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is the Schur complement. The modelling error ρi+1 = �ri+1�2
2 corresponding to

the addition of a basis function F can be computed as:

‖ri+1‖2
2 = ‖y−Xi+1ai+1‖2

2 = ‖ri‖2
2 −‖(Xigi+1 +F )b‖2

2 = ‖ri‖2
2 −bT si+1b, 0 ≤ i ≤ n−1

(6)
with �r0�2

2 = �y�2
2. The quantity ei+1 = bT si+1b denotes the error reduction

corresponding to the addition of a basis function F [12]. In order to ensure posi-
tive definiteness of the dot product matrix XT

i+1Xi+1 the quantity ei+1 should be
bounded by 0 ≤ ei+1 ≤ �ri�2

2. It should be noted that ρi+1 = �ri+1�2
2 = T ·MSE

is the Squared Error, T is the number of samples in time series y, and MSE
denotes the Mean Squared Error. Detailed description and additional discus-
sions regarding the method are given in [11–13].

2.1 Assessment and Selection of Basis Functions

The explicit expression of error reduction can be used to select a subset of basis
functions to form a model from a candidate set U retaining N basis functions.
Trigonometric, exponential and linear functions have been considered for mod-
elling in [12,13], while a Non-Negative Adaptive Auto - Regression approach
was followed in [11]. The procedure of selecting an appropriate basis requires
computation of the potential error reduction for each member of the set U . This
procedure is algorithmically described in Algorithm1. The procedure, described
by Algorithm 1, proceeds through all candidate basis in U sequentially, storing
the respective error reductions to vector u. Then, the algorithm proceeds by
selecting the index of the basis function that lead to maximum error reduction
under the constraints that ensure positive definiteness.

Algorithm 1. Basis Search
(k = bs(y,Gi,D

−1
i ,Xi, U, ρi))

1: Let N denote the number of candidate basis functions in U .
2: ei = 0, 1 ≤ i ≤ N
3: for i ∈ [1, N ] ⊂ N do
4: F = Ui

5: gi+1 = −GiD
−1
i GT

i XT
i F

6: si+1 = F T (F + Xigi+1)
7: b = s−1

i+1(F
T + gT

i+1X
T
i )y

8: ei = bT si+1b
9: end for

10: k = arg maxi∈[1,N ] ei under the constraint 0 ≤ ei ≤ ρi

The set U can host any type of basis functions even Machine Learning models
such as Support Vector Machines [8]. In the current manuscript we focus on
lagged basis function of the form:

U = [y−1 y−2 y−3 y−4 . . . y−N ], (7)
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with y0 = y. In practice, the number of samples in lagged time series y−i is n−N ,
since the latest sample is removed (retained in the responses y), along with the
first N − 1 samples from each candidate lagged basis to ensure that there are
no missing data. In case multiplicative interactions between basis functions are
allowed [14], e.g. yiyj . . . the number of basis functions into the candidate set
are: (

N

k

)
+ N k, k > 1 (8)

where k is the order of allowed interactions. In the case of k = 1, then the
number of candidate basis functions is equal to N .

Additional constraints can be imposed during the selection of a basis function
that leads to the maximum error reduction. These constraints can be imposed
during step 10 of Algorithm1. Examples of constraints include non-negativity of
the coefficients [11] or imposing a threshold on their magnitude.

After selection of an appropriate basis function or lag, addition of this basis
function has to be performed and the corresponding matrices to be updated.
Several basis functions can be fitted by executing the process described by
Algorithm 1 followed by the process of Algorithm2, iteratively. The fitting pro-
cess is terminated based on criteria regarding the fitting error, e.g. [12]:

√
ρi+1 < ∆

√
ρ0. (9)

Another approach is to terminate the fitting process based on the magnitude
of the coefficients:

|b| < ∆|a1|. (10)

where b is the coefficient corresponding to the i + 1 added basis function, while
a1 is the coefficient corresponding to the basis function added first. In both
termination criteria ∆ is the prescribed tolerance. It should be noted that the
second criterion is more appropriate in the case of lagged basis.

Algorithm 2. Add Basis Function
([Gi+1,D

−1
i+1,Xi+1, ai+1, ρi+1] = addbasis(y,Gi,D

−1
i ,Xi, F, ai, ρi))

1: gi+1 = −GiD
−1
i GT

i XT
i F

2: si+1 = F T (F + Xigi+1)
3: b = s−1

i+1(F
T + gT

i+1X
T
i )y

4: Check termination criterion and terminate if met

5: ai+1 =

[
ai + gi+1b

b

]

6: ρi+1 = ρi − bT si+1b

7: Gi+1 =

[
Gi gi+1

0 1

]
; Di+1 =

[
D−1

i 0
0 s−1

i+1

]
; Xi+1 =

[
Xi F

]
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3 Performance Optimization and Parallelization

The procedure, described by Algorithm1, proceeds through all candidate basis
in U sequentially. It can be performed in parallel by assigning a portion of basis
functions to each thread of a multicore processor. However, the most computa-
tionally intensive operations are matrix by vector and vector by vector, which
are BLAS2 (Basic Linear Algebra Subroutines - Type 2) and BLAS1 operations,
respectively, [5]. These operations lead to decreased performance compared to
operations between matrices which are BLAS3 operations, since they require
increased memory transfers and cache tiling and data re-use is limited [7]. Thus,
to increase performance the most computationally intensive part, which is the
basis search described by Algorithm 1, has to be redesigned in order to compute
the corresponding error for all candidate basis functions.

Let us consider a set of N candidate basis functions, represented as vectors
of length N −n, stored in the columns of matrix U ((n−N)×N). The columns
g
(j)
i+1, 1 ≤ j ≤ N corresponding to each basis can be computed by the following

matrix multiplication operations:

gi+1 = [g(1)
i+1 g

(2)
i+1 . . . g

(N)
i+1 ] = −GiD

−1
i GT

i XT
i U. (11)

The matrix gi+1 (i×N) is formed by four dense matrix multiplications, however
matrix D−1

i is diagonal matrix, thus it can be retained as a vector. Multiplying
matrix D−1

i by another matrix is equivalent to multiplying the elements of each
row j with the corresponding element d−1

j,j of the vector retaining the elements
of the diagonal matrix. For the remainder of the manuscript we will denote
this operation as (φ). This operation can be used in the process described in
Algorithm 2. This reduces operations required, as well as storage requirements,
since a matrix multiplication is avoided and the computation can be performed
in place in memory.

Following computation of the columns stored in matrix gi+1, the Schur Com-
plements s

(j)
i+1, 1 ≤ j ≤ N corresponding to the candidate basis functions are

computed as follows:

si+1 = diag(s̃i+1) = diag(UT (U + Xigi+1)). (12)

The formula UT (U + Xigi+1) leads to the computation of Schur complement
of the block incorporation of basis and not the individual Schur complements
corresponding to the candidate basis function, which are stored in the diagonal
of the result. The Schur complement s̃i+1 is a dense matrix of dimensions N ×N
and requires substantial computational effort. In order to avoid unnecessary
operations each diagonal element can be computed as follows:

(si+1)j = (UT )j,:((U):,j + Xi(gi+1):,j), (13)

where ( . )i,j denotes an element at position (i,j) of a matrix and (:) denotes all
elements of a row or column of a matrix. In order to compute all elements of the
diagonal concurrently, Eq. (13) can be reformed as follows:

si+1 = (UT � (U + Xigi+1)T )v, (14)
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where � denotes the Hadamard product of two matrices and v is a vector of the
form [1 1 . . . 1]T . The vector si+1 (N × 1) retains the Schur complements
corresponding to the candidate basis functions in U . Dedicated (Optimized)
Hadamard product is not included in the standard BLAS collection, however it
is included in vendor versions or CUDA (Compute Unified Device Architecture).
Following the same notation the coefficients corresponding to the basis functions
in set U can be computed as:

b = s−1
i+1 � (UT + gT

i+1X
T
i )y (15)

and the corresponding error reductions as:

e = b � si+1 � b. (16)

The most appropriate basis function is selected by finding the maximum error
reduction in vector e. The matrix based basis selection procedure is algorithmi-
cally described in Algorithm 3.

Algorithm 3. Matrix Based Basis Search
(k = mbbs(y,Gi,D

−1
i ,Xi, U, ρi))

1: Let N denote the number of candidate basis functions in U .
2: vi = 1, 1 ≤ i ≤ N
3: gi+1 = −Gi(D

−1
i � (GT

i XT
i U))

4: Ũ = U + Xigi+1

5: si+1 = (UT � Ũ)v
6: b = s−1

i+1 � ŨT y
7: e = b � si+1 � b

8: k = arg maxi∈[1,N ] ei under the constraint 0 ≤ ei ≤ ρi

A block variant of Algorithm3 can be utilized to process batches of candidate
functions. This can be performed by splitting matrix U into groups, processing
them and accumulating the corresponding error reductions in vector e before
computing the index of the most effective basis function. Despite the advantages
in terms of performance, the matrix and block based matrix approaches have
increased memory requirements. The memory requirements are analogous to
the number of candidate basis functions, since they have to be evaluated before
assessment, while in the original approach each candidate basis is evaluated only
before its assessment. Thus, the matrix approach requires O(N(n−N)), the block
approach O(max(ν(n−N)), bs(n−N))) and the original approach O(ν(n−N))
64-bit words, where ν denotes the number of basis functions included in the
model and bs the number of basis in each block.

3.1 Graphics Processing Unit Acceleration

The operations involved in Matrix Based Basis Search, given in Algorithm3, can
be efficiently accelerated in a Graphics Processing Unit (GPU). However, most
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GPU units suffer from substantial reduction of the double precision performance,
e.g. 32× in the case of double precision arithmetic (Geforce RTX 20 series). In
order to mitigate this issue, 32-bit floating point operations and 16-bit half pre-
cision floating point operations are utilized. This gives rise to mixed precision
computations, where GPU related operations are performed in reduced preci-
sion, while CPU related ones are performed in double precision arithmetic. This
approach enables acceleration while minimizing round off errors from reduced
precision computation.

The proposed scheme utilized a similar approach in order to accelerate the
most computationally intensive part of the process, which is the basis search.
Computations in the GPU require data movement from the main memory to the
GPU memory, which is a time consuming operation, thus should be limited. For
the case of the Matrix Based Basis Search algorithm, data should be transferred
in the GPU before processing. This includes the time series y, the matrix Gi and
vector Di, the matrix of included basis Xi and the previous modelling error ρi in
order to mark basis that could hinder positive definiteness. Before copying these
arrays to the GPU memory, they should be cast to single precision arithmetic to
ensure increased performance during computations. The matrix U , retaining the
candidate basis, and time series y can be transferred in the GPU before starting
the fitting process, since they are “a priori” known, while all the other matrices
should be updated after addition of new basis function to the model. However,
the update process includes only a small number of values to be transferred at
each iteration.

Algorithm 4. GPU accelerated modelling
1: Let y denote the time series to be modelled, N the maximum lag, n the number

of samples in y.
2: vi = 1, 1 ≤ i ≤ n − N
3: y = cpu2gpu(single(y))
4: U = cpu2gpu(single([y−1 y−2 . . . y−N ])
5: ρ0 = ‖y‖2

2; ρ = cpu2gpu(single(ρ0))
6: [G1, D

−1
1 , X1, a1, ρ1] = addbasis(y, [ ], [ ], [ ], v, [ ], ρ0)

7: G = cpu2gpu(single(G1)); D−1 = cpu2gpu(single(D1))
8: X = cpu2gpu(single(X1)); ρ = cpu2gpu(single(ρ1))
9: for i ∈ [1, N ] do

10: k = mbbs(y, G, D−1, X , U , ρ) � GPU
11: k = gpu2cpu(k); F = y−k

12: [Gi+1, D
−1
i+1, Xi+1, ai+1, ρi+1] = addbasis(y, Gi, D

−1
i , Xi, F, ai, ρi)

13: G = update(single(Gi+1)); D−1 = update(single(D−1
i+1))

14: X = update(single(Xi+1)); ρ = cpu2gpu(single(ρi+1))
15: end for

The process is described in Algorithm 4. The matrices and vectors stored
in the GPU memory are given in bold. The process terminates if the termina-
tion criterion of Eq. (10) is met during the basis addition process or line 12 of
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Algorithm 4. It should be noted that the first basis included removes the mean
value of the time series y. This is performed in line 6 where the addbasis function
is invoked. In practice, addition of the first basis function is performed using the
equations: s1 = FT F, a1 = s−1

1 FT y,D−1
1 = s−1

1 , G1 = 1, where F is substituted
with a vector ((n − N) × 1) with all its components set to unity.

The functions cpu2gpu and gpu2cpu are used to transfer data from CPU
memory to GPU memory and from GPU memory to CPU memory, respectively.
Conversion of matrices, vectors and variables from double precision to single
precision arithmetic is performed with function single and the function update
is utilized to update matrices and vectors involved in the Matrix Based Basis
Search performed in the GPU. At each iteration 2+ i+(n−N), 1 ≤ i ≤ ν single
precision floating point numbers need to be transferred to GPU memory, with
ν denoting the number of basis functions included in the model.

A full GPU version of Algorithm 4 can be also used, by forming and updat-
ing all matrices directly to the GPU memory. In this approach, the matrix of
candidate matrices U and the time-series y need to be transferred to the GPU
memory, before computation commences. The value of the first coefficient should
also be transferred to the CPU since it is required by the termination criterion.
Moreover, in every iteration the new coefficient has to be transferred to CPU
in order to assess model formation through the termination criterion. This app-
roach uses solely single precision arithmetic and is expected to yield slightly
different results due to rounding errors.

4 Numerical Results

In this section the applicability, performance and accuracy of the proposed
scheme is examined by applying the proposed technique to two time series. The
first time series is composed of large number of samples and lagged basis func-
tions without multiplicative interactions are used as the candidate set. The scal-
ability of different approaches is assessed with respect to single precision, mixed
precision and double precision arithmetic executed either on CPU or GPU. The
second time series has a reduced number of samples, however an extended set
of lagged candidate basis functions, which include second order interactions, are
included. The characteristics of the time series are given in Table 1. The two
time series were extracted from R studio. The error measures used to assess the
forecasting error was Mean Absolute Percentage Error (MAPE), Mean Absolute
Deviation (MAE) and Root Mean Squared Error (RMSE):

MAPE =
100

T

T∑

i=1

|yi − ŷi|
|yi|

, MAE =
1

T

T∑

i=1

|yi − ŷi|, RMSE =

√√√√ 1

T

T∑

i=1

(yi − ŷi)2 (17)

where yi are the actual values, ŷi the forecasted values and T the length of the
test set. All forecasts are performed out-of-sample using a multi-step approach
without retraining. All experiments were executed on a system with an Intel
Core i7 9700K 3.6–4.9 GHz CPU (8 cores) with 16 GBytes of RAM memory and
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an NVIDIA Geforce 2070 RTX (2304 CUDA Cores) with 8 GBytes of memory.
All CPU computations were carried out in parallel using Intel MKL, while the
GPU computations were carried out using NVIDIA CUDA libraries.

Table 1. Model time series with description and selected splitting.

# Name Frequency Train Test Description

1 Call volume for
a large North
American bank

5-min 22325 5391 Volume of calls, per five minute
intervals, spanning 164 days
starting from 3 March 2003

2 Daily female
births in
California

Daily 304 61 Daily observations in 1959

Different notation is used for the variants of the proposed scheme:

CPU-DP: Matrix based CPU implementation using double precision arith-
metic. This is the baseline implementation.
CPU-SP: Matrix based CPU implementation using single precision arithmetic.
CPU-DP-GPU: Matrix based CPU/GPU implementation using mixed preci-
sion arithmetic. The basis search is performed in the GPU using single precision
arithmetic, while incorporation of the basis function is performed in double pre-
cision arithmetic.
CPU-DP-GPU-block(nb): Block matrix based CPU/GPU implementation
using mixed precision arithmetic. The basis search is performed in the GPU
using single precision arithmetic, while incorporation of the basis function is
performed in double precision arithmetic.
GPU: Pure matrix based GPU implementation using single precision arithmetic.

The parameter nb denotes the number of blocks. The block approach requires
less GPU memory.

4.1 Time Series 1 - Scalability and Accuracy

The average value of the dataset is 192.079, the minimum value is 11 and the
maximum value is 465. For this model the lagged candidate basis has been
utilized, while higher degree interactions are not allowed, resulting in an addi-
tive model. The performance in seconds for all variants is given in Fig. 1, while
speedups are presented in Fig. 2. The pure GPU and CPU-DP-GPU implemen-
tations have the best performance overall leading to the best speedups. The
pure GPU implementation has a speedup greater than 20× for more than 50
basis functions with a maximum of approximately 27×, with respect to the
baseline implementation. With respect to the CPU single precision arithmetic
implementation the pure GPU approach has a speedup of approximately 10×
for more than 50 basis functions. The CPU-DP-GPU has a maximum speedup of
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approximately 22× attained for 134 basis functions. After that point the speedup
decreases because the double precision operations in the CPU do not scale with
same rate, reducing the overall speedup. It should be noted that even for low
number of basis functions, e.g. 6, the speedup of the pure GPU implementation is
approximately 6× with respect to CPU-DP and approximately 4× with respect
to CPU-SP implementation.
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Fig. 1. Performance for all variants for different number of basis functions.

The performance of the block variants degrades when increasing the number
of blocks retaining the candidate basis functions, since they require more data
transfers between CPU and GPU. The speedups for the block variants range
from 2.5× –8.6× over CPU-DP implementation and 1.5×–3.4× over the CPU-
SP implementation.
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Fig. 2. Speedup for all variants for different number of basis functions.
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Table 2. Minimum, maximum and average number of basis functions, RMSE, MAE
and MAPE for all variants for the first time series.

# Basis RMSE MAE MAPE

∆ Min Max Avg Min Max Avg Min Max Avg Min Max Avg

0.1 4 4 4.0 41.96 41.96 41.96 34.25 34.25 34.25 25.80 25.80 25.80

0.07 6 6 6.0 44.86 44.86 44.86 36.87 36.87 36.87 29.29 29.29 29.29

0.04 23 23 23.0 26.32 26.32 26.32 19.61 19.61 19.61 11.76 11.76 11.76

0.02 39 39 39.0 24.07 24.07 24.07 18.07 18.07 18.07 11.23 11.23 11.23

0.01 42 42 42.0 24.13 24.14 24.14 18.12 18.12 18.12 11.22 11.22 11.22

0.009 47 47 47.0 23.86 23.86 23.86 17.96 17.96 17.96 11.45 11.45 11.45

0.006 132 136 134.1 23.31 23.64 23.47 17.65 17.96 17.81 11.66 11.92 11.83

0.005 695 716 702.8 23.16 23.64 23.22 17.50 17.96 17.56 11.49 11.92 11.55

0.004 795 833 818.7 23.15 23.64 23.21 17.49 17.96 17.55 11.48 11.92 11.53

0.003 941 960 952.3 23.16 23.17 23.17 17.50 17.52 17.51 11.50 11.52 11.51

0.002 1081 1136 1116.0 23.16 23.17 23.16 17.49 17.50 17.50 11.46 11.47 11.47

0.001 1232 1266 1257.3 23.16 23.16 23.16 17.49 17.50 17.50 11.46 11.47 11.47

The number of basis functions included in the model along with forecasting
errors are given in Table 2. The number of basis functions as well as the errors
are not substantially affected by the use of mixed or single precision arithmetic.
More specifically, up to approximately 50 basis functions all variants produce
almost identical results. However, above 50 basis functions there is a minor
difference in the number of basis functions included in the model which in turn
slightly affects the error measures. The difference in the number of included basis
functions is caused by rounding errors in the computation of error reduction ρ.
This is caused by the rounding errors in the formation of the column vectors gi+1,
involved in the computation of respective Schur complements and potential basis
coefficients.

An important observation is that the error measures regarding forecasts do
not significantly reduce after the incorporation of approximately 130 basis func-
tions. Thus, additional basis functions increase the complexity of the model. In
order to ensure sparsity of the underlying model, a different termination criterion
can be used, since the termination criterion of Eq. (10) depends on the magnitude
of the entries of the basis functions and is more susceptible to numerical round-
ing errors. The new termination criterion based on error reduction percentage is
as follows:

√
ρi − √

ρi − ei+1 < ∆
√

ρi, (18)

where ei+1 denotes the potential error reduction that will be caused by the incor-
poration of the i+1-th basis. ∆ ∈ [0, 1] ⊂ R denotes the acceptable percentage of
error reduction to include a basis function. This criterion will be used to model
the second time series along with higher level interactions.
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4.2 Time Series 2 - Flexibility and Higher Order Interactions

The average value of the dataset is 41.9808, the minimum value is 23 and the
maximum value is 73.
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Fig. 3. Actual along with forecasted values with and without interactions.

The candidate set is composed of lagged basis functions and second order
interactions of the form yjyk. The termination criterion of Eq. (18) was used
with ∆ = 0.002, with maximum lags equal to 50. In Fig. 3 the actuals along
with the forecasted values computed with and without interactions are given.
The inclusion of second order interactions results in capturing the nonlinear
behavior of the time series in the forecasted values. The error measures without
interactions were: RMSE = 5.96, MAE = 5.11 and MAPE = 12.33, while
with interactions the error measures were: RMSE = 6.18, MAE = 4.93 and
MAPE = 12.20. The inclusion of higher order interactions led to reduction of
the error measures and showcases the flexibility of the approach allowing for the
inclusion of arbitrary order interactions in the candidate basis functions.

The execution time for CPU-SP, CPU-DP and GPU were 1.1621, 2.2076 and
0.3932, respectively. Thus, the speedup of the pure GPU variant was approxi-
mately 3× over the CPU-SP variant and 5.6× over the CPU-DP version. The
pure GPU version is efficient even for time series with small number of samples,
under a sufficiently sized space of candidate basis functions.

5 Conclusion

A matrix based parallel adaptive auto-regressive modelling technique has been
proposed. The technique has been parallelized in multicore CPUs and GPUs and
a block variant has been also proposed, based on a matrix (BLAS3) recast of the
required operations. The pure GPU variant presented speedup up to 27× over
the double precision arithmetic parallel CPU version and 10× over the parallel
single precision CPU version for time series with large number of samples. The
use of single and mixed precision did not affect substantially the forecasting error,
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rendering the technique suitable for modelling and forecasting large time series.
Implementation details and discussions on higher order interactions between
basis functions have been also given. The applicability and effectiveness of the
method were also discussed and new termination criterion based on potential
error reduction of basis functions, which is invariant to scaling, has been given.

Future work is directed towards the design of an improved basis search that
will reduce the search space based on a tree approach. Moreover, backfitting
procedures will be considered.
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Abstract. Triangles are an essential part of network analysis, repre-
senting metrics such as transitivity and clustering coefficient. Using the
correspondence between sparse adjacency matrices and graphs, linear
algebraic methods have been developed for triangle counting and enu-
meration, where the main computational kernel is sparse matrix-matrix
multiplication. In this paper, we use an intersection representation of
graph data implemented as a sparse matrix, and engineer an algorithm
to compute the “k-count” distribution of the triangles of the graph. The
main computational task of computing sparse matrix-vector products
is carefully crafted by employing compressed vectors as accumulators.
Our method avoids redundant work by counting and enumerating each
triangle exactly once. We present results from extensive computational
experiments on large-scale real-world and synthetic graph instances that
demonstrate good scalability of our method. In terms of run-time per-
formance, our algorithm has been found to be orders of magnitude faster
than the reference implementations of the miniTri data analytics appli-
cation [18].

Keywords: Intersection matrix · Local triangle count · Forward
degree cumulative · Forward neighbours · Sparse graph · k-count

1 Introduction

The presence of triangles in network data has led to the creation of many metrics
to aid in the analysis of graph characteristics. As such, the ability to count and
enumerate these triangles is crucial to applying these metrics and gaining further
insights into the underlying composition and distribution of these graphs. Gen-
eralizations aside, the applications of triangle counting are as ubiquitous as the
triangles themselves, including transitivity ratio - the ratio between the number
of triangles and the paths of length two in a graph - and clustering coefficient
- the fraction of neighbours for a vertex i of a graph who are neighbours them-
selves. Other real-life applications of triangle counting include spam detection
[4], network motifs in biological pathways [12], and community discovery [13].
However, before any network analysis can be undertaken, the underlying data
structure of a graph must be critically examined and understood. An efficient
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representation of network data will dictate analysis capabilities and improve
algorithm performance and data visualization potential [5]. Note that large real-
life networks are typically sparse in nature, so efficient computations of these
graphs must be able to account for their sparsity and skewed degree distribution
[3]. A consistent structure makes linear algebra-based triangle counting methods
appealing, and most methods use direct or modified matrix-matrix multiplica-
tion, with a notable exception being the implementation of Low et al. [11]. This
paper expands upon the preliminary ideas of a poster presentation from the 2021
IEEE Big Data Conference (Big Data) [2], and here we propose an “intersec-
tion” representation of network data obtained as a list of edges [17] and based
on sparse matrix data structures [8]. Our triangle enumeration algorithm derives
its simplicity and efficiency by employing matrix-vector product calculations as
its main computational kernel. The local triangle count and edge support infor-
mation are then acquired from the enumerated triangles obtained as the result
of this matrix-vector multiplication.

1.1 k-count Distribution

Application proxies provide a simple yet realistic way to assess the performance
of real-life applications’ architecture and design. Below, we outline the main com-
ponents of the miniTri data analytics proxy [18], which we use to demonstrate the
effectiveness of our intersection-based graph representation and computation.

Let G = (V,E) be a connected and undirected graph without multiple edges
and self loops, where V denotes the set of vertices and E denotes the set of edges.
For v ∈ V a path of length 2 through v is a sequence of vertices u−v−w such that
e1 = {u, v} ∈ E and e2 = {v, w} ∈ E. Such a length-2 path is termed a wedge
at vertex v. Let d(v) denote the number of edges incident on v, also defined as
the number of vertices x such that {v, x} ∈ E. The number of wedges in G is
then given by

∑
v∈V

(
d(v)
2

)
. A wedge u − v − w is a closed wedge or a triangle

if e3 = {v, w} ∈ E. Let δ(v) and δ(e) denote the number of triangles incident
on vertex v and edge e = {u, v} respectively. In the literature δ(v) is known as
the local triangle count or triangle degree of vertex v and δ(e) is known as the
support or triangle degree of edge e = {u, v}. We denote by Δ(G) the number of
triangles contained in graph G. Since a triangle is counted at each of its three
vertices, we have Δ(G) = 1

3

∑
v∈V δ(v). Let H = (V ′, E′) be a subgraph of G

where |V ′| = k and each pair of vertices are connected by an edge (H is a k-
clique). Then H contains

(
k
3

)
triangles and δ(v) =

(
(k−1)

2

)
and δ(e) = (k − 2) for

v ∈ V ′ and e ∈ E′. Let t be a triangle in G and let δ(tx) = minx δ(x), where
x is a vertex of t and δ(te) = mine δ(e) where e is an edge of t. The k-count of
triangle t is defined to be the largest k such that

1. δ(tx) ≥ (
(k−1)

2

)
and

2. δ(te) ≥ (k − 2)

The main computational task of miniTri is to compute the k-count distribution of
the triangles of an input graph. Figure 1 displays an example input graph with 7
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vertices and 13 edges. Each vertex i is circled and contains a label that represents
its identity. Beside each vertex i is an integer denoting its local triangle count
δ(i), and there is an integer beside each edge e = {i, j} denoting its support δ(e).
The graph contains 7 triangles. The table of Fig. 1 enumerates the triangles in
the graph and displays the local triangle count and support of the vertices and
edges together with the k-count of the triangles. Each row of the table lists the
vertex labels of a triangle followed by the local triangle count, support, and k-
count. There are 4 triangles with k-count value 4 and 3 triangles with k-count
value 3. Let ω be the size of the largest clique in G. Then the graph contains
at least

(
ω
3

)
triangles with k-count value of at least ω. Therefore, the k-count

distribution can be used to obtain a bound on the size of the largest clique of a
graph.

Fig. 1. k-count table for the example input graph
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The remainder of the paper is organized as follows. In Sect. 2, we introduce
the notion of the intersection representation of network data and our data struc-
ture, followed by an illustrative example describing the main ideas in our inter-
section matrix-based triangle enumeration method. Section 3 outlines the com-
puting environment employed to perform numerical experiments and presents
triangle enumeration results on three sets of representative network data. mini-
Tri1 [18] and its successor, which we call miniTri2, are the reference implemen-
tations by which we present comparative running times and demonstrate that
our method scales very well on massive network data, and can be very flexible
in its extensions to the analysis of network characteristics such as truss decom-
position [7] and triangle ranking [6]. The paper is summarized in Section 4 with
a discussion on future research directions.

2 Intersection Representation of Network Data

Let the vertices in V be labelled 1, 2, . . . , |V | = n. Using the labels on the
vertices, a unique label can be assigned to each edge ek = {vi, vj}, i < j, k =
1, 2, . . . , |E| = m.

The intersection representation of graph G is a matrix X ∈ {0, 1}m×n in
which for each column j of X there is a vertex vj ∈ V and {vi, vj} ∈ E whenever
there is a row k for which X(k, i) = 1 and X(k, j) = 1. The rows of X represent
the edge list sorted by vertex labels. Therefore, matrix X can be viewed as an
assignment to each vertex a subset of m labels such that there is an edge between
vertices i and j if and only if the inner product of the columns i and j is 1. Since
the input graph is unweighted, the edges are simply ordered pairs, and can be
sorted in O(m) time. Unlike the adjacency matrix which is unique (up to a fixed
labelling of the vertices) for graph G, there can be more than one intersection
matrix representation associated with graph G [1]. We exploit this flexibility to
store a graph in a structured and space-efficient form.

2.1 Adjacency Matrix-Based Triangle Counting

Many existing triangle counting methods use the sparse representation of adja-
cency matrices in their calculations. The adjacency matrix A(G) ≡ A ∈
{0, 1}|V |×|V | associated with graph G is defined as,

A(i, j) =
{

1 if {vi, vj} ∈ E, i �= j
0 otherwise

It is well known in the literature that the number of closed walks of length
k ≥ 0 are obtained in the diagonal entries of kth power Ak. Therefore, the total
number of triangles in a graph G,Δ(G), is given by the trace of A3,

Δ(G) =
1
6
Tr(A3).
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Fig. 2. Intersection matrix representation of the example input graph

The factor of 1
6 accounts for the multiple counting of a triangle (the number

of ways closed walks of length 3 can be obtained is 3! = 6). There is a large
body of literature on sparse linear algebraic triangle counting methods based
on adjacency matrix representation of the data [5]. miniTri’s triangle counting
implementation takes the adjacency matrix A of the input graph and creates
an incidence matrix B from it [18]. The enumeration and counting of the tri-
angles occur in the overloaded matrix multiplication C = AB, where entries in
the resultant matrix C with a value of 2 correspond to a completed triangle.
This method triple-counts each triangle, once for each vertex, so the final result
is divided by 3 to give the total number of triangles in the graph. Since the
multiplication of two sparse matrices usually results in a dense matrix, this is a
memory intensive process.

2.2 Intersection Matrix-Based Triangle Counting

Graph algorithms can be effectively expressed in terms of linear algebra opera-
tions [9], and we combine this knowledge with our proposed data representation
to count the triangles in a structured three-step method. For vertex i we first
find its neighbours j > i such that {i, j} ∈ E by multiplying the submatrix
of X consisting of rows corresponding to edges incident on i (let us call them
(i − j)−rows) by the transpose of the vector of ones of compatible length. A
value of 1 in the vector-matrix product indicates that the corresponding vertex
j is a neighbour of vertex i.
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Next, we multiply the submatrix of X consisting of columns j identified in
the previous step and the rows below the (i − j)−rows by a vector of ones of
compatible length. A value of 2 in the matrix-vector product indicates a triangle
of the form (i, j, j′) where j and j′ are neighbours of vertex i with j < j′. Let
k be the row index in matrix X for which the matrix-vector product contains
a 2. Then it must be that X(k, j) = 1 and X(k, j′) = 1. Since each row of X
contains exactly 2 nonzero entries that are 1, it follows that {j, j′} ∈ E. This
operation is identical to performing a set intersection on the forward neighbours
of vertices j and j′.

The number of triangles in the graph is given by the sum of the number
of triangles associated with each vertex as described. Since the edges are rep-
resented in sorted order in our algorithm, unlike many other triangle counting
methods [18], each triangle is counted exactly once. Figure 2 displays the inter-
section matrix representation of the input graph X. The triangles of the form
(1, j, j′) where j, j′ ∈ {3, 5, 6} are obtained from the product X(7 : 13, [3 5 6])∗1,
where 1 denotes the vector of ones. The product has a 2 at locations correspond-
ing to rows 7, 8, and 12 of X and the associated triangles are (1, 3, 5), (1, 3, 6),
and (1, 5, 6). Therefore, there are three triangles incident on vertex 1, and it can
be easily verified that the graph contains a total of 7 triangles across all of the
vertices.

2.3 Data Structure

In our preliminary implementation, we use two arrays to store useful information
that can be computed after we sort the edges. FDC (Forward Degree Cumulative)
is an array of size n, with elements corresponding to the total number of “forward
neighbours” across the vertices of a graph. Forward neighbours are defined as
the neighbours of a vertex that have a higher label than the vertex of interest.
With the vertices of the graph labelled, finding the forward degree of a vertex
j can be calculated as fd(j) = FDC[j+1] - FDC[j]. FN is an array of size m
that stores which vertices are the forward neighbours of a vertex j. Using FN
we can find these forward neighbours of j as fn(j) = FN[k], where k ranges
from FDC[j] to FDC[j+1]-1. The arrays FDC and FN thus save the vector-matrix
products needed to find the forward neighbours. Figure 3 displays the arrays FDC
and FN for the graph of Fig. 2.

Fig. 3. FN and FDC for the example graph.
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2.4 Local Triangle Count and Edge Support

As discussed in Sect. 1, there are many other metrics related to triangle compu-
tation that can be found using our intersection matrix data structure. The bases
for these metrics are the triangle degrees, which are the number of triangles
incident on an edge (edge support) or vertex (local triangle count) of a graph.
This is illustrated in Fig. 4 as edgeDeg and vertDeg, respectively, derived from
Fig. 1.

Fig. 4. vertDeg and edgeDeg for the example graph.

Let j be the column (vertex) of matrix X (graph G) currently being processed
in the fullCount algorithm. For each pair of its forward neighbours j′ and j′′

there is an edge between them if and only if both of the corresponding columns
contain a 1 in some row k identifying the triangle (j, j′, j′′). In terms of the
matrix-vector multiplication in line 7 of algorithm fullCount, vector T will get
updated as T (k) ← 2. Thus the triangle (j, j′, j′′) can be enumerated and stored
instantly. The vertex triangle degrees of each triangle are dynamically updated
with this same information, and stored in an array. The edge triangle degrees
are stored in a separate array and updated by exploiting the structure of the FN
and FDC arrays in tandem. The entries of the FDC array, while primarily used
to store the forward degree of a vertex, also contain the edge number (edge id)
that the forward neighbourhood of the vertex of interest begins and ends at.
Since the sub-arrays in FN that correspond to the forward neighbourhood of the
vertices are in the same order as the listed edges of the intersection matrix, any
edge between two vertices can be identified by first finding the distance between
the higher labelled vertex and the beginning of the forward neighbourhood in
which it is found (using FN), and then adding this distance to the entry in FDC
that corresponds to the edge of the lower numbered vertex. Finally, the k-count
distribution of the triangles is used to give a bound on the maximum clique of a
graph [18], and with the triangles enumerated and the edge and vertex triangle
degrees computed and stored as shown in Fig. 4, the k-count calculations can
be quickly computed using the method described Sect. 1. The algorithm in its
entirety is given in the next section.
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2.5 Algorithm

fullCount (X)
Input: Intersection matrix X

1: Calculate FDC ξ Forward degree cumulative
2: Calculate FN ξ Forward neighbour
3: count ← 0 ξ Number of triangles
4: for j = 1 to n − 1 do ξ j ∈ V , where V is the set of vertices
5: fd ← FDC[j + 1] − FDC[j] ξ fd is the forward degree of j
6: if fd > 1 then ξ j has more than one forward neighbour
7: T = X([FDC(j + 1) : m], fnj) ∗ 1
8: S = {t | T [t] = 2}
9: if S �= ∅ then

10: count ← count + |S|
11: for t ∈ S do
12: update edgeDeg ξ Array of triangle edge degrees
13: update vertDeg ξ Array of triangle vertex degrees
14: Triangles ← Triangles ∪ t ξ Array that stores enumerated

triangles
15: kCountTable ← computeKCounts(count, vertDeg, edgeDeg, Triangles)
16: return count, vertDeg, edgeDeg, kCountTable, and Triangles

3 Numerical Results

This section contains experimental results from selected test instances. The first
set comprises real-world social networks from the Stanford Network Analysis
Project (SNAP), obtained from the Graph Challenge website [15]. SNAP is a
collection of more than 50 large network datasets containing a large number of
nodes and edges, including social networks, web graphs, road networks, internet
networks, citation networks, collaboration networks, and communication net-
works [10]. The first set of experiments were performed using a Dell Precision
T1700 MT PC with a 4th Gen Intel Core I7-4770 Processor (Quad Core HT, with
3.4GHz Turbo and 8GB RAM), running Centos Linux v7.9. The implementa-
tion language was C++ and the code was compiled using −O3 optimization flag
with a g++ version 4.4.7 compiler. Performance times are reported in seconds
and were averaged over three runs where possible, using the following imple-
mentation abbreviations: mt1 for miniTri1, mt2 for miniTri2, and int for our
intersection algorithm.

Figure 5 shows the speedups of our algorithm versus the two reference mini-
Tri implementations on these real-world instances. The speedups are a unitless
measurement defined as the ratio of the miniTri counting time divided by that of
our algorithm. For the triangle counting algorithms, our speedups ranged from
22× to an impressive 1383× over miniTri1, and from 16× to 642× over mini-
Tri2, with two instances (“flickrEdges” and “Cit-Patents”) failing to compute
with miniTri2. Instances with an “*” had speedups greater than 650× against
miniTri1 and were cut off from the figure for ease of viewing.
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Fig. 5. Comparing our intersection algorithm with both miniTri implementations on
large real world networks

Table 1. Comparing our intersection algorithm with miniTri on large synthetic net-
works.

Graph characteristics Time in seconds

Name |V | |E| Δ(G) mt1 int

graph500-scale18-ef16 262144 4194304 82287285 17440 9.357

graph500-scale19-ef16 524288 8388608 186288972 49211.8 25.21

graph500-scale20-ef16 1048576 16777216 419349784 197456 72.34

graph500-scale21-ef16 2097152 33554432 935100883 N/A 171.2

graph500-scale22-ef16 4194304 67108864 2067392370 N/A 481.43

graph500-scale23-ef16 8388608 134217728 4549133002 N/A 1340.05

graph500-scale24-ef16 16777216 268435456 9936161560 N/A 3317.15

graph500-scale25-ef16 33554432 536870912 21575375802 N/A 7959.39

Table 1 compares our algorithm performance on large synthetic test instances
from GraphChallenge to miniTri1 (miniTri2 was only able to compute the first
instance and thus omitted). “N/A” denotes instances where miniTri1 timed out
after four days of computation. Due to the large sizes of this second set of
instances, they were run on the large High Performance Computing system (Gra-
ham cluster) at Compute Canada. On the first 3 instances, our method is over
1800 times faster than miniTri1, and the relative performance improves with
increasing instance size, further demonstrating the scalability of our triangle
counting algorithm.

Figure 6 demonstrates our algorithm’s performance on relatively dense brain
networks from the Network Repository [14], back in the Linux environment.
These graphs have between 15 and 268 million edges and up to 42 trillion tri-
angles, and neither miniTri implementation was able to provide results for any
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Fig. 6. Testing our intersection algorithm on networks with billions of triangles.

of the instances. The line of best fit is a polynomial of degree 2 and shows that
our algorithm scales very well with graphs with massive amounts of triangles.

Our intersection-based implementation also produces competitive results
when compared to the state-of-the art triangle counting algorithms [16]. Algo-
rithms were analyzed and compared by fitting a model of graph counting times,
Ttri, as a function of the number of edges Ne = |E|. This data was then used to
estimate the parameters N1 (the number of edges that can be processed in one
second) and β:

Ttri = (Ne/N1)β

to compare different counting implementations. Implementations with a larger
N1 and smaller β perform the best, and the top entries from the 2019 review
had N1 values ranging from 5 × 105 to 5 × 108, and β values ranging from 1

2 to
4
3 . For reference, our algorithm had β = 3

4 and N1 = 1 × 107.
After examining the comparative performance of our triangle counting algo-

rithm, we proceeded to expand the implementation to include the metrics
described in Sect. 2.4 - triangle counting, triangle vertex degree, triangle edge
degree, and k-count calculations. Similar to the basic counting experimental
results, our intersection method of this “full count”was faster than miniTri1 and
miniTri2 on every instance, with speedups ranging between 2× and 177× on the
ten largest instances, displayed in Table 2. One noteworthy observation about
these results is that due to the data structure that stored the enumerated tri-
angles, the k-count calculation of our algorithm ran much faster than those of
miniTri, even though the code implementation was nearly identical. This demon-
strates the versatility of FDC and FN in their ability to perform a wide range of
network analytics.
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Table 2. Comparing our full count intersection algorithm with miniTri1 and miniTri2
on large real world networks.

Graph characteristics Time in seconds Speedup

Name |V | |E| Δ(G) mt1 mt2 int mt1/int mt2/int

Loc-gowalla 196591 950327 2273138 156 106.4 0.882 177 121

roadNet-PA 1090920 1541898 67150 2.067 1.792 0.076 27 24

roadNet-TX 1393383 1921660 82869 2.544 2.207 0.070 36 32

flickrEdges 105938 2316948 107987357 1112 N/A 553.1 2 ∞
amazon0312 400727 2349869 3686467 26.8 22.29 0.932 29 24

amazon0505 410236 3356824 3951063 28.71 23.39 0.997 29 23

amazon0601 403394 3387388 3986507 28.24 25.09 0.998 28 25

roadNet-CA 1965206 5533214 120676 3.706 3.212 0.134 28 24

Cit-Patents 3774768 33037894 7515023 157.21 N/A 3.502 45 ∞

4 Conclusion

Network data is usually input as a list of edges which can be preprocessed into a
representation such as an adjacency matrix or adjacency list, suitable for algo-
rithmic processing. We have presented a simple, yet flexible scheme based on
intersecting edge labels, the intersection matrix, for the representation of and
calculation with network data. A new linear algebra-based method exploits this
intersection representation for triangle computation – a kernel operation in big
data analytics. By using sparse matrix-vector products instead of the memory-
intensive matrix-matrix multiplication, our implementation has the capacity to
enumerate and extend triangle analysis in graphs so that important informa-
tion such as triangle vertex and edge degree can be gleaned in a fraction of
the time of reference implementation of miniTri on large benchmark instances.
The computational results from a set of large-scale synthetic and real-world net-
work instances clearly demonstrate that our basic implementation is efficient
and scales well. The two arrays FDC and FN together constitute a compact rep-
resentation of the sparsity pattern of network data, requiring only n + m units
of storage. This is incredibly useful in the exchange of network data, with the
potential to allow for the computation of many additional intersection matrix-
based network analytics such as rank and triangle centrality [6]. A shared mem-
ory parallel implementation of this method using OpenMP is being developed,
with very optimistic preliminary results. This algorithm can still be tuned, and
cache efficiency is being studied for additional optimizations, exploring tempo-
ral and spatial locality to analyze the memory footprint and provide further
improvements. A natural extension of the research presented in this paper is to
use the intersection representation in graphlet counting methods. Similar to the
k-count distribution, graphlet frequency distribution (a vector of the frequency
of different graphlets in a graph) provides local topological properties of graphs
[17].
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Abstract. This work proposes a novel adaptive global surrogate mod-
eling algorithm which uses two neural networks, one for prediction and
the other for the model uncertainty. Specifically, the algorithm proceeds
in cycles and adaptively enhances the neural network-based surrogate
model by selecting the next sampling points guided by an auxiliary neu-
ral network approximation of the spatial error. The proposed algorithm
is tested numerically on the one-dimensional Forrester function and the
two-dimensional Branin function. The results demonstrate that global
surrogate modeling using neural network-based function prediction can
be guided efficiently and adaptively using a neural network approxima-
tion of the model uncertainty.

Keywords: Global surrogate modeling · Neural networks · Model
uncertainty · Error based exploration

1 Introduction

There is often a need in engineering to assess the performance of a process (e.g.,
through physical or computer experiments) with a limited number of evalua-
tions. In such cases, surrogate models are often used to approximate the output
response of the process over a given data [3,17,19]. The surrogates are fast to
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evaluate and can be used to either explore the output response or exploit them
to determine a set of parameter values that yield optimal performance.

Modern surrogate modeling strategies start by constructing a surrogate of
an initial data set and then progress in cycles using prediction and uncer-
tainty estimates (if available) to select the next sampling point [26]. Several
such approaches have been proposed, including the efficient global optimization
(EGO) algorithm [9] and Bayesian optimization (BO) [8,16,20,24]. The EGO
algorithm [9] follows this strategy by modeling the output response as a random
variable and selects the next point to be sampled by maximizing the expected
improvement over the best current solution. BO follows the same idea as EGO,
but the approach is formalized rigorously through Bayesian theory [16,20,24].

Gaussian process regression (GPR) (or Kriging) [3,7,11] is widely used with
EGO and BO because of its unique feature of providing a prediction of the
mean of the underlying data and a prediction of its uncertainty. In particular,
GPR provides the mean squared error of the predictor using the same data
for constructing the predictor. EGO and BO utilize the predictor and its error
estimate to compute a criterion to guide the algorithm to adaptively enhance the
predictor. Both EGO and BO typically use ther expected improvement as the
criterion [3,27]. The major disadvantages of GPR modeling, however, are that
the computational cost scales cubically with the number of observations, and
does not scale well to higher dimensions [13]. This issue can be partially relieved
by using graphical processing units (GPUs) and parallel computing [14].

Neural network (NN) regression modeling [6], on the other hand, scales much
more efficiently for the optimization of complex and large data sets [13,22]. It
should be noted that the training cost of NNs depends on various factors, such as
sample size, number of epochs, and architecture complexity. A major limitation
of NN regression modeling is that uncertainty estimates are, in general, not read-
ily available for a single prediction [13]. Rather, it is necessary to make use of an
ensemble of NNs with a range of predictions. Bayesian neural networks (BNNs)
are an example of such class of algorithms [5,12,25]. Current BNN approaches,
however, are approximation methods because exact NN-based Bayesian infer-
ence is computationally intractable. Using dropout as a Bayesian approximation
to represent model uncertainty in deep NNs (DNNs) is an example of one such
approach [4]. Current BNN algorithms are, however, computationally intensive.

There is recent interest in creating surrogate modeling algorithms that com-
bine the predictive capabilities of NNs and the uncertainty estimates of GPR.
Renganathan et al. [18] use DNNs in place of a polynomial to model the global
trend function in GPR modeling. This approach improves the prediction capabil-
ities while still retaining the model uncertainty of GPR. Nevertheless, that app-
roach is still limited in the same way as the original GPR modeling approach.
Zhang et al. [28] propose an algorithm that creates and adaptively enhances
a multifidelity DNN by exploiting information from low-fidelity data sets. This
approach is limited to exploitation only and cannot perform exploration or search
a criterion that balances exploration and exploitation.
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In this paper, a novel adaptive global surrogate modeling algorithm is pro-
posed that follows the EGO strategy but uses NNs in place of GPR. Specifically,
the proposed algorithm iteratively constructs two NN models, one for the pre-
diction of a given process output and the other for the model uncertainty. The
proposed algorithm uses separate data sets to construct each NN model. In each
cycle, the model uncertainty is used to select the next sampling point and then
update the NN prediction model. The algorithm terminates once the uncertainty
measure has reached a specified tolerance or the maximum number of samples
is reached. In this work, the spatial error in the prediction is used as the uncer-
tainty measure, and it is maximized in each cycle to select the next sampling
point. The proposed algorithm is tested on two low-dimensional analytical prob-
lems. The results demonstrate that global modeling using NN-based function
prediction can be guided efficiently and adaptively by an NN approximation of
the model uncertainty.

The next section introduces the proposed algorithm. The following section
presents results of numerical experiments using one- and two-dimensional ana-
lytical functions. Finally, concluding remarks are presented.

2 Methods

The proposed approach is summarized in Algorithm 1. The algorithm requires
two initial data sets that are used to fit separate neural networks. One neural
network models the process output in terms of the input parameters, and the
other models the spatial error in the first neural network. Let (X,Y)f be the set
of sample points used to fit the neural network to the process output, and let
(X,Y)u be the set of sample points used to fit the neural network to the spatial
uncertainty. Here, Xf = {x(1), ...,x(p)}T is the set of the input parameter sam-
ple points and Yf = (y(1)(x(1)), ..., y(p)(x(p)))T the corresponding set of model
outputs. Furthermore, Xu = {x(1), ...,x(q)}T is the set of input parameter sam-
ple points and Yu = (y(1)(x(1)), ..., y(q)(x(q)))T the corresponding set of model
outputs. In this work, it is assumed that the data sets (X,Y)f and (X,Y)u are
distinctly different. Both sets are created using Latin hypercube sampling (LHS)
[15].

To fit the neural networks within the proposed algorithm, the mean squared
error (MSE) loss function is minimized:

L =
∑N

l=1(ŷ
(l) − y(l))2

N
, (1)

where N is the number of samples in the training data. The loss function mini-
mizes the mismatch between the training data, y, and the predicted values, ŷ, of
the neural network [6,21]. To minimize the loss function, the adaptive moments
(ADAM) optimization algorithm is used [10] along with the backpropagation
algorithm [2] to compute the gradients. The neural network setup used in this
work, in particular the number of hidden layers and the number of neurons per
hidden layer, is case dependent and is described in the numerical experiments.
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Algorithm 1. Adaptive global surrogate modeling algorithm with neural
network-based prediction and uncertainty
Require: initial data sets (X,Y)f and (X,Y)u

repeat
fit neural network to function with available data (X,Y)f

compute uncertainty with available data (X,Y)u

fit neural network to uncertainty with available data (X,Y)u

P ← arg maxx ŝ2(x)
Xf ← Xf ∪ P
Yf ← Yf ∪ y(P)

until convergence

Other hyperparameters are common between the cases. Specifically, the tangent
hyperbolic is used as the activation function, the learning rate is set to 0.001,
and the number of epochs is fixed with a value of 3, 000. The neural network
algorithm is implemented using TensorFlow [1].

The neural network algorithm is used in each cycle to construct a surrogate
model, ŷf , of the process output, y, using (X,Y)f . In this work, the uncertainty
measure of ŷf is estimated by the square of the spatial error and is written as

s2(x) = (ŷf (x) − yf (x))2. (2)

In the proposed algorithm, s(x)2 is computed in each cycle using the data set
(X,Y)u, and the neural network algorithm is used to construct the surrogate
model ŝ(x)2.

To select the next sampling point in each cycle of the proposed algorithm,
the uncertainty measure ŝ(x)2 is maximized using differential evolution [23]. The
algorithm is terminated if ŝ(x)2 is lower than a specified tolerance or the number
of cycles exceeds a specified maximum value.

3 Numerical Experiments

The results of numerical experiments with the proposed algorithm are presented
in this section. Two analytical cases are considered, the first case has one input
parameter and the second has two.

3.1 One-Dimensional Forrester Function

The one-dimensional analytical function developed by Forrester et al. is written
as

y(x) = (6x − 2)2 sin(12x − 4), (3)

where x ∈ [0,1]. The proposed algorithm is applied to the modeling of this
function using three uniformly distributed initial samples and ten infill points.
The total number of samples for modeling the function is, therefore, 13. Ten
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Fig. 1. Forrester function prediction (left) and uncertainty (right) at iterations: (a) 0,
(b) 3, (c) 6, (d) 9.
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uniformly distributed samples are used for modeling the uncertainty. The number
of hidden layers is set to three and the number of neurons in each hidden layer
is set to 50.

Figure 1 shows the modeling progression at iterations 0 (3 initial samples and
the first infill point), 3 (3 initial and 3 prior infills and the new infill point), 6
(3 initial and 6 prior infills and the new infill), and 9 (with all the initial and
infill samples), respectively. Specifically, each subfigure shows the neural network
prediction ŷ(x) along with the true function y(x), sample points and the next
sampling point, as well as the neural network model of the uncertainty ŝ2(x).
The location of the maximum uncertainty in the interval from 0 to 1 guides the
sampling so that the prediction quickly aligns with the true function through
exploration.

The global accuracy of the surrogate models is measured using the root mean
squared error (RMSE), which is evaluated using a separate testing data set.
Figure 2(a) shows how the RMSE changes over the iterations and is reduced to
around 0.1. Figure 2(b) shows how the maximum model uncertainty reduces over
the iterations from around 250 to 0.01, or by four orders of magnitude.

3.2 Two-Dimensional Branin Function

The two-dimensional Branin function is written as

y(x1, x2) =

(

x2 − 5.1
4π2

x2
1 +

5
π

x1 − 6

)2

+ 10

(

1 − 1
8π

)

cos(x1) + 10, (4)

where x1, x2 ∈ [0, 10]. The proposed algorithm models this function with ten
initial samples selected using LHS and fifty additional infill points for a total of
sixty points at the end of fifty iterations. One hundred points, selected through
LHS, are used for the uncertainty model. For this case, the number of hidden
layers was set to two, with fifty neurons in each hidden layer.

Fig. 2. Forrester function modeling error evolution: (a) root mean squared error of the
prediction model, (b) maximum variance of the uncertainty model.
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Fig. 3. Branin function prediction (left) and uncertainty (right) at iterations: (a) 0,
(b) 14, (c) 31, (d) 49.
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The modeling progression, at iterations 0 (initial samples only), 14, 31, and
49, is shown in Fig. 3. The left plot in each subfigure shows the neural net-
work model of the function ŷ(x1, x2) with the sample points used and the next
selected infill point, while the right plot shows the neural network model of the
uncertainty ŝ2(x1, x2) that is being used to select that infill point.

Figure 4 illustrates the global improvement of the surrogate model as the algo-
rithm progresses through the iterations with Fig. 4(a) showing how the RMSE
for the surrogate model reduces down to 0.2, and Fig. 4(b) showing how the max-
imum predicted model uncertainty ŝ2(x1, x2) reduces by six orders of magnitude
(from roughly 3.7 · 105 to 0.1). The close comparison between the final neural
network model and the true function can be seen in Fig. 5 with (a) the contour
plot of the true function and (b) the final predicted model with all of the sample
points indicated.

Fig. 4. Branin function global modeling error evolution: (a) root mean squared error
of the prediction model, (b) maximum variance of the uncertainty model.

Fig. 5. Branin function: (a) true, (b) predicted.
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4 Conclusion

Global modeling of large data sets is important for decision-making in experi-
mentally and computationally-driven discoveries in engineering and science. The
proposed approach of combining efficient global optimization strategies and neu-
ral network modeling directly tackles this important problem. Specifically, this
paper demonstrates that global modeling using neural network-based function
prediction can be guided by an auxiliary neural network approximation of the
prediction spatial error that enables efficient adaptive surrogate modeling of large
data sets. This capability will support scientists and engineers to make decisions
on whether and where in the parameter space to do a physical experiment or
computational simulation.

Future work will focus on improving the proposed algorithm to permit adap-
tive sampling of the uncertainty model as well as using data from multiple levels
of fidelity. Furthermore, the process of updating the neural network fit in each
cycle of the algorithm needs to be accelerated. Other uncertainty metrics than
the prediction variance also need to be explored. An important step will be to
compare the proposed approach against current state-of-the-art methods and
to characterize the computational costs of each approach. Performing numerical
experiments on high-dimensional problems involving physical and computational
data is of current interest.

Acknowledgements. This material is based upon work supported in part by the
Department of Energy under a Laboratory Directed Research and Development grant
at Ames Laboratory.
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Abstract. This paper focuses on the analysis of agricultural and engi-
neering processes using simulation decomposition (SD). SD is a technique
that utilizes Monte Carlo simulations and distribution decomposition to
visually evaluate the source and the outcome of different portions of data.
Here, SD is applied to three distinct processes: a model problem, a non-
destructive evaluation testing system, and an agricultural food-water-
energy system. The results demonstrate successful implementations of
SD for the different systems, and the illustrate the potential of SD to
support new understanding of cause and effect relationships in complex
systems.

Keywords: Simulation decomposition · Food-water-energy systems ·
Nondestructive evaluation · Physics-based simulations · Parameter
variability

1 Introduction

Simulation decomposition (SD) [1] is not only a great visualizing technique for
engineering processes, but also an efficient application to utilize the resulting
data set created by the Monte Carlo [2] sampling process. An illustration, such
as a stacked bar chart, can express the decomposed variability of simulation
inputs and outputs to understand the results. Furthermore, SD has the poten-
tial to understand cause and effect relationships between the input and output
parameters of a given system [3].

In this work, a recent SD method [3] is applied to problems in the area
of agriculture and engineering system analysis. The first problem is intended
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to illustrate the SD method using is a model problem with three inputs and
one output. The second problem has relevance to nondestructive evaluation and
involves an ultrasonic testing (UT) system with a pillbox void. The last problem
involves an agricultural model that computes the nitrogen export of the state
of Iowa. The commonality of the second and the third problems is that they
both involve processes that utilize physics-based computational simulations and
have input parameters with variability. The SD analysis provides a graphical
representation of the effect of input variability on the simulation outputs.

The next section gives the formulation of the problem and a description
of the SD analysis technique. The following section presents the results of the
three numerical cases. The last section summarizes this work and discusses the
potential future work.

2 Methods

This section describes the general problem formulation and gives the details of
the SD method.

2.1 Problem Statement

System analysis can be represented as a black box model as

y = f(x), (1)

where the left-side of the equation represents the model output y and the right-
side of the equation represents the model f with input parameters x. It is
important to understand the effects of uncertainties of the input parameters
on the output response when making design decisions. In this work, the effects
of the input parameters on the output parameters are visualized using simulation
decomposition (SD).

2.2 Simulation Decomposition

SD [1,3] is an approach to visualize the effects of variability on models. Further-
more, SD analysis is used to distinguish the influences of different cases of inputs
affecting the model output. Figure 1 shows a flowchart of the SD workflow. The
process starts by generating random samples as the input data set. First, specify
the statistical distributions for each input parameter and choose the states of
interest for each input parameter individually. Then, divide the distributions into
sub-distributions according to the chosen states. Next, generate every possible
combination of the input data from the sub-distribution using Monte Carlo sam-
pling and categorize them into different cases. These cases would determine the
model output that is to-be-decomposed. Then, conduct the simulations with the
input samples and obtain the output data set. Meanwhile, register the output of
each simulation according to their cases. Lastly, construct the outcome probabil-
ity for each case and decompose the full outcome probability into different cases
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Fig. 1. A schematic of the simulation decomposition workflow.

accordingly. The importance of each case can be observed by the occurrence in
the decomposed output visually, and cross-checking important cases provide a
sense of importance for the input parameters.

3 Numerical Examples

This section presents the results of SD analysis of a model problem, an ultrasonic
nondestructive testing system, and the Iowa food-energy-water system analyzed.

3.1 Model Problem

The simple analytical function is written as [4]

y(x) = x1 + x2x
2
3, (2)

where x1, x2, and x3 are the input parameters with the variabilities given in
Table 1, and y is the function output parameter. A data set of a total 106 points
is created using Latin hypercube sampling (LHS) [5].

Figure 2 shows how each input parameter is decomposed into two states that
define eight cases for the parameter space. All the parameters are considered to
be uniformly distributed. For x1, 500 is set to divide the complete distribution
into sub-distribution, and 50 and 5 are used to divide x2 and x3, respectively.

Figure 3 shows the decomposed distribution of the output y. In general, a
low value of y is contributed by almost all combinations of the input parameters.
However, a high value of y is mainly obtained by the cases with high values of

Table 1. Input parameters and their statistical distributions for the model problem.

Parameter Distribution

x1 U(0, 1000)

x2 U(0, 100)

x3 U(0, 10)
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Fig. 2. Decomposed distribution of input parameters from SD for the model problem.

Fig. 3. Decomposed distribution of the model problem output.
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x2 and x3. In particular, in the cases where x1 and x2 are both low, the simple
function can still yield high y with high x3, and vice versa. In this case, the SD
analysis shows that the output of the analytical function is dominated by x3,
which is as expected when inspecting the function directly.

3.2 Ultrasonic Testing (UT) System with a Pillbox Void

Ultrasound testing (UT) is a widely used nondestructive testing (NDT) tech-
nique for flaw detection. In this problem, a pillbox-inclusion-defect under planar
UT transducer is considered [6]. Figure 4 shows the setup of the problem. The
planar transducer is placed in water and the probe angle (θ) and the probe
coordinates (x and y) are varied. A fused quartz block with a pillbox-like void
is inspected by the transducer where the distance between the transducer and
the surface of the block (z1) and the distance between the surface of the block
and the defect (z2) can vary based on the setup. The variability distributions
for this problem are given in Table 2. The output response is the reflected pulse
(v) received by the transducer. A data set of 105 data points is generated by
LHS [5] for this problem.

Figure 5 shows the sub-distributions of sampled input parameters in two
states. The variability of probe angle (θ) is considered normal distribution and
the rest of input parameters are considered uniform distributions in this prob-
lem. For θ, the complete distribution is divided by the statistical mean of 0◦. The
sub-distributions of the probe coordinates x and y are both divided by 0.5 mm.
z1 and z2 are consider using full distribution in this work for simplicity. The
total of eight cases are shown in Fig. 5.

Figure 6 shows the decomposed distribution of output response (v). A diago-
nal trend can be observed. In particular, the SD analysis shows that high values
of the inputs yield low values of response. Furthemore, the results show that the
response is dominated by θ, followed by x, and then y.

Fig. 4. A schematic showing the setup of the ultrasonic testing system.
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Table 2. Ultrasonic testing system input parameters statistical distributions.

Parameter Distribution

θ (deg) N(0, 0.52)

x (mm) U(0, 1)

y (mm) U(0, 1)

z1 (mm) U(24.9, 25.9)

z2 (mm) U(12.5, 13.5)

Fig. 5. Decomposed distribution of input parameters from SD for UT system.

3.3 Iowa Food-Energy-Water System

A simulation-based model of the Iowa food-water-energy (IFEW) system com-
putes the surplus nitrogen (Ns) considering the weather, agriculture, and animal
agriculture domains in the state of Iowa [7]. Figure 7 show an extended design
structure matrix (XDSM) diagram of the simulation model. The input parame-
ters, intermediate parameters and output parameters are listed in Table 3, and
the details of the computation for different domains are described in [7]. This
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Fig. 6. Decomposed distribution of ultrasonic testing system output parameter.

work focuses on the SD analysis of the variability input parameters given in
Table 4 and assumes other input parameters are fixed. A data set of 105 points
is created for the SD analysis using LHS [5].

Figure 8 shows the distribution of sampled input parameters in two states and
the four corresponding cases. The variability distributions of the July temper-
ature (w1) and precipitation (w2) are considered to be normal and log-normal,
respectively. A temperature of 76 ◦F and a precipitation 2.5 in. are used to divide
the distributions into sub-distributions of w1 and w2, respectively. The states can
be identified as regular temperature (below 76 ◦F) and high temperature (above
76 ◦F). Similarly, the states of precipitation are low precipitation (below 25 in.)
and regular precipitation (above 25 in.).

w1−5, cw1 x3, x4 x5, x6, x7, x8

Crop-Weather

Model
x1, x2

Agriculture CN,FN,GN

Animal Ag MN

N surplus Ns

Fig. 7. Extended design structure matrix of Iowa food-water-energy system model.
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Table 3. Parameters of the IFEW simulation system model.

Parameter Description

w1 July temperature

w2 July precipitation

w3 June precipitation

x4 July-August average temperature

x5 July-August average precipitation

cw1 May planting progress

x1 Corn yield

x2 Soybean yield

x3 Rate of commercial nitrogen for corn

x4 Rate of commercial nitrogen for soybean

x5 Hog/pigs population

x6 Beef cattle population

x7 Milk cows population

x8 Other cattle population (heifers + slaughter cattle)

CN Commercial nitrogen (nitrogen in commercial fertilizers)

FN Biological fixation nitrogen of soybean crop

GN Grain nitrogen (Nitrogen harvested in grain)

MN Manure nitrogen (Nitrogen in animal manure)

Ns Surplus nitrogen in soil

Table 4. Input parameters of the IFEWS simulation model with variability.

Parameter Distribution

w1 (◦F) N(74, 22)

w2 (in.) LogN(0.4, 0.42)

Figure 6 shows the decomposed distribution of nitrogen surplus (Ns), i.e.,
the output parameter of the IFEW system model. The results suggests that the
major contribution of nitrogen surplus is coming from regular temperature and
regular precipitation of July. Other cases are the combinations of less common
weather conditions which lead to extreme amounts of nitrogen surplus but are
rare (Fig. 9).
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Fig. 8. Decomposed distribution of input parameters from SD for the IFEW system.

Fig. 9. Decomposed distribution of the nitrogen surplus output of the IFEW system
simulation model.

4 Conclusion

This work demonstrates that simulation decomposition (SD) can support the
analysis of agricultural and engineering systems involving input parameters of
variability. In particular, SD can provide new insights into the effects of the
model input ranges on its output. This insight can be useful in understand-
ing cause and effect relations in complex systems. Future work will explore the
potential of combining global sensitivity analysis (GSA) with the SD technique.
Furthermore, the use of surrogate modeling in conjunction with those analyses
will be investigated to create computationally efficient algorithms for analysis
with SD and GSA.
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Abstract. Performing global sensitivity analysis (GSA) can be chal-
lenging due to the combined effect of the high computational cost, but
it is also essential for engineering decision making. To reduce this cost,
surrogate modeling such as neural networks (NNs) are used to replace
the expensive simulation model in the GSA process, which introduces
the additional challenge of finding the minimum number of training data
samples required to train the NNs accurately. In this work, a recently
proposed NN-based GSA algorithm to accurately quantify the sensitiv-
ities is improved. The algorithm iterates over the number of samples
required to train the NNs and terminates using an outer-loop sensitiv-
ity convergence criteria. The iterative surrogate-based GSA yields con-
verged values for the Sobol’ indices and, at the same time, alleviates
the specification of arbitrary accuracy metrics for the NN-based approx-
imation model. In this paper, the algorithm is improved by enhanced
NN modeling, which lead to an overall acceleration of the GSA process.
The improved algorithm is tested numerically on problems involving an
analytical function with three input parameters, and a simulation-based
nondestructive evaluation problem with three input parameters.

Keywords: Global sensitivity analysis · Surrogate modeling · Neural
networks · Sobol’ indices · Termination criteria

1 Introduction

The study of sensitivity analysis (SA) [1,2] is important in many engineering and
science applications. Individual effects and interactions of the input parameters
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on the output model response can be quantified by SA [3,4]. Engineers and sci-
entists can use SA to understand the importance of parameters in experimental
or computational investigations. There are two types of SA, local [5] and global
[6] SA. Local SA usually refers to using the the local output model response
to quantify the effect of small local perturbations in the inputs. In global SA,
it utilizes the variance of output model response to quantify the effect due to
the input variability in the entire parameter space. This work focuses on the
use of global variance-based SA with Sobol’ indices [3,4] for simulation-based
problems.

In this paper, a recently developed algorithm for surrogate-based GSA [7] is
improved and applied to new testing problems. In the NN-based sequential algo-
rithm, the number of samples is iteratively increased with the goals of obtaining
the converged Sobol’ indices with the training cost as minimum as possible. This
approach not only alleviates the needs to specify arbitrary surrogate modeling
accuracy metrics, but also reliefs from the fact that accuracy metrics for surro-
gate models do not guarantee that converged Sobol’ indices are obtained. In this
work, the implementation of the NN training has been improved significantly,
which leads to improved convergence of the GSA algorithm. The algorithm is
tested numerically on two problems; an analytical function with three parame-
ters and a simulation-based problem with five parameters.

The next section describes the problem statement and gives the details of the
GSA algorithm. The following section presents results of numerical experiments.
Finally, conclusions are presented and remarks on future steps are given.

2 Methods

This work proposes a sequential algorithm to quantify the global sensitivities of
each input variability parameter to the simulation-based model outputs. Figure 1
shows the flowchart of the proposed algorithm. The algorithm starts from an
initial sample plan, x, which takes a small number of samples from the input
parameters with their variability. Latin hypercube sampling (LHS) [8] is used
in this work to randomly select sample data points from each probability dis-
tribution of the inputs. The corresponding outputs or observations, y, are then
generated from the simulation model. A surrogate model, ŷ(x), is constructed
using these inputs and outputs as training data. The input-output behavior
of the simulation model is imitated by the surrogate. Next, GSA is performed
with this surrogate model using Sobol’ sensitivity indices. The calculation of
the Sobol’ indices is a Monte Carlo process, therefore the convergence of these
indices are checked within an inner-loop. In the inner-loop, the Sobol’ indices are
computed by sampling the current surrogate model, and the number of samples
is increased during each iteration (e.g., one order of magnitude for this work)
until it achieves the convergence of the inner-loop. Then, the converged inner-
loop indices are checked by the outer-loop. The above process is resampled with
an increasing number of sample plan from the simulation model until the outer-
loop convergence criteria are met. The number of sample plan affects training an
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accurate surrogate model, and the outputs of the surrogate affect the precision
of the GSA. The outcome of the proposed algorithm yields the corresponding
surrogate model and the converged Sobol’ indices of GSA.

Fig. 1. A flowchart of the sequential global sensitivity analysis algorithm with neural
network-based prediction.

Neural networks (NNs) are used in a variety of applications in the world.
In this work, NN is used to be the surrogate and mimic the behavior of the
simulation model. The general structure of NN is a hierarchy of features [9] with
three parts: input layer, output layer, and hidden layers [10,11]. All the layers
are composed by ”neurons” which are the fundamental units of computation
[9]. The number of neurons in the input and output layers are the same as the
number of input and output variables of the simulation model. Hidden layers are
the layers in-between the input and output layers. There could be zero or more
hidden layers in a neural network. The number of hidden layers and the number
of neurons in each hidden layer usually varies from case to case.

This work uses Sobol’ indices [3,4] for the global sensitivity analysis. It is
a variance-based method that quantifies the single effects of individual inputs
and the interactions of combination of inputs on the simulation model output.
The first-order Sobol’ indices [4] that quantify the effect of individual inputs are
given by

Si =
Vi

Var(y)
=

Varxi
(Ex∼i(y|xi))
Var(y)

, (1)

where Si is the contribution of individual xi on the output variance of the simu-
lation model. The total-order or total-effect Sobol’ indices [4] that quantify the
interactions of combined inputs are given by

ST,i = 1 − Varx∼i(Exi
(y|x∼i))

Var(y)
, (2)
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where ST,i measures the contribution of both individual xi and the interactions
between xi and other input parameters on the output variance of the simulation
model.

The proposed sequential algorithm includes an outer-loop that samples the
simulation model to generate the NN-based surrogate models and an inner-loop
that samples the trained NN-based surrogate model to computes the Sobol’ sen-
sitivity indices. The converged NN-based surrogate model and Sobol’ indices are
obtained by the termination of the outer- and inner-loop based on two measure-
ments of the Sobol’ indices between successive iterations. The first measurement
is computed by the absolute relative change of Sobol’ indices defined as

dr[si] =

∣
∣
∣
∣
∣

s
(n)
i − s

(n−1)
i

s
(1)
i

∣
∣
∣
∣
∣
, (3)

where s is the value of the Sobol’ indices and is calculated separately for first-
and total-order indices, i is the index of input parameter, and n is the current
iteration index. The loop is terminated when dr[si] ≤ εr for all si. In this work,
εr is set to 0.1. The second measurement is computed by the absolute change of
Sobol’ indices, given by

da[si] =
∣
∣
∣s

(n)
i − s

(n−1)
i

∣
∣
∣ , (4)

where s is the value of the Sobol’ indices and is calculated separately for first-
and total-order indices, i is the index of input parameter, and n is the current
iteration index. The loop is terminated when da[si] ≤ εa for all si. In this work, εa

is set to 0.01. Both outer- and inner-loop can be terminated by either dr[si] ≤ εr

or da[si] ≤ εa being true.

3 Numerical Experiments

3.1 Case 1: Analytical Function

An analytical function with three input variables and one single output function
is used to demonstrate the algorithm. The function is written as

f(x) = x1 + x2x
2
3, (5)

wherex1 ∈ U(0, 1000),x2 ∈ U(0, 100), andx3 ∈ U(0, 10) are the input parameters
and their associated PDFs, and y is the function output.

Figure 2 shows the convergence of the direct GSA of the true model. Direct
GSA converged at 1000 sampling points. Figure 3 shows the inner-loop GSA
convergence using the NN-based algorithm and Fig. 4 shows the outer-loop con-
vergence. The algorithm terminates at 200 samples. The NN models are trained
using two hidden layers, with twenty neurons, and the tangent hyperbolic acti-
vation function. The learning rate is set to 0.001 and the batch size is set to 16.
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The maximum number of epochs and β1 are set to 2,000 and 0.9, respectively.
L2 regularization is used with λ = 0.1 while training the models.

Table 1 shows a comparison of the global sensitivities obtained from direct
and NN-based numerical experiments. It can be seen that the NN-based yields
global sensitivities within 1.7% of the true values while using only a fraction of
the cost of the direct approach.
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Fig. 2. Case 1 convergence of GSA directly on the true model: (a) first-order indices,
and (b) total-order indices.
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Fig. 3. Case 1 inner-loop convergence of si for the NN trained with 100 LHS samples:
(a) first-order indices, and (b) total-order indices.
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Fig. 4. Case 1 outer-loop convergence of si terminated on da ≤ εa criteria: (a) first-
order indices, and (b) total-order indices.

Table 1. Case 1 comparison of Sobol’ index values between the true model and the
converged NN model.

x Si ST,i

True function Seq. GSA % error True function Seq. GSA % error

x1 0.0199 0.0201 1% 0.0204 0.0201 1.5%

x2 0.2793 0.2745 1.7% 0.4497 0.4453 1%

x3 0.5456 0.5347 2% 0.7065 0.7053 0.2%

3.2 Case 2: Ultrasonic Testing (UT) of a Pillbox-Defect

In this numerical experiment the pillbox-inclusion-defect under planar trans-
ducer ultrasonic (UT) nondestructive testing (NDT) benchmark case is used
[12,13]. Figure 5 shows the setup of the problem. The planar transducer is placed
in water and the probe angle (θ) and the probe coordinates (x and y) are var-
ied. A fused quartz block with a pillbox-like void is inspected by the transducer
where the distance between the transducer and the surface of the block (z1)
and the distance between the surface of the block and the defect (z2) can vary
based on the setup. The variability parameters with their associated PDFs are
θ ∈ N(0, 0.52) deg, x ∈ U(0, 1) mm, y ∈ U(0, 1) mm, z1 ∈ U(24.9, 25.9) mm, and
z2 ∈ U(12.5, 13.5) mm. The output response is the reflected pulse (v) received
by the transducer.

The simulation model for this case uses the Kirchhoff approximation (KA)
to simulate the voltage wave receives by the transducer. The center frequency
of the planar transducer is set to 10 MHz. The longitudinal wave speed is set
to 6,200 m/s, and the shear wave speed is set to 3,180 m/s. The density of the
fused quartz block is set to 4,420 kg/m3. The NN models in this case are trained
using two hidden layers, with thirty neurons. Similar to the previous case, the
tangent hyperbolic activation function is used. The learning rate and β1 of the
ADAM optimizer are set to 0.001 and 0.9, respectively. The batch size is set to
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Fig. 5. A schematic of setup for the ultrasonic testing case.

16 and the maximum number of epochs is set to 2,000. L2 regularization is used
with λ = 0.1 while training the models.

Figure 6 shows the direct GSA converged at 3000 sampling points. The con-
vergence criteria of sequential GSA in this case were the same as in the previous
case. The outer-loop sequentially iterated from 100 to 400 LHS samples. Fig-
ures 7(a) and 7(b) show the inner-loop GSA convergence using the NN-based
algorithm for the first- and total-order indices require 106 and 103 samples,
respectively. Figure 8 shows the outer-loop convergence plots for the first- and
total-order indices both terminated at 400 samples. Figure 9 shows that the dis-
tance from the transducer to the defect has a negligible effect on the output
response, while the probe angle has the highest effect follows by y coordinate
then x coordinate. Table 2 compares the Sobol’ indices values from the proposed
method to those from the true function. It shows a good match of the the Sobol’
indices values while the cost of sequential GSA is an order of magnitude less
than the direct GSA.

Table 2. Case 2 comparison of Sobol’ index values between the true model and the
converged NN model.

x Si ST,i

True model Seq. GSA % error true model Seq. GSA % error

θ 0.5599 0.56 0.02% 0.7424 0.7456 0.4%

x 0.0623 0.0571 8.3% 0.2086 0.2082 0.2%

y 0.1841 0.1919 4.2% 0.2449 0.2467 0.7%

z1 5.2 × 10−5 6.5 × 10−5 – 5.3 × 10−5 1.0 × 10−4 –

z2 6.6 × 10−4 5.2 × 10−4 – 8.4 × 10−4 7.6 × 10−4 –
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Fig. 6. Case 2 convergence of GSA directly on the physics model: (a) first-order indices,
and (b) total-order indices.
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Fig. 7. Case 2 inner-loop convergence of si for the NN trained with 400 LHS samples:
(a) first-order indices, and (b) total-order indices.

100 150 200 250 300 350 400

Data points (NN models)

10-4

10-3

10-2

10-1

d a[S
i]

x y z
1

z
2  S

a
=0.01

(a)

100 150 200 250 300 350 400

Data points (NN models)

10-4

10-2

100

d r[S
T

,i]

x y z
1

z
2

 S
T

r
=0.1

(b)

Fig. 8. Case 2 outer-loop convergence of si terminated on (a) da ≤ εa criteria: first-
order indices, and on (b) dr ≤ εr criteria: total-order indices.
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Fig. 9. Case 2 Sobol’ index values of input parameters computed by the converged NN
model: (a) first-order indices, and (b) total-order indices.

4 Conclusion

Global sensitivity analysis (GSA) of large-scale data sets is an important prob-
lem in engineering and science decision-making. The algorithm presented in this
paper directly tackles this important task in the context of simulation-based
problems. In particular, this work demonstrates that simulation-based GSA
using neural network-based function prediction can be iteratively improved and
terminated once accurate sensitivities are obtained, thereby enabling efficient
adaptive GSA for large-scale problems.

