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Preface

Data Analytics involves applying algorithmic processes to derive insights. Nowadays
it is used in many industries to allow organizations and companies to make better
decisions as well as to verify or disprove existing theories or models. The term data
analytics is often used interchangeably with intelligence, statistics, reasoning, data
mining, knowledge discovery, and others. Being in the era of big data, Big Data
Analytics thus refers to the strategy of analyzing large volumes of data gathered from a
wide variety of sources, including social networks, transaction records, videos, digital
images, and different kinds of sensors.

The goal of this book is to introduce some of the definitions, methods, tools,
frameworks, and solutions for big data processing, starting from the process of
information extraction and knowledge representation, via knowledge processing and
analytics to visualization, sense-making, and practical applications. However, this book
is not intended either to cover the whole set of big data analytics methods or to provide
a complete collection of references. Each chapter in this book addresses some pertinent
aspect of the data processing chain, with a specific focus on understanding Enterprise
Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics
solutions.

Chapter 1’s purpose is to characterize the relevant aspects of the Big Data
Ecosystem and to explain the ecosystem with respect to the big data characteristics, the
components needed for implementing end-to-end big data processing and the need to
use semantics to improve data management, integration, processing, and analytical
tasks.

Chapter 2 gives an overview of different definitions of the term Knowledge
Graphs (KGs). In this chapter, we are going to take the position that precisely in the
multitude of definitions lies one of the strengths of the area. We will choose a particular
perspective, which we will call the layered perspective, and three views on Knowledge
Graphs to guide the reader in a structured way.

Chapter 3 introduces the key technologies and business drivers for building big
data applications and presents in detail several open-source tools and Big Data
Frameworks for handling Big Data.

The subsequent chapters discuss the knowledge processing chain from the per-
spective of Knowledge Graph Creation (Chapter 4), via Federated Query Processing
(Chapter 5), to Reasoning in Knowledge Graphs (Chapter 6).

Chapter 7 brings to attention the SANSA framework, which combines distributed
analytics and semantic technologies into a scalable semantic analytics stack.

Chapter 8 elaborates further the semantic data integration problems and presents
COMET (COntextualized MoleculE-based matching Technique and framework) for
matching contextually equivalent RDF entities from different sources into a set of 1-1
perfect matches between entities.



As the goal of the LAMBDA Project is to study the potentials, prospects, and
challenges of Big Data Analytics in real-world applications, in addition to Chapter 1
(traffic management example), Chapter 9 discusses the role of big data in different
industries.

Finally, in Chapter 10, one sector has been selected – the energy domain – and
insight is given into some potential applications of big data-oriented tools and ana-
lytical technologies for the control and monitoring of electricity production, distribu-
tion, and consumption.

This book is addressed to graduate students from technical disciplines, to
professional audiences following continuous education short courses, and to
researchers from diverse areas following self-study courses. Basic skills in computer
science, mathematics, and statistics are required.

June 2020 Valentina Janev
Damien Graux
Hajira Jabeen

Emanuel Sallinger

vi Preface
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Chapter 1
Ecosystem of Big Data

Valentina Janev(B)

Institute Mihajlo Pupin, University of Belgrade, Belgrade, Serbia
valentina.janev@institutepupin.com

Abstract. The rapid development of digital technologies, IoT products
and connectivity platforms, social networking applications, video, audio
and geolocation services has created opportunities for collecting/accu-
mulating a large amount of data. While in the past corporations used
to deal with static, centrally stored data collected from various sources,
with the birth of the web and cloud services, cloud computing is rapidly
overtaking the traditional in-house system as a reliable, scalable and cost-
effective IT solution. The high volumes of structures and unstructured
data, stored in a distributed manner, and the wide variety of data sources
pose problems related to data/knowledge representation and integration,
data querying, business analysis and knowledge discovery. This intro-
ductory chapter serves to characterize the relevant aspects of the Big
Data Ecosystem with respect to big data characteristics, the compo-
nents needed for implementing end-to-end big data processing and the
need for using semantics for improving the data management, integra-
tion, processing, and analytical tasks.

1 Introduction

In 2001, in an attempt to characterize and visualize the changes that are likely
to emerge in the future, Douglas Laney [271] of META Group (Gartner now)
proposed three dimensions that characterize the challenges and opportunities of
increasingly large data: Volume, Velocity, and Variety, known as the 3 Vs of big
data. Thus, according to Gartner

“Big data” is high-volume, velocity, and variety information assets that
demand cost-effective, innovative forms of information processing for
enhanced insight and decision making.

According to Manyika et al. [297] this definition is intentionally subjective
and incorporates a moving definition of how big a dataset needs to be in order
to be considered big data. Along this lines, big data to Amazon or Google (see
Table 1) is quite different from big data to a medium-sized insurance or telecom-
munications organization. Hence, many different definitions have emerged over
time (see Chap. 3), but in general, it refers to “datasets whose size is beyond the
ability of typical database software tools to capture, store, manage, and analyze”
c© The Author(s) 2020
V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-53199-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53199-7_1&domain=pdf
http://orcid.org/0000-0002-9794-8505
http://dx.doi.org/10.1007/978-3-030-53199-7_3
https://doi.org/10.1007/978-3-030-53199-7_1


4 V. Janev

[297] and technologies that address “data management challenges” and process
and analyze data to uncover valuable information that can benefit businesses
and organizations. Additional “Vs” of data have been added over the years, but
Volume, Velocity and Variety are the tree main dimensions that characterize the
data.

The volume dimension refers to the largeness of the data. The data size in
a big data ecosystem can range from dozens of terabytes to a few zettabytes
and is still growing [484]. In 2010, the McKinsey Global Institute estimated that
enterprises globally stored more than 7 exabytes of new data on disk drives,
while consumers stored more than 6 exabytes of new data on devices such as
PCs and notebooks. While more than 800,000 Petabytes (1 PB = 1015 bytes) of
data were stored in the year 2000, according to International Data Corporation
expectations [346] this volume will exceed 175 zettabytes (1 PB = 1021 bytes) by
2025 [85].

The velocity dimension refers to the increasing speed at which big data is cre-
ated and the increasing speed at which the data need to be stored and analysed,
while the variety dimension refers to increased diversity of data types.

Variety introduces additional complexity to data processing as more kinds
of data need to be processed, combined and stored. While the 3 Vs have been
continuously used to describe big data, the additional dimensions of veracity
and value have been added to describe data integrity and quality, in what is
called the 5 Vs of big data. More Vs have been introduced, including validity,
vulnerability, volatility, and visualization, which sums up to the 10 Vs of big
data [138] (see Table 1). Regardless of how many descriptors are isolated when
describing the nature of big data, it is abundantly clear that the nature of big
data is highly complex and that it, as such, requires special technical solutions
for every step in the data workflow.

2 Big Data Ecosystem

The term Ecosystem is defined in scientific literature as a complex network or
interconnected systems (see Table 2). While in the past corporations used to deal
with static, centrally stored data collected from various sources, with the birth of
the web and cloud services, cloud computing is rapidly overtaking the traditional
in-house system as a reliable, scalable and cost-effective IT solution. Thus, large
datasets – log files, social media sentiments, click-streams – are no longer expected
to reside within a central server or within a fixed place in the cloud. To handle the
copious amounts of data, advanced analytical tools are needed which can process
and store billions of bytes of real-time data, with hundreds of thousands of transac-
tions per second. Hence, the goal of this book is to introduce definitions, methods,
tools, frameworks and solutions for big data processing starting from the process
of information extraction, via knowledge processing and knowledge representation
to storing and visualization, sense-making, and practical applications.
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Table 1. Big data characteristics

3 Vs Volume Vast amount of data that has to be captured, stored, processed and

displayed

Velocity Rate at which the data is being generated, or analyzed

Variety Differences in data structure (format) or differences in data sources

themselves (text, images, voice, geospacial data)

5 Vs Veracity Truthfulness (uncertainty) of data, authenticity, provenance,

accountability

Validity Suitability of the selected dataset for a given application, accuracy

and correctness of the data for its intended use

7 Vs Volatility Temporal validity and fluency of the data, data currency and

availability, and ensures rapid retrieval of information as required

Value Usefulness and relevance of the extracted data in making decisions

and capacity in turning information into action

10 Vs Visualization Data representation and understandability of methods (data clustering

or using tree maps, sunbursts, parallel coordinates, circular network

diagrams, or cone trees)

Vulnerability Security and privacy concerns associated with data processing

Variability the changing meaning of data, inconsistencies in the data, biases,

ambiguities, and noise in data

3 Components of the Big Data Ecosystem

In order to depict the information processing flow in just a few phases, in Fig. 1,
from left to right, we have divided the processing workflow into three layers:

– Data sources;
– Data management (integration, storage and processing);
– Data analytics, Business intelligence (BI) and knowledge discovery (KD).

Table 2. Examples of big data ecosystems

Facebook Facebook (2018) has more than two billion users on millions of servers, running thousands

of configuration changes every day involving trillions of configuration checks [310]

LinkedIn It takes a lot of horsepower to support LinkedIn’s 467 million members worldwide (in 2017),

especially when you consider that each member is getting a personalized experience and a

web page that includes only their contacts. Supporting the load are some 100,000 servers

spread across multiple data centers [215]

Alibaba The 402,000 web-facing computers that Alibaba hosts (2017) from China-allocated IP

addresses would alone be sufficient to make Alibaba the second largest hosting company in

the world today [321]

Google There’s no official data on how many servers there are in Google’s data centers, but Gartner

estimated in a July 2016 report that Google at the time had 2.5 million servers. Google

data centers process an average of 40 million searches per second, resulting in 3.5 billion

searches per day and 1.2 trillion searches per year, Internet Live Stats reports [390]

Amazon ... an estimate of 87 AWS datacenters in total and a range of somewhere between 2.8 and 5.6

million servers in Amazon’s cloud (2014) [301]

Twitter Twitter (2013) now has 150M worldwide active users, handles 300K queries per second

(QPS) to generate timelines, and a firehose that churns out 22MB/s. Some 400 million

tweets a day flow through the system and it can take up to 5min for a tweet to flow from

Lady Gaga’s fingers to her 31 million followers [197]

Such partition will allow the authors of this book to discuss big data topics
from different perspectives. For computer scientists and engineers, big data poses
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problems of data storage and management, communication, and computation.
For data scientists and statisticians responsible for machine learning models
development, the issues are how to get usable information out of datasets that are
too huge and complex for many traditional or classical methods to handle. From
an organizational viewpoint, business analysts are expected to select and deploy
analytics services and solutions that contribute mostly to the organizational
strategic goals, for instance, taking into consideration a framework for measuring
the organizational performance.

Data Sources. In a modern data ecosystem, the data sources layer is com-
posed of both private and public data sources – see the left side of Fig. 2. The
corporate data originates from internal systems, cloud-based systems, as well
as external data provided from partners and third parties. Within a modern
data architecture, any type of data can be acquired and stored; however, the
most challenging task is to capture the heterogeneous datasets from various ser-
vice providers. In order to allow developers to create new applications on top of
open datasets (see examples below), machine-readable formats are needed. As
such, XML and JSON have quickly become the de facto format for the web and
mobile applications due to their ease of integration into browser technologies and
server technologies that support Javascript. Once the data has been acquired, the
interlinking of diverse data sources is quite a complex and challenging process,
especially for the acquired unstructured data. That is the reason why semantic
technologies and Linked Data principles [51] have become popular over the last
decade [222]. Using Linked Data principles and a set of agreed vocabularies for
a domain, the input data is modeled in the form of resources, while the existing
relationships are modeled as a set of (named) relationships between resources.
In order to represent the knowledge of a specific domain, conceptual schemas
are applied (also called ontologies). Automatic procedures are used to map the
data to the target ontology, while standard languages are used to represent the
mappings (see Chap. 4). Furthermore, in order to unify the knowledge represen-
tation and data processing, standardized hierarchical and multilingual schemas
are used called taxonomies. Over the last decade, thousands of data reposito-
ries emerged on the web [48] that companies can use to improve their prod-
ucts and/or processes. The public data sources (statistics, trends, conversations,
images, videos, audios, and podcasts for instance from Google Trends, Twit-
ter, Instagram, and others [299]) provide real-time information and on-demand
insights that enable businesses to analyse user interactions, draw patterns and
conclusions. IoT devices have also created significant challenges in many indus-
tries and enabled the development of new business models. However, one of the
main challenges associated with these repositories is automatically understand-
ing the underlying structures and patterns of the data. Such an understanding
is a prerequisite to the application of advanced analytics to the retrieved data
[143]. Examples of Open Data Sources from different domains are:

http://dx.doi.org/10.1007/978-3-030-53199-7_4
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Fig. 1. From data to applications

– Facebook Graph API, curated by Facebook, is the primary way for apps to
read and write to the Facebook social graph. It is essentially a representation
of all information on Facebook now and in the past. For more info see here1.

– Open Corporates is one of the largest open databases of companies in the
world and holds hundreds of millions of datasets in essentially any country.
For more info, see here2.

– Global Financial Data’s API is recommended for analysts who require
large amounts of data for broad research needs. It enables researchers to study
the interaction between different data series, sectors, and genres of data. The
API supports R and Python so that the data can be directly uploaded to the
target application. For more info, see here3.

– Open Street Map is a map of the world, created by people free to use under
an open license. It powers map data on thousands of websites, mobile apps,
and hardware devices. For more info, see here4.

– The National Centers for Environmental Information (NCEI) is
responsible for hosting and providing access to one of the most significant
archives on Earth, with comprehensive oceanic, atmospheric, and geophysi-
cal data. For more info about the data access, see here5.

1 https://developers.facebook.com/docs/graph-api.
2 https://opencorporates.com/.
3 https://www.globalfinancialdata.com/.
4 https://www.openstreetmap.org/.
5 https://www.ncdc.noaa.gov/data-access.

https://developers.facebook.com/docs/graph-api
https://opencorporates.com/
https://www.globalfinancialdata.com/
https://www.openstreetmap.org/
https://www.ncdc.noaa.gov/data-access


8 V. Janev

– DBPedia is a semantic version of Wikipedia. It has helped companies like
Apple, Google, and IBM to support artificial intelligence projects. DBpedia is
in the center of the Linked Data cloud presented in Fig. 2, top-right quadrant6.
For more info, see here7.

Data Management. As data become increasingly available (from social media,
web logs, IoT sensors etc.), the challenge of managing (selecting, combining, stor-
ing) and analyzing large and growing data sets is growing more urgent. From a
data analytics point of view, that means that data processing has to be designed
taking into consideration the diversity and scalability requirements of targeted
data analytics applications. In modern settings, data acquisition via near real-
time data streams in addition to batch loads is managed by different automated
processes (see Fig. 2, top-left quadrant presents an example of monitoring and
control of electric power facilities with the Supervisory, Control and Data Acqui-
sition Systems8 developed by the Mihajlo Pupin Institute. The novel architec-
ture [471] is ’flexible enough to support different service levels as well as optimal
algorithms and techniques for the different query workloads’ [426].

Over the last two decades, the emerging challenges in the design of end-to-
end data processing pipelines were addressed by computer scientists and software
providers in the following ways:

– In addition to operational database management systems (present on the
market since 1970s), different NoSQL stores appeared that lack adherence
to the time-honored SQL principles of ACID (atomicity, consistency, isolation,
durability), see Table 3.

– Cloud computing emerged as a paradigm that focuses on sharing data and
computations over a scalable network of nodes including end user computers,
data centers (see Fig. 2, bottom-left quadrant), and web services [23].

– The Data Lake concept as a new storage architecture was promoted where
raw data can be stored regardless of source, structure and (usually) size. The
data warehousing approach (based on a repository of structured, filtered data
that has already been processed for a specific purpose) is thus perceived as
outdated as it creates certain issues with respect to data integration and the
addition of new data sources.

The wide availability of big data also means that there are many quality
issues that need to be dealt with before using such data. For instance, data
inherently contains a lot of noise and uncertainty or is compromised because of
sensor malfunctioning or interferences, which may result in missing or conflicting
data. Therefore, quality assessment approaches and methods applicable in open
big data ecosystems have been developed [481].

6 www.lod-cloud.net.
7 https://wiki.dbpedia.org/.
8 http://www.pupin.rs/en/products-services/process-management/.

www.lod-cloud.net
https://wiki.dbpedia.org/
http://www.pupin.rs/en/products-services/process-management/
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Furthermore, in order to ensure interoperability between different processes
and interconnected systems, the semantic representation of data sources/processes
was introduced where a knowledge graph, from one side, meaningfully describes the
data pipeline, and from the other, is used to generate new knowledge (see Chap. 4).

Fig. 2. Components of big data ecosystem

Data Analytics. Data analytics refers to technologies that are grounded mostly
in data mining and statistical analysis [76]. The selection of an appropriate pro-
cessing model and analytical solution is a challenging problem and depends on
the business issues of the targeted domain [221], for instance e-commerce [416],
market intelligence, e-government [220], healthcare, energy efficiency [47], emer-
gency management [309], production management, and/or security (see Fig. 2,
bottom-right quadrant, example of Simulators and training aids developed by the
Mihajlo Pupin Institute). Depending on the class of problem that is being solved
(e.g. risk assessment in banks and the financial sector, predictive maintenance
of wind farms, sensing and cognition in production plants, automatic response
in control rooms, etc.), the data analytics solution also relies on text/web/net-
work/mobile analytical services. Here various machine learning techniques such
as association rule mining, decision trees, regression, support vector machines,
and others are used.

While simple reporting and business intelligence applications that generate
aggregated measurements across different predefined dimensions based on the
data-warehousing concept were enough in 1990s, since 1995 the focus has been
on introducing parallelism into machine learning [435].

http://dx.doi.org/10.1007/978-3-030-53199-7_4
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4 Using Semantics in Big Data Processing

Variety of Data Sources. In order to design and implement an adequate
big data processing architecture, as well as volume and velocity companies also
have to consider their ability to intercept the various available data sources. In
addition to the existing enterprise resource management systems, data produced
by a multitude of sources like sensors, smart devices and social media in raw,
semi-structured, unstructured and rich media formats further complicate the
processing and storage of data. Hence, different solutions for distributed stor-
age, cloud computing, and data fusion are needed [286]. In order to make the
data useful for data analysis, companies use different methods to reduce com-
plexity, downsize the data scale (e.g. dimensional reduction, sampling, coding)
and pre-process the data (data extraction, data cleaning, data integration, data
transformation) [456]. The heterogeneity of data can thus be characterized across
several dimensions:

– Structural variety refers to data representation; for instance, the satellite
images format is very different from the format used to store tweets generated
on the web;

– Media variety refers to the medium in which data gets delivered; for
instance, the audio of a speech versus the transcript of the speech may rep-
resent the same information in two different media;

– Semantic variety refers to the meaning of the units (terms) used to measure
or describe the data that are needed to interpret or operate on the data; for
instance, a ‘high’ salary from a service in Ethiopia is very different from a
‘high’ salary from a similar service in the United States;

– Availability variations mean that the data can be accessed continuously;
for instance, from traffic cameras, or intermediately, for instance, only when
the satellite is over the region of interest.

Semantic Variety and the Need for Standards. Attempts to explain the
uses of semantics in logic and computing date from the middle of the last cen-
tury. In the information processing domain, semantics refers to the “meaning
and meaningful use of data” [472], i.e., the effective use of a data object for
representing a concept or object in the real world. Since 1980, the Artificial
Intelligence community has been promoting the idea of feeding intelligent sys-
tems and agents with general, formalized knowledge of the world (see also the
panel report from 1997 Data Semantics: what, where and how? ) [398]. In 2001,
Sir Tim Berners-Lee, the Director of the Wide Web Consortium, outlined his
vision for the Semantic Web as an extension of the conventional Web and as a
world-wide distributed architecture where data and services easily interoperate.
Additionally, in 2006, Berners-Lee proposed the basic (Linked Data) principles
for interlinking linking datasets on the Web through references to common con-
cepts [51]. The standard for the representation of the information that describes
the concepts is RDF (Resource Description Framework). In parallel, the wider
adoption of standards for representing and querying semantic information, such
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as RDF(s) and SPARQL, along with increased functionalities and improved
robustness of modern RDF stores, have established Linked Data and seman-
tic technologies in the areas of data and knowledge management. As part of
the EC’Interoperability Solutions for European Public Administrations’ (ISA)9

program, with cooperation with W3C, core vocabularies have been adopted to
represent high-value datasets relevant for boosting innovative services.

Knowledge Engineering. Additionally, the scientific community has put a
great deal of effort into showcasing how knowledge engineering [26,92,221] can
take advantages from semantics-aware methods [222], which exploit knowledge
kept in (big) data to better reasoning on data beyond the possibilities offered by
more traditional data-instance-oriented approaches. With the announcement of
the Google Knowledge Graph in 2012, representations of general world knowl-
edge as graphs have drawn a lot of attention again [347].

To summarize, semantics principles can be used in big data processing for

– Representing (schema and schema-less) data;
– Representing metadata (about documentation, provenance, trust, accuracy,

and other quality properties);
– Modeling data processes and flows, i.e., representing the entire pipeline mak-

ing data representation shareable and verifiable.

The semantic representation of data in knowledge graphs (see Chap. 2), the
semantic processing pipeline (see Chap. 3, Chap. 5, Chap. 8), reasoning in knowl-
edge graphs (Chap. 6) and the semantic analysis of big data (Chap. 7) are the
main topics of this book and will be explained in more detail in the subsequent
chapters.

5 Big Data, Standards and Interoperability

Interoperability remains a major burden for the developers of the big data ecosys-
tem. In its EU 2030 vision, the European Union has set out the creation of an
internal single market through a standardised system of laws that apply in all
member states and a single European data [85] space – a genuine single mar-
ket for data where businesses have easy access to an almost infinite amount of
high-quality industrial data. The vision is also supported by the EU Rolling
Plan for ICT Standardisation [86] that identifies 170 actions organised around
five priority domains—5G, cloud, cybersecurity, big data and Internet of Things.
In order to enable broad data integration, data exchange and interoperability
with the overall goal of fostering innovation based on data, standardisation at
different levels (such as metadata schemata, data representation formats and
licensing conditions of open data) is needed. This refers to all types of (multi-
lingual) data, including both structured and unstructured data, and data from

9 https://ec.europa.eu/isa2/.

http://dx.doi.org/10.1007/978-3-030-53199-7_2
http://dx.doi.org/10.1007/978-3-030-53199-7_3
http://dx.doi.org/10.1007/978-3-030-53199-7_5
http://dx.doi.org/10.1007/978-3-030-53199-7_8
http://dx.doi.org/10.1007/978-3-030-53199-7_6
http://dx.doi.org/10.1007/978-3-030-53199-7_7
https://ec.europa.eu/isa2/
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different domains as diverse as geospatial data, statistical data, weather data,
public sector information (PSI) and research data, to name just a few.

In the domain of big data, five different actions have been requested that also
involve the following standardization organizations:

– CEN, the European Committee for Standardization, to support and assist
the standardisation process and to coordinate with the relevant W3C groups
on preventing incompatible changes and on the conditions for availability of
the standard(s). The work will be in particular focused on the interoperability
needs of data portals in Europe while providing semantic interoperability with
other applications on the basis of reuse of established controlled vocabularies
(e.g. EuroVoc) and mappings to existing metadata vocabularies (e.g. SDMX,
INSPIRE metadata, Dublin Core, etc.);

– CENELEC (the European Committee for Electrotechnical Standardization)
in particular in relation to personal data management and the protection of
individuals’ fundamental rights;

– ETSI (the European Telecommunications Standards Institute) to coordinate
stakeholders and produce a detailed map of the necessary standards (e.g.
for security, interoperability, data portability and reversibility) and together
with CEN to work on various standardisation deliverables needed for the
completion of the rationalised framework of e-signatures standards;

– IEEE has a series of new standards projects related to big data (mobile
health, energy-efficient processing, personal agency and privacy) as well as
pre-standardisation activities on big data and open data;

– ISO/IEC JTC1, WG 9—Big Data, formed at the November 2014 in relation
to requirements, use cases, vocabulary and a reference architecture for big
data;

– OASIS, in relation to querying and sharing data across disparate applications
and multiple stakeholders for reuse in enterprise, cloud, and mobile devices.
Specification development in the OASIS OData TC builds on the core OData
Protocol V4 released in 2014 and addresses additional requirements identified
as extensions in four directional white papers: data aggregation, temporal
data, JSON documents, and XML documents as streams;

– OGC, the Open Geospatial Consortium defines and maintains standards for
location-based, spatio-temporal data and services. The work includes, for
instance, schema allowing descriptions of spatio-temporal sensors, images,
simulations, and statistics data (such as “datacubes”), a modular suite of
standards for Web services allowing ingestion, extraction, fusion, and (with
the web coverage processing service (WCPS) component standard) analytics
of massive spatio-temporal data like satellite and climate archives. OGC also
contributes to the INSPIRE project;

– W3C, the W3C Semantic Web Activity Group has accepted numerous Web
technologies as standards or recommendations for building semantic applica-
tions including RDF (Resource Description Framework) as a general-purpose
language; RDF Schema as a meta-language or vocabulary to define properties
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and classes of RDF resources; SPARQL as a standard language for querying
RDF data: OWL, Web Ontology Language for effective reasoning. More about
semantic standards can be found in [223].

Table 3. History of big data

Year Description

1911 Computing-Tabulating-Recording Company was founded and renamed “International Business

Machines” (IBM) in 1924

1929 The term “Super Computing” was first used in the New York World to refer to large

custom-built tabulators that IBM had made for Columbia University

1937 Social security was introduced in the United States of America and the requirement arose for

data management of 26 million residents

1945 John Von Neumann published a paper on the Electronic Discrete Variable Automatic Computer

(EDVAC), the first “documented” discussion on program storage, and laid the foundations of

computer architecture today

1957 A group of engineers established the Control Data Corporation (CDC) in Minneapolis,

Minnesota

1960 Seymour Cray (CDC) completed the CDC 1604, one of the first solid-state computers, and the

fastest computer in the world at a time when vacuum tubes were found in most large computers

1965 The first data center in the world was planned

1969 ARPANET set a message was sent from UCLA’s host computer to Stanford’s host computer

1970 Edgar Frank Codd invented the relational model for database management

1976 SAS Institute delivered the first version of the “Statistical Analysis System”

1977 Oracle Corporation was founded in Santa Clara, California, U.S

1998 Google was founded at the Stanford University in California

1999 Apache software foundation was established

1989 The invention of the World Wide Web at CERN

2003 Google File System was invented

2004 World Wide Web Consortium (W3C), the main international standards organization for the

Web was founded

2005 The start of development on Apache Hadoop which came into production in 2008

2007 The first publicly available dataset on DBpedia was published by the Free University of Berlin

and the Leipzig University

2009 Yahoo released Pig and Facebook created Hive

2011 Start of real-time processing as opposed to batch processing with Apache Storm and Spark

2012 Creation of Kafka by LinkedIn, Google introduced its Knowledge Graph project

2013 The definition of the Lambda architecture for efficient big data processing

2014 The definition of the Kappa architecture and the beginning of hybrid data processing

6 Big Data Analytics

6.1 The Evolution of Analytics

Over the last 50 years, Data Analytics has emerged as an important area of
study for both practitioners and researchers. The Analytics 1.0 era began in
the 1950s and lasted roughly 50 years. As a software approach, this field evolved
significantly with the invention of Relational Databases in the 1970s by Edgar
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F. Codd, the development of artificial intelligence as a separate scientific disci-
pline, and the invention of the Web by Sir Tim Berners-Lee in 1989. With the
development of Web 2.0-based social and crowd-sourcing systems in the 2000s,
the Analytics 2.0 era started. While the business solutions were tied to relational
and multi-dimensional database models in the Analytics 1.0 era, the Analytics
2.0 era brought NOSQL and big data database models that opened up new pri-
orities and technical possibilities for analyzing large amounts of semi-structured
and unstructured data. Companies and data scientists refer to these two peri-
ods in time as before big data (BBD) and after big data (ABD) [100]. The
main limitations observed during the first era were that the potential capabili-
ties of data were only utilised within organisations, i.e. the business intelligence
activities addressed only what had happened in the past and offered no predic-
tions about its future trends. The new generation of tools with fast-processing
engines and NoSQL stores made possible the integration of internal data with
externally sourced data coming from the internet, sensors of various types, pub-
lic data initiatives (such as the human genome project), and captures of audio
and video recordings. Also significantly developed in this period was the Data
Science field (multifocal field consisting of an intersection of Mathematics &
Statistics, Computer Science, and Domain Specific Knowledge), which delivered
scientific methods, exploratory processes, algorithms and tools that can be easily
leveraged to extract knowledge and insights from data in various forms.

The Analytics 3.0 era started [23] with the development of the “Inter-
net of Things” and cloud computing, which created possibilities for establishing
hybrid technology environments for data storage, real-time analysis and intelli-
gent customer-oriented services. Analytics 3.0 is also named the Era of Impact
or the Era of Data-enriched offerings after the endless opportunities for capital-
izing on analytics services. For creating value in the data economy, Davenport
[100] suggests that the following factors need to be properly addressed:

– combining multiple types of data
– adoption of a new set of data management tools
– introduction of new “agile” analytical methods and machine-learning tech-

niques to produce insights at a much faster rate
– embedding analytical and machine learning models into operational and deci-

sion processes
– requisite skills and processes to work with innovative discovery tools for data

exploration
– requisite skills and processes to develop prescriptive models that involve large-

scale testing and optimization and are a means of embedding analytics into
key processes

– leveraging new approaches to decision making and management.

Nowadays, being in the Analytics 4.0 era or the Era of Consumer-controled
data, the goal is to enable the customers to have full or partial control over data.
Also aligned with the Industry 4.0 movement, there are different possibilities for
automating and augmenting human/computer communications by combining
machine translation, smart reply, chat-bots, and virtual assistants.
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6.2 Different Types of Data Analytics

In general, analytic problems and techniques can be classified into

– Descriptive - What happened?
– Diagnostic - Why did it happen?
– Predictive - What is likely to happen?
– Prescriptive - What should be done about it?
– Cognitive - What don’t we know?

Descriptive analytics focus on analyzing historic data for the purpose of
identifying patterns (hindsights) or trends. While statistical theory and descrip-
tive methodologies [7] are well documented in scientific literature, that is not
the case for other types of analytics, especially observing the big data and cloud
computing context.

Diagnostic analytics [364] discloses the root causes of a problem and gives
insight. The methods are treated as an extension to descriptive analytics that
provide an explanation to the question “Why did it happen?”.

Predictive analytics-based services apply forecasting and statistical mod-
elling to give insight into “what is likely to happen” in the future (foresight)
based on supervised, unsupervised, and semi-supervised learning models.

Prescriptive analytics-based services [281] answers the question “What
should I do?”. In order to provide automated, time-dependent and optimal deci-
sions based on the provided constraints and context, the software tools utilize
artificial intelligence, optimization algorithms and expert systems approaches.

Cognitive analytics is a term introduced recently in the context of cognitive
computing (see also Deloitte Tech Trends 2019 ). Motivated by the capability of
the human mind, and other factors such as changing technologies, smart devices,
sensors, and cloud computing capabilities, the goal is to develop “AI-based ser-
vices that are able to interact with humans like a fellow human, interpret the
contextual meaning, analyze the past record of the user and draw deductions
based on that interactive session” [174,176].

7 Challenges for Exploiting the Potential of Big Data

In order to exploit the full potential, big data professionals and researchers have
to address different data and infrastructure management challenges that cannot
be resolved with traditional approaches [72]. Hence, in the last decade, different
techniques have emerged for acquisition, storing, processing and information
derivation in the big data value chains.

In [404], the authors introduced three main categories of challenges as follows:

– Data challenges related to the characteristics of the data itself (e.g. data vol-
ume, variety, velocity, veracity, volatility, quality, discovery and dogmatism);

– Process challenges related to techniques (how to capture data, how to
integrate data, how to transform data, how to select the right model for
analysis and how to provide the results);
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– Management challenges related to organizational aspects such as privacy,
security, governance and ethical aspects.

Data, process and management challenges are interlinked and influence each
other.

7.1 Challenges

The 3 Vs of big data call for the integration of complex data sources (includ-
ing complex types, complex structures, and complex patterns), as previously
discussed. Therefore, scalability is considered to be a crucial bottleneck of big
data solutions. Following the problem with processing, storage management is
another unavoidable barrier regarding big data. Storing the huge quantity of
data between its acquisition, processing and analysis requires gigantic memory
capacity, thus rendering traditional solutions obsolete.

The inherent complexity of big data (data complexity) makes its percep-
tion, representation, understanding and computation far more challenging and
results in sharp increases in the computational complexity required compared to
traditional computing models based on total data. The design of system archi-
tectures, computing frameworks, processing modes, and benchmarks for highly
energy-efficient big data processing platforms is the key issue to be addressed
in system complexity [231]. Contemporary cloud-based solutions are also consid-
ered to be on the edge of feasibility since responsiveness can be a critical issue,
especially in real-time applications, where upload speeds are considered the main
bottleneck.

When simultaneously working with different data sources, the reliability of
collected data will inevitably fluctuate with missed, partial and faulty measure-
ments being unavoidable, resulting in serious potential trouble later on in the
workflow, such as in the analytics stage. Hence, high-quality data management
(i.e. data cleaning, filtering, transforming and other) actions are mandatory at
the beginning of the process. Besides reliability, the correctness of the data is
considered to be a key aspect of big data processing. High volumes, unstructured
forms, the distributed nature of data in NoSQL data management systems and
the necessity of near-to-real-time responses often lead to corrupted results with
no method being able to guarantee their complete validity.

Other quality dimensions, that impact the design of a big data solution are
completeness, consistency, credibility, timeliness and others.

For instance, in real-time applications (e.g. stock market, financial fraud
detection and transactions parsing, traffic management, energy optimization
etc.), quick responses are required and expected immediately because the
retrieved information can be completely useless if it is derived with high latency
with respect to the collected data.

An additional challenge from the human-computer perspective is the visu-
alization of results. Although various ways in which the data can be displayed
do not affect the data processing segment in any way, visualization is stated in
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the literature as a crucial factor because without adequate representation of the
results, the derived knowledge is useless.

Depending on the type of data being processed, security can sometimes be a
crucial component that requires special attention. When considering, for exam-
ple, a weather forecast or public transport management use case, if a data loss or
theft occurs, it can be considered practically irrelevant compared to a situation
where personal information, names, addresses, location history, social security
information or credit card PIN codes are stolen because in the latter case, data
protection must be upheld at the highest possible standard.

7.2 Example: Analysis of Challenges and Solutions for Traffic
Management

Smart transportation is one of the key big data vertical applications, and refers to
the integrated application of modern technologies and management strategies in
transportation systems. Big data platforms available on the market contribute
to a great extent to smart management of cities and the implementation of
intelligent transportation systems. In order to showcase the usage of different
type of data analytics and to strengthen the discussion on challenges, we will
point to the traffic management system used for monitoring highways in Serbia
[366]. Highways and motorways control systems generate a high volume of data
that is relevant for a number of stakeholder’s from traffic and environmental
departments to transport providers, citizens and the police. The Fig. 3 below
points to (a) the European corridors, and (b) the Corridor 10 that is managed in
Serbia by the public enterprise “Roads of Serbia” using a control system provided
by Institute Mihajlo Pupin. Its holistic supervisory function and control includes
(a) toll collection and motorway and highway traffic control, and (b) urban traffic
control and management. The main challenges on EU level are related to:

Fig. 3. Traffic management
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– Interoperability of tolling services on the entire European Union road net-
work because the ones introduced at local and national levels from the early
1990s onwards are still generally non-interoperable;

– Smart mobility and the need of users to be more informed about different
options in real-time;

– the need for efficient and effective approaches for assessment and manage-
ment of air pollution due to improved ambient air quality.

The main components of the traffic control system are:

– The toll collection system10, which is hierarchically structured; it is fully
modular, based on PC technology and up-to date real time operation systems,
relational data base system and dedicated encryption of data transmission.
Toll line controllers are based on industrial PC-technology and dedicated elec-
tronic interface boards. The toll plaza subsystem is the supervisory system
for all line controllers. It collects all the data from lane controllers including
financial transactions, digital images of vehicles, technical malfunctions, line
operators’ actions and failures. All data concerning toll collection processes
and equipment status are permanently collected from the plaza computers
and stored in a central system database. The toll collection system also com-
prises features concerning vehicle detection and classification, license plate
recognition and microwave-based dedicated short-range communications.

– The Main Control Centre is connected through an optical communication
link with the Plaza Control Centres. Also, the Control Centre is constantly
exchanging data with various institutions such as: banks, insurance compa-
nies, institutions that handle credit and debit cards, RF tags vendors, etc.
through a computer network. Data analytics is based on data warehouse
architecture enabling optimal performances in near real time for statistical
and historical analysis of large data volumes. Reporting is based on optimized
data structures, allowing both predefined (standardized) reports as well as
ad hoc (dynamic) reports, which are generated efficiently using the Oracle BI
platform. Data analytics includes scenarios, such as
• Predicting and preventing road traffic congestion analytics is used

to improve congestion diagnosis and to enable traffic managers to proac-
tively manage traffic and to organize the activities at toll collection sta-
tions before congestion is reached.

• Strategic environmental impact assessment analytics is used to
study the environmental impact and the effect of highways on adjacent
flora, fauna, air, soil, water, humans, landscape, cultural heritage, etc.
based on historical and real-time analysis. Passive pollution monitoring
involves collecting data about the diffusion of air pollutants, e.g. emis-
sion estimates based on traffic counting. Passive pollution monitoring has
been used to determine trends in long-term pollution levels. Road traffic
pollution monitoring and visualization requires the integration of high
volumes of (historical) traffic data with other parameters such as vehicle

10 http://www.pupin.rs/en/products-services/traffic-control-systems/pay-toll/.

http://www.pupin.rs/en/products-services/traffic-control-systems/pay-toll/
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emission factors, background pollution data, meteorology data, and road
topography.

Here, we have pointed to just one mode of transport and traffic management,
i.e. the control of highways and motorways. However, nowadays, an increasing
number of cities around the world struggle with traffic congestion, optimizing
public transport, planning parking spaces, and planning cycling routes. These
issues call for new approaches for studying human mobility by exploiting machine
learning techniques [406], forecasting models or through the application of com-
plex event processing tools [135].

8 Conclusions

This chapter presents the author’s vision of a Big data ecosystem. It serves as an
introductory chapter to point to a number of aspects that are relevant for this
book. Over the last two decades, advances in hardware and software technolo-
gies, such as the Internet of Things, mobile technologies, data storage and cloud
computing, and parallel machine learning algorithms have resulted in the ability
to easily acquire, analyze and store large amounts of data from different kinds
of quantitative and qualitative domain-specific data sources. The monitored and
collected data presents opportunities and challenges that, as well as focusing on
the three main characteristics of volume, variety, and velocity, require research
of other characteristics such as validity, value and vulnerability. In order to auto-
mate and speed up the processing, interoperable data infrastructure is needed
and standardization of data-related technologies, including developing metadata
standards for big data management. One approach to achieve interoperability
among datasets and services is to adopt data vocabularies and standards as
defined in the W3C Data on the Web Best Practices, which are also applied in
the tools presented in this book (see Chaps. 4, 5, 6, 7, 8 and 9).

In order to elaborate the challenges and point to the potential of big data,
a case study from the traffic sector is presented and discussed in this chapter,
while more big data case studies are set out in Chap. 9 and Chap. 10.
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Abstract. Knowledge Graphs (KGs) are one of the key trends among
the next wave of technologies. Many definitions exist of what a Knowl-
edge Graph is, and in this chapter, we are going to take the position
that precisely in the multitude of definitions lies one of the strengths of
the area. We will choose a particular perspective, which we will call the
layered perspective, and three views on Knowledge Graphs.

1 Introduction

Knowledge Graphs (KGs) are one of the key trends among the next wave of
technologies [340]. Despite the highlighted role in practice as well as research, and
the variety of definitions of the notion, there is still no common understanding
of what a Knowledge Graph is. In this introduction, we are not going to choose
one definition of Knowledge Graphs. Many great introductions exist to particular
definitions, and we will refer to some of them in this chapter. Instead, we are
going to take the position that precisely in the multitude of definitions lies one
of the strengths of the area.

At the same time, our aim is not towards a fully exhaustive, historical account
of the evolution of Knowledge Graphs both regarding the term and the concept.
Again, excellent historical and exhaustive accounts already exist, and we will
refer to some of them in this chapter. Instead, we will choose a particular per-
spective, which we will call the layered perspective, and three views on Knowledge
Graphs.

Views on Knowledge Graphs. While many ways of classifying types of
Knowledge Graphs used in literature are possible, here we concentrate on the
following three views:

– knowledge representation tools: where the focus is on how a Knowledge
Graph is used to represent some form of knowledge.

– knowledge management systems: where the focus is the system managing
the Knowledge Graph, similar to how database management systems play this
role for databases.

c© The Author(s) 2020
V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 20–34, 2020.
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– knowledge application services: where the focus is on providing a layer
of applications on top of a Knowledge Graph.

Representation Tool

Management System 

Application Services
Interacts with 

Applications Services

Interacts with 
Data Manager 

Interacts with 
Knowledge Engineer 

Fig. 1. Ordered pyramids of views on KGs.

The Layered Perspective. While these three views certainly have independent
value, they are most interesting when put together as layers: on the first layer
is the representation of knowledge, on the middle layer is the management
system for this knowledge, and on the top layer the application that it solves.
This is illustrated in Fig. 1. There are three additional factors at play here:

– There are generally two ways of looking at the order of these layers. Some
communities tend to see it top-down with the application that the KG solves
as the focus, others tend to see it as bottom-up, with the representation of
knowledge as the focus. Interestingly, there is even another one, as the data
management community often sees the management system in the middle as
the focus.

– The borders between these layers are fuzzy. Many academic and industrial
systems cover two or three of these layers. In some cases, representation tools
partly fulfill some of the characteristics of management systems. The same
applies for application platforms.

– The central aspect of reasoning poses vastly different requirements to the
three layers. Chapter 6 will be fully dedicated to this aspect.

Of course, it is clear that to achieve a great overall system, all layers and their
interactions have to be taken into account; it is hardly possibly to provide a good
knowledge application platform if the knowledge representation layer is not fit
for the purpose.

Organization. The first three sections cover the three views we introduce above.
In Sect. 2, we consider the view of KGs as knowledge representations tools; in
Sect. 3, we consider the view of KGs a knowledge management systems; and in
Sect. 4, we consider the view of KGs as knowledge application platforms. We will
conclude with a section on challenges and opportunities.

http://dx.doi.org/10.1007/978-3-030-53199-7_6
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2 KGs as Knowledge Representation Tools

One of the most common views on Knowledge Graphs, which covers most of the
given definitions, is to primarily view them as knowledge representation tools.
In this section, we will give an overview of some of the notions with a particular
focus on how they fit into the layered view.

Common to all these definitions is that, somewhat unsurprisingly given the
term Knowledge Graph, there is some form of graph encoded by the formalism,
and there is some form of knowledge encoded in it. Yet, in terms of graphs,
what they widely differ is in whether a simple graph is the primary structure or
whether we are actually dealing with richer settings where e.g., the graph has
attributes associated to nodes or edges of the graph, or whether we are actually
dealing with a hyper-graph (similar to full relational structures). Similarly, in
terms of knowledge, what they widely differ is whether the graph is the knowl-
edge, or the knowledge actually generates the entirety or parts of the graph. In
some of the particular communities of computer science, Knowledge Graphs are
explicitly considered as collections of facts about entities, typically derived from
structured data sources such as Babelnet, OpenCyc, DBpedia, Yago, Wikidata,
NELL and their shared features FreeBase [377]. In this way, a collection of facts
represented in different languages but in the same structure is called a KG.

