : E ↦→ X.³ Then, when a vehicle receives update uT , it is able to
predict how likely a road is to be congested during interval T + 1 using h.

The described model receives sensor information only about whole road segments,
rather than individual lanes, which might be problematic, as congestion does not
always arise on every lane equally. That challenging situation is most likely to occur
at junctions where each lane will allow a vehicle to go in a different direction. We
address this problem by aggregating sensor data for each connected edge pair (for the
use of a line graph of G, see [257]). Additionally, the resulting data allows more precise
congestion detection as individual turning lanes are separated in the model.

In order to bypass arising congestion, a vehicle must recalculate its route with
respect to the newly received update uT . This is achieved by increasing the weight of
an edge that is likely congested:

p0(e1 ,e2) := h((0) | 0.5uT(e1) + 0.5uT(e2)) (4.4)

c′ : E2 → R+, (e1, e2) ↦→
c(e2)
p0(e1 ,e2)

(4.5)

The denominator shows the previously mentioned aggregation of sensor data. For
notational simplicity, c′ is defined for all elements of E2. However, in practice only a
subset of E2 is used where e1 is incident or equal to e2.

The function c′ calculates the newweight of an edge e2 depending on the preceding
edge that was reached. For instance, a vehicle on edge e1 = (u, v) would calculate the
weight for edge e2 = (v, w) using c′(e1, e2). A vehicle that starts its route on edge e2
would use c′(e2, e2).

Essentially, c′ divides the default weight of an edge by its probability of not being
congested in interval T + 1. This means the weight of an edge will remain almost

3 Here, it is assumed that updates are received equally for all edges.
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unchanged when no congestion is expected. The increase will conversely depend on
how likely congestion is to arise.

Finally, it was assumed that sensor data updates are available for every road. In real-
world road networks, permanently installed sensors aremuchmore scarcely distributed
throughout the network. This problem can be partly alleviated by directly implementing
sensors in the vehicle (e.g., using navigation applications provided by smartphones, or
self-driving cars). However, some roads will still remain uncovered. Here, uT can map
to {0}m. For the previously defined features in X (a road’s density, occupancy, mean
speed, vehicle count, and waiting time), its dimension m would be equal to 5. This
will cause h to assign a probability of 0.5 to both labels (as defined byHlin in [666]).
Another solution might be to map uT to the average of all sensor readings in an interval.
Thus, uncovered roads would reflect the average state of a road network.

Logging
For POEM, no interactive control over actions is required, as it was specifically designed
to learn using logged data. Hence, with respect to the previously defined setting, POEM
requires a dataset:

D := {(x⃗i , y⃗i , δi , pi) | i ∈ N⩽n}, pi = h(⃗yi | x⃗i) . (4.6)

This dataset will be created during the logging phase. All edges are assigned weights
using c′, and routes are calculated using an implementation of A*, which produces
the shortest routes for any admissible heuristic. Additionally, POEM is initially applied
using the default policy h0, which will scale all weights equally by a factor of two. The
scaling will not affect A*, meaning no route changes will occur, which in turn simplifies
learning on previously collected data.

The data itself can either be collected by each vehicle or by a centralized authority
monitoring each vehicle. For both approaches, a data entry cannot be created before
any feedback is available. Thus, intermediate results must be cached.

First, the aggregated feature vector x⃗i is logged. The respective label y⃗i with its
corresponding probability pi are then determined using:

y⃗i =

⎧
⎪⎪⎨
⎪⎪⎩

(0), h((0) | x⃗i) > 0.5
(1), h((1) | x⃗i) > 0.5
random((0), (1)), otherwise

(4.7)

Here, random((0), (1)) means a label is chosen randomly and uniformly distributed.
Lastly, the feedback is logged using either δdensity or δspeed. The respective results will
inherently depend on the previously chosen label.

The deployment of our self-organizing routing algorithm in an urban area could
be done in two ways. One option is to use the data of an existing stationary traffic
information system (e.g., a SCATS [324] system) and feed it into a navigation platform
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that can be used by the citizens. The other option is to turn vehicles directly into sensors
and retrieve segment-wise statistics on travel time, density, and traffic flow directly from
the navigation app. In the latter case, one might be worried about individual privacy
because mobility statistics are recorded centrally. However recent work [410] provides
an approach to protect individual privacy, known as homeomorphic encryption. This
approach encrypts the data such that it still allows for the analysis of the crypto-text,
but just the result can be decrypted. In the following, we will test these two deployment
settings using stationary and moving sensors and compare them to Nash equilibrium
and uninformed routing.

For the comparability of experiments with different routing algorithms, it is es-
sential to guarantee the same traffic demand (i.e., origin/destination pairs) over time.
For repeatability of the same origin/destination setting, we perform analysis with a
microscopic traffic simulator called SUMO [349]. The simulator models individual ve-
hicles on a microscopic level, so it controls also acceleration and deceleration, and
is largely applied in traffic simulation and applications. It allows us to control traffic
demand and provides us with complete knowledge of the performance of the street
network and the routing performance. In contrast to arbitrary toy experiments, we aim
at modeling sound traffic scenarios. We use an open simulation scenario in the city of
Luxembourg [143], which enables the reproduction of 24 hours in the city’s mobility.

The common procedure of SUMO is to generate the route of each vehicle before the
simulation starts, which is why its live routing capabilities are rather limited. However,
SUMO provides the Traffic Control Interface (TraCI), a network interface that allows
full control over the current simulation. We used this to implement a Java application
(SUMO-CA) that simulates a central authority. In order to calculate vehicle routes,
SUMO-CA loads a road network and converts it to a directed, weighted multi-graph.
When running a simulation, SUMO-CA will receive and parse sensor measurements
in regular intervals. This information is utilized to predict the next state of the road
network using POEM. Finally, those results are used to update vehicle routes.

Unless stated otherwise, each experiment will start at 7:45 (simulation time) and
runs over a period of roughly 35 minutes, or exactly 2048 seconds. The reason why
this particular window was chosen is that roads generally are more susceptible to
congestion during rush hour. Additionally, a size of 2048 seconds allows rerouting
intervals to be easily scaled using a factor of two. Finally, in order to createmore realistic
jams on arterial roads, SUMO was set to scale the original demand by a factor of 1.3.

Evaluating vehicle detours is problematic. Neither absolute nor relative differences
will adequately represent measured detours. The reasoning behind this is that long
routes will allow longer, absolute detours, whereas, short routes will allow longer,
relative detours. Hence, a different metric is required. We propose the usage of the
weighted relative detour as follows.

Let yA , yB ∈ R*+ be arbitrary measurements of one vehicle when algorithms A and
B are applied, respectively. Then weighted relative detour di� rw will then calculate the
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relative difference, while weighting it using the absolute difference.

di� rw(yA , yB) := |yA − yB| *
yA − yB
yA + yB

(4.8)

Various charts in [412] present the evaluation results. The baseline is an uninformed
Uniform Cost Search (UCS), where each road was assigned its static default weight, and
every vehicle chooses its path individually by A*. In this case, congestions are likely to
appear. In addition, a Nash equilibrium (NASH) is shown as a baseline.

4.1.5 Discussion

Throughout this work, we highlighted various models to estimate traffic predictions
under different model assumptions and properties. The models represent different
aspects of traffic at various granularities.

As an example, modeling car-to-car or vehicle-to-infrastructure interactions in
inner cities requires different spatio-temporal granularity and thus different model
assumptions from a macroscopic daily average traffic flow prediction.

In general, traffic is a chaotic systemand the commonly appliedMarkov assumption
is often violated in practice. Future traffic does not only depend on a fixed number of
previous observations. Consider, for example, a semaphore in traffic system (a traffic
light, a barrier, or a large public parking). In these situations, it is easy to see that,
though following certain patterns, traffic is chaotic.

In Google Maps, the inherent structure of traffic data is currently modeled by
Graph Neuronal Networks [172, 546]. However p-adic models are also a promising
technique at fine granularities to represent the chaotic behavior. Since it is important
for production-ready systems that dynamic predictions are tractable, condiditonal
sum-product networks [597] are also an interesting future research direction.

We also applied the algorithm used for self-organizing control of navigation plans
to control the charging prizes of electric mobility [543]. In this application, we observed
that the explored states of the system might be bad for the system provider. As an
example, in our experiments, reduced and even negative energy prizes could provide a
useful incentive to prevent grid burnouts. However, the total financial risk needs to be
bounded. Such constraints could be incorporated into reinforcement learning using
stabilities.
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4.2 Privacy-Preserving Detection of Persons and Classification of
Vehicle Flows

Marcus Haferkamp
Benjamin Sliwa

Christian Wietfeld

Abstract: In some places, the continuously increasing road traffic will soon exhaust
the capacity of existing traffic infrastructure unless appropriate measures are taken.
Especially in urban environments with a high density of residential and commercial
properties, the infrastructure is highly utilized or overloaded during peak hours. Since
structural measures are often not possible or only at great expense, a practical solution
to counter this issue is to optimize the infrastructure utilization and the control of traffic
flows. For this purpose, the widely installed Internet of Things (IoT)-powered Intelligent
Traffic Systems (ITS) can be used, which enable automated detection and high-precision
classification of different road users and thus transform the infrastructure into a data-
driven Cyber-Physical System (CPS).

Although various sensor systems have been proposed, they fulfill only subsets of the
requirements, including accuracy, cost-efficiency, privacy preservation, and robustness.
One approach that meets those requirements is a novel radio-based sensor system, of
which we present two variants in this contribution. The system’s fundamental idea
is to exploit radio-based fingerprints of road users—multi-dimensional and charac-
teristic attenuation patterns of several radio links—for detection and classification.
One of the presented system variants additionally evaluates high-precision channel
information extracted fromWireless LAN (WLAN) Channel State Information (CSI) or
Ultra-Wideband (UWB) Channel Impulse Response (CIR) data. The proposed solution
benefits from increased robustness against a wide range of interferences, e. g., poor
visibility due to bad weather conditions. Moreover, the system exclusively uses em-
bedded microcontroller units (MCUs) and radio technologies, allowing compact and
cost-efficient installations in rural and dense downtown areas.

We have performed comprehensive field measurement campaigns and machine
learning-enabled analyses that confirm the presented approach’s high suitability for
different requirements and application scenarios. In this regard, we have evaluated
multiple applications, including the comparatively simple detection of road users and
the fine-grained classifications of several vehicle classes. For instance, the proposed
systems achieve more than 99% for binary classification and 93.83% for differentiating
seven vehicle types.
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4.2.1 Introduction

Following the current trend, it is expected that a large part of the existing transport
systems will reach their capacity limits in the (near) future. Possible reasons include
the approval of new types of personal transport (e. g., e-scooters) and the shift to al-
ternative means of transportation. There are essentially two options to counter this
problem without stricter regulatory measures for road users: structural measures to ex-
pand current capacities and the efficient utilization of existing infrastructures through
optimized traffic flow control. However, the former step is often not an option due to
high financial costs and additional long-term restrictions caused by the construction
measures. Instead, more efficient traffic flow control is a realistic undertaking thanks to
sensor information provided by the vehicles themselves and/or to low-cost IoT compo-
nents, especially in smart cities. Such systems also collect high-precision and vehicle
type-specific information, paving the way for novel and more advanced optimization
methods (e. g., type-specific lane assignment or routing and smart parking). For this
purpose, the systemsmust always provide up-to-date and area-wide precise traffic infor-
mation, which is collected, among otherways, by a sensor network installed over a large
area. Next to high accuracy, these systems must also meet other requirements. They
should function reliably in challenging weather and traffic conditions while protecting
road users’ privacy and be energy- and cost-efficient to operate. In some countries,
compliance with all these points is a prerequisite for being approved for large-scale
installations in road traffic. For instance, some sensor solutions are unsuitable for
this use case because of their characteristic weaknesses—e. g., privacy concerns when
using camera-based sensors. An increasing number of vehicles is also equipped with
GNSS (Global Navigation Satellite Systems) and mobile network connectivity, which
provide detailed information about the current position of a vehicle in real time. In
the work of Niehöfer et. al. (for example [476, 477]) it has been shown within the CRC
that the accuracy of the vehicle position can be enhanced through in-depth system
simulation to provide lane-specific positioning information of vehicles. Yet, any system
that collects such location information about individual vehicle tracks raises privacy
concerns.

Therefore, this contribution presents a novel Wireless Sensor Network (WSN) for
detecting and classifying different types of road users, which identifies those based on
characteristic inferences of the signal strength of a radio signal (fingerprint). Initially,
the wrong-way driver warning system [250] has leveraged the idea of inferring the
travel direction of passing vehicles based on the time sequence of the radio links’
attenuation. We have enhanced this approach to determine vehicles of certain types
utilizing class-specific fingerprints induced by their shapes and materials. We use
supervised learning techniques to extract such class-specific similarities from the
channel information for the evaluation. Specifically, in this contribution, we present
two generations of the novel detection and classification system. The focus here is on
the first generation, which correlates the Received Signal Strength Indicator (RSSI) of
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many diagonal and transverse radio links. It can reliably infer different vehicle types
based on this information [252, 621].

Furthermore, we present a modular and more compact system design that adds fur-
ther high-precision channel information using WLAN CSI and UWB CIR radio technolo-
gies in addition to coarser information [251]. Since our research’s focus has primarily
been in the context of the initial system design, this section is devoted to the original
system. Also, it provides a brief outlook of the successor system.

Figure 4.1 shows the presented IoT-powered sensor system’s intended information
flow and its use in a smart city context. Here, the communication modules acting
as sensors record fingerprints of passing vehicles and preprocess this raw data and
the classification task. One could use such exact traffic information in two different
application scenarios. In on-site applications (e. g., parking-lot balancing, wrong-way
driver detection), the acquired data is evaluated immediately on-site and serves as a
trigger for further actions (e. g., warnings of wrong-way drivers). By contrast, global
applications aggregate this locally relevant information to enable predictions and
recommendations for larger areas. Finally, the widely deployed sensor systems can
dynamically adjust their predictions by periodically verifying the prevailing traffic
situation.
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Fig. 4.1: Overall system vision: Embedding of the proposed IoT-based sensor system in a smart city
environment. All sensor deployments are locally exploited for on-site applications and contribute
their data to the global data-driven ITS applications ©[2020] IEEE. Reprinted, with permission, from
[634].
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4.2.2 Related Work

In this section, we provide an overview of existing systems and technologies for vehicle
detection and classification. Figure 4.2 shows the abstract process flow and the main
logical components of such systems, starting with the gathering of vehicle traces up to
the final classification task. The sensor technology generates accurate traces as contin-
uous and high-rate data streams, of which only a part is relevant for the subsequent
process steps. To determine suitable sequences within these traces, a detection stage is
typically connected afterward, reducing the overall workload. Based on these selected
sequences, relevant (statistical) features are then extracted, which serve as input for
supervised classification procedures using well-defined taxonomies.
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Fig. 4.2: Abstract system model of vehicle classification systems, ranging from data acquisition
using different sensor technologies to the final classification tasks ©[2020] IEEE. Reprinted, with
permission, from [634].

4.2.2.1 Taxonomies for Classification of Vehicles
The Federal Highway Administration (FHWA) proposes a 13-class scheme for classifying
vehicles mainly based on the number of axles [327]. However, this approach’s disad-
vantage is that the number of axles does not indicate the vehicles’ exact dimensions.
For example, accurate vehicle length information is essential for providing reliable
parking space balancing or parking guidance systems.

An alternative taxonomy is the Nordic System for Intelligent Classification of vehi-
cles (NorSIKT) [698], which is used in Scandinavian countries and, with its hierarchical
approach, provides different gradations.

The ISO 3833-1977 standard, the 2007/46/EC Directive of the European Parliament,
and the European New Car Assessment Programme (Euro NCAP) provide different
schemes for classifying vehicles.

Nonetheless, many academic approaches use individual classification schemes
to evaluate the performance of the proposed systems. Following this example, we
have developed an adapted scheme with different refinement degrees in this work (cf.
Section 4.2.4.1) and applied it to the final performance evaluation.
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4.2.2.2 Sensor Technologies Used in Vehicle Detection and Classification Systems
This section provides an overview of established sensor technology used in vehicle
classification detection and classification systems. Although much of the referenced
work provide performance evaluation in terms of typical metrics—mainly classification
accuracy—we want to note that comparing different solutions is difficult. Reasons for
this include diverging taxonomies, different approaches for data preparation, and a
variety of ML methods—e. g., Support Vector Machine (SVM) [147], Random Forest
(RF) [102], k-Nearest-Neighbor (kNN), or Artificial Neural Network (ANN) [236]—used
for analysis in the respective works. The sensor systems used can be broadly classified
as intrusive or non-intrusive, respectively.

Intrusive systems represent the classic solution approach and are typically em-
bedded in the road surface gathering technology-specific measured parameters. The
used sensor technology directly affects the type and scope of measures required for
installation or maintenance. While a minimally invasive cutting of the road surface is
sufficient for some systems, more extensive and costly measures are necessary for other
approaches. Representatives of this system category includeWeigh inMotion (WIM) sys-
tems, inductive loop detector (ILD)—using one [145] or more inductive loops [365]—fiber
Bragg grating sensors [674], vibration sensors [747], and piezoelectric sensors [519].

Non-intrusive systems include acoustic sensor systems, inertial sensors, camera-
based approaches, and radio-based solutions. Acoustic sensor systems identify road
users based on the emitted sounds. The fundamental challenge for these systems is the
extraction of the relevant signal component from the dominant noise caused by the
traffic noise. However, studies of acoustic sensor systems have shown that their use is of
limited value due to comparatively low classification accuracies [225]. By adding other
sensor technologies, the precision of these systems is significantly increased [157].

Different types of inertial sensors, such as accelerometers, gyroscopes, or mag-
netometers, are often combined on an inertial measurement unit (IMU). For vehicle
detection and classification, the IMUs are either installed directly on the road’s surface
or at its side. One approach is detecting the number of axles of a passing vehicle, from
which the vehicle class is deduced. For example, such systems achieve accuracies of
98.98% for detection and 97% for length-based classification [40].

Camera-based systems use pattern recognition and image processing techniques
and are widely used due to their high precision. Apart from the detection of road users
and the classification of vehicle types, the available high resolutions also allow a
reliable recognition of vehicle makes [612], which can be problematic due to regulatory
requirements to protect the privacy of road users. Most of these photosensitive systems
use ambient light, so these systems’ performance varies significantly with the day
or visibility conditions. Using a Convolutional Neural Network (CNN), the approach
presented in [178] achieves an accuracy of 95.7% in daylight and 88.8% in darkness
for the classification of six types of vehicles.
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In contrast to RSSI, the evaluation of WLAN CSI provides frequency-specific channel
information. Orthogonal Frequency-Division Multiplexing (OFDM)-based radio tech-
nologies such as IEEE 802.11 use this information to estimate a channel’s interference—
e. g., multipath propagation—and reconstruct the original symbols. Depending on the
number of transmitting and receiving antennas and the channel bandwidth, between
64 and 512 subcarriers are sent in a data packet’s training fields. The receiving unit can
infer the radio channel’s interference by comparing amplitude and phase information
of the expected and the received subcarrier sequence. Apart from reconstructing the
original symbols, a variety of applications can exploit such detailed information. In
addition to vehicle classification [732], localization and tracking of people behind walls
and doors [9], as well as privacy-preserving monitoring by healthcare applications [316]
are possible. Another technology, UWB, is predestined for the precise measurement of
a radio channel because of its high robustness against interference due to its support
for large channel bandwidths and its ability to determine accurate channel impulse
responses. Although the primary use of UWB is in the area of localization—and recently
also as an additional security measure for radio keys—it can also be used for activ-
ity detection [599] and vehicle detection classification [251]. Radio-based approaches
assume that different vehicle types, due to specific shapes and installed materials,
characteristically attenuate a radio signal. These attenuation patterns—symbolically
referred to as fingerprints—can distinguish between different vehicle classes. Several
radio technologies such as Bluetooth [58] or IEEE 802.15.4-based variants [250, 252] are
suitable for radio-based methods, provided that the transceiver modules allow access
to specific indicators of signal strength. A common approach is to use the RSSI, which
is a coarse measure for assessing the received signal strength and depends heavily on
the Signal-to-Noise Ratio (SNR) of the radio signal. Since these systems operate in the
2.4 GHz radio range, they exhibit high robustness to poor weather conditions due to
rain and snowfall [150, 522].

4.2.3 Radio Fingerprinting-Based Vehicle Detection and Classification

This section describes the two variants of the proposed radio-based systems for vehicle
detection and classification, including all essential components. Although both systems
follow similar approacheswith the evaluation of radio fingerprints , there are differences
concerning the hardware components and the data processing, which we discuss
in separate sections. First, the original system, which evaluates the signal strength
information (RSSI) of multiple transverse and diagonal radio links, is discussed in
detail (cf. Section 4.2.3.1). Subsequently, we highlight the significant differences and
innovations of the current system approach that leverages high-precision WLAN CSI
and UWB CIR channel information in Section 4.2.3.2.
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4.2.3.1 RSSI-Based Vehicle Detection and Classification
The system setup initially used for the detection of wrong-way drivers [250], consisting
of a total of six radio nodes integrated into delineators—three transmitter and three re-
ceiver units each—is shown in Figure 4.3. The system setup uses a constant longitudinal
spacing of ∆lon = 5m.

TX 1 TX 2 TX 3

RX  [Master Gateway]1 RX2 RX3

5m Longitudinal Distance

7
m

 R
o
a
d
 W

id
th

Dummy Data

Raw RSSI Time Series
ML

Fig. 4.3: Schematic system overview. Each delineator post contains an RF transceiver module. In
total, the system uses nine different radio links ©[2020] IEEE. Reprinted, with permission, from
[634].

All nodes use low-cost, off-the-shelf MCU with IEEE 802.15.4 radio modules equipped
with omnidirectional antennas and operate with a transmit power of 2.5 dBm in the
2.4 GHz frequency band.

For continuously measuring the RSSI of all radio links, the corresponding transmit-
termodules periodically transmit pseudodata every 8ms. The systemuses a coordinated
channel access scheme utilizing tokens to avoid interference between the radio links.
Then the receiving nodes send the signal strength information they measure to the
master gateway, which aggregates the raw data and synchronizes it for further process-
ing. Figure 4.4 illustrates an example of time-varying radio fingerprints gathered for all
radio links for a passing car (top) and a truck (bottom), respectively.
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Fig. 4.4: Example multi-dimensional radio fingerprints for a passenger car and a truck. The colorized
signals refer to the transverse radio links; the gray signals correspond to diagonal ones ©[2020]
IEEE. Reprinted, with permission, from [634].

Figure 4.5 illustrates the entire data processing process for the RSSI-based classification
system. First, the RSSI time series of all nine radio linksΦi are recorded as vehicles pass
through. Our approach then forwards the time signals to the data preprocessing block
consisting of filtering using a moving average filter and subsequent normalization.
These steps are relevant for minimizing the influence of scattered outliers—e. g., multi-
path effects—and enabling high compatibility with various machine learning methods
(feature scaling). Another process block realizes the detection of relevant subsets from
the preprocessed time series. The system uses an automated thresholding approach to
determine the individual start point tstart and endpoint tend for each time series.
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Fig. 4.5: System architecture model and data preprocessing pipeline used for ML-based vehicle
classification using radio fingerprints ©[2020] IEEE. Reprinted, with permission, from [634].

The sequences tailored in this way serve as input for the subsequent process steps.
The driving speed estimation serves as an additional feature for the classification
process. With the help of the known longitudinal distance ∆lon between the individual
delineators, the system can estimate the average speed ṽ of the passing vehicles utilizing
the temporal difference of the attenuation of the transverse links Φ1, Φ5, and Φ9 using
the following equation:

ṽ = 1
3

(︂
d(1, 5)
∆t(1, 5) +

d(1, 9)
∆t(1, 9) +

d(5, 9)
∆t(5, 9)

)︂
(4.9)

where ∆t(i, j) = tstart(j) − tstart(i) and d(i, j) is the longitudinal distance between the
traversal radio links Φ(i) and Φ(j). Negative velocities ṽ < 0 refer to an opposite direc-
tion, which indicates a wrong-way driver in the case of one-way streets. Similarly, we
use Equation 4.10 to determine an approximation of the vehicle length:

l̃ = |ṽ|
3
(︀
τ(1) + τ(5) + τ(9)) (4.10)

where τ(i) = tend(i) − tstart(i) denotes the duration of the attenuation of radio link Φ(i).
The system also considers 90 different indicators—ten features for each of the nine radio
links. These represent statistical variables such as mean value, standard deviation,
minimumormaximum. In thisway, a dimensional reduction is performed, since instead
of several hundred signal strength values, the system only needs to process ten features
per radio link.

4.2.3.2 Using CSI and CIR Data for Vehicle Detection and Classification
Like the previously presented system, the current modular system proposal also relies
on the assumption that it is possible to reliably distinguish different road users by
analyzing the characteristic interference they induce to a radio channel. Figure 4.6
illustrates the novel system approach’s structure, which uses the radio technologies
WiFi 4 (IEEE 802.11n) andUltra-Wideband (IEEE 802.15.4a). In addition to comparatively
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coarse signal strength information, these technologies also measure a wealth of exact
channel parameters.

Road

S1

R1

S2

R2
Schematics

S1R1

R2 R1 R2

S1 S2

S2

Fig. 4.6: Schematic system overview of the novel system approach leveraging WLAN CSI and UWB
CIR data for bicycle detection (left) and motorized vehicle classification (right).

For measuring WLAN CSI, the system uses MCUs based on Espressif ESP32 with WLAN
transceivers connected to directional antennas operating with a transmit power of
20 dBm in the 2.4 GHz frequency band. For a continuous sampling of the radio channel,
high-rate dummy packets are exchanged between the respective transmitting and
receiving nodes. Each received packet contains CSI information for channel estimation.
To reduce protocol overhead and thus increase overall system performance, the system
uses unidirectional User Datagram Protocol (UDP) data transmissions. Thanks to an
Application Programming Interface (API), the MCUs allow the accessing of CSI and thus
amplitude and phase information from various subcarriers. In general, the CSI can
contain other fields than Legacy Long Training Field (LLTF) such as High Troughput
Long Training Field (HT-LTF) or Space-Time Block Code High Throughput Long Training
Field (STBC-HT-LTF), which depends on the supported transmissionmodes of all WLAN
modules involved as well as the channel characteristics. The system currently uses
WLAN nodes only for high-rate measurement; the data preparation and ML steps have
so far only been performed on more powerful computers.

UWBcan accurately determine a radio channel’s channel impulse responses thanks
to very short signal pulses, allowing further insights regarding a radio channel, e. g.,
whether a line-of-sight (LOS) path is available or howmany significant signal paths exist.
The presented system setupuses a custom-made Printed Circuit Board (PCB), combining
a Decawave DWM1000 UWB transceiver module and an ARM Cortex M3 MCU [687].
Like the WLAN nodes, the systems currently uses the UWB nodes to measure channel
impulse responses. This high-resolution channel data is continuously transferred to
computers for further processing via USB. Figure 4.7 demonstrates example WLAN CSI
and UWB CIR traces.
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Fig. 4.7: Example WLAN CSI and UWB CIR traces. Each colorized line indicates a complete measure-
ment sample including either multiple subcarriers (WLAN CSI) or CIR buffer sample data (UWB CIR).

4.2.4 Evaluation Methodology

This section presents the methodology used to evaluate both system variants. In this
respect, we explain the system setups used for the field measurements, including
essential parameters, the taxonomies adopted for the classification, and the MLmodels
for performance evaluation.

4.2.4.1 Field Measurements
For data acquisition, we installed live systems in different environments for both system
variants. The original RSSI-based classification systemwas installed and tested at a rest
area on the A9 Autobahn as part of an official test site of the German Federal Ministry
of Transport and Digital Infrastructure (shown in Figure 4.8, right). In total, the traces
of 2605 vehicles were recorded and then manually labeled using camera images. The
main parameters of the RSSI-based system can be found in Table 4.1.

The novel system proposal, which also uses high-resolution WLAN CSI and UWB
CIR channel data, was tested at two locations. Traces of cyclists were recorded at a cycle
path (Figure 4.8, left), while those of motorized vehicles, especially those similar to
passenger cars, were collected at a busy single-lane road (Figure 4.8, right). Thus, the
latter setting is similar to that used for the evaluation of the RSSI-based predecessor
system. Table 4.1 lists the essential parameters for the novel system proposal.
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Tab. 4.1: System parameters of the original RSSI-based system approach and the system evolution
using WLAN CSI and UWB CIR.

Parameter Radio Technology
WLAN CSI UWB RSSI

Transmission power 20 dBm -14.31 dBm 2.5 dBm
Operating frequency 2.4 GHz 6.5 GHz 2.4 GHz
Sampling frequency 80 Hz 40 Hz 125 Hz

Antenna type directional omnidirectional omnidirectional
Antenna gain 5-7 dBi — —

Number of radio links 1 1 9

Receiver

Sender

Receiver
Sender

Novel Approach Novel Approach

Sender Receiver

RSSI Approach

Fig. 4.8: Experimental live deployments of the original RSSI-based system approach (right) and the
novel CSI- and CIR-based system evolution (left, middle) on three different settings for gathering
real-world vehicle traces.

Weusedmultiple taxonomies for theML-based performance evaluation of the presented
system variants, illustrated by Figure 4.9 for both the original RSSI-based (left) and
the novel classification system (right). Defining different taxonomies was necessary
because we tested both systems at diverse locations characterized by divergent traffic
flows. Specifically, we evaluated the performance of the systems using taxonomies of
varying complexity, which we briefly explain in the following:
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Fig. 4.9: Overview of the vehicle classes and sample counts for the different taxonomies used for
evaluating the RSSI-based system approach (left) and the novel system design (right) ©[2020] IEEE.
Reprinted, with permission, from [634].

Binary This category distinguishes between car-like and truck-like or non-car-like sub-
classes. While we classified car-like and truck-like vehicles for the RSSI-based
system, we investigated the detection accuracy of the novel system with regard to
cyclists using a binary classification with traces of cyclists as well as LOS (idle). No
object was in the system during the LOS measurements, so fingerprints of the LOS
radio channel were measured.

Cyclist vs. Motorized Vehicles Because the dataset of traces for different road users
was not large enough,weperformed the detection and classification of three classes:
car-like, bicycle (non-car-like), and idle.

Size-based This was a 3-type classification of vehicles by vehicle length (only for the
RSSI-based system).

Body style-based Here we use a fine-grained classification of seven vehicle types
(only for the RSSI-based system).

In the body style-based taxonomy, the fine-grained classification task results in an
increased overlap of vehicle classes with similar shapes (e. g., bus and semi-truck),
increasing the overall classification inaccuracy. Nevertheless, we considered this com-
plex taxonomy for the performance evaluation to illustrate the RSSI-based system
approach’s strengths and limitations.

4.2.4.2 Machine Learning-Based Classification
Wehave used several established and state-of-the-artmachine learningmodels to detect
and classify vehicles, which we compare and explain below. The followingmodels were
used to evaluate the performance of both system variants:
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Artificial Neural Networks (ANNs) Inspired by the human nervous system, ANNs
have received keen attention for different scientific applications in the context of
deep learning. From an implementation perspective, these models are realized by
multiple matrix multiplications directly affecting its resulting memory footprint.

Random Forests (RFs) Typical representatives of ensemble learningmethods are RFs,
which leverage the fact that most instances are assumed to be correct (wisdom of
the crowd). Random subsets of features and training data are used for training each
tree incorporated in an RF. Thanks to their binary decision-making, RFs allow for a
resource-efficient implementation using simple if/else statements. By adjusting
parameters such as limiting the number of allowed trees or the maximum depth for
all trees, both processor and memory utilization can be controlled conveniently.

Support Vector Machines (SVMs) SVMs aim to separate data points in a multi-
dimensional space through a hyperplane such that for each feature, the members
of each class are separated as precisely as possible, which is achieved by minimiz-
ing a specific objective function.

In addition, we have used the following ML models for evaluating the performance of
the original RSSI-based system approach:
Deep Boltzmann Trees (DBTs) Belonging to deep learningmodels, DBTs benefit from

the fact that users have neither to extract features nor define transformation func-
tions because they automatically derive differentiable functions from the given
dataset. As an inherent downside, DBTs also require the user to select proper hy-
perparameters and a sufficient amount of training data due to the mass of trainable
weights.

Proximity Forests (PFs) Like RFs, PFs belong to ensemble learning models, but in-
stead of CART trees, they utilize proximity trees. Proximity trees use associated
data points from the training set and implement–as its name suggests–a proximity-
based approach where an object follows the branch with the highest similarity
regarding a parametrized similarity measure.

4.2.5 Real-World Validation

This section presents and discusses the results for both proposed vehicle classifi-
cation system approaches. Because we have developed and tested both systems
independently—i. e., in different locations with divergent road users—we cover the
results in separate sections, starting with the original RSSI-based vehicle detection and
classification system.
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4.2.5.1 Radio-Based Detection and Classification System
This subsection covers the results gained for the original RSSI-based system approach
for vehicle detection and classification. At first, we describe how we have evaluated
its detection performance, i.e., how accurately the system can determine a passing
road user. To this end, we fed the raw traces of 2605 vehicles into a system-in-the-loop
evaluation setup, allowing for flexible parameter tuning of the detection algorithm.
Due to its relatively high system complexity in multiple diagonal and cross-radio links,
the system also facilitates speed estimation and wrong-way driver detection (see Fig-
ure 4.10). We simulated the latter task by virtually inverting the order of the radio links
spanned between the different nodes. Accordingly, an estimated negative speed indi-
cates a wrong-way driver. The histogram shows a noticeable distribution for the dataset,
implying a sound detection of the driving direction for passing vehicles. Since the num-
ber of detected vehicles matches captured vehicle traces, detection accuracy is 100%.
Nonetheless, we want to note that further real-world measurements are necessary to
confirm the results of our virtual detection of wrong-way drivers.
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Fig. 4.10: Histograms of the speed estimations for the real world data and the virtually inverted node
sequence. The vehicle count matches the total of captured vehicles traces and all wrong-way drivers
are detected ©[2020] IEEE. Reprinted, with permission, from [634].

Next, we want to provide and discuss the results of the vehicle classification. We have
utilized 10-fold cross-validation with 1/9 data split in each fold, i. e., 90% of the data is
used for training and the remaining 10% for testing. After ten iterations, the statistical
deviations of those folds are derived and used for performance evaluation. Figure 4.11
illustrates the classification accuracies for different machine learning models and
the considered vehicle taxonomies (cf. Figure4.9). The 99% classification accuracy,
a typical minimum requirement for some applications, is illustrated as a horizontal
dashed line.
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Fig. 4.11: Comparison of the overall classification accuracies for the considered machine learning
models and considered vehicle taxonomies ©[2020] IEEE. Reprinted, with permission, from [634].

All evaluated models can exceed the given 99% threshold for some runs but otherwise
fall below it for the binary taxonomy. Only the SVM achieves a mean accuracy that
matches this threshold. For the more complex vehicle taxonomies, the overall accu-
racies of all models decrease significantly: 93% to 98% for the size-based taxonomy
and 90% to 95% concerning the fine-grained task. The apparent deviations between
the models’ performances result from their different learning strategies. While the
stochastic nature of RF induces more significant standard errors in cross-validation, the
DBT obtains lower performance levels than the remaining models because it calculates
a probability measure for the given data.

Finally, the class-specific classification accuracy for the three considered vehicle
taxonomies, i. e., binary, size-based, and fine-grained, is depicted in Figures 4.12, 4.13,
4.14. Starting with the binary taxonomy, which is the most simple classification task
differentiating car-like and truck-like vehicles, the main challenge for all models is to
classify truck-like cars correctly. We can validate this assumption by interpreting the
classification results for mid-sized vehicles, as shown in Figure 4.13: all models have
similar standard error values, whereas they perform notably better for small- and large-
sized cars. For the fine-grained taxonomy, the multitude of similarly shaped vehicles
and the underrepresentation of traces for specific vehicle types (e. g., bus) leads to
lower classification accuracies due to larger standard deviations.