Future steps in this work will focus on how to adaptively sample the NN
model using model uncertainty, which will alleviate the resampling stage of the
algorithm. An important step in this work will be to characterize the computa-
tional cost and benchmark it against current state-of-the-art methods, as well
as to perform numerical experiments on high-dimensional problems involving
physical and computational data.
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Abstract. This paper describes the automated production data acqui-
sition and integration process in the architectural pattern Tweeting Fac-
tory. This concept allows the use of existing production equipment with
PLCs and the use of industrial IoT prepared for Industry 4.0. The main
purpose of the work is to propose an event-driven system architecture and
to prove its correctness and efficiency. The proposed architecture is able
to perform transformation operations on the collected data. The simu-
lation tests were carried out using real data from the factory shop-floor,
services prepared for production monitoring, allowing the calculation of
KPIs. The correctness of the solution is confirmed on 20 production
units by comparing its results with the blackboard architecture using
SQL queries. Finally, the response time for calculating ISO 22400 per-
formance indicators is examined and it was verified that the presented
solution can be considered as a real-time system.

Keywords: Application case studies · Data integration · Engineering
optimization and design · Event-driven system architecture · Tweeting
factory

1 Introduction

The paper focuses on a concept called Tweeting Factory [3,8]. Currently, in
the manufacturing industry for data acquisition, the PLC controllers are mostly
used [5]. However together with the development of the Industry 4.0 concept,
intelligent sensors that are capable to communicate with various other sys-
tems [10] are getting more recognition. Additionally they can do some initial
data processing. In the case of intelligent sensors, the whole process can be done
by the sensor itself and the output values can be sent further over the protocols
like AMQP or MQTT. Those new features open a variety of new capabilities to
the production line systems. The Tweeting Factory is an architecture proposal for
utilizing new features and providing the capabilities. It is an architecture pattern
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providing a communication between production units, data processing services,
and output data subscribers [12]. The machines are responsible for messages
dispatched that are then processed by the services and the services send new
messages. All messages in the system can be utilized by the subscribers. Every
tenant in the system has access to all messages - the architecture implements
the Publish-Subscribe pattern [6]. There are no constraints for the messages
exchanged in the system. Only a few recommendations are made for the mes-
sages’ metadata, such as the origin, subject, and publishing time. The services
can read or send new messages, communicate with external systems and other
data sources in order to leverage external information, data processing outside
the system, or data recording.

The paper aims to validate the described architecture. Furthermore, the
experiment designed for the verification purpose is described: based on the data
acquisition process, the production environment project was designed that was
the basis for the simulation environment. The simulation experiment was per-
formed with the real production data provided by the cooperating company. The
simulation results were compared with the results calculated by the blackboard
style data acquisition process. Additionally, the Tweeting Factory performance
was measured and analyzed. Finally, in the last section, the conclusions and
possibilities for further research are discussed.

Before describing the methods in detail, we introduce the related work that
influenced our research. Tweeting Factory term was used for the initial litera-
ture review. However, only four papers [3,8,11,12] were found using the term.
Additionally, an alternative name for the architectural model was discovered -
LISA, i.e., Line Information System Architecture [11]. Taking the alternative
name into account and the low number of papers found in initial survey, there
was a reasonable doubt that the Tweeting Factory concept exists, but the dif-
ferent name is used. Another term that was found during the analysis is called
Digital Twin. It seems that Digital Twin is the higher abstraction concept and
Tweeting Factory might be one of its implementations.

During the analysis, no comparison with the blackboard style SQL data
acquisition method was found. The authors find this subject very important
to eventually prove the advantages of the Tweeting Factory over the existing
solution. Therefore, following research gaps were determined, that aims to be
the authors contribution:

– RQ1: Is the Tweeting Factory concept correct?
– RQ2: Does the Tweeting Factory concept fulfill the real-time system con-

straints?
– RQ3: How the Tweeting Factory concept can improve the data acquisition

process?
– RQ4: Is the Tweeting Factory a correct replacement of the SQL method?
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2 Overview of the Tweeting Factory

2.1 Data Acquisition

Data acquisition is a process of measuring the physical values and storing them
in a digital form [7]. The following phases of the process can be highlighted:

1. Physical value extraction
2. The value measurement by a sensor
3. The measured values transmission to a registration device
4. The values conversion to a digital form by ADC
5. Storing of the digital values

Data can serve different purposes, for example, KPIs computation, historical
data analysis. event reporting such as machines’ condition monitoring, environ-
ment parameters control, failure reporting, and material fatigue. Evolution of the
Industry 4.0 concept is strictly coupled to intelligent sensors. In comparison with
the previous generation sensors, intelligent sensors are capable to communicate
with the other environment’s participants, follow precise production, leverage
production ontology, and use machine learning algorithms for independent con-
versation [10]. Industry 4.0 compatible sensors are capable to address all phases
of data acquisition, besides the last one - the data storage. For this purpose, we
use the cloud computing infrastructure. The paper’s authors consider Tweeting
Factory concept as a good candidate solution to address this requirement.

2.2 From Tweets to Decisions

Tweeting Factory concept provides additional benefits for the manufactur-
ing environments. Additional features of the architecture were found in the
papers [8,12]: KPI indexes calculation, hybrid systems optimization, energy con-
sumption optimization, production process planning, quality assurance, produc-
tion machines management, and monitoring. It is possible to use Tweeting Fac-
tory concept for data storing only [3], however additional services provided by
the concept create its value. For example, for KPIs calculation, the stored data
from a requested period can be used instead of single data coming directly from
PLCs. All above-mentioned data are calculated in real-time, so it is possible to
immediately generate a notification event when the specific index reaches a pre-
defined threshold. A significant advantage of Tweeting Factory allowing to add
services operating on available data is the ability to connect to external services.
Based on that, the systems using the architecture are capable to easily connect
and take part in the Shared Industry concept [14] or to be used in other applica-
tions outside the manufacturing industry [16]. Considering the Tweeting Factory
as a data stream, it is also possible to apply machine learning algorithms.

2.3 Tweeting Factory Architecture

The base sources of the data are production units. Temperature or humidity are
examples of the working environment measured values. Machine’s work param-
eters such as state (idle/active), specific state time, or smaller component state
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Fig. 1. The Tweeting Factory architecture model

are also measured. The machines can send that information themselves or to the
connected PLCs. Devices other than production units can be found on the pro-
duction line, for instance, a barcode reader. They can also send data themselves
or to the PLC controllers. Another category of data sources are services. Services
can also subscribe by receiving various types of messages available on Tweeting
Factory’s bus. In most cases, the data published by the service is just a transfor-
mation of the data received. Tweeting Factory provides support to connect and
leverage external systems. Metadata models proposed in [11] allow to decorate
the messages with the context of the external systems. However, the metadata
is not the only advantage. Tweeting Factory provides a way to emit events reg-
istered in external systems. It allows to gather context data, not limited to data
generated by production machines, for example, information entered manually
by an employee or imported from HR systems, such as work hours, holidays,
employee availability, or workplace assignments.

The Tweeting Factory architecture is depicted in Fig. 1. Production units,
including virtual ones, can measure and convert the physical values to a digital
representation itself. However, they are not capable to store data. This respon-
sibility belongs to indexing services and subscribers.
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When dealing with messages from different sources, it is highly possible to
get incompatible messages’ formats. The incompatibility might be a reason for
incorrect data handling. This problem is called the interoperability issue and
is considered on a semantic level [13]. Production machines and external sys-
tems produce information with incompatible labels, what leads the subscriber
service’s data parsing issues. A well-known solution of the interoperability issue
is an application of a domain ontology or an application of an existing informa-
tion exchange standard, such as ISO 10303 [4]. Standardization of the system’s
message layout solves the interoperability issue on the semantic level [13]. The
literature provides different solutions [1], however, considering a variety of manu-
facturing industry applications, it is impossible to establish one unified standard.
Different ontologies might be leveraged in providing a unified standard for the
specific application. For example, in the paper, the authors decided to replace
labels created by specific machines with URL labels. The interoperability issue
resolved can be seen in Fig. 2. The external system’s messages need to be trans-
lated by the broker service. For the production machines, if it is not possible to
configure their messages’ labels, translation services [15] should be introduced.

Fig. 2. Ontology based solution of the interoperability issue in the Tweeting Factory
environment

3 Experiments

In this section, an experiment validating the Tweeting Factory concept and its
results are presented. In the experiment, KPI metrics were calculated by Tweet-
ing Factory simulation environment and by the blackboard style method. The
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analysis of the experiment’s results allowed the authors to answer the presented
paper’s research questions. To prove the Tweeting Factory correctness (RQ1),
the calculated metrics were compared with the metrics calculated by standard
methods. The comparison proved also if the Tweeting Factory is a good replace-
ment for the legacy SQL method (RQ4). Additionally, the performance of the
system is measured and analyzed (RQ2).

The experiment was divided into the following steps:

1. Analyze source data.
2. Calculate KPI indexes by the standard method.
3. Design the new data acquisition method.
4. Complete the implementation.
5. Conduct a simulation run.
6. Analyze the results.

Source data analysis (1) aims to check if the provided production data is cor-
rect for the experiment, what quality it is, and what time range and units should
be chosen as an input to the simulation. The initial KPI calculation (2) was done
by the legacy SQL method. The OEE-based metrics were chosen for the experi-
ment, considering their universality [2]. The data acquisition method design (3)
requires the specific production infrastructure analysis and leads to the Tweet-
ing Factory architecture preparation for the specific environment. Simulation
implementation based on the previous step’s results. A set of programming tools
was prepared that played the service role in the Tweeting Factory environment.
Another tools were verifying the resulting data. The simulation run (5) was a
simple run of the prepared tools. The results analysis (6) aimed to compare the
resulting KPI metrics with the standard method’s initial calculation from the
previous step (2). Additionally, calculation times were analyzed for performance
metrics.

Real-world data provided by the heating devices factory was used in the
experiment. It provides such features as: production order reporting, machines’
production data automated acquisition, gathered data analysis. In the exper-
iment, the automatically collected data as well as the data provided by the
employees was used. The provided database served as a source of the production
data.

After data analysis, the following data was determined to be required for the
experiment:

1. Products data: the data source production machine’s name, the product com-
pletion time, the amount of the successfully produced and rejected products,
estimated reference unit time of work. Described data was available in various
tables in provided database.

2. Production machine’s work time: the machine’s code, the event’s start times-
tamp, the event’s end timestamp, the event’s type, the event’s value.
The event’s value corresponding to work time is either Work or PW. This
type of event can take value 0 (stopped working) or 1 (started working).
These records were emitted every time a machine started or stopped to work
and also at the top of every hour.
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Based on determined event types it is possible to determine KPI metrics to
calculate:

– PQ - Produced Quantity - based on products’ completion events,
– RQ - Rejected Quantity - based on products’ completion events,
– PRI - Planned Run Time - based on products’ completion events,
– APT - Actual Production Time - based on a machine’s work time events,
– PBT - Planned Busy Time - based on a machine’s work time events.

In order to calculate the OEE index [2], the following component metrics are
required:

A =
APT

PBT
, E =

PRI ∗ PQ

APT
, Q =

PQ − RQ

PQ
(1)

None of the above indexes can’t reach a value greater than 1, however it can
happen as a result of false PRI estimation. Then the performance index is limited
to 1. The OEE index is a product of three indexes:

OEE = A ∗ E ∗ Q =
PRI ∗ (PQ − RQ)

BPT
(2)

Assuming the available experiment’s data is sufficient for the OEE index
calculation.

The last step of the source data analysis is to determine the event data
subset for the simulation. Every event data contains the code of a machine and its
timestamp. It allows to connect the machine’s event data with a product’s events.
The number of products’ completion events versus production unit is presented
in Fig. 3(a). To achieve better readability, the machines with the number of such
events less than 20 were filtered out. From the plot, it can be noticed that four
machines emit more events: 0005, 5309-1, 5309-2, 8105.

The number of a production machine’s work time events is presented in
Fig. 3(b). It can be noticed that the machines highlighted above, except for
0005, have also a lot of work time events.

Fig. 3. Distribution versus production unit

Assuming the three machines highlighted above (5309-1, 5309-2, 8105) were
chosen for the simulation, as those were the only ones that had a high number
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of events of both types. To determine the time range of events for the simula-
tion, the number of both types of events generated by the chosen machines was
analyzed versus months. The results are presented in Fig. 4(a) and Fig. 4(b).

Fig. 4. Distribution versus months

To use the largest unit of data, the following time range was selected from
2018-09-17 to 2019-09-16. It can be noticed that there are months when no
products’ completions were registered. It may be because employees refrain from
registering the events in the system terminals. In such cases, it is impossible to
calculate the quality, performance and the OEE indexes, but the availability
index is still possible to calculate. Additionally, considering a low number of
products’ completion events in general, the indexes will be calculated versus
days.

3.1 KPI Indexes Calculation by the Legacy Method

To verify the Tweeting Factory concept, the KPI metrics were calculated offline
using SQL query. The well-known considerations and limitations were applied
to the legacy method.

3.2 A New Data Acquisition Method

Considering that the available data set does already contain the production infor-
mation of units and entered by employees, only OEE index acquisition is consid-
ered. The available production data is further considered as production events
(employee or machine). Following Tweeting Factory architecture, the events are
transmitted by the message bus between the machines and the services that sub-
scribe and publish the events. For the needs of the simulation, the assumption
was made that the system is publishing the data on the message bus instead of
storing it. The following services were introduced to the designed environment:

– a service transforming the machines’ events,
– a service calculating the KPI indexes in real time,
– a service storing the KPI indexes into a database.
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The designed architecture is presented in Fig. 5.

Fig. 5. The Tweeting Factory architecture proposal

Having the Tweeting Factory not specifying the message formats [12], JSON
format is applied in the architecture. The base message format includes: start,
end, machine, e type, and payload. The e type and payload field values are
specific to the registered event. The e type field is the key value of the registered
event. The payload field contains the data specific for the event:

– the number of completed product notifications: QtyAll - an amount of pro-
duced products, QtyRejected - an amount of rejected products, RefTime - an
estimated reference unit time for a product,

– work time notification: work - 0 for stopped, 1 for running
– work time: time - work time in seconds
– stop time: time - stop time in seconds
– OEE indexes value: pq - an amount of all produced products, rq - an amount

of all rejected products, pri pq - the product of of manufactured products
and planned working time per unit, in seconds, apt - machine’s work time
in seconds, pbt - machine’s estimated work time in seconds, quality - quality
index value, - efficiency - efficiency index value, availability - availability index
value, oee - OEE index value.

3.3 Simulation Implementation

To adjust the design to the simulation conditions, the following extensions were
made:

– the source events generated originally by the system and the machines are
emitted by the simulation program,
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– in order to shorten the simulation time (365 days of the chosen time range),
the simulation clock event is introduced,

– start and end events indicating the whole simulation start and end time are
introduced,

– in order to measure a KPI calculation time, the message’s metadata were
extended by a new parameter trace id, being an unique message’s id and a
new service calculating the time.

The extensions implemented on the architecture are presented in Fig. 6.

Fig. 6. Simulation environment’s extended architecture

The Tweeting Factory concept does not specify any software for the message
bus [12] implementation. The authors decided to use RabbitMQ1. The main
advantage of the software over the Apache ActiveMQ2 is ease of use and an
extensive documentation. All services are implemented using Python3 and the
Pika library3 that enables a communication with the RabbitMQ server over
the AMQP 0.9.1 protocol. Additionally, a CSV file with the input data for the
simulation messages emitter was prepared. The CSV contains an array of source
events, sorted by the publication time. A new type of messages were added in
the extended simulation architecture:

1 https://www.rabbitmq.com/.
2 https://activemq.apache.org/.
3 https://pypi.org/project/pika/.

https://www.rabbitmq.com/
https://activemq.apache.org/
https://pypi.org/project/pika/
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– ‘record sent’ event notification: real time - the event’s timestamp, id - id for
time measurement,

– ‘response received’ event notification: real time - the event’s timestamp, id -
id for time measurement,

– simulation clock notification: clock - simulation timestamp,
– simulation start notification,
– simulation end notification.

3.4 Simulation Run

The run was performed on a PC equipped with AMD Ryzen 5 3600 proces-
sor unit and 16GB 3200MHz RAM memory. The message bus component was
implemented in the Podman container4 and docker.io/library/rabbitmq:3.8.4-
management container image was used.

The average KPI indexes for the machines are presented in Table 1.

Table 1. The average KPI indexes for the production units

Unit Quality Efficiency Availability OEE

(a) (b) (c) (d) (e)

5309-1 0.9988 0.4625 0.4644 0.2657

5309-1 0.9949 0.5431 0.4087 0.2543

8105 0.9884 0.7952 0.6920 0.5857

Column (a) shows the symbolic codes of the selected production units. In
column (b) the quality value is placed, while in the next two columns there are
efficiency (c) and availability values (d). The last column (e) lists the total value
of OEE.

The correctness verification was performed by the comparison of the Tweet-
ing Factory approach results with the results of the legacy method. The fol-
lowing metrics were compared: PQ, RQ, PRI*PQ, APT, PBT, Quality, Effi-
ciency, Availability, OEE. The comparisons have occurred 1095 times (365 days,
3 machines). No significant differences between the output results were found.
The performance verification was done by the analysis of the data generated by
the simulation indicating the waiting time for the KPI index calculation. The
time was measured 113542 times. Average time was 0.012520 s, i.e., 12.52 ms.
In the case of about 99% of the results, the calculation time was less than 25
ms. Figure 7(a) presents the box plot of the data. Large number of outliers can
be generated by the temporary high load of the KPI calculation service or the
temporary spike of the processor demand of the operating system.

Anderson-Darling test [9] was performed to determine whether a normal dis-
tribution adequately describes a set of data. Significance level 0.05 was assumed.
The following hypotheses were tested:
4 https://podman.io/.

https://podman.io/


466 M. Piechota et al.

– H0: the results are normally distributed,
– H1: the results are not normally distributed.

The output p-value was 3.7× 10−24, so the alternative hypothesis was accepted.
Shapiro-Wilk test [17] was also performed to confirm the previous test output.
The input data for the test was limited to 2000 records to keep the test’s power.
Significance level 0.05 was assumed. The following hypotheses were tested:

– H0: the results are normally distributed.
– H1: the results are not normally distributed.

The output p-value was 6.923531× 10−57, so the alternative hypothesis was
accepted. Quantile distribution of the KPI indexed calculation time is presented
in Fig. 7(b). The distribution is not linear, which means the distribution is not
normal.

Fig. 7. KPI indexes calculation

To check if the calculated average value is a good representation of the ran-
dom variable, the Wilcoxon test [37] was performed for one attempt. Significance
level 0.05 was assumed. The following hypotheses were tested: - H0 - random
variable’s value’s distribution is symmetric around = 0.012520. - H1 - random
variable’s value’s distribution is not symmetric around = 0.012520. The output
p-value was 0, so the alternative hypothesis was accepted. The median and per-
centile values are considered in further analysis. Statistical analysis showed no
coincidence with the normal distribution of the computation time KPI indicators
and the asymmetry of the time distribution with respect to the mean.

4 Conclusions

No differences between KPI index values calculated by the Tweeting Factory and
the blackboard style method prove the Tweeting Factory concept correctness
(RQ1). The response time of the proposed system that was shorter than 17ms
in more than 95% cases puts the system among the real-time systems (RQ2).
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Considering the above two conclusions, the Tweeting Factory becomes a great
candidate for a replacement of the SQL legacy method (RQ4), providing a lot
of advantages (RQ3):

– ease of new production units and service integration,
– capability to add and remove new components without a need for reconfigu-

ration,
– control over the messages flow,
– ESB controls data exchange security,
– complex metrics calculation in real-time,
– support to integrate the system with external systems.

There are also cons that need to be taken into account when considering the
concept:

– data transformations required for the components using unsupported proto-
cols,

– single point of failure - ESB,
– security of data exchange under the sole control of the message broker.

The literature analysis demonstrated a low number of concept applications in
the industry. Taking the experiment’s promising results into account the authors
state that the lack of real life application studies is a major gap that may be a
subject for the further research. Considering the literature survey conclusion that
the Tweeting Factory concept can be used as a Digital Twin core component,
the Digital Twin with Tweeting Factory application in Shared Industry [14].
Leveraging the real-time feature of the concept, another interesting research
subject could be managed and optimized using machine learning algorithms.
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Abstract. This paper presents an algorithm for fitting the boundary geometry with
Bézier curves in the parametric integral equation system (PIES). The algorithm
determines the coordinates of control points by minimizing the distance between
the constructed curves and contour points on the boundary. The minimization is
done with the Adam optimizer that uses the gradient of the objective function cal-
culated by automatic differentiation (AD). Automatic differentiation eliminates
error-prone manual routines to evaluate symbolic derivatives. The algorithm auto-
matically adjusts to the actual number of curves and their degrees. The presented
tests show high accuracy and scalability of the proposed approach. Finally, we
demonstrate that the resulting boundary may be directly used by the PIES to solve
the boundary value problem in 2D governed by the Laplace equation.

Keywords: Automatic differentiation · Parametric curve fitting · Bézier curves ·
Parametric integral equation system (PIES) · Boundary value problems

1 Introduction

One of the main difficulties during computer simulation of boundary value problems
(BVP) is the appropriate definition of the computational domain. Typically it is done by
dividing the problem domain into finite elements (FEM) [1] or only the boundary of that
domain into boundary elements (BEM) [2]. However, such discretization is extremely
laborious as it requires hundreds or thousands of elements and even more nodes are
necessary to declare them. The alternative is to introduce the mathematical and geo-
metric tools used in computer graphics and CAD/CAM systems. This is used in the
parametric integral equation system (PIES) where the boundary of the computational
domain is bounded by parametric curves [3] and surfaces [4]. Moreover, due to the ana-
lytical integration of the boundary geometry directly in the PIES formula, there is a lot
of freedom in choosing the appropriate structure of the boundary representation. Our
previous studies have shown that it is particularly effective to declare such boundary
geometries by employing Bézier parametric curves defined by a small set of control
points. This allows for a continuous representation of the boundary and the number of
the curves is significantly smaller than finite or boundary elements required to solve the
same problem.
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Despite these advantages, parametric curves also have some implementation diffi-
culties since its shape is determined by control points that generally do not lie on the
curve. Curve fitting is a fundamental problem in computer graphics and has become a
very active scientific area. Mathematically, it can be formulated as optimization prob-
lem to minimize the distance between the points describing the approximated shape
and the points on the parametric curve. There is a rich literature to solve such opti-
mization problem with several linear [5] and non-linear [6] least-squares techniques.
Another approaches are based on biologically inspired solutions: genetic algorithms [7],
simulated annealing [8], particle swarm optimization [9], evolutionary algorithms [10],
artificial immune systems [11]. In [12] neural network-based curve fitting technique is
presented. However, most existing algorithms are based on gradient descent minimiza-
tion [13]. On the other hand, analytical evaluation of gradients is a labor-intensive task
and sensitive to human errors, especially in the case of real problems defined by many
design variables related to the coordinates of control points.

This paper attempts a new look at the parametric curve fitting applied to the boundary
approximation in PIES. This is done by minimizing the distance between the constructed
curves and the contour points on the boundary with the Adam optimizer [14], where the
required derivatives of the objective function are computed by automatic differentiation
(AD). The idea of AD is based on a decomposition of an input function into elementary
operations, whose local derivatives are easy to compute. While AD has a long history
and is supported by many publications [15, 16], the recent revolution in deep learning
and artificial intelligence has brought a new stage in the development of advanced AD
tools and new optimization algorithms. Popular libraries such as TensorFlow [17] and
PyTorch [18] provide efficient AD and optimization algorithms for large models with
thousands or even millions of parameters. The results of the presented tests illustrate
good fitting properties of the proposed algorithm for various shapes of the boundary and
high scalability. The fitted boundaries are directly used in PIES to solve BVP governed
by the Laplace equation.

2 Defining the Boundary by Bézier Curves in PIES

We consider a boundary value problem governed by the Laplace equation defined in a
domain � with a boundary �, as shown in Fig. 1a.

Fig. 1. BVP defined in the domain � with the boundary �(a), boundary description in PIES with
4 Bézier curves and 12 control points (b).
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The boundary of that domain is described in PIES by a set of Bézier curves. A single
Bézier curve of degree m is defined by the location of the m + 1 control points Pi and is
mathematically described as

Γ (s) =
m∑

i=0

(
m
i

)
si(1 − s)m−iPi, (1)

where s is a parametric coordinate along the curve (0 ≤ s ≤ 1). Figure 1b shows
a practical definition of the boundary formed by joining 4 cubic Bézier curves. The
formula of PIES for 2D BVP governed by the Laplace equation is presented below

0.5ul(s) =
n∑

j=1

sj∫

sj−1

{
U

∗
lj(s, s)pj(s) − P

∗
lj(s, s)uj(s)

}
Jj(s)ds, (2)

where sj−1 ≤ s ≤ sj, sl−1 ≤ s ≤ sl , l = 1, 2, ..., n.
The Bézier curves Γ (s) are included analytically in the kernels U

∗
lj(s, s) and P

∗
lj(s, s)

written as

U
∗
lj(s, s) = ln

1

[η2
1 + η2

2]0.5
, (3)

P
∗
lj(s, s) = η1n(j)

1 (s) + η2n(j)
2 (s)

η2
1 + η2

2

, (4)

where η1 = Γ
(1)

l (s) − Γ
(1)

j (s), η2 = Γ
(2)

l (s) − Γ
(2)

j (s) . (5)

Moreover, n(j)
1 (s), n(j)

2 (s) denote the components of the normal vector to the bound-
ary and Jj(s) is the Jacobian. The reader can find details of the PIES mathematical
formulation in several previous papers, for example in [3].

3 Proposed Algorithm

Let G� be a set of data points sampled along the boundary and G� is a set of points lying
on Bézier curves. The objective function lossL2(G�, G�) of our optimization problem is
the L2 distance between G� and G� . The gradient of the objective function with respect
to the corresponding control points P of the curves is written as

∂loss(P)

∂P
= ∂lossL2(G�, G�)

∂�

∂�

∂P
. (6)

The gradient (6) can be derived analytically, however, is laborious and prone to
human errors. Therefore, we compute it employing AD which decomposes the derivative
of the objective function into those of elementary operations based on the chain rule.
This decomposition can be described by a computational graph that shows the relations
between individual differentials. For demonstrating the procedure, an elementary case
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with one cubic Bézier curve defined by 4 control points is analyzed below. In this case,
the formula (6) reduces to the following form

∂loss(P)

∂P
= ∂

∂P
(G� − CAP)2, (7)

where C, A, P are referred to a matrix representation for the cubic Bézier curve

C = [
s3 s2 s 1

]
, A =

⎡

⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤

⎥⎥⎦, P =

⎡

⎢⎢⎣

P1

P2

P3

P4

⎤

⎥⎥⎦. (8)

Finally, the computational graph for formula (7) is presented below.

Fig. 2. Structure of the computational graph for a single cubic Bézier curve.

Table 1 contains the vertices zi corresponding to the intermediate computed variables
for elemental operations and their derivatives for forward and backward data flow.

Table 1. Forward and backward propagation of derived values for the graph shown in Fig. 2.

Forward pass Backward pass

z1 = AP ∂z1
∂P = A ∂loss

∂P = ∂loss
∂z1

∂z1
∂P = −2CA

z2 = Cz1
∂z2
∂P = ∂z2

∂z1

∂z1
∂P = CA ∂loss

∂z1
= ∂loss

∂z2

∂z2
∂z1

= −2C

z3 = G� − z2
∂z3
∂P = ∂z3

∂z2

∂z2
∂P = −CA ∂loss

∂z2
= ∂loss

∂z3

∂z3
∂z2

= −2

loss = z2
3

∂loss
∂P = ∂loss

∂z3

∂z3
∂P = −2CA ∂loss

∂z3
= 2

The computational graph can dynamically update its structure for more Bézier curves
and control points. The full diagram of the procedure with backward mode AD as best
suited for our problem is shown in Fig. 3.
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Fig. 3. Schematic flowchart of the proposed curve fitting combined with PIES.

To determine the coordinates of control points, the ADAM [14] optimization
algorithm is used characterized by fast convergence, and resistance to local minima.

4 Results and Evaluation

The scheme given in Fig. 3 is implemented in the PyTorch framework providing access
to AD and Adam optimizer modules. Figure 4 shows the results of our experimental
evaluation for 4 identified boundaries generated from 16 to 40 cubic Bézier curves.

The curves require 48 and 120 control points to be defined. The data set G� consists
of evenly sampled points along the boundary. The first three shapes are sampled into
160 points and the last one into 400 points.

As it can be seen from the graphic results, all tested shapes are fitted successfully.
The related numerical results are listed in Table 2. The final boundaries are directly used
in PIES to simulate BVP governed by the Laplace equation for the following Dirichlet
boundary conditions

φ(x1, x2) = cos(x1) cosh(x2) + sin(x1) sinh(x1). (9)

This is possible since the control points are included analytically in the kernels (3,
4). In order to solve the problem on the boundary, the collocation method [3] is adopted
with 6 colocation points per each Bézier curve. The last row in Table 2 shows the L2
error norm of the PIES solutions for all shapes from the 400th iteration of the fitting.
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Table 2. Convergence of the objective functions during iterations and the PIES accuracy.

lossL2(G�, G
�
)

Iteration A B C D

1 75.3377 186.8021 212.6234 195.2782

50 25.1174 125.8349 147.8667 98.5266

100 1.0304 81.2112 87.9212 20.3172

200 0.0935 17.3265 1.5679 0.1621

400 0.0685 0.0831 0.0657 0.0954

PIES (L2 error norm)

400 0.1567 0.1235 0.3643 0.3025

A (16 curves) B (16 curves) C (16 curves) D (40 curves)
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Fig. 4. Iterations 1, 50, 100, and 400 in the fitting process.

5 Conclusions

The results show that the proposed approach can be applied not only to academic but
also to real-life problems with hundreds of design variables considered as the positions
of control points. The boundary defined by the Bézier curves is integrated analytically
with the PIES computational method so that it can be directly used to solve BVP, as
shown in the example. The approach can use different types of objective functions and
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optimization algorithms. We also hope to extend the research to study the boundary
reconstruction from an unstructured point cloud as well to 3D problems.
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Abstract. Graph partitioning is a fundamental combinatorial optimiza-
tion problem that attracts a lot of attention from theoreticians and prac-
titioners due to its broad applications.In this work, we experiment with
solving the graph partitioning on the Fujitsu Digital Annealer (a special-
purpose hardware designed for solving combinatorial optimization prob-
lems) and compare it with the existing top solvers. We demonstrate lim-
itations of existing solvers on many dense graphs as well as those of the
Digital Annealer on sparse graphs which opens an avenue to hybridize
these approaches.

Keywords: Graph partitioning · Dense graphs · Digital annealer ·
Quantum-inspired

1 Introduction

There are several reasons to be optimistic about the future of quantum-inspired
and quantum devices. However, despite their great potential, we also need to
acknowledge that state-of-art classical methods are extremely powerful after
years of relentless research and development. In classical computing, the develop-
ment of algorithms, the rich mathematical framework behind them, and sophis-
ticated data structures are relatively mature, whereas the area of quantum com-
puting is still at its nascent stage. Many existing classical algorithms do not
have provable or good enough bounds on the performance (e.g., they might not
have ideal performance in the worst case), but in many applications, the worst-
case scenarios are rather rarely seen. As a result, such algorithms, many of
which heuristics, can achieve excellent results in terms of the solution quality or
speed. Therefore, when utilizing emerging technologies such as quantum-inspired
hardware accelerators and quantum computers to tackle certain problems, it is
important to compare them not only with possibly slow but provably strong
algorithms but also with the heuristic algorithms that exhibit reasonably good
results on the instances of interest.
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The graph partitioning [2] is one of the combinatorial optimization prob-
lems for which there exists a big gap between rigorous theoretical approaches
that ensure best known worst-case scenarios, and heuristics that are designed to
cope with application instances exhibiting a reasonable quality-speed trade-off.
Instances that arise in practical applications often contain special structures on
which heuristics are engineered and tuned. Because of its practical importance,
a huge amount of work has been done for a big class of graphs that arise in
such areas as combinatorial scientific computing, machine learning, bioinformat-
ics, and social science, namely, sparse graphs. Over the years, there were several
benchmarks on which the graph partitioning algorithms have been tested and
compared with each other to mention just a few [1,3,21]. However, dense graphs
can be rarely found in them. As a result, most existing excellent graph partition-
ing heuristics do not perform well in practice on dense graphs, while provable
algorithms with complexity that depends on the number of edges (or non-zeros
in the corresponding matrix) are extremely slow. As we also show in compu-
tational results, a graph sparsification does not necessarily practically help to
achieve high-quality solutions.

Multilevel Algorithms. This class of heuristics is one of the most successful for
a variety of cut-based graph problems such as the minimum linear arrangement
[15], and vertex separator [7]. Specifically for a whole variety of (hyper)graph
partitioning versions [10,11,16,18] these heuristics exhibit best quality/speed
trade-off [2]. In multilevel graph partitioning frameworks, a hierarchy of coarse
graph representations is constructed in such a way that each next coarser graph
is smaller than the previous finer one, and a solution of the partitioning for the
coarse graph can approximate that of the fine graph and be further improved
using fast local refinement. Multilevel algorithms are ideally suited for sparse
graphs and suffer from the same problems as the algebraic multigrid (which
generalizes, to the best of our knowledge, all known multilevel coarsening for
partitioning) on dense matrices. In addition, a real scalability of the existing
refinement for partitioning is achieved only for sparse local problems. Typically,
if the density is increasing throughout the hierarchy construction, various ad-hoc
tricks are used to accelerate optimization sacrificing the solution quality. When
such things happen at the coarse levels, an error is quickly accumulated. Here
we compare our results with KaHIP [17] which produced the best results among
several multilevel solvers [2].

Hardware Accelerators for Combinatorial Problems. Hardware accelerators such
as GPU have been pivotal in the recent advancements of fields such as machine
learning. Due to the computing challenges arising as a result of the physical
scaling limits of Moore’s law, scientists have started to develop special-purpose
hardware for solving combinatorial optimization problems. These novel tech-
nologies are all unified by an ability to solve the Ising model or, equivalently,
the quadratic unconstrained binary optimization (QUBO) problem. The general
QUBO is NP-hard and many problems can be formulated as QUBO [14]. It is
also often used as a subroutine to model large neighborhood local search [13].
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The Fujitsu Digital Annealer (DA) [4], used in this work, utilizes application-
specific integrated circuit hardware for solving fully connected QUBO problems.
Internally the hardware runs a modified version of the Metropolis-Hastings algo-
rithm for simulated annealing. The hardware utilizes massive parallelization and
a novel sampling technique. The novel sampling technique speeds up the tradi-
tional Markov Chain Monte Carlo by almost always moving to a new state
instead of being stuck in a local minimum. Here, we use the third generation DA,
which is a hybrid software-hardware configuration that supports up to 100,000
binary variables. DA also supports users to specify inequality constraints and
special equality constraints such as 1-hot and 2-way 1-hot constraints.

Our Contribution. The goal of this paper is twofold. First, we demonstrate that
existing scalable graph partitioning dedicated solvers are struggling with the
dense graphs not only in comparison to the special-purpose hardware accelera-
tors but even sometimes if compared to generic global optimization solvers that
are not converged. At the same time, we demonstrate a clear superiority of clas-
sical dedicated graph partitioning solvers on sparse instances. Second, this work
is a step towards investigating what kind of problems we can solve using combi-
natorial hardware accelerators. Can we find problems that are hard for existing
methods, but can be solved more efficiently with novel hardware and special-
ized algorithms? As an example, we explore the performance of Fujitsu Digital
Annealer (DA) on graph partitioning and compare it with general-purpose solver
Gurobi, and also graph partitioning solver KaHIP.

We do not attempt to achieve an advantage for every single instance, espe-
cially since at the current stage, the devices we have right now are still facing
many issues on scalability, noise, and so on. However, we advocate that hybridiza-
tion of classical algorithms and specialized hardware (e.g., future quantum and
existing quantum-inspired hardware) is a good candidate to break the barriers
of the existing quality/speed trade-off.

2 Graph Partitioning Formulations

Let G = (V,E) be an undirected, unweighted graph, where V denotes the set of
n vertices, and E denotes the set of m edges. The goal of perfect balanced k-way
graph partitioning (GP), is to partition V into k parts, V1, V2, · · · , Vk, such that
the k parts are disjoint and have equal size, while minimizing the total number
of cut edges. A cut edge is an edge that has two end vertices assigned to different
parts. Sometimes, the quality of the partition can be improved if we allow some
imbalance between different parts. In this case, we allow some imbalance factor
ε > 0, and each part can have at most (1 + ε)≤n/k∈ vertices.

Binary Quadratic Programming Formulation of GP. We first review the integer
quadratic programming formulation for k-way GP [8,20]. When k = 2, we intro-
duce binary variables xi ∈ {0, 1} for each vertex i ∈ V , where xi = 1 if vertex



Partitioning Dense Graphs with Hardware Accelerators 479

i is assigned to one part, and 0 otherwise. We denote by x the column vector
x = (x1, x2, · · · , xn)T . The quadratic programming is then given by

min
x

xT Lx such that xi ∈ {0, 1}, ∀i ∈ V, (1)

where L is the Laplacian matrix of graph G. For perfect balance GP, we have
the following equality constraint:

xT1 =
⌈n

2

⌉
, (2)

where 1 is the column vector with ones. For the imbalanced case, we have the
following inequality constraint xT1 ≤ (1 + ε)

⌈
n
2

⌉
.

When k > 2, we introduce binary variables xi,j ∈ {0, 1} for each vertex i ∈ V
and part j, where xi,j = 1 if vertex i is assigned to part j, and 0 otherwise. Let
xj denote the column vector xj = (x1,j , x2,j , · · · , xn,j)T for 1 ≤ j ≤ k. The
quadratic programming formulation is then given by

min
x

1
2

k∑
j=1

xT
j Lxj

s.t.
k∑

j=1

xi,j = 1, ∀i ∈ V,

xi,j ∈ {0, 1}, ∀i ∈ V, 1 ≤ j ≤ k.

Again, for perfect balance GP, we have another set of equality constraints:

xT
j 1 =

⌈n

k

⌉
, 1 ≤ j ≤ k.

For the imbalance case, we have the following inequality constraints:

(1 − ε)
⌈n

k

⌉
≤ xT

j 1 ≤ (1 + ε)
⌈n

k

⌉
, 1 ≤ j ≤ k.

QUBO Formulation. To convert the problem into QUBO model, we will need to
remove the constraints and add them as penalty terms to the objective function
[14]. For example, in the quadratic programming (1) with the equality constraint
(2), we obtain the QUBO model as follows:

min
x

xT Lx + P
(
xT1 −

⌈n

2

⌉)2

s.t. xi ∈ {0, 1}, ∀i ∈ V,

where P > 0 is a postive parameter to penalize the violation of constraint (2).
For inequality constraints, we will introduce additional slack variables to first
convert the inequality to equality constraints, and then add them as penalty
terms to the objective function.
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3 Computational Experiments

The goal of the experiments was to identify the class of instances that is more
suitable to be solved using the QUBO framework and the current hardware. We
compare the performance of DA with exact solver Gurobi [5], and the state-of-
the-art multilevel graph partitioning solver KaHIP [17]. We set the time limit for
DA and Gurobi to be 15 min. For KaHIP, we use KaFFPaE, a combination of
distributed evolutionary algorithm and multilevel algorithm for GP. KaFFPaE
computes partitions of very high quality when the imbalance factor ε > 0, but
does not perform very well for the perfectly balanced case when ε = 0. Therefore
we also enable a recommended by the developers KaBaPE ran with 24 parallel
processes, and the time limit of 30 min.

To evaluate the quality of the solution, we compare the approximation ratio,
which is computed using the GP cut found by each solver divided by the best-
known value. For some graphs, we have the best-known provided from the bench-
mark [21], otherwise we use the best results found by the three solvers as the best
known. Since this is a minimization problem, the minimum possible value of the
approximation ratio is 1, the smaller the better. For each graph and each solver
used, we also provide the objective function value, i.e., the number of cut edges.
Due to space limitation, we present only the summary of the results. Detailed
results are available in [12].

Main Conclusion: We have focused on demonstrating practical advantage of
software and hardware approaches for GP. We found that dense graphs exhibit
limitations of the existing algorithms which can be improved by the hardware
accelerators.

Graph Partitioning on Sparse Graphs. We first test the three solvers on instances
from the Walshaw graph partitioning archive [21]. We present the summary of
the results with box plots in Fig. 1 (a), (d). We observe that in Fig. 1 (d), where
we compare DA and Gurobi, DA can find the best-known partition for most
instances, and perform better compared to Gurobi. However, for several sparse
graphs, i.e., davg < 3, for example, uk, add32 and 4elt, DA can not find the best-
known solutions. For these sparse graphs, multilevel graph partitioning solvers
such as KaHIP can usually perform an effective coarsening and uncoarsening
procedure based on local structures of the graph and therefore find good solutions
quickly. As shown in Fig. 1 (a), KaHIP performs better than DA. Based on the
numerical results, we conclude that for the sparse graphs, generic and hardware
QUBO solvers do not lead to many practical advantages. However, graphs with
more complex structures, that bring practical challenges to the current solvers
might benefit from using the QUBO and hardware accelerators.

Graph Partitioning on Dense Graphs. To validate our conjecture, in the next set
of experiments, we examine dense graphs from the SuiteSparse Matrix Collection
[3] The experimental results are presented in Fig. 1 (b), (e). We observe that for
these dense graphs, in general, DA is able to find solutions that are usually at
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Fig. 1. Comparison of DA with KaHIP (dedicated GP solver), and Gurobi (general-
purpose solver) for sparse and dense graphs respectively. The y-axis represents the
approximation ratio (solution to best-solution ratio), the minimum possible value of
the approximation ratio is 1, the smaller the better. The x-axis represents the imbalance
factor as percentage

least as good as those produced by KaHIP and Gurobi. In particular, we find that
for one instance, exdata 1, KaHIP fails significantly. We therefore use a graph
generator MUSKETEER [6] to generate similar instances1. The parameters used
to generate the instances can be found in the appendix of the full version. In
short, MUSKETEER applies perturbation to the original graph with a multilevel
approach, the local editing preserves many network properties including different
centralities measures, modularity, and clustering. The experiment results are
presented in Fig. 1 (c), (f). We find that in most instances, DA outperforms
KaHIP and Gurobi, demonstrating that in this class of problems, specialized
hardware such as DA is having an advantage.

Currently, to tackle GP on dense graphs, the main practical solution is to
first sparsify the graphs (hoping that the sparsified graph still preserves the
structure of the original dense graph), solve GP on the sparsified graph, and
finally project the obtained solution back to the original graph. We have applied
the Forest Fire sparsification [9] available in Networkit [19]. This sparsification
is based on random walks. The vertices are burned starting from a random
vertex, and fire may spread to the neighbors of a burning vertex. The intuition
is that the edges that are visited more often during the random walk are more
important in the graph. In our experiments, we eliminate 30% of the edges. Then
we solve GP using KaHIP (KaffpaE version) and project the obtained solution
back to the original dense graph. Results and details of the experiments can

1 The exdata graph files are available here: https://github.com/JoeyXLiu/dense-
graph-exdata.

https://github.com/JoeyXLiu/dense-graph-exdata
https://github.com/JoeyXLiu/dense-graph-exdata
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be found in the full version of the paper. We find that for dense graphs with
complex structures, KaHIP does not outperform DA, and graph sparsification
does not help to achieve this goal. In this case, we advocate the use of the QUBO
framework and specialized hardware.
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Abstract. A component-based view of metaheuristics has recently been promoted
to deal with several problems in the field of metaheuristic research. These problems
include inconsistent metaphor usage, non-standard terminology and a proliferation
of metaheuristics that are often insignificant variations on a theme. These problems
make the identification of novel metaheuristics, performance-based comparisons,
and selection of metaheuristics difficult. The central problem for the component-
based view is the identification of components of a metaheuristic. This paper
proposes the use of taxonomies to guide the identification of metaheuristic com-
ponents. We developed a general and rigorous method, TAXONOG-IMC, that
takes as input an appropriate taxonomy and guides the user to identify compo-
nents. The method is described in detail, an example application of the method is
given, and an analysis of its usefulness is provided. The analysis shows that the
method is effective and provides insights that are not possible without the proper
identification of the components.

Keywords: Metaheuristic · General metaheuristic · Taxonomy

1 Introduction

The metaheuristic research field has been criticized for inconsistent metaphor usage,
non-standard terminology [1, 2], and use of poor experimental setups, validation, and
comparisons [1–3]. These factors have contributed to challenges in the field such as a
proliferation of novel metaheuristics and ‘novel’ approaches being very similar to exist-
ing approaches [1, 2, 4]. Several researchers have thus proposed that a component-based
view of metaheuristics that explicitly lists metaheuristic components, will assist in iden-
tifying novel components [1, 5], promote component-based performance comparison
and analyses, and facilitate component-wise selection of metaheuristics for comparative
studies [1, 2, 6, 7].

A component-based view is especially important for general metaheuristics, which
has enjoyed increasing popularity in recent literature. General metaheuristics, also known
as general metaheuristic frameworks [8], unified metaheuristic frameworks [9], and gen-
eralized metaheuristic models [10] are used for tasks such as metaheuristic generation
[10], performance analysis [11, 12], metaheuristic-similarity analysis [13], and clas-
sification of metaheuristics [7]. General metaheuristics are an abstraction of a set of
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metaheuristics, i.e., they are generalizations of the components, structure, and informa-
tion utilized by a set of metaheuristics [6, 12]. They thus also take a component-based
view. General metaheuristics make use of a set of component-types, also referred to as
general metaheuristics structures [12], component-categories [6], main ingredients [14],
or key components [15].

However, general metaheuristics still suffer the challenges outlined above viz. incon-
sistent metaphor usage and non-standard terminology. They also suffer from simi-
lar problems if components are not properly identified. Thus, the identification of
components takes on special importance.

This work promotes the systematic use of taxonomies to guide the identification of
components. Our proposed method uses formal taxonomy theory, which appears to be
absent in several recent metaheuristic studies that involve the creation or incorporation of
taxonomies such as [7, 16–19]. Taxonomies, ideally, are built using a rigorous taxonomy
building-method e.g. [20, 21]. Taxonomies are intrinsic prerequisites to understanding
a given domain, differentiating between objects, and facilitating discussion on the state
and direction of research in a domain [22]. Taxonomies may thus help solve the issues
affecting metaheuristic research, such as non-standard terminology and nomenclature.

This work proposes the use of taxonomies to guide the identification of metaheuris-
tic components. We developed a general and rigorous method, TAXONOG-IMC, that
takes as input an appropriate taxonomy and guides the user to identify components.
TAXONOG-IMC promotes the use of taxonomies to guide component identification for
any metaheuristic subset, and provides guidance for the proper use of taxonomies to
perform component identification.

This paper presents the method, provides an example of its application, and gives
an analysis of its usefulness. The rest of the paper is structured as follows: Sect. 2
provides a literature review, Sect. 3 comprehensively describes TAXONOG-IMC, Sect. 4
demonstrates the use of the method by applying it to two taxonomies to showcase its
effectiveness, Sect. 5 provides an analysis of the method by showing its effectiveness
in analysing nature-inspired, population-based metaheuristics. Section 6 concludes the
study.

2 Literature Review

The need for a component-based view is best appreciated in general metaheuristics. How-
ever, many general metaheuristics lack a rigorous method for identifying components.
Many studies proposing a general metaheuristic provide guidance through examples
of their usage. Several broad-scoped general metaheuristics follow this trend, such as
general metaheuristics for population-based metaheuristics [9] and metaheuristics in
general [10, 11, 13]. The general metaheuristics proposed by [6, 9, 10, 13] use mathe-
matical formulations for their component-types. Since these mathematical formulations
are sometimes in-part derived from text, the researcher can choose how to formulate
a component based on their judgement and interpretation. However, this process can
be negatively impacted by inconsistent metaphor usage and non-standard terminology.
Components that are essentially the same can be regarded as different. Using examples
for guidance may not account for all contingencies.
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A general metaheuristic built on the assumption that differentiating the components
in detail and using relatable terminology may help resolve challenges in component
identification, is presented in [12]. However, most of their component-types of the general
metaheuristic were a renaming of the components in [13] and may consequently face
the same challenges. Some component-categories in literature were listed, but using
them for the general metaheuristic may be difficult; if they consist of combinations
of components, then they themselves need to be decomposed, which requires expert
knowledge.

Several studies used taxonomies and/or classification-schemes to support the design
of general metaheuristics. The advantage of using a taxonomy for this purpose is that it
declares a convention by which the components will be identified. It provides a list of
possible components that a component-type encompasses. If an issue is taken with the
convention, then it can be argued at the taxonomy level. There are studies, such as [23,
24], that propose general metaheuristics whose components make use of a presented
taxonomy, and there are studies that make use of existing taxonomies for a proposed
general metaheuristic, such as [7, 15]. The studies that proposed both a general meta-
heuristic and a taxonomy are likely to work well, as the taxonomy is built for the general
metaheuristic; however, taxonomies are not necessarily built with general metaheuristics
in mind.

Works that use existing taxonomies lack guidance on how to use taxonomies effec-
tively. Existing taxonomies and viewpoints were used in [15] to create a new taxonomy
to guide the usage of a proposed general metaheuristic. The taxonomy presented used
examples at the lowest level of its hierarchy to illustrate its usage. However, examples do
not account for every contingency. The essence of the multi-level classification method
proposed in [7] is meritorious; however, a misuse of the behaviour taxonomy presented
in [5], led to a classification that is questionable in terms of the taxonomy used, i.e.,
tabu search is depicted as possessing the differential vector movement behaviour. Some
studies consider tabu search as population-based but viewing tabu search as being single-
solution based has a stronger consensus [25] and appears to be followed by [5], i.e., the
behaviour taxonomy presented by [5] is not applicable to tabu search in its canonical
sense.

The study in [14] presents a taxonomy for evolutionary algorithms based on their
main components. The same study uses the taxonomy to facilitate the expression of evo-
lutionary algorithms in terms of their main components, and the distinguishing between
various evolutionary algorithm classes. This study is notable for its use of a vector
representation for its components. Our work uses a similar representation.

3 Taxonomy Guided Identification of Metaheuristic Components:
TAXONOG-IMC

This section proposes TAXONOG-IMC (see Fig. 1), a general, rigorous method that
guides the identification of metaheuristic components using taxonomies.

We use the definition of a taxonomy provided in [20] that lends itself to a flat
representation of the metaheuristics or metaheuristic component-types, which facilitates
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tabular analysis. A taxonomy T is formally defined in [20] as:

T = ∑
Di, (i = 1, . . . , n)|Di = ∑

Cij, (j = 1, . . . , ki); ki ≥ 2
((

(1)

where T is an arbitrary taxonomy, Di is an arbitrary dimension of T , ki ≥ 2 is the number
of possible characteristics for dimension Di, Cij an arbitrary characteristic for dimension
Di. Characteristics for every dimension are mutually exclusive and collectively exhaus-
tive, i.e., each object under consideration must have one and only one Cij for every
Di.This organization, using dimensions and characteristics, is likely to be relevant in all
cases since they are fundamental to understanding the properties of objects in a domain;
hence the definition (1) is used.

Some important terms concerning taxonomies are explained below:

1. Dimensions: A dimension represents some attribute of an object and can be thought
of as a variable that has a set of possible values.

2. Characteristics: The characteristics of a given dimension are the possible values that
can be assigned to a particular dimension.

3. Taxonomy dimension: A taxonomy dimension refers to a dimension that is part
of the taxonomy under consideration. The method has steps where dimensions are
proposed – these are not part of the taxonomy but are under consideration to be
included. We refer to these as candidate dimensions that may then become part of
the taxonomy.

4. Specialized dimension: A specialized dimension is a characteristic of a taxonomy that
is promoted to dimension status; specialized dimensions are candidate dimensions.

5. Generalized dimension: A generalized dimension is created by partitioning charac-
teristics of a taxonomy dimension or partitioning the combination of characteris-
tics from multiple taxonomy dimensions. A generalized dimension is a candidate
dimension.

To illustrate each term, consider the following dimensions of some metaheuristic:
initializer, search operator, and selection. Characteristics of search operator may be, e.g.,
genetic crossover, swarm dynamic, differential mutation. A taxonomy for evolutionary
algorithms in [14] has population, structured population, information sources etc., as
its dimensions. Then population would be a taxonomy dimension. Using the behaviour
taxonomy presented in [5], solution creation can be thought of as a generalized dimension
of the combination and stigmergy dimensions. If we use solution-creation as a taxonomy
dimension, then combination would be a specialized dimension.

3.1 Comprehensive Description of Method Process

A good start for step 1 (select or create a taxonomy), is to conduct a literature search for
relevant taxonomies using keywords, key-phrases, publication titles, etc. However, if no
appropriate taxonomy is found, then an appropriate taxonomy building method should
be used to create a taxonomy.

Expressing a taxonomy using definition (1), ensures the taxonomy is in a standard
format for subsequent steps. The dimensions, and the dimensions’ characteristics must
be clearly stated to avoid ambiguity.
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Fig. 1. Flowchart depicting the processes of TAXONOG-IMC

Steps 3 to 5 guides the creation of specialized dimensions. Using specialized dimen-
sions will allow for focusing on specific components. The role of set S, introduced in step
4, is to store a collection of dimensions that are to be replaced by one of their character-
istics in taxonomy T. In the metaheuristic context, a dimension may be replaced by more
than one of its characteristics; this decision accommodates for hybrid-metaheuristics
that have more than one characteristic for a dimension. When characteristics become
dimensions, they will each need a set of possible characteristics of their own that will
be derived from literature or the expertise of the researcher.

The addition of specialized dimensions to the Taxonomy may result in an over-
whelmingly large number of taxonomy dimensions. Generalizing an appropriate number
of taxonomy dimensions may help with this challenge.
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Creating generalized dimensions is guided by steps 7 to 10. It is essential to name
the general dimensions clearly and their characteristics to ensure no ambiguities nor
confusion arises as to which dimension or characteristic a trait falls under. It is important
to note that each subset of taxonomy dimensions, chosen in step 8, must be disjoint. Note
that not every taxonomy dimension needs to be integrated into a general dimension.

As an example of when and how general dimensions can be used, consider a chosen
set of metaheuristics that have a large diversity on certain taxonomy dimensions. They
may be grouped by their characteristic combinations on these dimensions. A generalized
dimension could then have two possible values, 1 representing a metaheuristic having
a required combination of characteristics for those dimensions, and 0 representing a
metaheuristic not having such a combination of characteristics for those dimensions.

4 Application of Method

To demonstrate the method, we use it to generate binary component vectors to repre-
sent nature-inspired, population-based metaheuristics in terms of their inspiration and
behaviour components. We use the behaviour and natural-inspiration taxonomies pro-
vided in [5]. In this study, we consider the metaphor/inspiration of a metaheuristic to be
a component, but more specifically, a non-functional component. The nature-inspiration
taxonomy was created to ascertain the natural-inspiration category of a metaheuristic
without ambiguity. The behavioural taxonomy is based on the metaheuristic behaviour,
i.e., focusing on the means by which new candidate solutions are obtained, and disre-
garding its natural inspiration. See Sect. 4.3 for descriptions of all dimensions used by
the behaviour and natural-inspiration taxonomies.

4.1 Behavior Taxonomy

• Step 1: We use the behavior taxonomy from [5].
• Step 2: We express the taxonomy using the definition given in (1) as follows. A

characteristic of 1 means that it is present and 0 means it is not.

– b1 - Combination (characteristics are {0, 1})
– b2 - Stigmergy (characteristics are {0; 1})
– b3 - All population Differential Vector Movement (DVM) (characteristics are {0;

1})
– b4 - Groups-based (DVM) (characteristics are {0; 1})
– b5 - Representative based (DVM) (characteristics are {0; 1})

• Step 3: We create specialized dimensions.
• Step 4: S = {Groups-based (DVM)}, The step at this phase dictates that we only select

one characteristic to promote to dimension status, but with regards to metaheuristics,
which can be hybridized and still be metaheuristics, an exception can be made such
that numerous characteristics can be promoted during specialization (this depends on
the characteristics, if the characteristics are single-solution and population-based then
these can’t both be used as component-types for a metaheuristic at the same time, since
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there is a possibility that both can be set to 1, which does not make intuitive sense).
Therefore, we promote both Sub-population (DVM) and Neighborhood (DVM) to
dimensions with their characteristics being binary {0; 1}. b4 is set to Sub-population
(DVM) and b5 is set to Neighborhood (DVM), b6 is set to Representative based
(DVM).

• Step 5: Groups-based (DVM) is not referenced by any dimension and can thus be
discarded. T = {b1; b2; b3; b4; b5; b6 | bi = {0; 1}; (i = 1, 2, 3, 4, 5, 6)}

• Step 6: We do not create generalized dimension.
• Step 11: The vector representation derived from the behavoiur taxonomy is:

)
b1 b2 b3 b4 b5 b6

}
(2)

4.2 Natural-Inspiration Taxonomy

• Step 1: We use the natural-inspiration taxonomy from [5].
• Step 2: We express the taxonomy using the definition given in (1) as follows:

– n1 - Breeding-based evolution (characteristics are {0; 1})
– n2 - Aquatic animals (characteristics are {0; 1})
– n3 - Terrestrial animals (characteristics are {0; 1})
– n4 - Flying animals (characteristics are {0; 1})
– n5 - Microorganisms (characteristics are {0; 1})
– n6 - Others (characteristics are {0; 1})
– n7 - Physics-based (characteristics are {0; 1})
– n8 - Chemistry-based (characteristics are {0; 1})
– n9 - Social human behaviour algorithms (characteristics are {0; 1})
– n10 - Plants based (characteristics are {0; 1})
– n11 - Miscellaneous (characteristics are {0; 1})

• Step 3: We do not create specialized dimensions.
• Step 6: We create general dimensions.
• Step 7: We create two general dimensions that will be identified as Swarm-intelligence

and Physics and Chemistry Based. (This is already done in the taxonomy, but we are
redoing it in this process for demonstration).

• Step 8: Aquatic animals, Terrestrial animals, Flying animals, Microorganisms, Others
are allocated to the Swarm-intelligence general dimension. Physics-based, Chemistry-
based are allocated to the Physics and Chemistry Based general dimension.

• Step 9: The characteristics of Swarm-intelligence are {0; 1}. 1 indicating that either
Aquatic animals, Terrestrial animals, Flying animals, Microorganisms, or Others
are present, 0 indicating that Aquatic animals, Terrestrial animals, Flying animals,
Microorganisms, and Others are absent. The characteristics of Physics and Chemistry
Based are {0; 1}. 1 indicating that either Physics-based or Chemistry-based is 1, 0
indicating that Physics-based and Chemistry-based are absent.

• Step 10: Since n2 to n8 are removed, n2 will be the dimension for Swarm-intelligence,
n3 will be the dimension for Physics and Chemistry Based, n4 will be the dimension
for Social human behavior algorithms, n5 will be the dimension for Plants based, n6
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will be the dimension for Miscellaneous; n7 to n11 do not refer to any dimensions so
they can be discarded. T = {n1; n2; n3; n4; n5; n6 | ni = {0; 1}, (i = 1, 2, 3, 4, 5, 6)}

• Step 11: The vector representation definition derived from the selected taxonomy is:

)
n1 n2 n3 n4 n5 n6

}
(3)

4.3 Dimension Descriptions

In this sub-section, the nodes of each hierarchal taxonomy presented in [5] are unam-
biguously defined as dimensions using the descriptions of each node provided in the
same study; from these definitions, we can define the dimensions in the initial steps and
proceed to modify them in subsequent steps by adding and/or dropping these dimensions
due to using generalized or specialized dimensions.

Behaviour Dimensions

– Differential vector movement: New solution is obtained by movement relative to an
existing solution

– All population Differential Vector Movement (DVM): All individuals in the popula-
tion are used to generate the movement of each solution.

– Representative-based (DVM): The movements of each solution are only influenced
by a small group of representative solutions, e.g., the best solutions found

– Group-based (DVM): Sub-populations or subsets of the populations are considered,
without representative solutions.

– Sub-population (DVM): The movements of each solution are influenced by a subset
or group of solutions in the population, and no representative solutions are determined
and used in the trajectory calculation at hand.

– Neighborhood (DVM): Each solution is only influenced by solutions in its local
neighborhood.

– Combination: New solutions are selected and combined via some method to create
new solutions.

– Stigmergy: An indirect communication and coordination strategy is used between
different solutions to create new solutions.

– Creation: Exploration of search domain by generating new solution, differential vector
movement not present.

Natural-Inspiration Dimensions

– Breeding-based evolution: Inspired by the principle of natural evolution and references
to producing offspring, successive generations.

– Swarm Intelligence: Inspired by the collective behavior of animal societies.
– Flying animals: Agent movements inspired by flying movements.
– Terrestrial animals: Agent movements inspired by foraging or movements of terrestrial

animals.
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– Aquatic animals: Agent movements inspired by animals living in aquatic ecosystems.
– Microorganisms: Agent movements inspired by food search by bacteria or how viruses

spread infection.
– Others: Very low popularity inspiration sources from the collective behavior of

animals.
– Physics and Chemistry Based: Imitate the behavior of physical/chemical phenomena

(field of physics and chemistry).
– Social Human Behavior Algorithms: Inspired by human social concepts.
– Plants Based: Inspired by plants, where there is no communication between agents.
– Miscellaneous: Not inspired by any identified category.

5 Analysis and Discussion

We now demonstrate the use of the method. Information showing the application fre-
quency of different nature-inspired metaheuristics to feature selection in disease diag-
nosis is depicted in Table 10 taken from the study in [26]. It is stated that data for the
table was obtained by executing various search queries on google scholar. RA is not
population-based, and thus is ignored since it is out of scope for the vector derived in
the current paper. In this section, the amount of information extracted from Table 10 in
[26] is extended using the derived vector. The aim is to reconfigure the table to attribute
the frequencies to the component-types of the derived vector. This task is accomplished
via the following steps:

1. List all metaheuristic abbreviations and ascertain their full name.
2. Represent each of the nature-inspired, population-based metaheuristics using the

vector formats derived, i.e., (2) and (3), as shown in Table 1. If the metaheuristics
were not present in the tables, the descriptions of the dimensions of the taxonomies
presented in [5] would have to be used to derive their vector representation.

3. Let B be a matrix representing the data of Table 1, i.e., B
)
p
})

q
}

will indicate whether
the component-type at column index q is present in the metaheuristic at row index p.
Let D be a matrix where each intersection of row i and column j is the frequency of
application of metaheuristic at row index i to the disease at column index j (D holds
the data of Table 10 in [26]). Let F be the matrix that holds the component-type to
disease diagnosis application frequencies (Table 2), i.e., where j is index number of
the disease in the columns of Table 10 presented in [26] and q is the index number
of the component-type in the vector:

F
)
j
})

q
} =

∑N

x=0
B[x]

)
q
} × D[x]

)
j
}

(4)

4. Matrix F contains the data of Table 2 that depicts the table of frequency of appl
cation of a component-type to disease diagnosis. From this table, further analysis
can be done.

It can be observed from Table 2 that b6 (Representative-based (DVM)) is the dom-
inant behaviour and n2 (Swarm intelligence) is the dominant natural-inspiration. It is
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Table 1. Representation of nature-inspired, population-based metaheuristics in terms of derived
vector formats

KEY: Harmony search (HS), Artificial bee colony (ABC), Glow-worm swarm optimization 

(GSO), Ant colony optimization (ACO), Firefly algorithm (FA), Monkey algorithm (MA), 

Cuckoo search (CS), Bat algorithm (BA), Dolphin echolocation (DE), Flower pollination algo-

rithm (FPA), Grey wolf optimizer (GWO), Dragonfly algorithm (DA), Krill herd algorithm 

(KHA), Elephant search algorithm (ESA), Ant lion optimizer (ALO), Moth-flame optimization 

(MFO), Multi-verse optimizer (MVO), Runner-root algorithm (RRA), Laying chicken algo-

rithm (LCA), Killer whale algorithm (KWA), Butterfly optimization algorithm (BOA).

PMBH b1 b2 b3 b4 b5 b6 n1 n2 n3 n4 n5 n6
HS 1 0 0 0 0 0 0 0 1 0 0 0

ABC 0 0 0 0 0 1 0 1 0 0 0 0

GSO 0 0 0 0 0 1 0 1 0 0 0 0

ACO 0 1 0 0 0 0 0 1 0 0 0 0

FA 0 0 1 0 0 0 0 1 0 0 0 0

MA 0 0 0 0 0 1 0 1 0 0 0 0

CS 1 0 0 0 0 0 0 1 0 0 0 0

BA 0 0 0 0 0 1 0 1 0 0 0 0

DE 1 0 0 0 0 0 0 1 0 0 0 0

FPA 0 0 0 0 0 1 0 0 0 0 1 0

GWO 0 0 0 0 0 1 0 1 0 0 0 0

DA 0 0 0 0 0 1 0 1 0 0 0 0

KHA 0 0 0 0 0 1 0 1 0 0 0 0

ESA 0 0 0 0 0 1 0 1 0 0 0 0

ALO 0 0 0 0 0 1 0 1 0 0 0 0

MFO 0 0 0 0 0 1 0 1 0 0 0 0

MVO 0 0 0 0 0 1 0 0 1 0 0 0

RRA 0 0 0 0 0 1 0 0 0 0 1 0

LCA 1 0 0 0 0 0 0 1 0 0 0 0

KWA 0 0 0 0 0 1 0 1 0 0 0 0

BOA 0 0 0 0 0 1 0 1 0 0 0 0

interesting to note that in [26], it is stated that ACO is dominant in the use of diagnosis of
different human disorders. However, the behaviour associated with ACO is Stigmergy
(b2) is not the dominant behaviour; instead, representative-based differential movement
(b6) is the dominant behaviour for this application domain.

Literature such as [1] has shown that the names and metaphors of metaheuristics
sometimes mask the substantial similarities between the metaheuristics and their differ-
ences are so minute that they can be considered marginal variants. ACO is popular, but the
problem could lie with many metaheuristics, which have behavioural component-type
b6, being diverse in names as this trend is either diluting the core algorithm’s popularity
or is misguiding users to believe that different metaheuristic names entail that they have
nearly orthogonal behaviours.

From Table 2, it can be ascertained that scope for future research lies in applying meta-
heuristics with behavioural component-types: sub-population (DVM), neighbourhood
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Table 2. Frequencies of component-type usage, in literature, in various disease diagnosis
applications

Disease diagnosis b1 b2 b3 b4 b5 b6 n1 n2 n3 n4 n5 n6

Breast cancer 413 619 216 0 0 893 0 1859 236 0 46 0

Prostate cancer 35 73 9 0 0 68 0 161 21 0 3 0

Lung cancer 105 157 41 0 0 154 0 400 51 0 6 0

Oral cancer 4 3 2 0 0 6 0 12 3 0 0 0

Neck cancer 4 4 0 0 0 9 0 13 3 0 1 0

Skin cancer 19 4 15 0 0 53 0 81 8 0 2 0

HIV 40 114 24 0 0 80 0 237 18 0 3 0

Stroke 116 120 36 0 0 129 0 330 60 0 11 0

Schizophrenia 8 44 9 0 0 16 0 72 4 0 1 0

Parkinson 91 144 52 0 0 233 0 434 62 0 24 0

Heart disease 129 34 58 0 0 234 0 390 55 0 10 0

Anxiety 17 65 9 0 0 50 0 135 5 0 1 0

Insomnia 1 6 0 0 0 2 0 9 0 0 0 0

Sum 982 1387 471 0 0 1927 0 4133 526 0 108 0

(DVM), breeding-based evolution, social-human behaviour algorithms, and miscella-
neous to disease diagnosis. Even though the three latter component-types are natural-
inspirations, and literature has motivated that this category of component-types has little
contribution to performance. Applying them increases their presence in a population,
from which data can be sampled, i.e., a diverse population is good.

The taxonomies in [5] organized the metaheuristics using their canonical versions.
This study relies on the assumption that if two or more metaheuristic-algorithms are
associated with the same metaheuristic, then they should possess the behaviour of that
metaheuristic. The proposed method can be used to select components for metaheuristic
frameworks, classification schemes, representations, and comparative analysis.

6 Conclusion

This study proposes TAXONOG-IMC, a structured method that provides guidance for
metaheuristic component identification using taxonomies. An example application is
provided to showcase how TAXONOG-IMC can aid in metaheuristic analysis.

Identification of metaheuristic components is an important task for the effective use
of general metaheuristics, and the metaheuristic component-based view by and large.
General metaheuristic publications use strategies such as providing examples, using
finer-grain component-types, relying on existing taxonomies or creating new ones to
assist in component identification. However, examples don’t account for all contingen-
cies that a researcher may encounter, and finer-grain components can also be affected
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by non-standard terminology and inconsistent metaphor usage. There are general meta-
heuristic publications that use taxonomies to assist in component identification; some
propose their own taxonomy, and others use an existing taxonomy. The ones that pro-
pose their own taxonomy are likely to be compatible with the general metaheuristic since
they are created for that purpose; however, some of the publications that use existing tax-
onomies made questionable decisions during the demonstration of general metaheuristic
use – indicating a lack of proper use of taxonomy.

Future research lies in using taxonomies for component-identification for many other
metaheuristic subsets, metaheuristics analysis, and use in general metaheuristics.
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Abstract. In the context of humanitarian support for forcibly displaced
persons, camps play an important role in protecting people and ensuring
their survival and health. A challenge in this regard is to find optimal
locations for establishing a new asylum-seeker/unrecognized refugee or
IDPs (internally displaced persons) camp. In this paper we formulate this
problem as an instantiation of the well-known facility location problem
(FLP) with three objectives to be optimized. In particular, we show that
AI techniques and migration simulations can be used to provide decision
support on camp placement.

Keywords: Facility location problem · Multiobjective optimization ·
Simulation · Evolutionary algorithms

1 Introduction

Forced displacement is a complex global phenomenon, which refers to the move-
ment of people away from their home or origin countries due to many factors, such
as conflict, violence, persecution, etc. In 2020, almost 26.4 million people had fled
their countries according to the UNHCR (https://www.unhcr.org/uk/figures-at-
a-glance.html). In this situation, relocating asylum-seekers/unrecognized refugees
to camps becomes an urgent issue to humanitarian organizations or governments.
Camps, as important infrastructures, provide protection and allocate available
humanitarian resources to thousands of forcibly displaced people. As resources
are commonly limited, it is critical to make optimal decisions in seeking the best
location for establishing a new camp. Camp placement can be formulated as the
well-known facility location problem (FLP) [6]. The FLP can be considered as a
multiobjective optimization problem (MOP), which includes two or more objec-
tives to be optimized simultaneously. The objectives of the FLP can include mini-
mizing the total travel distance and maximizing the demand coverage, meanwhile
satisfying some constraints [8].
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Several MOP-FLP approaches have been proposed, including traditional goal
programming, ε-constraint approaches and, more recently, metaheuristic opti-
mization algorithms [13] such as particle swarm optimization (PSO) and evolu-
tionary algorithm (EA). As a population-based metaheuristic optimization app-
roach, EA may effectively handle MOPs as it can generate a set of trade-off
solutions in a single run. It has specifically been applied to tackle the FLP in
disaster emergency management [14], making it natural to employ EA in the
context of camp placement. The main challenge here is to have exact number of
forcibly displaced persons arriving in destination countries. Due to the ongoing
conflicts in origin countries, the number of asylum-seekers/unrecognized refugees
or IDPs continuously changes over time.

Here we aim to assist humanitarian organizations and governments in their
decision-making on camp placement, and the paper has the following contribu-
tions: (1) we present an MOP for camp placement with three objectives regard-
ing travel distance, demand coverage, and idle camp capacity; (2) we use an
agent-based simulation to capture the demand uncertainty (i.e., the number of
camp arrivals), which is crucial for camp placement but has not been considered
in most existing literature; (3) we present a new multiobjective simulation opti-
mization approach for our MOP, which consists of EA and an agent-based forced
migration simulation; and (4) we successfully apply the proposed approach to a
case study of the South Sudan conflict, and identify a group of optimal solutions
for decision-makers.

1.1 Related Work

The camp location selection problem is a complex task for the humanitarian
organizations to deploy aid. The research areas related to this problem can be
generally divided into the modelling the movements of people [11], and the FLP
in humanitarian logistics [1,4,7,9]. Here we attempt to address the optimization
problem of how to find the optimal locations for establishing a new camp. This
problem can be formulated as an MOP. Current approaches for multiobjective
FLPs can be classified into two categories. The first is concerned with the tra-
ditional single-objective optimization approach, such as the goal programming
approach [1], the weighted sum approach [9] and the ε-constraint [4]. The second
is the multiobjective optimization approach searching for the whole Pareto front,
from which the decision makers choose their preferred solution. For example, the
classic NSGA-II and a multiobjective variant of the PSO algorithm were applied
in the earthquake evacuation planning problem [7]. The reason we consider the
second category is that optimization approaches in the first may require prior
knowledge, such as the relative importance of the objectives in the weighted sum
approach. Such knowledge may not be easy to access, and even if it is available
it has been shown that the search aiming for the whole Pareto front may be
more promising since it can help the search escape the local optima [3]. Another
strand of research is multiobjective optimization under uncertainty. Recently,
some studies have proposed a number of robust or stochastic models for FLPs
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Fig. 1. An illustration of the route network for a basic camp placement, where 1) a
source country is represented by a square region with one conflict zone (i.e., point A),
three towns (i.e., points B, C, and D) and all possible links among these points, and
2) one camp (i.e., point Z) is connected to the nearest location in the source country.

under uncertainty [2]. However, there is a lack of studies on FLPs under uncer-
tainty that take the preferences of people into account. As popular simulation
approaches, different agent-based modelling frameworks have been developed to
model the movements of displaced persons (or the preferences of those people).

2 A Multiobjective Camp Location Selection Model

Our multiobjective model aims to determine the optimal location of a new camp
and is constructed according to four main steps. First, we create a source country
with conflict zones and towns, and interconnecting links. Second, we add a camp
at given coordinates in a destination country. Third, we create a link between the
camp and its nearest location in the source country, and lastly we run the Flee
simulation [11] and calculate the objectives. Figure 1 illustrates the route network
for a basic camp placement problem with one conflict zone, three towns and one
camp, and interconnecting roads (lines). The coordinates (x, y) associated with
each conflict zone, town or camp are used to indicate their positions.

We have the following model assumptions: the locations of conflict zones
and towns, the number of asylum-seekers/unrecognized refugees or IDPs (i.e.,
agents in Flee simulation), and the conflict period are given, agents are spawned
in conflict zones, destination countries are represented by a continuous region,
camps have limited capacities, agents move during each time step based on
predefined rules in [11], and agents stop moving once they reach the camp. With
the notation in Table 1, the MOP can be formulated as follows:

minimize : f1(j) =
∑nsim,t,j

i dsim,t,i,j

nsim,t,j
, t = T (1)

maximize : f2(j) = nsim,t,j , t = T (2)

minimize : f3(j) =
∑

t |c − nsim,t,j |
T

, t = 1, 2, . . . , T (3)
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Table 1. Notations for the MOP.

Notations Type Explanation of notations

J Set The set of candidates sites indexed by j

a Parameter The total number of agents in all conflict zones

n Parameter The number of potential camp sites

c Parameter Camp capacity (unit: agent)

k Parameter The total number of new camps that will be
placed and open

T Parameter The simulation period or the conflict period
(unit: day)

j Decision variable The index of a candidate site

dsim,t,i,j Dependent variable The distance travelled by an agent i ∈ Isim,t,j in
the new camp at
candidate site j at time t based on the simulation
predictions

nsim,t,j Dependent variable The number of agents served by the new camp at
candidate site j

at time t based on simulation predictions,
indexed by i

subject to

1 ≤ j ≤ n (4)

The objective function Eq. (1) minimizes the average distance travelled by
each arriving agent in a destination camp at the end of the simulation. This
objective focuses on the efficiency (i.e., distance) of allocating people to facilities.
The objective function Eq. (2) maximizes the number of people in the camp at
the end of the simulation. This objective function can be easily changed to a
minimization problem by calculating the negative value of successful arrivals
(i.e., −nsim,t,j , t = T ). The objective function Eq. (3) minimizes the average idle
camp capacity over simulation days for the new camp. Note that the new camp
can be overpopulated, and if the idle capacity is a negative value, we simply take
the absolute value. Constraint (4) restricts the search space of the MOP (i.e., a
set of n possible sites), from which we select the optimal camp site. In our MOP,
the decision variable j is known as a solution to the problem. Different from the
single-objective optimization problem, the MOP has a set of trade-off solutions,
called Pareto front, rather than a single optimal solution. In this paper, only one
camp will be established (i.e., k = 1) and we aim to find the Pareto front of the
MOP. This MOP can be further extended to jointly solve the MOP for multiple
camps by replacing the current single decision variable with a set of decision
variables, expressed as a k-dimensional decision vector �j = (j1, j2, . . . , jk), and
considering all people who arrived at these new camps.
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2.1 A Simulation-Optimization Approach

We develop a simulation-optimization approach, which combines a (Flee) simu-
lation with a multiobjective optimization algorithm. For the optimization algo-
rithm, we adopt a representative multiobjective evolutionary algorithm, called
NSGA-II [5]. Our algorithm works as follows: for each generation of NSGA-II, a
group of candidate solutions (each solution is a sequence of k selected sites) are
generated, followed by the Flee simulation taking the coordinates corresponding
to each solution as input parameters, and assessing and outputting the objective
values for the optimization stage. To implement NSGA-II, a candidate solu-
tion is represented as a chromosome using a grid-based spatial representation
strategy. Each grid cell has longitude and latitude coordinates corresponding
to its centroid. The chromosome is then sequentially encoded by the indexes
of k selected site(s), where k is the number of camps that will be placed and
opened. Note that in this paper we only consider one new camp (i.e., k = 1).
To automate the simulation process, we utilize FabFlee [12], which is a plugin of
FabSim3 (https://github.com/djgroen/FabSim3). Due to data complexity, sim-
ulation runs for a group of solutions (i.e., candidate camp locations) are compu-
tationally expensive. To reduce the runtime, we employ QCG-PilotJob (http://
github.com/vecma-project/QCG-PilotJob) to schedule submitted ensemble runs
for different camp locations.