Critically though, forming a bridge to what we discussed in the introduction,
in many cases these differences are only at the surface, and are often a question
of representation, rather than fundamental. For example, it is clear that an
arbitrary relational structure – or, in fact, an arbitrary data structure – can
be encoded as a graph, and vice versa. Similarly, it is in many cases not a
fundamental difference whether technically knowledge is encoded into the graph,
into a separate knowledge representation language, or provided via other AI
and ML frameworks. Still, fundamental differences do remain between different
notions of Knowledge Graphs, and as we mentioned in the beginning, it is our
position that these multifaceted definitions are one of the strengths of the field.
In this section, we will explore such different definitions of Knowledge Graphs,
highlighting both their commonalities and differences.

Views on KGs as Representation Tools for Data. The following definitions
are pointing to the data structure in the representation. They mostly take a
graph representation as a baseline and provide different explanations of how the
graph structure helps with mapping real world information.

A Mathematical Structure. This is often considered to be the first recorded
appearance [399] of the term “knowledge graph” – though not necessarily the
concept of “knowledge graph”. Here, capturing knowledge from the real world as
a teaching-leaning process is considered a way of building a graph of knowledge.
In this work, prerequisites of learning are a necessary set of knowledge units
that should usually be taught to the learner (human or machine) before. In this
paper, a knowledge graph is essentially defined as:
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A mathematical structure with vertices as knowledge units connected
by edges that represent the prerequisite relation. – Marchi and Miquel,
1974 [298]

Although this definition has been given in the context of interactive learning
between students and teachers, the concept can very well be adjusted for cur-
rent machine learning and machine teaching [488] approaches where Knowledge
Graphs are considered as the base of intelligence. In this definition, the degree of
abstraction is hidden in the mathematical representation of knowledge in nodes
as knowledge units and edges as connectors. Obviously, a specific language or
data structure is not discussed due to its different context – so in our layer of
knowledge representation tools, it is certainly a very abstract form of represen-
tation. It is roughly mentioned that knowledge units of a course for students
to learn are represented as nodes of a graph in a game-theoretic way. And the
links between the modes connect the knowledge units where the students can
follow learning paths. In this way, the idea of representing common knowledge
in a graph-based structure works in a similar way between this definition and
today’s KGs. Similar to this view is also represented quite at the same time [387]
where the teacher or the student can be replaced by a computer. It is argued that
the directed graph in which the knowledge is represented in nodes and labeled
links can influence the learning process for data analysis purposes.

A Set of Justified True Beliefs. In a tutorial by Microsoft, Yuqing Gao [146]
follows Plato’s tripartite definition of knowledge as a subset of “Justified true
beliefs” such that knowledge contains a truth condition, a belief condition and
an inference of the former two that leads to justification of that. As example of
such a “Justified true belief” is: A is True. B knows A. B is justified in knowing
A. Knowledge in KGs is represented as triples of (Subject, Predicate, Object),
where Subject and Object are pointing to entities and Predicate represents the
relation. A graph constructed from such triples contains nodes and edges where
the nodes are pointing to entities as subject and object and the edges are for
relations as predicates. There is extra information such as the metadata of each
entity, which are shown as attributes. Following this, a set of key concepts for
Knowledge Graphs as knowledge representation tools are introduced as:

– Entity: as real world entities
– Edge: relations of entities in a schema
– Attribute: metadata about an entity
– Ontology: definition of possible entities, relations and attributes

– Yuqing Gao, 2018 [146]

In this definition, two components of attribute and ontology are the concepts
considered extra than other graph-based views. In fact, considering these compo-
nents for knowledge representations adds on the characteristics of KGs. Entities
and relations usually capture information stored in a Knowledge Base (KB).

An Unambiguous Graph. As seen before, most of the attempts in defining
Knowledge Graphs have a focus on defining KGs as representing knowledge
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in a graph structure. Therefore, the KGs are often represented by the main
components of a graph, namely nodes and edges. This graph is often considered
as a directed and labeled graph, without which the structure of the graph cannot
encode any significant meaning. When the nodes and edges are unambiguously
unidentifiable, the graph is considered to be an unambiguous graph. With this
foundation, a Knowledge Graph can be defined as:

“An Unambiguous Graph with a limited set of relations used to label the
edges that encodes the provenance, especially justification and attribution,
of the assertions.” – McCusker et al., 2018 [304]

This definition tried to go beyond representing KGs only as nodes and relations.
In order to fulfills this definition, all the knowledge units of a KG including
relations and nodes should be globally identifiable. In addition, the meaning of
limited set of relations is followed from [440] meaning a core set of essential
classes and relations that are true regardless of context. This level of abstraction
is similar to data representation in triple format with unique resource identifiers.

World Knowledge Graphs and Metadata. At a basic level of observation,
data represents elements as raw values collected from real-world domains of
knowledge. Metadata represent information about the underlying data in a sec-
ond abstract level. In order to represent knowledge from real world:

1. the real world objects need to be observed at least once and represented as
data,

2. previous representation of such data is required to be captured as metadata
and

3. all of these meta-level definitions on top of the abstractions of the objects of
prime interest need to be connected.

At the formal and technical level, a formal and mathematical data structure,
degree of abstraction, and a syntactic and semantic language are needed. Thus,
characteristics of Knowledge Graphs lead the majority of the community to see
and define them as tools for representing world knowledge in a graph model,
where entities are represented as nodes and relations among entities are rep-
resented as directional edges. More formally, let E = {e1, · · · , eNe

} be the set
of entities, R = {r1, · · · , rNr

} be the set of relations connecting two entities,
D = {d1, · · · , dNd

} be the set of relations connecting an entity and a literal, i.e.,
the data relations, and L be the set of all literal values. Then:

“a knowledge graph KG is a subset of (E ×R×E)∪(E ×D×L) representing
the facts that are assumed to hold.” – Wang et al., 2014 [462].

However, there are different attempts in defining the concept of KGs that we
will present in the following parts of this section.

Views on KGs as a Representation Tool for Knowledge. The following
definitions are pointing to a view where the structure of the graph representation
is not the only advantage but also includes ontological aspects of knowledge.
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The actual knowledge lies in the power of ontologies represented in the graph
alongside the data level. In this way, the representation is enriched to handle
the complexity of real world (not yet complete in coverage) and to empower
learning, reasoning and inference abilities.

A Particular Kind of Semantic Network. The more intensive use of the
term Knowledge Graphs starts from the early 1980s where the concept of Seman-
tic Networks was introduced [13,410,482]. Later it was continued as a project by
two universities from the Netherlands named Knowledge Graph [333,449]. Fol-
lowing the definition of semantic networks as a specific structure of representing
knowledge by labelled nodes and links between these nodes, KGs are defined as
follows:

A knowledge graph is a kind of semantic network representing some sci-
entific theory. – Popping, 2003 [357]

In this view, representation of explicit knowledge is considered by way of its
formulation (logical or structured) [372]. While knowledge can be represented
in multi modals such as text, image etc., this definition is applicable only on
text extraction and analysis. Semantic networks are a way of structural formal-
ism used for knowledge representation in nodes and edges. Such networks are
mainly used in expert systems with a rule base language, a knowledge base sit-
ting in the background, and an inference engine. Knowledge represented and
reasoned by semantic networks are called author graphs with points as concept
units representing meaning and labeled links between concepts. One essential
difference between other views on Knowledge Graphs (in a broader sense) and
the one derived from semantic networks is the explicit choice of only a few types
of relations [219,440].

Representation of Human Knowledge. Although many of the definitions
for Knowledge Graph represent the concept as an formation representing tool,
some views see KGs as a lingua franca of humans and machines. KGs contain
information that is consumable by AI approaches in order to provide applications
such as semantic search, question answering, entity resolution, and representa-
tion learning.

“A graph-theoretic representation of human knowledge such that it can
be ingested with semantics by a machine; a set of triples, with each triple
intuitively representing an assertion.” – Kejriwal, 2019 [237]

Knowledge Represented with a Multi-relational Graph. A large volume
of human knowledge can be represented with a multi-relational graph. Binary
relationships encode facts that can be represented in the form of RDF-type
triples (head; predicate; tail), where head and tail are entities and predicate is the
relation type. The combination of all triples forms a multi-relational graph, where
nodes represent entities and directed edges represent relationships. The resulting
multi-relational graph is often referred to as a Knowledge Graph. Knowledge
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Graphs (KGs) provide ways to efficiently organize, manage and retrieve this type
of information, and are increasingly used as an external source of knowledge for
problems like recommender systems, language modeling [2], question answering
or image classification.

One critical point to emphasize is that while many of the KGs we see today
contain as their knowledge mostly simple ground data, more and more applica-
tions need an actionable knowledge representation. To a certain extent, this is
already the case of existing Knowledge Base Management Systems, backed by
ontologies for which reasoning tasks are of different computational complexity
and expressive power. The importance of supporting implicit knowledge becomes
central for KGs as well, especially when they are a component of an Enterprise AI
applications, to the point that intensional knowledge should be considered part
of the KG itself. Consequently, reasoning, i.e., turning intensional into derived
ground knowledge, becomes inherently part of the KG definition.

For example, in a financial Enterprise AI application, the body of regulatory
knowledge and the functioning rules of the specific financial domain are of the
essence. As another example, in a logistics setting, the knowledge of how partic-
ular steps in a supply chain interact is often more important than the pure data
underlying the supply chain. Many more such examples could be given.

In total, it is clear that in modern KG-based systems a rich knowledge rep-
resentation must be considered and properly handled in order to balance the
increased complexity with many other relevant properties including usability,
scalability, performance, and soundness of the KG application. We conclude
with a relatively structured, concrete definition accounting for these aspects:

“A semi-structured datamodel characterized by three components: (i) a
ground extensional component, that is, a set of relational constructs for
schema and data (which can be effectively modeled as graphs or generaliza-
tions thereof); (ii) an intensional component, that is, a set of inference rules
over the constructs of the ground extensional component; (iii) a derived
extensional component that can be produced as the result of the applica-
tion of the inference rules over the ground extensional component (with
the so-called “reasoning” process).” – Bellomarini et al., 2019 – [40].

Here we focus on the knowledge representation aspects covered in this view and
in further layers we will discuss how this definition also sees KGs as management
systems and application platforms.

3 KGs as Knowledge Management Systems

In this section, we present the view of Knowledge Graphs as knowledge man-
agement systems. The clear analogy to see here is what a database management
system is for databases: A system to create, manipulate and retrieve data. What
this adds to the previous section’s view of KGs as knowledge representation tools
is the service that a KG as a knowledge management system has to offer. In par-
ticular, it has to provide support for the user to (i) add knowledge to a KG (ii)
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derive new knowledge using existing knowledge, and (iii) retrieve data through
a form of general-purpose query language. In both (ii) and (iii), the aspect of
reasoning with and about knowledge becomes essential, which we will discuss in
detail in Chap. 6.

A Network of All Kinds of Things. One of the early attempts after the
appearance KGs in 2012, was a work clarifying the meaning of taxonomy, the-
saurus, ontology and Knowledge Graph [54]. These concepts have been used
by scholars mostly without specific borderlines. In some cases, they even uti-
lized interchangeably. Starting from the Simple Knowledge Organization System
(SKOS) as a standard for building an abstract model, taxonomies are intro-
duced as controlled vocabularies to classify concepts and thesauri to express
associations and relations between concepts and their labels including synonyms.
Ontologies are considered as complex and more detailed versions of those domain
conceptualizations when the dependencies between concepts and relations get
more specific. There are also rules and constraints defined for representing knowl-
edge which refer to ontologies as explicit and systematic specification of concep-
tualization for any kind of existence. By this, in building an abstract model of
the world or a domain, the meaning of all concepts must be formally defined that
can be interpreted correctly by machines. There must also be consensus about
the definition of the concepts such as the meaning in transferred correctly. In
AI-based approaches, the existence of things is defined when they can be repre-
sented [172]. Following these concepts, finally Knowledge Graphs are introduced
as enriched models around the aforementioned concepts more precisely:

“Knowledge Graphs could be envisaged as a network of all kinds of things
which are relevant to a specific domain or to an organization. They are not
limited to abstract concepts and relations but can also contain instances
of things like documents and datasets.” – Blumauer, 2014 [54].

The motivation behind having KGs is expressed in posing complex queries over a
broader set of integrated information from different source for knowledge discov-
ery, and in-depth analyses. Knowledge Graphs being the networks of all kinds of
information, the industry-scale of such integration, together with the inclusion
of Taxonomy, Thesaurus and Ontology is seen as Enterprise Knowledge Graphs
(EKGs). Since this definition is mostly using semantic web technologies, the
specific querying language that suits this definition is suggested to be SPARQL,
and Resource Description Framework (RDF) is used as the data and ontology
representation model.

A Graph-based Representation of Knowledge. In a similar way, Knowl-
edge Graphs are considered to be any kind of graph-based representations of
general information from the world [348]. This includes consideration of other
graph-based data models such as the RDF standard pushed by Semantic Web or
any knowledge representation languages such as description logic (DL). A simple
triple of such a graph representation could be seen as two nodes representing
entities which are connected by a relation. There are also predefined structural
relations such as is a relation which denotes the type of entities, or relations

http://dx.doi.org/10.1007/978-3-030-53199-7_6
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denoting class hierarchies. As discussed before, such relations are usually rep-
resented as ontologies. In a universally unified level, this allows interlinking of
different datasets, which leads to big data in graph representations, or so called
Knowledge Graphs. Overall, this view mostly follows the basics of semantic rep-
resentation of knowledge bases on the Web. The community has never come
up with a formal definition but generally, on a technical level, the overlapping
concepts have been coined together and built up a general understanding of the
concept connections. Following this view, a structured list of four characteristics
has been listed such that “a Knowledge Graph:

1. mainly describes real world entities and their interrelations, organized
in a graph,

2. defines possible classes and relations of entities in a schema,
3. allows for potentially interrelating arbitrary entities with each other,
4. covers various topical domains.” – Pullheim, 2017 [348]

Basically, the first characteristic refers to the terminological knowledge about
concepts of a domain, and is represented as TBox in description logic. The
second characteristic points to the assertions knowledge about individual entities
as ABox. By such a definition, a DL knowledge base can be constructed, on
top of which inference of new knowledge from the existence knowledge can be
applied. More in common language, the ontologies without instances and the
datasets without ontologies are not considered as a KG. As this way of knowledge
representation involves logical rules and ontologies, the KG created by this has
reasoning abilities. Complex queries are made possible with the power of data
representation and the existence of ontologies. Thus, this definition also falls into
the category of a KG being a management system.

A Finite Set of Ground Atoms. Looking at KGs as a graph of nodes and
links, assuming R as a set of relations and C a set of entities, the following formal
definition is given:

“A Knowledge Graph G is a finite set of ground atoms of the form p(s, o)
and c(s) over R ∪ C. With Σg = 〈R, C〉, the signature of g, we denote
elements of R ∪ C that occur in g.” – Stepanova, 2018 [413]

This adopts first-order logic (FOL), seeing a set of correct facts as a KG. These
facts are represented as unary and binary triples. In addition to the reasoning
and querying power that comes from this definition, the power of explainability
is also addressed here. Such features are a must now for KGs as management
systems for AI-based downstream tasks.

A Graph of Data with the Intent to Compose Knowledge. In one of the
attempts in (re)defining Knowledge Graphs [55], datasets are seen in graph rep-
resentations with nodes representing entities and links denoting their relations.
Example graph representation can be considered as:

– directed edge-labelled graphs as labelled edges between entities as nodes,
– property graphs as additional annotations on the edges,
– name graph as a collection of data represented in directed edge-labelled.
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In a succinct view, the definition of KGs is then summarized as:

“A graph of data with the intent to compose knowledge.” – Hogan et al.,
2019 [55]

This definition brings another management action into the picture, namely com-
posing knowledge. This is not only about knowledge representation in a graph
structure but also using that graph for a dedicated purpose. Construction of a
KG under this definition means facilitating complex management steps.

An Open-World Probabilistic Database [58]. Probabilistic databases, often
abbreviated PDBs, as the state of the art of processing large volumes of uncertain
data in a complete platform which is a combination of methods from information
extraction, natural language processing to relational learning [212].

“Knowledge Graphs are addressed as open-world Probabilistic databases
(OpenPDBs).” – Borgwardt, 2017 – [58].

A Knowledge Graph Management System [42]. The authors pose a num-
ber of requirements or desiderata for a Knowledge Graph Management System
(KGMS) in terms of the main system capabilities:

– simple modular syntax: easy to add and remove facts and rules
– high expressive power: at least as expressive as Datalog (i.e., full recursion)
– numeric computation and aggregation: real-world required features
– ontological reasoning: at least as expressive as SPARQL and OWL 2 QL
– probabilistic reasoning: should support a form of probabilistic reasoning
– low complexity: the core language should be tractable in data complexity
– rule repository, management and ontology editor: management facilities
– dynamic orchestration: allow orchestration of complex, real-world workflows

They also formulate a number of access/integration requirements, some of which
are what we consider core capabilities in this section, some of which we will
include in the following section on application services. The ones of core relevance
for management systems are:

– big data access: must be able to consume Big Data sources and interface with
such systems

– database and data warehouse access: must seamlessly integrate with relational
databases, graph stores, RDF stores, etc.

– ontology-based data access (OBDA): allow queries on top of ontologies
– multi-query support: allow multiple queries executed in parallel to benefit

from each other
– procedural code support: allow easy integration of procedural code

They subsequently presented the Vadalog system [38] in more technical detail,
focusing on algorithms and data structures to meet the requirement on high
expressive power, ontological reasoning and low complexity at the same time.
Subsequent papers discuss highly parallelizable fragments [44,45,49], how to
achieve maintainability [64] and other related topics, including more fundamental
aspects [43,162].
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4 KGs as Knowledge Application Services

While not usually providing quotable definitions of Knowledge Graphs, there is
a huge body of work that does not primarily treat KGs as representation tools
or management systems, but as a platform to provide a large number of crucial
applications. So instead of a KG being used to represent information or manage
information, it is rather the capability of the KG to natively or easily support
certain applications that define what a KG is.

For example, [116] introduces KGs not only as the graph containing all of
the Amazon product data, but as a graph that has the special capability of
natively supporting entity resolution (i.e., knowing when two products are the
same) and entity linking (i.e., knowing when two products or other entities are
related). Similar considerations can be found in many KG-related fields. It could
even be argued that the amount of work in KG completion, etc., makes this
application-oriented view of KG the most important one.

Clearly, the border between the two views of management and application is
debatable, and we invite the reader to critically think of what one should consider
as an essential general-purpose service of a knowledge management system, and
what should be part of an application service. We shall explore this aspect in
this section, and in particular in Chap. 6. For example, while question answering
in our opinion would typically be considered as an application service, as would
be offering recommender system capabilities, it is less clear for relatively general-
purpose application services such as entity resolution and link prediction, which
could be seen as a requirement of a general purporse knowledge management
system. Here, we will consider all of four of these as application services as
they clearly offer a well-defined application compared to a management system
offering a query language that supports such applications.

Knowledge Organization System. This view is from the domain of libraries
and humanities where KGs are sees as knowledge organization systems. Even
in a further vision, KGs are seen to integrate the insights derived from analysis
in large-scale domains. This vision is already in practice by reasoning systems
considered as a part of the KG concept.

“Knowledge Graphs represent concepts (e.g., people, places, events) and
their semantic relationships. As a data structure, they underpin a digital
information system, support users in resource discovery and retrieval, and
are useful for navigation and visualization purposes.” – Haslhofer, 2018
[188]

Scholarly communication artifacts, such as bibliographic metadata about sci-
entific publications, research datasets, citations, description of projects,and pro-
file information of researchers, has recently gained a lot of attention with KG
technologies. With the help of Linked Data technologies, interlinking of seman-
tically represented metadata has been made possible. Discovering and providing
links between the metadata of scholarly artifacts is important in scholarly com-
munities. This definition has a particular view of KGs for such purposes. The

http://dx.doi.org/10.1007/978-3-030-53199-7_6
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links are generated retrospectively by devising similarity metrics over sets of
attributes of the artifact descriptions. Interlinking of such metadata provides
shareable, extensible, and easily re-usable metadata in the form of KGs. We also
address the scholarly domain as one of the example applications.

Rule Mining and Reasoners. One of the early attempts in systematic defi-
nitions of KGs goes beyond seeing them as only a representation tool but more
as a management system close to database management systems.

“A Knowledge Graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge.” – Ehrlinger, 2016 – [121].

This is one of the early attempts in defining KGs in a systematic way with
a different view. Similarly, the following definitions sees KGs as a specific data
model. There are several rule mining reasoners around which are purely designed
to consume the ontology and mine relational patterns out of the KG. One exam-
ple of this category is AMIE [144]. We categorize it under this view because it is
more than just a representation tool and performs some data management steps.
It has RDF as the data model for representing the facts and rules and uses its
own internal functions for rule mining.

Data Application Platform. The VADA project [257] saw many application
services built on top of its Knowledge Graph Management System (KGMS)
Vadalog [164]. Before going into concrete examples, let us inspect the application
service requirements given in [42]:

– data cleaning, exchange, integration: often summarized as “data wrangling”
– web data extraction, interaction and IoT: to interact with the outside world
– machine learning, text mining, NLP, data analytics: providing and interfacing

with external such services. An interesting side-note is that the authors here
invert the perspective: it is not always the knowledge graph system providing
the application service, but sometimes also using it.

– data visualization: for providing data consumable by an end-user or analyst

Let us now proceed to concrete examples of these abstract requirements. Prime
among them is:

– Data Wrangling, i.e., the whole process of bringing raw data into an integrated
format amenable to Big Data Analytics [141,257,258]. Further services seen
as key were at the data acquisition phase the application service

– Data Extraction [132,262,308]. Further key application services are those of
– Recommender Systems [82], including services for downstream machine-learn-

ing applications which need feature engineering. A connected but independent
application platform requirement is that of

– Social Choice [89,90] where the application requirement is to choose among
a number of different users’ preferences the best joint solution. A further
one, for which it is somewhat debatable whether it is a management system
requirement or an application service is that of
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– Machine Learning [41] service integration - bridging typical KGMS services
and machine learning services. Another interesting case is that of a vertical
application service collection, namely that of

– Company Knowledge Graphs [24,39], especially important for the COVID-
19 perspective raised in one of the works on the economic impact of the
pandemic.

5 KGs in Practice: Challenges and Opportunities

The initial release of KGs was started on an industry scale by Google and fur-
ther continued with the publication of other large-scale KGs such as Facebook,
Microsoft, Amazon, DBpedia, Wikidata and many more. As an influence of the
increasing hype in KG and advanced AI-based services, every individual com-
pany or organization is adapting to KG. The KG technology has immediately
reached industry, and big companies have started to build their own graphs such
as the industrial Knowledge Graph at Siemens [206]. In a joint work [331] for
sharing ideas from large-scale industrial Knowledge Graphs, namely Microsoft,
Google, Facebook, eBay and IMB, authors stated a broad range of challenges
ahead of research and industry involving KGs. Despite the content-wise differ-
ence and similarities of those Knowledge Graphs, the discussions involve data
acquisition and provenance problems due to source heterogeneity and scalabil-
ity of the underlying managements system. Here we introduce the Enterprise
Knowledge Graph of Italian companies for the Central Bank of Italy.

5.1 Integrated Ownership and Company Control

The database at our disposal contains data from 2005 to 2018, regarding unlisted
companies and their shareholders (companies or persons). If we see the database
as a graph, where companies and persons are nodes and shareholding is rep-
resented by edges, on average, for each year the graph has 4.059M nodes and
3.960M edges. There are 4.058M Strongly Connected Components (SCC), com-
posed on average of one node, and more than 600K Weakly Connected Com-
ponents (WCC), composed on average of 6 nodes, resulting in an high level of
fragmentation. Interestingly, the largest SCC has only 15 nodes, while the largest
WCC has more than one million nodes. The average in- and out-degree of each
node is ≈1 and the average clustering coefficient is ≈0.0084, which is very low
compared to the number of nodes and edges. Furthermore, it is interesting to
observe that the maximum in-degree of a node is more than 5K and the max-
imum out-degree is more than 28K nodes. We also observe a high number of
self-loops, almost 3K, i.e. companies that directly own shares of themselves in
order to subtract them from the market. The resulting graph shows a scale-free
network structure, as most real-world networks [148]: the degree distribution
follows a power-law and there are several nodes in the network that act as hubs.

The Register of Intermediaries and Affiliates (RIAD), the ownership network
of European financial companies run by the European Central Bank, is a good
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example of the company control topology at the European level. It has one large
SCC containing 88 nodes, and all the others with less than 10 nodes; there is
one huge WCC, with 57% of the nodes, with the others scattered around small
WCCs with 11.968 nodes on average and (apart from the largest one), none with
more than 472 nodes.

5.2 Large-Scale Scholarly Knowledge Graphs

The complexity of scholarly data fully follows the 6 Vs of Big Data characteris-
tics towards building Scholarly Knowledge Graphs [405]. The term Big Scholarly
Data (BSD) [474] is coined to represent the vast amount of information about
scholarly networks including stakeholders and artifacts such as authors, orga-
nizers, papers, citations, figures. The heterogeneity and complexity of data and
their associated metadata distributed on the Web perfectly qualifies this domain
for Big Data challenges towards building Scholarly KGs:

– Volume refers to the ability to ingest and store very large datasets; in the con-
text of scholarly metadata, at least over 114 million scholarly documents [240]
were recorded in 2014 as being available in PDF format. In computer sci-
ence, the total number of publications of the different types is reaching 4
million [423]. Different types of publication in different formats are being
published every day in other scientific disciplines.

– Velocity denotes the growth rate generating such data; the average growth
rate of scientific publishing is measured as 8 to 9% [61].

– Variety indicates multiple data formats and models; the domain of scholarly
communication is a complex domain [29] including many different types of
entities with complex interrelationships among them.

– Value concerns the impact of high quality analytics over data; certain
facts play enormously important roles in the reputation and basic life of
research stakeholders. Providing precise and comprehensive statistics sup-
ports researchers with already existing success measurement tools such as
number of citations. In additions, deep and mined knowledge with flexible
analytics can provide new insights about artifacts and people involved in the
scholarly communication domain.

– Veracity refers to the biases, ambiguities, and noise in data; this characteristic
is especially applicable in the context of the scholarly communication domain
due to deduplication problems [296] and the ambiguity problem for various
scholarly artifacts as well as person names.

– Variability of the meaning of the metadata [474].

Discovering high quality and relevant research-related information has a certain
influence on the life of researchers and other stakeholders of the communication
system [109]. For examples, scholars search for quality in the meaning of fit-
ness for use in questions such as “the venues should a researcher participate” or
“the papers should be cited”. There are already attempts to assist researchers
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in this task, however, resulting in recommendations often being rather superfi-
cial and the underlying process neglecting the different aspects that are impor-
tant for authors [439]. Providing recommendation services to researchers and
a comprehensive list of criteria while they are searching for relevant informa-
tion. Furthermore, having access to the networks of a paper’s authors and their
organizations, and taking into account the events in which people participate,
enables new indicators for measuring the quality and relevance of research that
are not just based on counting citations [438]. Thus each of the Vs of Big Data
needs careful management to provide such services for scholarly communities.

6 Conclusion

In this chapter, we introduced Knowledge Graphs in a layered perspective:
Knowledge Graphs as (1) knowledge representations tools, (2) knowledge man-
agement systems, and (3) knowledge application services. We did not focus on
a single definition here but presented a multitude of definitions, putting them
into the context of this layered perspective. We deliberately stopped short of
the chapter being an exhaustive historical overview as excellent overviews have
already been written.

We also pointed toward aspects of particular concern: The different ways that
particular communities see KGs (top-down or bottom-up, or even middle-layer
in focus). We concluded with the practical challenges of KGs by providing typical
industrial and academic applications. Throughout the chapter, we discussed the
aspect of reasoning being a natural counterpart to this “bigger picture” focus
section, and we shall consider reasoning in greater detail in Chap. 6.
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Abstract. Big data is a persistent phenomena, the data is being gener-
ated and processed in a myriad of digitised scenarios. This chapter covers
the history of ‘big data’ and aims to provide an overview of the existing
terms and enablers related to big data. Furthermore, the chapter covers
prominent technologies, tools, and architectures developed to handle this
large data at scale. At the end, the chapter reviews knowledge graphs
that address the challenges (e.g. heterogeneity, interoperability, variety)
of big data through their specialised representation. After reading this
chapter, the reader can develop an understanding of the broad spectrum
of big data ranging from important terms, challenges, handling technolo-
gies, and their connection with large scale knowledge graphs.

1 Introduction

The digital transformation has impacted almost all aspects of modern society.
The past decade has seen tremendous advancements in the areas of automation,
mobility, the internet, IoT, health, and similar areas. This growth has led to
enormous data-generation facilities, and data-capturing capabilities.

In the first section “Outlook”, we review the definitions and descriptions of
big data and discuss the drivers behind big data generation, the characteristics
exhibited by big data, the challenges offered by big data, and the handling of this
data by creating data value chains. In the section “Tools and Architectures”, we
cover the software solutions and architectures used to realise the big data value
chains. We further cover characteristics and challenges relating to big data. The
section “Harnessing the Big Data as Knowledge Graphs” connects knowledge
graphs and big data, outlining the rationale and existing tools to handle large-
scale knowledge graphs.

2 Big Data: Outlook

Today, big data is widespread across and beyond every aspect of everyday life.
This trend of increasing data was first envisioned and defined years ago. Notably,
the first evidence of the term big data comes from a paper [87] published in 1997,
c© The Author(s) 2020
V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 35–55, 2020.
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where the authors described the problem as BigData when the data do not fit in
the main memory (core) of a computing system, or on the local disk. According
to the Oxford English Dictionary (OED), big data is defined as: “data of a
very large size, typically to the extent that its manipulation and management
present significant logistical challenges.” Later, when the terms velocity, variety,
and volume were associated as characteristics of big data, the newer definitions
of the term ‘big data’ came to cover these characteristics, as listed below:

1. “Big data is high volume, high velocity, and/or high variety information assets
that require new forms of processing to enable enhanced decision making,
insight discovery and process optimization,” [271,297].

2. “When the size of the data itself becomes part of the problem and traditional
techniques for working with data run out of steam,” [288].

3. Big Data is “data whose size forces us to look beyond the tried-and-true
methods that are prevalent at that time,” [217].

4. “Big Data technologies are a new generation of technologies and architectures
designed to extract value economically from very large volumes of a wide
variety of data by enabling high-velocity capture, discovery, and/or analysis,”
[470].

5. “Big data is high-volume, high-velocity and high-variety information assets
that demand cost-effective innovative forms of information processing for
enhanced insight and decision making,” [271].

6. “Big Data is a term encompassing the use of techniques to capture, process,
analyse and visualize potentially large datasets in a reasonable timeframe not
accessible to standard IT technologies.” By extension, the platform, tools and
software used for this purpose are collectively called “Big Data technologies,”
[98].

7. “Big data can mean big volume, big velocity, or big variety,” [414].
8. “The term is used for a collection of datasets so large and complex that it

becomes difficult to process using on-hand database management tools or
traditional data processing applications”1.

9. “Big data represents the information assets characterized by such a high
volume, velocity and variety to require specific technology and analytical
methods for its transformation into value”2.

Regardless of the defining text, big data is a persistent phenomenon and is
here to stay. We take a brief overview of the key enabling technologies that made
big data possible in the following section.

2.1 Key Technologies and Business Drivers

As recently as the year 2000, digital information only constituted about one
quarter of all the stored information worldwide3. Other information was mainly
1 http://en.wikipedia.org/.
2 http://en.wikipedia.org/.
3 https://www.foreignaffairs.com/articles/2013-04-03/rise-big-data.
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stored on paper, film, or other analogue media. Today, by contrast, less than
two percent of all stored information is non-digital. The key enablers of the big
digital data revolution are the advancements in technologies, be it increased
internet speed, the availability of low-cost handheld mobile devices, or the myr-
iad of applications ranging from social media to personal banking. At present,
organizations view the acquisition and possession of data as significant assets. A
report by the World Economic Forum [315], “Big Data, Big Impact,” declared
‘data’ an asset akin to currency or gold. This fact has led to significant changes
in business models. Besides, aggressive acquisition and retention of data have
become more popular among organizations. Prominent examples are internet
companies such as Google, Yahoo, Amazon, or Facebook, which are driven by
new business models. Technology proliferation is one of the major enablers of big
data acquisition. Cheaper and accessible technology is being used in almost all
parts of modern society, be it smart devices, mobile devices, wearable devices, or
resources to store data on the cloud, enabling customers to make purchases and
book vacations among other functions. In the following section, we will cover a
few of the prominent big data enabling technologies and key drivers.

Internet. The advancements in internet bandwidth and streaming have enabled
fast and efficient data transfer between physically distant devices. People around
the globe are accessing the internet via their mobile devices and the number
of connected devices is constantly increasing. The number of internet users
increased from 4.021 billion to 4.39 billion from 2018 to 2019. Almost 4.48 billion
people were active internet users as of October 2019, encompassing 58% of the
global population [83]. In the age of digital society, there is a need for a powerful
wireless network that can rapidly transfer large volumes of data. Presently, we
are moving from 4G LTE to 5G NR, which will enable entirely new applications
and data-collection scenarios. 5G not only comes with better bandwidth and
faster speed but also lower latency. The low latency of 5G was demonstrated
by “Orchestrating the Orchestra”4 – an event that enabled musicians across
different locations to perform at the Bristol 5G Smart Tourism event. Violinist
Anneka Sutcliffe was playing in Bristol, Professor Mischa Dohler was playing the
piano in The Guildhall, London, and vocalist Noa Dohler and violinist Rita Fer-
nandes were at Digital Catapult in Euston, London. These developments have
made it possible to share and curate large amounts of data at high speeds.

Automation and Digitization. Digital automation is a relatively broad term
and it covers tasks that can be done automatically with minimal human assis-
tance, increasing the speed and accuracy as a result. Businesses are more and
more favouring the use of automatization tools to achieve more throughput.
For example, advancements in automatic tools like scanning systems no longer
require manual entry, easing and speeding up the process at the cost of more and
reliable data capture. Similarly, in terms of digital data, cameras and photos are

4 https://www.bristol.ac.uk/news/2019/march/orchestrating-the-orchestra.html.
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another example. The number of digital photos taken in 2017 was estimated to
be 1.2 trillion5, which is roughly 160 pictures for every one of the roughly 7.5 bil-
lion people inhabiting planet earth. With more and more devices being digitized,
more data is being created and stored in machine-readable form. Industries and
businesses must harness this data and use it to their advantage.

Commodity Computing. Commodity hardware, also known as off-the-shelf,
non-proprietary hardware, refers to low-cost devices that are widely available.
These devices can be easily replaced with a similar device, avoiding vendor lock-
in challenges. ‘Commodity cluster computing’ is the preference of using more of
average-performing, low-cost hardware to work in parallel (scalar computing),
rather than having a few high-performance, high-cost items of hardware. Hence,
commodity computing enables the use of a large number of already existing
computing resources for parallel and cluster computing without needing to buy
expensive supercomputers. Commodity computing is supported by the fact that
software solutions can be used to build multiple points of redundancy in the
cluster, making sure that the cluster remains functional in case of hardware
failures. Low-cost cluster computing resources have made it possible to build
proprietary data centres on-premises and to reap the benefits of in-house big
data handling and processing.

Mobile Computing. Handheld smart devices are becoming more and more
common due to increased affordability, relevance, and digital literacy. There were
5.11 billion unique mobile users in 2018 and 5.135 billion in 2019, accounting for
67% of the global population, and it is estimated [83] that by 2020, almost 75%
of the global population will be connected by mobile. Use of mobile computing
has enabled almost everyone to access and generate data, playing a key role in
big data generation and sharing.

Mobile Applications. Mobile devices are playing a key role in the present data
explosion. Mobile phones are no longer only being used for voice calls. Currently,
56% of web access worldwide is generated by mobile devices. At the moment,
more than 57% of the global population use the internet and more than 52% of
the global population use mobile devices [83]. Businesses are developing mobile
applications to not only assist users in ubiquitous computing but also to gener-
ate and capture data of interest. The mobile application development industry
is creating mobile apps for almost all fields, and existing mobile applications
cover a range of tasks like online banking, online purchases, social interactions,
travelling, eating, studying, or entertainment. All of these applications not only
assist in automated data collection related to tasks (e.g. orders) but also assist
in generating additional data that was not easily possible before (e.g. correlating
a new order with previous purchases).

5 https://www.statista.com/statistics/617136/digital-population-worldwide/.
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Ubiquitous Devices (IoT). The internet of things (IoT) enables scenarios
where network connectivity and computing capability extends to objects, sensors
and everyday items not normally considered computers, allowing these devices to
generate, exchange and consume data with minimal human intervention. These
devices are not only increasing in number to cover different facets of life but are
also increasing their sensitivity. According to a GSMA report [16], between 2018
and 2025, the number of global IoT connections will triple to 25 billion. In an
estimate by CGI [2], the total volume of data generated by IoT will reach 600
ZB per year by 2020.

Cloud Infrastructure. Cloud computing is the term used for storing, accessing
and processing data over the internet from a remote server. This ability to store
and manipulate data on the cloud using services like AWS [50], Google Cloud
Platform [264], Cloudera [378], etc. has made it possible to store and analyse
data on-demand with a pay-per-use model. Cloud computing saves costs, offers
better performance, reliability, unlimited capacity, and quick deployment pos-
sibilities. Cloud computing has assisted organizations with providing the data
centre management and efficient data-handling facilities.

2.2 Characteristics of Big Data

Driven by digital transformation, big data is identified by several key attributes.
Interestingly, they all start with the letter ‘V’, and therefore are also called the
V’s of big data. The number of characteristic attributes is constantly increasing
with advancements in technologies and underlying business requirements. In this
section, we cover a few of the main V’s used to describe big data.

Three Vs of Big Data [271,489]

1. Volume: The size of data is increasing at unprecedented rates. It includes data
generated in all fields including science, education, business, technology and
governance. If we take the social media giant Facebook (FB) as an example,
it has been reported that FB generates approximately 4 petabytes of data in
24 h with 100 million hours of video watch-time. FB users create 4 million
likes per minute, and more than 250 billion photos have been uploaded to
Facebook since its creation, which equates to 350 million photos per day.
Apart from the applications, a vast amount of data is being generated by
web, IoT and many other automation tools continuously. All of this data
must be captured, stored, processed and displayed.

2. Velocity: The speed at which the data is being generated has increased rapidly
over the years. The high rate and speed is contributed by the increase in the
use of portable devices to allow data generation and ever-increasing band-
width that allows fast data transfer. In addition, the rate of data generation
(from the Internet of Things, social media, etc.) is increasing as well. Google,
for example, receives over 63,000 searches per second on any given day. And
15% of all searches have never been searched before on Google. Therefore,
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it is critical to manage and analyse the data at the same rate at which it is
being generated and stored in the system.

3. Variety: The data comes from a variety of data sources and is generated in
different forms. It can be structured or unstructured data. Data comes in
the form of text (emails, tweets), logs, signals, records, photos, videos, etc.
This data cannot be stored and queried via traditional structured database
management systems. It is important to develop new solutions that are able
to store and query diverse data; 4 Vs of Big Data [106].

4. Veracity: This is the quality, truthfulness or reliability of data. Data might
contain biases, noise, or abnormalities. It is important to be aware of whether
data being used can be trusted for use in making important decisions, or if
the data is meaningful to the problem being analysed. The data is to be
used to make decisions that can bring strategic competitive advantages to
the business; 10 Vs of Big Data [60].

5. Variability: This is the dynamic and evolving nature of data. The data flow
is not constant or consistent. The speed, density, structure, or format of data
can change over time and several factors influence the consistency of data
that changes the pattern, e.g. more shoppers near Christmas, more traffic in
peak hours etc.

6. Value: This refers to the worth of the data being extracted. For an orga-
nization, it is important to understand the cost and associated benefits of
collection and analysis of data. It is important to know that the data can
be turned into value by analysis, and that it follows set standards of data
quality, sparsity or relatedness.

7. Visualization is often thought of as the only way in which customers can
interact with models. It is important to visualize the reports and results
that can be communicated and extracted from data in order to understand
underlying patterns and behaviours.
In addition to the characteristics mentioned above, some researchers have
gone as far as to introduce 42 [395], or even 51 [243] different Vs to characterise
big data.

2.3 Challenges of Big Data

The characteristics of data combined with targeted business goals pose plenty of
challenges while dealing with big data. In this section, we briefly cover the main
challenges involved in using big data.

Heterogeneity. Heterogeneity is one of the major features of big data, also
characterised as the variety. It is data of different types and formats. The hetero-
geneous data introduces the problems of data integration in big data analytics,
making it difficult to obtain the desired value. The major cause of data hetero-
geneity is disparate sources of data that generate data in different forms. The
data can be text data coming from emails, tweets or replies; log-data coming
from web activities, sensing and event data coming from IoT; and other forms.
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It is an important challenge to integrate this data for value-added analytics and
positive decision making.

Uncertainty of Data. The data gathered from heterogeneous sources like sen-
sors, social media, web activities, and internal-records is inherently uncertain
due to noise, incompleteness and inconsistency (e.g., there are 80% - 90% miss-
ing links in social networks and over 90% missing attribute values for a doctor
diagnosis in clinic and health fields). Efficient analysis to discover value from
these huge amounts of data demands tremendous effort and resources. However,
as the volume, variety and velocity of the data increases, the uncertainty inher-
ent in the data also increases, leading to doubtful confidence in the resulting
analytics and predicted decisions.

Scalability. The volume of data is drastically increasing and therefore an impor-
tant challenge is to deal with the scalability of the data. It is also important to
develop efficient analytics solutions and architectures that can scale up with
the increasing data without compromising the accuracy or efficiency. Most of
the existing learning algorithms cannot adapt themselves to the new big-data
paradigms like dealing with missing data, working with partial data access or
dealing with heterogeneous data sources. While the problem complexity of big
data is increasing at a very fast rate, the computational ability and the solution
capability is not increasing at a similar pace, posing a vital challenge.

Timeliness. When looking for added business values, timing is of prime impor-
tance. It is related to capturing data, execution of analytics and making deci-
sions at the right time. In a dynamic and rapidly evolving world, a slight delay
(sometimes microseconds) could lead to incorrect analytics and predictions. In
an example case of a bogus online bank transaction, the transaction must be
disapproved in a timely manner to avoid possible money loss.

Data Security. Data storage and exchange in organizations has created chal-
lenges in data security and privacy. With the increasing sizes of data, it is impor-
tant to protect e.g. transaction logs and data, real-time data, access control data,
communication and encryption data. Also, it is important to keep track of data
provenance, perform granular auditing of logs, and access control data to deter-
mine any misuse of data. Besides, the difference between legitimate use of data
and customer privacy must be respected by organizations and they must have
the right mechanisms in place to protect that data.

2.4 Big Data Value Chain

The ability to handle and process big data is vital to any organization. The
previous sections have discussed data generation abilities, and the characteristics
and challenges of dealing with big data. This section covers the required activities
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and actions to handle such data to achieve business goals and objectives. The
term value chain [358] is used to define the chain of activities that an organization
performs to deliver a product for decision support management and services. A
value chain is composed of a sequence of interconnected sub-services, each with
its own inputs, transformation processes, and outputs. The noteworthy services
are described below.

Data Acquisition. This is the process of gathering data, filtering, and clean-
ing the data for storage and data analysis. Data acquisition is critical, as the
infrastructure required for the acquisition of big data must bear low, predictable
latency for capturing data as well as answering queries. It should be able to
handle very high transaction volumes in a distributed scalable environment, and
be able to support flexible and dynamic heterogeneous data.

Data Analysis. Interpreting the raw data and extraction of information from
the data, such that it can be used in informed decision making, is called data
analysis. There could be multiple domain-specific analysis based on the source
and use of data. The analysis includes filtering, exploring, and transforming
data to extract useful and often hidden information and patterns. The analysis
is further classified as business intelligence, data mining, or machine learning.

Data Curation. This is the active and continuous management of data through
its life cycle [350]. It includes the organization and integration of data from mul-
tiple sources and to ascertain that the data meets given quality requirements for
its usage. Curation covers tasks related to controlled data creation, maintenance
and management e.g. content creation, selection, validation or preservation.

