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Preface

Dependability has become a major issue since Moore’s law had hit its limits.
While Moore’s law has been the pacemaker for the microelectronics age for about
four decades, the exponential growth has led to the microelectronic revolution
that has changed our lives in multifarious ways starting from the PC through the
internet and embedded applications like safety in automotive to today’s personal
communication/entertainment devices. The positive side effects of this exponential
growth were:

(a) Decreased Costs: This refers to the costs per transistor that decreased expo-
nentially as complexity (i.e., number of transistors per chip) increased. In other
words, for the same costs, the customer received far more functionality when
migrating from one technology node to the next one.

(b) Increased Performance: Since transistors shrank, the effective capacitances
shrank, too. Hence, signal delays decreased and allowed for higher clocking,
i.e., the clock frequency could be raised and significant performance gains could
be achieved.

(c) Decreased Power Consumption: Since smaller transistors have lower effective
switching capacitances, the power consumption per transistor and the overall
power consumption per chip went significantly down. This opened the opportu-
nity for new application areas like mobile devices, etc.

In summary, Moore’s law had provided a win–win situation for four decades in
virtually all relevant design constraints (i.e., cost, power consumption, performance,
and chip area). However, as Gordon E. Moore had already stated in a talk at ISSCC
2003: “No exponential is forever . . . but we can delay ‘forever’. . .,” he indicated
that the exponential growth cannot be sustained forever but that it may be possible
to delay the point when scalability finally comes to an end.

However, systems in the nano-CMOS era are inherently undependable when
further advancing from one technology node to the next.

In particular, we can identify the following challenging problems which neg-
atively impact the dependability of future systems. If not addressed properly, the
dependability of systems will significantly decrease.

vii



viii Preface

The effects can be divided into two major groups: The first group comprises those
effects that stem from fabrication/design time issues, whereas the second group
stems from operation/run-time execution.

Fabrication and Design-Time Effects

Yield and Process Variations

Yield defines the number of flaw-free circuits in relation to all fabricated circuits. A
high yield is so far considered vital for an economic production line. Unfortunately,
the yield will dramatically decrease because feature sizes reach a point where the
process of manufacturing underlies statistical variances. Future switching devices
may be fabricated through “growing” or “self-assembly.” All known research
suggest that these processes cannot be controlled entirely, leading to fabrication
flaws, i.e., circuits with faulty devices. As per the definition of yield, it will
at a not-that-distant point in time go to zero, i.e., no circuit can be produced
without at least a single faulty switching device. The traditional way of sorting
out faulty circuits will not work any longer! Rather, faults will be inherent. On
the other hand, fabricated circuits (although functionally correct) will continue to
exhibit increasing levels of “process variability”: i.e., a high degree of variability
in the observed performance, power consumption, and reliability parameters both
across manufactured parts and across use of these parts over time in the field.
The traditional “guardbanding” approach of overdesigning circuits with a generous
margin to hide these process variations will no longer be economically viable
nor will fit into a traditional design flow that assumes a rigid specification of
operational constraints for the performance, power, and reliability of manufactured
circuits. Newer design techniques and metholodologies will therefore need to
address explicitly the effects of process variation, rather than assuming these are
hidden through traditional overdesigned guardbanding margins.

Complexity

In about 10 years from now, the complexity of systems integrated into one single die
will amount to basic switching devices. The steadily increasing integration complex-
ity is efficiently exploited by the current trend towards many-core network-on-chip
architectures. These architectures introduce hardware and software complexities,
which previously were found on entire printed circuit boards and systems down
to a single chip and provide significant performance and power advantages in
comparison with single cores. A large number of processing and communication
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elements require new programming and synchronization models. It leads to a
paradigm shift away from the assumption of zero design errors.

Operation and Run-Time Effects

Aging Effects

Transistors in the nano-CMOS era are far more susceptible to environmental
changes like heat, as an example. It causes an irreversible altering of the phys-
ical (and probably chemical) properties which, itself, lead to malfunctions and
performance variability over time. Though effects like electromigration in current
CMOS circuits are well known, they typically do not pose a problem since the
individual switching device’s lifetime is far higher than the product life cycle. In
future technologies, however, individual switching devices will fail (i.e., age) earlier
than the life cycle of the system (i.e., product) they are part of. Another emergent
altering effect is the increasing susceptibility to performance variability resulting in
changing critical paths over time. This, for instance, prevents a static determination
of the chip performance during manufacturing tests.

Thermal Effects

Thermal effects will have an increasing impact on the correct functionality. Various
degradation effects are accelerated by thermal stress like very high temperature
and thermal cycling. Aggressive power management can produce opposite effects,
e.g., hot spot prevention at the cost of increased thermal cycling. Higher integration
forces to extend through the third dimension (3D circuits) which in turn increases
the thermal problem since the ratio of surface-area/energy significantly worsens.
Devices will be exposed to higher temperatures and increase, among others, aging
effects. In addition, transient faults increase.

Soft Errors

The susceptibility of switching devices in the nano age against soft errors will
increase about 8% per logic state bit for each technology generation, as recently
forecasted. Soft errors are caused by energetic radiation particles (neutrons) hitting
silicon chips and creating a charge on the nodes that flips a memory cell or logic
latches.



x Preface

The idea of this book has its origin in several international programs on
dependability/reliability:

– The SPP 1500 Dependable Embedded Systems program (by DFG of Germany);
– The NSF Expedition on Variability (by NSF of USA); and
– The Japanese JST program.

While this book is not a complete representation of all of these programs, it does
represent all aspects of the SPP 1500 and some aspects of the NSF Expedition on
Variability and the Japanese JST program.

The book focuses on cross-layer approaches, i.e., approaches to mitigate depend-
ability issues by means and methods that work across design abstraction layers.
It is structured in the main six areas “Cross-Layer from Operating System to
Application,” “Cross-Layer Dependability: From Architecture to Software and
Operating System,” “Cross-Layer Resilience: Bridging the Gap between Circuit and
Architectural Layer,” “Cross-Layer from Physics to Gate- and Circuit-Levels,” and
“Cross-Layer from Architecture to Application.” Besides, it contains a chapter in
the so-called RAP model: the resilience articulation point (RAP) model aims to
provision a probabilistic fault abstraction and error propagation concept for various
forms of variability-related faults in deep submicron CMOS technologies at the
semiconductor material or device levels. RAP assumes that each of such physical
faults will eventually manifest as a single- or multi-bit binary signal inversion or
out-of-specification delay in a signal transition between bit values.

The book concludes with a perspective.
We want to thank all the authors who contributed to this book as well as all the

funding agencies that made this book possible (DFG, NSP, and JST).
We hope you enjoy reading this book and we would be glad to receive feedback.

Karlsruhe, Baden-Württemberg, Germany Jörg Henkel

Irvine, CA, USA Nikil Dutt
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2 A. Herkersdorf et al.

1 Introduction/Motivation

Conquering System-on-Chip (SoC) architecture and design complexity became
a major, if not the number one, challenge in integrated systems development.
SoC complexity can be expressed in various ways and different dimensions:
Today’s single-digit nanometer feature size CMOS technologies allow for multi-
billion transistor designs with millions of lines of code being executed on dozens
of heterogeneous processing cores. Proving the functional correctness of such
designs according to the SoC specifications is practically infeasible and can only
be achieved probabilistically within tolerable margins. Further consequences of
this ever-increasing hardware/software complexity are: Increasing susceptibility of
application- and system-level software codes to security and safety exposures, as
well as operational variability of nanometer size semiconductor devices because
of environmental or manufacturing variations. The SPP1500 Dependable Embed-
ded Systems Priority Program of the German Research Foundation (DFG) [8]
focused on tackling the latter class of exposures. NBTI (negative-bias temperature
instability) aging, physical electromigration damage and intermittent, radiation
induced bit flips in registers (SEUs (single event upsets)) or memory cells are some
manifestations of CMOS variability. The Variability Expedition program by the
United States National Science Foundation (NSF) [6] is a partner program driven by
the same motivation. There has been and still is a good amount of bi- and multilateral
technical exchange and collaboration between the two national-level initiatives.

Divide and conquer strategies, for example, by hierarchically layering a system
according to established abstraction levels, proved to be an effective approach
for coping with overall system complexity in a level by level manner. Layering
SoCs bottom-up with semiconductor materials and transistor devices, followed by
combinatorial logic, register-transfer, micro-/macro-architecture levels, and runtime
environment middleware, as well as application-level software at the top end of the
hierarchy, is an established methodology used both in industry and academia. The
seven layer Open Systems Interconnection (OSI) model of the International Orga-
nization for Standardization provides a reference framework for communication
network protocols with defined interfaces between the layers. It is another example
of conquering the complexity of the entire communication stack by layering.

Despite these merits and advantages attributed to system layering, a disadvantage
of this approach cannot be overlooked. Layering fosters specialization by focusing
the expertise of a researcher or developer to one specific abstraction level only (or to
one layer plus certain awareness for the neighboring layers at best). Specialization
and even sub-specialization within one abstraction layer became a necessity as the
complexity within one layer raises already huge design challenges. However, the
consequence of layering and specialization for overall system optimization is that
such optimizations are typically constrained by the individual layer boundaries.
Cross-layer optimization strives to pursue a more vertical approach, taking the
perspectives of two or more, adjacent or non-adjacent, abstraction levels for certain
system properties or qualities into account. A holistic approach (considering all
abstraction levels for all system properties) is not realistic because of the overall sys-
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from circuit/logic up to application level

tem complexity. Nevertheless, for some properties, cross-layer approaches proved
to be effective. Approximate computing, exploiting application-level tolerance
to on-purpose circuit level inaccuracies in arithmetic operations for savings in
silicon area and a lower power dissipation, is a widely adopted example of cross-
layer optimization. Cross-layer approaches have also been suggested as a feasible
technique to enhance reliability of complex systems [21, 26].

A prerequisite for effective cross-layer optimization is the ability to correlate the
causes or events happening at one particular level with the effects or symptoms they
will cause at other abstraction levels. Hierarchical system layering and specializa-
tion implies that subject matters and corresponding terminology are quite different
between levels, especially when the levels of interest are several layers apart. The
objective of the presented Resilience Articulation Point (RAP) model is to provision
probabilistic fault abstraction and error propagation concepts for various forms
of variability induced phenomena [9, 28]. Or, expressed differently, RAP aims to
help annotate how variability related physical faults occurring at the semiconductor
material and device levels (e.g., charge separation in the silicon substrate in response
to a particle impact) can be expressed at higher abstraction levels. Thus, the impact
of the low-level physical faults onto higher level fault tolerance, such as instruction
vulnerability analysis of CPU core microarchitectures, or fault-aware real-time
operating system middleware, can be determined without the higher level experts
needing to be aware of the fault representation and error transformation at the
lower levels. This cross-layer scope and property differentiates RAP from traditional
digital logic fault models, such as stuck-at [18] or the conditional line flip (CLF)
model [35]. These models, originally introduced for logic testing purposes, focus
on the explicit fault stimulation, error propagation and observation within one and
the same abstraction level. Consequently, RAP can be considered as an enabler
for obtaining a cross-layer perspective in system optimization. RAP covers all SoC
hardware/software abstraction levels as depicted in Fig. 1.
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2 Resilience Articulation Point (RAP) Basics

In graph theory, an articulation point is a vertex that connects sub-graphs within a
bi-connected graph, and whose removal would result in an increase of the number
of connecting arcs within the graph. Translated into our domain of dependability
challenges in SoCs, spatially and temporally correlated bit flips represent the single
connecting vertex between lower layer fault origins and the upper layer error and
failure models of hardware/software system abstraction (see Fig. 2).

The RAP model is based on three foundational assumptions: First, the hypothesis
that every variability induced fault at the semiconductor material or device level
will manifest with a certain probability as a permanent or transient single- or multi-
bit signal inversion or out-of-specification delay in a signal transition. In short, we
refer to such signal level misbehavior in terms of logic level or timing as a bit flip
error, and model it by a probabilistic, location and time dependent error function
Pbit(x, t). Second, probabilistic error functions PL(x, t), which are specific to a
certain abstraction layer and describe how layer characteristic data entities and
compositional elements are affected by the low-level faults. For example, with what
probability will a certain control interface signal on an on-chip CPU system bus, or a
data word/register variable used by an application task be corrupted in response to a
certain NBTI transistor aging rate. Third, there has to be a library of transformation
functions TL converting probabilistic error functions PL(x1, t) at abstraction level
L into probabilistic error functions PL+i (x2, t +�t) at level(s) L + i (i ≥ 1) (see
Fig. 3).

PL+1(x2, t +�t) = TL o PL(x1, t) (1)

Please note, although the existence of such transformation functions is a founda-
tional assumption of the RAP model itself, the individual transformation functions

Physical
causes

Faults 

Error 

Failure 

Bit Flip 

Particle strike Manufacturing variation
Temperature Coupling (C) 

Jitter 

Supply noise Crosstalk 
Electromigration 

Invalid CPU reg 
Wrong branch 

decision 

…

CPU stall

Data corruption 
„No effect“

Fig. 2 Fault, error, and failure representations per abstraction levels
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TL cannot come from or be a part of RAP. Transformation functions are dependent
on a plurality of environmental, design and structure specific conditions, as well as
implementation choices (EL,DL,SL) within the specific abstraction layers that are
only known to the respective expert designer. Note further, the location or entity
x2 affected at a higher abstraction level may not be identical to the location x1,
where the error manifested at the lower level. Depending on the type of error, the
architecture of the system in use, and the characteristic of the application running,
the error detection latency �t during the root cause analysis for determining the
error source at level L typically represents a challenging debugging problem [17].

3 Related Work

Related approaches to describe the reliability of integrated circuits and systems have
been developed recently.

In safety-critical domains and to ensure reliable systems, standards prescribing
reliability analysis approaches and MTTF (mean time to failure) calculations have
been in existence for many decades (e.g., RTCA/DO-254—Design Assurance
Guidance for Airborne Electronic Hardware, or the Bellcore/Telcordia Predictive
Method, SR-332—Reliability Prediction Procedure for Electronic Equipment, in the
telecom area [33]). These approaches, however, were not developed with automation
in mind, and do not scale well to very complex systems.

The concept of reliability block diagrams (RBDs) has also been used to describe
the reliability of systems [19]. In RBDs, each block models a component of the
considered system. A failure rate is associated to each block. The RBD’s structure
describes how components interact. Components in parallel are redundant, whereas
for serially connected components the failure of any one component causes the
entire system to fail. However, more complex situations are difficult to model
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and analyze. Such more complex situations include parametric dependencies (e.g.,
reliability dependent on temperature and/or voltage), redundancy schemes which
can deal with certain failures, but not other (e.g., ECC which, depending on the
code and number of redundant bits, can either deal with the detection and correction
of single-bit failure, or detect, but not correct, multi-bit failures), or state-dependent
reliability characteristics.

In 2012, RIIF (Reliability Information Interchange Format) was presented [4].
RIIF does not introduce fundamentally new reliability modeling and analysis
concepts. Rather, the purpose is to provide a format for describing detailed reliability
information of electronic components as well as the interaction among components.
Parametric reliability information is supported. State-dependent reliability (modeled
by Markov reliability models) is planned to be added. By providing a standardized
format, RIIF intends to support the development of automated approaches for
reliability analysis. It targets to support real-world scenarios in which complex
electronic systems are constructed from legacy components, purchased IP blocks,
and newly developed logic.

RIIF was developed in the context of European projects, driven primarily by the
company IROC Technologies. The original concept was developed mostly within
the MoRV (Modeling Reliability under Variation) project. Extensions from RIIF
to RIIF2 were recently developed in collaboration with the CLERECO (Cross-
Layer Early Reliability Evaluation for the Computing Continuum) project. RIIF is a
machine-readable format which allows the detailed description of reliability aspect
of system components. The failure modes of each component can be described,
depending on parameters of the component. The interconnection of components to a
system can be described. RIIF originally focused only on hardware. RIIF2 has been
proposed to extend the basic concepts of RIIF to also take software considerations
into account [27].

4 Fault Abstraction at Lower Levels

The RAP model proposes modeling the location and time dependent error prob-
ability Pbit(x, t) of a digital signal by an error function F with three, likewise,
location and/or time dependent parameters: Environmental and operating conditions
E , design parameters D, and (error) state bits S .

Pbit(x, t) = F(E,D,S) (2)

This generic model has to be adapted to every circuit component and fault
type independently. Environmental conditions E , such as temperature and supply
voltage fluctuations, heavily affect the functionality of a circuit. Device aging
further influences the electrical properties, concretely the threshold voltage. Other
environmental parameters include clock frequency instability and neutron flux
density.



RAP Model—Enabling Cross-Layer Analysis and Optimization for System-on-. . . 7

System design D implies multiple forms of decisions making. For example, shall
arithmetic adders follow a ripple-carry or carry-look-ahead architecture (enumer-
ative decision)? What technology node to choose (discrete decision)? How much
area should one SRAM cell occupy (continuous decision)? Fixing such design
parameters D allows the designer to make trade-offs between different decisions,
which all influence the error probability of the design in one way or the other.

In order to model the dependence of the error probability on location, circuit
state, and time, it is necessary to include several state variables. These state variables
S lead to a model which is built from conditional probabilities P(b1|b2), where the
error probability of the bit b1 is dependent on the state of the bit b2. For example,
the failure probability of one SRAM cell depends on the error state of neighboring
SRAM cells due to the probability of multi-bit upset (MBU) [8]. For an 8T SRAM
cell it also depends on the stored value of the SRAM cell as the bit flip probability
of a stored “1” is different from a stored “0.”

Finally, the error function F takes the three parameter sets E , D, and S and
returns the corresponding bit error probability Pbit. The error function F is unique
for a specific type of fault and for a specific circuit element. An error function can
either be expressed by a simple analytical formula, or may require a non-closed
form representation, e.g., a timing analysis engine or a circuit simulator.

In the sequel, we show by the example of SRAM memory technology, how the
design of an SRAM cell (circuit structure, supply voltage, and technology node) as
well as different perturbation sources, such as radiating particle strikes, noise and
supply voltage drops, will affect the data bit error probability Pbit of stored data bits.

4.1 SRAM Errors

The SRAM is well known to have high failure rates already in current technologies.
We have chosen two common SRAM architectures, namely the 6-transistor (6T) and
8-transistor (8T) bit cell shown in Fig. 4. For the 6T architecture we have as design
choices the number of fins for the pull-up transistors (PU), the number of fins for the

Fig. 4 Circuit schematics for standard 6T (a) and 8T (b) SRAM bit cells
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pull-down transistors (PD), and the number of fins for the access transistors (PG).
The resulting architecture choice is then depicted by 6T_(PU:PG:PD). For the 8T
architecture we have additionally two transistors for the read access (PGR). Hence,
the corresponding architecture choice is named 8T_(PU:(PG:PGR):PD).

An SRAM cell can fail in many different ways, for example:

• Soft Error/Single Event Upset (SEU) failure: If the critical charge Qcrit is low,
the susceptibility to a bit flip caused by radiation is higher.

• Static Voltage Noise Margin (SVNM) failure: An SRAM cell can be flipped
unintentionally when the voltage noise margin is too low (stability).

• Read delay failure: An SRAM cell cannot be read within a specified time.
• Write Trip Voltage (WTV) failure: The voltage swing during a write is not high

enough at the SRAM cell.

We selected these four parameters, namely Qcrit , SVNM, Read delay, and WTV
as resilience key parameters. To quantify the influence of technology scaling (down
to 7 nm) on the resilience of the two SRAM architectures we used extensive Monte-
Carlo simulations and predictive technology models (PTM) [12].

4.1.1 SRAM Errors due to Particle Strikes (Qcrit )

Bit value changes in high density SRAMs can be induced by energetic particle
strikes, e.g., alpha or neutron particles [34]. The sensitivity of digital ICs to such
particles is rapidly increasing with aggressive technology scaling [12], due to the
correspondingly decreasing parasitic capacitances and operating voltage.

When entering the single-digit fC region for the critical charge, as in current
logic and SRAM devices and illustrated in Fig. 5a, lighter particles such as alpha
and proton particles become dominant (see Fig. 5b). This increases not only error
rates, but also their spread, as the range of lighter particles is much longer compared
to residual nucleus [10].
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These technology-level faults caused by particle strikes now need to be abstracted
into a bit-level fault model, so that they can be used in later system-level resilience
studies. In the following this is shown for the example of neutron particle strikes.
Given a particle flux of �, the number of neutron strikes k that hit a semiconductor
area A in a time interval τ can be modeled by a Poisson distribution:

P(N(τ) = k) = exp(−� · A · τ)
(� · A · τ)k

k! (3)

These neutrons are uniformly distributed over the considered area, and may only
cause an error if they hit the critical area of one of the memory cells injecting
a charge which is larger than the critical charge of the memory cell. The charge
Qinjected transported by the injected current pulse from the neutron strike follows
an exponential distribution with a technology dependent parameter Qs :

fQ(Qinjected) = 1

Qs

exp

(
−

Qinjected
Qs

)
(4)

The probability that a cell flips due to this charge can then be derived as

PSEU(Q ≥ Qcrit |Vcellout = VDD) =
∞∫

Qcrit

fQ(Q)dQ (5)

With increasing integration density, the probability of multi-bit upsets (MBU)
also increases [16]. A comparison of the scaling trend of Qcrit between the 6T
and 8T SRAM bit cell is shown in Fig. 6. The right-hand scale in the plots shows
the 3 sigma deviation of Qcrit in percent to better highlight the scaling trend.
The 8T-cell has a slightly improved error resilience due to an increased Qcrit

(approximately 10% higher). However, this comes at the cost of a 25–30% area
increase.
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4.1.2 SRAM Errors due to Noise (SVNM)

The probability of an SRAM error (cell flip) due to noise is given by

Pnoise_error(Vnoise ≥ VSV NM) =
∞∫

VSV NM

fVnoise
(V )dV (6)

The distribution function fVnoise
is not directly given as it depends largely on the

detailed architecture and the environment in which the SRAM is integrated. Figure 7
plots the scaling trend for SVNM for both SRAM cell architectures. Due to its much
improved SVNM the 8T_(1:(1:1):1) cell has an advantage over the 6T_(1:1:1) cell.
Not only is the 8T cell approximately 22% better in SVNM than the 6T cell, but it
is also much more robust in terms of 3σ variability (28% for 8T 7 nm compared to
90% for 6T 7 nm).

4.1.3 SRAM Errors Due to Read/Write Failures (Read Delay/WTV)

The probability of SRAM read errors can be expressed by the following equation:

Pread_error(tread < tread_delay) =
tread_delay∫

0

f tread
(t)dt (7)

In Fig. 8 the trend of the read delay for the two SRAM cell architectures is shown.
Although the read delay decreases with technology scaling, which theoretically
enables a higher working frequency, its relative 3σ variation can be as high as 50%
at the 7 nm node. This compromises its robustness and diminishes possible increases
in frequency.
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If the actual applied voltage swing Vs is not sufficient to flip the content of a
SRAM cell, then the data is not written correctly. The probability of such a write
failure is given by

Pwrite_error(Vs < Vswing_min) =
Vswing_min∫

0

fVs (V )dV (8)

Similar to fVnoise
both distribution functions for tread and Vs depend strongly on the

clock frequency, the transistor dimensions, the voltage supply, and the noise in the
system. Figure 9 plots the scaling trend of WTV for 6T and 8T cells. The results for
6T and 8T cells are similar due to the similar circuit structure of 6T and 8T cells
regarding write procedure.

4.1.4 SRAM Errors due to Supply Voltage Drop

Figure 10 shows the failure probability of a 65 nm SRAM array with 6T cells and 8T
cells for a nominal supply voltage of 1.2 V. When the supply voltage drops below
1.2 V the failure probability increases significantly. Obviously, the behavior is differ-
ent for 6T and 8T cells. The overall analysis of the resilience key parameters (Qcrit ,
SVNM, read delay, WTV, and VDD) shows that the variability increases rapidly as
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technology is scaled down. Investigations considering the failure probabilities of
memories (SRAMs, DRAMs) in a system context are described in chapter “Design
of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach with
Emphasis on Wireless Communication as Application and DRAM Memories”.

5 Architecture Level Analysis and Countermeasures

5.1 Instruction Vulnerability

Due to the wide variety in functionality and implementation of different application
softwares as well as changes in the system and application workload depending
on the application domain and user, a thorough yet sufficiently abstracted quan-
tification of the dependability of individual applications is required. Even though
all application software on a specific system operate on the same hardware, they
use the underlying system differently, and exhibit different susceptibility to errors.
While a significant number of software applications can tolerate certain errors with
a relatively small impact on the quality of the output, others do not tolerate errors
well. These types of errors, as well as errors leading to system crashes, have to be
addressed at the most appropriate system layer in a cost-effective manner. Therefore,
it is important to analyze the effects of errors propagating from the device and
hardware layers to all the way up to the application layer, where they can finally
affect the behavior of the system software or the output of the applications, and,
therefore, become visible to the user. This implies different usage of hardware
components, e.g., in the pipeline, as well as different effects of masking at the
software layers while considering individual application accuracy requirements.
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These different aspects have to be taken into account in order to accurately quantify
the susceptibility of an application towards errors propagating from the lower layers.

An overview of the different models as well as their respective system layer
is shown in Fig. 11 [30]. A key feature is that the software layer models consider
the lower layer information while being able to provide details at the requested
granularity (e.g., instruction, function, or application). To achieve that, relevant
information from the lower layers has to be propagated to the upper layers for
devising accurate reliability models at the software layer. As the errors originate
from the device layer, a bottom-up approach is selected here. Examples for
important parameters at the hardware layer are fault probabilities (i.e., PE(c)) of
different processor components (c ∈ C), which can be obtained by a gate-level
analysis, as well as spatial and temporal vulnerabilities of different instructions
when passing through different pipeline stages (i.e., IV Iic). At the software layer,
for instance, control and data flow information has to be considered as well as
separation of critical and non-critical instructions. In addition, decisions at the
OS layer (e.g., DVFS levels, mapping decisions) and application characteristics
(e.g., pipeline usage, switching activity determined by data processed) can have
a significant impact on the hardware. Towards that, different models have been
developed on each layer and at different granularity as shown in Fig. 11. The
individual models are discussed briefly in the following.

One building block for quantifying the vulnerability of an application is the
Instruction Vulnerability Index (IVI) [22, 24]. It estimates the spatial and temporal
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vulnerabilities of different types of instructions when passing through different
microarchitectural components/pipeline stages c ∈ C of a processor. Therefore,
unlike state-of-the-art program level metrics (like the program vulnerability factor:
PVF [32]) that only consider the program state for reliability vulnerability estima-
tion, the IV I considers the probability that an error is observed at the output PE(c)

of different processor components as well as their area Ac.

IV Ii =
∑
∀c∈C IV Iic · Ac · PE(c)∑

∀c∈C Ac

For this, the vulnerability of an instruction i in a distinct microarchitectural
component c has to be estimated:

IV Iic = vic · βc(v)∑
∀c∈C βc

The IV Iic is itself based on an analysis of the vulnerable bits βc(v) representing
the spatial vulnerability (in conjunction with Ac) as well as an analysis of the nor-
malized vulnerable period vic representing the temporal vulnerability. Both capture
the different residence times of instructions in the microarchitectural components
(i.e., single vs. multi-cycle instructions) as well as the different usage of components
(e.g., adder vs. multiplier) while combining information from the hardware and
software layers for an accurate vulnerability estimation. An example for different
spatial and temporal vulnerabilities is shown in Fig. 12a: Comparing an “add”- with
a “load”-instruction, the “load” additionally uses the data cache/memory component
(thus having a higher spatial vulnerability) and might also incur multiple stall
cycles due to the access to the data cache/memory (thus having a higher temporal
vulnerability).

The IV I can further be used for estimating the vulnerabilities of functions
and complete application softwares. An option for a more coarse-grained model
at the function granularity is the Function Vulnerability Index (FVI). It models the
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vulnerability of a function as the weighted average of its susceptibility towards
application failures and its susceptibility towards giving an incorrect output. In order
to achieve this, critical instructions (i.e., instructions potentially causing application
failures) and non-critical instructions (i.e., instructions potentially causing incorrect
application outputs) are distinguished.

The quantification of the error probability provided by the IV I is complemented
by capturing the masking properties of an application. The Instruction Error
Masking Index (IMI) [31] estimates the probability that an error at instruction i

is masked until the last instruction of all of its successor instruction paths. At the
software layer, this is mainly determined by two factors: (a) Masking due to control
flow properties, where a control flow decision might lead to an erroneous result
originating from instruction i not being used (see example in Fig. 12c); (b) Masking
due to data flow properties, which means that a successor instruction might mask an
error originating from i due to its instruction type and/or operand values (e.g., the
“and”-instruction in Fig. 12b). On the microarchitectural layer, further masking
effects may occur due to an error within a microarchitectural component being
blocked from propagating further when passing through different logic elements.

Although masking plays an important role, there are still significant errors which
propagate to the output of a software application. To capture the effects of an
error not being masked and quantify the consequences of its propagation, the Error
Propagation Index (EPI) of an instruction can be used [31]. It quantifies the error
propagation effects at the instruction granularity and provides an estimate of the
extent (e.g., number of program outputs) an error at an instruction can affect the
output of a software application. This is achieved by analyzing the probability that
an error becomes visible at the program output (i.e., its non-masking probability)
by considering all successor instructions of a given instruction i. An example of an
error propagating to multiple instructions is shown in Fig. 12b.

An alternative for estimating the software dependability at the function granular-
ity is the Function Resilience model [23], which provides a probabilistic measure
of the function’s correctness (i.e., its output quality) in the presence of faults. In
order to avoid exposing the software application details (as it is the case for FV I ), a
black-box model is used for estimating the function resilience. It considers two basic
error types: Incorrect Output of an application software (also known as Silent Data
Corruption) or Application Failure (e.g., hangs, crashes, etc.). Modeling Function
Resilience requires error probabilities for basic block outputs1 and employs a
Markov Chain technique; see details in [23].

As timely generation of results plays an important role, for instance, in real-
time systems, it is not only important to consider the functional correctness
(i.e., generating the correct output) of a software application, but also to account
for the timing correctness (i.e., whether the output is provided in time or after the

1One potential method to obtain these error probabilities is through fault-injection experiments in
the underlying hardware during the execution of these basic blocks
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deadline). This can be captured via the Reliability-Timing Penalty (RTP) model [25].
It is defined as the linear combination of functional reliability and timing reliability:

RT P = α · R + (1− α) ·miss_rate

where R is the reliability penalty (which can be any reliability metric at func-
tion granularity like FV I or Function Resilience) and miss_rate represents the
percentage of deadline misses for the software application. Via the parameter α

(0 ≤ α ≤ 1), the importance of the two components can be determined: if α is closer
to 0, the timing reliability aspect is given a higher importance; when α is closer to 1,
the functional reliability aspect is highlighted. The tradeoff formulated by the RT P

is particularly helpful when selecting appropriate mitigation techniques for errors
affecting the functional correctness, but which might have a significant time-wise
overhead.

A summary of the different modeling approaches discussed above is shown in
Fig. 13, where the main factors and corresponding system layers are highlighted.

5.2 Data Vulnerability Analysis and Mitigation

A number of approaches to analyze and mitigate soft errors, such as ones introduced
by memory bit flips or logic errors in an ALU, rely on annotating sections of code as
to their vulnerability to bit flips [2]. These approaches are relatively straightforward
to implement, but regularly fail to capture the context of execution of the annotated
code section. Thus, the worst-case error detection and correction overhead applies
to all executions of, e.g., an annotated function, no matter what the relevance of
the data processed within that function to the execution of the program (stability or
quality of service effects) may be.

The SPP 1500 Program project FEHLER [29], in contrast, bases its analyses
and optimizations on the notion of data vulnerability by performing joint code and
data flow analyses. Here, the foremost goal is to ensure the stability of program
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Fig. 14 Horizontal propagation of an error in the RAP model

execution while allowing a system designer to trade the resulting quality of service
of a program for optimizations of different non-functional properties such as real-
time adherence and energy consumption.

However, analyses on the level of single bit-flips are commonly too fine-grained
for consideration in a compiler tool flow. Rather, the level of analysis provided
by FEHLER allows the developer to introduce semantics of error handling above
the level of single bit-flips. In the upper half of the RAP model hourglass [9], this
corresponds to the “data” layer.

The seminal definition of the RAP model provides the notion of a set of bits that
belong to a word of data. This allows the minimum resolution of error annotations
to represent basic C data types such as char or int.2 In addition, FEHLER allows
annotations of complex data types implemented as consecutive words in memory,
such as C structures or arrays.

In terms of the RAP model, data flow analyses enable the tracking of the effects
of bit flips in a different dimension. The analyses capture how a hardware-induced
bit error emanating in the lower half of the RAP hourglass propagates to different
data objects on the same layer as an effect of arithmetic, logic, and copy operations
executed by the software. As shown in Fig. 14, a bit error on the data layer can now
propagate horizontally within the model to different memory locations. Thus, with
progressing program execution, a bit flip can eventually affect more than one data
object of an application.

In order to avoid software crashes in the presence of errors, affected data objects
have to be classified according to the worst-case impact an error in a given object
can have on a program’s execution.

Using a bisecting approach, this results in a binary classification of the worst-
case error impact of a data object on a program’s execution. If an error in a data
object could result in an application crash, the related piece of data is to be marked
as critical to the system stability. An example for this could be a pointer variable
which, in case of a bit error, might result in a processor exception when attempting
to dereference that pointer. In turn, all other errors are classified as non-critical,
which implies that we can ensure that a bit flip in one of these will never result in a
system crash.

2Single bit annotations could be realized by either using C bit fields or bit banding memory areas.
However, the use of bit fields is discouraged due to portability issues, whereas bit banding is not
generally available on all kinds of processors and the compiler possesses no knowledge of aliasing
of bit banding areas with regular memory, which would result in more complex data flow analyses.
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unreliable int x;
reliable int y;

Listing 1.1 Reliability type qualifiers in FEHLER

In the FEHLER system, this classification is indicated by reliability type
qualifiers, an addition to the C language that allows a programmer to indicate the
worst-case effect of errors on a data object [3]. An example for possible annotations
is shown in Listing 1.1. Here, the classification is implemented as extensions to the
C language in the ICD-C compiler. The reliable type qualifier implies that the
annotated data object is critical to the execution of the program, i.e., a bit flip in
that variable might result in a crash in the worst case, whereas the unreliable
type qualifier tells the compiler that the worst-case impact of a bit flip is less
critical. However, in that case the error can still result in a significant reduction
of a program’s quality of service.

=

x -

y *

+

z u

4

unreliable int u, x;
reliable int y, z;

...

x = y - (z + u) * 4;

Listing 1.2 Data flow analysis of possible horizontal error propagation and related AST
representation

It is unrealistic to expect that a programmer is able or willing to provide
annotations to each and every data object in a program. Thus, the task of analyzing
the error propagation throughout the control and data flow and, in turn, providing
reliability annotations to unannotated data objects, is left to the compiler.

An example for data propagation analysis is shown in Listing 1.2. Here, data
flow information captured by the static analysis in the abstract syntax tree is used
to propagate reliability type qualifiers to unannotated variables. In addition, this
information is used to check the code for invalid assignments that would propagate
permissible bit errors in unreliable variables to ones declared as reliable.
Here, the unreliable qualifier of variable u propagates to the assignment to the
left-hand side variable x. Since x is also declared unreliable, this code is valid.
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unreliable int u, pos, tmp;
reliable int r, a[10];
u = 10;
r = u; // invalid assignment
pos = 0;
while ( pos < r ) { // invalid condition
tmp = r / u; // invalid division
a[ pos++ ] = tmp; // invalid memory access

}

Listing 1.3 Invalid assignments

Listing 1.3 gives examples for invalid propagation of data from unreliable (i.e.,
possibly affected by a bit flip) to reliable data objects, which are flagged as an error
by the compiler.

However, there are specific data objects for which the compiler is unable to
automatically derive a reliability qualifier for. Specifically, this includes input and
output data, but also possibly data accessed through pointers for which typical static
analyses only provide imprecise results.

The binary classification of data object vulnerability discussed above is effective
when the objective is to avoid application crashes. If the quality of service, e.g.,
measured by the signal-to-noise ratio of a program’s output, is of relevance,
additional analyses are required.

FEHLER has also been applied to an approximate computing system that utilizes
an ALU comprised of probabilistic adders and multipliers [7]. Here, the type
qualifiers discussed before are used to indicate if a given arithmetic operation can
be safely executed on the probabilistic ALU or if a precise result is required, e.g.,
for pointer arithmetics. The impact of different error rates on the output of an H.264
video decoder using FEHLER on probabilistic hardware is shown in Fig. 15. Here,
lowering the supply voltage results in an increased error probability and, in turn, in
more errors in the output, resulting in a reduced QoS as measured by the signal-to-
noise ratio of the decoded video frames.

Fig. 15 Effects of different error rated on the QoS of an H.264 video decoder using FEHLER. (a)
VDD = 1.2 V. (b) VDD = 1.1 V. (c) VDD = 1.0 V. (d) VDD = 0.9 V. (e) VDD = 0.8 V
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5.3 Dynamic Testing

Architectural countermeasures that prevent errors from surfacing or even only detect
their presence come at non-neglectable costs. Whether a specific cost is acceptable
or not, in turn, depends on many factors, most prominently criticality. The range of
associated costs is also extensive, on one end triple modular redundancy (TMR) or
similar duplication schemes such as duplication with comparison (DWC) or on the
other end of the spectrum time-multiplexed methods such as online dynamic testing
proposed by Gao et al. [5]. In the former examples, the costs directly correlate to the
kind of assurance each technique can provide, i.e., TMR can not only continuously
monitor a given component like DWC, but it can also mask any detected errors.
Using TMR in the right manner, it virtually guarantees the absence of errors, but
also comes at a 50% increase in both area and power consumption when compared
to DWC.

Whether such cost is sensible or not depends on a complex probabilistic tradeoff
with the probability of an error to occur at a specific point in time, and the criticality
of an application, on the other hand, also expressed as a probabilistic term, e.g.,
the maximum tolerable error probability per time, often expressed as failure rate
per time λ. While some applications cannot tolerate any errors such as banking
transactions (or so we hope), many embedded applications have surprisingly large
margins such as applications for entertainment or comfort purposes. For such
applications, rather than giving absolute assurances in terms of error detection
and masking (e.g., TMR or DWC), temporal limits with confidence levels are
far more usable and have much higher utility for the engineering of architectural
countermeasures.

Dynamic testing is a probabilistic testing scheme which can exploit such limits
as its primary metric is by definition latency detection, that is the time a given
dynamic testing configuration requires to detect an error with a given probability.
Dynamic testing periodically samples inputs as well as associated outputs of known
algorithms implemented in designated components of a SoC in a time-multiplexed
fashion. Thereby obtained samples are then recomputed online on a component,
the checker core, which is presumed to be more reliable. If the output sample of
the device under test (DUT) does not match the recomputed sample, an error on
the DUT is assumed. This testing method offers many ways to be tuned towards a
specific scenario and to meet particular reliability requirements. By specifying how
often a DUT is checked, how many samples per time window are being checked as
well as how many such DUTs are checked using the same checker core, effort and
the achievable level of assurance can be fine-tuned. Furthermore, depending on the
properties of the checker core, even more ways to tailor dynamic testing towards a
concrete scenario emerge.

In the presented research as demonstrated in [15], specially hardened Dynami-
cally Reconfigurable Processors (DRPs) have been used to implement the checker
functionality (See chapter ‘Increasing Reliability Using Adaptive Cross-Layer
Techniques in DRPs’). DRPs are similar to FPGAs as they are reconfigurable
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Fig. 16 General DRP structure (left) and temporal application mapping in DRPs (right)

architectures. In terms of functionality, however, they are much closer to many-core
architectures, as they consist of an array of processing elements (PE) (Fig. 16 left)
which operate on word granularity and possess an instruction concept combined
with processor-like cycle-by-cycle internal reconfiguration. Therefore, DRPs do
not only allow applications to be mapped spatially like FPGAs but also offer an
extensive temporal domain to be used for better area utilization using so-called
multi-context application mappings (Fig. 16 right).

For dynamic testing, this means that a DRP as a checker core is more suitable
than, e.g., an embedded field programmable gate array (eFPGA) as conventional
error detection ensures that the hardened DRP itself is checked regularly during
non-checker operation. Furthermore, the high structural regularity also allows
workloads to be shifted around on the PE array, adding additional assurances that if
a DUT checks out faulty on several different PEs, the likelihood of false-positives
decreases. Most importantly, however, it does not need to be dedicated to dynamic
testing, but dynamic testing could be executed alongside regular applications. In
turn, this, of course, also means that checker computations take longer to complete,
reducing the number of samples computed per time window.

While this adaptability makes DRPs and dynamic testing an interesting match,
for this combination to be useful, realistic assumptions about the error probability
P are essential. If we can obtain P through, e.g., the RAP model, there are two
significant advantages. Firstly, P is not constant over the lifetime of a SoC and
knowledge about its distribution can help reduce testing efforts with dynamic
testing. At a less error-prone time, dynamic testing allows for trade-offs such as
increased time to react to errors if the error is unlikely enough to only affect a
small minority of devices. Secondly, for an error with probability P to have any
effect, it needs to be observable, and, thus, for all practical purposes we equate P

and observation probability q which then allows us to use P to fine-tune dynamic
testing to a resource minimum while meeting an upper bound for detection latency.
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Fig. 17 Feasibility region for an error to be detected within 2 s, with N = 4 running at 100 MHz,
an observable error probability of P = 10−5, a reconfiguration and setup overhead of 1 ms and
different scaling factors s and time windows TT W

Assume a dynamic testing setup with N = 4 DUTs, a reconfiguration and general
setup overhead of TOV = 1 ms and time windows of TT W = {1, . . . , 40 ms},
one round of checking requires between 8 ms and 44 ms for all DUTs. Now let s

denote the scaling factor by which the temporal domain is used to map the checker
functionality, e.g., s = 3 means using a third of the original spatial resources
and, instead, prolonging the time to compute one sample by a factor of three.
Consequently, a scaling factor of s = 3 divides the number of samples checked
within one time window by three.

Now consider Fig. 17 which depicts the feasibility region by time window size
TT W and scaling factor s. The area which is not marked by the red dashes means
that in this region, a reliability goal of a maximum detection latency DL of 2 s
can be guaranteed with two-sigma confidence. However, apart from all adaptability,
dynamic testing may be also waived or reduced to a minimum during times of
low error probability (after early deaths in the bath tub curve). Ideally, we would
only start with serious testing once the error probability is high enough to be
concerned and then also only as much that the expected detection latency is within
the prescribed limit. In other words, without detailed knowledge of vulnerability P ,
the only possibility is to guess the probabilities and add margins. If, however, P
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can be estimated close enough, dynamic testing using DRPs as checker core offers
a near resource optimal time and probability based technique.

Furthermore, if the characteristics of P and its development over time is
understood well enough, dynamic testing could pose an alternative to DWC or
even TMR for certain applications. The better P can be modeled, the smaller
the margins become that have to be added to give assurances with high enough
confidence. Especially for more compute intensive applications without 100%
availability requirements, dynamic testing could serve as a low-cost alternative.

6 Application-Level Optimization—Autonomous Robot

Autonomous transportation systems are continuously advancing and become
increasingly present in our daily lives [37]. Due to their autonomous nature, for
such systems often safety and reliability are a special concern—especially when
they operate together with humans in the same environment [11]. In [13], we studied
the effect of soft errors in the data cache of a two-wheeled autonomous robot. The
robot acts as a transportation platform for areas with narrow spacing. Due to safety
reasons, the autonomous movement of the robot is limited to a predefined path. A
red line on the ground, which is tracked by a camera mounted on the robot, defines
the path which the robot should follow.

Since we want to study the impact of single event upsets in the data cache, the
whole system memory hierarchy including accurate cache models is included in
the simulation environment. We utilized in this example Instruction Set Simulation
(ISS) to emulate the control SW, which consists of three main tasks: (1) the
extraction of the red line from the camera frames, (2) the computation of orientation
and velocity required to follow the line, and (3) evaluation of the sensor data to
control the left and right motor torques to move the robot autonomously. The last
task has especially hard real-time constraints because the robot must constantly
be balanced. In this setup we used a fault model based on neutron particle strike
induced single event upsets as shown in Sect. 4.1.1. Further, to make the fault-
injection experiment feasible we used Mixture Importance Sampling to avoid
simulation of irrelevant scenarios [14].

In this experiment the processor of the robot is modeled in a 45 nm technology
together with a supply voltage of 0.9 V. Further, we assume a technology dependent
parameter Qs of 4.05 fC and a flux � of 14 Neutrons/cm2/h (New York, Sea Level)
[20, 36]. In our fault injection experiment we start with an unprotected, unhardened
data cache to find the maximal resilience of the application to soft errors.

Figure 18 depicts traces of position, velocity, and orientation of the robot while
it autonomously follows a line for 10 s. The injected faults lead to two types of
changed system behavior:

1. strong deviations in orientation and velocity where the robot eventually loses its
balance (crash sites are marked with crosses in the x −−y plane graph).
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Fig. 18 Robot movement in x − −y plane together with velocity and orientation angle. Dashed
lines indicate crashes by CPU stalls

2. slight deviations, e.g., temporarily reduced velocity or changed orientation,
where the robot still rebalances due to its feed-back control loop and still reaches
its goal at the end of the line.

Further investigations showed, that for the more severe failures in (1) the
simulator always reported a CPU stall. This led finally to the crash of the robot
in the simulation as the balancing control was not executed any longer. Such
failures are much more severe compared to (2). Still, such problems are detectable
on microarchitectural level. In (2), silent data corruption (SDC) in the control
algorithm happens. SDC is a severe problem for an application because it typically
cannot easily be detected. Interestingly for our experiment, the algorithm shows
a very high fault tolerance and often moves the robot back on its original path.
This, possibly, guarantees a safe movement dependent on how narrow the robot’s
movement corridor is specified. The inherent error resilience of the application, thus,
mitigates the SDC effect.

Based on these insights an overall cross-layer design approach for this appli-
cation could look as follows: The severe crashing failures in (1) are handled by
additional protection solution which detects such problems and causes a restart of
the application and hence the balancing control. One typical solution to this problem
is the addition of a watchdog timer to the system or a small monitoring application
to key state variables of the control loop. The silent data corruption in (2) can be
accepted in a certain frequency and limit according to the overall system constraints.
Hence, further system design techniques and resilience actuators can be used to
tune this into the required limits. This is further described in chapter ‘Cross-Layer
Resilience Against Soft Errors: Key Insights’.

A further use case for applying the RAP model to the cross-layer evaluation of
temperature effects in MPSoC systems is presented in chapter ’Thermal Manage-
ment and Communication Virtualization for Reliability Optimization in MPSoCs’.
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Part I
Cross-Layer from Operating System to

Application

Horst Schirmeier

In the embedded systems domain—particularly in highly competitive areas such as
the automotive industry—per-device monetary cost reduction is often a first-class
optimization goal. The prevailing approach to keeping costs low is to implement
more and more functionality in software instead of hardware, with side effects also
on other non-functional properties such as total system weight, energy consumption
or in-system upgradability. However, this trend towards software shines in the dis-
concerting light of ever-increasing soft-error rates: As the industry moves towards
single-digit nanometer semiconductor structure sizes, the circuits’ susceptibility to
soft errors continuously increases—unless countered with costly hardware measures
that can diminish the gains achieved through scaling.

In consequence, embedded software must cope with increasingly unreliable
hardware. In the stack of software layers, the operating system is the layer closest to
the hardware, and figuratively the first line of defense against soft errors that are on
their way of propagating to the application layer. But as software countermeasures
against unreliable hardware tend to be even more costly than their hardware
counterparts, they must be used sparingly and tailored for a particular application
and use-case scenario.

The three chapters within this area of the book address this cross-layer con-
nection between the operating system and the application layer, and offer different
approaches of constructing a reliable system from unreliable hardware components
that exhibit erroneous behavior triggered by soft errors.

The first chapter by Engel and Marwedel addresses the problem of error-
correction overhead in the context of embedded real-time systems (chapter “Soft
Error Handling for Embedded Systems using Compiler-OS Interaction”). The
described FEHLER approach introduces error semantics, which provides infor-
mation about the criticality of data objects. A combination of explicit source-code
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annotations and static data-flow analysis, which derives information for other, non-
annotated variables, is used on the application layer to generate a database that
allows to classify data objects at runtime. The gathered information is handed across
layers to the operating system: When an error is detected—by a mechanism outside
of FEHLER’s scope—the proposed system-software stack can use this classification
database to assess the actual damage, and to flexibly choose one of several possible
error-handling methods. Among the information incorporated in this decision is the
current real-time scheduler’s state, e.g., whether immediately scheduling an error-
correction task would cause a deadline miss and should therefore be either delayed
or completely skipped. This chapter also introduces the concept of the Reliable
Computing Base (RCB), a part of the system that is critical in ensuring that the
error-handling mechanism is effective, and that must not be affected by soft errors
itself.

The second chapter, contributed by Rambo and Ernst, describes how to achieve
the goal of application-specific and selective fault tolerance at a much coarser
granularity (chapter “ASTEROID and the Replica-Aware Co-scheduling for Mixed-
Criticality”). Set in a scenario with a given set of mixed-critical applications, the
ASTEROID approach requires a manual criticality classification of application
tasks—information that, similar to the FEHLER approach, is passed cross-layer
from the application to the operating system. Critical tasks are executed redun-
dantly by the Romain system service, exploiting future manycore platforms for
the increased system load, and coexist with non-critical tasks. Unlike FEHLER,
the ASTEROID approach also comprises a concrete error-detection solution: a
microarchitecture-level pipeline fingerprinting mechanism that allows Romain to
compare replicas with low overhead, facilitated through a cross-layer design involv-
ing both the hardware and operating-system layers. Quantifying the minimized
overhead, the chapter puts a special focus on the performance of replicated
execution, introducing a replica-aware co-scheduling strategy for mixed-critical
applications that outperforms the state of the art.

The third chapter by Schirmeier et al. describes the DanceOS approach, focus-
ing on application-specific operating-system construction techniques, similar to
FEHLER aiming at fine-grained fault-tolerance approaches (chapter “Dependability
Aspects in Configurable Embedded Operating Systems”). The chapter first investi-
gates the general reliability limits of static system-software stacks, and demonstrates
a technique to reduce the proverbial “attack surface” of a newly constructed,
AUTOSAR-compliant operating system by exploiting knowledge from static task
descriptions. By additionally applying classic fault-tolerance techniques to the
remaining dynamic kernel data structures, the DanceOS approach yields a highly
reliable software system. The second part of the chapter addresses the problem
how a pre-existing, legacy dynamic operating-system codebase can be hardened
against soft errors in an application-specific way. Using programming-language and
compiler-based program transformation techniques—in particular aspect-oriented
programming—this part shows how generic fault-tolerance mechanisms can be
encapsulated in separate modules, and applied to the most critical data structures
identified, e.g., by fault-injection experiments. In both operating-system scenarios—
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and similar to FEHLER and ASTEROID—the application drives the fault-tolerance
hardening process: In the AUTOSAR-compliant static OS scenario, statically
known structural application knowledge is handed to an operating-system tailoring
and minimization process; in the dynamic legacy-OS scenario, the application’s
runtime behavior while being exposed to injected faults provides the information
relevant for targeted, selective fault-tolerance hardening. In the third and last part,
the chapter expands the considered fault model to whole-system power outages, and
demonstrates that persistent memory—combined with transactional memory—can
be used for state conservation.

To conclude, all three chapters share the common insight that a cross-layer
combination of application layer knowledge and operating-system layer fault
tolerance—in the case of ASTEROID additionally involving the hardware layer—
enables overhead minimization and optimal, application-specific hardening against
soft errors.



Soft Error Handling for Embedded
Systems using Compiler-OS Interaction

Michael Engel and Peter Marwedel

1 New Requirements for Fault Tolerance

The ongoing downscaling of semiconductor feature sizes in order to integrate
more components on chip and to reduce the power and energy consumption of
semiconductors also comes with a downside. Smaller feature sizes also lead to
an increasing susceptibility to soft errors, which affect data stored and processed
using semiconductor technology. The amount of disturbance required to cause soft
errors, e.g. due to the effects of cosmic particles or electromagnetic radiation on
the semiconductor circuit, has declined significantly over the last decades, thus
increasing the probability of soft errors affecting a system’s reliable operation.

2 Semantics of Errors

Traditionally, system hardening against the effects of soft errors was implemented
using hardware solutions, such as error-correcting code circuits, redundant storage
of information in separate memories, and redundant execution of code on additional
functional units or processor cores. These protection approaches share the property
that they protect all sorts of data or code execution, regardless of the requirement to
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Fig. 1 Enabling profitable scaling using software-based fault tolerance [1]

actually enforce protection. In other terms, they do not possess knowledge about the
semantics of data and code related to the reliable operation of a system.

As shown by Austin [1], reproduced on the left-hand side of Fig. 1, together with
a rising probability of soft errors, this results in a significantly increasing overhead
in hardware required to implement error protection. As technology progresses, at
a certain point in time, the cost of this overhead will exceed the savings due to
the utilization of more recent semiconductor technologies, resulting in diminishing
returns that render the use of these advancements unattractive.