3 Test Setup and Results

To demonstrate the application of our MOP, we conducted a case study for the
South Sudan conflict in 2013. The geographic coordinates of examined region are
N0◦ −N16◦ and E20◦ −E40◦, and the region was divided into 26842 0.1◦ ×0.1◦

(around 11 km ×11 km) grids. Our simulation instances (ssudan c1 and ssu-
dan c2 ) are constructed based on the South Sudan simulation instance presented
in [12], which involves almost 2 million fleeing people in a simulation period of
604 days starting from the 15th December 2013, 25 conflict zones and 16 towns
in South Sudan, as well as ten camps in neighboring countries Sudan, Uganda
and Ethiopia. The ssudan c1 has no camp in place yet and aims to establish
one new camp with a capacity of 80, 000 (i.e., c = 80, 000), while the ssudan c2
involves all ten existing established camps and aims to add one new camp with a
capacity of 12, 000 (i.e., c = 12, 000). For both simulation instances, the distance
between camp and its nearest location in South Sudan was estimated by using
the route planning method in [10]. Furthermore, to shorten the execution time,
we reduced the number of agents from all conflict zones by a factor 100 (i.e.,
a = a/100), and accordingly, the camp capacity for ssudan c2 and ssudan c2 are
reduced to 800 and 120, respectively. Figure 2 plots the optimal camp locations
for the two conflict instances. The objective values of optimal solutions obtained
by NSGA-II are summarized in Table 2. For each conflict instance, NSGA-II can
find a set of optimal solutions, which are incomparable based on the concept
of Pareto optimality. In other words, each solution is a trade-off among average
travel distance, the number of camp arrivals, and the average idle camp capacity.

https://github.com/djgroen/FabSim3
http://github.com/vecma-project/QCG-PilotJob
http://github.com/vecma-project/QCG-PilotJob
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Fig. 2. Optimal camp locations (blue circles) obtained by NSGA-II on the (a) ssu-
dan c1 and (b) ssudan c2 conflict instances, respectively. (Color figure online)

Table 2. The objective values of the optimal solutions obtained by the NSGA-II on
the ssudan c1 and ssudan c2 conflict instances.

Conflict instance Camp location Objectives

Longitude Latitude Travel distance No. camp arrivals Idle capacity

ssudan c1 30.55 3.75 1380.2211 801 77.0182

25.25 11.25 6785.469 809 173.0762

31.55 3.65 1354.2624 803 82.1556

30.25 3.35 1995.5878 804 91.2666

ssudan c2 30.35 3.85 558.905 166 49.7136

29.85 3.85 651.9379 124 11.6589

29.95 3.65 598.6553 120 7.6788

28.25 10.35 440.0152 120 8.2483

28.85 9.65 226.7078 143 29.096

28.35 9.45 283.3134 150 35.351

28.55 9.55 313.1518 160 44.2268

28.45 9.55 281.1019 156 40.6904

28.65 9.55 433.7734 147 32.5613

28.05 10.05 507.1222 121 8.9636

28.45 9.65 336.701 140 26.048

28.55 9.85 262.416 132 19.0679

30.75 3.45 580.9609 126 13.6225

28.55 9.75 364.0978 129 16.0894

28.45 9.45 397.1481 158 42.5331

28.35 10.05 539.0705 131 18.0646

29.75 4.15 634.4269 123 10.6474

28.55 9.65 322.0341 138 24.2169

28.05 9.45 371.0897 135 21.9901

28.55 9.45 388.0439 144 29.7268
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4 Conclusion

In this paper, a multiobjective model for the FLP in the context of humani-
tarian support for forcibly displaced people has been proposed, and the model
has been solved by using a simulation-optimization approach. The proposed
model has been employed in a case study of South Sudan conflict with a sim-
ulation period of 604 days from 15th December 2013. The results obtained by
our simulation-optimization approach have demonstrated its ability to provide
decision makers with diverse solutions, which strike a balance among the indi-
vidual travel distance, the number of camp arrivals, and the average idle camp
capacity. In the future, other algorithms in multiobjective optimization will be
explored. In addition, it would be interesting to consider other factors in the
context of forced migration, e.g., construction and transportation costs.
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Abstract. A classical NP-hard problem is the Minimum Edge Clique
Cover (minECC) problem, which is concerned with covering the edges
of a network (graph) with the minimum number of cliques. There are
many real-life applications of this problem, such as in food science, com-
putational biology, efficient representation of pairwise information, and
so on. Borrowing ideas from [8], we propose using a compact represen-
tation, the intersection representation, of network data and design an
efficient and scalable algorithm for minECC. Edges are considered for
inclusion in cliques in degree-based orders during the clique construction
step. The intersection representation of the input graph enabled effi-
cient computer implementation of the algorithm by utilizing an existing
sparse matrix package [11]. We present results from numerical experi-
ments on a representative set of real-world and synthetically constructed
benchmark graph instances. Our algorithm significantly outperforms the
current state-of-the-art heuristic algorithm of [4] in terms of the qual-
ity of the edge clique covers returned and running time performance on
the benchmark test instances. On some of the largest graph instances
whilst existing heuristics failed to terminate, our algorithm could finish
the computation within a reasonable amount of time.

Keywords: Adjacency matrix · Clique cover · Intersection matrix ·
Ordering · Sparse graph

1 Introduction

The graph kernel operations, such as identification of and computation with
dense subgraphs, frequently arise in areas as diverse as sparse matrix determi-
nation and complex network analysis [13,14]. In social networks, identification of
special interest groups or characterization of information propagation are exam-
ples of frequently performed network analytics tasks [23]. The Edge Clique Cover
problem (ECC) considered in this paper is concerned with finding a collection
of complete subgraphs or cliques such that every edge and every vertex of the
input graph is included in some clique. The computational challenge is to find
an ECC with the smallest number of cliques (minECC ). The minECC problem
is computationally intractable or NP-hard [16].
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Effective representation of network data is critical to meeting algorithmic
challenges for exactly or approximately solving intractable problems, especially
when the instance sizes are large and sparse. In this paper, we use sparse matrix
data structures to enable compact representation of sparse network data based
on an existing sparse matrix framework [11] to design efficient algorithms for the
minECC problem.

Let G = (V,E) be an undirected connected graph, where V is the set of
vertices, and E is the set of edges. A clique is a subset of vertices such that every
pair of distinct vertices are connected by an edge in the induced subgraph. In
graph G, an edge clique cover of size k is a decomposition of set V into k subsets
C1, C2, . . . , Ck such that Ci, i = 1, 2, . . . , k induces a clique in G and each edge
{u, v} ∈ E is included in some Ci. A trivial clique cover with k = m, |E| = m
can be specified by the set of edges E with each edge being a clique. Finding a
clique cover with the minimum number of cliques (and many variants thereof)
is known to be an NP-hard problem [16].

In 1973, Bron and Kerbosch [2] proposed an algorithm to find all maximal
cliques of a given graph. That algorithm uses a branch-and-bound technique.
The algorithm is made more efficient by cutting off branches of the search tree
that will not lead to new cliques at a very early stage. Etsuji Tomita et al. [22]
presented a depth-first search algorithm for generating all maximal cliques of
an undirected graph, in which pruning methods are employed as in the Bron-
Kerbosch algorithm.

Many algorithms have been proposed in the literature to solve the ECC prob-
lem approximately. At the same time, there are only a few exact methods that
are usually limited to solving small instance sizes. A recent heuristics approach
is described by Conte et al. [4] to find an edge clique cover in O(mΔ) time,
where m is the number of edges and Δ is the highest degree of any vertex in the
graph.

In this paper, we use a compact representation of network data based on
sparse matrix data structures [11] and provide an improved algorithm motivated
by the works of Bron et al. [2], and E. Tomita et al. [22] for finding clique covers.
In [1], we used a similar compact representation of network data. In that paper,
we employ a “vertex-centric” approach where a vertex, in some judiciously chosen
order, together with its edges incident on a partially constructed clique cover, is
considered for inclusion in an existing clique. The preliminary implementation
produced smaller-sized clique covers when compared with the method of [9]
on a set of test instances. While the vertex-centric ECC algorithm frequently
produced smaller clique covers compared with other methods, the high memory
footprint of the method made it less scalable on very large problem instances.
In this paper, we propose an “edge-centric” minECC method. Our method is
characterized by a significantly reduced memory footprint and exhibits very
good scalability when applied to extremely large synthetic and real-life network
instances.

Our approach is based on the simple but critical observation that for a sparse
matrix A ∈ R

m×n, the row intersection graph of A is isomorphic to the adjacency
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graph of AA�, and that the column intersection graph of A is isomorphic to the
adjacency graph of A�A [11]. Therefore, the subset of rows corresponding to
nonzero entries in column j induces a clique in the adjacency graph of AA�, and
the subset of columns corresponding to nonzero entries in row i induces a clique
in the adjacency graph of A�A. Note that matrices A�A and AA� are most
likely dense even if matrix A is sparse. We exploit the close connection between
sparse matrices and graphs in the reverse direction. We show that given a graph
(or network), we can define a sparse matrix, intersection matrix, such that graph
algorithms of interest can be expressed in terms of the associated intersection
matrix. This structural reduction enables us to use the existing sparse matrix
computational framework to solve graph problems [11]. This duality between
graphs and sparse matrices has also been exploited where the graph algorithms
are expressed in the language of sparse linear algebra [14,15]. However, they use
adjacency matrix representation which is different from our intersection matrix
representation.

The paper is organized as follows. In Sect. 2, we consider representations of
sparse graph data and introduce the notion of intersection representation and
cast the minECC problem as a matrix compression problem. Section 3 presents
the new edge-centric minECC algorithm. An important ingredient of our algo-
rithm is to select edges incident on the vertex being processed in specific orders.
The details of the implementation steps are described, followed by the presen-
tation of the ECC algorithm. The section ends with a discussion on the compu-
tational complexity of the algorithm. Section 4 contains results from elaborate
numerical experiments. We choose 5 different sets of network data consisting of
real-world network and synthetic instances. Finally, the paper is concluded in
Sect. 5.

2 Compact Representation and Edge Clique Cover

For efficient computer implementation of many important graph operations, rep-
resenting graphs using adjacency matrix or adjacency lists is inefficient. Adja-
cency matrix stored as a two-dimensional array is costly for sparse graphs, and
typical adjacency list implementations employ pointers where indirect access
leads to poor cache utilization [19]. The intersection matrix representation that
we propose below enables an efficient representation of pairwise information and
allows us to utilize the computational framework DSJM to implement the new
ECC algorithm.

2.1 Intersection Representation

We require some preliminary definitions. The adjacency graph associated with
a symmetric matrix A ∈ R

n×n is an undirected graph G = (V,E) in which for
each column or row k of A there is a vertex vk ∈ V and A(i, j) �= 0, i �= j if and
only if {vi, vj} ∈ E.
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Let G = (V,E) be an undirected and connected graph without self-loops or
multiple edges between a pair of vertices. The adjacency matrix A(G) ≡ A ∈
{0, 1}|V |×|V | associated with graph G is defined as,

A(i, j) =
{

1 if {vi, vj} ∈ E, i �= j
0 otherwise

We now introduce the intersection representation, an enabling and efficient
representation of pairwise information. The intersection representation of graph
G is a matrix X ∈ {0, 1}k×n in which for each vertex vj of G there is a column
j in X and {vi, vj} ∈ E if and only if there is a row l for which X(l, i) = 1
and X(l, j) = 1. A special case is obtained for k = m. Then, the rows of X can
be uniquely labeled by the edge list sorted by vertex labels. Therefore, matrix
X ∈ {0, 1}m×n can be viewed as an assignment to each vertex a subset of m
labels such that there is an edge between vertices i and j if and only if the
inner product of the columns i and j is 1. Since the input graph is unweighted,
the edges are simply ordered pairs and can be sorted in O(m) time. Unlike the
adjacency matrix, which is unique (up to fixed labeling of the vertices) for graph
G, there can be more than one intersection matrix representation associated
with graph G [1]. We exploit this flexibility to store a graph in a structured and
space-efficient form.

Let X ∈ {0, 1}m×n be the intersection matrix as defined above associated
with a graph G = (V,E). Consider the product B = X�X.

Theorem 1. The adjacency graph of matrix B is isomorphic to graph G. [1]

Theorem 1 establishes the desired connection between a graph and its sparse
matrix representation. The following result follows directly from Theorem 1.

Corollary 1. The diagonal entry B(i, i) where B = X�X and X is the inter-
section matrix of graph G, is the degree d(vi) of vertex vi ∈ V, i = 1, . . . , n of
graph G = (V,E). [1]

Intersection matrix X defined above represents an edge clique cover of car-
dinality m for graph G. Each edge {vi, vj} constitutes a clique of size 2. In
the intersection matrix X, edge el = {vi, vj} is represented by row l with
X(l, i) = X(l, j) = 1 and other entries in the row being zero. In general, column
indices j′ in row l where X(l, j′) = 1 constitutes a clique on vertices vj′ of graph
G. Thus the minECC problem can be cast as a matrix compression problem.

minECCMatrixProblem.GivenX ∈ {0, 1}m×n determineX ′ ∈ {0, 1}k×n

with k minimized such that the intersection graphs of X and X ′ are isomorphic.

3 An Edge-Centric MinECC Algorithm

The algorithm that we propose for the ECC problem is motivated by the maximal
clique algorithm due to Bron et al. [2], and E. Tomita et al. [22]. For ease of
presentation, we discuss the algorithm in graph-theoretic terms. However, our
computer implementation uses a sparse matrix framework of DSJM [11], and all
computations are expressed in terms of intersection matrices.
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3.1 Selection of Uncovered Edges

An edge {u, v} ∈ E is said to be covered if both of its incident vertices have been
included in some clique; otherwise the edge is uncovered. In our algorithm, we
select an uncovered edge {u, v} and try to construct a maximal clique, C, con-
taining the edge. The algorithm selects vertices and edges in a prespecified order
during the clique construction process. Note that it may or may not be possible
to include additional uncovered edges while building a clique after selecting an
uncovered edge. This subsection will give details on how the algorithm selects
an uncovered edge.

Vertex Ordering. We recall that d(v) denotes the degree of vertex v in graph
G = (V,E). Let V ertex Order be a list of vertices of graph G using one of the
ordering schemes below.

– Largest-Degree Order (LDO) (see [12]): Order the vertices such that
{d(vi), i = 1, . . . , n} is nonincreasing.

– Degeneracy Order (DGO) (see [7,21]): Let V ′ ⊆ V be a subset of vertices
of G. The subgraph induced by V ′ is denoted by G[V ′]. Assume the vertices
V ′ = {vn, vn−1, . . . , vi+1} have already been ordered. The ith vertex in DGO
is an unordered vertex u such that d(u) is minimum in G[V \ V ′] where,
G[V \ V ′] is the graph obtained from G by removing the vertices of set V ′

from V .
– Incidence-Degree Order (IDO) (see [3]): Assume that the first k−1 ver-

tices {v1 . . . , vk−1} in incidence-degree order have been determined. Choose
vk from among the unordered vertices that has maximum degree in the sub-
graph induced by {v1, . . . , vk}.

Edge Ordering. After the vertices have been ordered using one of the above
schemes, the algorithm proceeds to choose a vertex in that specific order, which
has at least one uncovered incident edge. If there is more than one uncovered
edge incident on the vertex being processed, the order in which the edges are
processed (i.e., to include in a clique) is as follows. Place all the edges {u, v}
before {p, q} in an ordered edge list, Edge Order, such that vertex u or vertex
v is ordered before vertices p and q in V ertex Order list.

Fig. 1. An example of an undirected graph.
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Figure 1 shows an undirected graph. {4, 3, 5, 6, 7, 1, 2} would be the list with
LDO. The edge list induced by the V ertex Order will have the following form.

Edge Order =
{{4, 3}, {4, 5}, {4, 6}, {4, 7}, {3, 1}, {3, 2}, {5, 6}, {5, 7}, {6, 7}, {1, 2}}

Edge Selection. We select an edge to {u, v} ∈ E to include in a new clique if
{u, v} is uncovered and ordered before all uncovered edges in Edge Order. The
clique that gets constructed with edge {u, v} may cover other uncovered edges
that are further down the list.

We consider three variants of edge selection for our algorithm, denoted by L,
D, and I.

– L: In this variant, the set of vertices are ordered using the Largest-Degree
Ordering (LDO) scheme. We select a vertex u in that order and then return
all the uncovered edges of the form {u, v}.

– D: All the vertices are ordered using Degeneracy Ordering (DGO) scheme.
Select a vertex u in that order, and then return all the uncovered edges of
the form {u, v}.

– I: Finally, this variant orders the set of vertices using the Incidence-Degree
Ordering (IDO) scheme. We select a vertex u in that order and return all the
uncovered edges {u, v}.

3.2 The Algorithm

Let EP = {e1, . . . , ei−1} be the set of edges that have been assigned to one or
more cliques {C1, . . . , Ck−1} and let ei = {vj , vj′} be the edge currently being
processed according to the ordered edge list. Denote by

W = {vl | {vj , vl}, {vj′ , vl} ∈ E}

the set of common neighbors of vj and vj′ .
The complete algorithm is presented below.
EO-ECC (Edge Order)
Input: Edge Order, set of edges in a predefined order using schemes L, D,
or I

1: k ← 0 � Number of cliques
2: for index = 1 to m do � m is the number of edges
3: {u, v} ← Edge Order[index]
4: if {u, v} is uncovered then
5: W ← FindCommonNeighbors(u, v)
6: if W = ∅ then
7: k + +
8: Ck ← {u, v}
9: Mark {u, v} as covered

10: else
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11: k + +
12: Ck ← {u, v}
13: Mark {u, v} as covered
14: while W �= ∅ do
15: let t be a vertex in W
16: W ← W \ t
17: if {t, s} ∈ E for each s ∈ Ck then
18: Mark {t, s} as covered
19: Ck ← Ck ∪ {t}
20: FindCommonNeighbors(W,FindNeighbors(t))
21: return C1, C2, ..., Ck

3.3 Discussion

In this subsection, we analyze algorithm EO-ECC to derive it’s asymptotic run-
ning time. The two kernel operations used in the algorithm are “FindCommon-
Neighbors” and “FindNeighbors.” The FindCommonNeighbors operation merges
two sorted lists (of integers) and computes the intersection of the lists. The list
(of vertices) that this operation returns after each call has at least one fewer
vertices. Thus, to construct a clique Ci, the total cost would be (ρi(ρi−1)

2 ), where
|Ci| = ρi. Let, C = {C1, C2, . . . , Ck} be a clique cover returned by the algorithm
EO-ECC. Then the total cost of calling FindCommonNeighbors for the algorithm
would be O(

∑k
i=1

ρi(ρi−1)
2 ). The operation FindNeighbors in algorithm EO-ECC

computes the neighbors set of vertex v ∈ V [12]. In line 20, FindNeighbors oper-
ation is used to compute the neighbors of a vertex. Since an uncovered edge gets
covered only once, the total cost of FindNeighbors operation is at most O(m).
Thus, the overall running time of algorithm EO-ECC is O(m +

∑k
i=1

ρi(ρi−1)
2 ).

The following result follows immediately from the above running time expression.

Theorem 2. If the input graph G is triangle-free, then the algorithm EO-ECC
runs in O(m) time.

4 Numerical Testing

In this section, we provide results from numerical experiments on selected
test instances. 10th Discrete Mathematics and Theoretical Computer Sci-
ence (DIMACS10) instances and Stanford Network Analysis Platform (SNAP)
instances are obtained from the University of Florida Sparse Matrix Collection
[5]. (SNAP) is a collection of more than 50 large network datasets containing
large number of nodes and edges including social networks, web graphs, road
networks, internet networks, citation networks, collaboration networks, and com-
munication networks [17]. We also experiment with synthetic graph instances.
We generated 182 Erdös-Rényi and Small-World instances using the Stanford
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Network Analysis Project (SNAP) [18] instance generator. The number of edges
of these generated graphs is varied from 800 to 72 million.

The experiments were performed using a PC with 3.4 GHz Intel Xeon CPU,
with 8 GB RAM running Linux. The implementation language was C++ and the
code was compiled using −O2 optimization flag with a g++ version 4.4.7 compiler.
We employed the High-Performance Computing system (Graham cluster) at
Compute Canada for large instances that could not be handled by the PC.

In what follows, we refer to the vertex-centric ECC algorithm from [1] as Ver-
tex Ordered Edge Clique Cover (VO-ECC). We also refer to the ECC algorithm
due to Conte et al. as (Conte-Method). Finally, the edge-centric minECC algo-
rithm of this paper is identified as Edge Ordered Edge Clique Cover (EO-ECC).
EO-ECC has three variants associated with the three different edge ordering
schemes D, L, and I. They are: EO-ECC-D, EO-ECC-L, and EO-ECC-I respectively.
In these results, m denotes the number of edges, n denotes the number of vertices
of the graph; |C| denotes the number of cliques in the cover, and t is the time in
seconds to get the cover. In the presented tables, the smallest cardinality clique
cover is marked in bold.

Table 1. Test Results (Number of cliques) for SNAP instances.

Graph |C|
Name m n VO-ECC using [1] Conte-Method using [4] EO-ECC

p2p-Gnutella04 39994 10878 38474 38491 38449

p2p-Gnutella24 65369 26518 63726 63725 63689

p2p-Gnutella25 54705 22687 53368 53367 53347

p2p-Gnutella30 88328 36682 85823 85822 85717

ca-GrQc 14496 5242 3777 3753 3717

as-735 13895 7716 8985 8938 10130

Wiki-Vote 103689 8297 42914 39393 51145

Oregon-1 23409 11492 15631 15491 15527

ca-HepTh 25998 9877 9663 9270 9162

Table 1 displays the size of clique covers returned by three algorithms: the
edge-centric algorithm (EO-ECC), the vertex-centric algorithm (VO-ECC) dis-
cussed in [1] and algorithm (Conte-Method) discussed in [4]. Conte-Method
randomly selects an edge and attempts to build a clique around the selected
edge. As the table illustrates, EO-ECC produces smaller cardinality edge clique
cover than VO-ECC except for two instances. On the other hand, it outperforms
Conte-Method on six out of nine instances.
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Table 2. Test Results (number of cliques) for DIMACS10 matrices.

Graph Number of cliques

Name m n Conte-Method EO-ECC-D EO-ECC-L EO-ECC-I

chesapeake 170 39 75 76 75 76

delaunay n10 3056 1024 1250 1233 1275 1241

delaunay n11 6127 2048 2485 2449 2544 2481

delaunay n12 12264 4096 4993 4906 5095 4939

delaunay n13 24547 8192 9989 9881 10211 9920

delaunay n14 49122 16384 19974 19672 20435 19855

delaunay n15 98274 32768 39923 39501 40876 39782

delaunay n16 196575 65536 79933 78792 81528 79445

delaunay n17 393176 131072 159900 157792 163321 158851

delaunay n18 786396 262144 319776 315684 326741 317987

com-DBLP 1049866 317080 238854 237713 237685 237685

belgium osm 1549970 1441295 1545183 1545183 1545183 1545183

delaunay n19 1572823 524288 639349 631354 653383 635877

delaunay n20 3145686 1048576 1279101 1262843 1307080 1271229

delaunay n21 6291408 2097152 2557828 2525301 2613106 2542333

Test results for the selected test instances from group DIMACS10 are reported
in Table 2. For comparison, we show the results of Conte-Method, EO-ECC-D,
EO-ECC-L, and EO-ECC-I. On twelve out of fifteen instances, EO-ECC-D gives the
least number of cliques to cover all the edges of the given graph. On the graph
named com-DBLP EO-ECC-L and EO-ECC-I produce smaller cardinality covers.
Overall, EO-ECC emerges as the clear winner over Conte-Method in terms of the
size of the clique covers.

Besides DIMACS10 selected instances, we compare these algorithms on
182 generated instances where the number of edges is varied from 800 to
7.2×107. Using SNAP tool [18], we generated 72 “Small-world” and 110 “Erdös-
Rényi” graphs. EO-ECC produces smaller (on 47.3%instances) or equal (on 52.7%
instances) cardinality clique covers compared with Conte-Method.

Rodrigues [20] used different graph instances to evaluate their edge clique
cover algorithms. The well-known instances to evaluate edge clique cover prob-
lem are from the application “compact letter display” [10]. On thirteen out of
fourteen instances, Conte-Method [4] gives optimum results. Both Rodrigues’s
algorithm and our EO-ECC give optimum results for all the instances.

The performance comparison between Conte-Method and EO-ECC is shown
in Fig. 2. We compare the time required to find edge clique cover for the given
graph.
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Fig. 2. Ratio between the time used by Conte-Method and EO-ECC for each graph, as
a function of the number of the edges (y-axis is in log-scale).

We use fifteen DIMACS10 instances and 182 Erdös-Rényi and Small-World
instances. In the figure, a cross mark represents the ratio between the time
needed by and EO-ECC, as a function of the number of the edges. The green
line at height 100 means that Conte-Method took the same time as EO-ECC to
process the corresponding graph, and a cross mark at height 101 means that
Conte-Method was ten times slower. As the figure clearly demonstrates, EO-ECC
is always faster than Conte-Method, and more than 40 times faster on some of
the test instances.

Table 3. Graph processing rate (number of edges processed per sec).

Group Total instances Largest rate Smallest rate Average rate

DIMACS10 15 2.7E6 3.0E5 1.7E6

SNAP 9 2.5E6 6.2E4 1.5E6

Erdös-Rényi 110 2.0E6 1.2E5 8.9E5

Small World 72 1.7E6 4.3E5 1.1E6

The graph processing rate is one of the quality assessment metrics for an
algorithm. We report the processing rate of our algorithm for a selection of
real-world (DIMACS10, SNAP) and synthetically generated (Erdös-Rényi, Small
World) graphs in Table 3. Table 3 shows the largest rate, the smallest rate, and
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the average rate for each set of graph instances. On DIMACS10 instances, the
algorithm performs the best, while on Erdös-Rényi instances, the algorithm is not
as efficient. This can be explained by the structural properties of graphs. Real-
life and Small World synthetic instances display a power-law degree distribution
resulting in a large proportion of vertices with very small degrees. Thus, the set
intersection operation in our algorithm can be very efficient on those types of
graphs.

Fig. 3. Runtime to find clique cover using EO-ECC.

Finally, in Fig. 3, we demonstrate the superior scalability of our algorithm.
The figure plots the time used to compute clique covers by EO-ECC, where the
time is a function of the number of edges in the graph. We report the time in
microseconds. A dot (x, y) states that the graph has x edges, and the algorithm
spent y microseconds to finish the computation. The figure also displays the line
y = x for comparison with the actual running time. On each of the four sets of
test instances, the running time shows a linear relationship with the number of
edges, demonstrating that the running time of EO-ECC is linear in practice.

5 Conclusion

In this work, we have proposed a compact representation of network data. The
edge clique cover problem is recast as a sparse matrix determination problem.
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The notion of intersection matrix provides a unified framework that facilitates
the compact representation of graph data and efficient implementation of graph
algorithms. The adjacency matrix representation of a graph can potentially have
many nonzero entries since it is the product of an intersection matrix with its
transpose. We have compared our results concerning the clique cover size and
runtime with the current state-of-the-art algorithm for minECC [4]. Our algo-
rithm achieves significantly smaller clique covers on the vast majority of the test
instances and never returns a clique cover that is larger than the Conte-Method
[4]. It is also significantly faster than the Conte-Method. EO-ECC algorithm runs
in linear time, which allowed us to process extremely large graphs, both real-
life and generated instances. Finally, our algorithm is highly scalable on large
problem instances, while the algorithm of Conte-Method does not terminate on
instances containing 7 × 107 or more edges within a reasonable amount of time.

A less well-studied but related problem, known as the Assignment Minimum
Edge Clique Cover arising in computational statistics, is to minimize the number
of individual assignments of vertices to cliques It is not always possible to find
assignment-minimum clique coverings by searching through those that are edge-
clique-minimum. Ennis et al. [6] presented a post-processing method with an
existing ECC algorithm to solve this problem. However, their backtracking algo-
rithm becomes costly for large graphs, especially when they have many maximal
cliques. Our edge-centric method can be easily adapted, via a post-processing
step, to assignment minimum cover calculation. This research is currently being
carried out. Results from preliminary computational experiments with a new
linear-time post-processing scheme are favourable.
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Abstract. Nowadays, geo-based social group activities have become
popular because of the availability of geo-location information. In this
paper, we propose a novel Geo-Social Team Formation framework using
DSCAN, named DSCAN-GSTF, for impromptu activities, aim to find a
group of individuals closest to a location where service requires quickly.
The group should be socially cohesive for better collaboration and spa-
tially close to minimize the preparation time. To imitate the real-world
scenario, the DSCAN-GSTF framework considers various criteria which
can provide effective Geo-Social groups, including a required list of skills,
the minimum number of each skill, contribution capacity, and the weight
of the user’s skills. The existing geo-social models ignore the exper-
tise level of individuals and fail to process a large geo-social network
efficiently, which is highly important for an urgent service request. In
addition to considering expertise level in our model, we also utilize the
DSCAN method to create clusters in parallel machines, which makes
the searching process very fast in large networks. Also, we propose a
polynomial parametric network flow algorithm to check the skills crite-
ria, which boosts the searching speed of our model. Finally, extensive
experiments were conducted on real datasets to determine a competitive
solution compared to other existing state-of-the-art methods.

Keywords: Geo-social networks · Geo-social groups · DSCAN

1 Introduction

Nowadays, geo-based social group activities have become popular because of
the availability of geo-location information. In this paper, we propose a novel
Geo-Social Team Formation framework using DSCAN, named DSCAN-GSTF,
for impromptu activities, aim to find a group of Geo-Social Networks (GeoSNs)
is online social networks that allow geo-located information to be shared in
real-time. The availability of location acquisition technologies such as GPS and
WiFi enables people to easily share their position and preferences to existing
online social networks. Here, the preferences can be common interests, behav-
ior, social relationships, and activities. This information is usually derived from
a history of an individual’s locations and Geo-tagged data, such as location-
tagged photos and the place of the current event [27]. Thus, we have several
popular GeoSNs such as Facebook, Twitter, Flickr, Foursquare, Yelp, Meetup,
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Gowalla, and Loopt. Consequently, GeoSNs have drawn significant attention in
recent years by researchers on many applications, including finding friends in
the vicinity [13,23], group-based activity planning [4], and marketing [6].

Fig. 1. Identifying individuals for impromptu social activity from a GeoSNs.

An impromptu activity planning is one of the popular motivating applications
in GeoSNs search. For example, the COVID19 outbreak is affecting every part of
human lives. At the initial stage of COVID19, essential services such as health,
finance, food, and safety suffered a lot due to unexpected lockdown because
they did not have the required human resources as expected. At the same time,
fulfilling societies’ requirements are also equally important. Therefore, bringing
skilled people to the location where the services with diverse demands were
crucial and had become a very challenging process. The location of the individual
should be close to the place where service is required, and the individual with
the required skills needs to be suitable for services. In this example, a service
might require several skills. Additionally, each individual may contribute to as
many skills as possible in various activities and might have a specific capacity
to be involved in multiple activities.

To support this situation, we highly believe that forming groups from GeoSN
is an effective solution. In general, this is called the Geo-social group search prob-
lem [18,19], which aim to identify groups of individual who are socially cohesive
and spatially closest to a location [4]. In other words, the Geo-social group should
satisfy that the participants are socially close within the group to confirm good
communication between each member and spatially closest to the location of
the service to bring them as soon as possible. Figure 1 represents a general Geo-
Social Network, where the social layer is to show the social connections between
individuals, and the spatial layer is to show the locations of the individuals.

Many existing Geo-social group models considered social cohesiveness and
spatial closeness to find successful groups. In addition to these two requirements,
recently, Chen et al. [4] incorporated a few essential parameters such as the col-
lective capabilities and capacity of each member. However, to the best of our
knowledge, none of the existing Geo-social group models considered the weights
of the user’s skills which assist in choosing the exact qualified individual. More-
over, efficiently searching required keywords that have high expertise, capacity
constraints, social constraint, and spatial closeness altogether have not been
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explored in the existing studies. Forming a search framework that can quickly
narrow the search space while preserving the correct result is an NP-Hard. It is
an open problem and essential to solve in polynomial time [4].

This paper proposes a novel framework to search efficiently on large GeoSNs
while preserving the correct result. First, handling large networks is a time-
consuming process. So we adopt a recently proposed methodology, Distributed
Structural Clustering Algorithm for Networks (DSCAN) [20] algorithm to effi-
ciently manage large networks, which is an extension of SCAN [24]. The basic
idea of SCAN is to discover clusters, hubs, and outliers included in a given
graph. Initially, in our model, all the nodes of a given graph are randomly
divided into equal size sub-graphs and distributed into different machines so that
the remaining processing can be conducted simultaneously. Then, by employing
the skewness-aware edge-pruning method on the sub-graphs, DSCAN eliminates
unwanted edges and moves missing neighbors of nodes from one sub-graph to
another. Second, producing socially cohesive groups from these sub-graphs is
another essential process. So, DSCAN collects the Core nodes with higher struc-
tural similarity and creates a set of clusters from these sub-graphs. Parallelly,
the set of skills is collected from each cluster and stored on a map. The third
requirement is to choose a spatially close group to the location (∇) where the
service is required. We pick a node randomly from each cluster and evaluate the
geographical distance from ∇. The clusters are ranked based on the distance
in ascending order. Then a cluster with the lowest rank is selected and tested
to see whether it satisfies the requirements of the query or not. If it does not
satisfy, move to the following cluster and test the requirement. This process will
be repeated till we find the right cluster. Finally, we propose a new polyno-
mial algorithm based on the parametric flow network [8], which checks the skills
requirements of the query and contribution capacity of each individual in the
selected cluster while considering the user’s skills weights.

Our Contribution: The followings are the summary of our contributions:

1. We propose a Geo-Social Team Formation (GSTF) model by considering the
group’s collective capabilities as required for the activities while considering
the capacity of contribution from each member and expertise level.

2. We utilize the benefits of Distributed Structural Graph Clustering (DSCAN)
to manage the large GeoSNs efficiently.

3. We propose a new polynomial searching algorithm based on the paramet-
ric flow network, which satisfies Minimum keywords, expertise level, and
capacity constraints.

The rest of the paper is organized as follows. Section 2 discusses related existing
work. Section 3 defines the problem definitions of our proposed model. Our frame-
work is presented in Sect. 4. Following that, Sect. 5 illustrates the experimental
setup and the corresponding results. Finally, Sect. 6 concludes the research idea
of this paper with directions for future work.



DSCAN for Geo-social Team Formation 521

2 Related Work

Forming a group of individuals for various purposes has been tackled in many
different ways. The team formation problem in Social networks was first intro-
duced by Lappas et al. [12]. Later many studies [10,16] have been conducted
by incorporating various parameters which influence the successful formation
of teams in several applications, including academic collaborations, healthcare
[17], and human resource management. However, many of these studies focused
highly on minimizing or maximizing some social constraints such as communi-
cation cost between members in a team based on their past relationship, profit,
and productivity cost.

The concept of GeoSNs services was first introduced by Huang et al. [9].
Many studies have focused on querying geo-social data in order to derive valu-
able information from both the users’ social interactions and current locations
[1,21]. Among these, forming Geo-social groups has taken considerable attention
of researchers recently since this aims to identify a set of most suitable individuals
for various activities which can be planned or unplanned. The unplanned activ-
ities such as groups for various purposes during unexpected events, for example,
Wildfire and flooding, are relatively complex than the planned activities such as
a group for a party or a game. Much existing research proposed various mod-
els for both situations while satisfying social constraints and optimizing spatial
proximity [4,21]. Many of these focused on forming a group that satisfies a sin-
gle social constraint while optimizing the spatial proximity. But for impromptu
activities, in reality, we require individuals who have diverse demands of skills
for multiple tasks or services to serve in a specific location. Recently, Chen et al.
[4] introduced a novel framework to discover a set of groups that is socially cohe-
sive while spatially closest to a location for diverse demands. Here, the groups of
individuals do not necessarily know each other in the past. However, When there
is a tie between two members, their model gives higher priority to the individual
who is highly cohesive to the team. The concept of multiple social constraints for
various activities has already been studied in [15,17]. However, they considered
the frameworks on social networks with known individuals.

Searching cohesive subgroups from a large network is another challenging
process in the team formation problem. Structural Clustering Algorithm for
Networks (SCAN) algorithm was proposed to detect cohesive subgroups from
a network [24]. However, SCAN is a computationally expensive method for a
large network because it requires iterative calculation for all nodes and edges.
Later, to overcome the limitation with SCAN, many clustering methods have
been proposed, such as PSCAN [26], and DSCAN [20]. Since DSCAN is efficient,
scalable, and exact, we employ this methodology in our model. To the best of
our knowledge, we, for the first time, applied DSCAN in the Geo-Social group
search problem.
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3 Problem Definition

Given an undirected graph G = (V,E), where V is a set of vertices and E is
a set of edges. The Graph G incorporates network structures, spatial informa-
tion, and textual information. In real networks, vertices are users or people, and
edges between them may be friendship or previous collaboration. Additionally,
each vertex v ∈ V includes location information, which can be represented as
∇ = (v.x, v.y), where v.x is latitude and v.y is longitude, and a set of keyword
attributes which can be represented as v.A. The textual information can be a
set of skills S = {s1, s2, . . . , sk} of a vertex v ∈ V , where k is the number of
skills that a person is expert in. Along with the skills, a vertex has a set weight
W = {w1, w2, . . . wk} to represent how much a person expert in each skill.

Definition 1. Query (Q): The query defines the requirements of skills and
number of people in each skills. This includes a Geo-location ∇ (latitude (x)
and longitude (y)), a set of required skills S = {s1, s2, . . . , sr}, a set of required
expertness in each skills P = {p1, p2, . . . , pr} and a contribution capacity of an
expert c for every query keyword needs to be assigned.

Definition 2. Geo-Social Team (B): For a given location ∇, a set of the
required number of experts who satisfies social cohesiveness and spatial closeness
is selected from a Geo-Social network G while considering contribution capacity
c and person’s skill weight in each skill.

In our model, we exploit the DSCAN to handle larger data efficiently. To under-
stand the concept of DSCAN, the following definition are necessary.

Definition 3. Structural Neighborhood (Nv): The structural neighborhood
Nv of vertex v can be defined as,

Nv = {w ∈ V |(v, w) ∈ E} ∪ {v} (1)

Definition 4. Structural similarity: The structural similarity σ(v, w)
between v and w can be defined as,

σ(v, w) = |Nv ∩ Nw|/
∑

|Nv||Nw| (2)

If σ(v, w) ≥ �, vertex v shares similarity with w and � ∈ R is a density threshold
which we assigned.

When a vertex has enough structurally identical neighbors, it becomes the seed
of a cluster, named core node. Core nodes have at least μ number of neighbors
with a structural similarity (σ(v, w)) that exceeds the threshold �.

Definition 5. Core: For a given � and μ, A vertex w ∈ V is called a core, iff
Nw,ε ≥ μ. Where Nw,ε is the set of neighbor nodes of core node w, and structural
similarity of Nw,ε is greater than �.

Definition 6. Cluster (Cw): Assume node w be a core node. SCAN collects all
nodes in Nw,ε into the same cluster (Cw) of node w, initially Cw = {w}. SCAN
outputs a cluster Cw = {v ∈ Nu,ε|u ∈ Cw}.
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DSCAN Algorithm: When DSCAN [20] receives a graph, it first deploys
disjointed subgraphs of the given graph G to distributed memories on multiple
machines M = {M1,M2, . . . ,Mn} for a given a density threshold � ∈ R and
a minimum size of a cluster μ ∈ N, where n is number of machines. Initially
DSCAN randomly moves a set of vertices Vi in subgraph Gi = (Vi, Ei) for each
machine Mi. The subgraphs are then processed in a parallel and distributed
fashion. Additionally, DSCAN uses edge-pruning based on skewness to improve
efficiency further.

Skewness-Aware Edge-Pruning: DSCAN applies ω−skewness edge-pruning
to remove unwanted edges and move missing neighbors of nodes from one sub-
graph to another. Given graph G = (V,E), consider an edge (u, v) be in E and

Fig. 2. The DSCAN-GSTF framework: (a) a part of a massive geo-social network -
social layer, (b) the clusters and the list of skills that each cluster satisfies. (c) The
ordered distance between a cluster and the team location (d) selected cluster which
satisfies spatial constraint and skill constraint. (e) The max-flow network to choose the
successful individuals for the service.
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the structural neighborhood of node u is Nu = {v ∈ V |((u, v) ∈ E)} ∪ {u}. And
ω−skewness for each edge can be defined as,

ω(u, v) = min
̂du

dv
,
dv

du

∫
(3)

where di = |Ni|. If ω(u, v) < �2, then the edge (u, v) is considered dissimilar and
prune from the graph [20].

4 Our Framework

The Geo-Social team formation framework, DSCAN-GSTF consists of three pri-
mary processes. 1) Distribute G into multiple machines and perform local clus-
tering. 2) Choose the cluster proximate to the location. 3) Apply parametric
flow algorithm to select a competent Geo-Social team of experts. We describe
each step one by one in the following sections.

Fig. 3. The overview of parallel processing by using DSCAN to replace the process of
Fig. 2 (b).

4.1 Network Distribution

The GeoSNs are very large networks with millions of edges and vertices. We
replicated DSCAN [20] framework in our application. A given large network G is
randomly divided into equal size of sub-graphs {G1, G2, . . . , Gn}. We then deploy
each sub-graph into separate machine Mi as shown in Fig. 3 (a). However, sub-
graphs Gi and Gj might have neighbor nodes with higher structural similarity (≥
μ). Those nodes should communicate across machines Mi and Mj . So, DSCAN
employs skewness-aware edge-pruning to keep a low communication cost for
billion-edge graphs [20], which is shown in Fig. 3 (b). The skewness-aware edge-
pruning drops unnecessary edges to avoid the unwanted communication cost
among the machines and moves missing neighbors of nodes which have a high
structural similarity, from one sub-graph to another.

The sub-graphs which are placed in each machine, are again clustered based
on the structural similarity [26]. Here, DSCAN finds all core nodes in each sub-
graph and constructs clusters with the nodes which have high structural simi-
larities. Additionally, we store the list of skills of each cluster. The example of
resultant clusters and the list of skills are displayed in Fig. 2 (b).
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4.2 Suitable Cluster Selection

From the list of clusters, we then select the clusters that satisfy the skill con-
straints of the given query. To ensure the spatial proximity, we evaluate the
Euclidean distance between each cluster and the location ∇ where the service is
required (Fig. 2 (c)). We order these distances in ascending order and choose the
nearest one that is satisfy the required list of skills as shown in Fig. 2 (d). The
selected one is then sent to searching algorithms to find a competent geo-social
team. We discuss this process in the following section.

4.3 Geo-social Team Formation

We propose a polynomial searching algorithm based on the parametric flow net-
work [8] to find a competent Geo-Social team (B). We describe the preliminaries
of the parametric flow network one by one.

Flow Network: A flow network NG = (NV , NE) is a directed graph that
contains a source node s, an target node t, a set of middle nodes NV , and
directed edge set NE . Additionally, each edge has a weight and receive a flow.
An edge’s weight cannot be exceeded by the amount of flow that passes through
it.

Max Flow and min s − t cut: Let’s say f is a flow of NG, the flow across
an s − t cut (S, T ) divide its nodes into S and T parts so that the sum of the
capacities across S and T is minimized. So, the maximum amount of flow moving
from an s − t cut in NG, say f(S, T ) is equal to the total weight of the edges in
a minimum cut,

∑
u∈S,v∈T f(u, v).

Preflow: A PreFlow f on NG is a real-valued function that satisfies the capacity
and anti-symmetric constraints on node pairs. The relaxation of the conservation
constraint can be defined as,

∑
u∈V (D) f(u, v) ≥ 0,∀u ∈ V \{s}

Valid Labelling: A valid labelling h for a preflow f is a function which is
attached to the vertices and has positive integers, such that h(t) = 0, h(s) =
|NV (NG)|, where |NV (NG)| is the number of vertices in network NG [3]. For
every directed edge from node v to u, the relabeling of h(v) ≤ h(u)+1 should be
created to have a valid flow. In other words, for any node v is a valid labelling
if h(v) ≤ min{hf (v, t), hf (v, s) + |V (D)|}. The purpose of such labelling h(v) is
to estimate the shortest distance from the vertex v to s or t [7].

Calculation of min s-t cut: After running the max-flow algorithm, a min-
imum cut can be found as follows. For each node v ∈ V , replace h(v) by
min{hf (s, v), hf (t, v) + |NV (NG)|}. Now the s − t cut is equal to S = {v|h(v) ≥
|NV (NG)|} where the sink partition T is of the minimum size.
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Parametric Network Flow: The maximum or minimum value of the flow is
determined using a max-flow algorithm based on some criteria. In a parametric-
flow network NR, the capacities on arcs out of s and into t are functions of a
real-valued parameter λ, and edges possess the following characteristics [8]. For
all v 	= t the cost of the edges from source node to v nodes C(s,v)(λ) is a non-
decreasing function of λ. Also, for all v 	= s the cost of the edges from v nodes
to target node t, C(v,t)(λ) is a non-increasing function of λ. And finally, for all
v 	= s and v 	= t the cost of the edges from node v to node u, and C(u,v)(λ) is
a constant. Parametric networks measure maximum flow or minimum cut based
on a particular parameter value λ.

Triangle in Graphs: A triangle in G is a cycle of length 3. A triangle generated
on vertices u, v, w ∈ V (G) is denoted as Tri(uvw).

Context Weighted Density (CW ): In the selected subgraph H ⊂ G which
satisfies the requirement of query Q, vertices that are related to the query Q may
be loosely or densely connected. To balance both these situation, we decided to
evaluate context weighted density, (CW ) so that we can have cohesive group
[22]. The context weighted density, (CW ) can be calculated with the use of both
weighted triangle density and weighted edge density. For a given edge (u, v) ∈
E(H), (u, v, w) ∈ Tri(H), the context scores can be defined as below,

Edge context score:w(e(u, v)) = |Q ∩ A(u)| + |Q ∩ A(v)| (4)

Triangle context score:W (T (u, v, w)) =
�

e∈{(u,v),(u,w),(v,w)}
w(e) (5)

where w(e(u, v)) is the weight of edge (u, v) and A(u) and A(u) are the set of
attributes of vertex u and v respectively.

context weighted density: CW (H) =

∑
Δ∈Tri(Δ) w(Δ) +

∑
e∈E(H) w(e)

|V (H)| (6)

Algorithm 1 shows how to find required skills using a tailored parametric
preflow algorithm. It starts by considering the whole input subgraph H as a
candidate team. The candidate team is the group of members who satisfies the
query criteria. In the line 2, We construct a parametric flow network based on
the steps explained in the part below. Then, we use the stop condition in line
3 to check whether the subgraph H itself is a candidate team or not. If not we
generate a better solution by solving sub problem l(ad0,H0 ← H ′

0), is defined
as below [3],

l(ad0,H0 ← H ′
0) =

�

Δ∈Tri(H′
0)

w(Δ) +
�

e∈E(H′
0)

w(e) − ad0 × (|V (H ′
0)|) (7)

Algorithm 1 considers the progressively modified ad(H0) as a parameterized
capacity in NR. The overall structure of the algorithm is similar to optimization
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Algorithm 1. Skills Query Search Algorithm
Input: cluster H ∈ G, Query Q

1: H0 ← H, ad0 ← AD(H)
2: Construct an adapted parametric flow network NR and λ = AD(H0)
3: obtain H ′

0 from min s-t cut in NR

4: while l(ad0, H0 ← H ′
0)) �= 0 do

5: ad0 ← AD(H0), λ = ad0

6: obtain H ′
0 from min s-t cut in NR

7: end while
8: return H0

algorithm, i.e., it continuously generates H0 with higher context weighted density
until reaching the stop condition. During each iteration, internally the algorithm
maintains preflow labels via updating the labels computed from the previous
iteration. In order to compute H ′

0, preflow value and some edge capacities are
updated according to H0 generated in the previous iteration. The improved solu-
tion gets generated repeatedly until the stop condition is met, i.e., a candidate
team is found.

4.4 Complexity Analysis

Assume |V | = n and |E| = m. In first step of Geo-social team Formation, it takes
O(m1.5) time to compute structural similarity. As a result, on each machine Mi

extracting all the core nodes from Gi takes O(m1.5) time. Consequently finding
all dissimilar edges of Ei requires O( m

|M | ) time. The skills checking complexity
can be bounded by O(|V (cluster)3|), making use of the maximum-flow algo-
rithm. However, providing parametric-network flow help us to solve this in a
time complexity of solving one min-cut problem.

5 Experimental Analysis

We conducted experiments to demonstrate the efficiency and effectiveness of
our framework. From the efficiency point of view, we show that the Geo-Social
team formation model is faster than the state-of-the-art algorithms on large
graphs. The proposed framework finds a resulting team with specified features
in a Geo-social network having 1.5 billion edges within 8s. Furthermore, for
demonstrating the effectiveness of DSCAN-GSTF, two illustrative queries are
analyzed on various real datasets and various metrics based on spatial and social
cohesiveness.

Dataset: Table 1 describes the statistical information of five real-world GeoSNs
with ground-truth clusters use to evaluate our framework.
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Table 1. Statistics of real-world datasets.

Dataset # of Nodes # of Edges Ave-Deg

Gowalla [5] 196,591 950,327 9.177

Dianping [2] 2,673,970 1,922,977 12.184

Orkut-2007 [25] 3,072,626 34,370,166 76.277

Ljournal-2008 [14] 5,363,260 79,023,142 14.734

Twitter-2010 [11] 41,652,098 1,468,365,182 35.253

5.1 Experiment Setup

We compare our framework, DSCAN-GSTF, with state-of-the-art models MKC-
SSG [4] and geo-social group queries model (GSGQ) [28]. The MKCSSG model
satisfies minimum keyword, contribution capacity, as well as social and spatial
constraints. The GSGQ did not consider the required number of experts for
each skill. Therefore, we change the GSGQ and add the skill constraint to the
team’s required skills query such that the skills attributes of the members in the
resulting team should cover all required skills.

All the above models are implemented in python using NetworkX, Panda,
Tensorflow, Numpy, and pyWebGraph libraries. For the distributed and multiple
processing in DSCAN-GSTF, we used MPI. All the experiments are performed
on a computer cluster of 16 machines with an interconnecting speed of 9.6 GB/s
running GNU/Ubuntu Linux 64-bit. Furthermore, each machine’s specifications
were Intel Xeon E5-2665 64-bit CPU and 256 GB of RAM (8 GB/core). More-
over, MKCSSG and GSGQ are implemented on one machine since they are not
distributed algorithms. Each model is executed 20 times, and the average score
is recorded.

5.2 Effectiveness Evaluation

To show the effectiveness of the Geo-Social team formation framework, we ana-
lyzed two representative queries on the Gowalla dataset.

Query 1: Parameters are set as follow: location ∇ = (36.11, −115.13), Skills
S = {salad, chicken, beef,BBQ}, Number of each skills E = {10, 10, 10, 10},
Contribution capacity c = 4. This query can be used to find fans of BBQ party
around Las Vegas. We assume that the tweets of each user is their favorite dish.
We set � = 0.5 and μ = 10 for the first query on Geo-Social team formation
framework.

Query 2: intends to create a music band around Las Vegas. Query 2
parameters are set as follows: location ∇ = (36.11,−115.13), Skills S =
{guitar, piano, violin}, Number of each skills E = {2, 1, 2}, Contribution capac-
ity c = 1. We set � = 0.5 and μ = 10 for the second query on Geo-Social team
formation model.
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Table 2. Effectiveness evaluation

Model SC GD ED Query

GSGQ 0.14 0.71 0.51 Query 1: food

MKCSSG 0.18 0.41 0.67

DSCAN-GSTF 0.21 0.23 0.74

GSGQ 0.56 0.54 0.38 Query 2: music band

MKCSSG 0.67 0.28 0.63

DSCAN-GSTF 0.56 0.23 0.81

GSGQ 0.27 0.62 0.43 Query 3: board game

MKCSSG 0.43 0.32 0.52

DSCAN-GSTF 0.42 0.25 0.68

Query 3: intends to create a board game groups. Query 3 param-
eters are set as follows: location ∇ = (36.11,−115.13), Skills S =
{chess, backgammon,monopoly}, Number of each skills E = {2, 8, 10}, Con-
tribution capacity c = 2. We set � = 0.4 and μ = 9 for the second query on
Geo-Social team formation model.

Evaluation Metrics: Here we define the evaluation metrics use to compare
the performance of state-of-the-art methods with DSCAN-GSTF.

Spatial Closeness (SC): The spatial cohesiveness is to show how closely the
team members are located to ∇. Our framework uses the spatial distance of
one random member of the result team B to the query location ∇.SC∇,B =
{(Euclidean Distance(∇, u)), u ∈ V (B)}

Graph Diameter (GD): It calculates the topological length or extent of a
graph by counting the number of edges in the shortest path between the most
distant vertices. In other words, graph diameter indicates the social closeness
of the team. GDB = max{ShortestPath(v, w))|(v, w) ∈ V (B)}

Edge Density (ED): We consider another parameter ED to show the social
cohesiveness. EDB = |E(B)|/|V (B)|, where E(B) is the number of edges in
team B and V (B) is the number of vertices in team B.

The comparison results of analyzed metrics are presented in Table 2. The
results are normalized to a value between 0 and 1. Results with a lower score
are better except for Edge Density (ED). Overall speaking, we can see DSCAN-
GSTF has outperformed in spatial and social cohesiveness in both queries. How-
ever, the spatial distance is not significantly better, but the social cohesiveness
shows excellent improvement in both queries. Furthermore, applying graph struc-
tural communities in DSCAN-GSTF framework improves the social Cohesion
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Fig. 4. (a) The first raw is to compare the efficiency evaluation based on percentage of
vertices. (b) The middle raw is to compare the efficiency evaluation on various number
of required skills. (c) The last raw is to compare the efficiency evaluation on various
requirement on expert set R.

and indicates teams with much less graph diameter than GSGQ and MKCSSG,
which utilize the minimum degree and c-truss constraint, respectively.

5.3 Efficiency Evaluation

To compare the performance of various models, we use the running time of the
queries. We compare the efficiency of GSGQ and MKCSSG with our proposed
model, DSCAN-GSTF. Our experiments uses various parameter settings for a
query: percentage of vertices, sets of required skills |S| = {1, 3, 5, 7, 9}, and the
minimum number of each skill E = {1, 3, 5, 7, 9}. We set the default value of
both |S| and E to 3. The location for each query is created randomly. We select
reasonable values for � and μ based on each dataset. In Dianping dataset � = 0.3
and μ = 2, in the Orkut dataset � = 0.5 and μ = 5, in the LJournal dataset
� = 0.6 and μ = 5, and finally in the Twitter dataset � = 0.5 and μ = 6. When
a parameter is changing for evaluation, other parameter values are set to their
default value.

We divide each dataset into various percentages to evaluate the scalability
of proposed model. The result is presented in Fig. 4 (a) for different datasets
while comparing various methods. In general, our DSCAN-GSTF is much more
scalable compared to other methods on different datasets. That is because of the
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methodology and substantially the properties of DSCAN-GSTF which can limit
the search space in quicker time while preserving optimum results.

Figure 4 (b) shows the running time when the number of required skills
increases for different datasets; as the required skills increase, the running time
for all methods increases. However, this increase is slower in DSCAN-GSTF
because checking existing skills on each cluster using the attached summation
list of skills has constant time complexity. When |S| is small, the GSGQ requires
comparatively high running time to find optimum results. However, when the |S|
grows, it provides a result in half a minute. In Fig. 4 (c), changing the number
of required skills E on each dataset using various models is presented. Again,
for all the datasets, the running time increase as the required number of skills is
increased. Nevertheless, because of distributed environment in DSCAN-GSTF,
the increasing running time is on a slow increasing slope.

6 Conclusions

This paper has explored the Geo-Social team Formation framework and pro-
posed a new model DSCAN-GSTF. In this, we incorporated various criteria to
replicate the real-world scenario and exploited DSCAN for the efficient process
of large networks. The DSCAN-GSTF introduced a novel polynomial algorithm
based on a parametric flow algorithm to identify the successful team members
for impromptu activities from GeoSNs. We compared our proposed DSCAN-
GSTF model with the state-of-the-art methods, MKCSSG and GSGQ. Exten-
sive experiments were conducted to examine the efficiency and effectiveness of
the proposed model on four real-world datasets and recorded the running time
under various system settings. Overall, our proposed model generated the output
faster than the state-of-the-art methods. As for future work, we plan to extend
DSCAN-GSTF to incorporate more sophisticated queries.
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Abstract. Science collaborations such as ATLAS at the high-energy
particle accelerator at CERN use a computer grid to run expensive com-
putational tasks on massive, distributed data sets.

Dealing with big data on a grid demands workload management and
data allocation to maintain a continuous workflow. Data allocation in
a computer grid necessitates some data placement policy that is condi-
tioned on the resources of the system and the usage of data.

In part, automatic and manual data policies shall achieve a short
time-to-result. There are efforts to improve data policies. Data place-
ment/allocation is vital to coping with the increasing amount of data
processing in different data centers. A data allocation/placement policy
decides which locations sub-sets of data are to be placed.

In this paper, a novel approach copes with the bottleneck related to
wide-area file transfers between data centers and large distributed data
sets with high dimensionality. The model estimates similar data with a
neural network on sparse and uncertain observations and then proceeds
with the allocation process. The allocation process comprises evolution-
ary data allocation for finding near-optimal solutions and improves over
5% on network transfers for the given data centers.

Keywords: Data allocation · Data placement · Similarity estimation ·
Parallel computing · Wide-area file transfers

1 Introduction

Physics collaborations such as the ATLAS collaboration [10] at CERN store their
data as files in a worldwide computing grid. The LHC Computing Grid [3] pro-
vides distributed storage and processing for physics data from extensive exper-
iments. Experts from all over the world submit tasks with the data stored as
files across many data centers. The data centers can be considered geographi-
cally distant sites that spawn a fully connected network, as shown in Fig. 1 as an
example. Many data-intensive, high-performance applications use large numbers
of files that are in some way labeled or categorized. In the case of ATLAS, data
sets label a various number of files that jobs can collectively handle. A compu-
tational job is a process that reads a data set and eventually outputs another
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Groen et al. (Eds.): ICCS 2022, LNCS 13352, pp. 534–546, 2022.
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data set. Data sets can be used none or several times. The population of data
sets is changing. Some may be removed after their lifespan, and data sets are
created from time to time to label files. Because of this changing population of
data sets, they cannot be the basic unit of data placement/allocation, but the
constituent files are.

Regardless of the particular content, data sets are managed by users. A user
defines a class on its own, using particular data sets. Their work interest and
funding correlate with data sets. Data sets in a more or less narrow range will
be processed to fulfill their research. Those have some commonalities, so some
aspects are equal or similar. A metric based on machine learning will be intro-
duced later to find similarities within data sets.

Fig. 1. Example of five data centers inter-connected with wide area network (WAN),
over which each data center can read files on an external data center, which incurs
costs. Each HPC site facilitates different amount of resources.

In our case, there are two types of jobs to be executed in large quantities:

– Producing final data with parameters and calibration data from the experi-
ment. Calibration data is updated from time to time and therefore production
must be repeated, for example.

– Analysis to find events in the productive data. Examples around the well-
known Higgs boson H0 are t + t̄ into H0, or γ + γ into H0. An H0 boson
is formed in both processes, but they are different processes with different
probability amplitudes.

Jobs for production and analysis are submitted onto data sets. Computational
resources are facilitated in the form of job queues at data centers whose task is
to run jobs. A job requires the entire data set to be at the local data center.
Missing files of the data set must be transferred to the job, that is, the location
of the compute job.
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The network latency causes a significant delay in the workflow. The wide
area network (WAN), the network between data centers, is a scarce resource and
represents a bottleneck in a data-intensive workflow [14]. The way to improve
the situation related to the WAN is to leave wide-area transfers out, i.e., local
processing for each data set. However, jobs cannot be placed arbitrarily to the
appropriate data sets: Jobs are allocated to proper sites. First, they must be com-
patible; the site must support the requested computation. Say, a high-memory
worker is needed. Load balancing takes place according to provided computing
volumes in data centers. The one with the majority of files of proper sites is
preferred as the target. This process continues, and sites are filled with jobs.

On the other hand, data cannot be freely allocated as there are natural
storage limitations. Our focus is to tackle data allocation under the following
condition:

– Every time a job kicks in, missing input data must be transferred over the
bottleneck, the inter-data center network/WAN, from the source to the target
site.

– The network consists of non-uniform sites that provide resources with con-
siderable differences. Some possess more storage capacity, and others provide
more processing capabilities due to local funding constraints and even support
for various user communities.

In order to deal with a large amount of data, clustering is utilized. Clustering is
a broad field applied for different tasks such as classification and segmentation,
matching commonalities such as identifying normal samples versus outliers.

The novel contributions of this paper are:
A similarity metric, a distance, is introduced for data sets to be able to put

clustering into action and to decide on proper sub-sets.
Combined with this similarity metric, a loss function related to the data allo-

cation task is induced. Based on this loss, allocation can be performed regarding
spatial patterns of data set use, that is, locations at data centers. Following pat-
terns of data use is necessary for improving data allocation because data sets
will be differently used depending on jobs/tasks on distant sites. The jobs will
be distributed in some way across data centers. Some of these data centers are
capable of more than others. Say, some store more data sets or provision a pro-
cessing capability for some job class such as large memory. Large memory jobs
require larger memory on the CPU.

2 State of the Art

The data allocation problem is synonymously referred to hereto as file allocation.
It was investigated when distributed databases were studied, and parallelization
had to be utilized.

One of the first data placement/allocation papers was [5]. The work mod-
els the task on different abstraction levels. It is further proven that the data
placement problem is very difficult to solve and generally NP-Complete.
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The file placement problem is investigated under concurrency conditions to
build a model with storage cost and communication cost in [17]. Constraints are
the multiplicity of databases, variable routing of data, and available capacity of
the network nodes.

Some work attempts to cluster data sets according to their inter-
dependency [11]. Subsequently to clustering, clusters are stored on separate
machines. A different clustering algorithm is described in [25] that uses k-means
algorithm for finding locations for the clustered data, resulting in task allocation
to the data centers with most of the input data set. This is comparable to the
ATLAS workflow. This paper utilizes data sets as small clusters and imposes
several conditions such as uncertainty and sparsity on the data sets.

Evolutionary algorithms have been applied to almost any kind of problem,
and it is no surprise that these were applied to this kind of problem as well.
In [12], data allocation strategies have been investigated to reduce transaction
costs. A genetic algorithm was used here to limit communication effort between
data centers by balancing the load.

Placement of files and replication across different nodes may improve on
metrics such as job execution, makespan, and bandwidth [8].

Further efforts have been undertaken in previous studies for database opti-
mizations. The authors of [22] discuss database allocation optimization and pro-
pose a mathematical model concerning average waiting time. Other database
approaches attempt to arrange data effectively over the network nodes, such
as in [1,2,6]. However, these studies investigate idealized database cases. For
example, they focus on a single query type or do not consider any constraints
on communication characteristics. Room for improvement would comprise user
behavior and workflow characteristics. Analysis of access patterns can be bene-
ficial for network utilization.

A well-known approach is ranking data according to the number of accesses
per time unit. This characteristic is referred to, for example, as data popular-
ity [7]. In [7], a successful popularity model is established which uses historical
data. A popularity model is implemented as an autonomous service for finding
obsolete data and used in the cleaning process [15,20].

Due to complexity and variety, simplified models and local optimizations were
studied and applied. A thorough analysis of data usage and data optimization
for data grids is necessary. Storage resources and the use of data has to be
appropriately treated in the process of file placement [18,19].

Summing up, the actual research on data partitioning and allocation tech-
niques is specific, and often the models aim at a narrow case. Especially in data-
intensive high-performance computing (HPC), large volumes of data are pro-
cessed, and patterns for data usage have to be observed and taken into account
to utilize the performance and improve the workflow fully. At this point, we
would like to present our research. In general, data management strongly impacts
usability, performance, and cost.
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3 Methods

3.1 Background

Data sets collect files in various numbers by giving them a common name (data
set name). To certain data sets, jobs will be submitted by a magnitude of 1000
users around the globe. The data set name is a high-dimensional pattern on
an abstract level. It consists of a text string in variable lengths, with different
sub-strings such as numbers and terms. A data set name (label) looks like

mc15.13TeV.362233.Sherpa.CT10.Zee.P t70
.140.BF ilter.ckkw30.evgen.EV NT.e4558.tid07027172.00

There are many identifiers composed into this name to describe the data set.
mc15 stands for Monte Carlo; 13 TeV stands for 13 ∗ 1012 electron volt, which
implies the energy of the run; and so on. With this notation, it is challenging to
find interrelations between data set names. At least, users manage jobs process-
ing and data sets. The decision is a user-dependent process that was introduced
in Sect. 1. User’s co-variates are background and funding, and they do usually
not select randomly at their whim. Creating data sets and submitting jobs is
a confusing process from the outside. However, the common factor is the user
between task and data.

Two important points must be addressed in a data allocation policy:

– How likely is it, that data sets will be read by a job of a certain type. It is
certain that data sets that are not processed, do not incur any costs from a
network’s point of view. The opposite case is when a data set is processed at
least once or several times.

– What is the impact from the cost perspective, data sets residing on specific
nodes.

In the model context, the term node is used for data centers. A node repre-
sents a black box, which is not decomposed in its parts, such as network storage,
different computing nodes, etc., but rather is described on a top-level with the
provision of resources from a job’s perspective.

With data sets also comes a lack of information. The use of data sets is
uncertain two-folds:

– Data sets change over time. Some of them will overlap.
– Furthermore, there is no information on how likely they will be used for

most data sets. Only a tiny minority of data sets have a popularity value
that indicates how likely they will be read. There are some investigations on
popularity, which are not covered in this work [4].

Our model consists of two sub-models joined together to perform the two steps
depicted in Fig. 2:

1. Transform the variable space of data sets into a metric space. This model is
introduced to generate variables of data sets that allow better handling. The
first model in Sect. 3.2 covers this part.
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2. Generate disjoint file sets from data sets and allocate them to nodes. This can
be pictured in two dimensions as on the right side in Fig. 2. The allocation is
the process that divides files, comprised in data sets, into the number of nodes
and maps them to the nodes, which are data centers in grid. The necessary
steps are done in the second model in Sect. 3.3.

Fig. 2. Two models for two transformations of the data sets. First, the data sets are
mapped into a similarity space. Second, the allocation model disjoints the data sets
into proper sub-sets to allocate to nodes. (Color figure online)

3.2 Neural Similarity Estimator

The relationship between users and data sets, and thereby data sets to others,
has been discussed. The similarity model proposed in this work relates data sets
with others. The neural similarity model is placed first to extend the variables-
space for the allocation.

With the similarity model, given a data set as input, another similar data
set may be found in the population of data sets. Even new data sets that have
not yet been seen can be assigned to other data sets. This is important because
new data sets are constantly being created during operation. On the one hand,
similarity plays a role in the allocation in order to select a specific kind of data
sets. On the other hand, data sets also depend on each other because data sets
can overlap several others. They will be more or less mixed, which makes them
not separable.

The virtue of such a similarity model is that it can handle complex and
inter-related (text) strings. Triplet learning sometimes referred to as triplet loss
or triplet comparison, comes in helpful for this task. This technique makes infer-
ences about observations based on commonalities and non-commonalities within
the variables [24]. A specific loss function is applied to learn a similarity or dis-
tance metric by recognizing similarities (and dissimilarities). It was successfully
applied for large learning applications in image similarities [9,23] as well as a
variety of digital image processing tasks such as face recognition [16].
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In the case of face recognition and person re-identification, similar samples
are images of the same person. Figure 3 illustrates the core idea. The so-called
anchor a and the positive sample + are from the same user, and the other
example - is from another user. The triplet comparison operates on three different
example inputs. On average, the a and + are more similar to each other. During
network training, the cost function applied to a triplet of samples is gradually
decreased. The distance between the anchor and the positive sample becomes
smaller, while the distance between the anchor and the negative sample increases.

Fig. 3. Training of the model is shown on the left, in which triplets of data sets (a, +,
−) are fed from the training set while the model tries to lower the loss(). The inference
is shown on the right. Data sets are mapped into the latent similarity space, where
next data sets have higher similarity.

In our case, data sets with their names are the input from users. As data
set names are depicted in Sect. 3.1, the first step is text pre-processing to obtain
a tuple of word vectors that are the representations for the data set names.
Terms and numbers occurring only once in the training set of data set names
are replaced by a default value since they are not informative. For example, 933
and aabb are replaced as default value.

The model consists of several steps:

1. The data set names are tokenized. This process makes a discrete set with
unique numbers from each alpha-numeric subtext. In a standard text case,
this would be the word level, and each word would convert into a number
in the discrete co-domain.

2. Each token is converted into a word vector.
3. In training, a latent metric space is spawned under the loss function from

Eq. 1. Data sets are just passed through the trained model in the inference
phase. Data sets become labeled with the vector of the low-dimensional
neural co-domain of the similarity model Fig. 3.

The model’s network architecture is strongly inspired by image recognition
projects with a triplet loss, like [13], we do not need a particular network type
such as CNN for the short input vectors at hand. Even though a CNN would
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be possible, we go with a fully connected multi-layer feed-forward network: a
multi-layer perceptron. As for other recognition tasks, as mentioned, a triplet
loss is used in the network:

loss = max[d( a, +) − d( a, −) + margin, 0] (1)

where a triplet is (a,+,−) with some data set, a, a positive example data set
from the same user +, and a negative example data set from some other user, −.

The training phase takes a magnitude of one day on a single GPU. In the
prediction phase, the model maps each piece of input data set into its output
space, a metric space in which similar inputs are placed closer to each other. This
is depicted on the right in Fig. 3. Inference on one data set is just a mapping
with the fixed weights in the model and takes a magnitude of 1 ms.

3.3 Data Allocation Model

For the allocation process, an evolutionary clustering method has been devel-
oped. The goal is to find improved data allocations over the course of the run
time in terms of a loss according to the following loss function decreases:

costtx(S) =
∑

j∈{jobs}
costtx(S, j) (2)

where costtx(S, j) denotes an affine function of the number of non-local files for
job j given S , that is, the number of triggered file transfers over the network
(WAN) by j.

The data allocation model generates an allocation matrix for all files, S . As
explained, network transfers between nodes are expensive, which is why the total
number of these transfers is regarded in the total loss denoted as costtx(S). Data
center-internal transfers are much faster and do not need to be considered (zero
cost). Given the amount of work, i.e., a set of computational jobs, the problem
can be formalized as minimization problem with parameter S specifying the
allocation, and a loss function costtx(S) depending on system variables and the
set of jobs:

argmin
S

costtx(S)

so that

ST × wfile ≤ wstore

(3)

where costtx(S) is the loss function introduced before, wfile is a column vector
which represents the file sizes for file1, ..., fileM and wstore is a column vector
which represents the storage capacities of data centers 1, 2, ..., N. costtx(S)
penalizes external heavy transfers. wstore is needed by the model to control the
cluster sizes. Each cluster becomes parameterized for the sake of collecting files
for sub-sets in the allocation process. No other variables are needed except rela-
tive costs, i.e., cost(Snew)−cost(S) while the model probes the nodes iteratively
with variations of data allocations and descent on the plane of the loss function.
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The allocation process can be outlined in the following steps:

– Parameterize and prioritize clusters. Set a seed according to popularity and
type variable for each cluster.

– Disjoint the data sets into the number of clusters into subsets to be allocated.
This produces the allocation matrix S (Eq. 3). Boundary conditions wstore

are needed to control the cluster sizes.
– Calculate costs by Eq. 2 and repeat the process.

The presented model here relies on work management and solves the data
allocation problem. The model does not see the actual workload, but the cost
that comes with the workload related to the data allocation. The consideration
by only costs allows for a more flexible way of not having to expose the underlying
grid and jobs.

The evolution of the model comes into the described allocation process. After
finding a S which betters the situation, it is placed into an internal pool with
the label of the cost that indicates the quality or fitness:

– Populate the pool and delete the bottom solutions
– Vary single solutions
– Combine parameters of two solutions into one novel solution

The model runs on a single PC with parallelization. In-memory data on files
and data sets are fixed and can be shared. Each data allocation iteration is done
on a worker process, which just communicates the parameters of a solution.
Other workers take the work on combining solutions.

4 Justification and Evaluation

Data centers/HPC sites (in some jargon, just sites) are referred to here as nodes.
The number of nodes in the optimization has been reduced from over 100 to a low
2-digit number, see Fig. 4. Details are listed below. This is a feasible number, and
the set can cover the most important ones, say, nodes with the highest capacities.
There is an exponential drop-off from the largest to the smallest data centers. At
the peak, there are large ones working on the majority of data sets, and at the
tail, there are many small ones. Large ones covered in the optimization process
imply a high potential for improvement.

For each iteration of the experiment, the following parameters are defined
for nodes in such a way that the values are sampled in a uniformly random way:

– the provisioned work performance in terms of average jobs
– the provisioned queues for jobs for two types (A and B)
– the provisioned storage capacity for files

Data is defined in the following way:

– 10 thousand data sets from 100 users are taken. This is used for the validation
of the model.



Data Allocation with Neural Similarity Estimation 543

– Each data set possesses 1 to 100 files.
– For training of the similarity model, a subset of the data set user records

are taken, a sample size of 2 GB plain text. This record indicates the data
set, their files, and the associated user to each data set. This sub-set covers
100 users from the full user records comprising about 25 GB per month. The
selected time window of one month is short for picking up short correlations
for the demonstration.

– For these data sets, a popularity value is chosen between 0 and 1. Highly
active users possess data sets with higher popularity on average, and more
frequent data sets are represented with higher popularity. The model can only
see 10% of the popularity values.

With the data and the provision on the computer side, the work of the model
can be outlined:

– Similarity estimation is done once, and the final similarity values are kept in
memory beside the original variables.

– The data allocation part produces a data distribution while observing the
total costs according to Eq. 2. Over the course of evolution, the allocation
model permutates the output to find a fitter solution. In other words, a solu-
tion with a smaller cost.

The improvement by the data allocation can be depicted in the Fig. 4. The
model runs three configurations, and in the smallest one, it performs better.
This is probably due to the fact that the solution space is smaller. A smaller
cardinality makes the model performs iteration quicker, and more vectors in the
solution space can be probed. The improvement is shown to be at least 5.5%
despite uncertainties in the system that the allocation model cannot control, on
the input side, where sparse information comes from the data sets, and second,
the work on each node that depends on the jobs and the nodes.

Fig. 4. On the left, data sets are allocated by clustering by type and user. The full opti-
mization, on the right, is done with similarity model and the exploitation of popularity.
It saves 6%, ranging from almost 6.3% for with 20 sites, and 5.5% points for 40 sites.
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5 Conclusion and Outlook

Six percent improvement in the most important data centers is a perceivable
saving on time and cost in terms of money. This amount corresponds to the
provisioned traffic of one to two large data centers to get an idea. Provisioned
bandwidth of data centers is often 10 Gb/s. Our experiment shows that sav-
ings are possible without making a structural change or manual investigation.
In order to contribute to a better solution, more detailed exploitation of data
centers, e.g., including different types of storage, compute nodes, etc., for exam-
ple, is possible in the following way: A second optimization level can be added,
and both algorithms will go hand in hand. Our model works on the top level
regarding inter-data center traffic. Another model, with the proper cost metric
also a variation of this model, will act on the second level, an entity for the
internal costs per data center.

The first part of the composed model, the similarity model from Sect. 3.2, can
be updated from time to time. This update process would run in the background
to update to the next version of this sub-model.

The core model is the allocation model from Sect. 3.3. It can also be set up
in such a way that it operates on a subset of the data sets. Say, new data sets
shall be placed according to its policy. Free resources must be observed by the
model. A flag would be added to distinguish between data sets to be moved and
fixed data sets, i.e., data sets allocated/placed recently [21].

The volume of data sets is small compared to the population in the real grid.
Anyhow, the outcome of the data allocation can be used in a top-down approach,
in which missing data sets of the entire population would be clustered to the
initial data sets. So, for example, 1 data set becomes 10, and 10 becomes 100,
until all data sets are included. The solution contains clusters with contiguous
elements, as with the solution of the ‘1’ data sets with the heuristic variables’
similarity and popularity. In other words, the sparse ‘1’ data sets have a high
dependency on the nearby data sets of the entire population.

The presented model shows the potential to perform data place-
ment/allocation with high-dimensional data in the background. Further, the
loss function allows the model to be more abstract. The model operates solely
regarding the loss and only sees the data and the relevant resources; these are
the capacities. The complexity of the data processing with all relevant resources
hides in the loss.
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Abstract. Session-based recommendation aims at predicting the next
item given a series of historical items a user interacts with in a session.
Many works try to make use of social network to achieve a better rec-
ommendation performance. However, existing works treat the weights of
user edges as the same and thus neglect the differences of social influ-
ences among users in a social network, for each user’s social circle differs
widely. In this work, we try to utilize an explicit way to describe the
impact of social influence in recommender system. Specially, we build a
heterogeneous graph, which is composed of users and items nodes. We
argue that the fewer neighbors users have, the more likely users may
be influenced by neighbors, and different neighbors may have various
influences on users. Hence weights of user edges are computed to charac-
terize different influences of social circles on users in a recommendation
simulation. Moreover, based on the number of followers and PageRank
score of each user, we introduce various computing methods for weights
of user edges from a comprehensive perspective. Extensive experiments
performed on three public datasets demonstrate the effectiveness of our
proposed approach.

Keywords: Session-based recommendation · Social recommendation ·
Social influence

1 Introduction

In an era of information explosion, the rapid growth of online shopping and
services makes it difficult for users to choose what they prefer from innumerable
goods and services. As is known to all, different people’s interests and preferences
are completely different, and in some scenarios, individuals are not very certain
about their needs. Driven by the above backgrounds, recommendation system
emerges as the times require [4,25,38].
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Recommendation system is applied to capture users’ interests based on their
personal information and historical interactions with the items [12,13]. Further,
it predicts the next item to users that they may interact with according to user
preferences [3,14,30].