Data Storage. This is persistent, scalable data management that can sat-
isfy the needs of applications requesting frequent data access and querying.
RDBMS have remained a de facto standard for organizational data manage-
ment for decades; however, its ability to handle data of limited capacity and
well-defined structure (ACID properties, Atomicity, Consistency, Isolation, and
Durability) has made it less suitable to handle big data that has variety, in addi-
tion to volume and velocity. Novel technologies are being designed to focus on
scalability and cope with a range of solutions handling numerous data models.

Data Usage. This is the analysis of data covering the business activities assist-
ing in business decision making. The analysis is made possible through the use
of specialised tools for data integration or querying.

3 Tools and Architectures

3.1 Big Data Architectures

Several reference architectures have been proposed to support the design of big
data systems. Big data architecture is the conceptual model that defines the
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structure and behaviour of the system used to ingest and process “big data”
for business purposes. The architecture can be considered a blueprint to handle
the ingestion, processing, and analysis of data that is too large or complex for
traditional database systems. The aim is to design a solution based on the busi-
ness needs of the organization. Based on the requirements, the proposed solution
must be able to handle different types of workloads like batch processing or real-
time processing. Additionally, it should be able to perform analytics and mining
on this large-scale data.

Good architecture design can help organizations to reduce costs, assist in
making faster and better decisions, and predict future needs or recommend new
solutions. However, the creation of such a system is not straightforward and
certain challenges exist in designing an optimal architecture.

Data Quality: This is one of the important challenges in all domains of data
handling. The data could be noisy, incomplete or simply missing. Substantial
processing is desired to make sure that the resulting data is of the desired quality.
It is a widely known fact that “data preparation accounts for about 80% of the
work of data scientists”.

Data Integration: The architecture must be able to handle the integration
of heterogeneous data coming from disparate sources. It is challenging to handle
and integrate data of multiple sizes and forms coming at different speeds from
multiple sources. Finally, the system should be able to carry out meaningful
analytics on the data to gain valuable insights.

Data Scale: It is important to design a system that works at an optimal
scale without over-reserving the resources. At the same time, it should be able
to scale up as needed without compromising performance.

In order to comply with the data value chain, any big data architecture comprises
of the components that can allow to perform desired operations.

Data Sources: The data of an organization might be originating from
databases, real-time sources like web-logs, activity data, IoT devices and many
others. There should be data ingestion and integration components embedded
in the architecture to deal with these data sources.

Data Ingestion: If the data is coming from the real-time sources, the archi-
tecture must support the real-time data ingestion mechanism.

Data Storage: Depending upon the number and types of data sources, effi-
cient data storage is important for big data architecture. In the case of multiple
types of data sources, a no-SQL “data lake” is usually built.

Data Processing: The data in the system needs to be queried and anal-
ysed, therefore it is important to develop efficient data-querying solutions, or
data-processing tools that can process the data at scale. These processing solu-
tions can either be real-time or batch, depending upon the originating data and
organizational needs.

Data Analysis: Specialised tools to analyse data for business intelligence
are needed to extract meaningful insights from the data.

Data Reporting, and Visualisation: These are the tools used to make
reports from the analysed data and to present the results in visual form.
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Process Automation: Moving the data across the big data architecture
pipeline requires automated orchestration. The ingestion and transformation of
the data, moving it for processing, storage, and deriving insights and reporting
must be done in a repeatable workflow to continuously gain insights from the
data.

Depending upon the type of data and the individual requirements of the
organizations, the selected tasks must be handled by choosing corresponding
services. To support the tasks and selected services, the overall architecture to
realise the data value chain is designed. The big data architectures are mainly
divided into three main types as below:

Lambda Architecture. The lambda architecture, first proposed by Nathan
[99], addresses the issue of slow queries results on batch data, while real-time
data requires fast query results. Lambda architecture combines the real-time
(fast) query results with the queries (slow) from batch analysis of older data.
Lambda architecture creates two paths for the data flow. All data coming into the
system goes through these two paths. Batch Layer: also known as the cold path,
stores all the incoming data in its raw form and performs batch processing on the
data. This offers a convenient way to handle reprocessing. This layer executes
long-living batch-processes to do analyses on larger amounts of historical data.
Speed Layer: also known as the hot path, analyses the data in real-time. This
layer is designed for low latency. This layer executes small/mini batch-processes
on data according to the selected time window (e.g. 1 s) to do analyses on the
latest data. Serving Layer: This layer combines the results from the batch and
speed processing layer to enable fast interactive analyses by users.

Kappa Architecture. Kappa architecture was proposed by Jay Kreps [263]
as an alternative to lambda architecture. Like Lambda architecture, all data
in Kappa architecture flows through the system, but uses a single path, i.e.
a stream processing system. Kappa architecture focuses only on data stream
processing, real-time processing, or processing of live discrete events. Examples
are IoT events, social networks, log files or transaction processing systems. The
architecture assumes that: The events are ordered and logged to a distributed file
system, from where they can be read on demand. The platform can repeatedly
request the logs for reprocessing in case of code updates. The system can handle
online machine learning algorithms.

Microservices-Based Architecture. “Microservice Architecture” has emer-
ged over the last few years to describe a particular way of designing software appli-
cations as suites of independently deployable services [283]. Microservices archi-
tecture makes use of loosely coupled services which can be developed, deployed
and maintained independently. These services can be built for business capability,
automated deployment, intelligence in the endpoints, and decentralized control of
languages and data.
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Microservices-based architecture is enabled by a multitude of technology
advancements like the implementation of applications as services, emergence
of software containers for service deployment, orchestration of containers, devel-
opment of object stores for storing data beyond container lifecycle, requirement
for continuous integration, automated testing, and code analysis to improve soft-
ware quality. Microservices-based architecture allows fast delivery of individual
services independently. In this architecture, all the components of big data archi-
tecture are treated as services, deployable on a cluster.

3.2 Tools to Handle Big Data

In order to deal with big data, a variety of specialised tools have been created.
This section provides an overview of the existing tools based on their functional-
ities. A distributed platform handling big data is made up of components needed
for the following tasks. We will cover the tools developed to perform these specific
tasks in the preceding sections (Fig. 1).

Fig. 1. Classification of tools to handle big data

Resource Orchestration. Distributed coordination and consensus is the back-
bone of distributed systems. Distributed coordination deals with tasks like telling
each node about the other nodes in the cluster and facilitating communication
and high availability. High availability guarantees the presence of the mediator
node and avoids a single point of failure by replication resulting in a fault-tolerant
system. In a distributed setting, the nodes must share common configurations
and runtime variables and may need to store configuration data in a distributed
key-value store. The distributed coordination manages the sharing of the locks,
shared-variables, realtime-configurations at runtime among the nodes.
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In addition, fault-tolerant distributed systems contain methods to deal with
the consensus problem, i.e. the servers or mediators in the distributed system
perform agreement on certain values or variables, e.g. there can be a consensus
that the cluster with 7 servers can continue to operate if 4 servers get down,
i.e. with only 3 servers running successfully. The popular orchestration tools are
Apache zookeeper and etcd. The systems are consistent and provide primitives
to be used within complex distributed systems. Such distributed orchestrators
ease the development of distributed applications and make them more generic
and fault resilient.

Apache Zookeeper: Apache Zookeeper [209] is an open-source project that
originated from the Hadoop ecosystem and is being used in many top-level
projects including Ambari, Mesos, Yarn, Kafka, Storm, Solr, and many more
(discussed in later sections). Zookeeper is a centralised service for managing
cluster configuration information, naming and distributed synchronization and
coordination. It is a distributed key-value store that allows the coordination of
distributed processes through a shared hierarchical name space of data registers
(znodes), like a file system. Zookeeper provides high throughput, low latency,
high availability and strictly ordered access to the znodes. Zookeeper is used
in large distributed clusters and provides fault tolerance and high availability.
These aspects allow it to be used in large complex systems to attain high avail-
ability and synchronization for resilient operations. In these complex distributed
systems, Zookeeper can be viewed as a centralized repository where distributed
applications read and write data. It is used to keep the distributed application
functioning together as a single unit by making use of its synchronization, seri-
alization and coordination abilities.

Etcd: Etcd [1] is a strongly consistent distributed reliable key-value store
that is simple, secure and fast. It provides a reliable way to store data that
needs to be accessed by a distributed system to provide consistent cluster coor-
dination and state management. The name etcd is derived from distributing the
Unix “/etc” directory used for global configurations. It gracefully handles leader
elections and can tolerate machine failure, even in the leader node. The leaders
in etcd handle all client requests needing consensus. Requests like reading can
be handled by any cluster node. The leader accepts, replicates and commits the
new changes after the followers verify the receipt.

Etcd uses the raft protocol to maintain the logs of state-changing events. It
uses full replication, i.e. the entire data is available on every node, making it
highly available. This also makes it possible that any node can act as a leader.
The applications can read and write data to etcd and it can be used for storing
database connection details, or feature flags. These values can be watched and
allow the applications to reconfigure themselves when values change. In addition,
etcd consistency is used to implement leader election or distributed locking. etcd
is used as the coordinating mechanism for Kubernetes and Cloud Foundry. It
is also used in production environments by AWS, Google Cloud Platform and
Azure.
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Resource Management. The big data platform works on top of a set of dis-
tributed computing and memory resources. The resource manager performs the
task of resource allocation in terms of CPU time and memory usage. In a cluster,
multiple applications are usually deployed at one time, e.g. it is common to have
a distributed application like Apache Spark running in parallel to a distributed
database for storage like Apache Hbase in the same cluster. A resource man-
ager is an authority that arbitrates resources among all the applications in the
system. In addition, the resource manager is also responsible for job scheduling
with the help of a scheduler, or an application master.

YARN: Yet another resource manager (YARN) [444] is an important inte-
gral part of the Hadoop ecosystem and mainly supports Hadoop workloads.
In YARN, the application-level resource manager is a dedicated scheduler that
runs on the master daemon and assigns resources to the requesting applications.
It keeps a global view of all resources in the cluster and handles the resource
requests by scheduling the request and assigning the resources to the requesting
application. It is a critical component in the Hadoop cluster and runs on a dedi-
cated master node. The resource manager has two components: a scheduler and
an application manager. The application manager receives the job-submissions,
looks for the container to execute the ApplicationMaster and helps in restarting
the ApplicationMaster on another node in case of failure. The ApplicationMaster
is created for each application and it is responsible for the allocation of appro-
priate resources from the scheduler, tracking their status and monitoring their
progress. ApplicationMaster works together with the Node Manager. The Node
manager runs on slave daemon and is responsible for the execution of tasks on
each node. It monitors their resource usage and reports it to the ResourceMan-
ager. The focus of YARN on one aspect at a time enables YARN to be scalable,
generic and makes it able to support multi-tenant cluster. The High available
version of Yarn uses Zookeeper to establish automatic failover.

Mesos: Apache Mesos is an open-source cluster manager [233] that handles
workloads in a distributed environment through dynamic resource sharing and
isolation. It is also called a distributed systems kernel. Mesos works between the
application layer and the operating system and makes it easier to manage and
deploy applications in large distributed clusters by doing resource management.
It turns a cluster into a single large pool of resources by leveraging the features
of modern kernels of resource isolation, prioritization, limiting, and accounting,
at a higher level of abstraction. Mesos also uses zookeeper to achieve high avail-
ability and recovery from master failure. Mesos carries out microscale resource
management as it works as a microkernel.

Data Flow: Message Passing. Message passing is crucial to distributed big
data applications that must deal with real-time data. This data could be event
logs, user activities, sensor signals, stock exchanges, bank transactions, among
many others. Efficient and fault free ingestion of this real-time data is critical
for real-time applications. Message passing solutions are needed for real-time
streaming applications and data flows.
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Message passing tools, as the name suggests, assist in communication between
the software components of a big data processing pipeline. The systems usu-
ally decouple the sender and receiver by using a message broker that hides the
implementation details like the operating system or network interface from the
application interfaces. This creates a common platform for messaging that is also
easy to develop for the developers. The applications of message passing pipelines
are website activity monitoring, metrics collection, log aggregation etc. Below
we briefly discuss Apache Kafka, which is frequently used in real-time big data
applications.

Apache Kafka: Apache Kafka [147] is a distributed messaging system that
uses the publish-subscribe mechanism. It was developed to support continuous
and resilient messaging with high throughput at LinkedIn. Kafka is a fast, scal-
able, durable, and fault-tolerant system. It maintains feeds of messages in cate-
gories called topics. These topics are used to store messages from the producers
and deliver them to the consumers who have subscribed to that topic.

Kafka is a durable, high volume message broker that enables applications
to process, persist and re-process streaming data. Kafka has a straightforward
routing approach that uses a routing key to send messages to a topic. Kafka
offers much higher performance than message brokers like RabbitMQ. Its boosted
performance makes it suitable to achieve high throughput (millions of messages
per second) with limited resources.

Data Handling. The data handling and acquisition assists in collecting, select-
ing, filtering and cleaning the data being received and generated. This data can
be later stored in a data warehouse, or another storage solution, where further
processing can be performed for gaining the insights.

Apache Flume: Apache Flume [198] is a framework to collect massive
amounts of streaming event data from multiple sources, aggregate it, and move
it into HDFS. It is used for collecting, aggregating, and moving large amounts
of streaming data such as log files, events from various sources like network
traffic, social media, email messages etc. to HDFS. Flume provides reliable mes-
sage delivery. The transactions in Flume are channel-based where two transac-
tions (one sender and one receiver) are maintained for each message. If the read
rate exceeds the write rate, Flume provides a steady flow of data between read
and write operations. Flume allows ingestion of data from multiple servers (and
sources) into Hadoop.

Apache Sqoop: Most of the older companies have stored their data on
RDBMS, but with the increase in data sizes beyond terabytes, it is important
to switch to HDFS. Apache Sqoop [428] is a tool designed to transfer bulk
data between structured data stores such as RDBMS and Hadoop in an efficient
manner. Sqoop imports data from external datastores into HDFS and vice versa.
It can also be used to populate tables in Hive and HBase. Sqoop uses a connector-
based architecture which supports plugins providing smooth connectivity to the
external systems.
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Data Processing. Data-flow processing technologies are mainly categorised
into batch (historical data) processing systems and stream (real-time) processing
systems.

Batch processing systems are high throughput systems for processing high
volumes of data collected over some time. The data is collected, entered, pro-
cessed and then the batch results generated resulting in high latency systems.

Stream processing systems are high throughput i.e. the system continuously
receives data that is under constant change (e.g. traffic control, sensor data,
social media), low latency stream processing systems. The data is processed
on the fly and produces real-time insights. There are three main methods for
streaming: At least once, At most once, and Exactly once.

Until a few years ago, a clear distinction between these two processing sys-
tems existed. However, recent technologies such as Apache Spark and Apache
Flink can handle both kinds of processing, diminishing this distinction. We will
discuss some of the key technologies in the following sections.

Hadoop MapReduce: Hadoop is a platform for distributed storage and
analysis of very large data sets. It has four main modules: Hadoop Common,
HDFS, MapReduce and YARN [153]. MapReduce is the distributed data process-
ing engine of Hadoop. It is a programming model and provides a software frame-
work to write the applications for distributed processing of very large amounts
of data in parallel. MapReduce processes the data in two phases: The map phase
and the reduce phase. In the map phase, the framework reads data from HDFS.
Each dataset is called an input record and split into independent chunks that are
processed by the map tasks in parallel. In the reduce phase, the results from the
map phase are processed and stored. The storage target can either be a database
or back HDFS or something else. Working with MapReduce requires a low level
and specialised design thinking and programming models, making it challenging
for developers to create generic applications. As a result, many tools have been
developed around Hadoop MapReduce to address these limitations. These tools
include:

Apache Pig: This provides a high-level language for expressing data analysis
programs that can be executed in MapReduce [150]. The platform was devel-
oped by Yahoo. The developers can write programs for data manipulation and
transformation as data flow sequences using Pig Latin language. These pro-
grams are easy to write, understand, and maintain. In addition, Apache Pig
offers an infrastructure to evaluate and optimize these programs automatically.
This allows developers to focus more on semantics and productivity. Apache Pig
can execute its jobs in Apache Tez, or Apache Spark (covered in the following
sections).
Apache Hive: This offers a higher-level API to facilitate reading, writing, and
managing large datasets [203] residing in distributed storage (e.g. HDFS) using
SQL-like queries in a custom query language, called HiveQL. Implicitly, each
query is translated into MapReduce commands.
Apache Mahout: This is a machine learning library [337] developed to be used
with MapReduce. It provides an API for distributed or scalable machine learn-
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ing algorithms mostly focusing on linear algebra. It provides algorithms like
classification, likelihood estimation, and clustering. All algorithms are implicitly
transformed into MapReduce jobs.

Apache Spark: Apache Spark is a generic, in-memory data processing
engine [480]. It provides high-level APIs in Java, Python and Scala. Apache
Spark has simplified the programming complexity by introducing the abstraction
of Resilient Distributed Datasets (RDD), i.e. a logical collection of data parti-
tioned across machines. The rich API for RDDs manipulation follows the models
for processing local collections of data, making it easier to develop complex pro-
grams. Spark provides higher-level constructs and libraries to further facilitate
users in writing distributed applications. At the time of writing, Apache Spark
provides four libraries:

Spark SQL - Offers support for SQL querying of data stored in RDDs, or an
external data source. It allows structured data processing using high-level col-
lections named dataset and data frame. A Dataset is a distributed collection of
data and a DataFrame is a Dataset organized into named columns. It is con-
ceptually similar to a table in a relational database. The DataFrames can be
constructed in numerous different ways like reading from structured data files,
tables in Hive, external databases, or existing RDDs.
Spark streaming - Spark implements stream processing by ingesting data in mini-
batches. Spark streaming makes it easy to build scalable fault-tolerant real-time
applications. The data can be ingested from a variety of streaming sources like
Kafka, Flume (covered in earlier sections). This data can be processed using
complex real-time algorithms using a high-level API.
MLlib Machine Learning Library - Provides scalable machine learning algo-
rithms. It provides common algorithms for classification, regression, clustering,
algorithms for feature extraction, feature selection and dimensionality reduction,
high-level API for machine learning pipelines, saving and loading algorithms, and
utilities for linear algebra and statistics.
GraphX - Provides a distributed graph processing using graph-parallel compu-
tation. GraphX extends the Spark RDD by introducing “Graph”: a directed
multigraph with properties attached to each vertex and edge. GraphX comes
with a variety of graph operators like subgraph, joinVertices, or algorithms like
pageRank, ConnectedComponents, and several graph builders that allow build-
ing a graph from a collection of vertices and edges from RDD or other data
sources.

Apache Flink: Apache Flink is a true distributed streaming data-flow
engine [69] and offers a unified stream and batch processing. It treats batch
processing as a special case of streaming with bounded data. The APIs offered
by Flink are similar but the implementation is different. Flink executes arbi-
trary dataflow programs in a data-parallel and pipelined manner. It offers a
complete software stack of libraries using building blocks, exposed as abstract
data types, for streams (DataStream API), for finite sets (DataSet API) and
for relational data processing (relational APIs - the Table API and SQL). The
high-level libraries offered by Apache Flink are:
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Gelly: Flink Graph - provides methods and utilities to simplify the development
of graph analysis applications in Flink. The graphs can be transformed and
modified using high-level functions similar to the ones provided by the batch
processing API. Gelly provides graph algorithms like pageRank, communityDe-
tection, connectedComponents, or shortestPath finding.
Machine Learning: FlinkML is a machine learning library aimed to provide a
list of machine learning algorithms. At the moment, it has been temporarily
deprecated in Apache Flink 1.9.0 for the sake of developing ML core and ML
pipeline interfaces using high-level APIs.
FlinkCEP: Complex event processing for Flink - Allows detection of event pat-
terns in the incoming stream.
State Processor API - provides functionality to read, write, and modify save
points and checkpoints using DataSet API. It also allows using relational Table
API or SQL queries to analyze and process state data.

Data Storage: Distributed File Systems. Distributed file systems allow
access to the files from multiple hosts, in addition to distributing the storage of
large files over multiple machines. Such systems mostly provide the interfaces
and semantics, similar to the existing local files systems, while the distributed
file system handles the network communication, data movement and distributed
directories seamlessly.

Hadoop Distributed File System (HDFS): HDFS, the main component
of the Hadoop ecosystem, has become the de facto standard for distributed file
systems [62]. It is known as the most reliable storage system. HDFS is designed
to run on commodity hardware, making it more popular for its cost-effectiveness.
In addition to working with the conventional file management commands (e.g. ls,
rm, mkdir, tail, copy, etc), HDFS also works with a REST API that complies with
the FileSystem/FileContext interface for HDFS. HDFS architecture is designed
to store very large files and does not suit models with large numbers of small
files. The files are split into blocks which are then distributed and replicated
across the nodes for fault-tolerance. HDFS stores data reliably, even in the case
of hardware failure. HDFS provides parallel access to data, resulting in high
throughput access to application data.

Data Storage and Querying. RDBMS and SQL have remained the main
choice for data storage and management for organizations for years. Gradually,
the main strength of RDBMS technology (the fixed schema design) has turned
into its fundamental weakness in the era of big and heterogeneous data. Today’s
data appears in structured and unstructured forms and originates from a variety
of sources such as emails, log files, social media, sensor events etc. Besides, high
volumes of data are being generated and are subject to high rates of change. On
the other hand, one of the key characteristics of big data applications is that
they demand real-time responses, i.e. data needs to be stored, such that it can
be accessed quickly when required. The non-conventional, relatively new NoSQL
(not only SQL) stores are designed to efficiently and effectively tackle these big
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data requirements. Not only do these stores support dynamic schema design
but they also offer increased flexibility, scalability and customization compared
to relational databases. These stores are built to support distributed environ-
ments, with the ability to scale horizontally by adding new nodes as demand
increases. Consistent with the CAP theorem (which states that distributed sys-
tems can only guarantee at most two properties from Consistency, Availability
and Partition tolerance), NoSQL stores compromise consistency in favour of
high availability and scalability. Generally, NoSQL stores support flexible data
models, provide simple interfaces and use weak consistency models by aban-
doning the ACID (Atomicity, Consistency, Isolation, and Durability) transac-
tions in favour of BASE (Basically Available, Soft state, Eventually Consis-
tent) transaction models. Based on the data models supported by these systems,
NoSQL databases can be categorised into four groups, i.e. key-value stores, doc-
ument stores, column-oriented stores and graph databases. The following section
describes these NoSQL database models in further detail and lists a few examples
of the technologies per model.

Key-Value Stores: Key-value stores can be categorised as the simplest
NoSQL databases. These stores are designed for storing schema-free data as
Key-Value pairs. The keys are the unique IDs for the data, and they can also
work as indexes for accessing the data. The Values contain the actual data in
the form of attributes or complex objects. All the values may not share the same
structure.

Examples: Redis, Riak KV, Amazon DynamoDB, Memcached, Microsoft
Azure Cosmos DB, and etcd.

Document Stores: Document stores are built upon the idea of key-value
stores. They pair each key with a complex data structure described as a docu-
ment. These documents may contain different key-value pairs, key-array pairs or
even nested documents. The document stores are designed for storing, retriev-
ing and managing document-oriented information, also known as semi-structured
data. There is no schema that all documents must adhere to as in the case for
records in relational databases. Each document is assigned a unique key, which
is used to retrieve the document. However, it is possible to access documents
by querying their internal structure, e.g searching for a field with the speci-
fied value. The capability of the query interface is typically dependent on the
encoding format like XML or JSON.

Examples: CouchDB, MongoDB
Column-Oriented Stores: Column-oriented stores are also known as wide-

column stores and extensible record stores. They store each column continuously,
i.e. on disk or in-memory each column is stored in sequential blocks. Instead of
storing data in rows, these databases are designed for storing data tables as
sections of columns of data. Therefore, these stores enable faster column-based
analytics compared to traditional row-oriented databases.

Examples: Apache HBase, Cassandra
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4 Harnessing Big Data as Knowledge Graphs

Today, the term big data is potentially misleading as the size is only one of many
important aspects of the data. The word big promotes the misconception that
more data means good data and stronger insights. However, it is important to
realise that data volume alone is not sufficient to get good answers. The ways we
distribute, organize, integrate, and represent the data matters as much as, if not
more than, the size of the data. In this section, we briefly cover the variety or the
heterogeneity of the data and the possibility of organizing this data as a graph.
Organizing the data as a graph has several advantages compared to alternatives
like database models. Graphs provide a more intuitive and succinct abstraction
for the knowledge in most of the domains. Graphs encode the entities as nodes,
and their relationships as edges between entities. For example, in social inter-
actions the edges could represent friendship, co-authorship, co-worker-ship, or
other types of relations, whereas people are represented as the nodes. Graphs
have the ability to encode flexible, incomplete, schema-agnostic information that
is typically not possible in the relational scenario. Many graph query languages
cannot only support standard operations like joins but also support specialised
operators like arbitrary path-finding. At the same time, formal knowledge repre-
sentation (based on Ontologies) formats could also be used to create Graphs in
a semantically coherent and structured representation (RDF, RDFS). The term
knowledge graph was popularised in 2012 by Google with the slogan “things
not strings” with an argument that the strings can be ambiguous but in the
Knowledge Graphs, the entities (the nodes in a Knowledge Graph) can be dis-
ambiguated more easily by exploiting their relationships (edges/properties) with
other entities. Numerous definitions of Knowledge Graphs have been proposed
in the literature, and a recent and generic definition portrays the “knowledge
graph as a graph of data intended to accumulate and convey knowledge of the
real world, whose nodes represent entities of interest and whose edges represent
relations between these entities” [199]. A high number of public, open, cross-
domain knowledge graphs have been created and published online. Examples
include DBPedia, Wikidata or YAGO, which are either created by the commu-
nity or extract knowledge from Wikipedia. Domain dependent open knowledge
graphs have also been published covering areas like geography, life sciences, and
tourism. At the same time, numerous enterprise knowledge graphs (mostly in-
house) are created by e.g. IBM, Amazon, Facebook, LinkedIn and many others.
The creation of these knowledge graphs mainly involves three methods.

Manual Curation e.g. Cyc, Wikidata, Freebase etc.
Creation using Semi-structured sources e.g. Wikipedia (from Wikipedia
infoboxes), YAGO (WordNet, Wikipedia etc.) BableNet etc.
Creation from Unstructured Sources e.g. NELL (free text), WebIsA (free
text)

As briefly discussed above, such graphs could be created schema-agnostically,
as well as using a formal ontology that defines the set of concepts and categories
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in a given domain alongside their properties and the relations. The knowledge
contained in the knowledge graphs can be characterized around two main dimen-
sions: a) Coverage of a single domain, which can be defined by the number of
Instances. The instances depict the details covered in a given knowledge graph
in a particular area, and more instances mean more details. Coverage could fur-
ther be defined by the number of assertions, i.e. the relationships contained in
the graph. Also, the link degree (average, median) can also assist in estimation
of the coverage of the graph. For b) Knowledge Coverage (multiple domains),
one can consider the number of classes in the schema, the number of relations,
the class hierarchy (depth and width), or the complexity of schema can help in
assessing the breadth and depth of the knowledge covered by a given knowledge
graph. In practice, the graphs can differ in their sizes in orders of magnitude,
but the complexity (linkage) of smaller graphs could still be higher. Similarly,
the underlying schema could either be simple or rather deep and detailed. The
number of instances per class could vary; on the contrary, there could be fewer
instances per class, covering more classes in total. In conclusion, the knowledge
graphs differ strongly in size, coverage, and level of detail.

4.1 Graph Stores

In order to handle large sizes of this relatively new-hyped knowledge represen-
tation format, several tools have been created which can be categorised into two
types, one more general and simple, like graphs, and other relatively formal for
RDF data named as Triple Stores.

Graph Databases. Graph databases are based on graph theory and store
data in graph structures using nodes and edges connecting each other through
relations. These databases are designed for data containing elements which are
interconnected, with an undetermined number of relations between them. Graph
databases usually provide index-free adjacency, i.e. every element contains a
direct pointer to its adjacent elements and no index lookups are necessary. Exam-
ples: Neo4J, FlockDB, HyperGraphDB.

Triple Stores. Triple stores are database management systems for the data
modelled using RDF. RDF data can be thought of as a directed labelled graph
wherein the arcs start with subject URIs, are labelled with predicate URIs, and
end up pointing to object URIs or scalar values. This RDF data can be queried
using SPARQL query language. Triple stores can be classified into three cate-
gories: Native triple stores - Triple stores implemented from scratch exploiting
the RDF data model to efficiently store and access the RDF data. Examples:
Stardog, Sesame, OWLIM RDBMS-backed triple stores - Triple stores built by
adding an RDF specific layer to an existing RDBMS. Example: OpenLink Virtu-
oso NoSQL triple stores - Triple stores built by adding an RDF specific layer to
existing NoSQL databases. Example: CumulusRDF (built on top of Cassandra).
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Efficient handling of large-scale knowledge graphs requires the use of dis-
tributed file systems, distributed data stores, and partitioning strategies. Apart
for several centralised systems, many recent graph processing systems have been
built using existing distributed frameworks, e.g. Jena-HBase [241] and H2RDF
[341], H2RDF+ [342] make use of HBase, Rya [363] makes use of Accumulo,
D-SPARQ [320] works using MongoDB. S2RDF [385], S2X [384], SPARQLGX
[168] and SparkRDF [78] handle RDF data using Apache Spark. The main idea
behind representing data as a graph is not only querying the data, but also
efficient knowledge retrieval including reasoning, knowledge base completion,
enrichment (from other sources), entity linking and disambiguation, path min-
ing, and many other forms of analytics. It can be seen from many recent surveys
[192,235,473] that several systems have been proposed in the literature to deal
with one or a few of the many aspects of large-scale knowledge graph processing.
It is important to realize this gap and the need for a scalable framework that
caters for different tasks for large-scale knowledge graphs.

5 Conclusion

This chapter connects the term big data and knowledge graphs. The first section
of this chapter provides an overview of big data, its major enabling technologies,
the key characteristics of big data, the challenges that it poses, and the necessary
activities to create a big data value chain. In the second section, we cover the
big data architectures and provide a taxonomy of big data processing engines.
In the last section, we connect the big data with large-scale knowledge graphs
covered in Chap. 1 and Chap. 2 of this book. We discuss a few key technologies
and cover the possibilities and key challenges to harness large-scale knowledge
graphs.
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Abstract. This chapter introduces how Knowledge Graphs are gener-
ated. The goal is to gain an overview of different approaches that were
proposed and find out more details about the current prevalent ones.
After reading this chapter, the reader should have an understanding
of the different solutions available to generate Knowledge Graphs and
should be able to choose the mapping language that best suits a certain
use case.

1 Introduction

The real power of the Semantic Web will be realized once a significant number of
software agents requiring information from different heterogeneous data sources
become available. However, human and machine agents still have limited ability
to interact with heterogeneous data as most data is not available in the form
of knowledge graphs, which are the fundamental cornerstone of the Semantic
Web. They have different structures (e.g., tabular, hierarchical), appear in het-
erogeneous formats (e.g., CSV, XML, JSON) and are accessed via heterogeneous
interfaces (e.g., database interfaces or Web APIs).

Therefore, different approaches were proposed to generate knowledge graphs
from existing data. In the beginning, custom implementations were proposed
[67,292] and they remain prevalent today [71,177]; however, more generic
approaches emerged as well. Such approaches were originally focused on
data with specific formats, namely dedicated approaches for, e.g., relational
databases [93], data in Excel (e.g. [274]), or in XML format (e.g. [272]). How-
ever, data owners who hold data in different formats need to learn and maintain
several tools [111].

To deal with this, different approaches were proposed for integrating het-
erogeneous data sources while generating knowledge graphs. Those approaches
follow different directions, but detaching the rules definition from their execution
prevailed, because they render the rules interoperable between implementations,
whilst the systems that process those rules are use-case independent. To generate
knowledge graphs, on the one hand, dedicated mapping languages were proposed,
e.g., RML [111], and, on the other hand, existing languages for other tasks were
repurposed as mapping languages, e.g., SPARQL-Generate [278].
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We focus on dedicated mapping languages. The most prevalent dedicated
mapping languages are extensions of R2RML [97], the W3C recommendation
on knowledge graph generation from relational databases. RML was the first
language proposed as an extension of R2RML, but there are more alterna-
tive approaches and extensions beyond the originally proposed language. For
instance, xR2RML [305], for generating knowledge graphs from heterogeneous
databases, and KR2RML [407], for generating knowledge graphs from heteroge-
neous data.

In the remainder of this chapter, we introduce the Relational to RDF Map-
ping Language (R2RML) [97] and the RDF Mapping Language (RML) [111]
which was the first mapping language extending R2RML to support other het-
erogeneous formats. Then we discuss other mapping languages which extended
or complemented R2RML and RML, or their combination.

2 R2RML

The Relational to RDF Mapping Language (R2RML) [97] is the W3C recommen-
dation to express customized mapping rules from data in relational databases to
generate knowledge graphs represented using the Resource Description Frame-
work (RDF) [94]. R2RML considers any custom target semantic schema which
might be a combination of vocabularies. The R2RML vocabulary namespace is
http://www.w3.org/ns/r2rml# and the preferred prefix is r2rml.

In R2RML, RDF triples are generated from the original data in the relational
database based on one or more Triples Maps (rr:TriplesMap, Listing 4.1, line 3).
Each Triples Map refers to a Logical Table (rr:LogicalTable, line 4), specified
by its table name (rr:tableName). A Logical Table (rr:LogicalTable) is either
a SQL base table or view, or an R2RML view. An R2RML view is a logical table
whose contents are the result of executing a SQL query against the input database.
The SQL query result is used to generate the RDF triples (Table 1).

Table 1. Results of female pole vault for 2019 world championship

Rank Name Nationality Mark Notes

1 Anzhelika Sidorova Authorized Neutral Athlete 4.95 WL,PB

2 Sandi Morris United States (USA) 4.90 SB

3 Katerina Stefanidi Greece 4.85 SB

4 Holly Bradshaw Great Britain 4.80

5 Alysha Newman Canada 4.80

6 Angelica Bengtsson Sweden 4.80 NR

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.
2
3 <#FemalePoleVault> rr:logicalTable <#PoleVaultersDBtable> .
4 <#PoleVaultersDBtable> rr:tableName "femalePoleVaulters" .

Listing 4.1. A Triples Map refers to a Logical Table specified by its name

http://www.w3.org/ns/r2rml
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A Triples Map defines how an RDF triple is generated. It consists of three
parts: (i) one Logical Table (rr:LogicalTable, Listing 4.1), (ii) one Subject Map
(rr:SubjectMap, Listing 4.2, line 2), and (iii) zero or more Predicate-Object Maps
(rr:PredicateObjectMap, Listing 4.2, lines 3 and 4).
1 # Triples Map
2 <#FemalePoleVault> rr:subjectMap <#Person_SM> ;
3 rr:predicateObjectMap <#Mark_POM> ;
4 rr:predicateObjectMap <#Nationality_POM> .

Listing 4.2. A Triples Map consists of one Logical Table one Subject Map and zero
or more Predicate Object Maps

The Subject Map (rr:SubjectMap, Listing 4.3, line 2) defines how unique
identifiers, using IRIs [118] or blank nodes, are generated. The RDF term gener-
ated from the Subject Map constitutes the subject of all RDF triples generated
from the Triples Map that the Subject Map is related to.

A Predicate-Object Map (rr:PredicateObjectMap, Listing 4.3, lines 5 and
10) consists of (i) one or more Predicate Maps (rr:PredicateMap, line 5), and
(ii) one or more Object Maps (rr:ObjectMap, line 6) or Referencing Object Maps
(rr:ReferencingObjectMap, line 11).
1 # Subject Map
2 <#Person_SM>. rr:template "http:://ex.com/person/{name}"
3
4 # Predicate Object Map with Object Map
5 <#Mark_POM> rr:predicate ex:score ;
6 rr:objectMap [ rr:column "Mark" ;
7 rr:language "en" ] .
8
9 # Predicate Object Map with Referencing Object Map

10 <#Nationality_POM> rr:predicateMap <#Country_PM> ;
11 rr:objectMap <#Country_ROM> ;

Listing 4.3. A Predicate Object Map consists of one or more Predicate Maps and one
or more Object Maps or Referencing Object Maps

A Predicate Map (rr:PredicateMap, Listing 4.3, lines 5 and 10) is a Term
Map (rr:TermMap) defining how a triple’s predicate is generated. An Object Map
(rr:ObjectMap, line 6) or Referencing Object Map (rr:ReferencingObjectMap,
Listing 4.4, line 11) defines how a triple’s object is generated.

A Referencing Object Map defines how the object is generated based on
the Subject Map of another Triples Map. If the Triples Maps refer to different
Logical Tables, a join between the Logical Tables is required. The join condition
(rr:joinCondition, Listing 4.4, line 3) performs joins as joins are executed in
SQL. The join condition consists of a reference to a column name that exists in
the Logical Table of the Triples Map that contains the Referencing Object Map
(rr:child, line 4) and a reference to a column name that exists in the Logical
Table of the Referencing Object Map’s Parent Triples Map (rr:parent, line 5).
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1 # Referencing Object Map
2 <#Country_ROM> rr:parentTriplesMap <#Country_TM> ;
3 rr:join [
4 rr:cild "nationality" ;
5 rr:parent "country_name"] .
6
7 <#Country_TM> rr:logicalTable [ rr:tableName "country" ];
8 rr:subjectMap rr:template "http://ex.com/country/{country_name}" .

Listing 4.4. A Referencing Object Map generates an object based on the Subject Map
of another Triples Map

A Term Map (rr:TermMap) defines how an RDF term (an IRI, a blank node,
or a literal) is generated and it can be constant-, column- or template-valued.

A constant-valued Term Map (rr:constant, Listing 4.3, line 5) always gen-
erates the same RDF term which is by default an IRI.

A column-valued term map (rr:column, Listing 4.3, line 6) generates a lit-
eral by default that is a column in a given Logical Table’s row. The language
(rr:language, line 7) and datatype (rr:datatype) may be optionally defined.

A template-valued Term Map (rr:template, Listing 4.3, line 8) is a valid
string template containing referenced columns and generates an IRI by default.
If the default termtype is desired to be changed, the term type (rr:termType)
needs to be defined explicitly (rr:IRI, rr:Literal, rr:BlankNode).

3 RML

The RDF Mapping Language (RML) [110,111] expresses customized mapping
rules from heterogeneous data structures, formats and serializations to RDF.
RML is a superset of R2RML, aiming to extend its applicability and broaden its
scope, adding support for heterogeneous data. RML keeps the mapping rules as
in R2RML but excludes its database-specific references from the core model. This
way, the input data that is limited to a certain database in R2RML (because
each R2RML processor may be associated to only one database), becomes a
broad set of one or more input data sources in RML.

RML provides a generic way of defining mapping rules referring to different
data structures, combined with case-specific extensions, but remains backwards
compatible with R2RML, as relational databases form such a specific case. RML
enables mapping rules defining how a knowledge graph is generated from a set of
sources that altogether describe a certain domain, can be defined in a combined
and uniform way. The mapping rules may be re-used across different sources
describing the same domain to incrementally form well-integrated datasets.

The RML vocabulary namespace is http://semweb.mmlab.be/ns/rml# and
the preferred prefix is rml.

In the remainder of this subsection, we will talk in more details about data
retrieval and transformations in RML, as well as other representations of RML.

3.1 Data Retrieval

Data can originally (i) reside on diverse locations, e.g., files or databases
on the local network, or published on the Web; (ii) be accessed using different

http://semweb.mmlab.be/ns/rml
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interfaces, e.g., raw files, database connectivity for databases, or different inter-
faces from the Web such as Web APIs; and (iii) have heterogeneous struc-
tures and formats, e.g., tabular, such as databases or CSV files, hierarchical,
such as XML or JSON format, or semi-structured, such as HTML.

In this section, we explain how RML performs the retrieval and extraction
steps required to obtain the data whose semantic representation is desired.

Logical Source. RML’s Logical Source (rml:LogicalSource, Listing 4.5) extends
R2RML’s Logical Table and determines the data source with the data to gen-
erate the knowledge graph. The R2RML Logical Table definition determines a
database table, using the Table Name (rr:tableName). In the case of RML,
a broader reference to any input source is required. Thus, the Logical Source
(rml:source) is introduced to specify the source with the original data.

For instance, if the data about countries were in an XML file, instead of a
Logical Table, we would have a Logical Source <#PoleVaultersXML> (Listing 4.5,
line 3):
1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2
3 <#Countries> rml:logicalSource <#CountriesXML> ;
4 <#CountriesXML> rml:source <http://rml.io/data/lambda/countries.xml> .

Listing 4.5. A Triples Map refers to a Logical Source whose data is in XML format

The countries data can then be in XML format as below:
1 <countries>
2 <country continent="Europe">
3 <country_abb>GR</country_abb>
4 <country_name country_language="en">Greece</country_name>
5 <country_name country_language="nl">Griekenland</country_name>
6 </country>
7 <country continent="Europe">
8 <country_abb>UK</country_abb>
9 <country_name country_language="en">United Kingdom</country_name>

10 <country_name country_language="nl">Verenigd Koninkrijk</country_name>
11 </country>
12 <country continent="America">
13 <country_abb>CA</country_abb>
14 <country_name country_language="en">Canada</country_name>
15 <country_name country_language="nl">Canada</country_name>
16 </country>
17 ...
18 </countries>

Listing 4.6. Country data in XML format

Reference Formulation. RML deals with different data serialisations which use
different ways to refer to data fractions. Thus, a dedicated way of referring to
the data’s fractions is considered, while the mapping definitions that define how
the RDF terms and triples are generated remain generic. RML considers that
any reference to the Logical Source should be defined in a form relevant to the
input data, e.g. XPath for XML data or JSONPath for JSON data. To this end,
the Reference Formulation (rml:referenceFormulation) declaration is introduced
(Listing 4.7, line 4), indicating the formulation (for instance, a standard, query
language or grammar) used to refer to its data.
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1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2
3 <#Countries> rml:logicalSource <#CountriesXML> .
4 <#CountriesXML> rml:referenceFormulation ql:XPath .
5 <#CountriesXML> rml:iterator "/countries/country" .

Listing 4.7. A Logical Source specifies its Reference Formulation and iterator

Iterator. While in R2RML it is already known that a per-row iteration occurs, as
RML remains generic, the iteration pattern, if any, cannot always be implicitly
assumed, but it needs to be determined. Thereafter, the iterator (rml:iterator)
is introduced (Listing 4.7, line 5). The iterator determines the iteration pattern
over the data source and specifies the extract of the data during each iteration.
The iterator is not required to be explicitly mentioned in the case of tabular
data sources, as the default per-row iteration is implied.

Source. Data can originally reside on diverse, distributed locations and be
accessed using different access interfaces [112]. Data can reside locally, e.g., in
files or in a database at the local network, or can be published on the Web. Data
can be accessed using diverse interfaces. For instance, metadata may describe
how to access the data, such as dataset’s metadata descriptions in the case of
data catalogues, or dedicated access interfaces might be needed to retrieve data
from a repository, such as database connectivity for databases, or different Web
interfaces, such as Web APIs.

RML considers an original data source, but the way this input is retrieved
remains out of scope, in the same way it remains out of scope for R2RML how
the SQL connection is established. Corresponding vocabularies can describe how
to access the data, for instance the dataset’s metadata (Listing 4.8), hypermedia-
driven Web APIs or services, SPARQL services, and database connectivity
frameworks (Listing 4.9) [112].
1 <#FemalePoleVault> rr:logicalTable <#PoleVaultersCSVtable> ;
2 <#PoleVaultersCSVtable> rml:source <#CSVW_source> .
3
4 <#CSVW_source> a csvw:Table;
5 csvw:url "femalePoleVaulters.csv" ;
6 csvw:dialect [ a csvw:Dialect; csvw:delimiter ";" ] .