The fundamental idea applied by the FEHLER project is to reduce the amount of
error handling required in a system by introducing semantic knowledge. We enable
a system’s software to dynamically decide at runtime whether an error that occurred
is critical to the system’s operation, e.g. it might result in a crash in the worst case,
or is not critical, e.g. an error might only result in an insignificant disturbance of
a system’s output. In turn, this enables the system to handle only critical errors
and ignore the others. This flexible error handling results in a significantly reduced
hardware overhead for implementing fault tolerance, which leads to an increased
profitability window for semiconductor scaling, as shown on the right-hand side of
Fig. 1.

One important consideration when designing such a selective approach to fault
tolerance is which components of a system actually have to be protected from errors.
Inspired by the concept of the trusted computing base in information security, we
introduced the Reliable Computing Base (RCB) [6] to indicate the hardware and
software components of a system that are critical in ensuring that our flexible error
handling approach is effective.

Accordingly, we define the RCB as follows:

The Reliable Computing Base (RCB) is a subset of software and hardware
components that ensures the reliable operation of software-based fault-
tolerance methods. Hardware and software components that are not part of

(continued)



Soft Error Handling for Embedded Systems using Compiler-OS Interaction 35

the RCB can be subject to uncorrected errors without affecting the program’s
expected results.

To design efficient fault-tolerant systems, it is essential to minimize the size of
the reliable computing base. In the case of FEHLER, this implies that the number
and size of hardware and software components required to ensure that upcoming
critical errors will be corrected are to be reduced as far as possible.

Commonly, code-based annotations such as [13] are used to indicate sections of
code to be protected against errors regardless of the data objects handled by that
code. This implies an overhead in runtime—protection of the executed section of
code applies to all its executions without considering its execution semantics—as
well as in programmer effort, since error propagation analyses using control and
data flow information would have to consider all data objects handled in annotated
code sections. In order to increase the efficiency of this approach, additional manual
annotations seem indispensable.

A more efficient approach from a software point of view is to identify the
minimal amount of data objects that have to be protected against soft errors. Data
flow analyses provided by FEHLER allow to determine the worst-case propagation
of errors throughout a program’s execution, thus determining the precise set of
data objects requiring protection against errors. Additional savings at runtime
are achieved by employing a microkernel system tailored to exclusively address
error handling, leaving the remaining operating system functions to a traditional
embedded kernel running on top of it. An analysis of the possible savings for a
real-world embedded application is given in Sect. 7.

3 FEHLER System Overview and Semantic Annotations

Based on the observations described above, one central objective of the FEHLER
system is to enable the provision of semantics describing the worst-case effects of
errors on data objects.

Commonly, the hardware of a system only has very limited knowledge about the
semantics of data that it processes.1 More semantic information, such as the types
of data objects, is available on the source code level. However, this information
is commonly discarded by the compiler in later code generation and optimization
stages when it is no longer required to ensure program correctness. Some of this
information can already be utilized to provide error semantics. For example, pointer

1For example, a processor could distinguish between integer and floating point data due to the
use of different registers and instructions to process these, but a distinction between pointer and
numeric data is often not possible on machine code level.
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Fig. 2 Interaction of compile time and runtime components of FEHLER

data types and variables influencing the control flow (e.g. used to conditionally
execution of code or control loops) are deemed essential in ensuring correct program
execution. Accordingly, static analyses performed during compile time are able to
extract this information.

However, additional information about the relevance of data with regard to the
correct behavior of a system in its intended context, e.g. in embedded systems where
an incorrect output controlling a peripheral might result in damaging effects, is not
expressed explicitly in the code. Hence, we have to provide additional information
in order to enable static analyses to derive more information about the worst-case
criticality of a data object.

This additional semantic information allows the system to classify errors. Data
objects which are deemed critical to a program’s execution, i.e. may cause the
program to crash, are annotated with a reliable type qualifier. All objects for
which errors in data will result only in an insignificant deviation of the program’s
behavior in the worst case are provided with an unreliable type qualifier.

Classifying data objects into only these two classes is a rather coarse approach.
However, as shown later, this minimalistic approach is effective and efficient for
systems experiencing normal error rates, i.e. applications not exposed to radiation-
rich environments, such as space and aviation systems. Approaches for improved
QoS assessment are discussed in Sect. 10.

The interaction of compile time and runtime components of a FEHLER-based
system is shown in Fig. 2. Here, the compile time component, realized as a compiler
performing static analyses and transformations in addition to code generation,
extracts semantic information on the criticality of data objects, analyzes the
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program’s control and data flow to determine possible error propagation paths and
to generate appropriate type qualifiers, and encodes this information along with the
generated program binary.

This information lies dormant as long as no error affects the system’s operation.
Since error detection is outside of the scope of FEHLER, the system is prepared
to interface with a number of different error detection methods. In the example
in Fig. 2, we assume that a simple hardware mechanism, such as memory parity
checks, is employed. When an incorrect parity is detected during a memory access,
a special interrupt is raised that informs the system of the error.

Here, our runtime component, the Fault-aware Microvisor Environment (FAME)
[11] comes into play. FAME is intentionally restricted to only provide functionality
that enables decisions about the necessity of error handling, relegating all other
functionality typically found in system software to components outside of the
microkernel. This reduced functionality is an additional contribution to RCB
minimization. FAME provides a handler for the given error signalization method,
which is able to determine the address of the affected memory location. As soon as
the microkernel is able to ensure that itself is not affected, which can be ensured
by RCB analysis and minimization, it determines whether the embedded OS kernel
running on top or the application is affected. If this is the case, error handling is
initiated. In case of an error affecting the application, FAME consults the semantic
information provided by the compile time components and determines if error
correction is required or if the error can be safely ignored. Further details of FAME
are described in Sect. 6.

Like error detection, specific correction methods are not the focus of FEHLER.
Instead, FEHLER is enabled to interface with different standard as well as
application-specific correction methods. An example for a standard error correction
would be the application of checkpointing and rollback. An application-specific
method would be a function that corrects an affected macro block in a video
decoder by interpolating its contents from neighboring blocks instead of redecoding
the complete video frame, thus saving a considerable amount of compute time.

4 Timing Behavior

Figure 3 shows possible scheduling orders in case of a detected error. In an approach
that neglects to use criticality information (“naive approach”), the detection of
an error implies an immediate correction action in hardware or software. This
potentially time-consuming recovery delays the execution of subsequent program
instructions, which may result in a deadline miss.

The flexible approach enabled by FEHLER allows the system to react to an error
in a number of different ways. Here, the classifications described above come into
play. Whenever an error is detected, the system consults the classifications provided
alongside the application (“C” in Fig. 3). This lookup can be performed quickly
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Fig. 3 Different scheduling possibilities for error handling

and provides information on how to handle the error at hand. Specifically, it can be
determined if, how, and when the error needs to be corrected:

• if: Whether errors have to be handled or not depends mainly on the error impact.
If an error has a high impact, error recovery will be mandatory. In contrast, if an
error only has a low impact at all, e.g. the color of a single pixel in a frame buffer
is disturbed, further handling can be omitted. Handling errors in the latter case
will improve the quality of service at the cost of requiring additional compute
time. Error impacts are deduced using static analysis methods as described below.

• how: Error handling depends on the available error correction methods, the
error impact, and the available resources. In FEHLER, commonly a bit-precise
correction method such as checkpoint-and-recovery as well as an “ignore”
method (case 4 in Fig. 3) doing nothing is available. In addition, the programmer
can provide application-specific correction methods, denoted by “R*”. Such a
method may be preferable, since it can be faster than the generic correction
method provided.

• when: Error scheduling can decide when an error correction method has to be
scheduled. In a multitasking system, often, the task with the highest priority is
executed. Hence, if a high priority task is affected, error correction has to be
scheduled immediately (cases 1 and 2). If a low priority task is affected, the high
priority task can continue execution and the error handling will be delayed (case
3). In order to enable the mapping of errors to different tasks, a subscriber-based
model can be employed [12].

Overall, this flexibility allows a system to improve its real-time behavior in
case of errors. While this may not be acceptable for hard real-time systems, the
behavior of soft real-time applications, such as media decoding, can be significantly
improved. The example of an H.264 video decoder is used in Sect. 7 to evaluate the
effectiveness and efficiency of FEHLER.

To enable the flexible handling of errors at runtime, the runtime system requires
the provision of detailed, correct meta information about the data objects in the given
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application. The static analyses employed to obtain this information are described
in the following section.

5 Static Analyses

The correct determination of all data objects critical to a program’s execution, which
form part of the RCB, is crucial to ensure that errors threatening to result in a system
crash are corrected before they affect its operation.

Our static analysis is based on the concept of subtyping [7]. In FEHLER,
additional semantic information on the criticality of a data object to the application’s
stability is provided by extending the C language using reliability type qualifiers.
These qualifiers enable a developer to indicate to the static analysis stages whether a
data object is deemed critical to a program’s execution (reliable classification)
or if errors in data will result only in an insignificant deviation of the program’s
behavior in the worst case (using the unreliable type qualifier).

Accordingly, we have to ensure that reliable data objects must not be modified
unpredictably to guarantee that the application will not crash. In contrast, the
application can tolerate deviations from the expected values in unreliable data
objects.

Rules for the use of our new type qualifiers applied by our static code analysis
fall into two groups: prohibit and propagation rules. Prohibit rules ensure that oper-
ations on the annotated data objects are executed error-free, whereas propagation
rules reflect the possible propagation of errors from an affected data object to others
throughout the control and data flow.

Errors in certain data objects may result in a large deviation in the control flow
or even an unintended termination of the application. Prohibit rules ensure that
those data objects are annotated with the reliable type qualifier; accordingly, errors
affecting that data are classified as fatal errors. Data objects serving as a reference
to a memory address, i.e. pointers in C, are an important example for this. An error
in a pointer that is used for reading will result in either a different address that is
read, possibly resulting in the loading of a completely unrelated data object, or even
an access to a non-existing memory location, resulting in a processor exception
that terminates the application. Pointers used for writing data can result in correct
data being written to an unintended memory location, resulting in unexpected error
propagation that is especially hard to diagnose. Indexes for arrays behave in a similar
way, resulting either in a write to a different array element or, due to the lack of
bounds checking for array indexes in C, a write to an arbitrary memory location.
Other critical data types include controlling expressions for loops and conditional
statements, divisors, branch targets, and function symbols. For details, we refer the
reader to the description in [15].

unreliable int u, x;
reliable int y, z;
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=

x -

y *

+

z u

4

...

x = y - (z + u) * 4;

Listing 1 Data flow analysis of possible horizontal error propagation and related AST
representation

The content of a data object annotated as unreliable may be affected by an
uncorrected error. In turn, that error can propagate to other data objects whenever its
content is copied or used in an arithmetic or logic expression, as shown in Listing 1.
Here, the curved arrows indicate that an error can propagate from one subexpression
to the following along the edges of the syntax tree. Accordingly, the content of
a resulting data object cannot be considered reliable and thus has to be qualified
as unreliable. The dependencies between type qualifiers of different data objects
are modeled by the FEHLER propagation rules. In addition to calculations and
assignments, other uses of data objects affected by error propagation are the copying
of parameters to functions using call-by-value semantics and cast expressions.

int step(int x) {
return x << 2;

}

void main(void) {
int a, b, c;
unreliable int w;
int v;

// Initializations
// omitted for brevity
while (a < b)

a += step(c);

w = c - v;
}

Listing 2 Code example and related type deduction graph

Propagation rules not only help in detecting erroneous data flow from unreliable
to reliable data objects, but also reduce the overhead required by the programmer
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to create annotations. Since it is unrealistic to expect that each and every data
object in a complex program will be annotated manually, our static analyses help
to deduce correct type qualifiers for unannotated data. This deduction is enabled
by the construction of a type deduction graph (TDG), as shown in Listing 2. Here,
the shaded special vertices marked r© and u© represent an enforcement of the type
qualifiers reliable and unreliable by prohibit rules or explicitly stated annotations.
The set of edges of the TDG then reflects the dependencies between the type
qualifiers, data objects, operations, and assignments.

unreliable int u, pos, tmp;
reliable int r, a[10];
u = 10;
r = u; // invalid assignment
pos = 0;
while (pos < r) { // invalid condition
tmp = r / u; // invalid division
a[pos++] = tmp; // invalid memory access

}

Listing 3 Invalid assignments

Accordingly, the use of the TDG enables the compiler to flag invalid data
propagation from unreliable to reliable data objects. An example containing a
number of such invalid propagations is given in Listing 3.
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Overall, the static analyses provided by the FEHLER compiler toolchain enable
programmers to state reliability requirements that cannot be deduced from the
program itself while ensuring that these manual annotations do not accidentally
provide a way to propagate unreliable data to reliable data objects. During runtime,
the annotations are then used to enable flexible error handling by allowing the
operating system to ignore errors in data objects marked as unreliable, thus enabling
a tradeoff between the obtained quality of service and the required error correction
overhead, e.g. in terms of time or energy.

6 FEHLER Runtime System

Viewed from the top, as shown in Fig. 6, an application with integrated classification
information is running on a virtualized guest OS. The guest OS is linked against
the FAME Runtime Environment (FAMERE). FAMERE is responsible for the
flexible error handling as well as the interfacing with the microvisor. The microvisor
runs low-level error correction and ensures the feasibility of software-based error
handling (Fig. 4).

The FAMERE runtime is based on our specialized microvisor component which
has control over the hardware components relevant to error handling. The main
purpose of the microvisor is to isolate critical system components from possible
error propagation and schedule the error handling if required. Critical components
in this context are resources required to keep error detection and correction running.
Depending on the underlying hardware, the actual critical resources vary. If, for
example, errors are signaled via interrupts, the interrupt controller will be an element
of the critical resource set.

Since the microvisor itself can be affected by errors, it is considered to be a part
of the RCB. The microvisor is incapable of protecting itself, since it implements
the basic error handling routines. In order to ensure the effectiveness of error

Fig. 4 The runtime software stack of FEHLER. The microvisor is only involved in case of an
error, whereas all other resources are administered by the paravirtualized guest OS. The guest
OS is extended by FAMERE, the system component responsible for evaluating compiler-provided
information on the criticality of errors
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handling, fault-free hardware components are required to execute the software-
based fault-tolerance mechanisms. In turn, these hardware components also have
to be considered part of the RCB. Reducing the code and data size of the microvisor
itself is, thus, an optimization objective required to reduce the overall size of the
RCB.

To shield the RCB from error propagation, our microvisor uses paravirtualization
[16]. The microvisor is tailored to the needs of embedded systems and fault
tolerance. To keep the virtualization overhead low, it supports only a single guest
operating system. This removes the requirement to provide virtual CPUs and CPU
multiplexing. In addition, caches and TLB entries need not be switched between
different guest OS instances. An additional responsibility of the microvisor is the
creation of full system checkpoints. These are used to restore a valid system state
in case of a severe error affecting the FAMERE runtime. FAMERE is a library in
the guest OS that combines compile and runtime information required to implement
flexible error handling [12].

Error handling is the central task of FAMERE. Figure 5 gives a detailed view of
the error-handling procedure at runtime (the right-hand side of Fig. 2). In order to
enable a prioritization of error handling, tasks affected by an error in the OS running
on top of the microvisor have to be identified. FAMERE determines affected tasks
using a memory subscriber model [12] in which tasks explicitly subscribe to and
unsubscribe from data objects prior resp. after their use. Accordingly, each data
object is annotated with a set of tasks currently using the object, enabling FAMERE
to assign a memory address to the set of tasks using the address at the current
moment.

If there are higher prioritized tasks not affected by current error, further error
handling will be delayed until all higher prioritized tasks finish execution. Error
classification will then be performed when the error handling is scheduled again by
the microvisor, thus minimizing the impact on system timing when an error occurs.

Together with classification information for data objects, our microvisor and
the FAMERE library enable the FEHLER system to implement the envisioned
flexible error-handling principles. By keeping the amount of functionality and the
related code and data sizes of the microvisor low, the RCB size could be reduced
significantly.

7 Use Case: A Fault-Tolerant QoS-Aware Soft Real-time
Application

In order to assess the effectiveness and efficiency of the selective error correction
approach enabled by FEHLER, we analyzed typical embedded applications in the
presence of errors. Since microbenchmarks only tend to give a restricted view of the
effects of errors, we used a real-world application to evaluate the possible reduction
in overhead.



44 M. Engel and P. Marwedel

Fig. 5 Error handling in the
runtime software stack of
FEHLER. If an error is
signaled (red flash symbol),
the microvisor checks
whether the fault affects the
RCB. If the RCB is affected,
the microvisor automatically
restores the last system
checkpoint. Otherwise, error
handling is delegated by
sending a message to
FAMERE, which includes an
error description containing
information about the
occurred error as well as the
user space context

As mentioned above, the class of applications that we expect to benefit most from
our flexible error-handling approach are soft real-time applications that are able to
accept—or even make use of—varying levels of QoS in their output. Thus, we used
a constrained baseline profile H.264 video decoder application comprising ca. 3500
lines of ANSI C code as a real-world benchmark to assess the effectiveness and
efficiency of FEHLER [9].

The evaluation is performed on a simulated embedded system using Synopsys’
CoMET cycle-accurate simulator as well as a physical platform based on a Marvell
ARM926-based SoC. CoMET is configured to resemble the real system by simu-
lating a 1.2 GHz ARM926 system with 64 MiB RAM, 16 MiB ROM, and 128 KiB
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Fig. 6 Analysis of error impacts on the H.264 video decoder using different injection rates

reliable RAM (using ECC-based hardware error protection). All components are
considered reliable, except the 64 MiB of RAM.

The H.264 video decoder is configured to create a checkpoint after every
displayed frame. In each experiment, we decoded 600 frames in total at a rate of
10 frames per second and a resolution of 480×320 pixels.2

We were primarily interested in evaluation results showing the impact of the
injected errors themselves on the achievable QoS of the decoded video, the possible
reduction of the RCB size using flexible error handling as well as the impact of error
handling on system timing.

To assess the impact on the QoS, we developed the quality assessment tool shown
in Fig. 6 [8]. It receives video frames decoded by the target ARM system under the
influence of errors using FEHLER’s flexible error correction and compares these
frames to the correctly decoded reference frames (indicated by the yellow and red
squares in the lower left pictures–the more red, the larger the difference between
the two frames is). For each frame, the tool then calculates several different metrics
indicating the QoS, e.g. the peak signal-to-noise ratio (PSNR) and the �E color
distance metrics. The left-hand side of Fig. 6 shows a moderate error injection rate
resulting in some visible defects in the output, whereas the right-hand side shows an
artificially high injection rate which renders the output unusable.

For evaluation, we injected uniformly distributed transient faults into RAM. For
each memory access, error detection in hardware is simulated. If the processor

2Although resolution and frame rate seem rather low, this setup leads to a CPU utilization of more
than 65%, since we decode H.264 in software only. However, higher resolutions and frame rates
will be possible if more computing power is available.
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Table 1 Peak Signal-to-Noise Ratio (PSNR) for different error injection rates [dB]

λ = 1 · 10−16 λ = 1 · 10−15 λ = 1 · 10−14

All errors handled 36.19 36.15 n/a

Flexible error handling 36.19 36.18 29.01

Flexible + application-specific 36.20 36.12 28.95

accesses an erroneous word, an interrupt will be raised. The number of faults to
be injected is determined by a Poisson distribution with a configurable parameter
λ.3

Table 1 shows QoS results given as PSNR values for different injection rates
and correction approaches. We compare a standard correction approach–correcting
all errors irrespective of the worst-case outcome–with two approaches based on
FEHLER, one which only uses generic error correction such as checkpoint-and-
restore and one which, in addition, applies more efficient, application-specific error
correction methods. It can be seen that for low error injection rates (λ = 1 · 10−16

and 1 · 10−15), uncorrected errors result in a PSNR of about 36 dB, which is still a
reasonable quality for lossy compressed media and is similar to the quality of VHS
video. For the high error rate (λ = 1 · 10−14), however, the PSNR drops below
30 dB.4

It is important to notice that, although high injected error rates can lead to a
significant degradation of the perceived QoS, the primary objective of the binary
classification of error impacts employed by FEHLER is achieved—we were unable
to provoke the system to crash no matter what the used error injection rate was.

Based on the configuration described above, we analyzed the fraction of memory
that the compiler annotated as unreliable, implying no protection against errors
is required. This fraction is a direct indicator of the reduction of the size of memory
that has to be protected, i.e., the RAM memory component of the RCB. In traditional
software-based error correction approaches, all of the RAM would be considered
part of the RCB. Table 2 shows the results of this evaluation for different video
resolutions. It can be observed that for low resolutions, the amount of data classified
as reliable dominates the memory usage. However, the share of this type of
memory is reduced when decoding videos with higher resolutions. For a 720p HD
video, already 63% of the RAM used by the H.264 decoder can remain unprotected
using FEHLER classifications.

The remaining interesting evaluation is the impact of flexible error handling
on the soft real-time properties of the video decoder application. In the first two

3Not all injected faults are visible by the application, since faults are only detected when the
corresponding memory cell is accessed.
4To control the amount of faults to inject, a Poisson distribution with configurable parameter λ is
used. The time base used for the Poisson distribution is memory bus ticks. Faults are randomly
injected and are equally distributed over the memory. Hence, the locations of the accesses have no
influence on the fault distribution.
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Table 2 Reduction of the amount of reliable memory required by the H.264 video decoder

Video resolution
Memory size of
reliable data Percentage

Memory size of
unreliable data Percentage

176 × 144 90 kB 55% 74 kB 45%

352 × 288 223 kB 43% 297 kB 57%

1280 × 720 1585 kB 37% 2700 kB 63%

Table 3 Average deadline misses for different error-handling configurations

Error rate
Naive error
handling Flexible error handling

Flexible + application
-specific

λ [s−1]
# Avg.
Miss

Avg
Missed by

# Avg.
Miss

Avg
Missed by

# Avg.
Miss

Avg
Missed by

λ = 1 · 10−16 0.14 0.00 0.00 ms 0.00 0.00 ms 0.00 0.00 ms

λ = 1 · 10−15 1.44 2.86 8.15 ms 0.52 7.93 ms 0.36 4.89 ms

λ = 1 · 10−14 35.84 – – 1937.87 10,268.98 ms 1887.12 9346.16 ms

columns of Table 3, the observed average error rates (of detected faults) are given,
ranging from several faults per minute to an artificially high rate of 36 per second.

We analyzed three different scenarios. In naive error handling, the system treats
every error as an error which cannot be handled by FAMERE. Hence, a checkpoint
is immediately restored. For this scenario, columns three and four in Table 3 show
the average amount of missed deadlines and the average duration of a deadline miss,
respectively. For the lowest error rate, no deadline misses occur since enough slack
time is available for the recovery of checkpoints. If the error rate increases by an
order of magnitude, deadline misses can be observed. On average, deadlines were
missed by 8.15 ms. For the highest error rate, no run of the experiment terminated
within a set limit of 2 h of simulation time, thus no results are given here.

The results for flexible error handling are shown in columns five and six. Here,
only errors affecting reliable and live data are handled by checkpoint recovery.
Errors affecting other data are ignored. Flexible error handling reduces the number
of deadline misses significantly (81.75%). The time by which a deadline is missed
is reduced as well (2.70%). For the artificially increased rate of 35.84 errors per
second, however, significant deadline misses could be observed.

The final timing evaluation scenario augmented flexible error handling by
including an application-specific error-handling method. For data objects with a
special annotation, this method is able to transform a corrupted motion vector into
a valid state. For these cases, a time-consuming rollback to a valid system state
is not required, reducing the overhead for error correction. Accordingly, using this
approach, deadline misses could be reduced by 87.37% for the second highest error
rate.

To conclude the overview of our evaluation, we provide an overview of a possible
use of application-specific error correction approaches for our H.264 video decoder.
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displayed
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ignore,

Disturbance in
single pixel

until frame is
displayed

rollback,
copy neighbor pixel,
ignore

...
No Impact none ignore

Fig. 7 Classification of error impacts for the H.264 video decoder

As shown in Fig. 7, errors can occur in different data structures, such as frame header
or macro blocks. These can be handled by a number of efficient application-specific
error correction approaches.

8 Use Case: Adaptive Error Handling in Control
Applications

Control-based systems are the basis of a large number of applications for embedded
real-time systems. The inherent safety margins and noise tolerance of control
tasks allow that a limited number of errors might be tolerable and might only
downgrade control performance; however, such limited errors might not lead to
an unrecoverable system state. In control theory literature, techniques have been
proposed to enable the stability of control applications even if some signal samples
are delayed [14] or dropped [2]. Accordingly, we expect that our idea of flexible
fault tolerance as described for the video decoder case will also be applicable to
control applications.

As described above, software-based fault-tolerance approaches such as redun-
dant storage or code execution may lead to system overload due to execution time
overhead. For control tasks, an adaptive deployment of related error correction is
desired in order to meet both application requirements and system constraints.
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Fig. 8 Different ways to deal with soft errors: red blocks represent reliable executions, green
blocks represent executions with error detection, while yellow blocks represent unreliable version
without any protection (deadlines are implicit in the schedules shown)

Thus, it has to be investigated how and when to compensate, or even ignore
errors, given a choice of different techniques. In an initial case study, we observed
that a control task can tolerate limited errors with acceptable performance loss [5].5

The general approach used to investigate the effectiveness of this approach is
to model the fault tolerance of control applications as a (m, k)-constraint which
requires at least m correct runs out of any k consecutive runs to be correct. We
investigate how a given (m, k) constraint can be satisfied by adopting patterns of task
instances with individual error detection and compensation capabilities. Figure 8
shows four different ways to handle soft errors. Some of the presented schedules are
infeasible, since they lead to deadline misses.

5This section is based on joint work with Kuan-Hsun Chen, Björn Bönninghoff and Jian-Jia Chen,
TU Dortmund.
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A static approach to ensure this property is Static Pattern-Based Reliable
Execution. In this approach, we enforce the (mi , ki) constraints by applying (m,
k) static patterns to allocate the reliable executions for task τi . While the adopted
pattern will affect the schedulability, stability, and flexibility, deciding the most
suitable pattern is out of scope of this work.

Due to its inability to react dynamically to changes at runtime, it is obvious
that this approach has to be overprovisioning. Thus, we introduce a runtime
adaptive approach called Dynamic Compensation that enhances Static Pattern-
Based Reliable Execution by recognizing the need to execute reliable instances
dynamically instead of having a static schedule.

It is too pessimistic to allocate the reliable instances strictly due to the fact that
soft errors randomly happen from time to time. To mitigate the pessimism, we pro-
pose an adaptive approach, called Dynamic Compensation, to decide the executing
task version on-the-fly by enhancing Static Pattern-Based Reliable Execution and
monitoring the erroneous instances with sporadic replenishment counters.

The idea is to execute the unreliable instances and exploit their successful
executions to postpone the moment that the system will not be able to enforce
an (m, k) constraint, in which the resulting distribution of execution instances still
follows the string of static patterns in the worst case.

With Dynamic Compensation, we prepare a mode indicator 	 for each task to
distinguish the behaviors of dynamic compensation for different status of tasks,
i.e., 	 ∈ {tolerant, safe}. If a task τ i cannot tolerate any error in the following
instances, the mode indicator will be set to safe and the compensation will be
activated for the robustness accordingly. If it can tolerate error in the next instance,
the mode indicator will be set to tolerant and execute the unreliable version with
fault detection.

Our investigation showed that in embedded systems used for control applications
which are liable to both hard real-time constraints and fulfillment of operational
objectives, the inherent robustness of control tasks can be exploited when applying
error-handling methods to deal with transient soft errors induced by the environ-
ment. When expressing the resulting task requirement regarding correctness as a
(m, k) constraint, scheduling strategies based on task versions with different types
of error protection become applicable. We have introduced both static- and dynamic-
pattern-based approaches, each combined with two different recovery schemes.
These strategies drastically reduce utilization compared to full error protection while
adhering to both robustness and hard real-time constraints. To ensure the latter for
arbitrary task sets, a schedulability test is provided formally. From the evaluation
results, we can conclude that the average system utilization can be reduced without
any significant drawbacks and be used, e.g., to save energy. This benefit can
be increased with further sophistication; however, finding feasible schedules also
becomes harder.

For an in-depth discussion in the context of a follow-up investigation of this topic,
we refer the reader to [17].
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9 Application of FEHLER to Approximate Computing

Whereas the work described above concentrates on handling bit flips in memory,
more recently, approximate computing approaches have been investigated to design
energy-efficient systems that trade result precision for energy consumption.

One of the novel semiconductor technologies at the basis of approximate com-
puting is Probabilistic CMOS [3] (PCMOS). Figure 9 shows the general layout of a
ripple-carry adder based on PCMOS technology (PRCA). While traditional energy-
conserving circuits use uniform voltage scaling (UVOS), PCMOS employs biased
voltage scaling (BIVOS), which provides different single-bit full adder components
with differing supply voltages that increase from the least to the most significant bit
in multiple steps. As a consequence, the delay required to calculate a bit decreases
from the LSB to the MSB; accordingly, the probability pc of bit errors due to carry
bits arriving too late is larger in the least significant bits. Using the PCMOS voltage
scaling approach, we also employed a probabilistic Wallace-tree multiplier (PWTM)
component and added a related energy model and instructions enabling the use of
the probabilistic components to our ARMv4 architecture simulator.

We investigated whether FEHLER reliability annotations would also be appli-
cable to determine which arithmetic operations of a program could be executed on
PCMOS-based arithmetic components instead of a less energy-efficient traditional
ALU without sacrificing the program’s stability [10]. A first evaluation using
floating point data objects showed that the use of PCMOS technology has the
potential for significant energy conservation. Accordingly, we investigated the
possible conservation potential for a real-world embedded application. FEHLER
type qualifiers were used to indicate data which accepts precision deviation
(unreliable). Accordingly, our compiler backend generated instructions using
probabilistic arithmetic instructions operating on these data objects.

Table 4 shows that a significant fraction of arithmetic ARM machine instructions
of our H.264 video decoder could be executed safely on probabilistic components.6

Fig. 9 Probabilistic ripple-carry adder

6rsb is the ARM reverse subtract instruction.
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Table 4 Instructions executed using probabilistic components

Instruction type Add Sub rsb Mul Overall

Executed using PRCA/PWTM 18.59% 18.60% 43.01% 76.27% 13.36%

Fig. 10 PSNR (peak signal-to-noise ratio) values for different supply voltage configurations

Surprisingly, our results indicated that for our typical embedded H.264 decoder
application, the use of PCMOS components did not result in energy conservation for
the identical level of QoS compared to uniform voltage scaling.7 This result con-
tradicts the microbenchmarks described in [4]. Figure 10 shows the PSNR of the
H.264 decoder output for different video clips decoded with circuits using four
different UVOS (0.8 V–1.1 V) as well as three BIVOS schemes with similar energy
consumption to the UVOS schemes. It can be observed that the PSNR of the BIVOS-
decoded videos does not increase, which is a counterintuitive result at first.

A subsequent investigation of the differences between our H.264 decoder and the
code used in the microbenchmarks gave insights into the observed effects. Whereas
the microbenchmarks employed floating point numbers, our video decoder is a
typical embedded application that employs integer and fixed-point numbers.

void enter(unreliable uchar *ptr, unreliable int q_delta) {
unreliable int i = *ptr + ((q_delta + 32) >> 6);

*ptr=Clip(i);
}

Listing 4 H.264 decoder clipping code

This difference in data representation is one of the reasons for the observed
phenomenon. The H.264 specification requires a special behavior when copying
32 bit integer values into an eight bit value in the frame buffer. Here, a saturating
clipping function (cf. Listing 4) is used. This function restricts the value to 255 if

7This only concerns the static and dynamic energy consumption of the PCMOS components. The
additional static energy required by the traditional ALU has not been considered here.
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the input is larger than that. Accordingly, the shift operation used has the ability
to eliminate bit errors in the least significant bits, diminishing the gains of BIVOS
scaling.

In contrast, floating point values are always normalized after arithmetic opera-
tions. This implies that the bits most relevant to a floating point number’s value–sign,
exponent, and the MSBs of the mantissa–are always the MSBs of the memory word.
In this case, the BIVOS approach to construct arithmetic components that show
larger error probabilities in the LSBs is beneficial.

Since it is unrealistic to assume that separate adders for different data widths
and data types will be provided in future architectures, an analysis of the number
of bits actually used in arithmetic operations is required. However, this implies
further complications. One idea for future compiler-based analyses is an approach
that combines bit-width analysis methods for arithmetic operations and code
transformations to use bits with optimal supply voltage for the operation at hand.
The effectiveness of this approach, however, requires further implementation and
analysis work.

10 Summary and Outlook

The results of the FEHLER project have shown that for a large class of embedded
applications, software-based fault tolerance is a feasible way to reduce the overhead
of error handling. The results, as demonstrated using real-world applications, show
that already the simple binary classification employed so far is able to avoid crashes
due to soft errors while reducing the size of the reliable computing base, i.e. the
amount and size of hard- and software components requiring protection from errors.

The technologies developed in the context of FEHLER suggest a number of
ways to further improve on the ideas and design of the approach. One constraint
of the current design is that the current version of reliability type qualifiers is
too coarse-grained. Correcting only errors that affect reliable data objects will
result in avoiding program crashes. However, a sufficiently high error rate affecting
unreliable data might still result in a significant reduction of the QoS, rendering
its output useless.

The existing static analysis in FEHLER is based on subtyping. Accordingly, to
provide a more fine-grained classification of errors, additional error classes have to
be introduced. These classes would have to be characterized according to a given
total order, so that an error can be classified with the correct worst-case effect. If,
for example, the impact of errors is measured in the degradation of a signal-to-noise
ratio, a total order can be determined by the resulting amount of degradation.

However, for the overall assessment of a program’s QoS, the resulting overall
error visible in the output that accumulated throughout the data flow is relevant.
Here, one can imagine setting an acceptable QoS limit for the output data and
backtracking throughout the arithmetical operations in the program’s data flow to
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determine the worst-case deviation that an error in a given variable can cause in the
output. Here, we intend to employ approaches related to numerical error propagation
analysis.

We expect that approximate computing approaches will be able to directly benefit
from these analyses. Since the approximations already trade precision for other non-
functional properties, such as energy consumption, a Pareto optimization of the
differing objectives could benefit from worst-case QoS deviation analyses. Here,
our initial analysis of the use of binary classifiers for the PCMOS case has already
given some interesting preliminary insights.
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ASTEROID and the Replica-Aware
Co-scheduling for Mixed-Criticality

Eberle A. Rambo and Rolf Ernst

1 The ASTEROID Project

1.1 Motivation

Technology downscaling has increased the hardware’s overall susceptibility to
errors to the point where they became non-negligible [17, 21, 22]. Hence, current
and future computing systems must be appropriately designed to cope with errors
in order to provide a reliable service and correct functionality [17, 21]. That is a
challenge, especially in the real-time mixed-criticality domain where applications
with different requirements and criticalities co-exist in the system, which must
provide sufficient independence and prevent error propagation (e.g., timing, data
corruption) between criticalities [24, 42]. Recent examples are increasingly complex
applications such as flight management systems (FMS), advanced driver assistance
systems (ADAS), and autonomous driving (AD) in the avionics and automotive
domains, respectively [24, 42]. A major threat to the reliability of such systems
is the so-called soft errors.

Soft errors, more specifically Single Event Effects (SEEs), are transient faults
abstracted as bit-flips in hardware and can be caused by alpha particles, energetic
neutrons from cosmic radiation, and process variability [15, 22]. Soft errors
are comprehensively discussed in chapter “Reliable CPS Design for Unreliable
Hardware Platforms”. Depending on where and when they occur, their impact
on software execution range from masked (no observable effect) to a complete
system crash [3, 12, 13]. Soft errors are typically more frequent than hard errors
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(permanent faults) and often remain undetected, also known as latent error or silent
data corruption, because they cannot be detected by testing. Moreover, undetected
errors are a frequent source of later system crashes [12]. To handle soft errors,
the approaches can vary from completely software-based to completely hardware-
based. The former are able to cover only part of the errors [12, 13] and the latter
result in costly redundant hardware [22], as seen in lock-step dual-core execution
[29]. Cross-layer solutions can be more effective and efficient by distributing the
tasks of detecting errors, handling them and recovering from them in different layers
of software and hardware [12, 13, 22].

1.2 Overview

The ASTEROID project [5] developed a cross-layer fault-tolerance solution to
provide reliable software execution on unreliable hardware. The approach is based
on replicated software execution and exploits the large number of cores available in
modern and future architectures at a higher level of abstraction without resorting to
hardware redundancy [5, 12]. That concentrates ASTEROID’s contributions around
the architecture and operating system (OS) abstraction layers, as illustrated in Fig. 1.
ASTEROID’s architecture is illustrated in Fig. 2. The reliable software execution is
realized by the OS service Romain [12]. Mixed-critical applications may co-exist in
the system and are translated into protected and unprotected applications. Romain
replicates the protected applications, which are mapped to arbitrary cores, and
manages their execution. Error detection is realized by a set of mechanisms whose
main feature is the hardware assisted state comparison, which compares the replicas’
state at certain points in time [5, 12]. Error recovery strategies can vary depending
on whether the application is running in dual modular redundancy (DMR) or triple
modular redundancy (TMR) [3, 5].
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ASTEROID comprised topics ranging from system-level conceptual modeling,
to the OS and all the way down to Application-Specific Integrated Circuit (ASIC)
synthesis and gate-level simulation. We summarize selected work that were devel-
oped in the project next. An initial overview of the ASTEROID approach was
introduced in [5]. Romain, the OS service that provides replicated execution for
unmodified binary applications, was introduced in [12]. The vulnerabilities of the
system were assessed in [9, 13], giving rise to the reliable computing base (RCB),
the minimum set of software and hardware components on which the approach
relies. The runtime overheads related with the OS-assisted replication were inves-
tigated in [10]. Later, RomainMT extends Romain in [11] to support unmodified
multithreaded applications. A systematic design process was investigated in [28],
followed by the definition of a trusted component ecosystem in [19].

In terms of modeling, the reliability of replicated execution was modeled and
evaluated in [3]. The approach was modeled in Compositional Performance Analy-
sis (CPA), a worst-case performance analysis framework, as fork-join tasks and the
performance evaluated in [6] and revised in [2]. Later, co-scheduling was employed
to improve the worst-case performance of replicated execution with the replica-
aware co-scheduling for mixed-criticality [34]. Off-chip real-time communication
under soft errors was modeled in [4] with a probabilistic response-time analysis.
On-chip real-time communication with and without soft errors were modeled in
CPA and evaluated in [33] and [38], where Automatic Repeat reQuest (ARQ)-based
protocols were employed in a real-time Network-on-Chip (NoC). As part of the
RCB, the NoC’s behavior under soft errors was further researched with thorough
Failure Mode and Effects Analyses (FMEAs) in [35–37]. Based on those findings,
a resilient NoC architecture was proposed in [32, 39, 40], which is able to provide a
reliable and predictable service under soft errors.
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The remainder of this chapter focuses on the performance of replicated execution
under real-time constraints, first published in [34]. It is organized as follows.
Section 2 introduces the replica-aware co-scheduling for mixed-criticality and its
related work. Section 3 describes the system, task, and error models. Section 4
introduces the formal response-time analysis. Experimental results are reported in
Sect. 5. Finally, Sect. 6 ends the chapter with the conclusions.

2 Replica-Aware Co-scheduling for Mixed-Criticality

2.1 Motivation

Replicated software execution is a flexible and powerful mechanism to increase the
reliability of the software execution on unreliable hardware. However, the scheduler
has a direct influence on its performance. The performance of replicated execution
for real-time applications has been formally analyzed in [6] and revised in [2].
The work considers the well-known Partitioned Strict Priority Preemptive (SPP)
scheduling, where tasks are mapped to arbitrary cores, and assumes a single error
model. The authors found that SPP, although widely employed in real-time systems,
provides very pessimistic response-time bounds for replicated tasks. Depending
on the interfering workload, replicated tasks executing serially (on the same core)
present much better performance than when executing in parallel (on distinct cores).
That occurs due to the long time that replicated tasks potentially have to wait on each
core to synchronize and compare states before resuming execution. That leads to
very low resource utilization and prevents the use of replicated execution in practice.

The replica-aware co-scheduling for mixed-criticality explores co-scheduling
to provide short response times for replicated tasks without hindering the
remaining unprotected tasks. Co-scheduling is a technique that schedules
interacting tasks/threads to execute simultaneously on different cores [30]. It
allows tasks/threads to communicate more efficiently by reducing the time they
are blocked during synchronization. In contrast to SPP [2, 6], the proposed replica-
aware co-scheduling approach drastically minimizes delays due to the implicit
synchronization found in state comparisons. In contrast to gang scheduling [14],
it rules out starvation and distributes the execution of replicas in time to achieve
short response times of unprotected tasks. The proposed approach differs from
standard Time-Division Multiplexing (TDM) and TDM with background partition
[25] in that all tasks have formal guarantees. In contrast to related work, it supports
different recovery strategies and accounts for the NoC communication delay and
overheads due to replica management and state comparison. Experimental results
with benchmark applications show an improvement on taskset schedulability of
up to 6.9× when compared to SPP, and 1.5× when compared to a TDM-based
scheduler.
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2.2 Related Work

L4/Romain [12] is a cross-layer fault-tolerance approach that provides reliable
software execution under soft errors. Romain provides protection at the application-
level by replicating and managing the applications’ executions as an operating
system service. The error detection is realized by a set of mechanisms [5, 12, 13]
whose main feature is the hardware assisted state comparison, which allows an
effective and efficient comparison of the replicas’ states. Pipeline fingerprinting [5]
provides a checksum of the retired instructions and the pipeline’s data path in every
processor, detecting errors in the execution flow and data. The state comparison,
reduced to comparing checksums instead of data structures, is carried out at certain
points in time. It must occur at least when the application is about to externalize
its state, e.g., in a syscall [12]. The replica generated syscalls are intercepted by
Romain, have their integrity checked, and their replicas’ states compared before
being allowed to externalize the state [12].

Mixed-criticality, in the context of the approach, is supported with different
levels of protection for applications with different criticalities and requirements
(unprotected, protected with DMR1 or TMR) and by ensuring that timing constraints
are met even in case of errors. For instance, Romain provides different error recovery
strategies [3, 5]:

• DMR with checkpoint and rollback: to recover, the replicas rollback to their last
valid state and re-execute;

• TMR with state copy: to recover, the state of the faulty replica is replaced with
the state of one of the healthy replicas.

This chapter focuses on the system-level timing aspect of errors affecting the
applications. We assume thereby the absence of failures in critical components
[13, 32], such as the OS/hypervisor, the replica manager/voter (e.g., Romain), and
interconnect (e.g., NoC), which can be protected as in [23, 39].

The Worst-Case Response Time (WCRT) of replicated execution has been
analyzed in [6], where replicas are modeled as fork-join tasks in a system imple-
menting Partitioned SPP. The work was later revised in [2] due to optimism
in the original approach. The revised approach is used in this work. In that
approach, with deadline monotonic priority assignment, where the priority of tasks
decreases as their deadlines increase, replicated tasks perform worse when mapped
in parallel than when mapped to the same core. This is due to the state comparisons
during execution, which involves implicit synchronization between cores. With
partitioned scheduling, in the worst-case, the synchronization ends up accumulating
the interference from all cores to which the replicated task is mapped, resulting
in poor performance at higher loads. On the other hand, mapping replicated tasks

1DMR per se can be used for system integrity only. However, DMR augmented with checkpointing
and rollback enables recovery and can be used to achieve integrity and availability (state rollback
followed by re-execution in both replicas) [3, 5].
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to the highest priorities results in long response times for lower priority tasks and
rules out deadline monotonicity. The latter causes the unschedulability of all tasksets
with at least one regular task whose deadline is shorter than the execution time of a
replicated task.

Gang scheduling [14] is a co-scheduling variant that schedules groups of
interacting tasks/threads simultaneously. It increases performance by reducing the
inter-thread communication latency. The authors in [26] present an integration
between gang scheduling and Global Earliest Deadline First (EDF), called the Gang
EDF. They provide a schedulability analysis derived from the Global EDF’s based
on the sporadic task model. In another work, [16] shows that SPP Gang schedulers
in general are not predictable, for instance, due to priority inversions and slack
utilization. In the context of real-time systems, gang scheduling has not received
much attention.

TDM-based scheduling [25] is widely employed to achieve predictability and
ensure temporal-isolation. Tasks are allocated to partitions, which are scheduled to
execute in time slots. Partitions can span across several (or all) cores and can be
executed at the same time. The downside of TDM is that it is not work-conserving
and underutilizes system resources. A TDM variant with background partition [25]
tackles this issue by allowing low priority tasks to execute in other partitions
whenever no higher priority workload is executing. Yet, in addition to the high cost
to switch between partitions, no guarantees can be given to tasks in the background
partition.

In the proposed approach, we exploit co-scheduling with SPP to improve the
performance of the system. The proposed approach differs from [6] in that replicas
are treated as gangs and are mapped with highest priorities, and are hence activated
simultaneously on different cores. In contrast to gang scheduling [14, 16] and to [6],
the execution of replicas is distributed in time with offsets to compensate for the
lack of deadline monotonicity, thus allowing the schedulability of tasks with short
deadlines. We further provide for the worst-case performance of lower priority tasks
by allowing them to execute whenever no higher priority workload is executing.
However, in contrast to [25], all tasks have WCRT guarantees. Moreover, we also
model the state comparison and the on-chip communication overheads.

3 System, Task, and Error Models

In this work, we use the CPA [20] to provide formal response-time bounds. Let us
introduce the system, task, and error models.
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3.1 System Model

The system consists of a standard NoC-based many-core composed of processing
elements, simply referred to as cores.

There are two types of tasks in our system, as in [2]:

• independent tasks τi : regular, unprotected tasks; and
• fork-join tasks 
i : replicated, protected tasks.

The system implements partitioned scheduling, where the operating system
manages tasks statically mapped to cores. The mapping is assumed to be given as
input. The scheduling policy is a combination of SPP and gang scheduling. When
executing only independent tasks, the system’s behavior is identical to Partitioned
SPP, where tasks are scheduled independently on each core according to SPP. It
differs from SPP when scheduling fork-join tasks.

Fork-join tasks are mapped with highest priorities, hence do not suffer inter-
ference from independent tasks, and execute simultaneously on different cores, as
in gang scheduling. Note that deadline monotonicity is, therefore, only partially
possible. To limit the interference to independent tasks, the execution of a fork-join
task is divided in smaller intervals called stages, whose executions are distributed in
time. At the end of each stage, the states of the replicas are compared. In case of an
error, i.e. states differ, recovery is triggered.

Fork-join stages are executed with static offsets [31] in execution slots. One stage
is executed per slot. On a core with n fork-join tasks, there are n + 1 execution
slots: one slot for each fork-join task 
i and one slot for recovery. The slots are
cyclically scheduled in a cycle �. The slot for 
i starts at offset φ(
i) relative to
the start of � and ends after ϕ(
i), the slot length. The recovery slot is shared by
all fork-join tasks on that core and is where error recovery may take place under a
single error assumption (details in Sects. 3.3 and 4.3). The recovery slot has an offset
φ(recovery) relative to � and length ϕ(recovery). Lower priority independent
tasks are allowed to execute whenever no higher priority workload is executing.

An example is shown in Fig. 3, where two fork-join tasks 
1 and 
2 and two
independent tasks τ3 and τ4 are mapped to two cores. 
1 and 
2 execute in their
respective slots simultaneously in both cores. When an error occurs, the recovery of

2 is scheduled and the recovery of the error-affected stage occurs in the recovery
slot. The use of offsets enables the schedulability of independent tasks with short
periods and deadlines, such as τ3 and τ4. Note that, without the offsets, 
1 and 
2
would execute back-to-back leading to the unschedulability of τ3 and τ4.

3.2 Task Model

An independent task τi is mapped to core σ with a priority p. Once activated, it
executes for at most Ci , its worst-case execution time (WCET). The activations of
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Fig. 3 Execution example with two fork-join and two independent tasks on two cores [34]

a task are modeled with arbitrary event models. Task activations in an event model
are given by arrival curves η−(�t) and η+(�t), which return the minimum and
maximum number of events arriving in any time interval �t . Their pseudo-inverse
counterparts δ+(q) and δ−(q) return the maximum and minimum time interval
between the first and last events in any sequence of q event arrivals. Conversion
is provided in [41]. Periodic events with jitter, sporadic events, and others can be
modeled with the minimum distance function δ−i (q) as follows [41]:

δ−i (q) = max((q − 1) · dmin, (q − 1) · P − J ) (1)

where P is the period, J is the jitter, dmin is the minimum distance between any
two events, and the subscript i indicates the association with a task τi or 
i .

Fork-join tasks are rigid parallel tasks, i.e. the number of processors required by
a fork-join task is fixed and specified externally to the scheduler [16], and consist of
multiple stages with data dependencies, as in [1, 2]. A fork-join task 
i is a Directed
Acyclic Graph (DAG) G(V,E), where vertices in V are subtasks and edges in E

are precedence dependencies [2]. In the graph, tasks are partitioned in segments and
stages, as illustrated in Fig. 5a. A subtask τ

σ,s
i is the s-th stage of the σ -th segment

and is annotated with its WCET C
σ,s
i . The WCET of a stage is equal across all

segments, i.e. ∀x, y : C
x,s
i = C

y,s
i . Each segment σ of 
i is mapped to a distinct

core. A fork-join task 
i is annotated with the static offset φ(
i), which marks the
start of its execution slot in �. The offset also admits a small positive jitter jφ , to
account for a slight desynchronization between cores and context switch overhead.

The activations of a fork-join task are modeled with event models. Once 
i is
activated, its stages are successively activated by the completion of all segments of
the previous stage, as in [1, 2]. Our approach differs from them in that it restricts the
scheduling of at most one stage of 
i in a cycle �, and the stage receives service at
the offset φ(
i). Note that the event arrival at a fork-join task is not synchronized
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Fig. 4 The composition of WCET of fork-join subtasks [34]. (a) WCET of a fork-join subtask.
(b) WCET of recovery

with its offset. The events at a fork-join task are queued at the first stage and only
one event at a time is processed (FIFO) [2]. A queued event is admitted when the
previous event leaves the last stage.

The interaction with Romain (the voter) is modeled in the analysis as part of the
WCET C

σ,s
i , as depicted in Fig. 4a. The WCET includes the on-chip communication

latency and state comparison overheads, as the Romain instance may be mapped to
an arbitrary core. Those can be obtained, e.g., with [38] along with task mapping and
scheduler properties to avoid over-conservative interference estimation and obtain
tighter bounds.

3.3 Error Model

Our model assumes a single error scenario caused by SEEs. We assume that all
errors affecting fork-join tasks can be detected and contained, ensuring integrity.
The overhead of error detection mechanisms is modeled as part of the WCET (cf.
Fig. 4a). Regarding independent tasks, we assume that an error immediately leads to
a task failure and assume also that its failure will not violate the WCRT guarantees
of the remaining tasks. Those assumptions are met, e.g., by Romain.2 Moreover, we
assume the absence of failures in critical components [13, 32], such as the OS, the
replica manager/voter Romain, and the interconnect (e.g., the NoC), which can be
protected as in [23, 39].

Our model provides recovery2 for fork-join tasks, ensuring their availability.
With a recovery slot in every cycle �, our approach is able to handle up to one
error per cycle �. However, the analysis in Sect. 4.3 assumes at most one error
per busy window for the sake of a simpler analysis (the concept will be introduced
in Sect. 4). The assumption is reasonable since the probability of a multiple error
scenario is very low and can be considered as an acceptable risk [24]. A multiple
error scenario occurs only if an error affects more than one replica at a time or if
more than one error occurs within the same busy window.

2Romain is able to detect and recover from all soft errors affecting user-level applications. For
details on the different error impacts and detection strategies, the interested reader can refer to [5,
12].
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3.4 Offsets

The execution of fork-join tasks in our approach is based on static offsets, which are
assumed to be provided as input to the scheduler. The offsets form execution slots
whose size do not vary during runtime, as seen in Fig. 3. Varying the slots sizes
would substantially increase the timing analysis complexity without a justifiable
performance gain. The offsets must satisfy two constraints:

Constraint 1 A slot for a fork-join task 
i must be large enough to fit the largest
stage of 
i . That is, ∀s, σ: ϕ(
i) ≥ C

σ,s
i + jφ .

Constraint 2 The recovery slot must be large enough to fit the recovery of
the largest stage of any fork-join task mapped to that core. That is, ∀i, s, σ :
ϕ(recovery)≥C

σ,s
i,rec + jφ .

where a one error scenario per cycle is assumed and C
σ,s
i,rec is the recovery WCET of

subtask τ
σ,s
i (cf. Sect. 4.3).