Session-based recommendation (SR) is first introduced to tackle the case that
users’ personal information (even the user IDs) can not be acquired [8]. A session
is defined as a continuous interaction sequence of items in close proximity [23].
User preferences are usually captured by mining sequential transition patterns
in a session [18,21]. Recurrent Neural Network (RNN) is proposed to model the
sequence dependencies to learn users’ preferences in [27]. Domain-Aware Graph
Convolutional Network (DA-GCN) [5] builds a graph and applies a graph neural
network to gain users’ interests.

Fortunately, user IDs can be obtained in many cases, but we can still make use
of SR to conduct a recommendation [1]. Even given the same session historical
items, various people may interact with different items out of their personalized
interests. So customized session-based recommendation can be made for users
[6,22,34].

When user IDs are available, users’ social network can be acquired as well. It
is obvious that user’s interest are easily influenced by their friends [17,24,35]. As
a result, a better recommendation can be made when considering the preferences
of users’ friends. Lots of works have made efforts to take advantage of users’
social network to get a more accurate recommendation [11,26,37]. However,
when it comes to SR, brand new methods should be considered due to the above-
mentioned special features (modeling sequential dependencies for recommenda-
tion). In social SR, recent work [2] builds a heterogeneous graph, which consists
of social network and all historical user behaviors. It learns social-aware user and
item representations, and gets a state-of-the-art (SOTA) performance. Although
exiting works take the social influence into account, they set the weights of user-
user edges as the same value, and do not detail the differences of social influences
among users in social network, instead using a model to capture the impact of
social influence on user preferences.

In this situation, we argue that the probabilities of users being affected are
different among various users in SR and diverse users may have various influences
on their followers. Therefore, we analyze social influence for SR in an explicit
manner. Specially, we argue that the fewer people one follows, the more likely
he/she may be affected by his/her social circle. Moreover, the more influential
users are, the larger impact they will impose on their followers. To verify our
thought, we propose a social influence enhanced model, which uses Social-aware
Efficient Recommender (SERec) [2] as a backbone. The in-degree and PageRank
[19] score for each user node in the social network are primarily computed, which
reflect the social influences. Then we take the results as weights among connected
user nodes in the graph. Finally, the social network obtains the knowledge of
social influences, and we can utilize it to get a more accurate preference for each
user.

Our contributions are summarized as follows:
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1. We incorporate influence degree of each user affecting and being affected into
the social network to capture a more accurate user preference in an explicit
way.

2. We come up with some simple but effective methods to obtain the influence
weights of social network to make our approach practical.

3. Extensive experiments are performed to verify the effectiveness of our pro-
posed method.

In the rest of this paper, related work is introduced in Sect. 2. We detail
our method in the following Sect. 3. Last but not least, we conduct extensive
experiments in Sect. 4 and sum up our work in Sect. 5.

2 Related Works

Since we focus on social session-based recommendation (SR), we first discuss the
relative works of SR and then talk about social recommendation.

Session-Based Recommendation: Session-based recommendation can be
regarded as a sequential modeling task for the reason that a session is com-
posed of a series of user historical interactions with the items. Naturally, RNNs
are preferred to model item transition patterns [7,9]. In [8], Hidasi et al. first
give a formal definition of session-based recommendation and come up with a
multi-layered Gated Recurrent Unit (GRU) model, which is a variant of RNN to
capture sequential dependencies in a session. This work is generally treated as
a pioneer attempt for SR. Following Hidasi’s work, an improved RNN [27] cre-
atively points out a data augmentation technique to improve the performance
of RNN. Subsequent works take Convolutional Neural Networks (CNNs) into
consideration to model sequential dependencies [28,29]. A Dilated CNN [36]
proposes a stack of holed convolutional layers to learn high-level representa-
tion from both short- and long-range item dependencies. Furthermore, attentive
mechanism is introduced into recommendation to reduce noise item impact and
focus on users’ main purposes, i.e. Neural Attentive Recommendation Machine
(NARM) [15], and Short-Term Attention/Memory Priority model (STAMP) [16].
Recently, Graph Neural Networks (GNNs) have been widely used in a large num-
ber of tasks on account of their superior performances besides session-based rec-
ommendation [10,20,39]. SR-GNN [33] is a typical GNN work for SR. It builds
all session data into graphs, in which items are regarded as nodes and an edge is
added if there is a transit between two items. SR-GNN employs a gated neural
network to capture complex transitions of items. These methods try to model
item dependencies in sessions, but do not take social influence into account.

Social Recommendation: As a widely studied research field, social network
has been applied for recommendation in depth [31,32]. However, when social
session-based recommendation is mentioned, there is not yet much work for the
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reason that SR is a relatively new topic, and previous social recommendation
methods are not suitable for SR due to their lack of modeling sequence dependen-
cies. Recently Dynamic Graph Recommendation (DGRec) [26] models dynamic
user behaviors with a recurrent neural network, and captures context-dependent
social influence with a graph-attention neural network. DGRec gets a better rec-
ommendation performance, but its inefficiency can not be ignored, because it
has to deal with lots of extra sessions to make a recommendation. To solve the
efficiency issue that DGRec meets, SERec [2] implements an efficient framework
for session-based social recommendation. In detail, SERec precomputes user and
item representations from a heterogeneous graph neural network that integrates
the knowledge from social network. As a result, it reduces computations during
predicting stage. Efficient as it is, SERec just adds users’ social network into the
interaction graph and sets weights among user nodes as the same value without
considering influence differences among various users.

3 Modeling Methods

3.1 Problem Definition

In session-based recommendation, we define U = {u1, u2..., uN} as the set of
users, I = {i1, i2, ...iM} as the set of items. Each user u ∈ U generates a set of
sessions, Su = {su

1 , su
2 , ...su

T }. For each session, there are a series of items that a
user interacts with sorted by timestamp. For example, su

1 = {iu1 , iu2 , ...iuL}, and
L is the length of session su

1 . All sessions of users constitute users’ historical
behaviors dataset B. The goal of session-based recommendation is as follows:
given a new session of user u, S = {iu1 , iu2 , ...iun}, predict iun+1 for the user u
by recommending top- K items (1 ≤ K ≤ M) from all items I that might be
interesting to the user u.

In addition, in social session-based recommendation, besides users’ historical
behaviors B, a social network can be utilized to improve recommendation. Let
SN = (U,E) denote the social network, where U is the nodes of users, E is
the set of edges. There is an edge if a social link exits between two users. For
example, an edge (u, v) from u to v means that u is followed by v, in other words,
v follows u.

3.2 Social Influence Modeling

Social Session-Based Behaviors Graph Building. We first construct a
heterogeneous graph from all users’ behaviors B and social network SN . Then we
apply a GNN (Graph Neural Network) [37] to learn representations of users and
items. The user representations can capture user preferences and more accurate
social influences. Item representations can learn useful information from user-
item interactions and cross-session item transition dependencies.

In the heterogeneous graph, all the users and items in B and SN make up the
graph nodes, and the set of edges consists of four kinds of edges. A user-user edge
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(u, v) exists if v follows u (in other words, u is followed by v). It is worth noting
that we make such a design because in our model a user node representation
is learned by the incoming edges and users are more influenced by those they
follow than those following them. If a user u has ever clicked an item i in any
session, there will be two edges, namely (u, i) and (i, u). Lastly, there is an edge
(i, j) if item i transmits directly to item j.

Now, we take edge weights into consideration. The weight of user-item (u, i)
and item-user (i, u) is the times of user u clicked item i. And the weight of
item-item (i, j) is the times of item i transmitted to j.

When considering weights of user-user (u, v), SERec [2] defines all the weights
of user-user as an identical number 1. However, we argue that different weights
should be designed among users in the social network, for various influences
may have on different users in the social network. As a result, we compute every
weight between user-user edge to explicitly represent the social influence.

Social Influence Computing. After the heterogeneous graph is constructed,
we compute the weights among user nodes in the following method inspired
by [40].

Given a user node v, the node in-degree d denotes the number of users that
v follows. We view all the incoming edges’ weights W as the user v’s degree of
being influenced. In other words, the weight of edge (u, v) is calculated in the
following equation:

W (u, v) = C/d, (1)

where C is a positive constant to control the range of weight.
For example, if a node v follows three users u1, u2, u3, then there are three

edges (u1, v), (u2, v), (u3, v). So the in-degree of v is 3, and the weights of the
three edges are all set to W = C/3.

We further make a research on the ability of users to influence their followers.
We apply PageRank [19] to calculate the importance of a user in the social net-
work, which is a way of measuring the importance of website pages. Intuitively,
the larger of the importance value users get, the more influence users may have
on their followers. In detail, the influence of node u is computed as follows:

Fu = (1 − A)/N + A ∗ (Fv1/out(v1) + Fv2/out(v2) + ... + Fvn
/out(vn)), (2)

where out(vi) denotes the out-degree of node vi. v1...vn is the followers of user
u, A is a coefficient, N is the number of user nodes.

For example, if a node u is followed by three users v1, v2, v3, then there are
three edges (u, v1), (u, v2), (u, v3). Then weights of the three edges are all set to
be Fu.

3.3 Model Architecture and Training

In this section, we briefly illustrate how to capture user preferences by modeling
user sequential patterns. Our model selects SERec as a backbone, and utilizes
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Fig. 1. An overview of model architecture. Heterogeneous graph embedding module is
applied to learn representations of users and items. User dynamic preference embedding
module applies a gated GNN to obtain a user preference embedding in the ongoing
session.

a Graph Neural Network (GNN) [37] and gated GNN [33] to capture user pref-
erences. As is demonstrated in Fig. 1, our model is composed of two modules:
heterogeneous graph embedding module and user dynamic preference embedding
module.

Heterogeneous Graph Embedding Module. We apply GNN (graph neural
network) to model user and item embedding, which has fused social influence.
Supposing GNN is comprised of F layers, let Gf [x] denote the representation of
node x at layer f , where x may be a user or an item. The new node representation
Gf [x] is computed as follows:

Gf [x] = ReLU(W f
1 (Gf−1[x]||Ĝf [x]) + bf

1 ), (3)

where Gf−1[x] is the old node representation. Ĝf [x] is the aggregated informa-
tion from node x’s neighbors N(x), and y belongs to N(x) if there is an edge
(y, x) pointing to x. W f

1 and bf
1 are learnable parameters.

The aggregation information from node x’s neighbors is calculated by the
equation below:

Ĝf [x] =
∑

y∈N(x)

Attention(y, x) ∗ (W f
2 Gf−1[y] + bf

2 ), (4)

where W f
2 and bf

2 are learnable parameters. Attention function is detailed in [2].

User Dynamic Preference Embedding Module. Given an ongoing session
S of user x, a graph G = (V,E) is constructed in the same way mentioned
in Sect. 3.2, where V denotes items in S, E denotes item transitions, and the
weight of an edge is the times of item transitions. Since we build a heterogeneous
graph on all historical sessions of users and social network, global user and item
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representations are obtained. Then for the ongoing session S, we first retrieve the
relative user and item representations to initialize node representations Z. We
utilize a gated GNN [33] to model the session-specialized item representation:

gi = vi � tanh(Wc(N̂ [zi]||zi) + bc) + (1 − vi) � Wzzi, (5)

vi = sigmod(Wi(N̂ [zi]||zi) + bi), (6)

where zi is the node vector of an item in session S, N̂ [zi] is the aggregated
information from zi’s neighboring nodes, gi represents the vector of node i for
specialized session S. Wc, bc, Wz, Wi and bi are learnable parameters. Based on
gi, we get a user preference embedding in the ongoing session S:

P =
∑

1≤i≤|S|
bi ∗ gi, (7)

bi = softmax(rT sigmod(Wvgi + Wlastglast + WuuS)), (8)

where glast is the embedding of the last item in session S to capture user’s recent
interest, uS is the user embedding to capture user u’s general preference. r, Wv,
Wlast and Wu are learnable parameters.

Finally, we generate the score q for every item in I via multiplying its embed-
ding ei by user preference embedding in the ongoing session S:

q = softmax(PT ei). (9)

We apply a cross-entropy of the prediction and the ground truth as the loss
function in the following form:

L = −
M∑

m=1

qmlog(q̂) + (1 − qm)log(1 − q̂), (10)

where q̂ denotes the one-hot encoding vector of the ground truth item.

4 Experiments

4.1 Experimental Setup

Datasets. Following the existing classic social recommendation works [2,26], we
evaluate our proposed method on three public real-world benchmark datasets:

(1) Foursquare: The Foursquare1 dataset is a publicly online available dataset
which consists of users’ check-in records on different venues in a period of
time. Records are regarded as the same session if the check-in time interval
is shorter than a day, and records are viewed as different sessions if interval
is longer than a day.

1 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 1. Datasets statistics

Datasets All users All items All clicks Social links All sessions

Foursquare 39,302 45,595 3,627,093 304,030 888,798

Gowalla 33,661 41,229 1,218,599 283,778 258,732

Delicious 1313 5793 266,190 9130 60,397

(2) Gowalla: Gowalla2 is another check-in data, and the social network is based
on location social network website. Sessions are extracted by the same way
as Foursquare.

(3) Delicious: Delicious3 is an online bookmarking system. We consider a
sequence of tags a user has marked to a book as a session (marking time is
recorded).

We split each dataset into training/validation/test sets, following the settings
in [2]. And we conduct our experiments on augmented datasets. To be specific,
for a session S = (v1, v2, v3, ..., vn), we generate a series of interaction sequences
and labels ([v1], v2), ([v1, v2], v3), ..., ([v1, v2, ..., vn−1], vn), where [v1, v2, ..., vn−1]
is user’s historical sequence, vn is the next-clicked item, namely the label.

The statistics of datasets are summarized in Table 1.

Evaluation Metrics. We evaluate all models with three widely used ranking-
based metrics:

(1) REC@K: It measures the recall of the top-K ranked items in the recom-
mendation list over all the testing instances. In our experiments, only one
item is set as the label, so REC@K is used to measure whether the label
item is contained in the top-K ranked items according to the scores.

(2) MRR@K: It measures the mean reciprocal rank of the predictive position
of the true target item on the top-K ranked items in the recommendation
list. The target item is expected to rank ahead in terms of ranking scores.

(3) NDCG@K: NDCG is a standard ranking metric. In the context of session-
based recommendation, it also measures the position of target item in the
recommendation list.

K is set to 10 and 20 in our experiments.

Comparison Methods. SERec [2] and DGRec [26] are regarded as two typ-
ical works related to social session-based recommendation, and SERec as the
SOTA social SR model has proved it enjoys a more effective performance than
DGRec [2]. Consequently, we only compare our method with SERec. Moreover,
our work is realized on the basis of graph structure by taking social influence

2 https://snap.stanford.edu/data/loc-gowalla.html.
3 https://grouplens.org/datasets/hetrec-2011/.

https://snap.stanford.edu/data/loc-gowalla.html
https://grouplens.org/datasets/hetrec-2011/
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explicitly into consideration, we also want to verify if it is effective compared
with the existing none-social SR methods like SR-GNN [33], which applies a
gated graph convolutional layer to learn item transitions. Last but not least, as
mentioned above in Sect. 3.2, we put forward two ways (in-degree and PageR-
ank) on how to compute the social influences, and we test the two different types
and combination of both on SERec and SR-GNN to prove our proposed method.

Implementation Details. Following the backbone method, we set the model
hyper-parameters as mentioned in [2]. Generally, user and item IDs are made
an embedding into low dimensional latent spaces with the same dimensionality
128. Adam optimizer was used to train the models and the batch size for mini-
batch is 128. The above models’ performance are reported under their optimal
hyper-parameter settings [2]. Specially, we find that our model gets an optimal
performance when C is set to 100 and A to 0.85, so we report our model perfor-
mance under this optimal settings. To compute PageRank scores of user nodes,
we first initialize PageRank score of each user node to 1/N (N is the number of
user nodes in the social network), then update all user nodes’ PageRank scores
using Eq. (2) for five times iteratively. Since we filter out user nodes without
followers or followees, each user node can obtain a PageRank score in the social
network.

4.2 Experimental Evaluations

Weights Calculating for Social Network. We first compute W (u, v) and
Fv for each user in the social network using Eqs. (1) and (2), and set the weights
of user-user edges in the following three ways to verify our proposed method:

(1) Using W (u, v) only as the weight for edge (u, v) to demonstrate our idea
that the fewer people that users follow, the more influence their social circles
may have on their interests;

(2) Using Fu only as the weight of edge (u, v) to prove that the more influential
that users are (the PageRank scores are high), the more impact they may
have on their followers’ behaviors;

(3) Using the sum of W (u, v) and Fu as the weight of edge (u, v) to test the
relation between the above two weight computing ways.

Results Analysis. As is mentioned above, the explicit social influence is eval-
uated in three manners, and experiments are implemented based on SERec and
SR-GNN to check if our method can achieve a high performance. The experimen-
tal results of overall performance are reported in Tables 2, 3 and 4. The optimal
and suboptimal results of each column are highlighted in boldface and underline
for SERec and SSR-GNN respectively. We denote SSR-GNN for social-aware
SR-GNN and denote model with the three weight computing ways by adding a
postfix ‘W, F, C’ respectively. And ‘R, M, N’ is short for ‘REC, MRR, NDCG’.
The following observations can be drawn from the results.
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Table 2. Performance on foursquare

Model Foursquare

R@10 M@10 N@10 R@20 M@20 N@20

SERec 61.67 34.11 40.69 70.07 34.71 42.84

SERecF 63.15 36.83 43.11 70.86 37.37 45.11

SERecC 63.21 36.82 43.12 70.89 37.37 45.11

SERecW 63.34 36.91 43.27 70.94 37.44 45.20

SSRGNN 60.94 33.62 40.15 69.28 34.21 42.29

SSRGNNF 61.02 33.56 40.13 69.53 34.16 42.29

SSRGNNC 61.04 33.55 40.12 69.65 34.15 42.31

SSRGNNW 61.21 33.83 40.39 69.60 34.42 42.52

Table 3. Performance on Gowalla

Model Gowalla

R@10 M@10 N@10 R@20 M@20 N@20

SERec 45.88 25.26 30.06 53.48 25.78 31.93

SERecF 46.76 26.54 31.34 53.85 27.05 33.17

SERecC 46.75 26.14 31.00 54.07 26.65 32.85

SERecW 46.87 26.53 31.49 53.92 27.03 33.27

SSRGNN 45.32 24.81 29.68 52.94 25.33 31.59

SSRGNNF 45.50 24.85 29.74 53.01 25.37 31.62

SSRGNNC 45.45 25.01 29.88 52.87 25.53 31.76

SSRGNNW 45.29 24.76 29.65 52.79 25.28 31.53

First of all, let us focus on the performance of our method on the SOTA
model SERec. In general, our proposed method outperforms SERec. It is proved
that the model can learn more accurate user preferences by explicitly adding
social influence as the weights of user-user edges. Furthermore, considering users’
influence to their followers has a similar improvement on the model with thinking
about the degree of users being influenced. To be more specific, SERecW may
win a little bit than SERecF. However, to our surprise, simply summing up
the first two social influence computing results as the weights does not gain a
best performance. One possible reason may be that the two weights computing
methods represent different views of social influence, and can not be added on
the same dimension.

Secondly, when it comes to SSR-GNN, after applying our proposed method
to original SSR-GNN, it can make a progress on recommendation results. Other
conclusions are nearly the same as SERec, except that SSR-GNNC achieves the
best results on some metrics. This further illustrates the uncertainty of summing
up the two different weights for their various practical significance.
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Table 4. Performance on delicious

Model Delicious

R@10 M@10 N@10 R@20 M@20 N@20

SERec 40.22 21.22 25.70 49.50 21.87 28.05

SERecF 39.79 21.39 25.80 49.33 22.05 28.19

SERecC 40.12 21.11 25.80 48.96 21.75 28.15

SERecW 40.15 21.31 25.64 49.18 21.98 28.09

SSRGNN 39.73 21.55 25.85 48.78 22.18 28.13

SSRGNNF 39.92 21.53 25.83 49.23 22.10 28.06

SSRGNNC 40.09 21.48 25.83 49.62 22.11 28.13

SSRGNNW 39.77 21.35 25.68 49.33 22.01 28.10

We have to mention that among the three datasets, our method performs
better on Foursquare and gowalla, but is not stable on Delicious. Through deep
research, we find that the data characters may lead to such a result. Let us review
the statistics of the three datasets in Table 1, Foursquare and Gowalla have rich
social links, which can help models learn user preferences by considering the
social influence in a more explicit way. On the contrary, Delicious has far less
social links than the other two, so models learn little extra information from
social network by adding social influence among users, even performs worse
possibly due to large data variance. All in all, our proposed method can gain a
significant performance promotion on large amounts of datasets, but may meet
unstableness on less amounts of datasets.

5 Conclusion

In this paper, we propose an explicit view to discuss how users’ social network
influences their behaviors. Based on the sense that the smaller one person’s social
circle is, the more influence his/her social network may have on his/her interests,
and the more influential users are, the more likely that they may affect their
followers. To verify our idea, we build a heterogeneous social graph, and explicitly
compute the influences as weights in social network graph according to in-degrees
and PageRank scores of user nodes. Finally, extensive experiments are conducted
on three public datasets. It is demonstrated that modeling social influences in
an explicit way can outperform the SOTA model on large datasets while get a
degradation on a small dataset. In the future, we will explore the influence of
social network formation to session-based recommendation. We consider how a
user’s social network is formed. For example, they share the same topic. This
kind of social network may lead to a more stable influence on users’ interest, we
would study such influence to session-based recommendation.
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Abstract. Understanding player’s actions and activities in sports is cru-
cial to analyze player and team performance. Within Australian Rules
football, such data is typically captured manually by multiple (paid)
spectators working for sports data analytics companies. This data is
augmented with data from GPS tracking devices in player clothing. This
paper focuses on exploring the feasibility of action recognition in Aus-
tralian rules football through deep learning and use of 3-dimensional
Convolutional Neural Networks (3D CNNs). We identify several key
actions that players perform: kick, pass, mark and contested mark, as
well as non-action events such as images of the crowd or players running
with the ball. We explore various state-of-the-art deep learning architec-
tures and developed a custom data set containing over 500 video clips
targeted specifically to Australian rules football. We fine-tune a variety
of models and achieve a top-1 accuracy of 77.45% using R2+1D ResNet-
152. We also consider team and player identification and tracking using
You Only Look Once (YOLO) and Simple Online and Realtime Track-
ing with a deep association metric (DeepSORT) algorithms. To the best
of our knowledge, this is the first paper to address the topic of action
recognition in Australian rules football.

Keywords: Action recognition · 3D CNN · Australian rules football

1 Introduction

Action recognition has been explored by many researchers over the past decade.
The typical objective is to detect and recognize human actions in a range of
environments and scenarios. Action recognition, unlike object detection, needs to
consider both spatial and temporal information in order to make classifications.
In this paper we focus on using 3-dimensional Convolutional Neural Networks
(3D CNNs) to achieve action recognition for players in Australian rules football.

Australian rules football, commonly referred to as “footy” in Australia, is a
popular contact sport played between two 18-player teams on a large oval. The
premier league is the Australian Football League (AFL). The ultimate aim is to
kick the ball between 4 goal posts for a score (6 points if the ball goes through
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the middle two posts) or a minor score (1 point if the ball goes through the one
of the inner/outer posts). This is achieved by players doing a range of actions
to move the ball across the pitch. These include kicking, passing (punching the
ball), catching, running (up to 15 m whilst carrying the ball) and tackling.

The understanding of player actions and player movements in sports are cru-
cial to analyse player and team performances. Counting the number of effective
actions that take place during a match is key to this. This paper focuses on devel-
opment of a machine learning application that is able to detect and recognize
player actions through the use of deep artificial neural networks.

2 Literature Review

Prior to deep learning, approaches based on hand-engineered features for com-
puter vision tasks were the primary method used for action recognition. Improved
Dense Trajectories (IDT) [26] is representative of such approaches. This achieved
good accuracy and robustness, however hand engineering features is limited.
Deep learning architectures based on CNNs have achieved unparalleled perfor-
mance in the field of computer vision. Deep Video developed by Karpathy et al.
[17] was one of the first approaches to apply 2D CNNs for action recognition
tasks. This used pre-trained 2D CNNs applied to every frame of the video and
fusion techniques to learn spatio-temporal relationships. However, its perfor-
mance on the UCF-101 data set [20] was worse than IDT, indicating that 2D
CNNs alone are sub-optimal for action recognition tasks since they do not ade-
quately capture spatio-temporal information.

Two-stream networks such as [19] add a stream of optical flow information
[11] as a representation of motion besides the conventional RGB stream. The
approach used two parallel streams that were combined with fusion based tech-
niques. This approach was based on 2D CNNs and achieved similar results to
IDT. This approach sparked a series of research efforts focused on improving two-
stream networks. This included works focused on improvement in fusion [6], and
use of recurrent neural networks including Long Short-Term Memory (LSTM)
[4,15]. Other methods include Temporal Segment Networks (TSN) [27] capable
of understanding long range video content by splitting a video into consecutive
temporal segments, and multi-stream networks that consider other contextual
information such as human poses, objects and audio in video. The framework of
two-stream networks was widely adopted by many researchers, however, a major
limitation of two-stream networks was that optical flows require pre-processing
and hence require considerable hand-engineering of features. Generating optical
flows for videos can be both computationally and storage demanding. This also
affected the scale of training data sets required.

3D CNNs can be thought of as a natural way to understand video content.
Since video is a series of consecutive frames of images, a 3-dimensional convo-
lutional filter can be applied to both the spatial and temporal domain. Initial
research was explored by [13] in 2012, then in 2015 by Tran et al. [22] who
proposed a 3D neural network architecture called C3D using 3 × 3 × 3 con-
volutional kernels. They demonstrated that 3D CNNs were better at learning
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spatio-temporal features than 2D CNNs. The introduction of C3D marked the
start of a new chapter in action recognition. 3D CNNs were shown to be suited to
extracting and learning spatio-temporal features from video - a core demand for
real-time action recognition. However C3D were difficult to train with the train-
ing process usually taking weeks on large data sets, due to the cost incurred in
training with an overwhelming number of parameters in the full 3D architecture.

In 2017, Carreira et al. [2] proposed Inflated 3D ConvNets (I3D), which
utilized transfer learning and outperformed all other models using the UCF-101
data set. I3D avoided the necessity for training from scratch by using some well-
developed 2D CNN architectures that were pre-trained on large scale data sets
such as the ImageNet [3]. I3D added an additional temporal dimension, where
the model weights were used. The proposed I3D model was implemented for
both the two-stream and single stream approach. Weights from an Inception-V1
model [12] pre-trained on ImageNet were used and trained on the Kinetics-400
data set [18]. This was subsequently fine-tuned on the UCF-101 data set to
achieve a top-1 accuracy of 95.1% with RGB stream only. I3D demonstrated
that 3D CNNs could benefit from the weights of 2D CNNs pre-trained on large
scale data. This has since become a popular strategy adopted by many that has
sparked a model benchmark standard based on the Kinetics-400 data.

Tran et al. [24] proposed the R2+1D architecture in 2018. This focused on
factorizing spatio-temporal 3D convolutions into 2D spatial convolutional blocks
and 1D temporal convolutional blocks. This decomposition provided simplic-
ity for model optimization and improved the efficiency of training, while also
enhancing the model’s ability to represent complex functions by increasing the
number of non-linearities through adding Rectified Linear Unit activation func-
tions (ReLU) between the 2D and 1D blocks. The R2+1D model used the Deep
Residual Network (ResNet) [10] architecture as the backbone and achieved sim-
ilar performances to I3D on data sets such as Kinetics-400 and UCF-101.

Non-local blocks proposed by Wang et al. in 2018 [28] introduced a new
form of operational building block that was able to capture long range temporal
features similar to the self attention mechanism [25]. This was compatible to
most architectures with minimal effort. The authors implemented their model
by adding non-local blocks into the I3D architecture and achieved consistent
improvement of performance over the original model using several data sets.
In 2019 Tran et al. [23] proposed Channel Separated Networks (CSN) which
focused on factorizing 3D CNNs by separating channel-wide interactions and
spatio-temporal interactions by introducing regularization measures into the
architecture to improve the overall accuracy. CSN are regarded as an efficient and
lightweight architecture, where the model interaction-reduced channel-separated
network (ir-CSN) using a ResNet-152 backbone reported a top-1 accuracy of
79.2% on the Kinetics-400 data set.

Feichtenhofer et al. [5] proposed the SlowFast networks framework. This con-
sisted of a fast and a slow stream. The fast stream was used for extracting tem-
poral motion features at a high frame rate, whilst the slow stream was used for
extracting spatial features at a low frame rate. These two streams were later fused
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by lateral connections, commonly seen in two-stream network models. However,
the architecture of SlowFast networks was fundamentally different to two-stream
networks since it was based on streams of different temporal frame rates and not
two separate streams of spatial and temporal features. The SlowFast network
provided a generic and efficient framework that could be applied to various
spatio-temporal architectures. Furthermore, the fast stream was lightweight as
the channel capacity was greatly reduced by only focusing on temporal features.
The proposed network used ResNet architecture as the backbone and achieved
a better performance than I3D and R2+1D on the Kinetics-400 data set.

Another similar framework was the Temporal Pyramid Network (TPN) pro-
posed by Yang et al. [30]. This used a pyramid structure for processing frames
at multiple feature levels to capture the variation in speed for different actions
- so called visual tempos. TPN had the ability to use various 3D or 2D archi-
tectures as the backbone, where the set of hierarchical features extracted by the
backbone undergoes down-sampling with a spatial module and a temporal rate
module for processing features rich in both visual tempos and spatial informa-
tion. These could then be aggregated by an information flow process. TPN used
a ResNet-101 backbone and achieved better performance in Kinetics-400 over
the SlowFast network.

3 Australian Rules Football Data Set

A well-defined and high-quality data set is crucial for action recognition tasks.
This should contain enough samples for deep neural networks to extract motion
patterns, and offer enough variance for different scenarios and camera positions
for performance analysis. No such data set exists for AFL, hence we construct
our own action recognition data set for AFL games. In this process, we referred to
some well-known data sets for video content understanding including Youtube-
8M [1], UCF 101 [20], Kinetics-400 [18], SoccerNet [8] and others. All the training
and testing videos used here were retrieved from YouTube.

As AFL games are popular in Australia, there are more than enough videos on
YouTube, including real match recordings, training session recordings, tutorial
guides etc. However, manually creating and labelling data from video content
(individual frames) is a challenging and time-consuming task. In order to feed
enough frames and information for temporal feature extraction into deep learning
models, we set the standard that each video clip should be at least 16 frames in
length and it should be not a long-distance shot with low resolution of action
tasks.

Players in an AFL match are highly mobile hence actions only exist for
a very limited amount of time and are often interfered with by other players
through tackles. As a result, actions sometime may end up in failure. This brings
significant challenges to the construction process of the data set, e.g. judging the
actual completeness of actions. This work focuses on recognizing the patterns
and features of attempted actions, and pays less attention to whether the action
has been completed or not. All action clips within the data set have a high level
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of observable features, where the actual completeness of those actions was less
of a concern.

In AFL games, some actions like marks (catching the ball kicked by a player
on the same team) have a specific condition that needs to be met. According
to AFL rules, a mark is only valid when a player takes control of the ball for
a sufficient amount of time, in which the ball has been kicked from at least
15 m away and does not touch the ground and has not been touched by another
player. We aim to identify specific action patterns based only on the camera
images and as such we do not consider the precision of whether the kicker was
15 m away. Marks can be separated into marks and contested marks, where the
latter is when multiple players attempt to catch (or knock the ball away) at the
same time.

The videos from YouTube comprise many meaningless frames. We clip videos
from longer videos and label them into five different classes:

(1) Kick: This class refers to the action whereby a player kicks the ball.
The ball could come from various sources: the player himself holding the ball in
front and dropping/kicking it, or kicking it directly off the ground.

(2) Mark: A player catches a kicked ball for sufficient time to be judged to
be in control of the ball and without the ball being touched/interfered with by
another player.

(3) Contested mark: Contested mark, is a special form of mark. This
refers to the action that one player is trying to catch the ball and one or more
opponents are either also trying to catch the ball at the same time or they are
trying to punch the ball away.

(4) Pass: A player passes (punches) the ball to another player in the same
team.

(5) Non-Action: This class includes players running, crowds cheering etc.
This class is used to control the model performance as during the match there
are many non-action frames. Without this class, the model would always try to
classify video content into the previous four classes.

The details of each class in the data set are shown in Table 1, and example of
each action class is shown in Fig. 1. Compared to other classes, the non-action
class has a relatively low number of instances in the data set. The reason is that
this class spans many different scenes, and too many instances in this class would
drive the attention of the model away from key features of the four key action
classes.

There are several challenges when using a data set for action recognition.
Some actions share the same proportion of representations. One example is mark-
ing and passing the ball. In a video clip of relatively long distance passing, if
the camera does not capture the whole passing process, e.g. it starts from some-
where in the middle, the representing features of this action might be similar to
a mark action, i.e. someone catches the ball. The data set could also be modified
by combing two classes of mark and contested mark, as sometimes it is hard to
identify a mark compared to a contested mark. If a player is trying to catch the
ball, and in the background an opponent is also trying to catch the ball, but
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Table 1. Number of instances of each class

Class # of instances

Training Testing Total

Kick 158 20 178

Contested mark 94 20 114

Mark 61 20 81

Pass 83 21 104

Non-action 66 21 87

Total 462 102 564

Fig. 1. Kick, contested mark, mark, completed pass
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they do have not any physical contact at any time from one angle it may be
considered as a mark. From a different camera angle, where there appears to be
some degree of physical contact, it might seem more like a contested mark.

4 Implementation and Discussion of Results

Given the complexity and diversity of the architectures mentioned above, we
use the Gluon CV toolkit [9]. This provides a Pytorch model implementation,
and importantly, the ability to train custom data sets. In order to fully utilize
the benefit of transfer learning and to compensate for the limited amount of
data, we used models pre-trained on largely scaled action recognition data sets
such as the Kinetics-400, and then fine-tune those models using the custom AFL
data set. The final implementation involves a slightly modified version of Gluon
CV which includes a few algorithmic alterations and some minor bug fixes. The
architectures and pre-trained models we used along with their specifications and
top-1 accuracy on Kinetics-400 are listed below in Table 2 [31]. Here R2+1D
ResNet-50 model was calculated using a 112 × 112 × 3 × 16 input data size,
R2+1D ResNet-152 model was calculated using a 112 × 112 × 3 × 32 input data
size, and all other models were calculated based on a 224 × 224 × 3 × 32 input
data size.

Table 2. Model specifications

Model Pre-trained #Mil parameters GFLOPS Accuracy (%)

I3D ResNet-50 ImageNet 28.863 33.275 74.87

I3D ResNet-101 Non-Local ImageNet 61.780 66.326 75.81

I3D SlowFast ResNet-101 ImageNet 60.359 342.696 78.57

R2+1D ResNet-50 – 53.950 65.543 74.92

SlowFast-8x8 ResNet-101 – 62.827 96.794 76.95

TPN ResNet-101 – 99.705 374.048 79.70

R2+1D ResNet-152* [7] IG65M 118.227 252.900 81.34

irCSN ResNet-152* [7] IG65M 29.704 74.758 83.18

All model architectures are in 3D. I3D and I3D SlowFast models were based
on inflated 2D ResNet pre-trained on ImageNet. irCSN and R2+1D ResNet-152
were pre-trained on IG-65M, and all other models were trained from scratch. All
models used the Kinetics-400 data set for training [9].

The final training dataset was randomly split into training and validation
data sets in the ratio of 70% and 30% respectively. A sub-clip of 16 frames was
evenly sampled from each video clip at a regular interval depending on the clip’s
length. The number of input frames was selected as most actions happen in a
short time period. If the sampled frames were less than 16, replacements would
be randomly selected from the rest of the frames. The sampled frames would
then be processed by standard data augmentation techniques, where it would
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be first resized to a resolution of 340 × 256, while R2+1D resized the frames
to 171 × 128. The frames were then subject to a random resize with bi-linear
interpolation and a random crop size 224 × 224. The crop size for R2+1D was
112×112. Following this, the frames were randomly flipped along the horizontal
axis with a probability of 0.5, and normalized with means of (0.485, 0.456, 0406)
and standard deviations of (0.229, 0.224, 0.225) with respect to each channel.

The training process used stochastic gradient descent (SGD) as the optimizer,
with custom values of learning rate, momentum and weight decay, which were
specific to each model. The value of learning rate plays a very important role
in the model training process, where the correct learning rates will allow the
algorithms to converge, whereas the wrong learning rates will result in the model
not generalizing at all. Since we fine-tune pre-trained models, the initial learning
rate was set much lower than the original model. The common values of the
learning rate were 0.01 and 0.001, with a momentum of 0.9, a weight decay of
1e−5, and learning rate policy set to either step or cosine, depending on each
model’s architecture and level of complexity. Cross entropy loss was used for the
model criterion with class weights taken into consideration since the training
data set was imbalanced between the different classes. The number of epochs
was set at 30 with an early stopping technique used to prevent over-fitting. The
epoch with the lowest validation loss was saved as the best weight.

The top-1 accuracy on the testing data set for the fine-tuned models is shown
in Table 3.

Table 3. Top-1 accuracy on the AFL test data set

Model Accuracy (%)

I3D ResNet-50 56.86

I3D ResNet-101 Non-local 61.77

SlowFast-8x8 ResNet-101 69.61

TPN ResNet-101 70.59

I3D SlowFast ResNet-101 71.57

R2+1D ResNet-50 72.55

irCSN ResNet-152 74.51

R2+1D ResNet-152 77.45

As seen, the best performing model was the R2+1D ResNet-152 model pre-
trained on the (very large) IG65M dataset. This achieved a top-1 accuracy of
77.45%. The final classification of action recognition results are shown in Table 4.
As seen, the classification for marks had the lowest recall of 0.55, while contested
marks had a recall of 0.85. This is possibly due to marks and contested marks
being difficult to distinguish in some circumstances due to the presence of other
players in the background. The classification for non-action has the lowest pre-
cision of 0.57 and the lowest f1 score of 0.65. The reason for this is that the
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non-action class is very broad and contains many sub-classes, such as scenes
of audiences and players running and cheering. Splitting the class into multiple
distinct classes in the future may improve the non-action accuracy. Among all
classes, the classification of kicks has the highest f1-score at 0.89, since a kick
has arguably the most distinct and recognizable features.

Table 4. Final classification results

Action Precision Recall F1-score

Kick 1.00 0.80 0.89

Contested mark 0.74 0.85 0.79

Mark 0.85 0.55 0.67

Pass 0.86 0.90 0.88

Non-action 0.57 0.76 0.65

The results for the top-1 accuracy of the AFL testing data set are gener-
ally consistent with the model performance using the Kinetics-400 dataset, how-
ever the R2+1D ResNet-50 model achieved some noteworthy improvements. The
model I3D ResNet-50 performed poorly with a top-1 accuracy of 56.86%, whilst
the model I3D ResNet-101 Non-Local only achieved an accuracy of 61.77%. It
might be inferred that the inflated 2D ResNets (I3D) are limited in their abil-
ity to capture spatio-temporal features, while R2+1D is more capable in this
regard as it utilizes the factorization of the 3D ResNet architecture. It was also
found that non-local blocks may not be suitable for Australian rules football, as
they are designed to capture long range temporal features. Actions in AFL are
relatively fast and diverse which results in the model under-performing.

It was found that the performance of models generally depends on their back-
bone architecture. The complexity of the ResNet architecture is closely related
to the prediction accuracy, hence it could be argued that the more complex the
architecture is, the more likely the model will generalize and make the right
predictions. Comparing ResNet-50 with ResNet-152, there is a significant differ-
ence in complexity and number of parameters, which could be one reason for
the relatively large performance difference. Another major factor to consider is
that both R2+1D ResNet-152 and irCSN used IG65M for model pre-training
and hence benefit from the very largely scaled data set. It is also interesting to
note that R2+1D uses a 112 × 112 resolution input after data augmentation,
whilst the rest of the models use a 224 × 224 input. Despite this R2+1D is still
able to produce some of the best results overall.

SlowFast and TPN networks both model visual tempos in video clips. When
incorporating I3D into SlowFast network, the model I3D SlowFast ResNet-101
performed evidently better than the other I3D models, indicating that the Slow-
Fast networks are capable at better extracting spatio-temporal features and that
modelling visual tempos improves the overall model performance. However, Slow-
Fast is a more strict framework that limits the number of frames of different
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streams, whilst TPN is more flexible due to its pyramid structure. As a result,
TPN ResNet-101 performed slightly better than SlowFast ResNet-101.

There are several important limitations to the presented models. Firstly,
incomplete actions will likely be classified as actions. As shown in Fig. 2(a), an
incomplete contested mark has been classified as a contested mark. This is due
to the incomplete action sharing a lot of similar features to a completed action.
The model does not always possess the ability to recognise whether the ball has
been cleanly caught (or not). Secondly, the model tends to perform poorly in
complex scenes and environments. From Fig. 2(b), it can be seen that there are
many players present in the background and a player is tackling another player
who has the ball. In this case, the model mis-classifies the scenario into a pass
as it is similar to the scenarios of pass in the training data set.

(a) Incomplete contested mark (b) Realistic complex environment

Fig. 2. Mis-classified actions

5 Team Identification and Associated Limitations

Many action events depend on distinguishing teams, e.g. a completed pass
requires the ball to be passed by a player within the same team. Team iden-
tification is thus important to any Australian football model. In this work, we
utilize the You-Only-Look-Once (YOLO) v5 [14] framework and the DeepSORT
algorithm [29] to identify and track multiple objects at the same time. The imple-
mentation of this module inputs raw frames to be classified, filters and then keeps
player location information in each frame. The DeepSORT algorithm is capable
of tracking object movement across different frames, and assign unique IDs to
team players.

As with many team sports, AFL players wear team jerseys with colors rep-
resenting their team. In this way, audiences are able to identify (distinguish)
players from the two teams. We apply color distribution extractors to images to
extract the differences in player jersey colors. The distribution can then be used
as an input to construct a high-dimensional features such as KMeans clustering
[16] to cluster players into groups. A screenshot of the results of the application
is shown in Fig. 3.
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Fig. 3. Team identification classification example

The performance of this module is limited by the resolution of the video.
With a higher resolution, the jersey color of players in the foreground is clear but
those in the far background is less clear. Another challenge faced is rapid camera
movement and viewpoint changes. In real matches, sudden viewpoint changes
from long-distance views to close-up views (and vice versa) happens continually.
Ideally (from the model perspective) there would be a single camera angle - akin
to what a spectator sees in a game, but this never happens in reality when games
are shown on television. These continuous viewpoint changes make it challenging
to track a specific player’s movement. Nevertheless, the team identification is
able to distinguish the teams within a few milliseconds. The performance of the
system also greatly depends on teams wearing clearly identifiable jerseys. This
is always the case however so does not limit the model. If players get especially
muddy for example this might be an issue, but this is a rarity in Australia.

6 Conclusions and Future Work

This paper explored the feasibility of action recognition for Australian rules foot-
ball using 3D CNN architectures. Various action recognition models including
state-of-the-art models pre-trained on large-scale data sets were utilised. We fine-
tune those models on a newly developed AFL data set, and reported a 77.45%
top-1 accuracy for the best performing model R2+1D ResNet-152. A smoothing
strategy allowed the algorithm to localize the frame range for actions in long
video segments. We also developed a team identification solution and an action
recognition application that showed both the potential and viability of applying
real time end-to-end action recognition to AFL matches.

There are many future extensions to the work. The team identification frame-
work opens up further improvements on action recognition in AFL matches
for specific teams. Actions such as pass and contested mark require additional
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team information in order to be classified correctly. Moreover, the use of atten-
tion mechanisms in machine learning and use of transformers such as Bidirec-
tional Encoder Representations from Transformers (BERT) [21] has the ability
to model contextual information with mechanisms for self attention. This could
be useful in scenes that contain multiple players and allow to achieve a higher
prediction accuracy.

Examples of the application of the models and the source code are
available at: https://youtu.be/I7490fyuiK8 and https://github.com/stephenkl/
Research-project respectively. This research was undertaken using the LIEF
HPC-GPGPU Facility hosted at the University of Melbourne. This Facility was
established with the assistance of LIEF Grant LE170100200.
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Abstract. Stance detection is an important task in opinion mining,
which aims to determine whether the author of a text is in favor of,
against, or neutral towards a specific target. By now, the scarcity of
annotations is one of the remaining problems in stance detection. In
this paper, we propose a Stance-Emotion joint Data Augmentation with
Gradual Prompt-tuning (SEGP) model to address this problem. In order
to generate more training samples, we propose an auxiliary sentence
based Stance-Emotion joint Data Augmentation (SEDA) method, for-
mulate data augmentation as a conditional masked language modeling
task. We leverage different relations between stance and emotion to con-
struct auxiliary sentences. SEDA generates augmented samples by pre-
dicting the masked words conditioned on both their context and auxiliary
sentences. Furthermore, we propose a Gradual Prompt-tuning method
to make better use of the augmented samples, which is a combination
of prompt-tuning and curriculum learning. Specifically, the model starts
by training on only original samples, then adds augmented samples as
training progresses. Experimental results show that SEGP significantly
outperforms the state-of-the-art approaches.

Keywords: Stance detection · Data augmentation · Curriculum
learning

1 Introduction

The goal of stance detection is to classify a piece of text as either being in
support, opposition, or neutrality towards a given target, the target may not
be directly contained in the text. With the rapid development of social media,
more and more people post online to express their support or opposition towards
various targets. Stance detection is known to have several practical application
areas such as polling, public health surveillance, fake news detection, and so
on. These conditions motivate a large number of studies to focus on inferring
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Table 1. Examples of stance detection task.

Text Stance

Wearing a mask is common sense and kind to your fellow
human. We all have to do our part to slow the spread of
COVID-19

Favor

Spend the day outside, get some sun and fresh air. Without a
face mask. Best way to keep up your immune system

Against

Any skincare suggestions for breakouts because of face masks? Neutral

the stances of users from their posts. Table 1 shows some examples on target
“Wearing a Face Mask”, annotated with the stance labels.

One of the biggest challenges in stance detection task is the scarcity of anno-
tated samples. Data augmentation is commonly used to address data scarcity,
which aims to generate augmented samples based on limited annotations. Zhang
et al. [37] replace words with WordNet [19] synonyms to get augmented sen-
tences. Wei et al. [33] propose EDA, which is a combination of token-level aug-
mentation approaches. These methods are effective, but the replacement strate-
gies are simple, thus can only generate limited diversified patterns. To enhance
the consistency between augmented samples and labels, Wu et al. [35] propose
CBERT, the segmentation embeddings of BERT [11] are replaced with the anno-
tated labels during augmentation. However, these methods fail to take targets
into consideration. To solve this problem, Li et al. [16] propose ASDA, which
uses the conditional masked language modeling (C-MLM) task to generate aug-
mented samples under target and stance conditions.

Although ASDA [16] achieves highly competitive performance, there still
exist two limitations. First, they neglect the emotional information during aug-
mentation. It should be noted that emotion can affect the judgment of stance.
There exists a number of studies that use emotional information to assist stance
detection and achieve good results [6,14,20]. Thus, we posit that in addition
to stance and target information, the introduction of emotional information
through auxiliary sentences can further improve the label consistency of aug-
mented samples. Second, they neglect the linguistic adversity problem [17,31]
during training. This problem is introduced by data augmentation method and
therefore can be seen as a form of noising, where noised data is harder to learn
from than unmodified original data.

In this paper, we propose a Stance-Emotion joint Data Augmentation with
Gradual Prompt-tuning (SEGP) model to address the above limitations. Specif-
ically, we present an auxiliary sentence based Stance-Emotion joint Data Aug-
mentation (SEDA) method that generates target-relevant and stance-emotion-
consistent samples based on C-MLM task. We suppose that there are “Consis-
tency”, “Discrepancy” and “None” relations between stance and emotion. The
auxiliary sentences are constructed on the premise of these relations as well as the
target. With the help of C-MLM task, SEDA augment the dataset by predicting
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the masked words conditioned on both their context and the auxiliary sentences.
Furthermore, to address the linguistic adversity problem in augmented samples,
we propose a Gradual Prompt-tuning method, which combines prompt-tuning
with curriculum learning to train our model. We design a template that contains
target and stance information. After that, we create an artificial curriculum in
the training samples according to the disturbance degree in data augmentation.
Starting by training on original samples, we feed augmented samples with a
higher level of noising into the model as training progresses. The model learns
to explicitly capture stance relations between sentence and target by predicting
masked words. Our main contributions can be summarized as follows:

– We propose a Stance-Emotion joint Data Augmentation (SEDA) method,
which introduces emotional information in the conditional data augmentation
of stance detection.

– We further propose a Gradual Prompt-tuning method to overcome the linguis-
tic adversity problem in augmented samples, which combines prompt-tuning
with curriculum learning.

– Experimental results show that our methods significantly outperform the
state-of-the-art methods.

2 Related Work

2.1 Stance Detection

Stance detection aims to automatically infer the stance of a text towards specific
targets [1,13], which is related to argument mining, fact-checking, and aspect-
level sentiment analysis. Early stance detection tasks concentrate on online
forums and debates [27,29]. Later, a series of studies on different types of tar-
gets emerge. The targets become political figures [15,26], controversial topics [7],
and so on. At present, the research tasks are mainly divided into three types,
in-target stance detection [36], cross-target stance detection [3], and zero-shot
stance detection [2]. In this paper, we focus on in-target stance detection, which
means the test target can always be seen in the training stage.

2.2 Data Augmentation

Lexical substitution is a commonly used augmentation strategy, which attempts
to substitute words without changing the meaning of the entire text.

The first commonly used approach is the thesaurus-based substitution, which
means taking a random word from the sentence and replacing it with its synonym
using a thesaurus. Zhang et al. [37] apply this and search synonyms in WordNet
[19] database. Mueller et al. [21] use this idea to generate additional training
samples for their sentence similarity model. This approach is also used by Wei
et al. [33] as one of the four random augmentations in EDA.

The second approach is the word-embedding substitution, which replaces
some words in a sentence with their nearest neighbor words in the embedding
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space. Jiao et al. [10] apply this with GloVe embeddings [23] to improve the
generalization of their model on downstream tasks, while Wang et al. [30] use it
to augment tweets needed to learn a topic model.

The third approach is based on the masked language model, which has to
predict the masked words based on their context. Therefore, the model can
generate variations of a text using the mask predictions. Compared to previous
approaches, the generated text is more grammatically coherent as the model
takes context into account when making predictions. Grag et al. [8] use this idea
to generate adversarial samples for text classification. Wu et al. [35] formulate the
data augmentation as a C-MLM task. Li et al. [16] propose an Auxiliary Sentence
based Data Augmentation (ASDA) method that generates samples based on C-
MLM task. Inspired by ASDA, we investigate how to introduce more information
via auxiliary sentences.

2.3 Curriculum Learning

Curriculum learning is proposed by Bengio et al. [4], which is a training strategy
that imitates the meaningful learning order in human curricula. It posits that
models train better when training samples are organized in a meaningful order.
In the beginning, researchers assume that there exists a range of difficulties in
the training samples [28,34]. They leverage various heuristics to sort samples by
difficulty and train models on progressively harder samples. Korbar et al. [12]
propose instead of discovering a curriculum in existing samples, samples can be
intentionally modified to dictate an artificial range of difficulty. Wei et al. [32]
combine this idea with data augmentation and propose a curriculum learning
strategy, but the performance is still constricted by the gap of objective forms
between pre-training and fine-tuning.

2.4 Prompt-Tuning

Pre-trained language models like GPT [5] and BERT [11] capture rich knowledge
from massive corpora. To make better use of the knowledge, prompt-tuning
is proposed. In prompt-tuning, downstream tasks are also formalized as some
objectives of language modeling by leveraging language prompts. The results of
language modeling can correspond to the solutions of downstream tasks. With
specially constructed prompts and tuning objectives [18,24], we can further inject
and stimulate the task-related knowledge in pre-trained models, thus boosting
the performance. To our knowledge, there is currently a lack of research on
applying prompt-tuning to the stance detection task.

3 Method

In this section, we first introduce the variables and definitions that appear in this
paper. Then provide the overall architecture of SEGP and explain it in detail.
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Fig. 1. The overall architecture of SEGP, where α represents the degree of disturbance
in the augmentation stage. Solid arrows indicate Stance-Emotion joint Data Augmen-
tation stage and dashed arrows indicate Gradual Prompt-tuning stage.

3.1 Preliminaries

We first give some essential preliminaries. Suppose a given training dataset
of size n is Dtrain = {X,S, T,E}, where X = {x1, x2, . . . , xn} is the set of
input samples. For each xi ∈ X, it consists of a sequence of l words xi =
[w1

i , w2
i , . . . , wl

i]. We define a stance label set S =
(
s1, s2, . . . , s|M |

)
, a target

set T =
(
t1, t2, . . . , t|C|

)
and an emotional label set E =

(
e1, e2, . . . , e|N |

)
,

where the values of |M |, |C| and |N | depend on the dataset settings.

3.2 Overall Architecture

In this paper, we propose a Stance-Emotion joint Data Augmentation with Grad-
ual Prompt-tuning (SEGP) model, and the overall architecture is shown in Fig. 1.
SEGP consists of two stages, as we can see from Fig. 1, they are indicated by
solid arrows and dashed arrows respectively. The first stage is to get more train-
ing samples using the SEDA method. The second is the training stage, which
uses the Gradual Prompt-tuning method to overcome the linguistic adversity
problem in augmented samples.

3.3 Stance-Emotion Joint Data Augmentation

The objective of a data augmentation method is to generate training samples
based on the existing limited annotations. In this paper, we propose a novel
conditional data augmentation method called SEDA, which is based on C-MLM
task. We leverage stance, emotion, and target information to construct auxil-
iary sentences. SEDA generates target-relevant and stance-emotion-consistent
augmented samples by predicting masked words conditioned on context and
auxiliary sentences.
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Construction of Auxiliary Sentences. Many approaches achieve better
results by taking emotional information as auxiliary information. It should be
noted that stance could be inferred independently from the emotional state, the
emotions contained in a text may be positive but expresses an opposition stance
to a given target. This is due to the complexity of interpreting a stance because it
is not always directly consistent with the emotional polarity. We analyze the dis-
tribution of stance and emotional labels in COVID-19-Stance dataset. As shown
in Fig. 2, there is a large gap in the distribution of these two types of labels.

Fig. 2. Stance and emotion distribution in COVID-19-Stance dataset.

Our research is based on stance label set S = {“Neutral”, “Against”, “Favor”}
and emotional label set E = {“None”, “Negative”, “Positive”}. In order to inte-
grate these two types of information, we define a cross label set C = {S − E},
which is generated by stance label s and emotional label e. For example, given
s=“Favor” and e=“Negative”, we can obtain the cross label c=“Favor-Negative”.
Before constructing auxiliary sentences, we put forward the following relations
between stance and emotion:

– Consistency: When cross label c is in {“Favor-Positive”, “Against-Negative”,
“Neutral-Positive”, “Neutral-Negative”}, we suppose that the stance is con-
sistent with emotion, so emotional information can be directly introduced
into the auxiliary sentence.

– Discrepancy: When cross label c is in {“Favor-Negative”, “Against-Positive”},
we suppose that there is a difference between stance and emotion, so we need
to consider this contradiction when constructing auxiliary sentences.

– None: When the emotional label e = “None”, we suppose that the emotional
information is not helpful. In this case, the auxiliary sentence only needs to
introduce stance information.

Therefore, we leverage the above mentioned relations to construct three kinds
of auxiliary sentences regarding target, stance, and emotion. We also place slots
in the auxiliary sentences, {ai} is used to fill target words, {si} is used to fill
stance label, and {ei} is used to fill emotional label. Experiments show that gram-
mar correctness is not important. Table 2 shows how to select the corresponding
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auxiliary sentence according to a cross label. After obtaining the auxiliary sen-
tence, we prepend both another training sample xj that has the same target
and cross label with xi. The complete input form for each training sample xi is:
Auxiliary sentence+xj+“the text is”:+xi.

Table 2. Correspondence between relations, cross labels, and auxiliary sentences.

Relations Cross labels Auxiliary sentences

Consistency Favor-Positive
Against-Negative
Neutral-Positive
Neutral-Negative

The following texts have {si} stance
and {ei} emotion to {ai}.

Discrepancy Favor-Negative
Against-Positive

Although the emotion is {ei}, the
following texts are both {si} to {ai}.

None Favor-None
Neutral-None
Against-None

The following texts have {si} stance
to {ai}.

For example, given the input xi: I don’t need to wear a mask to live a healthy
life. with the stance label s = “Against” and emotional label e = “Positive”.
The corresponding target is “Wearing a face mask”. First, we get its cross label c
= “Against-Positive” and choose the discrepancy auxiliary sentence. Second, we
find another training sample xj : The death rate is falling so fast, we don’t need to
wear masks at all. So the complete input is: Although the emotion is {positive},
the following texts are both {against} to {wearing a face mask}. The death rate
is falling so fast, we don’t need to wear masks at all. The text is: I don’t need
to wear a mask to live a healthy life. The introduction of the auxiliary sentence
and xj not only helps to generate more diversified samples, but also provides a
strong guideline to help generate target-relevant and label-compatible samples.

Data Generation. We fine-tune the pre-trained model via C-MLM task. For a
training sample xi from X, we specify that the model can only randomly mask
words in the input sample xi and the mask radio is α. Because we want to
preserve all of the target, stance, and emotional information. After prepending
the corresponding auxiliary sentence and xj to obtain the masked sentence, a
pre-trained language model like BERT is used to predict the masked words. The
prediction of masked words depends not only on the context of xi, but also on
their target, stance, and emotion.

After fine-tuning the model on the training dataset for a few epochs, we use
the well-trained model for augmentation. Similar to the fine-tuning procedure,
the model randomly masks words of the training sample, then prepend the aux-
iliary sentence and another training sample. The model is used to predict the
masked words, we repeat these steps over training samples to get augmented
samples.
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3.4 Gradual Prompt-Tuning

In this paper, we apply the training strategy of curriculum learning to prompt-
tuning. We aim to solve the linguistic adversity problem [17,31] in augmented
samples as well as make better use of the knowledge contained in pre-trained
language models.

Prompt-Tuning. In order to bridge the gap of objective forms between pre-
training and fine-tuning, prompt-tuning is proposed. By tuning a pre-trained
language model with the cloze-style task, prompt-tuning can manipulate the
model behavior to fit various downstream tasks that more fully utilize task-
related knowledge in pre-trained language models. Formally, prompt is consists
of a template P (·) and a set of stance labels S. For stance detection task, a pre-
trained language model uses input sentences and prompt to predict the stance
label for a given target. In order to provide more information, we place two slots
into the template, {ti} is used to fill target words, and [MASK] is for the model
to fill a label word. We set the template P (·) = “The stance to {ti} is [MASK]”,
and map x to the prompt input xprompt = x+“The stance to {ti} is [MASK]”.
After that, xprompt is fed into a pre-trained model.

The model first converts the input xprompt =
(
w1

i , w2
i , . . . , [MASK], . . . , wl

i

)

to sequence
(
[CLS], w1

i , w2
i , . . . , [MASK], . . . , wl

i, [SEP ]
)
, then compute the

hidden vector h[MASK] of [MASK]. Given s ∈ S, the model calculates the prob-
ability for s can fill the masked position, where s is the embedding of s in a
pre-trained language model. The probability is calculated as follows:

p ([MASK] = s | xprompt) =
exp

(
s · h[MASK]

)

∑
s∈S exp

(
s · h[MASK]

) (1)

There also exists an injective mapping function ϕ that bridges the set of classes Y
and the set of label words S, we define ϕ = Y → S. With the verbalizer ϕ, we can
formalize the probability distribution over Y with the probability distribution
over S at the masked position. i.e., p(y | x) = p([MASK] = φ(y) | xprompt).
We map the supporting stance to “Favor”, the opposing stance to “Against”
and other stances to “Neutral”. According to model fills the masked position of
xprompt with “Favor”, “Against” or “Neutral”, we can get the stance of x. For
prompt-tuning, with a template P(·), a label set S and verbalizer ϕ, the learning
objective is to maximize 1

|X|
∑

x∈X log p ([MASK] = φ (yx) | P (x)).

Curriculum Learning. The data augmentation method might introduce lin-
guistic adversity and can be seen as a form of noising, where noised data is
harder to learn from than unmodified original data. Curriculum learning posits
that the model train better when training samples are organized in a meaningful
order that gradually shows more concepts and complexity. Therefore, we apply
the training strategy of curriculum learning to prompt-tuning. We define the
mask radio 0.0 ≤ α ≤ 0.15 as disturbance degree for SEDA stage, create an
artificial curriculum in training samples according to the disturbance degree of
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the augmented samples. A larger mask ratio α represents a larger variation in
the training samples, thus harder to learn from than unmodified original sam-
ples. During training, we begin with a disturbance degree of α = 0.0 (equivalent
to no augmentation), then linearly increase α by 0.05 every time validation loss
plateaus, up to a final of α = 0.15.

4 Experiment

In this section, we first present the dataset used for evaluation and several base-
line methods. Then introduce experimental details and analyze the results.

4.1 Dataset and Baseline Methods

We carry out experiments on the stance detection dataset COVID-19-Stance [9],
which is collected by crawling Twitter, using Twitter Streaming API. It contains
the tweets of four targets (i.e., “Stay At Home Orders”, “Wearing a Face Mask”,
“Keeping Schools Closed” and “Anthony S. Fauci, M.D”), and the stance label
of each tweet is either “Favor” or “Against” or “Neutral”.

We compare SEGP with the following baseline methods:

– BiLSTM [25]: Bi-Directional Long Short Term Memory Network takes tweets
as input and is trained to predict the stance towards a target, without explic-
itly using the target information.

– CT-BERT [22]: A pre-trained language model that predicts the stance by
appending a linear classification layer to the hidden representation of [CLS]
token, pre-trained on a corpus of messages from Twitter about COVID-19.

– CT-BERT-v2 [22]: It is identical to CT-BERT, but trained on more data,
resulting in higher downstream performance.

– EDA [33]: A simple data augmentation method that consists of four oper-
ations: synonym replacement, random deletion, random swap, and random
insertion.

– ASDA [16]: A data augmentation method that generates target-relevant and
label-consistent data samples based on C-MLM task.

4.2 Experimental Results

SEGP is implemented based on CT-BERT-v2 [22], using a batch size of 8. The
learning rate of Adam optimizer is 1e−5 and the maximum sequence length is
256. Experimental results are shown in Table 3, the best model configuration is
selected according to the highest performance on the development set.

We first compare SEGP with BiLSTM [25], CT-BERT [22] and CT-BERT-v2
[22]. It can be seen that SEGP is superior to all baselines in accuracy and F1
score, which demonstrates the validity of our model in stance detection tasks.
Besides, we compare SEGP with different data augmentation methods, i.e., EDA
and ASDA. We can observe that SEGP performs the best, while EDA and ASDA
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methods have limited improvement in performance. Furthermore, when target
= “Anthony S. Fauci, M.D.”, the result is even worse than CT-BERT that only
trained on original samples.

SEGP has better performance on all targets, which proves it can not only
generate more diversified samples but also have the ability to overcome the
linguistic adversity problem and better utilize task-related knowledge in pre-
trained language models.

Table 3. Performance of SEGP and different baseline methods for stance detection on
four targets in the COVID-19-Stance dataset. The performance is reported in terms of
accuracy(Acc), precision(P), recall(R), and F1 score(F1). We highlight the best results
in bold.

Model Wearing a face mask Stay at home orders

Acc P R F1 Acc P R F1

BiLSTM 57.80 56.90 58.00 56.70 73.50 67.90 64.00 64.50

CT-BERT 81.00 81.80 80.30 80.30 84.30 81.60 78.80 80.00

CT-BERT-v2 81.25 80.49 81.99 80.13 86.00 82.56 88.00 84.78

EDA 81.50 79.77 78.61 79.07 85.50 81.96 84.50 83.09

ASDA 82.50 80.96 80.24 80.53 87.00 83.04 85.09 83.99

SEGP 84.50 83.20 83.49 83.34 89.00 86.33 89.37 87.71

Model Anthony S. Fauci, M.D. Keeping schools closed

Acc P R F1 Acc P R F1

BiLSTM 63.80 63.90 63.10 63.00 62.70 57.00 54.50 54.80

CT-BERT 81.70 81.60 83.00 81.80 77.20 76.50 76.10 75.50

CT-BERT-v2 80.25 80.16 81.36 80.42 81.00 78.81 79.14 78.85

EDA 80.50 80.82 81.01 80.55 83.00 80.92 81.66 80.98

ASDA 81.00 81.49 81.04 81.06 83.50 81.29 80.95 81.01

SEGP 82.50 82.60 82.57 82.57 86.00 84.04 84.45 84.23

4.3 Analysis of Stance-Emotion Joint Data Augmentation

We conduct experiments to prove the following two points: (1) the effectiveness
of introducing emotional information into data augmentation; (2) the effective-
ness of introducing emotional information through different types of auxiliary
sentences.

In order to prove the first point, we compare the results of Stance-Emotion
joint Data Augmentation (SEDA) with ASDA, which does not take emotional
information into account. We present several augmented samples generated by
these two methods in Table 4. It can be observed that the generated words of
SEDA are more consistent with the label information. Furthermore, according
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to the experimental results in Table 5, SEDA outperforms ASDA on all targets,
which further demonstrates the validity of emotional information.

Table 4. Examples generated by ASDA and SEDA. Italicized texts represent generated
words.

Target Wearing a face mask

Source In the USA, Walmart will now serve mask-less customers.
Hopefully the same will happen in the UK

ASDA In the USA, Walmart will today serve mask-less customers.
Hopefully the fight will spread in the UK

SEDA In the USA, Walmart will now serve mask-less customers.
Hopefully the same will happen sooner to the globe

In order to prove the second point, we compare the results of using differ-
ent auxiliary sentences. The auxiliary sentences are constructed based on the
relations between stance and emotion. “Consistency only” means we only use
the “Consistency” relation between stance and emotion to introduce emotional
information, thus SEDA(Consistency only) only contains the auxiliary sentence: The
following texts have {si} stance and {ei} emotion to {ai}. “Discrepancy only”
means we only use the “Discrepancy” relation, thus SEDA(Discrepancy only) only
contains: Although the emotion is {ei}, the following texts are both {si} to {ai}.
SEDA is what we propose in this paper, which introduces emotional informa-
tion based on “Consistency”, “Discrepancy” and “None” relations. Therefore, as
shown in Table 2, SEDA contains three types of auxiliary sentences. The exper-
imental results in Table 5 show the performance impact of different auxiliary
sentences, we can see that SEDA performs the best, indicating the effectiveness
of the way we introduce emotional information.

4.4 Analysis of Gradual Prompt-tuning

We further explore the effectiveness of curriculum learning by comparing SEGP
with SEP, which does not use the training strategy of curriculum learning. Cur-
riculum learning requires a series of training samples with different disturbance
degrees. In our method, the disturbance degree is determined by the mask ratio α
in augmentation stage. Therefore, the artificial curriculums in the training sam-
ples are created according to α. Experimental results are shown in Table 6, which
indicates that we can further improve performance by combining prompt-tuning
with curriculum learning.
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Table 5. Performance comparison of introducing emotional information in different
ways. We highlight the best results in bold.

Model Wearing a face mask Stay at home orders

Acc P R F1 Acc P R F1

ASDA 82.50 80.96 80.24 80.53 87.00 83.04 85.09 83.99

SEDA(Consistency only) 81.50 79.57 80.18 79.83 86.50 83.05 86.40 84.51

SEDA(Discrepancy only) 80.50 78.98 77.74 78.25 86.00 82.33 86.68 84.17

SEDA 83.50 82.50 82.26 82.36 87.50 84.51 86.32 85.36

Model Anthony S. Fauci, M.D. Keeping schools closed

Acc P R F1 Acc P R F1

ASDA 81.00 81.49 81.04 81.06 83.50 81.29 80.95 81.01

SEDA(Consistency only) 80.00 79.93 81.17 80.32 83.50 80.89 81.51 81.14

SEDA(Discrepancy only) 80.50 80.31 81.66 80.79 82.00 80.38 81.77 80.85

SEDA 82.00 82.11 82.20 82.09 85.50 83.79 83.09 83.40

Table 6. Performance comparison of applying different training strategies. We high-
light the best results in bold.

Model Wearing a face mask Stay at home orders

Acc P R F1 Acc P R F1

SEP 83.50 82.50 82.26 82.36 87.50 84.51 86.32 85.36

SEGP 84.50 83.20 83.49 83.34 89.00 86.33 89.37 87.71

Model Anthony S. Fauci, M.D. Keeping schools closed

Acc P R F1 Acc P R F1

SEP 82.00 82.11 82.20 82.09 85.50 83.79 83.09 83.40

SEGP 82.50 82.60 82.57 82.57 86.00 84.04 84.45 84.23

5 Conclusion

In this paper, we propose SEGP to address the scarcity of annotations problem in
stance detection. SEGP is mainly composed of two stages, i.e., Stance-Emotion
joint Data Augmentation (SEDA) and Gradual Prompt-tuning. With the help of
C-MLM task, SEDA generates target-relevant and label-compatible samples by
predicting the masked word conditioned on both their context and the auxiliary
sentences. Gradual Prompt-tuning can make better use of the augmented sam-
ples as well as the knowledge contained in pre-trained models. The experimental
results show that SEGP obtains superior performance over all baseline methods.
Since our methods are not designed for a certain model, we will investigate how
to extend them to other tasks in the future.
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Abstract. In this study, we present the confirmation of existence of the
correlation of the image features with the computer game level Impres-
sion Curve. Even a single image feature can describe the impression value
with good precision (significant strong relationship, Pearson r > 0,5).
Best results were obtained using by combining several image features
using multiple regression (significant very strong positive relationship,
Pearson r = 0,82 at best). We also analyze the different set of image fea-
tures at different level design stages (from blockout to final design) where
significant correlation (strong to very strong) was observed regardless of
the level design variant. Thanks to the study results, the user impression
of virtual 3D space, can be estimated with a high degree of certainty by
automatic evaluation using image analysis.

Keywords: Image analysis · Virtual reality · Impression curve · Level
design · Automatic evaluation

1 Introduction

In [1] study, we have shown that Virtual Reality space affects different users in
a similar way. That sense can be stored and described as Impression Curve1 for
this space. Therefore, Impression Curve can be used in 3D VR space evaluation
such as 3D level design. Still, it requires tests with many users to gather proper
data. It would be a great improvement if designers could estimate the sense of
3D space during the development process and then verify it at the end with
the users. Especially with the growing popularity of level designs generated by
1 Impression Curve is a measure of the visual diversity and attractiveness of a game

level. It assesses subjective attraction of a given space. For the detailed information
about the Impression Curve, its acquisition method, its strengths and weaknesses in
the domain of the 3D space evaluation, please refer to [1].
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algorithms [16]. We focused our efforts to provide such computationally low cost
tool for 3D space evaluation in the context of estimating user experience.

The purpose of the research was to verify the existence of the correlation of
the image features (gathered using automatic image analysis) with the Impres-
sion Curve (obtained during previous studies conducted on 112 people). The
study described in this article involves examining the impact of various image
features such as mean brightness and contrast, features based on saliency and
movement maps (such as complexity or density), as well as descriptive statistics
like entropy, skewness and kurtosis.

The contributions to research concerning automatic evaluation of the immer-
sive Virtual Reality space, especially in case of the Impression Curve estimation
presented in this article, are:

– Confirmation of the existence of a correlation between data gathered using
image analysis and user-generated Impression Curve.

– Tests verifying the correlation between individual image feature and the
Impression Curve for the VR space.

– Tests verifying the correlation between combined image features and the
Impression Curve for the VR space.

– Analysis of usability of each image features depending on the level design
stages and changing factors of the 3D space.

– Proposition of the best image features (with the highest correlation values
with Impression Curve) for evaluation of individual level design stages.

We start with a related work overview in the domain of image analysis for
feature extraction in the next section. Then we describe hypotheses and an eval-
uation method. Next, both test results and their discussion will be presented, as
well as observations about data gathered. Finally, ideas for further development
and final conclusions will be given.

2 Image Features

There are many image features available to consider in terms of image analysis
for automatic feature extraction and image description. Our goal was to test
as diverse set of features as possible. The three groups of features were used:
color and luminance-based (such as mean brightness, mean color contrast) [6],
features based on saliency and motion maps (such as balance and density) [5],
as well as descriptive statistics (entropy, skewness and kurtosis) [7]. Therefore,
a total of thirteen features were selected for this study:

– Color and luminance group: Average Contrast, Average Luminance and
Average Saturation.

– Saliency and motion maps group: Alignment Complexity, Balance Com-
plexity, Density Complexity, Grouping Complexity, Size Complexity and
Total Complexity.

– Descriptive statistics group: Entropy, Kurtosis, Skewness and Fractal
Complexity.
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For the calculations of the image Average Contrast, Average Luminance
and Average Saturation, the definitions for the HSL color palette were used.
Average Contrast was calculated using the mean square of the Luminance of
individual pixels [6].

Image features from the second group are based on classification and analysis
of areas indicated in saliency maps [2] and motion maps [8]. Those maps are com-
bined (with a weight of 50% of each, as we considered them equally important)
and classified to be used with the metrics described in [5]. This stage requires
the greatest number of computations. We start with the creation of the saliency
map using the fast background detection algorithm [2], which is then denoised
using the method described in [3]. The result is a black and white image, with
white pixels representing the relevant ones. A motion map is created as a differ-
ence of the pixels of two subsequent video frames converted to grayscale with a
Gaussian blur applied to them (which allows limiting the influence of details and
noise on motion detection) [4]. The resulting image is denoised and thresholded
to obtain a black and white image and combined with the saliency map to obtain
the final visual attention saliency map [14]. Then the classification of regions,
objects and their contours as well as shape recognition is made.

Regions of attention (representing grouped objects) and their centroids are
calculated using K-Means with 30 starting points (pixels) picked randomly
on visual attention saliency map white pixels. For each iteration, the closest
region centroid for each point is calculated and the region centroid weights
are updated. The algorithm runs for 1000 epochs or until each region centroid
remains unchanged in two subsequent epochs. During this process, centroids,
which for two ages were not the closest one for any point, are permanently
removed from the set to optimize the calculations. Centroids calculated for one
frame become the starting points for the next frame, with one new random
starting point added (to allow the new area recognition).

Objects of attention are found by applying erosion filter and OpenCV shape
detection [10] on the final visual attention saliency map. Next, the object’s con-
tour is calculated using the contour approximation method [10]. For each of the
identified object, a centroid is calculated. Please note that object’s centroid is
usually different from region centroid, as one region can contain many objects.

Localized object’s contours are therefore used for shape recognition [10]. Only
simple geometric shapes are taken into account, and every object with a number
of vertices greater than or equal to five is classified as a circle (for the purpose
of further analysis).

All of the above final visual attention saliency map characteristic is then
used with the metrics for UI complexity analysis described in [5]. Each metric
gives a final score in the range [0,1] where a score closer to zero means less
complexity. The Alignment Complexity determines the complexity of the
interface in terms of the position of the found shapes relative to each other. The
evaluation consists of the calculation of the local and global alignment coefficients
for grouped and ungrouped objects. The Density Complexity determines the
comparison of the visual attention object size to the entire image frame size.
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The Balance Complexity describes the distribution of visual attention objects
on the quarters of the screen. It is calculated as the arithmetic mean of two
mean values: the proportion of the number of objects between pairs of quarters
and the proportion of the size of objects between pairs of quarters. The Size
Complexity is calculated due to the grouping of objects on the screen in terms
of shape. For each shape type, the number of occurrences of the size of objects
is checked. Then The sum of the occurrences of unique object regions is divided
by the number of objects in the particular group of shapes. The Grouping
Complexity determines how many of the objects are grouped into shape type
groups. It is the sum of the ratio of ungrouped objects to all occurring and the
number of groups of shapes occurring in the region of objects from all possible
shapes types. The Total Complexity is a combined metric of all previous with
weights as proposed in [5]:

TotalComplexity =
0, 84 × Alignment + 0, 76 × Balance+
0, 8 × Density + 0, 72 × Size + 0, 88 × Grouping

(1)

The third group of image features is based on statistical descriptors of a data
set’s distribution. The Skewness is a measure of the asymmetry of a distribution
of the mean. The higher the Skewness, the more asymmetric data distribution.
The Kurtosis is a measure of how results are concentrated around the mean. The
high Kurtosis value would suggest outliers in the data set and low Kurtosis value
the lack of outliers [11]. The Entropy of an image is used as a measure of the
amount of information it contains [7]. The more detailed the image, the higher
the value of the Entropy will be. Entropy, Kurtosis and Skewness were counted
separately for Hue, Saturation and Luminosity as they operate on the single
variable (grayscale image as input). The Fractal Complexity is a measure of
self-similarity. It determines how much it is possible to break an image or fractal
into parts that are (approximately) a reduced copy of the whole. This parameter
was used to assess the complexity of the image [9]2.

3 Evaluation

The goal of the evaluation was to verify the existence of the correlation of
the image features (gathered using automatic image analysis) with the Impres-
sion Curve. For this purpose, the Pearson and Spearman correlation were used
[13]. All the level design stages as well as the influential factors on the 3D
space impression (such as lightening condition changes, geometrical and material
changes) described in [1] were used (Fig. 1).
2 At this stage of the Impression Curve automatic evaluation study, we have used the

controlled 3D space designs to minimize the influence of the such factors as action,
gameplay rules and restrictions, story and lore present in commercial game designs.
After confirmation of existence of the correlation of the image features with the
computer game level Impression Curve described in this article, we moved to testing
level design from popular games. The results of this study will be published in the
future, as it is in development at the time of writing this article.
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The study was divided into two parts. First, the correlation of the individual
image features with the Impression Curve was analyzed. After that, image fea-
tures with the highest correlation value were combined into sets and once again
tested for correlation with Impression Curve to see if there is any gain in the
strength of the correlation.

The hypotheses in individual parts were as follows:

1. First part: there is a significant correlation (positive or negative) between an
individual image feature and the Impression Curve for the same VR space.

2. Second part: the correlation (positive or negative) with the Impression Curve
is higher for the combined image features than for the individual image fea-
tures.

3. Additional observation: different set of image features presents the highest
correlation values for different level design stages.

What is more, different level design stages and changing factors of the 3D
space (for example: lightening condition, geometrical detail or material changes)
of the same game level allow us to observe if there is any difference in correla-
tion between data gathered using image analysis and user-generated Impression
Curve. Thanks to this, we were able to point out the best automatic evaluation
measures in the form of selected image features, to use at each design stage
(blockout, models without materials, textured models as well as lightning and
atmospheric effects such as rain).