4.2.5.2 Vehicle Classification Using WLAN CSI and UWB CIR
For the new modular classification system, we present and discuss the classification
results in this subsection. As previously mentioned, we have conducted multiple mea-
surement campaigns for gathering traces of both cyclists and motorized vehicles. Be-



4.2 Privacy-Preserving Detection of Persons and Classification of Vehicle Flows | 257

Proximity Forest

0.99

±0.01

0.01

±0.01

0.02

±0.02

0.98

±0.02

C T

Random Forest

0.99

±0.01

0.01

±0.01

0.02

±0.02

0.98

±0.02

C T

C

T

1.00

±0.00

0.00

±0.00

0.03

±0.02

0.97

±0.02

C T

Support Vector 
Machine

0.99

±0.01

0.01

±0.01

0.03

±0.03

0.97

±0.03

C T

Deep Bolzmann
Tree
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Fig. 4.13: Normalized confusion matrices for size-based vehicle classification. S: small,M: medium,
L: large ©[2020] IEEE. Reprinted, with permission, from [634].

cause our measurements have focussed on capturing traces induced by cyclists, we
have performed most of the analysis on detecting these. We start discussing the re-
sults for cyclist detection. Then we provide the performance results for a multi-type
classification task with regard to cyclists and different motorized vehicle types.

For evaluating the bicycle detection performance, we have considered a binary
classification task with the classes bicycle and non-bicycle (idle). Table 4.2 lists the
maximum classification results achieved for separately analyzing different channel
parameters gathered from WLAN CSI and UWB CIR data using ANN, RF, and SVM.
Regarding WLAN CSI, the RSSI is the dominant channel indicator leading to the high-
est classification accuracy for all models. A possible explanation is that the WLAN
transceiver modules evaluate multiple channel parameters to extract a significant
measure for the link quality. Similarly, there is also a single channel parameter for
UWB—the quotient of the estimated first path signal power and the channel impulse
response power—leading to the highest classification accuracies. In particular, using
this quotient and ANN, we could reach 100% accuracy for detecting cyclists.

Next, we present the results for the multi-type vehicle classification applied for
cyclists and different motorized vehicles. Specifically, we have conducted this task for
a total of three classes, i.e., idle, bicycle, and car-like vehicles. Table 4.3 shows the
classification results forWLANCSI andUWBCIRdata usingANN, RF, and SVM. Contrary
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Fig. 4.14: Normalized confusion matrices for body style vehicle classification. PC: passenger car,
PCT : passenger car with trailer, V: van, T : truck, TT : truck with trailer, ST : semitruck, B: bus ©[2020]
IEEE. Reprinted, with permission, from [634].

Tab. 4.2: Bicycle Detection: Results for WLAN CSI and UWB using ANN, RF, and SVM with a 10-fold CV.

Model Score WLAN CSI UWB
Value [%] Param. Value [%] Param.

ANN

Accuracy 99.27±0.57 R (f2) 100±0 FC (f0)
Precision 99.35±0.52 R (f2) 100±0 FC (f0)
Recall 99.24±0.61 R (f2) 100±0 FC (f0)
F-Score 99.30±0.56 R (f2) 100±0 FC (f0)

RF

Accuracy 99.45±0.54 R (f0) 99.83±0.26 FC (f1)
Precision 99.48±0.52 R (f0) 99.84±0.25 FC (f1)
Recall 99.45±0.51 R (f0) 99.8±0.26 FC (f1)
F-Score 99.46±0.51 R (f0) 99.83±0.26 FC (f1)

SVM

Accuracy 99.32±0.51 R (f2) 99.83±0.26 FC (f0)
Precision 99.38±0.47 R (f2) 99.84±0.24 FC (f0)
Recall 99.30±0.53 R (f2) 99.82±0.27 FC (f0)
F-Score 99.34±0.50 R (f2) 99.83±0.26 FC (f0)

f : Filter size, FC: Ratio of first path signal power and CIR power, R: RSSI

to the cyclist detection task, there are multiple predominant channel indicators for
each system.

For WLAN CSI, the RSSI seems to be inadequate for achieving the highest accuracy.
Instead, the subcarrier’s amplitude values of different training fields are more relevant
for this task: LLTF when using ANN, STBC-HT-LTF for RF, and several subcarriers in
the case of SVM. By contrast, there are two crucial parameters when using UWB: the
amplitudes of all raw CIR accumulator data (A) and the amplitudes of accumulator
sample 15 (A15). By comparing the resulting classification accuracies for WLAN CSI
and UWB CIR data, we can identify a considerable performance gap of about 5% for
the benefit of the former radio technology. However, we note that we have gathered
the traces for cyclists and motorized vehicles in different environments with diverging
systemdimensions, impacting the transmissions between theUWB transceivermodules
equipped with internal PCB antennas.
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Tab. 4.3:Multi-type vehicle classification: Results for WLAN CSI and UWB using ANN, RF, and SVM
with a 10-fold cross-validation.

Model Score WLAN CSI UWB
Value [%] Param. Value [%] Param.

ANN

Accuracy 98.23±0.67 L (f4) 92.38±1.30 A (f2)
Precision 98.52±0.49 L (f5) 93.53±1.46 A (f2)
Recall 98.31±0.63 L (f4) 93.30±1.34 A (f2)
F-Score 98.39±0.71 L (f3) 93.41±1.38 A (f2)

RF

Accuracy 98.67±0.62 S (f0) 92.96±1.67 A (f0)
Precision 98.83±0.59 S (f0) 93.74±1.74 A (f2)
Recall 98.84±0.60 S (f1) 93.28±1.79 A (f2)
F-Score 98.8±0.61 S (f0) 93.51±1.75 A (f2)

SVM

Accuracy 96.95±1.66 HSC52 (f0) 91.17±2.03 A15 (f0)
Precision 97.86±1.24 HSC52 (f0) 92.13±1.85 A15 (f0)
Recall 97.46±0.43 L (f4) 90.48±2.74 A15 (f0)
F-Score 97.39±1.44 HSC52 (f0) 91.29±2.25 A15 (f0)

A: Amplitudes of all CIR accumulator samples, A15: Amplitudes of CIR accumulator sample 15, f :
Filter size, HSC52: HT-LTF sub-carrier 52 amplitudes, L: LLTF sub-carrier amplitudes, S: STBC-HT-LTF
sub-carrier amplitudes

4.2.6 Conclusion

This section presented two variants of novel radio-based systems that exploit different
indicators of radio channels for accurate vehicle detection and classification. While the
original system approach leverages relatively rough attenuation patterns of wireless
signals (RSSI fingerprints), the evolved modular system approach uses exact channel
parameters provided by the radio technologies WLAN CSI and UWB. Compared with
existing detection and classification solutions, the proposed systemvariants are privacy-
preserving, robust against challenging weather conditions, accurate, and cost-efficient.
We have analyzed the suitability of both systems in comprehensive measurement cam-
paigns in different environments: on a rest area on a highway, a busy one-lane road in a
rural setting, and on a cycle path. The presented results approve the high performance
of those system approaches for a set of differently challenging applications ranging
from simple detection tasks of road users to a fine-grained classification of multiple
vehicle types.

In future work, we want to investigate the applicability of different radio tech-
nologies (e. g., mmWave) within our detection and classification system. Moreover,
we will obtain additional vehicle traces in challenging urban environments (e. g., in a
downtown setting) to evaluate and strengthen system performance.
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4.3 Green Networking and Resource Constrained Clients for Smart
Cities

Pascal Jörke, Christian Wietfeld

Abstract: The Internet of Things (IoT) will enable a variety of new use cases by link-
ing billions of IoT devices. Introducing new use cases each day, IoT devices will be
found everywhere in the future. With a new generation of resource-constrained clients,
communication networks have to face new challenges such as high communication
ranges, small data transmission efficiency, and large scalability. With the Narrowband
Internet of Things (NB-IoT) and enhanced Machine Type Communication (eMTC), cel-
lular communication solutions have been adapted to these new challenges. Including
mechanisms for larger communication ranges as well as lower power consumption,
NB-IoT and eMTC aim to fulfil the requirements defined by new massive Machine Type
Communication (mMTC) use cases. While performance is often only optimized on the
lower layers, upper layers including transmission and application protocols need to
be addressed by reducing overhead and enabling efficient small data transmissions in
order to deliver good performance for resource-constrained clients.

This section describes the achievements in evaluating the performance of Low-Power
Wide-Area Network (LPWAN) solutions for resource-constrained clients in terms of
energy efficiency, spectral efficiency, and latency. Therefore, new cellular IoT features
for power saving and coverage extension are explained in detail, while taking the costs
for the scalability of the networks into account. With this knowledge, a performance
analysis of resource-constrained LPWAN clients with different coverage conditions is
provided.

Although both NB-IoT and eMTC use the same power-saving techniques as well
as repetitions to extend the communication range, the analysis reveals a different
performance in the context of data size, rate, and coupling loss.While eMTC comeswith
a 4% better battery lifetime than NB-IoT when considering 144 dB coupling loss, the
NB-IoT battery lifetime has 18% better performance in 164 dB coupling loss scenarios.
The overall analysis shows that in coverage areas with a coupling loss of 155 dB or
less, eMTC performs better, but requires much more bandwidth. Taking the spectral
efficiency into account, NB-IoT is in all evaluated scenarios the better choice and more
suitable for future networks where the number of devices connected is expected to be
close to or go beyond the network capacity.

While communication is possible with coupling losses up to 164 dB, the results show
that the overall performance is very limited with decreasing signal quality. Although be-
ing designed for extended coverage, the mobile network operators should continuously
improve the signal quality for both uplink and downlink directions. When increasing
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the number of base stations is not feasible, alternative signal quality improvement solu-
tions should be addressed. In this context, the coverage and link quality improvement
of cellular IoT networks with multi-operator and multi-link strategies was evaluated
as a case study, using the smart city Dortmund, Germany. The results show that the
link quality can be improved by up to 13.6 dB, which enables shorter time-on-air for
resource-constrained devices and thus drastically improves the energy and spectral
efficiency.

4.3.1 Introduction

Waste bins with fill-level sensors, distributed environmental sensors monitoring the
overall air quality in large cities, and beehive sensors regulating the hive temperature
and transmitting the hive weight are just some use cases that integrate small sensor
devices. The IoT enables countless new use cases. While some sensors have fixed power
sources, others need to be independent of fixed power sources (e.g. smart waste bins)
and thereforemust rely on batteries, or, for an even better battery life, energy harvesting
[262]. In large-scale scenarios, such as smart waste management, the operational costs
need to be as low as possible and therefore the clients have to rely on a single battery for
years, but still provide large communication ranges. In the past few years, many new
communication solutions have addressed the requirements of low power consumption
and wide area communication and are therefore called Low-PowerWide-Area Networks
(LPWANs). A promising solutions is Long-RangeWide-Area Network (LoRaWAN), which
is used by many public utilities, because it broadcasts in the license-free spectrum
and is easy to set up. An alternative in licensed frequency bands is NB-IoT and eMTC,
which were derived from the LTE communication technology. Both NB-IoT and eMTC
can be deployed in existing LTE networks and therefore provide a fast and easy rollout
in many countries.

The next section will give a short overview of the relevant characteristics when
considering solutions in the license-free and licensed spectrums.

Clients in the License-Free Spectrum LoRaWAN is an easy-to-use communication
solution for IoT. Designed for small data transmissions, LoRaWAN uses a proprietary
communication protocol with small overhead and short time-on-air. To further reduce
overhead and power consumption, the channel access is based on unslotted Aloha,
directly transmitting data when available. With no channel access mechanism and de-
ployment in the license-free spectrum, collisions are inevitable [93], making LoRaWAN
unreliable in large scaled networks. Therefore, LoRaWAN is well suited for use cases
with minimum Quality of Service (QoS) requirements, where the loss of packets is ac-
ceptable. Additionally, duty-cycle limitations need to be taken into account. Duty-cycle
limitations are used in license-free spectrum to restrict the maximum transmit time
of a device, e.g. 1%, which means that a device can only transmit data for 36 s each
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hour, affecting the maximum transmit interval. More details on clients in license-free
spectrum can be found in Section 5.1.

Clients the in Licensed Spectrum When communication needs to be more reliable,
communication solutions in licensed spectrum are the better choice. Derived from LTE,
NB-IoT and eMTC use central scheduling for available frequency and time resources.
Therefore, collisions on the air interface are prevented and the scalability of the net-
work itself is mostly limited by the given frequency bandwidth. The price to pay for
a scheduled transmission is the increased overhead for synchronization and control
traffic, which affects the spectral and energy efficiency of resource-constrained clients.

4.3.2 Design Objectives of Resource-Constrained IoT Clients

With an exclusive spectrum available, NB-IoT and eMTC (often summarized as cellular
IoT) are not limited by duty cycles and can be used with various application protocols
and in many use cases. While eMTC relies on an existing LTE network and reuses LTE
synchronization, NB-IoT can also be deployed as a stand-alone network [398]. Since
NB-IoT uses only 180 kHz bandwidth (compared with 1.08MHz in eMTC), it can also
be deployed in guard bands–the unused bandwidth between two LTE networks–and
usually used avoid interference.

Since clients may be distributed over a large area or even in challenging commu-
nication environments such as basements, cellular IoT solutions have to provide an
extended network coverage, while still enabling low power consumption. The following
section will give a short overview on power-saving and range-extending mechanisms
that are introduced by cellular IoT.

4.3.2.1 Low Power Consumption
With current cellular communication solutions, the battery lifetime is often limited
to a maximum of several weeks. By contrast, cellular IoT has the design objective of
10 years on a single 5Wh battery [5]. Most IoT devices are designed to transmit small
amounts of data on a hourly, daily, or weekly basis, which means the device is mostly
in an idle state. Therefore, the new mechanisms for low power consumption focus on
energy efficiency in idle mode.

Figure 4.15 depicts a typical NB-IoT transmission cycle. In the connected state, the
device transmits its data and waits for a response. When no more data is transmitted or
received, the device enters Extended Discontinuous Reception (eDRX). The eDRX mode
extends the DRX (Discontinuous Reception) cycle to allow a device to remain longer in
a power-saving state between paging occasions [398] and thus to further reduce the
power consumption. The device remains synchronized and periodically available for
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Fig. 4.15: NB-IoT transmission cycle with eDRX and PSM. ©[2018] IEEE. Reprinted, with permission,
from [305].

mobile-terminated services. When the eDRX timer T3324 expires, the device will switch
into the Power Saving Mode (PSM).

When using PSM, the device enters a power-saving state in which it reduces its
power consumption to a bare minimum [398]. In PSM, the device remains registered to
the network and maintains its connection configurations. As soon as the device leaves
PSM, it does not need to attach to the network; rather, it reestablishes the previous
connection, which leads to a reduced signaling overhead and optimized device power
consumption. However, the device is unreachable for the network as long as it remains
in PSM because it does not listen to the paging time windows. Mobile terminated
services have to be suspended until the device reconnects to the network for mobile
originated events. Tracking Area Updates (TAU) also trigger the device to end PSM and
reestablish the connection to the network. While performing a TAU, the device listens
to paging time windows and queued downlink transmissions.

4.3.2.2 Extended Coverage
For a comparism of signal ranges, the Maximum Coupling Loss (MCL) is often used,
since it defines the maximum signal attenuation at which the receiver is still able to
decode the signal. While the eMTC design objective defines an MCL of 155.7 dB [4],
NB-IoT aims to extend the MCL to 164 dB. Figure 4.16 provides corresponding basement
penetration ranges for the different MCL objectives.

Besides small bandwidths, cellular IoT solutions use repetitions for an increased
energy per bit and therefore improved signal decoding. Therefore, eMTC introduces
Coverage Enhancement (CE) Modes A and B. CE Mode A is mandatory and supports
up to 32 repetitions while CE Mode B is optional and defines up to 2048 repetitions.
NB-IoT also supports up to 2048 repetitions, though it does not divide the number
of repetitions in different CE Modes, making all repetition options mandatory to all
devices. Table 4.4 gives a detailed overview of the maximum number of repetitions for
each NB-IoT and eMTC signal [398].

As similar data is transmitted, the application data rate decreases drastically with
each repetition and devices consume more power compared with a transmission with-
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Fig. 4.16: Coverage Enhancement in NB-IoT and eMTC

Tab. 4.4:Maximum number of repetitions in eMTC and NB-IoT.

eMTC Max. repetitions NB-IoT Max. repetitions
CE Mode A CE Mode B

PDSCH 32 2048 NPDSCH 2048
MPDCCH 16 256 NPDCCH 2048
PRACH 32 128 NPRACH 128
PUSCH 32 2048 NPUSCH 128
PUCCH 8 32

out repetitions. While new mechanisms like eDRX and PSM aim to increase the energy
efficiency and battery lifetimes of cellular IoT devices, the extended coverage will lead
to a significant reduction of energy efficiency. To ensure that the cellular IoT design
objective is still achievable, both NB-IoT and eMTC must be subjected to a performance
analysis.

4.3.2.3 Application Protocols for IoT
While LPWAN solutions in a license-free spectrum such as LoRaWAN often lack end-
to-end Internet Protocol (IP) support due to the large protocol overhead, both NB-IoT
and eMTC are able to transmit IP traffic such Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) messages. Due to the reduced transmission capacity,
the packet size and number of message sequences should be as low as possible even
with the coverage extension mechanism. For a decent system performance, the choice
of a suitable application protocol is essential.

Message Queuing Telemetry Transport (MQTT) is a TCP-based IoT communications
protocol, designed for Machine to Machine (M2M) data transmissions in low bandwidth
environments [41]. It uses a centralized broker to which clients can publish data, while
other clients can subscribe to data updates. In addition to transmission protection
through TCP, MQTT introduces three Quality of Service (QoS) levels. QoS level 0 is a
simple, low-overhead method of sending a message. The client simply connects to
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the broker and publishes the message without MQTT acknowledgement by the broker.
The data is still acknowledged on lower layers by TCP. QoS level 1 guarantees that
the message is transmitted successfully to the broker. The broker sends an acknowl-
edgement back to the sender. In case of a transmission loss of either the data or the
acknowledgement, the data is retransmitted by the sender. QoS level 2 is the highest
level of service. It comprises a sequence of four messages between the sender and the
broker, and a handshake to confirm that the main message has been sent and that the
acknowledgment has been received. When the handshake is completed, both sender
and receiver are sure that the message was received exactly once, though this approach
creates the highest message overhead.

MQTT for Sensor Networks (MQTT-SN) is an UDP-based, optimized version of the
IoT communications protocol MQTT, designed specifically for efficient operation in
large, low-power IoT sensor networks [645]. Like MQTT, it uses a centralized broker.
Besides QoS levels 0 to 2, a new QoS level is introduced, which further reduces the
message overhead. Publishing messages with a QoS level of -1 doesn’t require an initial
connection setup and broker registration; rather, it only transmits a single publish
message with all required data. While QoS -1 comes with the lowest overhead, it does
not provide acknowledgements and other responses from the broker.

Constrained Application Protocol (CoAP) is a third important IoT application pro-
tocol. CoAP is an UDP-based, specialized web transfer protocol for use with resource-
constrained nodes and constrained networks in the IoT [600]. The protocol is designed
for M2M applications. Unlike MQTT and MQTT-SN, it transmits data directly between a
client and a server. Since no connection needs to be established at first, CoAP comes
with a low message overhead. When using confirmed transmissions, all data that is
transmitted between server and client is confirmed by application acknowledgements.
The data is re-sent until it is acknowledged or themaximumnumber of retries is reached.

When high QoS is required, MQTT or MQTT-SN should be used for data transmis-
sion, since both protocols provide multiple layers of a protected transmission. When
energy efficiency is essential and data are transmitted only from point to point, CoAP
is the better choice. Figure 4.17 gives an overview of message overheads for these IoT
application protocols.

For the highest energy efficiency, the number of transmitted messages should be
as low as possible. When no application acknowledgement is required, both CoAP
Non-Confirmable and MQTT-SN QoS -1 are applicable. In case of acknowledgement is
needed on the application layer, CoAP is the most energy efficient choice since both
MQTT and MQTT-SN require a previous connection setup, before transmitting and
acknowledging user data.
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Fig. 4.17: Comparison of message sequences for different IoT application protocols.

4.3.3 Performance Analysis of Resource-Constrained LPWAN Clients

While features like eDRX and PSM aim for lower power consumption and thus longer
battery lifetime, coverage enhancement provides a much higher power consumption
for UEs by introducing longer transmission and reception intervals. Both features
are required to fulfill the challenges of 10-years battery lifetimes, 164 dB maximum
coupling loss, and a maximum latency for a single data transmission of 10 seconds. In
this section, performance studies of cellular IoT solutions will be analyzed.

4.3.3.1 Power Consumption Analysis of NB-IoT and eMTC in Challenging Smart-City
Environments

In Section 4.3.2.1, two new power-saving states for NB-IoT and eMTC devices are intro-
duced. Both states provide a reduced power consumption compared with current GSM
or LTE devices. Besides PSM and eDRX, devices can enter three additional power states:
Connected, Tail, and TAU. In the Connected power state, random access, data transmis-
sion, and reception are performed. After data transmission and reception, the device
remains for a predefined time in a Tail state, also called a data inactivity timer, where
it remains connected on the RRC communcation layer for additional data exchange.
Then, it switches to the eDRX power state, where the device wakes up only for paging
occasions. Finally, the device reduces its power consumption to a bare minimum in
the PSM state. It periodically wakes up for TAU and checks if downlink transmissions
are queued, since these messages can’t be received while in PSM. Figure 4.18 gives an
overview of the state machine that is used to determine the energy consumption of UEs.

To compare different cellular IoT solutions and assess if all IoT requirements can
be fulfilled by NB-IoT and eMTC, the authors in [305] provide a performance analysis of
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sion, from [305].

NB-IoT and eMTC latency, data rate, battery lifetime, and spectral efficiency for three
different coverage classes. The results are shown in Figure 4.19.
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(inverted scale) .

(a) 144 dB coupling loss

Spectral Efficiency [bit/s / kHz]Data Rate [kbit/s]
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(inverted scale) .

(b) 154 dB coupling loss

Spectral Efficiency [bit/s / kHz]

Latency [s]

(inverted scale)    .

Data Rate [kbit/s]

Battery Lifetime [years]

(c) 164 dB coupling loss

Fig. 4.19: Comparison of NB-IoT and eMTC devices for 84 bytes of acknowledged uplink data every
24 hours in different coverage conditions. Note that the axis scales vary between the three figures.
©[2018] IEEE. Reprinted, with permission, from [305].

The results show that eMTC performs slightly better than NB-IoT at coupling losses of
144 dB and 154 dB. While the eMTC performance gain is rather small, it uses 6 times
more bandwidth than NB-IoT, making transmissions less spectral-efficient. When it
comes to cell edges such as basements, where the coupling loss can increase to up
to 164 dB, NB-IoT clearly outperforms eMTC. While both cellular technologies use the
same power savingmechanisms, NB-IoT needs fewer repetitions to transmit data, which
reduces the time on air and therefore extends the time in PSM between transmissions.
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Although eMTC performs better than NB-IoT in good coverage conditions, the difference
in data rate, latency, and battery lifetime performance is rather small. When it comes
to poor coverage conditions as well as spectral efficiency, NB-IoT is recommended over
eMTC.

4.3.3.2 Coverage and Link Quality Improvement of Cellular IoT Networks with
Multi-Operator and Multi-Link Strategies

Section 4.3.3.1 has given an overview of the performance of cellular IoT technologies in
different coverage scenarios.With increasing signal attenuation the overall performance
decreases drastically. Therefore, the signal quality should always be as good as possible.
Instead of expanding the networks by installing new base stations, multi-operator
strategies (such as National Roaming) can provide better coverage and link quality for
LTE and cellular IoT technologies, by allowing cellular devices to use networks from
different Mobile Network Operators (MNOs) as well.

The authors in [306] evaluated the potential of coverage and link quality improve-
ment in terms of multi-operator strategies in the Smart City Dortmund as a case study.
By extracting the number and locations of all cellular base stations in Dortmund and
applying empirical path loss models for urban environments, we performed a compre-
hensive coverage analysis. The results are given in Figure 4.20.
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Fig. 4.20: Results of the coverage analysis for outdoor, indoor and deep indoor scenarios and dif-
ferent cellular communication technologies in an urban environment. ©[2019] IEEE. Reprinted, with
permission, from [306].

While all MNOs can provide full LTE and NB-IoT coverage outdoors, indoor, and base-
ment coverage, deep indoor coverage from LTE decreases to 66%and 42%, respectively.
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In multi-operator scenarios, the deep indoor coverage increases by up to 40%, which
makes multi-operator deployment highly recommended in LTE scenarios.

Due to its extended coverage, NB-IoT can provide full coverage in all scenarios
when using amaximum coupling loss of 164 dB. If themaximum coupling loss is limited
to 154 dB for a better performance (see Section 4.3.3.1), NB-IoT can still provide full
coverage when multi-operator strategies are used.

Even in scenarios with full coverage, multi-operator strategies can be reasonable
by improving the average link quality by up to 13.6 dB (Figure 4.21). In Figure 4.19,
a 10 dB improvement of link quality can already increase the battery lifetime of an
NB-IoT device from 4 to 18 years and decrease the latency from 5 s to 0.8 s. Therefore,
multi-operator strategies are highly recommended for link-quality improvement.

Average Signal Power Gain MNO 1&2 MNO 1&3 MNO 2&3 MNO 1-3 (National Roaming)
for LTE and NB-IoT MNO 1 MNO 2 MNO 1 MNO 3 MNO 2 MNO 3 MNO 1 MNO 2 MNO 3

Outdoor 9.5 dB 8.0 dB 10.2 dB 8.3 dB 9.0 dB 7.8 dB 11.4 dB 10.0 dB 9.0 dB
Indoor 11.2 dB 9.1 dB 12.3 dB 10.1 dB 10.2 dB 9.0 dB 13.6 dB 11.0 dB 10.6 dB

Deep Indoor 10.4 dB 8.9 dB 11.0 dB 9.1 dB 9.6 dB 8.4 dB 12.6 dB 10.9 dB 10.0 dB

Fig. 4.21: Results of the coupling loss reduction potential for different coupling loss scenarios and
cellular communication technologies. ©[2019] IEEE. Reprinted, with permission, from [306].

4.3.4 Conclusion

Energy efficiency is an important factor in the IoT. Many use cases rely on sensors
that can last at least 10 years on a single battery. With new communication technolo-
gies such as NB-IoT and eMTC, cellular solutions respond to the new challenges that
are introduced by the IoT. But optimized communication technologies alone are not
sufficient. Energy efficiency needs to be addressed on all layers, from the choice of
an appropriate application protocol that produces as low an overhead as possible to
link-quality improvement strategies that obviate a high number of repetitions on the
air interface. In view of the results of the performance and coverage analysis, a good
device placement is of great importance for resource-constrained devices. In the future,
extensive measurements of latency and energy consumption can be used to derive
an ML-based predictive model for latency and energy performance by using passive
measurement parameters such as signal strength and signal quality. Additionally, the
number and size of transmittedmessages can be reduced byML-basedmodel-predictive
communication, as introduced in [30]. If green networking and resource constraints are
taken into account from the very beginning of an application’s design, the performance
of the system from a user and network perspective can be significantly increased.
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4.4 Vehicle to Vehicle Communications: Machine Learning-Enabled
Predictive Routing

Cedrik Krieger
Benjamin Sliwa

Christian Wietfeld

Abstract: Vehicular communication is used to exchange safety-related status informa-
tion, enable efficiency-oriented mobility planning, and share other user data, such
as video streams, among a locally restricted area and the vehicles and nearby infras-
tructure within it. Without the need for cellular coverage, the particular devices, or
agents, organize themselves in a distributed fashion without a central coordination
unit. This ability not only allows the realization of Intelligent Transportation Systems
(ITSs) that will have a major impact on the cities of the future, but it also enables
spontaneously deployed networks, that cover the task of on-demand network pro-
visioning for events. A well-known example is the support of rescue units that can
utilize Unmanned Aerial Vehicles (UAVs) for remote sensing and delegate exploration
tasks and reduce the risk of endangering human personnel. These applications all
have high requirements and need a robust and reliable communication behavior. As
Mobile Ad-hoc NETworks (MANETs) are not managed centrally, data needs to be routed
efficiently from the sender to the receiver, whereas link losses and unnecessary hops
need to be avoided. Established protocols rely on simple distance measurements and
try to minimize the sender-to-receiver distance. In challenging networks, these simple
approaches can not cope with the complexity of the task. Therefore, more advanced
techniques integrate more information and provide a higher grade of generalization.
Comprehensive simulations have shown that the utilization of cross-layer knowledge
and the prediction of future network states enable reliable and robust reinforcement
learning-based routing algorithms, that achieve high performances under different
conditions. Moreover, this technology outperforms established routing protocols by up
to 51% in all considered studies.

4.4.1 Introduction: Direct Agent Communication in Ad-Hoc Networks

Self-organizing networks, where the nodes communicate directly, are described as
ad-hoc networks. Routes are built not only to directly reachable neighbors, but also to
more distinct nodes with which communication is only possible by invoking (multiple)
intermediate hops. This way, all agents create a mesh. Here, the sub-class of Mobile Ad-
hoc NETworks (MANETs) is of particular interest, as they explicitly specify the possible
movement of nodes, which leads to frequent changes in the network topology and
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thus requires suitable solutions for providing a robust and reliable communication.
As MANETs are infrastructure-less, efficient routing protocols are required to cover
a trade-off between overhead and the provision of valid routes. Whereas too much
traffic used for coordinationwould reduce the overall throughput, outdated information
leads to the loss of packets. The nodes’ mobility is a primary factor of impact on the
network topology. MANETs can have a hybrid consistency of mobile nodes like those of
UAVs and cars, but it also has nodes with very low or stationary mobility like those of
pedestrians and Road-Side Units (RSUs). Besides mobility, varying channel conditions
due to multi-path propagation, especially in urban environments, signal attenuation,
and shadowing, have a significant impact on the node’s reachability and can harm
the end-to-end routing performance. As these varieties of influxes offer challenging
conditions for MANETs, established routing protocols that rely on considerably simple
metrics, such as distance vectors represented by hop counts, are not able to fulfill the
requirement for a robust and reliable communication. Therefore, the integration of
further information and the enhancement of routing metrics are motivated in order to
assess occurring network situations adequately and increase the overall performance.

4.4.2 Related Work: Evolution of Mobility-Predictive Ad-Hoc Routing Protocols

A classification of the developments of ad-hoc routing protocols is given in Figure 4.22.
The proposed protocols originate from the Better Approach To Mobile Ad-hoc Network-
ing (B.A.T.M.A.N.) [472] project located in the Freifunk community. B.A.T.M.A.N. III was
originally developed to tackle scalability problems in the established routing protocol
Optimized Link State Routing (OLSR) by distributing the topology knowledge among
local entities and thus obviate the need to calculate the full network graph on every
node, which is an expensive task and especially unsuitable for resource-constrained
systems. Subsequent B.A.T.M.A.N. versions relocate their point of operation from In-
ternet Protocol (IP)-based routing in layer 3 to layer 2 in order to provide an network
protocol-independent routing approach and have a more direct impact on the packets.
As B.A.T.M.A.N. is intended for real-use cases, kernel implementations are available,
but, simulationmodels for scientific research are often omitted. Therefore, a simulation
model of the B.A.T.M.A.N V protocol version for the well-known discrete event simula-
tor Objective Modular NETwork testbed in C++ (OMNET++) [701] has been developed
and validated by field experiments in [627]. However, as the overall goal of the Frei-
funk community is to provide mesh-based Internet access within cities, B.A.T.M.A.N.
implementations contain overhead to fulfill this task, such as Host Network Announce-
ments (HNAs), is separate from the actual routing process. While the first extension
B.A.T.Mobile [623] forks from the main branch and hauls those measures, the consecu-
tive protocol Predictive Ad-hoc Routing fueled by Reinforcement learning and Trajectory
knowledge (PARRoT) [635] omits additional overhead for network provisioning. Thus,
PARRoT, which gained additional influences of reinforcement learning-based routing,
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Fig. 4.22: Evolution graph of routing protocols.

concentrates on IP-based routing for an assessment of the concepts. The de-capsulated
development of novel approaches intends to merge the newer routing mechanism back
into the latest B.A.T.M.A.N. version. The latter protocols, B.A.T.Mobile and PARRoT,
follow a mobility-predictive routing approach and are explained in more detail in the
following. The most recent development is Context-Adaptive PARRoT (CA-PARRoT)
[586], which can be regarded as an extension to PARRoT and follows a hybrid machine
learning approach.

Routing protocols can be classified into reactive and proactive protocols. The first
initiate a route-building process on-demand. Well-known examples are Ad-hoc On-
demand Distance Vector (AODV) and DYnamic MANET On-demand routing protocol
(DYMO). The latter maintain routing tables that are used for lookups when necessary
and are updated periodically. Destination-Sequenced Distance Vector (DSDV) and
OLSR are widely known proactive protocols. Greedy Perimeter Stateless Routing in
wireless networks (GPSR) is a geo-based routing approach that considers mobility and
communication as a dependent task. The route building is done by minimizing the geo-
distance between sender and destination node with each hop. Extensive summaries
about existing protocols are found in [486] and [470]. An empirical analysis of used
protocols in vehicular networks is provided in [119].

Recent developments in the machine learning field have also had an impact on
routing algorithms. The authors of [671] use a centralized Artificial Neural Network
(ANN) to enable a SoftwareDefinedNetwork (SDN) approach for latencyminimization in
vehicular networks. However, reinforcement learning-based approaches allow routing
entities to make autonomous decisions in a decentralized manner. In [99] Q-routing is
proposed as an integration of autonomous routing decisions based on learned latency.
The authors of [481] extend this with mobility-based metrics and take into account the
swarm coherence of agents. A summary of channel and propagation models is given
in [704]. The authors of [60] present an approach of learning from stochastic channel
parameters. Intelligent routing algorithms anddevelopments for ad-hoc networksmight
also have an impact on future network generations [17].
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4.4.3 Approaches: Enhance Routing by Prediction and Machine Learning

In this subsection, the routing approaches of B.A.T.Mobile, PARRoT, and CA-PARRoT
are presented. B.A.T.Mobile leverages cross-layer knowledge from the mobility domain
to predict the agents’ future trajectory and integrate this information in the routing
decision. Following the anticipatory mobile networking paradigm [107], an overall
increase in terms of robustness and reliability was achieved. PARRoT, as a follow-up
protocol, takes the mobility prediction approach and integrates it into a reinforcement
learning process that utilizes abstract metrics [481] and represents the routing process
[99]. CA-PARRoT extends this with a mechanism to compensate short-term influences
and introduces a hybrid machine learning approach where the routing decision still
relies on reinforcement learning, but a machine learning component is used to classify
a Radio Environment Prototype (REP) and select an appropriate parametrization to
achieve the best possible end-to-end performance.

4.4.3.1 B.A.T.Mobile: Leveraging Cross-Layer Knowledge
B.A.T.Mobile introduces a multi-factorial mobility prediction that classifies available
information from themobility control into three levels of assumed accuracy. An iterative
prediction process is performed that always chooses the most accurate prediction
method for the current step. A prediction width τ is divided into N iteration steps to
predict the future position p̃(t + τ). The considered types of information, named in
descending order of their accuracy, are:
– The steering vector σi describes the current heading to the position of the next

iteration step. This information is only available in the very first iteration.
– The currently targeted waypointw(t). If the agent’s position is in a specific range of

this waypoint, it is considered reached, and the next target is used for the remaining
prediction process.

– The history of Ne previous positions. Every iteration step appends a new estimate
to this list. It is used as a fallback solution to enable a mobility prediction even if
no advanced information is available.

The prediction result p̃(t+τ) is then integrated into the periodically broadcasted routing
messages of the underlying B.A.T.M.A.N. routing protocol and replaces the former
Transmission Quality (TQ) metric for routing decisions.

4.4.3.2 PARRoT: Transition to an Autonomous Routing Process
PARRoT inherits themobility prediction of B.A.T.Mobile. The routingmetric is not solely
built on relative mobility; rather, it is gathered by a Q-learning process. Agents share
their current and predicted positions, which are then used by the receiving agent to
reconstruct their neighbor’s trajectory. Further, this is set into a relationship with the
agent’s own trajectory, and the future availability of a link between these two agents is
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Fig. 4.23: Interconnection of the routing protocol and the mobility domain for multi-factorial mobility
predictions. Reprinted from [585].

expressed by themetricΦLET(d, j), representing the Link Expiry Time (LET). Every agent
evaluates its own cohesion by comparing its current set of neighbors with a previous set.
This produces the metric ΦCoh(j), which is shared through the routing messages. The
reinforcement learning process is performed by reverse route building. An originator
creates a routing message, referred to as chirps in PARRoT, sets the reward value V to
1.0, and broadcasts it. Recipient agents carry out the learning process, considering the
originator, which will be the destination d in reverse route building, and the adjacent
agent j, from whom the message was received, and process it to

Q(d, j) = Q(d, j) + α
[︀
γ0 · ΦLET(d, j) · ΦCoh(j) · Vj − Q(d, j)

]︀
. (4.11)

Here, the learning rate α controls the impact of how new routing messages that deliver
the reward Vj affect the learned knowledge. The basic discount factor γ0 guarantees
a path degradation. This is of particular interest when all other metrics become 1.0,
e.g. in a static network. This measure then forces the shared reward to be decreased
and prevents routing loops. The agents maintain a Q-table, where a quality indicator
Q(d, j) exists for every destination/gateway pair over which, a chirp has been received.
This table is then utilized to feed the known routing table, which enables the packet
forwarding process.