We provide basic offsets that satisfy Constraints 1 and 2. The calculation must
consider only overlapping fork-join tasks, i.e. fork-join tasks mapped to at least
one core in common. Offsets for non-overlapping fork-join tasks are computed
separately as they do not interfere directly with each other. The indirect interference,
e.g., in the NoC, is accounted for in the WCETs. First we determine the smallest
slots that satisfy Constraint 1:

∀
i : ϕ(
i) = max∀σ,s

{
C

σ,s
i

}+ jφ (2)

and the smallest recovery slot that satisfies Constraint 2:

ϕ(recovery) = max
∀
i,τ

σ,s
j ∈
i

{
C

σ,s
i,rec

}
+ jφ (3)

The cycle � is then the sum of all slots:

� =
∑
∀
i

{ϕ(
i)} + ϕ(recovery) (4)

The offsets then depend on the order in which the slots are placed inside �.
Assuming that the slots φ(
i) are sorted in ascending order on i and that the
recovery slot is the last one, the offsets are obtained by

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 
1

φ(
i−1)+ ϕ(
i−1) if x = 
i and i > 1

�− ϕ(recovery) if x = recovery

(5)
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4 Response-Time Analysis

The analysis is based on CPA and inspired by Axer [2] and Palencia and Harbour
[31]. In CPA, the WCRT is calculated with the busy window approach [43]. The
response time of an event of a task τi (resp. 
i) is the time interval between the event
arrival and the completion of its execution. In the busy window approach [43], the
event with the WCRT can be found inside the busy window. The busy window wi of
a task τi (resp. 
i) is the time interval where all response times of the task depend on
the execution of at least one previous event in the same busy window, except for the
task’s first event. The busy window starts at a critical instant corresponding to the
worst-case scheduling scenario. Since the worst-case scheduling scenario depends
on the type of task, it will be derived individually in the sequel.

Before we derive the analysis for fork-join and for independent tasks, let us
introduce the example in Fig. 5 used throughout the section. The taskset consists
of four independent tasks and two fork-join tasks, mapped to two cores. The task
priority on each core decreases from top to bottom (e.g., τ 1,1

1 has the highest priority
and τ4 the lowest).

4.1 Fork-Join Tasks

We now derive the WCRT for an arbitrary fork-join task 
i . To do that, we need
to identify the critical instant leading to the worst-case scheduling scenario. In case

Fig. 5 A taskset with 4 independent tasks and 2 fork-join tasks, and its mapping to 2 cores. Highest
priority at the top, lowest at the bottom [34]. (a) Taskset. (b) Mapping



68 E. A. Rambo and R. Ernst

of SPP, the critical instant is when all tasks are activated at the same time and the
tasks’ subsequent events arrive as early as possible [43]. In our case, the critical
instant must also account for the use of static offsets [31].

The worst-case scheduling scenario for 
2 on core 1 is illustrated in Fig. 6. 
2
is activated and executed at the same time on cores 1 and 2 (omitted). Note that,
by design, fork-join tasks do not dynamically interfere with each other. The critical
instant occurs when the first event of 
2 arrives just after missing 
2’s offset. The
event has to wait until the next cycle to be served, which takes time � + jφ when
the activation with offset is delayed by a jitter jφ . Notice that the WCETs of fork-
join tasks already account for the inter-core communication and synchronization
overhead (cf. Fig. 4a).

Lemma 1 The critical instant leading to the worst-case scheduling scenario of a
fork-join task 
i is when the first event of 
i arrives just after missing 
i’s offset
φ(
i).

Proof A fork-join task 
i does not suffer interference from independent tasks or
other fork-join tasks. The former holds since independent tasks always have lower
priority. The latter holds due to three reasons: an arbitrary fork-join task 
j always
receives service in its slot φ(
j ); the slot φ(
j ) is large enough to fit 
j ’s largest
subtask (Constraint 1); and the slots in a cycle � are disjoint. Thus, the critical
instant can only be influenced by 
i itself.

We prove by contradiction. Suppose that there is another scenario worse than
Lemma 1. That means that the first event can arrive at a time that causes a delay to

i larger than � + jφ . However, if the delay is larger than � + jφ , then the event
arrived before a previous slot φ(
i) and 
i did not receive service. Since that can
only happen if there is a pending activation of 
i and thus violates the definition of
a busy window, the hypothesis must be rejected. �	

Let us now derive the Multiple-Event Queueing Delay Qi(q) and Multiple-Event
Busy Time Bi(q) on which the busy window relies. Qi(q) is the longest time
interval between the arrival of 
i’s first activation and the first time its q-th activation

Fig. 6 Worst-case schedule for fork-join gang 
2 on core 1 (cf. Fig. 5) [34]
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receives service, considering that all events belong to the same busy window [2, 27].
For 
i , the q-th activation can receive service at the next cycle � after the execution
of q−1 activations of 
i lasting si ·� each, a delay � (cf. (cf. Lemma 1), and a jitter
jφ . This is given by

Qi(q) = (q − 1) · si ·�+�+ jφ (6)

where si is the number of stages of 
i and � is the cycle.

Lemma 2 The Multiple-Event Queueing Delay Qi(q) given by Eq. 6 is an upper
bound.

Proof The proof is by induction. When q=1, 
i has to wait for service at most until
the next cycle � plus an offset jitter jφ to get service for its first stage, considering
that the event arrives just after its offset (Lemma 1). In a subsequent q + 1-th
activation in the same busy window, Eq. 6 must also consider q entire executions
of 
i . Since 
i has si stages and only one stage can be activated and executed per
cycle �, it takes additional si ·� for each activation of 
i , resulting in Eq. 6. �	

The Multiple-Event Busy Time Bi(q) is the longest time interval between the
arrival of 
i’s first activation and the completion of its q-th activation, considering
that all events belong to the same busy window [2, 27]. The q-th activation of

i completes after a delay � (cf. Lemma 1), a jitter jφ , and the execution of q

activations of 
i . This is given by

Bi(q) = q · si ·�+ jφ + C
σ,s
i (7)

where C
σ,s
i is the WCET of 
i’s last stage.

Lemma 3 The Multiple-Event Busy Time Bi(q) given by Eq. 7 is an upper bound.

Proof The proof is by induction. When q=1, 
i has to wait for service at most until
the next cycle � plus an offset jitter jφ to get service for its first stage (Lemma 1),
plus the completion of the last stage of the activation lasting (si−1) ·�+C

σ,s
i . This

is given by

Bi(1) = (si − 1) ·�+�+ jφ + C
σ,s
i

= si ·�+ jφ + C
σ,s
i

(8)

In a subsequent q + 1-th activation in the same busy window, Eq. 7 must consider
q additional executions of 
i . Since 
i has si stages and only one stage can be
activated and executed per cycle �, it takes additional si · � for each activation of

i . Thus, Eq. 7. �	

Now we can calculate the busy window and WCRT of 
i . The busy window wi

of a fork-join task 
i is given by
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wi = max
q≥1, q∈N

{Bi(q) |Qi(q + 1) ≥ δ−i (q + 1)} (9)

Lemma 4 The busy window is upper bounded by Eq. 9.

Proof The proof is by contradiction. Suppose there is a busy window w̆i longer than
wi . In that case, w̆i must contain at least one activation more than wi , i.e. q̆ ≥ q+1.
From Eq. 9, we have that Qi(q̆) < δ−i (q̆), i.e. q̆ is not delayed by the previous
activation. Since that violates the definition of a busy window, the hypothesis must
be rejected. �	

The response time Ri(q) of the q-th activation of 
i in the busy window is given
by

Ri(q) = Bi(q)− δ−i (q) (10)

The worst-case response time R+i is the longest response time of any activation
of 
i observed in the busy window.

R+i = max
1≤q≤η+i (wi )

Ri(q) (11)

Theorem 1 R+i (Eq. 11) provides an upper bound on the worst-case response time
of an arbitrary fork-join task 
i .

Proof The WCRT of a fork-join task 
i is obtained with the busy window approach
[43]. It remains to prove that the critical instant leads to the worst-case scheduling
scenario, that the interference captured in Eqs. 6 and 7 are upper bounds, and that
the busy window is correctly captured by Eq. 9. These are proved in Lemmas 1, 2, 3,
and 4, respectively. �	

4.2 Independent Tasks

We now derive the WCRT analysis of an arbitrary independent task τi . Two types
of interference affect independent tasks: interference caused by higher priority
independent tasks and by fork-join tasks. Let us first identify the critical instant
leading to the worst-case scheduling scenario where τi suffers the most interference.

Lemma 5 The critical instant of τi is when the first event of higher priority
independent tasks arrives simultaneously with τi’s event at the offset of a fork-join
task.

Proof The worst-case interference caused by a higher priority (independent) task
τj under SPP is when its first event arrives simultaneously with τi’s and continue
arriving as early as possible [43].
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Fig. 7 The worst-case schedule for independent task τ4 on core 1 (cf. Fig. 5) [34]

The interference caused by a fork-join task 
j on τi depends on 
j ’s offset
φ(
j ) and subtasks τ

σ,s
j , whose execution times vary for different stages s. Assume

a critical instant that occurs at a time other than at the offset φ(
j ). Since a task 
j

starts receiving service at its offset, an event of τi arriving at time t > φ(
j ) can
only suffer less interference from 
j ’s subtask than when arriving at t = 0. �	

Fork-join subtasks have different execution times for different stages, which
leads to a number of scheduling scenarios that must be evaluated [31]. Each scenario
is defined by the fork-join subtasks that will receive service in the cycle � and
the offset at which the critical instant supposedly occurs. The scenario is called a
critical instant candidate S. Since independent tasks participate in all critical instant
candidates, they are omitted in S for the sake of simplicity.

Definition 1 Critical Instant Candidate S: the critical instant candidate S is an
ordered pair (a, b), where a is a critical offset and b is a tuple containing one subtask
τ

σ,s
j of every interfering fork-join task 
j .

Let us also define the set of candidates that must be evaluated.

Definition 2 Critical Instant Candidate Set S: the set containing all possible
different critical instant candidates S.

The worst-case schedule of the independent task τ4 from the example in
Fig. 5 is illustrated in Fig. 7. In fact, the critical instant leading to τ4’s WCRT
is at φ(
1) when τ

1,2
1 and τ

1,1
2 receive service at the same cycle �, i.e. S =

(φ(
1), (τ
1,2
1 , τ

1,1
2 )). Events of the independent task τ3 start arriving at the critical

instant and continue arriving as early as possible.
Let us now bound the interference I I

i (�t) caused by equal or higher priority
independent tasks in any time interval �t . The interference I I

i (�t) can be upper
bounded as follows [27]:
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I I
i (�t) =

∑
∀τj∈hpI (i)

η+j (�t) · Cj (12)

where hpI (i) is the set of equal or higher priority independent tasks mapped to the
same core as τi .

To derive the interference caused by fork-join tasks we need to define the Critical
Instant Event Model. The critical instant event model η̌σ,s

i (�t, S) of a subtask τ
σ,s
i ∈


i returns the maximum number of activations observable in any time interval �t ,
assuming the critical instant S. It can be derived from 
i’s input event model η+i (�t)

as follows:

η̌
σ,s
i (�t, S) = min

{
η+i
(
�tS +�− φ(
i)

)
, ψ
}− gt

(
sS, s, φS, φ(
i)

)
(13)

ψ =
⌊

�tS

� · si
⌋
+ ge

(
�tS mod (� · si) , � · (s − 1)

)
(14)

�tS = �t +� · (sS−1)︸ ︷︷ ︸
critical instant

stage

+ φS︸︷︷︸
critical instant

offset

(15)

where s is the stage of subtask τ
σ,s
i ; si is the number of stages in 
i ; φS is the

offset in S; sS is the stage of 
i in S; gt (a, b, c, d) is a function that returns 1 when
(a > b) ∨ (a = b ∧ c > d), 0 otherwise; and ge(a, b) is a function that returns 1
when a ≥ b, 0 otherwise.

Lemma 6 η̌
σ,s
i (�t, S) (Eq. 13) provides a valid upper bound on the number of

activations of τ
σ,s
i observable in any time interval �t , assuming the critical instant

S.

Proof The proof is by induction, in two parts. First let us assume sS=1 and φS=0,
neutral values resulting in �tS =�t and gt (sS, s, φS, φ(
i)) = 0. The maximum
number of activations of τ

σ,s
i seen in the interval �t is limited by the maximum

number of activations of the fork-join task 
i because a subtask τ
σ,s
i is activated

once per 
i’s activation, and limited by the maximum number of times that τ
σ,s
i can

actually be scheduled and served in �t . This is ensured in Eq. 13 by the minimum
function and its first and second terms, respectively.

When sS >1 and/or φS >0, the time interval [0,�t) must be moved forward so
that it starts at stage sS and offset φS . This is captured by �tS in Eq. 15 and by the
last term of Eq. 13. The former extends the end of the time interval by the time it
takes to reach the stage sS and the offset φS , i.e. [0,�tS). The latter pushes the start
of the interval forward by subtracting an activation of τ

σ,s
i if it occurs before the

stage sS and the offset φS , resulting in the interval [�tS −�t,�tS). Thus Eq. 13.
�	

The interference IFJ
i (�t, S) caused by fork-join tasks on the same core in any

time interval �t , assuming a critical instant candidate S, can then be upper bounded
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as follows:

IFJ
i (�t, S) =

∑
∀τσ,s

j ∈hpFJ (i)

η̌
σ,s
j (�t, S) · Cσ,s

j (16)

where hpFJ (i) is the set of fork-join subtasks mapped to the same core as τi .
The Multiple-Event Queueing Delay Qi(q, S) and Multiple-Event Busy Time

Bi(q, S) for an independent task τi , assuming a critical instant candidate S, can be
derived as follows:

Qi(q, S) = (q − 1) · Ci + I I
i (Qi(q, S))+ IFJ

i (Qi(q, S), S) (17)

Bi(q, S) = q · Ci + I I
i (Bi(q, S))+ IFJ

i (Bi(q, S), S) (18)

where q · Ci is the time required to execute q activations of task τi .
Equations 17 and 18 result in fixed-point problems, similar to the well-known

busy window equation (Eq. 9). They can be solved iteratively, starting with a very
small, positive ε.

Lemma 7 The Multiple-Event Queueing Delay Qi(q, S) given by Eq. 17 is an
upper bound, assuming the critical instant S.

Proof The proof is by induction. When q = 1, τi has to wait for service until the
interfering workload is served. The interfering workload is given by Eqs. 12 and 16.
Since η+j (�t) and Cj are upper bounds by definition, Eq. 12 is also an upper bound.

Similarly, since η̌
σ,s
j (�t, S) is an upper bound (cf. Lemma 6) and C

σ,s
j is an upper

bound by definition, 16 is an upper bound for a given S. Therefore, Qi(1, S) is also
an upper bound, for a given S.

In a subsequent q+1-th activation in the same busy window, Qi(q, S) also must
consider q executions of τi . This is captured in Eq. 17 by the first term, which is, by
definition, an upper bound on the execution time. From that, Lemma 7 follows. �	
Lemma 8 The Multiple-Event Busy Time Bi(q, S) given by Eq. 18 is an upper
bound, assuming the critical instant S.

Proof The proof is similar to Lemma 7, except that Bi(q, S) in Eq. 18 also captures
the completion of the q-th activation. It takes additional Ci , which is an upper bound
by definition. Thus Eq. 18 is an upper bound, for a given S. �	

The busy window wi(q, S) of an independent task τi is given by

wi(S) = max
q≥1, q∈N

{Bi(q, S) | Qi(q+1, S) ≥ δ−i (q+1)} (19)

Lemma 9 The busy window is upper bounded by Eq. 19.

Proof The proof is by contradiction. Suppose there is a busy window w̆i(S) longer
than wi(S). In that case, w̆i(S) must contain at least one activation more than wi(S),
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i.e. q̆ ≥ q + 1. From Eq. 19, we have that Qi(q̆, S) < δ−i (q̆), i.e. q̆ is not delayed
by the previous activation. Since that violates the definition of a busy window, the
hypothesis must be rejected. �	

The response time Ri of the q-th activation of a task in a busy window is given
by

Ri(q, S) = Bi(q, S)− δ−i (q) (20)

Finally, the worst-case response time R+i is found inside the busy window and
must be evaluated for all possible critical instant candidates S ∈ S . The worst-case
response time R+i is given by

R+i = max
S∈S

{
max

1≤q≤η+i (wi (S))

{Ri(q, S)}
}

(21)

where the set S is given by the following Cartesian products:

S = {φ(
j ), φ(
k), . . .
}× {σi(
j )× σi(
k)× . . .

}
(22)

where 
j , 
k, . . . are all fork-join tasks mapped to the same core as τi and σi(
j )

is the set of subtasks of 
j that are mapped to that core. When no fork-join tasks
interfere with τi , the set S = {(0, ())}.
Theorem 2 R+i (Eq. 21) returns an upper bound on the worst-case response time
of an independent task τi .

Proof We must first prove that, for a given S, R+i is an upper bound. R+i is
obtained with the busy window approach [43]. It returns the maximum response
time Ri(q, S) among all activations inside the busy window. From Lemmas 7 and 8
we have that Eqs. 17 and 18 are upper bounds for a given S. From Lemma 9 we
have that the busy window is captured by Eq. 19. Since the first term of Eq. 20 is
an upper bound and the second term is a lower bound by definition, Ri(q, S) is an
upper bound. Thus R+i is an upper bound for a given S. Since Eq. 21 evaluates the
maximum response time over all S ∈ S , R+i is an upper bound on the response time
of τi . �	

4.3 Error Recovery

Designed for mixed-criticality, our approach supports different recovery strategies
for different fork-join tasks (cf. Sect. 2.2). For instance, in DMR augmented with
checkpointing and rollback, recovery consists in reverting the state and re-executing
the error-affected stage in both replicas. In TMR, recovery consists in copying and
replacing the state of the faulty replica with the state of a healthy one. The different
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strategies are captured in the analysis by the recovery execution time, which depends
on the strategy and the stage to be recovered. The recovery WCET C

σ,s
i,rec of a fork-

join subtask τ
σ,s
i accounts for the adopted recovery strategy as illustrated in Fig. 4b.

Once an error is detected, error recovery is triggered and executed in the recovery
slot of the same cycle �. Figure 3 illustrates the recovery of the s-th stage of 
2’s
i-th activation.

Let us incorporate the error recovery into the analysis. For a fork-join task 
i ,
we must only adapt the Multiple-Event Busy Time Bi(q) (Eq. 7) to account for the
execution of the recovery:

Brec
i (q) = q · si ·�+ jφ + φ(recovery)− φ(
i)+ C

σ,s
i,rec (23)

where C
σ,s
i,rec is the WCET of the recovery of last subtask of 
i . The recovery of

another task 
j does not interfere with 
i’s WCRT. Only the recovery of one of 
i’s
subtasks can interfere with 
i’s WCRT. Moreover, since the recovery of a subtask
occurs in the recovery slot of the same cycle � and does not interfere with the
next subtask, only the recovery of the last stage of 
i actually has an impact on its
response time. This is captured by the three last terms of Eq. 23.

For an independent task τi , the worst-case impact of recovery of a fork-join task

j is modeled as an additional fork-join task 
rec with one subtask τ

σ,1
rec mapped to

the same core as τi and that executes in the recovery slot. The WCET C
σ,1
rec of τ

σ,1
rec

is chosen as the maximum recovery time among the subtasks of all fork-join tasks
mapped to that core:

Cσ,1
rec = max

∀τσ,s
j ∈hpFJ (i)

{
C

σ,s
i,rec

}
(24)

with 
rec mapped, Eq. 21 finds the critical instant, where the recovery C
σ,1
rec has the

worst impact on the response time of τi .

5 Experimental Evaluation

In our experiments we evaluate our approach with real as well as synthetic
workloads, focusing on the performance of the scheduler. First we characterize
MiBench applications [18] and evaluate them as fork-join (replicated) tasks in the
system. Then we evaluate the performance of independent (regular) tasks. Finally
we evaluate the approach with synthetic workloads when varying parameters of
fork-join tasks.
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Table 1 MiBench applications’ profile [34]

WCET Observed stages Grouped stages

[ms] #stages Max WCET [ms] #stages Max WCET [ms]

basicmath 32.48 19,738 0.02 5 6.50

bitcount 24.42 30 15.16 3 15.16

susan 9.63 12 9.59 1 9.63

blowfish 0.11 7 0.09 1 0.11

rijndael 13.17 93 0.37 3 5.91

sha 3.49 51 0.11 2 1.90

5.1 Evaluation with Benchmark Applications

5.1.1 Characterization

First we extract execution times and number of stages from MiBench automo-
tive and security applications [18]. They were executed with small input on an
ARMv7@1 GHz and a memory subsystem including a DDR3-1600 DRAM [8].
Table 1 summarizes the total WCET, observed number of stages, and WCET of the
longest stage (max). A stage is delimited by syscalls (cf. Sect. 2.2). We report the
observed execution times as WCETs. As pointed out in [2], stages vary in number
and execution time depending on the application and on the current activity in that
stage (computation/IO). This is seen, e.g., in susan, where 99% of the WCET is
concentrated in one stage (computation) while the other stages perform mostly IO
and are on average 3.34 μs long.

In our approach, the optimum is when all stages of a fork-join task have the
same WCET. There are two possibilities to achieve that: to aligned very long stages
in shorter ones or to group short, subsequent stages together. We exploit the latter
as it does not require changes to the error detection mechanism or to our model.
The results with grouped stages are shown on the right-hand side of Table 1. We
have first grouped stages without increasing the maximum stage length. The largest
improvement is seen in bitcount, where the number of stages reduces by one order of
magnitude. In cases where all stages are very short, we increase the maximum stage
length. When increasing the maximum stage length by two orders of magnitude,
the number of stages of basicmath reduces by four orders of magnitude. We have
manually chosen the maximum stage length. Alternatively the problem of finding
the maximum stage length can be formulated as an optimization problem that, e.g.,
minimizes the overall WCRT or maximizes the slack. Next, we map the applications
as fork-join tasks and evaluate their WCRTs.
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Fig. 8 WCRT of fork-join tasks with two segments derived from MiBench [34]

5.1.2 Evaluation of Fork-Join Tasks

Two applications at a time are mapped as fork-join tasks with two segments (i.e.,
replicas in DMR) to two cores (cf. Fig. 5). On each core, 15% load is introduced
by ten independent tasks generated with UUniFast [7]. We compare our approach
with a TDM-based scheduler and Axer’s Partitioned SPP [2]. In TDM, each fork-
join task executes (and recovers) in its own slot. Independent tasks execute in a third
slot, which replaces the recovery slot of our approach. The size of the slots is derived
from our offsets. For all approaches, the priority assignment for independent tasks is
deadline monotonic and considers that deadline equals period. In SPP, the deadline
monotonic priority assignment also includes fork-join tasks.

The results are plotted in Fig. 8, where ba.bi gives the WCRT of basicmath when
mapped together with bitcount. Despite the low system load, our approach also
outperforms SPP in all cases, with bounds 58.2% lower, on average. Better results
with SPP cannot be obtained unless the interfering workload is removed or highest
priority is given to the fork-join tasks [2], which violates DM. Despite the similarity
of how our approach handles fork-join tasks with TDM, the proposed approach
outperforms TDM in all cases, achieving, on average, bounds 13.9% lower. This
minor difference is because TDM slots must be slightly longer than our offsets to
fit an eventual recovery. Nonetheless, not only our approach can guarantee short
WCRT for replicated tasks but also provides for the worst-case performance of
independent tasks.

5.1.3 Evaluation of Independent Tasks

In a second experiment we fix bitcount and rijndael as fork-join tasks and vary
the load on both cores. The generated task periods are in the range [20, 500]
ms, larger than the longest stage of the fork-join tasks. The schedulability of the
system as the load increases is shown in Fig. 9. Our approach outperforms TDM
and SPP in all cases, scheduling 1.55× and 6.96× more tasksets, respectively.
Due to its non-work conserving characteristic, TDM’s schedulability is limited
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Fig. 10 Basicmath and rijndael as replicated tasks in DMR running on a dual-core configuration
with 20.2% load (5% load from independent tasks) [34]. (a) WCRT of independent tasks [ms]. (b)
WCRT of FJ tasks

to medium loads. SPP provides very short response times with lower loads but,
as the load increases, the schedulability drops fast due to high interference (and
thus high WCRT) suffered by fork-join tasks. For reference purposes, we also plot
the schedulability of SPP when assigning the highest priorities to the fork-join
tasks (SPP/hp). The schedulability in higher loads improves but losing deadline
monotonicity guarantees renders the systems unusable in practice. Moreover, when
increasing the jitter to 20% (relative to period), schedulability decreases 14.2% but
shows the same trends for all schedulers.

Figure 10 details the tasks’ WCRTs when the system load is 20.2%. Indeed,
when schedulable, SPP provides some of the shortest WCRTs for independent
tasks, and SPP/hp improves the response times of fork-join tasks at the expense
of the independent tasks’. Our approach provides a balanced trade-off between
the performance of independent tasks and of fork-join tasks, and achieves high
schedulability even in higher loads.

5.2 Evaluation with Synthetic Workload

We now evaluate the performance of our approach when varying parameters such
as stage length and cycle �.
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Fig. 11 Parameters of two fork-join tasks 
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2 with two segments running on a dual-core
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5.2.1 Evaluation of Fork-Join Tasks

Two fork-join tasks 
1 and 
2 with two segments each (i.e., replicas in DMR)
are in DMR) are mapped to two cores. The total WCETs3 of 
1 and 
2 are 15
and 25ms, respectively. Both tasks are sporadic, with a minimum distance of 1s
between activations. The number of stages of 
1 and 
2 is varied as a function
of the maximum stage WCET, as depicted in Fig. 11a. The length of the cycle �,
depicted in Fig. 11b, varies with the maximum stage WCET since it is derived from
them (cf. Sect. 3.4).

The system performance as the maximum stage lengths of 
1 and 
2 increase is
reported in Fig. 12. The WCRT of 
1 increases with the stage length (Fig. 12a) as it
depends on the number of stages and �’s length. In fact, the WCRT of 
1 is longest
when the stages of 
1 are the shortest and the stages of the interfering fork-join task
(
2) are the longest. Conversely, WCRT of 
1 is shortest when its stages are the
longest and the stages of the interfering fork-join task are the shortest. The same
occurs to 
2 in Fig. 12b. Thus, there is a trade-off between the response times of
interfering fork-join tasks. This is plotted in Fig. 13 as the sum of the WCRTs of

1 and 
2. As can be seen in Fig. 13, low response times can be obtained next and
above to the line segment between the origin (0, 0, 0) and the point (15, 25, 0), the
total WCETs1 of 
1 and 
2, respectively.

5.2.2 Evaluation of Independent Tasks

To evaluate the impact of the parameters on independent tasks, we extend the
previous scenario introducing 25% load on each core with ten independent tasks
generated with UUniFast [7]. The task periods are within the interval [15, 500] ms
for the first experiment, and the interval [25, 500] ms for the second. The priority

3The sum of the WCET of all stages of a fork-join task.



80 E. A. Rambo and R. Ernst

5
10

15
5 10 15 20 25

2
4
6
8

Max. stage
WCET Γ1 [ ]

Max. stage
WCET Γ2 [ ]

W
C

R
T
Γ 1

[1
02

]

(a)

5
10

15
5 10 15 20 25

2

4

6

8

Max. stage
WCET Γ1 [ ]

Max. stage
WCET Γ2 [ ]

W
C

R
T
Γ 2

[1
02

]

(b)

Fig. 12 Performance of fork-join tasks 
1 and 
2 as a function of the maximum stage WCET
[34]. (a) WCRT of 
1. (b) WCRT of 
2

Fig. 13 WCRT trade-off
between interfering fork-join
tasks [34]

5
10

15
5 10 15 20 25

2
4
6
8

Max. stage
WCET �1 [ms ]

Max. stage
WCET �2 [ms ]

W
CR

T
� 1

+
W

CR
T
� 2

[1
02 m
s

]

5
10

15
5 10 15 20 25

0
25
50
75
100

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

Sc
he

du
la
b
le

ta
sk
se
ts
[%

]

(a)

5
10

15
5 10 15 20 25

0
25
50
75

100

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

Sc
he

du
la
b
le

ta
sk
se
ts
[%

]

(b)

Fig. 14 Schedulable tasksets as a function of the maximum stage WCET of fork-join tasks 
1
and 
2 with 25% load from independent tasks [34]. (a) Task period interval [15–500] ms. (b) Task
period interval [25–500] ms

assignment is deadline monotonic and considers that the deadline is equal to the
period.

The schedulability as a function of the stage lengths is shown in Fig. 14.
Sufficiently long stages cause the schedulability to decrease as independent tasks
with short periods start missing their deadlines. This is seen in Fig. 14a when the
stage length of either fork-join task reaches 15 ms, the minimum period for the
generated tasksets. Thus, when increasing the minimum period of generated tasks
to 25 ms, the number of schedulable tasksets also increases (Fig. 14b).

The maximum stage length of a fork-join task has direct impact on the response
times and schedulability of the system. For the sake of performance, shorter stage
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lengths are preferred. However, that is not always possible because it would result
in a large number of stages or because of the application, which restricts the
minimum stage length (cf. Sect. 5.1.1). Nonetheless, fork-join tasks still are able to
perform well with appropriate parameter choices. Additionally, one can formulate
the problem of finding the stage lengths according to an objective function, such as
minimize the overall response time or maximize the slack. The offsets can also be
included in the formulation, as long as Constraints 1 and 2 are met.

6 Conclusion

This chapter started with an overview of the project ASTEROID. ASTEROID devel-
oped a cross-layer fault-tolerance approach to provide reliable software execution
on unreliable hardware. The approach is based on replicated software execution and
exploits the large number of cores available in modern and future architectures at a
higher level of abstraction without resorting to the inefficient hardware redundancy.
The chapter then focused on the performance of replicated execution and the replica-
aware co-scheduling, which was developed in ASTEROID.

The replica-aware co-scheduling for mixed-critical systems, where applications
with different requirements and criticalities co-exist, overcomes the performance
limitations of standard schedulers such as SPP and TDM. A formal WCRT analysis
was presented, which supports different recovery strategies and accounting for
the NoC communication delay and overheads due to replica management and
state comparison. The replica-aware co-scheduling provides for high worst-case
performance of replicated software execution on many-core architectures without
impairing the remaining tasks in the system. Experimental results with benchmark
applications showed an improvement on taskset schedulability of up to 6.9× when
compared to Partitioned SPP and 1.5× when compared to a TDM-based scheduler.
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Dependability Aspects in Configurable
Embedded Operating Systems

Horst Schirmeier, Christoph Borchert, Martin Hoffmann, Christian Dietrich,
Arthur Martens, Rüdiger Kapitza, Daniel Lohmann, and Olaf Spinczyk

1 Introduction

Future hardware designs for embedded systems will exhibit more parallelism and
energy efficiency at the price of being less reliable, due to shrinking structure
sizes, increased clock frequencies, and lowered operating voltages [9]. In embedded
control systems, the handling of soft errors—e.g., transient bit flips in the memory
hierarchy—is becoming mandatory for all safety integrity level (SIL) 3 or SIL 4
categorized safety functions [30, 35]. Established solutions stem mostly from
the avionics domain and employ extensive hardware redundancy or specifically
hardened hardware components [55]—both of which are too costly to be deployed
in commodity products.
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Software-based redundancy techniques, especially redundant execution with
majority voting in terms of TMR, are well-established countermeasures against soft
errors on the application level [24]. By combining them with further techniques—
such as arithmetic codes—even the voter as the single point of failure (SPOF) can
be eliminated [53]. However, all these techniques “work” only under the assumption
that the application is running on top of a soft-error-resilient system-software stack.

In this chapter, we address the problem of software-stack hardening for three dif-
ferent points in the system-software and fault-tolerance technique design space:

• In Sect. 3 we investigate soft-error hardening techniques for a statically con-
figured OS, which implements the automotive OSEK/AUTOSAR real-time
operating system (RTOS) standard [5, 40]. We answer the research question what
the general reliability limits in this scenario are when aiming at reliability as a
first-class design goal. We show that harnessing the static application knowledge
available in an AUTOSAR environment, and protecting the OS kernel with AN-
encoding, yields an extremely reliable software system.

• In Sect. 4 we analyze how programming-language and compiler extensions can
help to modularize fault-tolerance mechanisms. By applying the resulting fault-
tolerance modules to a dynamic commercial off-the-shelf (COTS) embedded
OS, we explore how far reliability can be pushed when a legacy software stack
needs to be maintained. We show that aspect-oriented programming (AOP) is
suitable for encapsulating generic software-implemented hardware fault toler-
ance (SIHFT) mechanisms, and can improve reliability of the targeted software
stack by up to 79%.

• Looking beyond bit flips in the memory hierarchy, in Sect. 5 we investigate
how a system-software stack can survive even more adverse fault models such
as whole-system outages. Using persistent memory (PM) technology for state
conservation, our findings include that software transactional memory (STM)
facilitates maintaining state consistency and allows fast recovery.

These works have been previously published in conference proceedings and
journals [8, 29, 36], and are presented here in a summarized manner. Section 6
concludes the chapter and summarizes the results of the DanceOS project, which
was funded by the German Research Foundation (DFG) over a period of 6 years
as part of the priority program SPP 1500 “Dependable Embedded Systems” [26]
(Fig. 1).

2 Related Work

Dependable Embedded Operating Systems While most work from the dependable-
systems community still assumes the OS itself to be too hard to protect, the topic of
RTOS reliability in case of transient faults has recently gained attention. The C3 μ-
kernel tracks system-state transitions at the inter-process communication (IPC) level
to be able to recover system components in case of a fault [50]. Their approach,
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however, assumes that faults are detected immediately and never turn into silent
data corruptions (SDCs), and that the recovery functionality itself is part of the
RCB. L4/Romain [19] employs system-call interception to provide transparent
thread-level TMR—and, hence, error detection,—but still requires a reliable μ-
kernel. The hypervisor approach of Quest-V [34] reduces the software-part of the
RCB even further—at the price of increasing the hardware-part for the required
virtualization support. In the end, however, all these approaches assume early and
reliable detection of faults and their strict containment inside the RCB, which our
three approaches provide.

Software-Based Soft-Error Detection and Correction The concept of AN-encoding
has been known for quite a while and has been taken up in recent years in
compiler- and interpreter-based solutions [45]. Yet, these generic realizations are
not practicable for realizing a RCB—not only due their immense runtime overhead
of a factor of 103 up to 105, but also due to the specific nature of low-level
system software. Thus, following our proven CoRed concept [28], we concentrate
the encoded execution to the minimal necessary points. Besides AN-encoding,
several more generic error detection and recovery mechanisms (EDMs/ERMs)
exist and have been successfully deployed. Shirvani et al. [48] evaluate several
software-implemented error-correcting codes for application in a space satellite to
obviate the use of a low-performance radiation-hardened CPU and memory. Read-
only data segments are periodically scrubbed to correct memory errors, whereas
protected variables must be accessed manually via a special API to perform error
correction. Similarly, Samurai [41] implements a C/C++ dynamic memory allocator
with a dedicated API for access to replicated heap memory. Programmers have
to manually invoke functions to check and update the replicated memory chunks.
The latter approach exposes the heap allocator as single point of failure, which
is not resilient against memory errors. To automate the hardening process, some
works extend compilers for transforming code to add fault tolerance [44]. These
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approaches are based on duplicating or even triplicating important variables of
single-threaded user-level programs. Our work differs in that we use the general-
purpose AspectC++ compiler that allows us to focus on the implementation of
software-based EDM/ERMs in the OS/application layer, instead of implementing
special-purpose compilers. AOP also allows to separate the “business logic” from
fault-tolerance implementations, which has, e.g., been pioneered by Alexandersson
et al. [2]—however at the cost of 300% runtime overhead.

State Consistency in Non-volatile Memories Maintaining state consistency in per-
sistent memory has been achieved on the level of process-wide persistence [10, 39]
and specialized file systems [13, 20]. Our DNV Memory approach shares the most
similarities with libraries that provide safe access to a persistent heap [6, 12, 54].
Mnemosyne [54] shows the overall steps that are needed to build a persistent heap,
while NV-Heaps [12] focuses mainly on usability aspects. Both libraries rely on
a transactional-memory model that stores logs in persistent memory and executes
expensive flush operations to ensure data consistency in presence of power failures.
In order to improve performance, the memory allocator of Makalu [6] guarantees
the consistency of its own meta data without the need of transactions. However, it
does not extend this ability to the data stored within. Thus, library support, similar
to Mnemosyne [54], is still needed to enforce durability. DNV Memory shares
with these approaches the transactional model and the goal to provide a persistent
heap, but aims at improving performance and lifetime of persistent applications by
reducing the amount of writes to persistent memory. Additionally, DNV Memory
provides transparent dependability guarantees that none of the previous work has
covered.

3 dOSEK: A Dependable RTOS for Automotive Applications

In the following, we present the design and implementation of dOSEK, an
OSEK/AUTOSAR-conforming [5, 40] RTOS that serves as reliable computing base
(RCB) for safety-critical systems. dOSEK has been developed from scratch with
dependability as the first-class design goal based on a two-pillar design approach:
First we aim for strict fault avoidance1 by an in-depth static tailoring of the kernel
towards the concrete application and hardware platform—without restricting the
required RTOS services. Thereby, we constructively minimize the (often redundant)
vulnerable runtime state. The second pillar is to then constructively reintegrate
redundancy in form of dependability measures to eliminate the remaining SDCs in
the essential state. Here, we concentrate—in contrast to others [4, 50]—on reliable
fault detection and fault containment within the kernel execution path (Sect. 3.2) by

1Strictly speaking, we aim to avoid errors resulting from transient hardware faults.
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employing arithmetic encoding [23] to realize self-contained data and control-flow
error detection across the complete RTOS execution path.

We evaluate our hardened dOSEK against ERIKA [21], an industry-grade open-
source OSEK implementation, which received an official OSEK/VDX certification
(Sect. 3.3). We present the runtime and memory overhead as well as the results of
extensive fault-injection campaigns covering the complete fault space of single-bit
faults in registers and volatile memory. Here, dOSEK shows an improvement of four
orders of magnitude regarding the SDC count, compared to ERIKA.

3.1 Development of a Fault-Avoiding Operating System

Essentially, a transient fault can lead to an error inside the kernel only if it affects
either the kernel’s control or data flow. For this, it has to hit a memory cell or register
that carries currently alive kernel state, such as a global variable (always alive),
a return address on the stack (alive during the execution of a system call), or a
bit in the status register of the CPU (alive only immediately before a conditional
instruction). Intuitively, the more long-living state a kernel maintains, the more
prone it is to transient faults. Thus, our first rule of fault-avoiding OS development
is: ➊ Minimize the time spent in system calls and the amount of volatile state,
especially of global state that is alive across system calls.

However, no kernel can provide useful services without any runtime state. So,
the second point to consider is the containment and, thus, detectability of data and
control-flow errors by local sanity checks. Intuitively, bit flips in pointer variables
have a much higher error range than those used in arithmetic operations; hence, they
are more likely to lead to SDCs. In a nutshell, any kind of indirection at runtime
(through data or function pointers, index registers, return addresses, and so on)
impairs the inherent robustness of the resulting system. Thus, our second rule of
fault-avoiding operating-system development is: ➋ Avoid indirections in the code
and data flow.

In dOSEK, we implement these rules by an extensive static analysis of the
application code followed by a subsequent dependability-oriented “pointer-less”
generation of the RTOS functionality. Our approach follows the OSEK/AUTOSAR
system model of static tailoring [5, 40], which in itself already leads to a significant
reduction of state and SDC vulnerability [27]. We amplify these already good results
by a flow-sensitive analysis of all application–RTOS interactions [17, 18] in order
to perform a partial specialization of system calls: Our system generator specializes
each system call per invocation to embed it into the particular application code. This
facilitates an aggressive folding of parameter values into the code. Therefore, less
state needs to be passed in volatile registers or on the stack (rule ➊). We further
achieve a pointer-less design by allocating all system objects statically as global
data structures, with the help of the generator. In occasions where pointers would be
used to select one object out of multiple possible candidates, an array at a constant
address with small indices is preferred (rule ➋).
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Fig. 2 Overview of the OS data kept in RAM of an example system composed of three tasks and
two alarms. Each box represents a 32-bit memory location. All kernel data are hardened using an
ANB-Code. The remaining application- and architecture-specific values are safeguarded by dual
modular redundancy (DMR) or parity bits

Figure 2 depicts the resulting state of this analysis by the example of a system
consisting of three tasks and two alarms: The remaining volatile state variables are
subsumed under the blocks Application, Architecture, and Kernel. The architecture-
independent minimal Kernel state is condensed to two machine words for the current
task’s priority, its id, and one machine word per task for the task’s dynamic priority
according to the priority ceiling protocol. Depending on the requirements of the
application, the kernel maintains the current state of additional resources: in this
case two alarms (three machine words each) and one counter (one machine word).
The Architecture blocks are related to the dispatching mechanism of the underlying
processor. In case of the IA-32, this is reduced to the administration of one stack
pointer per task.

The most frequently used (but far less visible) pointers are the stack pointer and
the base pointer. Albeit less obvious, they are significant: A corrupted stack pointer
influences all local variables, function arguments, and the return address. Here, we
eliminated the indirection for local variables by storing them as static variables at
fixed, absolute addresses, while keeping isolation in terms of visibility and memory
protection (rule ➋). Furthermore, by aggressively inlining the specialized system
calls into the application code, we reduce the spilling of parameter values and
return addresses onto the vulnerable stack, while keeping the hardware-based spatial
isolation (MPU/MMU-based AUTOSAR memory protection) between applications
and kernel using inline traps [15] (rule ➊).
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3.2 Implementing a Fault-Detecting Operating System

dOSEK’s fault-detection strategies can be split up into two complementary con-
cepts: First, coarse-grained hardware-based fault-detection mechanisms, mainly
by means of MPU-based memory and privilege isolation. Second, fine-grained
software-based concepts that protect the kernel-internal data/control flows.

Hardware-based isolation by watchdogs and memory protection units (MPUs)
are a widely used and a proven dependability measure. Consequently, dOSEK inte-
grates the underlying architecture’s mechanisms into its system design, leveraging a
coarse-grained fault detection between tasks and the kernel. We furthermore employ
hardware-based isolation to minimize the set of kernel-writable regions during
a system call, which leverages additional error-detection capabilities for faulty
memory writes from the kernel space. With our completely generative approach, all
necessary MPU configurations can be derived already at compile time and placed in
robust read-only memory (ROM).

The execution of the dOSEK kernel itself is hardened with a fine-grained
arithmetic encoding. All kernel data structures are safeguarded using a variant of
an AN-code [23] capable of detecting both data- and control-flow errors. The code
provides a constant common key A, allowing to uncover errors when calculating the
remainder, and a variable-specific, compile-time constant signature Bn detecting the
mix-up of two encoded values as well as the detection of faulty control flows—the
ANB-Code:

nenc = A · n + Bn

A particular feature of arithmetic codes is a set of code-preserving arithmetic
operations, which allow for computation with the encoded values. Hence, a
continuous sphere of redundancy is spanned, as the corresponding operands remain
encoded throughout the entire kernel execution.

In addition to the existing elementary arithmetic operations, dOSEK also requires
an encoded variant of the mandatory OSEK/AUTOSAR fixed-priority scheduling
algorithm [40]: The encoded scheduler is based on a simple prioritized task list.
Each task’s current dynamic priority is stored at a fixed location (see also Fig. 2),
with the lowest possible value, an encoded zero, representing the suspended state.
To determine the highest-priority task, the maximum task priority is searched by
comparing all task priorities sequentially. Thus, the algorithm’s complexity in space
and time is linear to the constant number of tasks. Figure 3 shows the basic concept
for three tasks: The sequence processes a global tuple of ANB-encoded values
storing the current highest-priority task id found so far, and the corresponding
priority (〈idg, priog〉, see Fig. 2). Sequential compare-and-update operations, based
on an encoded greater-equal decision on a tuple of values (ge_tuple), compare
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Fig. 3 General sequence of the encoded scheduling operation on the example of three tasks
(T1, T2, T3). All operations on signatures B are calculated already at compile time

the tuples’ priority value and update the global values, if necessary. The sequence
consists of five steps, as shown in Fig. 3:

(1) Initialize priog and idg to the first task.
(2–3) For all further tasks, compare the task’s priority to priog: If greater or equal,

update 〈idg, priog〉.
(4) Repeat the last step for the idle task.
(5) Recode the results to their original signatures.

The idle task priority is constantly bound to an encoded zero that is representing a
suspended state. Thus, if all previous tasks are suspended, the last comparison (in
step 4) will choose the idle task halting the system until the next interrupt.

Aside from the actual compare-and-update operation on fully encoded values,
the ge_tuple function additionally integrates control-flow error detection. For each
step, all signatures of the input operands (Bid,s1..s4, Bprio,s1..s4) and the signature of
the operation itself (Bge1..4) are merged into the resulting encoded values of the
global tuple. Each corresponding signature of a step is then applied in the next
operation accordingly. Thus, the dynamic values of the result tuple accumulate the
signatures of all preceding operations. As the combination of these compile-time
constant signatures is known before runtime, interspersed assertions can validate the
correctness of each step. Even after the final signature recode operation (step 5), any
control-flow error is still detectable by the dynamic signature. Thus, the correctness
of the encoded global tuple can be validated at any point in time. In effect, fault
detection is ensured, as all operations are performed on encoded values.

The remaining dynamic state highly depends on the underlying architecture.
Regarding the currently implemented IA-32 variant, we were able to reduce this
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Fig. 4 Simplified representation of the I4Copter task and resource constellation used as evaluation
scenario

runtime state to an array storing the stack pointers of preempted tasks, and an
corresponding index variable, as shown in Fig. 2. The variables are used within
each interrupt entry as well as during the actual dispatch operation. As they are not
involved in any arithmetic calculations, but only read and written, we can avoid the
overhead of the ANB-encoding in these cases and protect them by DMR or parity
checks, respectively.

3.3 Evaluation

For comparison, we chose ERIKA Enterprise [21], an industry-grade (i.e., formally
certified) open-source implementation of the automotive OSEK standard [40].

The evaluation is based on a realistic system workload scenario considering all
essential RTOS services, resembling a real-world safety-critical embedded system
in terms of a quadrotor helicopter control application (cf. Fig. 4). The scenario
consists of 11 tasks, which are activated either periodically or sporadically by one
of four interrupts. Inter-task synchronization is done with OSEK resources and a
watchdog task, observing the remote control communication. We evaluated several
variants of ERIKA and dOSEK, all running the same task set. As ERIKA does not
provide support for hardware-based memory protection, we also disabled the MPU
in dOSEK:

ERIKA Standard version of ERIKA with enabled sanity checks (SVN r3274).
dOSEK (unprotected) For the dOSEK base version only the indirection avoidance

and the generative approach are used against SDCs.
dOSEK (FT) The safeguarded kernel execution with encoded operations.
dOSEK (FT+ASS) Like FT, but with additional assertions obtained by a flow-

sensitive global control-flow analysis [18].
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The application flow is augmented with 172 checkpoints. Every RTOS under test
executes the application for three hyper periods, while, at the same time a trace
of visited checkpoints is recorded. It is the mission of the systems under test to
reproduce this sequence, without corrupting the application state. If the sequence
silently diverges in the presence of faults, we record a silent data corruption.2

The application state (task stacks) is checked for integrity at each checkpoint. To
evaluate the fault containment within the kernel execution, we further recorded an
SDC in case of violated integrity. Both SDC detection mechanisms were realized
externally by the FAIL* fault-injection framework [47] without influencing the
runtime behavior of the systems under test. Since FAIL* has the most mature
support for IA-32, we choose this architecture as our evaluation platform. FAIL*
provides elaborate fault-space pruning techniques that allow to cover the entire
space of effective faults, while keeping the total number of experiments manageable.
The evaluated fault space includes all single-bit faults in the main memory, in
the general-purpose registers, the stack pointer, and flags registers, as well as the
instruction pointer.

3.3.1 Fault-Injection Results

All OS variants differ in code size, runtime, and memory consumption—parameters
that directly influence the number of effective injected faults. To directly compare
the robustness independent of any other non-functional properties, we concentrate
on the resulting absolute SDC count, which represents the number of cases in which
the RTOS did not provide the expected behavior. Figure 5 shows, on a logarithmic
scale, the resulting SDC counts.

The results show that, compared to ERIKA, the unprotected dOSEK variant
already faces significantly fewer control-flow and register errors. This is caused by
the means of constructive fault avoidance, particularly the avoidance of indirections
in the generated code. The activation of fault tolerance measures (dOSEK FT)
significantly reduces the number of memory errors, which in total reduces the SDC
count compared to ERIKA by four orders of magnitude. The remaining SDCs can
further be halved by adding static assertions (dOSEK FT+ASS).

3.3.2 Memory- and Runtime Costs

On the downside, aggressive inlining to avoid indirections, but especially the
encoded scheduler and kernel execution path leads to additional runtime and
memory costs, which are summarized in Table 1. Compared again to ERIKA, the
SDC reduction by four orders of magnitude is paid for with a 4× increase in runtime
and a 20× increase in code size. As most of the code bloat is caused by the inlining

2Faults that lead to a hardware trap are not counted as silent, as they are handled by the kernel.
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Fig. 5 SDC distribution for the evaluated variants of the I4Copter scenario (Fig. 4 on a logarithmic
scale; pruned experiments are factored in). The encoded dOSEK system achieves an improvement
in the SDC count by four orders of magnitude compared to ERIKA (base)

Table 1 Memory- and
runtime cost

Code size Runtime
System (bytes) (instructions)

ERIKA 3782 38,912

dOSEK (unprotected) 14,985 29,223

dOSEK FT 53,956 110,524

dOSEK FT+ASS 71,049 121,583

dOSEK FT+ASS+OPT 24,955 90,106

of the encoded scheduler at each call site, we have added a fifth variant (dOSEK
FT+ASS+OPT) that employs further whole-program static optimizations to exclude
unnecessary scheduler invocations (see [17] for further details). This version is still
104× less vulnerable to SDCs, but reduces the runtime overhead to 2.5× and the
code overhead to 8×.

4 Modularizing Software-Based Memory Error Detection
and Correction

The dOSEK approach in the previous section showed the general reliability limits
when designing a static OS from scratch, focusing on reliability as a first-class
design goal. However, a different and quite common use case is that the require-
ments entail using a preexisting COTS embedded OS, which is often dynamic in the
sense that it provides an interface for creating and destroying threads or memory
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allocations at runtime. To protect this class of system-software stacks against
transient hardware faults—e.g., bit flips—in memory, we propose a software-based
memory-error recovery approach that exploits application knowledge about memory
accesses, which are analyzed at compile time and hardened by compiler-generated
runtime checks.

A central challenge is the placement of these runtime checks in the control
flow of the software, necessitating an analysis that determines which program
instructions access which parts of the memory. In general, this is an undecidable
problem for pointer-based programming languages; however, if we assume an
object-oriented programming model, we can reason that non-public data-structure
members are accessed only within member functions of the same class. Conse-
quently, data structures—or, objects—can be examined for errors by inserting a
runtime check before each member-function call.

In this section, we describe our experiences with devising such an object-level
error recovery in AspectC++ [51]—an AOP extension to C++,—and applying
it to the embedded Configurable operating system (eCos) [37]. Our software-
based approach, called Generic Object Protection (GOP), offers the flexibility to
choose from an extensible toolbox of error-detecting and error-correcting codes, for
example, CRC and Hamming codes.

4.1 Generic Object Protection with AspectC++

Our experience with the embedded operating system eCos shows that OS kernel
data structures are highly susceptible to soft errors in main memory [8]. Several
kernel data structures, such as the process scheduler, persist during the whole OS
uptime, which increases the chance of being hit by a random soft error.

As a countermeasure, OS kernel data structures can contain redundancy, for
example, a separated Hamming code [48]. Before an instance of such a data
structure—an object in object-oriented jargon—is used, the object can be examined
for errors. Then, after object usage, the Hamming code can be updated to reflect
modifications of the object.

Manually implementing such a protection scheme in an object-oriented program-
ming language is a tedious and error-prone task, because every program statement
that operates on such an object needs careful manipulation. Therefore, we propose
to integrate object checking into existing source code by AOP [32]. Over the last 19
years, we have developed the general-purpose AspectC++ programming language
and compiler [51] that extends C++ by AOP features. A result of the SPP-1500’s
DanceOS project is AspectC++ 2.0, which provides new language features that
allow for a completely modular implementation of the sketched object protection
scheme—the GOP. In the following, we describe these programming-language
features taking the example of GOP.
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Fig. 6 A simplified implementation of the GOP mechanism written in AspectC++

4.1.1 Generic Introductions by Compile-Time Introspection

Figure 6 shows the source code for a highly simplified implementation of the
GOP. The keyword aspect in the first line declares an entity similar to a
C++ class that additionally encompasses pointcut expressions and pieces of
advice. A pointcut expression is a reusable alias for names defined in the
program. For example, the pointcut critical() in line 2 lists two classes,
namely “Cyg_Scheduler” and “Cyg_Thread”, from the eCos kernel. This
pointcut is used by the following line that defines advice that those two classes
get extended by a slice introduction, which inserts an additional member into
these classes. The inserted member “code” is an instance of the template class
HammingCode<typename>, whose template argument is bound to the built-in
type JoinPoint. This type is only available in the body of advice code and offers
an interface to a compile-time introspection API.

AspectC++’s introspection API [7] provides the programmer with information
on the class type that is being extended by the slice introduction. We use this
information within the template class HammingCode to instantiate a generative
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C++ template metaprogram [14] that compiles to a tailored Hamming code for each
class. In particular, we use the number of existing data members (MEMBERS) prior
to the slice introduction, their types (Member<I>::Type) to obtain the size of
each member, and a typed pointer (Member<I>::pointer(T *obj)) to each
data member to compute the actual Hamming code. Furthermore, for classes with
inheritance relationships, we recursively iterate over all base classes that are exposed
by the introspection API. To simplify the iteration over this API, we implemented a
Join-Point Template Library (JPTL) that offers compile-time iterators for each API
entry.