Listing 4.8. A CSV file on the Web as RML Data Source

1 <#FemalePoleVault> rr:logicalTable <#PoleVaultersDBtable> ;
2 <#PoleVaultersDBtable> rml:source <#DB_source>;
3 rr:sqlVersion rr:SQL2008;
4 rr:tableName "femalePoleVaulters" .
5
6 <#DB_source> a d2rq:Database;
7 d2rq:jdbcDSN "CONNECTIONDSN";
8 d2rq:jdbcDriver "com.mysql.cj.jdbc.Driver";
9 d2rq:username "root";

10 d2rq:password "" .

Listing 4.9. A table as RML Data Source
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Logical Reference. According to R2RML, a column-valued or template-valued
term map is defined as referring to a column name. In the case of RML, a more
generic notion is introduced, the logical reference. Its value must be a valid
reference to the data of the input dataset according to the specified reference
formulation. Thus, the reference’s value should be a valid expression according
to the Reference Formulation defined at the Logical Source.
1 # Predicate Object Map with Object Map
2 <#CountryName_POM> rr:predicate ex:name ;
3 rr:objectMap [
4 rml:reference "country_name" ;
5 rml:languageMap [ rml:reference "@country_language"] ] .

Listing 4.10. An Object Map in RML with a reference to data according to the
Reference Formulation and a language Map to define the language.

RDF Term Maps are instantiated with data fractions referred to using a
reference formulation relevant to the corresponding data format. Those fractions
are derived from data extracted at a certain iteration from a Logical Source. Such
a Logical Source is formed by data retrieved from a repository accessed as defined
by the corresponding dataset or service description vocabulary.

Language Map. RML introduces a new Term Map for defining the language, the
Language Map (rml:LanguageMap, Listing 4.10, line 5), which extends R2RML’s
language tag (rr:language). The Language Map allows not only constant values
for language but also references derived from the input data. rr:language is
considered then an abbreviation for the rml:languageMap, as rr:predicate is
for the rr:predicateMap.

3.2 Data Transformations: FnO

Mapping rules involve (re-)modeling the original data, describing how objects are
related by specifying correspondences between data in different schemas [126],
and deciding which vocabularies and ontologies to use. Data transformations, as
opposed to schema transformations that the mapping rules represent, are needed
to support any changes in the structure, representation or content of data [367],
for instance, performing string transformations or computations.

The Function Ontology (FnO) [102,104] describes functions uniformly, unam-
biguously, and independently of the technology that implements them. As RML
extends R2RML with respect to schema transformations, the combination of
RML with FnO extends R2RML with respect to data transformations.

A function (fno:Function) is an activity which has input parameters, out-
put, and implements certain algorithm(s) (Listing 4.11, line 1). A parameter
(fno:Parameter) is a function’s input value (Listing 4.11, line 4). An output
(fno:Output) is the function’s output value (Listing 4.11, 5). An execution
(fno:Execution) assigns values to the parameters of a function for a certain exe-
cution. An implementation (fno:Implementation) defines the internal workings
of one or more functions.



66 A. Dimou

1 grel:string_split a fno:Function;
2 fno:name "split";
3 dcterms:description "split";
4 fno:expects (grel:string_s grel:string_sep);
5 fno:returns (grel:output_array).

Listing 4.11. A function described in FnO that splits a string

The Function Map (fnml:FunctionMap) is another Term Map, introduced
as an extension of RML, to facilitate the alignment of the two, RML and FnO.
A Function Map is generated by executing a function instead of using a constant
or a reference to the raw data values. Once the function is executed, its output
value is the term generated by this Function Map. The fnml:functionValue
property indicates which instance of a function needs to be executed to generate
an output and considering which values.
1 <#FemalePoleVault> rr:predicateObjectMap [
2 rr:predicate ex:record;
3 rr:objectMap [
4 fnml:functionValue [
5 rr:predicateObjectMap [
6 rr:predicate fno:executes ;
7 rr:objectMap [ rr:constant grel:split ] ] ;
8 rr:predicateObjectMap [
9 rr:predicate grel:string_s ;

10 rr:objectMap [ rml:reference "notes" ] ] ;
11 rr:predicateObjectMap [
12 rr:predicate grel:string_sep ;
13 rr:objectMap [ rr:constant "," ] ] ] ].

Listing 4.12. A Function Map aligns FnO with RML

3.3 Other Representations: YARRRML

YARRRML [103,196] is a human readable text-based representation for map-
ping rules. It is expressed in YAML [46], a widely used human-friendly data
serialization language. YARRRML can be used with both R2RML and RML.

A mapping (Listing 4.13, line 1) contains all definitions that state how sub-
jects, predicates, and objects are generated. Each mapping definition is a key-
value pair. The key sources (line 3) defines the set of data sources that are used
to generate the entities. Each source is added to this collection via a key-value
pair. The value is a collection with three keys: (i) the key access defines the local
or remote location of the data source; (ii) the key reference formulation defines
the reference formulation used to access the data source; and (iii) the key iterator
(conditionally required) defines the path to the different records over which to
iterate. The key subjects (line 5) defines how the subjects are generated. The key
predicateobjects (line 6) defines how combinations of predicates and objects are
generated. Below the countries example (Listing 4.6) is shown in YARRRML:
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1 mappings:
2 country:
3 sources:
4 - ['countries.xml~xpath', '/countries/country']
5 s: http://ex.com/$(country_abb)
6 po:
7 - [ex:name, $(country_name)]
8 - [ex:abbreviation, $(country_abb)]

Listing 4.13. A YARRRML set of mapping rules

4 [R2]RML Extensions and Alternatives

Other languages were proposed based on differentiation on (i) data retrieval
and (ii) data transformations. The table below (Table 2) summarizes the
mapping languages extensions, their prefixes and URIs. xR2RML [306] and
KR2RML [407] are the two most prominent solutions that showcase exten-
sions and alternatives respectively for data retrieval. On the one hand, xR2RML
extends R2RML following the RML paradigm to support heterogeneous data
from non-relational databases. On the other hand, KR2RML extends R2RML
relying on the Nested Relational Model (NRM) [455] as an intermediate form
to represent data originally stored in relational databases. KR2RML also pro-
vided an alternative for data transformations, but FunUL is the most prominent
alternative to FnO.

Table 2. [R2]RML extensions, their URIs and prefixes

Language Prefix URI

R2RML rr http://www.w3.org/ns/r2rml#

RML rml http://semweb.mmlab.be/ns/rml#

xR2RML xrr http://www.i3s.unice.fr/ns/xr2rml#

FnO+RML fnml http://semweb.mmlab.be/ns/fnml#

FnO fno https://w3id.org/function/ontology#

4.1 XR2RML

xR2RML [306] was proposed in 2014 in the intersection of R2RML and RML.
xR2RML extends R2RML beyond relational databases and RML to include non-
relational databases. xR2RML extends R2RML following the RML paradigm
but is specialized for non-relational databases and, in particular, NoSQL and
XML databases. NoSQL systems have heterogeneous data models (e.g., key-
value, document, extensible column, or graph store), as opposed to relational
databases. xR2RML assumes, as R2RML does, that a processor executing the
rules is connected to a certain database. How the connection or authentication
is established against the database is out of the language’s scope, as in R2RML.

The xR2RML vocabulary preferred prefix is xrr and the namespace is the
following: http://www.i3s.unice.fr/ns/xr2rml#.

http://www.w3.org/ns/r2rml
http://semweb.mmlab.be/ns/rml
http://www.i3s.unice.fr/ns/xr2rml
http://semweb.mmlab.be/ns/fnml
https://w3id.org/function/ontology
http://www.i3s.unice.fr/ns/xr2rml
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Data Source. Similarly to RML, an xR2RML Triples Map refers to a Logi-
cal Source (xrr:logicalSource, Listing 4.14, line 3), but similarly to R2RML,
this Logical Source can be either an xR2RML base table (xrr:sourceName, for
databases where tables exist) or an xR2RML view representing the results of
executing a query against the input database (xrr:query, line 4).
1 @prefix xrr: <http://www.i3s.unice.fr/ns/xr2rml#> .
2
3 <#CountriesXML> xrr:logicalSource [
4 xrr:query """for $i in ///countries/country return $i; """;
5 rml:iterator "//countries/country";];
6 <#CountryName_POM> rr:predicate ex:name ;
7 rr:objectMap [ xrr:reference "country_name"] .

Listing 4.14. xR2RML logical source over an XML database supporting XQuery

Iterator. xR2RML originally introduced the xrr:iterator, according to the
rml:iterator, to iterate over the results. In a later version, xR2RML converged
using the rml:iterator (Listing 4.14, line 5).

Format or Reference Formulation. In contrast to RML that considers a formu-
lation (rml:referenceFormulation) to refer to its input data, xR2RML origi-
nally specified explicitly the format of data retrieved from the database using the
property xrr:format (Listing 4.15, line 2). For instance, RML considers XPath
or XQuery or any other formulation to refer to data in XML format, xR2RML
would refer to the format, e.g. xrr:XML. While RML allows for other kinds of
query languages to be introduced, xR2RML decides exactly which query lan-
guage to use. In an effort to converge with RML, xR2RML considers optionally
a reference formulation.
1 <#FemalePoleVault> xrr:logicalSource <#PoleVaultersCSVtable> ;
2 <#PoleVaultersCSVtable> xrr:format xrr:Row .

Listing 4.15. A CSV file on the Web as xR2RML Logical Source

Reference. Similar to RML, xR2RML uses a reference (xrr:reference) to refer
to the data elements (Listing 4.14, line 7). xR2RML extends RML’s reference
to refer to data elements in data with mixed formats. xR2RML considers cases
where different formats are nested; for instance, a JSON extract is embedded in
a cell of a tabular structure. A path with mixed syntax consists of the concate-
nation of several path expressions separated by the slash ‘/’ character.

Collections and Containers. Several RDF terms can be generated by a Term
Map during an iteration if multiple values are returned. This can normally gen-
erate several triples, but it can also generate hierarchical values in the form of
RDF collections or containers. To achieve the latter, xR2RML extends R2RML
by introducing corresponding datatypes to support the generation of contain-
ers. xR2RML introduces new term types (rr:termType): xrr:RdfList for an
rdf:List, xrr:RdfBag for rdf:Bag, xrr:RdfSeq for rdf:Seq and xrr:RdfAlt
for rdf:Alt. All RDF terms produced by the Object Map during one triples
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map iteration step are then grouped as members of one term. To achieve this,
two more constructs are introduced: Nested Term Maps and Push Downs.
1 <#Countries> rr:predicateObjectMap [
2 rr:predicate ex:name;
3 rr:objectMap [
4 xrr:reference "country_name";
5 rr:termType xrr:RdfList;
6 xrr:pushDown [ xrr:reference "@continent"; xrr:as "continent" ];
7 xrr:nestedTermMap [
8 rr:template "{continent}: {country_name}" ;
9 rr:termType rr:Literal ;

10 rr:dataType xsd:string ] ].

Listing 4.16. An xrr:RdfList in xR2RML

Nested Term Map. A Nested Term Map (xrr:NestedTermMap, Listing 4.16, line 7)
accepts the same properties as a Term Map and can be used to specify a term type,
a language tag or a data type for the members of the generated RDF collection or
container.

Push Down. Within an iteration, it may be needed to access data elements higher
in the hierarchical documents in the context of hierarchical data formats, such
as XML or JSON. To deal with this, xR2RML introduces the xrr:pushDown
property (Listing 4.16, line 6).

4.2 KR2RML

KR2RML [407] extends R2RML in a different way than xR2RML. KR2RML
relies on the Nested Relational Model (NRM) as an intermediate form to repre-
sent data. The data is mapped into tables by translating it into tables and rows
where a column in a table can be either a scalar value or a nested table. Besides
the data retrieval part, KR2RML extends R2RML with data transformations
using User Defined Functions (UDFs) written in Python.

Data Source. Mapping tabular data (e.g., CSV) into the Nested Relational Model
is straightforward. The model has a one-to-one mapping of tables, rows, and
columns, unless a transformation like splitting on a column occurs, which will
create a new column that contains a nested table.

Mapping hierarchical data (e.g., JSON, XML) into the Nested Relational
Model requires a translation algorithm for each data format next to the mapping
language. Such an algorithm is considered for data in XML and JSON format. If
the data is in JSON, an object maps to a single row table in NRM with a column
for each field. Each column is populated with the value of the appropriate field.
Fields with scalar values do not need translation, but fields with array values
are translated to their own nested tables: if the array contains scalar or object
values, each array element becomes a row in the nested table. If the elements
are scalar values like strings as in the tags field, a default column name “values”
is provided. If a JSON document contains a JSON array at the top level, each
element is treated like a row in a database table. If the data is in XML format,
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its elements are treated like JSON objects, and its attributes and repeated child
elements as single-row nested table where each attribute is a column.

References. The column-valued term map is not limited to SQL identifiers as it
occurs in R2RML to support mapping nested columns in the NRM. A JSON
array is used to capture the column names that make up the path to a nested
column from the document root. The template-valued term map is also extended
to include columns that do not exist in the original input but are the result of
the transformations applied by the processor.

Joins. Joins are not supported because they are considered to be impractical
and require extensive planning and external support.

Execution Planning. A tag (km-dev:hasWorksheetHistory) is introduced to
capture the cleaning, transformation and modeling steps.

Data Transformations. The Nested Transformation Model can also be used to
embed transformation functions. A transformation function can create a new set
of nested tables instead of transforming the data values.

4.3 FunUL

FunUL [232] is an alternative to FnO for data transformations. FunUL allows
the definition of functions as part of the mapping language. In FunUL, functions
have a name and a body. The name needs to be unique. The body defines the
function using a standardized programming language. It has a return statement
and a call refers to a function with an optional set of parameters.

The FunUL vocabulary namespace is http://kdeg.scss.tcd.ie/ns/rrf# and the
preferred prefix is rrf.

The class rrf:Function defines a function (Listing 4.17, line 3). A function
definition has two properties defining the name (rrf:functionName, line 4), and
the function body (rrf:functionBody, line 5).

A function can be called using the property rrf:functionCall (Listing 4.17,
line 13). This property refers to a rrf:Function with the property rr:function
(line 14). Parameters are defined using rrf:parameterBindings (line 15).
1 @prefix rrf: <http://kdeg.scss.tcd.ie/ns/rrf#> .
2
3 <#SplitTransformation> a rrf:Function ;
4 rrf:functionName "splitTransformation" ;
5 rrf:functionBody
6 """function split(value, separator) {
7 str = value.split(separator).trim();
8 return str; ""; } """ ; .
9

10 <#FemalePoleVault> rr:predicateObjectMap [
11 rr:predicate ex:record;
12 rr:objectMap [
13 rrf:functionCall [
14 rrf:function <#SplitTransformation> ;
15 rrf:parameterBindings (

http://kdeg.scss.tcd.ie/ns/rrf
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16 [ rml:reference "notes" ]
17 [ rml:reference "," ] ); ];

Listing 4.17. A Function Call aligns FunUL with RML

5 Conclusions

A lack of in-depth understanding of the complexity of generating knowledge
graphs and the many degrees of freedom in modeling and representing knowledge
prevents human and software agents from profiting of the Semantic Web poten-
tial. This chapter identified the different approaches that were proposed in recent
years for generating knowledge graphs from heterogeneous data sources. Then,
the chapter focused on approaches that distinguish mapping rules definition
from their execution. Two types of mapping languages prevailed, dedicated map-
ping languages and repurposed mapping languages. The chapter further focused
on dedicated mapping languages because they follow the W3C-recommended
R2RML.

This chapter presents the author’s view on knowledge graph generation. It
serves as an introductory chapter to knowledge graphs, which are considered in
greater detail in the following chapters. The next two chapters will explain how
to perform federated querying and reasoning over knowledge graphs (Table 3).

Table 3. Mapping Languages comparison with respect to data retrieval

R2RML RML xR2RML KR2RML

Extends – R2RML R2RML & RML R2RML

Data source rr:LogicalTable rml:LogicalSource xrr:LogicalSource rr:LogicalTable

Data

references

– Reference formulation xrr:format –

Reference rr:column

rr:template

rml:reference

rr:template

xrr:reference

rr:template

rr:column rr:template

Reference

formulation

SQL SQL/XPath/

JSONPath acc.

Reference formulation

SQL/XPath/

JSONPath

acc. xrr:format

SQL/XPath/ JSONPath

Join rr:join rr:join (extended) rr:join (extended) Not supported

Declarative

iterator

No Yes Yes No

Iterator – rml:iterator xrr:iterator –

Query rr:sqlQuery rml:query xrr:query rr:sqlQuery

Lists – – xrr:RdfList –
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Abstract. Big data plays a relevant role in promoting both manufactur-
ing and scientific development through industrial digitization and emerg-
ing interdisciplinary research. Semantic web technologies have also expe-
rienced great progress, and scientific communities and practitioners have
contributed to the problem of big data management with ontological mod-
els, controlled vocabularies, linked datasets, data models, query languages,
as well as tools for transforming big data into knowledge from which deci-
sions can be made. Despite the significant impact of big data and seman-
tic web technologies, we are entering into a new era where domains like
genomics are projected to grow very rapidly in the next decade. In this
next era, integrating big data demands novel and scalable tools for enabling
not only big data ingestion and curation but also efficient large-scale explo-
ration anddiscovery.Federatedqueryprocessing techniques provide a solu-
tion to scale up to large volumes of data distributed across multiple data
sources. Federated query processing techniques resort to source descrip-
tions to identify relevant data sources for a query, as well as to find efficient
execution plans that minimize the total execution time of a query and max-
imize the completeness of the answers. This chapter summarizes the main
characteristics of a federated query engine, reviews the current state of the
field, and outlines the problems that still remain open and represent grand
challenges for the area.

1 Introduction

The number and variety of data collections have grown exponentially over recent
decades and a similar growth rate is expected in the coming years. In order to
transform the enormous amount of disparate data into knowledge from where
actions can be taken, fundamental problems, such as data integration and query
processing, must be solved. Data integration requires the effective identification of
entities that, albeit described differently, correspond to the same real-world entity.
Moreover, data is usually ingested in myriad unstructured formats and may suf-
fer reduced quality due to biases, ambiguities, and noise. These issues impact on
the complexity of the solutions for data integration. Semantic integration of big
data entails variety by enabling the resolution of several interoperability conflicts
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[159,446], e.g., structuredness, schematic, representation, completeness, granular-
ity, and entity matching conflicts. Conflicts arise because data sources may have
different data models or none, follow various schemes for data representation, and
contain complementary information. Furthermore, a real-world entity may be rep-
resented using diverse properties or at various levels of detail. Thus, techniques
able to solve interoperability issues while addressing data complexity challenges
imposed by big data characteristics are required [402].

Existing solutions to the problem of query processing over heterogeneous
datasets rely on a unified interface for overcoming interoperability issues, usu-
ally based on metamodels [224]. Different approaches have been proposed, mainly
with a focus on data ingestion and metadata extraction and management.
Exemplary approaches include GEMMS [365], PolyWeb [244], BigDAWG [119],
Ontario [125], and Constance [179]. These systems collect metadata about the
main characteristics of the heterogeneous data collections, e.g., formats and
query capabilities. Additionally, they resort to a global ontology to describe
contextual information and relationships among data sets. Rich descriptions of
the properties and capabilities of the data have shown to be crucial for enabling
these systems to effectively perform query processing.

In the context of the Semantic Web, the problem of federated query process-
ing has also been actively studied. As a result, diverse federated SPARQL query
engines have been defined that enable users to execute queries over a federation
of SPARQL endpoints. State-of-the-art techniques include FedX [389], ANAP-
SID [6], and MULDER [124]. FedX implements adaptive techniques to identify
relevant sources to evaluate a query. It is able to contact SPARQL endpoints
on the fly to decide the subqueries of the original query that can be executed
over the endpoints of the federation. ANAPSID makes use of metadata about the
vocabularies used on the RDF datasets to perform source selection. Based on the
selected sources, ANAPSID decomposes original queries and finds efficient plans
to collect the answers incrementally. Finally, MULDER resorts to description of
the RDF datasets based on the classes and relations of the dataset vocabularies.
MULDER proposes the concept of the RDF Molecule Templates (RDF-MTs)
to describe the datasets and efficiently perform source selection and query plan-
ning. The rich repertoire of federated query engines just reveals the importance
of query processing against the RDF dataset, as well as the attention that the
problem has received from the database and semantic web communities.

The contributions of the work are summarized as follows:

– A description of the concept of the data integration system and an analysis
of the different parameters that impact on the complexity of a system.

– A characterization of the challenges addressed by federated query engines and
analysis of the current state of the federated query processing field.

– A discussion of the analysis of the grand challenges in this area and future
directions.

The remainder of the chapter is structured as follows: Sect. 2 presents an
overview of the data integration system and the roles that they play in the
problem of accessing and processing queries over heterogeneous data sources.
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Section 3 describes the problem of federated query processing, the main chal-
lenges to be addressed by a federated query engine, and the state of the art.
Finally, grand challenges and future directions are outlined in Sect. 4.

2 Data Integration Systems

An enormous amount of data is being published on the web [379]. In addition,
different data sources are being generated and stored within enterprises as well
due to technological advances in data collection, generation, and storage. These
data sources are created independently of each other and might belong to different
administrative entities. Hence, they have different data representation formats as
well as access interfaces. Such properties of the data sources hinder the usage of the
information available in them. Data integration is the process of providing uniform
access to a set of distributed (or decentralised), autonomous, and heterogeneous
data sources [114]. Data integration systems provide a global schema (also known
as mediated schema) to provide a reconciled view of all data available in different
data sources. Mapping between the global schema and source schema should be
established to combine data residing in data sources considered in the integration
process. Generally, data integration system is formally defined as follows [280]:

Definition 1 (Data Integration System). A data integration system, I, is
defined as a triple <G,S,M>, where:

– G is the global schema, expressed in a language LG over an alphabet AG. The
alphabet comprises a symbol for each element of G.

– S is the source schema, expressed in a language LS over an alphabet AS. The
alphabet AS includes a symbol for each element of the sources.

– M is the mapping between G and S, constituted by a set of assertions of
the forms: qS → qG, qG → qS; where qS and qG are two queries of the same
arity, respectively over the source schema S, and over the global schema G. An
assertion specifies the connection between the elements of the global schema
and those of the source schema.

Defining schema mapping is one of the main tasks in a data integration system.
Schema mapping is the specification of correspondences between the data at the
sources and the global schema. The mappings determine how the queries posed
by the user using the global schema are answered by translating to the schema
of the source that stores the data. Two basic approaches for specifying such
mappings have been proposed in the literature for data integration systems are
Global-as-View (GAV) [140,180] and Local-as-View (LAV) [282,433].

Rules defined using the Global-as-View (GAV) approach define concepts in
the global schema as a set of views over the data sources. Using the GAV app-
roach, the mapping rules in M define the concepts of the schema in the sources,
S, with each element in the global schema. A query posed over the global schema,
G, needs to be reformulated by rewriting the query with the views defined in,
M . Such rewriting is also known as query unfolding – the process of rewriting
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the query defined over global schema to a query that only refers to the source
schema. Conceptually, GAV mappings specify directly how to compute tuples
of the global schema relations from tuples in the sources. This characteristics of
GAV mappings makes them easier for query unfolding strategy. However, adding
and removing sources in the GAV approach may involve updating all the map-
pings in the global schema, which requires knowledge of all the sources. Mappings
specified using the Local-as-View (LAV) approach describe the data sources as
views over the global schema, contrary to the GAV approach that defines the
global schema as views over the data sources. Using the LAV approach, the map-
ping rules in M associates a query defined over the global schema, G, to each
elements of source schema, S. Adding and removing sources in LAV is easier than
GAV, as data sources are described independently of each other. In addition, it
allows for expressing incomplete information as the global schema represents a
database whose tuples are unknown, i.e., the mapping M defined by LAV app-
roach might not contain all the corresponding sources for all the elements in the
global schema, G. As a result, query answering in LAV may consist of querying
incomplete information, which is computationally more expensive [114].

In this chapter, we define a source description model, RDF Molecule Template
(RDF-MT), an abstract description of entities that share the same characteristics,
based on the GAV approach. The global schema is defined as a consolidation of
RDF-MTs extracted from each data source in the federation. Rule-based map-
pings, such as RML, are used to define the GAV mappings of heterogeneous data
sources. RDF-MTs are merged based on their semantic descriptions defined by
the ontology, e.g., in RDFS.

2.1 Classification of Data Integration Systems

Data integration systems can be classified with respect to the following three
dimensions: autonomy, distribution, and heterogeneity [338], Fig. 1. Autonomy
dimension characterizes the degree to which the integration system allows each
data source in the integration to operate independently. Data sources have auton-
omy over choice of their data model, schema, and evolution. Furthermore, sources

Fig. 1. Dimensions of data integration systems
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also have autonomy to join or leave the integration system at any time as well
as to select which fragments of data to be accessible by the integration sys-
tem and its users. Distribution dimension specifies the data that is physically
distributed across computer networks. Such distribution (or decentralization)
can be achieved by controlled distribution or by the autonomous decision of the
data providers. Finally, heterogeneity may occur due to the fact that autonomous
development of systems yields different solutions, for reasons such as different
understanding and modeling of the same real-world concepts, the technical envi-
ronment, and particular requirements of the application [338]. Though there are
different types of heterogeneity of data sources, the important ones with respect
to data interoperability are related to data model, semantic, and interface het-
erogeneity. Data model heterogeneity captures the heterogeneity created by var-
ious modeling techniques such that each data model has different expressive
power and limitations, e.g., relational tables, property graph, and RDF. Seman-
tic heterogeneity concerns the semantics of data and schema in each source. The
semantics of the data stored in each source are defined through the explicit def-
inition of their meanings in the schema element. Finally, interface heterogeneity
exists if data sources in the integration system are accessible via different query
languages, e.g., SQL, Cypher, SPARQL, and API call.

Fig. 2. Classification of data integration systems

Figure 2 shows different classifications of data integration systems with
respect to distribution and heterogeneity dimensions. The first type of data
integration systems, Fig. 2.(1), loads heterogeneous data from data sources to
a centralized storage after transforming them to a common data representation
format. The second type of data integration systems, Fig. 2.(2), supports data
distributed across networks; however, they only support if the data sources in
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the system are homogeneous in terms of data model and access methods. The
third type of data integration systems, Fig. 2.(3), supports data heterogeneity
among data sources in the integration system. However, these data integration
systems are managed in a centralized way and data is stored in a distributed
file system (DFS), such as Hadoop1. Finally, the fourth type of data integra-
tion systems, Fig. 2.(4), supports data distributed across networks as well as
heterogeneity of data sources. Such integration systems utilize special software
components to extract data from the data sources using native query language
and access mechanism. They can also transform data extracted from the sources
to data representation defined by the integration system. Data sources in the
integration system might also be autonomous. Such types of system are different
from the third type by how data is distributed and stored. While the fourth
type supports any storage management, including DFS, the third type of data
integration systems supports only DFS in a centralized way. Mostly the distri-
bution task is handled by the file system. For instance, data might be stored in
a multi-modal data management system or in Data Lake storage based only on
a distributed file system (DFS). In the third type of data integration system,
data is loaded from the original source to the centralized storage for further pro-
cessing. Federated query processing systems fall in the second and fourth type
of integration system when the data sources are autonomous.

Data integration systems also have to make sure that data that is cur-
rent (fresh) is accessed and integrated. Especially, for DFS-based Data Lakes,
Fig. 2.(2), and the centralized, Fig. 2.(4), integration systems, updates of the orig-
inal data sources should be propagated to guarantee the freshness of data. Fur-
thermore, when accessing an original data source from the provider is restricted,
or management of data in a local replica is preferred, integration systems
Fig. 2.(1) and (3), need to guarantee data freshness by propagating changes.

2.2 Data Integration in the Era of Big Data

In the era of big data, a large amount of structured, semi-structured, and unstruc-
tured data is being generated at a faster rate than ever before. Big data systems
that integrate different data sources need to handle such characteristics of data
efficiently and effectively. Generally, big data is defined as data whose volume,
acquisition speed, data representation, veracity, and potential value overcome
the capacity of traditional data management systems [77]. Big data is character-
ized by the 5Vs model: Volume denotes that generation and collection of data are
produced at increasingly big scales. Velocity represents that data is generated
and collected rapidly. Variety indicates heterogeneity in data types, formats,
structuredness, and data generation scale. Veracity refers to noise and quality
issues in the data. Finally, Value denotes the benefit and usefulness that can be
obtained from processing and mining big data.

1 https://hadoop.apache.org/.

https://hadoop.apache.org/
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There are two data access strategies for data integration: schema-on-write
and schema-on-read. In the schema-on-write strategy, data is cleansed, orga-
nized, and transformed according to a pre-defined schema before loading to the
repository. In schema-on-read strategy, raw data is loaded to the repository as-is
and schema is defined only when the data is needed for processing [27]. Data
warehouses provide a common schema and require data cleansing, aggregation,
and transformation in advance, hence, following the schema-on-write strategy.
To provide scalable and flexible data discovery, analysis, and reporting, Data
Lakes have been proposed. Unlike data warehouses, where data is loaded to the
repository after it is transformed to a target schema and data representation,
Data Lakes store data in its original format, i.e., the schema-on-read strategy.
Data Lakes provide a central repository for raw data that is made available
to the user immediately and defer any aggregation or transformation tasks to
the data analysis phase, thus addressing the problem of disconnected informa-
tion silos, which is the result of non-integrated heterogeneous data sources in
isolated repositories with diverse schema and query languages. Such a central
repository may include different data management systems, such as distributed
file systems, relational database management systems, graph data management
systems, as well as triple stores for specialized data model and storage.

3 Federated Query Processing

A federated query processing system2, provides a unified access interface to a set
of autonomous, distributed, and heterogeneous data sources. While distributed
query processing systems have control over each dataset, federated query pro-
cessing engines have no control over datasets in the federation and data providers
can join or leave the federation at any time and modify their datasets indepen-
dently. Query processing in the context of data sources in a federation is more
difficult than in centralized systems because of the different parameters involved
that affect the performance of the query processing engine [114]. Data sources
in a federation might contain fragments of data about an entity, have different
processing capabilities, support different access patterns, access methods, and
operators. The role of a federated query engine is to transform a query expressed
in terms of the global schema, i.e., the federated query, into an equivalent query
expressed in the schema of the data sources, i.e., local query. The local query
represents the actual execution plan of the federated query by the data sources
of the federation. The transformation of the federated query to a local query
needs to be both effective and efficient. Query transformations are effective if
the generated query is equivalent to the original one, i.e., both the original and
the transformed queries produce same results. On the other hand, query trans-
formations are efficient if the execution strategy of the transformed query makes
use of minimum computational resources and communication cost. Producing

2 We use the terms federated query processing system, federated query engine, and
federated query processing system interchangeably.
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Fig. 3. Federated query processing basic components

an efficient execution strategy is difficult as many equivalent and correct trans-
formations can be produced and each equivalent execution strategy leads to
different consumption of resources [338]. The main objective of federated query
processing is to transform a query posed on a federation of data sources into a
query composed of the union of subqueries over individual data sources of the
federation. Further, a query plan is generated in order to speed up the processing
of each individual subquery over the selected sources, as well as the gathering of
the results into the query answer. An important part of query processing in the
context of federated data sources is query optimization as many execution plans
are correct transformations of the same federated query. The one that optimizes
(minimizes) resource consumption should be retained. Query processing perfor-
mance can be measured by the total cost that will be used in query processing
and the response time of the query, i.e., time elapsed for executing the query.

As an RDF data model continues gaining popularity, publicly available RDF
datasets are growing in number and size. One of the challenges emerging from
this trend is how to efficiently and effectively execute queries over a set of
autonomous RDF datasets. Saleem et al. [380] study federated RDF query
engines with web access interfaces. Based on their survey results, the authors
divide federation approaches into three main categories: Query Federation over
SPARQL endpoints, Query Federation over Linked Data (via URI lookups), and
Query Federation on top of Distributed Hash Tables. Moreover, Acosta et al. [5]
classified federated RDF query processing engines based on the type of data
sources they support into three categories: Federation of SPARQL endpoints,
Federation of RDF Documents, and Federation of Triple Pattern Fragments.

Conceptually, federated query processing involves four main sub-problems
(components): (i) data source description, (ii) query decomposition and source
selection, (iii) query planning and optimization, and (iv) query execution. Feder-
ated query engines also include two additional sub-problems: query parsing and
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result conciliation. Query parsing and result conciliation sub-problems deal with
syntactic issues of the given query and formatting the results returned from the
query execution, respectively. Below we provide an overview of the data source
description, query decomposition and source selection, query planning and opti-
mization as well as query execution sub-problems.

3.1 Data Source Description

The data source description sub-problem deals with describing the data available
in data sources and managing catalogs about data sources that are participating
in the federation. Data source descriptions encode information about available
data sources in the federation, types of data in each data source, access method
of data sources, and privacy and access policies of these data sources [114]. The
specification of what data exist in data sources and how the terms used in data
sources are related to the global schema are specified by the schema mapping.
Schema mappings also represent privacy and access control restrictions as well
as statistics on the available data in each data source. Federated query engines
rely on the description of data sources in the federation to select relevant sources
that may contribute to answer a query. Data source descriptions are utilized by
source selection, query decomposition, and query optimization sub-problems.

A catalog of data source descriptions can be collected offline or during query
running-time. Based on the employed catalog of source descriptions, SPARQL
federation approaches can be divided into three categories [380]: pre-computed
catalog assisted, on-the-fly catalog assisted, and hybrid (uses both pre-computed
and on-the-fly) solutions. Pre-computed catalog-assisted federated SPARQL
query engines use three types of catalogs: service descriptions, VoID (Vocab-
ulary of Interlinked Datasets) description, and list of predicates [335]. The first
two catalogs are computed and published by the data source providers that
contains descriptions about the set of vocabularies used, a list of classes and
predicates, as well as some statistics about the instances such as number of
triples per predicate, or class. Specifically in VoID descriptions, there is infor-
mation about external linksets that indicate the existence of owl:sameAs and
other linking properties. The third type of catalog, i.e., a list of predicates, is
generated by contacting the data source endpoints and issuing SPARQL queries
and extracting predicates from the other two types of catalog.

FedX [389] does not require a catalog of source descriptions computed before-
hand but uses triple pattern-wise ASK queries sent to data sources at query
time. Triple pattern-wise ASK queries are SPARQL ASK queries which contain
only one triple pattern in the graph expression of the given query. Lusail [4], like
FedX, uses an on-the-fly catalog solution for source selection and decomposition.
Unlike FedX, Lusail takes an additional step to check if pairs of triple patterns
can be evaluated as one subquery over a specific endpoint; this knowledge is
exploited by Lusail during query decomposition and optimization. Posting too
many SPARQL ASK queries can be a burden for data sources that have lim-
ited compute resources, which may result in DoS. Pre-computed catalog of data
source descriptions can be used to reduce the number of requests sent to the



82 K. M. Endris et al.

data sources. ANAPSID [6] is a federated query processing engine that employs
a hybrid solution and collects a list of RDF predicates of the triple patterns
that can be answered by the data sources and sends ASK queries when required
during query time. Publicly available dataset metadata are utilized by some
federated query processing engines as catalogs of source descriptions. SPLEN-
DID [160] relies on instance-level metadata available as Vocabulary of Interlinked
Datasets (VoID) [10] for describing the sources in a federation. SPLENDID pro-
vides a hybrid solution by combining VoID descriptions for data source selection
along with SPARQL ASK queries submitted to each dataset at run-time for
verification. Statistical information for each predicate and types in the dataset
are organized as inverted indices, which will be used for data source selection
and join order optimization. Similarly, Semagrow [75] implements a hybrid solu-
tion, like SPLENDID, and triple pattern-wise source selection method which
uses VoID descriptions (if available) and SPARQL ASK queries.

MULDER [124] and Ontario [125] federated query engine employs source
description computed based on the concept of RDF molecules; a set of triples
that share the same subject values are called RDF Molecules. RDF Molecule
Templates (RDF-MTs) encode an abstract description of a set of RDF molecules
that share similar characteristics such as semantic type of entities. RDF Molecule
Template-based source descriptions leverage the semantics encoded in data
sources. It is composed of a semantic concept shared by RDF molecules, a
set of mapping rules, a list of properties that a molecule can have, and a list
of intra- and inter-connections between other RDF molecule templates. Such
description models provide a holistic view over the set of entities and their rela-
tionships within the data sources in the federation. For instance, Fig. 4 shows
RDF-MT based descriptions of the FedBench benchmark composed on 10 RDF
data sources.

3.2 Query Decomposition and Source Selection

Selecting the relevant data sources for a given query is one of the sub-problems
in federated query processing. Given a federated query parsed with no syntactic
problems, the query is first checked if it is semantically correct with respect to
the global schema. This step eliminates an incorrect query that yields no results
early on. The query is then simplified by, for example, removing redundant pred-
icates. The task of source selection is to select the actual implementation of sub-
queries in the federation at specific data sources. The sources schema and global
schema are given by the data source descriptions as input to this sub-problem.
The query decomposition and source selection sub-problem decomposes the fed-
erated query into subqueries associated with data sources in the federation that
are selected for executing the subqueries. The number of data sources considered
for selection are bounded by the data source description given to the federated
query processing engine. Each sub-query may be associated to zero or more data
source, thus, if the query contains at least one sub-query without data source(s)
associated with it, then the global query can be rejected. Source selection task is
a critical part of query optimization. Failure to select correct data sources might
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Fig. 4. RDF-MT-based description of FedBench. The graph comprises 387 RDF-
MTs and 6, 317 intra- and inter-dataset links. The dots in each circle represent RDF-
MTs. A line between dots in the same circle shows intra-dataset links, while a line
between dots in different circles corresponds to inter-dataset links. In numbers, there
is only one RDF-MT in ChEBI, 234 in DBpedia, six in Drugbank, one in Geonames,
11 in Jamendo, four in KEGG, 53 in LinkedMDB, two in NYTimes, and 80 in SWDF
dataset. Four of these RDF-MTs belong to at least two FedBench datasets, modeled
as separate circular dots.

lead to incomplete answers as well as high response time and resource consump-
tion. The output of this component is a decomposed query into subqueries that
are associated with the selected data sources in the federation. Identifying the
relevant sources of a query not only leads to a complete answer but also faster
execution time.

3.3 Query Planning and Optimization

The goal of query planning is to generate an execution plan that represent the
steps on how the query is executed and which algorithms (operators) are used.
The task of query plan generation produces query execution plans, e.g., a tree-
based plan where the leaf of the tree corresponds to the sub-queries to be exe-
cuted in selected data sources and the internal nodes corresponds to the physical
(algebraic) operators, such as join, union, project, and filter, that perform alge-
braic operations by the federated query processing engine. Many semantically
equivalent execution plans can be found by permuting the order of operators
and subqueries. However, the cost of executing different ordering of a query is
not always the same. In a federated setting, the number of intermediate results
as well as the communication costs impacts the performance of query execu-
tion. Federated query processing engines should use an optimization techniques
to select an optimal execution plan that reduces execution time and resource
usage, such as memory, communication, etc. Optimization of the query execu-
tion plan starts from selecting only relevant sources, decomposition and finally
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making decisions on the selection of appropriate implementation of join oper-
ations. These optimization techniques include making decisions on selection of
the join methods, ordering, and adapting to the condition of the sources. The
objective of the planning and optimization sub-problem is to find an execution
plan that minimizes the cost of processing the given query, i.e., finding the “best”
ordering of operators in the query, which is close to optimal solution. Finding
an optimal solution is computationally intractable [210]. Assuming a simplified
cost function, it is proven that the minimization of this cost function for a query
with many joins is NP-Complete. To select the ordering of operators, it is nec-
essary to estimate execution costs of alternative candidate orderings. There are
two type of query optimization in the literature: cost-based and heuristics-based
query optimization. In cost-based optimization techniques, estimating the cost
of the generated plans, i.e., candidate orderings, requires collecting statistics on
each of the data sources either before query executions, static optimization or
during query execution, dynamic optimization. In federated settings, where data
sources are autonomous, collecting such statistics might not always be possible.
Cost-based approaches are often not possible because the data source descrip-
tions do not have the needed statistics. Heuristic-based optimization techniques
can be used to estimate the execution cost using minimum information collected
from sources as well as the properties of the operators in the query, such as type
of predicates, operators, etc. The output of the query planning and optimization
is an optimized query, i.e., query execution plan, with operations (join, union)
between subqueries.

3.4 Query Execution

Query execution is performed by data sources that are involved in answering
sub-query(s) of the given query. Each sub-query executed in each data source is
then optimized using the local schema and index (if available) of the data source
and executed. The physical operator (and algorithms) to perform the relational
operators (join, union, filter) may be chosen. Five different join methods are used
in federated query engines: nested loop join, bound-join, hash join, symmetric
join, and multiple join [335]. In nested-loop join (NLJ) the inner sub-query is
executed for every binding of the intermediate results from the outer sub-query of
the join. The bindings that satisfy the join condition are then included in the join
results. Bound-join, like NLJ, executes inner sub-query for the set of bindings,
unlike NLJ which executes the inner sub-query for every single binding of the
intermediate results from the outer sub-query. This set of bindings can be sent as
a UNION or FILTER SPARQL operators can be used to send multiple bindings
to the inner sub-query. In the hash-join method, each sub-query (operands of the
join operation) is executed in parallel and the join is performed locally using a
single hash table at the query engine. The fourth type of join method, symmetric
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(hash) join, is a non-blocking hash-based join that pipelines parallel execution
of the operands and generates output of the join operation as early as possible.
Several extended versions of this method are available, such as XJoin [436],
agjoin [6], and adjoin [6]. Finally, the multiple (hash) join method uses multiple
hash tables to join more than two sub-queries running at the same time.

4 Grand Challenges and Future Work

In this section, we analyze the grand challenges to be addressed in the definition
and implementation of federated query engines against distributed sources of big
data. These challenges can be summarized as follows:

– Definition of formal models able to describe not only the properties and rela-
tionships among data sources, but also represent and explain causality rela-
tions, bias, and trustworthiness.

– Adaptive query processing techniques able to adjust query processing sched-
ules according to the availability of the data, as well as to the validity and
trustworthiness of the published data.

– Machine learning models able to predict the cost of integrating different
sources, and the benefits that the fusion of new data sources adds to the
accuracy, validity, and trustworthiness of query processing.

– Hybrid approaches that combine computational methods with human knowl-
edge with the aim to enhance, certify, and explain the outcomes of the main
data-driven tasks, e.g., schema matching, and data curation and integration.

– Query processing able to interoperate during query execution. Furthermore,
data quality assessment and bias detection methods are required in order to
produce answers that ensure validity and trustworthiness.

– Methods capable of tracing data consumed from the selected sources, and
explainable federated systems able to justify all the decisions made to produce
the answer of a query over a federation of data sources.

The diversity of the problems that remain open presents enormous opportuni-
ties both in research and development. Advancement in this area will contribute
not only more efficient tools but also solutions that users can trust and under-
stand. As a result, we expect a paradigm shift in the area of big data integration
and processing towards explainability and trustworthiness – issues that have
thus far prevented global adoption of data-driven tools.



86 K. M. Endris et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 6
Reasoning in Knowledge Graphs:

An Embeddings Spotlight

Luigi Bellomarini1, Emanuel Sallinger2,3(B) , and Sahar Vahdati3

1 Banca d’Italia, Rome, Italy
2 TU Wien, Vienna, Austria

sallinger@dbai.tuwien.ac.at
3 University of Oxford, Oxford, UK

Abstract. In this chapter we introduce the aspect of reasoning in
Knowledge Graphs. As in Chap. 2, we will give a broad overview focusing
on the multitude of reasoning techniques: spanning logic-based reason-
ing, embedding-based reasoning, neural network-based reasoning, etc. In
particular, we will discuss three dimensions of reasoning in Knowledge
Graphs. Complementing these dimensions, we will structure our explo-
ration based on a pragmatic view of reasoning tasks and families of rea-
soning tasks: reasoning for knowledge integration, knowledge discovery
and application services.