Figure 4.24 shows the datagram of a PARRoT routing message that contains identi-
fication data, age information, and position information.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Originator SEQ TTL Cohesion ΦCoh Reward V

p.x p.y p.z p̃.x

p̃.y p̃.z

Fig. 4.24: Byte datagram of a PARRoT routing message with a total length of 40 bytes.
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Fig. 4.25: Timer-based update procedure to avoid the short-term effects of having too much impact
on learned knowledge. ©[2021] IEEE. Reprinted, with permission, from [586].

4.4.3.3 CA-PARRoT: Introducing a Machine Learning-Enabled Context Adaption
CA-PARRoT proposes further enhancements to PARRoT in order to increase robust-
ness under distinct conditions and reduce the pre-configuration effort. As known from
comprehensive simulations, PARRoT has shown a negative impact for time-variant en-
vironments as short-term effects harm the accuracy of learned knowledge. B.A.T.Mobile,
in turn, proves to be more robust because it buffers incoming information to smoothen
the update process. Thus, a timer-based update procedure is also introduced to CA-
PARRoT, as shown in Figure 4.25. It is divided into four phases, where an incoming
value is pushed to a metric buffer in phase 1. The same value leads to an immediate
Q-update in phase 2, yielding a temporary knowledge in phase 3 that is used to decide
the forwarding of the current routing message. After an elapsed time ∆tu, the best can-
didate is read from the metric buffer and triggers a Q-update whose result is persisted in
the stored knowledge and is also used to update the routing tables in which the packet
forwarding is managed (phase 4).

Besides the refactored update process, amachine learning component is introduced
to obtain a parametrization after the classification of the current environment. For
this purpose, different radio environmental prototypes are considered, for which a
parameter optimization is carried out in advance, and the best parametrization is
provided to the routing protocol. Figure 4.26 shows the adaption approach, which
starts with an initial monitoring of the signal strengths of incoming routing messages
within an evaluation window. Statistical features are extracted and used to classify
a prototype and select its parameters such as the learning rate α, the basic discount
factor γ0, and newly introduced λ andω, which are used to exponentially weight partial
Q-learning metrics.

Random Forests (RFs), Support Vector Machines (SVMs), and Artificial Neural
Networks (ANNs) are provided as classification methods. Figure 4.27 shows the classifi-
cation accuracy that is obtained through a 10-fold cross-validation with the Lightweight
Machine Learning for IoT Systems with Resource Limitations (LIMITS) [633] framework,
which also enables a model export.
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Fig. 4.28: (a) shows the trajectories of 5 agents, following a random waypoint mobility pattern in the
three-dimensional reference playground. (b) shows an application-driven mobility, where UAVs fly
over clusters of ground vehicles. ©[2021] IEEE. Reprinted, with permission, from [635].

4.4.4 Performance Evaluation of MANET Routing Protocols

In order to carry out a performance evaluation among different routing protocols,
a reproducible scenario setup is required that provides a comparable frame for all
candidates and makes the overall performance dependent on the evaluated protocol.
As Key Performance Indicators (KPIs), the Packet Delivery Ratio (PDR) and the mean
latency are considered as end-to-end metrics.

A reference scenario is constructed, where ten agents establish a video stream be-
tween two agents with a Constant Bit Rate (CBR) of 2Mbit/s. Besides the communication
aspect, the agent mobility has a major impact on the evolution and characteristics of
the network topology. Figure 4.28 (a) shows a generic RandomWayPoint (RWP)mobility
in the three-dimensional playground of the reference scenario. The agents move with a
constant speed of 50 km/h and immediately choose their next target when they reach
their current one. RWP mobility is considered as a benchmark mobility. Figure 4.28 (b)
shows an example of an application-driven mobility, where UAVs hover clusters of
ground vehicles to extend their communication capabilities [624]. This mobility pattern
involves hybrid types of vehicles that possess inherently different characteristics—a
particular challenge for efficient routing protocols.

Another crucial aspect is the choice of a channel model. In rural environments,
a Line-Of-Sight (LOS) connection between two agents is usually given. With a lack of
objects in the playground, multipath propagation can be neglected, and the free-space
path loss L is proportional to the exponentially weighted distance d with L ∝ dη, where
η is the attenuation coefficient. This simple but genericmodel is utilized in the reference
scenario for performance evaluation. For other environments, more complex path loss
models need to be considered. In urban areas, the impact of objects leads to a higher
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importance of multipath propagation, as the LOS path is superposed by reflected signal
paths. Therefore, the Nakagami model presents a stochastic impact on the Received
Signal Strength (RSS) in addition to the free-space path loss. The empirical analysis
of [119] points out commonly used channel models and well-established reference
protocols in vehicular research with which the novel protocols are compared.

4.4.5 Results

In this subsection, a comprehensive simulative performance analysis is presented. At
first, a scalability analysis is carried out to access the behavior of routing protocols
for different types of networks. Afterward, the end-to-end performances are evaluated
in scenario studies, that present potential fields of application. To assess an upper
bound, an optimal PDR for free-space conditions is introduced, which represents a
post-processed analysis of the agents’ positions and the theoretical availability of routes.
Thus, it is considered a mobility-constrained upper bound.

4.4.5.1 Scalability Analysis
Number of Agents in the Network As seen in Figure 4.29 (a), the number of agents
has a significant impact on the PDR of routing protocols. First, for a low number of
agents and a low density in the playground, an unneglectable PDR limitation due
to mobility can be observed. B.A.T.Mobile, PARRoT, and CA-PARRoT outperform all
established protocols for higher density networks. (CA-)PARRoT’s course of the PDR
is close to the mobility constraint and only shows an impact of routing overhead,
which increases for larger scales. Thus, the results show a good scalability, proving
(CA-)PARRoT to be suitable for high-density networks.

Impact of Speed on the End-to-End Performance MANETs are characterized by
their mobility, which can mean high agent speeds in many cases. Figure 4.29 (b) shows
the performance for a range of slow-moving agents up to highly mobile scenarios. High
speeds require routing protocols to adapt to the network topology very quickly. For
speeds over 100 km/h, most routing protocols fail to provide reliable routes, which
causes the PDR to drop and appear undisclosed. Only (CA-)PARRoT, which is affected
by the higher requirements of increasing speeds, is capable of providing high PDRs by
anticipating the network topology and compensating link losses.

4.4.5.2 Scenario Studies
UAV Communication in a Rural 3D-Playground As seen in Figure 4.30, the novel
routing protocols, B.A.T.Mobile, and (CA-)PARRoT, outperform the established reference
protocols. The study considers a rural three-dimensional playground with an air-to-air
communication between two UAVs. As the communication range does not cover the
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Fig. 4.29: Scalability analysis of routing protocols. PARRoT and CA-PARRoT outperform the consid-
ered reference protocols significantly and, thus, provide a robust communication behavior even for
challenging conditions.

whole playground, a mobility constrained optimum is calculated, as a routing path is
not necessarily available for every point of time.

All established protocols fail to provide a reliable PDR above the 70%mark, which
allows CA-PARRoT to outperform them by 48% in means. CA-PARRoT achieves a 3%
and 19% higher PDR than PARRoT and B.A.T.Mobile, respectively, and is thus the best-
performing mobility-predictive protocol, with only a 5% gap to the theoretical upper
bound. The proposed protocols, therefore, show gradual improvements with every
development stage. Also, considering the latency, CA-PARRoT performs best and shows
a 21% reduced latency compared with OLSR, which is the lowest latency established
protocol in this analysis.

Challenging Conditions in Urban Areas Figure 4.31 shows the end-to-end perfor-
mance for urban radio conditions. B.A.T.Mobile and PARRoT outperform the reference
protocols for both KPIs under consideration. PARRoT’s performance is a bit weaker
than that of B.A.T.Mobile due to the immediate impact of incoming routing packets,
where each packet is used for updates, and short-term effects compromise the learning
accuracy. The proposed CA-PARRoT is able to avoid this behavior and achieves the high-
est reliability of all considered routing protocols. Also, in terms of latency, CA-PARRoT
shows up to 51%, lower values compared with established protocols and a 9%, lower
latency compared with that of the B.A.T.Mobile. In general, higher latencies can be
observed. These are caused by spontaneous link losses that enforce more buffering in
the MAC layer.
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Fig. 4.30: The mobility-predictive routing protocols outperform the established references in terms
of reliability, expressed by the PDR. The proactive integration of trajectory knowledge establishes
a robust route finding and advances the performance towards the mobility-constrained optimum.
©[2021] IEEE. Reprinted, with permission, from [586].

Performance of MANET Routing in Application-Driven Scenarios The previously
presented analysis respects different scalability and radio propagation influences but
uses a generic randomwaypoint mobility model. As real-world applications of MANETs
may have mobility in coincidence with the corresponding task, two examples are
studied in the following.

Aerial Cluster Hovering
UAVs are used to hover over clusters of cars. In this analysis, ten UAVs are deployed to
cover a total of 50 cars, of which ten are equipped with communication interfaces. The
remaining 40, therefore, impact only the cluster selection and mobility of other cars,
but not the communication system. Figure 4.32 (a) shows the PDR of this scenario. The
incremental position updates reduce the accuracy of the mobility prediction and cause
B.A.T.Mobile to have high performance losses. However, PARRoT also uses mobility
prediction, but is still able outperform all other protocols due to a considered cohesion-
aware metric in the learning algorithm.

Distributed Dispersion Detection
To explore plumes, random mobilities are not effective. The distributed dispersion
detection (DDD) is a mobility model that is aware of maintaining the cohesion of the
UAV swarm during exploration and, therefore, provides a high amount of available
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Fig. 4.31: End-to-End performances in a three dimensional playground with urban radio conditions.
©[2021] IEEE. Reprinted, with permission, from [586].

routes. This is also reflected in Figure 4.32 (b), as all routing protocols show a similar,
high performance. Nevertheless, B.A.T.Mobile and PARRoT are able to reduce negative
outliers and provide a more reliable communication.

4.4.6 Conclusion

The results show that the proactive integration of mobility-domain knowledge enables
a significantly more robust behavior, which can outperform established routing ap-
proaches in a vast variation of challenging conditions. The utilization of machine
learning and reinforcement learning adds an additional gain and robustness, as the
comparison between B.A.T.Mobile and (CA-)PARRoT has shown. The more the routing
protocols are aware of their environment, e.g., its mobility and radio conditions, the
higher the achievable robustness becomes. Therefore, high KPIs could be observed,
even in high-scale scenarios. Intelligent routing algorithms are a key component for the
realization of efficient infrastructure-less device-to-device communication, not only for
WiFi-based networks but also for other technologies such as cellular approaches. The
lack of a centralized unit promises lower latency and enables the network participants
to learn and adapt to their situation based on local observations, reducing the need for
communication expensive status updates.
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Fig. 4.32: Achieved packet delivery ratios for application-driven scenarios.
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4.5 Modelling of Hybrid Vehicular Traffic with Extended Cellular
Automata

Michael Schreckenberg
Tim Vranken

Abstract: Vehicular traffic is a complex system with multiple challenges. For example,
highways and urban traffic networks, different vehicle types with varying maximum
velocities (cars, trucks, public transportation, etc.), and varying driving behaviors each
impacts traffic flow uniquely and strongly. This means that in order to minimize the
number of congestions and the average travel times, it is necessary to analyze, model,
and simulate traffic in multiple different scenarios.

In the following, we will introduce cellular automaton models for different scenarios.
These cellular automaton models aim to reproduce macroscopic traffic phenomena
through microscopic simulations. With the help of these simulations, we are able to
analyze, understand, and predict traffic in the given scenarios. Lastly, based on the
predictions, we can attempt to simulate the same scenarios with small adjustments in
order to maximize traffic flow and minimize travel time.

To this end, we will start with introducing and analyzing highway traffic. Here we
will focus on applying real-life weather data and how it impacts traffic flow. Next,
we will investigate, where the limited space and regular interruption of urban traffic
flow by traffic lights and intersections result in new and additional constraints. Lastly,
communicating and automated vehicles will be introduced into the simulations. The
different reaction times, behaviors, and the human-robot interaction are expected to
result in new challenges that have to be investigated and predicted.

4.5.1 Introduction

The topic of vehicular traffic is gaining more and more attention amid rapidly growing
numbers of vehicles on the road and increasing amounts of traffic congestion, leading
to longer average travel times and more fuel consumption. The road capacity cannot
be increased indefinitely through the addition of new lanes, which means that other
methods to increase road capacity or use it more efficiently need studying.

In order to use the road more efficiently, traffic and congestion have to be under-
stood better. To this end, we will first analyze and model traffic behavior on highways
in Section 4.5.2 with two main goals. The first is to understand the creation of jams
and their influence on the traffic flow more deeply. For this, we will use the model by
Nagel and Schreckenberg [467]. The second is to model the asymmetric lane changing
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required in multiple countries around the world. For this, we will use the one-lane
model by Lee et al. [379]. Asymmetric lane changing means that agents are supposed
to drive on the most outer (right) lane unless they overtake a slower vehicle.

After analyzing some general traffic flow behavior, we take a look at two more
specific problems, the influence of weather on highway capacity, and the missing data
of traffic detectors for real-time applications.

While these analyses allow better traffic flow predictions on highways, the situation
in urban and inner-city networks is more complicated due to a higher degree of interac-
tions of crossing flows and a regular interruption of the traffic caused by traffic lights.
Therefore, in Section 4.5.3 we adapt the model by Lee et al. to include driving behavior
before traffic lights and in intersections. Furthermore, traffic flow, based on empirical
data from Düsseldorf’s inner city, is analyzed. There, different analytical real-time
routing methods are applied to minimize traffic jams and the average travel time of
the agents. These analyses help identify traffic bottlenecks that have a high impact
on the creation of traffic jams and the increase of the average travel time. However,
space in urban and inner-city networks is often very restricted, so it is not possible
to increase the capacity of these bottlenecks by building more lanes. Due to this, in
a follow-up simulation, we changed one of these bottlenecks in a way that two lanes
(one leading in and the other leading out of the city) at the chosen intersection were
dynamically changed to either lead into or out of the city. This way, the road capacity
could be dynamically adjusted to fit the changing demand of commuters.

Lastly, in Section 4.5.4, we simulate heterogeneous traffic with automated and
human-driven vehicles. It is expected that automated vehicles will reduce or even elim-
inate traffic jams at 100% penetration. However, it will take multiple decades until
100% is achieved, and the impact of automated vehicles in heterogeneous traffic is
unclear due to the different behaviors of automated and human-driven vehicles. Due to
this, we adapt our model to simulate the different behaviors of automated, communi-
cating automated, and human-driven vehicles. The goal is to simulate heterogeneous
traffic where the three different vehicle types mix and then predict how this will impact
traffic flow and road capacities.

4.5.2 Highway Traffic Data Aggregation

The analysis of highway traffic flow can be divided into two topics. General traffic
behavior and the real-time traffic situation will be analyzed in this section. For that,
we will first model and simulate how traffic jams are created to understand better how
and when free-flowing traffic transitions out of free flow due to traffic jams. After that,
empirical data is used to create realistic lane-changing behavior while considering
asymmetric lane changing rules, as they are applied in countries like Germany or
France.



4.5 Modelling of Hybrid Vehicular Traffic with Extended Cellular Automata | 287

After that, the impact of real-time weather data on jam creation and travel velocities
will be analyzed, and the results will be used to increase traffic-flow predictions. The
prediction of real-time traffic requires real-time data, which sometimes can be missing
due to failing detectors or communication channels. Therefore, the last part of this
section will deal with the problem of how to replace missing data accurately.

4.5.2.1 Traffic Jam Analyses
The goal of traffic research is often to prevent traffic jams, or reduce their lifetimes. To
this end, Bette et al. [59] analyzed traffic jams using the Nagel-Schreckenberg model
[467]. For that, the trafficdensitywasdeterminedatwhich free-flowing traffic transitions
into jammed traffic based on a stability criterion. Afterward, the ratio of jammed cars
was separated into different mechanisms, the jamming rate, jam lifetime, and jam
size. It was shown that small jams already occur at very low densities and that the
increasing life-time of these jams at higher densities is what leads to the transition of
the traffic flow from free-flowing to jammed traffic. Furthermore, exponents that control
the scaling of all three jam mechanisms close to the critical density have been derived
from random walk arguments.

4.5.2.2 Asymmetric Lane-Changing Rules
Lane changing in many countries is asymmetric because drivers are required by law to
drive on themost outer (right) lane as long as they do not overtake a slower vehicle. This
asymmetric driving behavior createsmultiple differences comparedwith highway traffic
without overtaking restrictions. For that reason, empirical data from two countries with
such asymmetric rules (Germany and France) have been considered in [248]. A multi-
lane cellular automaton model with asymmetric lane changing rules has been created
and calibrated based on this empirical data.

This model is based on the one-lane model by Lee et al. [379], where agents have
different driving behaviors and a maximal deceleration capability. These two points
together allow the model to reproduce accidents due to miss behavior. Because of this,
the lane-changing rules have to fulfill three functionalities. Firstly, they have to be safe,
which means that the distance to both the preceding and to the following agents has
to be large enough, depending on the current velocity. Secondly, the agents should
change to an outer lane (one on their right) as soon as the lane change is safe and they
do not have to decelerate, while they change to an inner lane (one on their left) only if
it is safe and they can accelerate or prevent a forced deceleration. Lastly, the agents
have to be prevented from overtaking a slower driving vehicle on a more outer lane.

After adding rules to ensure all three points, the model is able to reproduce empiri-
cal lane usage for two- and three-lane highways. Furthermore, a higher number of lanes
can be simulated easily after one parameter of the model is re-calibrated accordingly.
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Tab. 4.5:Maximum vehicular traffic flows obtained from the whole empirical dataset. Here, w repre-
sents the mean of all available water film sensors at a certain point of time.

Surface Range of water film thickness w Maximum flow

Dry w ≤ 0.15 mm 1960 vehs/(h, lane)
Damp 0.15 mm < w < 0.9 mm 1720 vehs/(h, lane)
Wet w ≥ 0.9 mm 1320 vehs/(h, lane)

4.5.2.3 Influence of Weather Data on Traffic Predictions
Vehicle-2-X communication has grown rapidly within the past two decades, which has
increased the availability of extended Floating Car Data (xFCD) that can be applied
in the field of traffic information and improvement. One possible integration of this
additional real-time data is the inclusion of weather data in traffic-flow predictions
[246]. In order to identify the current weather on the road, the water film thickness is
taken by local weather stations. Vehicles equipped with xFCD are able to gather and
communicate this data through the use of rain-sensing windscreen wipers, which react
to water spray. While this vastly increases the available data, floating car data can be
more unreliably due to the limited radio spectrum available to transmit this data. An
efficient way of communication is developed in Section 5.2 to transmit data reliably and
efficiently. An analyses of the correlation between the average velocities of passenger
cars and water film thickness on the road showed a strong negative correlation of up
to -0.4 for rush-hour traffic. This means that the incorporation of weather data into
traffic information systems is expected to be exceptionally beneficial for commuters.
Furthermore, Table 4.5 shows that an increased water film thickness also decreases
the minimal road capacity above which the traffic flow becomes unstable and can
transition away from free-flow, which indicates that the inclusion of weather data
improves traffic-jam predictions.

After the impact of water film thickness on the traffic flow was analyzed, the new
insights were added to the previously discussed asymmetric multi-lane version of
the Lee et al. model. For that, an additional dallying parameter p(w), which depends
on the water film thickness on the road w, was introduced. A higher value of this
parameter increases the probability of an agent decelerating even if the leading vehicle
is far enough away for its velocity to be safe. The results in Figure 4.33 show a good
agreement with the empirical data for the roughly 6 km-long Autobahn section chosen
for the study. This also shows that an accurate traffic prediction needs reliable real-time
data in order to work. However, empirical data is often not reliable enough to ensure
constant real-time updates, and data can be missing. This missing data then has to be
replaced by approximations in real time.
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Fig. 4.33: Simulated breakdown probability for two different degrees of surface wetness.

4.5.2.4 Replacing Missing Data
Previously, in the exponential smoothing prediction method [136], missing data of a
traffic detector was replaced analyzing the historical data of this detector. This has
two major downsides. Firstly, the historical data ideally has to be from the same day
and time in the past 30 weeks of all D detectors. If, for example, a detector stops
communicating its findings on a Monday at 12 o’clock, then the data of 12 o’clock of
the past 30 Mondays has to be considered. This means that all data points of all D
detectors have to be saved for at least 30 weeks in order to make accurate predictions
on missing data points. The second problem is that the traffic situation ten weeks
before, for example, does not have to be the same as today. Accidents or road works, for
example, could shift the traffic flow from one street to another, which would strongly
increase the error of such predictions. Because of this, a newmethod to replace missing
data has been introduced in [247].

In this new method, 60 minutes of historical data of the surrounding N detectors
from the preceding week is taken. This data is then used to train a Poisson Dependency
Network (PDN) [249] (which is a form of a Poisson model explained in Section 4.1.2.6).
This PDN shows how strongly the traffic-flow data at one detector point correlates with
the data of the detector that has missing data. Then, in a final step, the real-time data
of the other d detectors is inserted into the PDN to fill the missing data point.

In order to test the method, empirical data was taken, and a prediction of it was
made as if it were missing. Then the empirical data was compared with its prediction in
Figure 4.34. One can see that the PDN is closer to the actual data than the exponential
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smoothing prediction that just used the past N weeks of traffic data of the “missing”
detector. A general test at different times of the day and different days of the week
showed that the PDN not only uses less historical data but also predicts missing traffic
data more accurately. A more in-depth analysis of the problem of traffic flow prediction
is given in Section 4.1.

Fig. 4.34: Example empirical data together with exponential smoothing and PDN predictions based
on the data.

4.5.3 Urban Traffic Simulations

Inner-city traffic is more complicated than highway traffic due to more interactions of
vehicles with different travel directions and intersections with or without traffic lights.
In order to analyze and simulate inner-city traffic, the Lee et al. model, which was used
as a basis for highway traffic simulations in the previous section, was modified with
additional rules in [710] to reproduce empirical intersection traffic data. In another
work, different methods to dynamically optimize inner-city traffic through different
routing methods and a dynamical application of lanes were analyzed [709]. There, we
were able to show that while traffic flow is often above the network capacity, one can
decrease the number of traffic jams and the average travel time through more dynamic
routing methods and the use of the infrastructure.

4.5.3.1 Cellular Automaton Model
The simulation of urban traffic with a model based on that by Lee et al. [379] has to
include a couple of complex situations. Different intersections, for example, can be very
different in their structure and serve different purposes. Some intersections can have
lanes onwhich one is only allowed to turn left, while another intersectionwith the same
number of lanes and roads allows turning left or keeping going straight from the most
inner (left) lane. Furthermore, agents have to ensure that they arrive on the right lane,
depending on their route before they arrive at the traffic lights. Finally, vehicles that
turn left within an intersection sometimes have to take into account that the crossing
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traffic has a green light at the same time, and they are only allowed to turn if they do
not disturb this ongoing traffic flow.

After these points were included within a cellular automaton model in [710], the
model was calibrated so that the time requirement tB ≈ 1.6±0.6 s is in accordance with
empirical data. To calculate the time requirement tB, the number of cars that arrive at a
red traffic light in front of an intersection within the simulation is set higher than the
number of vehicles that can pass this traffic light once it turns green. When the traffic
light turns green, the time each agent requires to move into the intersection after the
preceding agent moved into it is taken. This time is the time requirement tB and, after
3 − 4 s of a green traffic light, it averages out to around tB = 2.23 ± 0.04 s. This is in
accordance with the empirical data.

Afterward, an intersection was modeled in that the traffic lights that control left-
turning traffic have green at the same time as the crossing traffic flow. Because turning
agents decelerate before they turn, the time requirement is already higher than for
traffic that does not turn, which means that the lane capacity is lower. Furthermore,
this time requirement increases strongly in correlation with the crossing traffic flow.
This means that in order to minimize traffic jams and travel times in urban traffic, one
not only has to consider the traffic flow from one point to another but also all other
traffic flows within the network.

4.5.3.2 Inner-City Traffic Optimization
In [709], inner-city traffic was analyzed and simulated with the help of empirical data
from Düsseldorf’s inner-city. Based on the analyses of the traffic flow, different routing
methods were used to guide the traffic through the application of real-time data. The
analyses showed that the traffic capacity of roads inside the city is not enough to cover
demand at all times. However, a routing method that aims to make maximal use of the
road capacity rather than route vehicles depending on their travel time would improve
the traffic flow significantly and could reduce the average travel time by up to 23%. The
downside of optimizing the traffic depending on the network capacity rather than the
travel times is that if the traffic flow is below the road capacity, vehicles will take roads
with longer travel times than necessary, which increases fuel consumption and travel
times unnecessarily. Due to these findings, a new routing method was developed that
considers both the road capacity and the travel time of each agent individually. As one
can see in Figure 4.35, the new routing method (green) recreates shorter travel times
than the network optimization method (red) at low traffic volumes while also reducing
the travel times over routing methods where each agent uses the route with the shortest
travel time (blue and purple) at high travel volumes.

After it was shown that a more efficient routing method would decrease the av-
erage travel time and make more use of the given road capacity, we tested how the
road capacity itself could be dynamically optimized. To this end, one of the busiest
intersections leading into and out of the inner city was identified. This intersection
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Fig. 4.35: Travel times for different traffic assignment methods. The lower lines represent the aver-
age travel time taken over 10 minutes while the upper line represents the 95% confident interval
upper bound.

connects the city ring with one of the main roads leading through the city. One of the
lanes on the city ring, as well as one of these on the road leading through the city, were
changed to dynamic lanes. Traffic into and out of Düsseldorf is very unbalanced at
different times of the day due to the high number of commuters. The dynamic lanes
were able to reduce the commute time into the city in themorning while also decreasing
the travel time needed to leave the city in the afternoon by increasing the road capacity
where it was needed and decreasing it where it was not needed. Through this dynamic
change done to a single intersection, the average travel time could be reduced by over
10% without changing the way vehicles currently choose their routes. Note that these
travel-time reductions aren’t necessarily the optimal reductions. The goal is rather to
understand the network and find its bottlenecks. How to find the optimal routes for
each vehicle to reduce the global average travel time is analyzed in Section 4.1.4. There,
a new method that applies a reinforcement learning algorithm is simulated, and the
results are compared against others.

4.5.4 Automated Vehicular Traffic Flow

Even though dynamic routing and dynamic shifting of the road capacity can reduce the
average travel time, this is not a permanent fix for the increasing number of traffic jams
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since the number of vehicles is expected to continue increasing in the near future. By
contrast, automated vehicles in an 100%automated trafficare expected to increase road
capacity, reduce travel times, fuel consumption, and accidents significantly. However, it
is not clear yet how automated vehicles will be introduced into the traffic. Their impact
on the traffic dynamics in heterogeneous traffic, when they mix with human-driven
vehicles, has been widely discussed. Traffic will be heterogeneous for multiple decades
due to an average lifespan of a vehicle of around ten years [42].

In order to predict heterogeneous traffic behavior, a new cellular automaton model
was introduced in [708]. One of the big challenges of cellular automaton automated
vehicle traffic is that Automated Vehicles (AVs) and Communicating Automated Vehicles
(CAVs) have a reduced reaction time compared with human-driven vehicles (HVs).
For CAVs, this reaction time could go as low as the time it takes to communicate,
which is currently around 0.1 s but could go even lower with 5G, which is expected to
become an important method for future connected and automated vehicles. Currently,
communication does not always take a fixed time length but instead varies depending
on the limited available radio spectrum. If the full spectrum is used, communication
can take a lot longer than 0.1 s, depending on themeans of communication. An in-depth
analysis of the problems of communication and how it is realized is given in Section 5.2.
For the remainder of this section, we will assume a stable communication with a 0.1 s
communication time. Therefore, the first step toward simulating AVs or CAVs with
cellular automaton models was to reduce the time-step length of the model to 0.1 s per
time step.

4.5.4.1 Reduced Time-Step Length
The cellular automaton model introduced in [708] is based upon the Pottmeier et al.
[508] accident-free version of the Lee model [379]. Human-driven vehicle agents in
this model can judge their situation optimistically or pessimistically. If they judge it
optimistically, they do not expect their leading vehicle to decelerate strongly (only
dawdle). In this case, they can follow the leading vehicle with less than the minimum
safety distance, something that is often found in empirical data. If they judge their
situation pessimistically, they expect the leading vehicle to decelerate at any moment.
They do not follow with the minimum safety distance but even apply an additional
safety distance, depending on their velocity.

The newly introduced model reproduces this behavior while also having a 0.1 s
long time step and keeping an average reaction time of 1 s for the HVs. For that, multiple
changes were made to the calculation of the safe velocity, dawdling, and the judgment
of the situation. However, Figure 4.36 shows that the resulting 0.1 s long time-step
model presented in [708] is still able to reproduce realistic human-driven vehicle traffic
comparable with themodel presented by Lee et al. [379] and themodified version of that
by Pottmeier et al., which are both known to reproduce empirical traffic well [508]. As
one can see, the main difference between the three models is at a density of 20−45 Veh
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Fig. 4.36: Fundamental diagram for the three different human-driven vehicle cellular automaton
model.

in the so-called synchronized traffic phase [317]. Pottmeier et al.’s modification of the
Lee model only differs from the Lee model in the calculation of the judgment of the
situation. Agents in this model are less likely to be optimistic, which prevents accidents
but also increases the average vehicle following time and so reduces the traffic flow.
The reduced time-step length also uses this curbed optimism due to which the traffic
flow is initially below that of the Lee model. However, due to changes to the dawdling,
the velocity distribution is more uniform in the 0.1 s time-step length model, which
strengthens the synchronization and increases the traffic flow towards the end of this
traffic phase.

Overall the differences between the three models are smaller than the fluctuations
observed in empirical traffic, and they all reproduce realistic traffic flow.

4.5.4.2 Heterogeneous Automated Vehicle Traffic
AV and CAV agents have multiple differences compared with HV agents. Their three
most important differences are reaction time, dawdle, and behavior calculation. An AV
has a reaction time of 0.5 s and a (CAV) one of at least 0.1 s compared with the 1 s of HVs.
Neither CAVs nor AVs dawdle at all, while HVs dawdle with a probability of up to 37%
[379]. Lastly, CAVs and AVs do not judge their situation optimistically or pessimistically,
but instead, they always follow the leading vehicle with at least the minimum safety
distance. If the leading vehicle is human-driven, then they follow with more than the
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minimum safety distance to be able to react to unpredictable human behavior without
creating strong deceleration waves.

These differences between AVs, CAVs, and HVs were defined and included in the
model in [708] before heterogeneous traffic flow was simulated. The simulation results
are shown in Figure 4.37, together with the theoretically predicated capacity increase
[215] for heterogeneous traffic. One can see that automated vehicular traffic is expected
to increase the traffic capacity compared with homogeneous human-driven. The effect
is even stronger for communicating automated vehicles. A reduced reaction timemeans
that the minimum safety distance (and so the average vehicle following time) is lower,
which allows higher traffic flow at similar densities. Furthermore, the reduced reaction
time also means that these automated agents overreact less to human dawdling, which
reduces deceleration waves. This effect is strengthened because they do not apply
optimistic or pessimistic behavior states. If an HV agent changes its behavior from
optimistic to pessimistic, it needs a higher distance to its leading vehicle even if the
velocities would not change. This means that the agent has to decelerate more than
AVs or CAVs that only have to decelerate as much as the leading vehicle to keep up the
same distance.
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Fig. 4.37: Road capacity increase over homogeneous human-driven vehicular traffic depends on the
percentage of automated or communicating automated vehicles.

However, while these results show an improved road capacity in every heterogeneous
traffic situation compared with purely human-driven traffic, the model was also able
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to reproduce an increased rear-end-collision risk due to human-robot interactions.
Human drivers tend to drive with less than the minimum safety distance if they judge
the traffic situation optimistically anddonot expect to have to deceleratewithin the next
couple of seconds. Before, when they followed another HV agent or even an AV agent,
the remaining safety distance the agent used was just enough to prevent accidents if
the traffic situation suddenly changed. Now, however, because the CAVs are able to
react with only one-tenth of the time the average human needs, the velocity difference
between a decelerating CAV and the following HV is so much larger than before that
the following HV is not able to prevent an accident once the agent has reacted.

This shows that the different behaviors of HVs and CAVs have the potential to
increase the rear accident risk. However, the results shown in Figure 4.37 are simulated
after this accident risk was prevented through a change in the behavior of CAVs. If an
HV agent n follows a CAV agent n + 1 with less than the minimum safety distance,
then the CAV agent increases its distance to its leading agent n + 2. This way, if agent
n + 2 decelerates, then agent n + 1 can decelerate after driving this additional distance,
which gives agent n the time to react to the brake lights of agent n + 2, thus preventing
accidents.

4.5.4.3 Conclusion
In this section,wehighlighted different analyses of vehicle traffic scenarios onhighways,
in urban areas, and among heterogeneous traffic where automated and conventional
vehicles are mixed. The main goal of those analyses is to understand and predict traffic
better. Furthermore, the already existing cellular automaton vehicle model introduced
by Lee et al. [379] was modified for multiple occasions.

We were able to show that traffic jams already form at very low densities and that
the increase in their duration leads to a transition of free-flowing to jammed traffic.
While a critical density from that on free flow could transition to jammed traffic flow,
it was also shown in other works that this critical density is not fixed and can vary.
On highways, the local weather in the form of rain (measured by water film thickness)
was identified as an important influence on traffic flow, while urban traffic is mostly
dominated by traffic lights. Both problems were analyzed through the use of real-life
data as well as simulations of a modified Lee model.

Through the results of those analyses, the accuracy of traffic forecasting could be
improved as long as enough real-time data was given. Unfortunately, the reliability of
empirical detectors is often not fully guaranteed, and detectors can malfunction or not
communicate data. For such cases, we have introduced a new method to fill missing
data gaps that uses less historical data and is more accurate. Lastly, we modified the
Lee model to predict the impact automated and communicating automated vehicles
will have in future traffic when mixing with conventional vehicles.
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4.6 Embedded Crowdsensing for Pavement Monitoring and its
Incentive Mechanisms

Maximillian Machado
Ran Ran

Liang Cheng

Abstract: Due to its pervasiveness and convenience, crowdsensing is regarded as an
effective method to collect specific data. This section surveys projects that take advan-
tage of embedded crowdsensing to collect pavement condition data and describe how
crowdsensing platforms conduct road damage detection using deep neural networks
with images captured with smartphones. Before such discussion, we explore how to
motivate users to participate in low platform-cost crowdsensing tasks. Our research
models the pavement crowdsensing problem and designs new incentive mechanisms
based on a platform-driven greedy algorithm. Through extensive simulations, the per-
formance of the incentivemechanisms is evaluated and compared in different scenarios
in terms of the platform cost and the overall task completion time. The best of them can
reduce the total completion time by half compared with the reverse auction incentive
mechanism. We conclude this contribution with future work discussions.

4.6.1 Introduction

As road infrastructure increases in size and complexity, innovative solutions must be
developed to cope with road degradation. With the current methods used to collect
road condition information, covering 4.18 million miles of road in the U.S [555] is a
difficult undertaking. One viable solution is to create a crowdsensing platform where
smartphone users collect road pavement data. In this case, users could automatically
detect and report poor road conditions using embedded cameras, accelerometers, and
4G/5G networks. However, such a network would require an active user base and a
means of maintaining crowdsensing participation. Thus, crowdsensing schemes must
design an incentive structure for continuous user activity. A crowdsensing platform
utilizes an incentive mechanism to motivate user participation, produce diverse data
pools, and generate quality information.