The twelve level variants showing successive design stages were used accord-
ing to our previous research, described in details in [1]. There were as follows:
simple blockout (A), advanced blockout (B), main models without materials (C),
main models with monochromatic materials (D) and final materials (E) as well
as with extra fine detailed models (called final level version) (F), main models
with geometrical changes (G) and final level with changes of visual factors as
lightening condition (L), weather condition (W), different materials (M), added
expression (X) as well as with extra models and objects in the environment (O).
Existence of correlation between image features and Impression Curve values
would allow creation of a tool to automatically estimate Impression Curve for a
VR space with a high degree of probability. And as a result, to automatically
evaluate expected user impression even on an early Virtual Reality space design
stage.

4 Results and Analysis

During the study, hundreds of correlation plots were gathered and analyzed. We
assumed that per frame comparison will be sensitive to rapid image changes,
effecting low or no correlation at all. That is why, the mean and median of
an image feature for a few consecutive frames were calculated. A small range
of 4–5 frames allow us to eliminate minor fluctuations, where a larger range
of 20–30 frames softened the charts quite significantly. However, a larger range
considerably reduces the number of data samples, which had an impact on the
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Fig. 1. The twelve level variants showing successive design stages used in this study
for image analysis and correlation with Impression Curve. A - simple blockout; B -
advanced blockout; C - models without materials; D - models with monochromatic
materials; E - models with final materials; F - final level version; G - geometrical
changes; L - lightening condition changes; W - weather changes; M - material changes;
X - expression added; O - extra models added.

significance value p. Thus, we started from a range of four frames and increased
this interval by four from that point. As a result, four to twenty frames, we
observed increased correlation value for most of the image features while pre-
serving low value of p < 0,05. For frame range greater than twenty, results were
not significant anymore (p > 0,05). Also, above this point, the correlation value
for many image features dropped below the value of 0,3. Thus, we choose a range
of twenty frames for our study, as it shows the highest correlation values with
significance p < 0,05 (in many cases p < 0,01). In the other hand, we gathered
image data more often (thirty times per second - video recorded with a 30 FPS
frame rate) than during study with users. Thus, the Impression Curve data had
to be interpolated between measure points (as we assumed linear change). This
way we were able to compare this data even per frame.

The experiment stages were as follows: first, for each of the video game
level variants the Impression Curve data (gathered with users) was interpolated
between the measure points to match the frequency of data calculated using
image analysis for this level variant walkthrough video; next, the image features
were calculated and refined using respectively mean and median for 20 subse-
quent frame intervals; finally, the Pearson and Spearman correlation between
those data were calculated.

The recordings of twelve variants of the video game level variants (used in
[1]), including twenty-nine thousand three hundred and thirty-nine frames in
total, were analyzed. As a result, thirty-six data sets were obtained and used to
generate two hundred and ninety-nine correlation plots.
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4.1 Individual Image Features Correlation

The first part of the study involved testing each of the thirteen image features
individually for correlation with an interpolated Impression Curve for each of
twelve variants of the video game level described earlier. The result of a single
feature-variant pair was stored in numerical way and also as a correlation plot
for easier analysis (Fig. 2). Each data point in the graph shows respectively
the mean or median (depending on which one was used) over an interval of 20
frames of the video data. The feature values are marked in red, while the values
of the Impression Curve are marked in green. The charts contain the calculated
Pearson correlation for a whole Impression Curve. When this value is below 0,5
the Spearman correlation is calculated as well to compensate possible outliers
and check for nonlinear relation. Two numbers are presented for each correlation.
The first is the mean correlation value, the second is the calculated p value of
this correlation.

Fig. 2. Correlation plot examples for final level design variant (F variant, on the left).
Two image feature correlation plots are presented: one with significant strong positive
relationship - Density Complexity (Pearson r = 0,48 with p < 0,01, center) other
with no significant linear relationship and weak non-linear relationship - Luminosity
Entropy (Pearson r = -0,05 with p = 0,59, right). A linear relationship can be observed
for Density Complexity. (Color figure online)

Then the correlation values of every image feature tested for a single level
design variant were juxtaposed with each other (Table 1 shows the results for
only one variant as an example - the same was done for each of twelve level
design variants).

We observed many significant correlation values (positive and negative)
between image features and Impression Curve value. Observation varied from
a few weak relationships (r value between 0,20 and 0,29) to moderate relation-
ship in most cases (r value between 0,30 and 0,39) and even over a dozen strong
relationship (r value between 0,40 and 0,69). There was not a single variant
without at least one significantly related image feature, and in most cases there
were several moderate relationships. What is more, some image features tend to
correlate more often than others, where others given at least weak relationship
only once or twice (Table 2). We did not observe a significant difference between
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Table 1. Pearson’s correlation values for individual image features of the final version
of the level (F). Feature values were calculated respectively as the mean and median
for the intervals of twenty frames. The highest correlation results are marked with
a gray background color and bold text. The significant p values are marked with a
gray background color. We can observe that the same image features show the highest
correlation and similar values for both the mean and the median, with only one feature
(Grouping Complexity) presenting lower correlation using the median. r - Pearson
correlation coefficient value; p - significance value.

Mean Median
Image feature r p r p

Alignment Complexity 0,07 0,463 0,06 0,516
Balance Complexity 0,33 <0,001 0,32 p <0,001
Density Complexity 0,48 <0,001 0,52 p <0,001
Grouping Complexity 0,28 0,002 0,16 0,087
Size Complexity 0,43 <0,001 0,46 p <0,001
Total Complexity 0,53 <0,001 0,48 p <0,001
Average Contrast -0,28 0,002 -0,28 0,002
Average Luminance 0,01 0,951 -0,01 0,908
Average Saturation -0,36 <0,001 -0,35 0,000
Fractal Complexity -0,05 0,551 -0,06 0,544
Hue Entropy 0,35 <0,001 0,35 p <0,001
Hue Kurtosis -0,04 0,651 -0,03 0,737
Hue Skewness 0,05 0,582 0,07 0,457
Saturation Entropy -0,16 0,083 -0,15 0,103
Saturation Kurtosis -0,03 0,719 -0,07 0,477
Saturation Skewness -0,04 0,701 -0,04 0,652
Luminosity Entropy 0,03 0,719 0,05 0,587
Luminosity Kurtosis 0,33 <0,001 0,33 p <0,001
Luminosity Skewness 0,06 0,508 0,07 0,456

mean and median values (t − test p = 0,52) thus only median will be used in
further analysis as less valuable for outliers.

For all but one image features, we observe no significant difference between
Pearson and Spearman correlation coefficient values, which suggest a linear
nature of the relationship. Thus, in further combined image features we focused
on Pearson correlation coefficient as linear relationship is more desired for the
future video game level design automatic evaluation system. Only for Density
Complexity feature, we observed significant difference (t−test p = 0,05) between
Pearson and Spearman results with Spearman correlation coefficient values being
higher most of the time giving moderate to high positive relationship (also with
much lower p value). This indicates the existence of a non-linear relationship
between Density Complexity feature and the Impression Curve.

The results are dominated by a positive correlation, with six image features
tending to present a negative relationship more often than positive. Those are:
Grouping Complexity, Fractal Complexity, Average Contrast, Average Satura-
tion and Entropy (for Saturation and Luminosity). Most of them present many
moderate to strong relationships (also variants with low correlation value results
were not significant with p > 0,05). The highest single image features correla-
tion value observed was 0,57 (strong positive relationship, p < 0,01) for a Size
Complexity feature in variant of models with the final materials (E).
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Table 2. Pearson’s correlation values for individual image features for all twelve level
design variants. Feature values were calculated as median for the intervals of twenty
frames. The significant correlation results (with p =< 0,01) are marked with a grayscale
background color (the darker the color, the higher the correlation value) and bold text.
Strong relationship (r value between 0,40 and 0,69) was outlined with a white text color.
We can observe that some image features as Size Complexity or Grouping Complexity
tend to present high correlation value in many variants. A - simple blockout; B -
advanced blockout; C - models without materials; D - models with monochromatic
materials; E - models with final materials; F - final level version; G - geometrical
changes; L - lightening condition changes; W - weather changes; M - material changes;
X - expression added; O - extra models added.

Level Design Variant
Image Feature A B C D E F G L W M X O

Alignment Complexity -0,15 -0,01 -0,04 0,13 0,14 0,06 0,10 0,09 -0,25 0,02 -0,07 -0,10
Balance Complexity 0,04 0,06 0,33 0,25 0,18 0,32 0,08 0,14 0,19 0,47 0,33 0,31
Density Complexity 0,23 0,17 0,20 0,33 0,33 0,52 0,18 0,20 0,39 0,20 -0,09 0,15
Grouping Complexity -0,14 -0,25 -0,40 -0,33 0,06 0,16 -0,27 -0,36 -0,24 -0,02 0,18 0,06
Size Complexity -0,21 -0,19 -0,36 -0,32 0,57 0,46 -0,16 -0,42 0,38 0,24 0,34 0,39
Total Complexity -0,21 0,05 0,00 0,23 0,38 0,48 -0,06 -0,20 0,19 0,28 0,04 0,14
Average Contrast -0,55 -0,28 -0,14 0,10 -0,21 -0,28 -0,30 -0,37 -0,27 -0,06 0,12 0,02
Average Luminance -0,10 -0,15 0,42 -0,24 0,25 -0,01 0,03 -0,03 -0,03 0,19 0,03 0,08
Average Saturation -0,41 -0,10 -0,20 0,47 -0,34 -0,35 -0,40 0,26 0,29 -0,31 -0,07 -0,16
Fractal Complexity 0,22 0,01 -0,26 -0,25 -0,02 -0,06 0,00 -0,06 -0,28 -0,05 -0,21 -0,19
Hue Entropy -0,08 -0,18 0,11 0,32 0,27 0,35 -0,12 0,21 0,06 0,30 0,32 0,30
Hue Kurtosis 0,28 0,29 0,01 0,37 0,37 -0,03 0,17 0,06 0,43 0,05 -0,11 -0,04
Hue Skewness -0,25 -0,32 0,03 0,47 0,38 0,07 -0,04 -0,08 -0,56 0,12 -0,05 -0,09
Saturation Entropy -0,31 -0,07 -0,14 0,05 -0,38 -0,15 -0,25 0,19 0,13 -0,22 0,21 0,00
Saturation Kurtosis 0,04 0,06 0,23 -0,55 0,21 -0,07 0,17 -0,05 0,28 0,34 -0,09 0,07
Saturation Skewness 0,06 -0,01 0,29 -0,49 0,20 -0,04 0,22 0,29 0,35 0,37 0,11 0,21
Luminosity Entropy -0,36 -0,32 0,07 0,16 0,05 0,05 -0,25 -0,22 -0,43 0,16 0,07 0,16
Luminosity Kurtosis 0,27 0,18 0,35 0,12 0,55 0,33 0,15 0,53 0,22 0,15 0,12 0,09
Luminosity Skewness 0,17 0,13 -0,41 0,13 -0,33 0,07 0,00 0,45 0,10 -0,12 -0,09 -0,11

We also observed that the earlier the level creation stage, the lower the corre-
lation values of most image features (Table 2). The materials used in the virtual
space design has a great influence on the correlation value. In the case of variant
C (3D models without materials), a significant strong relationship weak rela-
tionship with the Average Luminance can be noticed. This correlation decreases
after adding materials to the models (variants D with monochromatic materials
and E with final materials) effecting with no significant relation in final level
variant (F with lightning). Similar observation can be made with Saturation
Kurtosis and Saturation Skewness giving the highest correlation values for vari-
ant with monochromatic materials (D) and also no significant relation in the
final level variant. Another interesting observation can be made in first design
stage (simple blockout - variant A). In such a simple block design, the color-
based image features gave the highest correlation values with significant strong
negative relationship for Average Contrast (Pearson r = -0,55, p < 0,01). This
relation weakens with the addition of final models and textures. It is also worth
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paying attention to the fact that with the appearance of the final materials,
the sign of the correlation for the Size Complexity image feature changes from
negative to positive relationship.

It must be remembered that the value at a given point for the correlating
images feature shows the general tendency of the Impression Curve (increase or
decrease of it) - not the exact values of it. To reproduce the value of the curve, it
is necessary to know its value at one point at least. At the same time, the change
in perception of virtual space (increase or decrease) is a feature shared by users
(as shown in the research presented in [1]), while the assignment of a numerical
value to the Impression Curve may depend on the user and the definition of
the rating scale. Therefore, the use of the Immersion Curve value change in the
automatic evaluation system of the game level is not only a more reliable, but
also more universal (less dependent on the user).

4.2 Combined Image Features Correlation

Among the image features tested, the most common correlation between them
and Impression Curve can be observed in seven cases (Table 2). They were
divided into two groups:

– The most promising that gives the highest correlation values, especially in
final level design variant (F). Those are: Density Complexity, Size Com-
plexity, Total Complexity and Balance Complexity. This group formed
a base set for all the combined set (and will be referred to as DTSBC here-
inafter).

– The second most promising with a little lower correlation value than the first
group or high relationship with variants other than final level design (F).
Those are: Grouping Complexity, Average Contrast, Average Satu-
ration. They were added, in every possible combination, to the first group
and checked for improvement in relationship strength.

In addition to the above, color-based image features of Entropy, Kurtosis and
Skewness for Hue, Saturation and Luminosity were also included in described
sets as they presented significant correlation values in different stages of design
(especially in early stages A to E). Image features in those sets were combined
using multiple regression. From all the combined sets, those with the best Pear-
son’s correlation values were selected (Table 3).

There was significant strong or very strong positive relationship in all cases.
The best results overall were achieved for the sets DSTBC + Average Contrast +
Average Saturation + Hue Entropy and DTSBC + Average Contrast + Average
Saturation + Hue Entropy + Luminosity Kurtosis where the latter works for
a larger number of variants (thus it is more universal). In almost all cases,
the combined feature sets correlated significantly better than the single ones
included in them (Fig. 3). These isolated opposite cases arise when one feature
in a combination did not correlate individually. It can be observed in variant G
(geometrical changes) where combined result of DSTBC + Average Contrast is
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Table 3. The best Pearson’s correlation values for combined image features for all
twelve level design variants. Features were combined using multiple regression. Three
best correlated image features: Density Complexity + Size Complexity + Total Com-
plexity + Balance Complexity (called DTSBC for short) were bases for all four com-
bined sets. The correlation results are color-coded as a heatmap with a grayscale back-
ground color (the darker the color, the higher the correlation value). Very strong rela-
tionship (r value higher than 0,70) was outlined with a white text color and bold text.
All the results were significant (p =< 0,01). There was significant correlation in all
cases, where the best results were achieved for sets DTSBC + Average Contrast +
Average Saturation + Hue Entropy + Luminosity Kurtosis. We can observe that the
more advanced level design stage (B to F) the stronger the correlation. Also, the combi-
nation of HSL Entropy, Kurtosis and Skewness can be useful for variants with lightning
and weather changes. DTSBC - image features: Density Complexity + Size Complex-
ity + Total Complexity + Balance Complexity; A - simple blockout; B - advanced
blockout; C - models without materials; D - models with monochromatic materials; E
- models with final materials; F - final level version; G - geometrical changes; L - light-
ening condition changes; W - weather changes; M - material changes; X - expression
added; O - extra models added.

Level Design Variant

A B C D E F G L W M X O

DSTBC + Average Contrast 0,66 0,42 0,61 0,55 0,63 0,73 0,40 0,64 0,60 0,65 0,52 0,55

DSTBC + Average Contrast
+ Average Saturation + Hue Entropy 0,67 0,43 0,63 0,60 0,72 0,81 0,53 0,68 0,62 0,75 0,66 0,63

DSTBC + Average Contrast + Average Saturation
+ Hue Entropy + Luminosity Kurtosis 0,68 0,43 0,65 0,61 0,82 0,82 0,54 0,70 0,62 0,75 0,71 0,63

DSTBC + Hue Kurtosis
+ Hue Skewness + Saturation Entropy 0,63 0,47 0,62 0,59 0,71 0,74 0,46 0,55 0,77 0,68 0,52 0,57

DSTBC + Hue Kurtosis + Hue Skewness
+ Saturation Entropy + Luminosity Entropy 0,63 0,48 0,63 0,62 0,71 0,77 0,50 0,77 0,80 0,69 0,52 0,66

equal to single Average Saturation correlation value (but with negative sign). On
the other hand, the combined sets presented strong and very strong relationship
for those level variants that for a single feature had only a few weak or moderate
relationships: M (material changes), X (added expression) and O (extra models
added). We can also observe that the more advanced level design stage (B to
F) the stronger the correlation (Table 2). Even the worst level design variant for
single feature - geometrical changes (G) - now shows significant strong positive
relationship (Pearson r = 0,54 with p < 0,01 at best).

There is significant difference in correlation values for color-based features
(color, luminance as well as descriptive statistics for HSL) between single feature
correlation (Table 2) and combined value using those image features (Table 3).
The single feature correlation values are rather small or even not significant on
later design variants (G to O). However, when they are combined with other
image features, they have shown the highest or the second-highest correlation
value. This happens even if, for a given variant of the level design, a single color-
based feature did not show a correlation with the Impression Curve (mostly due
to the high values of p).
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Fig. 3. Correlation plot examples for final level design variant (F variant, on the left).
Two image feature correlation plots are presented: single image feature - Density Com-
plexity (Pearson r = 0,48 with p < 0,01, center) and combined score of Density Com-
plexity, Size Complexity, Total Complexity, Balance Complexity (DSTBC for short),
Average Contrast, Average Saturation, Hue Entropy and Luminosity Kurtosis (Pearson
r = 0,82 with p < 0,01, right). The combined score presents much higher correlation
value than the component features separately with significant very strong positive rela-
tionship.

4.3 Best Features for Different Level Design Stages

Another aspect of the evaluation of the results was the changes of individual
feature correlation at the subsequent stages of the game level design. Thanks to
such approach, it was possible to assess the usefulness of the automatic evalu-
ation method at different stages of the level design (from simple blockout with
gray objects, trough materials and textures, to final design with lightning and
atmospheric effects). The best image features or their combination to be used in
such evaluation system will be the ones correlating regardless of the variant we
are dealing with. The results for similar versions (such as first stage simple design
been analyzed together) of the level were also compared. The image features with
similar correlation values for each variant were considered the most promising.
Such approach allowed us to eliminate those image features that correlated only
in a single case.

For early stages of design that use blockout (A and B) we observed a sig-
nificant correlation with the color-based image features, where at later stages
(C to F) features from saliency and motion maps group showed better results
(Table 2). What is more, most of the color-based image features tends to not
show significant correlation at later stages, especially at the final level design.
The exception here are the values of Hue Kurtosis, Hue Skewness and Luminos-
ity Entropy for the weather change variant (W) with strong relationship. This
showed that those image features could be added to the combined set to help
verify how atmospheric effects affects users’ impression of virtual space.

It is worth noticing that combination of HSL Entropy, Kurtosis and Skew-
ness showed high or very high significant correlation results for variant the most
visually different from the rest - L - where lightning conditions are changed (day
to night). For example, set combined of DSTBC + Hue Kurtosis + Hue Skew-
ness + Saturation Entropy + Luminosity Entropy resulted for weather changes
level design variant in very strong relationship (Pearson’s r = 0,80, p < 0,01).
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Even this set is not universal for the whole process (other combined sets have
given higher correlation results), it could improve Impression Curve estimation
at design with rapid lightning or weather changes. At the same time, changes in
lighting, weather or materials did not affect the shape of the Impression Curve,
but did have a significant effect on the image features correlation.

5 Conclusion

The aim of this study was to investigate the existence of the correlation of the
image features with the Impression Curve for game level design. The study shows
that even a single image feature can describe the impression value with good
precision (strong relationship, Pearson r > 0,5) for final level design. Best results
were obtained by combining several image features using multiple regression (for
image features: Density Complexity, Size Complexity, Total Complexity, Balance
Complexity, Average Contrast, Average Saturation, Hue Entropy and Luminosity
Kurtosis combined using multiple regression). Such set produced very strong
positive relationship with Impression Curve values (Pearson r = 0,82 with p <
0,01 at best). What is more, significant correlation (strong to very strong) was
observed regardless of level design variant, which makes it possible to apply
image analysis at every stage of the level design process, making such solution
more universal. The study also analyzed the possibility to use a different set
of image features at different level design stages to get the highest results. The
color-based image features were the best in this regard to be used at blockout
stage of design (A and B, moderate to strong relationship) and HSL Entropy,
Kurtosis and Skewness at stages with lightning and weather changes (L and W,
moderate to strong relationship).

We saw many development opportunities for the idea of the automatic eval-
uation of game level design. The tests can be performed on production versions
of game levels (taken from popular games), data about Impression Curve as well
as image analysis could be obtained in real time or the study could be to extend
with an Eye-tracker (to verify if there is a relation between the eye movement
and Impression Curve). Also, the joined signals of EEG and Eye-tracker data
can be analyzed as in [15]. Those four research ideas are carried out by us at
the time of writing this article and the results will be published in the future.
Improvements can be made in terms of calculation time as well, with a goal of
real time analysis. For example, by applying faster classified like the one used in
[12] for HUD detection, to obtain saliency maps in short time.

To sum up, the study has shown that Impression Curve value, and hence, the
user impression of virtual 3D space, can be estimated with a high degree of cer-
tainty by automatic evaluation using image analysis of such level walkthrough.
We propose usage of the combined image feature set for better estimation of
Impression Curve. For early stages of design (blockout and models without tex-
tures) different set can be used to increase the relationship strength.
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Abstract. Automated interpretation of digital images of charts in doc-
uments and the internet helps to improve the accessibility of visual repre-
sentation of data. One of the approaches for automation involves extrac-
tion of graphical objects in the charts, e.g., pie segments, scatter points,
etc., along with its semantics encoded in the textual content of the chart.
The scatter plots and pie charts are amongst the widely used infograph-
ics for data analysis, and commonly have circle objects. Here, we propose
a chart interpretation system, ACCirO (Analyzer of Charts with Circu-
lar Objects), that exploits the color and geometry of circular objects in
scatter plots, its variants, and pie charts to extract the data from its
images. ACCirO uses deep learning-based chart-type classification and
OCR for text recognition to add semantics, and templatized sentence
generation from the extracted data table for chart summarization. We
show that image processing and deep learning approaches in ACCirO
have improved the accuracy compared to the state-of-the-art.

Keywords: Image processing · Scatter plots · Pie charts · Dot plots ·
Bubble plots · Circle geometry · Circle Hough Transform (CHT) ·
Spectral clustering · Chart data extraction · Text recognition

1 Introduction

Given the ubiquity of charts for visualizations, there is recent interest in automat-
ing its interpretation. The motivating applications include filtering significant
charts from image databases, generating visual question-answering (QA) sys-
tems, etc., given the raster format of the charts. Though many image processing
techniques have been used, there are still gaps in existing technology for auto-
mated chart interpretation owing to the diversity and complexity of chart content
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Fig. 1. Our proposed workflow for ACCirO is an automated system for data extraction
from images of charts with circular objects and color, and for which geometric and
color-based information extraction techniques are used.

and the requirement of human-in-the-loop in most cases. Here, we consider pie
charts, scatter plots, and its variants, dot plots, and bubble plots, with circular
objects. The source images are from documents in portable document format
(.pdf), websites, outputs from plotting tools, and curated image databases [7].
The data extracted from images comes from its non-textual and textual content
in charts. The non-textual content implies the geometric objects as per chart
type, e.g., pie segments and scatter points. The text content is from chart, leg-
end, and axes titles, which are localized using annotation and extracted using
image processing and text recognition.

When using the second-order gradient tensor field-based approach for object
extraction from charts [4,5], we observe that only regions with high color gra-
dients (edges and corners) are extracted, e.g., boundaries of bar objects. But in
pie charts, the gradients are concentrated in the corners of the largest rectan-
gle enclosed within the pie owing to the high curvature gradient. At the same
time, the pie chart has a circle geometry that can be exploited for sector extrac-
tion. Thus, we propose using color and geometry information in pie charts for
automated annotation and data extraction. Given that circle geometry is pre-
dominantly used for scatter points in scatter, dot, and bubble plots, our proposed
method is generalized for our selected four chart types.

Thus, our contribution is integrating an end-to-end system, ACCirO (Ana-
lyzer for Chart images with Circular Objects), generalized for four chart types.
ACCirO has a four-step workflow (Fig. 1): S1 the chart classification, S2 a
novel color-based annotation along with text extraction, S3 a novel color-based
data extraction, S4a text summarization and S4b chart reconstruction. ACCirO
specifically works for charts where color encodes class information and improves
on S2 and S3 in BarChartAnalyzer [4], and ScatterPlotAnalyzer [5]. Alpha blend-
ing leads to the blended colors in bubble plots, which are different from the colors
given in the chart legend. Our algorithm in S3 addresses the challenge of com-
puting the color, radius, and center of constituent circles in overlap regions.

Related Work: We generalize data extraction for different chart types, as is
the current focus [2,4,5,8], but by using color information exclusively. CHT [6]
has been used for object extraction from charts [8]. For the chart-types with
circular objects in the foreground with non-textured background, CHT suffices.
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2 The Workflow of ACCirO

We propose a fully automated workflow for ACCiro for pie charts and dot,
bubble, and scatter plots. We consider bubble and dot plots as variants of scatter
plots, owing to the similarity in using circular objects as graphical objects with
positional information. The four key components of our workflow (Fig. 1) are:
(S1) chart type classification, S2 chart component detection and extraction, and
S3 data table extraction, optionally followed by S4a chart summarization or S4b

chart reconstruction. We use the implementation from our previous work [4,5]
for S1 to pick scatter plots and pie charts, S4a, and S4b. Scatter plots are further
subclassified to its variants based on position and size variations of scatter points.

S2 : Chart Component Detection and Extraction
A chart is structurally composed of specific elements, referred to as chart com-
ponents, whose characteristic properties in its raster format are exploited for
their extraction. The seven components are: canvas, legend, chart title, XY-axis
titles, and XY-axis labels. The region of the chart that contains the graphical
objects, e.g., pie sectors, scatter points, and bounded by axes, is the canvas. The
process of localizing and retrieving them from the chart images is called chart
component extraction. A separate component-wise analysis is more effective for
stepwise chart interpretation than joint extraction using the entire image.

We first extract textual content by using a DL-based Optical Character
Recognition (OCR), namely, Character Region Awareness for Text Detection
(CRAFT), followed by a scene text recognition framework (STR), as used in
ScatterPlotAnalyzer. This text is now removed to extract the canvas and graph-
ical markers/objects in the legend. But, the filtered image still contains “noise”
such as axis lines, gridlines, ticks, and small text fragments missed by the OCR.

In pie charts, we use CHT to extract the entire pie from the image, and the
unique pixel colors in the pie pixels are used to locate objects in the legend. In
scatter plots and their variants, object extraction using geometry is not reliable
owing to the variety in marker styles and the presence of overlapping scatter
points. So we initially remove axes and gridlines based on the property of the
periodic arrangement of their straight pixels lines. We then locate the color-
based clusters of pixels and tag them as “objects.” The color histogram of the
image gives colors of high frequency needed for the localization of pixel clusters.
The bounding box of pie and axes in scatter plots gives the canvas.

Legend extraction follows after the canvas extraction in our workflow to
accommodate cases of legend being placed in the canvas. The color-based clusters
with relatively smaller pixel coverage and placed adjacent to text are identified
as legend markers with corresponding labels. The final step is to semantically
classify the textboxes outside the canvas region based on their role, i.e., chart
title, axes titles, and labels. The axes are usually found at the bottom, and
the left of the canvas region, and the chart title at its top. In legend-free pie
charts, text boxes in the proximity of arc centers of the pie sectors give the class
information.
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Fig. 2. Our proposed method for circular object extraction from bubble chart images.

S3 : Data Table Extraction from Graphical Objects
We extract information from the pixel clusters in the image space and convert
them to data space using the cues from the extracted text.

Pixel-Based Data Extraction from Pie Charts: Percentage data is
obtained from the sector area, which is determined using the fraction of pixel
counts in the sector [2]. We implement this on the “donut” with one-third of the
radius of the pie removed from the center. The donut is used instead of the entire
pie to reduce the discrepancy from the missing pixels owing to text removal in
the pie region. The sectors are then mapped to their labels based on colors. In
legend-free charts, sectors are mapped to the closest text labels.

Pixel-Based Data Extraction from Scatter, Dot, and Bubble Plots:
Here, the 2D data is encoded in the positional vectors of the scatter object.
The variants use additional visual encodings for more attributes. Such as, the
height of stacks of dots in dot plots represents bar height in an equivalent bar
chart, and bubble plots use the size and color of objects to encode additional
attributes. Contours are extracted for color pixel clusters from ]step2. The posi-
tional information of scatter points is determined using the contour centroids of
the clusters. In the case of overlapping points, the number of points involved is
computed based on the ratio of contour area with the smallest contour observed
in the chart. We then use k-means clustering to get centroids in the overlapping
region. In the case of a dot plot, we determine the count of objects stacked with
the same x-coordinate value of contour centroids. This count is given a class
label using the legend color or the x-tick mark label.

Bubble plots have the unique challenge of overlapping circular objects with
varying sizes and transparencies. The resultant alpha blending of overlapped
scatter object regions poses a challenge in identifying the number and parameters
of the constituent scatter objects. The resultant color from alpha blending is
given by: C = α.F+(1−α).B, where F and B are the foreground and background
colors respectively; and 0 ≤ α ≤ 1. We resolve the challenge using contour colors
(Fig. 2). To estimate the number of overlapping points in a contour, we get ncs

segments based on the unique colors in contours. Using the value of ncs, we
extract the center, radius, and class label of the scatter point. If ncs = 1, the
center and radius of the scatter point are given by a tight-fitting bounding box
of the contour. When ncs > 1, we use spectral clustering in the pixel cluster
of contour and determine circle parameters with best-fit circle regression of ncs
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clusters. In all cases, we use the class label corresponding to its contour color,
as given in the legend.

For those circles which do not correspond to legend colors in the above two
cases, we use the blending equation to solve for the legend colors and corre-
sponding transparency, α, values that give the resultant blended colors C. We
use an exhaustive search of the solution space to find the closest solution. We
assume that the color C of the spectral cluster is a blend of two or more legend
colors. Hence, we solve for 2 ≤ p ≤ m = |CL|, for m legend colors and the set of
legend colors CL. We use mCp combinations of colors, where each experimental
run uses a subset of legend colors {C1, C2, . . . , Cp}, where Ci ∈ CL, ∀i ∈ [1, p].
The blending equation is now modified as a linear combination of Ci:

C ∗ =
p∑

i=1

αi.Ci, where
p∑

i=1

αi = 1 and 0 < αi < 1,∀i ∈ [1, p].

We can reduce the search space by limiting the value of α1 to be a value in the
interval [0.5, 0.95], with a step size of 0.05. We also implement a greedy algorithm
terminating the search when the closest color is obtained.

Data Transformation for Scatter Plots: Finally, to transform data in pixel
space to the numerical space, we use the scaling factor computed from the seman-
tics of the text, as done in ScatterPlotAnalyzer. However, this does not work for
circle size encoding in bubble charts, as the factor for circle sizes can be obtained
from either the size legend (as present in some charts) or the parameter setting
used in different plotting tools e.g., DPI, for the chart generation. Thus, the
exact data mapping for bubble charts will be explored in future.

3 Experiments and Results

Qualitative Assessment: Through the visualizations, we observe that our
method performs superior to the tensor field-based method in ScatterPlotAna-
lyzer [5] (Fig. 3). The color-based data extraction technique is an improvement
over tensor fields [5] in the case of cluttered scatter points. Figure 4 shows outputs
at different stages of ACCirO for a sample of each chart type, demonstrating sim-
ilarities between the reconstructed and sources chart images. Visual analysis of
the results of ACCiro on pie charts and scatter plots images in the FigureQA [7]
gives reconstruction accuracy of ∼90.11% and ∼90.5%, respectively. To improve
the circle detection using CHT [6] in a pie chart, which has an average of 96%
accuracy, advanced circle detection methods such as RANSAC may be used.

Quantitative Assessment: For quantitative assessment, we use synthetically
generated chart images from publicly available data sources, e.g., Kaggle. We
have generated a set of 15 images each for pie charts, dot and bubble charts,
and 24 for scatter plots. In total, we use a test set of 69 images here.

We use the F1 Score and MAPE (Mean Absolute Percentage Error) metrics to
measure the success and failure rates of the performance of ACCirO (Table 1). We
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(a) Source chart image (b) Data extraction using tensor voting (c) Data extraction using tensor voting  
and post-processed using 

watershed algorithm

(d) Data extraction using our 
proposed algorithm 

Fig. 3. Comparison of (a) source image and charts reconstructed using similar methods:
(b) ScatterPlotAnalyzer [5], (c) modified ScatterPlotAnalyzer, and (d) our color-based
method, for a multiclass scatter plot with a high degree of overlap of scatter points.
The cluster of scatter points (red dotted ellipses) extracted is highlighted. (Color figure
online)

Fig. 4. Different stages of chart data extraction followed by chart reconstruction and
summarization from the sample source images of (i) pie chart, (ii) scatter plot, (iii) dot
plot, and (iv) bubble plot. The text summary is best visible at 220+% zoom level.
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Table 1. Accuracy of data table extraction using ACCirO

Chart type →
Accuracy measure ↓

Pie chart Dot plot Bubble plot Scatter plot Overall
measures

Average precision 0.94 1.00 1.00 0.97 0.96

Average recall 1.00 1.00 0.99 0.95 0.95

Success rate: F1 score
> 0.8

93% 100% 100% 96% 96.4%

Success rate: MAPE < 0.2 100% 100% 93% 84% 88.7%

consider the data extraction as a success with F1 Score > 0.8 as in [3]. Despite the
smaller test dataset, the data extraction accuracy of ACCirO from scatter plots
surpasses the state-of-the-art methods with F1-Score 97%, compared to 90.5%
and 88% for MECDG [1] and Scatteract [3], respectively. Our data extraction for
dot plots is 100% accurate, owing to the structured point layout. Even for bubble
plots, despite the complex challenges due to transparency and overlapping points,
we get an F1-Score of 100%. It must be noted that, since the bubble/object size
is in pixel measure, we exclude it from the F1 score computation. We observe
that the normalized radius values are closer to raw data.

To determine the numerical precision errors in S3, we compare the difference
between the source and extracted data values using the Mean Absolute Percent-
age Error (MAPE) as in [4]. Here, our alternative definition for the success of
data extraction is when the error rate MAPE < 0.2. MAPE is augmented in
the case of omission and precision errors owing to cluster centroids overlapping
with scatter points and pixel space to data space transformations, respectively.
Pie charts have been an exception for error-free data extraction of percentage
values.

4 Conclusions

ACCirO has two known limitations which are to be resolved in future work.
Firstly, owing to ACCiro being a color-based method, it fails in cases where the
shape and texture of scatter points encode class or type information. Secondly,
the STR text recognition model fails to interpret superscript symbols, and recog-
nition of ‘o’, ‘0’, and ‘−.’ In summary, our proposed color-based end-to-end chart
image interpretation system, ACCirO, has been generalized for the chart with
circular objects, such as pie charts, and scatter, dot and bubble plots.
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Abstract. Contemporary machine learning literature highlights learn-
ing object-centric image representations’ benefits, i.e. interpretability,
and the improved generalization performance. In the current work, we
develop a neural network architecture that effectively addresses the task
of multi-object representation learning in scenes containing multiple
objects of varying types and sizes. In particular, we combine SPAIR
and SPACE ideas, which do not scale well to such complex images, and
blend them with recent developments in single-shot object detection. The
method overcomes the limitations of fixed-scale glimpses’ processing by
learning representations using a feature pyramid-based approach, allow-
ing more feasible parallelization than all other state-of-the-art methods.
Moreover, the method can focus on learning representations of only a
selected subset of types of objects coexisting in scenes. Through a series
of experiments, we demonstrate the superior performance of our architec-
ture over SPAIR and SPACE, especially in terms of latent representation
and inferring on images with objects of varying sizes.

Keywords: Deep autoencoders · Representation learning · Generative
models · Scene analysis

1 Introduction

The ability to discriminate and reason about individual objects in an image is
one of the important tasks of computer vision, which is why object detection
and instance segmentation tasks have drawn vast attention from researchers
throughout the years. The latest advances in artificial intelligence require a more
insightful analysis of the image to provide more profound reasoning about its
contents. It can be achieved through representation learning, which facilitates
extracting useful information about objects, allowing transferring more general
knowledge to other tasks [2]. One can see multi-object representation learning
as a natural extension to the aforementioned computer vision tasks. Here, the
objective is to produce a valuable abstract feature vector of each of the inferred

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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objects and hence produce a structured representation of the image, allowing for
its more insightful understanding.

Recently, the most successful methods are based on the variational autoen-
coder (VAE) framework [16,21], with structured latent space, which includes
individual objects’ representations. The original approach consists in extract-
ing object latent vectors with a recurrent network [1,3,7–9]. Alternatively, each
object’s representation can be produced with a single forward pass through the
network by employing a convolution-based single-shot approach [4,18]. However,
these methods are limited by a single feature map utilized to create objects’
latent vectors and hence cannot be used when object sizes vary.

In this paper, we propose a single-shot method for learning multiple objects’
representations, called Single-Shot Detect, Infer, Repeat (SSDIR1). It is a con-
volutional generative model applying the single-shot approach with a feature
pyramid for learning valuable, scale-invariant object representations. By pro-
cessing multi-scale feature maps, SSDIR can attend to objects of highly varying
sizes and produce high-quality latent representations directly, without the need
of extracting objects’ glimpses and processing them with an additional encoder
network. The ability to focus on individual objects in the image is improved by
leveraging knowledge learned in an SSD [19] object detection model. In exper-
iments, we compare the SSDIR model on multi-scale scattered MNIST digits,
CLEVR [15] and WIDER FACE [23] datasets with other single-shot approaches,
proving the ability to focus on individual objects of varying sizes in complicated
scenes, as well as the improved quality of objects’ latent representations, which
can be successfully used in other downstream problems, despite the use of an
uncomplicated convolutional backbone.

We summarize our contributions as follows. We present a model that
enhances multi-object representation learning with a single-shot, feature
pyramid-based approach, retaining probabilistic modeling of objects. We provide
a framework for generating object representations directly from feature maps
without extracting and processing glimpses, allowing easier scaling to larger
images. We compare the method with other single-shot multi-object represen-
tation learning models and show its ability to attend to objects, the improved
latent space quality, and applicability in various benchmark problems.

2 Related Works

Multi-object representation learning has recently been tackled using unsuper-
vised, VAE-based models. Two main approaches include sequential models,
attending to a single object or part of the image at a time, and single-shot
methods, which generate all representations in a single forward pass through the
network.

The original approach to this problem was presented by Ali Eslami et al. in
[1]. The Attend, Infer, Repeat (AIR) model assumes a scene to consist of objects,

1 Code available at: https://github.com/piotlinski/ssdir.

https://github.com/piotlinski/ssdir
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represented with what vector, describing the object’s appearance, where vector
indicating its position on the image and present vector, describing if it is present
in the image, controlling termination of the recurrent image processing. The
model attends to a single object at a time, generating representations sequen-
tially with a recurrent network until a non-present object is processed. Other
studies, including [10] and [22] proposed a different approach, where objects rep-
resentations are learned using Neural Expectation-Maximization, without struc-
turing the latent representations explicitly. These methods suffer from scaling
issues, not being able to deal with complex scenes with multiple objects.

Alternatively, an image might be described with a scene-mixture approach,
as in MONet [3], IODINE [9] and GENESIS [7,8]. Here, the model does not
explicitly divide the image into objects but instead generates masks, splitting
the scene into components, which the model encodes. In the case of MONet
and GENESIS, each component is attended and encoded sequentially, while
IODINE uses amortized iterative refinement of the output image. However, these
methods are not a good fit for learning object representations in an image, as
scene components usually consist of multiple objects. Furthermore, masks that
indicate particular objects limit the model’s scalability due to this representation
requiring more memory than bounding box coordinates.

GENESIS belongs to a group of methods, which focus on the ability to gen-
erate novel, coherent and realistic scenes. Among them, one should notice recent
advances with methods leveraging generative adversarial networks (GANs), such
as RELATE [6] or GIRAFFE [20]. Compared to VAE-based methods, they can
produce sharp and natural images, which are more similar to original datasets.
However, these models do not include an explicit image encoder, and there-
fore cannot be applied for multi-object representation learning directly. What is
more, the process of training GANs tends to be longer and more complicated
than in the case of VAEs.

Recently, methods such as GMAIR [24] postulate that acquiring valuable
what object representations is crucial for the ability to use objects encodings
in other tasks, such as clustering. Here, researchers enhanced the original what
encoder with Gaussian Mixture Model-based prior, inspired by the GMVAE
framework [11]. In our work, we also emphasize the importance of the what
object representation and evaluate its applicability in downstream tasks.

One of the promising methods of improving model scalability of VAE-based
multi-object representation learning models was presented in SPAIR [4], where
the recurrent attention of the original AIR was replaced with a local feature
maps-based approach. In analogy to single-shot object detection models like
SSD [19], the SPAIR first processes image with a convolutional backbone, which
returns a feature map with dimensions corresponding to a fixed-sized grid. Each
cell in the grid is then used to generate the locations of objects. Objects repre-
sentations’ are inferred by processing these cells sequentially, generating what,
depth and present latent variables, describing its appearance, depth in the scene,
and the fact of presence. This approach has recently been extended in SPACE
[18], which fixes still existing scalability issues in SPAIR by employing parallel
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latent components inference. Additionally, the authors used the scene-mixture
approach to model the image background, proving to be applicable for learning
objects’ representations in more complex scenes. However, both methods rely on
a single grid of fixed size, which makes it difficult for this class of models to attend
to objects of highly varying sizes. What is more, both of them employ glimpse
extraction: each attended object is cut out of the input image and processed by
an additional encoder network to generate objects’ latent representations; this
increases the computational expense of these methods.

Latest advances in the field of multi-object representation learning try to
apply the aforementioned approaches for inferring representations of objects
in videos. SQAIR [17] extends the recurrent approach proposed in AIR for
sequences of images by proposing a propagation mechanism, which allows reusing
representations in subsequent steps. A similar approach was applied to single-
shot methods by extending them with a recurrent network in SILOT [5] and
SCALOR [14]; here, the representations were used in the object tracking task.
An interesting approach was proposed by Henderson and Lambert [12]. Authors
choose to treat each instance within the scene as a 3D object; the image is then
generated by rendering each object and merging their 2D views into an image.
This allows for a better understanding of objects’ representations, at the cost of
significantly higher computational complexity.

3 Method

SSDIR (Single-Shot Detect, Infer, Repeat) is a neural network model based
on a variational autoencoder architecture [16,21] as shown in Fig. 1; its latent
space consists of structured objects’ representations z, enhanced by leveraging
knowledge learned in a single-shot object detection model SSD [19], both sharing
the same convolutional backbone.

3.1 The Proposed Model: SSDIR

Our model extends the idea of single-shot object detection. Let x be the image
representing all relevant (i.e. detected by the SSD) objects present in the image.
SSDIR is a probabilistic generative model, which assumes that this image is
generated from a latent representation z according to a likelihood distribution.
This representation consists of a set of latent vectors assigned to each grid cell in
the feature pyramid of SSD’s convolutional backbone and is sampled from a prior
distribution p (z). Since the likelihood distribution is unknown, we approximate
it using the decoder network θ, which parametrizes the likelihood pθ (x|z). Then,
the generative model can be described as a standard VAE decoder (1).

p (x) =
∫

pθ (x|z) p (z) dz (1)

To do inference in this model, SSDIR applies variational method and
approximates the intractable true posterior with a function qφ (z|x) ≈ p (z|x),
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Fig. 1. Illustration of the SSDIR model. It consists of two fully-convolutional neural
networks: an encoder and a decoder. The encoder uses a convolutional backbone as
a feature extractor, which builds a pyramid of multi-scale features processed by each
latent component encoder. Each object’s position zwhere and presence zpresent latent
vectors are computed using a trained object detection model SSD, indicating grid
cells, which refer to detected objects; zwhat and zdepth are computed with additional
convolutional encoders, which process the feature maps from the pyramid in a similar
manner to SSD. In the decoder, all latents are filtered to include only present objects
for reconstructions. What decoder reconstructs appearances of each present object,
which are then put in their original place with an affine transformation in the spatial
transformer module. Finally, object reconstructions are merged using weighted sum,
created by applying softmax on objects’ depth latents.

parametrized by φ (encoder parameters). This allows us to use ELBO (Evidence
Lower Bound) as the loss function (2):

L (θ, φ) := Ez∼qφ(z |x) [log pθ (x|z)] − DKL (qφ (z|x) ‖p (z)) (2)

where DKL is the KL divergence.

Object Representation. SSDIR extends the grid-based approach with a fea-
ture pyramid for object detection proposed in SSD to produce objects’ latent
representations. We assume each object can be described by four latent variables:

– zwhere ∈ R
4 – the object’s bounding box position and size,

– zpresent ∈ {0, 1} – a binary value indicating if given cell contains any object,
– zwhat ∈ R

D – D-sized vector describing the object appearance,
– zdepth ∈ R – a real number indicating how deep in the scene the given object

was observed (we assume, that objects with a bigger value of zdepth appear
in front of those with a lower value).

To simplify the process of objects discovery, we reuse a trained SSD model to
get bounding box position and size, as well as the detected object class. SSDIR
utilizes detections to produce zwhere and zpresent as shown in (3) and (4).

zi
where =

[
cx i cy i wi hi

]
(3)

zi
present ∼ Bernoulli

(
βi

)
(4)
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where:

i refers to the cell in the feature pyramid,
cx , cy are the bounding box’ center coordinates,
w, h are the bounding box’ width and height dimensions,

βi =

{
arg maxk ci if an object detected in the cell,
0 otherwise,

c are the object’s predicted class confidences.

The two remaining latent components: zwhat and zdepth are modeled with
Gaussian distributions, as shown in (5) and (6).

zi
what ∼ N (

μi
what ,σ

i
what

)
(5)

zi
depth ∼ N (

μi
depth ,σi

depth

)
(6)

where:

–μwhat , μdepth are means, encoded with what and depth encoders,
–σwhat , σdepth are standard deviations, which are treated as model’s hyperpa-

rameters.

SSDIR Encoder Network. To generate the latent representation of objects
contained in an image, we apply the feature pyramid-based object detection
approach. The function of the encoder qφ (z|x) is implemented with a convo-
lutional backbone (VGG11) accepting images of size 300 × 300 × 3, extended
with a feature pyramid, and processed by additional convolutional encoders, as
shown in Fig. 1. Specifically, where, present and depth encoders contain single
convolution layer with 3 × 3 kernels (1 in case of present and depth and 4 for
where encoder) per each feature map in the pyramid, whereas what encoder may
include sequences of convolution layers with ReLU activations, finally returning
D-sized vector for each cell in each feature pyramid grid. The outputs of these
encoders are used to generate latent vectors zwhere , zpresent , zwhat and zdepth .

The backbone’s, as well as where and present encoders’ weights are trans-
ferred from an SSD model trained with supervision for detection of objects of
interest in a given task and frozen for training; what and depth encoders, which
share the same pretrained backbone, are trained with the decoder network. Such
architecture allows parallel inference, since neither latent component depends
on any other, without the need of extracting glimpses of objects and processing
them with a separate encoder network – in SSDIR latent representations are
contained within feature maps directly, improving its scalability.

SSDIR Decoder Network. Latent representations of objects in the picture
are forwarded to the decoder network to generate reconstructions of areas in
the input image that contain objects of interest, i.e. those detected by the SSD
network. First, the latent variables are filtered according to zpresent , leaving
only those objects, which were found present in the image by the SSD network.
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Next, per-object reconstructions are generated by passing filtered zwhat vectors
through a convolutional what decoder, producing M images of size 64 × 64 × 3,
representing each detected object’s appearance. These images are then translated
and scaled according to the tight bounding box location zwhere in the spatial
transformer module [13]. The resulting M 300×300×3 images are merged using
a weighted sum, with softmaxed, filtered zdepth as the weights. The output of
the model might then be normalized with respect to the maximum intensity of
pixels in the reconstruction to improve the fidelity of the reconstruction.

SSDIR does not require special preprocessing of the image, apart from the
standard normalization used widely in convolutional neural networks. Originally,
the background is not included in the reconstruction phase, since its representa-
tion is not crucial in the task of multi-object representation learning; we assume
that this way SSDIR learns to extract the key information about all objects from
the image. The background might however be reconstructed as well by including
an additional zwhat encoder and treating the background as an extra object,
which is transformed to fill the entire image and put behind all other objects.

The parallel nature of the model is preserved in the decoder. The operations
of filtering, transforming, and merging are implemented as matrix operations,
allowing good performance and scalability.

Training. The SSDIR model is trained with a modified ELBO loss function. We
extend the original form (2), which intuitively includes reconstruction error of an
entire image and KL divergence for latent and prior distributions with a normal-
ized sum of each detected object’s reconstruction error. This allows the model
to reach high quality of reconstructions (and as a result – high quality of zwhat

latent representations) and correct order of objects’ zdepth , preserving transfor-
mation function continuity thanks to KL divergence-based regularization. The
final form of the loss function is shown in (7).

L (x, θ, φ) = αobj Ez [log pθ (x|z)] + αrec
1
M

∑M

i
Ezi

[log pθ (xi|zi)]

− αwhatDKL (qφ (zwhat |x) ‖p (zwhat))
− αdepthDKL (qφ (zdepth |x) ‖p (zdepth))

(7)

where:

Ez [log pθ (x|z)] is the likelihood of the reconstruction generated by the decoder,
Ezi

[log pθ (xi|zi)] is the likelihood of an i-th detected object reconstruction,
αobj , αrec , αwhat , αdepth are loss components coefficients, modifying the impact
of each one on the learning of the model,
M is the number of objects detected by the SSD model in a given image.

In case of both zwhat and zdepth we assume the prior to be a standard normal
distribution N (0, I). The training objective is described by (8) for each image
xi in the training dataset. The model is trained jointly with gradient ascent
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using Adam as the optimizer, utilizing the reparametrization trick for back-
propagating gradients through the sampling process. The process of learning
representations is unsupervised, although the backbone’s and where and present
encoders’ weights are transferred from a pretrained SSD model.

θ∗, φ∗ = arg max
θ,φ

∑
i

L (xi, θ, φ) (8)

Table 1. Differences between SSDIR and baseline methods. “semi-” indicates that the
object detection model is trained with supervision, while the representation learning
procedure is unsupervised. “glimpses” refers to the process of learning object’s zwhat

by extracting a sub-image containing the object (based on its zwhere latent vector) and
encoding it with a separate VAE; “single-shot” is the approach adopted in SSDIR.

Criterion Basic VAE SPAIR [4] SPACE [18] SSDIR

Unsupervised Semi- ✓ ✓ Semi-

Inferring representations Glimpses Glimpses Glimpses Single-shot

Varying sizes ✓ ✗ ✗ ✓

Particular objects type ✓ ✗ ✗ ✓

Parallel encoding ✗ ✗ ✗ ✓

4 Experiments

In this section, we evaluate the performance of SSDIR and compare it with two
baseline methods: SPAIR [4] and SPACE [18]. We focus on verifying the ability
to learn valuable representations of objects, which sizes vary; this is conducted by
analyzing the quality of reconstructions produced by the decoder of each method
and applying the produced representations in a downstream task. Besides, we
conduct an ablation study to analyze the influence of the dataset characteristics
on SSDIR performance.

Our implementation of SPAIR is enhanced with a convolutional encoder
instead of the original, fully-connected network, which should improve its per-
formance on more complicated datasets. Since in this work we focus on learning
objects’ representation, we consider models without background: SPAIR does
not explicitly model it, whereas in SPACE we analyze the foreground module
outputs, which tries to reconstruct individual objects in the image. In Table 1 we
included a comparison between the analyzed methods, together with an approach
employing an object detector, a spatial transformer for extracting glimpses, and
a VAE for learning their representations (denominated as SSD+STN+VAE ).

The datasets used in the research were chosen to resemble common choices
among recent multi-object representation learning methods. Among them, we
decided to include datasets of various complexity, providing the ability to vali-
date the model on simple images and prove its performance on complex, realistic
images. Therefore, we conducted our experiments using three datasets: 1) multi-
scale, scattered MNIST digits (with configured minimum and maximum digit
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size, as well as grids for scattering digits), 2) CLEVR dataset [15] (containing
artificially generated scenes with multiple objects of different shape, material,
and size, used widely in the field of scene generation and multi-object repre-
sentation learning), 3) WIDER FACE [23] (face detection benchmark dataset,
with images containing multiple people; the dataset was used to demonstrate
the ability of SSDIR to focus on objects of a particular type).

4.1 Per-object Reconstructions

In this section, we present a comparison of images’ and objects’ reconstructions
for the proposed model and the baseline methods. In Fig. 2 we show inputs
and reconstructions of representative images from each dataset (test subset, i.e.
images not used for training), as well as some individual object reconstructions.
Note, that due to the number of objects presented in the image and the nature
of the models, it would not be possible to show all reconstructed objects.

Both SPAIR and SPACE can reconstruct the scattered MNIST dataset’s
image correctly. However, looking at the where boxes inferred by these models
it is visible, that due to their limited object scale variability they are unable
to attend to individual objects with a single latent representation, often recon-
structing one digit with multiple objects. This is confirmed by the analysis of
object reconstructions: SPAIR builds object reconstructions by combining recon-
structed parts of digits, whereas SPACE can reconstruct digits of sizes similar to
its preset, but divides bigger ones into parts. SSDIR is able to detect and recon-
struct the MNIST image accurately: the use of a multi-scale feature pyramid
allows for attending to entire objects, creating scale-invariant reconstructions,
which are then mapped to the reconstruction according to tight where box coor-
dinates.

SPAIR did not manage to learn object representations in the other two
datasets. Instead, it models the image with rectangular boxes, containing a big-
ger part of an image. The aberrations visible in CLEVR dataset with SPAIR
are caused by a transparency mask applied in this model and the fact, that
these objects are heavily transformed when merging into the reconstruction.
The tendency to model the image with rectangles is even more visible in the
WIDER FACE dataset, where SPAIR divides the image in almost equal rectan-
gles, aligned with the reconstruction grid. This effect allows for a fair quality of
overall image reconstructions but does not yield valuable object representations.

In the case of SPACE, the model was not able to learn objects’ representa-
tion in the CLEVR dataset, despite an extensive grid search of the hyperparam-
eters relevant to the foreground module (especially the object’s size). Instead, it
models them using the background module, which cannot be treated as object
representations since they gather multiple objects in one segment (this lies in
line with problems reported in the GitHub repository2). Hence, objects recon-
structions visible in Fig. 2 for this dataset contain noise. When applied to the
WIDER FACE dataset, SPACE tends to approach image reconstruction in the

2 https://github.com/zhixuan-lin/SPACE/issues/1.

https://github.com/zhixuan-lin/SPACE/issues/1
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same way as SPAIR, dividing the image into rectangular parts, reconstructed as
foreground objects. Similarly, this leads to an acceptable reconstruction quality
but does not provide a good latent representation of the image’s objects.

SSDIR shows good performance on the CLEVR dataset: it can detect indi-
vidual objects and produce their latent representations, which results in good
quality reconstructions. Similarly, in the case of the WIDER FACE dataset, the
model is able to reconstruct individual faces. However, due to the simple back-
bone design and low resolution of object images, the quality of reconstructed
faces is low. Additionally, as a result of using a multi-scale feature pyramid,
SSDIR returns multiple image reconstructions for individual objects.

Fig. 2. Model inference comparison between SSDIR, SPAIR [4], and SPACE [18] for
three typical images from each dataset. The first column presents the input image,
the second and third contain image reconstruction without and with inferred bounding
boxes; the remaining columns include some of the reconstructed individual objects.
The number of images is limited due to the number of objects reconstructed by each
model; for SSDIR, objects are meaningful and visually sound, while SPAIR and SPACE
tend to divide bigger objects into smaller ones, or, in case of more complicated scenes,
reconstruct them by dividing into rectangles, returning a redundant number of latents.
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4.2 Latent Space

In this section, we present the analysis of the SSDIR model’s latent space and
compare it with the latent space of SPAIR and SPACE. Figure 3 visualizes latent
spaces for the scattered multi-scale MNIST dataset. For each model, we process
the test subset to generate latent vectors of each image. Then, individual objects’
zwhere vectors were compared with ground truth bounding boxes, and labels were
assigned to latent representations by choosing the maximum intersection over
union between predicted and true boxes. Each zwhat vector was then embedded
into two-dimensional space using t-SNE.

Table 2. Comparison of metrics for digit classification task using latent objects’ rep-
resentations and logistic regression. Results are averaged over 3 random seeds.

Method Accuracy Precision Recall F1-Score

SSDIR 0.9789 ± 0.0016 0.9787 ± 0.0017 0.9786 ± 0.0016 0.9786 ± 0.0016

SPAIR [4] 0.1919 ± 0.0073 0.1825 ± 0.0087 0.2019 ± 0.0092 0.1803 ± 0.0102

SPACE [18] 0.2121 ± 0.0432 0.2020 ± 0.0431 0.2158 ± 0.0435 0.1992 ± 0.0462

Fig. 3. Visualization of zwhat latent space for scattered MNIST test dataset. Each
object representation was converted using t-SNE to a two-dimensional space and plot-
ted; the labels were inferred by choosing maximum intersection over union of predicted
zwhere and the ground truth bounding box and label. SSDIR shows a structured latent
space, allowing easier distinguishing between digits.

Comparing the latent spaces, it is visible that SSDIR embeds the objects
in a latent space, where digits can be easily distinguished. What is more, the
manifold is continuous, without visible aberrations. The baseline methods’ latent
spaces are continuous as well, but they do not allow easy discrimination between
each object class. The main reason is probably the fact, that both SPAIR and
SPACE tend to divide large objects into smaller parts, according to the preset
object size, as shown in Sect. 4.1.

Next, we tried to use the latent representations of objects in images for a
downstream task of digit classification. For each of the methods, we trained
models on the scattered MNIST dataset using three random seeds and produced
latent representations for both train and test subset, assigning labels to each
object’s zwhat based on intersection over union between zwhere and ground truth
boxes. Then, for each model and seed, we trained a logistic regression model to
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classify the digits based on their latent representations. Test subset classification
metrics are gathered in Table 2. SSDIR latent space proves to be more valuable
than the baseline methods’, reaching high values of each metric.

4.3 Ablation Study

To test the influence of the dataset’s characteristics on the model performance,
we performed an ablation study. The scattered MNIST dataset is generated by
drawing random cells in a preset grid and inserting a random-sized MNIST digit
inside it with a random offset. The number and size of grids, as well as the
minimum and maximum size of a digit, are the hyperparameters of the dataset
generation researched in the ablation study.

An SSDIR model was trained on each of the generated datasets and evaluated
on a test subset with regard to the mean square error of reconstructions. The
results of the study are shown in Fig. 4.

Fig. 4. Influence of the dataset generation parameters on the model performance.
Parameters generating a dataset with larger or more occluded digits causes the model’s
performance to mitigate. SSDIR works best for non-occluded, small digits.

It is visible, that the model is sensitive to the size of objects in images. Bigger
objects cause the mean square error to rise, mainly due to the transformation of
small-sized reconstructions to the output image. Another factor that causes the
error to increase is the number of digits in the image, which usually leads more
occlusions to appear in the final image. The upturn is visible with increasing the
minimum and maximum grid size, as well as the total number of cells.

5 Conclusions

In this paper, we proposed SSDIR, a single-shot convolutional generative model
for learning scale-invariant object representations, which enhances existing solu-
tions with a multi-scale feature pyramid-based approach and knowledge learned
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in an object detection model. We showed the improved quality of latent space
inferred by SSDIR by applying it in a downstream task and proved its ability to
learn scale-invariant representations of objects in simple and complex images.

Among the method’s drawbacks, one should mention limited input image
size, which makes it struggle with very complicated scenes, especially in case of
occlusions. What is more, learning representations of objects in complex scenes
could be improved by more advanced modeling of objects’ interactions. These
issues will be addressed in future works, which include applying a more advanced
convolutional backbone and larger input images for improving the ability to
detect objects and the quality of their representations. The latent vectors inferred
by SSDIR could potentially be used in other advanced tasks, such as object
tracking or re-identification. In such a case, the model could benefit from the
increased sophistication of the model architecture. Additionally, SSDIR could
be extended for processing videos by utilizing a recurrent network to consider
temporal dependencies between subsequent frames.
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Abstract. LEGO bricks are highly popular due to the ability to build
almost any type of creation. This is possible thanks to availability of
multiple shapes and colors of the bricks. For the smooth build process
the bricks need to properly sorted and arranged. In our work we aim
at creating an automated LEGO bricks sorter. With over 3700 differ-
ent LEGO parts bricks classification has to be done with deep neural
networks. The question arises which model of the available should we
use? In this paper we try to answer this question. The paper presents a
comparison of 28 models used for image classification trained to classify
objects to high number of classes with potentially high level of similar-
ity. For that purpose a dataset consisting of 447 classes was prepared.
The paper presents brief description of analyzed models, the training
and comparison process and discusses the results obtained. Finally the
paper proposes an answer what network architecture should be used for
the problem of LEGO bricks classification and other similar problems.

Keywords: Image classification · LEGO · Neural networks

1 Introduction

LEGO bricks are highly popular among kids and adults. They can be used to
build vast array of, both very simple and very complex, constructions. This is
achieved by availability of multiple, sometimes very different, yet compatible
brick shapes. For the smooth build process the bricks need to properly sorted
and arranged - constant searching for proper bricks in a big pile of LEGO is
discouraging and limits creativity. Usually the sorting is done by shape. The
colors and decals can be easily distinguished even in a big pail of bricks [2].
Still, with over 3700 different LEGO parts [24] (and the number is constantly
growing) even disregarding the color makes the problem complex.

No solution for this problem was proposed so far. LEGO Group provides only
a simple sorting mechanism, based on the brick size, in form of the 2011 released,
now discontinued, LEGO Sort and Store item. Fan offered solutions usually rely
on optimization of the manual sorting process (e.g. [1]). Some fans tried to build
AI powered sorting machines [10,38] with some success. Independently from the
way of building the sorting machine, it requires a well-trained neural network
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628 T. Boiński et al.

able to distinguish between different, often very similar bricks. The solution
should at least divide them into smaller number of categories aggregating bricks
similar in shape and usage, allowing further manual selection of proper bricks.
Thus LEGO oriented object classification solution is needed.

Problems like object detection, image segmentation, content-based image
retrieval, or most commonly, object classification lie in domain of computer
vision. In the last case the given, previously detected object, is assigned a one
or more labels. The objects can have either one label assigned (multi-class clas-
sification) or many labels assigned (multi-label classification).

Computer vision is an actively research sub-domain of machine learning. It
originated as far as in late 60ties of the 20-th century [27]. What was at the
beginning portrayed as a simple task, assigned to students in summer school,
currently remains a complex and not yet fully solved problem.

Across the recent years multiple deep neural network architectures emerged.
For their comparison a standardised approach was established - ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) competition [29]. During the com-
petition the models should classify objects to one of the 1000 classes based on
1.2 million of training images. The model accuracy is tested on 150000 images.
Two metrics are calculated – Top1 (the percentage of directly correctly clas-
sified images) and Top5 (the percentage of images that were classified among
the 5 with the highest probability). There are other commonly used datasets
like CIFAR-10 and CIFAR-100 [20], SIFT10M [8], Open Images Dataset [19,21],
Microsoft Common Objects in Context (COCO) [23]. As each dataset contains
photos from different categories, with different size etc., good standing with one
of the datasets does not guarantee the same results with the other. Furthermore
the datasets try to be very general whereas in some cases the images contain
similar objects. That is why further evaluation is still required.

In our research we undertook construction of AI-powered sorting machine [6]
treating LEGO recognition as multi-class classification. To search for the best
architecture that matches our scenario we decided to base our dataset in that
prepared for ILSVRC. This way we could speed up training process thanks to
transfer learning approach. As candidate architectures we selected the ones that
achieved the best results in the aforementioned competition.

The structure of this paper is as follows. In Sect. 2 a description of compared
network topologies is given. Later on, in Sect. 3, the used dataset is presented.
Further in Sect. 4 details how the training was done and the testing methodology
are presented. Section 5 discusses results obtained during the tests. Finally, some
conclusions are given.

2 Network Topologies

In this paper we tested 28 network topologies from 7 families:

– EfficientNet – EfficientNetB0, EfficientNetB1, EfficientNetB2, Efficient-
NetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6 and EfficientNetB7
variants,
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– NASNet – NASNetMobile and NASNetLarge variants,
– ResNet – ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152 and

ResNet152V2 variants,
– MobileNet – MobileNet, MobileNetV2, MobileNetV3Large and MobileNetV3-

Small variants,
– Inception – InceptionV3, InceptionResNetV2 and Xception variants,
– DenseNet – DenseNet121, DenseNet169 and DenseNet201 variants,
– VGG – VGG16 and VGG19 variants.

In this section a brief introduction to each family and variant is given, por-
traying its strengths and rationale behind the used architecture.

EfficientNet architecture was defined in 2019 [37]. The model aims at effi-
cient scaling of convolutional deep neural networks. The authors distinguished
three dimensions of scaling: depth scaling, width scaling and resolution scaling.
Depth scaling is the most commonly used approach, as it allows increase in
number and complexity of detected features by increasing the number of convo-
lutions. However, with increasing network depth, the training process gets longer
and a problem of vanishing gradient can be observed [13]. Width scaling relies
on increase of number of channels in each convolution. It is commonly used in
shallow networks, where width scaling increased both training speed and classi-
fication quality [39]. Resolution scaling allows potential extraction of additional
features. With all three scaling approaches there is a point of diminishing returns,
beyond which additional computational overhead is not being compensated by
better accuracy. EfficientNet uses so-called compound scaling, where all three
parameters are equally scaled using φ parameter.

The base model here is similar to MnasNet [36] and MobileNetV2 [30]. Each
model in this family differs by the φ parameter value (starting with φ = 0).

Care needs to be taken when using the model in TensorFlow framework [31],
as zero-padding is used for convolutions with resolutions that cannot be divided
by 8. The number of channels also needs to be divisible by 8. The real compound
scaling parameters applied when using TensorFlow are thus different.

ResNet50 was proposed in 2015 [11], as a solution to vanishing and exploding
gradient problems. Thanks to so-called residual connections, it allows training
of very deep networks (over 1000 convolutional layers). Residual connections
perform elementwise addition of identity function between convolution blocks.
This improves gradient flow, by skipping non-linear activation functions usually
placed in convolutional blocks.

In 2016 a revision of the original model was proposed (called ResNet V2) [12].
The whole family of this model (in both ResNet and ResNet V2 revisions)
achieves very high results in ILSVR competition reaching 74.9%–78% accuracy
in Top1 and 92.1%–94.2% accuracy in Top5 categories.

DenseNet was defined in 2016 [16]. Similarly as in ResNet, the aim is to
solve the vanishing gradient by shortening its flow path. DenseNet uses so-called
dense blocks to achieve it. The dense block consists of 1 × 1 and 3× 3 blocks and
output of every block within it is connected with input of every next block. Each
layer within a dense block has thus direct access to its output which limits the
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flow path. DenseNet has also low width of the convolutional layers. Each variant
of DenseNet architecture differs in terms of size of the last two dense blocks.

In 2018 DenseNet achieved the highest score in ILSVR competition Top1
category reaching accuracy of 75% for DenseNet-121, 76.2% for DenseNet-169,
77.42% for DenseNet-201 and 77.85% for DenseNet-264 77.85%.

Inception architecture was defined in 2014 [34] with Inception v1/GoogLeNet.
The aim was to reduce the risk of overfitting and eliminate the problems with
gradient flow. A special Inception block was proposed - it is composed of three
layers with different filters (1× 1, 3× 3 and 5× 5). This led to high calcula-
tion complexity so a reduction was introduced that limited the number of entry
channels. 9 Inception v1 blocks were combined as GoogLeNet architecture.

Inception v2 and v3 were defined in 2015 [35]. They increased performance,
limiting information loss and computational complexity. Inception v3 achieves
77.9% accuracy in ILSVR competition Top1 category and 93.7% in Top5.

In 2016 Inception v4, InceptionResNetV1 and InceptionResNetV2 architec-
tures were proposed [33]. The main goal was simplification and unification of the
Inception models. ResNet residual connections were also included in the model.
The best results were obtained by InceptionResNetV2 model. In Top1 category
of the ILSVRC competition it achieved accuracy of 80.3% and in Top5 95.3%.

In 2017 an extension to Inception V3, by replacing the inception block with
so-called extreme inception, was defined [7]. The original block was modified
so that for each 1× 1 convolution output corresponds one 3× 3 convolution.
This architecture, called Xception, proved to be easier to define and modify in
software frameworks than the original Inception model.

Xception achieved better results in ILSVR competition than the original
Inception v3 model. For Top1 category the accuracy was 79% and for Top5
94.5%. It also had less parameters (22.86 million vs 23.63 million).

NASNet model was defined in 2017 [41]. It was created thanks to Google
AI’s AutoML [28] and Neural Architecture Search [40]. The creation of optimal
network architecture is treated here as reinforcement learning problem, with the
final network accuracy as a reward. This induced a very high computational cost,
so the search space had to be narrowed considerably. Based on the analysis of
other models the authors first defined a general architecture, which composed of
only 2 blocks - normal cell and reduction cell.

This significantly reduced the time needed to find the optimal model. Still,
the training time remained very long. However, the model achieved good results.
For ILSVRC Top 1 category it reached accuracy of 74.4% and 82.5% for smaller
NASNetMobile variant, and larger NASNetLarge variant respectively.

MobileNet model was defined in 2017 [15]. It was designed to allow fast
inference on mobile and embedded devices. The authors of this solution point
out that after a certain level of network complexity, the increase in inference
time is much bigger than the increase in accuracy, making the potential gain
computationally unprofitable. To further increase the performance of inference,
authors defined a special convolution, called depthwise separable convolution.
It separates the operation into two phases - filtering and combination. This



How to Sort Them? A Network for LEGO Bricks Classification 631

approach allowed up to 9 times lower computational complexity with only a 1%
lower accuracy [15] (for ILSVRC Top 1 category).

Few versions of MobileNet architecture were proposed, each introducing
usage of different approaches (like residual connections) or different numbers of
channels. The original MobileNet model achieved for Top1 category of ILSVRC
competition the accuracy equal to 70.6%. MobileNetV2 [30] achieved 72.0% with
around 20% lower number of parameters and 47% lower computational cost.
MobileNetV3 [14] introduced 2 versions - Small with 2.5 million parameters and
Large with 5.4 million parameters. The accuracy for Top 1 category of ILSVRC
competition was 75.2% for MobileNetV3Large and 67.4% for MobileNetV3Small.

VGG is one of the oldest architectures, was defined in 2014 [32]. Different
variants of this model vary by the number of trainable layers. For Top 1 category
of ILSVRC competition, VGG16 and VGG19 reach accuracy of 71.3%. For Top5
category, VGG16 reaches accuracy of 90.1%, whereas VGG19 of 90%.

As we can see, all of the aforementioned models achieved very good result
in the ILSVRC competition. At the time of their publication they gained the
highest score and usually became the state of the art. As mentioned in Sect. 1 it
doesn’t always translate to the same results for other datasets.

3 The Dataset

During the training we used custom dataset containing both real photos and
renders of LEGO bricks, belonging to 447 classes. The bricks were taken from
authors personal collection of over 150 LEGO sets and represents the most com-
monly available brick shapes. The whole dataset consists of 620082 images, where
52601 were real photos and 567481 were life-like renders. The renders were cre-
ated using Blender tool [9] based on 3D models from LDraw library [17].

The renders were used to speed up data gathering. We created a script that
randomly selected a brick type, color and alignment simulating its move on
a conveyor belt below a fixed positioned camera. Thanks to Blender and its
extension called ImportLDraw [26] we managed to generate realistic images of
LEGO bricks. Sample renders, after being cropped, can be seen in Fig. 1.

Real photos were created to increase the representativeness of the training
set. For that we created a dedicated Android app allowing quick tagging and
automatic cropping of LEGO bricks on pictures taken with phone camera. Sam-
ple real photos can be seen in Fig. 2.

The full set of rendered images (before cropping) and real photos are publicly
available – [5] and [3] respectively. The complete dataset is also available [4].

Before the training the dataset was prepared so that all networks would be
trained on the same images. The images need to be standardised in terms of size
and proportions. As some of the bricks are long and narrow (e.g. brick 3002),
we decided to scale the longer edge to the desired size, and the shorter edge
proportionally (otherwise we could loose some information). Then, the image
canvas was extended to form a square and was filled with white background.
Next, all images were augmented using imgaug library [18]. The transformation
included the following operations applied with 50% probability:
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Fig. 1. Sample renders for brick number 3003

Fig. 2. Sample real photos of brick number 3003

– scaling to randomly selected size (80%–120% of the original size),
– random rotation between −45◦ and 45◦,
– random shift by up to 20%,
– random transformation into a trapezoid with an angle of up to 16◦.

Next, 5 randomly selected operations were applied, from the following list:

– Gaussian, median or averaged blur with a random intensity,
– sharpening filter with random blending factor and brightness,
– emboss filter with random blend factor and brightness,
– superimpose the contours detected by the edge detection filter, with a prob-

ability of 50%,
– Gaussian noise of random intensity,
– dropout of random pixels or a group of pixels,
– inversion of every image channel, with probability of 5%
– addition of a random value to each pixel,
– random brightness change of the image,
– random contrast change of the image,
– generation of a grayscale image and overlaying it with random transparency

over the original photo.

The augmentations were done once, so that the results will be compara-
ble. During the training process, to reduce the risk of overfitting, we performed
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additional augmentation before each epoch - the images were rotated by random
angle up to 15◦ and the contrast was changed by random value (up to 10%).

The data gathered were divided into training and validation sets. The training
set contains 447000 images (1000 images each class, 650 renders and 350 real
photos). The validation set contained 44700 images (100 images each class, 50
renders, 50 real photos). The numbers were obtained experimentally.

The test set consisted of real photos created independently. It contains 4000
images of bricks belonging to 20 classes (200 images each). The set was created in
separate session using bricks from other set (Lego Creative Box Classic – 10698).
We used 2 variants of the set - easy and hard. Both have the same number of
photos, however the hard set contained images that are hard or even impossible
to distinguish but belongs to different classes (e.g. bricks 3001 and 3010).

4 Training Process

All models presented in Sect. 2 were trained using transfer learning approach. It
consisted of 2 phases:

– pre-training – done with the base model locked, only the newly added top
layers are trained,

– fine tuning – the base model was partially or completely unlocked, all unlocked
layers could be trained.

Pre-training is characterised by a high learning rate (we’ve used 0.01) with
relatively low computation cost, as the backward pass needs to be calculated only
for the newly added layers. After this stage, we could observe Top1 accuracy for
the 447 LEGO classes at around 50–70%. During the fine-tuning stage, some of
the layers are unlocked and the training is repeated for those layers. The problem
here is how many layers should be unlocked. If the number will be low, then the
training process will be faster, but we might not get to the desired accuracy. The
number of unlocked layers also depends on the initial size of the base model.

We aimed at comparing different architectures so we designed adaptive fine
tuning algorithm. It goes as follows:

1. N := 0
2. N := N + unfreeze interval
3. top1 history := []
4. Unlock N top layers and recompile the model
5. Perform 1 training epoch
6. Perform 1 validation epoch
7. Add the Top1 accuracy on the validation set to top1 history list
8. If top1 history contains no less than patience elements and the Top1 accu-

racy on validation set did not increase by at least min delta during last
patience epochs, go to step 2

9. If top1 history contains max epochs per fit elements, go to step 2.
10. Go to step 5.
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where:

– unfreeze interval (15 by default) – the number of layers to be unlocked
within on fine-tuning iteration,

– max epochs per fit (50 by default) – max number of training epochs in one
fine-tuning iteration,

– patience (5 by default) – the number of epochs in one iteration, after which
the model quality is evaluated,

– min delta (0.01 by default) – minimal requested Top1 accuracy improvement
reached in patience epochs .

The aforementioned algorithm was run to train each model for limited time.
To increase the training speed and limit memory footprint we used so called
mixed precision training [25] and XLA [22] compiler. Both approaches allowed
us to train the networks with larger batch sizes.

For fine tuning we’ve used learning rate = 0.0001. Both phases were trained
using categorical cross-entropy loss function and Adam optimizer. All networks
were trained with batch size = 128, except for EfficientNetB5, EfficientNetB6
and EfficientNetB7, which used 64, 32 and 32 respectively.

5 The Results

In total 28 network topologies were tested. The comparison process was divided
into two stages. First, all models were trained for four hours using adaptive fine
tuning approach described in Sect. 4. The second stage lasted twelve hours. It
was done with the same approach as stage 1, but only 5 best models and the
best out of each family was trained. All tests were done on dual Intel Xeon Gold
6130 server with 256 GiB RAM and dual NVIDIA GeForce RTX 2080 (8 GiB
GDDR6 RAM each) GPU cards. Each training was done on single GPU (two
models were trained at once). The default batch size was 128. Due to the memory
constraints some models used smaller batch size, namely: EfficientNetB5 (64),
EfficientNetB6 (32) and EfficientNetB7 (32). In both stages we used transfer
learning, where for the first stage we used a model trained on ImageNet data.

5.1 Stage I - The Four-Hour Training

Summary of obtained results (ranked from best to worst) are presented in
Table 1. The best model in each family is marked with bold font.