1 Introduction

The notion of intelligence is closely intertwined with the ability to reason. In
turn, this ability to reason plays a central role in AI algorithms. This is the
case not only for the AI of today but for any form of knowledge representation,
understanding and discovery, as stated by Leibniz in 1677: “It is obvious that
if we could find characters or signs suited for expressing all our thoughts as
clearly and as exactly as arithmetic expresses numbers or geometry expresses
lines, we could do in all matters insofar as they are subject to reasoning all that
we can do in arithmetic and geometry. For all investigations which depend on
reasoning would be carried out by transposing these characters and by a species
of calculus” [279].

Research in reasoning was carried out by mathematicians and logicians, and
naturally adopted and also carried out by computer scientists later on. Concrete
references of having knowledgeable machines date back to at least the 1940s – V.
Bush talked about a machine able to think like a human in his influential essay in
1945 “As We May Think” [65]. Later in 1950, with Alan Turing’s seminal work
[432], the idea behind Artificial Intelligence and impressing thinking power to
machines began with mathematically employed reasoning. The developments of
symbolic reasoning continued towards providing mathematical semantics of logic
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Fig. 1. A simplified life-cycle of Knowledge Graphs

programming languages [303,441] and new forms of efficient reasoning founda-
tions [73,234]. Reasoning about facts of belief networks, as in today’s Knowledge
Graphs, is addressed in [349].

However, at the scale at which they were envisioned, all of these approaches
were simply not possible in practice without large-scale data management,
processing, inference and retrieval. The last decade witnessed a technology
boost for AI-driven technologies with the emergence of Big Data. This has cre-
ated an incredible number of industrial-scale applications of Machine Learning
approaches over data represented and managed in Knowledge Graphs. The tech-
nology behind KGs created a practical platform for the envisioned AI machines.

Perspectives. In Chap. 2, we introduced the layered perspective of Knowledge
Graphs, and noted that the aspect of reasoning will be considered particularly in
this chapter. It is clear that the requirements on reasoning are different between
the three layers introduced in Chap. 2:

– At the bottom-most layer (representation), reasoning is an important
design consideration to achieve a good balance between expressive power and
computational complexity.

– At the middle layer (management), similar to a relational database man-
agement system, providing a general-purpose reasoning (or in a RDBMS:
querying) service is of utmost importance.

– At the top layer (application), the specific reasoning service required or
exposed by the application becomes the focus.

Given both the history of use of reasoning methods in computer science, as well
as their concrete use in the construction and use of Knowledge Graphs, it would
be tempting to divide them according to their use in the life-cycle of KGs. This
is illustrated in Fig. 1 where we see knowledge fragments being integrated into a
Knowledge Graph, this KG being enriched using discovery, and finally services
provided based on the Knowledge Graph:

http://dx.doi.org/10.1007/978-3-030-53199-7_2
http://dx.doi.org/10.1007/978-3-030-53199-7_2
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– Reasoning for Knowledge Integration: where the focus is to use reason-
ing in order to deal with knowledge acquisition and integration from hetero-
geneous, interconnected and distributed data.

– Reasoning for Knowledge Discovery: where the focus is to use reasoning
in order to identify new – and possible hidden – knowledge based on existing
knowledge.

– Reasoning for Application Services: where the focus is to employ rea-
soning techniques to directly provide services at the application level of the
Knowledge Graph.

The position that we will take in this chapter is that while these three phases
of the life-cycle are clearly important, and many of the available reasoning tech-
niques fall into one category or the other, many others as we shall see permeate
these life-cycle phases. We thus refer to them rather as dimensions.

This chapter shall not be a survey of reasoning techniques, but for each of
the three dimensions it shall give one or two prominent examples to give the
reader an impression on the breadth and variation between reasoning techniques
on Knowledge Graphs.

Organization. In Sect. 2, we will consider the dimension of integration; in
Sect. 3, we consider the dimension of discovery; and in Sect. 4, we consider the
dimension of application services. We will conclude with a summary.

2 Reasoning for Knowledge Integration

In recent years, a huge number of Knowledge Graphs has been built both in
academia and industry. Knowledge Graph creation follows a set of steps for data
acquisition and integration from heterogeneous resources. It requires a compre-
hensive domain conceptualization and a proper data representation model. In
many cases, data transformation from the already existing formats formed the
Knowledge Graph for many individual or enterprise agents. With post-processing
stages, such Knowledge Graphs have been made usable by other approaches for
further investigations.

Yet, considering the potential amount of information that could be mapped
into such Knowledge Graphs from the real world, they are greatly incomplete.
A number of manual and automated data curation, harvesting and integration
techniques are being developed for data completion tasks already from decades
ago. However, considering the characteristics of Knowledge Graphs, they became
ideal for applying machine learning approaches to Knowledge Graph comple-
tion. Thus, KG completion tasks gain a new dimension meaning the coverage
increase of knowledge. Therefore, new communities of research have been merged
or revived such as knowledge embedding. Application of such models have been
investigated with the objective of providing services for link predictions, resource
classification and recommendation services.

Aforementioned representations are attempts to create a real world model
where a lack of full coverage and information correctness problems will always
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be present. Thus, proposing embedding models for Knowledge Graphs gained
a lot of attention by giant companies and received great hype in research in
recent years. Such models are probabilistic-based approaches to predict missing
relations in a graph. Although there have already been proposals of using ML
and such probabilistic link prediction models on top of data modeled in triples
from the early 2000s, the application of such models has been practiced with the
emergence of KGs. Three conflicting dimensions of challenges in the construc-
tion of such a Knowledge Graph have been mentioned [146] namely freshness,
coverage and correctness.

2.1 Schema/Ontology Matching

Ontology matching in the meaning of finding semantic relationships between
entities of one or several Knowledge Graphs plays an important role in KG
integration and construction. Due to the heterogeneity of KGs, the process of
KG integration and mapping ontologies end with high complexities. Therefore
scalability is one of the main focal points in this regard. The approaches for
providing light weighted ontology matching tools includes ontology partitioning
[130], use of data and ontology structure [230,383]. There are two main categories
of approaches: logic-based and graph-based [3]. In the early years of the Semantic
Web community [166,167], some logic-based reasoning approaches, which are
used to partition the relationships of an ontology, have been discussed.

Another set of approaches are ontology-based data access (OBDA) [356]
approaches, which are well-known where ontologies are used to encode the
domain knowledge, which enables new fact deduction. In [58], a datalog-based
approach is proposed for KG completion tasks. A datalog is an ontology-based
approach that is applied in question answering [289].

The proposed approach is a partitioning model that incorporates the ontol-
ogy graph and the distribution of extractions. In a related work, reasoning by
using ontology-based approaches is used to query probabilistic knowledge bases
[59,74]. The application of such ontology-based reasoning in relation to other
inference tasks such as maximum a posteriori (MAP) computations and most
probable explanations (MPE) corresponds to identifying tuples that contribute
the most to the satisfaction of an observed query. The concept of common sense
is introduced as a type of knowledge in [59] with regard to closed world or open
world assumptions. With a closed world assumption, question-answering systems
that are built on top of knowledge bases fail to answer anything that requires
intuitive or deductive reasoning.

A logic-based scalable ontology matching system is introduced in [228] named
LogMap. The ontology obtained by integrating LogMap’s output mappings with
the input ontologies is consistent. Although it belongs to the period before KGs
were introduced, its capability in terms of dealing with semantically rich ontolo-
gies makes it considerable for application in KGs as well. Logical reasoning is also
used in other works over the union of the source ontologies, e.g. in the medical
domain [229].
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In general, Knowledge Graph identification (KGI) is used as a reasoning
technique in Knowledge Graph construction. For example, [362] deals with chal-
lenges in automation of KG creation from noisy extractions. In order to handle
the scaling problems, partitioning extractions is an approach that allows paral-
lel reasoning in carving valid KG from a collection of noisy information. KGIs
uses logical constraints and entity resolution and the results can be used in
classification and link prediction tasks. In a series of works [359,361,362], prob-
abilistic soft logic (PSL) is used for running reasoning jointly with extraction of
knowledge from a noisy collection of information. The proposed solution is based
on an ontology-aware technique that uses universally quantified logical rules. It
performs efficient reasoning on KGs with rich representation of ontologies and
statements in Web Ontology Language (OWL). In the reasoning process, fre-
quent patterns, constraints or paths are used to infer new knowledge.

The rules are defined to relate the uncertain information discovered in the
extraction process. The extracted triples are labeled to be a candidate relation or
a candidate label and a value is assigned which shows the probable truth of the
triple. The model combines the weights from several sources and retrieves a list
of classifications or predicted links. Ontological information such as domain and
range constraints are used to further enrich the reasoning. The joint reasoning
means that logical rules as well as entity resolution are used in parallel such
that a) logical rules relate the ontological knowledge about the predicates of the
constructed Knowledge Graph and b) entity resolution are injected in prediction.

F-OWL is another ontology matching the engine proposed in [491], and was
originally designed for knowledge bases. It is a rule-based reasoning engine which
also considers entity resolution for extracting hidden knowledge. Pellet, an open
source OWL-DL reasoner [403], employs an incremental reasoning mechanism.
Thus semantic expressively of such formalism for representing and querying prob-
abilistic knowledge has gained significant importance in recent years. Another
application of KG integration is given in [117], which explains a chain of pro-
cesses in which domain knowledge about Chinese Intangible cultural heritage
(ICH) was extracted from textual sources using Natural Language Processing
(NLP) technology. The extracted knowledge is shaped as a knowledge base using
on domain ontology and instances.

2.2 Entity Resolution

One of the techniques required for combining multiple Knowledge Graphs is
using entity resolution. In some cases, this task turns to a pair-wise matching
task between the target KGs for integration. This can bring a set of challenges
caused by different ontologies used by KGs and additional complexity. In [360],
a unified model for entity resolution is provided for KG integration tasks.

Some of these reasoning techniques are used for Knowledge Graph refine-
ment after data integration processes. Several researchers of the KG domain
(e.g., Paulheim, Dong) have been using the KG “Refinement” notion to define
a range of technology application with the purpose of KG enrichment includ-
ing completion and error detection. In some other views, refinement has seen
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improvements in KGs by considering that ontology learning mainly deals with
learning a concept-level description of a domain.

2.3 Data Exchange and Integration

While the focus of this chapter shall be on embedding-based reasoning, we do
want to at least give a glimpse at the huge body of logic-based reasoning methods
and techniques developed in the database and artificial intelligence area over
basically the last decades, including large research organizations such as IBM
research and others spearheading these kinds of developments.

Logical rules that play the role of knowledge in a Knowledge Graph, and are
thus reasoned upon have been historically often called schema mappings. There
exist countless papers in this area [18,52,127,251,434], a survey on reasoning
about schema mappings can be found at [382]. Key formalisms in these area are
tuple-generating dependencies (tgds), i.e., logical formulas of the form

ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)

where ϕ and ψ are conjunctions of relational atoms and all free variables are
universally quantified (which we will assume for all formulas presented in what
follows by some abuse of notation), and equality-generating dependencies (egds),
i.e., logical formulas of the form

ϕ(x̄) → xi = xj

These together can express a large amount of knowledge typically expressed in
database constraints, and thus usable for data exchange and data integration,
or simply as knowledge in Knowledge Graphs.

Research foci include the higher expressive power needed for particular rea-
soning tasks, including

– second-order (SO) tgds [128,133,134,161,163] for expressing ontological rea-
soning and composition, i.e., logical formulas that, in simplified form have
the structure

∃f̄((ϕ1 → ψ1) ∧ . . . ∧ (ϕn → ψn))

where f̄ are function symbols.
– nested tgds [142,252] for expressing reasoning on tree-like data, i.e., normal

tgds of the form

χ = ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)

but with the extension that each conjunct of ψ may in addition to a relational
atom also be a formula of the form χ again, i.e., allow nesting.

A particularly important restriction is the study of reasoning with conjunctive
queries (CQs), i.e., in the form of logical rules



Chapter 6 Reasoning in Knowledge Graphs: An Embeddings Spotlight 93

∃x̄ ϕ(x̄, ȳ) → Ans(ȳ)

where Ans is an arbitrary predicate name representing the answer of a query.
These CQs are at the core of almost all practical data processing systems, includ-
ing of course databases and Knowledge Graph management systems that allow
reasoning or querying of almost any level. Under the name of “projective views”,
reasoning on them has been studied intensively, for pointers see e.g. [173], but
there are countless papers studying this formalism central to KGs.

While we will avoid making this section a full-blown survey on reasoning in
data exchange and integration, we do want to give a (biased) selection of, in our
opinion, particularly interesting reasoning problems in this area:

– limits [253]: like limits in the mathematical, it is particularly relevant for
approximating data exchange and integration scenarios to also reason about
limits in this context. Similarly to limits, other operators such as union and
intersection are important [20,351].

– equivalence [355]: equivalence is a fundamental reasoning problem for all other
services building upon it, such as optimization, approximation, etc.

– inconsistency [19,22,353]: reasoning in an inconsistent state of data or knowl-
edge is the standard case for Knowledge Graphs, and needs delicate handling.

– representability [21]: how can knowledge be represented in different parts of
a Knowledge Graph?

Many other topics could have been mentioned here – and many more references
given – as this is a particularly rich area of reasoning on this important sub-area
of Knowledge Graphs. Bridging the gap towards our main focus in this chapter,
embedding-based reasoning, we conclude by mentioning that substantial parts
of the logic-based reasoning formalisms presented in this section can be injected
into embedding-based reasoning methods to make them perform far better than
they could have if no such knowledge were present in the Knowledge Graph.

3 Reasoning for Knowledge Discovery

In this section, we structure reasoning approaches for task-based AI challenges.
There is a long list of possible approaches that could go in this category; however,
we will focus on embedding-based reasoning for link prediction. Examples of other
approaches could be Statistical Relational Learning (SLRs) which are well covered
in several review articles [330,487], Markov Logic Networks (MLN) [250,373], and
Probabilistic Graphical Models [8,254,317].

3.1 Link Prediction

The power of specific knowledge representation in Knowledge Graphs facilitates
information systems in dealing with challenges of Big Data and supports solving
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challenges of data heterogeneity. However, KGs suffer from incompleteness, inac-
curacy and low data quality in terms of correctness [17,326]. This highly affects
the performance of AL-based approaches, which are used on top of KGs in order
to provide effective services. Therefore, graph completing methods gained a lot
of interest to be applied on KGs. One of the most popular methods is Knowledge
Graph Embedding models, which obtain the vector representation for entities
and/or relations to be used in downstream tasks such as Knowledge Graph Com-
pletion tasks. KGEs are a type of deductive reasoning in the vector space through
discovery of new links.

For a Knowledge Graph with a set of triples in the form of (h, r, t) represent-
ing (head, relation, tail), KG embeddings aim at mapping entities and relations
into a low-dimensional vector space. Then, the KGE model defines a score and
loss functions to further optimize the vectors through a specific embedding rep-
resentation. The embedding of entities and relations is generally learned over
existing positive samples inside the KGs. A set of negative samples are also usu-
ally injected into the model in order to optimize the learning phase and help the
KGE model gain strength. In these ways, the score function is trained over both
the positive and negative samples and assigns a high score for positive samples
and a low score to negative samples. Each embedding model also has a loss func-
tion that optimizes the scoring. Here we will look into the existing embedding
models from the lens of their reasoning power in knowledge discovery. Knowledge
Graph embedding models can be roughly divided into three main categories:

– Translational and Rotational Based Models. A large number of KGE
models are designed using mathematical transnational (plus) or rotational
(Hadamard product). The score and loss function of these models optimize
the vectors in a way that their plausibility is measured by the distance or
degree of the entities with regard to the relation.

– Semantic Matching Models. Some of the embedding models are designed
based on element-wise multiplication. In this case, the similarity of the vectors
is evaluated to define the plausibility of the entities an relations.

– Neural Network-Based Models. A third category of the KGE models
are the ones designed on top of neural networks. These models have two
learning phases: one for calculating and creating the vectors and the second
for evaluating the plausibility in a layer-based learning approach, which comes
from NN.

Translational and Rotational Models. In this type of model, the plausibility
of a triple is computed based on distance function (e.g. based on the Euclidean
distance) [458]. In the following, we describe KGE models that are relevant in
the context of this work; however, many others have been proposed.

TransE [57] is one of the early KGE models that is the base for several other
families of models where the score function takes a relation r as the translation
from the head entity h to the tail entity t :

h + r ≈ t (1)
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To measure the plausibility of a triple, the following scoring function is defined:

fr(h, t) = −‖h + r − t‖ (2)

The TransE model is extremely simple and computationally efficient. Therefore,
it is one of the most common embedding models used on large-scale KGs with
the purpose of reasoning for knowledge discovery. However, TransE is limited
in modeling 1-N, N-1 and N-M relations. For this reason, several extensions
have been proposed [458]. Due to this fact, encoding relations with reflexive and
symmetric patterns becomes impossible, which is an important aspect in the
inference of new knowledge. Therefore, several new models have tried to solve
this problem, which will be discussed in the remainder of this section.

TransH [462] is en extension of TransE, which addresses the limitations of
TransE in modeling N-M relations. It uses relation-specific entity representa-
tion to enable encoding of such relational patterns. This model uses an addi-
tional hyperplane to represent relations. Then, the translation from the head to
the tail entity is performed in that relation-specific hyperplane. This method is
called projecting head and tail entities into the relation-specific hyperplane. The
formulation of this method is as follows:

h⊥ = h − w�
r hwr (3)

t⊥ = t − w�
r twr (4)

where wr is the normal vector of the hyperplane. The plausibility of the triple
(h, r, t) is computed:

fr(h, t) = −‖h⊥ + dr − t⊥‖22 (5)

where dr is the relation-specific translation vector.
TransR is another KGE model that followed the basics from TranE as an

extension of TransH with a difference that it encodes entities and relations in
different vector spaces. This is a relation-specific solution in contrast to the
hyperplanes of TransH where the translation happens in the specific space of
each relation. Relations are in matrix representation of Mr which takes entities
projected into the relational specific space:

hr = hMr (6)

tr = tMr (7)

Based on this representation, the score function is designed as following:

fr(h, t) = −‖hr + r − tr‖22 (8)

This model is capable of handling complex relations as it uses different spaces;
however its computation is highly costly due to the high number of required
parameters.
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TransD [225] is an attempt to improve TransR by reducing the number of
required parameters by removing the need for matrix vector multiplications. The
core of this model is to use two vectors for representation of entities and relations.
Assuming that h, r, t encode the semantics, and hp, rp, tp constructs projection,
the projection of entities in relation-specific spaces is defined as follows:

Mrh = rph
T
p + Im×n (9)

Mrt = rpt
T
p + Im×n, (10)

In this definition, I is a matrix where the values of the diagonal elements are 1
and 0 elsewhere. The head and tail entities are computed as:

h⊥ = Mrhh (11)

t⊥ = Mrtt (12)

The score of the triple (h,r,t) is then computed based on these projections:

fr(h, t) = −‖h⊥ + r − t⊥‖22 (13)

RotatE. [417] is one of the early models which uses rotation than trans-
lation. The model is mainly designed with the objective of reasoning rela-
tional patterns, which was not mainly addressed by other translational mod-
els. RotatE is designed to reason new knowledge based on the Euler formula
eiθ = cos(θ)+i sin(θ). Based on its score function, for every correct triple (h, r, t)
there should be the relation of hjrj = tj which holds ∀j ∈ {0, . . . , d}. hj , rj , tj
are the j-th elements of the embedding vectors of h, r, t ∈ C

d. Since it deals with
complex space, ri is set to 1 i.e. |rj | =

√
Re(rj)2 + Im(rj)2 = 1. The model per-

forms a rotation of the j-th element hj of the head vector h by the j-th element
rj = eiθrj of a relation vector r to get the j-th element tj of the tail vector t,
where θrj

is the phase of the relation r. Therefore, the score function of RotatE
is designed as a rotation using ◦ which is a Hadmard product of two vectors:

fr
h,t = ‖h ◦ r − t‖, (14)

In this way, the RotatE model becomes capable of encoding symmetric, inverse,
and composition relation patterns. Due to this capability, its performance is
high and due to the high quality of the newly discovered links in the reasoning
process, it outperforms all the previous models.

Semantic Matching Models. As discussed before, the second category of
embedding models in reasoning over KGs determines the plausibility of a triple
by comparing the similarity of the latent features of the entities and relations. A
number of KGE models fall into this category; we will discuss a few of the best
performing ones.
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RESCAL [327] is an embedding-based reasoning model that represents each
entity as a vector and each relation as a matrix, Mr to capture the latent seman-
tics. The score of the triples is measured by the following formulation:

fr(h, t) = hT Mrt (15)

where Mr is a matrix associated with relations, which encodes pairwise interac-
tions between the features of the head and tail entities.

DistMult is a model that focuses on capturing the relational semantics
and the composition of relations as characterized by matrix multiplication [476].
This model considers learning representations of entities and relations within
the underlying KG. DistMult [476] simplifies RESCAL by allowing only diagonal
matrices as diag(r). The score function of this model is designed in a way that
triples are ranked through pair-wise interactions of the latent features:

fr(h, t) = hT diag(r)t (16)

where r ∈ Rd and Mr = diag(r). The restriction to diagonal matrices makes
DistMult more computationally efficient than RESCAL but less expressive.

ComplEx ComplEx [430] is an extension of DistMult into the complex space.
Considering the scoring function of DistMult, it can be observed that it has a
limitation in representing anti-symmetric relations since hT diag(r)t is equivalent
to tT diag(r)h. Equation 16 can be written in terms of the Hadamard product of
h, r, t: <h, r, t> =

∑d
i=1 hi ∗ ri ∗ ti, where h, r, t ∈ Rd. The scoring function of

ComplEx uses the Hadamard product in the complex space, i.e. h, r, t ∈ Cd:

fr(h, t) = �(
d∑

i=1

hi ∗ ri ∗ ti) (17)

where �(x) represents the real part of a complex number and x its conjugate.
It is straightforward to show that fr(h, t) �= fr(t, h), i.e. ComplEx is capable of
modeling anti-symmetric relations.

Neural Network-Based Models. As the last category of the embedding mod-
els that we will discuss here, we consider the ones which are built on top of Neural
Networks. Such models inherit a second layer from NNs for the learning phase.
This category is also known as Neural Link Predictors, which is in the down-
stream task level, the ultimate objective of such models. Such models contain a
multi-layered learning approach with two main components: namely, encoding
of the vectors and scoring of the vectors.

ConvE [107] is a multi-layer embedding model designed on top of the neural
networks.

f(h, t) = g(Vec(g([h̄; r̄] ∗ ω))W ) t (18)

Neural Tensor Network (NTN). [408] is one of the earlier methods which
includes textual information in the embedding. It learns the word vectors from



98 L. Bellomarini et al.

a corpus and initializes each entity by the average of vectors of words associated
with the entity.

�wT
r tanh(�hT Wr�t + W (1)

r
�h + W (2)

r
�t +�br) (19)

LogicENN. [323] is an NN-based model which performs reasoning on top of a
KG through jointly learning embeddings of entities (h, t) and relations (βr) of
the KG and the weights/biases (w/b) of the NN. Given a triple of (h, r, t), the
network passes the entity vectors (h, t) through a universally shared hidden layer
with L nodes to obtain the joint feature mapping of the entities (h, t) i.e. ΦT

h,t =
[φh,t(w1, b1), . . . , φh,t(wL, bL)] = [φ(〈w1, [h, t] + b1〉), . . . , φ(〈wL, [h, t] + bL〉)].
The network considers the weights of the output nodes (i.e. βr) as the embedding
of relation r. The score of the triple (h, r, t) is computed by the inner product of
Φh,t and βr as follows

f(h, r, t) =
L∑

i=1

φ(〈wi, [h, t] + bi〉)βr
i =

L∑

i=1

φh,t(wi, bi)βr
i

= ΦT
h,tβ

r.

(20)

Considering the formulation of the score function, the algebraic formulae (alge-
braic constraints) corresponding to each of the logical rules – namely symmet-
ric, inverse, transitive, negation, implication, equivalence etc – are derived. The
formulae are then used as penalty terms to be added to the loss function for
optimization. This enables the injection of rules into the learning process of the
network. Consequently, the performance of the model is improved.

Overall, the network has the following advantages:

– The model is proven to be capable of expressing any ground truth of a KG
with n facts.

– The network separates the spaces of entities (φh,t) and relation βr. Therefore,
the score-based algebraic constraints corresponding to the symmetric, inverse,
implication and equivalence rules do not need the grounding of entities. This
feature enables the model to better inject rules with a lower computational
cost due to lifted groundings.

– The model has been shown to obtain state-of-the-art performance on several
standard datasets.

Summary. So far we have given a detailed description of some highlighted
methods in embedding-based reasoning methods. More information can be found
in [326,459]. Despite the fact that most of embeddings only consider the relation
and entities of a KG, there are several types of complementary knowledge (e.g.,
text, logical rules, ontology, complementary KG) from which embedding models
can be improved. In [328], ontological knowledge is introduced as complementary
knowledge, which can be used in the factorization process of embedding models.
In some of the more focused work, ontological knowledge such as entity types
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is used as constraints [201,265,460,475] which improves the performance of the
embedding models. In recent years, logic-based reasoning and embedding-based
reasoning have come together and attracted a great deal of academic attention.
Some initial work is done using logical rules as a post-processing task after
embedding [460,465]. [375] optimizes the embeddings using first order logical
rules to obtain entity pairs and relations. [202] provides a general framework to
transfer information in logical rules to the weights of different types of neural
networks.

4 Reasoning for Application Services

The ultimate goal of the aforementioned approaches is to provide better knowl-
edge aware services such as smart analytics and recommendation and prediction
services as well as to facilitate query answering. In many knowledge management
tasks, learning and reasoning is an important component towards providing such
services. There are also hybrid systems which integrate many such models con-
suming different learning representation and learning methods. Such methods
are usually defined as high-level tasks where the purpose is to gain a certain
practical step in KGs where it is ready for low-level tasks. This section includes
some AI-driven applications with an underlying knowledge-aware learning and
reasoning engine.

4.1 Recommendation Systems

In many of the high-level tasks related to Knowledge Graphs, learning and
reasoning methods are considered to be well-suited to providing recommen-
dation services. Recommendation services are typical applications of reasoning
for knowledge discovery and link prediction approaches. Logic-based reasoning
provides explainable recommendations while embedding-based reasoning mostly
explores the interlinks within a knowledge graph. The learning phase in both of
these approaches is mostly about analysis of the connectivity between entities
and relations in order to discover possible news paths. This can be facilitated
with rich and complementary information. These approaches reveal the seman-
tics of entities and relations and facilitate recommendation services to compre-
hend ultimate user interests.

In the domain application level, such approaches can be applied for any
graph-based scenario. For example, KGs of social networks [457] are one of the
most interesting application domains on which learning frameworks are applied.
Item recommendation in online shopping is a typical application for link predic-
tion. Such problems are usually formulated as ML-based problems in KGs and
employ link prediction approaches. Another typical example is link prediction
between co-authors in scholarly Knowledge Graphs. The plausibility of such rec-
ommendations is prediction-based for the future and might not happen. Adding
a temporal feature for such recommendations by making Knowledge Graphs
time-aware makes such applications more interesting.
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4.2 Question Answering

A number of reasoning-based applications for which intelligent systems are built
goes under the umbrella of question answering systems (QA). In addition to
normal search engines and query-based systems, into this category falls conver-
sational AI systems, speech assistants, and chat-bots. Example of such systems
are Apple’s Siri, Microsoft’s Cortana, and Amazon’s Alexa, for which the source
of knowledge is an underlying KG. Despite the huge success in building such sys-
tems, the possible incorrect answers as well as their limits in retrieving a certain
level of knowledge queries is not avoidable. There are multiple reasons for this,
such as KG incompleteness or other quality issues on the data side, which cause
minimal semantic understanding. However, for the complete part of the data in
practice, any simple question has the potential to require complex queries and
thus complex reasoning over multiple computational steps [277]. Therefore, all
of these systems are facilitated with reasoning and inference techniques in order
to retrieve hidden information.

In recent years, one of the hyped applications of reasoning for question
answering is on Knowledge Graphs with diverse modality of data. This is
because, by nature, Knowledge Graphs contain different types of information
ranging from images, text, numerical data or even videos and many more. The
main challenge is that, on the application side, most of the learning approaches
are mainly considered with one modal. While there has been a lot of progress
from computer vision communities in audio and video processing, such multi-
disciplinary research is still at an early stage. Such KGs are known as Multi-
modal Knowledge Graphs (MKGs) and have fundamental differences with other
visual-relational resources. There are recent works on construction of Multi-
Modal Knowledge Graphs and application of ML-related models on top of such
KGs. Visual QA systems are designated specifically for MKGs [66].

Due to the explainability power of rule-based reasoning techniques, they are
an important part of QA systems as well. In the case of complex questions with a
need for multiple steps, it is easier to provide explainable and certain statements.
Multi-hop reasoning is a solution for such cases, which is elevated by end-to-end
differentiable (deep learning) models [108,464].

5 Challenges and Opportunities

In this chapter, we considered reasoning in Knowledge Graphs in multiple dimen-
sions: namely that of integration, discovery and application. For each of these,
we picked some techniques that showcase some of the diversity of reasoning
techniques encountered in Knowledge Graphs. As a grand challenge, we see the
integration of multiple reasoning techniques, such as logic-based and embedding-
based reasoning techniques, and similarly neural network-based reasoning and
other reasoning techniques. Clearly, also each individual reasoning problem that
we introduced in this chapter would allow for challenges and opportunities to be
listed, but that would go beyond the scope of this chapter.
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Abstract. The size and number of knowledge graphs have increased
tremendously in recent years. In the meantime, the distributed data
processing technologies have also advanced to deal with big data and
large scale knowledge graphs. This chapter introduces Scalable Semantic
Analytics Stack (SANSA), that addresses the challenge of dealing with
large scale RDF data and provides a unified framework for applications
like link prediction, knowledge base completion, querying, and reasoning.
We discuss the motivation, background and the architecture of SANSA.
SANSA is built using general-purpose processing engines Apache Spark
and Apache Flink. After reading this chapter, the reader should have an
understanding of the different layers and corresponding APIs available
to handle Knowledge Graphs at scale using SANSA.

1 Introduction

Over the past decade, vast amounts of machine-readable structured information
have become available through the increasing popularity of semantic knowledge
graphs using semantic technologies in a variety of application domains includ-
ing general knowledge [25,448], life sciences [468], scholarly data [129], open
source projects [266], patents [261] or even food recommendations [189]. These
knowledge bases are becoming more prevalent and this trend can be expected
to continue in future.

The size of knowledge graphs has reached the scale where centralised ana-
lytical approaches have become either infeasible or too expensive. Recent tech-
nological progress has enabled powerful distributed in-memory analytics that
have been shown to work well on simple data structures. However, the appli-
cation of such distributed analytics approaches on semantic knowledge graphs
is lagging behind significantly. To advance both the scalability and accuracy of
large-scale knowledge graph analytics to a new level, fundamental research on
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Fig. 1. W3C Semantic Web layer cake.

methods of leveraging distributed in-memory computing and semantic technolo-
gies in combination with advancements in analytics approaches is indispensable.
In this chapter, we present the Scalable Semantic Analytics Stack (SANSA),
which addresses the challenge of dealing with large scale RDF data and provides
a unified framework for designing complex semantic applications.

2 Semantic Layer Cake

As presented in the previous chapters, there are many different types of data
source available that are collecting and providing information structured via dif-
ferent formats. In addition, most of them are available on the Web and often
share some information about the same concepts or entities; as a consequence,
the need to allow alignments between sources has increased. This motivation
fuelled the Semantic Web initiative where the main idea is to enable linkage
between remote data entities so that several facets of information become avail-
able at once. The Semantic Web mainly relies on the dereferencing concept
where identifiers (iris - Internationalised Resource Identifier) are used to rep-
resent entities and are therefore to navigate from one piece of information to
another.

The Semantic Web has been mainly pushed by the World Wide Web Con-
sortium (W3C), which proposed a set of standards to technically back up this
movement. Practically, these standards are built following a “layer cake” struc-
ture where standards are constructed on top of other ones (see Fig. 1). In partic-
ular, the stack is completely built on top of the identifier concept, which serves
as a basis then to represent data using the following RDF structure.

The Semantic Web does not limit its scope to only linking and representing
data on the web; it also provides a range of specifications to help users enrich
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their knowledge. First of all, RDF comes with an associated query language
(SPARQL) in order to extract data from sources. Moreover, several standards
specify how to structure the data:

1. The RDF Schema (RDFS) lists a set of classes with certain properties using
the RDF representation data model and provides basic elements for the
description of ontologies.

2. The Web Ontology Language (OWL) is a family of knowledge representa-
tion languages for authoring ontologies which are a formal ways to describe
taxonomies and classification networks, essentially defining the structure of
knowledge for various domains.

3. The Shapes Constraint Language (SHACL) allows to design validations over
graph-based data considering a set of conditions. Among others, it includes
features to express conditions that constrain the number of values that a
property may have, the type of such values, numeric ranges etc. . . .

These specifications then allow users to specify several properties about Semantic
Web data and therefore one can use them to extend one’s own knowledge. Indeed,
ontologies are the cornerstone of all the studies made around inferring data from
a set of triples e.g. using the structure of the graph, it is possible to “materialize”
additional statements and thereby to extend the general knowledge.

As a consequence, the W3C – via the diverse standards and recommen-
dations it set up – allows users to structure pieces of information. However,
the large majority of existing tools are focusing on one or two standards at
once, meaning that they are usually not encompassing the full scope of what
the Semantic Web is supposed to provide and enable. Indeed, designing such a
“wide-scope” Semantic Web tool is challenging. Recently, such an initiative was
created: SANSA [411]; in addition, SANSA also pays attention to the Big Data
context of the Semantic Web and adopts a fully distributed strategy.

3 Processing Big Knowledge Graphs with SANSA

In a nutshell, SANSA1 presents:

1. efficient data distribution techniques and semantics-aware computation of
latent resource embeddings for knowledge graphs;

2. adaptive distributed querying;
3. efficient self-optimising inference execution plans; and
4. efficient distributed machine learning on semantic knowledge graphs of

extremely large scale.

3.1 Knowledge Representation and Distribution

SANSA follows the modular architecture where each layer represents a unique
component of functionality, which could be used by other layers of the SANSA
framework. The Knowledge Representation and Distribution is the lowest layer
1 http://sansa-stack.net/.

http://sansa-stack.net/
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on top of the existing distributed computing framework (either Apache Spark2

or Apache Flink3). Within this layer, SANSA provides the functionality to read
and write native RDF or OWL data from HDFS or a local dive and represents
it in native distributed data structures of the framework. Currently, it supports
different RDF and OWL serializations/syntax formats. Furthermore, it provides
a dedicated serialization mechanism for faster I/O. The layer also supports Jena
and OWL API interfaces for processing RDF and OWL data, respectively. This
particularly targets usability, as many users are already familiar with the corre-
sponding libraries.

This layer also gives access to a mechanism for RDF data compression in
order to lower the space and processing time when querying RDF data (c.f
Sect. 3.2). It also provides different partitioning strategies in order to facili-
tate better maintenance and faster access to this scale of data. Partitioning
the RDF data is the process of dividing datasets in a specific logical and/or
physical representation in order to ease faster access and better maintenance.
Often, this process is performed to improve the system availability, load bal-
ancing and query processing time. There are many different data partitioning
techniques proposed in the literature. Within SANSA, we provide 1) semantic-
based partitioning [392], 2) vertical-based partitioning [411], and 3) graph-based
partitioning.

Semantic-based partitioning – A semantically partitioned fact is a tuple (S,R)
containing pieces of information R ∈ (P,O) about the same S where S is a unique
subject on the RDF graph and R represents all its associated facts i.e predicates
P and objects O. This partitioned technique was proposed in the SHARD [376]
system. We have implemented this technique using the in-memory processing
engine, Apache Spark, for better performance.

Vertical partitioning – The vertical partitioning approach in SANSA is
designed to support extensible partitioning of RDF data. Instead of dealing
with a single three-column table (s, p, o), data is partitioned into multiple tables
based on the used RDF predicates, RDF term types and literal datatypes. The
first column of these tables is always a string representing the subject. The sec-
ond column always represents the literal value as a Scala/Java datatype. Tables
for storing literals with language tags have an additional third string column for
the language tag.

In addition, this layer of SANSA allows users to compute RDF statistics [391]
and to apply quality assessment [393] in a distributed manner. More specifically, it
provides a possibility to compute different RDF dataset statistics in a distributed
manner via the so-called DistLODStats [392] software component. It describes the
first distributed in-memory approach for computing 32 different statistical crite-
ria for RDF datasets using Apache Spark. The computation of statistical criteria
consists of three steps: (1) saving RDF data in scalable storage, (2) parsing and
mapping the RDF data into the main dataset – an RDD data structure composed
of three elements: Subject, Property and Object, and (3) performing statistical cri-
teria evaluation on the main dataset and generating results.

2 http://spark.apache.org/.
3 https://flink.apache.org/.

http://spark.apache.org/
https://flink.apache.org/
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Fig. 2. Overview of DistLODStats’s abstract architecture [392].

Fetching the RDF Data (Step 1): RDF data needs first to be loaded into a large-
scale storage that Spark can efficiently read from. For this purpose, we use HDFS
(Hadoop Distributed File-System). HDFS is able to accommodate any type of
data in its raw format, horizontally scale to arbitrary number of nodes, and
replicate data among the cluster nodes for fault tolerance. In such a distributed
environment, Spark adopts different data locality strategies to try to perform
computations as close to the needed data as possible in HDFS and thus avoid
data transfer overhead.

Parsing and Mapping RDF into the Main Dataset (Step 2): In the course of
Spark execution, data is parsed into triples and loaded into an RDD of the
following format: Triple<Subj,Pred,Obj> (by using the Spark map transforma-
tion).

Statistical Criteria Evaluation (Step 3): For each criterion, Spark generates an
execution plan, which is composed of one or more of the following Spark trans-
formations: map, filter, reduce and group-by. Filtering operation apply the Rule’s
Filter and produce a new filtered RDD. The filtered RDD will serve as an input
to the next step: Computing where the rule’s action and/or post processing are
effectively applied. The output of the Computing phase will be the statistical
results represented in a human-readable format, e.g. VoID, or row data.

Often when designing and performing large-scale RDF processing tasks, the
quality of the data is one of the key components to be considered. Existing solu-
tions are not capable of dealing with such amounts of data, therefore a need for a
distributed solution for a quality check arises. To address this, within SANSA we
present DistQualityAssessment [393] – an open-source implementation of quality
assessment of large RDF datasets that can scale out to a cluster of machines.
This is the first distributed, in-memory approach for computing different quality
metrics for large RDF datasets using Apache Spark. We also provide a quality
assessment pattern that can be used to generate new scalable metrics that can
be applied to big data. A more detailed overview of the approach is given below.
The computation of the quality assessment using the Spark framework consists
of four steps:
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Defining Quality Metrics Parameters. The metric definitions are kept in a ded-
icated file, which contains most of the configurations needed for the system to
evaluate quality metrics and gather result sets.

Retrieving the RDF Data. RDF data first needs to be loaded into a large-scale
storage that Spark can efficiently read from. We use Hadoop Distributed File-
System (HDFS). HDFS is able to fit and store any type of data in its Hadoop-
native format and parallelize them across a cluster while replicating them for
fault tolerance. In such a distributed environment, Spark automatically adopts
different data locality strategies to perform computations as close to the needed
data as possible in HDFS and thus avoids data transfer overhead.

Parsing and Mapping RDF into the Main Dataset. We first create a distributed
dataset called main dataset that represent the HDFS file as a collection of triples.
In Spark, this dataset is parsed and loaded into an RDD of triples having the
format Triple<(s,p,o)>.

Quality Metric Evaluation. Considering the particular quality metric, Spark gen-
erates an execution plan, which is composed of one or more Spark transforma-
tions and actions. The numerical output of the final action is the quality of the
input RDF corresponding to the given metric.

3.2 Query

As presented before, the Semantic Web designed several standards on top of
RDF. Among them, one is to manipulate RDF data: SPARQL. In a nutshell, it
constitutes the de facto querying language for RDF data and hereby provides a
wide range of possibilities to either extract, create or display information.

The evaluation of SPARQL has been a deeply researched topic by the Seman-
tic Web communities for approximately twenty years now; dozens of evaluators
have been implemented, following as many different approaches to store and
organise RDF data4. Recently, with the increase of cloud-based applications, a
new range of evaluators have been proposed following the distributed paradigm
which usually suits Big Data applications5.

Distributed RDF Data. As part of the SANSA stack, a layer has been devel-
oped to handle SPARQL queries in a distributed manner and it offers several
strategies in order to fit users’ needs. Actually, following existing studies from
the literature, the developers decided by default to rely on the Apache Spark
SQL engine: in practice, the SPARQL queries asked by the users are automati-
cally translated in SQL to retrieve information from the in-memory virtual tables
(the Sparklify [411] approach) created from the RDF datasets. Such a method
then allows SANSA to take advantage of the relational engine of Spark espe-
cially designed to deal with distributed Big Data. In parallel, other evaluation

4 See [131] for a comprehensive survey of single-node RDF triplestores.
5 See [235] or [169] for an extensive review of the cloud-based SPARQL evaluators.
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strategies are available to fit specific use-cases as they consist of different distri-
bution strategies of the original RDF data in memory. While the default (verti-
cal) partitioning scheme splits datasets into blocks based on common predicates,
SANSA provides an implementation of the semantic partitioning [392] based on
common subjects. It also has built-in features enabling compression on-the-fly,
which allows it to handle bigger datasets.

The overall system architecture is shown in Fig. 3. It consists of four main
components: Data Model, Mappings, Query Translator and Query Evaluator.

Data Ingestion (Step 1). RDF data first needs to be loaded into large-scale
storage that Spark can efficiently read from.

We use the Hadoop Distributed File-System (HDFS) [62]. Spark employs
different data locality schemes in order to accomplish computations nearest to
the desired data in HDFS, as a result avoiding i/o overhead.

Data Partition (Step 2). The vertical partitioning approach in SANSA is
designed to support extensible partitioning of RDF data. Instead of dealing
with a single three-column table (s, p, o), data is partitioned into multiple tables
based on the used RDF predicates, RDF term types and literal datatypes. The
first column of these tables is always a string representing the subject. The sec-
ond column always represents the literal value as a Scala/Java datatype. Tables
for storing literals with language tags have an additional third string column for
the language tag.

Mappings/Views. After the RDF data has been partitioned using the extensible
VP (as it has been described on step 2 ), the relational-to-RDF mapping is per-
formed. Sparqlify supports both the W3C standard R2RML sparqlification [412].
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The main entities defined with SML are view definitions. See step 5 in the
Fig. 3 as an example. The actual view definition is declared by the Create View
. . .As in the first line. The remainder of the view contains these parts: (1) the
From directive defines the logical table based on the partitioned table (see step
2 ). (2) an RDF template is defined in the Construct block containing, URI, blank
node or literals constants (e.g. ex:worksAt) and variables (e.g. ?emp, ?institute).
The With block defines the variables used in the template by means of RDF
term constructor expressions whose arguments refer to columns of the logical
table.

Query Translation. This process generates a SQL query from the SPARQL
query using the bindings determined in the mapping/view construction phases.
It walks through the SPARQL query (step 4 ) using Jena ARQ6 and generates
the SPARQL Algebra Expression Tree (AET). Essentially, rewriting SPARQL
basic graph patterns and filters over views yields AETs that are UNIONS of
JOINS. Further, these AETs are normalized and pruned in order to remove
UNION members that are known to yield empty results, such as joins based on
IRIs with disjointed sets of known namespaces, or joins between different RDF
term types (e.g. literal and IRI). Finally, the SQL is generated (step 6 ) using
the bindings corresponding to the views (step 5 ).