Later in this section, we will formally express the incentive mechanisms as one
of the key components of crowdsensing platforms. The mechanisms designed in this
section are evaluated through experimental procedure, and vary based on the reward
distribution assigned to sensing tasks. Favorable mechanisms are those that exhibit
both low platform cost and total operation timewhen completing sensing tasks. Note,
these criteria are not the only metrics for measuring incentive mechanism efficacy.
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However, platform cost and total operation timemetrics are sufficient for providing a
solution framework to the purposed crowdsensing problem.

Our crowdsensing platform is parameterized with nine unique incentive mecha-
nisms, and aims to collect pavement condition data for varying percentages of a fixed
area with economic feasibility in mind. All mechanisms are based on a platform-driven
greedy algorithm that motivates users to select sensing tasks that can provide the high-
est net profit margin for the participant. Eight of the nine incentive mechanisms are
uniquely defined in this section while an additional incentive mechanism is motivated
from recent related work in crowdsensing literature. Our results provide guidance in
selecting the best incentive mechanism in different settings of pavement crowdsensing.

Here are the key contributions of the section:
– The incentive mechanisms we design can effectively avoid the cost explosion prob-

lem as users choose their sensing tasks before starting to work on them. Thus,
sensing tasks can only be committed to by one participant at a time. Cases where
a sensing task should be reexamined–possibility due to poor readings–can be
addressed by modeling repeated sensing tasks.

– Our mechanisms enables users to select sensing tasks that offer the highest net
profit margin based on a greedy algorithm.

– The total operation time of our approach is reduced compared with that of the
task-reverse-auction incentive mechanism. The results highlight this claim and
provide solutions for crowdsensing given a target area within a limited budget.

The rest of this discussion is organized as follows: survey the relatedwork, introduce the
research problem and its model, present our incentive mechanism solutions, construct
simulations for evaluating the incentive mechanisms, discuss the evaluation results,
consider augmented machine learning techniques, and conclude with final statements.

4.6.2 Incentive Mechanisms

4.6.2.1 Existing Monetary Incentive Mechanisms
Zhang [763] and Jaimes [299] both assort incentive mechanisms by the types of in-
centives. In Jaimes [299], monetary and non-monetary incentives are compared. Non-
monetary mechanisms [158, 166] rely on the continued participation of users due to
intrinsic motivations. Monetary mechanisms [15, 347, 356, 380, 381, 735, 743, 762, 766]
rely on the direct backing of fiat money or indirect backing of fiat money through alter-
native currencies. According to a survey paper [763], monetary incentives will be more
likely to motivate users to complete the sensing tasks than non-monetary incentives.
Therefore, a monetary mechanism is more fitting for crowdsensing and will be consid-
ered in our discussion. However, picking the correct monetary incentive mechanism
poses additional challenges.



4.6 Embedded Crowdsensing for Pavement Monitoring and its Incentive Mechanisms | 299

When deciding onwhichmonetarymechanism to use, onemust define the optimization
criteria that best suits the crowdsensing scheme. Examples of such criteria include
economic feasibility, area coverage, data quality, fairness, and time duration. Produc-
ing a platform that optimizes one or more of these categories is non-trivial because
the typical problem framework of a crowdsensing scheme comes down to exponential
time complexity problems or typical game theoretical model challenges. In the case of
economic feasibility, a platform must be designed carefully in order not to allow users
too much control over the price of their service. This is known as the cost explosion
problem, and is one of many challenges that must be addressed when considering ap-
propriate monetary mechanisms. The following three monetary incentive mechanisms
are well studied solutions to various crowdsensing schemes.
– The task-reverse-auction incentive mechanisms [738, 762, 766] allows for a set of

users to bid on the set of tasks posted by the platform. Each bid represents a promise
to finish a task provided that the platform will pay the user the bid value. Naturally,
the user who bids the lowest price wins and gets the opportunity to perform the
sensing task.

– In the case of the data-reverse-auction incentive mechanisms [356, 381], a set of
users auction their sensing data for the posted set of tasks and their prices per
already finished tasks. Then, the platform selects the data that satisfies its criteria
and pays the users their bid price.

– The platform-centric model [743] treats the crowdsensing problem as a Stackelberg
game. The reward of the task is changed until the platform and users reach a Nash
equilibrium.

4.6.2.2 Examination of Three Typical Incentive Mechanisms
Most of the existing incentive mechanisms fall under game theoretical models. In this
subsection, we examine the three aforementioned mechanisms.

The main problem of the task-reverse-auction approach [738, 762, 766] is that,
because of untruthful bids, the auction style does not always select the nearest user
to complete the sensing tasks [766]. In this situation, the user who is far away from a
sensing task can win the auction. Further distances result in a longer travel time for
users. Thus, the task-reverse-auction incentivemechanisms needmore time to complete
all the sensing tasks than our incentive mechanisms.

For data-reverse-auction incentive mechanisms [356, 381], while multiple users
collect the data for one sensing task, only one user’s data can be accepted by the
platform. In other words, other users’ data is wasted. As a result, this type of incentive
mechanisms increases costs for car fuel, personal free time, etc. For our incentive
mechanisms, users can select the sensing task before they go to collect the data. Thus,
the cost explosion problem can be avoided.

The platform-centric model [743] assumes that the platform has no upper bound
on budget budget. Therefore, it can find an optimal solution to giving the platform the
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highest-quality data available. In practice, the platform usually has a limited budget
andmay not be able to obtain the game theory equilibrium reward. Our incentivemecha-
nisms provide heuristics to obtain data while working under tighter budget constraints,
and can be considered more consistent with an online crowdsensing scheme.

4.6.3 Incentive Mechanism Research Problem and Its Model

For our research problem, the platform needs to motivate the users of the platform to
collect the road pavement data constraint to a budget and target area. In this case, our
research objective is to design an appropriate incentive mechanism to help the platform
achieve an area coverage target with a low cost and total operation time. Based on
the comparison results of incentive mechanisms, the platform can choose the best
incentive mechanism with the lowest budget for different area coverage targets.

Our model of the research problem contains three entities: the environment, the
sensing task, and the user. Each entity can be described by its behavior and/or its
relationship with other entities:
– The environment entity based on the Manhattan model; it is a grid of cells without

loss of generality for incentive mechanism studies. The grid has a uniform cost
distribution for traveling across adjacent cells, and no missing cells within. The
environment represents the types of roads that usersmay encounter and the varying
costs of traveling with different pavement conditions. Lastly, user entities can
transfer their position only to one orthogonal cell per unit of time; users cannot
move diagonally.

– The sensing task entity contains information on the location of interest and the
monetary incentive associated with user participation. The sensing tasks specify
roads where pavement sensing is needed.

– The user entity represents users participating in the crowdsensing scheme. As users
continue to collect and report data for rewards, they accumulate monetary rewards
and endure operation costs.

4.6.4 Incentive Mechanism Solutions

Modularity and scalability are critical features needed in designing a crowdsensing
framework for deploying and testing incentive mechanisms. It would be difficult to
swap incentive mechanisms and evaluate them without these features. Our crowdsens-
ing platform and incentive mechanism designs are guided by the evaluation metrics
described in this section.
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4.6.4.1 Notations
The symbols we use in this report are shown in Table 4.6. Two important variables
in our model are sj and ui. They represent identification numbers of the sensing
tasks and users. The tasks sj and the users ui have attributes < ui , Rij , xj , yj > and
< sj , ai , Cij , xi , yi >, respectively. For users, if sj is 0 or -1, then the user is currently
not participating because the user has not selected a sensing task or has dropped out.
For sensing tasks, if ui is 0 then the sensing task has not been assigned to a user. In
addition, if a sensing task has a reward equal to 0, then its reward has been claimed.

Tab. 4.6: Common symbols.

Symbols Meanings

ai Accumulated reward of user ui
Avgj Average distance from task sj to all users
B Budget for the platform
BR Base reward
b The side length of the grid
Cij The travel cost for ui to complete sj
CR The reward of the task that offers MP
dj,uc Distance from sj to uc
dj,tc Distance from sj to tc
IM Incentive mechanism
ki The ranking number for ui
MP Maximum profit for user ui
NPM Net profit margin
P Area coverage percentage
Pij Profit for ui of sensing task sj
PC The platform cost
Rij Reward of the sensing task sj for user ui

(S) sj (Set of) Sensing task/ID
Sa The set of available tasks
SID The index of task selected by user ui
sr The percentage of trials succeed
T Threshold for net profit margin
tc The center of locations of sensing tasks
tf Total operation time

(U) ui (Set of) User/ID
uc The center of locations of users
xi x-coordinate
yi y-coordinate
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4.6.4.2 Evaluation Metrics
The purpose of the evaluation metrics is to differentiate the incentive mechanisms
and to guide the design of the crowdsensing solutions. The simulations for incentive
mechanism evaluations consist of an extensive number of trials. In each trial, we
initialize the tasks and users at the beginning and the simulation runs until all tasks
are completed or all users drop out. The details of the evaluation metrics are described
as follows:
– The total operation time tf represents the duration of a trial. In one trial, a timer

starts from time 0 and ends at the time tf when all sensing tasks are completed or
all users drop out. While two incentive mechanismsmay have an equal success rate
sr, one incentive mechanism might have less total operation time tf . This implies
that users have been incentivized to select and perform tasks efficiently.

– The platform cost in Equation 4.12 is the amount of money that the platform pays
the users through sensing task rewards. The surplus is the portion of the budget
that is not used by the end of a trial. A lower platform cost reflects the ability of
incentive mechanisms to reduce the cost of sensing task rewards.

PC = B − surplus. (4.12)

4.6.4.3 Platform-Driven Greedy Algorithm
The platform-driven greedy algorithm that we use to design our incentive mechanisms
is shown in Algorithm 4. The idea of this algorithm is to select an available task that
gives the maximum profit to the user. Thus, this platform-driven greedy algorithm
computes the gain of task sj to user ui by Equation 4.13.

Pij = Rij − Cij (4.13)

in which Rij is determined by the incentive mechanisms. We will describe more details
of Rij in the following subsection. After this algorithm finds out the task si which can
provide the maximum profit for user ui, the user ui needs to check if the net profit
margin of the task si is greater than the threshold T. If positive, the user ui selects the
task; otherwise, the user ui drops out.

4.6.5 Incentive Mechanisms

Wewill cover nine unique incentive mechanisms, each with unique characteristics. The
task-reverse-auction (TRA) incentive mechanism has been discussed in the literature
[738, 762, 766]. It is known that the task-reverse-auction incentive mechanism cannot
guarantee that all tasks are completed within a short total operation time in untruthful
bid scenarios [766]. Our incentive mechanism design has a goal of reducing the total
operation time. Thus, we will compare their total operation times in Section VI. The
other eight incentive mechanisms are described as follows.
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Algorithm 4: Platform-driven greedy algorithm
Input: ui, Sa, T where ui =< sj , ai , Cij , xi , yi >
Output: Updated ui .sj

1 if Sa == ∅ then
2 ui .sj = −1; // user ui drops out as no task is available
3 return;
4 end
5 MP = −∞, CR = −∞;
6 for sj in Sa do
7 Pij = Rij − Cij;
8 if Pij ≥ MP then
9 MP = Pij;
10 CR = Rij;
11 s = sj;
12 end
13 end
14 if ui .ai == 0 then
15 NPM = 100 × MP+CR

CR ;
16 else
17 NPM = 100 × MP+ui .ai

ui .ai ;
18 end
19 if NPM < T then
20 ui .sj = −1 // ui drops out as no task gives ample profit;
21 return;
22 end
23 ui .ai = ui .ai + CR;
24 ui .sj = s;
25 return;
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Static Uniform (SU) Incentive Mechanism In the static uniform incentive mecha-
nism [524], the incentives of sensing tasks are fixed values that are uniformly distributed
and have the value Rij calculated by Equation 4.14. In this case, Rij is set to the base
reward BR.

Rij =
B
|S| = BR (4.14)

Dynamic Relative (DR) Incentive Mechanism The incentives change their values
Rij based on the distance from currently unavailable users and the user ui to the sensing
task sj. This incentive mechanism ranks the currently unavailable users and user ui by
their distance to the sensing task sj in an increasing order. Then, the value of incentive
for the sensing task sj can be calculated by Equation 4.15.

Rij =

⎧
⎨
⎩
BR ki = 1
BR(1 − 1

2
ki
|U| ) ki ≥ 2

(4.15)

Dynamic/Static User-Centric (DUC/SUC) Incentive Mechanisms First, the cen-
ter of user locations is calculated by Equation 4.16. Then we compute the distance
ds,uc from the task s to the user center using Equation 4.17. The value Rij is inversely
proportional to the distance as shown in Equation 4.18.
– Static case: rewards of sensing tasks are computed only once at the beginning of

each trial.
– Dynamic case: like the static case, but the calculation repeats whenever a user is

about to select a sensing task.

(xuc , yuc) = (
∑︀

i∈U xi
|U| ,

∑︀
i∈U yi
|U| ) (4.16)

ds,uc = |xs − xuc| + |ys − yuc| (4.17)

Rij = BR(1 −
1
2
ds,uc
b * 2 ) (4.18)

Dynamic/Static Task-Centric (DTC/STC) Incentive Mechanisms This mechanism
first computes the center of the locations of sensing tasks, i.e. tc, by Equation 4.19. It
then calculates the distance ds,tc from the sensing task s to the sensing task center
by Equation 4.20. Finally it derives the value Rij by Equation 4.21, which is inversely
proportional to the distance.
– Static case: rewards of sensing tasks are computed only once at the beginning of

each trial.
– Dynamic case: like the static case, but the calculation repeats whenever a user is

about to select a sensing task.
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(xtc , ytc) = (
∑︀

s∈S xs
|S| ,

∑︀
s∈S ys
|S| ) (4.19)

ds,tc = |xs − xtc| + |ys − ytc| (4.20)

Rij = BR(1 −
1
2
ds,tc
b * 2) (4.21)

Dynamic/Static Pit (DPIT/SPIT) Incentive Mechanisms In this pit-based incentive
mechanism, we use all the users’ coordinates to calculate an average distance to the
sensing task s by Equation 4.22. Then, we compute the incentive Rij of the sensing task
s by Equation 4.23.
– Static case: rewards of sensing tasks are computed only once at the beginning of

each trial.
– Dynamic case: we need to recalculate the incentives when a user is about to select

a sensing task.

avgs =
∑︀

i(|xs − xi| + |ys − yi|)
|U| (4.22)

Rij =
BR
2 (1 + avgsb * 2) (4.23)

4.6.6 Incentive Mechanism Simulation

This section describes the parameters and the processes that have been used in the
simulations for the performance study of incentive mechanisms.

4.6.6.1 Parameters
The parameter tuple for each trial is < B, P, IM >. After simulations, the evaluation
metric tuple < tf , PC > will be averaged across the total number of simulation trials.
In our simulation, the unit of time and money are time unit and fiat unit. Here is the
description of the parameters of the experiments:
– Budget B represents the quantity of money that allows the platform to use in

a trial. For this experiment, 100 data points were collected in the interval B ∈
[100.00, 1090.00] with 10.00 spacing between each data point.

– Area coverage percentage P represents the percentage of the area that requires
sensing data. As with the budget, 100 trials were conducted such that P ∈
[20.0%, 79.4%] with 0.6% spacing between each data point. This interval repre-
sents a wide range of possible target percentages for pavement crowdsensing. Note
that we round down the area coverage percentage when calculating the number of
tasks.

– The final parameter is the incentive mechanism IM used in the trial. The different
IM calculate rewards of tasks differently.
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4.6.6.2 Simulation Execution
Given < B, P, IM >, the construction phase initializes the numbers of cells, users, and
sensing tasks in the following order:
– For each cell, any references to users or sensing tasks are cleared.
– For all users, sj, ai, Cij, xi, and yi are initialized. sj is set to 0. Each user would be

placed in a cell randomly without overlapping.
– For all sensing tasks, ui, Rij, xj, and yj are initialized. ui is set to 0. Each sensing

task will be randomly placed in a cell with no overlap between other sensing tasks.

In the execution phase, available users start their turns by selecting and committing to
a sensing task based on Algorithm 4. Then, the user will update its sj. In turn, the user
information associated with the sensing task sj will be updated to reflect that the user
ui now performs task sj. If no suitable sensing task is found, then the user drops out of
the trial for all future turns. Unavailable users are the ones who have not dropped out
and commit their turns by moving towards their sensing tasks. If the user lands on the
sensing task, then ai increases by Rij. If the user is not on the sensing task, then the
user must wait another turn to move closer. In both cases, Cij, xi, and yi are updated to
reflect the current user location.

4.6.7 Incentive Mechanism Evaluation Results

Incentive mechanisms are evaluated and compared in three scenarios corresponding
to low, medium, and high area coverage percentages for pavement crowdsensing with
different numbers of users. The platform cost is used to order the incentive mechanisms
based on their performance data, as shown in the following figures. The minimal
budgets shown in the figures are the lowest budgets that can realize a 100% success
rate for the targeted area coverage percentage. It means that any budgets higher than
this value allow the platform to achieve a 100% success rate for the targeted area
coverage.

4.6.7.1 Platform Cost Comparison
In this section, we discuss the comparison of incentive mechanisms in terms of the
platform cost.
– Given 25% area coverage, Figure 4.38 shows that the SU and DR incentive mecha-

nisms have the lowest platform costs when the platform has 3 users and 15 users,
respectively. Apart from this, the static and dynamic pit incentive mechanisms
consistently rank among the top three incentive mechanisms in all scenarios.

– Given 50% area coverage, Figure 4.39 shows that static and dynamic pit incentive
mechanisms still have the best performances of the platform cost in all scenar-
ios. Even though the DTC incentive mechanism achieves the lowest platform cost
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in 50% area coverage with 45 users, this observation does not conflict with the
previous statement.

– Given 75% area coverage, Figure 4.40 shows that SPIT and DPIT always have the
lowest platform cost regardless of how many users the platform has.

Fig. 4.38: Incentive mechanism comparison: 25% area coverage.

Based on the observations described above, we can conclude that SPIT and DPIT are
the two incentive mechanisms with the lowest platform cost.

4.6.7.2 Total Operation Time Comparison
In this subsection, we discuss the comparison of incentive mechanisms in terms of
the total operation time. From Figs. 4.38, 4.39, and 4.40, the total operation time of
the task-reverse-auction (TRA) incentive mechanism is nearly twice the total operation
times of ours. Additionally, the total operation time of the TRA incentive mechanism
becomes longer as the number of participatory users increases while the total operation
times of our incentive mechanisms would decrease in the same situation. This result
proves that our incentive mechanisms have much less total operation time than the
Task-Reverse-Auction (TRA) incentive mechanism.
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Fig. 4.39: Incentive mechanism comparison: 50% area coverage.

Fig. 4.40: Incentive mechanism comparison: 75% area coverage.
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4.6.8 Machine Learning Augmentation

Based on computer vision, crowdsensing and machine learning can be applied to
pavement distress monitoring. For example, we have used a state-of-the-art machine
learning model for detecting pavement damages based on images captured by the
Android-phone camera and classifying them into eight types with corresponding confi-
dence [738]. The types include (i) Liner crack, longitudinal, wheel mark part, (ii) Liner
crack, longitudinal, construction joint part, (iii) Liner crack, lateral, equal interval,
(iv) Liner crack, lateral, construction joint part, (v) Alligator crack, (vi) Rutting, bump,
pothole, separation, (vii) White line blur, and (viii) Crosswalk blur. We have chosen
this machine learning model because it “achieved recalls and precisions greater than
75% with an inference time of 1.5s on a smartphone.” [738]

Moreover, machine learning has been used for incentive mechanisms in embedded
crowdsensing applications. For example, neural network and clustering algorithm have
been applied for user grouping in [427] and the resulting incentive mechanisms can
reduce the social cost, overpayment ratio, and grouping time. In the following sections,
we discuss general considerations of machine learning augmentation, supervised
learning, and unsupervised learning for incentive mechanisms.

4.6.8.1 General Considerations
We have witnessed great strides in the development of machine learning and its ap-
plications in recent years. Work in the spaces of image classification, text generation,
language translation, and generative adversarial networks have produced results that
could only be described as magic to the untrained eyes. Furthermore, being able to
harness the full potential of these techniques, including subsequent derivatives, will
be the aim of research for the foreseeable future. Such tantalizing thoughts act as moti-
vation to incorporate different machine learning algorithms within the framework of
crowdsensing, and our discussion is no exception. The crowdsensing scheme can be
augmented using both supervised and unsupervised learning.
– Supervised learning focuses on mapping input data to target classes. Typically

the input data will be sampled from a dataset where particular data points must
be categorized. One common supervised learning task is image recognition. For
example, one may use a convolutional neural network that receives input data in
the form of road pictures and produces output data in a string distinguishing the
road condition [738].

– Unsupervised learning focuses on clustering datasets such that embedded classes
may be revealed. These class embeddings may reveal subsets of data and help
highlight underlying relationships introspectively. One common unsupervised
learning task is dimensionality reduction. In this case, we may consider a dataset
with copious amounts of features. Using a clustering algorithm, such as spectral
clustering, we may be able to reduce the principal features required to character-
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ize data points uniquely. In other words, we may only need a proper subset of a
dataset’s features to represent the grouping of a data point. These transformations
may lead to lossless decomposition of our data. Thus, we can reduce memory stress
for supervised learning tasks.

4.6.8.2 Supervised Learning for Predicted Budget
One apparent shortcoming between all covered works in this contribution is the pre-
dicted budget. Having incentive mechanisms work under a limited budget is only
reasonable if the budget has been methodically selected. In this case, a supervised
learning problem is clearly established. Either a classification of the simulation param-
eters or a forecast of user costs can be used to determine a predicted budget. In the first
case, the input data would include basic simulation parameters, such as the number
of users and percentage area coverage, and the output would be the predicted budget.
In the second case, the simulation would provide a seed state, including coordinates
of users and sensing tasks, as input and calculate the final board statistics in terms
of overall operation costs. The overall operation costs would be correlated with the
predicted budget. Previous simulations would act as the data needed to construct these
models in either case.

4.6.8.3 Unsupervised Learning for Incentive Mechanisms
Although the different incentive mechanisms studied in this contribution showed var-
ious levels of effectiveness in finishing the sensing tasks, a question of interest in
crowdsensing applications is how their performances might differ if the incentives
follow a non-uniform or random distribution. One may model the environment of
the crowdsensing scheme as scattered normal distributions where sensing tasks may
cluster in different neighborhoods. This scenario is realistic in rural living where com-
munities may be sparse apart but dense around some centroid. The covered incentive
mechanisms require a new component to scale incentives across clustered communities
effectively. A clustering algorithm could locate the centroid of sensing task clusters and
calculate rewards relative to these neighborhoods for the unsupervised learning task.
In this case, the incentive mechanisms could scale to any size of environment given
sufficient resources.

4.6.9 Conclusion and Future Work

In this contribution, we proposed eight incentive mechanisms based on a platform-
driven greedy algorithm to help the crowdsensing platform motivate users to collect
pavement condition data. Since our incentive mechanisms allow users to select the
sensing tasks based on a platform-driven greedy algorithm before they start to collect
the data, they can avoid the cost explosion problem observed in the data-reverse-
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auction incentive mechanisms. From the simulation results, we find that SPIT and DPIT
are the incentive mechanisms that have the lowest platform cost. Compared with the
task-reverse-auction incentive mechanism, our incentive mechanisms reduce the total
operation time by half. Our future research includes large-scale simulations and real-
life experiments by extending our prototype pavement crowdsensing system. Lastly, we
discussed machine learning augmentations for embedded crowdsensing applications
and different incentive mechanisms.
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5.1 Capacity Analysis of IoT Networks in the Unlicensed Spectrum
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Abstract: The ongoing digitalization and the steadily increasing number of distributed
sensor devices and Internet-of-Things (IoT) systems implies a massive increase of sub-
scribers. At the same time, the amount of available frequency spectrum resources
remains static. In this respect, current 5G networks are already aiming for large-scale
connectivity with an ambitious node density of 1 000000 devices per square kilometer
in the area of massive Machine Type Communication (mMTC). A huge number of po-
tential technology solutions are available, but a comprehensive networking solution
based on one technology seems unlikely. Among typical cellular IoT technologies, these
challenging 5G mMTC requirements are also addressed by a growing number of unli-
censed technologies enabling a simple, cost-effective network operation independent
of licensed operators.

In this context, the potentials of Low-Power Wide Area Networks (LPWAN) technolo-
gies, as an additional technology option in unlicensed frequency bands are analyzed.
Specifically, this work aims to analyze the suitability of LoRaWAN to contribute to given
5G requirements for specific mMTC applications in large-scale deployments. The per-
formance evaluation illustrates that LoRaWAN is attractive due to high communication
ranges up to multiple kilometers, enabling a high coverage even with a small number
of cells. The evaluation also finds that the technology has a high potential to contribute
to 5G mMTC application areas, especially for non-time-critical sensor applications.

To further increase the reliability of LPWAN systems, especially for critical services,
different approaches to increase spectral efficiency are discussed. In addition to purely
scheduling-based approaches, a data-driven analysis of the spectral power density
to predict and avoid technology-independent interferences is presented. This is used
to increase the robustness of LPWAN systems by centrally deriving communication
profiles that address and bypass the predicted interference characteristics.

Apart from intelligently scheduling data transmission, another way for increasing
efficiency is to reduce the amount of data that has to be transferred in the first place.
Nowadays, initial generations of connected IoT devices and applications enabled by
Cellular-IoT (CIoT) and LPWAN technologies are deliberately kept simple and based on
equidistant, regular communication intervals. By contrast, we illustrate an Artificial

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
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Fig. 5.1: Achieving the 5G scalability targets for IoT environments

Intelligence (AI)-based model-predictive communication approach taking advantage of
knowledge about the underlying data of a sensor system. An AutoRegressive Integrated
MovingAverage (ARIMA)model is used in order to depict the behavior of an applications
sensor data, leaving only values deviating from the model to be transmitted.

5.1.1 Introduction

Wireless connectivity has becomeaubiquitous part of daily life.Whilewireless networks
were originally developed to connect people, cellular networks have evolved to enable
Machine-to-Machine (M2M) communication. In a wide variety of application areas,
such as smart cities, energy systems, or production and logistics, devices are linked
to each other to enable fully autonomous operation without human intervention. In
this context, the 5G specification defines an mMTC requirement profile that aims for
an ambitious scalability target of 1 million subscribers per square kilometer, while
maintaining amaximum latency of 10 s (see Figure 5.1). At the same time this scalability
target is linked to a boundary condition, that considers a pre-defined Poisson arrival
process traffic pattern for non-full buffer systems with a payload of 32 B.

While Section 4.3 presents the performance evaluation of the NB-IoT technology
as a current 3GPP solution to address 5G mMTC requirements, this contribution covers
the research challenge to identify complementary technologies operated in unlicensed
frequency bands to contribute to tight 5G mMTC requirement profiles. To this end, this
work first discusses potentials and limitations of the Long-Range Wide-Area Network
(LoRaWAN) technology, as a representative of LPWAN solutions, in order to subse-
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quently introduce optimizations for further performance enhancements of unlicensed
technology solutions with specific respect to mMTC applications.

5.1.2 Opportunities and Challenges of the Licensed and the Unlicensed Spectrum for
IoT Environments

First, this section introduces the necessary LoRaWAN fundamentals from which the
opportunities and challenges are derived. In addition, the impact of regulatory policies
on the performance of the LoRaWAN technology is discussed.

LoRaWAN is an LPWAN specification for wireless battery-powered systems in a
regional, national, or global range. It is based on the LoRa Modulation technique and
mainly operated in the Short-Range Device (SRD) band at around 868MHz in Europe
and 915MHz in the US. LoRaWAN enables a wide-range communication even in urban
scenarios and provides a very good deep indoor penetration [203],[304]. The definition
of the spreading factor (SF) permits the trade-off between efficient and very robust
communication, whereby the data rates vary from0.25 kbit/s (SF=12) to 5.5 kbit/s (SF=7).

Because LoRaWAN is operated in unlicensed frequency bands, the channel access
must comply with regulatory frequency band requirements that ensure that all par-
ticipants have equal access to frequency resources. For the underlying SRD band, the
European Commission in cooperation with ETSI allows mitigation techniques such
as Listen Before Talk (LBT), detect and avoid (DAA), and duty-cycle limitations [192],
whereby LoRaWAN relies on a fairly simple pure ALOHA channel access and imple-
ments the duty cycle limitations to meet regulatory ETSI requirements. Thus, peak
physical data rates are further reduced by a factor of more than 99% due to the regula-
tory impact of a given duty cycle of 1% and a MAC overhead with minor impact. The
resulting average throughput ranges from 1.5 to 48 bit/s (as shown in Figure 5.2).

Consequently, throughput limitations are mostly driven by the idle time (time
off) following the transmission time per packet (time-on-air), which is required to
meet duty cycle limits [446]. The LoRaWAN specification defines three mandatory
channels: 868.1MHz, 868.3MHz, and 868.5MHz, additional resources are optional (see
Figure 5.3). To reduce interference, channels are cycled in a pseudo-random approach.

As shown in Figure 5.3, the duty-cycle constraints apply to each SRD sub-band and
may vary between different sub-bands, i.e. a dedicated LoRaWAN downlink communi-
cation is deployed at 869.525MHz with a duty cycle of 10% and additional limiting to
data-rate class 0 (DR0).

5.1.3 Capacity Limits of LPWAN Technologies in Unlicensed Band Operation

The determination of capacity limits is based on a performance evaluation derived from
an analytical model [446] that has been enhanced fundamentally for the underlying
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work. The resulting analytical model enables demand-based derivation of key perfor-
mance parameters, such as data rate and coverage area. The main extension aims at
deriving latency bounds for different scalability scenarios and large-scale deployments,
enabling the simultaneous determination of service guarantees.

Because downlink communication between a LoRaWAN gateway and distributed
LoRaWAN nodes is not interfered with by uplink communication, performance limits
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can be easily determined by evaluating a maximum capacity of a single LoRaWAN
link. Considering the mandatory duty-cycle constraint (see Section 5.1.2), this results in
overall limited downlink performance margins. Based on the assumption of Class A
LoRaWAN nodes, Figure 5.4 depicts the average downlink throughput of a LoRaWAN
network. As illustrated, the LoRaWAN downlink for Class A devices is based on two
consecutive downlink receive windows. Following an uplink message, a Class A end
device opens a first receive window (RX1) typically one second later. The first receive
window is opened one second after termination and on the same frequency channel as
the previous uplink message. The second receive window (RX2) is typically opened 2 s
after uplink transmission and based on a dedicated downlink channel at 869.525MHz
with a mandatory duty cycle of 10% and a limitation to data rate class DR0. This
results in a low average downlink throughput of about 31.2 bit/s, which excludes a
large number of downlink-intensive and safety-critical applications, such as update or
upgrade functions.
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In the uplink communication direction, the pure ALOHA channel-access scheme is
implemented. In this context, the parallel uplink communications of different spreading
factors are orthogonal to each other, permitting each data rate class to bemodeled as an
independent ALOHA process. The maximum system throughput of each data rate class
is closely related to the number of devices and can be determined using the known
ALOHA model equation S = G · e−2G, whereby S is the normalized channel throughput
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and G the channel traffic [8]. The integration of the capture effect takes into account
that two parallel transmissions with an Received Signal Strength Indicator (RSSI) delta
greater than 6 dB for co-channel rejection [592] do not interfere with each other. In this
case, only one packet is dropped, and the packet wirh higher received power is assumed
to be decoded successfully, resulting in increased scalability. ALOHA equations can
be adapted to S = G·e−2G

2 · (1 + eG) [140]. In order to allow the derivation of guaranteed
performance in addition to maximum uplink system throughput or scalability, the
existing model is extended to incorporate the derivation of latency bounds, whereby
latency is defined as the sumof Time-on-Air (ToA) and forced time off (Toff ) by regulatory
duty-cycle restrictions. Consequently, every interfered transmission increases the time
onair ToA+Toff . Therefore, themean latency τDR canbedefinedbased on themaximum
packet collisions per transmission G

S as depicted in the following equation:

τDR =
G
S · (ToA + Toff ) − Toff

= (e2G − 1) · (ToA + Toff ) + ToA (5.1)

Equation 5.1 is enhanced to consider the 99%-quantile of defined 5G mMTC latency
requirements τ99%.

τ99% = log1−e−2G (0.01) · (ToA + Toff ) + ToA (5.2)

The derived model can be modified and configured depending on desired parameter
scenarios. Figure 5.5 illustrates the results for an exemplary configuration of a 32 B
payload, 3 channels, and the maximum duty cycle. Without considering the capture
effect, the maximum throughput of approximately 3.3 kbit/s can be achieved with a
fleet size of about 900 subscribers. This can be further increased by about 50% due to
the additional consideration of the capture effect, resulting in a maximum throughput
of about 4.7 kbit/s for a uniformly distributed number of subscribers of 1350. However,
taking into account the limitingdata-rate classDR0, this is simultaneously accompanied
by an increased average latency of 400 s, which corresponds to an increase of about
12.5%.

5.1.3.1 LoRaWAN Contribution to 5G
LoRaWAN technology is emerging as a very good solution in the unlicensed spectrum
band to support 5G mMTC targets. Although LoRaWAN does not support the required
164 dBwith a loss of 151 dB, it can cover the targeted area of one square kilometer, which
is defined for the 5G mMTC connection density target. At any rate, it has a very good
range and deep indoor availability even for urban areas [304]. Furthermore, Figure 5.6
illustrates the impact of various LoRaWAN parameter configurations on maximum
scalability in view of 5G mMTC connection density and latency requirements (see
Section 5.1.1). It can be shown that the 5G mMTC parameter set results in a significant
contribution of 10% for three 125 kHz frequency channels, which can be increased up
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to 25% when the 8 channels are considered to cover 5G mMTC targets of one million
devices per square kilometer. However, these results are obtained without considering
the 5G mMTC latency requirement of 10 s. If the latency requirement is taken into
account to ensure a certain quality of service, scalability is reduced by 25% for a 50%-
quantile or up to 70% under consideration of a 99%-quantile.

When deviating from the 5G mMTC traffic pattern and considering other payload
sizes, it can be seen that this factor has only a minor impact on scalability. By contrast,
the variation of the transmission interval has a fundamental effect. In the case of a
low transmission interval of only 12 hours, more than 50% can be met of the overall
connection density of one million devices per square kilometer without consideration
of a latency requirement (99%-quantile). By contrast, almost 20% can be met when
taking into account a latency requirement. So far, the results described have been
focused on the assessment of unacknowledged traffic in the uplink direction.WhenACK
packets in the downlink direction are included, the downlink indicates a significantly
constrained scalability of the LoRaWAN network. Even for a transmission interval of
12 hours, the scalability decreases to about 14 250 subscribers per square kilometer,
which corresponds to a reduction of 97% and is consistent with the limitations of the
LoRaWAN downlink. Overall, depending on the application scenario and configuration,
a very significant contribution of LoRaWAN technology to the 5G mMTC goals can be
deduced, though the application field should be limited to non-time-critical sensor
applications.
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5.1.4 Data-Driven Capacity Improvements

In this section, optimization methods are presented that further enhance the perfor-
mance of the previously discussed LPWAN technologies in unlicensed frequency bands.

5.1.4.1 Dynamic Spectrum Management to Improve Scalability of Time-Critical
Sensor Applications

Due to their simple and cost-effective technical viability, a steadily increasing number
of LPWAN are operated in unlicensed frequency bands. For each user, this leads to a
large number of possible interference effects caused by a wide variety of technologies,
each using different channel access methods. There is no central coordination as in
licensed mobile radio frequencies. Despite mandatory interference mitigation tech-
niques, quality of service in terms of availability, latency, etc. cannot be guaranteed
due to uncoordinated channel access in unlicensed frequency ranges. In order to tackle
these challenges, a data-driven spectrum management procedure is proposed (see
Figure 5.7). This approach relies on SDR -based spectrum sensing to gather information
on channel occupation, which is used to predict future spectral utilization.

The predicted activity profiles are used for spectrummanagement in order to intelli-
gently schedule future transmissions. Three scheduling approaches, namely Restricted
Access Window, Weighted Restricted Access Window, and Coordinated Restricted Ac-
cess Window, have been developed and evaluated. An overview of these approaches is
shown in Figure 5.8, a brief description of each approach is given below. For evaluation,
an externally defined Key Performance Indicator (KPI) is required, which is represented
by the expected latency in this work. As LoRaWAN is the technology of choice, an
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ALOHA channel access is used as the basis and a duty cycle has to be observed. The
expected latency is modelled as described in Section 5.1.3

The three optimization methods Restricted Access Window, Weighted Restricted
Access Window, and Coordinated Restricted Access Window are described below.