4.1.2 Advice for Control Flow and Data Access

Once the Hamming code is introduced into the classes, we need to make sure that
the code is checked and updated when such an object is used. At first, the Hamming
code needs to be computed whenever an object of a protected class is instantiated.
The advice for construction in line 7 implements this requirement: after
a constructor execution, the update() function is invoked on the “code” data
member. The built-in pointer tjp->target() yields the particular object being
constructed (tjp is an abbreviation for this join point).

The lines 11–14 define further pointcuts that describe situations where the objects
are used. The pointcut function member(...) translates the existing pointcut
critical() into a set of all data members and member functions belonging
to classes matched by critical(). Thus, call(member(critical()))
describes all procedure calls to member functions of the particular classes. Likewise,
the pointcut function get(...) refers to all program statements that read a
member variable, and the other way around, set(...) matches all events in
the program that write to a particular member variable. The get/set pointcut
functions are new features of the AspectC++ language that notably allow observing
access to data members declared as public.

The advice in line 16 invokes the check() routine on the Hamming-
code sub-object based on the trigger_check() pointcut, that is, whenever a
member function is called, or a member variable is read or written. Similarly, the
advice in line 20 invokes the update() function after member-function calls
or writing to a member variable. Both pieces of advice invoke these routines only
if the caller object (tjp->that()) and the callee object (tjp->target())
are not identical. This is an optimization that avoids unnecessary checking when an
already verified object invokes a function on itself.

A call to any function is matched by the wild-card expression in line 25. There-
with, the advice definition in line 26 updates the Hamming code whenever a function
call leaves a critical object, as specified by within(member(critical())),
and when the caller object is not identical to the callee object. When the function
returns, the Hamming code gets checked by the advice in line 30.

By defining such generic pieces of advice, AspectC++ enables a modular
implementation of the GOP mechanism, completely separated from the remaining
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source code. More advice definitions exist in the complete GOP implementation,
for instance, covering static data members, non-blocking synchronization, or
virtual-function pointers [8].

4.2 Implementation and Evaluation

In the following, we describe the implementation of five concrete EDMs/ERMs
based on the GOP mechanism. Subsequently, we demonstrate their configurability
on a set of benchmark programs bundled with eCos. We show that the mechanisms
can easily be adapted to protect a specific subset of the eCos-kernel data structures,
e.g., only the most critical ones. After applying a heuristic that benchmark-
specifically chooses this data-structure subset, and protecting the corresponding
classes, we present fault injection (FI) experiment results that compare the five
EDMs/ERMs. Additionally, we measure their static and dynamic overhead, and
draw conclusions on the overall methodology.

4.2.1 EDM/ERM Variants

We implemented the five EDMs and ERMs listed in Table 2 to exemplarily
evaluate the GOP mechanism. For instance, a template metaprogram generates
an optimal Hamming code tailored for each data structure and we applied a bit-
slicing technique [48] to process 32 bits in parallel. Thereby, the Hamming-code
implementation can correct multi-bit errors, in particular, all burst errors up to the
length of a machine word (32 bits in our case). Besides burst errors, the CRC
variants (see Table 2) cover all possible 2-bit and 3-bit errors in objects smaller
than 256 MiB by the CRC-32/4 code [11]. Each EDM/ERM variant is implemented
as a generic module and can be configured to protect any subset of the existing C++
classes of the target system.

In the following subsections, we refer to the acronyms introduced in Table 2, and
term the unprotected version of each benchmark the “Baseline.”

Table 2 EDM/ERM variants, and their effective line counts (determined by cloc)

Variant Description (mechanisms applied on data member granularity) LOC

CRC CRC-32, using SSE 4.2 instructions (EDM) 163

TMR Triple modular redundancy: two copies + majority voting (EDM/ERM) 124

CRC+DMR CRC (EDM) + one copy for error correction (ERM) 210

SUM+DMR 32-Bit two’s complement addition checksum (EDM) + one copy (ERM) 198

Hamming SW-implemented Hamming code (EDM/ERM), processing 32 bits in parallel 355

Framework GOP infrastructure, basis for all concrete EDM/ERM implementations 2371
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4.2.2 Evaluation Setup

We evaluate the five EDM/ERM variants on eCos 3.0 with a subset of the benchmark
and test programs that are bundled with eCos itself, namely those 19 implemented in
C++ and using threads (omitting CLOCK1 and CLOCKTRUTH due to their extremely
long runtime). More details on the benchmarks can be found in previous work [8].
Because eCos currently does not support x64, all benchmarks are compiled for i386
with the GNU C++ compiler (GCC Debian 4.7.2–5), and eCos is set up with its
default configuration.

Using the FAIL* FI framework [47], we simulate a fault model of uniformly
distributed transient single-bit flips in data memory, i.e., we consider all program
runs in which one bit in the data/BSS segments flips at some point in time. Bochs,
the IA-32 (x86) emulator back end that FAIL* currently provides, is configured to
simulate a modern 2.666 GHz x86 CPU. It simulates the CPU on a behavior level
with a simplistic timing model of one instruction per cycle, also lacking a CPU
cache hierarchy. Therefore the results obtained from injecting memory errors in this
simulator are pessimistic, as we expect a contemporary cache hierarchy would mask
some main-memory bit flips.

4.2.3 Optimizing the Generic Object Protection

As described in Sect. 4.1.1, the generic object-protection mechanisms from Table 2
can be configured by specifying the classes to be protected in a pointcut expression.
Either a wild-card expression selects all classes automatically, or the pointcut
expression lists a subset of classes by name. In the following, we explore the trade-
off between the subset of selected classes and the runtime overhead caused by the
EDM/ERMs.

We cannot evaluate all possible configurations, since there are exponentially
many subsets of eCos-kernel classes—the power set. Instead, we compile each
benchmark in all configurations that select only a single eCos-kernel class for
hardening. For these sets that contain exactly one class each, we measure their
simulated runtime, and subsequently order the classes from the least to most runtime
overhead individually for each benchmark. This order allows us to cumulatively
select these classes in the next step: We compile each benchmark again with
increasingly more classes being protected (from one to all classes, ordered by
runtime). Observing the cumulative runtimes of the respective class selections
[8], the benchmarks can be divided into two categories, based on their absolute
runtime:

1. Long runtime (more than ten million cycles): For any subset of selected
classes, the runtime overhead stays negligible. The reason is that the long-
running benchmarks spend a significant amount of time in calculations on the
application level or contain idle phases.
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2. Short runtime (less than ten million cycles): The EDM/ERM runtime overhead
notably increases with each additional class included in the selections. These
benchmarks mainly execute kernel code.

After conducting extensive FI experiments on each of the cumulatively protected
programs, it turns out that for our set of benchmarks, the following heuristic
yields a good trade-off between runtime and fault tolerance: We only select a
particular class if its protection incurs less than 1 percent runtime overhead. Using
this rule of thumb can massively reduce the efforts spent on choosing a good
configuration, as the runtime overhead is easily measurable without running any
costly FI experiments. However, in 6 of the initial 19 benchmarks, there are no
classes that can be protected with less than 1% overhead. Those programs are most
resilient without GOP (see Sect. 4.3 for further discussion).

4.2.4 Protection Effectiveness and Overhead

Using this optimization heuristic, we evaluate the EDM/ERM mechanisms
described in Table 2. Omitting the aforementioned six benchmarks that our
heuristic deems not protectable, Fig. 7 shows FI results from an FI campaign
entailing 46 million single experiment runs, using the extrapolated absolute failure
count (EAFC) as a comparison metric that is proportional to the unconditional
failure probability [46]. The results indicate that the five EDM/ERMs mechanisms
are similarly effective in reducing the EAFC, and reduce the failure probability
by up to 79% (MBOX1 and THREAD1, protected with CRC) compared to the
baseline. The total number of system failures—compared to the baseline without
GOP—is reduced by 69.14% (CRC error detection), and, for example, by 68.75%
(CRC+DMR error correction). Note that some benchmarks (e.g., EXCEPT1 or
MQUEUE1) show very little improvement; we will discuss this phenomenon in
Sect. 4.3.

Of course, the increase in system resiliency comes at different static and dynamic
costs. With the GOP in place, the static binary sizes (Fig. 8) can grow quite
significantly by on average 57% (CRC) to 120% (TMR) (up to 229% in the case of
TMR and the KILL benchmark)—showing increases in the same order of magnitude
as those observed in the dOSEK evaluation (Sect. 3.3.2). Looking closer, the DATA
sections of all baseline binaries are negligibly tiny (around 450 bytes) and increase
by 5% up to 79%. The BSS sections are significantly larger (in the tens of kilobytes),
and vary more between the different benchmarks. They grow more moderately by
below 1% up to 15%. In contrast, the code size (TEXT) is even larger in the baseline
(23–145 kiB), and the increases vary extremely between the different variants:
While CRC increases the code by an average of 114%, CRC+DMR on average
adds 204%, SUM+DMR 197%, Hamming 200%, and TMR is the most expensive
at an average 241% code-size increase.

But although the static code increase may seem drastic in places, low amounts
of code are actually executed at runtime, as we only protected classes that introduce
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Fig. 7 Protection effectiveness for different EDM/ERM variants
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less than 1% runtime overhead (see Sect. 4.2.3). Verifying the runtime on real
hardware (an Intel Core i7-M620 CPU running at 2.66 GHz), we confirm that
the real-world runtime overhead totals at only 0.36% for all variants except for
TMR (0.37%). The results indicate that the GOP—when configured appropriately—
involves negligible runtime overhead on real hardware.

4.3 Discussion

As software-implemented error detection and correction always introduces a run-
time overhead, protected variants naturally run longer than their unprotected
counterparts, increasing the chance of being hit by memory bit flips (assuming
them to be uniformly distributed). Consequently, there exists a break-even point
between, metaphorically, quickly crossing the battlefield without protection (and a
high probability that a hit is fatal), and running slower but with heavy armor (and
a good probability to survive a hit). The benchmarks in our initial analysis [8] we
identified to be not effectively protectable with the GOP are on the unfavorable side
of this break-even point: The additional attack surface from the runtime and memory
overhead outweighs the gains from being protected for all configurations. Also,
some benchmarks are just barely profiting from the GOP, such as, e.g., EXCEPT1
or MQUEUE1 (see Fig. 7).

A more detailed analysis of what distinguishes these benchmarks from the others
reveals that they actually represent the pathologic worst case for GOP: Unlike
“normal” applications that spend a significant amount of time in calculations on
the application level, or waiting for input or events from the outside, this subset of
benchmarks only executes eCos system calls. This reduces the time frame between
an update() after the usage of a system object, and the check() at the begin of
the next usage (cf. Sect. 4.1.2), to a few CPU cycles. The fault resilience gains are
minimal, and the increased attack surface all in all increases the fault susceptibility
significantly. Nevertheless, we do not believe the kernel-usage behavior of these
benchmarks is representative for most real-world applications, and do not expect
this issue to invalidate our claim that GOP is a viable solution for error detection
and correction in long-living data structures.

For the remaining benchmarks, the analysis in Sect. 4.2.4 shows that the EDM/
ERMs mainly differ in their static overhead. CRC is clearly the best choice when
detection-only suffices. For error correction, the Hamming code turns out best. The
high redundancy of the DMR variants and TMR are overkill—at least unless much
more adverse fault models are considered.
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5 Conserving Consistent State in Persistent Memory with
Software Transactional Memory

Recent advances in persistent memory (PM) enable fast, byte-addressable main
memory that maintains its state across power-cycling events. To survive power
outages and prevent inconsistent application state, current approaches introduce
persistent logs and require expensive cache flushes. In fact, these solutions can
cause a performance penalty of up to 10× for write operations on PM. With respect
to wear-out effects, and a significantly lower write performance compared to read
operations, we identify this as a major flaw that impacts performance and lifetime of
PM. Being already persistent, data corruptions in PM cannot be resolved by simply
restarting a system. Without countermeasures this limits the usability of PM and
poses a high risk of a permanently inconsistent system state.

In this section, we present DNV Memory, a library for PM management. For
securing allocated data against power outages, multi-bit faults that bypass hardware
protection and even usage violations, DNV Memory introduces reliable transactions.
Additionally, it reduces writes to PM by offloading logging operations to volatile
memory, while maintaining durability on demand by an early detection of upcoming
power failures. Our evaluation shows a median overhead of 6.5%, which is very low
considering the ability to repair up to 7 random bit-errors per word. With durability
on demand, the performance can be even improved by a factor of up to 3.5 compared
to a state-of-the-art approach that enforces durability on each transaction commit.

5.1 System Model

We assume that hybrid system architectures equipped with both, volatile and
persistent main memory, will become a commodity. This implicates that the
execution state of processes will be composed of volatile and persistent parts.

While Phase Change Memory (PCM) is the most promising PM tech-
nology today, PM modules can also be built using resistive random-access
memory (RRAM), spin-transfer-torque magnetoresistive random-access memory
(STT-MRAM), or even battery-backed DRAM. Thereby, all processes in a system
should be able to access PM directly through load and store operations in order to
achieve optimal performance.

CPU caches can be used to further speed up access to persistent data. However,
in order to survive power failures, cache lines containing data from PM must be
flushed and the data must reach the Durability Domain of the PM module before
the machine shuts down due to a power loss. This requires platform support in form
of an asynchronous DRAM refresh (ADR) [49] or a Flush Hint Address [1]. Under
these premises, we assume that word-level power failure atomicity is reached.

Depending on the used main-memory technology, various effects exist that may
cause transient faults as previously outlined. Additionally, PCM and RRAM have
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a limited write endurance that lies in the range of 106 up to 1010 operations [31].
Once worn out, the cell’s value can only be read but not modified anymore.

We assume that all static random-access memory (SRAM) cells inside the
CPU are guarded by hardware fault tolerance and are sufficiently reliable to
ensure correct operation. Of course reliable DRAM supporting hardware error
correction code (ECC) exists and PM can be protected by hardware solutions too.
However, the common hardware ECC mechanisms only provide single-bit-error
correction, double-bit-error detection (SECDED) capabilities, which is not always
sufficient [52]. We assume that due to economic reasons not every PM module
will support the highest possible dependability standard, leaving a fraction of errors
undetected. Some PM modules may even lack any hardware protection. This paves
the way for software-based dependability solutions.

5.2 Concepts of DNV Memory

The main goal of our design is to provide the familiar malloc interface to application
developers for direct access to PM. At the same time, we want data stored in PM to
be robust against power failures, transient faults, and usage errors.

Our core API functions (see Table 3(a) and (b)) resemble the interface of
malloc and free. The only additional requirement for making legacy volatile
structures persistent with DNV Memory is using our API functions and wrapping all
persistent memory accesses in atomic blocks (see Table 3(e)).

These atomic blocks provide ACID3 guarantees for thread safety, and addition-
ally preserve consistency in case of power failures. Furthermore, DNV Memory
combines software transactional memory (STM) with the allocator to manage

Table 3 Overview of the DNV Memory application programming interface (API)

Category Function Description Ref.

Core API
void* dnv_malloc(size_t sz) Allocates persistent memory like

malloc(3)
(a)

void dnv_free(void∗ ptr) Releases persistent memory like
free(3)

(b)

Static
Variables

DNV_POD variable Statically places plain old data in
PM at definition

(c)

DNV_OBJ variable Statically places the object in PM at
definition

(d)

Transactions __transaction_atomic{. . . } Atomic block with ACID guaran-
tees and reliability

(e)

3Atomicity, consistency, isolation, durability.
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software-based ECC. Every data word that is accessed during a transaction is
validated and can be repaired if necessary.

In order to store entry points to persistent data structures that survive process
restarts, DNV Memory provides the possibility to create static persistent variables
(Table 3(c) and (d)). On top of this core functionality, DNV Memory introduces the
concepts durability on demand and reliable transactions that are explained in the
following.

If a power failure occurs during the update of persistent data structures, the DNV
Memory might be in an inconsistent state after restart. To prevent this, DNV Memory
follows the best practices from databases and other PM allocators [12, 54] and wraps
operations on PM in atomic blocks. This can be achieved with STM provided by
modern compilers or libraries like TinySTM [22]. The transactions must also be
applied to the allocator itself, as its internal state must be stored in PM as well.

Different to previous works, DNV Memory aims at minimizing write accesses
to PM. We store all transaction logs in volatile memory and utilize a power-failure
detection to enforce durability on demand. When a power outage is imminent, the
operating system copies the write-back logs back to PM in order to prevent state
inconsistency. Therefore, every thread has to register its volatile memory range for
the write-back log at our kernel module, which in turn reserves a PM range for a
potential backup copy. After restart, the write-back logs are restored from PM, and
every unfinished commit is repeated.

Since durability is actually required only in case of a power failure or process
termination, memory fences and cache flushing can be performed on demand. This
preserves persistent data inside the CPU cache and consequently reduces writes
to PM. Additionally, since memory within a CPU is well protected by hardware,
persistent data inside the cache is less susceptible to transient faults and can be
accessed faster.

Enforcing durability on demand requires the ability to detect power failures
in advance. For embedded devices, the power-outage detection is a part of the
brownout detection and state of the art [43]. On servers and personal computers,
power outages can be detected via the PWR_OK signal according to the ATX power
supply unit (PSU) design guide [3]. Although the PWR_OK signal is required to
announce a power outage at least 1 ms in advance, much better forecasts can be
achieved in practice. For instance, some Intel machines provide a power-failure
forecast of up to 33 ms [39]. An even better power-failure detection can be achieved
by inspecting the input voltage of the PSU with a simple custom hardware [25]. With
this approach, power failures can be detected more than 70 ms in advance, which
leaves more than enough time to enforce durability and prevent further modification
of persistent data.

Crashes that are not caused by power failures can be handled just like power
failures if durability can be secured. For instance, our kernel module is aware of any
process using PM that terminates and enforces durability in that case. Crashes in the
operating-system kernel can be handled either as part of a kernel-panic procedure,
or by utilizing a system like Otherworld [16].
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Fig. 9 DNV Memory ECC

In order to protect persistent data from corruption, DNV Memory reserves
additional memory in each allocation that is meant to store ECC data. Afterwards
fault tolerance is provided through reliable transactions.

As described in the previous section, all accesses to PM should be wrapped by
atomic blocks in order to protect persistent data from power failures. These atomic
blocks simply wrap all read and write operations in TM_LOAD and TM_STORE
functions provided by the STM library, which in consequence control every word
access. In combination with support from the memory allocator, this can be
exploited to provide transparent fault tolerance.

Essentially, any ECC can be used to provide fault tolerance in software. For
instance, we considered the SECDED Hamming code that is common in hardware
protected memory. It protects 64-bit words with additional 8 bits, resulting in a
12.5% memory overhead. However, if implemented in software, the Hamming code
would highly impact the performance of the application. Additionally, as already
mentioned, we do not think that SECDED is enough to protect persistent data.
Consequently, we decided to implement an ECC that provides a high multi-bit
error correction with a memory overhead no more than dual modular redundancy.
In addition, we want a fast error detection in software by exploiting commonly
available hardware support. In general, whenever a data word W is written inside
an atomic block, an ECC word E is created and stored in the additional space that
the allocator has reserved. In theory, any fault-tolerant encoding is possible as long
as error detection can be conducted in a few CPU cycles.

For DNV Memory we combine cyclic redundancy check (CRC) for fast error
detection with an error location hint. Thus, we subdivide E into two halves C and
D as shown in Fig. 9. The error detection half word D is generated with CRC32c
(D = CRC32c(W)). We chose CRC as hardware support is available on many
architectures, including most commodity CPUs. Additionally, with CRC32c—
which is supported by SSE 4.2,—a Hamming distance of 8 is achieved on a word
length of 64 bits [33]. Without further assistance, error correction of up to 3 bits
can be achieved by guessing the error location. However, by augmenting the CRC-
based error detection with an error location hint C, less trials are needed and more
bit-errors can be corrected. Inspired by RAID level 5 [42], we subdivide the data
word W into two halves A and B and compute C according to Eq. (1).

C = A⊕ B ⊕D (1)
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The data validation takes place during a transaction whenever a word W is read for
the first time. At that point, we recompute E′ from W and compare its value with
E. Normal execution can continue if both values match. Otherwise error correction
is initiated.

Since errors can be randomly distributed across W and E, we start the error
correction by narrowing the possible locations of errors. Therefore, we compute the
error vector F via Eq. (2), which indicates the bit position of errors.

F = A⊕ B ⊕ C ⊕D (2)

This information is, however, imprecise, as it is unknown whether the corrupted bit
is located in A, B, C, or D. Thus, for f errors detected by F , 4f repair candidates
Ri are possible, and are computed via Eq. (3). The masking vectors Ma , Mb, Mc,
Md are used to partition F between all four half words.

Ri = Wi‖Ei

Wi = A⊕ (F ∧Ma)‖B ⊕ (F ∧Mb)

Ei = C ⊕ (F ∧Mc)‖D ⊕ (F ∧Md)

(3)

To find the repair candidate Rs that contains the right solution, each Ri needs to
be validated by recomputing E′i from Wi and compare it to Ei . In order to repair
all errors, exactly one Rs must be found with matching E′i and Ei . For instance, if
all errors are located in A, the repair candidate using Ma = F and other masking
vectors set to zero will be the correct result. Additionally, all combinations need to
be considered that have an error at the same bit position in two or all half words, as
these errors extinguish each other in C.

Please note that the set of repair candidates may yield more than one solution
that can be successfully validated if more than three errors are present. To prevent
a false recovery, all repair candidates must be validated for up to n errors. As an
optimization step, we estimate n by counting the population in E⊕E′ and limit the
result to a maximum of n = 7.

To optimize the performance in a cache-aware way, we store the ECC words
interleaved with the original words W as presented in Fig. 10. However, this
interleaved data layout cannot be accessed correctly outside atomic blocks because
the original layout is always expected here. Unfortunately, omitting atomic blocks
around PM access is a very common mistake. We encountered such usage errors in
every single STAMP benchmark [38], and whenever we ported or wrote persistent
applications ourselves. Since the access to PM outside atomic blocks should be
prevented to keep data consistent during power failures, we introduce the concept
of a transaction staging (TxStaging) section as shown in Fig. 10. All memory that is
allocated by DNV Memory has addresses belonging to the TxStaging section. The
same applies to the location of persistent static variables. The TxStaging section
is only a reserved virtual address space without any access rights. Consequently,
any access to this segment will cause a segmentation fault that is easy to debug.
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stored data layout

PVA SectionTxStaging unused
N 2NAddr. 3N1.5N

original data layout
W0W0 W1W1 W2W2 W3W3W0 W1 W2 W3 W0W0 W2W2E0E0 W1W1 E1E1 E2E2 W3W3 E3E3W0 W2E0 W1 E1 E2 W3 E3

Fig. 10 DNV Memory persistent data layout and memory sections

However, inside an atomic block every access to the TxStaging section is intercepted
by the STM library and redirected to the persistent virtual address (PVA) section
where the actual persistent data is stored. To simplify the address transformation, the
PVA section should be located at the address of the TxStaging section multiplied by
2. For instance, assuming the TxStaging section begins at address 0x1000 the PVA
section should be placed at 0x2000. In that case a 32-byte object that is located in
the address range from 0x1000 to 0x101f will be transformed into the address
space 0x2000 to 0x203f as shown in Fig. 10.

5.3 Evaluation

We implemented DNV Memory on Linux in the form of a user-space library with a
small companion kernel module and a hardware power-failure detector. Our design
does not require any changes to the operating-system kernel or the machine itself.
All components are pluggable and can be replaced by more extended solutions if
needed. All user-space code is written in C++ and compiled with an unmodified
GCC 5.4.0. A small linker-script extension provides additional sections like the
TxStaging or the PVA section as shown in Fig. 10.

To show the feasibility of durability on demand, we artificially introduced power
failures and measured the time between the detection of a power failure and the
eventual machine shutdown. This period is referred as the shutdown forecast,
and the results of 100 experiments are shown in Fig. 11. Additionally, the time
of critical tasks in the event of a power failure is shown here. As can be seen,
power failures can be detected sufficiently early to conduct all necessary durability
measures. Counterintuitively, an idling CPU has a negative impact on the feasibility
of the approach because the CPU enters the a power-saving mode with reduced
performance. Additionally, less energy is stored within the power supply in the event
of a power failure, thus leading to a quicker shutdown.

The performance impact of durability on demand was evaluated with applications
from the STAMP benchmark suite [38] and the Memcached key-value store that
was retrofitted with transactions. Figure 12 shows for each application the average
relative runtime out of 100 measurements together with the 90% quantile that is
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Fig. 11 Duration of critical
tasks. A Heavy workload is
achieved through kernel
compilation

Measurement Workload Time in ms
min max

Stop CPU and Heavy 2.3 3.3
Flush Cache Idle 4.4 5.6

Store Heavy 3.8 4.8
Write-Back Log Idle 7.4 8.6

Shutdown Heavy 34.6 39.4
Forecast Idle 25.2 36.8

Fig. 12 Application runtime
under durability on demand
in comparison to durability
on commit (100% baseline)
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indicated by the error bars. As the 100% baseline we used the state of the art,
which enforces durability on each transaction commit. The results highly correlate
with the cache efficiency of the application. For instance, little to no performance
impact was achieved for Bayes, Labyrinth, and Yada, which operate on large work
sets and show large transactions. If the transactions become large, they do not
fit well into the cache and therefore do not benefit from locality, which severely
impacts performance. Enforcing durability in this case has a low impact because the
overhead from memory barriers and cache flushing becomes negligible. The other
benchmarks, however, have moderate to small work sets, therefore a significant
performance increase of up to 3.5× can be observed.

To investigate the error detecting and correcting capabilities of DNV Memory, we
conducted one billion fault-injection experiments, for one to seven-bit errors each.
Every fault-injection experiment used a random word and bit-error positions that
were randomly distributed over the original data and its corresponding ECC word.
Only in the case of 7-bit errors, a small fraction of 0.000012163% fault injections
produced ambiguous repair solutions that prevented a correction. In all other cases,
including all errors up to 6-bit, a detection and correction was always successful.
As can be seen in Fig. 13 the repair time increases exponentially with the number of
flipped bits. However, even for correcting seven-bit errors, the mean error-repair
time is less than 1.4 ms, which is acceptable considering the low probability of
errors. Without any error, the validation only takes 34 ns.

For the performance evaluation of reliable transactions we again used STAMP
benchmark applications [38] and Memcached. The bars depicted in Fig. 14 show
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Fig. 13 Time to repair bit
errors with reliable
transactions

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

1 2 3 4 5 6 7

sn
ni

e
mitriape

R

# Bit errors

Fig. 14 Performance impact
of reliable vs. traditional
transactions (100% baseline)
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the mean runtime of each benchmark. All values are relative to plain transactional
execution (the 100% baseline), and the error bars represent the 95% and the 5%
quantile. Over all applications, a median runtime of 106.5% is achieved with reliable
transactions. Applications above this median have a workload that is dominated by
reads or short transactions, hence the overhead of data verification has a higher
impact here. Applications with a balanced or write-driven workload, however, have
a higher runtime impact from transactions in general, thus the overhead that comes
from reliable transactions is less prevalent. In summary, these results indicate a very
acceptable performance impact—especially when considering the error-correcting
capabilities of the approach.

5.4 Discussion

DNV Memory provides system support for dependable PM. Unlike previous
approaches, DNV Memory enforces durability on demand, which in turn
reduces write operations on PM and therefore improves reliability, lifetime, and
performance. For tolerating power failures, DNV Memory uses software transactions
that also include and secure the allocator itself. Our system even goes one step
further and provides fault tolerance via software transactional memory. As our
evaluation showed, DNV Memory protects data at word granularity, with an ECC
word that is capable of detecting and correcting a random distributed seven-bit
error, which is by far more than common hardware protection offered by server-
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class volatile main memory. We also demonstrated that power failures can be
detected early, allowing to conduct all necessary cleanup operations.

6 Summary

The work presented in this chapter has gained high visibility in the international
research community. It was on the programme of all major conferences in the field
and the authors received a number of best paper, best poster, and best dissertation
awards, culminating in the renowned Carter Award for Christoph Borchert.

A reason for this success might be the focus on design principles and methods
for hardening the operating system—and only the operating system. Most of
previous research did not consider the specific properties of this special execution
environment, such as different kinds of concurrent control flows, or assumed the
reliable availability of underlying system services.

In our work we made a huge effort to design and implement an embedded
operating system from scratch with the goal to explore the limits of software-
implemented hardware fault tolerance in a reliability-oriented static system design.
As a result we were able to reduce the SDC probability by orders of magnitude and
found the remaining spots where software is unable to deal with hardware faults.

For existing embedded operating systems we have developed and evaluated
Generic Object Protection by means of “dependability aspects,” which can harden
operating systems at low cost without having to change the source code, and also
addressed faults that crash the whole system by means of reliable transactions on
persistent memory.

Finally, the authors have developed a fault-injection framework for their evalua-
tion purposes that implements novel methods, which also advanced the state of the
art in this domain.
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Part II
Cross-Layer Dependability: From

Architecture to Software and Operating
System

Michael Engel

Designers of modern embedded systems have to cope with errors in all kinds
of system components, such as processing elements, memories, I/O devices, and
interconnects. The ever increasing pressure to reduce the size, cost, and energy
consumption of a given system has two effects that tend to amplify each other. On
the one hand, solutions that are able to mitigate errors on the hardware side are
often considered too expensive in terms of product cost or energy consumption and,
thus, are frequently left out of the design for not strictly safety-critical systems. On
the other hand, the ongoing miniaturization of semiconductor feature sizes and the
reduction of supply voltages results in hardware that is increasingly more sensitive
to external effects, such as cosmic radiation, thermal effects, or electromagnetic
interference, that could cause errors.

As a consequence, those errors are much more likely to affect recent and future
designs. The design constraints, thus, require new methods to detect and mitigate
errors and allow designers to create more cost- and energy-efficient systems.

Due to the wide spectrum of possible error causes, approaches to mitigate these
errors vary significantly. In this book section, a number of approaches that have
been developed in the context of SPP 1500 as well as in projects of collaborating
researchers are presented that cover a large part of the possible design space. The
different projects discussed in the following chapters have one important common
property—they are not restricted to work on a single layer of the hardware/software
stack, but instead integrate information from different layers of the stack for
increased efficiency.

The first chapter of this section, written by Kühn et al., analyzes the opportunities
that massively parallel architectures offer in terms of providing a platform for the
reliable execution of software. A large number of available processors enable the
system designer to make use of selective redundancy for differing requirements
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of the system’s software components. The use of online health monitoring allows
the system to detect typical reliability issues such as negative-bias temperature
instability (NBTI) or hot carrier injection (HCI) and adapt to these by using online
hardware reconfiguration before the issues result in an error visible on the software
layers.

The second chapter by Kriebel et al. tries to tackle the reliability problem
from a different direction. In their approach, the authors use error models and
additional information from hardware as well as software layers in order to generate
dependable software. By quantifying the error masking and propagation properties
of a system, an analysis is performed that determines in which way an application’s
output will be affected by the assumed errors. An increase in dependability is then
achieved by avoiding or mitigating the critical situations by means of software
transformation or selective instruction protection.

In the third chapter by Kriebel et al., an approach to protect systems against
transient errors using heterogeneous hardware/software hardening is proposed.
Here, the authors analyze and exploit masking and error tolerance properties of
different levels of the hard- and software stack. By using system components with
different reliability properties from the architecture level to the design of caches,
systems are enabled to adapt to error properties and reliability requirements of the
executed software. The authors also give an outlook onto methods to complement
the described heterogeneous hardware approach with compiler-based heterogeneous
hardening modes on the software level.

The fourth chapter by van Santen et al. concentrates on reliability optimization
for embedded multiprocessor systems on chip (MPSoCs). The problems analyzed
are interdependencies of temperature and the reliable operation of MPSoCs. Here,
the authors employ measured or estimated thermal values for different cores to
determine which measures on system level can be applied to balance the thermal
stress. This balancing, in turn, results in an evenly distributed probability of errors
throughout the system. To enable the balancing, task migration between different
cores based on virtualized interconnects is employed, which enables fast and
transparent switch-over of communication channels.

Memory errors are in the focus of the fifth chapter, contributed by Alam and
Gupta. The optimization of current memory chips to maximize their bit storage
density makes them especially susceptible to soft errors. For cost and efficiency
reasons, this process neglects to optimize for additional parameters such as manu-
facturing process variation, environmental operating conditions, and aging-induced
wearout, leading to significant variability in the error susceptibility of memories.
To improve memory reliability, the authors propose to replace traditional hardware-
based bit-error checking and correction methods by software managed techniques
and novel error correction codes to opportunistically cope with memory errors.
These techniques can take the architectural or application context into consideration
by leveraging semantics information to reduce the cost of error correction.

The final chapter in this section by Ma et al. concentrates on MPSoC systems
again. Here, the focus lies on the contrasting requirements of soft-error reliability
and lifetime reliability. The authors observe that most existing work on MPSoC
fault tolerance only considers one of the described requirements, which in turn
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might adversely impact the other. Accordingly, the possible tradeoffs between soft-
error reliability and lifetime reliability are analyzed in order to achieve a high
overall system reliability. Like some of the previously described approaches, the
authors make efficient use of heterogeneous MPSoC architecture properties, such as
big-little type same-ISA systems and systems that integrate traditional CPUs with
GPGPUs.

Overall, the different approaches discussed in this section cover a large part
of typical modern embedded architectures. Solutions for improved reliability of
processors, memories, and interconnects are presented. A common theme for
all these approaches is that each one operates on several different layers of the
hardware/software stack in order to exploit this fused information to reduce the
hardware and software overhead for error detection and mitigation.

While this common property is shown to be beneficial for embedded design tasks
facing dependability problems, the particular projects show a large variety of detail
in their approaches to achieve that goal. One common approach is to operate in
a bottom-up way. These systems adapt hardware properties to mask problems for
the software level. Other approaches make use of a top-down methodology. Here,
software is adapted in order to handle possible errors showing up in the hardware.
In general, however, most of the projects described above employ sort of a hybrid
approach, in which information from different layers of the system is fused in order
to enable optimization decisions at compile time and runtime.

An important additional research direction reflected in this section is based on
the idea of accepting certain incorrect behaviors of a system in response to an error.
Here, additional semantic information on the relevance of deviating system behavior
is employed to determine the criticality of certain errors. In turn, accepting certain
imprecisions in a system’s results enables more efficient reliable embedded systems.

In general, we can conclude that all of the cross-layer techniques described
above show significant improvements in the non-functional properties or design
constraints a system designer has to consider when creating dependable embedded
systems.

The large variety of analysis and mitigation efforts throughout all layers of the
hardware and software stack show that dependability of systems, even if it is one
of the earliest research topics in computer engineering, is still a highly relevant
and active research topic. Novel challenges due to different hardware components
and their properties increased demands on the computational power and energy
efficiency as well as additional non-functional properties require innovative methods
that combine work on all layers of the hardware and software stack.

However, we have to assess that the current solution landscape, of which we
have tried to show a representative profile in this section, today still tends to
produce isolated solutions which are not designed for interoperability. Here, an
important future research challenge is an overarching effort that allows to flexibly
integrate information from various different layers and, in turn, to enable multi-
criterial optimizations at design and compile time as well as at runtime to enable
general fault tolerant embedded systems. It will be interesting to observe how the
different approaches described in this section will be able to contribute to this overall
objective.



Increasing Reliability Using Adaptive
Cross-Layer Techniques in DRPs:
Just-Safe-Enough Responses to
Reliability Threats

Johannes Maximilian Kühn, Oliver Bringmann, and Wolfgang Rosenstiel

1 Introduction

The broad deployment, as well as the increasingly difficult manufacturing of in-
spec semiconductors long make reliable operation and failures across the lifetime of
an embedded system one of the industry’s main concerns. Since ever-increasing
demands do no longer allow us to resort to “robust” technologies, other means
than semiconductor technology have to fill the gap left by cutting-edge technologies
without resorting to unrealistic mainframe like protection mechanisms. As the oper-
ation scenarios become ever more challenging as well (edge computing, intelligent
IoT nodes), hardware architects are faced with ever tighter power budgets for
continuously increasing compute demands. We, therefore, proposed to exploit the
architectural redundancies provided by potent, yet energy efficient massively par-
allel architectures, modeled using Dynamically Reconfigurable Processors (DRP).
Using DRPs, we built an extensive cross-layer approach inspired by the overall
project’s approach as laid out in [1]. Following the idea of cross-layer reliability
approaches, we built interfaces reaching from software layers right down to the
transistor level mainly through computer architecture, allowing us to address both
the varying reliability requirements and the significant computational demands of
prospective workloads.

Figure 1 shows an overview of the layers this project targeted as described
in the previous paragraph. While a strong focus has been on architecture, the
project’s aim was to use computer architecture to connect to the layers above and
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Fig. 1 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

below. We show how DRP architectures can leverage their inherent architectural
redundancies to realize various degrees of reliable computing. On one end of the
spectrum, we highlight how triple modular redundancy (TMR) and duplication with
comparison (DWC) compute modes can be realized to actively secure computations
without permanently binding hardware resources and with only slight hardware
overheads. On the other end of the spectrum, we show how fault-free operation
can be passively ascertained by periodically testing SoC components. Both, active
and passive concepts together with the architectural redundancies allow for graceful
degradation by pinpoint failure detection and subsequently dynamically remapping
applications. Once established, both graceful degradation and low-cost TMR for
critical parts of applications can be used to make specific operations in processor
cores reliable by using the DRP or the demonstrated concepts as a reliable pipeline
within a processor core.

A central point of the proposed methods is an overarching cross-layer approach
[1], tying together these methods from the software layers (Application, Operating
System) to all hardware layers below down to the semiconductor through the
concepts introduced by our DRP architecture. To enable a reach down to the
circuit level, we exemplarily used the extensive Body Biasing capabilities of Fully
Depleted Silicon on Insulator (FDSOI) processes as a means for transistor-level
testing and manipulation. This access down to the transistor level enables continuous
monitoring of the precise hardware health and thereby not only reactive measures
in case of hardware failure but also proactive measures to prevent system failure
and prolong system lifetime if the hardware starts exhibiting signs of wear. Access
to the device state also multiplies the reliability and system health options on
the software layer. With previously having the choice of using TMR/DWC to
minimize the error probability, we also show how DVFS with Body Biasing can
offer both high power but highly reliable over spec versus ultra-low-power but
risky computing modes. These modes’ long-term effects further multiply the set of
operation modes, e.g., slowing down or speeding up degenerative effects such as Hot
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Carrier Injection (HCI) or Negative Bias Temperature Instability (NBTI). However,
with access to actual transistor parameters, the proposed approach also indicates
that even permanent degeneration such as HCI can be temporarily overcome [2]
to prolong system lifetime long enough to extend the graceful degradation period
beyond conventional physical limits. Or to put it in the spirit of the parallel NSF
effort [3], by opportunistically filling the technology gap using cross-layer methods,
there are more means to approach and exploit the hardware’s sheer physical limits.

Within this project, we also faced the challenge of how such cross-layer
approaches can be realistically validated and evaluated. While Software layers down
to the RTL level allow, e.g., fault injection through instrumentation or emulation, the
computational effort quickly becomes too large for realistically sized test samples.
Furthermore, going below the gate level offers an entirely new set of challenges,
both calling for appropriate solutions. For the layers from Software to RTL, we
chose to implement the entire system as a prototype on an FPGA. For this FPGA,
in turn, we developed a precise fault-injection mechanism so we could emulate the
entire SoC with specific faults present. For the gate level and below, we devised
a mix of SPICE simulations, and for body bias effect evaluation we ran in-silicon
evaluations at the laboratory of Professor Amano at Keio University.

This chapter is structured as follows. Since reliability threats and how such
threats surface has been covered in the general introduction, Dynamically Recon-
figurable Processors are briefly introduced. The next section directly dives into how
the inherent architectural redundancy can be put to use to increase the reliability of
computations, as well as how to test these techniques. In the following two sections,
the focus then shifts to both ends of the abstraction layers by focussing on how
to infer the device state at the transistor level and potentially also recovering from
a faulty state using body biasing together with how decisions on the software or
operating system level affect the transistor level. The last technical section before
wrapping up then brings all levels together by highlighting the interplay between
each layer and the synergistic gain thereby achieved.

2 Dynamically Reconfigurable Processors

Dynamically reconfigurable architectures, or short DRP, are a sub-category of
so-called coarse-grained reconfigurable architectures (CGRA). Similar to Field
Programmable Gate Arrays (FPGA), CGRAs are reconfigurable architectures;
however, in contrast to FPGAs, CGRAs are reconfigurable on a far coarser level.
That is, while FPGAs can efficiently map per-bit configurability, CGRAs only
allow reconfigurability on word-sized units. While this restriction makes CGRAs
unfavorable for random bit logic, CGRAs possess a far greater area and energy
efficiency as the logic overhead for reconfigurability per bit is far lower. DRPs add
the concept of dynamic reconfiguration to CGRAs by having on-chip memories for
multiple configurations, or contexts, as instructions are often called in DRPs. As the
keyword instruction already hints, DRPs resemble much more simple processors
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Fig. 2 Exemplary DRP
instance with additional
controllers and I/O buffers

than classical reconfigurable architectures, hence this reconfiguration mechanism is
also often referred to processor-like reconfiguration.

DRPs at the point of writing date back more than 25 years which makes an
exhaustive overview unfeasible. Instead, three different cited surveys shall give
both a historical, functional, and up-to-date introduction to the field. De Sutter
et al. [4] take a processor-centric view on CGRA architectures using the concept
of instruction slots, that is logic where instructions can be executed. These units
are connected using a simple form of interconnect like, e.g., nearest neighbor
interconnect, and all have shared, or as De Sutter et al. describe them, distributed
register files.

On the other hand, Hideharu Amano defines CGRAs and DRPs from a general
hardware perspective. In [5], he defines a DRP to be an array of coarse-grained
cells as depicted in Fig. 2, so-called PEs, consisting of one or multiple ALU and/or
functional units (FU), a register file and a data manipulator [5]. The third and
last survey cited for the purpose of an encompassing definition takes a similar
approach as the authors of this chapter. In [6], Kiyoung Choi characterizes CGRA
and by extension also DRPs via configuration granularity. All authors’ definitions
encompass an array of PEs and possess dynamic reconfiguration or processor-like
execution and thus DRPs as architectural concept range from small reconfigurable
DSP like blocks to many-core processors.

In theory, this allows the generalization of findings obtained in DRPs to be
extended to far more complex brethren. In practice, however, the definition is
restricted by precisely the architectural complexity as DRPs aim to be more energy
efficient in more specialized fields other than, e.g., GPGPUs. This becomes also
apparent in the general lack of complex caches and big register files, as well as
simplistic, spatial interconnects that reduces both register file accesses and long
and energy inefficient data transfers [4, 5]. For the purpose of this research project,
this minimalism was a welcome attribute as it allowed an abstraction of far more
complex architectures while maintaining generality. For this reason, we refer to the
cited surveys [4–6] for comprehensive coverage of concrete DRP architectures.
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3 Exploiting Architectural Redundancy for Increased
Reliability

3.1 Realizing Low-Cost TMR Using PE Clusters

Among the most apparent aspects of DRPs is their regular structure. One of the first
investigations published in [7] therefore sought to utilize the structural redundancy
to increase DRPs’ reliability by implementing the quasi-gold standard of fault-
tolerance, triple modular redundancy (TMR). The biggest issue of TMR and also
the reason why it is only used in critical systems is the prohibitively high cost,
i.e., everything that is secured through TMR is triplicated. These triplicated copies
then have to perform the exact same operation, and at given checkpoints or most
commonly at the block level of the covered component, the outputs are compared. If
an error surfaced, the correct result, as well as the faulty component, are determined
through a majority vote. The big drawback of this technique is the high cost, both
in circuit size since three copies are required, as well as in power consumption
as all have to perform the same operation all the time. This makes TMR unviable
for all but the most critical applications. With reconfigurable hardware, such as
DRPs, however, hardware resource can be dynamically allocated. Given the addition
of error detection components, the penalty of TMR can be severely reduced as
resources do not have to be committed in a hard-wired fashion, but can be reassigned
temporally, or, TMR could be dynamically used for specially flagged parts of a
program only.

Figure 3 depicts a simplified representation of the Flexible Error Handling
Module. It consists of an actual data error detection module, containing a three-
input comparator. The comparator results are fed to the voter and the timing error
detection. The voter determines the correct results through a majority vote and feeds
the correct channel selection to the multiplexer which then forwards the result that

Fig. 3 The flexible error
handling module (FEHM)
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is now presumed to be correct to the next PE or out of the DRP. The timing error
detection samples the comparison results in a double buffer on Clk the clock signal
as well as on a slightly delayed clock signal. If the double buffer’s contents on each
sample are not the same, a timing error occurred and will be appropriately signaled.
Similarly, if not all comparison results are equal in the first place, it will raise a
data error signal. The entire module’s functionality is controlled using the Mode
signal. Using this signal, the FEHM can be turned off, to Duplicate with Comparison
(DWC) mode or to full TMR mode.

This switch is central to the original goal of attaining TMR at lower cost: By
making the mode signal part of the instruction word, not only does this free up
TMR resources when TMR is not required, but it also allows for some degradation
to DWC. Evaluations of this low-cost TMR evaluation showed that even if it is
used in relatively primitive DRP architectures with very fine-grained data words, the
additional hardware amounts for approximately a 6% increase in area. The power
consumption, on the other hand, increased by about 7.5% which can be attributed
to the constantly used XOR-OR trees and double buffers used for comparison and
timing error detection.

3.2 DRPs as Redundancy for CPU Pipelines

CPUs as central control units in SoCs take a vital role and thus are of great
interest for reliability. However, at the same time, they are among the most difficult
components to harden against any type of fault if blunt and costly instruments
such as TMR are avoided. The extreme degree of dynamism and control involved
in CPUs make static redundancy schemes like TMR virtually mandatory if an
error-free operation needs to be guaranteed. But if some tradeoffs are permissible,
dynamic redundancy schemes can be alternatively used. Such tradeoffs can be
for example an absolute time limit until recovery has to complete. In both cases,
however, some form of spare component is required.

While DRPs will not be able to take over a CPU’s main functions, they certainly
could serve as spare compute pipeline [8], thus reducing the parts that need to be
hardened using conventional methods. Placing a DRP into a processor’s pipeline
is not a novel idea such as [9] or [10] demonstrated and makes much sense from
an acceleration point of view. However, as this chapter shall highlight, they might
be a good pick concerning reliability as well. When used as a static redundancy
as depicted in Fig. 4 (left), DRPs can make use of their structural redundancies
to provide for additional samples computed in parallel to realize true TMR. The
low-cost TMR method proposed in the previous section, on the other hand, can
add an additional level of reliability so that the DRP’s results can be trusted and
false-positives effectively prevented. As dynamic redundancy or as a spare, the
DRP can take over functionality if an error has been detected using other means
as depicted in Fig. 4 (right). The viability of this approach has been validated in a
model implementation inspired by ARM’s Cortex-M3 microcontroller. This serves
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Fig. 4 DRP serving as static redundancy (left) and as dynamic redundancy (right)

as an interesting choice as ARM has its line of cores for safety-critical applications,
the so-called ARM Cortex-R series with support for dual-core lock-step [11]. The
results of this study as published in [8] showed that as long as support for division
units is omitted in the DRP, the area overhead is far lower than the 100% overhead
of an additional core, however, while of course leaving out other components to be
secured separately. In this particular study, a 2 by 2 PE array, that is 4 PEs have
been integrated into the CPU pipeline. Additionally, instructions and infrastructure
to utilize the DRP have been added. Comparing the incurred overheads to a single-
core implementation without any reliability measures, the area overhead for an
implementation without hardware implemented division amounted to 20%. While
this might not be an entirely fair comparison, division implementations in DRPs
have a greater impact due to the far greater number of processing elements.

3.3 Dynamic Testing

In contrast to critical applications, SoCs often also accommodate non-essential
functionality. For these applications, running all parts in TMR mode might be
wasteful, yet a certain temporal assurance would be desirable. For example, in case
of infotainment, brief dysfunction might be tolerable, but if functionality cannot be
restored within a given amount of time, actual damage ensues. To avoid TMR or
DWC for all applications and to implement time and probability based levels of
reliability, we proposed a dynamic testing scheme for reconfigurable hardware.

Dynamic testing or also often called online testing as defined by Gao et al. [12]
describes a testing method where for a known algorithm implemented in a certain
component, input samples, and associated output samples are obtained and then
recomputed separately. If the recomputation’s results match the output samples, no
error is present. If there is a mismatch, an error of the tested component is assumed.

Specifically using DRPs for dynamic testing has a big advantage: the choice
between utilizing the temporal and spatial domains. Instead of competing with
applications for resources on the DRP, dynamic testing resources can be allocated
temporally and inserted interleaved with applications’ instructions to be executed
in a time-multiplexed fashion. By moving and interleaving into the time domain,
testing becomes slower. However, for most non-critical applications, a couple of
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seconds before a system returns to a functioning state can be tolerated. Furthermore,
the spatial domain allows alternating the compute units used to recompute the
samples, further making false-positives less likely apart from the error checking
conducted during TMR usage.

While these two aspects make DRPs appealing for such testing schemes, time-
multiplexing restricting testing to time-windows TT W and further mapping into the
temporal domain slowing down testing by a scaling factor s in combination with the
probabilistic nature of error occurrence and detection make any estimation rather
difficult. Therefore, Monte Carlo simulations can be used to estimate the behavior of
dynamic testing accounting for all DRP specific aspects. For example, aspects such
as reconfiguration overhead TOV which has to be deducted from time-windows TT W

as well as scaling factors which reduces the number of samples that can be computed
within one TT W to detect a fault with an observation probability of q.

Consider Fig. 5, depicting a feasibility plot to detect a fault with an observation
probability of q = 10−5 and a reconfiguration overhead of 1 ms. The goal in this
experiment was to detect such a fault within 2 s. The red striped regions indicate
that here, it would take more than 2 s to detect the fault, whereas shades from white
(fastest) to black indicate increasing detection latency DL. This result shows that
even if the temporal domain is massively utilized at e.g. s = 77, the deadline of 2 s is
still met at DL = 1.7 s with a time-window of 2 ms for computations thus allowing
to use spatially extremely compact mappings for fault detection. This compaction
also allows to further share the DRPs resources to conduct periodic checks of the
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entire surrounding SoC, expanding the reach of a reliable DRP to other system
components as well.

3.4 Dynamic Remapping

Having various reliable ways to detect errors is vital as any reaction to a false-
positive would just turn any reliability mechanism against itself. With low-cost TMR
and dynamic testing, we have ways to detect errors and in the TMR case even to
mask them. However, once a permanent fault is present and errors surface, TMR
degrades to DWC, and dynamic testing is also limited to reasserting the error’s
presence over and over again. As DRPs are a class of reconfigurable hardware,
to restore proper functionality, the applications have to be mapped anew avoiding
faulty components. To do this, however, the remapping method and sufficient
mapping resources are required.

In case of the FEHM equipped DRP used for our studies, two dimensions of
redundancies can be utilized to run the application on unaffected PEs of the DRP.
(1) spatially moving the application part of one faulty PE to a fault-free unused
PE and (2) temporally adding the application part to an unaffected PE which is
used for other application parts but still has the capacity to accommodate this part.
As in DRPs the amount of instructions that can be stored and executed without
external reconfiguration is limited, compensating for one or more faulty PEs can be
a challenge in highly utilized scenarios. However, even if utilization is not critical,
just moving parts around on the DRP will yield sub-optimal results, which is why the
application mapping, that is resource allocation and scheduling needs to be rerun.
This task, however, needs to be run on the SoCs CPU without obstructing normal
operation.

To reduce the work-load of the SoC’s CPU, we proposed an incremental
remapping algorithm in [13]. First, the architecture graph is adjusted by removing
the faulty components. Then, from this architecture graph, we extract a subgraph
containing the affected PE and its vicinity. Similarly, the application graph is used
to extract a subgraph containing only the application nodes mapped to the affected
nodes in the architecture subgraph. With these two subgraphs, the mapping is
then attempted as exemplarily depicted in Fig. 6. The mapping algorithm will try
to first utilize the spatial dimension before resorting to the temporal dimension,
i.e. prolonging execution time. If both dimensions do not have the resources to
accommodate the application subgraph on the nodes of the pruned architecture
subgraph, the architecture subgraph is enlarged by adding further neighboring nodes
and remapping is retried until a new mapping has been found or the process fails
altogether. If the process succeeds, the application now can run again without any
errors occurring, even in non-TMR modes.

This prioritization of subgraph size over runtime, i.e., increasing subgraph size
only if both dimensions cannot accommodate the application subgraph is arbitrary
and other tradeoffs might be preferable. In this specific case, the priority was CPU
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Fig. 6 Incremental remapping flow on architecture and application subgraphs to avoid faulty
components. Starting on the direct neighborhood first, expanding if resources do not suffice

usage minimization, and therefore runtime and memory usage were prioritized
by using the smallest subgraphs first at the expense of increased runtimes of the
new mappings. For real-world applications, this needs to be carefully weighted as
increased runtimes might not be viable.