Query Evaluation. Finally, the SQL query created as described in the previous
section can now be evaluated directly into the Spark SQL engine. The result set of
this SQL query is a distributed data structure of Spark (e.g. DataFrame) (step 7 ),
which then is mapped into SPARQL bindings. The result set can be further used
for analysis and visualization using the SANSA-Notebooks7 (step 8 ).

DataLake. SANSA also has a DataLake component which allows it to query
heterogeneous data sources ranging from different databases to large files stored
in HDFS, to NoSQL stores, using SPARQL. SANSA DataLake currently sup-
ports CSV, Parquet files, Cassandra, MongoDB, Couchbase, ElasticSearch, and
various JDBC sources e.g., MySQL, SQL Server. Technically, the given SPARQL
queries are internally decomposed into subqueries, each extracting a subset of
the results.

The DataLake layer consists of four main components (see numbered boxes
in the Fig. 4). For the sake of clarity, we use here the generic ParSets and DEE
concepts instead of the underlying equivalent concrete terms, which differ from
engine to engine. ParSet, from Parallel dataSet, is a data structure that can be
distributed and operated in parallel. It follows certain data models, like tables
in tabular databases, graphs in graph databases, or documents in a document
database. DEE, from Distributed Execution Environment, is the shared physical
space where ParSets can be transformed, aggregated and joined together.
The architecture accepts three user inputs:
6 https://jena.apache.org/documentation/query/.
7 https://github.com/SANSA-Stack/SANSA-Notebooks.

https://jena.apache.org/documentation/query/
https://github.com/SANSA-Stack/SANSA-Notebooks
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Fig. 4. SANSA’s DataLake layer internal architecture [295].

– Mappings: it contains associations between data source entities8 and
attributes to ontology properties and classes.

– Config: it contains the access information needed to connect to the heteroge-
neous data sources, e.g., username, password, or cluster setting, e.g., hosts,
ports, cluster name, etc.

– Query: a query in the SPARQL query language.

The fours components of the architecture are described as follows:

Query Decomposor. This component is commonly found in OBDA and query
federation systems. It decomposes the query’s Basic Graph Pattern (BGP, con-
junctive set of triple patterns in the where clause) into a set of star-shaped sub-
BGPs, where each sub-BGP contains all the triple patterns sharing the same
subject variable. We refer to these sub-BGPs as stars for brevity (see below
figure left; stars are shown in distinct colored boxes).

Relevant Entity Extractor. For every extracted star, this component looks in the
Mappings for entities that have attributes mapping to each of the properties of
the star. Such entities are relevant to the star.

8 These entities can be, for example, table and column in a tabular database or col-
lection and document in a document database.
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Fig. 5. From query to ParSets to joins between ParSets.

Data Wrapper. In the classical OBDA, a SPARQL query has to be translated
to the query language of the relevant data sources. This is, in practice, hard
to achieve in the highly heterogeneous Data Lake settings. Therefore, numerous
recent publications advocated for the use of an intermediate query language. In
our case, the intermediate query language is DEE’s query language, dictated by
its internal data structure. The Data Wrapper generates data in POA’s data
structure at query-time, which allows for the parallel execution of expensive
operations, e.g., join. There must exist wrappers to convert data entities from
the source to DEE’s data structure, either fully or partially if parts of the data
can be pushed down to the original source. Each identified star from step (1)
will generate exactly one ParSet. If more than an entity is relevant, the ParSet is
formed as a union. An auxiliary user input Config is used to guide the conversion
process, e.g., authentication, or deployment specifications.

Distributed Query Processor. Finally, ParSets are joined together forming the
final results. ParSets in the DEE can undergo any query operation, e.g., selection,
aggregation, ordering, etc. However, since our focus is on querying multiple data
sources, the emphasis is on the join operation. Joins between stars translate
into joins between ParSets (Fig. 5 phase I). Next, ParSet pairs are all iteratively
joined to form the Results ParSet (Fig. 5 phase II). In short, extracted join
pairs are initially stored in an array. After the first pair is joined, it iterates
through each remaining pair to attempt further joins or, else, add to a queue.
Next, the queue is similarly iterated; when a pair is joined, it is unqueued.
The algorithm completes when the queue is empty. As the Results ParSet is
a ParSet, it can also undergo query operations. The join capability of ParSets
in the DEE replaces the lack of the join common in many NoSQL databases,
e.g., Cassandra, MongoDB. Sometimes ParSets cannot be readily joined due to
a syntactic mismatch between attribute values; nevertheless, SANSA provides a
method to correct these mismatches, thereby enabling the joins.
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3.3 Inference

Both RDFS and OWL contain schema information in addition to links between
different resources. This additional information and rules allows users to perform
reasoning on the knowledge bases in order to infer new knowledge and expand
existing knowledge. The core of the inference process is to continuously apply
schema-related rules on the input data to infer new facts. This process is helpful
for deriving new knowledge and for detecting inconsistencies. SANSA provides
an adaptive rule engine that can use a given set of arbitrary rules and derive
an efficient execution plan from those. Later, that execution plan is evaluated
and run against underlying engines, i.e. Spark SQL, for an efficient and scalable
inference process.

3.4 Machine Learning

SANSA-ML is the Machine Learning (ML) library in SANSA. Algorithms in this
repository perform various machine learning tasks directly on RDF/OWL input
data. While most machine learning algorithms are based on processing simple
features, the machine learning algorithms in SANSA-ML exploit the graph struc-
ture and semantics of the background knowledge specified using the RDF and
OWL standards. In many cases, this allows users to obtain either more accurate
or more human-understandable results. In contrast to most other algorithms
supporting background knowledge, the algorithms in SANSA scale horizontally
using Apache Spark. The ML layer currently supports numerous algorithms for
Clustering, Similarity Assessment of entities, Entity Linking, Anomaly Detec-
tion and Classification using Graph Kernels. We will cover these algorithms in
the context of knowledge graphs in the following section.

3.5 Semantic Similarity Measures

SANSA covers the semantic similarities used to estimate the similarity of con-
cepts defined in ontologies and, hence, to assess the semantic proximity of the
resources indexed by them. Most of the approaches covered in the SANSA sim-
ilarity assessment module are feature-based. The feature model requires the
semantic objects to be represented as sets of features. Tversky was the first
to formulate the concept of semantic similarity using the feature model, from
which a family of semantic measures has been derived. The similarity measure
in this context is defined as a function (set-based or distance-based measure) on
the common features of the objects under assessment.

Jaccard Similarity. For any two nodes u and v of a data set, the Jaccard
similarity is defined as:

SimJaccard(u, v) =
|f(u) ∩ f(v)|
|f(u) ∪ f(v)| (1)

Here, f(u) is the subset of all neighbours of the node u and |f(u)| the cardinality
of f(u) that counts the number of elements in f(u).
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Rodŕıguez and Egenhofer Similarity. Another example of feature-based
measure implemented in SANSA is by Rodŕıguez and Egenhofer [181].

SimRE(u, v) =
|f(u) ∩ f(v)|

γ · |f(u) \ f(v)| + (1 − γ) · |f(v) \ f(u)| + |f(u) ∩ f(v)| (2)

where γ ∈ [0, 1] allows to adjust measure symmetry.

Ratio Model. Tversky defined a parameterized semantic similarity measure
which is called the ratio model (SimRM) [181]. It can be used to compare two
semantic objects (u; v) through its respective sets of features U and V :

SimRM (u, v) =
|f(u) ∩ f(v))|

α|f(u) \ f(v)|) + β|f(v) \ f(u)| + γ|f(u) ∩ f(v))| (3)

with α, β and γ ≥ 0.
Here, |f(u)| is the cardinality of the set f(u) composed of all neighbours

of u. Setting SimRM with α = β = 1 leads to the Jaccard index, and setting
α = β = 0.5 leads to the Dice coefficient. In other words, set-based measures
can be used to easily express abstract formulations of similarity measures. Here,
we set α = β = 0.5.

Batet Similarity. Batet et al. represent the taxonomic distance as the ratio
between distinct and shared features [31]. Batet similarity can be defined as
follows:

SimBatet(u, v) = log2

(
1 +

|f(u) \ f(v)| + |f(v) \ f(u)|
|f(u) \ f(v)| + |f(v) \ f(u)| + |f(u) ∩ f(v)|

)
(4)

For any node u, the notation f(u) stands for the set of all neighbours of u.

3.6 Clustering

Clustering is the class of unsupervised learning algorithms that can learn without
the need for the training data. Clustering is aimed to search for common patterns
and similar trends in the knowledge graphs. The similarity of patterns is mostly
measured by a given similarity measure, e.g the measures covered in the previous
section. Below, we cover the clustering algorithms implemented in SANSA for
knowledge graphs.

PowerIteration Clustering. PowerIteration (PIC) [284] is a fast spectral
clustering technique. It is a simple (it only requires a matrix-vector multipli-
cation process) and scalable algorithm in terms of time complexity, O(n). PIC
requires pairwise vertices and their similarities as input and outputs the clusters
of vertices by using a pseudo-eigenvector of the normalized affinity matrix of the
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graph. Although the PowerIteration method approximates only one eigenvalue
of a matrix, it remains useful for certain computational problems. For instance,
Google uses it to calculate the PageRank of documents in its search engine, and
Twitter uses it to show follow recommendations. Spark.mllib includes an imple-
mentation of PIC using GraphX. It takes an RDD of tuples, which are vertices
of an edge, and the similarity among the two vertices and outputs a model with
clustering assignments.

BorderFlow Clustering. BorderFlow [325] is a local graph clustering which
takes each node as the starting seed and iteratively builds clusters by merging the
nodes using BorderFlow-ratio. The clusters must have a maximal intra-cluster
density and inter-cluster sparseness. When considering a graph as the description
of a flow system, this definition of a cluster implies that a cluster X is a set
of nodes such that the flow within X is maximal while the flow from X to the
outside is minimal. At each step, a pair of nodes is merged if the border flow ratio
is maximised and this process is repeated until the termination criterion is met.
BorderFlow is a parameter-free algorithm and it has been used successfully in
diverse applications including clustering protein-protein interaction (PPI) data
[324] and query clustering for benchmarking [313].

Linked-Based Clustering. Link information plays an important role in dis-
covering knowledge from data. The link-based graph clustering [156] algorithm
results in overlapping clusters. Initially, each link represents its own group; the
algorithm recursively merges the links using similarity criteria to optimize the
partition density until all links are merged into one, or until the termination
condition is met. To optimize performance, instead of selecting arbitrary links,
the algorithm only considers the pair of links that share a node for merging.

Fig. 6. A semantic-geo clustering flow.

BuildingClusteringProcesses [95]. SANSA proposes a flexible architecture to
design clustering pipelines. For example, having points of interest (POI) datasets,
SANSA can aggregate them according to several dimensions in one pipeline: their
labels on the first hand and their localisation on the other hand. Such an architec-
ture is presented in Fig. 6.



118 H. Jabeen et al.

The approach contains up to five main components (which could be
enabled/disabled if necessary), namely: data pre-processing, SPARQL filtering,
word embedding, semantic clustering and geo-clustering. In semantic-based clus-
tering algorithms (which do not consider POI locations but rather aim at group-
ing POIs according to shared labels), there is a need to transform the POIs
categorical values to numerical vectors to find the distance between them. So
far, any word-embedding technique can be selected among the three available
ones, namely one-hot encoding, Word2Vec and Multi-Dimensional Scaling. All
the abovementioned methods convert categorical variables into a form that could
be provided to semantic clustering algorithms to form groups of non-location-
based similarities. For example, all restaurants are in one cluster whereas all the
ATMs are in another one. On the other hand, the geo-clustering methods help
to group the spatially closed coordinates within each semantic cluster.

More generically, SANSA’s architecture and implementation allow users to
design any kind of clustering combinations they would like. Actually, the solution
is flexible enough to pipe together more than two clustering “blocks” and even
to add additional RDF datasets into the process after several clustering rounds.

3.7 Anomaly Detection

With the recent advances in data integration and the concept of data lakes,
massive pools of heterogeneous data are being curated as Knowledge Graphs
(KGs). In addition to data collection, it is of the utmost importance to gain
meaningful insights from this composite data. However, given the graph-like
representation, the multimodal nature, and large size of data, most of the tra-
ditional analytic approaches are no longer directly applicable. The traditional
approaches collect all values of a particular attribute, e.g. height, and perform
anomaly detection for this attribute. However, it is conceptually inaccurate to
compare one attribute representing different entities, e.g. the height of build-
ings against the height of animals. Therefore, there is a strong need to develop
fundamentally new approaches for outlier detection in KGs. SANSA presents a
scalable approach that can deal with multimodal data and performs adaptive
outlier detection against the cohorts of classes they represent, where a cohort is
a set of classes that are similar based on a set of selected properties. An overview
of the scalable anomaly detection [216] in SANSA can be seen in Fig. 7.

Fig. 7. Anomaly detection execution pipeline.
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3.8 Entity Linking

Entity resolution is the crucial task of recognizing and linking entities that
point to the same real-world object in various information spaces. Entity link-
ing finds its application in numerous tasks like de-duplicating entities in federal
datasets related to medicine, finance, transportation, business and law enforce-
ment, etc. With the growth of the web in terms of volume and velocity, the task
of linking records in heterogeneous data collections has become more compli-
cated. It is difficult to find semantic relations between entities across different
datasets containing noisy data and missing values with loose schema bindings.
At the same time, pairwise comparison of entities over large datasets implies and
exhibits quadratic complexity. Some recent approaches reduce this complexity
by aggregating similar entities into blocks. In SANSA, we implement a more
generic method for entity resolution that does not use blocking and significantly
reduces the quadratic comparisons. In SANSA, we use scalable techniques like
vectorization using hashingTF, count-vectorization and Locality Sensitive Hash-
ing [190] to achieve almost linear performance for large-scale entity resolution.
An overview of the approach used in SANSA can be seen in Fig. 8.

SANSA
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Fig. 8. Overview of scalable Entity Linking.

3.9 Graph Kernels for RDF

Many machine learning algorithms strongly depend on the specific structure of
the data, which forces users to fit their observations in a particular predefined set-
ting or re-implement the algorithms to fit their requirements. For dynamic data
models like Knowledge Graphs that can operate on schema-free structures, tech-
niques like propositionalization or graph kernels are used. Inspired by [287], we
developed graph kernels in SANSA. The walk kernel corresponds to a weighted
sum of the cardinality of walks up to a given length. The number of paths can
be calculated either by breadth-first search or by multiplication of the adjacency
matrix. A path kernel is similar to walk kernel, but it counts the number of paths
instead. Unlike walks, paths must consist of distinct vertices. SubtreekKernels
attempt to limit the calculations of kernels by selecting subgraphs identified with
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a central entity, and sharing a common structure. This enables a replacement
of the intersection graph with other suitable structures. The full subtree kernels
are based on the number of full subtrees contained in the intersection graph.
The kernels, in general, return the set of feature vectors for the entities that can
be further used in algorithms, like neural networks support vector machines or
similar algorithms working on numerical data.

Apart from the analytics mentioned in this section, SANSA provides addi-
tional algorithms for rule mining, cluster evaluation, graph kernels as well. All
of these algorithms are being continuously extended and improved. In addition,
more algorithms are being added with time.

4 Grand Challenges and Conclusions

In this chapter, we provide an overview of SANSA’s functionalities: an engine
that attempts to fill the gap pointed in Chap. 3. SANSA is the only compre-
hensive system that addresses several challenges and provides libraries for the
development of a knowledge graph value chain ranging from acquisition, dis-
tribution, and querying to complex analytics (see for instance [170,415] where
complex analyses were successfully computed on the Ethereum blockchain using
SANSA).

The SANSA stack is a step in the direction of offering a seamless solution to
help users dealing with big knowledge graphs. As a consequence, there are still
grand challenges to face:

– Availability of data in RDF. This challenge is to be linked to the research
directions on federated queries (Chap. 5) and to the design of mappings
(Chap. 4) to pave the road for datalake-oriented solutions such as the one
presented by Mami et al. [295]. While the representation of data as knowl-
edge graphs has gained lots of traction and large-scale knowledge graphs are
being created, a majority of data being created and stored is not-RDF and
therefore challenges such as the necessary efforts for data cleaning, and/or
data maintenance should be taken into account.

– RDF and Query layer. The distributed context requires smart partitioning
methods (see [53] and [235] for detailed taxonomies) aligned with the querying
strategies. One possibility would be to have dynamic partitioning paradigms
which could be automatically selected based on data shape and/or query
patterns, as envisioned in [14].

– In a distributed context, processes often share resources with concurrent pro-
cesses, and therefore the definition itself of what is a “good” query answer
time may vary, as reviewed in the context of distributed RDF solutions by
Graux et al. in [169]. One could think of basing this performance evaluation
on use-cases.

– Machine Learning and Partial access to data. Most machine learning algo-
rithms generally require access to all the training data and work by iterating
over the training data to fit the desired loss function. This is challenging in
the distributed setting where one might need to use multiple local learners or

http://dx.doi.org/10.1007/978-3-030-53199-7_3
http://dx.doi.org/10.1007/978-3-030-53199-7_5
http://dx.doi.org/10.1007/978-3-030-53199-7_4
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query processors (each working on a subset of the data) and optimize globally
over (or collect) partial local results. For very large-scale distributed data, this
working model may not be suitable [343]. Hence, there is a strong need to
develop fundamentally new algorithms that can work with partial access to
the data.

– Challenge on the Semantic Web itself. At the moment, using W3C standards,
it is hard to be as expressive as with Property Graphs. This has led to the
creation of RDF* [184,185] in order to allow Semantic Web users to express
statements of statements within an RDF extension. These new possibilities
imply that the current landscape incorporates this extension while guaran-
teeing the same performances as before.

Open Access This chapter is licensed under the terms of the Creative Commons
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Abstract. In the Big Data era, where variety is the most dominant
dimension, the RDF data model enables the creation and integration
of actionable knowledge from heterogeneous data sources. However, the
RDF data model allows for describing entities under various contexts,
e.g., people can be described from its demographic context, but as well
from their professional contexts. Context-aware description poses chal-
lenges during entity matching of RDF datasets—the match might not
be valid in every context. To perform a contextually relevant entity
matching, the specific context under which a data-driven task, e.g., data
integration is performed, must be taken into account. However, existing
approaches only consider inter-schema and properties mapping of differ-
ent data sources and prevent users from selecting contexts and conditions
during a data integration process. We devise COMET, an entity match-
ing technique that relies on both the knowledge stated in RDF vocabular-
ies and a context-based similarity metric to map contextually equivalent
RDF graphs. COMET follows a two-fold approach to solve the problem
of entity matching in RDF graphs in a context-aware manner. In the first
step, COMET computes the similarity measures across RDF entities and
resorts to the Formal Concept Analysis algorithm to map contextually
equivalent RDF entities. Finally, COMET combines the results of the
first step and executes a 1-1 perfect matching algorithm for matching
RDF entities based on the combined scores. We empirically evaluate the
performance of COMET on testbed from DBpedia. The experimental
results suggest that COMET accurately matches equivalent RDF graphs
in a context-dependent manner.

1 Introduction

In the Big Data era, variety is one of the most dominant dimensions bringing
new challenges for data-driven tasks. Variety alludes to the types and sources
of data that are becoming increasingly heterogeneous with new forms of data
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collection being introduced with time. At one point in time, the only source
of digital data was spreadsheets and databases. Today data is collected from
emails, photographs, digital documents, or audio. The variety of unstructured
and semi-structured data creates issues during data analysis. Therefore, these
varying forms of data must be integrated for consistency in storage, mining,
and analysis. The process of integrating these complex and semi-structured data
poses its own set of challenges. For example, the same real-world object may be
represented in different data sources as different entities; it therefore challenging
to identify entities that refer to the same real-world object.

The Resource Description Framework (RDF) data model enables the descrip-
tion of data integrated from heterogeneous data sources. RDF is designed to
have a simple data model with formal semantics to provide inference capabili-
ties. The syntax of RDF describes a simple graph-based data model, along with
formal semantics, which allows for well-defined entailment regimes that provide
the basis for logical deductions. RDF has the following principal use cases as a
method for describing web metadata: (i) to allow applications to use an infor-
mation model which is open rather than constrained; (ii) to allow web data to
be machine-processable; and (iii) to combine and integrate data from several
sources incrementally. RDF is designed to represent information in a minimally
constraining and flexible way; it can be used in isolated applications, where indi-
vidually designed formats might be easily understood, and the RDF generality
offers higher value from sharing. Thus, the value of RDF data increases as it
becomes accessible to more applications across the entire internet.

RDF is a semi-structured data model that allows for the encoding of multiple
contexts of an entity within the same graph. A context describes a situation that
limits the validity of particular information. The so-called “Context as a Box”
approach [63] considers context as the conditions and constraints which define
whether or not a piece of information is accurate. Contextual information (or
meta information) represents the conditions and constraints which describe the
situation of a context. For example, the fact “Donald Trump is the President of
the United States of America” is valid only in the context of “the presidential
period between the years 2017 and 2021”. The RDF data model allows for rep-
resenting entities of the same type with different properties. This in turn allows
for the encoding of multiple contexts of an entity within the same graph. For
example, the entity Donald Trump in an RDF graph can have properties relating
to the context of his career as a politician, and also the ones that describe his
role as a reality TV celebrity. This feature of RDF is useful for addressing the
data complexity challenge of variety– a dominant dimension of data in the Big
Data era [218]. Nevertheless, enabling diverse representations of the same entity
poses new challenges during the analysis of RDF graphs. This is particularly
prevalent in cases where specific contexts need to be considered for the effective
identification of similar entities [35]. Two entities may be similar in one context
but dissimilar in another. In this chapter1, we present a novel approach to tackle

1 This chapter is based on the master thesis of Mayesha Tasnim.
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(a) Arnold S.’s entity in D1 (b) Arnold S.’s entity in D2 (c) Donald T.’s entity in D2

(d) Entity matching using similarity (e) Entity matching using similarity and
context

Fig. 1. Motivation Example. The top row shows three entities across two datasets.
The bottom row shows two matching scenarios, the left one not considering context
during entity matching, and the right one taking context into consideration.

the problem of entity matching considering context as a new dimension of the
matching algorithm.

1.1 Motivating Example

Following the principle of the web of linked data, RDF allows for the represen-
tation of different contexts of an entity within the same graph. This means that
applications attempting to match entities from different graphs have to deal with
entities that are valid in different contexts. In order to match entities in such a
way that they comply with the context specified by the user of the application,
the system context must be taken into account. A system’s context represents
any kind of information that describes the system and its requirements. If this
system context is not considered, the entity matching operation will match enti-
ties that are not relevant or valid under the definition of system context.

This can be demonstrated using the example of a context-based entity match-
ing scenario using RDF entities representing persons. Arnold Schwarzenegger is
a person with an extensive career in both politics and acting. Consequently, there
is data available regarding both his career in politics and his achievements in
the movie industry. Consider a system that contains data about American politi-
cians and is searching other data sources to match relevant data. The system’s
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dataset D1 contains information about Arnold Schwarzenegger and his politi-
cal career. In another dataset D2 available on the web there exists information
about Arnold’s acting career, e.g. the movies he has acted in and the roles he has
played. The same dataset D2 also contains information about other celebrities,
like Donald Trump, President of the United States. These entities are presented
in Figs. 1a, 1b and 1c, respectively.

In a typical entity matching scenario where context is not considered, enti-
ties are matched to the ones that are most similar to them. In such a case,
Arnold Schwarzenegger’s entity from D1 will be matched with the entity in D2

containing information about his acting career, as shown in Fig. 1d. However,
in the context of politics, Arnold’s political career is more similar to Donald
Trump’s than his own career in acting. They are politicians of almost the same
age who both support the Republican party. In a political context, their careers
are far more similar than when Arnold’s post as the Governor of California is
compared with his portrayal of the Terminator in Terminator 2. Therefore, when
the context of American politics is considered, the entity of Arnold S. from D1

should be matched with the Donald T. entity from D2. This is an example of
context-aware entity matching.

1.2 Challenges and Problems

To match entities from heterogeneous sources in a unified way, Bellazi et al. [37]
explain the importance of analyzing all data sources to identify interoperability
conflicts. Vidal et al. [447] characterize the interoperability conflicts into six cat-
egories. We summarizes the main characteristics of each interoperability conflict.

1. Structuredness (C1): data sources may be described at different levels of
structuredness, i.e. structured, semi-structured, and unstructured. The enti-
ties in a structured data source are described in terms of fixed schema
and attributes, e.g. the entity-relationship model. In semi-structured data
sources, a fixed schema is not required, and entities can be represented
using different attributes and properties. Examples of semi-structured data
models are the Resource Description Framework (RDF) or XML. Lastly,
in unstructured data sources, the no data model is used, so the data does
not follow any structured. Typically unstructured data formats are: textual,
numerical, images, or videos.

2. Schematic (C2): the following conflicts arise when data sources are mod-
eled with different schema. i) the same entity is represented by different
attributes; ii) different structures model the same entity, e.g., classes versus
properties; iii) the same property is represented with different data types,
e.g., string versus integer; iv) different levels of specialization/generalization
describe the same entity; v) the same entity is named differently; and vi)
different ontologies are used, e.g., to describe a gene function the following
ontologies may be used UMLS, SNOMED-CT, NCIT, or GO.

3. Domain (C3): various interpretations of the same domain exist on dif-
ferent data sources. These interpretations include: homonyms, synonyms,
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acronyms, and semantic constraints—different integrity constraints are used
to model a concept.

4. Representation (C4): different representations are used to model the same
entity. These representation conflicts include: different scales and units, val-
ues of precision, incorrect spellings, different identifiers, and various encod-
ings.

5. Language (C5): the data and schema may be specified using different lan-
guages, e.g. English and Spanish.

6. Granularity (C6): the data may be collected under different levels of gran-
ularity, e.g. samples of the same measurement observed at different time-
frequency, various criteria of aggregation, and data model at different levels
of detail.

2 Applications of Entity Matching

Entity Matching (EM) is an important operation in the field of data science
and data management, and as such there are many practical applications where
entity matching is necessary. In this section, we explore two applications of entity
matching, namely Data Integration and Knowledge Summarization.

2.1 Semantic Data Integration

Semantic data integration is a research field that deals with integrating and
reconciling semantic heterogeneity in different data sources. Towards this goal,
the inclusion of semantics as a tool to aid data integration makes the entire
process more powerful [101]. Using semantics in data integration means build-
ing data integration systems where the semantics of data are explicitly defined,
and these semantics are used in turn during all the phases of data integration.
It is unrealistic to entertain the idea that various data sources across the web
will publish data using the same set of rules and conventions. Indeed, in reality
data available across the World Wide Web have very different representations of
the same information and concepts (entities). The stack of semantic technolo-
gies allows the opportunity for describing data semantically, and for interlinking
disparate data sources. Thus, semantic integration is a useful approach for inte-
grating semantically heterogeneous data. The bulk of the work done surrounding
semantic data integration revolves around three aspects [332]. The first aspect is
mapping discovery, or the process of automatically finding similarities between
two ontologies and mapping properties that present the same real-world con-
cept. The second is mapping representation, which is concerned with the specific
method of representing mappings between two ontologies. The third and final
aspect is enabling reasoning, which concerns itself with the process of performing
reasoning over ontologies once the mapping has been established.

An example of an approach to achieve semantic data integration is the
MINTE framework proposed by Collarana et al. [84]. MINTE is a semantic
integration technique that is able to match and merge semantically equivalent
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RDF entities in a single step through the utilization of semantics present in the
vocabularies. MINTE uses both semantic similarity measures and the implicit
knowledge present in the RDF vocabularies in order to match and merge RDF
graphs that refer to the same real-world entity. MINTE’s performance is powered
by semantic similarity measures, ontologies, and fusion policies that consider not
only textual data content but also logical axioms encoded into the graphs.

MINTE implements a two-step approach for determining the similarity
between two RDF entities and then merging them. In the first step, MINTE
implements a 1-1 weighted perfect matching algorithm to identify semantically
equivalent RDF entities in input data sources. Then MINTE relies on fusion
policies to merge triples from these semantically equivalent RDF entities. Fusion
policies are rules operating on RDF triples, which are triggered by certain config-
urations of predicates and objects. Fusion policies can also resort to an ontology
O to resolve possible conflicts. Collarana et al. define multiple fusion policies, e.g.
union policy, subproperty policy and authoritative graph policy, which are each
designed for flexible management and targeted control of an integrated knowl-
edge graph. Figure MINTE architecture depicts the main components of the
MINTE architecture. The accuracy of the process of determining when two RDF
molecules are semantically equivalent in MINTE is impacted by the characteris-
tics of the similarity measure Simf . Collarana et al. report the best performance
when the GADES [371] similarity metric is used.

2.2 Summarization of Knowledge Graph

Another application of entity matching lies in the summarization of knowledge
graphs. A knowledge graph is an ontology combined with a collection of instances
that represents a collection of interlinked descriptions of entities. Knowledge
graphs often capture domain-specific knowledge in the form of a graph. It has a
data layer that contains the actual information and a semantic layer that repre-
sents the schema or the ontology. Typically knowledge graphs contain millions
of entities and billions of properties describing these entities. This can lead to
information overload, and therefore it is important to compress and summarize
knowledge graphs for efficient representation of data [175].

The task of entity summarization is an essential part of knowledge graph
summarization. Entity summaries allow the concise representation of the most
important information about a certain real-world object. In the process of entity
summarization, entity matching plays an important role. In order to summarize
entities that either refer to the same real-world entity or are similar according
to some summarization paradigm, it is first necessary to identify entities that
belong in the same summary unit. For example, several knowledge graphs con-
tain information about Marie Curie, each containing hundreds of facts about
her life. For typical use cases, a summary containing a few basic items of infor-
mation, namely her name, birth year, occupation and notable contributions, is
enough to distinguish the most relevant aspects about her. To achieve this goal,
it is first required to isolate entities from each knowledge graph that refer to
Marie Curie. This is done using an entity matching technique. Knowledge graph
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summarization can either be concise – containing only a subset of original facts,
or comprehensive – containing an overview for all the original facts. The need
for either a concise or a comprehensive summary depends on the particular case.

Knowledge graphs can also be summarized along different axes. For example,
information can be summarized based on the semantic layer, i.e. ontology. It can
also be summarized along different contextual layers, e.g., along time, geographic
location, etc. In Chapter Use Cases, a temporal summarization technique for
knowledge graph entities using COMET is described.

3 Novel Entity Matching Approaches

The problem of entity matching between disparate data sources is essential to
the field of data integration. This is because one of the primary tasks in data
integration is to reconcile varying schemas, thereby creating mapping entities
between different data sources. Multiple approaches for inter-schema mapping
exist both in the relational and graph database community. Multiple approaches
also exist for the Entity Summarization – another application of entity matching.

A substantial amount of research has also been done over the idea of context
and its role in data-driven tasks, particularly in the semantic web where the
concept of data is intricately related to its semantics. The bulk of this research
is limited to the formalization of context, although not much work has been done
in practically implementing this concept. The following are some of the related
carried out in formalizing context as well as a few practical approaches towards
data integration and entity summarization.

3.1 Context in the Semantic Web

Principles for Formalizing Context: Bozzato et al. [63] present an argument
that context needs to be represented in a more advanced manner in the Semantic
Web and Linked Open Data (LOD). They further define a set of properties that
a representation of context should abide by. These properties allow context to
be an integral part of RDF data and its reasoning. The properties are as follows:

1. Encapsulation: data that share the same context must be encapsulated for
ease in access and identification.

2. Explicit meta knowledge: contextual information must be represented in a
logical language.

3. Separation: there must be a way to clearly distinguish meta knowledge from
object knowledge.

4. Relationship: relationships between contexts must be explicitly represented.
5. Encapsulation: data that share the same context must be encapsulated for

ease in access and identification.
6. Contextual reasoning : the representation should allow for reasoning to be

done using the contextual knowledge.
7. Locality : each unit of context representation should allow the definition of

axioms which are valid only within the local scope.
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8. Knowledge Lifting : it should be possible to reuse knowledge from one context
and apply it in another.

9. Overlap: the representation should allow for overlaps of knowledge between
different contexts.

10. Complexity invariance: the addition of this contextual layer should not
increase the complexity of reasoning.

The definition of context in COMET is guided by the principles defined
above. Our definition particularly focuses on implementing the properties of
Explicit meta knowledge and Contextual reasoning.

Fig. 2. Context Ontology for Data Integration (CODI) [409]. An overview of
contextual elements (CE) defined in the context ontology

Context Ontology for Data Integration (CODI). The Context Ontology
for Data Integration [409] was developed by Souza et al. to formally represent
context in data integration processes. They first define the concept of Contextual
Elements (CE) to represent the context of any domain-specific scenario. This is
shown in Fig. 2. They then build a context ontology suited to the domain-specific
scenario after having meetings with domain experts. This context ontology is
then used during the reconciliation of schema during data integration. Although
this approach works with the formal definition of context in data integration
scenarios, it is still quite expensive since it cannot work without extensive input
from domain experts in the modeling of the Context Ontology. It also does not
make use of the semantics already existing in the data instances to guide its
modeling of context.
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3.2 Entity Matching Approaches

Applications in Data Integration. Data Integration (DI) is one of the most
common applications that require entity matching. This matching is done at
either at a schema-level or at an instance-level. There are a number of approaches
that aim at the integration of disparate RDF data sources. We divide these works
based on whether they match ontologies, or the instances themselves.

Ontology Matching Approaches. Many of the data integration approaches
based on RDF data apply the concept of mapping heterogeneous data sources
to a common ontology. One approach using ontologies is KARMA, proposed by
Knoblock et al. [247]. This is a framework for integrating a variety of data sources
including databases, spreadsheets, XML, JSON, and Web APIs. KARMA imple-
ments a hybrid approach that relies on supervised machine algorithms for iden-
tifying mapping rules from structured sources to ontologies; these mapping rules
can be refined by users via a user interface.

Another approach is suggested by Schultz et al. [388], who describe the Linked
Data Integration Framework (LDIF). LDIF is oriented to integrate RDF datasets
from the Web and provides a set of independent tools to support interlinking
tasks. LDIF provides an expressive mapping language for translating data from
various vocabularies to a unified ontology. LDIF tackles the problem of identity
resolution by defining linking rules using the SILK tool [213]. Based on the
defined rules, SILK identifies owl:sameAs links among entities of two datasets.

Instance Matching Approaches. In the task of identifying whether given
entities refer to the same real-world entity, growing attention in the rela-
tional databases field is given to crowdsourcing mechanisms [242,445]. Report-
ing impressive results, such approaches, however, might struggle in sophisticated
domains with multiple contexts due to a lack of human experts who could reli-
ably provide necessary example data.

ODCleanStore [307] and UnifiedViews [246] are ETL frameworks for inte-
grating RDF data. ODCleanStore relies on SILK to perform instance matching
and provides custom data fusion modules to merge the data of the discovered
matches.

The MINTE framework proposed by Collarana et al. [84] also tackles the task
of matching entities in different datasets that correspond to the same real-world
entity by making use of the semantics encoded in the data itself. They first apply
a semantic similarity metric in order to identify semantically equivalent entities
from two different RDF graphs. Next they make use of a set of novel fusion
policies to merge these semantically equivalent entities. Although MINTE makes
use of the semantics encoded into the RDF graph itself, it does not consider the
context during the step of entity matching. The work done in COMET is in
essence a context-based extension of MINTE (Fig. 3).
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Fig. 3. Entity Summarization. Summarizing a single entity as envisioned by
LinkSum [424]

Applications in Entity Summarization. Entity summarization is the pro-
cess of creating a concise representation of an entity in order to describe the
whole entity. A number of approaches have been formulated in order to generate
summaries of entities [175]. One such approach is RELIN [79] by Cheng et al.
where they defined the problem of entity summarization using RDF graphs and
demonstrated its utility in entity identification. RELIN makes use of the PageR-
ank algorithm to select relevant features in the creation of the summary entity.
In 2014, Thalhammer and Rettinger proposed SUMMARUM [425], a dbpedia-
based entity summarization framework that also uses PageRank in order to rank
the features of an entity. It also uses the global popularity of DBPedia resources
corresponding to their Wikipedia pages. They later proposed LinkSum [424],
which in addition to PageRank also makes use of an adaptation of the Back-
Link method combined with new methods for predicate selection. These entity
summarization frameworks focus on the rank of features (attributes) in order to
create the summary, but do not take into consideration any contextual dimen-
sion of the data. The above-mentioned integration frameworks aim at mapping
different data sources with possibly varying schema, i.e., they perform inter-
schema mapping. ontext-based integration could only be supported in these
frameworks on a superficial level via filtering query results without applying
many inherent semantics. Similarly, the entity summarization frameworks aim
at summarizing via some order of properties instead of considering contextual
information present in the data. Therefore, we identify a need for context-based
entity matching mechanisms and present our approach, which can be adapted
for both integration and summarization of RDF data (Fig. 4).
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Fig. 4. Entity Summarization. Summarizing a single entity as envisioned by
LinkSum [424]

4 COMET: A Context-Aware Matching Technique

To provide a solution to the problem of contextually matching RDF entities,
COMET – a context-aware RDF molecule matching technique – is proposed.
This technique is grounded on the semantic data integration techniques pro-
posed by Collarana et al. [84], whose work deals with matching and merging
RDF molecules that are semantically similar using semantic similarity metric
and fusion policies. This work makes use of the concepts of RDF molecules but
contributes a new approach as to taking into consideration the context of the sys-
tem while matching entities. COMET is an entity matching framework designed
to create, identify, and match contextually equivalent RDF entities. Grounded
on the entity matching component from the data integration technique proposed
by Collarana et al. [84], we propose COMET, an entity matching approach to
merge equivalent RDF entities based on context. Thus, a solution to the problem
of contextually matching entities is provided (Fig. 5).

4.1 Problem Definition

RDF Molecule [84] – If Φ(G) is a given RDF Graph, we define RDF Molecule
M as a subgraph of Φ(G) such that,

M = {t1, . . . , tn}

∀ i, j ∈ {1, . . . , n}(subject(ti) = subject(tj)
)

Where t1, t2, . . . , tn denote the triples in M. In other words, an RDF Molecule
M consists of triples which have the same subject. That is, it can be repre-
sented by a tuple M = (R, T), where R denotes the URI of the molecule’s
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(a) Φ(G), Φ(D) and Context C (b) Homomorphism θC (c) Idealized Fc

Fig. 5. Problem Definition. The left side shows two RDF Graphs the system Con-
text. The right side shows the application of homomorphism θC on the RDF graphs,
resulting in the formation of Contextualized RDF Graph Fc.

subject, and T denotes a set of property and value pairs p = (prop, val) such
that the triple (R, prop, val) belongs to M. For example, the RDF molecule
for Arnold Schwarzenegger is (dbr:Arnold-Schwarzenegger, { (dbo:occupation,
Politician), (dbp:title, Governor)}). An RDF Graph Φ(G) described in terms
of RDF molecules is defined as follows:

Φ(G) = {M = (R, T )|t = (R, prop, val) ∈ G ∧ (prop, val) ∈ T}

Context – We define a context C as any Boolean expression which represents
the criteria of a system. Two entities, such as an RDF molecule M1 and M2, can
be either similar or not similar with respect to a given context. That is, C is a
Boolean function that takes as input two molecules M1 and M2 and returns true
if they are similar according to system context, and false otherwise. Below is
an example of context C, modeled after the example presented in Fig. 1, where
two molecules are similar if they have the same occupation. If P = (p, v) is the
predicate representing the occupation property of a molecule, then context.

C(M1,M2) =

{
true, if P ∈ M1 ∧ P ∈ M2.

false, otherwise.

Depending on the requirements of the integration scenario, this context can be
any Boolean expression.

Semantic Similarity Function – Let M1 and M2 be any two RDF molecules.
Then semantic similarity function Simf is a function that measures the semantic
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similarity between these two molecules and returns a value between [0, 1]. A
value of 0 expresses that the two molecules are completely dissimilar and 1
expresses that the molecules are identical. Such a similarity function is defined
in GADES [371].

Contextually Equivalent RDF Molecule – Let Φ(G) and Φ(D) be two sets of
RDF molecules. Let MG and MD be two RDF molecules from Φ(G) and Φ(D),
respectively. Then, MG and MD are defined as contextually equivalent iff

1. They are in the same context. That is, C(M1,M2) = true
2. They have the highest similarity value, i.e.,

Simf (MG,MD) = max(∀m∈Φ(D)Simf (MG,m))

Let Fc be an idealized set of contextually integrated RDF molecules from Φ(G)
and Φ(D). Let θC be a homomorphism such that θC : Φ(G) ∪ Φ(D) → Fc. Then
there is an RDF Molecule MF from Fc such that θ(MD) = θ(MG) = MF . From
the motivation example, this means that the molecule of Arnold Schwarzenegger,
the politician, is contextually equivalent to the molecule of Donald Trump as they
are similar and they satisfy the context condition of having the same occupation.

In this work, we tackle the problem of explicitly modeling the context and
then matching RDF molecules from RDF graphs that are both highly similar
and equivalent in terms of this context. This problem is defined as follows: given
RDF graphs Φ(G) and Φ(D), let MG and MD be two RDF molecules such that
MG ∈ Φ(G) and MD ∈ Φ(D). The system is supplied with a context parameter
C, which is a Boolean function evaluating if two molecules are in the same
context. It is also supplied with a similarity function Simf , which evaluates the
semantic similarity between MG and MD.

The problem of creating a contextualized graph ΦC consists of building a
homomorphism θC : Φ(G) ∪ Φ(D) → Fc, such that for every pair of RDF
molecules belonging to ΦC there are none that are contextually equivalent accord-
ing to system context C. If MG and MD are contextually equivalent molecules
belonging to Fc, then θC(MG) = θC(MD), otherwise θC(MG) �= θC(MD).

An example of this problem is illustrated in Figure X, which depicts a use
case with two RDF graphs and a single context condition C. With respect to C,
the RDF molecule Arnold.S from Φ(G) is in the same context as Donald.T from
Φ(D), but not in the same context as the molecule Arnold.S from Φ(G). So the
problem is to identify a homomorphism θC which evaluates the RDF molecules
based on system context and maps these RDF molecules in a way that they can
be integrated into a contextualized graph.

4.2 The COMET Architecture

We propose COMET, an approach to match contextually equivalent RDF graphs
according to a given context, thus providing a solution to the problem of con-
textually matching RDF graphs. Figure 6 depicts the main components of the
COMET architecture. COMET follows a two-fold approach to solve the problem
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of entity matching in RDF graphs in a context-aware manner: First, COMET
computes the similarity measures across RDF entities and resorts to the For-
mal Concept Analysis algorithm to map contextually equivalent RDF entities.
Finally, COMET combines the results of the first step and executes a 1-1 perfect
matching algorithm for matching RDF entities based on the combined scores to
finally synthesize the matching into a contextualized RDF graph.
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Fig. 6. The COMET Architecture. COMET receives two RDF datasets, e.g., G
and D; a similarity function Simf ; and a context C. The output is a set of contextually
matching RDF entities.

4.3 Identifying Contextually Equivalent Entities

Building a Bipartite Graph. The COMET pipeline receives two RDF graphs
Φ(G), Φ(D) as input, along with context parameter C, and a similarity function
Simf . COMET first constructs a bipartite graph between the sets φ(G) and
φ(D). The Dataset Partitioner employs a similarity function Simf and ontology
O to compute the similarity between RDF molecules in φ(G) and φ(D) assigning
the similarity score as vertices weight in the bipartite graph. COMET allows for
arbitrary, user-supplied similarity functions that leverage different algorithms to
estimate similarity between RDF molecules. Thus, COMET supports a variety of
similarity functions including simple string similarity. However, as shown in [84],
semantic similarity measures are advocated (in the implementation of this work
we particularly use GADES [371]) as they achieve better results by considering
semantics encoded in RDF graphs.