Restricted Access Window (RAW) The basic idea and the name are derived from
IEEE 802.11ah technology. The time ranges are first divided into no-go areas and random
access areas. In this case, the channel is accessed randomly in areas below the drawn-in
threshold and access is avoided in the no-go areas. Restricted Access Window is the
simplest developed method. This method is a coarse-grained method, which means
that the gateway does not determine the transmission time for each subscriber; rather,
the gateway only transmits the appropriate transmission time through beacons and
the subscribers randomly select a transmission time.

Weighted Restricted AccessWindow In this method, the Restricted Access Window
method is extended by a weighted access probability. This means the time ranges with
an activity level below the tolerance limit have a higher chance to be selected.
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Fig. 5.9: Comparison of the three scheduling approaches with regard to potential latency reduction.

In this work, a quadratic functions is used as weighting and the weighting is calculated
for each time point using Equation 5.3.

Wt = (ATolerance − At)2 (5.3)

This method is a coarse-grained method and the gateway transmits matching trans-
mission time points with their weights by beacons. The participants finally choose a
transmission time point by a weighted random.

Coordinated Restricted Access Window (CRAW) This procedure finds the optimal
transmission time for each participant by assigning the time with the minimum activity
to the first participant. Then the activity profiles are updated with the resulting activity
by first participants. This procedure is repeated for the other participants.
The cyclic steps of the procedure are as follows:
1. finding the minimum activity in profile and assigning this time to the participant;
2. updating the profile in view of the activity change at the assigned time point; and
3. repeating the procedures for the next participant.

Compared with the previous methods, CRAW is a fine-grained scheduling method.
This means that the gateway must communicate the transmission time to each sub-
scriber. Therefore, this method requires many resources. In CRAW, the influence of each
participant on the activity is taken into account.

Comparison of Scheduling Performance In this section, the three developed meth-
ods are evaluated using the presented scenarios. The predicted daily profiles from the
868MHz study are used as a basis. In Figure 5.9, the results are shown and the used
daily profiles are represented at the top.
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Fig. 5.10:Model-predictive communication in Internet of Things environments ©[2020] IEEE.
Reprinted, with permission, from [30].

It can be seen that the expected latency can be significantly reduced by using more
intelligent scheduling mechanisms, which avoids times with high channel activity.
Simply avoiding regions with a mean latency over a given threshold with the RAW
approach sets the baseline potential, which can be optimized using a weighting to
reduce the mean latency below 1 s in this study. Providing more intelligence for the
scheduling method with CRAW pushes all observed latencies below 1 s.

However, this approach generates an increased computational effort, which has to
be taken into account as a trade off.

5.1.4.2 Data-Driven Model-Predictive Communication
In this section, we propose a data-driven approach to reduce communication efforts
by leveraging knowledge about the underlying sensor data in IoT systems. In order to
keep devices simple, the data transmission of IoT devices typically follows a regular
pattern of equidistant time intervals. This leaves a high potential for optimizing the
efficiency of spectral resource usage. Therefore, this study proposes a model-predictive
communication framework that leverages knowledge about the underlying sensor
data and allows IoT devices to rate the value of observations in order to decrease
communication effort and free up spectral resources for other parties. This approach
potentially increases the number of devices considered in the scheduling of resources
in licensed frequency bands and reduces the likelihood of interference in unlicensed
bands. Figure 5.10 depicts the concept of this work.
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The underlying approach is not to transmit every measurement, only those that devi-
ate significantly from a predetermined model. Therefore, two time series forecasting
mechanisms are examined in this study to generate such a model of a temperature
sensor setup. Because these methods simply rely on past data, the use case may be
readily changed. This approach has been evaluated by using a dataset originating from
an environmental indoor sensor located in a residential area in Dortmund, Germany.
From the 1st of January 2019 until the 19th of November 2019, the system gathered
temperature, humidity, and CO2 concentration at a frequency of around 5 minutes. To
minimize model complexity, the dataset was resampled to 30-minute time steps in this
work. The raw data can be accessed via [29]. The forecasting algorithms used in this
work are an autoregression based approach and a neural network approach, which are
described in the following sections. Both models take advantage of a decomposition
approach, which is discussed more below.

Seasonal and Trend Decomposition Using LOESS (STL) In this work, the Seasonal
and Trend decomposition using LOESS (STL) method [540] is used to extract typical
properties of the underlying data, such as a daily profile for temperature data. The
algorithm consists of two loops: the inner loop uses LOcally wEighted Scatterplot
Smoothing (LOESS) [141] to extract the seasonal and trend components and the outer
loop is used to minimize the impact of outliers by computing robustness coefficients.
An example decomposition of a daily temperature profile from the dataset is shown in
Figure 5.11.
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Fig. 5.11: Decomposition of measured temperature data from 18th of August until 21st of August
using STL ©[2020] IEEE. Reprinted, with permission, from [30].
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The example shows strong daily seasonality and a local weather trend. Additionally,
a significant remainder is present that could not be related to either the trend or sea-
sonality component. The decomposition can be used to aid forecast algorithms by
subtracting the seasonal component before applying the prediction, and adding it back
to the resulting time series afterwards. As the seasonal component typically changes
slowly over time, it is possible to reduce the complexity of the analyzed time series in
order to decrease prediction errors.

AutoRegressive Integrated Moving Average (ARIMA) The ARIMA algorithm is a
state-of-the-art time series forecasting method and one of the most widely used. It
is composed of three components: the autoregressive part AR(p), entailing the past
values of the original series; the integrated part I(d), related to differencing in order to
make the time series stationary; and the moving average component MA(q) marking
the model errors. The parameter set (p,d,q) defines the order of each component and
therefore indicates the specific ARIMA model in use. In detail, p indicates the number
of considered past values, d is the differencing degree and q specified the considered
previous error terms. To simplify the application in this work, the forecast package for
the statistical programming language R is used. The language contains an implementa-
tion of the ARIMA algorithm, which allows automatic parameter set selection for every
model realization [294], where a unit test procedure checking for stationarity is used to
specify d, while p and q are found by minimizing Akaike’s Information Criterion (AIC) .
A prediction for the 21st of August 2019 using ARIMA(0,1,0) based on a training period
of three previous days together with the 95% and 80% prediction intervals as well as
the actual measurement as test data is depicted in Figure 5.12
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It is evident that a good match is achieved between the predicted and the measured
temperature, with most of the measured temperature values lying inside the 80%
prediction interval.

Long Short-TermMemory (LSTM) As a variant of Recurrent Neural Networks (RNN)
developed by Hochreiter et al. [277], LSTM networks have an improved ability to learn
long-term dependencies in a dataset, which makes them appropriate for time series
prediction tasks. The main structure of LSTM networks consists of concatenated cells
that are linked together by constant cell states and the input flow. An input gate is used
to regulate the influence of the cells input, while a forget gate filters previous cell states.

The implementation used in this work is based on the well-known keras python
framework with the Theano library as a backend. In order to keep the training duration
managable and avoid decreasing the model accuracy by deeper networks as stated in
[358], a single network layer is used. 50 LSTM cells were used within this layer, however
the influence of the number of cells was seen to be minor.

Figure 5.13 compares LSTM and ARIMA performance for an exemplary prediction
based on the data of the 21st of August 2019 with the three previous days as an input in
terms of required communication events with different tolerance ranges of 0.5 °C, 1 °C,
and 2 °C, respectively. The tolerance ranges depict the need for communication events,
as only deviations higher than the tolerance should be transmitted.
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Fig. 5.13: Forecast for one sensor using STL + ARIMA(0,1,0) and LSTM for the 21nd of August 2019
with tolerance ranges of ± 0.5 °C,± 1 °C and ± 2 °C. ARIMA shows a slightly higher potential in decreas-
ing communication effort for ± 0.5 °C tolerance. ©[2020] IEEE. Reprinted, with permission, from
[30].

ARIMA can achieve a potential reduction of communication events by 87% for this day
with a tolerance of 0.5 °C, where LSTM provides a lower potential of 58%. However,
for applications where a higher tolerance of 1 °C is sufficient, both algorithms provide
enough accuracy to save up to 100% of the communication effort.
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Statistical Performance Evaluation Both implemented approaches are statistically
evaluated using the Root Mean Square Error (RMSE) as a metric for the modeling errors
and for the potential reduction of communication events. To make both modeling
concepts comparable, a sliding window approach as depicted in Figure 5.14 is used for
validation. Each sliding set from the total dataset has a configurable number of input

ARIMA
Full Dataset

3 Days Training

… Step 1
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3 Days Input

1 Day Output 
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Validation possible
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…
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… 

Fig. 5.14:Walk forward validation with sliding window (constant training period length) in each
algorithm’s variant. ARIMA takes t days of training data and produces a one day forecast that is
compared to the test day, LSTM needs input/output pairs for training and is then tested on a held
back test set. ©[2020] IEEE. Reprinted, with permission, from [30].

days followed by one output day. An advantage of ARIMA is the ability to sufficiently
predict future data relying solely on a small data basis. LSTM, on the other hand, needs
a large portion of input/output pairs as training data in order to learn essential features
enabling the sensor data prediction. The impact of varying numbers of input days from
3 to 12 on the prediction of one forecast day has been addressed in this work. A 10-fold
cross-validation is used to further validate the forecast results, with a 90-10% split
between training and test data. The resulting modeling error of both approaches for
varying number of input days represented by the RMSE distribution is illustrated in
Figure 5.15.

It can be seen that the impact of the input period length is small, but both models
have a slightly lower error with smaller input periods. In general, LSTM provides a
doubled mean error of around 0.3 °C when compared with ARIMA, producing a mean
error of around 0.15 °C for all input period lengths. LSTM also shows a higher spread of
the observed errors, except from a small amount of outliers experienced with ARIMA
for longer input periods. The latter lead to the conclusion that data lying further in
the past is less relevant for predicting the temperature values of the following day,
increasing the amount of false forecasts observed. These results allow an estimation of
the tolerance ranges in which the evaluated models can be used. A tolerance range of ±
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0.5 °C was therefore chosen as the minimum tolerance for evaluating the potential of
the model-predictive approach. Two supplementary tolerance ranges of ± 1 °C and ±
2 °C were evaluated to show the dependence of performance on the chosen tolerance
for different applications. This analysis is carried out for the underlying temperature
sensor system and depicted in Figure 5.16.technische universität 
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A potential reduction of communication effort by more than 60% with a tolerance
of ± 0.5 °C can be observed with both models, with ARIMA reaching more than 80%
potential reduction. LSTM performance decreases with a larger input period, which
can be explained by a reduced number of input/output pairs available for training. As
expected from the error distribution in Figure 5.15, both models perform almost equally
well for higher tolerance ranges with more than a 90% reduction for ± 1 °C tolerance to
nearly no communication effort for ± 2 °C tolerance.

Finally, both modeling approaches have the potential to cut sensor systems’ com-
munication effort significantly. Due to its superior overall results and a much higher
efficiency in terms of input data needs and computational effort, the ARIMA algorithm
is the favored method.

5.1.4.3 Outlook and Future Work
Even requirement profiles of current 5G mMTC applications are in a state of constant
evolution. While classic network dimensioning is largely based on stochastic behavior
and correlated traffic volumes, the share of event-driven machine communication will
increase dramatically. The key challenge will be the realization of reliable critical alarm
communication in the face of unpredictable behavior. In this context, a requirement
migration towards mission-critical 6G MTC networks is inevitable [429]. To ensure that
a guaranteed quality of service can be achieved for application classes that can barely
be predicted with a reasonable amount of resources, the available resources must be
allocated dynamically and as a function of defined costs (frequency utilization, delay
times, energy consumption, . . . ). For this purpose, the definition of new service classes
is needed defining targeting latency, Block Error Rates (BLER), and its service character-
ization, and highlighting the need for future 6G systems to leverage application-domain
information about the predictability of resource requirements and conditions. The new
service classes are shown in Figure 5.17.
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5.2 Resource-Efficient Vehicle-to-Cloud Communications

Benjamin Sliwa

Abstract: Big vehicular data is anticipated to become the new fuel for catalyzing the
further development of connected and autonomous driving. Vehicles themselves will
act asmobile sensor nodes that actively sense their environment and gathermeaningful
data for novel crowdsensing-enabled services such as the distributed generation of
high-definition maps, traffic monitoring, and predictive maintenance. However, the
implied tremendous increase in massive Machine-Type Communication (mMTC) rep-
resents an enormous challenge for the coexistence of different resource-consuming
applications and entities within the limited radio spectrum. A promising approach for
achieving relief through a more resource-efficient usage of existing network resources
is the utilization of client-based intelligence. Novel communications paradigms such
as anticipatory mobile networking aim to improve decision processes within wireless
communication systems by explicitly taking context information into account. In the
context of vehicular crowdsensing, these methods exploit the delay-tolerant nature of
the targeted applications for scheduling the data transfer with respect to the expected
resource efficiency. If the current radio channel and network load conditions do not
allow a resource-efficient transmission, the data transfer process is postponed and the
acquired data is aggregated locally in favor of a better transmission opportunity in the
near future along the expected vehicular trajectory.

In the following, the different evolution phases of the novel Channel-aware Transmis-
sion (CAT) scheme are presented. These are characterized by a sequential introduction
of different machine learning methods. While the basis CAT approach applies a prob-
abilistic channel-access mechanism based on measurements of the Signal-to-Noise-
plus-Interference Ratio (SINR), Machine Learning CAT (ML-CAT) applies supervised
learning for predicting the currently achievable data rate using features from the net-
work context, the mobility context, and the application context domain.

This approach is then further extended by Reinforcement Learning CAT (RL-CAT)
through the autonomous detection and exploitation of favorable transmission op-
portunities. Finally, Blackspot-Aware Contextual Bandit (BC-CB) integrates a priori
knowledge about the geospatially-dependent uncertainties of the prediction model,
which is uncovered by unsupervised machine learning.

It is shown that machine learning-aided opportunistic data transfer is not only able
to increase the average data rate of the individual transmissions; it also achieves a
massive reduction of the occupied network resources and the power consumption of
the mobile device. The price to pay is an increase of the Age of Information (AoI) of
the sensor measurements. In addition to the presentation of the novel opportunistic
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data-transfer approaches, newmachine learning enabled methods for simulating these
anticipatory mobile networks are presented, discussed, and validated.

5.2.1 Introduction

According to a recent white paper [6] published by the 5G Automotive Association
(5GAA), predictive Quality of Service (QoS)—e.g. the prediction of the data rate along a
vehicular trajectory—is expected to become a key enablingmethod for future connected
and autonomous driving.

Although machine learning has already started to penetrate all areas of wireless
communications [714], the current 5G standardization efforts focus on implementing
intelligence on the network infrastructure side [1]. However, as discussed in initial
visionary works [17], it is anticipated that not only the trend of replacing mathematical
models with machine learning-based equivalents will continue, but also that pervasive
intelligencewill be a key driver for the further cellular network evolution. These develop-
ments are closely related to the arising anticipatory mobile networking paradigm [107,
630], which aims to improve decision processeswithinwireless communication systems
through explicit consideration of context knowledge and machine learning-based data
analysis.

Figure 5.18 shows a real world trace of the Signal-to-Interference-plus-Noise Ratio
(SINR) acquired along a vehicular trajectory. It can be seen that vehicular commu-
nication channels are characterized by short-term and large-term fluctuations. This
behavior is the result of a superposition of distance variations between sender and re-
ceiver, mobility-related factors, and obstacle-related signal variation due to shadowing,
reflection, and refraction.
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In order to guarantee a reliable data transfer, the mobile device reduces the achievable
transmission efficiency in favor of better data integrity during challenging radio channel
periods. As a result of the implied overhead, a large amount of network resources is
unavailable for transmitting the actual payload data.

5.2.2 Related Work

Opportunistic data transfer implements the idea of postponing the data transfer to
of delay-tolerant applications to situations where a higher resource efficiency can be
achieved due to better radio channel conditions. Acquired data is stored in a local
buffer until a favorable transmission opportunity is detected and the whole data buffer
is transferred.

Channel-Aware Transmission (CAT) [296, 298], which represents the foundation
for the further machine learning-based enhancements presented in this contribution,
utilizes Signal-to-Interference-plus-Noise Ratio (SINR) measurements for client-based
opportunistic data transmission based on the known significance of downlink qual-
ity indicators for assessing the uplink radio channel quality [297]. The probabilistic
medium access is performed as

p(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, ∆t ≤ ∆tmin(︁
SINR

SINRmax

)︁α
, ∆tmin < ∆t < ∆tmax

1, ∆t ≥ ∆tmax

(5.4)

whereas ∆t is the elapsed time since the last transmission has been performed, ∆tmin
is a minimum inter-packet gap in order to avoid overly frequent medium access, and
∆tmax is an application-specific deadline for the Age of Information (AoI) of the sensor
data packets. Through configuration of α, it can be defined howmuch the transmission
scheme prefers very high metric values within the transmission process.

5.2.3 Machine Learning-Enabled Opportunistic Vehicle-to-Cloud Communication

Although CAT has been demonstrated to achieve significant benefits in comparison
with conventional data transmission approaches, recent analyses [638] have shown that
physical layer indicators such as SINR have only a limited significance for estimating
the achievable data rate. Since the latter is inversely proportional to the transmission
duration, it is directly related to the resource occupation time. As a result, the maxi-
mization of the end-to-end data rate contributes to improving the intra-cell resource
efficiency. For the exploitation of this property, the novel data transfer schemes build
upon predictions of the achievable end-to-end data rate.

The methodological evolution of context-aware data transmission approaches is
summarized in Figure 5.19. The different evolution stages are characterized through
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communication.

a sequential introduction of solution approaches from different machine learning
disciplines:
Channel-Aware Transmission (CAT) [296, 298] uses a probabilistic medium-access

approach that takes SINR into account.
Machine Learning CAT (ML-CAT) [628, 629, 632] utilizes features from the network,

mobility, and application domains for predicting the currently achievable end-to-
end data rate, which is then used as the radio channel assessment metric.

Reinforcement Learning CAT (RL-CAT) [636] replaces the heuristic medium access
approach with a Q-learning mechanism to autonomously detect and exploit favor-
able transmission opportunities.

Black Spot-Aware Contextual Bandit (BC-CB) [622, 625] incorporates a priori knowl-
edge about the geospatially dependent uncertainties of the predictions model as a
measurement of trust into the latter.

In the following, the enabling methods and novel data-transmission schemes are
introduced. Additional details and analyses of various parameter variants are discussed
in more detail in the referenced scientific publications.

5.2.3.1 End-to-End Data-Rate Prediction in Vehicular Networks
The considered dataset contains context traces in multiple vehicular evaluation sce-
narios (campus, urban, suburban, highway). Using the native Android Application
Programming Interface (API), context indicators from different logical domains are
acquired:
– Network context features xnet: RSRP, RSRQ, SINR, CQI, TA, Carrier frequency
– Mobility context features xmob: Velocity, Cell Id
– Application context features xapp: Payload size of the sensor data packet to be

transmitted
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Fig. 5.20: Comparison of the resulting data-rate prediction accuracy achieved by different machine
learning models.

In addition to these passive indicators, the measured data rate of active transmissions
in uplink and downlink direction with a random payload size ranging from 0.1MB to
10MB is determined every 10 s. An in-depth analysis of the statistical properties of the
measurements is given in [638].

Using the resulting feature set X composed from the individual context vectors
x = (xnet, xmob, xapp), we trained a machine learning model fML on the corresponding
data rate measurements y such that fML : X → y. For this purpose, different regression
models are considered:
Artificial Neural Network (ANN) with sigmoid action, twohidden layers, ten neurons

per hidden layer, learning rate η = 0.1, momentum α = 0.001, and 500 training
epochs.

M5 Regression Tree (M5)
Random Forest (RF) with 100 trees and a maximum tree depth of 15.
Support Vector Machine (SVM) trained via Sequential Minimal Optimization (SMO)

with Radial Basis Function (RBF) kernel, regularization parameter C = 1.0, and
kernel coefficient γ = 1.0.

The training process is carried out using LIghtweight Machine learning for IoT Systems
(LIMITS) [633], which provides high-level automation features for the well-known
Waikato Environment for Knowledge Analysis (WEKA) framework and allows the export
of C/C++ implementations of the trained prediction models.

Figure 5.20 shows theRootMeanSquare Error (RMSE) of the 10-fold cross-validation
in both transmission directions. It can be seen that there are only minor differences
for the more complex models if they are properly tuned. Even for the much simpler M5
model, a comparably high prediction accuracy is achieved. The RF model achieves the
lowest prediction errors in the uplink direction. In contrast to ANNs and SVMs, another
advantage of this approach is a significantly lower complexity for the hyperparameter
tuning. As a consequence of these considerations, the further analysis focuses on



336 | 5 Communication Networks

0 10 20 30 40

Predicted Data Rate [MBit/s]

0

10

20

30

40

M
e

a
su

re
d

 D
a

ta
 R

a
te

 [
M

B
it/

s]

Underestimation
(pessimistic)

Overestimation
(optimistic)

15

25

35

5

5 352515

Fig. 5.21: Comparison of RF-based data-rate predictions and corresponding measurements. The
diagonal line corresponds to a hypothetical perfect prediction model.

utilizing the RF model for performing the data-rate predictions. A scatterplot of the
resulting uplink model is shown in Figure 5.21.

5.2.3.2 Machine Learning CAT (ML-CAT)
The basic idea of ML-CAT is to extend the CAT scheme with a machine learning-based
metric for assessing the radio channel quality. While the latter is represented by the
predicted data rate S̃(t) = fML(x(t)), the value range of the probabilistic transmission
model is implicitly related to the value range of the SINRmetric (0 dB to 40 dB according
to [298]). Therefore, a normalization Θ(t) based on the value range [Φmin,Φmax] of the
transmission metric Φ(t) is defined as

Θ(t) = Φ(t) − Φmin
Φmax − Φmin

(5.5)

The transmission probability p(t) is then computed in analogy to Equation 5.4

p(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, ∆t ≤ ∆tmin

Θ(t)α , ∆tmin < ∆t < ∆tmax

1, ∆t ≥ ∆tmax

(5.6)

5.2.3.3 Reinforcement Learning CAT (RL-CAT)
With RL-CAT, the previously probabilistic medium access is replaced by a reinforcement
learning approach. A schematic illustration of the interactions between the different
logical entities is shown in Figure 5.22. The model consists of three core components:
– The actual opportunistic data transfer is realized as an agent that learns to perform

the possible actions—local buffering in expectation of future improvements or
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Fig. 5.22: Interaction between the logical entities for reinforcement learning-enabled opportunistic
data transfer.

transmission of the whole sensor data buffer—through observation of the resulting
rewards.

– The environment is represented by the cellular network. In contrast to conven-
tional reinforcement learning, which assumes that the actions taken by the agent
have a significant impact of the state of the latter within the environment, external
impact factors have a dominant influence on the end-to-end behavior.

– Sensing is performed using the actual hardware platform based on themeasurable
context indicators. The raw measurements are brought together using an RF-based
data-rate prediction model.

The reinforcement learning-based action selection process utilizes a decision table Q
for assessing the expected rewards of the possible actions aIDLE and aTX based on a
given state represented by the context tuple ct =

(︁
S̃(t), ∆t

)︁
. Based on the available

measurements, the action to be executed is determined as a = argmaxa Q(ct, a). The
classical Q-learning update process can be formulated as

Q(ct, a) = (1 − α) · Q(ct, a) + α
[︂
ra + λ · argmax

a
Q(ct+1, a)

]︂
(5.7)

whereas α represents the learning rate, λ is the discount factor, and ra is the reward
of the taken action a. However, as pointed out earlier, the agents impact on its own
state can be regarded as negligible: even if the agent was capable of performing “op-
timal” actions, the achievable end-to-end performance would be still impacted by
non-controllable factors such as the network quality and the traffic load caused by
other users. Therefore, a myopic approach that focuses on optimizing the immediate
reward of the taken actions is implemented by setting λ = 0, which results in the



338 | 5 Communication Networks

simplified formula
Q(ct, a) = (1 − α) · Q(ct, a) + α · ra . (5.8)

The action-specific reward functions are defined as

rTX(S, ∆t) = w · (S − S
*)

Smax⏟  ⏞  
Data rate optimization

+ (1 − w) · ∆t
∆tmax⏟  ⏞  

AoI optimization

(5.9)

and

rIDLE(∆t) =
{︃
Ω ∆t ≥ ∆tmax

0 else
. (5.10)

Hereby, the parameter w allows us to control the fundamental trade-off between data-
rate optimization and AoI reduction, S* is the target data rate, and Smax represents the
upper data rate bound of the empirical measurements. Although there is no immediate
reward if no data transfer is initiated, Ω serves as a punishment factor if the buffering
time ∆t exceeds the application-specific deadline ∆tmax.

Instead of performing a large number of real-world transmissions for training
the reinforcement learning mechanisms, a Data-Driven Network Simulation (DDNS)
setup is implemented according to [637]. In contrast to classical system-level network
simulation, which requires a large number of assumptions and simplifications for
setting up virtual representations of concrete real world scenarios, DDNS makes use of
a combination of machine learning models and empirical context traces. This black
spot approach does not require us to explicitly model communicating entities and
achieves not only a close-to-reality representation of real-world behavior but also a
massive computational efficiency.

5.2.3.4 Black Spot-Aware Contextual Bandit (BS-CB)
While BS-CB builds upon the reinforcement learning-based medium access approach
of RL-CAT, it introduces additional mechanisms for accessing trust in the data-rate
predictions. Moreover, it replaces the Q-learning component by a contextual bandit
reinforcement model. A detailed description of BC-CB is given in [622].

In order to improve the data-rate prediction accuracy, the concept of black spot re-
gions is introduced. Within those areas, the properties of the geographical environment
lead to a significant increase in the location-specific prediction error (e.g., related to an
increased handover probability). If knowledge about the presence about those black
spots is available, transmissions can be postponed in order to avoid severe mismatches
of predictions andmeasurements. For this purpose, BS-CB leverages a priori data about
previous measurements in the targeted scenarios. Based on k-means-enabled unsuper-
vised learning, the data is clustered into Nc clusters. For each cluster, the clusterwise
RMSE is computed and compared with a given cluster threshold RMSEmax. All clusters
that exceed the defined threshold are treated as black spot clusters and fitted to ellipses.
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During the application phase of the transmission mechanism, the vehicle performs
an ellipse test to check if it is currently within a black spots region. If the condition is
fulfilled, the transmission process is postponed.

The actual reinforcement learning process is modeled as a contextual bandit that
proposed an action a (either IDLE for further local buffering or TX for data transmission)
using

a = argmax
a∈A

⎛
⎜⎝ θ̂Tac⏟ ⏞ 

Estimated reward

+ α
√︁
cTA−1a c

⏟  ⏞  
CB

⎞
⎟⎠ (5.11)

whereas θ̂ corresponds to the ridge regression coefficients of action a. c =
(︁
S̃(t), ∆t

)︁

is the d-dimensional context tuple for the predicted data rate S̃(t) and the current
buffering delay ∆t.
The degree of exploration is controlled using the greediness parameter δ

α = 1 +
√︂

ln(2/δ))
2 . (5.12)

After either the IDLE or the TX has been performed, the regression coefficients are
updated as

θ̂a ← A−1a ba (5.13)

with
ba ← ba + ra · c. (5.14)

For determining the actual rewards of the chosen actions, the reward functions of
RL-CAT are re-utilized according to Equation 5.9 and Equation 5.10.

5.2.4 Results of the Real-World Performance Comparison

For the performance evaluation of the novel machine learning-enabled methods, a
25 km long evaluation track with varying environmental characteristics, speed limita-
tions, and building densities is considered. For each transmission scheme, ten real-
world drive tests are performed. Hereby, a virtual sensor application generates 50 kB of
sensor data per second, which is buffered locally until a transmission decision is taken
for the whole buffer.

Figure 5.23 shows the achieved end-to-end data rate of the transmission schemes.
While the basic channel-sensitive approach of CAT is already able to achieve a signif-
icant improvement of the data rate, the latter is highly increased through the intro-
duction of machine learning-based channel assessment. Moreover, the reinforcement
learning-based data transfer results in additional gains. In comparison to conventional
fixed interval data transmission, BS-CB achieves performance improvements of 195%
in uplink and 223% in downlink direction.
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Fig. 5.23: End-to-end data rate of the different transmission schemes.

As shown in Figure 5.24, the apparently selfish goal of data rate maximization con-
tributes to improving the good of all: all opportunistic data transfer methods are able
to achieve a significantly better resource efficiency than the conventional approach.
Although themethodological evolution is also represented in the achieved results, there
are only minor differences between the machine learning-enabled methods. Here, BS-
CB reduces the number of occupied cell resources by around 85% in both transmission
directions.

5.2.5 Outlook and Future Work

Due to its enabling character for all presented transmission schemes, future work
should focus on optimizing the accuracy of the data-rate prediction model. A major
limitation of client-based prediction approaches is their limited insight into the current
traffic load within the cell. Future networks could compensate this limitation through
active announcement of network infrastructure knowledge about the traffic load, e.g.,
acquired through novel 5G mechanisms such as the Network Data Analytic Function
(NWDAF). As shown by a recent feasibility study [626], the integration of available
network knowledge reduces the RMSE by 25% in the uplink and 30% in the downlink
direction.
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Fig. 5.24: Resource efficiency of the different transmission schemes.
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5.3 Mobile-Data Network Analytics Highly Reliable Networks

Robert Falkenberg
Karsten Heimann
Benjamin Sliwa

Abstract: The analysis of mobile network data is a fundamental requirement for the
development and invention of novel networking approaches that fulfill the rapidly
growing requirements and demands on those networks. This process requires the iden-
tification and a thorough investigation of shortcomings in existing field deployments,
independent of the network operators and/or the network equipment vendors. De-
spite public standardization by the 3rd Generation Partnership Project (3GPP), cellular
networks are developed and operated as closed systems that provide a predefined net-
working service to the subscriber while disclosing only a minimum of system-related
information such as signal strength or quality in the User Equipment (UE).

However, researchers often require a deeper insight into network functionality, espe-
cially when it comes to considering network load and occasional congestions while
still maintaining the privacy of the regular network users. With this knowledge, future
devices may predict their achievable throughput passively under the current load and
channel conditions without the need of triggering a transmission just for the sake of
throughput measurements that in turn induces (unnecessary) network load. They may
leverage this predicted information for e.g. load balancing, network selection, or service
adaptation. Since cellular networks are centrally governed by the base stations, which
assign the spectral resources by explicit and fine-grained signaling to each active device
in the coverage area, information about the cell-wide resource utilization is already “in
the air”. For performance reasons and unlike the ciphered payload exchange between
UE and the base station, the control messages that carry the resource assignments are
not encrypted.

However, these messages are scrambled by a device- and session-specific Radio
Network Temporary Identifier (RNTI), which is essential for the proper interpretation
and validation of those messages and which is exchanged only once at the beginning
of each session. This section describes the achievements of the CRC 876 in extracting
these control messages of new and already active sessions efficiently and reliably over
the air and without the need for expensive specialized hardware. The methodology
of the underlying control channel analysis is embedded into a comprehensive open-
source software framework Fast Analysis of LTE Control Channels (FALCON), which
uses Software-Defined Radios (SDRs) to capture the base station’s signal and accurately
extracts the control messages in real time on a regular computer system.
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In subsequent case studies, supervised learning is used to leverage the disclosed
network-load information from short-term observations for the prediction of the ex-
pected data rate and ultimately uses this as a metric for dynamic network selection to
achieve the highest throughput over the fastest network connection currently available.

5.3.1 Introduction

The steady increase in data traffic in mobile networks, triggered by the rapidly growing
number of human andmachine network subscribers, poses a challenge to both network
operators and the services that depend on them in face of the limited radio spectrum
for meeting the simultaneously growing demands on quality of service. Achievable
data rates depend on the one hand on the cell bandwidth and signal quality, and on
the other hand on the activity of other cell users competing simultaneously for the
available radio resources. One of the possible strategies is to use higher frequency
ranges, in which higher bandwidths and thus more spectral resources are available for
transmission. However, due to the inherently higher signal attenuation, these frequency
ranges are only suitable for covering smaller areas, so that region-wide coverage is only
economical with a correspondingly high user density. In order to meet the growing
demands in the remaining areas and to counteract bottlenecks, the usage efficiency of
the available resources must therefore be further increased. For example, subscribers
could switch to less busy networks or perform delay-tolerant data transmissions only
when channel and load situations are favorable.

However, both the research and the application of suchmitigation strategies require
the accurate measurement of both signal quality and instantaneous network load in
order to identify overload situations without creating unnecessary load themselves, e.g.
in the form of test transmissions. Even though mobile devices measure signal strength
and quality autonomously, present mobile networks allow users and external observers
only a very limited insight into the momentary resource utilization of the cell. Although
the total occupancy of radio resources can be determined by spectrum analysis (cf.
top row in Figure 5.25), the actual degree of contention in the case of full occupancy
remains concealed since the number of served subscribers cannot be identified in the
spectrum (cf. last two columns in Figure 5.25).

In 4G and 5G networks, the distribution of spectral resources is governed by the
base station, which explicitly allocates its resources to single active subscribers via
special control channels. For efficiency reasons, these allocation messages are not
encrypted, but reliable decoding requires knowledge of the addressee’s RNTI, since the
attached checksum is scrambled with it. As a result, UEs can only read the assignments
that affect them. Inactive users without assigned RNTI and external observers can
decode only the assignments for specially reserved RNTIs that concern general system
information or paging.
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In the course of the CRC 876 research, efficient control channel analysis methods
for finding valid RNTIs have been developed and evaluated, enabling passive load
sensing of the mobile network and thus providing valuable information for a client-
side data-rate prediction. The presented approaches are directly applicable to public
4G cellular networks and enable real-time discovery of all resource allocations using
off-the-shelf PCs and SDRs. A comprehensive reference implementation is provided in
the form of the open-source framework FALCON. Using the collected data and derived
features to characterize the network load, supervised learning is used to train prediction
models that enable data-rate prediction whose accuracy significantly exceeds previous
approaches based purely on signal strength. Applied simultaneously tomultiple cellular
networks, the prediction enables theUE to performpredictive network selection in order
to transmit data over the network with the most promising data rate, especially during
high-load periods. The prediction accuracy, achievable data rate gain, and impact on
UE energy consumption are evaluated using case study data collected in public mobile
networks.

The following sections are structured as follows: Section 5.3.2 presents related work
in the area of control channel analysis. Subsequently, Section 5.3.3 discusses methods
for analyzing control channels and presents some further implications that can be
derived from observing the cell activity. Key findings are summarized and a conclusion
is drawn in Section 5.3.5.
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5.3.2 Related Work

The assessment of the current mobile network connection, especially in terms of link
throughput, is commonly done by means of active probing [289]. This means that a
data transmission is triggered to measure the throughput currently available for the
device under test. However, this approach loads network and radio resources, which
may be omitted by a purely passive measurement or prediction.

The device itself has only a limited view on the current network load, yet it provides
performance indicators such as Reference Signal Received Power (RSRP) and Reference
Signal Received Quality (RSRQ), which can be used only for a rough forecast of the
achievable data rate of subsequent transmissions [297]. Authors in [392] additionally
utilize details from lower protocol layers and the chipset.

More promising solution approaches need to consider further information that is
usually outside the scope of the mobile device. For this reason, expensive commercial
tools with special hardware requirements[695] as well as off-the-shelf SDRs and open-
source protocol stacks allow tailored solutions based on deep insights into the signaling
protocol behavior and related routines. In terms of the SDR-based approach, especially
LTEye from [359] and Online Watcher for LTE (OWL) from [108] deal with the analysis
of the control channel for resource allocations to infer the current resource utilization
and concurrently active users. As will be detailed in the next section, LTEye suffers from
numerous false-positive detections, while OWL constitutes a solid, real-time capable
approach which only detects new devices though. In contrast to that, our approach
FALCON [196] implements improved detection capabilities of the resource utilization
in mobile networks and is even able to forecast or recommend the most performant
network at a given time.