3.5 Testing Reliability Schemes in Hardware

One of the big challenges of hardware manufacturing and particularly of implement-
ing hardware-based countermeasures to reliability issues is testing and verification.
Given the enormous number of input vectors and states, exhaustive testing via
simulation is entirely unfeasible. While big commercial hardware emulators allow
for a much greater design size and ease of use, they are also very costly. For small
to medium-sized designs, FPGAs offer a sweet spot for prototype implementations.
While simulations allow for easy fault injection but very slow simulation speeds,
FPGAs offer speeds close to ASIC implementations but fault injection was virtually
unfeasible.

To develop a prototyping platform, the Gaisler LEON3 SoC [14] served as a
template into which the hardened DRP has been integrated. Parallel to this effort,
different techniques for FPGA fault injection have been studied [15], culminating
in the Static Mapping Library (StML) approach [16]. While instrumentation, i.e.
RTL level insertion of faulty behavior allows unlimited choice in fault type and
temporal behavior, it also requires for the RTL to be recompiled after each change.
As the entire compilation and mapping process of our SoC took more than 4 h, this
approach was abandoned. On the other hand, directly inserting faults into FPGA
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Fig. 7 StML GUI view of a sample logical AND component with fault injectable ports in each
module

mappings or even the bitstream offers a simplistic way to create faulty versions of an
FPGA mapping, but it offers no control over the type or location of the injected fault.
This approach would not even guarantee that the FPGA mapping would behave
in a faulty manner. Ideally, the exact fault location should be specifiable on RTL
level to fully qualify the efficiency of the proposed architectural methods. To realize
this, different intermediate results were utilized, primarily the FPGA’s simulation
netlist containing both RTL level structural information and FPGA mapping names
in combination with the Xilinx Design Language (XDL) file containing the concrete
FPGA mapping. By establishing a bidirectional link between the simulation netlist
and the XDL file, StML enabled to pinpoint ports of module’s implementation right
down to the logic level to insert a stuck-at-zero or stuck-at-one fault. As the placed
and routed XDL file can be directly altered, the only remaining step after fault
injection is bitstream generation. A user-friendly GUI (Fig. 7) offering graphical
representations of the implementation as well as a powerful command line interface
allowed for both smooth experiment and extensive testing. Using this approach, we
were able to reduce the fault-injection experiment time from hours to below 5 min,
with most experiments done in below 2 min.

To showcase the viability of the proposed techniques, low-cost TMR, dynamic
testing, dynamic remapping, and the FPGA prototype combined with the fault
injection techniques have been successfully demonstrated at ICFPT in 2013 [17].

4 Device-Level State and Countermeasures

Below the architectural level, we studied opportunities to determine the state
of semiconductor devices. Additionally, we also considered specific device-level
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Fig. 8 Transient simulation for a single switching NMOS (upper left) and a single PMOS (upper
right), as well as DC sweep of IDS over VDD = VGS for a NMOS (bottom left) as well as a PMOS
transistor (bottom right), all using a medium degeneration model

countermeasures and their effects to put hardware into a more reliable state for tasks
that require higher levels of reliability.

When considering how to obtain information on the state at the device level, a
transistors’ threshold voltage VT H is a central variable [18] to consider. While of
course, not all reliability phenomena manifest as an actual shift in VT H , they can
be modeled as such. For example, stuck-at faults are either a reduction to 0 V or
∞V of VT H or even changes in the drive current and subsequent timing faults can
be viewed as such. With the semiconductor world moving either towards FinFET
or FDSOI technologies, we investigated the options of FDSOI processes such as
ST Microelectronics Ultra Thin Body and Box Fully Depleted Semiconductor on
Insulator (UTBB-FDSOI) technology [19]. While being a planar technology, it is
manufactured in a triple well process, shielding the transistor body against the
substrate using a diode in reverse direction. The transistor is manufactured using
a fully depleted channel which allows for further scaling to compete with FinFET
processes. One of the main advantages of FDSOI technologies is that the insulated
transistor body allows for very high biasing voltages previously unfeasible as it
would have shorted the transistor to the substrate. As this thin body with the thin
box construction equipped with a separate body electrode acts as a second gate, it is
ideal to adjust VT H dynamically after manufacturing. The adjustment of a transistor
via this second gate is also called body biasing.

To study the possibilities to use body biasing to detect faults or even faults
building up, SPICE level models have been considered. Figure 8 depicts the
transient and DC analysis of a medium degeneration transistor-level model. The left
side in Fig. 8 depicts an NMOS transistor whereas the right side depicts a PMOS
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transistor. In each graph, there are several plots: std 0.0V VBB , that is a perfectly
functioning transistor without any body bias applied, med 0.0V VBB transistor
with a medium VT H increase and no body biasing, and then several variants of
the defective transistor with increasing levels of body biasing. When comparing
std 0.0V VBB to med 0.0V VBB , it immediately becomes apparent that there is a
significant gap in the rate at which the signal rises (top two graphs) and signal level,
as well as a strong difference in drive current (bottom two graphs). The effects of a
VT H (about 45 mV NMOS and 40 mV PMOS) shift of this magnitude are, of course,
relative to the operating conditions. If e.g. a couple of such transistors would be used
somewhere on a critical path within a high-performance circuit, it would surely fail.
On the other hand, if the circuit is used far from timing limits or if only a single
transistor is considered, the effect might be barely noticeable. Given an on-chip test
circuit or a known critical path, they can be used in conjunction with body biasing
to measure degenerative effects. To perform such post-manufacturing bias, ideally
each chip should be tested after production with a sweep over body bias levels as
described in [20], with the minimum body bias, that is the maximum reverse body
bias (the circuit’s timing is intentionally slowed down), at which the circuit checked
out functional written to a non-volatile memory. Later on, this minimum bias point
can be used as a reference, i.e., if the chip or the tested component needs a higher
level of body bias corrected for temperature, then some degeneration occurred. If the
circuit is designed with reasonable margins, a build-up until an actual fault occurs
can be thereby detected.

Similarly, body bias also allows pushing the circuit back conforming to specifi-
cation. The effect depicted in Fig. 8 would be catastrophic for any performance-
oriented component. However, this medium degeneration case has been chosen
specifically so that corrective measures can be taken without special electrical
precautions, which is up to a VBB of 1.3 V in most processes. However, it should
be noted that this also leads to significantly increased leakage levels and would
be unfeasible for an entire chip. This being said, it neatly complements DRPs’
architectural granularity, i.e. one PE would be coarse enough to mitigate the
overheads of an individual body bias domain, yet it is small enough to keep the
leakage overhead of strong forward biases down [21]. Additionally, finer steps of,
e.g., 100 mV should be used to detect shifts in VT H early on.

5 Synergistic Effects of Cross-Layer Approaches

The question following from the previous section is whether to use architectural
approaches or device-level countermeasures to achieve a certain reliability objective
is an extremely complex and multivariate problem. Beyond the question whether or
not to use a specific technique, there are additional variables such as time, i.e. when
to use these techniques, extend, that is in what parts to use them and also in regard
to criticality, what techniques and with which parameters could be used at all and to
what end?
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In a very insightful collaboration with the FEHLER project (chapter “Soft
Error Handling for Embedded Systems using Compiler-OS Interaction”), their
static analysis of program criticality provided powerful means to determine key
portions for reliable execution at the application level [22]. By annotating source
code with keywords indicating the respective criticality, only those parts marked
as critical will be additionally secured using reliability techniques. It thus was not
only a great fit for selective low-cost TMR on the hardened DRP, but beyond that
offered a proof-of-concept of mixed-criticality applications along with the means to
identify portions critical for reliability. In [22], the targeted application was an h264
decoder. As an entertainment application, the primary metric is whether the service
is provided at a certain perceived quality level above which actually occurring errors
are irrelevant as they are imperceivable.

On the other end of the scale, device state monitoring allows to assess the
physical state of a SoC and also its progression over time. On the architectural
level, low-cost TMR or DWC allows for continuous checking, whereas dynamic
testing makes sure that errors are not left undetected indefinitely, both providing
vital information to potential agents. However, as shall be explored below, reactive
measures cannot be determined on one layer alone.

Once the device-level state is known, this information can be used on every
abstraction layer above. If for example degradation has been detected, this infor-
mation can be used to minimize physical stresses by using a combination of supply
voltage VDD and body bias VBB [2]. As proposed in the previous subsection, a
concrete proposal is to counter VT H drift, that is usually VT H becoming larger, by
using a forward body bias. As, however, Federspiel et al. found in [2], this will also
increase effects like Hot Carrier Injection (HCI) stress which in turn can cause a
decrease in drive current. This could lead to a feedback loop as with the method
described in Sect. 4, this would appear like a VT H increase and cause more forward
bias to be applied, further increasing HCI stress. Thus, such action needs to be a
concerted effort on the operating system level with a full view of the system state
and the resources available.

For this reason, countermeasures could encompass several different options
from the set of available countermeasures with the primary distinction on lifetime
extension or securing error-free functionality in the presence of faults. In both cases,
it should be noted that both distinctions are only two different takes on graceful
degradation. In case the primary goal of reactive measures is lifetime extension,
measures which incur less physical stress should be taken. If e.g. the application
allows for some degeneration of the service level such as the aforementioned h264
decoding, less effort can be spent on uncritical parts of an application or it could
be mapped alongside another application on a DRP. If error-free functionality is
the primary goal because, e.g., the application is critical and does not allow for
any degeneration, there is a two-step cascade. If the application can be remapped
to fault-free components, this should be prioritized. If the resources do not permit
remapping or if no resources are left, the SoC can attempt to mitigate the fault
through, e.g., a forward body bias at the expense of a potentially shortened lifetime.

In all cases, however, it is clear that information from the application layer,
the operating system, i.e. knowledge about what else is running on the SoC, the
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Fig. 9 Using information of all abstraction layers to realize more reliable and efficient SoC

architectural layer, what resources are available, which resources are inoperable,
etc., as well as the device level, are all key to determine the optimal response. In the
specific example visualized in Fig. 9, we start at the application layer by assuming
reliability annotated source code. Using this source code, an appropriate mapping
for example with low-cost TMR onto the DRP can be determined. Additionally,
the OS might then go ahead to issue its execution without any special circuit-
level tuning, i.e. increasing supply voltage or forward bias to add timing margins.
Similarly, a mapping onto the CPU pipeline could be more suitable where the OS
then might opt for extra forward bias as some degradation has been previously
detected and the application is realizing important functionality. Not only does
such a cross-layer approach as visualized in Fig. 9 help to achieve the reliability
objectives, but it also is capable of more than what can be achieved on one layer at a
time [23]. In this concrete example, the incorporation of multiple layers and multiple
methods at specific layers allows to tailor reliability measures to requirements.
Device-level information enables the system to act proactively as many phenomena
can be detected at this layer in the build-up phase. Once the device layer degenerates,
actors such as body biasing allow a system to restore or prolong functionality in the
presence of faults.

6 Conclusion

Over a generous 6-year period in which this project was funded, the possibilities
to use DRPs for increased reliability were extensively studied and also tested in
prototype implementations at a functional level. This research revealed that DRPs
are not only well suited for tasks that require TMR like reliability, but they can
be used in numerous ways to improve the reliability of entire SoCs as well. Their
simple and efficient structure allowed to research new and efficient concepts such as
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dynamic remapping or body biasing for device-level sensing and countermeasures.
While DRPs are still undeservingly viewed as a kind of fringe architecture concept,
most of the insights gained through such architectures are easily transferable to
multi- or many-core SoCs. This project showed that far more can be done in regard
to reliability if multiple abstraction layers are considered in a cross-layer approach.
While common wisdom still is to use TMR whenever software people use terms
such as error-free or fault-tolerant, this project showed multiple options how to
incorporate more specific application requirements and how to translate this into
adequate reliability measures. Or in simpler terms, just-safe-enough responses to
the reliability threats.
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Dependable Software Generation and
Execution on Embedded Systems
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1 Overview

An overview of the chapter structure and the connection of the different sections is
illustrated in Fig. 1. Soft error mitigation techniques like [17, 29] have shown that
the software layer can be employed for enhancing the dependability of computing
systems. However, to effectively use them, their overhead (e.g., in terms of power
and performance) has to be considered. This also includes the option of adapting
to different output accuracy requirements and inherent resilience against faults of
different applications, for which appropriate metrics considering information from
multiple system layers are required. Therefore, we start with a short overview
of reliability and resilience modeling and estimation approaches, which not only
focus on the functional correctness (like application reliability and resilience) but
also consider the timeliness, i.e., determining the change of the timing behavior
according to the run-time dependability, and providing various timing guarantees
for real-time systems. They are used to evaluate the results of different dependable

F. Kriebel (�) · M. Shafique
Technische Universität Wien (TU Wien), ECS (E191-02), Institute of Computer Engineering,
Wien, Austria
e-mail: florian.kriebel@tuwien.ac.at; muhammad.shafique@tuwien.ac.at

K.-H. Chen · J.-J. Chen
Technische Universität Dortmund, Lehrstuhl Informatik 12, Dortmund, Germany
e-mail: kuan-hsun.chen@tu-dortmund.de; jian-jia.chen@cs.uni-dortmund.de

S. Rehman
Technische Universität Wien (TU Wien), ICT (E384), Wien, Austria
e-mail: semeen.rehman@tuwien.ac.at

J. Henkel
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: henkel@kit.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_6&domain=pdf
mailto:florian.kriebel@tuwien.ac.at
mailto:muhammad.shafique@tuwien.ac.at
mailto:kuan-hsun.chen@tu-dortmund.de
mailto:jian-jia.chen@cs.uni-dortmund.de
mailto:semeen.rehman@tuwien.ac.at
mailto:henkel@kit.edu
https://doi.org/10.1007/978-3-030-52017-5_6


140 F. Kriebel et al.

Reliability and Resilience 
Modeling and Estimation

Dependable Code 
Generation

Dependability-Driven 
Adaptive Run-Time System

Application Reliability [15,20]
Application Resilience [17]
Masking [25]
Workload/Performance [23]
Deadline Misses [3,7,9]
(m,k) Robustness 
Requirement [4,28]

Reliability-Driven Software 
Transformations [15,20]
Instruction Scheduling [22]
Selective Instruction 
Redundancy [17,25]

Offline Schedules Adapted at 
Run-Time [23]
Function Prioritization and 
Selection [14]
Mapping and Remapping [6,8]

...
Multiple Compiled Versions 

Low Level 
Fault 

Models

Processor 
Synthesis 
Results ...

Fig. 1 Overview

ap
pli

cat
ion

SW
/O

S

arc
hit

ect
ure

cir
cu

it/g
ate

ph
ysi

cs

application

SW/OS

architecture

circuit/gate

physics

Fig. 2 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

code generation approaches, like dependability-driven software transformations and
selective instruction redundancy. This enables generation of multiple compiled code
versions of an application realizing different performance/energy vs. dependability
trade-offs. The evaluation results and the different versions are then used by a
dependability-driven adaptive run-time system. It considers offline and online
optimizations, for instance, for selecting appropriate application versions and
adapting to different workloads and conditions at run-time (like fault rate, aging,
and process variation). Thereby, it finally enables a dependable execution of the
applications on the target system.

As, however, not all systems are general-purpose, towards the end of the chapter
an example design of a video processing system is included, which illustrates
different approaches for application-specific dependability.

Embedding this chapter’s content in the scope of this book and the overall
projects [12, 14], the main contributions lie on the application, SW/OS, and
architectural layers as illustrated in Fig. 2.
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2 Dependability Modeling and Estimation

Modeling dependability at the software layer is a complex task as parameters and
effects of different systems layers have to be taken into account. For an accurate yet
fast evaluation of application dependability, information from lower system layers
has to be considered, while abstracting it in a reasonable way to also allow for a
fast estimation. For this purpose, different aspects have been separated into distinct
metrics focusing on individual phenomena, as discussed below.

• The Instruction Vulnerability Index (IVI) [19, 25] focuses on the error proba-
bility of each instruction when being executed on different components/pipeline
stages of a processor by analyzing their spatial and temporal vulnerabilities. This
requires an analysis of vulnerable bits as well as vulnerable time period, i.e.,
the residence times of instructions in different components, while considering
micro-architecture dependent information from the lower layers like the area
consumption of different components and the probability that an error is
observed at their output (see Fig. 1). The IVI of individual instructions can then
be combined to estimate the vulnerability at higher granularity (e.g., Function
Vulnerability Index—FVI). In this case, the susceptibility towards application
failures and incorrect application outputs can be considered as well, for instance
by classifying instructions into critical and non-critical ones, which is important
if deviations in the application output can be tolerated.

• As not all errors occurring during the execution of an application become
visible to the user due to data flow and control flow masking, the Instruction
Error Masking Index (IMI) [31] provides probabilistic estimates whether the
erroneous output of an instruction will be masked until the visible output of an
application.

• The Instruction Error Propagation Index (EPI) [31] captures the effects of
errors not being masked from the time of their generation until the final output of
an application. It analyzes the propagation effects at instruction granularity and
quantifies the impacts of the error propagation and how much it affects the final
output of an application.

• Based on the information theory principles, the Function Resilience model [24]
provides a probabilistic measure of the function’s correctness (i.e., its output
quality) in the presence of faults. In contrast to the IVI/FVI, it avoids exposing
the application details by adopting a black-box modeling technique.

• The Reliability-Timing Penalty (RTP) [23] model jointly accounts for the
functional correctness (i.e., generating the correct output) and the timing cor-
rectness (i.e., timely delivery of an output). In this work, we studied RTP as
a linear combination of functional reliability and timing reliability, where the
focus (functional or timing correctness) can be adjusted. However, it can also be
devised through a non-linear model depending upon the design requirements of
the target system.

• The (m,k) robustness constraint model [4, 35] quantifies the potential inherent
safety margins of control tasks. In this work, several error-handling approaches
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guarantee the minimal frequency of correctness over a static number of instances
while satisfying the hard real-time constraints in the worst-case scenario.

• The Deadline-Miss Probability [3, 9, 34] provides a statistical argument for
the probabilistic timing guarantees in soft real-time systems by assuming that
after a deadline miss the system either discards the job missing its deadline or
reboots itself. It is used to derive the Deadline-Miss Rate [7], which captures
the frequency of deadline misses by considering the backlog of overrun tasks
without the previous assumption of discarding jobs or rebooting the system.

A more detailed description of the different models as well as their corresponding
system layers are presented in chapter “Reliable CPS Design for Unreliable
Hardware Platforms”.

3 Dependability-Driven Compilation

Considering the models and therewith the main parameters affecting the depend-
ability of a system, several mitigation techniques are developed, which target to
improve the system dependability on the software layer. Three different approaches
are discussed in the following.

3.1 Dependability-Driven Software Transformations

Software transformations like loop unrolling have mainly been motivated by and
analyzed from the perspective of improving performance. Similarly, techniques for
improving dependability at the software level have mainly focused on error detec-
tion and mitigation, e.g., by using redundant instruction executions. Therefore, the
following dependability-driven compiler-based software transformations [19, 25]
can be used to generate different application versions, which are identical in terms
of their functionality but which provide different dependability-performance trade-
offs.

• Dependability-Driven Data Type Optimization: The idea is to implement the
same functionality with different data types, targeting to reduce the number
of memory load/store instructions (which are critical instructions due to their
potential of causing application failures) and their predecessor instructions in the
execution path. However, additional extraction/merging instructions for the data
type optimization have to be taken care of when applying this transformation.

• Dependability-Driven Loop Unrolling: The goal is to find an unrolling factor
(i.e., loop body replications), which minimizes the number of critical instruc-
tions/data (e.g., loop counters, branch instructions) that can lead to a significant
deviation in the control flow causing application failures. This reduction, how-
ever, needs to be balanced, e.g., with the increase in the code size.
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Fig. 3 Fault injection results for two applications and the generated application versions (adapted
from [25])

• Reliability-Driven Common Expression Elimination and Operation Merging:
The idea of eliminating common expressions is to achieve performance improve-
ment due to less instructions being executed and therefore less faults being
able to affect an application execution. However, excessively applying this
transformation might lead to register spilling or longer residence times of data in
the registers. Therefore, it needs to be evaluated carefully whether eliminating a
common expression leads to a vulnerability reduction or whether the redundancy
implied by a re-execution provides a benefit.

• Reliability-Driven Online Table Value Computation: The goal of the online
table value computation is to avoid long residence times of pre-computed tables
in the memory, where the values can be affected by faults and can therefore
affect a large set of computations. This needs to be traded off against the
performance overhead (and therefore increased temporal vulnerability) of online
value computation.

As the transformations listed above also imply certain side effects (e.g., increased
code size, additional instructions), they need to be applied carefully. We evaluate the
above techniques using an instruction set simulator-based fault injection approach,
where faults can be injected in different processor components (e.g., register file,
PC, ALU, etc.) considering their area. It supports injecting a single or multiple
faults per experiment, where each fault can itself corrupt a single or multiple
bits. The results for two example applications from the MiBench benchmark
suite [13] are shown in Fig. 3. They illustrate the effectiveness of the proposed
transformations, e.g., for the “HT” application by the reduction of the application
failures and incorrect outputs generated when comparing the Baseline application
version and V3.

Finally, the dependability-driven software transformations are not only useful
as a standalone technique, but can also be combined with other error mitigation
techniques. For example, by reducing the number of instructions accessing the
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memory, they can help reduce the required checking instructions in [29], and thereby
lead to a performance improvement.

3.2 Dependability-Driven Instruction Scheduling

Instruction scheduling can significantly affect the temporal vulnerability of instruc-
tions and data, as it determines their residence time in different processor compo-
nents. To improve the dependability of an application, several problems have to be
addressed, which usually do not have to be considered for a performance-oriented
instruction scheduling:

1. Critical instructions should not be scheduled after multi-cycle instructions or
instructions potentially stalling the pipeline as this increases their temporal
vulnerability;

2. High residence time (and therefore temporal vulnerability) of data in registers/
memory;

3. High spatial vulnerability, e.g., as a consequence of using more registers in
parallel.

Therefore, the dependability-driven instruction scheduling in [21, 22] estimates
the vulnerabilities, and separates the instructions into critical and non-critical ones
statically at compile-time before performing the instruction scheduling. Afterwards,
it targets minimizing the application dependability by minimizing the spatial and
temporal vulnerabilities while avoiding scheduling critical instructions after multi-
cycle instructions to reduce their residence time in the pipeline. These parameters
are combined to an evaluation metric called instruction reliability weight, which
is employed by a lookahead-based heuristic for scheduling the instructions. The
scheduler operates at the basic block level and considers the reliability weight of
an instruction in conjunction with its dependent instructions to make a scheduling
decision. In order to satisfy a given performance overhead constraint, the scheduler
also considers the performance loss compared to a performance-oriented instruction
scheduling.

3.3 Dependability-Driven Selective Instruction Redundancy

While the dependability-driven software transformations and instruction scheduling
focus on reducing the vulnerability and critical instruction executions, certain
important instructions might still have to be protected in applications being highly
susceptible to faults. Therefore, it is beneficial to selectively protect important
instructions using error detection and recovery techniques [24, 31], while saving
the performance/power overhead of protecting every instruction.
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To find the most important instructions, the error masking and error propagation
properties as well as the instruction vulnerabilities have to be estimated. These
results are used afterwards to prioritize the instructions to be protected, considering
the performance overhead and the reliability improvement. For this, a reliability
profit function is used, which jointly considers the protection overhead, error
propagation and masking properties and the instruction vulnerabilities. The results
of this analysis are finally used to select individual or a group of instructions,
which maximize the total reliability profit considering a user-provided tolerable
performance overhead.

4 Dependability-Driven System Software

Based on the dependability modeling and estimation approaches and the
dependability-driven compilation techniques, multiple code versions are generated.
These code versions exhibit distinct performance and dependability properties
while providing the same functionality. They are then used by the run-time system
for exploring different reliability-performance trade-offs by selecting appropriate
application versions while adapting to changing run-time scenarios (e.g., different
fault rates and workloads) for single- and multi-core systems.

4.1 Joint Consideration of Functional and Timing
Dependability

The key requirement of many systems is producing correct results, where a (limited)
time-wise overhead is oftentimes acceptable. However, for real-time (embedded)
systems both the functional dependability (i.e., providing correct outputs even in
the presence of hardware-level faults) and the timing dependability (i.e., providing
the correct output before the deadline) play a central role and need to be considered
jointly trading-off one against the other [23, 27]. To enable this, multiple system
layers (i.e., compiler, offline system software, and run-time system software) need
to be leveraged in a cross-layer framework to find the most effective solution [15].
For an application with multiple functions, the problem is to compose and execute
it in way that jointly optimizes the functional and timing correctness. For this, the
RTP (see Sect. 2) is used as an evaluation metric.

Figure 4a presents an overview of our approach. It is based on multiple
function versions generated by employing the approaches described in Sect. 3,
where additionally even different algorithms might be considered. As an example,
a sorting application is illustrated in Fig. 4b, where the vulnerability of different
algorithms and implementations as well as their execution times are compared
showing different trade-offs. For generating the versions, a dependability-driven
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Fig. 4 (a) Overview of the design-time, compile-time, and run-time steps for generating different
function/application versions. (b) Different algorithms and implementations for sorting (adapted
from [23])

compilation process is used, given different implementations and a tolerable
performance overhead to limit the design space. Then, only a limited number of
versions from the pareto-frontier are selected, representing a wide spectrum of
solutions.

In the next step, a Dependability-Driven Offline System Software generates
schedule tables by minimizing the expected RTP. For the execution time, a
probability distribution is considered, since it is not constant for all functions. For
applications with only one function, the version minimizing the RTP (based on a
weighting parameter) can be found by analyzing its probability for deadline misses
and its reliability. For applications with multiple functions, it is required to consider
that the selected version of a function is dependent on the functions executed earlier,
e.g., if they finish early, a high-reliability version with a longer execution time
can be selected. Therefore, a dynamic version selection scheme is adopted, where
schedule tables are prepared offline and the scheduler selects appropriate function
versions depending on the run-time behavior. Selecting a version for a particular
function depends on both the functions executed earlier, and the functions executed
afterwards (i.e. the predecessor and the successor functions in the execution path).
The schedule tables are filled from the last function to be executed and remaining
entries are added successively later, where the properties of earlier functions have
to be explored and later functions can be captured by a lookup in the already filled
parts of the table.

At run-time, a Dependability-Driven Run-time System Software selects an appro-
priate function version from the schedule table depending on the RTP. To execute the
corresponding function, dynamic linking can be used. At the start of an application,
the RTP is zero and the remaining time is the complete time until the deadline, as
no function has been executed so far. With these parameters, the entry is looked
up in the schedule table and the corresponding function version is executed. When
one of the following functions need to be executed, the RTP observed so far is
accumulated and the remaining time until the deadline is calculated. Afterwards,
the corresponding table lookup is performed and a version is selected. To ensure
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the correctness of the schedule tables, they should be placed in a protected memory
part. As they, however, might become large, the size of the table can be reduced
by removing redundant entries and entries where the RTP difference is too small.
However, in this chapter, we assume that the system software is protected (for
instance, using the approaches described in the OS-oriented chapters) and does not
experience any failures.

In case the ordering of function executions is (partially) flexible, i.e., no/only
partial precedence constraints exist, this approach can be extended by a function
prioritization technique [27].

4.2 Adaptive Dependability Tuning in Multi-Core Systems

While Sect. 4.1 mainly focused on single-core systems and transient faults, the
following technique will extend the scope towards multi-core systems and reliability
threats having a permanent impact on the system (like process variation and aging).
Thereby, different workloads on the individual cores might further aggravate the
imbalance in core frequencies, which already preexists due to process variation.
Consequently, a joint consideration of soft errors, aging, and process variation
is required to optimize the dependability of the system. The goal is to achieve
resource-efficient dependable application execution in multi-core systems under
core-to-core frequency variation.

In a multi-core system, the software layer-based approaches can be comple-
mented by Redundant Multithreading (RMT), which is a hardware-based tech-
nique that executes redundant threads on different cores. An application can
be executed with either Dual Modular Redundancy (DMR) or Triple Modular
Redundancy (TMR). This broadens the mitigation solutions against the above-
mentioned dependability threats, but also demands for the following problems to
be solved [26].

1. The activation/deactivation of RMT has to be decided based on the properties
(i.e., vulnerability, masking, performance) of the concurrently executing applica-
tions, the allowed performance overhead, and the error rate.

2. Mapping of (potentially redundant) threads to cores at run-time needs to consider
the cores’ states.

3. A reliable code version needs to be selected based on the performance variations
of the underlying hardware and the application dependability requirements.

These problems are addressed by employing two key components: (1) a Hybrid
RMT-Tuning technique, and (2) a Dependability-Aware Application Version Tuning
and Core Assignment technique.

The Hybrid RMT-Tuning technique considers the performance requirements
and vulnerability of the upcoming applications in combination with the available
cores and history of encountered errors. It estimates the RTP of all applications,
activates RMT for the one with the highest RTP in order to maintain the history, and
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Fig. 5 (a) RPF improvements of dTune, RTO, and CRT normalized to TO for different aging years
summarizing different chips and workloads. (b) RPF improvements detailing different workloads
(adapted from [28])

takes RMT activation decisions based on the available cores and recent error history.
For applications with RMT activated, the fastest compiled code version is selected.

After the RMT mode is decided for each application, the Dependability-
Aware Application Version Tuning and Core Assignment is performed. It starts
with an initial decision on the application version for applications where RMT
has not been activated, considering their vulnerability and deadline. Then, the
core allocation/mapping is performed, which takes the performance variations of
individual cores (caused by process variation and aging) into account. It starts with
the applications having the highest RTP and intends to allocate cores with similar
performance properties to all redundant copies while also considering their distance.
Finally, the application versions selected in the earlier step are tuned to improve the
RTP further. Since the allocated core is now known, the potential for improving the
dependability is evaluated considering the application’s deadline.

Figure 5 shows the results of this approach (dTune) for different number of
applications and different years. For the evaluation, a multi-core system with
10 × 10 ISA-compatible homogeneous RISC cores is used. These cores differ in
their performance characteristics due to aging, where we consider NBTI-induced
aging [1], and process variation, where the model of [18] is used. The comparison is
done against three approaches: (1) Chip-Level Redundant Threading (CRT) which
targets maximizing the reliability; (2) Reliability-Timing Optimizing Technique
(RTO) jointly optimizing functional and timing dependability, but not using RMT;
(3) Timing Optimizing Technique (TO) targeting to minimize the deadline misses.
The evaluation is performed taking TO as a reference against which dtune, CRT,
and RTO are compared with, where

RPF = 100×
(

1−
∑

t∈T RTP(t)Z∑
t∈T RTP(t)T O

)
. (1)
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Figure 5a shows an overview of the achieved improvements for different chip
maps with process variations, scenarios of application mixes and aging years. dTune
achieves better RPF-results compared to TO, CRT, and RTO for both aging years, as
it jointly considers functional and timing dependability as well as the performance
variation of the cores. For year 5, a wider spread of RPF-results is observed due to
the decrease in processing capabilities of the chips. Figure 5b details the application
workload, where it can be observed that CRT performs as good as dTune for a lower
number of applications, but does not deal well with a higher number of applications
due to focusing only on minimizing functional dependability.

The solution discussed above can further be enhanced by starting with a
preprocessing for application version selection, as demonstrated in [5]. First, the
version with the minimal reliability penalty achieving the tolerable miss rate
(for applications not being protected by RMT) and the best performance (for
applications protected with RMT) are selected. Afterwards, the application-to-core
mapping problem is solved for the applications protected with RMT by assigning
each of them the lowest-frequency group of cores possible. Then, the applications
that are not protected with RMT are mapped to cores by transforming the problem to
a minimum weight perfect bipartite matching problem, which is solved by applying
the Hungarian Algorithm [16]. The decision whether to activate RMT or not is
made by iteratively adapting the mode using a heuristic in combination with the
application mapping approaches.

Nevertheless, solely adopting CRT to maximize the reliability is not good
enough, since the utilization of the dedicated cores may be unnecessarily low due to
low utilization tasks. If the number of redundant cores is limited, the number of tasks
activating RMT is also limited. When the considered multi-core systems have multi-
tasking cores rather than single thread-per-core (but homogeneous performance),
the same studied problems, i.e., the activation of RMT, mapping of threads to cores,
and reliable code version selection, can be addressed more nicely while satisfying
the hard real-time constraints. The main idea is to use Simultaneous Redundant
Threading (SRT) and CRT at the same time or even a mixture of them called Mixed
Redundant Threading (MRT). There are six redundancy levels characterized as a set
of directed acyclic graphs (DAGs) in Fig. 6, where each node (sub-task) represents a
sequence of instructions and each edge represents execution dependencies between
nodes.

For determining the optimal selection of redundancy levels for all tasks, sev-
eral dynamic programming algorithms are proposed in [8] to provide coarse- or
fine-grained selection approaches while satisfying the feasibility under Federated
Scheduling. In extensive experiments, the proposed approaches can generally
outperform the greedy approach used in dTune when the number of available cores
is too limited to activate CRT for all tasks. Since the fine-grained approach has
more flexibility to harden tasks in stage-level, the decrease of the system reliability
penalty is at least as good as for the coarse-grained approach. When the resources
are more limited, e.g., less number of cores, the benefit of adopting the fine-grained
approach is more significant.
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Non-RMT

CRT-DMR MRT-TMR
CRT-TMR

SRT-DMR SRT-TMR

Fig. 6 DAG abstractions of the different redundancy levels, where the gray nodes are original
executions and the green nodes are replicas. The red nodes represent the workload due to the
necessary steps for forking the original executions and replicas, joining, and comparing the
delivered results from DMR/TMR at the end of redundant multithreading. The directed edges
represent the dependencies between nodes. Each block represents one core, i.e., the number of
cores differs depending on the redundancy level

5 Resilient Design for System Software

Considering the adoption of error detection and recovery mechanisms due to the
occurrence of soft errors from time to time, resilient designs for system software
can be developed. (1) Execution versions can be determined to handle soft errors
without over-provision while satisfying given robustness and timing constraints. (2)
Dynamic timing guarantees can be provided without any online adaptation after
a fault occurred. (3) Probabilistic analyses on deadline misses for soft real-time
system. The detailed designs are presented in the following.

5.1 Adaptive Soft Error Handling

To avoid catastrophic events like unrecoverable system failures, software-
based fault-tolerance techniques have the advantages in both the flexibility and
application-specific assignment of techniques as well as in the non-requirement for
specialized hardware. However, the main expenditure is the significant amount of
time due to the additional computation incurred by such methods, e.g., redundant
executions and majority voting, by which the designed system may not be feasible
due to the overloaded execution demand. Due to the potential inherent safety
margins and noise tolerance, control applications might be able to tolerate a
limited number of errors and only degrade its control performance. Therefore,
costly deploying full error detection and correction on each task instance might not
be necessary.

To satisfy the minimal requirement of functional correctness for such control
applications, (m, k) robustness constraint is proposed, which requires m out of any
k consecutive instances to be correct. For each task an individual (m, k) constraint
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is possible to be given by other means analytically or empirically [35]. Without
skipping any instances so likely achieving higher control performance, a static
pattern-based approach [4] can be used to comply the reliable executions on the
marked instances by following an (m, k)-pattern repeatedly to satisfy the given
minimal requirement. To validate the schedulability, the multi-frame task model can
then be applied to provide a hard real-time guarantee offline. A run-time adaptive
approach [4] can further decide the executing version on the fly by enhancing
the static pattern-based approach and monitoring the current tolerance status with
sporadic replenishment counters. It is worth noting that the resulting distribution
of execution jobs can still follow the (m, k) static patterns even in the worst case.
Hence, the schedulability test for the static pattern-based approach can be directly
used for the run-time adaptive approach as well.

Figure 7 shows the results for a self-balancing control application under different
(m, k) requirements and varying fault rates. When the fault rate increases, the overall
utilization of the run-time adaptive approach (DRE and DDR) also rises, since the
requirement of reliable executions is increased within the application execution.
Furthermore, the static pattern-based approaches (SRE and SDR) are always
constant for a fixed (m, k) requirement, as the overall utilization is deterministic
by the amount of job partitions. When the fault rate is as low as 10% and the (m, k)

requirement is loose as (3, 10), the probability of activating reliable executions is
rare, and, hence, the run-time adaptive approach can closely achieve the minimum
overall utilization. Overall, the results suggest that the proposed approaches can
be used to serve various applications with inherent fault-tolerance depending on
their perspectives, thus avoiding over-provision under robustness and hard real-time
constraints.

5.2 Dynamic Real-Time Guarantees

When soft errors are detected, the execution time of a real-time task can be increased
due to potential recovery operations. Such recovery routines may make the system
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very vulnerable with respect to meeting hard real-time deadlines. This problem is
often addressed by aborting not so important tasks to guarantee the response time
of the more important tasks. However, for most systems such faults occur rarely
and the results of not so important tasks might still be useful, even if they are a
bit late. This implicates to not abort these not so important tasks but keep them
running even if faults occur, provided that the more important tasks still meet their
hard real-time deadlines. To model this behavior, the idea of Systems with Dynamic
Real-Time Guarantees [33] is proposed, which determines if the system can provide
without any online adaptation after a fault occurred, either full timing guarantees or
limited timing guarantees. Please note that, this study is highly linked to the topic of
mixed-criticality systems [2]. We can imagine that the system is in the low-criticality
mode if full timing guarantees are needed, and in the high-criticality mode if only
limited timing guarantees are provided. However, in most of the related works, such
mode changes are assumed to be known, without identifying the mode change. The
system only switches from low-criticality to high-criticality mode once, without
ever returning to the low-criticality mode. Moreover, the low-criticality tasks are
considered to be either ignored, skipped, or run with best efforts as background
tasks. Such a model has received criticism as system engineers claim that it does not
match their expectations in Esper et al. [11], Ernst and Di Natale [10], and Burns
and Davis [2].

Suppose that a task set can be partitioned into two subsets for more important
and not so important tasks, and a fixed priority order is given. To test the
schedulability of a preemptive task set with constrained deadlines under a fixed
priority assignment, the typical Time Demand Analysis (TDA) as an exact test with
pseudo-polynomial run-time can be directly applied. To determine the schedulability
for a System with Dynamic Real-Time Guarantees, the following three conditions
must hold:

• Full timing guarantees hold, if the given task set can be scheduled according to
TDA when all tasks are executed in the normal mode.

• When the system runs with limited timing guarantees, all more important tasks
will meet their deadlines if they can be proven to be scheduled by TDA while all
tasks are executed in the abnormal mode.

• Each not so important task has bounded tardiness if the sum of utilization over
all tasks in the abnormal mode can be less than or equal to one.

To decide such a fixed priority ordering for a given task set, the Optimal Priority
Assignment (OPA) can be applied to find a feasible fixed priority assignment, since
the above schedulability test is OPA compatible. It is proven that a feasible priority
assignment for a System with Dynamic Real-Time Guarantees can be found if one
exists by using the priority assignment algorithm presented in [33], which has a
much better run-time than directly applying OPA.

As faulty-aware system design is desirable in the industrial practice, having an
online monitor to reflect the system status is also important. This monitor should
trigger warnings if the system can only provide limited timing guarantees, and
display the next time the system will return to full timing guarantees. To achieve
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Fig. 8 Percentage of Time where Full Timing Guarantees can be given for task sets with
utilization 70% in the normal mode under different fault rates. The median of the acceptance rates
over 40 task sets is colored in red. The blue box represents the interval around this median that
contains the inner 50% of those values while the whiskers display the range of the top/bottom 25%
of those values

this, an approximation is needed to detect the change from full timing guarantees
to limited timing guarantees, and for the calculation of an upper bound of the next
time instance the system will return to full timing guarantees. To realize the routine
of the online monitor, the system software has to ensure that the release pattern is
still correct when a task misses its deadline and there is a helper function to keep
tracking the number of postponed releases. How to enhance a real-time operating
system for the previous two requirements is further discussed in [6].

Figure 8 shows the results with the percentage of time that the system was
running with full timing guarantees. At a fault rate of 10−4 and 3×10−4 (faults/ms),
the system always provides full timing guarantees. When the fault rate is increased,
the average of the time where full timing guarantees are provided drops. For the
worst-case values, the drop is faster but even in this case full timing guarantees
are still provided ≈92.59% and ≈82.91% of the time for fault rates of 10−3 and
3×10−3, respectively. This shows that even for the higher fault rates under a difficult
setting, the system is still able to provide full timing guarantees for a reasonable
percentage of time.

5.3 Probabilistic Deadline-Miss Analyses

When applying software fault-tolerant techniques, one natural assumption is that
the system functions normally most of time. Therefore, it is meaningful to model the
occurrence of different execution of a task by probabilistic bounds on the worst-case
execution time (WCETs) due to potential recovery routines. This allows the system
designer to provide probabilistic arguments, e.g., Deadline-Miss Probability (DMP)
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Fig. 9 (a) Average run-time with respect to task set cardinality. (b) Approximation quality for
five task sets with Cardinality 15. (c) Detailed approximation quality for the convolution-based
approaches

and Deadline-Miss Rate, as the statistical quantification to evaluate the proposed
analyses scheduling algorithms, etc.

To derive the DMP, statistical approaches, i.e., Probabilistic response time anal-
ysis and Deadline-misses probability analysis, are usually taken into consideration.
The state of the art of the probabilistic response time analysis is based on task-level
convolution-based approaches [34]. Naturally, convolution-based approaches are
computationally expensive to be applied when the number of tasks or jobs is large.
Alternatively, Deadline-Misses probability analysis [3] is proposed, which can
utilize analytical bounds, e.g., Chernoff bounds [3, 9], Hoeffding’s and Bernstein’s
inequalities [34]. Please note that, the deadline-misses probability analysis is not
better than the probabilistic response time analysis in terms of accuracy of the DMP.
However, it is essentially much faster and has a better applicability in practice.

Figure 9 shows the results for randomly generated tasks sets with a normal-mode
utilization 70%, fault rate 0.025, and for all tasks the execution time of abnormal
mode is assumed to be two times of the normal mode. Three approaches based
on the task-level convolution-based approaches [34], i.e., Pruning, Unify, Approx,
result in similar values, roughly one order of magnitude better than Chernoff [3].
Although Bernstein [34] and Hoeffding [34] are orders of magnitude faster than
the other approaches which are compatible with respect to the related run-time, the
error of them is large compared to Chernoff by several orders of magnitude. The
results suggest that, if sufficiently low deadline-miss probability can be guaranteed
from analytical bounds, the task-level convolution-based approach then can be
considered.

DMP and Deadline-Miss Rate are both important performance indicators to
evaluate the extent of requirements compliance for soft real-time systems. However,
the aforementioned probabilistic approaches all focus on finding the probability of
the first deadline miss, and it is assumed that after a deadline miss the system either
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discards the job missing its deadline or reboots itself. Therefore, the probability of
one deadline miss directly relates to the deadline-miss rate since all jobs can be
considered individually. If this assumption do not hold, the additional workload due
to a deadline miss may trigger further deadline misses.

To derive a tight but safe estimation of the deadline-miss rate, an event-
driven simulator [7] with a fault injection module can be used, which can gather
deadline-miss rates empirically. However, the amount of time needed to per-
form the simulations is too large. Instead of simulating the targeted task set, an
analytical approach [7] can leverage on the above probabilistic approaches that
over-approximate the DMP of individual jobs to derive a safe upper bound on the
expected deadline-miss rate.

6 Application-Specific Dependability

In this section, we focus on application-specific aspects on dependability improve-
ment with the help of a case study on the Context Adaptive Variable Length Coding
(CAVLC) used in the H.264 video coding standard [20, 30, 32]. It summarizes how
application-specific knowledge can be leveraged to design a power-efficient fault-
tolerance technique for H.264 CAVLC.

CAVLC is an important part of the coding process and is susceptible to errors
due to its context adaptivity, multiple coding tables, and complex structure. It
transforms an input with a fixed length to flexible-length code consisting of
codeword/codelength tuples. The impact of a single error on the subjective video
quality is illustrated in Fig. 10a, which shows a significant distortion in a video
frame when the header of a macroblock (i.e., a 16 × 16 pixels block) is affected.
Faults during the CAVLC can also propagate to subsequent frames or even lead to
encoder/decoder crashes.

Consequently, it is required to address these problems during the CAVLC
execution. To reduce the overhead compared to generic solutions, application-
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Fig. 10 (a) Example of a corrupted frame showing the effects of a single-bit error. (b) Overview
of the contributions for the dependable CAVLC and the corresponding system layers (adapted
from [32])
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specific knowledge is considered. Specifically, Fig. 10b shows an overview of the
dependable CAVLC with contributions on the architecture and algorithm/software
layer, which are based on exploiting the video content properties and performing a
statistical analysis of CAVLC.

• Application-Specific Knowledge is considered by (1) an analysis of error
probabilities, (2) distribution of different syntax elements, (3) algorithmic prop-
erties, and (4) specifications defined by the standard. It includes an analysis
of different macroblock categories (homogeneous/textured, fast/slow motion).
The most important observations are that the total non-zero coefficients have a
significant influence on the error probabilities of different syntax elements. They
can be used to detect potential errors at the algorithm level if the macroblock
properties are known.

• Selective Data Redundancy: Based on the application-specific knowledge
obtained by the analysis, selected CAVLC data (e.g., quantized coefficients,
coefficient statistics, etc.) can be protected by storing redundant copies and parity
data in unused data structures. This is possible, e.g., for the quantized coefficients
as the quantization often leads to unused (“0”) entries, where redundant data can
be stored in a reflected fashion. Only the low-frequency coefficients are protected
in case the space is insufficient.

• Dependable CAVLC Hardware Architecture: The original and redundant
values are loaded by a hardware module, which performs error detection and
error recovery. In case of a mismatch, the parity is calculated and compared to
the stored one, so that the correct entry can be found. A recovery is even possible
if both entries are corrupted by reloading the original block and performing
the quantization step again. Additionally, the coding tables used by CAVLC
for obtaining the codeword and codelength need to be protected. For that,
the individual tables are split into different sub-tables, where the partitioning
decision is based on the distribution of the syntax elements. Sub-tables not
being accessed frequently can then be power-gated for leakage energy savings.
For each sub-table, a block parity-based protection approach is used for error
detection, trading-off the additional memory required and the protection offered.
Furthermore, entries not being accessed due to the algorithm properties and
zero-entries are not stored. Similarly, the data in tables containing mirrored
entries also has to be stored only once, thereby further reducing the memory
requirements and leakage energy.

• Run-Time Manager: The dependable CAVLC architecture is controlled by a
run-time manager which activates/deactivates the power-gating of the memory
parts storing the sub-tables, loads the requested data from the tables, and controls
error detection and reloading of data.

• Dependable CAVLC Processing Flow: The overall flow starts with a mac-
roblock characterization, which determines the power-gating decision. Then,
highly probable values for the syntax elements are predicted, which are used
later for the algorithm-guided error detection. Afterwards, the header elements
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are loaded by the hardware module performing error detection and error recovery.
Finally, the quantized coefficients are coded by CAVLC for each 4× 4 block.

This example architecture illustrates how application-specific knowledge can be
leveraged to improve the design decisions for enhancing the dependability of the
system and its power consumption. It achieves significant improvements in terms of
the resulting video quality compared to an unprotected scheme. Moreover, leakage
energy savings of 58% can be achieved by the application-guided fault-tolerance
and table partitioning.

7 Conclusion

Dependability has emerged as an important design constraint in modern com-
puting systems. For a cost-effective implementation, a cross-layer approach is
required, which enables each layer to contribute its advantages for dependability
enhancement. This chapter presented contributions focusing on the architecture,
SW/OS, and application layers. Those include modeling and estimation tech-
niques considering functional correctness and timeliness of applications as well
as approaches for generating dependable software (e.g., by dependability-aware
software transformations or selective instruction redundancy). Additionally, the
run-time system is employed for selecting appropriate dependable application
versions and adapting to different workloads and run-time conditions, enabling a
tradeoff between performance and dependability. It has furthermore been shown
how application-specific characteristics can be used to enhance the dependability of
a system, taking the example of a multimedia application.
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Fault-Tolerant Computing with
Heterogeneous Hardening Modes

Florian Kriebel, Faiq Khalid, Bharath Srinivas Prabakaran, Semeen Rehman,
and Muhammad Shafique

1 Introduction

Recent technological advancements in the field of transistor fabrication, such as
FinFETs and GAAFETs, have led to significant improvements in the performance
of next-generation multi-core processors but at the expense of an increased sus-
ceptibility to reliability threats such as soft errors [4, 37], aging [14], and process
variations [14]. These threats generate permanent and/or temporary faults that can
lead to unexpected system failures and can be disastrous to several safety-critical
applications such as automotive, healthcare, aerospace, etc., as well as high-
performance computing systems. Therefore, several techniques have been proposed
to detect, prevent, and mitigate these reliability threats across the computing stack
ranging from the transistor and circuit layer [27, 43] to the software/application
layer [2, 42, 44]. Oftentimes, (full-scale) redundancy is employed at the hardware
and the software layers, for example, at the software layer, by executing multiple
redundant thread versions of an application, either spatially or temporally, and at
the hardware layer, by duplicating or triplicating the pipeline, i.e., Double/Triple
Modular Redundancy (DMR/TMR) [28, 29, 32, 46]. However, these reliability
techniques exhibit several key limitations, as discussed below:

1. Ensuring temporal redundancy at the software layer, by executing multiple
redundant threads of a given application on the same core, would incur a
significant performance overhead.
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Fig. 1 Different configurations for mitigating dependability threats for traditional (homogeneous)
and heterogeneous multi-core systems, respectively

2. Executing multiple redundant threads in multiple cores concurrently, instead of a
single core, provides spatial redundancy and nullifies the performance overhead
caused by the temporal redundancy. However, due to the activation of multiple
cores, this technique incurs a significant power overhead.

3. Similarly, fabricating redundant hardware components to provide full-scale TMR
across the pipeline incurs additional area, power, and energy overheads including
additional on-chip resources for the data correction and control units.

4. Moreover, these techniques are not adaptive with respect to the dependability
requirements of the applications, as well as their inherent error tolerance, during
their execution.

To address these limitations, we proposed the reliability-heterogeneous archi-
tectures in [20, 21, 33, 34]. They offer different types of reliability modes in
different cores (i.e., the so-called reliability-heterogeneous cores), realized through
hardening of different pipeline components using different reliability mechanisms.
Hence, such processors provide a foundation for design- and run-time trade-offs in
terms of reliability, power/energy, and area. Their motivation arises from the fact
that different applications exhibit varying degrees of error tolerance and inherent
masking to soft errors due to data and control flow masking. Hence, depending
upon the executing applications, their tasks can be mapped to a set of reliability-
heterogeneous cores to mitigate soft errors, as shown in Fig. 1.

Although this solution significantly reduces the power/energy and performance
overheads, it requires a sophisticated run-time management system that performs an
appropriate code-to-core mapping of the applications, based on their requirements
and given power/performance constraints. This requires enabling certain features
across the hardware and software layers such as additional control logic, core
monitoring units at the hardware layer, and a run-time manager at the software
layer. Embedding this chapter’s content in the scope of this book and the overall
projects [11, 13], the focus of this chapter is limited to the design of such
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Fig. 2 An overview of dependable computing with heterogeneous hardening modes (adapted
from [34]). Image sources: [16, 37]

hardware/software techniques that can enable heterogeneous dependable computing
(see Fig. 3).

Typically, the hardware solutions for dependable heterogeneous architectures
consist of the following three phases (see Fig. 2):

1. Reliability and Resilience Modeling: First, the effects of different reliability
threats (i.e., soft errors, aging, and process variations) on different components
of a given multi-core system and different applications are modeled and analyzed
based on mathematical analysis, simulation, and/or emulation.

2. Hardware Techniques: Based on the vulnerability analysis of the previous step,
multiple reliability-heterogeneous core variants are developed by hardening a
combination of the pipeline and/or memory components. Similarly, an analysis
of multi-level cache hierarchies has led to the design of multiple heterogeneous
reliability cache variants and reliability-aware reconfigurable caches.

3. Run-time System: Afterwards, appropriate task-to-core mapping as well as
reliable code version selection are performed, while satisfying the application’s
reliability requirement and minimizing the power/area overheads. These prob-
lems can also be formulated as constrained optimization problems.
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2 Fault-Tolerant Heterogeneous Processors

Reliability threats not only affect the computing cores in the microprocessors,
but can also significantly affect the on-chip memory sub-systems, like multi-
level caches. This section provides an overview of our techniques for developing
reliability-heterogeneous in-order processors and multi-level cache hierarchies.
Unlike the traditional homogeneous dependable processors, the development of
reliability-heterogeneous processors not only requires design-time efforts to develop
multiple variable-reliability processor variants but also requires a run-time manage-
ment system that can efficiently cater the applications’ requirements (see Fig. 2).
Therefore, as illustrated in Fig. 4, developing these hardware techniques can be
divided into two phases, namely, design-time and run-time:

1. Design-Time: At design-time, first the overall vulnerability of a processor is
analyzed. Based on this analysis, we develop hardware techniques that can be
used to design reliability-heterogeneous processor cores (see Sect. 2.1). In the
next step, these hardened cores are integrated into an architectural-level simulator
to evaluate their effectiveness. Similarly, we evaluate the vulnerability of caches,
based on which hardware techniques are designed to mitigate the effects
of reliability threats in caches (see Sect. 2.2). These reliability-aware caches
and multiple reliability-heterogeneous cores are used to design a reliability-
heterogeneous processor, as depicted by Design-Time in Fig. 4.