After RDF molecules similarity comparison, the result of the similarity func-
tion is tested against a threshold γ to determine entity similarity (the similar-
ity threshold’s minimum acceptable score). Thus, edges are discarded from the
bipartite graph whose weights are lower than γ. A threshold equal to 0.0 does
not impose any restriction on the values of similarity; thus the bipartite graph
includes all the edges. High thresholds, e.g. 0.8, restrict the values of similarity,
resulting in a bipartite graph comprising just a few edges.
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(a) Bipartite graph
after applying
threshold γ = 0.5

(b) Context validation using FCA (c) Perfect 1-1
matches

Fig. 7. Context Validation. The left side shows a bipartite graph after the applica-
tion of threshold. The remaining edges go through a special 1-1 matching algorithm
which takes into account the system context using FCA. The result is a perfect match
between contextually equivalent molecules.

Pruning RDF Entities According to ContexB. The main step on the
COMET pipeline is to validate and prune pairs of RDF molecules that do not
comply with the input context C, making COMET a context-aware approach.
For identifying contextually equivalent RDF entities, the Context Validator com-
ponent employs the Formal Concept Analysis (FCA) algorithm. FCA is the study
of binary data tables that describe the relationship between objects and their
attributes. Applying this context validation step over the RDF molecules ensures
that only contextually relevant tuples are kept. In COMET, context is modeled
as any Boolean function. Two molecules are matched if they satisfy this con-
dition, otherwise they are not matched. The algorithm by V. Vychodil [451] is
applied in COMET; it performs formal concept analysis to compute formal con-
cepts within a set of objects and their attributes. This algorithm is extended
in our approach for validating complex Boolean conditions. A typical formal
concept analysis table is shown in Table 1.
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Table 1. Object-Attribute table for performing FCA.

Attribute 1 Attribute 2 Attribute 3

Object 1 X X

Object 2 X

Object 3 X X

Instead of using attributes in the column of the FCA matrix, in our approach,
we replace the attributes with a boolean condition C. This is the same as the
context condition C used in our approach. For example, the context C from
the motivating example can be broken down into C = C1 ∧ C2 where C1 =
“contains property dbo:occupation”, and C2 = “has the same value for property
dbo:occupation”. The execution of the FCA algorithm remains unchanged by
this adaptation since the format of the input to FCA is still a binary matrix.

When applied to RDF molecules, formal concept analysis returns a set of
formal concepts < M,C > where M is a set of all the molecules that contain all
conditions contained in C. That is, by applying FCA, the set of molecules that
satisfy a certain context condition can be obtained. Thus, the molecules that
do not meet the context condition are pruned. In Fig. 7, an example of context
validation is demonstrated. Edges in a bipartite graph are filtered according to a
threshold value γ as detailed in the previous section. Next, the remaining edges
are validated by constructing an FCA matrix according to context condition
C. The FCA algorithm returns the edge satisfying the context conditions. The
edges that do not satisfy the context condition are discarded.

4.4 The 1-1 Perfect Matching Calculator

COMET solves the problem of context-aware entity matching by computing a
1-1 weighted perfect matching between the sets of RDF molecules. The input
of the 1-1 weighted perfect matching component is the weighted bipartite graph
created on the previous step. Since each weight of an edge between two RDF
molecules corresponds to a combined score of semantic similarity and context
equivalence value, we call this a 1-1 context-aware matching calculator. The effect
of this 1-1 context aware matching calculator is demonstrated in Fig. 9 Finally,
a combinatorial optimization algorithm like the Hungarian algorithm [267] is
utilized to compute the matching.

4.5 Integration Use Case: Applying Fusion Policies

In order to apply this context-aware entity matching pipeline into a data inte-
gration scenario, we envision the usage of fusion policies defined by Collarana
et al. [84]. To consolidate entities identified as contextually equivalent, COMET
can make use of synthesis policies, i.e. a user-supplied function that defines how
the RDF molecules should be combined to form a connected whole. COMET
can adopt the following synthesis policies:
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1. The Union Policy, which includes all predicates-object pairs, removing the
one that is syntactically the same;

2. The Linking Policy, which produces owl:sameAs links between contextually
equivalent RDF molecules;

3. The Authoritative Policy, which allows for defining one RDF graph as
a prevalent source selecting its properties in case of property conflicts,
i.e., properties annotated as owl:FunctionalProperty, equivalent prop-
erties owl:equivalentProperty, and equivalent classes annotated with
owl:sameAs or owl:equivalentClass.

Algorithm 1: closure(B,y)

1 for j ← 0 to n do

2 D[j] ← 1;
3 foreach i in rows[y] do
4 match ← True;
5 for j ← 0 to n do

6 if

{
B[j] = 1
context[i, j] = 0

then

7 match ← False;
8 break for loop;

9 if match = True then

10 for j ← 0 to n do

11 if context[i, j] = 0 then

12 D[j] ← 0;

13 return D

Algorithm 2: generate(B,y)

1 process B ; // Printing B

2 if B = Y | y > n then

3 return

4 for j ← y to n do

5 if B[j] = 0 then

6 B[j] ← 1;
7 D ← closure(B,j);
8 skip ← False;
9 for k ← 0 to j − 1 do

10 if D[k] �= B[k] then
11 skip ← True;
12 break for loop;

13 if skip = False then

14 generate(D,j + 1);
15 B[j] ← 0;

16 return

Fig. 8. Implemented algorithms (extended from [451]).

By applying these policies, the end output is a synthesized graph with linked
entities that are contextually equivalent. In the next chapter, we take a look at
another use case of context-aware entity matching: the temporal summarization
of knowledge graph entities.

5 Empirical Evaluation

This section presents an overview of the technical details, execution and the
results obtained in the empirical evaluation.

5.1 Research Questions

We conducted an empirical evaluation to study the effectiveness and performance
of COMET in solving the entity matching problem among RDF graphs. We
address the following research questions:
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– (RQ1) Is COMET able to perform entity matching with regard to context
more accurately than the MINTE [84] entity matching component?

– (RQ2) Does the content of the dataset with respect to the context condition
affect the accuracy of COMET?

– (RQ3) How much overhead does the context-evaluation step in COMET add
to the overall pipeline?

(RQ1) and (RQ2) are combined to conduct Experiment 1 in order to eval-
uate the effectiveness or accuracy of COMET. (RQ3) is addressed by Experi-
ment 2 where the overhead of the context-evaluation step is measured.

(a) Original bipartite graph
with γ=0.5

(b) 1-1 matching without
context validation

(c) 1-1 matching with context
validation

Fig. 9. The 1-1 Perfect Matching. COMET applies a special 1-1 perfect match-
ing algorithm which evaluates context as well as similarity between two molecules. A
traditional 1-1 perfect matching algorithm only considers similarity (weight of edges).
Without evaluating context, the 1-1 matching algorithm matches molecules that are
not in the same context. When context is evaluated alongside similarity, molecules in
the same context are matched.

5.2 Implementation

Practically, COMET is implemented in Python and hosted in GitHub2 along
with the datasets and logs used in this evaluation. The experiments were exe-
cuted on a Windows 10 (64 bits) machine with CPU: Intel Core i7-8650U 1.9 GHz
(4 physical cores) and 16 GB RAM. For the COMET pipeline we use the seman-
tic similarity measure GADES [371], which Collarana et al. have previously
demonstrated to have the best performance in terms of accuracy when added
to their MINTE pipeline [84]. GADES relies on semantic description encoded
in ontologies to determine relatedness. GADES examines both string similarity
and hierarchy similarity by making use of graph neighbourhoods.
2 https://github.com/RDF-Molecules/COMET.

https://github.com/RDF-Molecules/COMET


140 M. Tasnim et al.

Table 2. Benchmark Description. Datasets used in the evaluation including: num-
ber of RDF molecules (M), number of triples (T), evaluated contexts (C).

Experiment 1: Effectiveness

Configuration A B C

Datasets A1 A2 B1 B2 C1 C2

Molecules 1000 1000 1000 1000 1000 1000

Triples 70,660 70,660 70,776 70,776 71,124 71,124

Context C(MD1, MD2) = true, if dbo:occupation match

Experiment 2: Runtime

Datasets XS1 XS2 S1 S2 M1 M2 L1 L2

Molecules 100 100 500 500 1,000 1,000 2,000 2,000

Triples 7,084 7,084 33,916 33,916 71,124 71,124 138,856 138,856

5.3 Baseline

As a baseline, we compare the effectiveness of COMET against the MINTE
pipeline proposed by Collarana et al. [84]. Towards (RQ1) and (RQ2) we design
an experiment to measure the precision, recall and f-measure of COMET in
comparison to MINTE. We also run COMET and MINTE on datasets with
different compositions of molecules with respect to context in order to observe
the effect of contextual content of datasets on the effectiveness of COMET.
Towards (RQ3), we observe the impact of COMET context-evaluation step on
temporal and memory performance.

5.4 Effectiveness Evaluation

Metrics. Although each experiment has different datasets and gold standards,
we use the same metrics for all the experiments: Precision, Recall, and F-meaure.
Precision measures what proportion of the performed entity matches are actu-
ally correct. That is, precision is the fraction of RDF molecules that has been
identified as contextually equivalent by COMET (C), which intersects with the
Gold Standard (GS). On the other hand, recall measures the overall propor-
tion of integrated RDF molecules that were identified correctly. That is, recall
is measured by the fraction of correctly identified similar molecules with respect
to the Gold Standard,i.e., Precision = |C ∩ GS|

|C| and Recall = |C ∩ GS|
|GS| . F-measure

is the harmonic mean of Precision and Recall.

Datasets. For this experiment, we use datasets containing 1,000 people entities
from DBpedia. In order to test the effect of contextual data content on the accu-
racy of COMET, three pairs of datasets (A1, A2), (B1, B2), and (C1, C2) are
generated using configurations A, B, and C, respectively. These configurations
are as follows:
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1. Configuration A: Every molecule a1 in dataset A1 has 2 highly similar
molecules a2 and a3 in dataset A2, such that a2 satisfies context condition,
but a3 does not. That is, C(a1, a2) = true and C(a1, a3) = false.

2. Configuration B: Every molecule b1 in dataset B1 has 3 highly similar
molecules b2, b3 and b4 in dataset B2, such that b2 and b3 satisfy the
context but b4 does not.

3. Configuration C: Every molecule c1 in dataset C1 has 4 highly similar
molecules in dataset C2, two of which satisfy the context condition, and two
that do not.

(a) Molecule A has only one
perfect match

(b) Molecule A has two per-
fect matches

(c) Molecule A has three per-
fect matches.

Fig. 10. Effect of dataset content on matching accuracy. The goal of COMET
is to choose the most similar molecule which is also in the same context. With a
higher number of similar molecules within the same context, the probability of COMET
choosing the correct match every time decreases.

The motivation of curating datasets using these three configurations is as
follows: As seen in Sect. 4, COMET applies a special 1-1 perfect matching algo-
rithm to find the best match according to both similarity and context condition.
For this reason, the varying number of highly similar molecules that are also
in the same context will affect the way COMET performs on the dataset. A
higher number of similar molecules in the same context means a lesser chance
of COMET identifying the correct match.

This is demonstrated in Fig. 10. Here, circles displaying the same color denote
that they are molecules in the same context. In Fig. 10a, molecule A has only one
perfect match available in the matching dataset and COMET makes this match
accordingly. But in Fig. 10b and 10c, the number of perfect matches within the
same context increases to two and three, respectively. This means that the proba-
bility of COMET identifying the true match for Molecule A decreases. Therefore
we aim to evaluate exactly how the varying numbers of similar molecules in a
dataset affect the accuracy of COMET.
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Table 3. Effectiveness evaluation of COMET.

Configuration COMET MINTE

Precision Recall F-Measure Precision Recall F-Measure

A 1.0 1.0 1.0 0.54 0.54 0.54

B 0.708 0.708 0.708 0.449 0.449 0.449

C 0.558 0.558 0.558 0.408 0.408 0.408

Every pair of datasets is synthesized as follows: First, molecules from the
original set of 1,000 DBpedia person entities are duplicated according to the
configuration condition to create n number of highly similar molecules in the
second dataset. Then predicates inside the similar molecules are randomly edited
and deleted to create some variation of similarity. The predicates are then edited
to ensure that the correct number of similar molecules in the second dataset
satisfy the context according to the original dataset.

Context and Gold Standard. Similar to the motivation example shown
in Fig. 1, the context C used in this experiment checks if two molecules have
the same value for the predicate dbo:occupation. The Gold Standard contains
matches between molecules that (i) satisfy the context condition; and (ii) are
highest in similarity among all other molecules. For every pair of datasets belong-
ing to the three configurations (i.e. configuration A, B and C), there is a corre-
sponding Gold Standard GA, GB and GC . The datasets, gold standard and the
experiment code are all available on GitHub.

Experiment 1: Contextually Matching DBpedia RDF Molecules.
Table 2 describes the dataset used during our evaluations. This experiment was
conducted on MINTE and COMET once for each pair of datasets (A1, A2),
(B1, B2) and (C1, C2), with the context condition requiring that every pair
of matched molecules must have the same value for dbo:occupation property.
The threshold value γ for this experiment is applied at the 97th percentile in
every case. Then comparing against the Gold Standard GA, GB and GC for
configurations A, B and C respectively, the metrics Precision and Recall were
calculated each time. The results are presented in Table 3.

Experiment 2: Impact of Context Evaluation on Performance. In addi-
tion to the previous reported experiments focusing on effectiveness, we also pay
particular attention to the evaluation of performance. Indeed, we specifically
design an experiment to analyze how much overhead is added to COMET for
evaluating context in its entity matching pipeline with respect to MINTE, which
does not evaluate context.

Metrics. During our tests, we monitored each task by measuring not only exe-
cution time but a broader set of metrics:
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– Time (seconds): measures the time used to process the various tasks and
sub-tasks relevant in our study;

– Memory (& SWAP) (Bytes): allows for keeping track of the memory alloca-
tions during the experiments; the idea is to search for possible bottlenecks
caused due to adding context evaluation to our approach.

– CPU usage (Percentage): simply records the processing activity.

Datasets. Table 2 reports on the datasets used during this set of experiments. As
shown, we fed COMET with four datasets, each one involving more triples than
the previous ones; they contain from 7 000 up to 100,000 triples. The molecules
range from sets of 100 to 2,000.

Since COMET performs analysis of molecules both in its creation of bipartite
graphs and context evaluation step, we wanted to observe how the performance
is affected by increases in molecule number.

Temporal Performance. In Fig. 11, we present the obtained results with the
datasets XS, S, M, and L. This representation is twofold. Firstly, the bar chart
represents for each dataset the time distribution according to the various phases
which COMET involved: i.e. computing similarity in a bipartite graph, evalu-
ating context using FCA computation, and performing 1-1 perfect matching in
blue, purple, and yellow, respectively. Secondly, the red curve presents for each
dataset the total time required to run the experiment; notice that we use a log-
arithmic scale. As a consequence, we successfully find experimentally that the
context evaluation step does not take any more time than the other phases. As
shown in the bars of Fig. 11, the purple section representing the context eval-
uation step does occupy a greater percentage of the total runtime as the size
of the dataset increases, but it still consumes less than half of the runtime in
comparison to the other phases.

Memory Consumption. To analyze how the memory is used by COMET dur-
ing its experimental runs, we pay attention to the RAM & SWAP consumption
for each dataset tested; in addition we also recorded the CPU usage. It appears
that COMET did not use much of the resources to run the experiments with
the datasets. Moreover, we even observed that the pressure on the CPU and the
amount of memory used by the system at every second is almost the same for all
the considered datasets. This, therefore, means that the current implementation
of COMET rather spreads its computations along the time (see again the red curve
of Fig. 11) instead of allocating more resources when the dataset size increases.

5.5 Discussion of Observed Results

Based on the values of Precision, Recall, and F-measure reported in Experiment
1 (Table 3), we can positively answer (RQ1), and (RQ2) i.e., COMET is able to
effectively match entities across RDF graphs according to context, and indeed
the content of the datasets does affect the accuracy. In every case, COMET
performs better than MINTE, and the reason is clear – MINTE does not take
context into consideration during its 1-1 perfect matching whereas COMET does.
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Moreover, the decrease in precision in recall of COMET with the increase of the
number of highly similar molecules within the dataset also makes sense. With a
higher number of similar molecules to choose from, COMET has less of a chance
of correctly identifying the perfect match. On the other hand, in the case of
configuration A, the precision and recall is perfect. This is because the dataset
in configuration A supplies only 1 perfect option (a highly similar molecule that
also meets the context). The perfect precision and recall demonstrate that in an
ideal condition with only 1 perfect option, COMET will always match correctly.
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Fig. 11. Temporal performance for datasets XS, S, M and L. The bars along
the y-axis represent the time distribution required for each of the phases of COMET.
The red curve presents the total time required to run the experiment in logarithmic
scale (Color figure online).

By observing the temporal performance (Fig. 11) and memory consumption
of COMET when supplied with datasets of increasing volumes, we can also
answer (RQ3), i.e., by measuring the amount of overhead the context-evaluation
step of COMET adds to the overall pipeline. We show that the context evaluation
step adds a fraction of the temporal overhead with respect to a traditional 1-
1 matching algorithm, and does not have any observable overhead in terms of
memory consumption.

6 Grand Challenges and Conclusions

In the age of data variety, adding and considering data context is more impor-
tant than ever. Context lends information to its scope of validity and affects
most data-driven tasks, such as data integration. In this chapter, we presented
COMET – an approach to match contextually equivalent RDF entities from dif-
ferent sources into a set of 1-1 perfect matches between entities. COMET follows
a two-fold approach where first contextually equivalent RDF molecules are iden-
tified according to a combined score of semantic and context similarity. Then, a
1-1 perfect matching is executed to produce a set of matches considering con-
text. COMET utilizes the Formal Concept Analysis algorithm to decide when-
ever two RDF molecules are contextually equivalent. The behavior of COMET
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was empirically studied on two real-world RDF graphs under different context
configurations. The observed results suggest that COMET is able to effectively
identify and merge contextually equivalent entities in comparison to a baseline
framework which does not consider context. We also envision an approach for
creating entity summaries automatically out of different temporal versions of a
knowledge graph. To do so, the proposed approach utilizes the concepts of RDF
molecules, Formal Concept Analysis, and Fusion Policies. The entity evolution
summaries created by the approach may serve to create documentation, to dis-
play a visualization of the entity evolution, or to make an analysis of changes.

This work is a first step in the direction of the formalization of context and
its effect on data-driven tasks. Therefore, there are still grand challenges to
face towards consolidating context-based similarity approaches. Thus, we present
the four grand challenges that should be tackled as next steps, i.e.: 1) measuring
context with probabilistic functions; 2) the performance of the context-aware
matching algorithms; 3) full usage of the semantic representation of entities as
knowledge graphs; and furthermore, 4) the application of context-aware entity
matching on a variety of data-driven tasks.

We now describe them in detail:

1. Measuring context with probabilistic functions: In this chapter, we
employ a straightforward definition of context conditions, i.e. modeling con-
text as a Boolean function of entities. According to this model, an entity is
either valid within a context or invalid. The real-world meaning and scope
of context are much more general, and therefore context should be modeled
in a more generalized way. For example, the measure of the validity of an
entity concerning different contexts can be a probabilistic function. Meaning
the range of the context function could be any value between the interval
[0,1] instead of being only 0 or 1. We suggest the use of Probabilistic Soft
Logic (PSL) to implement this concept.

2. Performance: Although in this chapter, we focus on the variety dimension
of big data, context-based approaches should apply to the volume dimen-
sion as well. In COMET, for example, the complexity of the 1-1 matching
algorithm is quadratic as COMET employs the original Formal Concept
Analysis algorithm. As such, it is possible to evaluate a distributed version
of the Formal Concept Analysis algorithm that may improve the run-time
overhead in this work. Big data frameworks such as Hadoop and Spark can
be used in the implementation of this distributed version of COMET.

3. Exploitation of the semantic representation of entities: The pro-
posed approach, presented in this chapter, utilizes the knowledge encoded
in RDF graphs themselves to create context parameters. Nevertheless, not
all the potential of semantics has been studied to improve the accuracy of
context-based matching approaches. A natural next step, for example, would
be to take advantage of the implicit knowledge encoded in RDF Knowledge
Graphs. Employing a reasoner additional contextual data can be inferred,
empowering the modeling and evaluating of context.
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4. Application of context-aware matching on various data-driven
tasks: We mentioned during the chapter the application of the COMET
approach in the entity summarization use-case. Tasnim et al. [422] show the
architecture and pipeline modifications to COMET in order to produce a
summary along one contextual axis, i.e. temporal axis. The approach can
be adapted to other contextual axes, e.g., geographic location, hierarchical
position, and more. Depending on the contextual axis, many more use cases
of context-aware entity matching can be explored. Also, the elements used
in the creation of the entity evolution summary, e.g., the ontology, can be
investigated and further developed to empower the approach.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Applications



Chapter 9
Survey on Big Data Applications

Valentina Janev1(B) , Dea Pujić1 , Marko Jelić1 ,
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Abstract. The goal of this chapter is to shed light on different types
of big data applications needed in various industries including health-
care, transportation, energy, banking and insurance, digital media and
e-commerce, environment, safety and security, telecommunications, and
manufacturing. In response to the problems of analyzing large-scale data,
different tools, techniques, and technologies have bee developed and are
available for experimentation. In our analysis, we focused on literature
(review articles) accessible via the Elsevier ScienceDirect service and
the Springer Link service from more recent years, mainly from the last
two decades. For the selected industries, this chapter also discusses chal-
lenges that can be addressed and overcome using the semantic processing
approaches and knowledge reasoning approaches discussed in this book.

1 Introduction

In the last decade, the Big Data paradigm has gain momentum and is gener-
ally employed by businesses on a large scale to create value that surpasses the
investment and maintenance costs of data. Novel applications have been created
for different industries allowing (1) storing as much data as possible in a cost-
effective manner (volume-based value); (2) rapid analysis capabilities (velocity-
based value); (3) structured and unstructured data to be harvested, stored,
and used simultaneously (variety-based value); (4) accuracy of data processing
(Veracity-based value); etc. In the next decade, the amount of data will continue
to grow and is expected to reach 175 zetabytes in 2025 [85]. This will fundamen-
tally affect worldwide enterprises. This chapter is interested in identifying:

– RQ1: What are the main application areas of big data analytics and the specific
data processing aspects that drive value for a selected industry domain?

– RQ2: Which are the main tools, techniques, and technologies available for
experimentation in the field of big data analytics?

In December 2018, within the LAMBDA project framework, a literature review
was initiated that included an extensive and comprehensive analysis of journal

c© The Author(s) 2020
V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 149–164, 2020.
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Fig. 1. Research methodology

articles from available sources such as (1) the Elsevier ScienceDirect service1 and
(2) the Springer Link service2. Elsevier ScienceDirect is a website which provides
subscription-based access to a large database of scientific and medical research. It
hosts over 12 million pieces of content from 3,500 academic journals and 34,000
e-books. SpringerLink is the world’s most comprehensive online collection of scien-
tific, technological and medical journals, books and reference works printed from
Springer-Verlag. In parallel, the market of available commercial and open-source
tools was surveyed and monitored3. As Big Data is a very active area of research
nowadays, we are also involved in analysis of different industry cases studies, as
is presented in the research methodology depicted in Fig. 1. This chapter outlines
the methodology and the process of selecting articles relevant for our research (see
Sect. 2) and discusses the main research trends in big data applications in different
industries (Sect. 3). In order to answer the second research question, the authors
established the catalog of big data tools that is available at the LAMBDA project
web page4.

2 Literature Review

This section presents the literature review approach that was adopted in order to
identify the relevant application areas of big data technologies. In April 2020, a
simple keyword based query on term Big Data Analytics returns:

– 180,736 results in ScienceDirect (or 3% more than in December 2019, 174,470
results), 10,042 of them review articles, where the oldest 2 papers are from 1989
and discuss the challenges to computational science and use of supercomput-
ers for conducting experiments in key scientific and engineering areas such as

1 https://www.sciencedirect.com/.
2 https://link.springer.com/.
3 https://project-lambda.org/D2.1.
4 https://project-lambda.org/tools-for-experimentation.

https://www.sciencedirect.com/
https://link.springer.com/
https://project-lambda.org/D2.1
https://project-lambda.org/tools-for-experimentation
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atmospheric science, astronomy, materials science, molecular biology, aerody-
namics, and elementary particle physics [467];

– 40,317 results in SpringerLink (or 7% more than in December 2019, 33,249
results), where the oldest publications dating from 1950s are related to math-
ematics.

Big Data Analytics is a broad topic that, depending on the objectives of
the research, can be linked on the one hand to data science and machine learn-
ing, and on the other to data and software engineering. Being interested in the
role that analytics plays in business strategy, we limited our search to articles in
the domain of business intelligence. Business intelligence entails the analysis of
past and present data to create actionable insights for informed decision-making.
Thus, the search for review articles linked to Big Data Analytics and Business
Intelligence leads to 615 articles. The number is even smaller if we are looking
for Business Intelligence (BI) and NoSQL solutions– see Table 1. That means
that the concept of Business Intelligence still prevails in the scientific litera-
ture but is based on relational database-driven applications. Further on, looking
for the year of publication, the authors have found that there are articles from the
1930s also linked to the topic Big Data albeit mainly related to medical studies.
In our analysis, we focused on review articles from more recent years, mainly from
the last two decades.

Table 1. Number of review articles in ScienceDirect database

Keywords 1995–1999 2000–2005 2006–2009 2010–2015 2016–2020 Total

BDA 388 718 1349 2190 4, 605 10, 042

BDA and BI 12 15 45 80 437 615

BDA and BI
and NoSQL

3 31 35

BDA and Apps
and NoSQL

8 46 54

Hence, in order to identify the main application area, we first identified jour-
nals (using ScienceDirect service) that most frequently publish research arti-
cles about Big Data Analytics, Business Intelligence, and Applications in
Industry. ThetTable below points to a number of articles published in interna-
tional journals between 2015 and 2019, as well as the journals relevant for the
search criteria. What can be noticed is that there are three times more articles
related to Big Data and Applications, then to Big Data Analytics and
Applications. The number of retrieved results is drastically smaller if we intro-
duce the topic ‘Business Intelligence’.

Some of the journals listed in Table 2 refer to scientific fields that are not
in direct relation to the research conducted in the LAMBDA project, such as
Nuclear Physics and Astrophysics, Materials Science, Construction and Architec-
ture, Chemistry and Chromatography. Big data research is conducted in these
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Table 2. Journals that match the search criteria

‘Big Data’ and

‘Application’

(128,033)

Neurocomputing, Journal of Cleaner Production, Procedia
Computer Science, IFAC Proceedings Volumes, Expert
Systems with Applications, Physica A: Statistical Mechanics
and its Applications, Sensors and Actuators B: Chemical,
Journal of Chromatography A, Nuclear Physics B, European
Journal of Operational Research

‘Big Data’ and

‘Industry’ (59,734)

Journal of Cleaner Production, Future Generation Computer
Systems, Energy Policy, Journal of Membrane Science,
Expert Systems with Applications, Procedia Computer
Science, Journal of Banking and Finance, Research Policy,
European Journal of Operational Research

‘Big Data

Analytics’ and

‘Applications’

(41,031)

Journal of Cleaner Production, Future Generation Computer
Systems, Neurocomputing, Journal of Chromatography A,
IFAC Proceedings Volumes, Physica A: Statistical Mechanics
and its Applications, Sensors and Actuators B: Chemical,
Analytica Chimica Acta, Journal of Membrane Science,
Nuclear Physics B

‘Big Data

Analytics’ and

‘Business

Intelligence’

(3,539)

Future Generation Computer Systems, Procedia Computer
Science, Technological Forecasting and Social Change,
Expert Systems with Applications, Decision Support
Systems, IFAC Proceedings Volumes, Accounting,
Organizations and Society

disciplines and there is a need for enhanced statistical algorithms, modeling and
simulation approaches; however, these scientific areas are currently beyond the
scope of our research and will not be discussed in the following sections.

Trends: Detailed analysis of the retrieved surveys on BDA and Apps and
NoSQL (54 papers) showed that there is a shift of focus from operational data
management systems, data-warehouses and business intelligent solutions (present
for instance in Finance and Insurance domain in 1990s) [336] to parallel and dis-
tributed computing [478], as well as scalable architectures [187] for storing and
processing data in the cloud (“Analytics in Cloud” [368]). Emerging paradigms
such as the Internet of Things [120,369] and blockchain additionally influence
cloud computing systems [157]. Interconnected technologies like RFID (Radio Fre-
quency IDentification) and WSAN (Wireless Sensor and Actor Networks) enabled
development of smart environments [122] that will be explored further in subse-
quent sections. Wide availability of cheap processing power and vast amounts of
data in recent years have enabled impressive breakthroughs in machine learning
[123,178,269], semantic computing [222,316], artificial neural networks and mul-
timodal affective analytics [400].
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3 Big Data Analytics in Industrial Sectors

The analysis presented in this section examines the BDA-driven applications in
sectors spanning healthcare, transport, telecommunications, energy production
and smart grids, energy consumption and home automation, finance, media, e-
Government [220] and other public utilities. The research was motivated by the
needs of the Mihajlo Pupin Institute to innovate the existing product portfolio
that is currently mainly focused on building advanced analytical services for con-
trol, monitoring and management of large facilities, for instance from the trans-
port and the energy sector.

Healthcare and Pharma

Healthcare and Data Engineering. Advances in Internet of Things (IoT) and
sensor devices have enabled integrated data processing from diverse healthcare
data sources in a real-time manner [339]. In addition to existing sources (Elec-
tronic Health Record and Clinical reports), healthcare providers can use new data
sources such as social media platforms, telematics, and wearable devices in order
to personalize treatment plans. However, healthcare organizations face unique
challenges when it comes to developing and implementing the smart health con-
cept [11] based on using a remote cloud server with powerful computing capabili-
ties. Besides taking into account the 3Vs (volume, velocity and variety) that raise
issues related to scalability, efficiency, speed, transparency, availability, reliability,
security, and others, the veracity dimension is very important because the value
of health information is directly dependent on the ability to determine the qual-
ity of the data in question (accuracy, correctness, reliability). Hence, fog-enabled
smart health solutions are proposed where fog nodes create a heterogeneous fog
network layer and complement a portion of computation and storage of the cen-
tralized cloud server [421].

Personalized medicine is an approach to the practice of medicine that uses
information about a patient’s unique genetic makeup and environment to cus-
tomize their medical care to fit their individual requirements. Recently, epigenet-
ics has grown in popularity as a new type of science that refers to the collection of
chemical modifications to the DNA and chromatin in the nucleus of a cell, which
profoundly influence the functional output of the genome. The identification of
novel individual epigenetic-sensitive trajectories at the single cell level might pro-
vide additional opportunities to establish predictive, diagnostic and prognostic
biomarkers as well as drug targets [386]. Based on emerging trends, patient care
can be improved in many ways including using:

– modern healthcare applications that almost every smartphone possesses like
Apple Health5, Google Health6 or Samsung Health7 are used for spotting
trends and patterns;

5 https://www.apple.com/ios/health/.
6 https://health.google/.
7 https://www.samsung.com/global/galaxy/apps/samsung-health/.

https://www.apple.com/ios/health/
https://health.google/
https://www.samsung.com/global/galaxy/apps/samsung-health/
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– the data obtained by wireless body area networks, implemented with ade-
quate permissions by the user (WBANs) can be integrated (with clinical tri-
als, patient records, various test results and other similar data) and analysed
in order to improve the effectiveness of medical institutions and to aid doctors
in their decision making;

– advanced data management and processing (patient similarity, risk stratifica-
tion, and treatment comparison [345]) for better prescription recommendations
and optimizations of the drug supply chain, which results in cutting losses and
increasing efficiency.

Over the years, the role of Artificial Intelligence in medicine has become
increasingly important, for instance for image processing and diagnosis purposes.
Also deep-learning neural networks have proved very useful for extracting associ-
ations between a patient’s condition and possible causes. To summarize opportu-
nities and challenges of using innovative big data tools in healthcare, we point in
Table 2 to the COVID-19 outbreak that occurred this year (Table 3).

Table 3. Case study: coronavirus disease 2019 (COVID-19)

Description The outbreak of the 2019 novel coronavirus disease (COVID-19) has
caused more than 5 million people to be infected and hundred of
thousands of deaths. In the fight against the disease, almost all
countries in the world have taken radical measures utilizing big data
technologies. [485]

Key challenges - Integration of heterogeneous data, which requires governments,
businesses, and academic institutions to jointly promote the
formulation of relevant policies

- Rapid collection and aggregation of multi-source big data

- GIS technologies for rapid visualization of epidemic information

- Spatial tracking of confirmed cases and estimation of population
flow

- Prediction of regional transmission, spatial segmentation of the
epidemic risk and prevention level

- Balancing and management of the supply and demand of material
resources

https://coronavirus-monitor.com/ (checked 22/05/2020).

Pharma. New trends in pharmaceutical research (such as genomic computing
[370]) make the process of discovering disease patterns, early epidemic and pan-
demic detection and forecasting much easier. Das, Rautaray and Pandey [96] out-
line the general potential uses of big data in medicine like heart attack prediction,
brain disease prediction, diagnosis of chronic kidney disease, analysing specific dis-
ease data, tuberculosis prediction, early hearth stage detection, HIV/AIDS pre-
diction and some general aspects like disease outbreak and disease outcome pre-
diction. Lee and Yoon [275] discuss some technical aspects of big data applications

https://coronavirus-monitor.com/
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in medicine like missing values, the effects of high dimensionality, and bias con-
trol. Ristevski and Chen [374] mention privacy and security on the topic of big
data in healthcare, while Tafti [420] offers an open source toolkit for biomedical
sentence classification. Modern concepts relating to mobile health are discussed
in [214] with Bayne [32] exploring big data in neonatal health care.

Transportation and Smart Cities
As suggested in Chap. 1, Smart Transportation is one of the key big data vertical
applications besides Healthcare, Government, Energy and Utilities, Manufactur-
ing and Natural Resources, Banking and Insurance, the Financial industry, Com-
munications and Media, Environment and Education. The collection of related
articles to this topic is possibly the largest of all applications. Zhang [483] offers
a methodology for fare reduction in modern traffic congested cities, Liu [285] dis-
cusses the Internet of Vehicles, Grant-Muller [165] talks about the impacts that
the data extracted from the transport domain has on other spheres, Torre-Bastida
[429] talks about recent advances and challenges of modern big data applications
in the transportation domain, while Imawan [211] analyses the important concept
of visualization in road traffic applications. Also related, Ghofrani [154] surveys
big data applications for railways, Gohar [158] discusses data-driven modelling in
intelligent transportation systems, and Wang [454] attempts fuzzy control appli-
cations in this domain. Herein, we will discuss route planning applications and
future challenges related to self-driving cars and user behaviour analysis.

Route Planning Applications. Using Global Positioning System (GPS) data,
for instance, a large number of smartphone users benefit from the routing system
by receiving information about the shortest or fastest route between two desired
points. Some applications like Waze rely on direct user inputs in order to locate
closed-off streets, speed traps etc. but at its most rudimentary level, this approach
can work with just raw GPS data, calculating average travel times per street seg-
ments, and thus forming a live congestion map. Of course, such a system would be
of no benefit to end users if it were not precise, but since the aggregated results that
are finally presented are obtained based on many different sources, classifying this
as a big data processing task, the data uncertainty is averaged out, an accurate
results tend to be presented. In order to provide a quick response, geo-distributed
edge devices also known as edge servers are used that can form an edge cloud for
providing computation, storage and networking resources to facilitate big data
analytics around the point of capture [91].

Self-driving cars rely on vast amounts of data that are constantly being pro-
vided by its users and used for training the algorithms governing the vehicle in
auto-pilot mode. Holding on to the automation aspect, big data processing in the
transportation domain could even be used to govern traffic light scheduling, which
would have a significant impact on this sector, at least until all vehicles become
autonomous and traffic lights are no longer required.

User Behaviour Analysis. Furthermore, the transportation domain can be
optimized using adequate planning obtained from models with data originating

http://dx.doi.org/10.1007/978-3-030-53199-7_1
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from user behaviour analysis. Ticketing systems in countries with high population
density or frequent travellers where reservations have to be made, sometimes, a
few months in advance, rely on machine learning algorithms for predictions gov-
erning prices and availability. Patterns discovered from toll collecting stations and
border crossings can be of huge importance when planning the duration of one’s
trip and optimizing the selected route.

Energy Production and Smart Grids
Energy Production. The energy sector has been dealing with big data for
decades, as tremendous amounts of data are collected from numerous sensors,
which are generally attached to different plant subsystems. Recently, modern
big data technologies have also been applied to plant industry such as oil and
gas plants, hydro, thermal and nuclear power plants, especially in the context of
improving operational performance. Thus, some of the applications of big data
in the oil and gas industry [311] are analyzing seismic and micro-seismic data,
improving reservoir characterization and simulation, reducing drilling time and
increasing drilling safety, optimization of the performance of production pumps,
improved petrochemical asset management, improved shipping and transporta-
tion, and improved occupational safety. Promising applications of big data tech-
nology in future nuclear fusion power plants are (1) data/plasma modeling in gen-
eral [88], (2) real-time emergency planning [276], (3) early detection of accidents in
reactors [290], etc. Related to hydro-power plants, many authors have discussed
the use of IoT applications for measuring water supply (see Koo [260], Bharat
[396] or Ku [418]). Zohrevand [490] talks about the application of Hidden Markov
models for problem detection in systems for water supply.

Smart Grids. The smart grid (SG) is the next-generation power grid, which uses
two-way flows of electricity and information to create a widely distributed auto-
mated energy delivery network [155]. The goal is to optimize the generation, dis-
tribution and consumption of electricity. In general, there are three main areas
where data analytics have been applied:

– Ensuring smart grid stability, load forecast and prediction of energy demand
for planning and managing energy network resources;

– Improving malfunction diagnosis, either on the production side (in plant facili-
ties) or health state estimation, and identifying locations and forecasting future
line outages in order to decrease the outage costs and improve system reliabil-
ity;

– Profiling user behaviours to adjust individual consumption patterns and to
design policies for specific users.

Smart metering equipment and sensors provide key insights into load distribu-
tion and profiles required by plant operators to sustain system stability. Predictive
maintenance also plays a key role in smart grid upkeep since all segments are both
critical and expensive, and any unplanned action cuts users from the electricity
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supply upon which almost all modern devices rely to function. Analytics method-
ologies or algorithms used in these cases are: 1) statistical methods; 2) signal pro-
cessing methodologies; 3) supervised regression forecasting (short and long-term
forecasts); 4) clustering algorithms; 4) dimensionality reduction techniques; and
5) feature selection and extraction. Tu [431] and Ghorbanian [155] present a long
list of various open issues and challenges in the future for smart grids such as

– lack of comprehensive and general standard, specifically concentrated on big
data management in SGs;

– interoperability of smart devices dealing with massive data used in the SGs;
– the constraint to work with approximate analytics and data uncertainty due

to the increasing size of datasets and real-time necessity of processing [354];
– security and privacy issues and the balance between easier data processing and

data access control for big data analytics, etc.

More insight into potential applications of big data-oriented tools and analyt-
ical technologies in the energy domain are given in Chap. 10.

Energy Consumption and Home Automation
An unavoidable topic when discussing big data applications, in general, is home
automation. One of the challenges that the world is facing nowadays is reducing
our energy consumption and improving energy efficiency. The Internet of Things,
as a network of modern sensing equipment, plays a crucial role in home automation
solutions that based on this data are capable of processing and providing accu-
rate predictions, and energy saving recommendations. Home automation solutions
provide optimal device scheduling to maximize comfort and minimize costs, and
can even be extended from the operation aspect to planning and offering possible
home adjustments or suggesting investments in renewable sources if the location
being considered is deemed fit. Having smart appliances initially presented the
concept of human-to-machine communication but, governed by big data process-
ing, this concept has been further popularized with machine-to-machine commu-
nication where the human input is removed, resulting in less interference. Predic-
tive maintenance and automatic fault detection can also be obtained from sen-
sor data for both basic household appliances and larger mechanical systems like
cars, motors, generators, etc. IoT applications require proper cloud frameworks
[456]. Ge [151] presents a comprehensive survey of big data applications in the IoT
sphere, Martis [300] introduce machine learning to the mix. Kumari [270] gives a
survey but with the main focus on multimedia, and Kobusińska [248] talks about
current trends and issues.

Banking and Insurance
Business intelligence tools have been used to drive profitability, reduce risk, and
create competitive advantage since the 1990s. In the late 1990s, many banks and
insurance companies started using machine learning techniques for categorizing
and prioritizing clients, assessing the credit risk of individual clients or companies,

http://dx.doi.org/10.1007/978-3-030-53199-7_10
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and survival analysis, etc. As this industry generally adopts new technologies early
on, thanks to advances in cognitive computing and artificial intelligence, compa-
nies can now use sophisticated algorithms to gain insights into consumer behav-
ior. Performing inference on integrated data from internal and external sources is
nowadays the key for detecting fraud and security vulnerabilities. Furthermore,
novel approaches state that the applied machine learning can be supplemented
with semantic knowledge, thus improving the requested predictions and classifica-
tions and enriching them with reasoning explanations that pure machine learning
based deduction lacks [40]. Regarding other financial institutions, stock markets,
for instance, are also a considerable use case for big data as the sheer volume and
frequency of transactions slowly renders traditional processing solutions and com-
putation methods obsolete. Finding patterns and surveilling this fast-paced pro-
cess is key for proper optimization and scam prevention. Hasan [186] and Huang
[204] offer concrete approaches like predicting market conditions by deep learn-
ing and applying market profile theory with Tian [427] discussing latency critical
applications, Begenau [36] looking at the link between Big Data and corporate
growth, and (Óskarsdóttir [492] placing an emphasis on data collected from social
networks and mobile phones.

Social Networks and e-Commerce
Social Networks. When considering big data applications, one cannot overlook
the massive impact that the development of social networks like YouTube, Face-
book and Twitter has had on digital media and e-commerce. Social networks pro-
vide a source of personalized big data suitable for data mining with several hun-
dreds of thousands of new posts being published every minute. They are also excel-
lent platforms for implementing big data solutions whether it be for advertising,
search suggestions, post querying or connection recommendations. The social net-
work structure has also motivated researchers to pursue alike architectures in the
big data domain. From the related literature, Saleh [381] addresses challenges in
social networks that can be solved with big data, Persico [352] gives a performance
evaluation of Lambda and Kappa architectures, and Ghani [152] classifies analyt-
ics solutions in the big data social media domain.

e-Commerce. With all services available to web users, the wide variety of online
shopping websites also presents a continuous source of huge volumes of data that
can be stored, processed, analysed and inferred to create recommendation engines
with predictive analytics. As a means to increase user engagement, multi-channel
and cross-channel marketing and analysis are performed to optimize product pres-
ence in the media fed to the user. It is no accident that a certain advertisement
starts to show right after a user has searched for that specific product category.
Examining user behaviour patterns and tendencies allows for offer categorization
in the best possible way so that the right offer is presented precisely when it needs
to be, thus maximizing sale conversions. Data received from big data analysis can
also be used to govern product campaigns and loyalty programs. However, con-
tent recommendations (inferred from big data sources) in this domain are not only
related to marketing and sales but are also used for proper display of information
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relating to the user. Some search engines companies have even publicly stated that
their infrastructure relies on big data architecture, which is not surprising consid-
ering the amount of data that needs to be processed.

Environment Monitoring
Environmental monitoring involves the collection of one or more measurements
that are used to assess the status of an environment. Advances in remote sensing
using satellite and radar technologies have created new possibilities in oceanogra-
phy, meteorology, forestry, agriculture and construction (urban planning). Envi-
ronmental remote sensing can be subdivided into three major categories based on
the distance between the sensor and the area being monitored [139]. The first cat-
egory, satellite-based measurement systems, is primarily employed to study the
Earth and its changing environment. The most valuable source of data from this
category is the Landsat, a joint satellite program of the USGS and NASA, that
has been observing the Earth continuously from 1972 through to the present day.
More than 8 million images [207] are available via the NASA website8 and Google
Earth Engine Data Catalog 9. Additionally, the Earth observation mission from
the EU Copernicus Programme produces 12 terabytes of daily observations (opti-
cal imagery at high spatial resolution over land and coastal waters) each day that
can be freely accessed and analysed with DIAS, or Data and Information Access
Services10.