5.3.3 Control Channel Analysis

In current mobile networks, radio resources are divided by time and frequency in the
manner of a two-dimensional resource grid. The resource grid spans the cell bandwidth
in frequency domain and the time domain is divided into a nested and periodic struc-
ture of symbols, slots, subframes, and frames. The smallest resource unit in 4G and
5G networks is the Resource Element (RE), which corresponds to a single subcarrier of
an Orthogonal Frequency Division Multiplexing (OFDM) symbol. According to a prede-
fined pattern, some REs are used to broadcast synchronization sequences or provide
reference levels for equalization. REs without a special purpose serve as resources for
the transmission of any other data, including control and payload messages. These
spare REs are grouped into equal-sized Resource Blocks (RBs), which are the smallest
unit of resources that can be allocated to individual UEs. In common 4G Networks, a RE
spans 12 subcarriers in frequency domain and 7 symbols in time, which corresponds to
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a bandwidth of 180 kHz and a duration of 0.5ms. However, resource allocations always
apply for both slots (0.5ms) of a subframe (1ms).

The allocation of RBs is organized centrally by the base station and signaled to the
UEs via a special control channel, namely Physical Downlink Control Channel (PDCCH),
which is located in the first 1, 2, or 3 symbols of every subframe and spans the entire cell
bandwidth. It includes assignments for transmissions in both directions, the downlink
(i.e. from the base station to the UE) and the uplink (i.e. from the UE to the base station).
These apply in the downlink (DL) direction for the current subframe or in the uplink (UL)
direction 4 subframes later to give the UE enough time to prepare.

From a logical point of view, the PDCCH consists of a sequence of Control Channel
Elements (CCEs), each comprising 36REs, whose total number is calculated from the
cell bandwidth and the number of occupied OFDM symbols. These CCEs carry the
encoded Downlink Control Information (DCI) for single UEs, which contain the RB
allocation, the Modulation and Coding Scheme (MCS), the power control commands,
and further control information required for decoding or encoding the payload in the
allocated resources. Base stations use rate 1/3 channel coding, interleaving, and rate
matching for each emitted DCI data structure to provide FEC and to fit the encoded
sequence into L, L ∈ {1, 2, 4, 8} consecutive CCEs. The aggregation level L is selected
by the base station according to the channel conditions of the addressee to ensure
proper reception. Any additional or spare space within the L CCEs is filled by cyclic
repetitions of the encoded sequence and interleaving ensures an even distribution of
repeated bits.

Prior to the encoding, each DCI is appended with its 16-bit Cyclic Redundancy
Check (CRC) checksum, which is additionally scrambled (via binary XOR) with the
RNTI of the addressee. Conversely, receiving UEs only consider decoded DCI where the
CRC matches their current RNTI.¹

Since the PDCCH has no table of contents, only blind decoding of the CCEs can
determine whether relevant information is present. This also includes all possible
combinations resulting from different L. To reduce the number of decoding attempts
for a UE, the standard defines a search space function that restricts the search space to
a maximum of 22 evenly distributed locations according to RNTI, subframe, and L.

Furthermore, the standard defines numerous DCI formats for different transmission
modes, which depend on the number of antennas used and the capabilities of the UE
and the evolvedNodeB (eNodeB) as 4G base station. Transmissionmodes are negotiated
both when connections are established and dynamically depending on the channel
conditions. The DCI formats differ in their length and consequently in the length of the
encoded sequence. However, the same circular approach is used for rate matching, i.e.
to populate the CCEs so that the initial format is no longer apparent in the transmitted

1 The UE also tracks special reserved RNTIs for system information and paging as required.
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sequence. End devices therefore decode the sequences multiple times, assuming any
DCI formats (or their lengths) that comply with the specified transmission mode.

Consequently, an external observer faces the following challenges when decoding
the entire content of the PDCCH:
1. Numerous decoding attempts covering all locations of the PDCCH including all pos-

sible combinations of DCI format length and aggregation level are computationally
expensive and result in many invalid DCI candidates.

2. Discard all DCI candidates with CRC that do not match a valid RNTI.
3. Find valid RNTIs within the set of decoded DCI candidates.

The chicken-or-egg situation resulting from the last two points can be resolved in several
ways: LTEye [359] re-encodes each decoded DCI candidate, compares the encoded
sequence with the received bits on the channel, and discards any candidates that
deviate by a certain degree. But in the presence of noise or interference, we show that
this approach is highly inaccurate and leads to numerous false decisions. In a more
robust approach, [108] follows the initial connection establishment of joining UEs,
which contains the RNTI assignment in plain text, and builds up a list of valid RNTIs.
However, RNTIs of UEs that entered the cell before the monitoring remain undetected.
Therefore, OWL follows the approach of [359] as a fallback. By contrast, the authors of
UnCover Information in Mobile Access Networks (U-CIMAN) [771] propose to first accept
any DCI candidate and to decode the potential payload in the allocated RBs. If this
attempt fails due to an invalid CRC of the payload, the DCI is discarded. The approach
involves a significant computational cost due to the larger amount of data and the more
complex decoding procedure for the payload data.

In this area, CRC 876 has made substantial contributions to a resource-efficient yet
reliable control channel analysis that is especially suitable for short-termmonitoring in
order to estimate the total cell load. In [195] we propose a histogram-based approach in
conjunction with an inverse application of the search space function to identify valid
RNTIs and decode the corresponding DCI candidates. First, DCI candidates decoded
from all possible locations, formats, and aggregation levels are validated with respect
to their permitted positions, as the eNodeB never places DCI outside their associated
search space. This approach reliably filters 80-90% of all candidates, including invalid
DCI.

The following filter stage first collects the RNTIs of all DCI candidates in a history.
According to an attached histogram, all candidates are discarded whose RNTI in the
histogram does not exceed a threshold value k. It is based on the fact that active
participants receive multiple assignments within a short period of time and that their
RNTIs occur more frequently than the random RNTIs that result from decoding with
incorrect parameters. An example is given in Figure 5.26.

Length of history and threshold value are optimization parameters that allow a
trade-off between the probability of false positive detection, the minimum required
activity of individual UEs, and the detection delay [194].
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To improve the detection speed of unseen RNTIs, which is especially important for
short-term observations, we proposed a novel short-cut decoding approach in [196].
The approach exploits the scheme of how the eNodeB populates the CCEs with the
encoded DCI sequence. Although in most cases such sequence fits into a single CCE,
operators configure the eNodeB to use higher aggregation levels in order to increase
the robustness against distortions. Conversely, due to the circular repetition, a properly
cropped sequence still allows for a correct decoding of the DCI. Therefore, if both
decoding of the full and the shortened sequence result in the same DCI and CRC, the
associated RNTI can be assumed as valid and the DCI shall be accepted. This approach
can be implemented efficiently by combining a breadth-first search with a depth-first
search for each location as shown in Figure 5.27. The top line shows the PDCCH as
a sequence of consecutive CCEs, which are either occupied or empty according to
the placement done by the eNodeB. Empty CCEs, recognizable by insufficient signal
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Fig. 5.28: Simulation results for decoding the PDCCH of 1 s Long Term Evolution (LTE) signal with
FALCON and OWL for different Signal to Noise Ratio (SNR) values. Results are averaged over
10 repetitions; the standard deviation is shown as error bars.

power, can be skipped as they cannot contain any meaningful information. Conversely,
occupied CCEs may also not have meaningful information, as the received signal power
may originate from a neighbor cell with overlapping PDCCH in time and frequency. The
breadth-first search component starts with aggregation level L = 8 and sequentially
decodes all locations at this level (second line). In the given example, the two possible
locations (1) and (2) are skipped, as each overlaps at least one empty CCE, and hence
does not form a continuous sequence. The search continues with L = 4, inspecting the
first location (3) with continuous CCE occupation by decoding the sequence for all DCI
formats. If this inspection does not result in any DCI with a known RNTI, the depth-first
component is activated and the location is inspected recursively using the next-smaller
aggregation level. In the given example both locations (4) and (5) contain DCI with
known RNTIs; overlapping locations (e.g. for L = 1) are marked as checked. As the
recursion terminates, the breadth-first search continues with locations (6) and (7) both
being skipped. Next, location (8) contains a valid DCI at L = 4 but the RNTI has not yet
been seen. However, the recursive inspection of the shortened sequence, given by the
first half at location (9), returns the same DCI and RNTI. As this only happens for valid
DCI, the RNTI is immediately added to the list of known RNTIs, the DCI is accepted,
and overlapping locations are marked as checked.

To enable detection even in the case of poor signal quality, where the bisected
sequence can no longer be decoded correctly, histogram-based validation can be em-
ployed afterwards. If a recursive descent does not discover a known RNTI, all potential
RNTIs along the descent path are added to the history and RNTIs exceeding a threshold
are added to the active set as described above.
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Robustness and reliability of the combined approach in FALCON is presented in Fig-
ure 5.28. It shows the number of missed and false DCI messages as solid and dashed
lines, respectively, as a function of the SNRon the channel after analyzing awell-defined
LTE signal for the duration of 1 s. Startingwith 0 dB for poor radio conditions, the SNR is
increased in steps of 0.5 dB to 15 dB, representing an excellent signal. For each step, the
figure shows the average and the standard deviation over 10 repetitions. Furthermore,
the figure also contains the results of OWL, which relies on the re-encoding approach
for short-term observations.

Independently of the SNR, the amount of spurious DCI messages stays at a negligi-
ble level at FALCON, whereas OWL produces at least 30 and up to 100 false detections.
In general, for all covered SNR, FALCON misses significantly fewer DCI messages than
OWL. Especially for SNR values greater than 7 dB the number of missed DCI messages
undershoots 10 for FALCON, while OWL remains on a level between 50 and 100. Thus,
the comparison of both approaches reveals the robustness and reliability of FALCON.

Similar results are achieved in the field as an activity histogram of each RNTI over
5 s as shown in Figure 5.29. Blue circles represent the number of resource allocations
detected by FALCON for each RNTI, and red crosses show the results of OWL. It is
evident that the most active RNTI concentrate in a small value interval, indicating that
the eNodeB assigns RNTIs consecutively to new UEs. The peak region moves over time
towards larger RNTI values, as shown in the results 5min and 10min later. On the other
hand, OWL reports numerous spurious DCI messages with random RNTIs, which are
uniformly distributed over the entire value range with very low frequency.
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5.3.4 Cooperative Data Rate Prediction Leveraging FALCON

Client-based data-rate prediction is a key enabler for anticipatory mobile networking.
By considering network context measurements to estimate the end-to-end transmis-
sion efficiency—represented by the predicted data rate—mobile clients can actively
contribute to optimizing the intra-cell resource efficiency by scheduling data-intense
transmission to resource-efficient connectivity hotspots [622]. However, the accuracy of
client-based data-rate prediction methods is inherently limited since the UEs are only
aware of the radio channel conditions but not of the network load.

In addition to the passive context measurements of purely client-based data-rate
prediction according to [622], FALCON allows the derivation of additional features
(number of Physical Resource Blocks (PRBs) and UEs, Transport Block Size (TBS),
MCS) that are correlated to the current network load of the cell. For a proof-of-concept
evaluation, the following feature sets are derived for the two transmission directions
after an initial feature importance analysis:
– Uplink feature set: RSRP, RSRQ, velocity, payload size, number of PRBs, number

of UEs, cell ID
– Downlink feature set: RSRQ, velocity, payload size, number of PRBs, number of

UEs, TBS, MCS, cell ID

It can be seen that the uplink direction is more sensitive to the radio channel conditions
while the downlink performance highly depends on the intra-cell traffic load.
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Fig. 5.30: End-to-end uplink data-rate prediction: performance comparison of different prediction
approaches and machine learning models. ©[2020] IEEE. Reprinted, with permission, from [626].

The resulting prediction accuracy of different machine learning models (Artificial
Neural Network (ANN), M5 regression tree, Random Forest (RF), Support Vector Ma-
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chine (SVM)) is shown in Figure 5.30. Although the RF model achieves the highest
overall accuracy, there are only minor differences between the machine learning mod-
els. However, significant differences can be observed for the three different data-rate
prediction methods. While the purely client-based approach is mostly unaware of the
traffic load and the purely network-based approach yields a high prediction error due to
the absence of radio channel information, the cooperative prediction method reduces
the average Root Mean Squared Error (RMSE) by 25% in the uplink direction. As further
analyzed in [626], similar improvements are also achieved in the downlink direction.

These initial results show that the context-awareness and the predictability of mo-
bile communications can be significantly improved by combining client measurements
with network-side information. Therefore, future networks such as 6G should actively
provide network-load information to the clients in order to allow them to actively par-
ticipate in network management functions.

5.3.5 Conclusion

FALCON is a novel open-source and SDR-based instrument for LTE control channel
analysis that allows the reliable monitoring of the resource allocations of LTE cells in
real-time. Through the application of shortcut-precoding, a fast DCI integrity check
is achieved and the list of active RNTIs—which corresponds to an estimation of the
number of active users—is derived. Aided by a histogram approach, the accuracy of
FALCON is maintained even during low signal quality periods. The revealed network-
side information is of particular value for intelligent networking methods that utilize
end-to-end predictions for their decision making, such as resource-efficient vehicle-to-
cloud communications that is discussed in Section 5.2. As purely client-based data-rate
prediction approaches that rely on network context measurements are unaware of the
current network load, their achievable prediction accuracy is inherently limited. As
demonstrated in a first real-world proof-of-concept study [626], the incorporation of
FALCON offers the potential to improve client-based data-rate prediction methods by
up to 25% in the uplink and 30% in the downlink direction.
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5.4 Machine Learning-Enabled 5G Network Slicing

Caner Bektas
Fabian Kurtz

Dennis Overbeck
Christian Wietfeld

Abstract: In this contribution, the different parts of the end-to-end network slicing
concept are presented, including the Core Network (CN) and the Radio Access Network
(RAN), while highlighting the differences and similarities of both domains.

Further, prototypical implementations and empirical evaluations of 5G network
slicing are discussed, deepening the understanding of network slicing and identifying
possible advantages and challenges. The predictability of user traffic in the respective
network slices poses such a challenge, as resources in the RAN–in contrast to resources
in the CN–are subject to fluctuations based on channel quality. Critical infrastructures
typically require very low latencies in the single-digit milliseconds range and are thus
considered ultra-Reliable Low Latency Communication (uRLLC) . To mitigate latency-
intensive scheduling requests and grant operations, resources in the RAN have to be
pre-allocated for uRLLC slices.

This operation, also known under the term Configured Grants (CGs), pre-allocates
resources for, say, high-priority slices, so that User Equipments (UEs) are able to send
data without asking for resources, which reduces the scheduling latency down to zero.
The simplest method for calculating CGs is based on static allocations, which has one
major drawback: unused resources are wasted, and thus, can not be used by remaining
slices, effectively lowering spectral efficiency. Here, we present SAMUS (Slice-Aware
Machine Learning-based Ultra-Reliable Scheduling), a data-driven method to predict
resources in the future based on real data, e.g., solar activity in smart grid slices, to
reduce latencies while maintaining high spectral efficiency.

5.4.1 Introduction to 5G End-to-End Network Slicing

Critical infrastructures, such as energy networks, logistics, or autonomous transporta-
tion, are becomingmore andmore automated to further increase efficiency. Automation
is often achieved by the self-organization of processes and actors via mobile communi-
cation systems. As many different vertical industries are reliant on mobile communica-
tion, a highly diverse set of Key Performance Indicators (KPIs) need considering by the
communication systems.
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Until recently, dedicated communication networks were the go-to solution in order
to meet these divergent criteria, as they can be designed specifically for the needs of
the respective critical infrastructures. Consequentially, the fifth generation of mobile
networks (5G) aims to unify these different and partly contradictory set of requirements
into a single physical infrastructure. Employing Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) techniques, 5G network slicing is integrated
into the 5G standard. By utilizing virtual dedicated networks called network slices on
top of a single physical communication network, various vertical industries can be
automated, as shown in Figure 5.31.
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Fig. 5.31: Network slicing as a key enabler for fulfilling all specific service requirements simultane-
ously.

5.4.2 5G Core Network Slicing

5.4.2.1 Description and Methodology
The virtualization of network resources depicts a main pillar of 5G networking as
illustrated in Figure 5.32.

The creation of multiple isolated network partitions known as slices can indepen-
dently and efficiently manage different use cases with their respective demands on
QoS or other guarantees. For 5G communication, three main categories are defined.
The first category is enhanced Mobile Broadband (eMBB), which is used for data-rate
intensive services (up to 20Gbit/s). This category comprises ultra-high resolution video
streaming as well as fixed wireless broadband and Augmented respectively Virtual Re-
ality (AR/VR) . The second category is massive Machine Type Communication (mMTC)
, designed for the emerging Internet of Things (IoT) and Industry 4.0 applications,
both of which introduce a significant increase in inter-machine communication. But
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Fig. 5.32: Overview of a sliced 5G communication network.

a massive amount of devices comes with its own set of challenges in, say, electrical
power grid application scenarios such as smart metering. The third major category is
the ultra-Reliable and Low Latency Communication (uRLLC) service. This category com-
prises services such as Intelligent Transportation Systems (ITS) with Floating Car Data
(FCD)-based Vehicle-to-X communication. Here, mission-critical and latency-sensitive
applications are addressed. Our approach builds on NFV and SDN, which are closely
related. With NFV, hard- and software is decoupled and functionalities are abstracted
in order to achieve highly flexible communication infrastructures for enabling cloud
computing. Virtual Network Functions (VNFs) are now able to run on Commercial-Off-
The-Shelf (COTS) server platforms . By using the complementary approach of NFV and
SDN, the controller can dynamically route traffic flows between the VNFs, while being
deployed as a VNF itself. In addition to the utilization of SDN and NFV, our concept
is based on queuing strategies utilizing the Hierarchical Token Bucket (HTB) . On the
bare-metal and virtualized data-plane devices, the switching software Open vSwitch
(OVS) is deployed. Furthermore, a Management and Network Orchestration (MANO)
controller is implemented. This controller creates a main bridge in each switch, which
includes the respective physical ports. By that, one bridge per slice is added or removed
as needed. The concept is depicted in Figure 5.33.
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The slice bridges comprise virtual ports, which are residing within the main bridge.
The orchestration is done via the MANO controller, which dynamically instantiates
slice controllers (e.g. via Docker), which in turn can be optimized for each application
scenario. In the event of traffic entering the data plane, the MANO controller assigns
packets to the respective bridge. There, the flow is mapped to the respective QoS queue
and virtual destination port on the main bridge regarding the specific protocol or other
criteria of the packet. This is done by the respective slice’s controller. For each hop,
the slice controller repeats this procedure of directing the flows to the main bridge.
Unknown flows or not specified matches are handled on a best-effort basis. While this
first part focuses on wired 5G communications, compatibility with the air interface
slicing technologies presented in later sections.

5.4.2.2 Empirical Evaluation of 5G Core Network Slicing
Overviewof theTestingEnvironment The testbed scenario is depicted inFigure 5.34.
Six servers are assigned in pairs for each of the different use cases. These servers func-
tion as hosts to either send or receive data traffic over the sliced network. Furthermore,
four machines are designated as SDN controllers, where three of them act as slice
controllers running Floodlight and one is the MANO controller employing Ryu. For
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measurement interference avoidance, three different networks, namely out-of-band
control, maintenance, and sliced data-plane network, are in use. The Precision Time
Protocol (PTP) is utilized to synchronize the controller clocks with a maximum devia-
tion of 153 µs and a mean deviation of 16 µs. The underlying network load is generated
via iPerf2 community edition and consists of User Datagram Protocol (UDP) packets.
The maximum performance of the evaluated methods needs to be determined by con-
sidering the different layers of the ISO-OSI stack. The Ethernet frame size on the 2nd
layer of the OSImodel is 1512 B, which is used as a point of reference. Since performance
evaluations are located on layer 4, the payload (i.e. goodput) results in 1470B, which is
97.2% of the layer 2 data rate. The following measurements were repeated at least 100
times with a minimum duration of 1 min per run.

Evaluation Scenarios Scenario A depicts a performance study, where key aspects
from 5G and critical infrastructure communication are evaluated such as delay and data
rate for varying network loads. Therefore, the overhead of our approach is determined to
demonstrate the efficient use of resources. By using 100Mbit/s Ethernet links, possible
limitations can be avoided while simultaneously affording the option of CPU load
monitoring during testing. Moreover, the independence of the slices from each other
is verified, so any detrimental effects of errors or overload in one slice harming other
slices can be precluded. Within the evaluation, the network load is increased in steps,
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Tab. 5.1: Slices and traffic flows of the critical infrastructure communications scenario.

Slice (descending
priority)

Use case 5G service
class

Priority within
slice

Hard min. data
rate [Mbit/s]

Max. delay
[ms]

Smart grids Protection
(IEC 61850)

uRLLC Highest 50 1

Smart
metering

mMTC High 200 20

Intelligent Trans-
portationSystems

Floating car
data

uRLLC Highest 100 1

Passenger
Internet

eMBB Low 450 10

Best-effort Multimedia None Lowest None 100

reaching beyond the maximum usable data rate/goodput, i.e. 97.2% of the nominal
layer 2 link capacity.

This approach represents cases in which end users try to use more resources than
allocated for their respective slice, thus serving to demonstrate slice independence. The
misconfiguration by operators of sliced communication networks is simulated as well.
For this, two sliceswhose combined data rate exceeds the underlying physical network’s
data rate are configured. Scenario B represents a scalability analysis, where a viable
approach for deployment in largescale, multitenant communication infrastructure is
demonstrated. Since the number of slices should not influence the overall network
performance, the delay performance for no, 2, 8, and 16 slices is analyzed. The available
data rate is shared equally among the slices, with traffic streams utilizing 100% of
the respective slice’s capacity. This ensures the exclusivity of side effects caused by
slicing and not by network congestion or other factors. Furthermore, the validity of
slice isolation and the stability of end-to-end delay is examined. For this, seven out of
21 slices are subjected to UDP-based traffic with data rates above the allocated limit.
In contrast to scenario A, 1 Gbit/s Ethernet is used to stress test the concept. Finally,
scenario C depicts a critical infrastructure communication including FCD of ITS and
the IEC 61850 SG protocol.

Since both use cases are considered as uRLLC 5G services and therefore assigned
the highest priority, the slices on which they are transmitted is allocated equal priority,
including the dedicated SDN controllers. Smart metering (representing mMTC) and
passenger internet (eMBB) are included in the related slices to demonstrate the ability
of traffic distinction in our solution.Moreover, a best-effort slice is included for handling
multimedia traffic and perpetually transmitting low-priority data at 950Mbit/s, roughly
consuming the maximum available layer 4 goodput of the 1 Gbit/s network. Therefore,
if another slice needs a specific data rate, the network is overloaded and reallocated
due to its differing priorities. The maximum tolerable delays for each priority data is
given in Table 5.1. For the evaluation, the given data rates were achieved by bundling
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multiple traffic flows. However, the bundling of constant data rates can be found in
real-world use cases such as smart metering.
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Fig. 5.35: End-to-end delays of two slices for varying traffic loads.

EvaluationResults In Figure 5.35 the end-to-enddelays of two slices for varying traffic
loads are depicted [360]. The physical 100Mbit/s Ethernet network is shared fairly;
slices A and B transmit UDP packets. Below the aforementioned limit of 97.2%, the
median end-to-end delay is located at 1.05ms with a variance of approximately 0.05ms.
Nevertheless, when step-wise exceeding the limit at slice B, an overload situation is
created resulting in increased delays. At 101% load the median delays rise sharply up
to 1.212ms. However, the delays at slice A remain unaffected, even compared to no
slicing as depicted with the enlarged violin plots. Hence, the isolation of the slices is
shown. The misconfiguration by the operator is simulated and depicted in Figure 5.36.

Slice A receives a data rate of 40Mbit/s (38.9Mbit/s effectively on layer 4). The total
sum of queue data rates (depicted on the x-axis) should not exceed the theoretical layer
2 limit of the 100Mbit/s Ethernet link. This maximum is calculated as the ratio between
frame sizes at layers 2 and 1, which amounts to 1512 B/1532 B = 98.7%. In the event
of misconfiguration, slice B tries to utilize resources, which do not exist. Therefore,
slice B cannot maintain the layer 4 goodput. While slice A consumes the HTB tokens
and remains stable, the data rate of slice B levels out to 56.9Mbit/s, which is below
the configured 60Mbit/s queue data rate on layer 2. Overhead in terms of achieved
throughput is not observed and therefore confirms expectations. Figure 5.37 depicts
scenario B evaluation results.
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The end-to-end delays of dedicated, sliced networks are given with an overall capacity
of 1 Gbit/s. The data rate is fairly distributed between the slices with all of them in idle
mode except one. With as many as sixteen slices, the delays remain stable. However,
outliers of up to 0.36ms may be a result of CPU context switches, which are required
since the hardware provides a maximum of eight threads and queues. The outliers
down to 0.17ms are presumably caused by the non-realtime reduced timer/interrupt
coalescing of the Network Interface Card (NIC) and Operating System (OS), which
is triggered by the raise in computational load. Therefore, for highly sliced networks,
performance optimizations of the developed source, real-timekernels andhigher thread-
count CPUs are to be pursued. The following stress test is given in Figure 5.38.
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Fig. 5.38: Stress testing of scalability with partial overload.

Under normal operation (left-hand side), 21 coexisting slices can fully utilize their
allocated data rates with a stable median delay of 1ms. In comparison with previous
tests, the delays are higher, because of more slices sharing a slower physical network
of 100Mbit/s. On the right-hand side, partial overload is simulated, resulting in seven
slices trying to exceed their limits and accordingly causing increasing delays up to 3.5 s.
However, the other slices stay unaffected. Therefore, the isolation of network slices
remains equally robust even with high loads in several slices. Furthermore, the data
rate remains stable across all realized scalability tests.

Finally, Figure 5.39 summarizes the measured data rate of the traffic flows given
in Table 5.1. It starts with only one traffic flow of 950Mbit/s, which fully utilizes the
physical network on a best-effort basis. Therefore, even though the traffic continues
throughout the test, network resources can be allocated to higher priority slices. Thus,
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Fig. 5.39: Critical infrastructure communication scenario—data rate allocation and slice isolation.

when passenger Internet and FCD traffic of the ITS slice is generated, the best-effort
throughput is reduced nearly instantaneously. The same happens when introducing
protection and smart metering traffic on the SG slice. For an especially critical test case,
the protection and FCD traffic is simultaneously increased to 50Mbit/s at 90 s into the
measurement. Figure 5.40 depicts the end-to-end delay of the slices.

As shown, hard service guarantees are provided during these transitions. Best-
effort typically stays below the set boundary of 100ms. Nevertheless, outliers of about
350ms occur, which are induced by slice overloads. The delay for smart metering and
passenger internet stays below 3mswith amedian of approximately 1.3ms and therefore
satisfy service-level guarantees. The outliers result from the starting phase. During slice
reconfiguration, the violins of protection and FCD traffic show slight delay variance,
which does not affect the requirements since it stays mostly below 0.5ms.

5.4.3 Data-Driven 5G Network Slicing in the Radio Access Network

In contrast to the previous sections, in which network slicing in the core network was
discussed, the focus here is on the Radio Access Network (RAN). In this context, the
data-driven aspect of network slicing becomes more important, as low-latency slices
can be realized only via the prediction of emerging network traffic. This relation is
described in the following subsections.

5.4.3.1 Introduction to Data-Driven Network Slicing
Previously, the three main service types eMBB, uRLLC, andmMTCwere introduced. The
balance between uRLLC slices and eMBB slices is particularly challenging to maintain
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within Radio Resource Management (RRM), i.e. the network scheduler that is a crucial
part of realizing network slicingwithin the RAN. To understand this relation, end-to-end
latency components, which were derived from [493], are depicted in Figure 5.41.

User Equipment gNodeB 5G Core Network Internet / Cloud

TRadio TFront-/Backhaul TCore TTransport

Fig. 5.41: Components in cellular networks which induce latency [493]. ©[2021] IEEE. Reprinted, with
permission, from [54].

– TTransport: Latency caused by the transmission of data through the transport net-
work as when a web page is retrieved from the Internet.

– TCore: Once data has been transmitted via the radio interface or from the transport
network, it goes through the core network. This introduces additional latency,
firstly because it is transmitted over an additional network, but also because the IP
packets are unpacked and packed into different protocols required by the mobile
network.

– TFront−/Backhaul: The connection between gNodeB (5G base station) and core net-
work introduces additional latency.

– TRadio: The physical properties of the transmission channel are the main cause of
radio latency, but the scheduler (TSched) also adds a significant delay.
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The latency induced by the network scheduler (from here on TSched) is part of the
TRadio component, which is heavily reliant on the type of services or slices present
in the 5G network. To further illustrate this, suppose there are two slices configured
within the communication network, one uRLLC slice and one eMBB slice. From now
on, the uplink direction of data transmission is focused (from UE to gNodeB). The UEs
or the applications within the eMBB slice are data-rate intensive, which means that as
many Resource Blocks (RBs) as possible are to be scheduled. By contrast, applications
in uRLCC slices are not data rate intensive, but are to be scheduled as fast as possible
to minimize the overall end-to-end latency (cf. Figure 5.41). This means that in order to
minimize the scheduling latency, it is crucial to issue the scheduling grants before a
request is even generated. For this, the so-called Configured Grant (CG) or proactive
scheduling will be introduced in 5G [375]. As the name suggests the scheduling grants
can be configured in advance to ensure Quality of Service (QoS) requirements . The
major challenge, however, is that this requires a prediction of future data demands and
channel qualities to allocate the required amounts of RBs for each network slice. The
exact prediction of RBs for the uRLLC slice is crucial in this process because end-to-end
latency will increase significantly if the predicted RBs are too low, which will induce
retransmissions. If the predicted RBs are too high, the unused RBs will be wasted and
thus not available for other network slices within the cell. This in order affects the
aforementioned balance between uRLCC and eMBB slices, as the required prediction
will induce prediction errors and thus waste resources for the data rate-intensive eMBB
slices.

The remainder of this section will describe a data-driven CG-based scheduling
and simulation framework called SAMUS [54], or Slice-Aware Machine learning-based
Ultra-reliable Scheduling.

5.4.3.2 Description and Methodology of SAMUS: Slice-Aware Machine
Learning-based Ultra-Reliable Scheduling - A Data-Driven Network Slicing
Framework

5G-RGS (5G Resource Grid Simulation) Framework Figure 5.42 provides an
overview of all modules, inputs, and outputs of the SAMUS system. As can be seen,
the SAMUS system is not only comprised of the actual SAMUS scheduler prototype but
additionally includes the 5G Resource Grid Simulation (5G-RGS) framework, which
was specifically developed to evaluate the SAMUS scheduler prototype. There, channel
conditions and data amounts of each User Equipment (UE) (or the external data used to
predict the amounts) are provided as input to both modules. The 5G-RGS framework is
then able to calculate resulting data rates and packet latencies (∝ TSched) based on the
aforementioned channel conditions, the Transmission Time Interval (TTI) , as well as
the allocated RBs. The last is a product of the data-driven SAMUS scheduler prototype,
which generates CGs in the form of resource grid allocations based on external data, a
process which will be described later in this section.
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Fig. 5.42: SAMUS system overview including all modules, inputs, and outputs. ©[2021] IEEE.
Reprinted, with permission, from [54].

In order to further detail the data rate calculation process of the 5G-RGS framework,
Equation 5.15 is provided,

Data Rate (Mbit/s) = 10−6 ·
NUE∑︁

n=1

(︀TBS(n)
TTI · NTTI) (5.15)

where NUE describes the UE amount of the slice, TBS(n) the Transport Block Size (TBS)
available for the n-th UE in bit, and NTTI describes how many TTIs are available in a
second (the default here is the New Radio (NR) specification of 1ms).
Moreover, packet latencies are calculated via Equation 5.16:

Latency (ms) = (IS − IC) · TTI (5.16)

where IS represents the scheduling interval of a final packet bit transmission and IC
the interval of packet creation. Note that latency components like retransmissions or
other components of (TRadio) are neglected. Based on scenarios in [53], the 5G-RGS
framework was successfully validated.

SAMUS Scheduler Prototype As can be seen on Figure 5.43, the inputs for the SAMUS
scheduler prototype are comprised of channel conditions or Channel Quality Indicators
(CQIs) and data amounts of each UE or Buffer Status Reports (BSR), which are generated
from historical data (hence, data-driven). Apart from the fact that data-driven (low-
latency) CGs can be generated, traditional (latency-intensive) Scheduling Requests
(SRs) can also be processed by the SAMUS scheduler. The CGs, if predicted correctly
based on historical data, can reduce the scheduling latency TSched down to zero. For
generating the RBs and the data-driven CGs, the ARIMA (Auto-Regressive Integrated
Moving Average ) method is utilized to predict the future traffic data demands and CQIs.

To ensure safe operation of mission-critical slices, resources of critical applications
are allocated first, while granting the remaining RBs to best-effort (eMBB, no QoS)
slices (based on the Greedy Network Slicing Scheduler in [53]). Traditional scheduling is
used whenever a packet could not be transmitted due to prediction errors (effectively
increasing scheduling latency). As a result, a resource grid in the form of a matrix is
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Reprinted, with permission, from [54].

passed on to the 5G-RGS,which calculates andprotocols theKeyPerformance Indicators
(KPIs), e.g., data rate and latencies. Finally, CQI and BSR values are updated and a new
cycle is initiated.
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Fig. 5.44: Flow chart of SAMUS’s prediction module utilizing ARIMA for training and operation.
©[2021] IEEE. Reprinted, with permission, from [54].

The details of the ARIMA-based prediction module are depicted in Figure 5.44 as a flow
chart. There, the dataset associated with a slice is split up into training and validation
datasets with a ratio of 23 and

1
3 , respectively. Subsequently, the ARIMAmodel is trained

in the course of offline learning based on the training dataset in order to predict future
data, which in turn is utilized by the SAMUS scheduler to generate CGs. The data rate
that corresponds with these CGs is the so-called data rate predicted. By contrast, the
actual data rate required is calculated based on the validation dataset. The value for
the actual data rate required results from the actually transmitted packets within the
simulation, which are generated in order to test the prediction quality of the ARIMA
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module. Also, online learning is facilitated to further optimize predictions based on
the newly acquired data during the simulations.

These simulations, which were utilized to evaluate the SAMUS scheduler prototype
are described in the next section.

5.4.3.3 Evaluation of the Data-Driven Scheduler Prototype SAMUS
Evaluation Scenario and Parameters As indicated in the previous sections, the
SAMUS frameworkwas evaluated based on a realistic network slicing scenario . In order
to be able to compare the novel approach of the SAMUS scheduler to traditionalmethods
as well as to present different trade-off strategies, so-calledmodeswere designed and
utilized.
The following modes were configured and evaluated:
– Mode 1: Traditional scheduling with request and grant method (without CGs)
– Mode 2: Fixed amount of RBs (fixed CGs)

– Mode 2.1: Average historical data rate used as amount of fixed grants (fixed
optimistic approach)

– Mode 2.2:Maximum historical data rate used as amount of fixed grants (fixed
pessimistic approach)

– Mode 3: Data-driven CGs (predicted based on ARIMA)
– Mode 3.1: Predicted CGs as is (No over-provisioning)
– Mode 3.2: Over-provisioned predicted CGs (With 10% over-provisioning)

The mode configuration as well as other simulation parameters like configured and
simulated network slices are listed in Figure 5.45.
The three realized slices in the evaluation scenario are also depicted in Figure 5.46,
which are defined as follows:
– Smart Grid (SG) slice (uRLCC - Highest priority): The Smart Grid slice ismodeled after

photovoltaic systems transmitting data to regulate energy generation. The National
Renewable Energy Laboratory (NREL)² provides open data for solar activity, which
is used to train the ARIMAmodel and generate data traffic proportional to the solar
activity.

– Electric Vehicle (EV) charging slice (uRLLC - High priority): EV charging-point occu-
pancy data of the German city Bonn³ was gathered and data traffic based on this
dataset is generated for the EV charging slice.

– Best-Effort (BE) slice (eMBB - Low priority): A constant rate of 18.96Mbps is gener-
ated, which corresponds to the remaining capacity of the cell, to simulate devices
with high data rate demands and to measure the remaining data rate within the

2 See https://www.nrel.gov/grid/solar-power-data.html.
3 See https://new-poi.chargecloud.de/bonn.
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Fig. 5.45: Settings and parameters of the simulation framework and the different modes utilized in
the evaluation of the SAMUS framework. ©[2021] IEEE. Reprinted, with permission, from [54].
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non-critical eMBB slices, after mission-critical slices are served by the SAMUS
scheduler.

In the following section, the evaluation of the SAMUS framework is presented based
on this scenario.

Evaluation Results The 5G-RGS framework described before was utilized to evaluate
the SAMUS scheduler prototype based on the modes presented earlier, which represent
different trade-off strategies between the balance of uRLLC latency and the eMBB data
rate. For this, a 60min interval was analyzed (cf. Figure 5.45), which represents a time
frame of highly dynamic activity within the different slices such as the time of sunrise
in the SG slice or the time of rush hour in the EV slice.