2. Run-time: To effectively use the reliability-heterogeneous processor, an adap-
tive run-time manager for soft error resilience (ASER) is used to estimate the
reliability requirements of the applications (as well as their resilience properties),
and to efficiently map their threads to a set of hardened cores while adhering to
the user and performance constraints, as depicted by Run-Time in Fig. 4.
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Fig. 4 The design- and run-time methodology to develop dependable heterogeneous processors
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2.1 Hardening Embedded Processors

To design the hardened cores for reliability-heterogeneous architectures, first, we
analyze the vulnerability of these cores to different reliability threats. Based on
this vulnerability analysis, instead of enabling full-scale DMR/TMR, we design the
micro-architecture of different hardened (in-order) cores. These cores have distinct
reliability mechanisms in different pipeline components (ranging from unprotected
to fully-protected), but implement the same instruction set architecture (ISA); see
the core variant library in Fig. 4. Hence, these cores provide a trade-off between
reliability, area, and power/energy consumption. Since not all transistors on a chip
can be powered-on at the same time (i.e., the dark silicon problem [7, 31, 41]),
we leverage this fact to integrate many different hardened cores to develop a
reliability-heterogeneous ISO-ISA processor [20, 21], while adhering to hardware
and user-defined constraints (e.g., area, power) considering a target domain (i.e.,
given a particular set of target applications).

To cater for the application-specific requirements at run-time, an adaptive run-
time manager for soft error resilience (ASER) determines an efficient application-to-
core mapping considering the application’s vulnerability and deadline requirements,
system performance, thermal design power (TDP), and other user-defined con-
straints. For example, Fig. 5 depicts the varying reliability improvements of the
ASER run-time system approach in comparison with multiple state-of-the-art
reliability techniques such as TRO (timing dependability optimization aiming at
minimizing the deadline misses), RTO (optimizing functional as well as timing
dependability), Full-TMR (activating full TMR), and AdTMR (deactivating TMR
when the vulnerability lies below a pre-defined threshold). The reliability is
measured using the Reliability Profit Function (RPF) which is defined as follows:
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adaptive TMR (adTMR) (adapted from [20])

RPF = 1−
(

RT P(t)ASER

RT P (t)Z

)
(1)

where ∀t ∈ T , T is a set of run-time concurrently executing application tasks
(T = {T1, T2, . . . , TM)}), Z ∈ {T RO,RT O, T MR, adT MR}, and RT P is
the Reliability-Timing Penalty [38]. Note, a higher value of RPF translates to a
better reliability. The ASER approach achieves 58–96% overall system reliability
improvements when compared to these four state-of-the-art techniques.

2.2 Reliability Techniques for Multi-Level Caches

In any microprocessor, on-chip memories play a significant role to improve the
throughput and performance of an application. Moreover, memory elements (such
as caches) are even more susceptible to soft errors compared to the computing
elements (i.e., logic) as they occupy a significant portion of the total on-chip
area [9]. Therefore, for designing dependable multi/many-core processors, different
(individual) cache levels as well as the complete cache hierarchy (considering inter-
dependency between different cache levels) have to be analyzed and optimized for
mitigating reliability threats.

2.2.1 Improving the Reliability of Last-Level Caches

Dynamic reconfiguration of the caches with respect to the running applications
has a significant impact on the vulnerability of the on-chip last-level caches, as
shown in Fig. 6. It can be observed from the vulnerability analysis of a given cache
configuration (see Fig. 6) that due to different access patterns and occupancy of
last-level caches for the application, the vulnerability also varies depending on
the executing applications. This dynamic change in vulnerability at run-time can
be exploited to improve the reliability of the last-level cache. Therefore, dynamic
reconfiguration of the last-level cache is exploited to develop a reliability-aware
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Fig. 6 (a) Vulnerability analysis of different applications from the PARSEC benchmark for the
baseline case (L2 cache parameters—8 MB, 8-way, 64 B). (b) Vulnerabilities and cache misses
(MKPI) for the Ferret application for different cache configurations (adapted from [19])

reconfigurable cache architecture [19, 22]. Towards this, we aim at reducing the
vulnerability of concurrently executing applications by employing the following
features:

1. A methodology to quantify the cache vulnerability with respect to concurrently
executing applications.

2. A method for lightweight online prediction of the application vulnerability online
based on the cache utilization and performance data.

3. A methodology to dynamically reconfigure the last-level cache at run-time that
targets at minimizing the application vulnerability w.r.t. cache while keeping the
performance overhead low, or within a tolerable bound.

This reliability-aware cache reconfiguration [22] can also be applied in conjunction
with the error correcting codes (ECCs). For example, Single Error Correcting-
Double Error Detecting (SEC-DED) [6] can be combined with the reliability-aware
cache reconfiguration [22] to improve reliability in multi-bit error scenarios, or in
cases where only some of the cache partitions are ECC-protected due to the area
constraints.

2.2.2 Improving the Reliability of the Complete Cache Hierarchy

The application vulnerability towards soft errors is not only dependent on the
individual utilization or dynamic reconfiguration of the different individual cache
levels (e.g., L1 or L2). Rather, the vulnerability interdependencies across different
cache levels also have significant impact on the reliability of the system. There-
fore, the vulnerability of the concurrently executing applications with respect to
the corresponding cache configuration can further be improved by considering
these interdependencies across different cache levels. To achieve an efficient
design, we first performed an architectural design space exploration (DSE), while
considering multi-core processors with multiple cache levels executing different
multi-threaded applications. Our cache DSE methodology identifies the pareto-
optimal configurations with respect to constraints, performance overhead, and
targeted vulnerabilities [45]. Afterwards, these configurations are used at run time to
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Fig. 7 (a) and (b) Exploration time saving achieved by the proposed approach with respect to
exhaustive exploration, multi-level tuning approach (MCT-1) [47] and heuristic (MCT-2) [47].
(c) Vulnerability saving comparison of the proposed approach compared to non-reconfigurable
baseline cache with L1 Early WriteBack (EWB) [15] and reliability-aware last-level cache
partitioning (R2Cache) [22] schemes (adapted from [45])

perform reliability-aware cache reconfiguration for the complete cache hierarchy.
Figure 7 shows that more than 50% vulnerability saving is achieved by the proposed
solution as compared to non-reconfigurable baseline cache with L1 Early WriteBack
(EWB) [15] and Reliability-Aware Last-Level Cache Partitioning (R2Cache) while
exploring less than 2% of the entire exhaustive cache configuration design space.

3 Heterogeneous Reliability Modes of Out-of-Order
Superscalar Cores

Embedded processors, although important in a wide range of applications and
scenarios, cannot cater the high throughput and performance requirements of
personal computers or high-performance computing platforms such as cloud servers
or data-centers, which are also constrained in the amount of power that can
be consumed. Such high-throughput systems deploy multi-core out-of-order (O3)
superscalar processors, such as Intel Core i7 processors in PCs, and Intel Xeon or
AMD Opteron processors in servers and data-centers worldwide. An O3 processor
executes the instructions of a program out-of-order, instead of in-order as is the
case in embedded processors (e.g., LEON3), to utilize the instruction cycles that
would otherwise be wasted in pipeline stalls. A superscalar processor, on the
other hand, implements instruction-level parallelism to execute more than one
instruction in parallel by dispatching instructions to multiple different execution
units embedded in the processor core. Therefore, an O3 superscalar processor
offers a significantly higher throughput by combining the advantages of these two
individual techniques. However, enabling such high throughput comes at the cost of
implementing additional hardware units such as the Re-order Buffer (ROB), which
keeps track of the instructions executing out-of-order.
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In this section, we analyze the vulnerability of the ALPHA 21264 [17] O3
superscalar processor and design multiple reliability-heterogeneous processor cores
from which an optimal configuration can be chosen at run-time based on the
applications’ reliability requirements.

3.1 Experimental Setup

Figure 8 presents an overview of the tool-flow used to obtain the results. We utilize
a modified version of the gem5 simulator [5] extended to support the following
functionality:

1. Determine the vulnerable time of all pipeline components, which in turn is used
to compute their Architectural Vulnerability Factors (AVFs) [30],

2. Full support for simulating reliability-heterogeneous cores obtained by triplicat-
ing key pipeline components (instead of implementing full-scale TMR), and

3. Checkpoint processor state compression using techniques like DMTCP [3],
HBICT [1], and GNU zip [8].

We evaluate our reliability-heterogeneous ALPHA 21264 four-issue superscalar
processor cores using the MiBench application benchmark suite [12].

3.2 Vulnerability Analysis of Out-of-Order Superscalar
Processors

The AVF of a component C over a period of N clock-cycles is defined as the
probability of a fault that is generated in C to propagate to the final output resulting
in an erroneous application output or intermittent termination of the program [30].
It is computed using the following equation:

AV FC =
∑n=N

n=0 VulnerableBits

TotalBits×N
(2)
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The AVF of each pipeline component is estimated using applications from the
MiBench and PARSEC application benchmark suites for single- and multi-core
ALPHA 21264 superscalar processors for key pipeline components such as: (1)
Re-order Buffer (ROB), (2) Instruction (IQ), (3) Load (LQ), (4) Store Queues
(SQ), (5) Integer Register Files (Int. RF), (6) Floating Point Register Files (FP
RF), (7) Rename Map (RM), (8) Integer ALUs (Int. ALU), (9) Floating Point
ALUs (FP ALU), (10) Integer Multiply/Divide (Int. MD), and (11) Floating Point
Multiply/Divide (FP MD). Figures 9 and 10 illustrate the results of the vulnerability
analysis experiments for both the single-core and multi-core processors.

We analyze the results obtained from the vulnerability analysis to make the
following key observations:

1. We have identified three key pipeline components (Integer ALU, Store Queue,
and Re-order Buffer) that are more vulnerable during the execution of SHA, when
compared to Bit-counts, as depicted by A in Fig. 9.
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2. The AVFs of the individual pipeline components vary for different application
workloads. For example, as shown in Fig. 10a the vulnerability of the Integer
ALU widely varies for the four application workloads evaluated (labeled B).

3. In case of multi-core processors, the size of the input data does not significantly
affect the AVF of the pipeline components, as shown by C in Fig. 10b.

The AVF of a component varies based on the type and number of instructions
present in the application and its properties such as its compute- or memory-
intensiveness, instruction-level parallelism, cache hit/miss rate, etc. For example,
components like the ROB and the SQ are more vulnerable in SHA because of higher
levels of instruction-level parallelism and more store instructions.

Therefore, based on this information, we can select certain key pipeline com-
ponents that can be hardened/triplicated to increase the reliability of the processor
for a given application workload. By hardening multiple key pipeline components
in different combinations, we design a wide range of reliability-heterogeneous
O3 superscalar ALPHA cores from which an optimal design configuration can
be selected at run-time based on an application’s reliability requirement while
minimizing the area and/or power overheads.

3.3 Methodology for Hardening Out-of-Order Superscalar
Processors

Our methodology for designing reliability-heterogeneous O3 superscalar processors
targets two key approaches: (1) Redundancy, and (2) Checkpointing. Redundancy at
the hardware layer is ensured by designing a wide range of reliability-heterogeneous
processor cores by hardening a combination of the vulnerable pipeline components,
depending on the reliability requirements of the target application. The vulnerable
components are selected based on the fault-injection experiments and the AVF
values of each component for different application workloads. Second, to further
enhance processor reliability, we investigate and analyze various compression
mechanisms that can be used to efficiently reduce the size of checkpointing data. An
overview of our methodology for hardening O3 superscalar processors is presented
in Fig. 11. First, we explain how we evaluate the vulnerability of the full processor
for a given application workload.

3.3.1 Full-Processor Vulnerability Factor

For evaluating the vulnerability of the full processor for a given application
workload, we propose to extend the AVF to estimate what we refer to as the Full-
Processor Vulnerability Factor (FPVF). It is defined as the ratio of the total
number of vulnerable bits (VulnerableBits) in the processor pipeline for the duration
they are vulnerable (VulnerableTime) to the total number of bits in the processor
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Fig. 11 Methodology for hardening out-of-order superscalar processors (adapted from [33])

pipeline (TotalBits) for the total duration of application execution (TotalTime). For
a given application workload (W), we estimate FPVF of our proposed reliability-
heterogeneous processors as:

FPV FW =
∑
∀i∈Components V ulnerableBitsi × V ulnerableT imei∑

∀i∈Components T otalBitsi × T otalT imei

(3)

3.3.2 Heterogeneous Reliability Modes for ALPHA Cores

Enabling full-scale TMR for all application workloads leads to 200% (or more)
area and power overheads, which might not be a feasible option in many real-
world systems. Considering the analysis presented in Sect. 3.2, which illustrates
that the AVF of the pipeline components varies based on the application workload,
we propose to enable fine-grained TMR at the component-level. This involves
hardening a combination of highly vulnerable pipeline components, instead of the
full-processor pipeline to increase processor reliability while reducing the power
and area overheads associated with TMR. Hardening involves instantiating three
instances of the component with the same set of inputs and a voter circuit that is
used to elect the majority output. We propose and analyze 10 different reliability
modes (RM) for heterogeneous processors, including the baseline unprotected (U)
core. The list of components hardened in these modes are presented in Table 1.

Next, we execute the four MiBench application benchmarks on our 10 proposed
RMs to estimate the FPVF of each reliability-heterogeneous processor. We also
evaluate the area and power overheads incurred by each reliability mode. The
results of the experiments are illustrated in Fig. 12. From these results, we make
the following key observations:

1. Our initial hypothesis, which stated that hardening different combinations of
pipeline components (RMs) can reduce the vulnerability to different extents
based on the application workload being executed, was correct. We demonstrate
this further by considering the applications SHA and Dijkstra. Typically, the
vulnerability of these two applications is similar to each other, except in the cases
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Table 1 Heterogeneous reliability modes and corresponding pareto-optimal reliability modes
for MiBench applications

Reliability mode Components hardened Application Pareto-optimal reliability modes

U Unprotected Bit-counts U, RM4, RM7

RM1 RF Dijkstra U, RM4, RM7, RM8

RM2 IQ, RM Patricia U, RM4, RM7

RM3 IQ, LQ, SQ SHA U, RM1, RM6, RM7, RM8

RM4 IQ, LQ, SQ, RM, ROB All U, RM4, RM7, RM8

RM5 RF, IQ, LQ, SQ

RM6 RF, RM

RM7 RF, RM, ROB

RM8 RM, ROB

RM9 RF, IQ, LQ, SQ, RM
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Fig. 12 Full-Processor Vulnerability Factor (FPVF) and power/area trade-off of the proposed
heterogeneous reliability modes for different MiBench applications (adapted from [33])

of RM2, RM6, and RM9. The full-processor vulnerability of these three RMs has
been reduced by more than 50% when executing SHA compared to Dijkstra.

2. Components such as the Rename Map and Reorder Buffer, when hardened, are
highly effective in reducing the FPVF for all four applications. This is illustrated
by the reliability modes RM4, RM7, and RM8, which have significantly lower
FPVFs compared to their counter-parts. However, these two components occupy
a significant percentage of the on-chip resources and hardening them leads
to significant area and power overheads as illustrated by Fig. 12. This leads
us to infer that hardening specific highly vulnerable pipeline components can
significantly reduce the overall processor vulnerability for a wide range of
application workloads based on their properties.

Furthermore, based on the data from these experiments, we perform an architec-
tural space exploration that trades-off FPVF, area, and power overheads to extract
the pareto-optimal reliability modes. The results of the experiments are illustrated
in Fig. 13, where the x-, y-, and z-axes depict the FPVF, area, and power overheads,
respectively. From these results, we make the following key observations:
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1. The design labeled U, i.e., the unprotected core, is pareto-optimal for all
application workloads. This is expected as this reliability mode incurs zero area
and power overheads and represents the least reliable processor design.

2. Although RM7 and RM8 significantly reduce the FPVF, due to their differences
in power and area overheads, RM7 lies on the pareto-front for all individual appli-
cation workloads, whereas RM8 is pareto-optimal only for SHA and Dijkstra.
Similarly, RM4 is pareto-optimal for three of the four application workloads.

3. RM4, RM7, and RM8, all lie on the pareto-front when all applications are
executed on the cores. This behavior is observed because of the varying levels
of vulnerability savings achieved by the RMs when compared to their area and
power overheads.

4. RM7 is pareto-optimal for four individual application workloads and reduces the
FPVF by 87%, on average, while incurring area and power overheads of 10%
and 43%, respectively.

3.3.3 State Compression Techniques

Reliability can also be improved at the software layer by inserting checkpoints in
the application code. When an application encounters a checkpoint, the complete
processor state, including all intermediate register and cache values, is stored in the
main memory. These checkpoint states can be used to re-initialize the processor,
which is referred to as rollback, in case a failure is detected and the next sequence
of instructions are re-executed.
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The way checkpointing is implemented in gem5 leads to significant loss in
performance in case of frequent checkpoint restoration as the cache and pipeline
states are not preserved, which, in turn, leads to a higher number of instructions
being executed. Distributed Multi-Threaded Checkpointing (DMTCP) is a Linux
compatible checkpointing tool that is used to checkpoint Linux processes. The
back-end mechanism of DMTCP is accessible to programmers, via Application
Programming Interfaces (APIs), to insert checkpoints into their application code.
Inside gem5, these APIs can be used in combination with its pseudo-instructions
to offer the functionality of creating/recovering checkpoint states for the appli-
cations being simulated inside gem5. Furthermore, the size of data generated
by each checkpoint is typically large, especially in the case of O3 superscalar
processors with large multi-level cache hierarchies. Therefore, we explore various
compression strategies that can be used to efficiently compress and reduce the
checkpoint data using techniques like the Hash-Based Incremental Checkpointing
Tool (HBICT) and GNU zip (gzip). HBICT provides DMTCP support to enable
checkpoint compression using an approach called delta compression. This kind of
compression mechanism preserves only changed fragments of a program’s state,
thereby considerably reducing the size of checkpoint data. gzip is a file compression
technique based on the DEFLATE algorithm, which is a combination of lossless
data compression techniques such as LZ77 and Huffman coding. gzip can drastically
reduce the size of checkpoint data, as illustrated by the results presented in Fig. 14.
These techniques and compression algorithms are implemented in gem5, in different
combinations, to reduce the size of checkpoint data for the four aforementioned
MiBench applications, by executing them on an unprotected ALPHA processor. The
effectiveness of different combinations of compression algorithms is illustrated in
terms of checkpoint data size in Fig. 14. It can be observed that the combination of
DMTCP and gzip is highly successful in reducing the checkpoint size by ∼6×. On
the other hand, a combination of DMTCP, HBICT, and gzip techniques reduces the
checkpoint size by ∼5.7×.

4 Run-Time Systems for Heterogeneous Fault-Tolerance

The techniques discussed in Sects. 2 and 3 also require a run-time manager for
incorporating the application vulnerabilities with respect to several reliability threats
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such as soft errors, aging, and process variation, as well as considering constraints
like dark silicon and required performance (or tolerable performance overhead).
Most of the adaptive hardware techniques exploit the application vulnerability to
map applications on appropriate cores to reduce their vulnerability. Similarly, this
concept can be applied to modify the applications with respect to the available hard-
ened core or caches, which can also be combined with other hardware techniques to
further reduce the vulnerabilities of the heterogeneous multi/many-core processors.
Therefore, several techniques have been proposed to modify the execution patterns
of the application or partitioning the application to develop a run-time system for
reliability-heterogeneous multi/many-core processors.

1. Aging- and Process Variation-Aware Redundant Multithreading [18, 36]:
dTune leverages multiple reliable versions of an application and redundant
multithreading (RMT) simultaneously for achieving high soft error resilience
under aging and process variability [36]. Based on the reliability requirements
of the executing applications, dTune performs efficient core allocation for RMT
while considering the aging state of the processor as well as process variation.
It achieves up to 63% improvement in the reliability of a given application.
Similarly, another approach [18] utilizes different software versions and RMT
to improve the reliability of a system while considering the effects of soft errors
and aging on the processor cores, to achieve an improved aging balancing.

2. Variability-aware reliability-heterogeneous processor [21]: This work
leverages techniques at the hardware and run-time system layers to mitigate
the reliability threats. In particular, this work focuses on TMR-based solutions
to (partially) harden the cores for developing a many/multi-core reliability-
heterogeneous processor. It uses a run-time controller to handle multiple
cores with different reliability modes while considering the reliability
requirements of the applications. In addition, it also exploits the dark silicon
property in multi/many-core processors to offer a wide range of different
performance-reliability trade-offs by over-provisioning the processor with
reliability-heterogeneous cores.

3. Aging-aware reliability-heterogeneous processor [10]: This technique
exploits the dark silicon property of the multi/many-core processors to design a
run-time approach for balancing the application load to mitigate the reliability
threats, i.e., temperature-dependent aging while also considering variability and
current age of the cores in order to improve the overall system performance
for a given lifetime constraint. The analysis shows that this run-time solution
can improve the overall aging of the multi/many-core processor by 6 months to
5 years depending upon the provided design constraints and power overheads.
Furthermore, this work also developed a fast aging evaluation methodology
based on multi-granularity simulation epochs, as well as lightweight run-time
techniques for temperature and aging estimation that can be used for an early
estimation of temperature-dependent aging of multi/many-core processors.

There are other techniques which can exploit the functional and timing reliability
in real-time systems to improve the application by generating the reliable application
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versions or respective thread with different performance and reliability properties
[38]. These reliable applications or respective thread can jointly be used with
hardware techniques to improve the overall reliability of the multi/many-core
heterogeneous processor. Another solution is to exploit the dynamic voltage and
frequency scaling to generate the dynamic redundancy and voltage scaling with
respect to the effects of process variations, application vulnerability, performance
overhead, and design constraints [40]. This technique demonstrates up to 60%
power reductions while improving the reliability significantly. Similarly, in addition
to redundancy, multiple voltage-frequency levels are introduced while consider-
ing the effects of dark silicon in multi/many-core heterogeneous processor [39].
This technique also considers the effects of soft errors and process variations in
their reliability management system that provides up to 19% improved reliability
under different design constraints [35]. Most of the abovementioned approaches
are focused on general purpose microprocessors; however, in application-specific
instruction set processors (ASIPs), the hardware hardening and corresponding run-
time software assisted recovery techniques can be used to improve the soft error
vulnerabilities in ASIP-based multi/many-core systems. For example, dynamic core
adaptation and application specificity can be exploited to generate a processor
configuration which performs the error (caused by soft error) recovery for a
particular application under the given area, power, and performance constraints
[24–26]. Moreover, the baseline instruction set of the targeted ASIPs can also be
modified or extended to enable the error recovery functionality [23].

5 Conclusion

This chapter discusses the building blocks of computing systems (both embedded
and superscalar processors) with different heterogeneous fault-tolerant modes for
the memory components like caches as well as for the in-order and out-of-order
processor designs. We provide a comprehensive vulnerability analysis of different
components, i.e., embedded and superscalar, processors and caches, considering
the soft errors and aging issues. We also discuss the methodologies to improve
the performance and power of such systems by exploiting these vulnerabilities. In
addition, we briefly present that a reliability-aware compiler can be leveraged to
comprehend software-level heterogeneous fault-tolerance by generating different
reliable versions of the application with respective reliability and performance
properties. Further details on reliability-driven compilation can be found in Chap. 5.
Towards the end, we also analyze fault-tolerance techniques for application-specific
instruction set processors (ASIPs).
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Thermal Management and
Communication Virtualization for
Reliability Optimization in MPSoCs

Victor M. van Santen, Hussam Amrouch, Thomas Wild, Jörg Henkel,
and Andreas Herkersdorf

1 Overview

The VirTherm3D project is part of SPP1500, which has its origins in [10] and
[9]. The main cross-layer contributions of VirTherm3D are outlined in Fig. 1. The
green circles are our major contributions spanning from the physics to circuit layer
and from the architecture to application layer. These contributions include physical
modeling of thermal and aging effects considered at the circuit layer as well as
communication virtualization at architecture level to support task relocation as part
of thermal management at architecture level. Our minor contributions span from the
circuit to architecture layer and include reliability-aware logic synthesis as well as
studying the impact of reliability with figures of merit such as probability of failure.

2 Impact of Temperature on Reliability

Temperature is at the core of reliability. It has a direct short-term impact on
reliability, as the electrical properties of circuits (e.g., delay) are affected by
temperature. A higher temperature leads to circuits with higher delays and lower
noise margins. Additionally, temperature impacts circuits indirectly as it stimulates
or accelerates aging phenomena, which in turn, manifest themselves as degradations
in the electrical properties of circuits.

The direct impact of temperature in an SRAM memory cell can be seen in
Fig. 2. Increasing the temperature increases the read delay of the memory cell.
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Fig. 2 Shift in SRAM memory cell read delay as a direct impact of temperature. Taken (from [3])

This is because increased temperature degrades performance of transistors (e.g., a
reduction in carrier mobility μ), which affects the performance of the memory cell.
Therefore, increasing temperature directly worsens circuit performance and thus
negatively impacts the reliability of a circuit. If the circuit has a prolonged delay
due to the increased temperature, then timing violations might occur. If the circuit
has a degraded noise margin, then noise (e.g., voltage drops or radiation-induced
current spikes) might corrupt data.

Next to directly altering the circuit properties, temperature also has an indirect
impact, which is shown in Fig. 3. Temperature stimulates aging phenomena (e.g.,
Bias Temperature Instability (BTI)) degrading the performance of transistors (e.g.,
increasing the threshold voltage Vth) over time. Increasing the temperature accel-
erates the underlying physical processes of aging and thus increases aging-induced
degradations.

Because of the two-fold impact of temperature, i.e., by reducing circuit per-
formance directly and indirectly via aging, it is crucial to be considered when
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estimating the reliability of a circuit. The temperature at an instant of time (estimated
either via measurement or simulation) governs the direct degradation of the circuit,
i.e., the short-term direct impact of temperature. Temperature over time governs the
long-term indirect impact, as aging depends on the thermal profile (i.e., the thermal
fluctuations over a long period). How to estimate temperature correctly both the
temperature at an instant as well as the thermal profile is discussed in Sect. 3.

After the temperature is determined via temperature estimation, the impact of
temperature on reliability must be evaluated. This is challenging, as the impact
of temperature occurs on physical level (e.g., movement of electrical carriers in a
semiconductor as well as defects in transistors for aging), while the figures of merit
are for entire computing systems (e.g., probability of failure, quality of service).
To overcome this challenge, Sect. 4 discusses how to connect the physical to the
system level with respect to thermal modeling. To obtain the ultimate impact of
the temperature, the figures of merit of a computing system are obtained with our
cross-layer (from physical to system level) temperature modeling (see Fig. 4).

Temperature can be controlled. Thermal management techniques reduce temper-
ature by limiting the amount of generated heat or making better use of existing
cooling (e.g., distribution of generated heat for easier cooling). Thus, to reduce the
deleterious impact of temperature on the figures of merit of systems, temperature
must be controlled at system level. For this purpose, Sect. 5 discusses system-
level thermal management techniques. These techniques limit temperature below
a specified critical temperature to ensure that employed safety margins (e.g., are not
violated time slack to tolerate thermally induced delay increases), thus ensuring the
reliability of a computing system.
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Fig. 4 Image signal-to-noise ratio as a figure of merit for an image processing system. At 25 ◦C
no timing violations occur, while (due to non-existent safety margins) at 28 and 30 ◦C timing
violations degrade PSNR

To support the system management in migrating tasks away from thermal
hotspots and thus reducing thermal stress, special virtualization features are pro-
posed to be implemented in the interconnect infrastructure. They allow for a fast
transfer of communication relations of tasks to be migrated and thus help to
limit downtimes. These mechanisms can then also be applied for generating task
replica to dynamically introduce redundancy during system runtime as a response
to imminent reliability concerns in parts of the SoC or if reliability requirements of
an application change.

As mentioned before, temperature estimation and modeling cross many abstrac-
tion layers. The effects of temperature originate from the physical level, where the
physical processes related to carriers and defects are altered by temperature. Yet the
final impact of temperature has to pass through the transistor level, gate level, circuit
level, architecture level all the way to the system level, where the figures of merit
of the system can be evaluated. The system designer has to maintain the figures
of merit for his end-user, therefore limiting temperature with thermal management
techniques and evaluating the impact of temperature on the various abstraction
layers. Therefore, Sect. 7 discusses thermal estimation, modeling, and management
techniques with a focus on how to cross these abstraction layers and how to connect
the physical to the system level. In practice, interdependencies between the low
abstraction layers and the management layer do exist. The running workload at
the system level increases the temperature of the cores. Hence, the probability of
error starts to gradually increase. In such a case the management layer estimates
the probability of error based on the information received from the lower layers and
then attempts to make the best decision. For instance, it might allow the increase in
the probability of error but at the cost of enabling the adaptive modular redundancy
(AMR) (details in Sect. 6.3) or maybe migrating the tasks to other cores that are
healthier (i.e., exhibit less probability of error).
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3 Temperature Estimation via Simulation or Measurement

Accurately estimating the temperature of a computing system is necessary to later
evaluate the impact of temperature. Two options exist: (1) Thermal simulation and
(2) Thermal measurement. Both options must estimate temperature with respect
to time and space. Figure 5 shows a simulated temporal thermal profile of a
microprocessor. Temperature fluctuates visibly over time and depends on the
applications which are run on the microprocessor.

Figure 9 shows a measured spatial thermal map of a microprocessor. Temperature
is spatially unequally distributed across the processor, i.e., certain components of
the microprocessors have to tolerate higher temperatures. However, the difference
in temperature is limited. This limit stems from thermal conductance across the chip
counteracting temperature differences. Thermal conductance is mainly via the chip
itself (e.g., wires in metal layers), its packaging (e.g., heat spreaders), and cooling
(e.g., heat sink).

3.1 Thermal Simulation

Thermal simulations are a software-based approach to estimate the temperature
of a computing system. Thermal simulations consist of three steps: (1) Activity
extraction, (2) Power estimation, (3) Temperature estimation. The first step extracts
the activity (e.g., transistor switching frequency, cache accesses) of the applica-
tions running on the computing system. Different applications result in different
temperatures (see Fig. 5). The underlying cause is a unique power profile for each
application (and its input data), originating from unique activities per application.

Once activities are extracted, the power profiles based on these activities are
estimated. Both steps can be performed on different abstraction layers. On the
transistor level, transistor switching consumes power, while on the architecture level

Fig. 5 Simulated thermal profile (temporal) of a microprocessor
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applications

each cache access consumes a certain amount of power (depending on cache hit or
cache miss). Thus activity would be transistor switching/cache accesses and this
would result in a very fine-grained power profile (temporally as well as spatially)
for the transistor level. At the architecture level, a coarse-grained power profile is
obtained with a time granularity per access (potentially hundreds of cycles long)
and space granularity is per entire cache block.

With the power profiles known, the amount of generated heat (again spatially and
temporally) is known. A thermal simulator then uses a representation of thermal
conductances and capacitances with generated heat as an input heat flux and
dissipated heat (via cooling) as an output heat flux to determine the temperature
over time and across the circuit.

Our work in [4] exemplifies a thermal simulation flow in Fig. 6. In this example,
SRAM memory cell accesses are used to estimate transistor switching and thus
power profiles for the entire SRAM array. These power profiles are then used with
the microprocessor layout (called floorplan) and typical cooling settings in a thermal
simulator to get thermal maps in Fig. 7.

The work in [13] models temperature on the system level. Individual processor
cores of a many-core computing system are the spatial granularity with seconds as
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Fig. 8 Thermal estimation at the system level with cores as the spatial granularity (from [13])

the temporal granularity. Abstracted (faster, simpler) models are used to estimate the
temperature per processor core, as a transistor level granularity would be unfeasible
with respect to computational effort (i.e., simulation time).

While thermal simulations have the advantage of being able to perform thermal
estimations without physical access to the system (e.g., during early design phases),
they are very slow (hours of simulation per second of operation) and not accurate.
Estimating activities and power on fine-grained granularities is an almost impossible
task (layout-dependent parasitic resistances and capacitances, billions of transistors,
billions of operations per second), while coarse-grained granularities provide just
rough estimates of temperature due to the disregard of non-negligible details (e.g.,
parasitics) at these high abstraction levels (Fig. 8).

3.2 Thermal Measurement

If physical access to actual chips is an option, then thermal measurement is
preferable. Observing the actual thermal profiles (temporally) and thermal maps
(spatially) intrinsically includes all details (e.g., parasitics, billions of transistors,
layout). Thus, a measurement can be more accurate than a simulation. Equally as
important, measurements operate in real time (i.e., a second measured is also a
second operated) outperforming simulations.

The challenge of thermal measurements is the resolution. The sample frequency
of the measurement setup determines the temporal resolution and this is typically
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in the order of milliseconds, while simulations can provide nano-second granularity
(e.g., individual transistor switching). However, since thermal capacitances prevent
abrupt changes of temperature as a reaction to abrupt changes in generated heat,
sample rates in milliseconds are sufficient. The spatial resolution is equally limited
by thermal conductance, which limits the thermal gradient (i.e., difference in
temperature between two neighboring component; see Figs. 7 and 9).

The actual obstacle for thermal measurements is accessibility. A chip sits below
a heat spreader and cooling, i.e., it is not directly observable. The manufacturers
include thermal diodes at a handful of locations (e.g., 1 per core), which measure
temperature in-situ, but these diodes are both inaccurate (due to their spatial
separation from the actual logic) and spatially very coarse due to their limited
number.

Our approach (Fig. 10) [2, 14] is to cool the chip through the PCB from the
bottom-side and measure the infrared radiation emitted from the chip directly. Other
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approaches cool the chip with infrared-transparent oils to cool the chip from the top,
but this results in heat conductance limiting image fidelity and turbulence in the oil
limiting image resolution (see Fig. 11). Our approach does not suffer from these
issues and delivers crisp high-resolution infrared images from a camera capable of
sampling an image every 20 ms with a spatial resolution of 50 μm. Thus a lucid
thermal profile and thermal map are achieved including all implementation details
of the chip, as actual hardware is measured.

4 Modeling Impact of Temperature at System Level

Modeling the impact of temperature on a computing system is a challenging task.
Estimation of the figures of merit of a computing system can only be performed
on the system level, while the effects of temperature are on the physical level.
Thus, many abstraction layers have to be crossed while maintaining accuracy and
computational feasibility (i.e., keep simulation times at bay). In this section we
discuss how we tackle this challenge, starting with the selection of figures of merit,
followed by the modeling of the direct impact of temperature and finally aging as
the indirect impact of temperature.
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4.1 Figures of Merit

The main figures of merit at the system level with respect to reliability are
probability of failure Pf ail and quality of service (e.g., PSNR in image processing).
Probability of failure encompasses many failure types like timing violations, data
corruption and catastrophic failure of a component (e.g., short-circuit). A full
overview of abstraction of failures towards probability of failure is given in the
RAP (Resilience Articulation Point) chapter of this book. Typically, vendors or end-
users require the system designer to meet specific Pf ail criteria (e.g., Pf ail < 0.01).
Quality of service describes how well a system provides its functionality if a specific
amount of errors can be tolerated (e.g., if human perception is involved or for
classification problems).

For probability of failure, the individual failure types have to be estimated and
quantified without over-estimation due to common failures (as in our work [3],
where a circuit with timing violations might also corrupt data). In that work the
failure types such as timing violations, data corruption due to voltage noise, and data
corruption due to strikes of high-energy particles are covered. These are the main
causes of failure in digital logic circuits as a result of temperature changes (e.g.,
excluding mechanical stress from drops). The probability of failure is spatially and
temporarily distributed (see Figs. 12 and 13) and therefore has to be estimated for a
given system lifetime (temporally) and for total system failure (combined impact of
spatially distributed Pf ail (e.g., sum of failures or probability that only 1 component
out of 3 fail (modular redundancy)).

Quality of service means observing the final output of the computing system and
analyzing it. In our work [5, 7] we use the peak signal-to-noise ratio (PSNR) of
an output image from an image processing circuit (discrete cosine transformation
(DCT) in a JPEG encoder).
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4.2 Direct Impact of Temperature

To model the direct impact of temperature, we start at the lowest abstraction layers.
Compact transistor models (e.g., BSIM) describe the current flow through the
channel of a transistor and the impact of temperature on that current flow. These
models are then used in circuit simulators to characterize standard cells (build
from transistors) in terms of power consumption and propagation delay [5, 21].
Characterizing the standard cells (see Fig. 14) under different temperatures (e.g.,
from 25 to 125 ◦C) captures the impact of temperature on the delay and power
consumption of these cells. This information is then gathered in a cell library (a
single file containing all delay and power information for these cells) and then circuit
and architecture level tools (e.g., static timing analysis tools, gate level simulators)
can be used to check individual failure types (e.g., timing violations in static timing
analysis) for computing systems (e.g., microprocessors) under various temperatures.
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4.3 Aging as Indirect Impact of Temperature

Aging is stimulated by temperature (see Fig. 3) and therefore temperature has an
indirect impact on reliability via aging-induced degradations. Aging lowers the
resiliency of circuits and systems, thus decreasing reliability (an increase in Pf ail)
as shown in Fig. 15.

For this purpose our work [6, 18, 20] models aging, i.e., Bias Temperature Insta-
bility (BTI), Hot-Carrier Injection (HCI), Time-Dependent Dielectric Breakdown
(TDDB) and the effects directly linked to aging like Random Telegraph Noise
(RTN). All these phenomena are modeled with physics-based models [18, 20],
which can accurately describe their temperature dependencies in the actual physical
processes (typically capture and emission of carriers in the defects in the gate
dielectric of transistors [4, 19]) of these phenomena.

Our work [6, 18] considers the interdependencies between these phenomena
(see Fig. 16) and then estimates the degradation of the transistors. Then the
transistor modelcards (transistor parameter lists) are adapted to incorporate the
estimated degradations and use these degraded transistor parameters in standard cell
characterization.

During cell characterization it is important to not abstract, as ignoring the
interactions between transistors (counteracting each other when switching) results
in underestimations of propagation delay [21] and ignoring the operating conditions
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(load capacitance, signal slew) of the cells [5, 20] misrepresents actual cell delay
and power consumption.

After all necessary information is gathered, cells are characterized under different
temperatures (like in the previous subsection) but not only with altered transistor
currents (modeling the direct impact of temperature) but with additionally degraded
transistors parameters (modeling the indirect impact of temperature via aging).
Thus we combine both the direct and indirect impact into a single standard cell
characterization to obtain delay and power information of standard cells under the
joint impact of temperature and temperature-stimulated aging.

5 System-Level Management

To limit the peak temperature of a computing system and distribute the tempera-
ture evenly, we can employ system-level thermal management techniques. These
techniques limit or distribute the amount of generated heat and thus ensure that the
temperature stays below a given critical temperature. The two techniques presented
in this section are task migration [13] and voltage scaling [17].

5.1 Voltage Scaling

Voltage scaling reduces the supply voltage of a chip or component (e.g., a processor
core) to lower the power consumption and thus lower the generated heat. As a
first-order approximation, lowering the voltage results in a quadratic reduction of
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the consumed (dynamic) power. Therefore lowering the voltage even slightly has a
considerable impact on the generated heat and thus exhibited temperature.

Voltage scaling has various side-effects. As the driving strength of transistors is
also reduced, when the supply voltage is reduced, voltage scaling always prolongs
circuit delays. Hence, voltage scaling has a performance overhead, which has to be
minimized, while at the same time the critical temperature should not be exceeded.

Another side-effect is that voltage governs the electric field, which also stim-
ulates aging [17]. When voltage increases, aging-induced degradation increases
and when voltage reduces aging recovers (decreasing degradation). In our work in
[17] we showed that voltage changes within a micro-second might induce transient
timing violations. During such ultra-fast voltage changes, the low resiliency of the
circuit (at the lower supply voltage) meets the high degradation of aging (exhibiting
from operation at the high voltage). This combination of high degradation with low
resiliency leads to timing violations if not accounted for. Continuing operation at
the lower voltage recovers aging, thus resolving the issue. However, during the brief
moment of high degradation violations occurred.

5.2 Task Migration

Task migration is the process of moving applications from one processor core to
another. This allows a hot processing core to cool down, while a colder processor
core takes over the computation of the task. Therefore, temperature is more equally
distributed across a multi- or many-core computing system.

A flow of our task migration approach is shown in Fig. 17. Sensors in each
core measure the current temperature (typically thermal diodes). As soon as the
temperature approaches the critical value, then a task is migrated to a different core.
The entire challenge is in the question “To which core is the task migrated?” If the
core to which the task is migrated is only barely below the critical temperature, then
the task is migrated again, which is costly since each migration stalls the processor
core for many cycles (caches are filled, data has to be fetched, etc.).

Therefore our work in [13] predicts the thermal profile and makes decisions
based on these predictions to optimize the task migration with as little migrations as
possible while still ensuring that the critical temperature is not exceeded.

Another objective which has to be managed by our thermal management
technique is to minimize thermal cycling. Each time a processor core cools down
and heats up again it experiences a thermal cycle. Materials shrink and expand under
temperature and thus thermal cycles put stress on bonding wires as well as soldering
joints between the chip and the PCB or even interconnects within the chip (when it
is partially cooled/heated).

Therefore, our approach is a multi-objective optimization strategy, which mini-
mizes thermal cycles per core, limits temperature below the critical temperature and
minimizes the number of task migrations (reducing performance overheads).
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6 Architecture Support

To support the system-level thermal management in the migration of tasks that
communicate with each other the underlying hardware architecture provides specific
assistance functions in the communication infrastructure. This encompasses a
virtualization layer in the network on chip (NoC) and the application of protection
switching mechanisms for a fast switch-over of communication channels. Based
on these features an additional redundancy mechanism—called adaptive modular
redundancy (AMR)—is introduced, which allows to run tasks temporarily with a
second or third replica to either detect or correct errors.

6.1 NoC Virtualization

To support the system management layer in the transparent migration of tasks
between processor cores within the MPSoC an interconnect virtualization overlay
is introduced, which decouples physical and logical endpoints of communication
channels. Any message passing communication among sub-tasks of an application
or with the I/O tile is then done via logical communication endpoints. That is,
a sending task transmits its data from the logical endpoint on the source side of
the channel via the NoC to the logical endpoint at the destination side where the
receiving task is executed. Therefore, the application only communicates on the
logical layer and does not have to care about the actual physical location of sender
and receiver tasks within the MPSoC. This property allows dynamic remapping of a
logical to a different physical endpoint within the NoC and thus eases the transparent
migration of tasks by the system management. This is shown in Fig. 18, where a
communication channel from the MAC interface to task T1 can be transparently
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Fig. 18 Communication virtualization layer (from [8])
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switched over to a different receiving compute tile/processor core. Depending on
the migration target of T1 the incoming data will be sent to the tile executing the
new T1’ [8]. In Sect. 6.2 specific protocols are described to reduce downtime of
tasks during migration.

To implement this helper function, both a virtualized NoC adapter (VNA)
and a virtualized network interface controller (VNIC) are introduced that can be
reconfigured in terms of logical communication endpoints when a task migration
has to be performed [15].

VNA and VNIC target a compromise between high throughput and support for
mixed-criticality application scenarios with high priority and best effort communi-
cation channels [11]. Both are based on a set of communicating finite state machines
(FSMs) dedicated to specific sub-functions to cope with these requirements, as
can be seen in Fig. 19. The partitioning into different FSMs enables the parallel
processing of concurrent transactions in a pipelined manner.

6.2 Advanced Communication Reconfiguration Using
Protection Switching

The common, straight-forward method for task relocation is Stop and Resume:
Here, first the incoming channels of the task to be migrated are suspended, then
channel state together with the task state are transferred, before the channels and task
are resumed at the destination. The key disadvantage is a long downtime. Therefore,
an advanced communication reconfiguration using protection switching in NoCs to
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(a) (b) (c)

Fig. 20 Variants for communication migration. (a) Dualcast. (b) Forwarding. (c) Example
migration scenario

support reliable task migration is proposed [16, 22, 23], which is inspired by protec-
tion switching mechanisms from wide area transport networks. Two alternatives to
migrate communication relations of a relocated task are dualcast and forwarding as
shown in Fig. 20 for a migration of task B to a different location executing B’. The
procedure is to first establish an additional channel to the compute tile where the
task is migrated to (location of B’). This can be either done from A being the source
of the channel (dualcast, Fig. 20a) or from B the original location of the migrated
task (forwarding, Fig. 20b). Then it has to be ensured that the buffers at the source
and destination tiles of the migration are consistent. Finally, a seamless switch-over
(task and channels) takes place from the original source to the destination. This shall
avoid time-costly buffer copy and channel suspend/resume operations with a focus
on low-latency and reliable adaptions in the communication layer.

The different variants have been evaluated for an example migration scenario
as depicted in Fig. 20c: In a processing chain consisting of 7 tasks in total, the
FORK task, which receives data from a generator task and sends data to three
parallel processing tasks, is migrated to tile number 0. Figure 21 shows the latencies
of the depicted execution chain during the migration, which starts at 2.5 · 106

cycles assuming FORK is stateless. The results have been measured using an RTL
implementation of the MPSoC [16]. In Fig. 21a the situation is captured for a
pure software-based implementation of the migration, whereas Fig. 21b shows the
situation when all functions related to handling the migration are offloaded from
the processor core. In this case task execution is not inhibited by any migration
overhead, which corresponds to the situation when the VNA performs the associated
functionality in hardware.

As can be seen from Fig. 21b, offloading migration protocols helps to reduce
application processing latency significantly for all three variants. The dualcast and
forwarding variants enable a nearly unnoticeable migration of the tasks. However,
the investigations in [16] show that when migrating tasks with state, the handling of
the task migration itself becomes the dominant factor in the migration delays and
outweighs the benefits of the advanced switching techniques.
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Fig. 21 Results for task migration scenarios (from [16]). (a) Relocation without offload. (b)
Relocation with offload

6.3 Adaptive Modular Redundancy (AMR)

Adaptive modular redundancy (AMR) enables the dynamic establishment of a
redundancy mechanism (dual or triple modular redundancy, DMR/TMR) at run-
time for tasks that have a degree of criticality that may vary over time or if
the operating conditions of the platform have deteriorated so that the probability
of errors is too high. DMR will be used if re-execution is affordable, otherwise
TMR can be applied, e.g., in case realtime requirements could not be met. AMR
functionality builds upon the aforementioned services of the NoC. To establish
DMR the dualcast mechanism is used and the newly established task acts as replica
instead taking over the processing as in the case of migration. (For TMR two replica
are established and triple-cast is applied.) Based on the running task replica, the
standard mechanisms for error checking/correction and task re-execution if required
are applied.

The decision to execute one or two additional replica of tasks is possibly taken
as a consequence of an already impaired system reliability. On the one hand
this helps to make these tasks more safe. On the other hand it increases system
workload and the associated thermal load, which in turn may further aggravate
the dependability issues. Therefore, this measure should be accompanied with
an appropriate reliability-aware task mapping including a graceful degradation
for low-critical tasks like investigated in [1]. There, the applied scheme is the
following: After one of the cores exceeds a first temperature threshold T1 a graceful
degradation phase is entered. This means that tasks of high criticality are preferably
assigned to cores in an exclusive manner and low-critical tasks are migrated to a
“graceful degradation region” of the system. Thus, potential errors occurring in this
region would involve low-critical tasks only. In a next step, if peak temperature
is higher than a second threshold T2, low-critical tasks are removed also from the
graceful degradation region (NCT ejection) and are only resumed if the thermal
profile allows for it.

In [1] a simulation-based investigation of this approach has been done using
the Sniper simulator, McPAT and Hotspot for a 16-core Intel Xeon X5550 running
SPLASH-2 and PARSEC benchmarks. Tasks have been either classified as uncritical
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(a) (b) (c)

Fig. 22 Thermal profile during different phases (from [1]). The maximum system temperatures
are 363 K, 378 K, and 349 K, respectively. (a) Initial scheduling. (b) Graceful degradation. (c)
NCT ejection

Fig. 23 Number of propagated errors per task criticality (from [1])

(NCT) or high-critical (HCT) with permanently redundant execution. As a third
class, potentially critical tasks (PCT) are considered. Such tasks are dynamically
replicated if the temperature of the cores they run on exceeds T1. In the experiment,
financial analysis and computer vision applications from the benchmark sets are
treated as high-critical tasks (HCT). The FFT kernel as used in a wide range of
applications with different criticality levels is assumed to be PCT.

In a first experiment the thermal profile has been evaluated for normal operation
and the two escalating phases. As can be seen from Fig. 22 the initial thermal
hotspots are relaxed at the expense of new ones in the graceful degradation region.
In turn, when moving to the NCT ejection phase the chips significantly cool down.

In a further investigation, 10,000 bit-flips have been injected randomly into cache
memories independent of the criticality of the tasks running on the cores. This
has been done both for a system using the mechanisms described above and as a
reference for a fully unprotected system.

Figure 23 shows the resulting number of propagated errors for the different task
categories. In the protected system, all errors injected into cores running HCTs are
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corrected, as expected. For PCTs only those errors manifest themselves in a failure
that were injected when the task was not protected due to a too low temperature of
the processor core. In general, not all injected errors actually lead to a failure due to
masking effects in the architecture or the application memory access pattern. This
can be seen for the unprotected system where the overall sum of manifested failures
is less than the number of injected errors.

7 Cross-Layer

From Physics to System Level (Fig. 24) In our work, we start from the physics,
where degradation effects like aging and temperature do occur. Then we analyze
and investigate how these degradations alter the key transistor parameters such as
threshold voltage (Vth), carrier mobility (μ), sub-threshold slope (SS), and drain
current (ID). Then, we study how such drift in the electrical characteristics of the
transistor impacts the resilience of circuits to errors. In practice, the susceptibility to
noise effects as well as to timing violations increases. Finally, we develop models
for error probability that describe the ultimate impact of these degradations at the
system level.

Interaction between the System Level and the Lower Abstraction Levels
(Fig. 24) Running workloads at the system level induce different stress patterns for
transistors and, more importantly, generate different heat over time. Temperature
is one of the key stimuli when it comes to reliability degradations. Increase in
temperature accelerates the underlying aging mechanisms in transistors as well as
it increases the susceptibility of circuits to noise and timing violations. Such an
increase in the susceptibility manifests itself as failures at the system level due to
timing violations and data corruption. Therefore, different running workloads result
in different probabilities of error that can be later observed at the system level.

Key Role of Management Layer The developed probability of error models helps
the management layer to make proper decision. The management layer migrates the
running tasks/workload from a core that starts to have a relatively higher probability
of error to another “less-aged” core. Also the management layer switches this core
from a high-performance mode (where high voltage and high frequency are selected
leading to higher core temperatures) to a low-power mode (where low voltage and
low frequency are selected leading to lower core temperatures) when it is observed
that a core started to have an increase in the probability of error above an acceptable
level.

Scenarios of Cross-Layer Management and existing Interdependencies In the
following we demonstrate some examples of existing interdependencies between
the management layer and the lower abstraction layers.
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Fig. 24 Overview of how our techniques span various abstraction layers

Scenario-1: Physical and System Layer The temperature of a core increases
and therefore the error probability starts to gradually rise. If a given threshold is
exceeded and the core has performance margins, the first management decision
would be to decrease voltage and frequency and thus limit power dissipation and
in consequence counteract the temperature increase of the core.

Scenario-2: Physical, Architecture, and System Layer If there is no headroom
on the core, the system management layer can now decide to migrate tasks away
from that core, especially if they have high reliability requirements. Targets for
migration would especially be colder, less-aged cores with a low probability of
errors. With such task migrations, temperature within a system should be balanced,
i.e., relieved cores can cool down, while target cores would get warmer. Further, on
cores that can cool down again some of the deleterious effects start to heal, leading
to a reduction in the probability of errors. In general, by continuously balancing load
and as a result also temperature among cores the management layer will take care
that error probabilities of cores become similar thus avoiding the situation that one
core fails earlier than others. During task migrations the described support functions
in the communication infrastructure (circuit layer) can be applied.

Scenario-3: Physical, Architecture, and System Layer If there is no possibility
to move critical tasks to a cold core with low error probability, the management
layer can employ adaptive modular redundancy (AMR) and replicate such tasks.
This allows to counter the more critical operating conditions and increase reliability
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by either error detection and task re-execution or by directly correcting errors
when otherwise realtime requirements would not be met. However, in these cases
the replica tasks will increase the overall workload of the system and thus also
contribute thermal stress. In this case, dropping tasks of low criticality is a measure
on system level to counter this effect.

In general, the described scenarios always form control loops starting on
physical level covering temperature sensors and estimates of error probabilities and
aging. They go either up to the circuit level or to the architecture/system level,
where countermeasures have to be taken to prevent the system from operating
under unreliable working conditions. Therefore, the mechanisms on the different
abstraction levels as shown in the previous sections interact with each other and can
be composed to enhance reliability in a cross-layer manner.

Further use cases tackling probabilistic fault and error modeling as well as space-
and time-dependent error abstraction across different levels of the hardware/soft-
ware stack of embedded systems IC components are also subject of the chapter
“RAP (Resilience Articulation Point) Model.”