EfficientNet models achieved varied results. The best variant was Efficient-
NetB1. It reached 84.4% Top1 accuracy and 95.85% Top5 accuracy, giving it the
8th place. EfficientNetB3 and EfficientNetB0 got slightly worse results, whereas
EfficientNetB7 and EfficientNetB6 were one of the worst models. The reason for
such outcome was the compound scaling which caused small number of frames
(images) processed in the give time frame. This led to relatively small number
of epochs and thus lower accuracy. The differences between EfficientNet variant
are sustainable. For the next stage only EfficientNetB1 variant was selected.
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Table 1. Results after the first stage (measured on the validation set)

Model Top1 accuracy Top5 accuracy Epochs run Training time

VGG16 92.99% 99.00% 11 04:01:07

VGG19 91.70% 98.64% 11 04:05:07

ResNet50 87.40% 96.96% 14 04:04:07

ResNet101V2 87.20% 96.94% 14 04:10:42

ResNet152V2 86.92% 96.74% 15 04:11:10

ResNet50V2 86.57% 96.72% 14 04:05:15

ResNet152 86.00% 96.28% 13 04:09:27

EfficientNetB1 84.40% 95.85% 15 04:12:06

ResNet101 84.09% 95.44% 14 04:16:57

EfficientNetB3 83.58% 95.63% 10 04:14:06

EfficientNetB0 82.87% 95.03% 15 04:15:20

MobileNetV3Large 82.32% 94.80% 17 04:09:28

Xception 82.31% 94.95% 9 04:27:31

EfficientNetB2 81.33% 94.50% 11 04:04:16

InceptionResNetV2 79.43% 93.90% 7 04:01:10

MobileNet 78.56% 94.04% 14 04:09:26

DenseNet201 77.41% 92.18% 14 04:01:57

MobileNetV2 75.75% 92.29% 16 04:06:31

DenseNet169 75.44% 91.38% 13 04:14:47

DenseNet121 74.01% 90.49% 14 04:06:56

MobileNetV3Small 73.07% 89.97% 17 04:13:45

InceptionV3 71.19% 89.22% 10 04:16:48

EfficientNetB5 66.72% 87.58% 3 04:14:28

EfficientNetB4 65.60% 86.67% 6 04:25:51

NASNetMobile 59.60% 82.08% 16 04:11:54

EfficientNetB6 58.34% 82.15% 2 04:35:13

EfficientNetB7 54.38% 78.60% 1 04:03:32

NASNetLarge 53.39% 77.89% 4 04:26:13

ResNet models achieved very good results. The best variant was ResNet50
reaching 87.40% Top1 and 96.96% Top5 accuracy. The other variants
achieved similar results. 3 models were selected: ResNet50, ResNet101V2 and
ResNet152V2.

Inception models reached mediocre results. The best one was Xception reach-
ing 82.31% Top1 and 94.95% Top5 accuracy. All models finished pre-training stage
and reached the fine-tuning phase. However, we observed very low performance in
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terms of processed images per second, which might have been the cause of mediocre
accuracy. Thus only the Xception model was selected.

DenseNet models did not perform too well. The best results were obtained
by DenseNet201 variant (77.41% Top1 and 92.18% Top5 accuracy). Contrary
to other models, the poor quality did not come from performance problems.
DenseNet training showed one of the highest images per second rate. The prob-
lem lies in low increase of accuracy between epochs. We suspect it is caused by
the design of DenseNet, specifically the concatenation operation. Unlike other
tested architectures, in DenseNet, last convolutional layers are just a small part
of the final feature map. By tuning a small amount of top convolutional layers,
we’re potentially leaving a big part of the feature map intact. This could be fixed
by changing the training methodology and training all convolutional layers, but
it has not been attempted in this phase.

NASNet models also got poor results. The best one, NASNetMobile, reached
59.60% Top1 and 82.08% Top5 accuracy placing 25 out of 28 tested models.
Once again performance was the reason for the results. For the second stage
only NASNetMobile was selected.

MobileNet scored averagely, the best variant being MobileNetV3Large reach-
ing 82.32% Top1 and 94.8% Top5 accuracy. This variant, despite being targeted
for mobile devices, outperforms deeper models like Xception or DenseNet201
thanks to the highest images per second rate and thus the highest training per-
formance. For the second stage MobileNetV3Large was selected.

The best results were obtained by the VGG network variants - VGG16 placed
first (with 92.99% Top1 and 99% Top5 accuracy) and VGG19 placed second
(with 91.70% Top1 and 98.64% Top5 accuracy). The results came unexpected,
as this is the oldest tested architecture. During the ILSVRC competition it was
outperformed over the years by all other tested models, with exception of some
MobileNet variants. The VGG are relatively shallow, but very wide. This allows
fast unlocking of many layers in the fine-tuning approach and thus leads to very
fast learning times. For the second stage both VGG16 and VGG19 were selected.

5.2 Stage II - The Twelve-Hour Training

During this stage 10 models were further trained. The aggregated results (ranked
from best to worst) can be seen in Table 2.

All models managed to get better results. In most cases (except NASNetMo-
bile and DenseNet201) twelve-hour limit was sufficient to achieve convergence.

During this stage, we observed the similar results as in the previous one.
Once again, VGG16 and ResNet50 proved to be the best. However, the quality
difference, both in Top1 and Top5 accuracy, between models that reached con-
vergence is not big - the biggest difference is only 2.18% points. This is true even
for mobile models, like MobileNetV3Large. This network required however more
epochs to reach convergence.

What came as a surprise is that, once again, VGG16 model achieved the
best results. In ILSVRC competition this model is outperformed by every other
non-mobile approach presented in this paper. In the problem presented here
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Table 2. Result after the second stage (measured on the validation set)

Model Top1 accuracy Top5 accuracy Epochs run Training time Parameters

VGG16 94.56% 99.21% 31 12:13:49 138.3M

ResNet50 93.81% 99.10% 41 12:13:23 25.6M

ResNet101V2 93.19% 98.77% 45 12:08:03 44.6M

MobileNetV3Large 92.65% 98.68% 48 12:02:37 5.4M

VGG19 92.62% 98.79% 29 12:26:21 143.6M

Xception 92.49% 98.69% 27 12:06:12 22.9M

ResNet152V2 92.45% 98.54% 40 12:02:22 60.3M

EfficientNetB1 92.38% 98.51% 37 12:19:43 7.8M

DenseNet201 85.26% 95.85% 41 12:07:23 20.2M

NASNetMobile 78.59% 93.46% 41 12:09:57 5.3M

(distinguishing LEGO bricks), VGG16 model trains very fast and reaches superb
accuracy. This model is, however, characterised by high number of parameters
and thus costly in terms of calculation time both at the time of training and
inference. For practical application, the second model, ResNet50, might be thus
a better choice, as it has Top1 accuracy lower only by 0.75% point, while 5.4
times lower the number of parameters. This model might also be a better choice
after extending the training set with images representing other LEGO bricks,
that currently are not taken into consideration (and thus extending the number
of classes almost tenfold).

Very good results were also obtained by a mobile-oriented models, espe-
cially MobileNetV3Large, which had only 1.91% point lower Top1 accuracy than
VGG16 model. Furthermore, it contains only 5.4 million parameters (in contrast
to 138.3 million for VGG16). Thus in applications where computing performance
is scarce, MobileNetV3Large should be used over any more complicated model.
Despite its size, it outperforms in terms of accuracy other, more complicated
models (VGG19, Xception, ResNet152V2 and EfficientNetB1).

DenseNet201 and NASNetMobile did not reach convergence in the twelve-
hour time limit and thus did not achieve good results. DenseNet201 suffered
from overfitting and NASNetMobile had very slow accuracy increase and would
require much longer training time.

5.3 Final Tests

We performed some final tests on the two best models. The results for the easy
and hard sets are presented in Table 3. As can be seen, both models reach similar
accuracy.

To test the models in real life application we implemented a mobile app which
took photos of LEGO bricks laying on a white background and combined it with
the pre-trained models. VGG16 correctly recognized 39 out of 40 bricks. Wrongly
labeled 822931 brick was classified as 3003 due to their similarity from the camera
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Table 3. VGG16 and ResNet50 accuracy for easy and hard tests

Easy set Hard set

Top1 accuracy Top5 accuracy Top1 accuracy Top5 accuracy

VGG16 92.37% 99.02% 86.08% 98.22%

ResNet50 90.40% 99.05% 86.30% 98.60%

perspective. ResNet50 correctly classified all bricks. The networks were tested
in different conditions. We used an intensive pink light to illuminate the test
environment. This made the background pink and most of the bricks appeared
as having different, not seen before, colors. VGG16 correctly recognized 37 bricks
out of 40. ResNet50 model once again correctly classified all of the bricks.

6 Conclusions

The paper presents extensive analysis of deep neural network architectures in
order to verify their suitability for classification of LEGO bricks. The problem is
characterized with the need to distinguish objects between multiple, often similar
classes, as there are over 3700 different LEGO brick shapes. For this purpose, a
new dataset was created containing 447 classes and a set of tools automating the
analysis process were implemented. In total, 28 network architectures, belonging
to 7 families, were analyzed and compared. For the comparison, we used our
proposed training algorithm with adaptive fine-tuning approach.

Results showed that VGG16 model proved to be the best with its Top1 accu-
racy of 94.56% and Top5 accuracy of 99.21%). Surprisingly, in ILSVRC competi-
tion this model was outperformed by other solutions. The model is characterized,
however, with very big number of parameters (138.3 million) and high number of
floating point operations during training and inference process (15.3 GFLOPs).
Not falling far behind was ResNet50 model (Top1 93.81%, Top5 99.10%) which
had lower parameter count (25.6 million) and required far lower system perfor-
mance (3.87 GFLOPs). In many cases, this might be the best choice for similar
problems, where there are a lot of similar objects to classify. Surprisingly, also
the smaller, mobile models proved to be worthwhile. MobileNetV3Large achieved
very good accuracy (Top1 92.65%, Top5 98.68%), with very low parameter count
(5.4 million) and low performance requirements (0.21 GFLOPs).

The two best models also were tested in real life application. They proved to
be very accurate in both synthetic test on predefined test sets and during live
classification of LEGO bricks.

In the near future we plan on extending the dataset with additional classes
to cover as much LEGO brick shapes as possible to provide a deep neural net-
work able to classify any type of LEGO bricks. Such network could be used
in LEGO sorting machines, software recommending constructions based on the
bricks available, automatic brick database creation and many more.
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Abstract. Photoplethysmography (PPG) is a non-invasive optical tech-
nique, applied in clinical settings to measure arterial oxygen saturation.
Using modern technology, PPG signals can be measured by wearable
devices. This paper presents a novel procedure to study the dynamics of
biomedical signals. The procedure uses features of a wavelet scattering
transform to classify signal segments as either chaotic or non-chaotic. To
this end, the paper also defines a chaos measure. Classification is made
using a model trained on a dataset consisting of signals generated by
systems with known characteristics. Using an example PPG signal, this
paper demonstrates the usefulness of the wavelet scattering transform for
the analysis of biomedical signals, and shows the importance of correctly
preparing the training set.

Keywords: Wavelet scattering transform · Chaos · PPG ·
Classification · Biomedical signals

1 Introduction

Photoplethysmography (PPG) is an non-invasive optical measurement tech-
nique. By using a light source to illuminate skin tissue, either the transmitted
or reflected light intensity is collected by a photodetector to record the photo-
plethysmogram. Traditionally, PPG signals have been recorded using red or near
infra-red light. In recent years, green light has been used for wearable devices,
such as wristbands and smartwatches, to provide highly usable and accessible
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daily health monitoring [8,10,12,16,31]. As such, a proper understanding of
green light PPG is of critical importance. Recorded light intensity variations have
traditionally been associated with blood volume pulsations in the microvascular
bed of the tissue. The tissue penetration depth of green light is approximately
530 nm. The source of the chaotic properties of PPG is unclear. Such properties
could originate in the upper layers of the skin, due to changes in capillary density
caused by arterial transmural pressure, or in deeper layers, due to changes in
vessel blood volume [27].

Despite uncertainty concerning the mechanisms of PPG, the technique is
generally accepted to provide valuable clinical information about the cardiovas-
cular system. PPG signals are used to monitor pulse rate, heart rate, oxygen
saturation, blood pressure, and blood vessel stiffness [2,7,13,15,17,21–23,28].
Unfortunately, such signals are often corrupted by noise, motion artifacts, and
missing data.

Biological signals contain deterministic and stochastic components, both of
which contribute to the underlying dynamics of the physiological system. All bio-
logical signals contribute information on the underlying physiological processes.
Therefore, by studying such signals, the physiological systems that generate them
can be better understood.

In early studies, PPG as well as ECG (electrocardiogram) and HRV (heart
rate variability) were claimed to be chaotic mostly based on the results of
time-delay reconstructed trajectory, correlation dimension and largest Lyapunov
exponent [29]. Subsequently, with the development of nonlinear time series anal-
ysis methods for real-world data, further evidence of the chaotic nature of such
biological signals has emerged. However, many tools that were previously thought
to provide clear evidence of chaotic motion have been found to be sensitive to
noise and prone to producing misleading results. Thus, controversy remains con-
cerning the topic of chaos in biological signals [11,26,27].

Sviridova and Sakai [26] applied nonlinear time series analysis methods to
PPG signals to identify the unique characteristics of the underlying dynamical
system. Such methods included time delay embedding, largest Lyapunov expo-
nent, deterministic nonlinear prediction, Poincaré section, the Wayland test,
and the method of surrogate data. Results demonstrated that PPG dynamics
are consistent with the definition of chaotic motion, and the chaotic properties
were somewhat similar to Rössler’s single band chaos with induced dynamical
noise.

A more recent approach to signal analysis is the use of machine learning or
deep learning methods. Such methods can generalize knowledge acquired from a
training dataset, and apply it to the analysis of a testing dataset. Boullé et al.
[3] used a deep neural network to classify univariate time series’ generated by
discrete and continuous dynamical systems based on the presence of chaotic
behavior. The study suggests that deep learning techniques can be used to clas-
sify time series’ obtained by real-life applications into chaotic or non-chaotic.

De Pedro-Carracedo et al. [9] found that the dynamics of a PPG signal were
predominantly quasi-periodic over a small timescale (5000 data points 250 Hz).
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Over a longer timescale (600000 data points 250 Hz), more diverse and complex
dynamics were observed, but the signal did not display chaotic behavior. This
analysis used a deep neural network to classify the PPG signals. The following
dynamics classes were defined: periodic, quasi-periodic, non-periodic, chaotic,
and random. Unfortunately, the dataset used to train the network contained only
one system for each class. Given that chaotic systems are difficult to generalize
[6], this is not sufficient to accurately classify the dynamics of the real-life signal.

De Pedro-Carracedo et al. [20] applied a modified 0–1 test to the same PPG
time series’ as the above study. They also found that the majority of PPG
signals displayed quasi-periodic behavior across a small timescale, and that as the
timescale increased the dynamics became more complex, due to the introduction
of additional cardiac rhythm modulation factors. Under specific physiological
conditions, such as stress, illness, or physical activity, a transition from quasi-
periodicity to chaos can be possible. This phenomenon provides the motivation
for measuring the presence of chaos within PPG signals under various conditions.

The objective of this study is to analyze the dynamics of PPG signals during
different everyday activities. We propose a novel approach to classify signals
using features of a wavelet scattering transform (WST) and a support vector
machine (SVM) classifier. This approach was simplified by defining only two
classes of signals: chaotic and non-chaotic. Compared to previous research, the
training data was prepared in greater detail, and included noise, which was
omitted in previous works.

Wavelet analysis provides a unifying framework for the description of many
time series phenomena [25]. Introduced by Mallat [18], WST has a similar archi-
tecture to convolutional neural network. Despite requiring no parameter learning,
WST performs strongly, particularly in constrained classification tasks. WST is a
cascade of complex wavelet transforms and modulus non-linearities. At a chosen
scale, averaging filters provide invariance to shifts and deformations within sig-
nals [1]. Hence, WST can be applied accurately and efficiently to small datasets,
whereas convolutional neural network require a large amount of training data.
Consequently, WST features possess translation invariance, deformation, stabil-
ity, and high-frequency information [4]. As such, WST is highly suitable feature
extractors for non-linear and non-stationary signals, and has been widely used
in audio, music, and image classification.

Moreover, WST is often used to analyze time series’, including biomedical
signals. By inputting WST features to an SVM classifier, electroencephalography
signals were correctly classified as belonging to alcoholic or non-alcoholic patients
[5]. In addition, a WST was used to classify heart beats based on ECG signals,
with an accuracy of 98.8–99.6%. Jean Effil and Rajeswari [14] used a WST and
a deep learning long short-term memory algorithm to accurately estimate blood
pressure from PPG signals.
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2 Materials and Methods

2.1 The Wavelet Scattering Transform

The wavelet transform is convolutions with dilated wavelets. For 2D transfor-
mations, the wavelets are also rotated. Being localized waveforms, wavelets are
stable to deformations, unlike Fourier sinusoidal waves. A scattering transform
creates nonlinear invariants using wavelet coefficients with modulus and aver-
aging pooling functions. Such transforms yield representations that are time-
shift invariant, robust to noise, and stable to time-warping deformations. These
attributes are highly useful for many classification tasks, and wavelet transforms
are the most common method applied to limited datasets. Andén and Mallat [1]
provide a brief overview of the key properties of scattering transforms, including
stability to time-warping deformation and energy conservation, and describe a
fast computational algorithm.

The WST consists of three cascading stages. In the first stage, the signal
x undergoes decomposition and convolution with a dilated mother wavelet ψ of
center frequency λ, giving x∗ψλ. Following this, the convolved signal is subjected
to a nonlinear modulus operator, which typically increases the signal frequency
and can compensate for the loss of information due to down sampling. Finally,
a time-average/low-pass filter in the form of a scaling function φ is applied to
the absolute convolved signal, giving |x ∗ ψλ| ∗ φ.

The zero-order scattering coefficients S0 describe the local translation invari-
ance of the signal:

S0 = x ∗ φ.

At each level, the averaging operation causes the high-frequency parts of the
convolved signal to be lost. These parts can be recovered via the convolution of
the signal with the wavelet in the following level.

The first-order scattering coefficients S1 are therefore defined as the average
absolute amplitudes of wavelet coefficients for any scale 1 ≤ j ≤ J , over a
half-overlapping time window of size 2j :

S1 = |x ∗ ψλ1 | ∗ φ.

The second-order scattering coefficients S2 are calculated by repeating the above
steps:

S2 = ||x ∗ ψλ1 | ∗ ψλ2 | ∗ φ.

The higher order wavelet scattering coefficients can be calculated by iterating
the above process.

The scattering coefficients for each level of the wavelet scattering transform
are obtained by processing the defined constant-Q filter bank, where Q is the
number of wavelets per octave. Each level can have a filter bank with different
Q parameters.

During implementation we used the MATLAB (version R2021b) waveletScat-
tering function. The two-layer WST was obtained using Gabor wavelet. For the
first and second levels Q1 = 8 and Q2 = 1 respectively. The transform is invariant
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to translations up to the invariance scale, which is set to half of the signal length
in the default implementation. The scaling function determines the duration of
the invariant in time. Moreover, the invariance scale affects the spacing of the
wavelet center frequencies in the filter banks. The output Rpaths×windows×signals

is a feature tensor. This tensor was reshaped into a matrix which is compatible
with the SVM classifier. The columns and rows of the matrix correspond to scat-
tering paths and scattering time windows respectively. This results in a feature
matrix of signals · windows rows and paths − 1 columns.

The zero-order scattering coefficients are not used. Given that multiple scat-
tering windows are obtained for each signal, repeated labels were created that
corresponded to the labels (0, 1). Following this, normalization was applied.
Scattering coefficients of order greater than 0 were normalized by their parents
along the scattering path. Using the defined parameters for the N input signals
(runs), each composed of 1000 samples, this procedure produced a 102 × 8 × N
WST feature tensor, which was then transformed into a N · 8 × 101 matrix.

2.2 Classification Model

The testing and training datasets were created using 13 dynamical systems (five
chaotic and eight non-chaotic) of first, second, or third order. Table 1 shows
the training set characteristics. Each system was provided with 1000 created
test files, each of which contained 1000 samples. Augmentation was applied by
randomizing the initial conditions, defined by the x0 vector, according to the for-
mula [2 ·rand()−1] ·x0, where rand() generates pseudorandom numbers that are
uniformly distributed in the interval (0, 1). The chaotic systems are represented
by driven or autonomous dissipative flows. Previously described as A.4.5, A.5.1,
A.5.2, A.5.13, and A.5.15 [24], we describe these flows as CHA 1,CHA 2, CHA 3,
CHA 4, and CHA 5, respectively. The non-chaotic systems were divided into the
following classes: i) periodic, including the OSC 1, OSC 2, DOSC 1, and IOSC
systems; ii) quasi-periodic, including QPS 1 and QPS 2; and iii) non-periodic,
including DS 1 and DS 2. The quasi-periodic systems are described by the gen-
eral function

x = f(t) = A1 · sin(ω1 · t + ϕ1) + A2 · sin(ω2 · t + ϕ2),

where the ratio ω1/ω2 is irrational.
Based on previous PPG signal analysis, we made the following experimental

design choices:

– A signal with a length of 1000 samples was obtained from each system using
1000 runs with different initial parameters. Each dimension of the multidi-
mensional systems was treated separately. This corresponded to analysis using
windows with a short time horizon of 31.2 s for 32 Hz PPG signal.

– We used SVM classification with a radial basis kernel similar to that proposed
by Buriro et al. [5]. The classification is made based on WST features.

– Two classes were defined for the classification task: chaotic (class 1) and
non-chaotic (class 0). The decision to use just two classes, and therefore fold
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periodic, quasi-periodic, and non-periodic behavior into the same class, was
made to test the thesis that PPG signals are never chaotic [9]. In further
work, a larger number of more distinct classes will be used.

– Sviridova and Sakai [26] show that PPG signals display some similarity to
Rössler’s chaos with induced dynamical noise. As such, we used Rössler’s
system as one of the signals with chaotic behavior, as shown in Fig. 1. Fur-
thermore, all signals with additive white Gaussian noise were added to the
whole set.

The accuracy of the trained models was checked by 10-fold cross-validation.
To investigate the properties of the training set, the following models were

trained:

– Model01 was trained without output signals from Rössler’s system (CHA 3).
Using 10-fold cross-validation, accuracy was validated as 100%. Testing using
Rössler’s system signal showed 32% accuracy. Based on the model, it is impos-
sible to effectively classify the signals produced by chaotic systems. It is there-
fore important to include the signals from CHA 3 within the training set.

– Model02 was trained without the quasi-periodic systems QPS 1 and QPS 2.
Using 10-fold cross-validation, accuracy was validated as 100%. Testing using
QPS 1 and QPS 2 showed 78.5% accuracy. On this basis, we determine that
quasi-periodic systems are easier to correctly classify.

– Model03 was trained on signals without additional noise. Using 10-fold cross-
validation, accuracy was validated as 100%. Testing using signals with addi-
tive Gaussian noise with a signal to noise ratio of 7dB showed 94.03% accu-
racy. Although the analytical methods for the assessment of chaotic behavior
are highly sensitive to noise, the prepared model is not, and even noisy signals
can be classified with high accuracy.

– Model01N and Model02N are variants of models Model01 and Model02
respectively, trained additionally with noisy signals.

– ModelAll was trained using all signals, both with and without additive Gaus-
sian noise, with a signal to noise ratio of 7 dB. Using 10-fold cross-validation,
accuracy was validated as 99.88%.

2.3 PPG Dataset

The dataset used in this work is the public available PPG dataset for motion
compensation and heart rate estimation in daily life activities (PPG-DaLiA1)
[21]. Given that the database contains a reference ECG measurement, it is often
used to test heart rate estimation algorithms [31]. The dataset contains a total
of 36 h of recording for 15 study participants undertaking eight different types of
physical everyday life activities: working, sitting, walking, eating lunch, driving,
cycling, playing football, and climbing stairs. The sensor data was obtained from
commercially available devices. In our case, 64 Hz PPG signals which we used for
testing the trained models were recorded by the wrist-worn Empatica E4 device.
1 https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/, accessed July 2021.

https://ubicomp.eti.uni-siegen.de/home/datasets/sensors19/
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Fig. 1. 3D signals and a phase portrait of the Rössler system (CHA 3).

Table 1. The training set characteristics.

Name and symbol Class Dimension Short description

Ueda oscillator CHA 1 Chaotic (class 1) 2 Driven dissipative flow

Lorenz attractor CHA 2 Chaotic (class 1) 3 Autonomous dissipative flow

Rössler attractor CHA 3 Chaotic (class 1) 3 Autonomous dissipative flow

Halvorsen’s cyclically symmetric
attractor CHA 4

Chaotic (class 1) 3 Autonomous dissipative flow

Rucklidge attractor CHA 5 Chaotic (class 1) 3 Autonomous dissipative flow

Undamped oscillator 1 OSC 1 Periodic (class 0) 2 Slow oscillations with constant
amplitude

Undamped oscillator 2 OSC 2 Periodic (class 0) 2 Fast oscillations with constant
amplitude

Damped oscillator 1 DOSC 1 Periodic (class 0) 2 Fast oscillations with decreasing
amplitude

Oscillator with increasing
amplitude of oscillations IOSC

Periodic (class 0) 2 Oscillations with growing
amplitude

Damped system 1 DS 1 Non-periodic (class 0) 3 Slow fading signals

Damped system 2 DS 2 Non-periodic (class 0) 3 Fast fading signals

Quasi-periodic system 1 QPS 1 Quasi-periodic (class 0) 1 Irrational ratio: ω1/ω2 = π

Quasi-periodic system 2 QPS 2 Quasi-periodic (class 0) 1 Irrational ratio:
ω1/ω2 = (1 +

√
5)/2

16 000 000 samples 0 All samples of signals with
non-chaotic behavior

16 000 000 samples 1 All samples of signals with chaotic
behavior

The base frequency of the PPG signals was adjusted to match the training
set. We counted the number of signal zero crossings within a given time interval
when using the CHA 5 system. We were required to increase the frequency of
zero crossings by a factor of two, giving a final PPG signal frequency 32 Hz.

3 Results

The PPG signal was split into 1000 samples (31.2 s) segments, following fitting
and resampling. For each segment, the WST features were obtained. As part
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Table 2. Results for all tested models—the ratio of windows classified as chaotic to
the total number of windows within the PPG signal. The highest values for each model
have been marked.

Participant Model01 Model01N Model02 Model02N Model03 ModelAll

S01 0.27 0.07 0.25 0.14 0.26 0.11

S02 0.29 0.12 0.28 0.15 0.29 0.15

S03 0.22 0.07 0.17 0.12 0.19 0.09

S04 0.30 0.16 0.28 0.20 0.29 0.19

S05 0.56 0.33 0.53 0.34 0.54 0.33

S06 0.26 0.11 0.21 0.14 0.23 0.13

S07 0.42 0.13 0.36 0.20 0.40 0.17

S08 0.23 0.11 0.22 0.14 0.23 0.13

S09 0.27 0.14 0.26 0.18 0.26 0.18

S10 0.23 0.10 0.22 0.12 0.22 0.13

S11 0.47 0.25 0.44 0.28 0.46 0.26

S12 0.20 0.07 0.16 0.11 0.17 0.09

S13 0.50 0.22 0.44 0.26 0.47 0.24

S14 0.22 0.06 0.16 0.11 0.17 0.08

S15 0.18 0.06 0.14 0.10 0.16 0.08

Fig. 2. Chaos measure values when using ModelAll, for each 1000 sample segment for
the S06 participant.

of the analysis, the signal was split into W = 8 scattering windows of 125
samples each. A classification result was generated for each scattering window.
The overall classification of a segment is the ratio of the number of windows
classified as having chaotic behavior (class 1), to the total number of windows.
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Fig. 3. Chaos measure values when using ModelAll, for each 1000 sample segment for
a fragment of the PPG signal of the S07 participant.

Fig. 4. Chaos measure values for each participant.

Hence, a segment that contains eight chaotic windows represents a fully chaotic
segment of signal. Within the overall signal, we define the chaotic measure to be
the ratio of chaotic windows to total number of windows. Tests were conducted
for all models, as shown in Table 2. Figures 2 and 3 present the PPG signal and
the value of the chaotic measure for each segment.

The results show that those models trained without additional noise—
Model01, Model02, and Model03—display high chaotic measure values (see
Fig. 4). The differences between each of these models are not significant. This
confirms that noise is present within the data, and is highly relevant to its
evaluation.
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Fig. 5. Average chaos measure values for each activity.

Those models that were trained with additional noise—Model01N, Model02N,
and ModelAll—display greater differences in the chaotic measure. Model01N
produced the lowest values of chaotic measure, meaning that fewer segments
were classified as exhibiting chaotic behavior. Hence, the PPG signals display
some similarity to the Rössler system. Model02N produced the highest values of
chaotic measure, showing that a model trained without quasi-periodic functions
classifies such behavior as chaotic. Moreover, the inclusion of such a class of
functions was justified. ModelAll produces results between those of Model01N
and Model02N.

The highest values of chaotic measure, independent of the model used, were
obtained from the PPG signal of participant S05. Interestingly, this participant
reported the greatest errors in heart rate estimation using deep neural networks.
The mean heart rate was significantly higher than for all other participants
[21,31].

Figure 5 shows that the greatest values of chaotic measure are obtained during
the cycling, soccer, driving, and walking activities. The values differ between
activities, indicating that the measure is influenced by movement or changes in
heart rate as a result of physical activity, stress, or the general condition and
health of the participant. The relationship is not well defined, as the participants
had the highest heart rate when climbing stairs and cycling. Further analysis of
this phenomenon is required.

The calculations were performed on the computer with the following param-
eters: Windows 10, Intel(R) Core(TM) i7-7700HQ CPU 2.80 GHz, 32 GB, Mat-
lab R2021b. The biggest differences in training and classification times are
between the models based signals without noise and with additional noisy
signals. The average time of determining WST features for models Model 01,
Model 02, Model 03 is 14.55956667 s (std 0.996971916), the training time is
19.45903333 s (std 2.239389959), and the average classification time of one win-
dow is 0.000109 s (std 0.000061). Taking into account the models Model 01N,
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Model 02N, Model All the average times are as follows: WST features calcula-
tions - 42.526825 s (std 4.489965561), training - 289.576025 s (std 21.05237103),
classifications - 0.000435 s (std 0.000044).

4 Conclusions

The results show that signal classification based on system features requires
careful preparation of the training set. Chaotic systems create signals that are
difficult to predict. Therefore, insufficient data within the training set may cause
misclassification. The noise within real measured signals must also be accounted
for.

Furthermore, a WST can be used to successfully determine signal features for
the purpose of classification. Given that such wavelet analysis is well understood,
parameters can be chosen straightforwardly. Moreover, the training model is
supposed to be much faster than the use of deep learning methods, which is
worth future investigation.

The analysis showed that PPG signals display chaotic features over short
time spans. The measure of chaos is dependent upon the activity performed.
Given that wearable devices are easily available and are increasingly used for
medical diagnosis [19,30], understanding this phenomenon is highly important
and the topic requires further detailed analysis.

The aim of this study was to demonstrate the usefulness of WST for the
analysis of biomedical signals, and to show the importance of correctly preparing
the training set. Interest in the classification of real signals by deep learning
methods is increasing; such methods may lead to erroneous conclusions if the
training sets are inadequately prepared.
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Abstract. Convolutional neural networks (CNNs) are among the most
commonly investigated models in computer vision. Deep CNNs yield high
computational performance, but their common issue is a large size. For
solving this problem, it is necessary to find effective compression meth-
ods which can effectively reduce the size of the network, keeping the
accuracy on a similar level. This study provides important insights into
the field of CNNs compression, introducing a novel low-rank compres-
sion method based on tensor-train decomposition on a permuted kernel
weight tensor with automatic rank determination. The proposed method
is easy to implement, and it allows us to fine-tune neural networks from
decomposed factors instead of learning them from scratch. The results
of this study examined on various CNN architectures and two datasets
demonstrated that the proposed method outperforms other CNNs com-
pression methods with respect to parameter and FLOPS compression at
a low drop in the classification accuracy.

Keywords: Neural network compression · Convolutional neural
network · Tensor decomposition · Tensor train decomposition

1 Introduction

The area of convolutional neural networks (CNNs) has attracted growing atten-
tion in the field of computer vision for achieving one of the best results in tasks
such as image classification [11], segmentation [27] or object detection [26].

However, achieving better results of CNNs is mostly done by designing deeper
neural networks, which translates into larger architectures requiring more space
and more computing power. Because most of the deep neural networks are over-
parametrized [5], there exists a possibility of compressing them without reducing
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the quality of the network significantly. The neural network compression meth-
ods can be classified into weight sharing, pruning, knowledge distillation, quan-
tization and low-rank approximations [1,16,22]. The weight sharing method is
the simplest form of compressing a neural network size, in which the weights of
the neural network are shared between layers. From this approach, clustering-
based weight sharing can be distinguished, in which the clustering is performed
on weights, and at the end clustered weights are merged into new compressed
weights. In the pruning approach, the redundant connections between neurons
are removed, which results in a lower number of parameters and FLOPs. In most
cases, the fine-tuning is necessary to recover the original accuracy of the network
and often pruning/fine-tuning is alternately repeated in loop to gain larger com-
pression. Quantization is another approach to compress neural network weights.
In this method, the neural network weights are represented in a lower-precision
format, the most popular is INT8, but the most extreme quantization is based
on binary weights. On the other hand, knowledge distillation methods learn a
small (student) network from a large one (teacher) using supervision. In short,
a student network mimics a teacher network and leverages the knowledge of the
teacher, achieving a similar or higher accuracy.

Besides the aforementioned methods, it is possible to compress the neural
network using dimensionality reduction techniques such as matrix/tensor decom-
positions [24] in which the neural network weights are represented in a low-rank
format. The low-rank compression methods can be divided into direct decompo-
sition and tensorization. Direct decomposition methods use the factors obtained
from the decomposition as new approximated weights, perform all operations on
them, and are simple in implementation because they use basic convolutional
neural network blocks from deep learning frameworks. The most popular two
approaches of using the direct tensor decomposition to compress convolutional
layers are the Tucker-2 [15] and CP [18] decomposition. The CP decomposition
transforms the original weight tensor into a pipeline of two 1 × 1 convolutions
and two depthwise separable convolutions, and the Tucker-2 into two 1 × 1 con-
volutions and one standard convolution, which is the same as the Bottleneck
block in ResNet networks. Recently, Hameed et al. [9] proposed a new direct
tensor decomposition method in which the Kronecker product decomposition is
generalized to be applied to compress CNN weights. On the other hand, in the
tensorization approach, the original weight tensor is tensorized into a higher-
order tensor format and new weights are initialized randomly. In this approach,
the decomposition algorithm is not used, and therefore the pretrained infor-
mation from the baseline network is lost. By using tensorization, the achieved
compression is relatively high, but the quality of the compressed network is sig-
nificantly worse than the baseline model. The first tensorization approach to
CNN compression was proposed by Garipov et al. [8], in which the tensor-train
(TT) format was used to matricized weight tensor. The input feature maps ten-
sor was reshaped into a matrix, and the convolution operation was performed as
a sequence of tensor contractions. Garipov et al. also proposed a naive direct TT
compression method in which the weight tensor was directly decomposed. All the
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decomposed cores were kept in memory, but during the convolution operation,
the TT cores were reshaped into the original weight tensor, and the initializa-
tion was performed randomly. Among other methods of tensorization, one can
mention the tensor ring format [21] or hierarchical Tucker format [31].

In this study, we propose a novel direct low-rank neural network compression
method using direct tensor-train decomposition on the permuted kernel weight
tensor with automatic rank determination. This method will be referred to as
TTPWT. In our approach, each original convolutional layer is replaced and ini-
tialized with a sequence of four layers obtained from the decomposed factors, and
the original convolution is approximated with four smaller convolutions, which is
profitable both with respect to computational and storage complexity. The pro-
posed compression method was applied to four neural networks: TT-conv-CNN
[8], VGGnet [28], ResNet-56 [11] and ResNet-110 [11]. The experiments run on
the CIFAR-10 and CIFAR-100 datasets showed that the TTPWT considerably
outperforms many state-of-the-art compression methods with respect to param-
eter and FLOPS compression at a low drop in the classification accuracy.

The remainder of this paper is organized as follows. Section 2 presents the
notation and the preliminaries to fundamental mathematical operations on ten-
sors. It also contains a short description of the TT decomposition method. The
proposed TT-based compression model is presented in Sect. 3. Numerical exper-
iments performed using various CNN architectures tested on the CIFAR-10 and
CIFAR-100 datasets are presented and discussed in Sect. 4. The final section
provides concluding statements.

2 Preliminary

Notation: Multi-way arrays, matrices, vectors, and scalars are denoted by cal-
ligraphic uppercase letters (e.g., X ), boldface uppercase letters (e.g., X), low-
ercase boldface letters (e.g., X), and unbolded letters (e.g., x), respectively.
Multi-way arrays will be equivalently referred to as tensors. We used Kolda’s
notation [17] for standard mathematical operations on tensors.

Mode-nunfolding: The mode-n unfolding of the N -order tensor X ∈ R
I1×...×IN

rearranges its entries by placing its mode-n fibers as the columns of matrix
X(n) = [xin,j ] ∈ R

In×∏
p′=n Ip for n ∈ {1, . . . , N}, where j = 1 +

{N
k=1k �=n(ik −

1)jk with jk =
k−1

m=1m�=n Im, and in = 1, . . . , In.

Mode-{n} Canonical Matricization: This matricization reshapes tensor X
into matrix X<n> ∈ R

∏n
p=1 Ip×∏N

r=n+1 Ir by mapping tensor element xi1,...,iN

to matrix element xi,j , where i = 1 +
{n

p=1(ip − 1)
p−1

m=1 Im and j = 1 +
{N

r>n(ir − 1)
r−1

m=n+1 Im. The mode-n unfolding is a particular case of the
mode-{n} canonical matricization.

Mode-nproduct (also known as the tensor-matrix product): The mode-n prod-
uct of tensor X ∈ R

I1×...×IN with matrix U ∈ R
J×In is defined by

Z = X ×n U , (1)
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where Z = [zi1,...,in−1,j,in+1,...,iN
] ∈ R

I1×...×In−1×J×In+1×...×IN , and

zi1,...,in−1,j,in+1,...,iN
=

In

in=1

xi1,i2,...,iN
uj,in

.

Tensor Contraction: The tensor contraction of tensor X = [xi1,...,iN
] ∈

R
I1×...×IN across its n-th mode with tensor Y = [yj1,...,jM

] ∈ R
J1×...×JM across

its m-th mode, provided that In = Jm, gives tensor Z = X ×m
n Y whose entries

are given by:

zi1,...,in−1,in+1,...,iN ,j1,...,jm−1,jm+1,...,jM

=
In

in=1

xi1,...,in−1,in,in+1,...,iN
yj1,...,jm−1,in,jm+1,...,jM

. (2)

For the matrices: A ×1
2 B = AB. The contraction: ×1

N will be denoted by the
symbol •. Thus: X • Y = X ×1

N Y.

Kruskal Convolution: Let X = [xi1,i2,c] ∈ R
I1×I2×C be any activation

tensor in any convolutional layer with C input channels, W = [wt,c,d1,d2 ] ∈
R

T×C×D1×D2 be the kernel weight tensor, Δ be the stride, and P be the zero-
padding size. The Kruskal convolution maps input tensor X to output tensor
Y = [yĩ1 ,̃i2,t] ∈ R

Ĩ1×Ĩ2×T by the following linear mapping:

yĩ1 ,̃i2,t = xi1,i2,c � wt,c,d1,d2 =
C

c=1

D

d1=1

D

d2=1

wt,c,d1,d2xi1(d1),i2(d2),c, (3)

where i1(d1) = (̃i1 − 1)Δ + i1 − P and i2(d2) = (̃i2 − 1)Δ + i2 − P .

1 × 1 Convolution: If D = 1, Δ = 1, and P = 0, then W ∈ R
T×C×1×1,

and the Kruskal convolution comes down to the 1 × 1 convolution: yi1,i2,t =
{C

c=1 wt,cxi1,i2,c. Using the notation of the mode-n product in (1), the 1 × 1
convolution takes the form:

Y = X ×3 W , (4)

where W = [wtc] ∈ R
T×C .

Tensor Train (TT) Decomposition: The TT model [23] decomposes tensor
X = [xi1,...,iN

] ∈ R
I1×...×IN to a chain of smaller (3-way) core tensors that are

connected by the tensor contraction with operator •. It can be formulated as
follows:

X = X (1) • X (2) • . . . • X (N), (5)

where X (n) is the n-th core tensor of size Rn−1 × In × Rn for n = 1, . . . , N . The
number {R0, . . . , RN} determine the TT ranks. Assuming R0 = RN = 1, we
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have X (1) = X(1) ∈ R
I1×R1 and X (N) = X(N) ∈ R

RN−1×IN , i.e. the first and
the last core tensors become matrices. Model (5) can be expressed equivalently
as:

xi1,...,iN
=

R1

r1=1

R2

r2=1

· · ·
RN−1

rN−1=1

x
(1)
i1,r1

x
(2)
r1,i2,r2

· · · x(N−1)
rN−2,iN−1,rN−1

x
(N)
rN−1,iN

, (6)

where ∀n : X (n) = [x(n)
rn−1,in,rn

] ∈ R
Rn−1×In×Rn .

Assuming I1 = . . . = IN = I and R1 = . . . = RN = R, the storage complexi-
ties of the CANDECOM/PARAFAC (CP) [2,10], Tucker [29], and TT decompo-
sition models can be approximated by O(NIR), O(NIR + RN ), and O(NIR2).
It is thus obvious that the CP model has the lowest storage complexity, but
its flexibility in adapting to the observed data is very low, especially for ten-
sors that have strongly unbalanced modes. Unfortunately, this is the case in
the discussed problem because two modes of the decomposed tensor have small
dimensions, but the other modes are large. Hence, it is difficult to select the opti-
mal rank. The Tucker decomposition relaxes these problems considerably, but
its storage complexity grows up exponentially with the size of the core tensor,
which is also not favorable in our case because the ranks for large modes are
usually pretty large. The TT model assures the best trade-off between the CP
and Tucker decompositions, alleviating the curse of dimensionality and yielding
a flexible decomposition with multiple TT ranks. Hence, these advantages of the
TT model motivate this study.

3 Proposed Method

We assume that each convolutional layer has C input and T output channels,
and the size of the filter is D × D. Hence, it can be represented by the kernel
weight tensor W = [wt,c,d1,d2 ] ∈ R

T×C×D×D. The input data is represented by
activation tensor X = [xi1,i2,c] ∈ R

I1×I2×C that consists of C activation maps –
each has the resolution of I1 × I2 pixels. Each layer performs a linear mapping
of tensor X to output activation tensor Y = [yĩ1 ,̃i2,t] ∈ R

Ĩ1×Ĩ2×T , where the
mapping is determined by the Kruskal convolution in (3). Each output activation
map has the resolution of Ĩ1 × Ĩ2 pixels, and there are T output channels.

3.1 Model

To reduce the number of parameters and FLOPS in each convolutional layer,
the kernel weight tensor W is decomposed with the TT model.

Remark 1. Note that if W ∈ R
T×C×D×D is decomposed according to (5), ranks

R2 and R3 cannot be greater than D2 and D, respectively. This restriction limits
the flexibility of compression only to rank R1. Furthermore, the 3D core tensor
capturing the second mode of W could not be processed with a simple 1 × 1
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convolution. Thus, we propose to apply the circular permutation to W with one
left shift lag. Thus:

W̃ = circular permutation (W,−1) ∈ R
C×D×D×T . (7)

Applying the TT decomposition to W̃ = [w̃c,d1,d2,t], we have:

w̃c,d1,d2,t =
R1

r1=1

R2

r2=1

R3

r3=1

w̃(1)
c,r1

w̃
(2)
r1,d1,r2

w̃
(3)
r2,d2,r3

w̃
(4)
r3,t. (8)

Inserting model (8) to mapping (3) and rearranging the summands, we get:

yĩ1 ,̃i2,t =
C

c=1

D

d1=1

D

d2=1

R1

r1=1

R2

r2=1

R3

r3=1

w̃(1)
c,r1

w̃
(2)
r1,d1,r2

w̃
(3)
r2,d2,r3

w̃
(4)
r3,txi1(d1),i2(d2),c

=
R3

r3=1

w̃
(4)
r3,t


D

d2=1

R2

r2=1

w̃
(3)
r2,d2,r3

D

d1=1

R1

r1=1

w̃
(2)
r1,d1,r2

×

⎛

⎜
⎜
⎜
⎜
⎝

C

c=1

w̃(1)
c,r1

xi1(d1),i2(d2),c

︸ ︷︷ ︸
1 × 1 conv.

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

=
R3

r3=1

w̃
(4)
r3,t

⎡

⎢
⎢
⎢
⎢
⎣

D

d2=1

R2

r2=1

w̃
(3)
r2,d2,r3

⎛

⎜
⎜
⎜
⎜
⎝

D

d1=1

R1

r1=1

w̃
(2)
r1,d1,r2

zi1(d1),i2(d2),r1

︸ ︷︷ ︸
D1 × 1 conv.

⎞

⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

=
R3

r3=1

w̃
(4)
r3,t

⎡

⎢
⎢
⎢
⎢
⎣

D

d2=1

R2

r2=1

w̃
(3)
r2,d2,r3

z
(V )

ĩ1,i2(d2),r2

︸ ︷︷ ︸
1 × D2 conv.

⎤

⎥
⎥
⎥
⎥
⎦

=
R3

r3=1

w̃
(4)
r3,tz

(V,H)

ĩ1 ,̃i2,r3

︸ ︷︷ ︸
1 × 1 conv.

(9)

It can be easy to note that zi1,i2,r1 in (9) can be computed with the 1 × 1
convolution. According to (4), we have:

Z = X ×3 W̃
(1)T ∈ R

I1×I2×R1 , (10)

where W̃
(1)

= [w̃(1)
c,r1 ] ∈ R

C×R1 . Physically, to perform operation (10), the first
sublayer with the 1×1 convolutions in the analyzed convolutional layer is created.
The activation tensor Z computed in the first sub-layer is then provided to
the second convolutional sublayer represented by W̃ = [w̃(2)

r1,d1,r2
] ∈ R

R1×D×R2 ,
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which is much smaller than W, and this sublayer computes the 1D convolutions
along the 1-st mode (vertically):

z
(V )

ĩ1,i2(d2),r2
=

D

d1=1

R1

r1=1

w̃
(2)
r1,d1,r2

zi1(d1),i2(d2),r1 (11)

As a result, we get the second-sublayer output activation tensor

Z(V ) = [z(V )

ĩ1,i2(d2),r2
] ∈ R

Ĩ1×I2×R2 .

Next, the third 1D convolutional sublayer is created to compute the 1D convolu-
tions along the horizontal direction. The output activation tensor obtained from
this sublayer has the form: Z(V,H) = [z(V,H)

ĩ1 ,̃i2,r3
] ∈ R

Ĩ1×Ĩ2×R3 . Finally, the fourth
sublayer is created, which performs 1 × 1 convolutions according to the model:

Y = Z(V,H) ×3 W̃
(4)T ∈ R

Ĩ1×Ĩ2×T , (12)

where W̃
(4)

= [w̃(4)
r3,t] ∈ R

R3×T .

3.2 TT Decomposition Algorithm

The TT decomposition of W̃ in (7) can be obtained by using sequential SVD-
based projections. In the first step, TSVD with a given precision δ1 is applied
to W̃ unfolded with respect to its first-mode. Thus:

W̃ (1) = UΣV T + E1, (13)

under the assumption the truncation error satisfies the condition ||E1||F ≤ δ1.

Matrix W̃
(1) ∈ R

C×R1 is created from U that contains the first R1 left singular
vectors (associated with the most significant singular values) of W̃ (1). Note that
rank R1 is determined by a given threshold δ1 for the truncation error. In the
second step, W̃

(2) ∈ R
R1I2×R2 is created from the first R2 left singular vectors

of the matrix obtained by reshaping matrix ΣV T using the mode-2 canonical
matricization. In this step, ||E2||F ≤ δ2 and the core tensor is obtained by

reshaping W̃
(2)

accordingly. The similar procedure is applied in the third step,
where W̃(3) ∈ R

R2×I3×R3 is created from the first R3 singular vectors, and
W̃

(4) ∈ R
R3×T is created from the scaled right singular vectors. Oseledets [23]

showed that ||W̃ − W̃(1) • . . . • W̃(N)||F ≤
√{N−1

n=1 δ2
n. Assuming δ = δ1 = . . . =

δN−1, then the truncation threshold can be set to δ = ε√
N−1

||W̃||F , where ω > 0
is a prescribed relative error.

In our approach, the optimal rank of TSVD for matrix M ∈ R
P×R in each

step was computed by using the energy-threshold criterion. Thus:

R∗ = arg min
j

{{j
i=1 σ2

i
{I

i=1 σ2
i

> τ

}

, (14)
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Algorithm 1. TT-SVD
Input : W ∈ R

T×C×D×D – input kernel weight tensor, τ - threshold
Output: {W(1), ..., W(4)} - estimated core tensors

Compute W̃ ∈ R
C×D×D×T with (7) and set R0 = 1 and N = 4,

M = W̃ (1) = unfolding(W̃, 1); // Unfolding

for n = 1, . . . , N − 1 do

Compute:
[
Ũ , S̃, Ṽ , Rn

]
= TSVDδ(M , τ); // TSVD

W̃(n) = reshape(Ũ , [Rn−1, In, Rn])

M = reshape(S̃Ṽ
T
, [RnIn+1,

∏N
p=n+2 Ip]); // Canonical matricization

end

W̃(4) = reshape(M , [RN−1, IN , 1])

where Q = min{P,Q}, σi is the i-th singular value of M , and τ = ε√
N−1

is
a given threshold. The energy captured by i components (singular vectors) is
expressed in the nominator of (14), the total energy is presented in the denomi-
nator.

Due to the low-rank approximation, the TT model always assures the com-
pression [25], i.e.

Rn ≤ min

⎧
⎨

⎩

n∏

i=1

Ii,
N∏

j=n+1

Ij

⎫
⎬

⎭
, for n = 1, . . . , N − 1. (15)

The complete sequential routine is presented in Algorithm 1. Function TSVDδ

performs the δ-truncated SVD at a given threshold δ, where the optimal rank
R∗ is computed by the energy-based criterion (14).

3.3 Implementation

The procedure for training/fine-tuning networks was implemented in the deep
learning framework PyTorch and the tensor-train decomposition in Matlab. The
convolutional kernel is the main component of the convolutional layer, which
is represented as the 4-th order tensor (top block, Fig. 1). After using permu-
tation, the weight tensor can be decomposed into four factors, including two
matrices and two 3-rd order tensors. All the factors are used as new weights in a
sequence of four sublayers (Tensor-Train model, Fig. 1). Because the basic class
of convolutional layer in PyTorch accepts only 4-th order tensor as weights, it
is necessary to add extra two dimensions to matrices: W̃

(1) ∈ R
C×R1 → W̃(1) ∈

R
R1×C×1×1 (Fig. 1, sublayer Conv2D.1), W̃

(4) ∈ R
R3×T → W̃(4) ∈ R

T×R3×1×1

(Fig. 1, sublayer Conv2D.4) and extra one dimension to 3-rd order tensors
W̃(2) ∈ R

R1×D×R2 → W̃(2) ∈ R
R2×R1×D×1 (Fig. 1, sublayer Conv2D.2),

W̃(3) ∈ R
R3×D×R2 → W̃(3) ∈ R

R3×R2×1×D (Fig. 1, sublayer Conv2D.3) and
permute the modes accordingly.
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Fig. 1. Visual representation of how the decomposed factors are used as new weights in
PyTorch framework (output channels × input channels × filter height × filter width)
for the compressed convolutional layer in the TT model.

3.4 Computational Complexity

The space and time complexity of the convolution is defined as O(CTD2) and
O(CTD2I1I2). By applying the tensor-train decomposition, the time and space
complexity is bounded by O(CR1 + R2D(R1 + R3) + R3T ) and O(R1I1I2 +
R2D(R1I1I2+R3Ĩ1I2)+R3T Ĩ1Ĩ2) respectively, where I1 and I2 define the height
and width of the input image, respectively, and Ĩ1 and Ĩ2 define the reduced
height and width after convolution.

4 Results

We evaluated our method on two datasets (CIFAR-10 and CIFAR-100). Each
consists of 60,000 examples, including 50,000 in the training dataset, and 10,000
in the validation dataset with 10 and 100 classes respectively. To evaluate effec-
tiveness of our method on networks of various sizes, we selected the following
networks: TT-conv-CNN [8], VGGnet [28], ResNet-56 [11] and ResNet-110 [11].
The networks cover the range of models with a medium to a large number of
parameters and FLOPS. The total number of FLOPS and the parameters of
the mentioned networks are listed in Table 1. The compression experiments were
performed with the following scheme:

energy threshold selection −→ baseline CNN compression −→ fine-tuning.

All the convolutional layers were compressed in each neural network except for
the first one whose size is small. All the baseline networks were trained accord-
ing to the source guidelines. TT-conv-CNN was trained for 100 epochs using
stochastic gradient descent (SGD) with a momentum of 0.9, the weight decay
was set to 0, the initial learning rate was set to 0.1, and it was decreased by a
factor of 0.1 after every 20 epochs. For the fine-tuning process, all the hyperpa-
rameters remained the same. VGGnet, ResNet-56, and ResNet-110 were trained
for 200 epochs using the SGD with a momentum of 0.9, the weight decay was
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set to 10−4, the initial learning rate was set to 0.1, and it was decreased by a
factor of 0.1 after 80 and 120 epochs for VGGnet, and after 100 and 150 for
ResNets. In the fine-tuning step, the learning rate was lowered to 0.01 and the
weight decay was increased to 10−3 for the VGGnet, and the hyperparameters
were unchanged for ResNet-56 and ResNet-110.

To evaluate the network compression and performance, we used two metrics,
such as the parameter compression ratio (PCR) that is defined as ⇓Param =

Param(baseline network)
Param(compressed network) , and the FLOPS compression ratio (FCR) defined as

⇓FLOPS = FLOPS(baseline network)
FLOPS(compressed network) . The quality of the network was evaluated

with the drop in the classification accuracy of the compressed network with
respect to the baseline network, i.e. ΔAcc = Acc compressed − Acc baseline. The
error rate is often shown alongside with the accuracy in the literature. However,
the error rate may be misleading since we fine-tune the neural networks from
decomposed factors. Hence, the accuracy is sufficient to be shown for better
interpretability of results. The values of PCR or FCR are not provided in all the
papers, which we refer to as the reference results. Hence, the unavailable data
are marked with the “–” sign in the tables.

Table 1. Total number of FLOPs and parameters for baseline networks.

Network Params FLOPS

TT-conv-CNN 558K 105 M

ResNet-56 853K 125 M

ResNet-110 1.73 M 255 M

VGGnet 20M 399 M

4.1 CIFAR-10

TT-conv-CNN: Table 2 shows the results obtained for the TT-conv-CNN com-
pression. We compared our method with the tensorized tensor-train version of
the matricized weight tensor (TT-conv), direct tensorized tensor-train weight
tensor (TT-conv (naive)), and the weight sharing method – Deep k-Means [32].
As we can see, our method outperforms both TT-based methods proposed by
Garipov et al. in terms of PCR, FCR, and the drop in accuracy is at a much
lower level. Compared with Deep k-Means, our method achieved better accuracy
with higher compression.

VGGnet: The VGGnet network is a modified VGG-19 neural network adopted
for CIFAR datasets. It is the largest neural network analyzed in this study,
with 20M of parameters and 399M of FLOPS. Compression of VGGnet using
our method was compared with the following pruning approaches: DCP [35],
Random-DCP [35], WM+ [35], CP [14] and PFEC [19]. The results given in
Table 3 demonstrate that our method outperforms all the compared approaches
in terms of PCR and FCR. Our compressed network achieved a positive drop
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(gain) in the accuracy compared to the baseline network, and only DCP obtained
a higher gain but with worse parameter compression. Moreover, TTPWT reduces
FLOPS nearly 2.35 times more than DCP.

Table 2. Results of the TT-conv-CNN [8] compression on the CIFAR-10 validation
dataset. Different rows of the TT-conv and TT-conv (naive) mean different ranks. The
value in parentheses denotes the energy threshold.

Method ΔAcc ⇓Param ⇓FLOPS

TT-conv-1 [8] −0.80 2.02 –

TT-conv-2 [8] −1.50 2.53 –

TT-conv-3 [8] −1.40 3.23 –

TT-conv-4 [8] −2.00 4.02 –

TT-conv-1 (naive) [8] −2.40 2.02 –

TT-conv-2 (naive) [8] −3.10 2.90 –

Deep k-Means [32] +0.05 2.00 –

TTPWT (0.6) +0.14 3.06 2.95

TTPWT (0.5) −0.25 5.03 4.73

Table 3. Results of VGGnet compression on the CIFAR-10 validation dataset. The
value in parentheses denotes the energy threshold.

Method ΔAcc ⇓Param ⇓FLOPS

DCP [35] +0.31 1.93 2.00

Random-DCP [35] +0.03 1.93 2.00

WM+ [35] −0.10 1.93 2.00

CP [14,35] −0.32 1.93 2.00

PFEC [19,35] +0.15 2.78 1.52

TTPWT (0.6) +0.15 3.03 4.71

4.2 CIFAR-100

ResNet-56: ResNet-56 was the first network evaluated by us on the CIFAR-
100 dataset. We compared the obtained results of our method with pruning
approaches. As pruning competitors, we chose the following methods: SFP [12],
FPGM [13], DMPP [20], CCPrune [4], FPC [3], and FPDC [36]. As can be
seen in Table 4 our method achieved the largest FCR and PCR, and the lowest
accuracy drop. It is interesting that TTPWT reduces FLOPS twice as much as
SFP, FPGM and CCPrune.
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Table 4. Results of ResNet-56 compression on the CIFAR-100 validation dataset. The
value in parentheses denotes the energy threshold.

Method ΔAcc ⇓Param ⇓FLOPS

SFP [12,20] −2.61 3.20 2.11

FPGM [13,20] −1.75 3.30 2.11

CCPrune [4] −0.63 1.69 2.94

FPDC [36] −1.43 1.93 1.99

TTPWT (0.55) −0.50 3.93 4.19

ResNet-110: As the second network, we selected ResNet-110 that is one of the
largest ResNet networks developed for CIFAR datasets. Similar to the previous
results, ResNet-110 was compared with different pruning approaches [6,7,12,13,
30,33,34,36]. As shown in Table 5, it is clear that TTPWT achieved the lowest
drop in accuracy and the largest PCR and FCR over all the compared methods.

Table 5. Results of ResNet-110 compression on the CIFAR-100 validation dataset.
The value in parentheses denotes the energy threshold.

Method ΔAcc ⇓Param ⇓FLOPS

OED [30] −3.83 2.31 3.23

FPDC [36] −0.61 1.93 3.24

PKPSMIO [33] −0.14 3.40 3.24

PKP [34] −0.61 2.42 2.37

TAS [7] −1.90 – 2.11

FPGM [7,13] −1.59 – 2.10

SFP [7,12] −2.86 – 2.10

LCCL [6,7] −2.01 – 1.46

TTPWT (0.55) −0.03 3.96 4.21

5 Conclusions

This study proposes a new approach to low-rank compression of CNNs. The
proposed method is based the tensor train decomposition of a permuted weight
tensor with automatic rank determination. The original convolution is approx-
imated with a pipeline of four smaller convolutions, which allows us to signifi-
cantly reduce a number of parameters and FLOPS at the cost of a low drop in
accuracy. The results obtained on two datasets using four networks of different
sizes confirm that our method outperforms the other neural network compression
methods presented in this study. Further research is needed to investigate the
compression of larger CNNs on the ImageNet dataset and to extend the current
approach for higher order convolutional neural networks, including 3D CNNs.
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Tensor networks for latent variable analysis: novel algorithms for tensor train
approximation. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 4622–4636 (2020)

26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference Learning Representations (ICLR)
(2015)

29. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In:
Gulliksen, H., Frederiksen, N. (eds.) Contributions to mathematical psychology,
pp. 110–127. Holt, Rinehart and Winston, New York (1964)

30. Wang, Z., Lin, S., Xie, J., Lin, Y.: Pruning blocks for CNN compression and accel-
eration via online ensemble distillation. IEEE Access 7, 175703–175716 (2019)

31. Wu, B., Wang, D., Zhao, G., Deng, L., Li, G.: Hybrid tensor decomposition in
neural network compression. Neural Netw. 132, 309–320 (2020)

32. Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A., Lin, Y.: Deep k-means:
re-training and parameter sharing with harder cluster assignments for compressing
deep convolutions. In: International Conference on Machine Learning (ICML), pp.
5363–5372. PMLR (2018)

33. Zhu, J., Pei, J.: Progressive Kernel pruning with saliency mapping of input-output
channels. Neurocomputing 467, 360–378 (2022)

34. Zhu, J., Zhao, Y., Pei, J.: Progressive kernel pruning based on the information
mapping sparse index for CNN compression. IEEE Access 9, 10974–10987 (2021)

35. Zhuang, Z., et al.: Discrimination-aware channel pruning for deep neural networks.
In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems 31 (NeurIPS),
pp. 881–892. Curran Associates, Inc. (2018)

36. Zuo, Y., Chen, B., Shi, T., Sun, M.: Filter pruning without damaging networks
capacity. IEEE Access 8, 90924–90930 (2020)

http://arxiv.org/abs/2006.03669
https://doi.org/10.1007/978-3-319-24574-4_28


Comparing Explanations from Glass-Box
and Black-Box Machine-Learning Models

Michał Kuk1(B) , Szymon Bobek2 , and Grzegorz J. Nalepa2

1 AGH University of Science and Technology, Krakow, Poland
m18.kuk@gmail.com

2 Jagiellonian Human-Centered Artificial Intelligence Laboratory (JAHCAI) and Institute
of Applied Computer Science, Jagiellonian University, Krakow, Poland

Abstract. Explainable Artificial Intelligence (XAI) aims at introducing trans-
parency and intelligibility into the decision-making process of AI systems. In
recent years, most efforts were made to build XAI algorithms that are able to
explain black-box models. However, in many cases, including medical and indus-
trial applications, the explanation of a decision may be worth equally or even
more than the decision itself. This imposes a question about the quality of expla-
nations. In this work, we aim at investigating how the explanations derived from
black-box models combined with XAI algorithms differ from those obtained from
inherently interpretable glass-box models. We also aim at answering the question
whether there are justified cases to use less accurate glass-box models instead
of complex black-box approaches. We perform our study on publicly available
datasets.

Keywords: Explainable AI · Machine learning · Artificial intelligence · Data
mining

1 Introduction

In recent years, the impact of machine learning on our daily life increased significantly,
providing invaluable support to the decision making process in many domains. In insen-
sitive areas, such as healthcare, industry, and law, where every decision may have seri-
ous consequences, the adoption of AI systems that cannot justify or explain their deci-
sions is difficult and in many cases not desired. Such an observation stays in contra-
diction to the trend in the AI world, where the most progress is observed in the area of
black-box models such as deep neural networks, random forests, etc. This duality led
to the development of explainable AI methods, which allows introducing transparency
and intelligibility to the decisions made by not interpretable black-box models. How-
ever, this transparency and intelligibility may serve different purposes, depending on
the application area and the task that is to be solved with the AI method. In particular,
we can define two main goals of XAI methods:
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1) understand the mechanics of the ML model in order to debug the model, and
possibly the dataset (i.e., what input drives the model to classify instance A as class C,

2) understand the phenomenon that is being modelled with AI methods and to build
trust (i.e., what input makes the instance A to be classified as C).

While these goals might be indistinguishable at first glance, there is a fundamental
difference in the assumptions that need to be fulfilled in both cases. In the first case,
we assume that the model might be wrong, and we want to fix it, hence the information
about the model is the most important. The model performance is an objective. In the
second case, we assume that the model is correct and we want to use it to obtain infor-
mation about the class or instance itself. The explanation itself is the main objective. In
this paper, we focus on the second case. We provide a discussion on the performance
of the glass-box models and black-box models explained with the use of XAI methods,
in the situation when the objective is not to learn about the AI model, but about the
phenomenon the model captures. We focused on rule-based explanations as one of the
most understandable and widely applicable methods in industrial and medical cases. We
performed a comparison of these two approaches on datasets from selected scikit-learn
datasets and UCI Machine Learning Repository to see if a simple glass-box model can
outperform complex XAI algorithms.

The rest of the paper is organised as follows: In Sect. 2 we describe a few papers
which concern the explainable methods and we introduce our motivations. In Sect. 3
we present our approach to the performance comparison mentioned above. Next, Sect. 4
presents and discusses the results we obtained. Finally, in Sect. 5 we summary our work.

2 Related Works and Motivation

In this paper, we focused to evaluate what is the difference between the explana-
tions obtained from black-box models combined with XAI algorithms and from those
obtained based on interpretable glass-box models. To get such evaluation, firstly we
verified the existing researches which concern glass-box and black-box models in the
application of Explainable Artificial Intelligence.

In [10] the author makes a comparison of white and black box models. The author
outlines that in some cases glass-box models could give as accurate results as the black
box models. However, it strongly depends on the application domain and the data deliv-
ered. In the case of the black-box models, the author highlights that the experts do not
need to understand the mathematical transformations behind them, but they proposed
to deliver the output data in a similar form as input.

In [1] the authors pay attention to the fact that nowadays there is the need for XAI
application due to commercial benefits, regulatory considerations, or in cases when the
users have to effectively manage AI results. They outline that the black-box models do
not disclose anything about internal design, structure, or implementation. On the other
hand, the glass-box is completely exposed to the user.

In [6] the authors used glass-box and black-box models to predict the ambient
black carbon concentration. They used several methods, whereas a neural network with
LSTM layers gave the best results. However, they highlight that using black-box models
like neural network or random forest complicates explanations.
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In [9] the authors used the Anchor algorithm to obtain rules which could be expla-
nations of each cluster of data. As a result, the proposed methodology is able to gener-
ate human-understandable rules which could be passed to the experts to support in the
explainability process.

In [14] the authors used the black-box model to develop the structured attack (StrAt-
tack), which is able to explore group sparsity in adversarial perturbation by sliding a
mask through images. They demonstrate the developed method on datasets consisting
of images. Furthermore, they outline that thanks to the sliding masks, they increase the
interpretability of the model.

In [15] the authors also concentrate on image classification. They used a deep neural
network to assign input to predefined classes. To interpret the models, they considered
post-hoc interpretations. More specifically, they focus on the impact of the feature on
the predicted result – they tried to uncover the casual relations between input and output.

In [11] the authors created an open-source Python package called InterpretML.
They focused in most cases on the feature importance explanations, not on the human-
readable rules.

I our work we focus on rule-based explanations, which according to our previous
research [3] proves to be one of the most intelligible way of providing explanations to
experts. Therefore, we mainly concentrate on the algorithms which can generate expla-
nations which are represented as a logic implication (IF-THEN) by using a conjunction
of relational statements. Such explanations can be executed with rule-based engines
and verified according to selected metrics such as accuracy, precision, or recall. Having
that, a research question arises: If the explanation is as much valuable as the model
decisions, what kind of model should be applied to assure good interpretability along
with high accuracy of explanations? Should it be 1) a glass-box model to directly gen-
erate explainable results, or 2) a complex black-box model and explain its results with
Explainable Artificial Intelligence methods? To solve this research problem, we aim to
apply XAI methods that are able to generate human-readable rules for complex black-
box models and verify if these methods are needed to be applied in the case of simple
tabular data or if we should make explanations directly with the use of the glass-box
models.

3 Experimental Comparison

The scope of this work concentrates on the comparison of using simple glass-box mod-
els with complex black-box models explained with the XAI algorithm. In this work, we
use a classification task as an exemplary problem to be solved. We considered the most
popular classifiers available in the scikit-learn package [12].

For glass-box models, we selected: Decision Tree, Nearest Neighbors. For black-
box models, we chose RBF SVM, Gauss Process, Random Forest, Neural Network,
AdaBoost, Naive Bayes, QDA. We used a default models’ settings as hyperparameter
tuning was not the main goal of this paper. Our experiment considers two approaches
for solving the classification task: 1) use directly explainable glass-box model, 2) use
the black-box model, explain the predictions with XAI method, and solve the main
problem based on the explanations obtained.
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In the second approach, we took into consideration the XAI algorithms which gen-
erate explanations in the form of human-readable rules based on the trained classifier
model. In this work, we considered three XAI methods: Anchor [13], Lux [4] and
Lore [7]. Each of them generates instance-based explanations (rules), which subse-
quently were converted into XTT2 format [8]. To allow the results to be compared
with glass-box models we used HEARTDROID inference engine [5] to predict the clas-
sification target (label) based on the obtained rules and data instances.

The schematic illustration of the considered approaches is presented in the Fig. 1.

Fig. 1. Glass-box and black-box models approaches comparison.

To test the considered approaches and draw reliable conclusions, we chose data
from different sources as an input to the experiments. In the work we used the following
datasets: banknote and glass1, cancer and iris2, and titanic3.

Each dataset has been divided into train and test datasets. For each considered clas-
sifier, we applied the same train instances to train the model and test instances to make
predictions to maximize the reliability of the comparison results. For both considered
approaches, we computed the accuracy, recall, and precision scores for each considered
classifier to compare these two approaches.

4 Results and Discussion

In this section, we present the results of our experiments. Firstly, we compared the per-
formance of all considered classifiers used directly to solve the classification problem.
Then, we compared scores for the classification problem solved based on the rules gen-
erated for the black-box models with XAI methods (only the best results for each XAI
method) vs glass-box model. Finally, we also considered the variance of scores that can
be obtained for a selected XAI method depending on the black-box model explained.
These results are presented in the following figures.

Figure 2 shows the results (scores) which were calculated for all classifiers used
directly to predict the classification target (label). As can be seen, there are some
datasets for which all classifiers perform with a high score (close to 1.0) such as iris and
banknote that suggest that the problem to be solved in their case is relatively simple. For
cancer and wine datasets, most classifiers also give high scores, but others (e.g. QDA,
RBF, SVM) perform much worse. The most difficult problem to be solved is contained
in the glass dataset for which the best score is lower than 0.7. Other difficult dataset is
titanic for which scores are not greater than 0.8. Comparing different classifiers across

1 See: https://archive.ics.uci.edu/ml.
2 See: https://scikit-learn.org/stable/datasets.html.
3 See: https://www.kaggle.com/datasets.

https://archive.ics.uci.edu/ml
https://scikit-learn.org/stable/datasets.html
https://www.kaggle.com/datasets
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all considered datasets, it can be noticed that the glass-box Decision Tree model gives
comparable results to black-box models. For the most difficult dataset (glass), it gives
the highest precision, keeping recall and accuracy at a competitive level.

Fig. 2. Classifiers score comparison.

Figure 3 presents the comparison of the glass-box model results with the black-
box models explanations obtained with XAI methods and executed with the use of
HEARTDROID engine. In this figure, only the best scores for each dataset for each of
the XAI methods are presented to compare the best possible results that can be obtained
with a particular XAI method. In the case of using of XAI methods to generate rules, in
Fig. 3 we can observe that the Anchor algorithm gives the best results in most datasets,
but the Lux and Lore algorithms give noticeably worse results. In the case of the Lore
algorithm, we noticed some of the bugs which resulted in scores equal to 0 which were
marked on the charts. Only for the iris dataset (probably the easiest one), the Lux XAI
method gives better results than the Anchor algorithm. Comparing the results from
the exampled black-box models with Decision Tree, it can be noticed that for sim-
ple datasets like banknote, iris, or glass, the glass-box model gives better results. For
slightly more difficult but still simple datasets (cancer and wine), slightly better results
are obtained with the Anchor algorithm than the Decision Tree. However, the difference
is not significant. In the case of more complex datasets like Titanic, glass-box model
gives considerably worse results than the black-box model explained with the Anchor
method.

Fig. 3. XAI methods score comparison to glass-box model.
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Figure 4 shows the variance of the performance obtained with the Anchor algo-
rithm, as it gives the best results from the considered XAI methods, depending on the
classification model used. We can observe the biggest score variance for cancer and
wine datasets (relatively simple) for which the results strongly depend on the classifier
model explained. The lowest variance is observed for glass and iris datasets, so the most
and the least difficult datasets.

Fig. 4. XAI methods dependency on classifiers.

The obtained results allow us to compare how the explanations derived from black-
box models combined with XAI algorithms differ from those obtained by interpretable
glass-box models. Executed experiment proves that despite the fact that the black-box
models are more complex and universal than the simple glass-box models, there is no
need to apply them, especially for simple datasets. We found out that Decision Tree
classifier gives competitive results and provides the model in an easily understandable
format. However, in some examples, even in relatively simple datasets, it can be bene-
ficial to apply more complex explanation methods (black-box model linked with XAI
method) than simple glass-box models. Obtained results suggest also that when we need
to consider more complex cases, better results can be obtained using the black-box mod-
els explained with XAI methods with human-readable rules. However, the final results
strongly depend on the selected classifier. Hence, the properly chosen model which is
treated as an input to the XAI method is important and has a significant impact on the
final result.

5 Summary

In this paper, we made a glass-box and black-box classifiers comparison with the appli-
cation in the explainable artificial intelligence area. The main goal of the work was
to investigate if we should use the glass-box models to directly generate explanations
or rather use a complex black-box model linked with XAI methods? We compared
the classification scores for several classification methods and then we used the same
trained models to obtain results with the use of XAI algorithm methods. We con-
ducted our experiments based on the publicly available datasets. The results suggest
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that especially in the case of tabular data, it is worth investing resources into research
on inherently explainable models, instead of relying on a combination of black-box and
XAI algorithms. However, taking into account more complex analyses that concern e.g.
embeddings or latent semantic analysis uses of glass-box models could be insufficient
and then, black-box models with XAI methods could be applied. However, the choice
should be made carefully, with additional evaluation of XAI results to select the most
suitable approach. In future work, we plan to extend this analysis, taking into account
different types of data, including time series and images and combine it with explana-
tion evaluation methods [2] to provide a comprehensive study on XAI and glass-box
models applicability.
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project funded by the National Science Center, Poland under CHIST-ERA programme Grant
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Abstract. Learning to operate medical equipment is one of the essen-
tial skills for providing efficient treatment to patients. One of the current
problems faced by many medical institutions is the lack or shortage of
specialized infrastructure for medical practitioners to conduct hands-on
training. Medical equipment is mostly used for patients, limiting train-
ing time drastically. Virtual simulation can help alleviate this problem by
providing the virtual embodiment of the medical facility in an affordable
manner. This paper reports the current results of an ongoing project
aimed at providing virtual reality-based technical training on various
medical equipment to radiophysicist trainees. In particular, we intro-
duce a virtual reality (VR) prototype of a linear accelerator simulator
for oncological radiotherapy training. The paper discusses the main chal-
lenges and features of the VR prototype, including the system design and
implementation. A key factor for trainees’ access and usability is the user
interface, particularly tailored in our prototype to provide a powerful and
versatile yet friendly user interaction.
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1 Introduction

With the increasing number of cancer cases worldwide, there is urging need for
highly-skilled specialists from the various disciplines involved in the prevention,
diagnosis, monitoring, and treatment of cancer. An illustrative example is given
by oncological radiotherapy (ORT), a field where different types of oncologists
work in close cooperation with radiophysicists, a type of medical physicists with
the technical ability to operate medical radiation equipment efficiently [1,4].

Radiophysicists typically work with linear accelerators (LINAC), sophisti-
cated devices used to speed up charged subatomic particles or ions through a
series of oscillating electric potentials. Oncological radiotherapy linear accelera-
tors (ORTLINAC) are used for procedures such as intensity-modulated radiation
therapy (IMRT), a level-3 high-precision technique that combines the use of com-
puter tomography (CT) imaging and multileaf collimators. In IMRT, CT is used
to get a volumetric representation of the tumor, while the collimators use a set of
individual “leaves” equipped with independent linear in/out movement (orthog-
onal to the radiotherapy beam) to fit the treatment volume to the boundary
shape to the tumor and vary the radiation signal intensity accordingly. In this
way, IMRT is used to deliver precise radiation doses at targeted areas within the
tumor, thus reducing the radiation impact on healthy organs and tissues.

Unfortunately, IMRT requires a lot of expertise and considerable experience
for optimal performance. For instance, an individual radiation treatment plan-
ning (RTP) must be set up for each patient before the therapy sessions. The plan
needs to consider several factors and parameters, such as the region of interest
(ROI) where the radiation beam will focus, the most suitable beam type, the
energy to be applied, the appointment schedule of therapy sessions and many
others. The RTP is intended at maximizing the treatment effectiveness while
minimizing the physical strain upon the patients. Once all details of the RTP
are agreed, radiation sessions are set on place. During the radiotherapy session,
the practitioners arrange the patients on a motorised table with six degrees of
freedom. Then, they use remote controls to move the table and match the tumor
location and orientation to the radiation beam’s focal point of ORTLINAC. The
whole procedure is highly-demanding in terms of concentration and skills to get
the precise position. As a result, intensive practising is required for the med-
ical trainees to master the positioning of the patients to the precise radiation
beam’s focal point by using the remote controls. However, the ORTLINAC ther-
apy schedule is often full due to its high demand [1]. The medical trainees have
scarce time to access the facility for practising [5]. Moreover, it is not affordable to
allocate ORTLINAC rooms for training purposes owing to their high costs [1,4].
In this context, virtual reality (VR) emerges as a suitable technology to simu-
late the real medical environment in the virtual world, allowing the trainees to
conduct hands-on practice and let them accustomed to the environment.
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Previous studies explored the usage of VR in training and education in
various domains [14,19,20]. These works show that VR technology contributes
to psychomotor or technical skills development, knowledge transfer, and social
skills. In the radiotherapy field, there is also research work using VR technology
for training the novice to operate the medical equipment [24]. VR is also used to
inform the patients about the therapy session and reduce their anxiety [15,23].
Nevertheless, realism is still an issue because most studies visualise the virtual
operation in the ORTLINAC room. In contrast, the practitioners in real-life sit-
uations are also involved in operating the equipment remotely in another control
room. Therefore, both the ORTLINAC room and the control room must be fully
integrated and coordinated in the VR simulator for realistic training. In addi-
tion, the user interaction in the VR simulator must be as similar as possible to
that in the real-world setting. These are the goals of the present contribution.

This paper introduces a VR prototype of a unified system comprised of the
ORTLINAC room and the control room along with their interactions. The paper
describes the main tasks of the system design and implementation, including the
research workflow to determine the user requirements and to address the user
interaction issues. The structure of this paper is as follows: Sect. 2 reports previ-
ous work regarding VR for medical science. Section 3 describes the workflow for
the design and implementation of the VR prototype introduced in this paper.
Then, Sect. 4 shows the main results of the implementation. Lastly, Sect. 5 dis-
cusses the conclusions and future work in the field.