Data rate is reduced, to fulfill

critical slices‘ requirements

Actual transmitted bits within

channel for all UEs (Indicator
for spectral efficiency)

Very high channel utilization, 
but traditional lengthy

scheduling process

Fig. 5.47: Data-rate progressions for the different network slices in mode 1 (5G parameters only–
traditional scheduling). ©[2021] IEEE. Reprinted, with permission, from [54].

In Figure 5.47, the results for mode 1 are depicted, where the average slice data rate in
Mbit/s is plotted as a function of the simulation time in min. The dotted and solid red
lines represent themaximumand the actual channel bandwidthutilization, respectively.
This indicates the efficiency of resource usage, i.e., high channel utilization means
low RB wastage. The green, black, and red solid lines represent the average uplink
data rate transmitted for the SG, EV charging, and Best-Effort (BE) slices, respectively.
Based on the Greedy Network Slicing method, it becomes clear that the available RBs
are allocated to the higher priority slices at the expense of the BE data rate. This is the
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desired behavior of the utilized traditional scheduling requests and grants, because
RBs are distributed exactly as required and no resources are wasted. However, the main
disadvantage of this approach is that it leads to very high scheduling latency (TSched).
This connection becomes more clear when looking at Figure 5.48.

Hardest 3GPP End-to-End Latency Requirement 

CG: Configured Grant

2.47ms

1.53ms

4.58ms4.04ms

5.0ms4.93ms

4.83ms4.83ms

Margins for remaining end-

to-end latency components

4.83ms4.95ms

Best trade-off

Standard 

deviation

Fig. 5.48: Average BE data rates versus mean and standard deviation of high priority slice latencies
(averaging window of 2 s and hardest 3GPP latency requirement according to 3GPP 23.501 [3]) for
all modes. Margins for remaining latency components are indicated by the arrows in the respective
colors of the slices. ©[2021] IEEE. Reprinted, with permission, from [54].

In this figure, two different y-axes are depicted describing the ratio of the average
transmitted data rate from the actual data rate required by the BE slice on the left axis
(gray bar plot) as well as the mean scheduling latency (TSched) of the high priority slices
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on the right axis (green bar: SG slice; blue bar: EV charging slice; black lines: standard
deviation), respectively. The different modes are listed on the x-axis. By looking at the
results for mode 1, it can be seen that the high bandwidth utilization represented by
the ratio of transmitted data to required data is very high at 92.74%. At the same time
however, only 1.53ms and 2.47ms margins for other latency components based on the
hardest 3GPP end-to-end latency requirements [3] are left for the EV charging and SG
slices, respectively. This results from the utilization of lengthy traditional scheduling
mechanisms.

For comparison, the results of the modes in Figure 5.49 can be consulted. As for the
modes 2.1 and 2.2, depicted in Figure 5.49a and Figure 5.49b, the channel bandwidth
utilization drops for both approaches, especially for the pessimistic approach. This is
the result of the fixed allocation of RBs to the mission-critical slices. However, the effect
of this method on the latency becomes clear again with a look at Figure 5.48. There it
can be seen that the margins for the end-to-end latency, especially for the pessimistic
approach, increase to almost 5ms, since the scheduling latency drops to almost zero
due to the constant availability of resources. By contrast, the data rate efficiency of the
BE slice drops down to 52.22%. Thus, the fixed CGs represent a very latency-focused
approach, whereas mode 1 maximizes channel utilization.

The data-driven ARIMA-based mode 3, which is the major contribution of the
SAMUS framework, represents a good balance between these two extremes, as can be
seen by looking at the data rates in Figure 5.49c, 5.49d and the latencies in Figure 5.48
for modes 3.1 and 3.2, respectively. Moreover, the channel bandwidth utilization is
relatively high with an almost 80% ratio of actual to requested data rate within the BE
slice. Additionally, as data amounts of the mission-critical slices can be predicted very
well, and thus, data can be instantly transmitted, margins for other latency components
of 4.83ms to 4.95ms can be observed. The scheduling latency is zero most of the time.

5.4.4 Conclusion

In this section, we presented 5G network slicing approaches for both the core network
and the radio access network. While the same goal is pursued in both domains, the
implementation is all the more differentiated. Especially in the RAN, machine learning-
supported methods will be indispensable, since the prediction of upcoming data traffic
is a prerequisite for implementing low-latency slices, while still maintaining high
spectral efficiency. This relation was shown here in this section on the basis of our
SAMUS approach, which is able to efficiently trade-off resources between different slice
types.
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Fig. 5.49: Comparison of Data Rates Within the Defined Slices and For All Modes Based on the
Defined Evaluation Scenario. ©[2021] IEEE. Reprinted, with permission, from [54].
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Abstract: For mobile communication networks, radio spectrum resources have always
been a scarce commodity. With the cultivation of millimeter Wave (mmWave) wave-
lengths, a vast amount of spectrumat frequencies above 24.25 GHzhas becomeavailable
to serve the demands of enhanced mobile broadband services and applications of fifth-
generation of mobile communications (5G). However, the higher carrier frequencies
compared with the heretofore allotted spectrum comes with novel challenges for the
operation of a cellular network: The more significant propagation losses require di-
rectional/beam antennas and their directivity needs to be adjusted permanently and
individually per user. In addition, the poor obstacle penetration necessitates a careful
beam alignment based on Line-Of-Sight (LOS) conditions. In case of obstructions, sig-
nal reflection paths need to be leveraged, which may be volatile and time-consuming
to discover. By means of signal quality measurements, a self-contained beam tracking
may maintain the LOS or virtual LOS via reflections to mobile devices. As a further
feature, the directional knowledge of the base station antenna beams can even be
exploited for a bearing-like localization approach allowing for an enhanced network
positioning service compared with cell-level approaches. The sophisticated Software-
Defined Radio (SDR)-based mmWave platform allows for the experimental evaluation
of the mentioned features. The results prove the potential of mmWave communications
for various vehicular and logistics use cases. The lessons learned will go into future
research directions such as smart radio environments. The novel technology of Recon-
figurable Intelligent Surface (RIS) is a promising strategy for improving the capabilities
of the general environment to supply better radio conditions to a wireless channel in
non-LOS conditions. For example, a RIS can purposefully redirect the base station’s
mmWave pencil beam to reach a device in an obstructed area and thus extend the
network coverage. Future integrated, radar-like sensing capabilities of communication
networks are expected to operate at mmWave frequencies due to large bandwidth, high
directionality, and low multipath features promising high-quality measurements. We
show that the channel information of current mmWave systems, beam orientation in
particular, already enables novel sensing applications.
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5.5.1 Introduction

Besides the growing number of Internet-of-Things (IoT) devices with low data rate but
high coverage requirements and applications demanding reliable or low-latency data
transfer, another main direction of impact of fifth-generation mobile networks (5G)
focuses on the enhanced Mobile Broadband (eMBB) services. It is believed that fu-
ture applications such as augmented, virtual, or extended reality necessitate a high-
performance wireless network infrastructure.

While optimizing the utilization of the traditional sub 6GHz radio spectrum in
terms of spectral efficiency, this resource is already heavily used. However, with 5G the
third Generation Partnership Project (3GPP) targets additional spectral resources in the
mmWave domain (particularly from 24.25 GHz to 52.6 GHz in Frequency Range 2 (FR2))
[2, Table 5.1-1]. Frequencies in the THz domain will also be targeted in future mobile
networks promising even larger bandwidths–and use thus a vast amount of resources.
Although these resources ought to enable an enhanced throughput at the air interface,
novel challenges arise due to the higher frequencies.

Unlike the popular misconception, the more severe path loss itself is not the main
issue, because higher frequencies allow for an increased antenna gain within the same
space constraints. With this, the path loss itself is more than compensated. Never-
theless, the increased antenna gain is achieved by a more distinct directivity, which
demands a proper antenna alignment. Phased Array Antennas (PAAs) resolve that issue
by interconnecting multiple antenna elements, so that a sophisticated superposition
of the processed signals allows for an adjustable radiation characteristic known as
beamforming or spatial filtering. A PAA applies phase shifts to the signals of the indi-
vidual antenna elements. For example, at a Uniform Linear Array (ULA), N antenna
elements are uniformly spaced with some distance d (mostly at half a wavelength, so
d = λ

2 ). To create a beam directivity that points towards a direction θ, phase shifts of 0,
ϕ, 2ϕ to (N − 1)ϕ are applied to the respective antenna elements 0, 1, 2 to N − 1 with
ϕ = 2π

λ d cos θ [39, Chapter 6]. Put simply, the number of elements N determines the
beamwidth and antenna gain. In general, a larger N leads to a higher gain and a more
focused beam.

Thismeans that a steerable directivity is feasible and can be achieved electrically or
by software. The transmitter antenna’s beam can be dynamically aligned to a receiving
antenna and vice versa facilitating radio propagation by high transmit-and-receive
antenna gains. However, radio signaling as part of the control plane of the Radio Access
Network (RAN) needs to carry out this alignment task in a timely manner, which could
be challenging due to the volatile radio conditions and the users’ mobility.

For example, the alignment could be performed by means of a potentially time-
consuming discovery procedure such as beam sweeping. The coverable angular space
is iteratively sampled by switching the beam through different pointing directions. In
doing so, the beamwidth constitutes a trade-off between a higher gain and a reduced
number of iterations required to sample the complete angular space. While a precise
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Fig. 5.50: Exemplary heatmap illustration of signal quality measurement during an exhaustive
search (beam sweep). The signal quality is given as Error Vector Magnitude (EVM) with lower values
representing better signal qualities. The red area represents the beam-pointing directions with a
suited signal quality. ©[2020] IEEE. Reprinted, with permission, from [268].

beam alignment is generally feasible in the analog domain, a number of quantized
main lobe/beam-pointing directions as large as the number of antenna elements is
often used to span an angular grid, where the selectable beams have the least possible
overlap [148, Chapter 6].

Although the exhaustive sweep procedure can be accelerated by using multiple
beams in parallel, each beam requires its separate RF-chain which are expensive with
regard to their costs and energy demands. For this reason, it is believed, that analog
or hybrid beamforming, where only a small number of parallel beams is available, is
applicable for mmWave communications.

During a sweep, the measurements of the signal quality can be interpreted as a
heatmap. Figure 5.50 depicts such a heatmap, with the most-suitable directions rep-
resented by the red spots. In a mobile network like 5G, the base station continuously
transmits some reference signals at different beam directions in the downlink, so the
User Equipment (UE) is able to select the strongest one, while performing a sweep with
its receiving beam. Since such systems are defined for Time Division Duplex (TDD),
channel reciprocity can be assumed and the UE can use the determined beam configura-
tion for initially accessing the network and reporting back the suited beamdirection pair.
These directions can subsequently be used for further transmissions/receptions until
the mobile device has moved or some obstruction occurs, which means the measured
beam—dependent signal quality becomes outdated.



378 | 5 Communication Networks

5.5.2 Beam Tracking for Interruption-Free High-Performance Communications to
Mobile Devices

A proper beam alignment is as crucial to establishing a communication link as it is
to maintaining it by tracking the mobile UE. The main drawback of the exhaustive
search is its large search space and exploration time. Also, during this exploration,
the beam points in various directions with weak signal quality, which may lead to
a heavily reduced radio link performance or even a connection loss. For this reason,
other procedures take into account a position or previous direction information and
potentially the device mobility to facilitate an interruption-free utilization of the radio
resources for purposeful data transmissions. This means, that once a proper align-
ment is initially discovered, beam tracking is preferably applied to follow the device
movement. Only in case of a connection loss due to, say, sudden blockage, another
comprehensive exploration might be required for radio link recovery.

In our works [269, 270], we analyze the applicability of beam tracking for supplying
mobile users with mmWave radio links.

As a proof of concept, the position of a mid–flight drone/Unmanned Aerial Vehi-
cle (UAV) is recorded by an optical reference system allowing for a geometry-based, pre-
cise calculation of the required beam-pointing direction. Figure 5.51 gives an overview
of the experimental setup. The UAV movement describes an arc at a fixed distance of
1.8m from the stationary active antenna/PAA. The central experiment logic controls
this movement, processes the UAV position, sends corresponding beam-pointing com-
mands and logs the measured performance indicators such as signal quality and data
rate. In addition to the PAA’s beam alignment, the passive horn antenna at the UAV
can be aligned horizontally by means of the UAV’s yaw rotation.

The evaluation results are condensed in the time-series graphs of Figure 5.52. When
only the yaw rotation of the UAV is used to align the passive antenna at the UAV, the
communication link is active only within a small range around the center direction,
which is where the PAA is configured to point at in the static case. On the contrary, when
only the PAA’s pencil beam is continuously aligned towards the UAV, the misalignment
of the horn leads to connection losses. Since the horn has a wider beamwidth, the
tolerance for a misalignment is larger. Finally, when both transmitter and receiver
antenna are continuously aligned to each other, a stable link is observed in terms of a
constantly high data rate of about 2.8 Gbit/s. This proves the general applicability of
mmWave communications utilizing PAAs for beam alignment in scenarios with mobile
users.

Since external position knowledge might not always be available and could require
an additional, beam-alignment independent control link (for example at a conventional
sub-6 GHz band) for reliable reporting, a self-contained beam tracking approach based
on signal quality measurements is evaluated in [270]. Besides keeping the beam at a
direction with a still acceptable signal quality, better beam-pointing directions need to
be explored during a temporary impairment of the signal quality. In general, there is a
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trade-off between the detail of exploration and the perceived signal quality by leverag-
ing the aligned beam’s gain, since the beam needs to be intentionally misaligned to
explore the device’s moving direction. Assuming that the device motion tracking under
Line-Of-Sight (LOS) conditions requires only gradual changes in the beam-pointing
direction, the search space can be substantially limited to the adjacent directions. For
example in [270], a 3×3 grid in the azimuth and elevation plane of the angular space of
beam directions is spanned centered at the last acceptable signal-quality direction. In
doing so, every scanning cycle consists of as few as nine signal quality measurements
and the subsequent search grid is centered on the direction with the highest signal
quality. Although this appears to misalign beams in most cases, the small amount
of measurements per cycle allow for low grid spacing below the beam width as long
as the sample rate is significantly higher than the device’s relative angular velocity.
With this, the connection can still be maintained during the exploration. The minor
reduction in antenna gain due to the slightmisalignment can be compensated for by the
communication system. For an experimental evaluation of this approach, the device
motion is emulated in a reproducible fashion with a precise reference by using a rail
system.

The statistical results of this empirical analysis is depicted as violin plots in Fig-
ure 5.53. While the signal quality is represented by the Error Vector Magnitude (EVM),
where a lower value corresponds to a higher signal quality, the link performance is
evaluated in terms of data rate. The emulated mobile device velocity is converted to
the related maximal tracking dynamics from the antenna’s perspective. A small explo-
ration grid spacing of ∆ = 1∘ reduces the decline of the antenna gain due to a reduced
misalignment only at low relative velocities, since this step size is not sufficient to keep
track of the motion at higher dynamics. A larger spacing of ∆ = 5∘ deteriorates the link
performance or may even lead to connection losses due to severe beam misalignments
during exploration. Finally, the grid spacing needs to be fitted to both the device’s
velocity and the antenna’s beamwidth. In the conducted test setup, a grid spacing of 3°
empirically turned out to be a reasonable tradeoff. The results of laboratory evaluation
thus prove, that a high–performance communication link can be maintained even for
considerable device velocities.

With respect to the utilization of the novel radio resources at the mmWave domain,
this beam tracking approach allows for efficient utilization of the spectrum by reducing
the link outage due to lengthy exploration phases. In addition, the directional trans-
missions via pencil beams facilitate dense spatial reusability of these resources, since
the interference within the mobile network is reduced.

As an outlook, future beam tracking techniques may incorporate reinforcement
learning approaches to solve the exploration–exploitation tradeoff dilemma between a
comprehensive exploration of beam-pointing directions with their associated signal
qualities and a perfectly aligned beam with ideal signal quality conditions for data
transmissions. In doing so, dynamic and reactive adjustments of the search space
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Fig. 5.53: Statistical beam-tracking evaluation. For exploring grid spacings ∆ of 1°, 3° and 5°, the
signal quality in terms of Error Vector Magnitude (EVM) and the link performance in terms of data
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values at ∆ = 3∘ constitute a reasonable configuration with a stable link performance even at the
highest tracking dynamics. ©[2019] IEEE. Reprinted, with permission, from [270].

(grid shape and spacing, for example) are conceivable according to the anticipated
movement of the device.

5.5.3 Dual-use of Beam Alignment Information for Positioning of Mobile Devices

Although a proper beam alignment embodies a new challenge tomobile networks, once
gathered the direction information could also be used for a bearing-based positioning
service, as addressed in [268]. Conventionally, cellular network-based positioning
utilizes signal-strength measurements in conjunction with propagation loss models,
signal travel time, or propagation delaymeasurements (such as those used for the timing
advancemechanism) for distance-based positioning or lateration. With the necessity
for directional transmissions, angle-based methods utilizing direction information as a
bearing are conceivable at the mmWave domain. By means of two or more intersecting
bearings and known base station positions, a user-position estimate can be provided on
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Fig. 5.54: A cross-bearing-based positioning utilizing mmWave beam alignment information. With
known base station positions and beam directions as bearings, the mobile device position can be
estimated as the intersection of the bearings. ©[2020] IEEE. Reprinted, with permission, from [268].

top of the ongoing wireless communication. In doing so, the accuracy strongly depends
on the distance or constellation and the resolution of the direction finding.

Figure 5.54 illustrates the basic concept of this approach, which derives its origins
from sea travel’s cross-bearing. The estimated position r̂target is defined as the position
vector that minimizes the squared distance to the (two or more) lines spanned by the
base station position vectors ri and its beam-pointing direction di as direction vector.
As a result, the position estimate is given as least squares approximation (with I as
identity matrix):

r̂target =
(︃∑︁

i
I − didTi

)︃−1(︃∑︁

i
(I − didTi )ri

)︃
.

From an exhaustive sweep, the direction vector di is estimated based on the beam-
pointing direction with the highest signal quality. Since the area with reasonable signal
quality turns out to be rather flat but noisy, this estimate is rather imprecise. For this
reason, the centroid of the red region, which contains the highest signal quality, is taken
as the improved direction estimate. In addition to the geometric location and orientation
of the base station antennas, systematic deviations between the commanded and the
actual pointing direction of the antenna beams are compensated. The experimental
evaluation indicates the applicability of this approach and is depicted in Figure 5.55. In
general, within the laboratory setup, a 3D Euclidean positioning error in the centimeter
range is observed. The post-processing compensation for systematic deviations further
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improves the estimated position and thus illustrates the potential of bearing-based
mmWave positioning. Further details about the experiments can be found in [268].

The direction exploration as well as the post-processing compensation may be
subject to machine learning-based optimization techniques introducing automated
trade-off decisions between the resource utilization and positioning precision during
runtime.

Nevertheless, hybrid procedures could combine distance measurements and bear-
ings for a further enhanced positioning service of mobile networks. The large available
bandwidth at the mmWave domain could be attractive for pseudoranging or Time Dif-
ference of Arrival (TDOA) considerations. The application of TDOA-based positioning
utilizing the Ultra-Wideband (UWB) technology is analyzed inmore detail in Section 3.5.

Due to the challenging propagation characteristics at themmWave domain, a dense
deployment of mmWave base stations is required and may lead to an enhanced system
performance by utilizing approaches such as Coordinated MultiPoint (CoMP) or Dual
Connectivity (DC), so the connection of one UE with multiple base stations at a time.
Within a mobile network, the proposed positioning mechanism can be applied for both
the downlink as well as the uplink direction. While the Angle of Departure (AoD) of the
base station downlink beams could be signaled to the UE together with a map of base
station positions to perform the positioning at the UE, the Angle of Arrival (AoA) of the
base station uplink beams could be utilized to perform the task on the network side.
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With the former providing reportedly sensitive information of base station positions
to the UE, the latter alternative requires an active transmission of the UE, but no addi-
tional utilization of radio resources/signaling overhead leading to a resource-efficient
positioning solution. In both cases, a preferably accurate direction estimate is required
for positioning, which might be feasible only in case of a high-resolution sampling
of the angular exploration space. Additionally, a Dilution of Precision (DOP) can be
observed at acute angles between the intersecting bearings, so an elaborate placement
of base station antennas might be advantageous.

5.5.4 Integration of High Priority mmWave Links into an End–to–End System
Architecture

As part of 5G, the mmWave spectrum contributes to the available resources at the Radio
Access Network (RAN). End-to-end applications between users (humans or machines)
and services come with various requirements, which differ greatly from each other.
Within an end-to-end systemarchitecture, amobile network needs to be agile andutilize
the available resources at both, the core network and the RAN so that the application
requirements can be fulfilled. As already elaborated in Section 5.4, network slicing is
introduced to define virtual networks with certain configurations regarding throughput,
latency, reliability, and others. Based on this, each application is dedicated to a specific
slice that not only supplies the required performance, but also remains unaffected
by traffic fluctuations or shortcomings of other slices of the same mobile network. To
illustrate the potential of this slicing, our work [266] presents a system concept and an
experimental evaluation of an unaffected and prioritized communication link among
other best-effort traffic.
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The overall system architecture design is depicted in Figure 5.56. To ensure the Qual-
ity of Service (QoS) requirements, the proposed Software–Defined Networking (SDN)
Management and Network Orchestration (MANO) controller affects both RAN and core
network. At the RAN, multi-RAT base stations are capable of directing the data traf-
fic flow to and from UEs through different air interfaces according to the guidelines
from the SDN MANO controller. For example, a conventional LTE link can be used
in parallel with a 5G New Radio (NR) link at the mmWave domain at different Dis-
tributed Units (DUs) of the same base station. At the same time, the base station Central
Unit (CU) is connected to the core network, where Virtual Network Functions (VNFs)
dynamically allocate resources as required to operate the appropriate services. Finally,
this design ensures end-to-end QoS within the whole mobile network. An experimental
proof of concept study can be found in [266], where the Software-Defined Radio (SDR)
and SDN-based components of the experimental setup allow for high flexibility and
adaptability.

5.5.5 Intelligent Reflectors for Enhanced Propagation and Coverage under
Non-Line-of-Sight Conditions

In addition to the discussed propagation loss and the need for directional transmissions,
mmWave signals barely penetrate materials. As a consequence, the outdoor-to-indoor
coverage is rather poor and obstructed areas need to rely on the presence of suited
reflection paths. These reflection paths in turn are volatile and need to be explored by
means of a potentially time-consuming discovery procedure such as the aforementioned
beam sweeping. The beam management needs to provide routines to recover from link
blockages and to switch between propagation paths, whenever the LOS condition
varies. Taking the NLOS propagation into account, several challenges arise regarding
the mobility support, which is doubtless a crucial feature of mobile radio networks.
However, especially in dense urban scenarios, frequent LOS obstructions may demand
sophisticated procedures to facilitate radio links via reflection paths.

With the novel concept of smart radio environments and the Reconfigurable Intelli-
gent Surface (RIS) technology, the radio channel itself becomes modifiable to enhance
the transmission performance. While much research concentrates on the optimization
of transmitter and receiver techniques, the idea of this concept is to deploy elements (sur-
faces) with controllable reflection characteristics in the environment. Hence, these RISs
act as dynamically controllable passive reflectors. In this way, they enable the purpose-
ful utilization and adjustment of reflection paths allowing for an enhanced tracking
capability of user devices with an obstructed line-of-sight to the base station. [46]

In our work [267], we highlight the potential of RISs for an enhanced mmWave net-
work coverage at an urban campus scenario, as illustrated in Figure 5.57. The simulation
model is based on our previous work [631] and extended to also account for RIS.
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Fig. 5.57: Simulation scenario for a RIS-enhanced coverage study. With LOS coverage marked in dark
green, colors according to the RISs are used for the road sections with NLOS conditions, which are
covered by the respective RIS reflected paths. ©[2020] IEEE. Reprinted, with permission, from [267].

As depicted in Figure 5.58, the base station deployment only leads to a poor LOS cov-
erage. The corresponding path loss lies only 23% within the expected link budget
of 142 dBm. However, the utilization of RIS reflection paths enhances the overall net-
work coverage. For the alignment of the RIS reflection, distorted information about
the target location is assumed. The true UE position is superimposed by a zero–mean
normal distribution with standard deviation σ. The Empirical Cumulative Distribution
Function (ECDF) of the path loss illustrates, that a coverage of 91% is achievable in the
case of σ = 3m, for example. Even a comprehensive coverage is feasible due to the RIS
placement in this evaluated scenario.

As a result, the deployment of RISs for smart radio environments may not only
lead to an enhanced network coverage; it also allows for an improved efficiency in
terms of energy and spectral resources, since the controlled reflections may reduce
the exploration overhead of beam management algorithms as well as the required
transmit power for sufficient signal strengths at the receiver. Nevertheless, an elaborate
control of the RISs may require some radio resources for both measurements and signal
suitable reflection paths. Finally, the RIS placement task may play a part in the network
planning procedure and could be realized by means of machine learning approaches
focusing on a cost–efficient way of providing a comprehensive network coverage.
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5.5.6 Towards Perceptive mmWave Networks by Channel Sensing

Over the past decade, it has been shown that radar and communication functionalities
may be provided by Joint Communication and Radar/Radio Sensing (JCAS) systems,
because the employed OFDM waveform of current 4G/5G networks and WLANs is also
suitable for radar services [657]. Nowadays, a deep integration of radar-like sensing
services is expected for 6G, thus allowing communication networks and their entities
to become perceptive of the immediate surroundings. Such information may then be
used to optimize the network performance by, say, supplying mmWave beam sweeping
and tracking algorithms with user position and mobility information. Such information
may also be used in the sub-6GHz band, e.g. to assist handover decision making.

Radar systems are capable of detecting targets by analyzing the reflected waves of
its own transmit signals over time. Through the use of large bandwidths and sweeping
of highly directional antennas, it is possible to estimate distance, velocity, and angle
information of the detected targets with high accuracy. Typical radar systems operate at
very high frequencies, for example mmWaves or beyond, where multipath-based distor-
tions are mitigated such that the high resolution due to bandwidth and directionality
comes to fruition. Moreover, the imaging of the surroundings is also possible with radar
technology. Considering the particular compatibility between radar requirements and
mmWave communications, this is an opportunity for network operators to offer new
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Fig. 5.59: (a) Scalability analysis of a subsidence process (gradual sinking of up to 5mm) affecting
a suburban house. (b) Distribution of mean incurred error throughout ∆z-traversal for various UE
mounting setups. ©[2021] IEEE. Reprinted, with permission, from [253].

services to the public, such as sensing-assisted traffic, but it also offers the prospect of
process optimization in industrial facilities employing private network solutions.

However, the integration of radar functionality into mmWave communications still
has a long way to go. For example, there is a need for hardware and signal processing
enhancements. Nonetheless, radio-based sensing features such as user positioning
have been available for more than two decades and steadily been enhanced ever since.
Such sensing is enabled by analyzing the properties of one or more channels between
the network and the user equipment entities. A large number of channel-based services,
such as vehicle detection and classification (cf. Section 4.2), have already been proposed
in literature [753]. These have been designed predominantly for sub-6GHz WLANs, yet
led to the recent launch of IEEE 802.11bf Wi-Fi Sensing standardization which even
pertains to the mmWave domain.

With the inclusion of mmWave frequencies into the 5G standard, 5G positioning
was successively adapted to allow the facilitation of mmWave beam information which,
for example, enables angle-based positioning, thus enhancing the network’s location
services by new methods (cf. Section 5.5.3). Our work [253] followed a similar approach
and considered the use of pencil beam orientation information to enhance traditional
channel phase tracking-basedmeasurements of relative motion and vibrations. By com-
bining the movement information of several UEs along the LOS path beam orientations,
we showed that millimeter range motions may be reconstructed in 3D space with less
than 10 µm error. (See Figure 5.59 for the detailed results of a sample scenario.) Our full
scalability analysis suggests that the usage of 4 to 5 distinct spatial link opportunities,
which are expected in typical urban deployments between a single TX-RX pair, is a
sensible choice. Therefore, high accuracy 3D motion tracking could in the future be
conducted with a single-user device exploiting several distinct propagation paths to the
network. Our ongoing work is evaluating the achievable beam orientation accuracy and
the consequences of misalignment in the prior two contexts. Nonetheless, by showing
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that future sensing features may already be realized with current mmWave technology,
we point out the need for more research on this area because such techniques may also
allow mobile networks to become more perceptive of its surroundings.

5.5.7 Concluding Remarks

In this section, the potential of mmWave communication has been elaborated with
insights into several promising areas of research. The novel mmWave spectrum for
mobile networks embodies a great opportunity for various future applications due to
the vast amount of available spectral resources as well as the peculiar radio channel
conditions. The demand for directional communication offers less interference and
better spatial reuse of the spectral and time resources. According to the results of
our presented works, the challenge of a proper beam alignment appears manageable
and beam-based positioning can be provided as an additional feature. Also, there are
concepts for integrating the novel spectrum into the overall mobile network capacity
in terms of network slicing as shown in terms of a systems perspective. Last, the field
of application will be further enhanced by the introduction of the novel concept of
smart radio environments, where RISs support the propagation of mmWave beams
and thus enhance the comprehensive network coverage in obstructed areas. Via an
outlook on future perceptive networks, we showed that current networks could already
partially enable novel sensing applications as expected for 6G. Therefore, research
should further investigate and test sensing techniques that employ mmWave beam
orientation information alongside the ongoing development of a 6G JCAS framework.
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6 Privacy

6.1 Keynote: Construction of Inference-Proof Agent Interactions

Joachim Biskup

Abstract: To comply with the social issue of preserving privacy or pursuing other confi-
dentiality requirements, we outline a broad range of conceptual solutions to a task of
computing engineering: configuring the formal interactions of an individual’s informa-
tion systemagentwith the client agent of a communication partner in an inference-proof
manner. Here inference-proofness means the following. A security mechanism shield-
ing the system agent under the individual’s control is reducing the information content
of the messages sent to the client agent such that the partner would not be able to learn
any information to be kept confidential under the individual’s confidentiality concerns.
This goal has to be provably guaranteed even if the communication partner as a rational
reasoner will exploit not only a priori knowledge about the application underlying
the communication acts but also additional background knowledge comprising both
a complete specification of the interaction semantics and the full awareness of the
security mechanism.

6.1.1 Foreword: Intended Audience

This contribution gathers, unifies, clarifies, and explains in depth the concepts and
insights of a dedicated line of research and development within one of the basis sub-
fields of IT-security, namely user-centric, self-determinative, and computer-supported
enforcement of confidentiality interests, including the preservation of privacy at the dis-
cretion of the individuals involved. The own contributions started around two decades
ago (see the brief bibliographic notes in Section 6.1.7), at the beginning inspecting the
evaluation of sequences of closed queries by a database management system, such
as a relational database system, the abstract semantics of which are based on a frag-
ment of first-order logic. Understanding IT-security as a comprehensive problem of
both organizational and computational issues, over the time, it becomes more and
more demanding to expand to further operations like, e.g., transaction management
for mixed query and update operations by more expressive information processing
systems. At the end, dealing with procedural program execution as a service of any
kind of knowledge- and belief-management system would be the ultimate goal.

The broader the range of particular operations by specific computing systems,
in each case treated by appropriate highly sophisticated means, the more urgent the

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
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need to identify useful abstractions for the computational issues and to reconsider
the supportive organizational issues becomes. Regarding the first point, we abstract
the object of protection to be the epistemic state of an intelligent computing agent
participating in a multi-agent computing configuration. Regarding the second point,
we explicitly expand all the intuitive assumptions underlying the various computational
protection efforts into a framework of eight basic features, to which then the formal
notion of the kind of protection we want to mathematically verify refers.

Experts in the fundamentals of IT-securitymight benefit from this article by learning
the carefully elaborated essence of a large number of highly specialized publications.
Computer scientists with a broader expertise in the field of confidentiality enforcement
might be encouraged to generate a similar retrospective of their own line of research and,
maybe, to fill someof themany gaps in the list of operations already treated. Researchers
working on machine learning and embedded systems with a strong interest on security
issuesmight also be triggered to fill those gaps forwhich theyhave appropriate expertise.
Other researchers working on machine learning and embedded systems might gain
detailed exemplary insights into the subtleties of integrating purely functional aspects
with concise security considerations. They might further reflect on the related notions
of (syntactic) data on the one hand and inferred (semantic) knowledge and belief on the
other hand underlying their ownwork, and theymight consider the design of an overall
system architecture of their interest where the security measurements are appropriately
located. Finally, admitting that this article deals only with a possibilistic version of
confidentiality, all kinds of readers might think of and contribute to generalize the
entire approach to probabilistic considerations.

6.1.2 Confidentiality-Preservation and Inference-Proofness

Since time immemorial, among many other activities, and in a closely intertwined man-
ner, people have reasoned as individuals by acquiring, structuring, keeping, and ex-
ploiting information to make up their respective minds and behaved as social creatures
by communicatingwith others. With the advent of computing technologies, individually
dealing with information and socially communicating have been partly delegated to
computing agents. On the one hand, the delegation is meant to facilitate routine tasks
or even enhance human capabilities.

On the other, depending on the context, as delegators, individuals at their discre-
tion or groups of them according to some socially accepted norm aim to still control
the computing agents executing protocols as their delegatees, or at least the human
delegators should appropriately configure the computing delegatees.

Being aware of the resulting reduction, and somehow simplifying, we can map
concepts of human reasoning and communication to the inference protocols and inter-
action protocols of their computing agents and, correspondingly, actually performed
human activities to protocol-complying computing process executions. Under such a
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Fig. 6.1: Two reasoning and socially communicating human individuals and their protocol-based
interacting computing agents as part of a larger community and the corresponding multi-agent
computing configuration.

reduction, and even more simplifying, a group of human individuals is modeled to be
complemented by amulti-agent computing configuration. In this model, each human
individual controls a dedicated computing agent that, at least partly and by means of
protocol executions, both deals with the information owned by that individual, in partic-
ular by internally deriving an epistemic state from a chosen information representation,
and mediates the communications of that individual, in particular by sending and
receivingmessages according to one or more agreed interaction protocols. Figure 6.1
illustrates the sketched scenario.

Though, in principle, each individual can act in diverse roles and, correspondingly,
each controlled computing agent can execute diverse protocols, we further specialize
the model sketched above in focusing on only two individuals together with the respec-
tive computing agents. One individual is seen as an information owner controlling an
information system agent, and the other individual is treated as a cooperating commu-
nication partner employing a client agent. Moreover, to enable cooperation, in principle
the information owner is willing to share information with the communication partner.
However, complying with privacy issues or pursuing other confidentiality requirements,
as an exception from sharing, the information owner might want to hide some specific
pieces of information.
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Fig. 6.2: The framework of a defending information owner with his information system agent and an
attacking communication partner with his client agent (showing suspected but inaccessible parts in
blue). See Figure 1 on page 82 of [73], © IFIP/Springer 2020.

Slightlymore concisely, and visualized in Figure 6.2,we assume the following framework
with eight features.
1. [Epistemic state of the information system agent as a single object of protection.]

The human information owner does not deal with information processing and
reasoning by himself but only provides the inputs to the information system agent
under his control. At each point in time, that agent is internally deriving a formally
defined epistemic state.

2. [Mediation of human communications by interacting computing agents.]
Once having agreed on cooperation, the human information owner and his human
communication partner do not communicate directly with each other, but only
mediated by the computing agents under their respective control.

3. [Dedicated access permissions for information sharing.]
Independently of the actual epistemic state, the information owner has granted
dedicated access permissions to his communication partner. These permissions
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declare that over the time the client agent of the partner may interact with the
information system agent of the owner following some explicitly chosen interaction
protocols that exclusively refer to the internal epistemic state of the information
system agent.

4. [Exceptions by explicit prohibitions designating pieces of information.]
Also independently of the actual epistemic state, the information owner has ex-
plicitly declared exceptions from the dedicated access permissions in the form of
prohibitions. Each prohibition specifies a piece of information that the communi-
cation partner should not be able to learn. More precisely, with each prohibition
expressed in terms of the information systemagent and thus in reference to possible
epistemic states, the communication partner should never be able to become sure
about the actual validity in the epistemic state of the information system agent. In
other words, from the partner’s point of view it should always appear to be possible
that the prohibited piece of information is not valid in the epistemic state of the
information system.