8 Conclusion

Reliability modeling and optimization is one of the key challenges in advanced tech-
nology. With technology scaling, the susceptibility of transistors to various kinds of
degradation effects induced by aging increases. As a matter of fact, temperature is
the main stimulus behind aging and therefore controlling and mitigating aging can
be done through a proper thermal management. Additionally, temperature itself has
also a direct impact on the reliability of any circuit manifesting itself as an increase
in the probability of error. In order to sustain reliability, the system level must
become aware of the degradation effects occurring at the physical level and how
they then propagate to higher abstraction levels all the way up to the system level.
Our cross-layer approach provides the system level with accurate estimations of the
probability of errors, which allows the management layer to make proper decisions
to optimize the reliability. We demonstrated the existing interdependencies between
the system level and lower abstraction levels and the necessity of taking them into
account via cross-layer thermal management techniques.
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Lightweight Software-Defined Error
Correction for Memories

Irina Alam, Lara Dolecek, and Puneet Gupta

The key observation behind the techniques described in this chapter is that most
if not all error correction techniques and codes assume that all words stored in
the memory are equally likely and important. This obviously is not true due to
architectural or application context. This chapter devises new coding and correction
mechanisms which leverage software or architecture “side information” to dramat-
ically reduce the cost of error correction (Fig. 1). The methodology proposed in
Sect. 1 is for recovering from detected-but-uncorrectable (DUE) errors in main
memories while Sects. 2 and 3 focus on lightweight correction in on-chip caches
or embedded memories.

1 Software-Defined Error Correcting Codes (SDECC)

This section focuses on the concept of Software-Defined Error Correcting Codes
(SDECC), a general class of techniques spanning hardware, software, and coding
theory that improves the overall resilience of systems by enabling heuristic best-
effort recovery from detected-but-uncorrectable errors (DUE). The key idea is to
add software support to the hardware error correcting code (ECC) so that most
memory DUEs can be heuristically recovered based on available side information
(SI) from the corresponding un-corrupted cache line contents. SDECC does not
degrade memory performance or energy in the common cases when either no
errors or purely hardware-correctable errors occur. Yet it can significantly improve
resilience in the critical case when DUEs actually do occur.
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Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions
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Details of the concepts discussed in this section can be found in the works by
Gottscho et al. [11, 12].

1.1 SDECC Theory

Important terms and notation introduced here are summarized in Table 1.
A (t)SC(t + 1)SD code corrects up to t symbol errors and/or detects up to (t+1)

symbol errors. SDECC is based on the fundamental observation that when a (t+1)-
symbol DUE occurs in a (t)SC(t+1)SD code, there remains significant information
in the received string x. This information can be used to recover the original message
m with reasonable certainty.

It is not the case that the original message was completely lost, i.e., one need not
naïvely choose from all qk possible messages. If there is a (t + 1) DUE, there are
exactly

N =
(

n

t + 1

)
(q − 1)(t+1) (1)

ways that the (t + 1) DUE could have corrupted the original codeword, which is
less than qk . Though a (t)SC(t + 1)SD code can often detect more than (t + 1)
errors, a (t+1)error is usually much more likely than higher bit errors. But guessing
correctly out of N possibilities is still difficult. In practice, there are just a handful
of possibilities: they are referred to as (t + 1)DUE corrupted candidate codewords
(or candidate messages).

Consider Fig. 2, which depicts the relationships between codewords, correctable
errors (CEs), DUEs, and candidate codewords for individual DUEs for a Single-bit
Error Correcting, Double-bit Error Detecting (SECDED) code. If the hardware ECC
decoder registers a DUE, there can be several equidistant candidate codewords at the
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Table 1 Important SDECC-specific notation

Term Description

n Codeword length in symbols

k Message length in symbols

r Parity length in symbols

b Bits per symbol

q Symbol alphabet size

t Max. guaranteed correctable symbols in codeword

(t)SC(t + 1)SD (t)-symbol-correcting, (t + 1)-symbol-detecting

N Number of ways to have a DUE

μ Mean no. of candidate codewords ∀ possible DUEs

PG Prob. of choosing correct codeword for a given DUE

PG Avg. prob. of choosing correct codeword ∀ possible DUEs

dmin Minimum symbol distance of code

linesz Total cache line size in symbols (message content)

symbol Logical group of bits

SECDED Single-bit-error-correcting, double-bit-error-detecting

DECTED Double-bit-error-correcting, triple-bit-error-detecting

SSCDSD Single-symbol-error-correcting, double-symbol-error-detecting

ChipKill-correct ECC construction and mem. organization that either corrects up to 1 DRAM
chip failure or detects 2 chip failures

Fig. 2 Illustration of
candidate codewords for 2-bit
DUEs in the imaginary
2D-represented Hamming
space of a binary SECDED
code
(t = 1, q = 2, dmin = 4). The
actual Hamming space has n

dimensions

q-ary Hamming distance of exactly (t + 1) from the received string x. Without any
side information (SI) about message probabilities, under conventional principles,
each candidate codeword is assumed to be equally likely. However, in the specific
case of DUEs, not all messages are equally likely to occur: this allows to leverage
SI about memory contents to help choose the right candidate codeword in the event
of a given DUE.
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1.1.1 Computing the List of Candidates

The number of candidate codewords for any given (t + 1) DUE e has a linear
upper bound that makes DUE recovery tractable to implement in practice [12].
The candidate codewords for any (t + 1)-symbol DUE received string x is simply
the set of equidistant codewords that are exactly (t + 1) symbols away from x.
This list depends on the error e and original codeword c, but only the received
string x is known. Fortunately, there is a simple and intuitive algorithm to find
the list of candidate codewords with runtime complexity O(nq/t). The detailed
algorithm can be found in [12]. The essential idea is to try every possible single
symbol perturbation p on the received string. Each perturbed string y = x + p
is run through a simple software implementation of the ECC decoder, which only
requires knowledge of the parity-check matrix H (O(rnlogq) bits of storage). Any
y characterized as a CE produces a candidate codeword from the decoder output and
added to the list (if not already present in the list).

1.1.2 SDECC Analysis of Existing ECCs

Code constructions exhibit structural properties that affect the number of candi-
date codewords. In fact, distinct code constructions with the same [n, k, dmin]q
parameters can have different values of μ and distributions of the number of

candidate codewords. μ depends on the total number of minimum weight non-
−→
0

codewords [12].
The SDECC theory is applied to seven code constructions of interest: SECDED,

DECTED, and SSCDSD (ChipKill-Correct) constructions with typical message
lengths of 64, and 128 bits. Table 2 lists properties that have been derived for each of
them. Most importantly, the final column lists PG—the average (random baseline)
probability of choosing correct codeword without SI for all possible DUEs. These
probabilities are far higher than the naïve approaches of guessing randomly from qk

possible messages or from the N possible ways to have a DUE. Thus, SDECC can
handle DUEs in a more optimistic way than conventional ECC approaches.

Table 2 Summary of code properties—PG is most important for SDECC

Code params. Class of DUE Avg. # Cand. Prob. Rcov.
Class of code [n, k, dmin]q Type of code (t + 1) μ PG

32-bit SECDED [39, 32, 4]2 Hsiao [16] 2-bit 12.04 8.50%

32-bit SECDED [39, 32, 4]2 Davydov [7] 2-bit 9.67 11.70%

64-bit SECDED [72, 64, 4]2 Hsiao [16] 2-bit 20.73 4.97%

64-bit SECDED [72, 64, 4]2 Davydov [7] 2-bit 16.62 6.85%

32-bit DECTED [45, 32, 6]2 – 3-bit 4.12 28.20%

64-bit DECTED [79, 64, 6]2 – 3-bit 5.40 20.53%

128-bit SSCDSD [36, 32, 4]16 Kaneda [17] 2-sym. 3.38 39.88%
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1.2 SDECC Architecture

SDECC consists of both hardware and software components to enable recovery
from DUEs in main memory DRAM. A simple hardware/software architecture
whose block diagram is depicted in Fig. 3 can be used. Although the software flow
includes an instruction recovery policy, it is not presented in this chapter because
DUEs on instruction fetches are likely to affect clean pages that can be remedied
using a page fault (as shown in the figure).

The key addition to hardware is the Penalty Box: a small buffer in the memory
controller that can store each codeword from a cache line (shown on the left-hand
side of Fig. 3). When a memory DUE occurs, hardware stores information about the
error in the Penalty Box and raises an error-reporting interrupt to system software.
System software then reads the Penalty Box, derives additional context about the
error—and using basic coding theory and knowledge of the ECC implementation—
quickly computes a list of all possible candidate messages, one of which is
guaranteed to match the original information that was corrupted by the DUE. A
software-defined data recovery policy heuristically recovers the DUE in a best-
effort manner by choosing the most likely remaining candidate based on available
side information (SI) from the corresponding un-corrupted cache line contents;
if confidence is low, the policy instead forces a panic to minimize the risk of
accidentally induced mis-corrected errors (MCEs) that result in intolerable non-
silent data corruption (NSDC). Finally, system software writes back the recovery
target message to the Penalty Box, which allows hardware to complete the afflicted
memory read operation.

Fig. 3 Block diagram of a general hardware and software implementation of SDECC. The figure
depicts a typical DDRx-based main memory subsystem with 64-byte cache lines, x8 DRAM chips,
and a [72, 64, 4]2 SECDED ECC code. Hardware support necessary to enable SDECC is shaded
in gray. The instruction recovery policy is outside the scope of this work [12]
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Overheads The area and power overhead of the essential SDECC hardware
support is negligible. The area required per Penalty Box is approximately 736 μm2

when synthesized with 15 nm Nangate technology—this is approximately one
millionth of the total die area for a 14 nm Intel Broadwell-EP server processor [9].
The SDECC design incurs no latency or bandwidth overheads for the vast majority
of memory accesses where no DUEs occur. This is because the Penalty Box and
error-reporting interrupt are not on the critical path of memory accesses. When a
DUE occurs, the latency of the handler and recovery policy is negligible compared
to the expected mean time between DUEs or typical checkpoint interval of several
hours.

1.3 Data Recovery Policy

In this section, recovery of DUEs in data (i.e., memory reads due to processor
loads) is discussed because they are more vulnerable than DUEs in instructions
as mentioned before. Possible recovery policies for instruction memory have been
discussed in [11]. There are potentially many sources of SI for recovering DUEs
in data. Based on the notion of data similarity, a simple but effective data recovery
policy called Entropy-Z is discussed here that chooses the candidate that minimizes
overall cache line Shannon entropy.

1.3.1 Observations on Data Similarity

Entropy is one of the most powerful metrics to measure data similarity. Two general
observations can be made about the prevalence of low data entropy in memory.

• Observation 1. There are only a few primitive data types supported by hardware
(e.g., integers, floating-point, and addresses), which typically come in multiple
widths (e.g., byte, halfword, word, or quadword) and are often laid out in regular
fashion (e.g., arrays and structs).

• Observation 2. In addition to spatial and temporal locality in their memory
access patterns, applications have inherent value locality in their data, regardless
of their hardware representation. For example, an image-processing program is
likely to work on regions of pixels that exhibit similar color and brightness, while
a natural language processing application will see certain characters and words
more often than others.

Similar observations have been made to compress memory [2, 18, 24, 26, 28, 35]
and to predict [20] or approximate processor load values [22, 23, 36]. Low
byte-granularity intra-cache line entropy is observed throughout the integer and
floating-point benchmarks in the SPEC CPU2006 suite. Let P(X) be the normalized
relative frequency distribution of a linesz×b-bit cache line that has been carved
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into equal-sized Z-bit symbols, where each symbol χi can take 2Z possible values.1

Then the Z-bit-granularity entropy is computed as follows:

entropy = −
linesz×b/Z∑

i=1

P(χi)log2P(χi). (2)

The average intra-cacheline byte-level entropy of the SPEC CPU2006 suite was
found to be 2.98 bits (roughly half of maximum).

These observations can be leveraged using the data recovery policy Entropy-Z
Policy. With this policy, SDECC first computes the list of candidate messages using
the algorithm described in Sect. 1.1.1 and extracts the cache line side information.
Each candidate message is then inserted into appropriate position in the affected
cache line and the entropy is computed using Eq. 2. The policy then chooses the
candidate message that minimizes overall cache line entropy. The chance that the
policy chooses the wrong candidate message is significantly reduced by deliberately
forcing a panic whenever there is a tie for minimum entropy or if the mean cache
line entropy is above a specified threshold PanicThreshold. The downside to
this approach is that some forced panics will be false positives, i.e., they would have
otherwise recovered correctly.

In the rest of the chapter, unless otherwise specified, Z = 8 bits, linesz×b =
512 bits and PanicThreshold = 4.5 bits (75% of maximum entropy) are used,
which were determine to work well across a range of applications. Additionally, the
Entropy-8 policy performs very well compared to several alternatives.

1.4 Reliability Evaluation

The impact of SDECC is evaluated on system-level reliability through a compre-
hensive error injection study on memory access traces. The objective is to estimate
the fraction of DUEs in memory that can be recovered correctly using the SDECC
architecture and policies while ensuring a minimal risk of MCEs.

1.4.1 Methodology

The SPEC CPU2006 benchmarks are compiled against GNU/Linux for the open-
source 64-bit RISC-V (RV64G) instruction set v2.0 [34] using the official tools
[25]. Each benchmark is executed on top of the RISC-V proxy kernel [32] using the
Spike simulator [33] that was modified to produce representative memory access

1Entropy symbols are not to be confused with the codeword symbols, which can also be a different
size.
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traces. Each trace consists of randomly sampled 64-byte demand read cache lines,
with an average interval between samples of one million accesses.

Each trace is analyzed offline using a MATLAB model of SDECC. For each
benchmark and ECC code, 1000 q-ary messages from the trace were chosen
randomly and encoded, and were injected with min(1000, N) randomly sampled
(t + 1)-symbol DUEs. N here is the number of ways to have a DUE. For each
codeword/error pattern combination, the list of candidate codewords was computed
and the data recovery policy was applied. A successful recovery occurs when the
policy selects a candidate message that matches the original; otherwise, the policy
either causes a forced panic or recovery fails by accidentally inducing an MCE.
Variability in the reported results is negligible over many millions of individual
experiments.

Note that the absolute error magnitudes for DUEs and SDECC’s impact on
overall reliability should not be compared directly between codes with distinct
[n, k, dmin]q (e.g., a double-bit error for SECDED is very different from a double-
chip DUE for ChipKill). Rather, what matters most is the relative fraction of DUEs
that can be saved using SDECC for a given ECC code.

Entropy-8 is exclusively used as the data recovery policy in all the evaluations.
This is because when the raw successful recovery rates of six different policies
for three ECCs without including any forced panics were compared, Entropy-8
performed the best [12]. Few examples of alternate policies include Entropy-Z
policy variants with Z = 4 and Z = 16 and Hamming which chooses the candidate
that minimizes the average binary Hamming distance to the neighboring words in
the cacheline. The 8-bit entropy symbol size performs best because its alphabet
size (28 = 256 values) matches well with the number of entropy symbols per
cacheline (64) and with the byte-addressable memory organization. For instance,
both Entropy-4 and Entropy-16 do worse than Entropy-8 because the entropy
symbol size results in too many aliases at the cacheline level and because the larger
symbol size is less efficient, respectively.

1.4.2 Recovery Breakdown

SDECC is evaluated next for each ECC using its conventional form, to understand
the impact of the recovery policy’s (Entropy-8) forced panics on the successful
recovery rate and the MCE rate. The overall results with forced panics taken (main
results, gray cell shading) and not taken are shown in Table 3.

There are two baseline DUE recovery policies: conventional (always panic for
every DUE) and random (choose a candidate randomly, i.e., PG). It is observed
that when panics are taken the MCE rate drops significantly by a factor of up
to 7.3× without significantly reducing the success rate. This indicates that the
PanicThreshold mechanism appropriately judges when SDECC is unlikely to
correctly recover the original information.

These results also show the impact of code construction on successes, panics, and
MCEs. When there are fewer average candidates μ then the chances of successfully
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Table 3 Percent Breakdown of SDECC Entropy-8 Policy (M = MCE, P = forced panic, S =
success) [12]

Panics taken Panics not taken Random baseline

M P S M P S M P S

Conv. baseline – 100 –

[39, 32, 4]2 Hsiao 5.3 25.6 69.1 27.3 – 72.7 91.5 – 8.5

[39, 32, 4]2 Davydov 4.5 25.2 70.3 24.0 – 76.0 88.3 – 11.7

[72, 64, 4]2 Hsiao 4.7 23.7 71.6 24.7 – 75.3 95.0 – 5.0

[72, 64, 4]2 Davydov 4.1 21.9 74.0 22.3 – 77.7 93.2 – 6.9

[45, 32, 6]2 DECTED 2.2 20.3 77.5 14.5 – 85.5 71.8 – 28.2

[79, 64, 6]2 DECTED 1.5 14.5 84.0 11.0 – 89.0 79.5 – 20.5

[36, 32, 4]16 SSCDSD 1.5 12.8 85.7 8.5 – 91.5 60.1 – 39.9

recovering are much higher than that of inducing MCEs. The [72, 64, 4]2 SECDED
constructions perform similarly to their [39, 32, 4]2 variants even though the former
have lower baseline PG. This is a consequence of the Entropy-8 policy: larger n

combined with lower μ provides the greatest opportunity to differentiate candidates
with respect to overall intra-cacheline entropy. For the same n, however, the effect of
SECDED construction is more apparent. The Davydov codes recover about 3–4%
more frequently than their Hsiao counterparts when panics are not taken (similar to
the baseline improvement in PG). When panics are taken, however, the differences
in construction are less apparent because the policy PanicThreshold does not
take into account Davydov’s typically lower number of candidates.

The breakdown between successes, panics, and MCEs is examined in more
detail. Figure 4 depicts the DUE recovery breakdowns for each ECC construction
and SPEC CPU2006 benchmark when forced panics are taken. Figure 4a shows the
fraction of DUEs that result in success (black), panics (gray), and MCEs (white).
Figure 4b further breaks down the forced panics (gray from Fig. 4a) into a fraction
that are false positive (light purple, and would have otherwise been correct) and
others that are true positive (dark blue, and managed to avoid an MCE). Each cluster
of seven stacked bars corresponds to the seven ECC constructions.

It can be seen that much lower MCE rates are achieved than the random baseline
yet also panic much less often than the conventional baseline for all benchmarks, as
shown in Fig. 4a. This policy performs best on integer benchmarks due to their lower
average intra-cacheline entropy. For certain floating-point benchmarks, however,
there are many forced panics because they frequently have high data entropy above
PanicThreshold. A PanicThreshold of 4.5 bits for these cases errs on the
side of caution as indicated by the false positive panic rate, which can be up to 50%.
Without more side information, for high-entropy benchmarks, it would be difficult
for any alternative policy to frequently recover the original information with a low
MCE rate and few false positive panics.

With almost no hardware overheads, SDECC used with SSCDSD ChipKill can
recover correctly from up to 85.7% of double-chip DUEs while eliminating 87.2%
of would-be panics; this could improve system availability considerably. However,
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Fig. 4 Detailed breakdown of DUE recovery results when forced panics are taken. Results are
shown for all seven ECC constructions, listed left to right within each cluster: [39, 32, 4]2 Hsiao
SECDED—[39, 32, 4]2 Davydov SECDED—[72, 64, 4]2 Hsiao SECDED—[72, 64, 4]2 Davy-
dov SECDED—[45, 32, 6]2 DECTED—[79, 64, 6]2 DECTED—[36, 32, 4]16 SSCDSD ChipKill-
Correct. (a) Recovery breakdown for the Entropy-8 policy, where each DUE can result in an
unsuccessful recovery causing an MCE (white), forced panic (gray), or successful recovery (black).
(b) Breakdown of forced panics (gray bars in (a)). A true positive panic (dark blue) successfully
mitigated a MCE, while a false positive panic (light purple) was too conservative and thwarted an
otherwise-successful recovery [12]

SDECC with ChipKill introduces a 1% risk of converting a DUE to an MCE.
Without further action taken to mitigate MCEs, this small risk may be unacceptable
when application correctness is of paramount importance.

2 Software-Defined Error-Localizing Codes (SDELC):
Lightweight Recovery from Soft Faults at Runtime

For embedded memories, it is always challenging to address reliability concerns
as additional area, power, and latency overheads of reliability techniques need
to be minimized as much as possible. Software-Defined Error-Localizing Codes
(SDELC) is a hybrid hardware/software technique that deals with single-bit soft
faults at runtime using novel Ultra-Lightweight Error-Localizing Codes (UL-ELC)
with a software-defined error handler that knows about the UL-ELC construction
and implements a heuristic recovery policy. UL-ELC codes are stronger than basic
single-error detecting (SED) parity, yet they have lower storage overheads than
a single-error-correcting (SEC) Hamming code. Like SED, UL-ELC codes can
detect single-bit errors, yet they can additionally localize them to a chunk of the
erroneous codeword. UL-ELC codes can be explicitly designed such that chunks
align with meaningful message context, such as the fields of an encoded instruction.
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SDELC then relies on side information (SI) about application memory contents to
heuristically recover from the single-bit fault. Unlike the general-purpose Software-
Defined ECC (SDECC), SDELC focuses on heuristic error recovery that is suitable
for microcontroller-class IoT devices.

Details of the concepts discussed in this section can be found in the work by
Gottscho et al. [13].

2.1 Ultra-Lightweight Error-Localizing Codes (UL-ELC)

In today’s systems, either basic SED parity is used to detect random single-bit errors
or a Hamming SEC code is used to correct them. Unfortunately, Hamming codes are
expensive for small embedded memories: they require six bits of parity per memory
word size of 32 bits (an 18.75% storage overhead). On the other hand, basic parity
only adds one bit per word (3.125% storage overhead), but without assistance by
other techniques it cannot correct any errors.

Localizing an error is more useful than simply detecting it. If the error is localized
to a chunk of length � bits, there are only � candidate codewords for which a single-
bit error could have produced the received (corrupted) codeword. A naïve way of
localizing a single-bit error to a particular chunk is to use a trivial segmented parity
code, i.e., assign a dedicated parity bit to each chunk. However, this method is very
inefficient because to create C chunks C parity bits are needed: essentially, split up
the memory words into smaller pieces.

Instead Ultra-Lightweight ELCs (UL-ELCs) is simple and customizable—given
r redundant parity bits—it can localize any single-bit error to one of C = 2r − 1
possible chunks. This is because there are 2r − 1 distinct non-zero columns that can
be used to form the parity-check matrix H for the UL-ELC (for single-bit errors,
the error syndrome is simply one of the columns of H). To create a UL-ELC code,
a distinct non-zero binary column vector of length r bits is assigned to each chunk.
Then each column of H is simply filled in with the corresponding chunk vector. Note
that r of the chunks will also contain the associated parity bit within the chunk itself
and are called shared chunks, and they are precisely the chunks whose columns in
H have a Hamming weight of 1. Since there are r shared chunks, there must be
2r − r−1 unshared chunks, which each consist of only data bits. Shared chunks are
unavoidable because the parity bits must also be protected against faults, just like
the message bits.

An UL-ELC code has a minimum distance of two bits by construction to support
detection and localization of single-bit errors. Thus, the set of candidate codewords
must also be separated from each other by a Hamming distance of exactly two bits.
(A minimum codeword distance of two bits is required for SED, while three bits are
needed for SEC, etc.)
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For an example of an UL-ELC construction, consider the following Hexample
parity-check matrix with nine message bits and r = 3 parity bits:

Hexample =

S1 S2 S3 S4 S4 S5 S6 S6 S7 S5 S6 S7
d1 d2 d3 d4 d5 d6 d7 d8 d9 p1 p2 p3[ ]

c1 1 1 1 0 0 1 0 0 0 1 0 0
c2 1 1 0 1 1 0 1 1 0 0 1 0
c3 1 0 1 1 1 0 0 0 1 0 0 1

,

where di represents the ith data bit, pj is the j th redundant parity bit, ck is the kth
parity-check equation, and Sl enumerates the distinct error-localizing chunk that a
given bit belongs to. Because r = 3, there are N = 7 chunks. Bits d1, d2, and d3
each have the SEC property because no other bits are in their respective chunks.
Bits d4 and d5 make up an unshared chunk S4 because no parity bits are included
in S4. The remaining data bits belong to shared chunks because each of them also
includes at least one parity bit. Notice that any data or parity bits that belong to the
same chunk Sl have identical columns of H, e.g., d7, d8, and p2 all belong to S6 and
have the column [0; 1; 0].

The two key properties of UL-ELC (that do not apply to generalized ELC codes)
are: (1) the length of the data message is independent of r and (2) each chunk can
be an arbitrary length. The freedom to choose the length of the code and chunk sizes
allows the UL-ELC design to be highly adaptable. Additionally, UL-ELC codes can
offer SEC protection on up to 2r−r−1 selected message bits by having the unshared
chunks each correspond to a single data bit.

2.2 Recovering SEUs in Instruction Memory

This section focuses on an UL-ELC construction and recovery policy for dealing
with single-bit soft faults in instruction memory. The code and policy are jointly
crafted to exploit SI about the ISA itself. This SDELC implementation example
targets the open-source and free 64-bit RISC-V (RV64G) ISA [34], but the approach
is general and could apply to any other fixed-length or variable-length RISC or CISC
ISA. Note that although RISC-V is actually a little-endian architecture, for sake of
clarity big-endian is used in this example.

The UL-ELC construction for instruction memory has seven chunks that align
to the finest-grain boundaries of the different fields in the RISC-V codecs. These
codecs, the chunk assignments, and the complete parity-check matrix H are shown
in Table 4. The opcode, rd, funct3, and rs1 fields are the most commonly
used—and potentially the most critical—among the possible instruction encodings,
so each of them is assigned a dedicated chunk that is unshared with the parity bits.
The fields which vary more among encodings are assigned to the remaining three
shared chunks, as shown in the figure. The recovery policy can thus distinguish
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the impact of an error in different parts of the instruction. For example, when a fault
affects shared chunk C1, the fault is either in one of the five MSBs of the instruction,
or in the last parity bit. Conversely, when a fault is localized to unshared chunk C7
in Table 4, the UL-ELC decoder can be certain that the opcode field has been
corrupted.

The instruction recovery policy consists of three steps.

• Step 1. A software-implemented instruction decoder is applied to filter out any
candidate messages that are illegal instructions. Most bit patterns decode to
illegal instructions in three RISC ISAs that were characterized: 92.33% for RISC-
V, 72.44% for MIPS, and 66.87% for Alpha. This can be used to dramatically
improve the chances of a successful SDELC recovery.

• Step 2. Next, the probability of each valid message is estimated using a small pre-
computed lookup table that contains the relative frequency that each instruction
appears. The relative frequencies of legal instructions in most applications follow
power-law distribution [13]. This is used to favor more common instructions.

• Step 3. The instruction that is most common according to the SI lookup table
is chosen. In the event of a tie, the instruction with the longest leading-pad of
0s or 1s is chosen. This is because in many instructions, the MSBs represent
immediate values (as shown in Table 4). These MSBs are usually low-magnitude
signed integers or they represent 0-dominant function codes.

If the SI is strong, then there is normally a higher chance of correcting the error by
choosing the right candidate.

2.3 Recovering SEUs in Data Memory

In general-purpose embedded applications, data may come in many different types
and structures. Because there is no single common data type and layout in memory,
evenly spaced UL-ELC constructions can be used and the software trap handler can
be granted additional control about how to recover from errors, similar to the general
idea from SuperGlue [31].

The SDELC recovery support can be built into the embedded application as a
small C library. The application can push and pop custom SDELC error handler
functions onto a registration stack. The handlers are defined within the scope of
a subroutine and optionally any of its callees and can define specific recovery
behaviors depending on the context at the time of error. Applications can also enable
and disable recovery at will.

When the application does not disable recovery nor specify a custom behavior,
all data memory errors are recovered using a default error handler implemented
by the library. The default handler computes the average Hamming distance to
nearby data in the same 64-byte chunk of memory (similar to taking the intra-cache
line distance in cache-based systems). The candidate with the minimum average
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Hamming distance is selected. This policy is based on the observation that spatially
local and/or temporally local data tends to also be correlated, i.e., it exhibits value
locality [20].

The application-defined error handler can specify recovery rules for individual
variables within the scope of the registered subroutine. They include globals,
heap, and stack-allocated data. This is implemented by taking the runtime address
of each variable requiring special handling. For instance, an application may
wish critical data structures to never be recovered heuristically; for these, the
application can choose to force a crash whenever a soft error impacts their memory
addresses. The SDELC library support can increase system reliability, but the
programmer is required to spend effort annotating source code for error recovery.
This is similar to annotation-based approaches taken by others for various purposes
[4, 5, 10, 21, 29, 37].

2.4 SDELC Architecture

The SDELC architecture is illustrated in Fig. 5 for a system with split on-chip
instruction and data scratchpad memories (SPMs) (each with its own UL-ELC code)
and a single-issue core that has an in-order pipeline.

Fig. 5 Architectural support for SDELC on an microcontroller-class embedded system



222 I. Alam et al.

When a codeword containing a single-bit soft fault is read, the UL-ELC decoder
detects and localizes the error to a specific chunk of the codeword and places error
information in a Penalty Box register (shaded in gray in the figure). A precise
exception is then generated, and software traps to a handler that implements the
appropriate SDELC recovery policy for instructions or data.

Once the trap handler has decided on a candidate codeword for recovery, it must
correctly commit the state in the system such that it appears as if there was no
memory control flow disruption. For instruction errors, because the error occurred
during a fetch, the program counter (pc) has not yet advanced. To complete the
trap handler, the candidate codeword is written back to instruction memory. If it is
not accessible by the load/store unit, one could use hardware debug support such as
JTAG. The previously trapped instruction is re-executed after returning from the trap
handler, which will then cause the pc to advance and re-fetch the instruction that had
been corrupted by the soft error. On the other hand, data errors are triggered from
the memory pipeline stage by executing a load instruction. The chosen candidate
codeword is written back to data memory to scrub the error, the register file is
updated appropriately, and pc is manually advanced before returning from the trap
handler.

2.5 Soft Fault Recovery Using SDELC

To evaluate SDELC, Spike was modified to produce representative memory access
traces of 11 benchmarks as they run to completion. Five benchmarks are blowfish
and sha from the MiBench suite [14] as well as dhrystone, matmulti,
and whetstone. The remaining six benchmarks were added from the AxBench
approximate computing C/C++ suite [37]: blackscholes, fft, inversek2j,
jmeint, jpeg, and sobel. Each trace was analyzed offline using a MATLAB
model of SDELC. For each workload, 1000 instruction fetches and 1000 data reads
were randomly selected from the trace and exhaustively all possible single-bit faults
were applied to each of them.

SDELC recovery of the random soft faults was evaluated using three different
UL-ELC codes (r = 1, 2, 3). Recall that the r = 1 code is simply a single parity
bit, resulting in 33 candidate codewords. (For basic parity, there are 32 message bits
and one parity bit, so there are 33 ways to have had a single-bit error.) For the data
memory, the UL-ELC codes were designed with the chunks being equally sized:
for r = 2, there are either 11 or 12 candidates depending on the fault position (34
bits divided into three chunks), while for r = 3 there are always five candidates
(35 bits divided into seven chunks). For the instruction memory, chunks are aligned
to important field divisions in the RV64G ISA. Chunks for the r = 2 UL-ELC
construction match the fields of the Type-U instruction codecs (the opcode being
the unshared chunk). Chunks for the r = 3 UL-ELC code align with fields in the
Type-R4 codec (as presented in Table 4). A successful recovery for SDELC occurs
when the policy corrects the error; otherwise, it fails by accidentally mis-correcting.
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Fig. 6 Average rate of recovery using SDELC from single-bit soft faults in instruction and data
memory. r is the number of parity bits in the UL-ELC construction

2.5.1 Overall Results

The overall SDELC results are presented in Fig. 6. The recovery rates are relatively
consistent over each benchmark, especially for instruction memory faults, providing
evidence of the general efficacy of SDELC. One important distinction between the
memory types is the sensitivity to the number r of redundant parity bits per message.
For the data memory, the simple r = 1 parity yielded surprisingly high rates of
recovery using our policy (an average of 68.2%). Setting r to three parity bits
increases the average recovery rate to 79.2% thanks to fewer and more localized
candidates to choose from. On the other hand, for the instruction memory, the
average rate of recovery increased from 31.3% with a single parity bit to 69.0%
with three bits.

These results are a significant improvement over a guaranteed system crash as
is traditionally done upon error detection using single-bit parity. Moreover, these
results are achieved using no more than half the overhead of a Hamming SEC code,
which can be a significant cost savings for small IoT devices. Based on these results,
using r = 1 parity for data seems reasonable, while r = 3 UL-ELC constructions
can be used to achieve 70% recovery for both memories with minimal overhead.

3 Parity++ : Lightweight Error Correction for Last Level
Caches and Embedded Memories

This section focuses on another novel lightweight error correcting code—Parity++:
a novel lightweight unequal message protection scheme for last level caches or
embedded memories that preferentially provides stronger error protection to certain
“special messages.” As the name suggests, this coding scheme requires one extra bit
above a simple parity Single-bit Error Detection (SED) code while providing SED
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for all messages and Single-bit Error Correction (SEC) for a subset of messages.
Thus, it is stronger than just basic SED parity and has much lower parity storage
overhead (3.5× and 4× lower for 32-bit and 64-bit memories, respectively) than
a traditional Single-bit Error Correcting, Double-bit Error Detecting (SECDED)
code. Error detection circuitry often lies on the critical path and is generally more
critical than error correction circuitry as error occurrences are rare even with an
increasing soft error rate. This coding scheme has a much simpler error detection
circuitry that incurs lower energy and latency costs than the traditional SECDED
code. Thus, Parity++ is a lightweight ECC code that is ideal for large capacity last
level caches or lightweight embedded memories. Parity++ is also evaluated with
a memory speculation procedure [8] that can be generally applied to any ECC
protected cache to hide the decoding latency while reading messages when there
are no errors.

Details of the concepts discussed in this section can be found in the work by
Alam et al. [1] and Schoeny et al. [30].

3.1 Application Characteristics

As mentioned in Sects. 1.3 and 2.2, data in applications is generally very structured
and instructions mostly follow power-law distribution. This means most instructions
in the memory would have the same opcode. Similarly, the data in the memory is
usually low-magnitude signed data of a certain data type. However, these values get
represented inefficiently, for e.g., 4-byte integer type used to represent values that
usually need only 1-byte. Thus, in most cases, the MSBs would be a leading-pad of
0s or 1s. The approach of utilizing these characteristics in applications complements
recent research on data compression in cache and main memory systems such as
frequent value/pattern compression [3, 35], base-delta-immediate compression [27],
and bit-plane compression [19]. However, the main goal here is to provide stronger
error protection to these special messages that are chosen based on the knowledge
of data patterns in context.

3.2 Parity++ Theory

Parity++ is a type of unequal message protection code, in that specific messages are
designated a priori to have extra protection against errors as shown in Fig. 7. As in
[30], there are two classes of messages, normal and special, and they are mapped
to normal and special codewords, respectively. When dealing with the importance
or frequency of the underlying data, it is referred to as messages; when discussing
error detection/correction capabilities it is referred to as codewords.

Codewords in Parity++ have the following error protection guarantees: normal
codewords have single-error detection; special codewords have single-error cor-
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Fig. 7 Conceptual
illustration of Parity++ for
1-bit error (CE = Correctable
Error, DUE = Detected but
Uncorrectable Error)

rection. Let us partition the codewords in the code C into two sets, N and S,
representing the normal and special codewords, respectively. The minimum distance
properties necessary for the aforementioned error protection guarantees of Parity++
are as follows:

min
u,v∈N,u �=v

dH (u, v) ≥ 2, (3)

min
u∈N,v∈S

dH (u, v) ≥ 3, (4)

min
u,v∈S,u �=v

dH (u, v) ≥ 3. (5)

A second defining characteristic of the Parity++ code is that the length of a
codeword is only two bits longer than a message, i.e., n = k + 2. Thus, Parity++
requires only two bits of redundancy.

For the context of this work, let us assume that Parity++ always has message
length k as a power of 2. The overall approach to constructing the code is to create
a Hamming subcode of a SED code [15]; when an error is detected, it is decoded
to the neighboring special codeword. The overall code has dmin = 2, but a block in
G, corresponding to the special messages, has dmin ≥ 3. For the sake of notational
convenience, let us go through the steps of constructing the (34, 32) Parity++ code
(as opposed to the generic (k + 2, k) Parity++ code).

The first step is to create the generating matrix for the Hamming code whose
message length is at least as large as the message length in the desired Parity++
code; in this case, the (63, 57) Hamming code is used. Let α be a primitive element
of GF(26) such that 1+x+x6 = 0, then the generator polynomial is simply gS(x) =
1 + x + x6 (and the generator matrix is constructed using the usual polynomial
coding methods). The next step is to shorten this code to (32, 26) by expurgating
and puncturing (i.e., deleting) the right and bottom 31 columns and rows. Then add
a column of 1s to the end, resulting in a generator matrix, which is denoted as GS ,
for a (33, 26) code with dmin = 4.
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For the next step in the construction of the generating matrix of the (34, 32)

Parity++ code, GN is added on top of GS , where GN is the first 6 rows of the
generator matrix using the generator polynomial gN(x) = 1+ x, with an appended
row of 0s at the end. Note that GN is the generator polynomial of a simple parity-
check code. By using this polynomial subcode construction, a generator matrix is
built with overall dmin = 2, with the submatrix GS having dmin = 4. At this point,
notice that messages that begin with 6 0s only interact with GS ; these messages
will be the special messages. Note that Conditions 3 and 5 are satisfied; however,
Condition 4 is not satisfied. To meet the requirement, a single non-linear parity bit
is added that is a NOR of the bits corresponding to GN, in this case, the first 6 bits.

The final step is to convert GS to systematic form via elementary row operations.
Note that these row operations preserve all 3 of the required minimum distance
properties of Parity++. As a result, the special codewords (with the exception of the
known prefix) are in systematic form. For example, in the (34, 32) Parity++ code,
the first 26 bits of a special codeword are simply the 26 bits in the message (not
including the leading run of 6 0s).

At the encoding stage of the process, when the message is multiplied by G,
the messages denoted as special must begin with a leading run of log2(k) + 1 0’s.
However, the original messages that are deemed to be special do not have to follow
this pattern as one can simply apply a pre-mapping before the encoding step, and a
post-mapping after the decoding step.

In the (34, 32) Parity++ code, observe that there are 226 special messages.
Generalizing, it is easy to see that for a (k + 2, k) Parity++ code, there are
2k−log2(k)−1 special messages.

Similar unequal message protection scheme can be used for providing DECTED
protection to special messages, while non-special messages get SECDED protec-
tion. The code construction has been explained in detail in [30].

3.3 Error Detection and Correction

The received—possibly erroneous—vector y is divided into two parts, c̄ and η, with
c̄ being the first k+1 bits of the codeword and η the additional non-linear redundancy
bit (η = 0 for special messages and η = 1 for normal messages). There are three
possible scenarios at the decoder: no (detectable) error, correctable error, or detected
but uncorrectable error.

First, due to the Parity++ construction, every valid codeword has even weight.
Thus, if c̄ has even weight, then the decoder concludes no error has occurred, i.e.,
c̄ was the original codeword. Second, if c̄ has odd weight and η = 0, the decoder
attempts to correct the error. Since GS is in systematic form, HS , its corresponding
parity-check matrix can be easily retrieved. The decoder calculates the syndrome
s1 = HT

S c̄. If s1 is equal to a column in HS , then that corresponding bit in c̄ is
flipped. Third, if c̄ has odd weight and either s1 does not correspond to any column
in HS or η = 1, then the decoder declares a DUE.
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The decoding process described above guarantees that any single-bit error in a
special codeword will be corrected, and any single-bit error in a normal codeword
will be detected (even if the bit in error is η).

Let us take a look at two concrete examples for the (10, 8) Parity++ code.
Without any pre-mapping, a special message begins with log2(3)+1 = 4 zeros. Let
the original message be m = (00001011), which is encoded to c = (1011010110).
Note that the first 4 bits of c is the systematic part of the special codeword. After
passing through the channel, let the received vector be y = (1001010110), divided
into c̄ = (1001010110) and η = 0. Since the weight of c is odd and η = 0, the
decoder attempts to correct the error. The syndrome is equal to the 3rd column in
HS , thus the decoder correctly flips the 3rd bit of c̄.

For the second example, let us begin with m = (11010011), which is encoded
to (0011111101). After passing through the channel, the received vector is y =
(0011011101). Since the weight of c̄ is odd and η = 1, the decoder declares a DUE.
Note that for both normal and special codewords, if the only bit in error is η itself,
then it is implicitly corrected since c̄ has even weight and will be correctly mapped
back to m without any error detection or correction required.

3.4 Architecture

In an ECC protected cache, every time a cache access is initiated, the target block
is sent through the ECC decoder/error detection engine. If no error is detected, the
cache access is completed and the cache block is sent to the requester. If an error
is detected, the block is sent through the ECC correction engine and the corrected
block is eventually sent to the requester. Due to the protection mechanism, there is
additional error detection/correction latency. Error detection latency is more critical
than error correction as occurrence of an error is a rare event when compared to the
processor cycle time and does not fall in the critical path. However, a block goes
through the detection engine every time a cache access is initiated.

When using Parity++, the flow almost remains the same. Parity++ can detect all
single-bit errors but has correction capability for “special messages.” When a single-
bit flip occurs on a message, the error detection engine first detects the error and
stalls the pipeline. If the non-linear bit says it is a “special message” (non-linear bit is
‘0’), the received message goes through the Parity++ error correction engine which
outputs the corrected message. This marks the completion of the cache access. If the
non-linear bit says it is a non-special message (non-linear bit is “1”), it is checked
if the cache line is clean. If so, the cache line is simply read back from the lower
level cache or the memory and the cache access is completed. However, if the cache
line is dirty and there are no other copies of that particular cache line, it leads to a
crash or a roll back to checkpoint. Note that both Parity++ and SECDED have equal
decoding latency of one cycle that is incurred during every read operation from an
ECC protected cache. The encoding latency during write operation does not fall in
the critical path and hence is not considered in the analyses.
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The encoding energy overhead is almost similar for both Parity++ and SECDED.
The decoding energy overheads are slightly different. For SECDED, the original
message can be retrieved from the received codeword by simply truncating the
additional ECC redundant bits. However, all received codewords need to be
multiplied with the H-matrix to detect if any errors have occurred. For Parity++, all
messages go through the chain of XOR gates for error detection and only the non-
systematic non-special messages need to be multiplied with the decoder matrix to
retrieve the original message. Since the error detection in Parity++ is much cheaper
in terms of energy overhead than SECDED and the non-special messages only
constitute about 20–25% of the total messages, the overall read energy in Parity++
turns out to be much lesser than SECDED.

3.5 Experimental Methodology

Parity++ was evaluated over applications from the SPEC 2006 benchmark suite.
Two sets of core micro-architectural parameters (provided in Table 5) were chosen
to understand the performance benefits in both a lightweight in-order (InO) proces-
sor and a larger out-of-order (OoO) core. Performance simulations were run using
Gem5 [6], fast forwarding for one billion instructions and executing for two billion
instructions.

The first processor was a lightweight single in-order core architecture with a
32kB L1 cache for instruction and 64kB L1 cache for data. Both the instruction and
data caches were 4-way associative. The LLC was a unified 1MB 8-way associative
L2 cache. The second processor was a dual core out-of-order architecture. The L1
instruction and data caches had the same configuration as the previous processor.
The LLC comprises of both L2 and L3 caches. The L2 was a shared 512KB cache
while the L3 was a shared 2MB 16-way associative cache. For both the baseline
processors it was assumed that the LLCs (L2 for the InO processor and L2 and L3
for the OoO processor) have SECDED ECC protection.

Table 5 Core micro-architectural parameters

Processor-1 Processor-2

Cores 1 (@ 2 GHz) 2 (@ 2 GHz)

Core type InO (@ 2 GHz) OoO (@ 2 GHz)

Cache line size 64B 64B

L1 Cache per core 32 KB I$, 64 KB D$ 32 KB I$, 64 kB D$

L2 Cache 1 MB (unified) 512 KB (shared, unified)

8-way 8-way

L3 Cache – 2 MB 16-way (shared)

Memory configuration 4 GB of 2133 MHz DDR3 8 GB of 2133 MHz DDR3

Nominal voltage 1 V 1 V
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The performance evaluation was done only for cases where there are no errors.
Thus, latency due to error detection was taken into consideration but not error
correction as correction is rare when compared to the processor cycle time and does
not fall in the critical path. In order to compare the performance of the systems
with Parity++ against the baseline cases with SECDED ECC protection, the size
of the LLCs was increased by ∼9% due to the lower storage overhead of Parity++
compared to SECDED. This is the iso-area case since the additional area coming
from reduction in redundancy is used to increase the total capacity of the last level
caches.

3.6 Results and Discussion

In this section the performance results obtained from the Gem5 simulations (as
mentioned in Sect. 3.5) are discussed. Figures 8 and 9 show the comparative results
for the two different sets of core micro-architectures across a variety of benchmarks
from the SPEC2006 suite when using memory speculation. In both the evaluations,
performance of the system with Parity++ was compared against that with SECDED.

Fig. 8 Comparing normalized execution time of Processor-I with SECDED and Parity++

Fig. 9 Comparing normalized execution time of Processor-II with SECDED and Parity++
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For both the core configurations, the observations are almost similar. It was
considered that both Parity++ and SECDED protected caches have additional
cache hit latency of one cycle (due to ECC decoding) for all read operations.
The results show that with the exact same hit latency, Parity++ has up to 7%
lower execution time than SECDED due to the additional memory capacity. The
applications showing higher performance benefits are mostly memory intensive.
Hence, additional cache capacity with Parity++ reduces overall cache miss rate. For
most of these applications, this performance gap widens as the LLC size increases
for Processor-II. The applications showing roughly similar performances on both
the systems are the ones which already have a considerably lower LLC miss rate.
As a result, increase in LLC capacity due to Parity++ does not lead to a significant
improvement in performance.

On the other hand, if the cache capacity is kept constant (iso-capacity), Parity++
helps to save ∼5–9% of last level cache area (cache tag area taken into consider-
ation) as compared to SECDED. Since the LLCs constitute more than 30% of the
processor chip area, the cache area savings translate to a considerable amount of
reduction in the chip size. This additional area benefit can either be utilized to make
an overall smaller sized chip or it can be used to pack in more compute tiles to
increase the overall performance of the system.

The results also imply that Parity++ can be used in SRAM based scratchpad
memories used in embedded systems at the edge of the Internet-of-Things (IoT)
where hardware design is driven by the need for low area, cost, and energy
consumption. Since Parity++ helps in reducing area (in turn reducing SRAM
leakage energy) and also has lower error detection energy [1], it provides a better
protection mechanism than SECDED in such devices.
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Resource Management for Improving
Overall Reliability of Multi-Processor
Systems-on-Chip
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and X. Sharon Hu

1 Introduction

This section presents the concepts and models associated with soft-error reliability
and lifetime reliability, and reviews the related work on these topics.

1.1 Background

Modern multi-processor systems on a chip (MPSoCs) may contain both multicore
processors and integrated GPUs, which are especially suitable for real-time embed-
ded applications requiring massively parallel processing capabilities. Since MPSoCs
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Fig. 1 Illustration of transient and permanent faults

offer good performance and power consumption, they have been widely used in
many real-time applications such as consumer electronics, automotive electronics,
industrial automation, and avionics [1]. For these applications, the MPSoC needs
to satisfy deadline, quality-of-service (e.g., resolution of video playback), and relia-
bility requirements. The reliability requirements include both soft-error reliability
(SER), influenced by transient faults, and lifetime reliability (LTR), influenced
by permanent faults. This chapter presents approaches to improving SER and/or
LTR while satisfying deadline and quality-of-service requirements for real-time
embedded systems.

Transient faults are mainly caused by high-energy particle strikes, e.g., resulting
from spallation from cosmic rays striking atoms in the upper atmosphere [2] (see
Fig. 1a). Transient faults may lead to errors that appear for a short time and then
disappear without damaging the device or shortening its lifetime; these are called
soft errors. They may prevent tasks from completing successfully. SER is used to
quantify the probability that tasks will complete successfully without errors due to
transient faults. SER can be increased by using reliability-aware techniques such
as replication, rollback recovery, and frequency elevation, which either tolerate
transient faults or decrease their rates.

Permanent faults are caused by wear in integrated circuits. An example is
illustrated in Fig. 1b. Permanent faults can lead to errors that persist until the faulty
hardware is repaired or replaced. Multiple wear-out effects such as electromigration
(EM), stress migration (SM), time-dependent dielectric breakdown (TDDB), and
thermal cycling (TC) can lead to permanent faults. The rates of these effect
depend exponentially on temperature. In addition, thermal cycling depends on the
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Fig. 2 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

temperature range, maximum temperature, and cycle frequency. To improve LTR,
temperature peaks and variation must be limited.

To reduce the cost of repairing/replacing an MPSoC system and maintain some
desired level of quality-of-service, improving SER due to transient faults and LTR
due to permanent faults become an imperative design concern. In this chapter we
present two techniques that optimize SER and LTR separately and show how to
make appropriate trade-offs between them for improving overall system reliability.
Figure 2 illustrates the abstraction layers representing the main contribution of this
chapter.

1.2 Related Work

Considerable research has been done on improving SER. Haque et al. [3] present
an energy-efficient task replication method to achieve a high SER target for
periodic real-time applications running on a multicore system with minimum energy
consumption. Salehi et al. [4] propose a low-overhead checkpointing-based rollback
recovery scheme to increase system SER and reduce the number of checkpoints for
fault-tolerant real-time systems. Zhou et al. [5] improve system SER by judiciously
determining proper replication and speedup of tasks. Zhou and Wei [6] describe
a stochastic fault-tolerant task scheduling algorithm that specifically considers
uncertainty in task execution caused by transient fault occurrences to increase SER
under task deadline constraints. These work increase SER but do not consider
permanent faults.

Many studies have focused on increasing LTR. Huang et al. [7] describe an
analytical model to derive the LTR of multicore systems and a simulated annealing
algorithm to reduce core temperature and temperature variation to improve system
LTR. Chantem et al. [8] present a dynamic task assignment and scheduling scheme
to maximize system LTR by mitigating core wear due to thermal cycling. Ma et
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al. [1] optimize system LTR by establishing an online framework that dynamically
controls cores’ utilization. Das et al. [9, 10] improve the LTR of network-on-
chips (NoCs) and also solve the energy–reliability trade-off problem for multimedia
MPSoCs. However, these approaches neglect transient faults.

There is research on handling SER and LTR together. Zhou et al. [5] propose
a task frequency and replication selection strategy that balances SER and LTR
to maximize system availability. Ma et al. [11] establish an online framework
for increasing SER and LTR of real-time systems running on “big–little” type
MPSoCs. A genetic algorithm based approach [12] that determines task mappings
and frequencies is developed to jointly improve SER and LTR. Aliee et al. [13]
adopt mean time to failure (MTTF) as the common metric to evaluate SER and
LTR and design a success tree based scheme for reliability analysis for embedded
systems. Unlike work [5, 11–13] that ignore the variations in performance, power
consumption, and reliability parameters, Gupta et al. [14] explore the possibility of
constructing reliable systems to compensate for the variability effects in hardware
through software controls. These efforts consider CPU reliability but ignore the
reliability effects of GPUs.

1.3 Soft-Error Reliability Model

SER is the probability that no soft errors occur in a particular time interval [5], i.e.,

r = e−λ(f )×U×|Δt |, (1)

where f is the core frequency, |Δt | is the length of the time interval, U is the
core’s utilization within |Δt |, and λ(f ) is the average fault rate depending on f [5].
Specifically, we have

λ(f ) = λ0 × 10
d(fmax−f )
fmax−fmin , (2)

where λ0 is the average fault rate at the maximum core frequency. fmin and fmax are
the minimum and maximum core frequency, and d (d > 0) is a hardware-specific
constant indicating the sensitivity of fault rate to frequency scaling. Reducing
frequency leads to an exponential increase in fault rate because frequency is a
roughly linear function of supply voltage. As frequency reduces, supply voltage
decreases, decreasing the critical charge (i.e., the minimum amount of charge that
must be collected by a circuit to change its state) and exponentially increasing fault
rate [15].

Since CPU and GPU fabrication processes are similar, the device-level SER
model above applies to both. Let rG and ri (i = 1, 2, . . . , m) represent the SER
of the GPU and the ith CPU core, respectively. As the correct operation of an
MPSoC system-level depends on the successful execution of GPU and CPU cores,
the system-level SER is calculated as the product of reliabilities of all individual
cores, i.e.,
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R = rG ×
m∏

i=1

ri . (3)

1.4 Lifetime Reliability Model

MTTF is commonly used to quantify LTR. We focus on four main failure mech-
anisms: EM, TDDB, SM, and TC. EM refers to the dislocation of metal atoms
caused by momentum imparted by electrical current in wires and vias [16]. TDDB
refers to the deterioration of the gate oxide layer [17]. SM is caused by the
directionally biased motion of atoms in metal wires due to mechanical stress caused
by thermal mismatch between metal and dielectric materials [18]. TC is wear due to
thermal stress induced by mismatched coefficients of thermal expansion for adjacent
material layers [19].

The system-level MTTF modeling tool introduced by Xiang et al. [20] can be
used to estimate LTR when considering the above four failure mechanisms. This
tool integrates three levels of models, i.e., device-, component-, and system-level
models. At the device level, wear due to the above four mechanisms is modeled.
The modeling tool accounts for the effect of using multiple devices in a component
upon fault distributions, e.g., the effects of EM are most appropriately modeled
using a lognormal distribution at the device level, but with a Weibull distribution for
components containing many devices. Based on the device-level reliability models
and temporal failure distributions, component-level MTTF is calculated [20]. Then,
based on component-level reliability, the system-level MTTF is obtained by Monte
Carlo simulation.