2 Previous Work

2.1 Virtual Simulation for Medical Science

The presence of virtual simulation is soundly significant in many areas of the
medical science, such as radiation therapy [5], radiography [13], and surgery [24].
The 3D visualisation of a patient’s body and internal organs is helpful for medical
practitioners to make a treatment plan and discuss it with their peers. The
large-size wall display can also help them present and collaborate effectively.
In radiotherapy, most institutions use the virtual environment for radiotherapy
training (VERT) system for such purposes [21]. Besides, the 3D view and virtual
simulation can also benefit the teaching and learning process [9].

2.2 Oncology Radiotherapy Training Issues

To provide efficient treatment to the patients, quality and effective medical edu-
cation are of utmost importance. Training is also essential in solving the shortage
of qualified staff operating the medical equipment for radiotherapy [6,21]. Here
we discuss some issues found in conventional ORTLINAC radiotherapy training.

Need to Learn Diverse Skills. Radiotherapy workflow involves many medical
knowledge and skills [10]. According to [2,4], the workflow includes: (a) CT
scanning to obtain the imaging data of patient’s anatomy; (b) segmentation
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to extract the region of interest (organ, tumor); (c) treatment planning and
evaluation; (d) quality assurance to avoid patient injury; (e) image-guided to
place the patient on the ORTLINAC; and (f) perform the radiotherapy. Aside
from the technical skills, the novice also needs to learn to communicate with
patients and provide patient-care service [4]. These factors require the trainees
to spend much time mastering these skills. However, the ORTLINAC equipment
is often in high demand, giving the trainees sparse access for practising [1,5,13].

Patient Care Issues. The need to ensure patient safety and well-being during
the ORT sessions is a big concern, as it may cause psychological pressure for the
trainees [5,16]. Using phantoms might help minimize this issue [8]. However, the
limited access to the ORTLINAC still affects the training progress.

Limitations of the 2D Medium. Conventional treatment planning and
demonstration use 2D media to explain the concept, such as 2D imaging slice
view and printed medium. Previous studies found it challenging to visualise and
explain the spatial relationship between organs and anatomy and how the radi-
ation beam affects these organs [9]. Therefore, 3D and immersive techniques can
help effectively explain these spatial concepts to the trainees.

2.3 VR for Radiotherapy Education and Training

Several research works addressed the use of VR technology for RT training,
including skin apposition application [3], medical imaging [13], breast cancer [15],
prostate cancer [18], medical dosimetry [9,17], and brachytherapy [24].

The VERT System. Most of the VR training approaches make use of the
VERT system, consisting of a wall-size display and an actual hand pendant con-
troller to operate the virtual ORTLINAC. The studies show that VERT provides
an optimal environment for hands-on practice [4,21]. The virtual simulation can
offer a safe working environment where the trainees can practise by trial and
error without the fear of injuring the actual patients [4,12]. The work in [5]
reported that most of the trainees utilised VR simulation training significantly
whenever it is available. This study is consistent with the high level of satisfac-
tion and enjoyment among the trainees, as reported by [3,9,10,22]. These results
showed that VR simulation could provide a conducive environment and a valu-
able opportunity for practice, which can help the trainees to master the skills
effectively and in shorter time [9]. Besides, the large screen display of VERT
helps the educators to demonstrate and explain therapy concepts in a classroom
setting [17,21]. This display can help the trainees understand the spatial rela-
tionship between the radiation beam and the target organs [21] and allow more
engagement and discussion of learned knowledge into the professional conver-
sation [10]. These results provide evidence that VR-based training fosters the
trainees’ development and confidence in operating the radiotherapy equipment.

However, previous studies reported several limitations of the VERT system.
First is the realism issue. Most users stated that the VERT lacks immersion
and does not provide tactile feedback when the collision occurs [3,12]. A few
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Fig. 1. Our design and implementation flowchart.

studies showed that the students obtained less performance and task accuracy in
actual treatment planning after practice using virtual simulation units compared
to conventional simulation practice by using the actual unit or the treatment
planning software [12,17]. Some users also criticised the complex control of the
VERT system as a limiting factor for their training and skill development [4].

Secondly, [10] revealed the lack of autonomous and self-directed learning in
their blended learning framework. This issue is possibly caused by the large
display unit where the student has less opportunity to conduct the practice by
him/herself. Moreover, the COVID-19 pandemic also caused the cancellation
of many on-site clinical practices [5], which further exacerbates the usual access
limitation to the learning facility. Clearly, there is a need to explore an alternative
immersive technology that can allow distance learning but without these issues.

Head-Mounted Displays. The advancement of VR technology allows the
increased affordability of small-size equipment. The head-mounted display
(HMD) is one such VR equipment that can solve the issues found in large 3D
displays. Authors in [1] created an HMD VR application for ORTLINAC train-
ing, resulting in better learnability and effectiveness in training radiotherapy
compared to VERT. The work in [24] utilised the room-scale VR headset HTC
Vive for brachytherapy training to improve the trainees’ technical skills. With
the recent research trend in collaborative VR [11], HMDs can improve both
autonomous and group learning environments.

Based on [10], medical practitioners and experts’ involvement can help design
the software and education curriculum to fulfil the real-life situation. Since the
practitioners spend most of the time in the control room, there is a requirement
to simulate the virtual embodiment in the control room where they have limited
view and need to depend on the camera to operate the ORTLINAC. Accordingly,
this paper emphasises the development of a virtual control room to train hand-
eye coordination skills and spatial awareness in a limited viewing condition.

3 System Design and Implementation

This research work is part of an ongoing project aimed at providing VR-
based technical training on various medical equipment to radiophysicist trainees.
Although the full project is still a work in progress, we think that it has already
reached significant results to justify publication. The work described in this paper
concerns the development of a workable medical simulation training system to
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simulate the real-life working condition of ORTLINAC based on user require-
ments. In this context, this section focuses on the design and implementation
workflow plan for creating a VR prototype of the ORTLINAC simulator for
ORT training. Figure 1 shows the main steps of the design and implementation
flowchart. They are described in detail in next subsections.

3.1 On-site Medical Facility Visits and Meetings with Experts

The first step of the process involves visits to medical facilities and meetings
with medical practitioners to elicit the functional requirements of the system.
Some authors visited the medical facilities in the oncology department of Hos-
pital Universitario Marqués de Valdecilla, Santander, Spain, where they were
presented the daily operation in both the ORTLINAC therapy room and the
remote control room, including the features of ORTLINAC, how to control the
ORTLINAC and some standard procedures in radiotherapy. The authors col-
lected photos, videos and other materials to analyse and design the VR training
system.

3.2 Functional Requirements

After the visits to the medical facilities and meetings with experts, the authors
analysed the collected materials (video transcripts, photos, printed materials,
and others) to extract the functional requirements for the VR ORTLINAC train-
ing system. Figure 2 shows the use case diagram of the VR medical simulation
training system.

Fig. 2. The use case diagram of the VR ORTLINAC training system.

The trainee is the primary use case actor to use the VR ORTLINAC training
system for practising. Table 1 shows the analysed functional requirements and
their description.
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Table 1. Functional requirements and their description.

ID Requirement Description

RQ1 Move LINAC Trainee can move the position of table and gantry
by pressing the button in the remote control panel

RQ2 Prepare and Start
Radiation Beam

Trainee can choose, prepare, start and stop the
radiation beam

RQ3 Emergency Stop Trainee can perform an emergency stop to shut
down the ORTLINAC immediately

RQ4 Open Intercom Trainee can open the intercom and give
instructions to the patient to adjust his/her
position remotely during the radiotherapy session

3.3 System Design

As indicated above, there are two rooms for our VR-based training system: the
ORTLINAC radiotherapy room and the control room. During the radiotherapy
session, the practitioners in the radiotherapy room place and fasten the patient
on the motorised table of ORTLINAC to stabilise and fix the patient’ position.
In some cases, an individually customized plastic mask is provided to the patient
to wear during treatment. After this, any other person than the patient should
leave the room to avoid the harmful effects of the radiation. The LINAC machine
is operated from the control room, where the patient can be tracked through a
window and/or one or several cameras. There is also an intercom for oral com-
munication with the patient. The practitioners in the control room use different
controls to guide the motion of the table and gantry and align the tumor’s region
of interest to the centre of the radiation beam’s focal point. This external radio-
therapy procedure is typically applied in several sessions distributed over days
and weeks according to the patient’s RTP.

In this paper, we will focus on the design and development of the virtual con-
trol room. Firstly, we designed and created the control room simulation according
to the real-life situation. According to the experts’ feedback, the practitioners
spent most of their time in the control room. Therefore, this simulation can
provide more exposure for the novices to the environment. To furnish the vir-
tual scene, the authors utilised Blender and SketchUp software to create the 3D
model of the furniture, electronic devices and medical equipment, such as the
camera display of the ORTLINAC device room and control panels.

The user interface (UI) is also an essential element for interacting with the
virtual world. For example, to operate the ORTLINAC using the control panel
and view the camera display. We identified several design considerations, leading
to different versions throughout the design process. The first design version relied
on virtual buttons for user interaction, allowing the users to click on the buttons
of the 3D model to perform different actions. However, this feature may cause
navigation difficulties for the trainees because they may accidentally click on
another nearby button. The alternative solution of increasing the size or changing
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the buttons’ orientation may reduce the realism and familiarity to the actual
control panel. Therefore, this work proposes sign-posting and annotation above
the 3D models to attract the users to click on the button in the VR world. Once
clicked, it will open a larger user interface panel that displays the camera view
and control panel layout for easy viewing and selection, respectively. In this way,
the 3D medical equipment can be displayed in VR at its original real-life size
scale, thus improving the realism of the system.

3.4 Implementation

The VR ORTLINAC training system was developed in Unity3D with the Ocu-
lus Integration package. This package provides various templates and prefabs to
develop a VR application in Unity3D, including an avatar framework and cus-
tomised configurations. This work also used the Oculus Quest as the VR head-
mounted display (HMD) with two Oculus Touch controllers for user interaction.
The reason to use Oculus Quest is that it is a standalone system, requires fewer
set-up procedures, and is very ubiquitous to carry around. In addition, Blender
and SketchUp were used to create the 3D models of the medical equipment,
electronic devices, furniture and room. Blender supports texture mapping on
the 3D models to improve their visual realism. Table 2 shows the hardware and
software specifications used in this work along with their versions.

Table 2. Hardware and software specifications.

Name Category Specification

Unity3D Software -> Game Engine Version: 2020.3.25f1

Oculus Integration Software -> Unity Asset Version: 37.0

Blender Software -> 3D Modelling Version: 3.0.0

SketchUp Software -> 3D Modelling Version: Pro 2022

Oculus Quest Hardware -> HMD Generation: 1

Software version: 37.0

After creating the 3D models in Blender and SketchUp, they were imported
in Unity3D to build the virtual control room scene according to the sketch and
requirements. The Unity UI can implement the UI design and user interaction
based on our design considerations. Furthermore, the VR system included the
room-scale locomotion feature to let the users physically walk around the virtual
room. Another VR feature is to show the 3D models of users’ hands with a Touch
controller and cast a laser pointer from the right-hand controller to allow the
users to point and click on the virtual button. The inclusion of virtual hands
can also improve the users’ perception of presence in the VR world. Lastly, the
VR training system was built as an Android application package (APK) file
and deployed in the Oculus Quest. Additional visualization on smartphones and
tablets has also been developed and is fully supported.
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4 Results

This section presents the results of the VR ORTLINAC training prototype.
There are three main components: the virtual remote control room, the
ORTLINAC radiotherapy room, and the proposed UI and user interaction.

4.1 Remote Control Room

Figure 3 shows a scene comparison between the real (top) and virtual (bottom)
environments. As the reader can see, the virtual simulation was created as similar
as possible to the actual control room, including the furniture, electronic devices,
and interior layout. Real-world textures were extracted from the photos and
applied on the virtual surfaces to improve the overall realism of the scene.

Fig. 3. Comparison of actual (top) and virtual (bottom) control rooms.

Figure 4 shows the comparison of the 3D models of the camera display (left)
and control panel (right). We also mapped the button icon and text annotation
textures on the 3D models, based on their appearance in the actual equipment.

4.2 ORTLINAC Radiotherapy Room

For the ORTLINAC room, the current work focused on the 3D modelling of
ORTLINAC equipment and the position of cameras. The authors edited and
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Fig. 4. The actual (top) and virtual (bottom) models of the camera display (left) and
control panel (right).

Fig. 5. The camera positioning in the ORTLINAC radiotherapy room (top) and their
displays in the virtual control room (bottom).
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modified the 3D LINAC model created by [7] in SketchUp and Blender, and
shown in Fig. 5(top). Meanwhile, we set the positioning of cameras in the radio-
therapy room in order to project the camera view into the camera displays in
the virtual control room by using render texture mapping in Unity3D. Based on
these features, this work simulates the remote control room successfully. Figure 5
shows the multiple camera positions and their displays in the control room.

4.3 User Interface and Interaction

As mentioned above, this work implements the sign-posting UI displayed above
the 3D models to attract the users to point the controller’s laser to the button,
as shown in Fig. 6(left). After pressing the “A” button, this action opens a larger
UI panel that displays the camera view or control panel layout for the users to
interact, as shown in Fig. 6(right).

Fig. 6. The UIs presented in the VR ORTLINAC training system: sign-posting UIs
(left); camera view and control panel layout UIs (right).

Besides, the users can point and click on the buttons in the control panel
layout UI to control the movement of the ORTLINAC. Currently, this prototype
only includes the functionalities to rotate the gantry and move the table linearly.
The movement of ORTLINAC is reflected in the camera displays, as shown in
Fig. 7. Hence, the users can observe the ORTLINAC position remotely. We also
included the grab interaction by using the grip button in the left-hand controller
when the virtual hand touches the UI. The users can grab any UI panel and
place it in the desired location to customise their workspace, as shown in Fig. 8.
The video demonstration can be found in this link: https://youtu.be/5YmY
0EsiLQ.

https://youtu.be/5YmY_0EsiLQ
https://youtu.be/5YmY_0EsiLQ
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Fig. 7. The movement function for the rotation of the gantry and translation of the
table before movement (left) and result after movement (right).

Fig. 8. The grab interaction to move the UI location: the grip button (left); the user
activates his/her left hand on the UI panel (middle); using this feature to grab and
drag the UI panel to other location (right).

5 Conclusions and Future Work

This paper presents a VR prototype of an ORTLINAC system for oncological
radiotherapy training. Based on the experts’ feedback, the ORTLINAC room and
the control room are now integrated within a unified framework. Unity3D’s ren-
der texture mapping functionalities are used to achieve the effect of the remote
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camera display for effective synchronization between both rooms. Also, several
UI design considerations are proposed for the VR world, including sign-posting
and displaying a larger UI button layout for easier user interaction.

We will continue improving the prototype in terms of functionalities, graph-
ics, and user experience (UX) for the next step. Furthermore, 3D reconstruction
of imaging data that shows a patient’s body with internal organs and tumor
regions should be included in this system. This feature can challenge the trainees
to practice operating the ORTLINAC correctly and avoid collision between the
patient and the gantry. In addition, we wish to evaluate the efficiency and effec-
tiveness of using this VR system for training medical practitioners and compare
it with the traditional pedagogical approach.
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Abstract. 3D point clouds parameterization is a very important research topic in
the fields of computer graphics and computer vision, which has many applications
such as texturing, remeshing and morphing, etc. Different from mesh parameter-
ization, point clouds parameterization is a more challenging task in general as
there is normally no connectivity information between points. Due to this chal-
lenge, the papers on point clouds parameterization are not as many as those on
mesh parameterization. To the best of our knowledge, there are no review papers
about point clouds parameterization. In this paper, we present a survey of exist-
ing methods for parameterizing 3D point clouds. We start by introducing the
applications and importance of point clouds parameterization before explaining
some relevant concepts. According to the organization of the point clouds, we
first divide point cloud parameterization methods into two groups: organized and
unorganized ones. Since various methods for unorganized point cloud parame-
terization have been proposed, we further divide the group of unorganized point
cloud parameterization methods into some subgroups based on the technique used
for parameterization. The main ideas and properties of each method are discussed
aiming to provide an overview of various methods and help with the selection of
different methods for various applications.

Keywords: Parameterization · Organized point clouds · Unorganized point
clouds · Mesh reconstruction

1 Introduction

3D point clouds parameterization, also called point clouds mapping, is the process of
mapping a 3D point cloud onto a suitable (usually simpler) domain. It has many applica-
tions such as object classification, texture mapping and surface reconstruction [1–3]. In
many situations, it is computationally expensive or difficult to work with 3D point clouds
directly. Therefore, projecting them onto a lower-dimensional space without distorting
their shape is necessary. Compared to mesh parameterization, 3D point clouds param-
eterization is more challenging in general because there is no connectivity information
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between points, which hinders the direct extension of well-established mesh parame-
terization algorithms to point cloud parameterization. There are some survey papers on
mesh parameterization [4, 5]. However, to the best of our knowledge, there are no survey
papers about point clouds parameterization. In this paper, we will review the methods
of parameterizing point clouds. Notice there are also some works on 2D point clouds
parameterization. Since 2D point clouds parameterization is different from 3D point
clouds parameterization in most cases, this paper will only focus on the methods of 3D
point clouds parameterization.

Some methods have been proposed to parameterize point clouds. In this paper, we
roughly divide them into two main groups according to whether point clouds are orga-
nized or not. For each of the two groups, we further divide it into some subgroups based
on the property of the mapping process and review each of the methods.

2 Some Concepts

In this section, some concepts related to point clouds will be introduced to help readers
understand the problem of point clouds parameterization. Since mesh parameterization
has been well investigated in existing work and some ideas of mesh parameterization
can be adopted by or adapted to point cloud parameterization, we will also introduce
some concepts about mesh parameterization in this section.

1) Organized and unorganized point clouds: Generally, point clouds can be divided
into organized and unorganized ones. Organized and unorganized point clouds are
also called structured and unstructured point clouds, respectively. The division is
determined by the way of storing point cloud data. For organized point clouds, the
data are stored in a structured manner, while unorganized point cloud data are stored
arbitrarily. Specifically, an organized point cloud is similar to a 2-D matrix and its
data are divided into rows and columns according to the spatial relationships between
the points. Accordingly, the spatial layout represented by the xyz-coordinates of the
points in a point cloud decides the memory layout of the organized point cloud.
Contrary to organized point clouds, unorganized point clouds are just a collection
of 3-D coordinates, each of which denotes a single point.

2) Global and local parameterization: To parameterize point clouds, some methods
map the whole point set of an underlying structure to a parameterization domain.
In contrast, some other methods split the problem into several subproblems, each of
which is called a local parameterization. The choice between global and local param-
eterization has impacts on mapping processes and results. Globally parameterizing
the whole point set can guarantee the reconstructed mesh is a perfect manifold,
meaning there are no seams, which may exist if the point cloud is partitioned and
locally parameterized. However, processing the whole point cloud at the same time
may be computationally expensive, especially for large structures.

3) Topological shapes: Topological shapes can be grouped based on the number of
holes they own. Shapes with no holes such as spheres and bowls are treated as genus-
0 shapes. Similarly, genus-1, genus-2 and genus-3 shapes have one, two and three
holes in them, respectively, and so on.
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4) Bijective function: also called bijection, invertible function, or one-to-one corre-
spondence, pairs each element in one set exactly to one element in the other set, and
vice versa.

5) Isometric, conformal, and equiareal mappings: Suppose f is a bijective function
between a mesh S or a point cloud and a mapping domain S∗, then f is isometric
(length preserving) if the length of any arcs on S is preserved on S∗; f is conformal
(angle preserving) if the angle of intersection of every pair of intersecting arcs on S
is preserved on S∗; f is equiareal (area preserving) if the area of an area element on S
is preserved on S∗. Isometric mappings are equiareal and conformal. Any mappings
that are equiareal and conformal are isometric mapping.

3 Parameterization Methods of Organized Point Clouds

To parameterize an organized point cloud, many methods iteratively obtain a topologi-
cally identical 2D triangulation from the underlying 3D triangulation of the point cloud,
and the 2D triangulation determines the parameter values of the vertices in the domain
plane. Depending on the ways of transforming from 3D to 2D, there are several meth-
ods, including Harmonic parameterization [6], Floater’s barycentric mappings [7] and
the most Isometric parameterization [3]. For Harmonic parameterization in [6], the arc
length is regarded as the parameter value of a spline curve, which is used to minimize
the integral of the squared curvature with respect to the arc length for fairing the spline
curve. With regard to barycentric mappings in [7], a shape-preserving parameterization
method is applied for smooth surface fitting; the parameterization that is equivalent to a
planar triangulation can be obtained by solving a linear system based on the convex com-
bination. In [3], Hormann and Greiner propose a method to parameterize triangulated
point clouds globally, the way of parameterizing inner point set is the same as that of
parameterizing boundary point set. However, they ignore the problem of parameterizing
triangulated point clouds with holes.

Energy function has also been defined to minimize the metric distortion in the trans-
formation process from 3D to 2D. The methods described in [7, 8] follow the shared app-
roach, which firstly parameterizes the boundary points, and then minimizes the following
edge-based energy function for the parameterization of inner points [3]:

E = 1

2

∑
cij||Pi − Pj||2 (1)

where cij is the edge coefficient that can be chosen in various ways, Pi and Pj are two
points at the same edge.

In order to reconstruct a tensor product B-spline surface from scattered 3D data with
specified topology, choosing a suitable way to parameterize the points is crucial in the
reconstruction process. The method adopted by Greiner and Hormann in [8] is called the
spring model. With this method, the edge of the 3D triangulation is replaced by a spring.
Then the boundary points are mapped first onto a plane and stay unchanged. Next, the
inner points are mapped onto this plane by minimizing the spring energy. The procedure
is repeated to improve the parameters until certain conditions are satisfied.
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The above methods are mainly applicable to structured point clouds. They are not
efficient when the number of points increases, and are likely to fail when holes and
concave sections exist in the point clouds.

4 Parameterization Methods of Unorganized Point Clouds

In comparison with the parameterization of organized point clouds, many more meth-
ods have been proposed to parameterize unorganized point clouds. Table 1 lists these
methods and gives the information about the category, parameter domain, local or global
parameterization, topology, applications and publication year.

Table 1. Methods to parameterize unorganized point clouds.

Methods Category Parameter
domain

Local/global
parameterization

Topology Applications Year

“Simplicial” surface
[10]

Base
surfaces-based
methods

Base
surfaces

/ Arbitrary
topology

Surface
reconstruction

1992

Manually define [9] Global / Least square fitting
of B-spline curves
and surfaces

1995

Minimizing
quadratic function
[11]

/ / B-spline curves and
surfaces
approximation

2002

Recursive DBS [12] Global/local Disk Efficient
parameterization

2005

Recursive
subdivision
technique [13]

Global/local Disk (With
hole is ok)

Parameterizing
point clouds

2007

Floater meshless
parameterization
[14–17]

Meshless
parameterization

Plane Global Disk Surface
reconstruction

2000

Meshless
parameterization for
spherical topology
[18]

Planes Local Genus-0 Surface
reconstruction

2002

As-rigid-as-possible
meshless
parameterization [19]

Plane Global Disk Denoising and
parameterizing
point clouds, mesh
reconstruction

2010

Meshless
quadrangulation by
global
parameterization [20]

Plane Global Arbitrary
genus

Meshless
quadrangulation

2011

Spherical embedding
[23]

Spherical mapping Sphere Global Genus-0 Mesh
reconstruction

2004

3D point clouds
parameterization
algorithm [22]

Sphere Global Relatively
simple
models

Parameterizing
point clouds

2008

Spherical conformal
parameterization [21]

Sphere Global Genus-0 Mesh
reconstruction

2016

(continued)
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Table 1. (continued)

Methods Category Parameter
domain

Local/global
parameterization

Topology Applications Year

Discrete one-forms
[24]

Adapt from mesh
parameterization

Planes Local Genus-1 Mesh
reconstruction

2006

Periodic global
parameterization [25]

Plane Global Arbitrary
genus

Direct
quad-dominant
meshing of point
cloud

2011

PDE & SOM [26] Neural
networks-based
methods

Adaptive
base
surface

Global Complex
sculptured
surfaces

Surface
reconstruction

2001

Adaptive sequential
learning
RBFnetworks [27]

/ Global Freeform Point-cloud surface
parameterization

2013

Residual neural
network [28]

/ Local Fixed
degree
curve

Polynomial curve
fitting

2021

A new
parameterization
method [29]

Other / / / NURBS surface
interpolation

2000

Pointshop 3D [31] / / / Point-based surface
editing

2002

Free-boundary
conformal
parameterization [30]

/ Global/local / Parameterizing
point clouds for
meshing

2022

According to the property of the mapping process, we divide the parameterization
methods of unorganized point clouds into base surfaces-based methods, meshless param-
eterization, spherical mapping, methods adapted from mesh parameterization, neural
networks-based methods, and other methods.

4.1 Base Surfaces-Based Methods

For parameterization of unorganized point clouds, base surfaces, which approximate the
underlying structure of point clouds, have been widely applied to parameterize point
clouds. Base surfaces can be a plane, a Coons patch, or a cylinder [2]. The parameter
values of each point in a point cloud can be obtained by projecting the point cloud onto
a base surface. The projection direction can either be perpendicular to the surface or
based on a determined projection vector. According to [9], a base surface should own
the following properties:

a) Unique local mapping: The uniqueness implies that any two different points on the
underlying surface should be mapped onto two different locations on the mapping
domain.
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b) Smoothness and closeness of base surface: This indicates that a base surface should
be as smooth and simple as possible, while still approximating the underlying sur-
face as much as possible. The balance between these properties should be carefully
considered.

c) Parameterization of base surface: This implies that how we parameterize a base sur-
face has a direct effect on the parameterization of the fitting surface. We can choose
a more suitable way to parameterize a base surface by referring to the underlying
structure of the fitting surface.

To get access to such base surfaces, some approaches have been proposed. For
example, Hoppe et al. [10] propose a method to produce so-called “simplicial” surfaces.
They first define a function to estimate the signed geometric distance to the underlying
surface of the point clouds, then a contouring algorithm is applied to approximate the
underlying surface by a “simplicial” surface. Their method is capable of reconstructing
a surface with or without boundary from an unorganized point set. However, there is
no formal guarantee that the reconstructed result is correct and the space required to
store the reconstruction is relatively large. In [9], users can also manually define some
section curves and four boundary curves to get a base surface of a point cloud, as
some characteristic curves approximating the underlying structure of the point cloud are
sufficient in defining a base surface. But it is also necessary to take advantage of the
interior characteristic curves when the geometry is complex, even though just four corner
points can be used to create a base surface in some cases. A base surface can also be
obtained by iteratively minimizing a quadratic objective function [11]. With this method,
a linear system of equations is solved in each step. To parameterize unstructured point
clouds, Dynamic Base Surfaces (DBS) are also proposed by Azariadis [2]. As its name
implies, a BDS is gradually improved regarding its approximation to the underlying
structure of a point cloud, and the parameter value of each point in the point cloud is
obtained by projecting it orthogonally to the DBS. Different from existing methods,
no restrictions are required for the density and the homogeneity of point clouds. The
limitation of this method is that it is only applicable to the point clouds where a closed
boundary consisting of four curves exists. Azariadis and Sapidis [12] present a method to
parameterize a point cloud globally and/or locally using recursive dynamic base surfaces.
Their method can handle arbitrary point clouds of disk topology. Figure 1 shows the local
parameterization of one subset of several point clouds using this method. The same
authors [13] extend the DBS concept and use a recursive subdivision method to improve
the accuracy of point clouds parameterization, especially for some small regions of the
point clouds, where the approximation error by the DBS is not acceptable. They divide
such regions into smaller parts and the points on these parts are approximated by c0

composite surface based on recursive DBS subdivision to increase the approximation
error, then to make the point clouds parameterization more accurately.

4.2 Meshless Parameterization

Meshless parameterization, first proposed by Floater and Reimers in [14], is also a widely
used method to parameterize and mesh point clouds. As shown in Fig. 2, the main idea of
meshless parameterization is to map the points in a point cloud onto a plane, where the
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Fig. 1. Local parameterization of: (a) “bunny” point cloud, (b) “horse” point cloud, and (c)
“human” point cloud [12].

mapping points are triangulated using an appropriate triangulation method, and then the
original point cloud is meshed with the same triangulation edge structure as the mapping
points. In order to make sure the reconstructed mesh has high quality, the mapping points
should preserve the local structure of the original point clouds as much as possible.
Therefore, the shape distortion ought to be minimized in the parameterization process.
This is formulated as the problem of solving a sparse linear system [14, 15]. Since the
mapping does not depend on the topological structure of point clouds, this method is
called meshless parameterization. After the projection, the corresponding triangulation
of the point clouds before mapping can be obtained by triangulating the projecting points
in the planar parameter domain. This method has some limitations. First of all, solving
a large linear system using their method is not efficient. Secondly, the reconstructed
3D triangles may distort and intersect each other due to the artificial convex boundary,
which is also a problem when there are concave holes and the convex combination is
not well defined along the concave parts of the hole boundary. To improve the efficiency
of solving the linear system more efficiently, Volodine et al. [16] show that it can be
done by an appropriate reordering of the matrix, which enables the linear system to be
solved efficiently by deploying a direct sparse solver. To overcome the second problem,
the same authors [17] extend the method to avoid distortion in the vicinity of concave
boundaries by inserting virtual points to the concave neighbourhood, which can make
sure the convex combination mapping is always defined. The methods described in [17]
are only applicable to disk shape point clouds. To make the method presented in [17]
more general, Hormann and Reimers [18] present an algorithm that can handle genus-0
topology as well by dividing the problem of triangulating point clouds into subproblems,
each of which can be solved using the method in [17]. To improve the reconstructed result,
Zhang et al. [19] apply an “as-rigid-as-possible” meshless parameterization method to
parameterize a disk topology point cloud onto a plane while denoising the point cloud.
Since their method can preserve local distances in the point cloud, a more regular 3D
mesh can be obtained. Li et al. [20] present a meshless global parameterization method
to parameterize point clouds and use the obtained parameterization to mesh the point
clouds automatically.



A Review of 3D Point Clouds Parameterization Methods 697

Fig. 2. (a) Point set. (b) meshless parameterization. (c) Delaunay triangulation of the mapping
points. (d) surface triangulation [15].

4.3 Spherical Mapping

When the underlying structure of the point clouds is closed, which means there are no
boundaries of the structure, “spherical mapping” is normally applied to parameterize the
point clouds. The reason why “spherical mapping” is applied under such conditions can
be partly explained by the uniform theorem [21], which states that every genus-0 closed
surface is conformally equivalent to S2. Thus, mapping from a genus-0 surface to the
unit sphere is natural. The same idea is also applied to genus-0 point clouds. One such
example is shown in Fig. 3. The problem of forming a spherical mapping given a point
cloud model P can be formulated as [22]:

s = o + rs
p − o

||p − o|| (2)

where s are the spherical mapping points, p is the original point set, o is the centre of
the original point set and rs represents the largest distance between the original point set
and the centre with the radius of the sphere.

Spherical parameterization is mostly used to mesh point clouds. For example,
Zwicker and Gotsman [23] present a method to reconstruct a manifold genus-0 mesh
from a 3D point cloud by using spherical embedding of a k-nearest neighbourhood graph
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of a point cloud. Then the embedded points are triangulated and the reconstructed mesh
structure is used to mesh the original point cloud. The main advantage of this method is
that it can guarantee a closed manifold genus-0 mesh, even the input point cloud is noisy.
However, its drawbacks are that pre-processing and post-processing may be required for
the input point clouds and the output mesh, respectively. In [21], Choi et al. extend
a state-of-the-art spherical conformal parameterization algorithm used to parameterize
genus-0 meshes to the case of point clouds, which are achieved by using an improved
approximation of the Laplace-Beltrami operator on the point cloud and a scheme named
the north-south reiteration for the meshing of point clouds. The reason why they apply
the method of spherical conformal parameterization method to reconstruct meshes from
point clouds is mainly that directly triangulating a point cloud is challenging, especially
for complex geometry, which can be achieved more easily with the aid of spherical con-
formal parameterization. Specifically, instead of directly triangulating a point cloud, the
points on the unit sphere after mapping are triangulated using the spherical Delaunay
triangulation algorithm. Then triangulation of the original point cloud can be obtained
from the triangulation on the spherical point cloud as these two point clouds have a
one-to-one correspondence.

Fig. 3. (a) A bulldog point cloud. (b) the spherical conformal parameterization of the bulldog
point cloud [21].

4.4 Methods Adapted from Mesh Parameterization

There are also some methods that are adapted from parameterizing meshes to parame-
terizing point clouds. For example, Tewari et al. modify the harmonic one-form method
used in parameterizing manifold meshes to parameterize genus-1 point clouds that are
sampled from such meshes [24]. They locally parameterize the subsets of a point cloud
and the way they parameterize the point cloud can guarantee the consistency between
the pieces. Even though the reconstructed results using their method are not much better
than other reconstruction techniques, their method presents some new tools to the sur-
face reconstruction problem and is very simple to implement. Li et al. [25] present a new
method to reconstruct quad-dominant mesh from unorganized point clouds using the
adapted periodic global parameterization method, which is modified from the periodic
global parameterization method that is used to parameterize a triangle mesh. The local
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Delaunay triangulation is used to design the parameterization of the point cloud. Their
method can be used to deal with noisy point clouds without global connectivity. But it
suffers from close-by structures because topological errors may be raised from the local
Delaunay triangulation method by connecting two nearby surfaces.

4.5 Neural Networks-Based Methods

With the rapid development of neural network techniques, they have been applied to three
main tasks of point cloud processing, i.e., 3D shape classification, 3D object detection
and tracking, and 3D point cloud segmentation [26]. Besides their applications in the
three main tasks, some researchers have investigated neural network-based point cloud
parameterization. For example, Barhak and Fischer [27] adopt a self-organizing map
(SOM) for the parameterization of small sets of clean points with low-frequency spatial
variations, which can be used to reconstruct smooth surfaces. There are mainly two steps
in the parameterization process: In the first step, Partial Differential Equation (PDE) and
SOM are applied where the former technique can yield a parametric grid without self-
intersection and the latter one makes sure all the sampled points have an impact on
the grid, which guarantees the uniformity and smoothness of the reconstructed surface.
In the second step, an adaptively modified 3D base surface is created for point clouds
parameterization. Meng et al. [28] proposed a method to parameterize larger, noisy
and unoriented point clouds by using adaptive sequential learning RBFnetworks. The
network adopts a dynamic structure by adaptive learning and the neurons are adjustable
regarding their locations, widths and weights, thus making it more powerful compared to
other methods that apply RBFs at determined locations and scales. What is more, multi-
level parameterization and multiple level-of-details (LODs) can be achieved in two ways.
When multiple LODs meshes are required, parameterizing the point clouds with the best
resolution and the points and surfaces can be computed at degrading sampling level to
get the required LODs. In the second case where only one downgraded LOD is required,
downgraded parameterization can be applied to obtain the result. Scholz and Juttler [29]
apply residual deep neural networks to parameterize point clouds for polynomial curve
fitting. Since the network approximates the function that assigns a suitable parameter
value to a sequence of data points, optimal curve reconstruction from point clouds can be
obtained. However, their method is only applicable to a small number of sample points
and the proposed neural networks do not consider discrete surface point data. Figure 4
shows the layout of their proposed residual neural network.
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Fig. 4. (a) The layout of a building block. (b) the layout of the whole residual neural network
[29].

4.6 Other Methods

Some other methods cannot be easily grouped. Therefore, we refer to them as other
methods in this subsection and review them below.

As Ma and Kruth discuss in [9], three methods are usually adopted to parameter-
ize digitized points for performing least squares fitting of B-spline curves and surfaces.
These three methods are uniform parameters, cumulative chord length parameters and
centripetal parameterization parameters. Since all these methods assume that the points
are scattered in a special pattern, like chain points for curves and grid points for sur-
faces, these methods are very likely to fail when the points are irregularly spaced. To
address this issue, Ma and Kruth [9] propose a simple technique, which parameterizes
the irregularly spaced points by projecting them onto a base surface and obtaining their
parameters from the parameters of the projected points. Jung and Kim [30] propose a
new method to parameterize data points for NURBS surface interpolation, which is more
powerful than the existing point clouds parameterization methods. With this method, the
parameter value at the maximum of each rational B-spline basis function is treated as the
parameter value of the corresponding data point. The empirical results show that their
method outperforms the other methods as aforementioned in [10] regarding interpolation
surfaces. In addition, many works consider mapping them onto a simple domain with a
fixed boundary shape such as a sphere, a circle or a rectangle. However, some undesir-
able distortion may occur during the parameterization process due to the fixed boundary
shape. To overcome such a problem, Choi et al. [31] develop a free-boundary confor-
mal parameterization technique to parameterize disk-shape point clouds, which leads to
high quality of the reconstructed mesh. By free boundary, it means that the positions
of only two boundary points are fixed, and the left boundary points are parameterized
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to a suitable location automatically based on the structure of the original point clouds.
To make the parameterization of point clouds more flexible, Zwicker et al. [32] present
a system in which interactively parameterizing point clouds can be done. During the
mapping process, an objective function is applied to minimize distortions automatically.
Furthermore, the user can adjust the mapping intuitively at the same time.

5 Conclusion

In this paper, we have reviewed various methods used to parameterize 3D point clouds.
These methods are grouped into organized point parameterization and unorganized point
cloud parameterization ones and unorganized point cloud parameterization methods are
further divided into some subgroups according to the property of the point clouds and
the mapping technique. We discussed each of these methods.

It should be pointed out that there is no “best” parameterization method applicable to
all point clouds, as one method may succeed in parameterizing some point clouds but fail
in parameterizing other point clouds. Therefore, for a given point cloud, it is necessary to
choose a suitable method to parameterize the 3D point cloud according to the desirable
properties of low distortion and high computing efficiency in parameterizing the point
cloud.

Acknowledgements. This research is supported by the PDE-GIR project which has received
funding from the European Union Horizon 2020 research and innovation programme under the
Marie Skodowska-Curie grant agreement No 778035. Zaiping Zhu is also sponsored by China
Scholarship Council.

References

1. Meng, T.W., Choi, G.P.-T., Lui, L.M.: Tempo: feature-endowed teichmuller extremal
mappings of point clouds. SIAM J. Imag. Sci. 9, 1922–1962 (2016)

2. Azariadis, P.N.: Parameterization of clouds of unorganized points using dynamic base
surfaces. Comput. Aided Des. 36, 607–623 (2004)

3. Hormann, K., Greiner, G.: MIPS: an efficient global parametrization method. Curve and
Surface Design: Saint-Malo, pp. 153–162 (2000)

4. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. Adv. Multires-
olution Geometric Modelling 2005, 157–186 (2005)

5. Sheffer, A., Hormann, K., Levy, B., Desbrun, M., Zhou, K., Praun, E., Hoppe, H.: Mesh
parameterization: theory and practice. ACM SIGGRAPPH, course notes 2007, 10

6. Eck, M., Hadenfeld, J.: Local energy fairing of B-spline curves. In: Hagen, H., Farin, G., Nolte-
meier, H., (eds.) Proceedings of the Geometric Modelling, pp. 129–147. Springer, Vienna,
(1995)

7. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput.
Aided Geometric Design 14(3), 231–250 (1997)

8. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchi-
cal tensor product B-splines. In: Proceedings of the in Surface Fitting and Multiresolution
Methods, pp. 163–172. Vanderbilt University Press (1997)



702 Z. Zhu et al.

9. Ma, W., Kruth, J.-P.: Parameterization of randomly measured points for least squares fitting
of B-spline curves and surfaces. Comput. Aided Des. 27, 663–675 (1995)

10. Surface Reconstruction from Unorganized Points | Proceedings of the 19th Annual Conference
on Computer Graphics and Interactive Techniques Available online: https://dl.acm.org/doi/
abs/https://doi.org/10.1145/133994.134011. Accessed 19 Feb 2022

11. Pottmann, H., Leopoldseder, S., Hofer, M.: Approximation with active B-spline curves
and surfaces. In: Proceedings of the 10th Pacific Conference on Computer Graphics and
Applications, 2002. Proceedings, pp. 8–25. IEEE (2002)

12. Azariadis, P., Sapidis, N.: Efficient parameterization of 3D point-sets using recursive dynamic
base surfaces. In: Panhellenic Conference on Informatics, pp. 296–306. Springer, Heidelberg
(2005)

13. Azariadis, P., Sapidis, N.: Product design using point-cloud surfaces: a recursive subdivision
technique for point parameterization. Comput. Ind. 58, 832–843 (2007). https://doi.org/10.
1016/j.compind.2007.03.001

14. Floater, M.S., Reimers, M.: Meshless parameterization and surface reconstruction. Comput.
Aided Geometric Design 18, 77–92

15. Floater, M.S.: Meshless parameterization and B-spline surface approximation. In: Proceedings
of the Mathematics of Surfaces IX, pp. 1–18. Springer (2000)

16. Volodine, T., Roose, D., Vanderstraeten, D., Volodine, T., Roose, D., Vanderstraeten, D.:
65F05, 65M50. Efficient Triangulation of Point Clouds Using Floater Parameterization 2004

17. Volodine, T., Vanderstraeten, D., Roose, D.: Experiments on the Parameterization of Point
Clouds with Holes. TW Reports, volume TW432 2005, 12

18. Hormann, K., Reimers, M.: Triangulating point clouds with spherical topology. Curve and
Surface Design: Saint-Malo (2002), pp. 215–224 (2002)

19. Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and
parameterization. Comput. Graph. 34, 198–208 (2010)

20. Li, E.: Meshless quadrangulation by global parameterization. Comput. Graph. 35(5), 992–
1000 (2011)

21. Choi, G.P.-T., Ho, K.T., Lui, L.M.: Spherical conformal parameterization of genus-0 point
clouds for meshing. arXiv:1508.07569 [cs, math] 2016. https://doi.org/10.1137/15M1037561

22. 3D Point Clouds Parameterization Alogrithm | IEEE Conference Publication | IEEE Xplore
Available online: https://ieeexplore.ieee.org/abstract/document/4697396. Accessed 19 Feb
2022

23. Zwicker, M., Gotsman, C.: Meshing point clouds using spherical parameterization. In: PBG,
pp. 173–180 (2004)

24. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms.
Comput. Graph. 30, 917–926 (2006). https://doi.org/10.1016/j.cag.2006.08.019

25. Li, E., Che, W., Zhang, X., Zhang, Y.-K., Xu, B.: Direct quad-dominant meshing of point
cloud via global parameterization. Comput. Graph. 35, 452–460 (2011). https://doi.org/10.
1016/j.cag.2011.03.021

26. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point
clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4338–4364 (2021)

27. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based
on neural network and PDE techniques. IEEE Trans. Visual Comput. Graphics 7, 1–16 (2001)

28. Meng, Q., Li, B., Holstein, H., Liu, Y.: Parameterization of point-cloud freeform surfaces
using adaptive sequential learning RBFnetworks. Pattern Recogn. 46, 2361–2375 (2013).
https://doi.org/10.1016/j.patcog.2013.01.017

29. Scholz, F., Jüttler, B.: Parameterization for polynomial curve approximation via residual
deep neural networks. Comput. Aided Geometric Design 85, 101977 (2021). https://doi.org/
10.1016/j.cagd.2021.101977

https://doi.org/10.1145/133994.134011
https://doi.org/10.1016/j.compind.2007.03.001
http://arxiv.org/abs/1508.07569
https://doi.org/10.1137/15M1037561
https://ieeexplore.ieee.org/abstract/document/4697396
https://doi.org/10.1016/j.cag.2006.08.019
https://doi.org/10.1016/j.cag.2011.03.021
https://doi.org/10.1016/j.patcog.2013.01.017
https://doi.org/10.1016/j.cagd.2021.101977


A Review of 3D Point Clouds Parameterization Methods 703

30. Jung, H.B., Kim, K.: A new parameterisation method for NURBS surface interpolation. Int.
J. Adv. Manuf. Technol. 16, 784–790 (2000). https://doi.org/10.1007/s001700070012

31. Choi, G.P.T., Liu, Y., Lui, L.M.: Free-Boundary Conformal Parameterization of Point Clouds.
arXiv:2010.15399 [cs, math] 2021

32. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3D: an interactive system for point-
based surface editing. ACM Trans. Graph. (TOG) 21, 322–329 (2002)

https://doi.org/10.1007/s001700070012
http://arxiv.org/abs/2010.15399


Machine Learning and Data
Assimilation for Dynamical Systems



Statistical Prediction of Extreme Events
from Small Datasets

Alberto Racca1(B) and Luca Magri1,2,3

1 Department of Engineering, University of Cambridge, Cambridge, UK
ar994@cam.ac.uk

2 Aeronautics Department, Imperial College London, London, UK
l.magri@imperial.ac.uk

3 The Alan Turing Institute, London, UK

Abstract. We propose Echo State Networks (ESNs) to predict the
statistics of extreme events in a turbulent flow. We train the ESNs on
small datasets that lack information about the extreme events. We asses
whether the networks are able to extrapolate from the small imperfect
datasets and predict the heavy-tail statistics that describe the events.
We find that the networks correctly predict the events and improve the
statistics of the system with respect to the training data in almost all
cases analysed. This opens up new possibilities for the statistical predic-
tion of extreme events in turbulence.

Keywords: Extreme events · Reservoir computing · Heavy tail
distribution

1 Introduction

Extreme events arise in multiple natural systems, such as oceanic rogue waves,
weather events and earthquakes [1]. A way to tackle extreme events is by comput-
ing their statistics to predict the probability of their occurrence. Because extreme
events are typically rare, information about the heavy tail of the distribution that
describes the events is seldom available. This hinders the performance of data-
driven methods, which struggle to predict the events when extrapolating from
imperfect datasets [8]. In this work, we assess the capability of a form of reser-
voir computing, the Echo State Network [5], to predict the statistics of extreme
events in a turbulent flow [6]. In particular, we analyse the ability of the net-
works to improve the prediction of the statistics of the system with respect to
the available training data. The paper is organised as follow. Section 2 introduces
the turbulent flow model. Section 3 describes the Echo State Network. Section 4
analyses the statistical prediction of extreme events. We summarize the work
and present future developments in Sect. 5.
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Fig. 1. One time series of the kinetic energy, (a), and Probability Density Function
of the kinetic energy computed from the entire dataset, (b). The time in panel (a)
is normalized by the Lyapunov time. Vorticity isosurfaces, ω = ∇ × v, and velocity
flowfield before, (c), and after, (d), an extreme event. The laminar structure, (c), breaks
down into vortices, (d).

2 A Low-Dimensional Model for Turbulent Shear Flow

We study a nine-equation model of a shear flow between infinite plates subjected
to sinusoidal body forcing [6]. The incompressible Navier-Stokes equations are

dv
dt

= −(v · ∇)v − ∇p +
1

Re
Δv + F(y), (1)

where v = (u, v, w) is the velocity, p is the pressure, Re is the Reynolds number,
F(y) =

√
2π2/(4Re) sin(πy/2)ex is the body forcing along x, y is the direction of

the shear between the plates and z is the spanwise direction. We solve the flow in
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the domain Lx×Ly×Lz, where the boundary conditions are free slip at y±Ly/2,
and periodic at x = [0;Lx] and z = [0;Lz]. Here, we set Lx = 4π, Ly = 2, Lz =
2π and Re = 400 [9]. We project (1) on compositions of Fourier modes, v̂i(x),
so that the velocity is v(x, t) =

∑9
i=1 ai(t)v̂i(x) . The projection generates nine

nonlinear ordinary differential equations for the amplitudes, ai(t), which are the
state of the system [6]. The system displays a chaotic transient that converges
to the laminar solution a1 = 1, a2 = · · · = a9 = 0. In the turbulent transient,
the kinetic energy,

k = 0.5
9∑

i=1

a2
i , (2)

shows intermittent large bursts, i.e. extreme events, panel (a) in Fig. 1, which
generate the heavy tail of the distribution [8], panel (b). In the figure, time is
expressed in Lyapunov Times (LT), where a LT is the inverse of the Lyapunov
exponent, Λ ∗ 0.0163. The Lyapunov exponent is the average exponential rate
at which arbitrarily close trajectories diverge, which is computed with the QR
algorithm [2,3]. Each extreme event is an attempt of the system to reach the
laminar solution. During an extreme event, the flow slowly laminarizes, panel
(c), but the laminar structure violently breaks down into vortices, panel (d).
To study only the transient, we (i) generate 2000 time series series of length of
4000 time units through a 4th order Runge-Kutta scheme with dt = 0.25, (ii)
discard all the time series that laminarized, i.e. the ones with k ≥ 0.48, and (iii)
use the remaining time series as data. The different time series are obtained by
randomly perturbing a fixed initial condition [9].

Fig. 2. Schematic representation of the echo state network.

3 Echo State Networks

As shown in Fig. 2, in an Echo State Network [5], at the i-th time step the high-
dimensional reservoir state, r(ti) ∈ R

Nr , is a function of its previous value and
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the current input, uin(ti) ∈ R
Nu . The output, up(ti+1), which is the predicted

state at the next time step, is a linear combination of r(ti):

r(ti) = tanh (Win[ũin(ti); bin] + Wr(ti−1)) ; up(ti+1) = Wout[r(ti); 1] (3)

where ˜( ) indicates normalization by the range component-wise, W ∈ R
Nr×Nr is

the state matrix, Win ∈ R
Nr×(Nu+1) is the input matrix, Wout ∈ R

Nu×(Nr+1) is
the output matrix, bin is the input bias and [ ; ] indicates vertical concatenation.
Win and W are sparse, randomly generated and fixed. These are constructed in
order for the network to satisfy the echo state property [5]. The input matrix,
Win, has only one element different from zero per row, which is sampled from
a uniform distribution in [−σin, σin], where σin is the input scaling. The state
matrix, W, is an Erdős-Renyi matrix with average connectivity 〈d〉. This means
that each neuron (each row of W) has on average only 〈d〉 connections (non-
zero elements). The value of the non-zero elements is obtained by sampling
from an uniform distribution in [−1, 1]; the entire matrix is then scaled by a
multiplication factor to set its spectral radius, ρ. The only trainable weights
are those in the output matrix, Wout. Thanks to the architecture of the ESN,
training the network by minimizing the Mean Square Error (MSE) on Nt + 1
points consists of solving the linear system

(RRT + βI)WT
out = RUT

d , (4)

where R ∈ R
(Nr+1)×Nt and Ud ∈ R

Nu×Nt are the horizontal concatenation of
the reservoir states with bias, [r; 1], and of the output data, respectively; I is the
identity matrix and β is the Tikhonov regularization parameter [5].

The input scaling, σin, spectral radius, ρ, and Tikhonov parameter, β, are
selected using Recycle Validation [7] to minimize the MSE of the kinetic energy.
The Recycle Validation is a recent advance in hyperparameter selection in Recur-
rent Neural Networks, which is able to exploit the entire dataset while keep-
ing a small computation cost. To minimize the function provided by the val-
idation strategy, we use Bayesian Optimization for σin and ρ in the interval
[0.1, 10] × [0.1, 1] seen in logarithmic scale and perform a grid search in each
[σin, ρ] point to select β from [10−6, 10−9, 10−12]. We set bin = 0.1, d = 20 and
add gaussian noise with zero mean and standard deviation, σn = 0.01σu, where
σu is the standard deviation of the data, to the training data [10].

4 Statistical Prediction of Extreme Events

We study the capability of the networks to predict the statistics of the system
through long-term predictions. Long-term predictions are closed-loop predic-
tions, i.e. predictions where we feed the output of the ESN as an input for the
next time step, which lasts several tens of Lyapunov Times. These predictions
diverge from the true trajectory due to the chaotic nature of the signal, but
remain in the region of phase space of the chaotic transient. In doing so, they
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replicate the statistics of the true signal. The long-term predictions are gener-
ated in the following way: (i) from 500 different starting points in the training
set, we generate 500 different time series by letting the ESN evolve each time for
4000 time units (∗ 65LTs); (ii) we discard the laminarized time series and (iii)
use the remaining ones to compute the statistics as done for the data, see Sect. 2.
To quantitatively assess the prediction of the statistics, we use the Kantorovich
metric [4], K, also known as Earth mover’s distance, and the Mean Logarithmic
Error (MLE) with respect to the true Probability Density Function of the kinetic
energy, PDFTrue(k),

K =
∫ ∞

−∞
|CDFTrue(k) − CDFj(k)|dk, (5)

MLE =
nb∑

i=1

n−1
b | log10(PDFTrue(k)i − log10(PDFj(k)i)|, (6)

where CDF is the Cumulative Distribution Function, j indicates the PDF we
are comparing with the true data and nb is the number of bins used in the
PDF. When a bin has a value equal to zero and the logarithm is undefined, we
saturate the logarithmic error in the bin to be equal to 1. On the one hand, we
use the Kantorovich metric to assess the overall prediction of the PDF of the
kinetic energy. On the other hand, we use the MLE to assess the prediction of
the extreme events, as the logarithm highlights the errors in the small values of
the tail.

In Fig. 3, we compare the statistics of the training data and an ensemble of
10 networks of 2000 neurons. We do so because the objective of predicting the
statistics is to improve our knowledge, by employing the networks, with respect
to the already available knowledge, the training data. Panel (a) shows the PDF of
the kinetic energy in the training set for different sizes of the training set, from
1 time series to the entire data (1440). The prediction of the PDF improves
with the size of the datasets, and values of the tail up to laminarization are
observed only after 100 time series. The unresolved tail due to lack of data is a
signature problem of data-driven analysis of extreme events [8]. Panels (b)–(c)
show the Kantorovich metric and the MLE of the training sets and networks as
a function of the training set size. The networks improve the prediction of the
PDF with respect to the available data in all figures of merits analyzed, except
for one outlier. The MLE of the training set improves more than the Kantorovich
metric as the dataset becomes larger. This happens because a small amount of
data is needed to accurately describe the peak of the PDF, which affects more
the Kantorovich metric, while many time series are needed to describe the tail,
which affects more the Mean Logarithmic Error. The results indicate that the
networks are able to extrapolate from an imperfect dataset and improve the
prediction of the overall dynamics of the system.

Fig. 4 shows the statistics of the square of the normal vorticity to the mid-
plane, ωy = ∂u

∂z − ∂w
∂x . We plot the square of the vorticity, ω2

y, because the
symmetry of the problem causes the time-average of the vorticity to be equal to
zero. Panel (a) shows the flowfield of the time-average, ( ), for the entire data,
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while panels (b) and (c) show the error with respect to (a) for an Echo State
Network and the ten time series training set, respectively. All networks in the
ensemble decrease the average error, up to values 7 times smaller than the train-
ing data (results not shown). This means that the Echo State Networks are able
to extrapolate the statistics of the flowfield in addition to the statistics of the
kinetic energy.
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5 Conclusions and Future Directions

We propose Echo State Networks to predict the statistics of a reduced-order
model of turbulent shear flow that exhibits extreme events. We train fully data-
driven ESNs on multiple small datasets and compare the statistics predicted
by the networks with the statistics available during training. We find that the
networks improve the prediction of the statistics of the kinetic energy and of the
vorticity flowfield, sometimes by up to one order of magnitude. This means that
the networks are able to extrapolate the statistics of the system when trained
on small imperfect datasets. Future work will consist of extending the present
results to higher-dimensional turbulent systems through the combination of Echo
State Networks and autoencoders.

The code is available on the github repository MagriLab/ESN-MFE.
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Abstract. Detecting outliers is a widely studied problem in many disciplines,
including statistics, data mining and machine learning. All anomaly detection
activities are aimed at identifying cases of unusual behavior when compared to
the remaining set. There are many methods to deal with this issue, which are
applicable depending on the size of the dataset, the way it is stored and the type
of attributes and their values. Most of them focus on traditional datasets with
a large number of quantitative attributes. While there are many solutions available
for quantitative data, it remains problematic to find efficient methods for quali-
tative data. The main idea behind this article was to compare categorical data
clustering algorithms: K-modes and ROCK. In the course of the research, the
authors analyzed the clusters detected by the indicated algorithms, using several
datasets different in terms of the number of objects and variables, and conducted
experiments on the parameters of the algorithms. The presented study has made it
possible to check whether the algorithms detect the same outliers in the data and
how much they depend on individual parameters such as the number of variables,
tuples and categories of a qualitative variable.

Keywords: Qualitative data · Outlier detection · Data clustering · K-modes ·
ROCK

1 Introduction

The article deals with the clustering of qualitative data to detect outliers in these data.
Thus, in the paper, we encounter two research problems: clustering qualitative data
and detecting outliers in such data. We look at outliers as atypical (rare) data. If we
use clustering algorithms for this purpose, outliers are data that are much more diffi-
cult to include in any group than the typical (normal) data. Clustering qualitative data
is a more extensive research problem than clustering quantitative data. We count the
distance between the numeric values on each attribute that describes the objects. Quan-
titative data can be normalized which allows us to interpret the differences between the
compared objects properly. Assessing the similarity between two objects described by
qualitative attributes is a challenging task. Let us take eye color as an example of a qual-
itative attribute. Now, let us take into account three persons: A with blue eyes, B with
brown and C with gray eyes. There are various methods to measure their similarity. We
may say that blue is more similar to gray than brown. In fact, we know that gray is much
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more similar to blue than brown. But we may also want to compare them as a plain text
and then blue and brown share the same initial letter which makes them more similar
than pairs blue-gray or brown-gray. It all depends on the method we use to compare the
objects. It is also worth remembering that the comparing of the objects in the set will
significantly impact the structure of the groups that we create.

By default, clustering algorithms, known in the literature for years, are based on the
concept of data distances in a metric space, e.g., in Euclidean space. The smaller the
distance between the objects, the greater the probability that they will form one group. If
the distance between a given object from all created groups is too great, then we should
consider the object as an outlier in the data. This idea seems logical. In the context of
qualitative data: when a given object shows no similarity to the created groups, then it
can be considered an outlier in the data.

In the study, we have made use of real datasets from various fields. This type of data
very often contains some unusual pieces of data. They are not the result of a measure-
ment error, but they actually differ from most of the data in the set. It is not always the
case that one or more objects stand out significantly from the rest, and we can easily see
it. Sometimes, it is also the case that certain subsets of objects differ to the same extent
from the majority of data. The problem becomes even more complicated when we take
into account the fact that these objects in the sets may be more or less differentiated
by the specificity of the domain they come from, but also by the method of describing
these data (the number of attributes, the number of possible values of these attributes,
the number of objects). When objects are described on a categorical scale, the effec-
tiveness of their correct clustering and outlier detection is necessary for a deeper study.
In this paper, we analyze clustering algorithms from two types of clustering: hierar-
chical (ROCK) and non-hierarchical (K − modes). In case of quantitative data, the
clustering process works as follows. Hierarchical algorithms in each iteration look for
a pair or groups of objects with a smallest distance and combine them into a group. The
process is repeated until an expected number of clusters is reached or until all groups
have merged into one group. On the other hand, non-hierarchical algorithms (like the
most popular clustering algorithm K − means), search for the best partition for a pre-
determined number of groups so that the distances inside the clusters are small and the
clusters are as large as possible. In qualitative data, we should modify the algorithms to
be suitable for operating on data for which we cannot explicitly measure distances. In
case of non-hierarchical algorithms, we cannot use the K − means algorithm because
it forms its representative by determining the value of the so-called center of gravity of
the group. For quantitative data, it is simply an arithmetic mean of the attribute values
describing the features that make up the group. For qualitative data, we cannot derive
a mean value. However, we can find a most common value. And this is the concept
behind the K − modes algorithm we chose for our research. In case of hierarchical
algorithms, where two objects with the shortest distance are combined into a group
iteratively, for datasets with qualitative data we cannot rely on the notion of distance.
Instead, we use measures to determine the similarity of objects and, at each step of the
algorithm, we connect the objects or groups of objects with the greatest similarity. This
is the main idea of the ROCK algorithm - a hierarchical clustering algorithm for qual-
itative data. We group the data to explore it better. Exploration has to do with the fact
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that apart from its obvious task, which is discovering patterns or rules in data, we can
also discover unusual data, outliers in the data.

Therefore, in this study, we decided to investigate the effectiveness of the two
selected clustering algorithms: K − modes and ROCK, in outlier detecting. We want
to compare how consistent the algorithms are in this respect. If they are consistent, then
they should designate the same objects for potential outliers. In the research, we will
change the clustering parameters to find the optimal results. We will repeat the exper-
iments for 5%, 10%, and 15% outliers in the dataset. We expect that the more outliers
we identify, the greater the coverage of the analyzed methods may be. We present the
results in the section on experiments and research results.

2 State of Art

The methods of outlier detecting in datasets can be divided into formal and informal.
Most formal tests require test statistics to test hypotheses and usually rely on some
well-behaved distribution to check whether the extreme target value is out of range.
However, real-world data distributions may be unknown or may not follow specific
distributions. That is why it is worth considering other solutions, for example, cluster-
ing algorithms. In addition to the distribution-based methods, cluster-based approaches
are also welcome. These approaches can effectively identify outliers as points that do
not belong to the created clusters or the clusters distinguished by a small number of
elements [6,9]. So far, numerous works have been published focusing on detecting out-
liers and good data clusters in a quantitative dataset. The most well-known algorithm is
the LOF (Local Outlier Factor) algorithm proposed by Breunig in [2], in which local
outliers are detected. Based on the ratio of the local density of a given object and the
local density of its nearest neighbors, the LOF factor is calculated. Then, the objects
with the highest LOF values are considered as outliers. Another method that isolates
outliers and normal objects is the IsolationForest method based on the construction
of a forest of binary isolation trees. Then outliers are observations with shortest aver-
age path lengths from the root to the leaf [8]. The indicated algorithms are widely used
in IT systems, both to clean datasets from noise so that they do not interfere with the
system operation, and to detect unusual observations in the data for a further analysis.
The presence of outliers in qualitative data can significantly disrupt the effectiveness of
machine learning algorithms that try to find patterns in the data, such as rules, decision
rules or association rules. Dividing the objects into groups in which the objects are as
similar to each other as possible and thus detecting objects that do not match the groups
is a very efficient solution to explore the outliers. We decided to choose two clustering
algorithms, K − modes and ROCK - as they are the representatives of both hierarchi-
cal and non-hierarchical clustering algorithms. We found them very simple to interpret
and implement on real data. So far, no papers describing the application of the indi-
cated algorithms on a large scale or comparing the results with the distinction as to the
type of data processed and the time of execution have been published. This has become
the direct motivation of the authors of this paper to analyze those two selected cluster-
ing algorithms K − modes and ROCK in the context of their efficiency in detecting
outliers in the qualitative data.
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3 Data Clustering

The problem of clustering is one of the most researched issues in social sciences, psy-
chology, medicine, machine learning, and data science. In addition to the standard ben-
efits of data clustering, it has found a wide application in dataset processing with cat-
egorical domains, both in the course of preparation for mining and in the modeling
process itself. Here, data clustering was used to find outliers in qualitative datasets. The
two algorithms described in this section differ in terms of data clustering and outliers
detection. The K −modes algorithm, most frequently used in research and real IT sys-
tems, creates groups of clusters from objects closest to selected centroids and defines
outliers as objects farthest from the cluster center. The ROCK algorithm calculates
the similarity measures between objects and groups of objects, creating data clusters
containing objects that should not belong to any other cluster.

When dealing with quantitative data, we can easily use descriptive statistics, using
quantities such as mean, median, standard deviation, and variance. When we handle
qualitative data, it is not possible. We only know the most common value - a dominant.
In such a case, clustering algorithms will cluster objects with the same value of a given
attribute into groups. Of course, large clusters will be created by objects with a value
equal to the dominant for a given attribute. For the clusters to be of good quality, we
must effectively detect unusual data not to disturb the coherence and separation of the
created data structures. We do not make assumptions that our sets contain outliers. We
want our model to deal with any given dataset. If there are no outliers in the set, the
cluster quality indicators will be very close to the values expected for the sets without
outliers.

3.1 K-modes Clustering

The K − modes clustering algorithm was proposed as an alternative to the popular
K − means algorithm, the most used centroid-based non-hierarchical algorithm [5].
The modifications made to the K − means algorithm include using a simple measure
of matching dissimilarity for qualitative features, replacing the group averages with
vectors composed of the most common values at individual coordinates of the objects
(modes), and using a frequency-based method to modes update. Let X = {x1, . . . , xn}
be a set of n-objects x, such that x = (x1, . . . , xm).The dissimilarity measure of x1, x2

objects is defined as d(x1, x2) =
∑m

i=1 σ(x1i, x2i), where σ(x1i, x2i) = 0 if x1i = x2i

and 1 otherwise. Having A = {A1, ..., Am} - set of the attributes of the objects in X it is
possible to define S ⊆ X - a cluster of data. The mode of S = {x1, ..., xp}, 1 ≤ p ≤ n
is the vector q = (q1, ..., qm) which minimizes the function D(S, q) =

∑n
i=1 d(xi, q)

called the cost function. A cluster center is called a mode and is defined by consider-
ing those values of the attributes that appear most frequently in the data points which
belong to that cluster. The K − modes (Algorithm 1) algorithm begins with a ran-
dom selection of k objects (centroids) which are the central objects of k clusters. Then,
the dissimilarity measure is calculated and the closest centroid is determined for each
object. When all objects are assigned to individual clusters, the centroids are updated
by creating new modes from objects present in the cluster. The calculations are repeated
until the differences in the generated clusters in the following steps cease to exist.
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Algorithm 1. K − modes algorithm
input: X-dataset, k-expected number of clusters
output: a set of k clusters

1. Randomly select k items (modes) from the dataset.
2. For each pair (mode, object), calculate the dissimilarity measure.
3. For each object that is not a mode, find the mode closest to the object.
4. Join objects with the corresponding modes to create clusters.
5. For all clusters, recalculate the modal vectors containing in successive coordinates the most

common values on attributes of cluster objects.
6. Perform steps 3-5 until the generated clusters do not repeat themselves.

The K − modes algorithm is the easiest to implement and the most popular among
the categorical data clustering algorithms because it is linearly scalable concerning the
size of the dataset. The disadvantage of the algorithm is that it selects random initial
modes, leading to unique structures around objects that are undesirable in the set. A
method to prevent such situations is to draw the initial set of modes multiple times and
assign each object to the cluster with the greatest number of times. The output clusters
generated by the K − modes algorithm have a similar cardinality, which does not have
to reflect the actual data clusters on the sets having atypical distributions of variables. As
with most categorical clusters, clusters containing a tiny number of elements or a single
element can be considered outliers. The specifics of K−modes clustering show that we
will create single-element clusters only if the initially drawn object is an outlier. If we
want to obtain a reliable mapping in small individual clusters, we can run the algorithm
multiple times, each time randomizing a different set of initial K − modes and finish
the work when the variability is low in the final set of clusters. Finding the similarity
between a data object and a cluster requires n operations, which for all k clusters is
nk. Assigning objects to the appropriate k clusters and updating mods also require nk
operations. Assuming the algorithm is run I times for different starting objects, the
algorithm will have a linear complexity of O(nkI).

3.2 ROCK Clustering

The ROCK algorithm (RObust Clustering using linKs) [4], is a hierarchical clustering
algorithm for categorical data. The algorithm introduces notions of neighbors and links.
A point’s neighbours are those points that are considerably similar to it. A similarity
function between points defines the closeness between pairs of points. A user defines
the threshold for which the pairs of points with a similarity function value greater than
or equal to this value are considered to be neighbors. The number of links between pairs
of points is defined to be the number of common neighbors for the points. The larger
the number of links between a pair of points, the greater the likelihood is that they
belong in the same cluster. Starting with each point in its own cluster, the algorithm
repeatedly merges the two closest clusters till a desired number of clusters remain or
when a situation arises in which no two clusters can be merged.
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Algorithm 2. ROCK algorithm
input: sample set of objects. Number of k clusters to be found. The similarity threshold: θ ≥ 0.4
output: A group of objects - a cluster
Do for All Data {

1. Initially, place each object into a separate cluster.
2. Construction of a Similarity Matrix with similarity for each pair of objects (A,B) using mea-

sure Similarity(A, B) = |A∩B|
|A∪B|

3. Computation of an Adjacency Matrix (A) using a similarity threshold θ ≥ 0.4 if
similarity(A, B) ≥ θ then 1; else 0

4. Compute a Link Matrix by multiplying an Adjacency Matrix by itself to find the number of
links.

5. Calculation of a Goodness Measure for each pair of objects by using the g function
6. Merge the two objects with the highest similarity (goodness measure).
7. When no more entry exists in the goodness measure table then stop the algorithm which by

now should have returned k number of clusters and outliers (if any), otherwise go to step 4.

}

The following features of this algorithm are necessary to define:

– Links - the number of common neighbors between two objects.
– Neighbors - if a similarity between two points exceeds certain similarity threshold,

they are neighbors: if similarity(A,B) ≥ θ then two points A, B are neighbors,
for θ being a user-specified threshold.

– Criterion Function - the objective is to achieve a good cluster quality by maximizing
the sum of links of intra cluster point pairs and minimizing the sum of links of inter
cluster point pairs.

– Goodness Measure to maximize the criterion function and identify the best pair of
clusters to be merged at each step of the ROCK clustering algorithm.

ROCK is a unique algorithm because it assumes that an attribute value, in addition
to its frequency, must be examined based on the number of other attribute values with
which it occurs. Due to its high computational complexity, ROCK is good at detecting
outliers in small datasets, and its computational time increases as the records in the set
increase. This is because each record must be treated as a unique data cluster. If the user
does not have a comprehensive knowledge about the dataset, the appropriate selection of
the θ value and the minimum number of clusters generated on the output is a challenging
task. The ROCK algorithm is very resistant to outliers and can successfully identify
outliers that are relatively isolated from the rest of the points. The ones with very few or
no neighbors in one- or several-member clusters will be considered outliers. The overall
computational complexity will depend on the number of neighbors of each facility. In
most cases, the order of complexity will be O(n2 log n). If a maximum and an average
number of neighbors are close to n, then the algorithm’s complexity increases to O(n3).
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4 Conducted Research

The algorithms described in Sect. 3 were implemented in the Python language
(version 3.8.8). We used the JupyterHub (version 6.3.0) environment available at
https://jupyter.org/hub for the implementation and visualization of the data. Jupyter-
Hub runs in the cloud or on hardware locally and supports a preconfigured data science
environment for each user. We used Anaconda package containing most of the libraries,
enabling machine learning models and visualization of results. The existing models of
the Scikit-Learn library were used to implement the K−modes algorithm. The ROCK
algorithm due to a lack of previous implementation was implemented by the authors. We
used the Matplotlib library and the Pandas Dataframe structure for data visualization.
Most of the computation is based on the Pandas data structures that hold the results.

The computer program described by the authors has been divided into sections con-
taining:

– Importing Python libraries SciPy (1.6.2), Scikit-learn (0.24.1), NumPy, Pandas
(1.2.4), Matplotlib (3.3.4) and libraries to perform operations related to time.

– Implementing algorithms: ROCK with the parameters: k denoting the expected
number of clusters and theta being a parameter of a function that returns an esti-
mated number of neighbors and K −modes with k parameter denoting the expected
number of clusters and threshold parameter denoting the percentage of expected out-
liers.

– Data preprocessing: dealing with missing values (function that completes missing
fields with the most common value in a column and removes columns that contain
more than 60 empty values), coding the variables (encoding text values into numer-
ical values), decoding encoded text variables.

– Uploading all datasets (reading, calculating the descriptive statistics, encoding text
variables for the selected dataset to visualize the result).

– Execution of ROCK and K − modes algorithms on datasets. Presentation of the
algorithms’ computation time in relation to the type of the algorithm.

– Presentation of the algorithms’ computation time in relation to the number of vari-
ables, the number of records, and data diversity.

– Listing the numbers of individual clusters obtained by the ROCK, K − modes
algorithms.

– Showing the selected dataset with assigned cluster numbers for the ROCK and
K − modes algorithms and flags that indicate whether a record has been classified
as an outlier. If the flag is −1, the object is an outlier. If it is 1, the object is considered
normal.

– Presentation of the matrix of similarities and differences in classifying values as
outliers for the ROCK and K − modes algorithms when compared in pairs.

– Identification of common outliers generated by the ROCK and K − modes algo-
rithms.

The source of the software was placed in the GitHub repository: https://github.com/
wlazarz/outliers2. It contains the implementation of the K − modes and ROCK algo-
rithms and six datasets on which the experiments were conducted. The sequence of steps
performed to compare the clustering and outliers detection algorithms is presented in

https://github.com/wlazarz/outliers2
https://github.com/wlazarz/outliers2
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Fig. 1. The equipment specification on which we conduct our research is as follows:
MacBook Pro Retina (15-inch, Mid 2015), macOS Catalina (10.15.7), 2,2 GHz proces-
sor four-core Intel Core I7, RAM 16 GB 1600 MHz MHz DDR3, GPU Intel Iris Pro
1536 MB. GPU acceleration and XAMPP were not used.

Fig. 1. Scheme of the program comparing algorithms clustering data and detecting outliers.

4.1 Data Description

We used six qualitative datasets to compare the algorithms that detect outliers in the
data, each with a different structure of the variables matched to the clustering-based
algorithms which support the detection of outliers in the qualitative datasets. The sets
have different sizes and consist of a different number of categorical variables. The char-
acteristics of the selected datasets are presented in Table 1. All analyzed datasets are
real datasets, four of which relate to the domain of medicine (Primary Tumor [10],
Lymphography [11], SPECT Heart [12], Covid−19 [13]). In addition to the med-
ical databases, two others were also analyzed: BM attack [16] and wiki [15]. The
set wiki contains the highest number of objects (913) and attribute values (285 unique
values).

The first step in the project was to load datasets and prepare them properly before
clustering commences. In all datasets, we filled empty fields with the most common
value on a given variable. Categorical variables were encoded into numeric variables
on Primary Tumor Dataset and Lymphography Dataset. Despite reducing the dataset to
a numerical form, algorithms working on qualitative sets treat numbers as categories of
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variables. The process of numerical encoding of the test values was intended to reduce
a long execution time of the algorithms resulting from the need to compare each sign
of the test value.

4.2 Methodology

We conducted the experiments empirically. Initially, we tried to automate the exper-
iments by launching the execution of the algorithms: K − modes and ROCK,
and changing the parameter values of these algorithms iteratively. However, several
lenghtly multi-hour processes were interrupted by an excessive memory consumption.
As a result, the experiments were finally carried out empirically for the gradually and
consciously changed parameter values (e.g., number of clusters). The elbow method
was used while looking for parameters for the K − modes algorithm [14]. If the num-
ber of clusters selected with this method generated substantial outliers (many objects
were on the border of 5%, 10%, 15% of outliers), the number of clusters was increased
or decreased, still oscillating around the threshold point. The authors checked a clus-
ter relevance using the Silhouette method, but the structure of created clusters was not
always satisfactory [17]. In case of the ROCK algorithm we took into account the
number of clusters (already established during the execution of the K − modes algo-
rithm) and and initial epsilon value (a maximum distance at which elements can be in
one cluster) = 0.6. Most of the sets we dealt with had a reasonable number of outliers
within the epsilon value of 0.6. If too many outliers were obtained, the epsilon value
was increased. If increasing this value results in even more outliers, the number of clus-
ters was decreased. Conversely, for too few outliers obtained, the epsilon was reduced,
or the number of clusters was increased.

5 Experiments

This section covers the results of the comparison of the two algorithms described in the
previous section: ROCK and K − modes. We compared the algorithms in terms of
their time complexity. At the very beginning, it is worth emphasizing that in this paper,
we present the results obtained as a result of optimization of clustering parameters.
Thus, by diligently changing the clustering parameters of both algorithms, we checked
which combination of the values of these parameters gives optimal results. These opti-
mal results (as one of many obtained) are presented below.

5.1 Time Complexities of Clustering Algorithms

Based on the sets described in Sect. 4.1, we performed an analysis of time complexity of
the algorithms described in this work. The execution time of the algorithms is given in
seconds. The study was conducted in the JupyterHub environment installed locally on
MacBookPro hardware with IntelCorei7 quad-core processor and 16 GB RAM. The
datasets are characterized by a different number of objects and variables and represent
different types of data. The results are included in Table 1.
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Table 1. Time complexity for ROCK, K − modes and K − means clustering algorithms

Time Complexity [s]

Dataset Rows Columns Values ROCK K-modes K-means

BM attack 322 6 20 5,81 1,4 0,11

SPECT 267 23 46 3,67 2,91 0,47

primary-tumor 339 18 58 6,91 3,18 0,77

lymphography 148 19 62 0,72 1,52 0,22

covid 204 16 91 1,64 1,84 0,29

wiki 913 53 285 141,96 26,57 3,06

The K − modes algorithm has an average linear or near-square complexity when
diagnosed with many clusters. Regardless of the number of records, variables, and val-
ues, the execution time for the K − modes algorithm is the lowest for each dataset.
We can observe that the complexity of the ROCK algorithm increases rapidly with the
increase in the number of data.

5.2 Outlier Detection for Clustering Results

Algorithms working on qualitative datasets require the indication of individual param-
eters for the dataset: the number of generated clusters in case of the K − modes algo-
rithm and a minimum number of generated clusters and in case of the ROCK algorithm
the estimated number of neighbors between objects in the clusters. Implementing the
ROCK algorithm became a tough challenge due to a very high computational com-
plexity and unusual parameters. We selected the ROCK algorithm parameters on a
trial and error basis. While the ROCK algorithm analyzes the similarities not only
between objects but also between clusters that should be merged into a single cluster,
the K −modes algorithm arranges objects from a dataset between clusters so that each
cluster contains a similar amount of data and focuses only on the similarities between
individual objects in the data. As mentioned earlier, the definition of an outlier generated
by the ROCK algorithm, taken from [4] indicates one-element classes. The records
marked as anomalies by the K − modes algorithm are the records from the farthest
neighborhood of the centroid in which cluster the object is located. All datasets used
in this research were taken from the UCI Machine Learning Repository database and
represent real data collected during research on real data objects with different distribu-
tions, possibly containing a small number of deviations, which results in significantly
different sizes of clusters generated by the ROCK algorithm. The results of the outlier
detection analysis for the lymphography set are presented in Fig. 2.