5. [Partner suspected to reason about the validity of prohibitions.]
Though the client agent is restricted to follow the interaction protocols of the access
permissions exactly, the human communication partner can choose any sequence
of permitted commands. Moreover, the partner is assumed to have unlimited com-
putational resources when rationally reasoning about the validity or non-validity
of a prohibited piece of information.

6. [Security mechanism implanted in the owner’s information system agent.]
To actually enforce the confidentiality requirements of the information owner, the
information system agent is enhanced by some implanted security mechanism
that should shield the underlying information processing from direct contact with
the client agent. That security mechanism first inspects each message to be sent
by the information system agent to the client agent according to the pertinent
interaction protocol whether a violation of the information owner’s confidentiality
requirements would be enabled on the side of the communication partner. If this
is the case, the security mechanism then alters the message such that the message
is still as informative as possible but all options for a violation are blocked.

7. [Reasoning supported by a priori knowledge and background knowledge.]
First of all, the communication partner’s rational reasoning about the internal epis-
temic state of the information system agent is based on the messages exchanged
by the respective computing agents. These messages are completely known to both
agents. Additionally, the partner’s rational reasoning is presumed to be supported
by some a priori knowledge about the application dealt with in the cooperation
between the two individuals involved and additional background knowledge com-
prising both a complete specification of the interaction semantics and the full
awareness of the security mechanism (possibly even including the prohibition dec-
laration) and, most notably, nothing else.
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8. [Principle inaccessibility of the partner.]
The internals of both the human communication partner and his client agent are
considered to be principally inaccessible for the information owner and his system
agent. This implies that the latter ones can only rely on assumptions about the
details of the a priori knowledge and a postulation about the background knowledge
available to the former ones.

These features can still be formally instantiated in various ways. In all cases, we follow
a martial-sounding but common terminology, which ignores that in many scenarios
an individual involved as communication partner will primarily be treated as cooper-
ating in a friendly manner, rather than as a “total enemy”. At least partially trusted
for consciously sharing information in principle and correctly executing the agreed
interaction protocols, the communication partner—together with the client agent con-
trolled by him—is denoted as a semi-honest attacker, suspected to potentially aiming to
maliciously infer the actual validity of pieces of information that the information owner
has declared to be kept confidential. Accordingly, the information owner—together with
the information system agent controlled by him—is denoted as the defender.

Now, the security mechanism has to invariantly enforce a suitable version of the
following security policy of (possibilistic) inference-proofness, which also specifies the
attacker model: For each prohibited piece of information ψ, the information content of
messages sent to the attacking client agent—which is possibly enhanced by reasoning
capabilities supplied by the human communication partner—during executions of
agreed interaction protocols will never enable the attacking receiver to rationally infer
that ψ is valid in the epistemic state, even when
– inspecting the complete history of preceding interactions,
– considering some a priori knowledge about the possible epistemic states,
– applying the semantics of the agreed interaction protocols, and
– being aware of the functionality of the security mechanism.

The concept of rationality on the side of the attacker is then captured by the following
rephrasing of the still to be suitably versioned security policy of inference-proofness in
terms of indistinguishability (as roughly visualized by Figure 6.3):

For each prohibited piece of information ψ,
for each epistemic state d satisfying the a priori knowledge,
for each sequence of messages mes1, . . . ,mesk
exchanged during an interaction history
complying with the agreed interaction protocols
but potentially altered by the security mechanism

there exists an “alternative” epistemic state d′ such that
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Fig. 6.3: A rough visualization of the requirement of inference-proofness: “for each ψ, for each d, for
each mes1 , . . . ,mesk, there exists d′ such that . . .”.

1. the same sequence of messages would be generated, in compliance with the agreed
interaction protocols and subjected to the alterations by the security mechanism,
but

2. ψ is not valid in d′.

For this rephrasing, the epistemic state d is thought as actually derived by the infor-
mation system agent—for short, “stored”—and might satisfy the prohibited piece of
information ψ or not. The former case implies that the alternative state d′ required to
exist is different from d; in the latter case, the actually stored state d and the alternative
state d′ might be the same. Accordingly, declaring ψ as a prohibition does not intend to
block any option that enables the attacker to infer the non-validity of ψ.

Confidentiality as inference-proofness could be trivially achieved by granting no
access permissions at all or altering the information content of all messages sent to
the attacker to nothing, violating any conflicting availability requirements and shutting
down any communicationmediated by the respective computing agents and, thus, mak-
ing the whole thing useless. Accordingly, confidentiality requirements and availability
requirements always have to be suitably balanced.
All our work focuses on the following three-level conflict resolution strategy:
1. As a general rule, some dedicated access permissions are granted for the sake of

availability, to be freely enjoyed by the client agent, insofar as they do not conflict
with level 2 of the strategy.
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2. As exceptions from the general rule, specific prohibitions are declared for the sake
of confidentiality that never must be violated and, thus, these prohibitions have to
be enforced by alterations made by the security mechanism, but to comply with
level 3 of the strategy only insofar as definitely necessary.

3. As a limitation for the effect of exceptions, the alterations made have to be minimal,
again for the sake of availability.

Given the access permissions on the first level, the second and the third level lead to a
combination of a constraint solving problem and an optimization problem.

Our simplified defender-attacker agent model still allows many instantiations and
versions, respectively. For our concrete ongoing research, and accordingly for this
article, we grossly distinguish the structures of three fundamental data types for an
information system, namely abstract data sources, propositional knowledge or belief
bases, and first-order relational databases.

For each of these data types—considering suitable refinements—we deal with the
pertinent operations, which in our case are the interactionswith a client agent, com-
prising in all cases at least
– closed-query /yes–no-query evaluation with response preparation,

performed repeatedly with queries that in general are different;

and, depending on the refinement, additionally
– open-query evaluation with response set preparation,

performed repeatedly with in general different queries;
– view generation,

performed only once, since the attacker can freely employ a received view at his
discretion instead of contacting the defender again;

– view updating,
possibly performed from time to time, if manageable at all;

– knowledge update transaction,
performed repeatedly usually intertwined with queries;

– belief revision,
performed repeatedly usually intertwined with queries evaluated under non-
monotonic reasoning;

– procedural program execution,
performed repeatedly with in general different input parameters;

– data outsourcing,
performed only once.

Tailored to the respective refinement, we propose and study alterations to the available
interactions to ensure inference-proofness. There are two basic approaches to alter-
ations, namely weakening the pertinent information about the actual epistemic state
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and lying about the pertinent information about the actual epistemic state, allowing or
even requiring appropriate refinements and combinations of weakening and lying.

6.1.3 A Generic Construction Methodology for Alterations

We can design and verify basic kinds of alterations according to the following generic
construction methodology, which refers to the eight features of the framework de-
scribed in Section 6.1.2. According to Feature 1, at each point in time, the defending
information system agent is privately deriving its actual epistemic state. According to
Feature 3, this state is then taken as the basis for the data contained in the messages
to be sent to the attacking client agent during an interaction complying with some
agreed protocol, for which some dedicated access permissions are granted. According
to Feature 5, the attacker is suspected to aim at gaining asmuch information as possible
about the defender’s actual epistemic state, in particular whether a prohibited piece
of information is valid in that state. In general, however, the attacker will face some
uncertainty about that state, since (i) by Feature 2, there are no direct communication
acts between the human individuals involved and, (ii) by Feature 6, the attacker has
been separated from the defender’s underlying information processing by the shield of
the implanted security mechanism and the interactions are restricted to the exchange
of messages. According to Feature 4, the attacker’s uncertainty should always include
that any prohibited piece of information might be not valid in the defender’s actual
epistemic state.

Conceptually, the attacker’s uncertainty can be captured by the set of those epis-
temic states that appear to be possible to him. According to Feature 7, an epistemic state
qualifies to be possible if it is compatible with both the potentially altered messages
observed so far and the already initially available a priori knowledge and background
knowledge. All the qualifying epistemic states together form the least uncertainty left
to the attacker, i.e., the best achievement to satisfy his suspected curiosity:
– exactly one of the qualifying epistemic states is the actual state;
– all other qualifying epistemic states could possibly be the actual state as well;
– all non-qualifying epistemic states can definitely be excluded from being the actual

one.

At the point of time t, we call the set bestcvt of the then-qualifying epistemic states the
attacker’s best current view (on the defender’s actual epistemic state). In doing so we do
not care whether or not the attacker really achieves exactly this optimal result. However,
on the one hand, the kind of protection wanted by us is strongly based on the presumed
rationality of the attacker: he definitely will never miss to identify an epistemic state
as qualifying. On the other hand, he might be too lazy to exactly identify all actually
non-qualifying epistemic states. In other words, the attacker might work with either
the best current view bestcvt or any superset of it. Under this condition, the security
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Fig. 6.4: A rough visualization of a pertinent security invariant.

policy of inference-proofness essentially requires that the best current view bestcvt still
reflects sufficient uncertainty, namely that for all prohibited pieces of information ψ
there exists an epistemic state d′ ∈ bestcvt such that ψ is not valid in d′.
Fortunately, the defender’s security mechanism does not need to determine the at-
tacker’s best current view bestcvt, and the mechanism would not be able to carry out
such a determination, due to the inaccessibility of the partner’s internals according to
Feature 8. Instead, it suffices to maintain an appropriate simulated current view simcvt
that approximates the inaccessible behavior of the attacker and to enforce the following
security invariant for all points in time t, or sometimes even a stronger one (as roughly
visualized by Figure 6.4):
– simcvt ⊆ bestcvt, i.e., the defender approximates the attacker’s uncertainty from

below, potentially underestimating but never overestimating the uncertainty;
– for all prohibited pieces of information ψ there still exists an epistemic state d′ ∈

simcvt such that ψ is not valid in d′.

Moreover, in general the security mechanism will work with some concise (i.e., algo-
rithmically treatable) representation rep(simcv) and algorithmically check the security
invariant in terms of the pertinent representation.

Now, such a simulationwould then be initialized at the point in time t = 0 by setting
rep(simcv0) according to a suitably concise representation of the (assumed) a priori
knowledge. This requires the natural security precondition that the a priori knowledge
does not violate any prohibition. In fact we cannot prevent the attacker from “learning”
what he is already sure of.

Inductively, at the point in time t + 1, the simulation should contain a suitably
concise representation rep(simcvt) of an appropriate set simcvt of epistemic states. Then,
for the functionally correct messages to be sent to the client agent—and in some cases
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Fig. 6.5: A rough visualization of the basic steps of inductively enforcing a security invariant.

for some suitably determinedmodifications as well—the securitymechanism first has to
inspect the consequences of tentatively updating rep(simcvt) accordingly, i.e., whether
or not the security invariant would be violated. In case of a violation, the security
mechanism then has to identify suitable alterations that definitely avoid the violation.
Finally, the possibly altered messages are actually sent out, and the simulation is
actually updated accordingly, now ensuring the security invariant. Figure 6.5 visualizes
the basic steps of these actions though the form is not universally applicable.
So we are left with the most crucial points of our construction methodology:
1. maintaining a convenient data structure for a “suitably concise representation

rep(simcvt) of an appropriate set simcvt of epistemic states”;
2. checking tentative updates for violations of the security invariant, preferably aiming

at the approximately best computational complexity; and
3. as far as required, efficiently identifying suitable alterations, preferably without the

need for a further explicit violation check.

Moreover, each specific situation dealt with might require some variations, in partic-
ular regarding the points in time to be considered. Let us first consider situations for
which the defender’s epistemic state is kept fixed over the time. If the sequence of
interactions to be treated consists of only instantiations of the most basic interaction—
closed-query/yes–no-query evaluation with response preparation—then the successive
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points in time are essentially determined by the defender receiving the next query,
which asks for the validity of a single piece of information in the defender’s fixed
epistemic state.
If the sequence of interactions also contains instantiations of the more advanced in-
teraction of open-query evaluationwith response-set preparation, then the response
set can be formed by iteratively inspecting an internally generated sequence of closed
queries, each of which is either a ground substitution of the open query (i.e., obtained
by replacing free variables by constant symbols) or a specifically defined completeness
sentence (dealing with “negative information”). Accordingly, for the point in time of
receiving the open query, basically shared with the attacker, the defender privately
determines a sequence of subpoints in time. Similarly, if the sequence of interactions
also contains an instantiation of view generation for the fixed state, a response can
be formed by internally inspecting a somehow exhaustive sequence of closed queries,
also leading to a private sequence of subpoints in time. Alternatively, a view can be
generated by inspecting suitably defined open queries, as explained above, leading to
the respective private sequences of subpoints in time.

In general, however, the epistemic state of the defender might change over the time,
raising additional issues, especially when it comes to finding an inference-proof way
for
4. resolving conflicts between confidentiality and integrity, and
5. ensuring backwards confidentiality.

Basically, a confidentiality–integrity conflict might occur if the request for a change
of the defender’s epistemic state originates from the attacker. In general, with regard
to pure functionality, the information system agent has to perform a transaction that
first tentatively changes the state as requested and then checks whether or not the new
state complies with all semantic constraints that are declared to be maintained as an
integrity invariant according to the underlying application and, thus, assumed to be
part of the a priori knowledge; for a relational database such a declarationmight be part
of the database schema, but in all cases such a declaration might also be expressed
externally. In case of compliance, the transaction is committedmaking the tentative
change persistent; otherwise, in case of non-compliance, the transaction is aborted,
recovering the previous state. In both cases the requester is notified accordingly.

However, with regard to a security policy of inference-proofness, the respective
functionally correct notification can be seen as a response set to one or more appropri-
ately constructed closed queries. This response set might enable the attacker to learn
the validity of some piece of information contained in the prohibition declaration, i.e.,
incorporating the response set to the (concise representation of the) simulated current
view would violate the required security invariant. Consequently, the resulting conflict
has to be resolved by either suitably modifying the transaction functionality or altering
the response set leading to the actually returned notification, as already outlined for
queries, or combining both activities.



6.1 Keynote: Construction of Inference-Proof Agent Interactions | 403

In doing so, we also have to account for an implicit information flow that is caused by
the overall control flow structure of a transaction as a guarded command in the form of
an if-then-else branching: knowing the transaction semantics and being fully aware of
the security mechanism, if the attacker can infer which branch has been selected, then
he can also figure out whether and how the epistemic state has actually been changed
and which alterations have actually been made to the functionally correct notification.

More generally, the defender’s side of an interaction might have a more or less
sophisticated overall control flow structure stemming from guarded commands like
if-then-else branching, repeat-repetitions, while-repetitions, and similar procedural com-
mands that can cause implicit information flows. Then the securitymechanism typically
inherits this potentially critical control flow structure. Moreover, the (code of the) se-
curity mechanism itself might have a critical control flow structure. Accordingly, the
security mechanism has to appropriately treat an attacker’s potential observation of
a control path that has actually been chosen during a (hidden) execution on the de-
fender’s side and the resulting implicit information flow, similarly as the responses
to explicit queries. As outlined above for transactions, the treatment might include to
interpret such an observation as an implicit query.

The issue of backwards confidentiality results from the following observations about
the consequences of an update of the epistemic state. First, previously released infor-
mation about the validity of a prohibited piece of informationmight become outdated
and, at least in general and whenever possible in an inference-proof way, the defender
should suitably inform the attacking partner about the occurrence of an update and
send him a pertinent refreshment of outdated information. Second, it can be shown that
such a notification together with the refreshment and further information contained
in messages sent at subsequent points in time might enable the attacker to infer the
validity of a prohibited piece of information in the past at some preceding point in
time. Accordingly, we have to strengthen the security policy of inference-proofness by
requiring continuous inference-proofness to be enforced for the full range of all points
in time that so far have happened, rather than just for the respective last one. This
goal can actually be achieved by checking tentative updates of the representation of a
simulated current view for stronger versions of the security invariant.

Basically, the general construction methodology for alterations proceeds itera-
tively, whether the points in time considered are externally determined by observably
receiving/sending a message or only privately generated. However, for an interaction
expected to be performed only once, in particular for view generation and data out-
sourcing, there could be only one point of time of interest, and thus one might look for
a security mechanism that is working “more globally”. Indeed, for view generation we
have successfully designed and verified such amechanism, in addition to the iteratively
working ones inspecting sequences of appropriately formed queries, as mentioned
before. Furthermore, the securitymechanism for outsourcing data does not rely on such
sequences. Nevertheless, these cases are also inspired by the approach to conceptually
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set up some simulated counterpart to the best current view, possibly represented in
some more manageable way.

6.1.4 Specific Constructions for Alterations

6.1.4.1 Weakening Including Refusing
The weakening approach to alterations of a harmful message comprises the special
case of refusing to provide any explicit information flow as its extreme form.

In terms of a complete logic a refusal can literally be represented as the tautology
χ∨¬χ, known by a rational attacker right from the beginning without having performed
any interaction with the defender. However, literally replacing χ by the tautology χ ∨ ¬χ
simply only if the actual validity of χ is harmful, without additionally caring about the
potential harmfulness of its non-validity, equivalently by completeness, the fictitious
validity of ¬χ, would trigger an implicit information flow by means of the following kind
of meta-reasoning, which exploits the postulated background knowledge about the
security mechanism:

For a (definitely flawed) security mechanism that, while inspecting a valid sentence χ, refuses on
the harmfulness of χ but not on the harmfulness of the fictitious validity of ¬χ, we would have
the following equivalence: refusing occurs if and only if χ is valid and harmful. Thus, observing a
refusal, the attacker could infer the validity of χ.

Notably, this kind of reasoning would just be caused by the careless handling of the
critical control flow structure in the form of an if-then-else branching.

Accordingly, to ensure the required inference-proofness, the security mechanism
has to make the two possible cases of validity and non-validity indistinguishable for
the attacker, in the simplest way by refusing if and only if at least one of the cases is
harmful.

In some situations weakening can also be achieved by using more general disjunc-
tions. For example, let both ψ1 and ψ2 be prohibited pieces of information in isolation
but not the disjunction ψ1 ∨ ψ2, i.e., knowing the validity of ψ1 ∨ ψ2 in the actual
epistemic state is considered to be harmless, but figuring out which of the two disjuncts
leads to the validity is harmful. Appropriately taking care of options for meta-reasoning
similarly as for pure refusing and, additionally, of the potential entailments among
several such disjunctions and of such disjunctions with other pieces of information, we
might ensure inference-proofness by replacing a valid informationψi by the disjunction
ψ1 ∨ ψ2.

For all such kinds of weakening, the literal representation of weakened information,
as conveyed in messages to the attacker,
– correctly reflects the actual epistemic state of the defender, and
– notifies the attacker about the fact of an actually performed weakening.
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In terms of a logic, the correctness property allows us to solve the first three crucial
points for the construction methodology roughly as follows:
1. A simulated current view is directly represented by the set of those sentences that

so far are known to be valid in the defender’s epistemic state, according to the a
priori knowledge and the literal contents of messages.

2. A tentative update is independently performed with both the inspected sentence
and its negation, respectively, and both versions are checked for violations of the
security invariant by solving implication/entailment problems of the form “[current
set of sentences together with tentatively added sentence or its negation, respec-
tively] entails [sentence designating a prohibition]” by a pertinent theorem prover.

3. If any of the checks is positive, refusing is straightforwardly identified as the suitable
alteration (or, possibly, a less easily defined butmore informative disjunction that is
stronger than a tautology but still harmless), and then the alteration can be notified
in the corresponding message, leaving the current representing set of sentences
untouched (or updating that set by adding the identified disjunction).

6.1.4.2 Lying
In contrast to weakening, the lying approach to alterations requires a sharp distinction
between the literal representation of responses and the attacker’s rational sophisticated
conclusions about what he is literally observing.

To start with literal representations, consider for example a directly prohibited
piece of information ψ in terms of a complete logic. The security mechanism would
always have to pretend literally the non-validity of ψ. Hence, if the attacker is aware of
the security mechanism including the prohibition declaration, he would not need to
query any prohibition ψ: he will always receive the literal response that ¬ψ is valid.

This feature implies that the defender cannot expect the enforcement of a declara-
tion treating bothψ and ¬ψ as prohibitions. Less obvious is a further consequence: even
if the defender declares several pieces of information ψ1, . . . , ψk as individual prohibi-
tions, nevertheless under lying the disjunction ψ1∨ · · ·∨ψk has to be protected literally
as well. For otherwise the attacker could perform the following inconsistency-reasoning:

For a (definitely flawed) security mechanism that only lies literally on the (explicitly declared harm-
ful) validity of ψ1 , . . . , ψk but not on the validity of ψ1 ∨ · · · ∨ ψk, we could get a literal represen-
tation of responses that contains the following inconsistent set of sentences: {¬ψ1 , . . . , ¬ψk , ψ1 ∨
· · · ∨ ψk}. Thus, observing such an inconsistency, the attacker could identify the occurrence of
some lying in the literal representation and, furthermore, could be tempted to infer the validity of
any sentence.

Accordingly, to ensure the required inference-proofness, the security mechanism better
has to avoid running into such a somehow “hopeless” situation.

Moreover, regarding rational sophisticated conclusions about a possibly lied as-
sertion about the non-validity of a prohibition ψ and the literal representation of this
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assertion as ¬ψ, the best current view bestcv would contain pairs of epistemic states
that differ (at least) in one state making the sentence ψ valid and the other state making
the negated sentence ¬ψ valid. So, evidently, a concise representation rep(simcv) of
a simulated current view simcv containing only a sentence ¬ψ that is possibly but not
necessarily a literal lie would represent both alternatives (as already said above, in
contrast to the properties of weakening).

The two issues have a conceptually simple and provably effective solution. First,
we replace a prohibition declaration consisting exactly of the single pieces of infor-
mation ψ1, . . . , ψk by the singleton containing one disjunction ψ1 ∨ · · · ∨ ψk. Such a
replacement considerably strengthens the security policy of inference-proofness: for
each epistemic state d under consideration, the existence of an “alternative” state d′ is
required such that all of the ψi are simultaneously not valid in d′. Second, we form a
concise representation of the simulated current view by the literally provided responses,
being aware that the same literal representations for weakening and lying, respectively,
essentially differ in their semantics.

Of course, similarly as for weakening but somewhat more subtly, lying is also due
for any harmful sentence χ that could lead the attacker to believe in the validity of the
disjunction of all ψ contained in the prohibition declaration.
In summary, for all kinds of lying, the literal representation of lied information, as
conveyed in messages to the attacker,
– might not correctly reflect the actual epistemic state of the defender and, thus,

might seriouslymislead a naive receiver, and,
– naturally, does not notify the attacking receiver about the fact of an actually per-

formed lying and, thus, lays the burden on the receiver of finding out whether or
not some lying has potentially occurred.

Moreover, in terms of a logic, the first three crucial points for the construction method-
ology are solved roughly as follows;
1. A simulated current view is indirectly represented by the set of those sentences that

so far have been pretended literally to be valid in the defender’s epistemic state,
according to the a priori knowledge and the content of messages.

2. A tentative update is checked for violations of the security invariant by solving one
implication/entailment problem in the form “[current set of sentences together
with tentatively added sentence] entails [sentence designating the disjunction of
all prohibitions]” by a pertinent theorem prover.

3. If that check is positive, a lie on the tentatively added sentence is straightforwardly
identified as the suitable alteration and then sent (without notification, of course)
in the corresponding message, and that lie is inserted into the current representing
set of sentences.



6.1 Keynote: Construction of Inference-Proof Agent Interactions | 407

6.1.4.3 Combined Approaches
As we have seen, alterations by refusing on the one hand and by lying on the other
are precipitated by different causes. Actually refusing is needed if the validity or the
non-validity of the sentence inspected would be harmful regarding a single prohibition.
Actually lying is needed if the validity of the inspected sentence would be harmful
regarding the disjunction over the prohibition declaration. We might wonder whether
andhowwe candobetter by avoiding to always check the impact of both the validity and
the non-validity of the sentence inspected and by never considering the strengthened
security policy to protect the disjunction. This goal can be achieved by a suitable
combination of refusing and lying:
– if the validity of the sentence inspected is not harmful regarding any prohibition,

then return a message without any alteration;
– if the validity of the sentence inspected is harmful regarding some prohibition

and also the non-validity of the sentence inspected is harmful regarding some
prohibition, then return a message suitably indicating a refusal;

– if only the non-validity of the sentence inspected is harmless, then return amessage
suitably altered by the lie that literally pretends the non-validity.

Moreover, we can still represent a simulated current view by the set of those sentences
that so far have been pretended literally to be valid.

6.1.4.4 Weakening versus Lying
At first glance, alterations by lying appear to be rather problematic, both from an ethical
point of view and regarding the desired functionality. However, while lying is ethically
banned in general, we all know of widely accepted exceptions, e.g., a white lie in a
most critical situation, a small insincerity to avoid some larger offense, or an untruthful
answer to an illegal request.

Moreover, in many cases literally lying might also functionally disturb the agreed
cooperation between the communication partners, insofar as the receiver is behaving
naively and “believing the lies” without further own reasoning. Even then, however, if
an actually occurring alteration by literally lying does not affect an implicit or explicit
availability declaration, wemight argue that the respective interaction is at least beyond
the agreement or even misusing it.

Finally, handling an interaction that is intended to change the defender’s epistemic
state by means of a transaction, we might face a confidentiality–integrity conflict for
which an application of literal lying appears to be most natural, at least if the ethical
and functional concerns are appropriately dealt with.

Above, we already distinguished between “lying” and “literal lying”, and a deeper
inspection of the issues indicates that such a distinction is crucial for a more informa-
tion-theoretical discussion. To start with, for any kind of alteration, a sophisticated
attacker can always distinguish between the conceptual notion of the best current view
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and the pragmatically introduced notion of the simulated current view and its concise
representation.
The best current view bestcv can be seen as a kind of an inverse image, as de-
rived from the observed message history mes1, . . . ,mesk and denoted by bestcv =
con_mess−1(mes1, . . . ,mesk) . Here, we think of the message history being composed
of k′ many request messagesmesa1 , . . . ,mesak′ received from the attacker, and k′′ many
reaction messagesmesd1 , . . . ,mesdk′′ returned to the attacker, with k = k

′ + k′′, where
the latter were produced for the actual epistemic state by the defender’s message-
generating function possibly applying alterations, called con_mess.

Exploiting the postulated background knowledge, the attacker can thus determine
bestcv in mathematical terms, and insofar as con_mess is an effectively computable
function, i.e., its graph

{ (es, hist) | es is epistemic state,

hist composed of received hista and returned histd is message history,

con_mess(hista , es) = histd}

is recursively enumerable, the graph of the inverse function con_mess−1 is recur-
sively enumerable as well and, thus, for each message history hist the inverse image
con_mess−1(hist) is also a recursively enumerable set. Notably, under this perspective,
there is no conceptual difference between refusing and lying, or between any other
approach to alterations.

The concise representation rep(simcv) of the simulated current view simcv is a techni-
calmeans employed by the defender’s securitymechanism to effectively—and hopefully
also efficiently—enforce the pertinent security invariant. However, exploiting the pos-
tulated background knowledge, the attacker can determine rep(simcv) as well. In fact,
as outlined above, for weakening and lying that representation is just formed by the
literal messages sent to the attacker.

Hence, in information-theoretical terms, the main difference between weaken-
ing (with the special case of refusing) on the one hand and any method that at least
sometimes literally lies on the other hand can be described as follows:
– under weakening the representation of the simulated current view also represents

the best current view in a straightforward way,
– whereas under lying the burden of the attacker to determine the best current view

might bemuch harder.

In other words, for a sophisticated and rationally reasoning attacker, (i) there are no
“real lies” but only literally ones, and (ii) lying causes an essential difference between
what he can literally observe and what he can conceptually conclude, and in general
imposes a high computational complexity on algorithmically determining the best
current view as the least uncertainty.
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Amore detailed comparison of refusing and lying for a sequence of queries considers the
longest prefix for which the responses have been correct (for short, called “longest hon-
eymoon”). In turns out that refusing and lying are in general incomparable regarding
this notion.

Somehow surprisingly, however, if we require to protect the disjunction over the
prohibition declaration also for refusing, the information contents supplied by the two
approaches are exactly the same, i.e., the conceptual best current views are always
equal or, in other words, two epistemic states are indistinguishable for the attacker in
case of refusing if and only if they are so in case of lying. Moreover, we can show that
an actual refusal occurs if and only if a potential lie occurs. This result shows again
that the information-theoretical difference between refusing and lying consists in the
computational burden of the attacker to find out the grade of reliability of a message
received: for refusing the attacker is explicitly notified by the defender; for lying the
attacker has to find out by himself by means of rational reasoning (or just by simulating
a defender that applies refusing).

6.1.5 Managing Computational Complexity

The overall computational complexity of inference-proof interactions is basically deter-
mined by the normal functionality of the information system under protection on the
one hand and the overhead caused by the security mechanism on the other. Regarding
the impact of the former, as far as applicable, the pertinent logic underlying the query
evaluation appears to be most crucial. Regarding the impact of the latter, both the
consideration of the interaction history (including the assumed a priori knowledge) by
maintaining a concise representation of the simulated current view and the number
and the kinds of checking tentative updates for satisfying or violating, respectively, the
security invariant are most important. As far as applicable, the pertinent logic once
again determines the costs.

In general we can expect a rather high or even practically infeasible level of com-
plexity, and in some cases also beyond effective computability. Moreover, besides first
of all treating the constraint-solving problem to achieve inference-proofness for the sake
of confidentiality, additionally we always aim at still providing good availability and
thus are facing the optimization problem to actually perform an alteration only if strictly
needed. Each of the problems alone is known to be computationally hard in general,
so will be their combination.

Whether or not a high computational complexity can be afforded might depend
on the additional timing constraints of the desired communication acts. In particu-
lar, if the (attacking) communication partner expects to be served by the (defending)
information owner online in real time, only a minor delay would be acceptable. By
contrast, insofar as the interaction of view generation is initialized by the (defending)
information owner, all the computations can be done offline and thus might last as
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long as several hours. Accordingly, as a general heuristic we favor the shift of suitable
parts of the overall computational burden to offline precomputations. The duration
does not matter the communication partner at all or is bounded by the time normally
spent by an interactively communicating partner for some other activity.

Given that at the core of any security mechanism we have to check the tentative
updates of the representation of the simulated current view in terms of an underlying
logic for complyingwith a security invariant,we canattempt todecrease thenumber and
to lessen the complexity of such checks by restricting to special cases of the sentences
used for formally expressing a priori knowledge, queries, and prohibitions. The best
case would be that it suffices to relate (the validity of) a sentence inspected to the
prohibitions in a straightforward way without the need to consider a simulation and
thus the interaction history at all. Intuitively, this case could arise if both queries and
prohibitions refer to elementary and mutually independent pieces of information.

More generally, the following guidelines for identifying computationally efficient
cases have been successful: diminish the potential mutual dependence of the consid-
ered pieces of information about the defender’s epistemic state and, thus, the redun-
dancy contained in that state; and syntactically restrict the sentences expressing such
pieces of information such that the pertinent logical entailment problems are easily
solvable. In fact, as a first example and referring to the best case regarding closed-query
evaluation, checking tentative updates can be done without considering the interaction
history, and the entailment problems can be reduced to simple text comparisons under
the following conditions: epistemic states are represented by relational instances of a
relational schema with functional dependencies in Object Normal Form, i.e., they are in
Boyce-Codd Normal Form and satisfy the Unique Key Property, and the epistemic states
contain only atomic sentences, i.e., logical representations of single tuples. Further
examples dedicatedly relax these requirements such that checking tentative updates
can efficiently be implemented bymeans of SQL, even for restricted cases of open-query
evaluation.

We can also employ a wide range of approximation heuristics to decrease the com-
putational complexity, first of all by relaxing the availability requirements in order to
facilitate the resulting optimization problem to minimize alterations.

6.1.6 Conclusions: Naive Illusion or Promising Hope?

Our main motivation has been to design and mathematically verify technical solu-
tions to the social issue of preserving privacy, or of any other justified confidentiality
concerns. Clearly, in general these goals require the consideration of a large range of
psychological, social, institutional, legal, information-theoretical, and mathematical
features. In public discussions about privacy preservation in the Information Age, some
voices even claim that achieving privacy has become illusionary. Without discussing
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arguments in detail, we just state that we do not share this view, as do, we believe, the
legal bodies issuing the pertinent legislation.

The framework underlying our achievements focuses on a very narrow aspect
of enforcing confidentiality: how to support a human information owner in hiding
the validity of dedicated pieces of information, referred to as declared prohibitions,
contained in the internal epistemic state of an information system agent under the
owner’s control, while that agent interacts with the client agent run by a semi-honest
and rationally reasoning communication partner. Thus, the overall target of protection
is only the internal state of a technical devicewhosewell-defined interface to the outside
world is supposed to be configurable and mastered at the discretion of the controlling
human individual.

In the extreme case, that interface can just be totally disabled such that—under
reasonable assumptions—no human can observe the internal state of the information
system agent at all, thus preventing the availability of any information. So, conceptually
starting with a disabled interface, the real problem is to gradually allow a flow of
information from the internals of an otherwise completely shielded computing agent,
while still guaranteeing the wanted kind of confidentiality of the declared prohibitions.
The other way round, conceptually starting with a totally open interface, the real
problem is to minimally confine such a flow of information, until the wanted kind of
confidentiality according to the declared prohibitions is achieved, thus still preserving
a maximal availability.

We want to emphasize that we are not aiming at anything more. Neither do we
want to confine the information owner in chatting about what he has in his human
mind, nor do we want to hinder the communication partner in observing real-world
facts, nor to prevent him from exploiting any further information source. We care only
about the conceptual information flow from the internal state of a technical device to
an interacting computing agent based on protocol-complying exchanges of messages.
Clearly, the occurrences of such flows might depend on additional circumstances,
as captured by our assumptions and postulates about the communication partner
regarding his a priori knowledge and his background knowledge, respectively.

So, our achievements are as promising as these assumptions and postulates are
realistic and, furthermore, all the other features left aside by us can also be suitably
dealt with.

6.1.7 Selected Bibliographic Notes

The study of inference-proof interactions of a logic-oriented information system started
with two contributions about the interaction of closed-query evaluation with response
preparation. Sicherman, Jonge, andRiet [611] suggested the refusing approach early, and
Bonatti, Kraus, and Subrahmanian [96] later introduced the lying approach. Following
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a first attempt to compare the two approaches, Biskup and Bonatti [78] set up a unifying
framework for further developments.

Biskup and Bonatti [75, 76] introduced the combination of refusing and lying, for
closed queries. Furthermore, Biskup and Bonatti [77] treated open-query evaluation
with response-set preparation for a decidable relational submodel; considerably much
later, Biskup, Bring, and Bulinski [79] reported on a partial prototype implementa-
tion with some optimizations. Among other attempts to restrict the expressibility of
relational a priori knowledge, queries and prohibitions to enable inference-proofness
in the spirit of access control by means of SQL only, Biskup, Embley, and Lochner
[71] identified the impact of relational database schema normalization. Biskup and
Weibert [86] extended all three approaches to alterations of responses to closed queries
to an underlying incomplete propositional information system, which offers a third
option (don’t know) in addition to yes and no. Biskup, Gogolin, Seiler, and Weibert
[81] added knowledge update transaction as a further interaction under lying, later
also treated for refusing. Moreover, Biskup and Tadros [84] investigated the impact of
non-monotonic reasoning for the interaction of belief revision. Biskup and Wiese [87]
studied a concept of view generation as yet another interaction under lying—essentially,
a as a combination of a restricted first-order logic satisfiability problem and a mini-
mization problem. Later Biskup, Dahn, Diekmann, Menzel, Schalge, and Wiese [80]
presented a prototype implementation exploring several heuristic optimizations and
approximations. Biskup and Preuß [83] invented another method for view generation,
later also extended to view updating, essentially based on weakening by means of
disjunctions of prohibitions. Biskup, Tadros, and Zarouali [85] explored how to handle
interactions expressed as procedural program executions in an inference-proof way, in
particular exploiting methods of language-based security aiming at the security policy
of non-interference. Biskup and Preuß [82] analyzed the fragmentation approach to
secure data outsourcing. Finally, Biskup [73] studied the interaction of closed-query
evaluation and view generation in the framework of abstract data sources, already
presenting the framework reused in Section 6.1.2.

Some of these developments are discussed by Biskup [74]. Our narrower topic is
embedded in some more general streams of research and related to many other specific
topics, as outlined in Biskup [72]. Guarnieri, Marinovic, and Basin [243] and Halpern
and O’Neill [255] are examples of taking a wider perspective, that includes probabilistic
considerations.
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