The second major category of remote sensing encompasses aircraft-borne
instruments, for instance, the light detection and ranging (LIDAR) systems that
permit better monitoring of important atmospheric species such as ozone, carbon
monoxide, water vapor, hydrocarbons, and nitrous oxide as well as meteorological
parameters such as atmospheric density, pressure, and temperature [139].

Ground-based instruments (e.g. aerosols measurement instruments) and
Wireless Sensor Networks (WSN) [397] are the third major category for outdoor
monitoring technologies that create new opportunities to monitor farms and rain
forests, cattle, agricultural (soil moisture), water quality, volcanic eruptions and
earth-quakes, etc.

The table below points to some social-economic and natural environment
applications enabled by big data, IoT and remote sensing (Table 4).

Natural Disasters, Safety and Security
The application of big data analytics techniques is specially important for the
Safety and Security industry as it can extract hidden value (e.g. early warning,
triggers, predictions) from security-related data, derive actionable intelligence,
and propose new forms of surveillance and prevention. Additionally, the number of
connected devices is expected to rapidly increase in the coming years with the use
of AI-defined 5G networks [477]. Natural Disasters. Due to changing climatic

8 https://landsat.gsfc.nasa.gov.
9 https://developers.google.com/earth-engine/datasets/catalog.

10 https://www.copernicus.eu/en/access-data/dias.

https://landsat.gsfc.nasa.gov
https://developers.google.com/earth-engine/datasets/catalog
https://www.copernicus.eu/en/access-data/dias
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Table 4. Environment monitoring applications (examples)

Smart
farming

Big data research in Smart Farming is still in an early development
stage. Challenges foreseen are related both to technical and
organizational issues. Technical challenges include the automation of
the data acquisition process, the availability and quality of the data,
and the semantic integration of these data from a diversity of sources
(information on planting, spraying, materials, yields, in-season
imagery, soil types, weather, and other practices). Although, from a
business perspective, farmers are seeking ways to improve profitability
and efficiency, there are challenges related to the governance (incl.
data ownership, privacy, security) and business models for integration
of the farms in the entire food supply chain [469]

Rainforest
monitoring

The contribution of the world’s rainforests to the reduction of the
impact of climate change is well-known to environment scientists,
therefore projects have been started to integrate various low-cost
sensors for measuring parameters such as humidity, temperature, total
solar radiation (TSR), and photosynthetically active radiation (PAR)
[68]

Biodiversity
planning

- Machine learning and statistical algorithms have proved to be useful
for the prediction of several numeric target attributes simultaneously,
for instance, to help natural resource managers to assess vegetation
condition and plan biodiversity conservation [249]

conditions, natural disasters such as floods, landslides, droughts, earthquakes are
nowadays becoming common events. These events create a substantial volume of
data that needs to be processed in real time and thus avoid, for instance, suffering
and/or death of the people affected. Advancements in the field of IoT, machine
learning, big data, remote sensing, mobile applications can improve the effective-
ness of disaster management strategies and facilitate implementation of evacua-
tion processes. The requirements faced by ICT developers are similar to those in
the other domains already discussed

– the need to integrate multimodal data (images, audio, text from social sites
such as Twitter and Facebook);

– the need to syncronize the activities of many stakeholders involved in four
aspects of emergency (preparedness, response, mitigation and recovery);

– the need to install measuring devices for collecting and real-time analysis in
order to understand changes (e.g. in water level, ocean waves, ground motions,
etc);

– the need to visualize information;
– the need to communicate with people (first responders and/or affected people

and track their responses and behaviour) or to alert officials to initiate rescue
measures.

The global market offers a wide range of emergency solutions (in the form
of web and/or mobile solutions) with intuitive mapping, live field monitor-
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ing and multimedia data sharing, such as CommandWear11, TRACmate12, and
Track2413. However, the Linked Data principles and data management techniques
discussed in the previous chapters can, to a considerable extend, facilitate inte-
gration and monitoring; see for instance the Intelligent fire risk monitor based on
Linked Open Data [442].

Safety and Security of Critical Infrastructures. Big data processing is espe-
cially important for protecting critical infrastructures like airports, railway/metro
systems, and power grids. Large infrastructures are difficult to monitor due to
their complex layout and the variety of entities that they may contain such as
rooms and halls of different sizes, restricted areas, shops, etc. In emergency situa-
tions, various control and monitoring systems, e.g. fire protection systems, heat-
ing, ventilation and air conditioning systems, evacuation and access control sys-
tems and flight information display systems among others, can send altogether
thousands of events to the control room each second [309]. By streaming these low-
level events and combining them in a meaningful way, increased situation aware-
ness can be achieved. Using big data tools, stream processing solutions, complex
event processing/event-condition-action (CEP/ECA) paradigm and combining
events, state and emergency management procedures, a wide range of emergency
scenarios and emergency procedures can be pre-defined. Besides processing the
large amount of heterogeneous data extracted from multiple sources while con-
sidering the challenges of volume, velocity and variety, what is also challenging
today is

– real-time visualization and subsequent interaction with computational mod-
ules in order to improve understanding and speed-up decision making;

– development of advanced semantic analytics and Machine Learning techniques
for new pattern recognition that will build upon pre-defined emergency scenar-
ios (e.g. based on rules) and generate new early warning procedures or reliable
action plans.

Telecommunications
Following the already mentioned impact of using smart mobile phones as data
sources, the telecommunications industry must also be considered when discussing
big data. The 5th generation of cellular network (5G) that is now live in 24 markets
(GSMA predicts that it will account for 20% of global connections by 2025) will
provide real-time data collection and analysis and open possibilities for business
intelligence and artificial intelligence-based systems.

Mobile, television and internet service providers have customer retention as
their core interest in order to maintain a sustainable business. Therefore, in order
to prevent customer churn, behaviour patterns are analysed in order to provide
predictions on customers looking to switch their provider and allow the com-
pany to act in time and offer various incentives or contract benefits in due course.
11 http://www.commandwear.com/features/.
12 https://play.google.com/store/apps/details?id=com.gridstone.teamactivator.
13 https://www.track24.com/smart24/.

http://www.commandwear.com/features/
https://play.google.com/store/apps/details?id=com.gridstone.teamactivator
https://www.track24.com/smart24/
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Also, besides this business aspect, telecommunication companies using big data
analytic solutions on data collected from mobile users can use the information gen-
erated in this way to assess problems with their network and perform optimiza-
tions, thus improving the quality of their service. Since almost all modern mobile
phones rely on wireless 4G (and 5G in the years to come) networks to communicate
when their users are not at home or work, all communication is passed through
the data provider’s services, and in processing this data still lie many useful bits of
information as only time will tell what useful applications are yet to be discovered.
Papers covering this aspect include Yazti [479] and He [191] outlining mobile big
data analytics, while Amin [15] talks about preventing and predicting the men-
tioned phenomena of customer churn, and Liu [286] talks about collecting data
from mobile (phone and wearable) devices.

Manufacturing
Industry 4.0 is about automating processes, improving the efficiency of processes,
and introducing edge computing in a distributed and intelligent manner. As dis-
cussed previously, more complex requirements are imposed in process operations
while the process frequently forfeits robustness, complicating process optimiza-
tion. In the Industry 4.0 era, smart manufacturing services have to operate over
multiple data streams, which are usually generated by distributed sensors in
almost real-time. Similarly to other industrial sectors, transforming plants into
full digital production sites requires an efficient and flexible infrastructure for data
integration and management connected to powerful computational systems and
cognitive reasoning engines. Edge computing (distributing computing, storage,
communication and control as close as possible to the mediators and objects at the
edge) plays an important role in smart manufacturing. Data has to be transferred,
stored, processed and transferred again back (bidirectional communications from
machine to machine, machine to cloud and machine to gateway) to both users
and providers in order to transmit the inferred knowledge from sensor data. In
the layered infrastructure (see Fig. 2), cognitive services have a central role and
their design (selection of algorithms/models) depends on the problem in place,
for instance

– Kumar [268] proposes using the MapReduce framework for automatic pat-
tern recognition based on fault diagnosis in cloud-based manufacturing. Fault
diagnosis significantly contributes to reduce product testing cost and enhances
manufacturing quality;

– Vater [443] discusses how new technologies, such as IoT, big data, data analyt-
ics and cloud computing, are changing production into the next generation of
industry.

In the smart manufacturing ecosystem, cognitive applications make use of pro-
cess data (processed on the edge) and provide high level supervisory control and
support the process operators and engineers. Data analytics and AI techniques
are combined with digital twins and real-life feedback from the shop floor or pro-
duction facility to improve the quality of products and processes. Example areas
where semantic processing and artificial intelligence can advance this sector are
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Fig. 2. Multi-layered software architecture

– Human-Computer Interaction. In complex situations, operators and
machines need to quickly analyze situations, communicate and cooperate with
each other, coordinate emergency response efforts, and find reasonable solu-
tions for emerging problems. In such situations, collaborative intelligence ser-
vices are needed that require fewer human-driven decisions as well as easy-to-
use interfaces that accelerate information-seeking and human response. Inter-
pretability and explainability are crucial for achieving fair, accountable and
transparent (FAT) machine learning, complying with the needs and standards
of the business sector.

– Dynamic process adaptation. Many industrial processes are hard to adapt
to changes (e.g. related to status and availability of all relevant production
resources, or in case of anomaly detection). This affects product quality and can
cause damage to equipment and production lines. Hence, a semantic framework
for storing contextual information and an explainable AI approach can be used
for fine-tuning of process parameters to optimize environmental resources, fast
reconfiguration of machines to adapt to production change, or advance fault
diagnosis and recovery.

4 Conclusions

This chapter presented applications of big data approaches in different sectors.
Research into real-time data analytics by addressing the volume and velocity
dimension of big data is a significant area in emerging smart grid technology, for
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instance, where different predictive models and optimization algorithms serve to
improve end-to-end performance, end-user energy efficiency and allow increasing
amounts of renewable energy sources to be embedded within the distribution net-
works (e.g. solar photovoltaic (PV), wind power plants). Next, analytics on real-
time data streams combined with GIS and weather data improves detection of
significant events, enhances situational awareness and helps identify hazardous
road conditions (e.g. snow), which may assist drivers and emergency responders
in avoiding such conditions and allow for faster emergency vehicle routing and
improved response time. Solutions that address the variety dimension, integra-
tion of heterogeneous data sources (including open and social media data) and
advanced machine learning algorithms have found application in customer rela-
tion management and fraud detection (finance, insurance, telecommunication).
For instance, the ability to cross-relate private information on consumer prefer-
ences and products with information from Facebook, tweets, blogs, product eval-
uations, and other sources opens a wide range of possibilities for organisations to
understand the needs of their customers, predict their needs and demands, and
optimise their use of resources. This chapter also discussed challenges that can be
addressed and overcome using the semantic processing approaches and knowledge
reasoning approaches discussed in this book.
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Abstract. Information systems are most often the main focus when
considering applications of Big Data technology. However, the energy
domain is more than suitable also given the worldwide coverage of elec-
trification. Additionally, the energy sector has been recognized to be in
dire need of modernization, which would include tackling (i.e. process-
ing, storing and interpreting) a vast amount of data. The motivation for
including a case study on the applications of big data technologies in the
energy domain is clear, and is thus the purpose of this chapter. An appli-
cation of linked data and post-processing energy data has been covered,
whilst a special focus has been put on the analytical services involved,
concrete methodologies and their exploitation.

1 Introduction

Big Data technologies are often used in domains where data is generated, stored
and processed at rates that cannot be efficiently processed by one computer.
One of those domains is definitely that of energy. Here, the processes of energy
generation, transmission, distribution and use have to be concurrently monitored
and analyzed in order to assure system stability without brownouts or blackouts.
The transmission systems (grids) that transport electric energy are in general
very large and robust infrastructures that are accompanied by a great deal of
monitoring equipment. Novel Internet of Things (IoT) concepts of smart and
interconnected homes are also pushing both sensors and actuators into peoples
homes. The power supply of any country is considered to be one the most crit-
ical systems and as such its stability is of utmost importance. To that effect,
a wide variety of systems are deployed for monitoring and control. Some of
these tools are presented in this chapter with a few from the perspective of end
users (Non-Intrusive Load Monitoring, Energy Conservation Measures and User
Benchmarking) and a few from the perspective of the grid (production, demand
and price forecasting).

2 Challenges Withing the Big Data Energy Domain

In order to be able to provide advanced smart grid, user-oriented services, which
will be discussed further in this chapter, integration with high volume, heteroge-
neous smart metering data (coming both from the grid side, e.g. placed in power
c© The Author(s) 2020
V. Janev et al. (Eds.): Knowledge Graphs and Big Data Processing, LNCS 12072, pp. 165–180, 2020.
https://doi.org/10.1007/978-3-030-53199-7_10
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substations, and from the user side, e.g. installed in homes and buildings) is a
prerequisite. To specify, suggest and deliver adequate services to end users (i.e.
energy consumers) with respect to their requirements and power grid status,
various forms of energy data analytics should be applied by distribution system
operators (DSO) and grid operators such as precise short- and long-term energy
production and consumption forecasting. In order to deliver such energy analyt-
ics, historical energy production data from renewable energy sources (RES) and
historical consumption data, based on smart metering at consumer premises and
LV/MV power substations, must be taken into account.

The main challenge to providing advanced smart grid services is related to
the integration and interoperability of high volume heterogeneous data sources
as well as adequate processing of the acquired data. Furthermore, making this
data interoperable, based on Linked Data API, and interlinked with other data
sources, such as weather data for renewable energy sources (RET) production
analysis, number of inhabitants per home units, etc., is essential for providing
additional efficient user tailored analytical services such as energy conservation
action suggestions, comparison with other consumers of the same type, etc.

Another challenge is related to analysis of grid operations, fault diagnostics
and detection. To provide such advanced analytics, real-time integration and
big data analysis performed upon the high volume data streams coming from
metering devices and power grid elements (e.g. switches, transformers, etc.) is
necessary, and could be solved using Linked Data principles. Finally, to sup-
port next generation technologies enabling smart grids with an increased share
of renewables, it is necessary to provide highly modular and adaptable power
grids. In addition, adequate tools for off-line analysis of power system optimal
design should be deployed. These analytical tools should also incorporate allo-
cation of optimal reconfiguration of power grid elements to provide reliable and
flexible operation as an answer to the changing operational conditions. Tools for
planning and reconfiguring power distribution networks consider power station
infrastructure and its design, number and capacity of power lines, etc. To pro-
vide such advanced grid capabilities, integration with historical power grid data,
archives of detected alarms and other relevant operational data (such as data
from smart metering, consumption data, etc.) is necessary. Therefore, the main
challenge is to provide digested input to the batch-processing, big data analytics
for power grid infrastructure planning.

Having all of this in mind, the significance of big data processing techniques
is obvious. On the other hand, further in this chapter examples of analytical
services will be presented and discussed.

3 Energy Conservation Big Data Analytical Services

Improving quality of life through advanced analytics is common nowadays in
various domains. Consequently, within the energy domain, collecting data from
numerous smart meters, processing it and drawing conclusions are common con-
cepts in the field of developing energy conversation services. The amount of
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aforementioned data highly depends on the service’s principal use. If the focus
is put on just one household, data can be undoubtedly processed using only one
computer. Nonetheless, if the scale of a problem is a neighbourhood, munici-
pality or city level, data processing and analytical computations can be taken
as a big data problem. Therefore, within this chapter, methodologies for smart
energy services are going to be discussed.

3.1 Non-Intrusive Load Monitoring

The first of these is so-called Non-Intrusive Load Monitoring (NILM). NILM was
motivated by conclusions, such as those from [70], which claimed that up to 12% of
residential energy consumption can be decreased by giving users feedback on how
the energy has been used. In other words, by providing the user with information
about which of their appliances is using electrical energy and how much, signifi-
cant savings can be reached. Nonetheless, providing this kind of information would
require installation of numerous meters all around households, which is usually
unacceptable for the end-user. Therefore, instead of the Intrusive Load Monitor-
ing solution which influences users’ convenience, Non-Intrusive Load Monitoring
was proposed by Hart in [183] with the main goal of providing users with the same
information in a harmless way by aggregating entire household consumption at the
appliance level, which can be seen in Fig. 1.

Fig. 1. Non-Intrusive Load Monitoring concept

Having in mind the previous information, two main problems are present
within the NILM literature - classification, which provides information about
the activation on the appliance level, and regression for the estimation of the
appliance’s individual consumption, as shown in the example Fig. 2. As these are
some of the most common problems in advanced analytics, typical methodologies
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employed to address these are leading machine learning approaches, which are
going to be presented and discussed further in this section to give an example
of the use of applied big data technologies in the energy domain.

Fig. 2. NILM classification and regression example

As a first step, in this section, the currently present publicly available datasets
will be introduced as the basis of data-driven models, which will be discussed
further. Depending on the sampling rate, within the NILM literature, data and
further corresponding methodologies are usually separated in two groups - high
and low frequency ones. For high frequency, measurements with a sampling
time of less than 1 ms are considered. These kind of data are usually unavailable
in everyday practice due to the fact that usual residential metering equipment
has a sampling period around 1 s and is put as the low frequency group. This
difference in sampling rate further influences the choice of the disaggregation
methodology and preprocessing approach for the real-time coming data used as
the corresponding inputs.

When discussing publicly available data sets, methodologies are not strictly
separated in accordance with the chosen sampling rate but rather by the geo-
graphical location. In other words, measurements usually correspond to some
localized neighbourhood from which both high and low frequency data might
be found in the same data set. The first published dataset we refer to is REDD
(Reference Energy Disaggregation Data Set, 2011) [256]. It includes both low
and high sampling frequency measurements from six homes in the USA. For the
first group, both individual and aggregated power measurements were covered
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for 16 different appliances, allowing the development of various models, which
require labeled data. By contrast, high frequency measurements contain only
aggregated data from the household, so the developers have to use unsupervised
techniques. Another widely spread and used data set published with [238] is
UK-DALE (UK Domestic Appliance-Level Electricity) collected in the United
Kingdom from five houses. It, again, covers the whole range of sampling rates,
and, similarly to REDD, contains labeled data only for those with a sampling
period bigger than 1 s. Additional data sets that should be addressed are REFIT
[318], ECO (Electricity Consumption and Occupancy) [33], IHEPCDS (Individ-
ual household electric power consumption Data Set) [319] for low sampling rate
and BLUED [137] and PLAID [145] for the high one1.

After presenting the available data, potential and common problems with
data processing as part of the theme of big data will be discussed. The first one,
present in most of the data sets, is the presence of the missing data. Depending
on the data set and the specific household appliance, the scale of this problem
varies. For example, in the case of refrigerators, this is a minor problem which
can be neglected because it works circularly, so each approximately 20 min it
turns on or off, leading to numerous examples of both active and inactive work-
ing periods. By contrast, when, for example, a washing machine is considered,
dropping down the sequence of its activation is unacceptable as it is turned on
twice a week in a household on average, so it is difficult to collect enough data
for training purposes. Therefore, different techniques were adapted in different
papers for additional data synthesization from simply adding existing individual
measurements of the appliance’s consumption on the aggregated power measure-
ments in some intervals when the considered appliance has not been working to
more sophisticated approaches such as generative modeling, which was used to
enrich data from commercial sector measurements [193].

It is worth mentioning here that characteristics of the data from these differ-
ent sets significantly deviate in some aspects as a result of differences in location,
habits, choice of domestic appliance, number of occupants, the average age of
the occupant etc. The NILM literature has attempted to address this general-
ization problem. Even though the problem of achieving as high performance
as possible on the testing rather than training domain is a hot topic in many
fields of research within Machine Learning (ML) and Big Data, the generaliza-
tion problem is even more crucial for NILM. As different houses might include
different types of the same appliances, the performance on the data coming from
the house whose measurements have not been used in the training process might
be significantly lower than the estimated one. Additionally, it is obvious that the
only application of the NILM models would be in houses which have not been
used in the training phase, as they do not have labeled data (otherwise, there
would be no need for NILM). Bearing all of this in mind, validating the results
from the data coming from the house whose measurements have already been
used in the training process is considered inadequate. Thus, it is accepted that
for validation and testing purposes one, so called, unseen house is set aside and

1 http://wiki.nilm.eu/datasets.html.

http://wiki.nilm.eu/datasets.html
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all further validation and testing is done for that specific house. Nonetheless, the
houses covered by some publicly available dataset are by the rule in the same
neighbourhood, which leads to the fact that data-driven models learn patterns
which are characteristics of the domain rather than the problem. Therefore, sep-
aration of the house from the same dataset might be adequate. Finally, the last
option would be validating and testing the measurements from the house using
a different data set.

State-of-the-art NILM methodologies will be presented later in this section
alongside corresponding estimated performance evaluations. Historically, the
first ones were Hidden Markov Models and their advancements. They were
designed to model the processes with unobservable states, which is indeed the
case with the NILM problem. In other words, the goal is to estimate individual
consumption in accordance with the observable output (aggregated consump-
tion). This approach and its improvements have been exploited in numerous
papers such as [227,245,255,293,294], and [56]. However, in all of the previously
listed papers which cover the application of numerous HMM advancements to the
NILM problem, the problem of error propagation is present. Namely, as HMM
presumes that a current state depends on a previous one, mistakes in estimating
previous states have a significant influence on predicting current ones.

Apart from HMMs, there are numerous unsupervised techniques applied for
NILM. The main cause of this is the fact that labeled data for the houses in which
services are going to be installed are not available, as already discussed. There-
fore, many authors choose to use unsupervised learning techniques instead of
improving generalization on the supervised ones. Examples of these attempts are
shown in [194] where clusterization and histogram analysis has been employed
before using the conditional random fields approach, in [344] where adapta-
tion over unlabeled data has been carried out in order to improve performance
on the gaining houses, and in [136] where disaggregation was described as a
single-channel source separation problem and Non Negative Matrix Factoriza-
tion and Separation Via Tensor and Matrix Factorization were used. Most of
these approaches were compared with the HMM-based one and showed signifi-
cant improvements. Another approach to gain the best generalization capabilities
possible that can be found in the literature is semi-supervised concept in which
a combination of supervised and unsupervised learning is present. In [30], self-
training has been carried out using internal and external information in order
to decrease the necessity of labeled data. Further, [208] proposes the application
of transfer learning and blind learning, which exploits data from training and
testing houses.

Finally, supervised techniques were widely spread in the literature as well. Cur-
rently, various ML algorithms hold a prime position with regards to supervised
approaches, as they have proven themselves to be an adequate solution for the dis-
cussed problem, as reviewed in [419]. The biggest group currently popular in the
literature is neural networks (NNs). Their ability to extract complex features from
an input sequence was confirmed to increase their final prediction performance.
Namely, two groups stood out to be most frequently used - Recurrent Neural Net-
works (RNNs) with the accent on Long Short Term Memory (LSTM) [302], and



Chapter 10 Case Study from the Energy Domain 171

Convolutional Neural Networks (CNNs) with a specific subcategory of Denoising
Autoencoders [239].

After presenting various analytical approaches for solving the NILM problem,
it is crucial to finish this subsection with the conclusion that results obtained
by this service could be further post-processed and exploited. Namely, disaggre-
gated consumption at the appliance level could be utilized for developing failure
detection services in cooperation with other heterogeneous data.

3.2 Energy Conservation Measures (ECM)

When discussing the appeal and benefits of energy savings and energy con-
servation amongst end users, especially residential ones, it is no surprise that
users react most positively and vocally when potential cost savings are men-
tioned. Of course, when this is the main focus, retrofitting old technologies,
improving insulation materials, replacing windows and installing newer and more
energy-efficient technologies is usually included in the course of action first rec-
ommended. This is mainly because the aspects that are tackled by these modifi-
cations are the largest source of potential heat losses and energy conversion ineffi-
ciencies. However, there is a significant and still untapped potential for achieving
significant energy savings by correcting some aspects of user behaviour.

Besides inefficient materials, bad habits are one of the main causes of high
energy loss, especially in heating and cooling applications with the thermal
demand being a distinct issue due to the high volume of energy being spent
in the residential sector on it. Finding the crucial behavioral patterns that users
exhibit when unnecessarily wasting energy is key for efficient mitigation and,
therefore, a smart home concept is proposed in order to analyze user behavior
and facilitate the necessary changes. In order to obtain data to be able to sug-
gest energy conservation measures, a set of smart sensors should be deployed
to monitor various parameters. Some of these sensors could include but are not
limited to:

– Smart external meter interfaces (measurement of total energy consumption
in real-time);

– Smart electricity plugs and cables (measurement of energy consumption per
appliance in real time and possibility of on/off control);

– Smart thermostats (measurement and continuous control of reference tem-
perature and possibly consumed energy);

– Occupancy sensors (measurement of occupancy and motion and ambient tem-
perature also);

– Window sensors (measurements of open/close status of windows and doors
and ambient temperature also);

– Volatile organic compound (VOC) sensors (measurement of air quality and
ambient temperature)

In some cases where installing smart plugs and cables is not deemed to be eco-
nomical, a NILM algorithm described in Subsect. 3.1 can be employed in order to
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infer individual appliance activity statuses using only the data from the external
meter. When widespread deployment of such sensors is being done, the amount
of data that should be collected, stored and processed quickly grows due to the
fact that multiple sensors are to be deployed in each room and that each of the
sensors usually reports multiple measurements (e.g. the window sensor reports
the temperature besides the open/close status, but also has a set of utility mea-
surements such is the network status strength, battery status, etc. which should
also be monitored as they provide crucial data regarding the health of the device
itself). Therefore, efficient solutions, possibly from the realm of big data, should
be employed in order to facilitate efficient storage and processing of data as the
problematic user behavior is time-limited and should be pointed out to the user
in due course while a problematic event is ongoing.

A small-scale use case of such a system was tested on around two dozen
apartments in the suburbs of Leers, France with the proposed architecture of
the system illustrated in Fig. 3. Using such an architecture, the back-end of the

Fig. 3. Proposed architecture of a small-scalle ECM system

system that employs a MySQL database for static data storage regarding the
apartment IDs and custom notification settings in conjunction with an ontology
for storing room layouts and detailed sensor deployment data provides support
for the main ECM engine that analyses data from the real-time IoT-optimized
NoSQL Influx database and sends push notifications to the end users notifying
them of energy-inefficient behaviour by cross-correlating different measurements
from different sensors. For example, when a heating or cooling device is observed
to be turned on in an unoccupied space, the user is warned. If the user acts upon
such information and resolves the issue, the notification is dismissed automati-
cally, or if the user does not react and the problematic event goes unresolved, he
or she is re-notified after a predefined period of time. These events are analyzed
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with different scopes for individual rooms but also for entire apartments. Also,
since smart sensors are already deployed, the energy conservation analysis can
also be extended to regard security (no occupancy whilst a door or window is
open) and health (poor air quality and windows closed) aspects also. Of course,
each event is analyzed separately and appropriate notifications with corrective
actions are issued to the end user.

3.3 User Benchmark

Besides the most obvious motivating factor of energy savings – monetary sav-
ings – another factor that can greatly impact users’ behavior is social pres-
sure. Namely, in a hypothetical scenario where different users were placed in a
competition-like environment where the main goal is to be as energy-efficient
as possible or, in other words, where each user’s score is determined by how
efficiently they consume energy, those users would be more likely to strive to
perform better and hence consume energy in a more environmentally friendly
way. In order to facilitate such an environment, a benchmarking engine has to
be developed in order to provide an algorithm that would rank the users.

[81,113] and [329] in the literature point out that the benchmarking proce-
dures in the residential sector have long been neglected in favor of industrial
applications. Different algorithms and technologies proposed as core include:

– Simple normalization
– Ordinary least squares (OLS)
– Stochastic frontier analysis (SFA)
– Data envelopment analysis (DEA)
– Simulation (model-based) rankings
– Artificial neural networsk (ANNs)
– Fuzzy reasoning

with related literature [171] offering several dozens of additional related algo-
rithms for multi-criteria decision making (MCDM). The applications of the afore-
mentioned algorithms found in the literature are generally focused on schools,
other public buildings and offices, with very few papers, such as [259,291] and
[461], analyzing the residential sector.

One of the most prominent standards in energy efficiency ranking is the
acclaimed Energy Star program [182], which rates buildings on a scale from
1 to 100 based on models and normalization methods of statistical analysis
performed over a database from the US Energy Information Administration
(EIA). However, the Energy Star rating does not take into account dynamic
data obtained by observing the ongoing behavior of residents. This is where the
concept of an IoT-powered smart home can provide a new dimension to energy
efficiency benchmarking through real-time analysis of incoming data on how
people use the space and appliances at their disposal.

The basis of every ranking algorithm is a set of static parameters that roughly
determines the thermal demand of the considered property. These parameters
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generally include: total heated area, total heated volume, outward wall area, wall
thickness, wall conductivity or material, number of reported tenants. This data
generally is not massive in volume and is sufficient for some elementary ranking
methods. However, an energy efficiency rating that only takes into consideration
this data would only have to be calculated once the building is constructed or
if some major renovations or retrofits are being made. As such, it would not
be able to facilitate a dynamic competition-based environment in which users
would compete on a daily or weekly basis on who is consuming their energy in
the most economical way.

Given the reasoning above, the static construction and occupancy parame-
ters are extended with a set of dynamic parameters that are inferred based on
sensor data collected by the smart home. This data could, for example, include:
total consumed energy, occupancy for the entire household, cooling and heating
degree days, responsiveness to user-tailored behavior-correcting messages, align-
ment of load with production from renewable sources, etc. As these parameters
are changing on a day-to-day basis, their dynamic nature would provide a fast-
paced source that would power the fluctuations in energy efficiency scores of
individual users and ultimately help users to see that their change in behaviour
has made an impact on their ranking. Also, it is worth mentioning that when
users within a same micro-climate are to be ranked, using heating and cool-
ing degree days may prove to be redundant as all users would have the same
parameters in this regard. Therefore, this data can be augmented using indoor
ambient temperature measurements in order to monitor overheating in winter
and overcooling in summer.

The most important procedure that should be conducted within user bench-
marking solutions in order to provide a fair comparison between different users
with different habits and daily routines is to provide a so-called normalization
of consumed energy. This means that, for example, larger consumers should not
be discriminated just based on higher consumption; rather, other factors such
as the amount of space that requires air conditioning or the number of people
using the considered space should be taken into account. In this regard, simply
dividing the total consumed energy by the, for example, heated area provides a
good first estimate of how energy-efficient different users are per unit of surface,
but also implies that a linear relation between area and energy is assumed, which
might not be their inherent relationship. In order to mitigate against this issue,
vast amounts of data should be collected from individual households using IoT
sensors and analyzed in order to either deduce appropriate relations required
for normalization or to provide a basis for the aforementioned algorithms (DEA,
SFA, etc.), which assign different weights to each of the parameters taken into
account.

4 Forecasters

Following the widespread deployment of renewable sources such as wind tur-
bines, photovolotaic panels, geothermal sources, biomass plants, solar thermal
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collectors and others, mainly as a result of various government-enforced schemes,
programs and applicable feed-in tariffs, the stability of the grid has been signif-
icantly compromised. The integration of these novel sources has proven to be
a relatively cumbersome task due to their stochastic nature and variable pro-
duction profile, which will be covered in greater depth in Subsect. 4.2. Since the
production of most of these sources is highly correlated with meteorological data
(wind turbine production with wind speed and photovoltaic production with irra-
diance and cloud coverage), legacy electrical generation capacities (coal, nuclear
and hydro power plants) which have a significantly shorter transient between
different states of power output have to balance the fast-paced variations in gen-
eration that are a byproduct of the introduction of renewable sources. Since total
generation is planned in order to be able to fulfill the total demand that will
be requested, being able to know beforehand how much energy will be required
in the future and how much energy will be available can provide a basis for
potential energy and cost savings through optimal resource planning.

4.1 Demand Forecaster

Given the importance of demand forecasting, it is expected that this topic will
be covered by more than a few authors in their published research. However,
even though there is a noticeable number of publications in this regard, the
topic of energy demand forecasting and the methods used for its estimation still
appear to be under-explored without a unified proposed approach and most of
the studies being case-specific. In that regard, a probabilistic approach for peak
demand production is analyzed in [322], an autoregressive model for intra-hour
and hourly demand in [450] and ANN-powered short-term forecasting in [401].
Short-term forecasting is also analyzed whilst making use of MARS, SVR and
ARIMA models in [9] and [463] presenting a predictive ML approach. Deep
learning frameworks are discussed by [34] and [466]. DSM in connection with
time-of-use tariffs is analyzed by [200] and simultaneous predictions of electricity
price and demand in smart grids in [314].

Some authors like [105,149,195] and [12] also discuss demand forecasting but
place the focus of their research on the predictors that can be used to predict and
correlate with the demand values. In this regard, [486] analyzes the correlation
of indoor thermal performance and energy consumption. However, again, very
few studies focus on residential users, i.e. households and apartments, especially
with regard to dynamic data that depicts the ongoing use of that household.

In line with what other authors have noted in their work, the crucial factors
that affect demand and that are to be taken into account when building predic-
tive models are the meteorological conditions of the analyzed site. In essence,
this correlation is not direct, but rather the temperature, wind speed and direc-
tion and irradiance have a significant impact on the use of heating and cooling
devices, which are usually the largest consumers of energy in residential house-
holds without district heating and cooling. Besides, the current season of the
year in moderate climates greatly determines what climatic conditions can be
expected, and, therefore, the geographic properties of the analyzed site have to
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be taken into account since it is the location that determines how severe the
seasonal variations in climatic conditions will be. As for the static data, the
total floor space or heated volume are also said to be closely correlated with
total consumption, but cannot be used to dynamically estimate demand with
high time resolution. Here is where large volumes of IoT sensor data collected
directly from homes can be of great help in increasing the precision of predictive
models. Namely, indoor ambient temperature coupled with outdoor meteoro-
logical conditions with live occupancy data in real time can provide a precise
short-term estimation of the consumption profile. Furthermore, if past behaviour
is taken into account (in the form of previous demand curves both as an average
over a larger time period in the past and the more current ones from the pre-
vious couple of days) with current day indicators (i.e. whether it is a working
day or weekend/holiday), relatively precise hourly and possibly even inter-hourly
profiles can be generated.

The presence of smart measuring devices in the form of smart plugs and
cables which report real-time consumption per appliance in a home, or their
substitution with an NILM algorithm as described in Subsect. 3.1 where bad
performance due to insufficient generalization is not an issue, provides the pos-
sibility of predicting demand on a per-appliance level. This approach is scarcely
depicted in contemporary research articles with only a few papers like [28,312]
and [226] exploring this subject. Alternatively, the problem of demand fore-
casting is most often approached from an aggregated perspective, through the
prediction of neighbourhood, city or state-level consumption, with data avail-
ability generally being the driving factor that ultimately decides what type of
demand will be estimated. Time series from Figs. 4, 5 and 6 illustrate the dif-
ferent dynamics of the demand signals from a single appliance, all appliances of
one home and several aggregated homes. Since each of these applications usu-
ally requires different levels of prediction precision, the raw data used for these
illustrations was averaged with different sample intervals (15 s, 60 s and 15 min)
in accordance with the appropriate use case.
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Fig. 4. Typical washing machine demand profile with 15 s averages (showing what
appear to be two activations in the span of 4 h)
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Fig. 5. Total household demand profile with 60 s averages (showing several appliance
activations during a full 24-h period)
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Fig. 6. Aggregate household demand profile with 15 min averages (showing consump-
tion for 2 days with time-of-use tariff)

4.2 Production Forecaster

It has already been mentioned that energy planning is crucial for grid stabil-
ity, and that it highly depends on the forecast renewable energy sources (RES)
production. Therefore, in this subsection different methodologies used for pro-
duction forecasting are going to be covered as well as their relation to the field
of big data.

The production of RES technologies is highly influenced by weather con-
ditions. For example, there is very high dependency between PV production
and solar radiation, similar to the relationship between wind turbines and wind
speed and direction. In Table 1, the selection of weather services is given followed
by their main characteristics. Namely, depending on the practical application,
production forecasters can have different time resolutions and horizons, which
dictates the necessary weather forecast parameters. Therefore, from the above-
mentioned table, it can be seen that Darksky can provide estimations in terms of
minutes, whilst its horizon, as some kind of compromise, is only 7 days. Addition-
ally, depending on the approach, historical weather data might be necessary for
the purpose of the training process, as, currently, the most popular approaches
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in the field of RES production are data-driven algorithms. Finally, the choice
of weather service highly influences its price. All of those characteristics can be
found in the table.

Table 1. Overview of forecasting data providers

Name Min.
forecast
resolu-
tion

Max.
horizon
[days]

Historical
data

Free
up to

Coverage

OpenWeatherMap hourly 30 Yes 60 calls/minute Global

Weatherbit hourly 16 Yes 500 calls/day Global

AccuWeather hourly 15 prev. 24 h 50 calls/day Global

Darksky minute 7 Yes 1000 calls/day Global

weathersteak hourly 14 Yes 1000 calls/month

Yahoo! Weather hourly 10 No 2000 calls/day Global

The Weather Channel 15min 30 Yes Global

World Weather Online hourly 15 Yes Not free Global

Depending on the practical application apart from input weather parameters
developed methodology varies, as well. For the use cases in which few mea-
surements are available, physical models are usually chosen. These models are
based on mathematical models and are usually deployed when there are not
enough real world measurements. These models are characterized with the low-
est performances in comparison with the following ones, but exist in cases of
missing data. This methodology is present in the literature for various RES such
as photo-voltaic panels (PVs) [115,334], wind turbines (WTs) [273] and solar-
thermal collectors (STCs) [80,394]. However, even though they do not require
huge amounts of measurements, physical characteristics such as number of solar
panels, position of panels and wind turbines, capacity etc. are needed and some-
times, again, inaccessible. Taking into account suppliers’ tendency to equip the
grid with numerous IoT sensors nowadays, the necessity of physical models is
decreasing, leaving room for data-driven models, which are a more important
part of this chapter and within the field of big data.

Currently the most popular and explored topic in the field of RES production
forecasters is statistical and machine learning (ML) based techniques, which
were proven to achieve higher performances but require substantial amounts of
data. Nonetheless, bearing in mind that a huge amount of big data is currently
available in the energy domain, these approaches are not common only amongst
researchers but also in real practice. The first group that stands out are the
statistical autoregressive methodologies SARIMA, NARIMA, ARMA, etc. [437].
They are followed by probabilistic approaches, such as in [452]. Finally, neural
networks and machine learning-based approaches are proven as one of the most
suitable choices [205,236,453], similar to numerous other fields.



Chapter 10 Case Study from the Energy Domain 179

Apart from the similar inputs regarding weather parameters and applied
models for RES production forecasters, all of the methodologies are dependent on
the estimation time horizon. Depending on the practical application, the orders
of magnitude can range from minutes to years. Further post-processing of the
obtained forecast results is another important factor. Apart from the grid control
and stability, from the perspective of big data the analytical tool developed
on top of the results provided by the forecaster could be exploited for failure
and irregularity detection in the system together with its high level metadata.
By contrast, outputs with the big time horizon could be seen as adequate for
extracting conclusions on a yearly basis using big data tools already presented
in this book.

4.3 Pricing Prediction

Another important application of prediction algorithms in the energy domain
are price predictions. As energy sectors worldwide are becoming increasingly
deregulated, variable pricing in energy trading is becoming increasingly promi-
nent with some envisioning a not-so-distant future where the cost of energy
in the wholesale and maybe even retail markets will be changing every 15 min
while the standard nowadays is usually hourly changes at most. Having accurate
predictions of wholesale market prices presents key information for large-scale
energy traders because it provides an insight into future trends in the same way
as stock price predictions do and allows for sound investment planning.

Wholesale price variations greatly impact retail prices, which, in turn, have a
key influence on the shape of the expected demand curve from end users. Moving
from fixed pricing to first time-of-use tariffs and later hourly variable pricing has
allowed for energy retailers to have granular control of load levels through what
is essentially implicit demand response (DR) where load increase or decrease
events are defined by the current prices. Energy prices are also influenced by the
availability of renewable sources. For example, systems with high PV penetration
tend to have lower prices during mid-day production peaks to try and motivate
users to consume more energy when there is a surplus in the system. In that
way, demand predictions, production predictions and pricing productions are
mutually interconnected in such a way that should result in a balanced system
of equal supply and demand.

5 Conclusion

The brief overview laid out in this chapter provides an insight into some poten-
tial applications of big data-oriented tools and analytical technologies in the
energy domain. With the importance of climate change mitigation growing by
the day, the number of solutions working towards increasing energy efficiency and
responsible energy use is only expected to rise. As such, this domain provides
an interesting and challenging realm for novel research approaches.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


References

1. OZON Open Source Projects: A distributed, reliable key-value store for the most
critical data of a distributed system (2014)

2. CGI Inc.: Internet of things (2015). https://www.cgi-group.co.uk/sites/default/
files/files uk/brochures/uk iot overview brochure nov 15.pdf

3. Abadi, M.J.S., Zamanifar, K.: Producing complete modules in ontology partition-
ing. In: 2011 International Conference on Semantic Technology and Information
Retrieval, pp. 137–143. IEEE (2011)

4. Abdelaziz, I., Mansour, E., Ouzzani, M., Aboulnaga, A., Kalnis, P.: Lusail: a
system for querying linked data at scale. Proc. VLDB Endowment 11(4), 485–
498 (2017)

5. Acosta, M., Hartig, O., Sequeda, J.F.: Federated RDF query processing. In: Sakr,
S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-77525-8

6. Acosta, M., Vidal, M., Lampo, T., Castillo, J., Ruckhaus E.: ANAPSID: an adap-
tive query processing engine for SPARQL endpoints. In: The Semantic Web -
ISWC 2011–10th International Semantic Web Conference, Bonn, Germany, 23–
27 October 2011, Proceedings Part I, pp. 18–34 (2011)

7. Agarwal, B.L.: Basic Statistics, 6th edn. New Age International, New Delhi (2015)
8. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In:

Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston
(2011). https://doi.org/10.1007/978-1-4419-8462-3 9

9. Al-Musaylh, M.S., Deo, R.C., Adamowski, J.F., Li, Y.: Short-term electricity
demand forecasting with MARS, SVR and ARIMA models using aggregated
demand data in queensland, australia. Adv. Eng. Inform. 35, 1–16 (2016)

10. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW
2009, Madrid, Spain, 20 April 2009 (2009)

11. Alharthi, H.: Healthcare predictive analytics: an overview with a focus on Saudi
Arabia. J. Infection Public Health 11(6), 749–756 (2018)

12. Ali, M., Iqbal, M.J., Sharif, M.: Relationship between extreme temperature and
electricity demand in Pakistan. Int. J. Energy Environ. Eng. 4(1), 36 (2013)

13. Allen, J.F., Frisch, A.M.: What’s in a semantic network? In: Proceedings of the
20th Annual Meeting on Association for Computational Linguistics, pp. 19–27.
Association for Computational Linguistics (1982)
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ranking of distributed SPARQL evaluators. In: 2018 IEEE International Confer-
ence on Big Data (Big Data), pp. 693–702. IEEE (2018)

170. Graux, D., et al.: Profiting from kitties on Ethereum: leveraging blockchain RDF
data with SANSA. In: SEMANTiCS Conference (2018)
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371. Ribón, I.T., Vidal, M., Kämpgen, B., Sure-Vetter, Y.: GADES: a graph-based
semantic similarity measure. In: SEMANTICS - 12th International Conference
on Semantic Systems, Leipzig, Germany, pp. 101–104 (2016)

372. Rich, E., et al.: Users are individuals: individualizing user models. Int. J. Man
Mach. Stud. 18(3), 199–214 (1983)

373. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006). https://doi.org/10.1007/s10994-006-5833-1

374. Ristevski, M., Chen, B.: Big data analytics in medicine and healthcare. J. Integr.
Bioinform. 15(3), 1–5 (2018)
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