Data clustering algorithms do not have a natural definition of outliers and do not
return points considered as variances in the data. The problem of marking objects that
differ the most from the others due to the calculations characteristic of the algorithm
was solved by generating an additional column for the dataset containing the values −1
or 1, where the value −1 means that the object was considered an outlier and 1 means
that the object is normal. In most cases, the analyzed algorithms returned completely
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Fig. 2. The results of the outlier detection analysis for the lymphography set

different results. Large differences in outliers selection are the results of the different
nature of those algorithms. The ROCK algorithm is the most diligent in detecting out-
liers. It focuses on inter-object and inter-cluster connections, tying them together until
well-defined clusters are obtained with the number of common neighbors below a cer-
tain threshold. Thus, single-member clusters contain far-away objects from every other
cluster and every data object. In case of the K − modes algorithm, due to randomness
during the selection of an initial set of cluster centroids, outliers are considered as the
objects whose distance from the centroids in the clusters they belong to, is the greatest.
Due to a very different approach to determining good clusters and detecting outliers by
these two algorithms, the anomaly classification result will also be different for each
of the algorithms. We can design the anomaly search process in a qualitative set in two
steps. Initially, all algorithms for the low anomaly threshold can search for common
anomalies. If the process does not return results, you can increase the threshold and see
if there are common outliers in the set this time.

5.3 Detection of Common Outliers

We should notice the relationship between the number of outliers and the degree of cov-
erage of clustering algorithms in the context of outliers detection. Table 2 presents some
interesting results. For each of the analyzed knowledge bases and the three analyzed lev-
els of the number of outliers (5%, 10%, and 15%, respectively), the table presents the
number of clusters for each of the algorithms: ROCK and K −modes, number of out-
liers detected by each of these algorithms separately, and then the number of common
outliers detected by these algorithms and a percentage that these common outliers rep-
resent concerning the entire analyzed set. One of the more essential conclusions is that,
the more outliers we look for (5%, 10%, or 15%), by running each of the two analyzed
algorithms separately, the more common outliers are found by these algorithms. For
example, we found 3, 6, and 8 common outliers in the lymphography dataset, respec-
tively, for the 5%, 10%, and 15% outliers we searched. There are also interesting results
in the BM attack dataset. In regard to the number of outliers we searched for, the num-
ber of actually found outliers and common outliers did not change (2 common outliers
no matter how many outliers we were looking for). It is worth looking at the structure
of this data set. It contains the fewest attributes and possible values of these attributes
when compared to the rest of the sets, which brings about difficulties with regards to dis-
tinguishing objects from each other and detecting a greater or lesser number of outliers.
In general, when analyzing all sets, one can notice a specific influence the number of
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attributes and their values have on the efficiency of outlier detection. The more attribute
values there are, the greater the coverage of commonly detected outliers. This is eas-
ily explained. With a greater number of features describing the objects, we achieve a
greater differentiation, so it is easier for us to correctly (not accidentally) determine the
outliers.

Table 2. The results of % of common outliers obtained for 5%, 10%, and 15% of outliers in each
of the datasets

Clusters Outliers common % of common

Dataset % ROCK K-modes ROCK K-modes outliers outliers

lymphography 5% 2 5 5 5 3 0, 020000

10% 3 5 16 11 6 0, 040500

15% 3 5 16 21 8 0, 054100

covid 5% 3 6 7 6 1 0, 004900

10% 5 6 34 25 13 0, 063700

15% 5 6 34 25 13 0, 063700

SPECT 5% 6 4 8 10 4 0, 014980

10% 1 4 23 21 10 0, 037450

15% 6 4 50 47 31 0, 116100

BM attack 5% 20 3 3 44 2 0, 006200

10% 20 3 3 44 2 0, 006200

15% 20 3 3 44 2 0, 006200

primary-tumor 5% 3 5 12 24 8 0, 023599

10% 6 5 40 24 19 0, 056000

15% 6 5 40 53 28 0, 082596

wiki 5% 2 9 28 24 13 0, 014240

10% 1 9 78 96 44 0, 048193

15% 5 9 143 143 74 0, 081100

5.4 Evaluation of the Proposed Methods

As part of this work, a vast number of experiments were performed. We changed the
values of individual parameters to observe changes in the cluster structure, the number
of generated outliers, and most importantly, in assessing whether the analyzed cluster-
ing algorithms return similar results in terms of outliers. In the study, we considered real
datasets which frequently contain unusual data. They are not the result of a measure-
ment error, but they differ from most data in the set. It is not always the case that one or
more objects stand out significantly from the rest, and we can easily see it. Sometimes,
it is also the case that specific subsets of objects differ to the same extent from most
of the data. The problem becomes even more complicated when we take into account
the fact that these objects in the sets may be more or less differentiated by the speci-
ficity of the domain they come from, but also by the method of describing these data



726 A. Nowak-Brzezińska and W. Łazarz

(the number of attributes, the number of possible values of these attributes, the number
of objects). When objects are described on a categorical (qualitative) scale, the effec-
tiveness of their proper clustering and outlier detection is necessary for a deeper study.
Hence, in this paper, we analyze selected clustering algorithms which exemplify two
types of clustering: hierarchical (ROCK) and non-hierarchical (K − modes). Analy-
sis of the results allows us to conclude that if we care about the speed of calculations
or have a large dataset, a good choice will be to use the K − modes algorithm. The
algorithm is recommended to be used in datasets that we know are divided into a small
number of large clusters. Then the initially drawn centroids will have less influence on
clustering quality. In most cases, the most reasonable approach is to use the ROCK
method because it performs an exhaustive analysis of the dataset in search of outliers
- it approaches object variables individually. It looks for relationships between objects
and variables (attributes and their values). The main disadvantage of this algorithm is a
very high computational complexity, which in extreme cases may be close to the cube
of the number of objects in the set. For this reason, the algorithm is a good choice if
we have small datasets, up to 1000 records. Another difficulty is the selection of the
distance between the clusters and the minimum number of clusters. The algorithm exe-
cution time and clustering quality are improved by knowing an estimated number of
clusters in the set and how far the elements should be apart from each other to not be
included in a common cluster. Let us suppose that we do not have an exhaustive knowl-
edge about the dataset. In that case, it is worth running the algorithm many times and
analyzing the generated clusters to assess the quality of the parameters.

6 Conclusions

This paper focuses on searching for outliers in qualitative data sets depending on the
type and the number of variables. Section 3 describes relatively novel approaches to
qualitative clustering data. The results presented in this paper are based on six datasets
characterized by a different structure. While there is a multitude of solutions related to
quantitative data, clustering data containing only qualitative variables remains a chal-
lenge for data scientists. The authors attempted to compare the effectiveness of cluster
and outlier detection in qualitative datasets, between which there is no explicit compar-
ison so far. Algorithms based on quantitative data generally tend to have better mathe-
matical properties. This does not apply to qualitative sets, so it is difficult to determine
which algorithm works better on the data, and it is difficult to detect natural groups. We
define the performance of algorithms in terms of their scalability and cluster generation
time. We can draw a primary conclusion from the research that the data structure sig-
nificantly impacts the algorithm’s time complexity. The K − modes algorithm defines
clusters and outliers as objects far away from modes if we have visible modes in a data
set. Otherwise, the optimal number of clusters can be very large or very small, and
objects that should be in separate clusters will be in one due to a small distance from
central modes. Then, it is better to use the ROCK algorithm, which is less efficient
and has a much greater computation complexity but is not sensitive to unusual data
distribution. We should adequately select the algorithm for a dataset. Each algorithm
classifies outliers differently and the results will differ. Algorithms based on categori-
cal data clustering are relatively new methods of detecting outliers in data, having no
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implementation in commonly used programming languages. The discussed ROCK and
K-modes algorithms introduce different methods to solve this problem and give differ-
ent solutions in terms of their performance concerning the time needed to execute the
algorithms when the number of records and dimensions change. The quality of the cre-
ated clusters is measured by the user’s knowledge and the examination of the results.
The user sets basic parameters of clustering, which require an extensive knowledge of
the data [1].
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Abstract. Knowledge Graph (KG) completion aims to find the miss-
ing entities or relationships in a knowledge graph. Although many
approaches have been proposed to construct complete KGs, graph
embedding methods have recently gained massive attention. These meth-
ods performed well in transductive settings, where the entire collection
of entities must be known during training. However, it is still unclear
how effectively the embedding methods capture the relational semantics
when new entities are added to KGs over time. This paper proposes a
method, AGIL, for learning relational semantics in knowledge graphs to
address this issue. Given a pair of nodes in a knowledge graph, our pro-
posed method extracts a subgraph that contains common neighbors of
the two nodes. The subgraph nodes are then labeled based on their dis-
tance from the two input nodes. Some heuristic features are computed
and given along with the adjacency matrix of the subgraph as input to a
graph neural network. The GNN predicts the likelihood of a relationship
between the two nodes. We conducted experiments on five real datasets
to demonstrate the effectiveness of the proposed framework. The AGIL
in relation prediction outperforms the baselines both in the inductive
and transductive setting.

Keywords: Knowledge graphs · Graph neural networks · Subgraph

1 Introduction

In recent years, significant progress has been made in the construction and
deployment of knowledge graphs (KGs) [29]. KGs represent structured relational
information in the form of subject-predicate-object (SPO) triples, e.g.,〈Justin
Trudeau, fatherOf,XavierJames〉. Freebase [4], YAGO [23], DBPedia [1],
ConceptNet [22], and Never-ending language learning (NELL) [6] are a few
prominent examples of large KGs. Recently, KGs have gained widespread atten-
tion because of their benefits in a variety of applications, including question
answering [14], dialogue generation [13], information retrieval [30], entity linking
[10] and recommendation systems [37].

Despite their usefulness and popularity, KGs are often noisy and incom-
plete because it is challenging to incorporate all information in the real world,
and these data are typically dynamic and evolving, making it difficult to gen-
erate accurate and complete KGs [28]. Therefore, automating the construction
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Groen et al. (Eds.): ICCS 2022, LNCS 13352, pp. 728–741, 2022.
https://doi.org/10.1007/978-3-031-08757-8_60
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of a complete KG is a tedious process. Various techniques have been proposed
for knowledge graph completion, such as the traditional Statistical Relational
Learning (SRL) methods and Knowledge graph embedding methods. Building
a complete KG is possible by predicting objects (known as link prediction) and
relations.

A relation or logical induction prediction problem discovers probabilistic log-
ical rules from a given KG. Induction can be learned in several ways such as from
examples [16] and from interpretations [7]. For example, let’s say, “the 23rd prime
minister of Canada, Justin Trudeau lives in Ottawa, and is married to Sophie
Trudeau.” The first-order logic of the above sentence would be LivesIn(Justin
Trudeau,Ottawa) ∧ MarriedTo(JustinTrudeau, SophieTrudeau). Therefore,
a logical rule can be derived based on the concept that a married
couple lives together (generally); LivesIn(X,Y ) ∧ MarriedTo(X,Z) →
LivesIn(Z, Y ). This rule can be used to find the relation or possible hypothe-
sis LivesIn(SophieTrudeau, Ottawa). Here, the known logical rules have been
generalized to derive a new rule or relationship which is true most of the time.
Additionally, this rule predicts the relation for the entities which did not exist
when KGs were trained. In reality, KGs evolve with time and new entities will
join. Most of the existing embedding-based methods are highly successful in pre-
dicting the relations if the entities were seen when KGs were trained, which is
transductive reasoning. Generalizing relational semantics is a challenging task
and important to see the relationships in unseen entities, which is inductive rea-
soning. However, these embedding methods have some limitations in explicitly
capturing the relational semantics when new entities are added to KGs over
time.

This paper proposes an Augmenting Graph Inductive Learning (AGIL)
framework to learn relational semantics in a given KG, and predict relations
(s, ?, o). Since much of the existing machine learning methods suffer from scala-
bility issues, recently, PLACN [17] and GraIL [25] applied subgraph-based meth-
ods in link prediction and relation prediction, respectively, to overcome this
problem. GraIL used a Graph Neural Network (GNN) based relations predic-
tion method to learn relational semantics even if the entities were unseen during
training. However, GraIL operated strictly on subgraphs and utilized no addi-
tional information. PLACN, on the other hand, successfully used local features as
additional information for link prediction. So, our proposed model exploits both
PLACN and GraIL to derive AGIL, which includes three primary steps. First,
the subgraph is extracted with common neighbors of the target link between
nodes i and j. The common neighbors in the enclosed subgraph are collected till
k number of hops. Then the subgraph is labeled using the Double-Radius Node
Labeling [35] method. In the final steps, the heuristic features of nodes for the
entire subgraph are extracted and fed into GNN along with the adjacency matrix
of the subgraph, which aggregates the feature vectors into a scoring function for
the prediction.

Our Contribution: The followings are the summary of our contributions:
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1. We propose an Augmenting Graph Inductive Learning (AGIL) framework
based on common neighbors-based subgraphs for relations prediction in both
transductive and inductive settings.

2. We extract heuristic features of nodes from the entire subgraph and model a
new prediction framework based on Graph Neural Networks (GNN);

The rest of the paper is organized as follows. Section 2 discusses related exist-
ing work. Our framework is presented in Sect. 3. Following that, Sect. 4 presents
the experimental setup and the corresponding results. Finally, Sect. 5 concludes
the research idea of this paper with directions for future work.

2 Related Work

Multiple methods have been proposed to construct a complete knowledge graph.
Graph Embedding is one of the most broadly used solutions for Knowledge-
Graph Completion challenges. Translation-based approach [5,5,24] Bilinear-
based approach [27,33] and Neural-Network-based approach [2,8] are well-known
graph embedding approaches.

Traditional approaches on the KG embedding methods are in a transductive
manner. They require all entities during training. However, many real-world
KGs are ever-evolving by adding new entities and relationships. Several induc-
tive KG embedding approaches are proposed to address the issue of emergent
entities. Graph2Gauss [3] is an approach to generalize to unseen nodes efficiently
on large-scale attributed graphs using node features. Then Hamilton et.al. [11]
proposed a generic inductive framework, GraphSAGE, that efficiently generates
node embeddings for previously unseen data in a graph by leveraging node fea-
ture information. Node features are, however, not available in many KGs. In
addition to these inductive embedding methods, DRUM [18], NeuralLP [34],
and RuleN [15] are few models which learn logical rule and predict relations in
KGs.

Recently, GraIL [25] was proposed to generalize inductive relation based
on subgraph reasoning. Since GraIL shows comparatively better performance
than the state-of-the-art methods, we consider extending it. Additionally, SEAL
[35], PLACN [17] and DLP-LES [21] are few recent approaches that success-
fully extracted subgraphs from a given networks and applied heuristic features
to train the model. Motivated by their high performance, we incorporate these
heuristic features with our model.

3 Problem Definition and Proposed Approach:

Given a KG, G = 〈V,E,R〉 is a directed graph, where V is the set of vertices, E
is the set of edges and R represents the set of relations. The edges in E connect
two vertices to form triplets (h, r, t), where h is a head entity in V , t is a tail
entity in E and r is a relation in R, i.e., E = {(h, r, t)|h ∈ V, r ∈ R, t ∈ V }.
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In a given KG, there is a high chance of missing relations (h, ?, t), head
entity (?, r, t) and tail entity (h, r, ?). Knowledge graph completion in a given
KG, G is defined as the task of predicting missing triplets, E′ = {(h, r, t)|h ∈
V, r ∈ R, t ∈ V, (h, r, t) /∈ E} in both transductive and inductive settings. In the
transductive setting, the entities in a test triple are considered to be in the set of
training entities. Predicting missing triplets in the transductive setting is defined
as E′′ = {(h, r, t)|h ∈ V, r ∈ R, t ∈ V, (h, r, t) /∈ E}. In the inductive setting, the
entities in a test triple are never seen in the set of training entities. Predicting
missing triplets in the inductive setting is defined as E′′′ = {(h, r, t)|h ∈ V ′ or t ∈
V ′, r ∈ R, (h, r, t) /∈ E}, where V ′ ∩ V = ∅ and V ′ 	= ∅.

Our primary objective is to predict the relation between two nodes. We
employ Graph Neural Network (GNN) [19] to learn the knowledge graph’s struc-
tural semantics. The proposed model has the following steps;

1. Subgraph extraction.
2. Node labeling.
3. Feature matrix construction.
4. Scoring the subgraph using GNN.

3.1 Subgraph Extraction

For each triple in the knowledge graph, the subgraph is extracted with the goal of
isolating the connecting nodes between the two target nodes u and v. We wish
to isolate only the nodes which are found along every possible path between
the head and tail of the knowledge triple, referred to as the target nodes of the
subgraph. A few approaches in the existing literature [17,35] have been proposed
for subgraph extraction from a given graph. AGIL extracts subgraphs using
common neighbors of any targeted nodes u and v because sufficient information
of entire nodes of subgraphs can be taken for the training process [17]. Moreover,
having additional information about the shared neighbours of both nodes u and
v allows to determine the future existence of a relationship between them. We
set a number k for the number of hops to collect the nodes in the subgraph,
which can be defined as given below.

Definition 1. Subgraph: For a given knowledge graph G = 〈V,E,R〉, let Γk(x)
be the neighbors of x within k hops. The subgraph of a target link between nodes
u and v is given by the function S : V 2 → 2V , the function that returns the set
of common neighbor nodes connecting u and v,

S =
k⋃

i=1

(Γi(u) ∩ Γi(v)); for some m > 1 (1)

where {u, v} ∈ V ′, V ′ ⊆ V and V ′ is a set of common neighbors for the targeted
nodes, and |V ′| = ∅.
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3.2 Subgraph Node Labeling

Generally, GNN takes both feature matrix X and adjacency matrix A as input,
(A,X). To construct a feature matrix X of a subgraph, the position of nodes
are really important to maintain the consistency of the structural information.
GNN learns the existence of target links for prediction. So, we exploit the Double-
Radius Node Labeling method, which was proposed by SEAL [35] to label the
subgraphs.

Each label is a 2-tuple. The first element is the distance from the first target
node, the second element is the distance from the second. The target node labels
are always (0, 1) and (1, 0). Figure 1 is an example of a subgraph for target nodes
〈University, ?, ComputerScience〉, and the labeled subgraph.

Fig. 1. (a) Subgraph of target nodes. (b)Labeled Subgraph.

3.3 Feature Matrix Construction

The GraIL [25] graph neural network architecture considers only the structural
node feature X for predicting triplets of a given KG. However, we believe that
in addition to the structural node feature, incorporating explicit features of the
subgraph to the feature matrix X send additional information to the graph neu-
ral network training model. Since a knowledge graph does not always have any
explicit feature information about a node, we decided to use the topological
feature of the subgraph to see the importance of topological features in rela-
tion prediction. We belive that topological heuristics are useful in knowledge
graph completion because entities are less likely to form relationships with enti-
ties that are farther away. Similarly with social networks, people tend to create
new relationships with people that are closer to them. The motivation to apply
topological heuristics to knowledge graphs was inspired by research in social
networks. Our model uses the proximity measures taken from the topology as a
heuristic in link prediction.

The specific heuristics used in this research were chosen to give a precise
measurement of the notion of proximity of entities within the knowledge graph.
In research done by Liben-Nowell and Kleinberg [12] with neighbour-based prox-
imity measures, it was found that predictions outperformed chance by factors of
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40 to 50, which led the authors to concluded that topology does indeed contain
latent information which can be used to predict missing or future relationships.

We chose to use multiple proximity measurements as each has their own
characteristics. AGIL uses the following five simple heuristics as used in PLACN
model. Here Γ (v) and Γ (u) specify the set of neighbors within k hops for nodes
v and u respectively.

Common Neighbors (CN) counts how many neighbours any two vertices v
and u have in common.

CNu,v = |Γk(v) ∩ Γk(u)| (2)

Jaccard Coefficient (JC) produces the normalized form of CN.

JCu,v =
|Γk(v) ∩ Γk(u)|
|Γk(v) ∪ Γk(u)| (3)

Adamic-Adar (AA) is a modified version of JC, which gives a higher priority
to the common neighbors with lower degree.

AAu,v =
∑

w∈|Γk(v)∪Γk(u)|

1
log|Γk(w)| (4)

Preferential Attachment (PA) The idea behind PA is that a node with a
higher degree has a better probability of forming new connections.

PAu,v = |Γk(v).Γk(u)| (5)

Resource Allocation (RA) is much more similar to AA, but gives higher
priority to low-degree common neighbors.

RAu,v =
∑

w∈|Γk(i)∪Γk(j)|

1
|Γk(w)| (6)

Let f : V 2 → R5 be the function which returns the set of above five heuristic
features for the pair of nodes u, v. So, f(u, v) returns a vector of five components,
each holding the CN, JC, AA, PA, and RA Value. Let S be the set of nodes
in the enclosing subgraph of target nodes u and v, and {u, v} ∈ S and S ⊆ V .
Then for every node i ∈ S, we can evaluate the heuristic features of x and each
of x’s neighbors y ∈ Γ (x) using f(x, y).

Here, we discuss how we calculate the feature vector of node x. Let Px be
the matrix whose columns are label of nodes in S and rows are five feature
vectors, i.e., Px = [R0, R1, . . . , Rn], where Ry = f(x, y) ∀y ∈ S and n = |S|. The
matrix Px contains all five heuristic features of every possible pair of nodes in
the subgraph. The number of rows and columns of Px are 5 and |S| respectively.
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Example 1. Consider a subgraph S = {u, v, w, x, y, z}, and u and v are the
target nodes of the subgraph S, then

Px =

⎡

⎢⎢⎢⎢⎣

CNu CNv CNw 0 CNy CNz

AAu AAv AAw 0 AAy AAz

JCu JCv JCw 0 JCy JCz

RAu RAv RAw 0 RAy RAz

PAu PAv PAw 0 PAy PAz

⎤

⎥⎥⎥⎥⎦

5×n

where the column for x is zero, because it is pointless to compare x’s topology to
itself.

Since the size of Px depends on the size of the subgraph, |S|, which is variable,
this is not suitable for scaling in training on when the node degree of the graph
is very high. A very large feature vector can cause critical performance issues in
the model. This is where the Fixed Sized Subgraph and Variable Sized Subgraph
models diverge. Each take a different approach in deriving a feature vector Fx

from the topology matrix Px.
PLACN uses a constant value k, which is the absolute maximum size a sub-

graph may reach. k is derived in a way to be large enough for most node pairs.
The value of k is a function of the number of edges and nodes in the complete
graph.

k ≈
⌈

2|E|
|V |

(
1 +

2|E|
|V |(|V | − 1)

)⌉
(7)

The theoretical analysis of GraIL determined that any logical rule R derived
from the topology of a knowledge graph uniquely corresponds to a set of nodes
connected through a sequence of relations, and that GraIL can learn this rule if
the nodes and relations are present in the graph neural network.

To examine the differences between fixed and variable size sub graph, we
constructed our feature matrix and sent it to GNN.

Topology Information in Variable Sized Subgraphs: In order to have
a feature vector of constant size, we take a statistical analysis of each heuristic
feature, across all of the nodes in the subgraph. For each heuristic feature R ∈ R5,
we can take the mean, median, standard deviation, minimum, maximum and
variance across all of the nodes in the subgraph. In other words, we can apply
the statistical functions to the rows of the topology matrix Px.

Let Fx = Stat(Px), where Stat(Px) replaces each row of Px with 〈Mean(r),
Median(r), V ariance(r), Min(r),Max(r), Std(r)〉, So the resulting feature
matrix has 30 elements,

Fx =

⎡

⎢⎢⎢⎢⎣

Mean(CN) Med(CN) V ar(CN) Min(CN) Max(CN) STD(CN)
Mean(AA) Med(AA) V ar(AA) Min(AA) Max(AA) STD(AA)
Mean(JC) Med(JC) V ar(JC) Min(JC) Max(JC) STD(JC)
Mean(RA) Med(RA) V ar(RA) Min(RA) Max(RA) STD(RA)
Mean(PA) Med(PA) V ar(PA) Min(PA) Max(PA) STD(PA)

⎤

⎥⎥⎥⎥⎦

5×6
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Therefore, Fx sees the rows of Px replaced by the statistical results which
are rows of fixed size 5, since we consider five heuristic values and columns of
fixed size 6 since there are 6 statistical functions. Fx will always have a total of
30 elements, suitable to be encoded into a node x’s feature vector for training
in the Graph Neural Network. We simply list all 30 elements as components of
the final feature vector.

Topology Information in Fixed Sized Subgraphs: As PLACN used in it’s
architecture, the topological feature matrix Px of subgraphs is fixed for a given
KG. The columns correspond to the fixed subgraph size and the rows correspond
to each heuristic function. Therefore the size of Px is always 5 × |S|. Thus, for
fixed sized subgraphs, we can directly encode Px,

Fx = Px (8)

In practice, this has led to very large vectors, when the fixed size of the
subgraphs is large.

3.4 Scoring Subgraph Using GNN

This section explains the importance of GNN in our framework.

GNN Message Passing: In a GNN, a hidden embedding hk
u for each node

u ∈ V is updated on each message-passing iteration based on information gath-
ered from u’s graph neighbor Γ (u). In other terms, the representation of the
node u is iteratively updated by aggregating its neighbors’ representations [32].
So basically, GNN works based on two functions: Aggregation function passes
information from Γ (u) to u, and update function update features of u based on
the information to form an embedded representation.

In AGIL model, each enclosed subgraph has a network of k-hop neighborhood
nodes. So, after aggregating for k iteration, the kth layer of GNN is represented
as,

mk
u = AGGREGATEk({hk−1

v : v ∈ Γ (u)} (9)

hk
u = UPDATEk(hk−1

u ,mk
u) (10)

where hk
u is the feature vector of node u at kth iteration, Initially, h0

u = Xu, and
mk

u is the message aggregated from Γ (u) at kth iteration.
In Eq. 9, there are various approaches proposed for message AGGREGATE

function. Motivated by these architectures, GraIL adopts the method proposed
by [20]. The following function defines the message aggregated function in a
relational multi-graph:

hk
u = σ

(
∑

r∈R

∑

v∈Γ r
i

αrruvuW k−1
r hk−1

v + W k−1
0 hk−1

u

)
(11)

where k is the current layer of the neural network, u is the node being aggregated,
R is the set of relationship types, αrruvu is the attention value for layer k, r is
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Table 1. The statistical information of datasets for inductive setting, where R, V and
E are relations, vertices and edges respectively.

WN18RR FB15k-237 NELL-995

# R # V # E # R # V # E # R # V # E

v1 Train 9 2746 6678 183 2000 5226 14 10915 5540

ind-test 9 992 1991 146 1500 2404 14 225 1034

v2 Train 10 6954 18968 203 3000 12085 88 2564 10109

ind-test 10 2923 4863 176 2000 5092 79 4937 5521

v3 Train 11 12078 32150 218 4000 22394 142 4647 20117

ind-test 11 5084 7470 187 3000 9137 122 4921 9668

v4 Train 9 3861 9842 222 5000 33916 77 2092 9289

ind-test 9 7208 15157 204 3500 14554 61 3294 8520

any relationship , rt is a target relationship between nodes v and u, W k
r is the

transformation matrix for r and layer k, and hk
v is the feature vector of the

node v.
The GNN uses an aggregation function to distribute features of nodes into

their neighbors, for each layer of the neural network. The aggregation function
used by GraIL uses the node’s labels as the feature vector. We append the ele-
ments of the feature matrix Fx to the h vector used in formulation 11. The
feature vector h in the GraIL model uses only the node labels (L1, L2), for
example (1, 0), or (25.75). However, the node structured information (i.e., node
labels) are limited information for training GNN. Therefore, we extend the fea-
ture vector with the 30 elements from Fx. So, in AGIL model, the feature vector
h for node x would incorporate the statistical analysis of heuristic features as
below;
〈L1, L2,Mean(CN),Med(CN), V ar(CN),Min(CN),Max(CN), STD(CN),
Mean(AA),Med(AA), V ar(AA),Min(AA),Max(AA), STD(AA),Mean(JC),
Med(JC), V ar(JC),Min(JC),Max(JC), STD(JC),Mean(RA),Med(RA),
V ar(RA),Min(RA),Max(RA), STD(RA),Mean(PA),Med(PA), V ar(PA),
Min(PA),Max(PA), STD(PA)〉.

At each layer, the graph neural network continuously combines feature vec-
tors of nodes with the aggregates of their 1-hop neighborhoods.

4 Experiments

We perform experiments to demonstrate the efficiency and effectiveness of
our framework, AGIL. Experiments are carried out on benchmark datasets,
WN18RR [9], FB15k-237 [26], and NELL-995 [31] which were originally devel-
oped for transductive settings. To conduct inductive relation prediction, we
use 4 versions of inductive datasets and 2 versions of transductive datasets,
which are prepared by the GraIL authors and identical to the data used in their
experiments. They constructed fully-inductive benchmark datasets by sampling
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disjoint subgraphs from the KGs. These datasets consist of two set of graphs:
Train-graph and Ind-test-graph. Table 1 represents the statistical information on
how benchmark datasets are split for inductive setting.

All the experiments are performed on a Intel(R) Core(TM) i7-3770 CPU
computer @3.40 GHZ speed and 24 GB of RAM.

Table 2. Inductive Setting Experimental Result (AUC-PR)

WN18RR FB15k-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69

DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94

RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52

GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50

AGIL (F-Subgraph) 96.38 95.77 89.28 95.66 73.5 84.56 76.4 NA 90.56 93.7 94.18 NA

AGIL (V-Subgraph) 94.76 94.92 86.46 93.65 87.42 91.20 93.44 93.52 91.21 96.84 97.04 95.42

4.1 Inductive Relation Prediction

We test our model, AGIL on inductive datasets to determine if it can generalise
relations when the entities aren’t visible during GNN training. AGIL is trained
on Train-graph and tested on Ind-test-graph.

To evaluate the performance, we compare AGIL against the following state-
of-the-art methods.

1. NeuralLP [34]: an end-to-end differentiable model for inductive relation pre-
diction.

2. DRUM [18]: a scalable and differentiable approach for mining first-order log-
ical rules from KG.

3. RuleN [15]: statistical rule mining method, and the current state-of-the-art
in inductive relation prediction on KGs.

4. GraIL [25]: inductive relation prediction by subgraph reasoning, and highly
similar to AGIL.

We use the original source code by the authors for the implementation of above
methods, NeuralLP1, DRUM2, RuleN3 and GraIL4. For AGIL framework, the
implementation is built upon the Python code base provided by [25] in their
GraIL implementation. It uses the Deep Graph Learning library to implement
a graph neural network.

Results and Discussion: The performance of the experimental setup for
AGIL is represented in Table 2 against baseline methods. The Precision Recall
1 https://github.com/fanyangxyz/Neural-LP.
2 https://github.com/alisadeghian/DRUM.
3 https://web.informatik.uni-mannheim.de/RuleN/.
4 https://github.com/kkteru/grail.

https://github.com/fanyangxyz/Neural-LP
https://github.com/alisadeghian/DRUM
https://web.informatik.uni-mannheim.de/RuleN/
https://github.com/kkteru/grail
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Area Under Curve (AUC-PR) is used to evaluate the model’s accuracy. The
AGIL model is tested based on fixed sized subgraph (F-Subgraph) as proposed
in PLACN, and variable sized subgraph (V-Subgraph). We observed that the
model with fixed sized subgraph fails to perform better in some dataset such
as v4-FB15k-237 and v4-NELL-995. The poor performance might be due to the
absence of critical nodes and relations in the subgraph with fixed size neigh-
bours. But, AGIL model with variable sized subgraph outperforms most of the
standard baseline methods. In the NELL-995 dataset, the improvement is most
significant compared to the other datasets. In WN18RR dataset, AGIL performs
significantly better when we use fixed sized subgraph extraction. This indicates
that for any knowledge graph of realistic size, fixed sized subgraphs are not
always suitable for Inductive Graph Neural Network models.

If k value is sufficiently large enough, it may include all connecting paths. The
recommended calculation to derive k by PLACN was shown to be too low for
certain data sets, such as FB15k-237. If a knowledge graph has a high number
of cycles, there may be many alternative paths between target nodes. Due to
the truncation of the subgraph size to k, only a subset of possible paths will be
analyzed by the neural network. Therefore, only a subset of the possible inductive
rules will be learned by the GNN. When those inductive rules are applied to link
prediction, they fail to produce accurate results. Both AGIL and GraIL provide
a limiting factor to prevent excessively large subgraphs. It limits the number of
hops from each node to a maximum, in all experiments, this maximum was 3
hops.

Moreover, GraIL outperforms on v4 of FB15k-237. However, the performance
of AGIL is still close to GraIL on this dataset.

4.2 Transductive Relation Prediction

Most existing embedding based KG completion methods consider transductive
setting for the prediction. Basically, all the existing KGs including WN18RR,
FB15k-237, and NELL-995 are originally developed for the transductive setting.
We test AGIL on transductive setting to determine it can predict the links
accurately. We then compare AGIL against GraIL and RuleN.

Table 3. Transductive Setting Experimental Result (AUC-PR)

WN18RR FB15k-237 NELL-995

v1 v2 v1 v2 v1 v2

RuleN 81.79 83.97 87.07 92.49 80.16 87.87

GraIL 89.00 90.66 88.97 93.78 83.95 92.73

AGIL 92.77 92.80 90.03 95.56 92.44 93.84

Results and Discussion: The experimental results on transductive setting
is represented in Table 3, which compares AGIL with GraIL and state-of-the-
art method RuleN. In all the cases, AGIL outperforms the other two methods.
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For the time being, we could not compare AGIL with other embedded-based
methods. We will compare this in the future.

During the experiments it was shown that use of feature vectors would cause
the model to overfit the training data, and loose some generality when applied
to the test triples. To resolve this, we utilized the NodeNorm function [36] to
normalize the feature vector. This gives the effect of making each feature vector
have the save variance. Zhou et.al [36] have observed that GNNs perform poorly
when the variance of features of nodes is very high. The normalization replaces
each component in the feature vector with the difference from the mean divided
by the variance.
The code is available in the GitHub link:
https://anonymous.4open.science/r/agil2021/README.md.

5 Conclusions

This paper examines an augmenting graph inductive learning framework based
on GNN, named AGIL. Since many real-world KGs evolve with time, training
very large networks with GNN is a challenging task. Therefore, we used a com-
mon neighbor-based subgraph to solve the scalability issue. Although AGIL is
highly similar to the recently proposed model GraIL, AGIL incorporates topo-
logical heuristic features as additional information when GNN trains. Experi-
mentally, we can see that the additional feature information gives better accu-
racy in both transductive and inductive settings. We also proved experimentally
that fixed-sized subgraphs are not always suitable for Inductive Graph Neural
Network models. Overall, our model, AGIL, outperforms most of the baseline
methods. In the future, we are planning to examine the importance of individual
topological features for the relation prediction.
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Abstract. The production of numerous high fidelity simulations has
been a key aspect of research for many-query problems in fluid dynamics.
The computational resources and time required to generate these simula-
tions can be so large and impractical. With several successes of generative
models, we explore the performance and powerful generative capabilities
of both generative adversarial network (GAN) and adversarial autoen-
coder (AAE) to predict the evolution in time of a highly nonlinear fluid
flow. These generative models are incorporated within a reduced-order
model framework. The test case comprises two-dimensional Gaussian
vortices governed by the time-dependent Navier-Stokes equation. We
show that both the GAN and AAE are able to predict the evolution
of the positions of the vortices forward in time, generating new samples
that have never before been seen by the neural networks.

Keywords: Generative adversarial networks · Adversarial
autoencoder · Two-dimensional turbulence · Spatial-temporal
predictions · Deep learning

1 Introduction

The study of fluid dynamics has involved massive amounts of data generated
either from controlled experiments, field measurements or large-scale numerical
simulations. The high volume of data, amongst other reasons, means these meth-
ods can be relatively slow and require a great deal of computational power to be
able to model the underlying physics. While advancements in high performance
computing research has boosted speed and accuracy of numerical simulation,
obstacles still remain [2]. Thus, the development of computational frameworks
that are accurate, robust, cheap and fast enough to model fluid dynamics remains
a key aspect of computational science and engineering research.

In this paper, generative models, a branch of machine learning, is applied to
a two-dimensional turbulent fluid problem for the purposes of rapidly predict-
ing forward in time while avoiding the high computational cost of traditional
numerical methods.

Generative models have garnered a huge amount of interest in recent
years [11]. The main idea behind generative models is to build a statistical model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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around a given dataset that is capable of generating new sample instances that
appear to be taken from the original dataset. These new samples can further be
used for tackling problems related to the case under study. When the building
process is based on deep networks (artificial neural networks such as convo-
lutional neural networks (CNN) [12]) that use multiple layers to capture how
patterns/features of the dataset are organised or clustered, the resulting model
is termed a deep generative model. Once a deep generative model has learned
the structure of the training dataset, by being fed a random vector as input, its
networks can generate desired samples from complex probability distributions
in high-dimensional spaces [8]. In building deep generative networks two main
methods have been widely used. The first is a variational autoencoder that uses
stochastic variational inference to minimize the lower bound of the data likeli-
hood [11]. The second is a generative adversarial network (GAN) whereby two
players (neural network) play a zero-sum game. The game seeks to minimize the
distribution divergence between the model output and the real/training dataset
by using real samples as a proxy for optimization. A novel third method born
out of the amalgamation of these two methods is the use of adversarial autoen-
coder (AAE) [14]. In this project, attention is given to both GAN and AAE as
data-driven methods for prediction and modelling of spatial-temporal turbulent
fluid flow.

Although reduced order models have been used for time-dependent turbulent
fluid modelling in areas such as subsurface flow [3] and for the solution of the
Navier-stokes equation [19]. In this project, for the first time, we use generative
models in a reduced-order model framework to carry out efficient predictions in
time of a two-dimensional turbulent fluid flow problem.

The rest of this paper is structured as follows: the next section provides a
description of the methodology adopted from [16] for spatial-temporal predic-
tion with GANs. Here, we also include the methodology for prediction using
the AAE. Section 3, introduces the test fluid system and a relevant discussion
about the transformation carried out to make the data suitable for use. The
obtained results from predicting single and multiple time levels are also pre-
sented in Sect. 3. Finally, conclusion and remarks about possible future work are
provided in Sect. 4.

2 Methodology

The use of GANs for time series prediction and data assimilation of real world
dynamical systems has been proven to be successful for the spatial-temporal
spread of COVID-19 using SEIRS type models [15,16]. Particularly, the method
in [16] has been shown to be independent of the underlying system, thus this
project will apply the same method for the two-dimensional turbulent fluid
model.

In this project, we start by building a reduced model of the turbulent fluid
flow, going from a high-fidelity spatial domain to a lower dimensional represen-
tation. Then, a generative model is built and trained to learn a mapping between
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a input latent vector and the lower dimensional representation. Finally, we apply
the processes of simulating forward in time using the capabilities of the gener-
ative models. The aim is then for the generative networks to serve as surrogate
models that can reproduce the high-fidelity numerical model.

2.1 POD-based Non-Intrusive Reduced Order Modelling

The connection between physics-based machine learning and dimensionality
reduction has been substantially studied and well-documented [18]. Results of
these studies have shown that many methods used to obtain a low-dimensional
subspace of a system are related to machine learning methods. In modern compu-
tational research, Reduced Order Modelling (ROM) is a well-known technique for
dimensionality reduction [3]. By constructing reduced-order models that encap-
sulate the original features of the fluid systems while maintaining its underlying
physics, it is possible to seek solutions to a model in an efficient and much less
expensive way [20]. The Non-Intrusive Reduced Order Modelling (NIROM) is a
type of ROM so named due to its non-dependent on the system under study. This
model reduction approach can use proper orthogonal decomposition (POD) [17]
to derive a physics-inspired low-dimensional parameterization that represents
the high dimension of the high-fidelity spatial domain of the fluid model (i.e.
state of snapshots). POD is closely related to the principal component analysis
(PCA) method in statistics and was first used for turbulent flows by [13].

In this project, the dimensionality reduction aspect of our methodology is
set within a NIROM framework that involved computing the POD basis vectors
(via PCA) using the snapshots of the input data [17].

Consider a three-dimensional field ω, which is dependent on some input
parameter and varies in space and time. We can define its function as ω :
X × T × ζ → R where X is the spatial domain, T is the time domain, and
an input domain ζ of initial parameters/condition. The aim of data-driven/non-
intrusive dimensionality reduction is to find an approximate model for ω from
the data

D ⊂ {ω(x, t,z) | x ∈ X , t ∈ T ,z ∈ ζ} (1)

which, in this case, are snapshots in time of the field. The desired approxi-
mate model of the field can be expressed as a linear expansion in the POD
basis. This POD basis would be computed from many snapshots data devel-
oped as solutions of a high-fidelity model that describes the field. To compute
the POD basis, we consider a snapshot data to be ω(t;z) ∈ R

nx where nx is
the dimension of the spatial domain (from finite discretization). Thus, the set
{ω(ti;zj) | i = 1, · · · , nt; j = 1, · · · , nz} of snapshots at nt different time lev-
els/steps of t1, t2, · · · , tnt

∈ T and nz different initial input conditions of
z1, z2, · · · , znz

∈ ζ comprises of ns = ntnz snapshots. The snapshot matrix
can be defined as S ∈ R

nx×ns with each row corresponding to a spatial location
and each column representing a snapshot in the set. At this stage, PCA can then
be introduced for dimensionality reduction.PCA seeks a transformation T that
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maps each vector {ω(ti;zj) in S (i.e. each snapshot) from the original dimen-
sional space of nx to a new space that only keeps the first r principal components
using the first r eigenvectors of the transformed matrix [10].

The idea is to maximize the variance of the original data while minimising
the total least squared errors in the representation of the snapshots. The size of
the POD basis/principal component r is chosen by specifying a tolerance in this
error calculation. This user-specified tolerance, k also indicates how much infor-
mation/energy of the data is captured by the resulting snapshot representation.
We chose r such that:

r∑

k=1

σ2
k

ns∑

k=1

σ2
k

> k, k = 0.999 (2)

This means given a snapshot field we can compute its original state, using the
POD coefficients, with 99.9% reconstruction accuracy. Hence, once the dimension
reduction is completed, the POD expansion coefficients θk=1,··· ,r(t; z) denote
the model approximation and parameterization of a snapshot field ω(t; z) at
time t and input conditions z. The coefficients are then employed in the training
of generative models for the time series prediction. Results of the POD-based
compression are shown and discussed in Sect. 3.2.

2.2 Generative Models

Generative modelling is the process of training a machine learning model with
specific data to produce ’fake’ data from a distribution that mimics the proba-
bility distribution of the original training set. Here, we produce two generative
models to perform time series prediction of a turbulent fluid flow. The two mod-
els utilized are: a generative adversarial network (GAN) [7] and an adversarial
autoencoder (AAE) [14]. The choice of these models was based on their proven
successes in the use of nonlinear fluid modelling. In the result section, a com-
parison between outputs of the two models is presented.

Generative Adversarial Network: A GAN is an artificial learning technol-
ogy that is composed of two neural networks as shown in Fig. 1. GANs have
been adopted widely in several research areas, showing huge successes in prac-
tical applications including simulating fluid models [5]. The training process is
essentially a game between two models competing as adversaries. While the gen-
erator module (G) generates fake samples from an input random distribution, a
discriminator module (D) tries to distinguish between real samples drawn from
the original distribution and the sample output from the generator. D does this
by estimating a score which serves as the probability that a particular sample
came from the original distribution i.e. D(G(θr )) = 1. The training process of a
GAN is a minimization-maximization problem that is based on a cross-entropy
loss function

J(D,G) : min
G

max
D

Eθr∼pdata(θr)[logD(θr)] + Ez∼pz(z)[log(1 − D(G(θ)))] (3)
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where pdata(θr) is the probability data distribution of the target output of real
samples θr and pz(z) is the prior distribution for the random latent vector z.
The training process involves:

• Updating D with gradients that maximize the discriminator function by dif-
ferentiating with respect to parameters of the discriminator.

• Updating G with gradients that minimize the generator function by differen-
tiating with respect to parameters of the generator.

Fig. 1. Generative modelling using GAN. In this workflow, real samples obtained from
POD-based NIROM are utilized as training data for the discriminator module of a
GAN. Fake data produced by the generator, G from an input latent vector is simulta-
neously used in the training process, with loss back propagated through both neural
network modules.

A common problem in the use of GANs for sample generation is mode col-
lapse. Typically, a GAN is trained to produce a wide variety of outputs that
mimic the training data distribution. For example, if a GAN is trained with
pictures of different dog breeds, we want a different dog for every random input
to the dog generator. However, it is possible that the generator only produces a
small set of realistic outputs and learns to generate only that seemingly credible
output (or small set of outputs) to the discriminator.

The Wasserstein GAN (WGAN) [1] is a type of GAN that avoids this problem
of mode collapse by circumventing the issue of vanishing gradients. This implies
that the discriminator is trained to optimality, learning to reject any output/set
of outputs the generator tries to stabilize on. The WGAN method introduces a
new loss function that alternatively minimizes an approximation of the Earth
Mover distance between the distributions completely avoiding mode collapse.
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In developing a GAN for the generative modelling of this project, a typical
Deep Convolutional GAN (DCGAN) was developed and trained to produce the
target output. Following evidence of mode collapse however, an Improved WGAN
[9] was also developed by altering the loss functions of the original DCGAN. The
WGAN also included a gradient penalty term that led to more diverse output
from the generator.

The WGAN loss function uses a Earth mover distance criteria to enforce
match of a prior data distribution. The loss function for this type of GAN is
given as follows

L = Ex̂∼Pg
[D (x̃)] − Ex∼Pr

[D (x)] + λEx̂∼Px̂

(
(||∇x̃D (x̃) ||2 − 1)2

)
(4)

where the second term is a gradient penalty that replaces weight clipping to
achieve Lipschitz continuity (gradient with norm at most 1 everywhere). The
discriminator in this GAN works as a critic.

The generative model (GAN and/or WGAN) developed and trained using
the presented workflow can be used for time-series/forward prediction without
any changes to its structure. This is also the case when the model is utilized for
the assimilation of given observation/sensor data [16].

Adversarial Autoencoder: A second type of generative model built and
implemented in this project is an AAE (Fig. 2). Similar to a GAN, the AAE
was proposed as a generative model that seeks to match an aggregated poste-
rior distribution of its hidden latent vector with a prior distribution. To be able
to function as a deep generative model, the AAE is trained to perform varia-
tional inference that enables its decoder to learn a statistical model that maps
between the imposed prior and the data distribution. The AAE has a wide range
of applications including semi-supervised classification, unsupervised clustering
and data visualization [14]. In the field of computational fluid dynamics, Cheng
et al. [4] studied the capability of an advanced deep-AAE for parameterizing
nonlinear fluid flow and utilized it in the prediction of a water collapse test case.
Here, we develop an AAE and test it for prediction of nonlinear turbulent flow.

2.3 Space-time Predictions Using Generative Models

The goal of this project is to show that generative models such as GANs and
AAEs can be utilized for the time-series prediction of nonlinear turbulent fluid
models. This section discusses the time-series prediction and an algorithm for its
implementation. The methodology proposed by [16] is further tested on a two-
dimensional turbulent fluid model to obtain a surrogate model that is accurate
and computationally cheap. The next subsections discuss the this method and
its components.

Prediction Using GANs: The ability of a GAN to produce realistic sam-
ples that seem to belong to a prior distribution is leveraged in this project. To
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Fig. 2. Generative modelling using AAE. The training process of this workflow
attempts to match output of the autoencoder with a prior distribution. While the
encoder generates fake samples that matches this distribution, the discriminator
attempts to critic against the generated samples.

predict forward in time, an algorithm, Predictive GAN (PredGAN) algorithm
[16] is implemented in this project on two-dimensional turbulent flow data. The
PredGAN algorithm begins with training a GAN to generate a data sequence of
p+1 time levels from an input latent vector. To achieve this, the GAN is trained
with p+1 consecutive time levels of compressed variables/POD coefficients con-
catenated to form a trajectory. Once the training is completed, the generator of
the GAN is capable of producing fake snapshots at multiple time levels, n − p
to n where n ≥ p. In order to complete prediction with the trained GAN, the
first p time levels of a known trajectory/given solution is matched with corre-
sponding time levels of the output of the GAN through loss optimization. Once
convergence has been reached, the additional time step p+1, in the output of the
generator serves as the forward prediction of the trajectory. This process can be
repeated by using the predicted p + 1 solution as a known solution while similar
optimization is carried out to predict time level p + 2. Ultimately, all time steps
can be predicted by replicating the process and obtaining a new time step for
each iteration of the PredGAN algorithm.

Prediction Using Adversarial Autoencoder: To predict with an autoen-
coder, the following steps were followed:

1. Since the autoencoder does not require a latent variable as input, we use the
first p − 1 time levels of the known solution as input.

2. To predict forward, the p − 1 time level is used as an initial guess for the
desired p time level. and passed into the autoencoder to give a prediction.
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Following successful training, the autoencoder then attempts to match the
true snapshot at time p from the input initial guess.

3. The output prediction from a single iteration through the autoencoder is
further re-used as input guess for the time level p and the time series is
passed through the autoencoder till convergence is reached.

4. The final output is the snapshot prediction at time p.
5. For multiple time level predictions, the process is repeated from steps 1–4

using the last p time levels as initial guesses for subsequent time levels.

3 Implementation and Results

3.1 Case Study: Parameter-varying Flow in a Periodic Box

In order to train a GAN capable of time-series prediction of the two-dimensional
turbulent fluid problem, a dataset comprising two velocities component (x, y)
and the pressure for each discretized node of a two-dimensional incompressible
Navier-Stokes simulations has been obtained. Figure 3 shows the spatial prop-
erties of each snapshot. This dataset represents a parameter-varying flow in
a fixed-wall box. Given that the convolutional layers of a neural network are
designed to detect object/features anywhere in an image, it can be used in this
project since the large-parameter variations implicit in the dataset generation is
of a similar nature as object randomly located in an image [6].

Fig. 3. Two-dimensional Gaussian vortices in a square domain. The positive and neg-
ative vortices are of equal strength and each snapshot S ∈ R

y×y where y = 256, are
randomly initialized within a predefined subdomain nx×ny. The images on the bottom
right show the magnitude of the vortices projected over a 1-D domain.
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The simulations were run on Imperial College-Finite Element Reservoir Sim-
ulator (IC-FERST) using the following criteria: turbulent flow with Re=5000,
constant viscosity and no slip walls boundary conditions. The first step in the
project is to transform the velocity dataset into vorticity data so it represents ini-
tial Gaussian (randomly initialized) vortices that decay due to viscosity changes.
Following this transformation, the vorticity data are then compressed by carry-
ing out a POD.

The training set for this project included snapshots from 300 separate tra-
jectories. Snapshots from trajectories were obtained such that each trajectory
included 50 snapshots - a total of 15K snapshots. Prior to actual training, the
data is prepared for time series prediction by concatenating successive snapshots,
5 s apart, into a time series of 7 instances (i.e. each time series represents vor-
tices’ evolution over a period of 30 s). This sums up to 6K distinct time series
- one trajectory can be split into a maximum of 20 time series of 7 snapshots.
In predicting with generative models post-training, we were able to forecast 1–3
additional instances (evolution over a period of ≤15 s) for never before seen time
series (30 trajectories). See 3.3 for more details.

3.2 POD Compression and Order Reduction

Each snapshot is no longer a 256 by 256 array but now represented using 292 fea-
tures (POD coefficients). The cumulative information/energy retained measured
using explained variance is over 99.99% as shown in Fig. 4. A visual comparison
of the compression is shown in Fig. 5.

Fig. 4. POD singular values and relative cumulative energy for the two-dimensional
Gaussian vorticity filed snapshot set.
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Fig. 5. Original and recovered snapshots following POD-based NIROM. The reduction
was specified to retain 99.99% information from the original snapshots. The reduction
decreased the dimension from 256-by-256 to 292 POD coefficients.

3.3 Prediction Using GAN and AAE

Single Time Level Prediction: In this section, we apply the PredGAN algo-
rithm to a sample trajectory to predict a single time level forward. Following
the training of a WGAN-GP and an AAE with 7 time levels from sample tra-
jectories, we proceed to predict a single step forward in the test set using the
PredGAN and PredAAE algorithms. In this application, the first 6 time lev-
els (t=0 to t=25) are considered known while the 7th time level (t=30) is the
predicted time step. Results of the single time level prediction can be found in
Fig. 6. A sample trajectory (Fig. 6a) serves as the input to the generative mod-
els (WGAN-GP and AAE). Snapshots of each generative model shows output
following convergence of the loss between generated sample and known solution
(Fig. 6bc). The second row visualizes the mismatch between the magnitude and
location of the true data (in blue) and generated prediction (in orange). The ver-
tical axis represents the magnitude of the vortices while the horizontal axis is a
one-dimensional projection of the two-dimensional domain. Given these results,
AAE is shown to have a better performance both for predicting forward and
matching known solutions with samples generated from a random input latent
vector.

Multiple Time Levels Prediction: The results from predicting multiple time
levels, shown in Fig. 7, follows a similar pattern as that of the single time level
prediction. Following results for the single time level prediction (t=30), we pro-
ceed to predict multiple time levels from t=35 to t=45. It is worth mentioning
that this data was not present in the training set. The first row of snapshots
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Fig. 6. Prediction of one time level (t=30) using WGAN-GP(b) and AAE(c) on a
sample trajectory from train dataset.

(Fig. 7a.) shows the true snapshot of the trajectory at times t=35 to t=45. This
is the known/given solution form the high fidelity simulation. Figure 7b. shows
predicted output for these time levels using the same WGAN-GP. Here, we see
that while the the WGAN-GP is able to predict the spatio-temporal distribution,
the prediction ability reduces with forward time. The AAE (Fig. 7c), however,
shows no such sign.
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Fig. 7. Multiple time level prediction (t=35 to t=45) using WGAN-GP(b) and AAE(c)
on a sample trajectory.
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4 Discussion and Conclusion

The use of machine learning techniques for fluid modelling problems is very
promising. The low cost, speedup and relative accuracy provided by machine
learning tools, specially generative models, are attractive features in the study
of forward modelling. In this project, an exploratory study is done to under-
stand the capabilities of two generative models - generative adversarial network
(GAN) and adversarial autoencoder (AAE) - for predicting the evolution in
time of a highly nonlinear turbulent fluid flow. We use the capabilities of the
generative models within a non-intrusive reduced order model framework. The
results demonstrate that both generative models are capable of predicting the
evolution of the vortice positions in time, although the AAE has generate more
accurate predictions than the WGAN-GP. Furthermore, with the event of mode
collapse, we conclude that a ‘vanilla’ DCGAN may be insufficient for the turbu-
lent flow prediction. We also show that the WGAN-GP and AAE can generalise
and generate solutions not present in the training set.
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Abstract. We propose an approach for integrating social media data
with physical data from satellites for the prediction of natural disasters.
We show that this integration can improve accuracy in disaster man-
agement models, and propose a modular system for disaster instance
and severity prediction using social media as a data source. The sys-
tem is designed to be extensible to cover many disaster domains, social
media platform streams, and machine learning methods. We addition-
ally present a test case in the domain context of wildfires, using Twitter
as a social data source and physical satellite data from the Global Fire
Atlas. We show as a proof of concept for the system how this model can
accurate predict wildfire attributes based on social media analysis, and
also model social media sentiment dynamics over the course of the wild-
fire event. We outline how this system can be extended to cover wider
disaster domains using different types of social media data as an input
source, maximising the generalisability of the system.

Keywords: Natural disasters · Machine learning · Sentiment analysis

1 Introduction

As the climate begins to change, the severity and frequency of natural disasters is
increasing yearly. Between 1998 and 2017, climate-related/geophysical disasters
killed 1.3 million people, and left a further 4.4 billion injured, homeless, displaced
or in need of emergency assistance [7]. In the last 30 years, the number of climate
related disasters has tripled, and this increase is almost certain to continue into
the future as climate records continue to be broken all over the world.

This increase in natural disaster activity due to climate change is additionally
being compounded by human activity. Modern agricultural practices increase the
risk of natural disaster through deforestation, and air pollution and the emissions
of water soluble particles into the atmosphere also increase the risk of extreme
weather. These disasters are also often highly linked, in ways which are still being
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studied; such as the recent arctic heatwave in 2020, which destabilized the polar
vortex and allowed a cold front of air to move down over North America, causing
sub-zero temperatures in Texas, freezing the power grid and leaving 210 people
dead. Increasing world population and housing, water, food and health crises in
many highly populated areas are forcing more people into living at the wildland
urban interface, which is at a raised risk of disasters due to these reasons. As
a result, more individuals & infrastructure will be increasingly exposed to more
frequent and intense natural disasters, raising the overall potential cost to society
of these destructive events. Since 1980, the US has sustained 310 weather events
and climate disasters where the overall damages & costs reached or exceeded
$1 billion USD (adjusted for CPI to 2021). 20 of these events occurred in 2021
alone, leading to the deaths of 688 people in this year. The total cost of these
310 events alone exceeds $2.155 trillion USD [17].

Advancements in computational models in the past 20 years have allowed
humans to predict localised environmental conditions with increasing accuracy.
This is due to increased computational resources, advancements in understand-
ing of these systems, and the inclusion of better data sources. However, numerical
computational models during natural disasters often suffer in terms of accuracy
due to their extreme and unpredictable nature, meaning often not enough useful
training data is available. One massive source of data which is increasingly being
used in models is social media.

Social media plays an ever increasing role in society. In 2020, 23% of US
adults reported getting their news from social media often [19], up from 18% in
2016 [19]. Additionally, 82% of US adults are using social media as of 2021 [6],
representing a massive audience and huge amounts of shared information. This
paper proposes a more simple, socially focused model which aims to avoid the
common pitfalls of modern commonly used models by combining social media
data as an input source. In the advent of social media in the last decade,
more studies developing social and physical models are including these types
of data sources as an input [1,9,14,22]. These studies introduce the concept of
the ‘human sensor’, where social media users are considered to be noisy sen-
sors, posting a subjective account of their localised conditions. By analysing the
response from these sensors, we can infer a model of the disaster as it unfolds in
real time. We propose a system for collecting and analysing social media data to
improve current natural disaster models, by monitoring online discussions and
sentiments with the aim of ultimately identifying areas of actionable interest to
disaster management teams. We show that online social discussions and senti-
ment are often linked to disaster activity, and that models can be trained to
predict these shifts in sentiment over the course of the disaster. We also propose
methods for information extraction & analysis of textual tweet data published
during natural disasters, and discuss how this could be incorporated into a real-
time model for public alerts.

The paper is structured as follows; Sect. 2 outlines the need for more socially
conscious natural disaster models, and discusses the benefits of this. Following
this, Sect. 3 defines the domain specific, modular architecture of the system we
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are proposing, describing the function of each of these modules. In Sect. 4 we
present a test case of the system in the context of north American wildfires from
2016. Finally, Sect. 5 summarises our contribution and further work.

2 Background

Extensive work has been put into climate modelling with increasing success, and
managing and mitigating climactic effects has been achieved in the past with
good results [13], such as flood mitigation with dams or drought management
using reservoirs [16]. However, it has been shown that during natural disasters,
the coordination of teams from a crisis management perspective becomes chal-
lenging [15]. Often emergency operations are given from a centre and coordinate
multiple organisations including local government, police, fire, hospital, utility,
and Red Cross representatives. These teams are often ‘flown in’ ad hoc, and are
expected to collaborate to deliver optimal crisis management at often very short
timescales. This can very easily lead to poor communication and coordination
of disaster management teams at a time when quick, coordinated and effective
action is often key to saving lives.

Inherent properties of social media have been shown to lend themselves
towards crisis management during natural disasters from both sides of the public
/ disaster management coin [23]. On the one hand, social media allows people
in different locations to post a subjective description of their surroundings &
immediate dangers as a disaster unfolds, which again employs the concept of
the human sensor. By in-taking and analysing this data during disasters, man-
agement teams could build up a geographic picture of these noisy accounts, and
use predictions to quickly identify areas of interest/danger from public accounts
posted in real-time.

Conversely, social media can also be effectively used by these management
teams to relay operational messages, warnings, and updates back to the public
once they have been authorized. An example of this has already been imple-
mented by Google using satellite data for a number of crisis alerts including
flood forecasting, wildfire boundary lines, earthquakes, and more [10]. Opera-
tional updates posted on social media by local authorities could also be used
in models to coordinate information/response strategies between the different
organisations, such as the ones mentioned previously, involved in crisis manage-
ment. This could ease the communication strains between organisations and help
coordinate a quicker, more direct response.

Social media data is increasingly being analysed using Natural Language
Processing (NLP) methods. NLP is a set of broad analytical techniques for com-
putationally interpreting human language [12]. The field has undergone rapid
recent development, with increasingly more information such as topics, intent,
themes, entities, and sentiments being able to be inferred by models from text.
Due to the vast amounts of text information generated by social media posts,
it has been shown that analysis of these posts show insights [1,2,5,9,22] into
processes and events. This paper aims to yield similar insights in the context
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of natural disasters by performing information extraction & sentiment analy-
sis (SA). APIs exist for accessing data from all main social media platforms,
including Twitter [20], Facebook [8], Instagram [8], and Reddit [18].

By implementing a machine learning (ML) based information system such
as the one described in this paper, we can improve the streamlining of infor-
mation at emergency operations centres, hereby allowing disaster management
teams to make real-time, bottom-up decision as an event unfolds. Previous work
has shown that there is a link between social media expression/sentiment, and
natural disaster activity in the context of hurricanes [22].

This paper proposes a system, shown in Fig. 1, for collecting and analysing
social media data in real time, and uses models trained on historical data to
predict instances and characteristics of natural disasters. We show that gathering
information on social media given the current state of the art of language models
is feasible and efficient, and discuss the domain specific training using a test
case in the context of wildfires for forecasting. We outline a system which adds
a social aspect to disaster models, and contributes to the advancement of their
capabilities by providing additional information to the overall system.

3 System Overview

The main concept behind the system is the live extraction of important infor-
mation and sentiments from social media channels regarding natural disasters as
they unfold. This system could be implemented initially in a predictive manner,
predicting whether there is a natural disaster unfolding, and subsequently mon-
itor and track the disaster by analysing social media discussions and extracting
information from this live text data.

Fig. 1. Modular system diagram outlining flow of processes.
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The system implements a live data stream based on search queries and using
a prediction model which is specific to the disaster domain for the model. Here we
mean the domain to be the category of natural disaster in the scope of this study,
for example; Wildfires (this domain will be the demonstration case presented in
Sect. 4), Earthquakes, Flood forecasting, or Hurricanes. With more work, the
system could also further still be extended to include modelling and prediction
on a wider range of types of events such as protests and political unrest, as well
as political events and elections, health and food crises, and crime. This would
require further development, primarily a more complex language model.

As mentioned, the prediction model would need to be domain specific to
the type of disaster it is making predictions on. A model is made to be
domain specific by training on a historical social media dataset which is again
domain/disaster specific. For example, a model specific to the domain of wild-
fires would need to be trained on wildfire specific social media data. The entire
system is designed to be modular and so can be adapted to be domain specific
for each type of natural disaster, as well as different platforms of social media.
This section will outline the systems component modules, and how they differ
in terms of domains. The operational modular system is shown in Fig. 1. Each
modules function is now briefly explained.

3.1 [A] System Input/Setup

The system is designed to take a series of input queries, or rules on which to set
up a live real time stream for social media posts which are published satisfying
one of the given rules. This is shown in Module A of Fig. 1. The rules must be
formatted conforming to the social media platforms query syntax, e.g. Twitter’s
syntax rules [20]. The set of queries must be domain specific to the disaster, and
include keywords specifically used in language specific to this domain.

3.2 [B] Social Media Data Streaming

This system implements real time social media streaming for the use of this
live data in predictions. The function of this module is the implementation of a
social media platform specific streaming function to download live data from the
given website, as shown in Module B of Fig. 1. A number of different APIs exist
to facilitate this for Twitter [20], Facebook [8], Instagram [8], and Reddit [18].
The function sends a set of queries, outlined with the domain specific language
in the syntax outlined by the individual APIs documentation, as outlined in
Sect. 3.1. This starts the live data stream. Here, we can also search on accounts
which are publishing posts, and part of the training phase for this system will
be the creation of a list of reputable accounts to monitor. These accounts will
have been shown to be useful in providing information about disaster instance
and development. These may include local authority service accounts, local and
environmental journalists, rescue workers, and local government and authorities.
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3.3 [C] Filtering and Text Pre-processing

Following collection of the social media data, filtering of results removes false pos-
itives (posts which do not mention the natural disaster domain when the model
detects that they have) from the collected data. Filtering by misuse/misleading
phrases, e.g. ‘Corruption is spreading like wildfire’ makes the dataset cleaner,
resulting in more accurate models. This is represented by Module C of Fig. 1.
Text is also pre-processed in this module, removing punctuation, hyperlinks,
correcting spelling mistakes and formalising words etc., reducing noise in the
text.

3.4 [D] Information Extraction and Sentimental Analysis

The function of this module is for the generation of social sentiment data from
posts on natural disasters, and the extraction of published information which
may be of help to the prediction module of the system. This is shown in Module
D of Fig. 1. Sentiment Analysis is the process of computationally extracting
a numerical value corresponding to the overall emotional leaning of the text.
This is achieved using analysis of words used, word patterns and part-of-speech
(POS). This is useful because it allows us to convert the qualitative text data
into quantitative metrics which can be used for further analysis. The system can
then be trained to predict the aggregated sentimental values for each natural
disaster in Sect. 3.7. SA was performed using Google’s NLP API for SA [11],
and yields two metrics:

– Firstly, the Sentiment Score ranges between -1.0 (negative) and 1.0 (posi-
tive) and corresponds to the overall emotional leaning of the text.

– Secondly, tweet Magnitude indicates the overall strength of emotion (both
positive and negative) within the given text, between 0.0 and +inf. [11]

This defines two numerical sentimental variables; S and M , which are the
social sentiment variables for each natural disaster, observing the constraints
S ∈ R : 0 ≤ S ≤ 1 and M ∈ R : 0 ≤ M respectively.

A domain specific language model could be used to infer greater insight into
the text data collected by the collection module outlined in Sect. 3.2. Models
like this can be trained using domain specific language datasets, which can be
the textual social media data previously collected as part of the system setup in
Sect. 3.6. The NLP model will be similar to the one implemented for hurricanes
in [22], and will additionally aim to extract domain specific disaster characteris-
tics from the noisy text data. These may include but are not limited to; disaster
duration, total area damage, and number of people displaced, in need of emer-
gency assistance, injured or killed. This is achieved through the sentimental &
linguistic analysis of the words used in the posts, for example; contextual, entity,
and intent analysis, results of which are also saved to the database. Tokenisation
of the text is also stored.
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3.5 [E] Data Persistence

Data persistence and model iteration & integration are a key aspect of the evo-
lutionary aspect of this system. Due to the systems online data collection mod-
ule outlined in Sect. 3.2, data is constantly collected and analysed surrounding
different types of natural disaster domains. The function of this module is to
save analysed social media data, including metadata on posts, users etc. and
from Sect. 3.2, NLP and sentimental analysis results from Sect. 3.4. Addition-
ally stored will be the models trained in Sect. 3.6 and the downloaded natural
disaster data, as shown in Module E of Fig. 1.

3.6 [F] System Training (Pre-Operational)

Before the system can be used in real time for operational use, a model needs
to be trained in order to make the model domain specific for the type of natural
disaster it will be used for. Each type of disaster discussed in Sect. 3 will have
different types of expression on social media and the dynamics and relationship
between social media activity and disaster activity will vary from disaster to
disaster. Thus, it is necessary to implement individual models for each type of
disaster.

To train a domain specific model, we need a similarly domain specific his-
torical social media dataset related to this type of disaster. The system is set
up using historical natural disaster data for the domain specific disaster data in
order to implement a base model.

This module also supports the labelling of training data gathered from the
data collection and analysis modules of the system. The reason for this is for
the iterative improvement of the ML models in Modules D & G, described in
Sects. 3.4 & 3.7 respectively.

An important aspect of this training phase is that it can be achieved offline.
That is, models can be iteratively trained while the system is online, and swapped
out as they are improved. Due to the system constantly collecting and saving
tweet data surrounding these types of natural disasters, the database used to
train these models will only get larger and more diverse, both geographically
and between disaster domains, as the system is used more. This new data can
be labelled and then used to iteratively train improved systems in a supervised
manner, or remain unlabelled for models to be trained using unsupervised meth-
ods. To summarise, the system is designed to have an offline training programme
which iteratively retrains and improves the model as it runs, leading to evolu-
tionary improvement and in turn greater accuracy, and the rapid development
& deployment of improved predictive models.

3.7 [G] ML Prediction Model

This part of the system utilises the model trained historical data outlined in
Sect. 3.6. We take the model trained on historical, domain specific disaster data,
and use this to make predictions about the occurrences of new disaster instances.
The aims of this module are as follows;



Towards Social Machine Learning for Natural Disasters 763

– To detect instances and categorise types of new disasters, and predict the
times and locations of these new events.

– To predict the severity of disasters over the course of the crisis period. By
severity we mean the physical domain specific disaster variables from the
historical data supplied in the training dataset outlined in Sect. 3.6, e.g. size
of area affected, number of injuries etc. We hypothesise that there exists some
function of f which allows us to predict disaster intensity from social media
post data.

The ML method which we utilise for this system is the Gradient Boosted
Random Forest, implemented in python with the XGBoost package [21]. Random
Forests are an ensemble method extension of Classification and Regression Trees
(CART) [4]. In the training phase, these methods start with a simple model, often
a single tree (or weak learner), and then additive training occurs where trees are
generated and added to build up a forest of trees which is used for the final
prediction. For new data, predictions are then made by averaging the majority
vote of all trees in the forest. The GBRFs are built and evaluated using the
MAE, and the Gini coefficient [4]. The Gini coefficient is a scoring metric which
is a measure of the degree to which a particular element is wrongly classified
when randomly chosen and it is expressed by the formula:

n∑

i=1

pi(1 − pi) (1)

where pi denotes that the physical event i happens (or that the sentiment i ∈ S
is evaluated) and n is the number of possible events (or possible sentiments).
Gradient boosting Random Forest algorithms are particular Random Forests
which begin with a base (weak) learner (tree), and consecutively add more weak
learners to the ensemble with the goal of minimising a loss function [4]. Given
a training sample {xi,yi}n

1 , the goal is to find function of F ◦(x) such that the
expected value of the loss function ψ(y, F (x)) is minimised [4]. The gradient
boosting problem is then expressed as:

F ◦(x) = arg min
F (x)

Ex,yψ(y, F (x)) (2)

where E denotes the expected value. The boosting algorithm then approximates
F ◦(x) by additive expansion, which can be summarised as:

F (x) =
s∑

m=0

βmh(x, am) (3)

where the functions h(x, a) are known as the ‘weak learners’.
Over a series of s steps, the weak learners are sequentially added, and the

expansion coefficients a = {a1, a2, ...} and {β}s
0 are jointly fit to the current

models pseudo-residuals. For m = 1, 2, . . . , s, this gives

(βm, am) = arg min
β,a

n∑

i=1

ψ(yi, Fm−1(xi) + βh(xi; a)) (4)
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and
Fm(x) = Fm−1(x) + βmh(x; am) (5)

which shows the step-wise optimisation of F . Equation (4) is then optimised
to solve the loss function ψ by fitting least squares on h(x, a). This replaces
the optimisation problem presented in Eq. (2) with one based on reducing least
squares in Eq. (4).

The models were trained on a wide grid search covering the hyper-parameters
denoted by:

– ETA (Learning Rate): Step size shrinkage used in update.
– maxDepth: Maximum depth of a tree.
– minChildWeight: Minimum sum of instance weight needed in a child.
– subsample: Subsample ratio of the training instances.
– colSampleByTree: Subsample ratio of columns when constructing each tree.
– nEstimators: Number of trees in the ensemble.

The output of this module is the overall system output: predictions of domain,
instances and severity of the natural disaster. This represents a socialised model
of the disaster, from detection to evolution and finally resolution. Once a disas-
ter has been detected and registered in the application database, it follows the
process flow shown in Fig. 1, being continuously updated as more information
on this suspected disaster is streamed through by the data collection stream.
A disaster is monitored until information is passed through that this crisis is
resolved. We now demonstrate in Sect. 4 a prototype of the model described in
Sect. 3, applied with a wildfire domain.

4 Experimental Test Case: Wildfires - Satellites and
Twitter

We now present a prototype version of the domain specific model applied to
satellite wildfire data using twitter as the social media data source. We choose
wildfire events occurring in Australia and North America (United States and
Canada) in 2016 for the creation of our training dataset. We chose to use this type
of disaster domain in this geographic area due to the abundance of both wildfire
activity in this area and active Twitter users. We now outline the implementation
of the system for this particular context.

Satellite & Twitter Data Collection: For the combination of social media data
with wildfire data in our model component of the system, we chose to use twitter
for the historical social media source, and wildfire data from the Global Fire
Atlas [3] for the 2016 wildfire data. The physical wildfire characteristics taken
from this data are: Latitude (◦), Longitude (◦), Size (km2), Perimeter (Per)
(km), Duration (d) (days), Speed(km/day), Expansion (Exp) (km2/day), and
Start (SDOY ) and End (EDOY ) . This defines in the physical vector x of our
model:

x = [Lat, Lon, Size, Per, d, Speed,Exp, SDOY , EDOY , PopDensity] (6)
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Twitter’s V2 API [20] with an academic research product track was used
for the collection of the twitter data associated with historical wildfires, using
a query implementation in line with Twitter’s query syntax [20]. Queries were
designed to search for tweets mentioning locations of the burn as well as a set of
wildfire domain specific keywords to search on; Fires OR Wildfires OR Bushfires
OR “Landscape Burn” OR “Wildland Burn” , as well as generated hashtags
included in the query. Tweets which contained certain misuse phrases such as
“like wildfire” were removed to reduce noise. Tweets were saved to a database
with meta and user data and media, along with a Fire ID. The result is a dataset
of US wildfires in 2016 and tweets associated with these events.

Twitter Data Analysis: We are now able to analyse this text data for wild-
fires and generate social sentiment variables from this data using SA. Recalling
Sect. 3.4 where the two numerical sentimental variables S and M are defined,
Tweets are grouped by day for each fire and social sentiment values from the
S and M are averaged and summed to generate the following social sentiment
variables for each wildfire:

– Smean : Average Daily Sentiment Score
– Mmean : Average Daily Magnitude Score
– Sovr: Overall Sentiment Score
– Movr: Overall Magnitude Score
– Tottweets: Total number of Tweets for Wildfire

These variables constitute the sentimental vector

y = [Smean,Mmean, Sovr,Movr, T ottweets]. (7)

The generation of these social sentiment variables for each wildfire represents
the completion of our two datasets in both the Australian (AUS) and North
American (US) domains.

The data can now be viewed from a temporal perspective, by plotting
heatmaps for the online social sentiment across the year of 2016. Fig. 2 shows
how online sentimental activity matches the fire seasons in the two geographic
domains, which is a positive indication of the quality of the data.

Wildfire & Social Modelling Results: Two types of ML models were implemented
using the XGBoost package [21] in python as outlined in Sect. 3.7. The first type
of model takes as an input the physical vector x, and is trained using this data on
the target vector y. The 5 variables which were described in this section were used
to train 5 models, one predicting each social sentiment variable. These models
are called the sentimental prediction models. The second type of model predicted
the 10 physical wildfire characteristics vector x, using the social sentiment vector
y, predicting in the opposite direction to the sentimental prediction model. This
type of model was called the physics prediction model, and there were 10 of
these models trained, one for each variable, meaning total of 15 models were
trained on the combined AUS + US dataset. The results are shown in Tables 1
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(a) Heatmap of US online social sentiment for 2016

(b) Heatmap of AUS online social sentiment for 2016

Fig. 2. US (a) and AUS (b) online social Sentiment heatmaps for 2016

& 2 below. As the last column in Tables 1 & 2 shows, the execution time (ExeT )
for running the model on a 2020 Macbook Pro 2.3GHz 8 core i7 Intel processor
is very low, whch is an important condition for real time operational predictions.

Table 1. Results from predicting social sentiment variables from physical wildfire
characteristics.

Variable MAE RMSE Gini GiniN Score ExeT (msecs)

Smean 6.34 17.83 0.367 0.846 38.7% 2.94

Mmean 10.88 40.85 0.316 0.822 38.3% 5.75

Movr 107.27 407.36 0.338 0.872 24.4% 3.37

Sovr 54.75 364.76 0.381 0.865 15.3% 2.28

tottweets 458.927 2777.28 0.323 0.863 10.6% 2.94

Table 1 demonstrates that the models for predicting average Sentiment and
Magnitude (Smean and Mmean) show good results when attempting to pre-
dict these variables, with low MAEs of 6–10. Overall Sentiment and Magnitude
(Sovr and Movr) models also preformed well. The most notable result shown in
Table 2 is the model predicting fire Duration (d). This model showed very posi-
tive results, with an MAE of 0.84. This shows that the resulting model was able
to predict wildfire duration to within one day from social sentiment values/social
media data alone. Additionally, Speed and Exp both performed well.
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Table 2. Results from predicting physical variables from social sentiment data.

Variable MAE RMSE Gini GiniN Score ExeT (msecs)

Lat 3.72 5.2 0.344 0.868 0.75 4.90

Lon 6.185 7.40 1.73 0.929 0.79 6.11

Size 9.66 33.89 0.354 0.835 0.14 1.95

Per 7.22 15.89 0.227 0.764 0.24 3.69

d 0.84 2.01 0.207 0.961 0.87 4.22

Speed 0.533 0.86 0.143 0.659 0.25 2.32

Exp 0.88 3.24 0.226 0.652 0.16 2.09

PopDensity 69.05 575.18 0.397 0.424 0.02 2.22

SDOY 40.73 60.90 0.100 0.736 0.56 2.83

EDOY 39.62 61.15 0.095 0.734 0.56 5.48

5 Conclusion and Future Work

This paper outlines a system to facilitate the integration of social media data into
physical models, discusses the benefit of this, and demonstrates a prototype test
case with current wildfire models. As shown, social media data is being adopted
increasingly in scientific studies and specifically disaster management, yielding
benefits which could be transferred to natural disaster relief efforts. This work
attempts to bridge this gap by developing a modular social media alarm system
for natural disasters which predicts instances and localised severity of the event
based on analysis of social media posts.

Having successfully trained and implemented a retrospective historical social
media wildfire model using Twitter as a data source, the next step for testing this
type of model would be the integration/coupling of the system with a real time
wildfire model. The modular design of the system allows for rapid updating of the
system as future work allows. This will primarily be focused on the development
of ML methods for information extraction of the post text data and modelling
disaster activity. The benefit of this will be improved accuracy of these models
which will allow localised modelling of disaster conditions.

Social media data represents a near limitless supply of real time data on
almost any large event. If disaster models do not consider this data, then this
represents a loss of information, as there is data available via these networks
which is not accessible elsewhere. Systems which analyse this data in real time are
able to recoup this loss, which ultimately leads to the development of improved
models.
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