2 LTR and SER Optimization

This section introduces two approaches for LTR and SER optimization, and
discusses the trade-off between them.

2.1 LTR Optimization

EM, SM, and TDDB wear rates depend exponentially on temperature. However,
wear due to thermal cycling depends on the amplitude (i.e., the difference between
the proximal peak and valley temperature), period, and maximum temperature of
thermal cycles. Figure 3 summarizes some system MTTF data obtained from the
system-level LTR modeling tool with default settings [20]. Figure 3a–c depicts
the MTTF of an example system as a function of the amplitude, period, and peak
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Fig. 3 System MTTF due to: (a) amplitude of thermal cycle; (b) period of thermal cycles; (c) peak
temperature of thermal cycles; and (d) temperature without thermal cycles

temperature of thermal cycles, respectively. As a comparison, Fig. 3d shows the
system MTTF due to temperature alone without thermal cycles. As can be seen
from Fig. 3, system MTTF generally increases for lower temperatures and smaller
thermal cycles.

A system’s LTR is determined by its operating temperature and thermal cycles.
Given that lower frequencies and voltages lead to higher utilization but lower
temperatures, one method to improve system MTTF is to control core utilization.
For example, we have developed a framework called Reliability-Aware Utilization
Control (RUC) [21] to mitigate the effects of both operating temperature and
thermal cycling. RUC consists of two controllers. The first controller reduces
the peak temperature by periodically reducing core frequencies subject to task
deadline requirements. Although frequent changes in core frequency helps to reduce
peak temperature, they may increase the frequency of thermal cycling and reduce
lifetime reliability. Hence, the second controller minimizes thermal cycling wear by
dynamically adjusting the period of the first controller to achieve longer thermal
cycles as well as lower peak temperature.

2.2 SER Optimization

Recovery allocation strategies and task execution orders can affect system-level
soft-error reliability (as shown in Fig. 4). In this example, there are four tasks that
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Fig. 4 Motivating examples illustrate different recovery allocation strategies and task execution
order affect system-level SER. (a) No recovery. (b) Statically allocate recovery to specific tasks,
regardless of whether these tasks fail. (c) Recovery is only allocated to the first failed task. (d) A
failed task or more can be recovered if the slack is adequate. (e) A new task execution order

share a common period of 15 s. We further suppose the worst-case execution times
of the tasks are 1, 2, 3, and 4 s. All tasks in the set execute at the highest core
frequency. As indicated by the reliability model presented in Sect. 1, the SERs of
the tasks are 0.904, 0.819, 0.741, and 0.670.

If no recovery is allowed as shown in Fig. 4a, the system-level SER, i.e., the
probability that all tasks can complete successfully, is 0.368. Allowing recovery
of some tasks increases SER. One method is to allocate recoveries to tasks offline
[5]. Figure 4b represents a better solution for maximizing the system-level SER, in
which tasks τ2 and τ3 have recoveries r2 and r3. In this case, the system-level SER is
0.547. Another approach allocates recovery online [22]. Figure 4c shows a scenario
where the first failed task has a recovery [22]. The system-level SER is 0.686, which
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is higher than that in Fig. 4b. However, although the slack is dynamically used in
Fig. 4c, only one task can be recovered.

In the above online recovery allocation example, a failed task is recovered if the
remaining slack is adequate, and tasks consume slack on a first-come, first-served
basis (see Fig. 4d). For example, task τ2 can recover even if τ1 fails. However, task
τ3 cannot recover if both τ1 and τ2 fail because the remaining slack for τ3 is only
2 s. Task τ4 can recover only when all tasks succeed or only τ1 fails. Hence, the
probabilities of recovering τ3 and τ4 are 0.983 and 0.607, and the system-level SER
is 0.716. Now, consider the impact of task scheduling on the system-level SER.
Figure 4e represents a new schedule where the task’s priority is the inverse of its
execution time. In this case, the probabilities of recovering τ1, τ2, τ3, and τ4 are
0.792, 0.670, 0.670, and 1.000. In contrast with Fig. 4d, the task with the lowest
SER, τ4, can always be recovered, but the system-level SER is 0.692. Hence, a
scheduling algorithm that simply improves the probability of recovery for some
specific tasks may not be a good solution.

Based on these observations, we design an SER improvement framework [23]
that statically schedules tasks and dynamically allocates recoveries. The framework
is composed of a simple and fast scheduling algorithm for special task sets and a
powerful scheduling algorithm for general task sets. For more details of the two
scheduling algorithms, readers can refer to [23].

3 Trade-Off Between LTR and SER

Certain design decisions (e.g., task mapping and voltage scaling) may increase LTR
but decrease SER, and vice versa. In other words, improving overall reliability
requires trade-offs between LTR and SER. Recently, several efforts have focused
on these trade-offs. Below, we describe two case studies in LTR and SER trade-off:
(1) “big–little” type MPSoCs and (2) CPU–GPU integrated MPSoCs.

3.1 “Big–Little” MPSoCs

To address power/energy concerns, various heterogeneous MPSoCs have been
introduced. A popular MPSoC architecture often used in power/energy-conscious
real-time embedded applications is composed of pairs of high-performance (HP)
cores and low-power (LP) cores. Such HP and LP cores present unique performance,
power/energy, and reliability trade-offs. Following the terminology introduced by
ARM, we refer to this as the “big–little” architecture. Nvidia’s variable symmetric
multiprocessing architecture is such an example [24].

Executing tasks on an LP core improves LTR by reducing temperature and
improves SER through a higher core frequency. Although the primary goal of “big–
little” MPSoCs is to reduce power consumption by executing a light workload on



Resource Management for Improving Overall Reliability of Multi-Processor. . . 241

Denver (HP) Core ARM (LP) Core

0
0.1
0.2
0.3
0.4
0.5

0
0.1
0.2
0.3
0.4
0.5

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

0.345GHz

20% 40% 60% 80% 100%

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

0.652GHz

0
0.1
0.2
0.3
0.4
0.5

Po
w

er
 (W

)

Core Utilization

0.960GHz

0

0.2

0.4

0.6

0.8

Po
w

er
 (W

)

Core Utilization

1.267GHz

0
0.2
0.4
0.6
0.8

1

Po
w

er
 (W

)

Core Utilization

1.574GHz

0
0.2
0.4
0.6
0.8

1
1.2

Po
w

er
 (W

)

Core Utilization

1.881GHz

Fig. 5 The measured power consumptions of HP (Denver) core and LP (ARM) core on Nvidia’s
TX2 chip as functions of utilization and frequency

the LP cores, there are circumstances in which an LP core consumes more power
than an HP core. Carefully characterizing the power consumption behavior of HP
and LP cores is necessary. For example, the power consumption of the HP core and
LP core on Nvidia’s TX21 is shown in Fig. 5. The LP core consumes less power
than the HP core only when the core frequency is low and the workload is light.
One possible reason for this phenomenon is that the HP and LP cores have different
microarchitectures, as is the case with the TX2. Another possible reason is that the
transistors in the HP core and LP core have different threshold voltages. The LP core
has low leakage power but requires high voltage to operate at higher frequencies. On
the other hand, the HP core can work at high frequency with a low voltage.

The above observations reveal that in order to reduce power consumption of
MPSoCs and improve reliability, it is necessary to fully account for the power

1Note that TX2 is composed of ARM Cortex A57 cores that support multithreading, and Nvidia’
Denver cores for high single-thread performance with dynamic code optimization. Denver cores
can be treated as HP cores and ARM cores can be treated as LP cores when running single-threaded
applications.
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features of heterogeneous cores and carefully map tasks to the most appropriate
cores. A good guideline is to run tasks having short execution times on LP cores
with low frequencies and tasks having long execution times on HP cores with high
frequencies. The execution models of HP and LP cores must also be considered.
For example, HP and LP cores on Nvidia’s TK1 cannot execute at the same time.
However, on Nvidia’s TX2, HP and LP cores can work simultaneously. Although an
HP core and an LP core can execute at different frequencies, all HP cores must share
one frequency, as must LP cores. Hence, a strategy to improve reliability should
migrate tasks dynamically and consider both the power features and execution
models of HP and LP cores. Using this guideline, we have developed frameworks
for different hardware platforms to improve soft-error reliability under lifetime
reliability, power consumption, and deadline constraints [1, 11].

3.2 CPU–GPU Integrated MPSoCs

Thanks to the massively parallel computing capability offered by GPUs and the
general computing capability of CPUs, MPSoCs with integrated GPUs and CPUs
have been widely used in many soft real-time embedded applications, including
mobile devices [25] and intelligent video analytics. For many such applications,
SER due to transient faults and LTR due to permanent faults are major design
concerns. A common reliability improvement objective is to maximize SER under
an LTR constraint.

An application task set is used to illustrate how a task’s execution time depends
on whether it executes on the same core as the operating system. The varying
execution times of tasks change the overall workload and operating temperature,
influencing LTR and SER. Experiments were performed on Nvidia’s TK1 chip (with
CUDA 6.5) with default settings to measure task execution times. Six tasks from
different benchmark suites were executed (see Table 1). Each task’s increase in
CPU time resulting from executing on a different core than the operating system
is shown in Fig. 6 and the averages of additional GPU times are shown in Table 2.
For all tasks, the additional CPU times can be significant and are input dependent.
In contrast to the additional CPU time, the additional GPU time is negligible: the
additional GPU times of all measured application tasks are less than 1% of the tasks’
execution times. This increase can be ignored in most soft real-time applications.
Similar phenomena can be observed for other platforms. On Nvidia’s TX2 chip, the
additional CPU times of application tasks are illustrated in Fig. 7.

The above observations imply that a task’s CPU time increases if executed on
a different core than the operating system, but its GPU time does not change.
Since both LTR and SER increase with a lighter workloads, this observation reveals
that we should consider what resources tasks use when assigning them to cores.
Generally, the primary core, on which the operating system runs, should be reserved
for application tasks that require GPU resources to complete.
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Table 1 Application tasks used to measure additional execution times

Name Description Source

VectorAdd Vector addition CUDA samples [26]

SimpleTexture Texture use

MatrixMul Matrix multiplication

Gaussian Gaussian elimination Rodinia [27]

BFS Breadth-first search

Backprop Back propagation

Fig. 6 Measured additional CPU times on TK1 for tasks executing on non-OS CPU cores

Table 2 Observed additional GPU time on TK1

Additional GPU time

Tasks (ms) (%)

VectorAdd 0.38 0.01

SimpleTexture 0.09 0.00

MatrixMul 0.22 0.11

Gaussian 0.38 0.00

BFS 0.003 0.20

Backprop 0.31 0.68
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Fig. 7 Measured additional CPU times on TX2 for tasks executing on CPU cores that are different
from the core where the operating system runs

4 Conclusion

Real-time embedded system soft-error and lifetime reliabilities are important.
Generally, increasing a core’s frequency, allocating recoveries and allowing replica-
tions improve soft-error reliability, but may increase operating temperature thereby
reducing lifetime reliability. MPSoCs used in many applications are heterogeneous
and integrate high-performance cores, low-power cores, and even GPUs. System
designers should model the task-dependent power consumptions and execution
times of the cores available to them, and use these models to solve the SER and
LTR trade-off problem.
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Part III
Cross-Layer Resilience: Bridging the Gap
Between Circuit and Architectural Layer

Daniel Mueller-Gritschneder

Today’s design teams, as their forerunners in the past, struggle to master the
ever-increasing complexity in chip design driven by new applications such as
autonomous driving, complex robotics or embedded machine learning, which
demand higher performance under strict power, area, and energy constraints. While
Moore’s law was providing improvements on all these objectives regularly by
moving to the next technology node, a slow-down in scaling is observed nowadays.
Yet, design teams came up with intelligent new design principles to provide further
performance gains, most famously multi-core and many-core CPUs as well as GPUs
combined with complex memory organizations with several level of hierarchy.
Additionally, new computing principles moved into the focus of research and
industry including near-threshold computing (NTC) for ultra-low-energy operations
or the use of runtime-reconfigurable architectures based on field-programmable
gate arrays (FPGAs), which flexibly provide specialized compute kernels to boost
performance at low power costs.

One major design challenge in these new computing platforms is dependability
whenever high system availability is demanded (always on) or, even more strict,
in safety-critical applications. Dependable computing requires resilience against a
whole range of error sources such as radiation-induced soft errors, aging effects,
e.g., caused by Bias Temperature Instability (BTI) or Hot Carrier Injection (HCI),
harsh environmental conditions, process variations or supply voltage noise. Depend-
ing on the chosen computing principle, new dependability challenges arise, e.g.,
configuration bits need to be made resilient against errors in FPGAs while NTC-
based systems are more sensitive to process variations.

Resilience can be achieved at different layers of the design stack (SW, Compiler,
Architecture, Circuit, Device). Traditionally, different parts of the design team look
at different layers individually. Hence, resilience can lead to high design overheads
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as counter-measures on every layer are stacked on top of each other. This leads to the
idea of cross-layer resilience. This design method looks for a resilience scheme, in
which protection mechanisms work in a cooperative fashion across different layers
of the design stack in order to reduce overheads, and, hence, cost. For hardware
design, this cross-layer approach can be applied successfully across the architectural
and circuit layer. This is demonstrated within the following three chapters.

The chapter titled Cross-Layer Resilience against Soft Errors: Key Insights
focuses on the analysis and cross-layer protection against soft errors for different
system components ranging from embedded processors to SRAM memories and
accelerators. While Moore’s law is driven mainly by high performance systems,
many safety-critical systems are still designed at much older technology nodes to
avoid reliability challenges. Yet, due to rising demand of processing power, e.g.,
for autonomous driving, newer technology nodes become mandatory. This makes it
more costly to assure protection against soft errors as their chance of occurrence
increases. Soft errors need to be detected and handled in any safety-critical
application because they may cause malfunction of the system due to corruption
of data or flow of control. Systems deploy protection techniques such as hardening
and redundancy at different layers of the system stack (circuit, logic, architecture,
OS/schedule, compiler, software, algorithm). Here, cross-layer resilience techniques
aim at finding lower cost solutions by providing accurate estimation of soft error
resilience combined with a systematic exploration of protection techniques that
work collaboratively across the system stack. This chapter provides key insights
on applying the cross-layer resilience principle in a lessons-learned fashion.

The chapter Online Test Strategies and Optimizations for Reliable Reconfig-
urable Architectures discusses cross-layer dependability of runtime-reconfigurable
architectures based on FPGAs. Such FPGAs are often using the newest technology
nodes. Hence, resilience is a major concern as newer nodes experience aging effects
earlier and may suffer from higher susceptibility to environmental stress. Device
aging can lead to malfunction of the system before its end-of-life, and hence, is a
major dependability concern. Incorrect functionality can be detected by executing
online built-in self-tests regularly on the device. Two orthogonal online tests are
presented in this chapter. These tests can ensure the correctness of the configuration
bits of the reconfigurable fabric as well as of the functional parts. Additionally, a
design method called module diversification is presented, which enables to recover
from faults by providing a self-repair feature. Finally, a design method is presented
that implements a stress-aware FPGA placement method. It allows to slow down
system degradation due to aging effects and prolongs system lifetime.

The final chapter Reliability Analysis and Mitigation of Near-Threshold Voltage
(NTC) Caches targets NTC low-energy design and the related reliability concerns.
This includes impact of soft error, aging, and process variation while operating at
near-threshold voltage with special focus on on-chip caches. The idea is to save
energy by scaling supply voltage of the cache blocks. The presented methods guide
the designer to optimized NTC cache organizations using a cross-layer reliability
analysis approach covering 6T and 8T SRAM cells. Overall, the three chapters
bridge the architecture and circuit layer gap while also expanding to adjacent layers
of the design stack.



Cross-Layer Resilience Against Soft
Errors: Key Insights

Daniel Mueller-Gritschneder, Eric Cheng, Uzair Sharif, Veit Kleeberger,
Pradip Bose, Subhasish Mitra, and Ulf Schlichtmann

1 Introduction

Two tasks need to be solved when designing systems for safety-critical appli-
cation domains: firstly, the safety of the intended functionality (SoiF) must be
guaranteed. SoiF focuses on the ability of the system to sense its environment and
act safely. Achieving SoiF becomes a highly challenging task due to the rising
complexity of various safety-critical applications such as autonomous driving or
close robot–human interaction, which may require complex sensor data processing
and interpretation. Secondly, and no less important, the system must also always
remain or transit into a safe state given the occurrence of random hardware faults.
To achieve this requirement, the system must be capable of detecting as well as
handling or correcting possible errors. Safety standards such as ISO26262 for
road vehicles define thresholds on detection rates for different automotive safety
integration levels (ASIL) depending on the severity of a possible system failure,
the controllability by the driver, and the nominal usage time of the system. It
is commonly understood that safety-critical systems must be designed from the
beginning with the required error protection in mind [39] and that for general-
purpose computing systems, error protection is required to achieve dependable
computing [19, 21].
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Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
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This requirement is becoming increasingly challenging as integrated systems—
following the continuous trend of Dennard scaling—become more susceptible to
fault sources due to smaller transistor dimensions and lower supply voltages. As
transistor dimensions scale down the charge stored in memory cells such as SRAM
or flip-flops decreases. Soft errors occur due to charge transfers when primary or
secondary particles from cosmic radiation hit the silicon [11]. This charge transfer
may lead to the corruption of the value stored in the cell. This is referred to as
a “soft error” as it does not permanently damage the cell. The vulnerability of
cells increases even further with shrinking supply voltage levels or sub-threshold
operation. Thus, for the design of safety-critical digital systems, the protection
against radiation-induced soft errors is a crucial factor to avoid unacceptable risks
to life or property.

This reality motivates methods that aim to increase the resilience of safety-
critical systems against radiation-induced soft errors in digital hardware. Common
protection techniques against soft errors either harden the memory elements to
reduce the probability of soft errors occurring or add redundancy at different layers
of the design (circuit, logic, architecture, OS/schedule, compiler, software, algo-
rithm) to detect data corruptions, which can subsequently be handled or corrected
by appropriate error handlers or recovery methods. Each protection technique adds
overheads and, hence, additional costs. Especially, adding protection techniques
on top of each other at all layers—not considering combined effects—may lead
to inefficient protection and non-required redundancy. The idea of cross-layer
resiliency is to systematically combine protection techniques that work collabo-
ratively across the layers of the system stack. The target is to find more efficient
protection schemes with the same soft error resilience at a lower cost than can be
reached by ignoring cross-layer effects. For this, cross-layer techniques combine
accurate evaluation of the soft error resilience with a broad cross-layer exploration
of different combinations of protection techniques. This work demonstrates how
to apply the cross-layer resilience principle on custom processors, fixed-hardware
processors, accelerators, and SRAM memories with a focus on soft errors. Its main
focus spans from application to circuit layer as illustrated in Fig 1. These works lead
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to a range of key insights, important for realizing cross-layer soft error resilience for
a wide range of system components:

• accurate resilience evaluation is key, e.g., simulation-based fault injection at the
flip-flop level is required to accurately evaluate soft errors in logic,

• multi-level/mixed-mode simulation enables very efficient resilience evaluation
using fault injection,

• cross-layer resilience exploration must be customized for the component under
consideration such as a custom processor, uncore components, third-party pro-
cessor, accelerator, or SRAM,

• embedded applications such as control algorithms have inherent fault resilience
that can be exploited,

• circuit-level techniques are crucial for cost-effective error resilience solutions,
and

• existing architecture- and software-level techniques for hardware error resilience
are generally expensive or provide too little resilience when implemented using
their low-cost variants.

The chapter is structured as follows: first, evaluation methods using fault injection
are covered, followed by cross-layer resilience exploration. Finally, experimental
results are provided.

2 Evaluation of Soft Error Resilience Using Fault Injection

Fault injection is commonly used to evaluate soft error resilience. Radiation-induced
soft errors can be modeled as bit flips [23], which are injected into the system’s
memory cells such as flip-flops and SRAM cells. There exists a wide range of fault
injection methods, which will briefly be discussed in the following.

2.1 Overview on Fault Injection Methods

Hardware-based fault injection injects the fault in a hardware prototype of the
system. For example, a radiation beam experiment can be used to provoke faults
in an ASIC. This is a very expensive experimental setup, e.g., requiring a radiation
source such as used in [1]. The chip hardware can also be synthesized to an FPGA,
which is instrumented with additional logic to change bit values in the memory,
flip-flops, or combinational paths of the logic to inject a fault using emulation-
based fault injection [10, 13]. Embedded processors have a debug port to read out
their internal states such as architectural registers. These debug ports often also
enable the ability to change the internal states. This can be used to inject a fault
in the processor using debug-based fault injection [15, 41]. Software running on the
system can be used to mimic faults in software-implemented fault injection, e.g., as
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presented in [26, 30, 44]. The compiler can be used to instrument the binary with
fault injection code, for compiler-based fault injection, e.g., implemented in [18].
Simulation-based fault injection injects faults in a simulation model of the system.
It is commonly applied to investigate the error resilience of the system and, hence,
is the primary focus of this work.

2.2 Simulation-Based Fault Injection

Simulation-based fault injection provides very good properties in terms of par-
allelism, observability, and early availability during the design. Simulation-based
fault injection can be realized at different levels of abstraction. For gate-level fault
injection, the fault is injected into the gate Netlist of the system obtained after
logic synthesis. For flip-flop-level fault injection, the fault is injected into the RTL
implementation of the system. The fault impact is simulated using logic simulation,
e.g., as used in [12, 46]. In architectural-level fault injection, the fault is injected
either in a micro-architectural simulator or Instruction Set Simulator (ISS). Micro-
architectural simulators such as Gem5 [3] simulate all architectural and some micro-
architectural states such as pipeline registers of the processor, e.g., as presented
in [25], but usually do not accurately model the processor’s control logic. An ISS
usually only simulates the architectural registers, but not any micro-architectural
registers. ISSs are used for fault injection in [14, 24, 35]. In software-level fault
injection, the fault is directly injected into a variable of the executing program. The
software can then be executed to determine the impact of the corrupted variable on
the program outputs.

A key insight of previous work was that the evaluation of the soft error resilience
of logic circuits such as processor pipelines requires flip-flop-level fault injection,
e.g., using the RTL model [9, 38]. Architectural-level and software-level fault
injection may not yield accurate results as they do not include all details of the
logic implementation as will also be shown in the results in Sect. 4.1. In contrast,
soft errors in memories such as SRAM may be investigated at architectural level,
which models memory arrays in a bit-accurate fashion.

2.3 Fast Fault Injection for Processor Cores

A good estimation of soft error resilience requires simulating a large amount of
fault injection scenarios. This may become computationally infeasible when long-
running workloads are evaluated, e.g., for embedded applications. Such long test
cases arise in many applications. For example, in order to evaluate the impact
of a soft error on a robotic control application, the control behavior needs to
simulate several seconds real time, possibly simulating several billion cycles of the
digital hardware. An efficient analysis method called ETISS-ML for evaluating the
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resilience against soft errors in the logic of a processor sub-system is presented
in [37, 38]. A typical processor sub-system of a micro-controller consists of the
pipeline, control path, exception unit, timer, and interrupt controller. ETISS-ML is
especially efficient for evaluating the impact of soft errors for long software test
cases.

2.3.1 Multi-Level Fault Injection

ETISS-ML reduces the computational cost of each fault injection run by applying
a multi-level simulation approach, which was also applied in other fault injection
environments such as [16, 31, 45]. The key idea is to switch abstraction of the
processor model during the fault injection run and to minimize the number of cycles
simulated at flip-flop level. For this, an ISS is used in addition to the RTL model of
the processor at flip-flop level.

The proposed multi-level flow is illustrated in Fig. 2. First the system is booted
in ISS mode. This allows to quickly simulate close to the point of the fault injection,
at which point, the simulation switches to flip-flop-level. During the RTL warmup
phase, instructions are executed to fill the unknown micro-architectural states of the
processor sub-system. This is required as the architectural registers are not visible to
the ISS simulation. After this RTL warmup, the fault is injected as a bit flip. During
the following RTL cool-down phase, the propagation of the fault is tracked. Once
the initial impact of the fault propagates out of the processor’s micro-architecture or
is masked, the simulation can switch back to ISS mode. ETISS-ML reaches between
40x-100x speedup for embedded applications compared to pure flip-flop-level fault
injection while providing the same accuracy [37, 38].

Both the switch from ISS mode to RTL mode as well as the switch from RTL
to ISS mode require careful consideration. If a simulation artifact (wrong behavior)
is produced by the switching process, it may be wrongly classified as fault impact.

Fig. 2 Multi-level simulation flow of ETISS-ML
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Next, we will detail the state of the art approach used by ETISS-ML to solve these
challenges.

2.3.2 Switch from ISS Mode to Flip-Flop-Level Simulation

As shown in Fig. 2, a checkpoint is taken from the ISS to initialize the state in
the RTL processor model. This checkpoint only includes the architectural states,
the micro-architectural states such as pipeline registers are unknown. In the RTL
warmup phase instructions are executed to fill up these micro-architectural states.
In order to verify the RTL warmup phase, a (0, 1, X) logic simulation can be
applied [37]. All micro-architectural states are initialized to X (unknown), while
the values of architectural states are copied from the checkpoint. Additionally, the
inputs loaded from external devices such as instruction and data memories as well
as peripheral devices are also known from ISS simulation. Naturally, one expects
that the micro-architectural states take known values after a certain number of
instructions are executed. A key insight here was that this is not the case. Several
state machines in the control path and bus interfaces of the processor would start
from an unknown state. Hence, all following states remain unknown. One must
assume initial states for the RTL state machines, e.g., the reset state. Then one can
observe the removal of X values in the RTL model to derive a suitable RTL warmup
length for a given processor architecture.

2.3.3 Switch from Flip-Flop-Level Simulation Back to ISS Mode

After the fault has been injected into the RTL model, the flip-flop level simulation is
continued during the RTL cool-down phase. When switching back to ISS mode, all
micro-architectural states are lost, as only the architectural states are copied over.
Hence, one must ensure that one does not lose information about the impact of
the fault as this would result in an incorrect estimation. One can take a fixed, very
long cool-down phase as proposed in [45]. Yet, this leads to inefficient simulation
as many cycles need to be evaluated at flip-flop level. Additionally, one does not
gain information as to whether or not the soft error impact is still present in the
micro-architectural states. This can be improved by simulating two copies of the
RTL model, a faulty processor model and a tracking model [38]. The external state
of memories, peripherals, or the environment is not duplicated. The soft error is only
injected into the faulty model. In contrast, the tracking model simulates without the
error. Writes to the external devices (memories, peripherals) are only committed
from the faulty model. Reads from those devices are supplied to both models.
Hence, when the soft error is not masked, it may propagate from the faulty model to
the architectural state, external memories and devices and, then, be read back to the
faulty and tracking model. Whenever both models have the same micro-architectural
state, one can be sure that the error either has been masked or has propagated fully to
the architectural state or external devices and memories. At this point the simulation
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can switch to ISS mode as the architectural state and external devices and memories
are also modeled at ISS level. It turns out that some errors never propagate out of
the micro-architectural states, e.g., because a configuration is corrupted that is never
rewritten by the software. In this case the switch back to ISS mode is not possible
as it would cause inaccuracies, e.g., as would be observed with a fixed cool-down
length.

2.4 Fast Fault Injection in Uncore Components

In addition to errors impacting processor cores, it is equally important to consider
the impact of errors in uncore components, such as cache, memory, and I/O
controllers, as well. In SoCs, uncore components are comparable to processor cores
in terms of overall chip area and power [33], and can have significant impact on the
overall system reliability [8].

Mixed-mode simulation platforms are effective for studying the system-level
impact and behavior of soft errors in uncore components as well. As presented in [8],
such a platform would achieve a 20,000× speedup over RTL-only injection while
ensuring accurate modeling of soft errors. Full-length applications benchmarks
can be analyzed by simulating processor cores and uncore components using an
instruction-set simulator in an accelerated mode. At the time of injection, the
simulation platform would then enter a co-simulation mode, where the target
uncore component is simulated using accurate RTL simulation. Once co-simulation
is no longer needed (i.e., all states can be mapped back to high-level models),
the accelerated mode can resume, allowing application benchmarks to be run to
completion.

2.5 Fast Fault Injection for SRAM Memories Using Mixture
Importance Sampling

Memories such as on-chip SRAM or caches are already modeled bit-accurately at
micro-architectural and instruction-level. Hence, for the evaluation of soft errors
in memories, fault injection into faster instruction-level models is possible. Yet,
modern SRAMs are very dense such that the probability of multi-bit upsets (MBUs)
due to soft errors is not negligible. For MBU fault models, straightforward Monte
Carlo simulation requires a large sample size in the range of millions of sample
elements to obtain sufficient confidence bounds.

To address this challenge one can apply mixture importance sampling to connect
a technology-level fault model with a system-level fault simulation [29]. This
propagation of low-level information to the system level is motivated by the
Resilience Articulation Point (RAP) approach proposed in [23]. The key idea behind
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RAP is that errors in the system should be modeled by probabilistic functions
describing MBU’s bit flip probabilities including spatial and temporal correlations.
Thus, the impact of errors in the system can be evaluated, while maintaining a
direct connection to their root causes at the technology level. The sample size to
estimate the resilience of the system to soft errors in SRAMs can be massively
reduced by guiding the Monte Carlo simulation to important areas. As an illustrative
example, we assume that the SRAM is used to realize a data cache with 1-bit parity
protection. MBUs that alter an odd number of bits in a cache line are detected by
the parity checks and may be corrected by loading the correct value from the next
level of memory. MBUs that alter an even number of bits in a cache line remain
undetected and may cause silent data corruption. Additionally, MBUs may perturb
several neighboring cache lines due to different MBU mechanisms. This can lead to
mixed cases of recoverable errors and silent data corruption. For a cache with one
bit parity protection, MBUs with even number (2, 4, . . .) of bits in one cache line
are critical as they may provoke silent data corruption (SDC). The sampling strategy
can be biased towards these MBUs by mixture important sampling, which speeds up
the resilience evaluation significantly. It is shown that results with high confidence
can be obtained with sample sizes in the thousands instead of millions [29]. The
resulting fast evaluation enables the efficient exploration of the most efficient cross-
layer protection mechanisms for the SRAM memory for an overall optimized
reliable system.

3 Cross-Layer Exploration of Soft Error Resilience
Techniques

Most safety-critical systems already employ protection techniques against soft
errors at different layers. Yet often, possible combinations are not systematically
explored and evaluated to identify a low-cost solution. This may result in inefficient
redundancy and hardening, e.g., that certain types of faults are detected by multiple
techniques at different layers, or certain redundancy is not required, as the circuit is
adequately protected (e.g., by circuit-hardening techniques).

In this section several approaches are outlined that focus on cross-layer explo-
ration for finding low-cost soft error protection:

• the CLEAR approach can generate resilience solutions for custom processors
with selective hardening in combination with architectural and software-level
protection schemes.

• Using a similar approach, on-chip SRAM can be protected with a combination
of hardening and error detection codes.

• For third-party processors, hardening and hardware redundancy are not an option.
Hence, we show how application resilience can be used in combination with
software-level protection to achieve cross-layer resilience.
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Fig. 3 CLEAR framework: (a) BEE3 emulation cluster/Stampede supercomputer injects over
9 million errors into two diverse processor architectures running 18 full-length application
benchmarks. (b) Accurate physical design evaluation accounts for resilience overheads. (c)
Comprehensive resilience library consisting of ten error detection/correction techniques + four
hardware error recovery techniques. (d) Example illustrating thorough exploration of 586 cross-
layer combinations with varying energy costs vs. percentage of SDC-causing errors protected

• Finally, we also discuss how accelerators can be protected with cross-layer
resilience techniques.

3.1 CLEAR: Cross-Layer Resilience for Custom Processors

CLEAR (Cross-Layer Exploration for Architecting Resilience) is a first of its kind
framework to address the challenge of designing robust digital systems: given a
set of resilience techniques at various abstraction layers (circuit, logic, architecture,
software, algorithm), how does one protect a given design from radiation-induced
soft errors using (perhaps) a combination of these techniques, across multiple
abstraction layers, such that overall soft error resilience targets are met at minimal
costs (energy, power, execution time, area)?

CLEAR has broad applicability and is effective across a wide range of diverse
hardware designs ranging from in-order (InO-core) and out-of-order (OoO-core)
processor cores to uncore components such as cache controllers and memory
controllers to domain-specific hardware accelerators. CLEAR provides the ability
to perform extensive explorations of cross-layer combinations across a rich library
of resilience techniques and error sources.

Figure 3 gives an overview of the CLEAR framework. Individual components
are described briefly in the following:

3.1.1 Reliability Analysis

While the CLEAR framework provides the ability to analyze the reliability of
designs, this component does not comprise the entirety of the framework. The
modularity of the CLEAR framework enables one to make use of any number of
the accurate fault-injection simulation components described in detail in Sect. 2.2
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to perform reliability analysis. The analysis considered in this chapter encompasses
both Silent Data Corruption (SDC) and Detected but Uncorrected Errors (DUE).

3.1.2 Execution Time Evaluation

Execution time is measured using FPGA emulation and RTL simulation. Appli-
cations are run to completion to accurately capture the execution time of an
unprotected design. For resilience techniques at the circuit and logic levels, CLEAR
ensures that modifications incorporating such resilience techniques will maintain
the same clock speed as the unprotected design. For resilience techniques at the
architecture, software, and algorithm levels, the error-free execution time impact is
also reported.

3.1.3 Physical Design Evaluation

To accurately capture overheads associated with implementing resilience tech-
niques, it is crucial to have a means for running an entire physical design flow
to properly evaluate the resulting designs. To that end, the Synopsys design tools
(Design Compiler, IC compiler, PrimeTime, and PrimePower) with a commercial
28nm technology library (with corresponding SRAM compiler) are used to perform
synthesis, place-and-route, and power analysis. Synthesis and place-and-route
(SP&R) is run for all configurations of the design (before and after adding resilience
techniques) to ensure all constraints of the original design (e.g., timing and physical
design) are met for the resilient designs as well.

3.1.4 Resilience Library

For processor cores, ten error detection and correction techniques together with four
hardware error recovery techniques are carefully chosen for analysis. In the context
of soft error resilience, error detection and correction techniques include: Algorithm
Based Fault Tolerance (ABFT) correction, ABFT detection, Software assertions,
Control Flow Checking by Software Signatures (CFCSS), Error Detection by
Duplicated Instructions (EDDI), Data Flow Checking (DFC), Monitor cores, Parity
checking, flip-flop hardening using LEAP-DICE, and Error Detection Sequential
(EDS). These techniques largely cover the space of existing soft error resilience
techniques. The characteristics (e.g., costs, resilience improvement, etc.) of each
technique when used as a standalone solution (e.g., an error detection/correction
technique by itself or, optionally, in conjunction with a recovery technique) are
presented in Table 1. Additionally, four micro-architectural recovery techniques are
included: Instruction Replay (IR), Extended IR (EIR), flush, and Reorder Buffer
(RoB) recovery. Refer to [7] for an in-depth discussion of specific techniques and
their optimizations, including a detailed discussion of Table 1.
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3.1.5 Exploration

CLEAR approaches cross-layer exploration using a top-down approach: resilience
techniques from upper layers of the resilience stack (e.g., algorithm-level tech-
niques) are applied before incrementally moving to lower layers (e.g., circuit-
level techniques). This approach helps generate cost-effective solutions that lever-
age effective interactions between techniques across layers. In particular, while
resilience techniques from the algorithm, software, and architecture layers of the
stack generally protect multiple flip-flops, a designer typically has little control
over the specific subset of flip-flops that will be protected. Using multiple tech-
niques from these layers can lead to a situation where a given flip-flop may be
protected (sometimes unnecessarily) by multiple techniques. Conversely, resilience
techniques at the logic and circuit layers offer fine-grained protection since these
techniques can be applied selectively to individual flip-flops (i.e., flip-flops not
(sufficiently) protected by higher-level techniques).

3.2 Resilience Exploration for Custom Accelerators

Domain-specific hardware accelerators will increasingly be integrated into digital
systems due to their ability to provide more energy-efficient computation for specific
kernels. As a result of their application-specific nature, hardware accelerators have
the opportunity to leverage application space constraints when exploring cross-layer
resilience (i.e., resilience improvement targets only need to hold over a limited
subset of applications). Accelerators also benefit from the ability to create natural
checkpoints for recovery by protecting the memory storing the accelerator inputs
(e.g., using ECC), allowing for a simple means for re-execution on error detection.
Therefore, the cross-layer solutions that provide cost-effective resilience may differ
from those of processor cores and warrant further exploration.

3.3 Cross-Layer Resilience for Exploration for SRAM
Memories

In [28], a cross-layer approach for soft error resilience was applied to SRAM data
caches. Again, a systematic exploration requires having a good evaluation of the
cost and efficiency of the applied protection mechanisms. In this study, the available
protection mechanisms were the following: at circuit level, either (1) the supply
voltage could be raised by 10% or (2) the SRAM cells could be hardened by
doubling the area. At the architectural level, (3) 1-bit parity could be introduced
in the cache lines. The circuit-level hardening techniques require parameterizing
the statistical MBU fault model introduced in Sect. 2.5 considering cell area, supply
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voltage and temperature. For each configuration, the fault probabilities for MBU
patterns need to be evaluated to obtain a good estimate of soft error probabilities.
Additionally, the architecture and workload play a key role in the evaluation as not
all soft errors are read from the cache. Here again, architectural-level simulation
can be used to simulate the workload using fault injection into a bit-accurate cache
model.

3.4 Towards Cross-Layer Resiliency for Cyber-Physical
Systems (CPS)

In benchmark-type workloads, silent data corruption in a single program output
commonly leads to a failure, e.g., an encryption algorithm fails if its encrypted data
is corrupted such that it cannot be decrypted. Hence, cross-layer resiliency often
targets reducing the rate of silent data corruption.

For cyber-physical systems (CPS), however, many workloads can tolerate devi-
ations from the fault-free outcome, e.g., in an embedded control algorithm, noise,
e.g., in sensors, is present and considered in the control design. It will treat silent
data corruption as yet another noise source, that can, possibly, be tolerated for
minor deviations from the correct value. Another effect is that CPS workloads
are commonly scheduled as periodic tasks. Often, the outputs of one instance of a
certain task are overwritten by the next instance of a task. Hence, a corruption of the
output of a single task has an effect only for a certain duration in time. Subsequent
task executions might mitigate the effect of silent data corruption before the system
behavior becomes critical. For example for control applications, the sampling rate of
the controller is often higher than demanded, such that a single corrupted actuation
command will not lead to a failure within one control period. Following sensor
readouts will show a deviation from the desired control behavior that is corrected
by the controller in subsequent control periods.

In order to consider the inherent resilience of CPS workloads, a full system
simulation is required. CPS usually form a closed loop with their environment,
e.g., actuation will change the physical system behavior, which determines future
sensor readouts. Extensive fault injection for obtaining a good resiliency evaluation
is enabled by the fast simulation speed of ETISS-ML [38], while RTL level fault
injection would be prohibitively slow to evaluate system behavior over a long
system-level simulation scenario. ETISS-ML can be integrated into a full-system
virtual prototype (VP) that models the system and its physical environment such that
error impacts can be classified considering the inherent resilience of CPS workloads.
For this, the physical behavior is traced to determine the impact of the error. A
major question to be investigated is how this inherent application resilience can be
exploited in an efficient way to reduce cost of protection techniques towards cross-
layer resilience of CPS.
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4 Experimental Results

This section presents results for cross-layer exploration. First, we show results that
support our claim that flip-flop level fault injection is required for soft errors in logic.
Then we provide the results for cross-layer exploration with CLEAR and ETISS-
ML for processors. Finally, we show the results for the cross-layer exploration of
protection techniques for the data cache of a control system for a self-balancing
robot.

4.1 Accuracy of FI at Different Abstraction Levels

For radiation-induced soft errors, flip-flop soft error injection is considered to be
highly accurate. Radiation test results confirm that injection of single bit flips into
flip-flops closely models soft error behaviors in actual systems [4, 43]. On the
other hand, [9] has shown that naïve high-level error injections (e.g., injection
of a single-bit error into an architecture register, software-visible register-file, or
program variable) can be highly inaccurate.

Accurate fault-injection is crucial for cost-effective application of cross-layer
resilience. Inaccurate reliability characterization may lead to over- or underprotec-
tion of the system. Overprotection results in wasted cost (e.g., area, power, energy,
price) and underprotection may result in unmitigated system failures.

In order to observe the impact of soft errors in the data and control path of a
OR1K processor sub-system, the error propagation was tracked to the architectural-
visible states in [38] for four test cases. In total 70k fault injection scenarios were
run on each test case. The injection points were micro-architectural FFs in the RTL
implementation such as pipeline and control path registers, that are not visible at
the architectural level. First all soft errors were identified that had no impact on the
architectural state since they were either being masked or latent. On average these
were 67.51%.

On architectural level, we inject single bit flip fault scenarios as it is unclear what
multi-bit fault scenarios could really happen in HW. These scenarios will cover all
single bit flip soft errors in an architectural state as well as any soft error in a micro-
architectural state that propagates and corrupts just a single bit of an architectural
state. In this case it makes no difference whether we inject the single bit flip in
the micro-architectural state or architectural state. Yet, the distribution could be
different. We now observe the experimental results as given in Table 2: 25.09%
of the micro-architectural faults corrupted a single bit in the architectural state for a
single cycle. These faults would be covered by fault injection at architectural level.
But 7.40% of the soft errors corrupted several bits of the architectural state or lead to
several bit flips in subsequent cycles. Injecting single bit soft errors in architectural
states at architecture- or software level will not cover these micro-architectural fault
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Table 2 Impact of single bit flip in micro-arch FFs on architectural processor state

Test case Masked or latent [%] Single bit corruption [%] Multi-bit corruption [%]

JDCT 66.77 25.68 7.55

AES 66.36 26.13 7.51

IIR 68.88 23.83 7.29

EDGE 68.02 24.73 7.25

Average 67.51 25.09 7.40

Table 3 General-purpose processor core designs studied

Design Description Clk. freq. Error injections Instructions per cycle

InO LEON3 [17] Simple,
in-order
(1250
flip-flops)

2.0 GHz 5.9 million 0.4

OoO IVM [46] Complex,
super-scalar,
out-of-order
(13,819
flip-flops)

600 MHz 3.5 million 1.3

scenarios. Hence, one needs to look into RTL fault injection to obtain accurate
results for these faults.

4.2 Cross-Layer Resilience Exploration with CLEAR

The CLEAR framework is first used to explore a total of 586 cross-layer combina-
tions in the context of general-purpose processor cores. In particular, this extensive
exploration consists of over 9 million flip-flop soft error injections into two diverse
processor core architectures (Table 3): a simple, in-order SPARC LEON3 core
(InO-core) and a complex superscalar out-of-order Alpha IVM core (OoO-core).
Evaluation is performed across 18 application benchmarks from the SPECINT2000
[22] and DARPA PERFECT [2] suites.

Several insights resulted from this extensive exploration: accurate flip-flop level
injection and layout (i.e., physical design) evaluation reveal many individual tech-
niques provide minimal (less than 1.5×) SDC/DUE improvement (contrary to con-
clusions reported in the literature that were derived using inaccurate architecture- or
software-level injection [20, 36]), have high costs, or both. The consequence of this
revelation is that most cross-layer combinations have high cost.

Among the 586 cross-layer combinations explored using CLEAR, a highly
promising approach combines selective circuit-level hardening using LEAP-DICE,
logic parity, and micro-architectural recovery (flush recovery for InO-cores, reorder
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buffer (RoB) recovery for OoO-cores). Thorough error injection using application
benchmarks plays a critical role in selecting the flip-flops protected using these
techniques.

From Table 4, to achieve a 50× SDC improvement, the combination of LEAP-
DICE, logic parity, and micro-architectural recovery provides 1.5× and 1.2× energy
savings for the OoO- and InO-cores, respectively, compared to selective circuit
hardening using LEAP-DICE. This scenario is shown under “bounded latency
recovery.” The relative benefits are consistent across benchmarks and over the range
of SDC/DUE improvements.

If recovery hardware is not needed (i.e., there exist no recovery latency con-
straints and errors can be recovered using an external means once detected), minimal
(<0.2% energy) savings can be achieved when targeting SDC improvement. This
scenario is shown under “unconstrained recovery.” However, without recovery
hardware, DUEs increase since detected errors are now uncorrectable; thus, no DUE
improvement is achievable.

Additional cross-layer combinations spanning circuit, logic, architecture, and
software layers are presented in Table 4. In general, most cross-layer combinations
are not cost-effective. For general-purpose processors, a cross-layer combination of
LEAP-DICE, logic parity, and micro-architectural recovery provides the lowest cost
solution for InO- and OoO-cores for all improvements.

4.3 Resilience Exploration for Custom Accelerators

Utilizing a high-level synthesis (HLS) engine from UIUC [5], 12 accelerator
designs derived from the PolyBench benchmark suite [42] were evaluated with
protection using LEAP-DICE (circuit), logic parity (logic), modulo-3 shadow
datapaths (architecture), EDDI (software), and ABFT (algorithm) techniques. Note
that, software and algorithm techniques are converted into hardware checkers during
high-level synthesis.

Consistent with processor core results, cost-effective resilience solutions for
domain-specific hardware accelerators (Table 5) required the use of circuit-level
techniques (e.g., a 50× SDC improvement was achieved at less than 6% energy cost
using a combination of application-guided selective LEAP-DICE and logic parity).
However, even given the application-constrained context of accelerators, software-
level (and algorithm-level) resilience techniques were unable to provide additional
benefits.
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Table 5 Costs (area/energy) and improvements for resilience in 12 domain-specific accelerators

SDC improvement

Resilience technique(s) 2× 5× 50× 500×
Selective LEAP-DICE 0.9%/3.3% 1.2%/5% 1.7%/7% 2.2%/8.8%

Selective parity checking 1.4%/4.4% 2.2%/6.4% 3.1%/8.7% 3.4%/10.6%

LEAP-DICE + parity 0.6%/2.7% 1%/3.9% 1.3%/5.7% 1.7%/7.4%

Mod-3 + LEAP-DICE + parity 0.7%/3.6% 2.3%/4.7% 2.9%/6.5% 3.3%/8.1%

EDDI + LEAP-DICE + parity 27.6%/33% 27.6%/33.2% 27.6%/33.4% 28.3%/34%

ABFT + LEAP-DICE + parity 11.9%/23.8% 12.2%/24.1% 12.3%/24.2% 12.3%/24.8%

Table 6 Micro-controller (μC) design studied

Design Description Clk. freq. Error injections

μC OpenRISC [40] Simple, in-order (no caches), (1440
flip-flops) with timer and interrupt
controller

100 MHz 500,000

4.4 Resilience Exploration for Fixed-hardware
Micro-Controller

The multi-level simulation was implemented for a fixed-hardware micro-controller
(μC) as shown in Table 6. The RTL implementation uses only the pipeline,
programmable interrupt controller, and timer but no caches in order to have a μC-
type processor similar to ARM’s Cortex M family. We study a full system simulation
setup based on a SystemC VP, which models an μC used in a simplified adaptive
cruise control (ACC) system. Its goal is to maintain a constant distance between
two moving vehicles by controlling the speed of the rear vehicle via the throttle
value of the motor (actuator). The processor of the μC periodically executes a PI
control algorithm. The PI control algorithm’s inputs are sensor values measuring
the distance to the front vehicle and speed of the rear vehicle. Figure 4 shows the
SystemC/TLM model structure of the system with μC, actuator and sensors. The
sensor values are dynamically generated by a physics simulation of the two vehicles
based on the commands sent to the actuator. The system boots and then starts
execution from time zero. We define a simple safety specification to demonstrate
the evaluation. The desired distance between the vehicles is set to 40 m. A fault
is classified to cause a system-level failure when the distance leaves the corridor
between 20 m and 60 m within a given driving scenario. For this scenario, both
vehicles have same speed and a distance of 50 m at time zero.

Figure 5 shows the simulation results for four fault injection (FI) simulations.
The green curve shows a soft error that has no influence on the system outputs,
which results in the same curve visible in the fault-free run. The blue curve shows
the inherent fault tolerance of control algorithms. Even though the actuator output
is corrupted by the soft error, the control algorithm is able to recover from the
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Fig. 4 SystemC VP of control system
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Fig. 5 Distance plotted for different FIs

disturbance. The distance does not leave the specified corridor. Finally, the pink
and red curves show faults leading to a system failure.

In order to test cross-layer resiliency, we apply the following error detection
and handling mechanisms. We concentrate on methods supported by fixed-hardware
μCs, for which we would not be able to modify the logic or circuit implementation.

Watchdog Timer (WDT) The control algorithm has to write a value to the actuator
every 10 ms. If no actuator write is detected, the system is reset by the WDT.

Task Duplication The control task is executed twice and the results are compared
before the actuation.

EDDI EDDI is applied by the compiler to protect the data flow of the control
application.

CFCSS CFCSS is applied by the compiler to protect the control flow of the control
application.

The compiler can only apply EDDI and CFCSS on the software functions of the
PI control task, not on software functions coming from the pre-compiled OR1K C-
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Table 7 Comparison of resilience techniques for μC with watchdog timer (WDT) and external
recovery by system reset

Resilience WDT SW SDC Failure rate Exec. time
technique(s) Det. rate Det. rate rate due to SDC impact

WDT 8.562% 0% 0.674% 0.061% 0%

Task duplic.+WDT 11.429% 1.284% 0.026% 0.002% 146.21%

EDDI+WDT 11.926% 1.706% 0.014% 0.002% 155.86%

CFCSS+WDT 8.929% 2.028% 0.542% 0.047% 0.249%

EDDI+CFCSS+WDT 13.370% 2.169% 0.017% 0.001% 156.857%

libraries. When task duplication, EDDI or CFCSS detect a fault, the SW triggers a
reset.

Each method comes with a certain overhead and improvement in SDC rate as
shown in Table 7. The column “WDT Det. Rate” shows the percentage of faults
detected by the watchdog timer. The column “SW Det Rate” shows the percentage
of faults detected by EDDI, CFCSS and the comparison for Task Duplication
(depending on which protection is used). The SDC rate shows the percentage of
faults that lead to a corrupt actuation value without being detected by a protection
technique. Finally, the failure rate due to SDC shows the percentage of SDCs that
lead to a failure of the control algorithm. Exec. Time Impact shows the overhead due
to software redundancy inserted by the protection mechanisms. A WDT requires
additional area, which is usually available on modern μCs, hence, this is ignored.

The following conclusions can be derived from the results: overall, the WDT
detection rate is very high as it detects most DUEs, that result in incorrect timing
of the application. EDDI and task duplication increases the execution time of the
control task significantly at the cost of idle time of the processor. Yet, they also
lead to significant SDC reduction. EDDI is slightly better, as it works on the
intermediate representation (IR) and has a smaller vulnerability window. CFCSS
also increases the software detection rate. Upon closer inspection, CFCSS does not
lead to a significant reduction in SDC rate for both cases with and without EDDI.
The application has a simple control flow, hence, control flow errors are rare. Most
of the errors detected by CFCSS are due to errors during execution of the CFCSS
check codes themselves. Hence, they would not lead to SDC of the functional code,
yet, many errors are reported.

4.5 Resilience Exploration for SRAM Cache of Self-Balancing
Robot

The cross-layer exploration was applied to a self-balancing robot system in [28]
as shown in Fig. 6. The results are shown in Fig. 7. The figure shows the results
for nominal SRAM design (N), increased supply voltage (V), increased area (A)
and parity protection (P). The blue bar shows the rate of silent data corruption
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Fig. 7 Resilience exploration for cache of self-balancing robot

caused when a faulty cache line is read. The red bar shows those cases of silent data
corruption that significantly affect the system behavior, which we classify as failure.
The difference between the blue and red bar denotes the inherent resilience of the
system. For hardening the system, increasing the supply voltage (V) decreases the
silent data corruption rate (blue) and failure rate (red) but also increases the required
power per written cache bit (green). Increasing the area (A) decreases the silent data
corruption rate and failure rate more effectively compared to increasing the supply
voltage but at the cost of a larger increase in power. In contrast, the parity protection
(P) behaves differently to the hardening solutions. While parity also decreases the
rate of silent data corruption (blue), we see that those remaining errors that are read
from the cache (caused by an even number of upsets in the cache line) relatively
often influence the system behavior (red), which is classified as failure. In the case
of 1-bit parity protection the system is effectively protected from an odd number of
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errors in each cache line. Yet, compared to the nominal case the failure probability
of the system is only slightly reduced. The even number of upsets (mostly two bit
upsets) are causing more often a failure than the detected single bit upsets. Upsets
with three and more bits are not as relevant as they are very rare events. The key
insight is that decreasing silent data corruptions thus does not necessarily result in a
similar improvement in failure rate when considering the inherent resilience of the
CPS application.

5 Conclusions

This chapter covered the fast evaluation of resilience against radiation-induced
soft errors with multi-level/mixed-mode fault injection approaches as well as the
systematic exploration of protection techniques that collaborate in a cross-layer
fashion across the system stack. The methods were shown for case studies on custom
processors, accelerators, third-party micro-controllers, and an SRAM-based cache.

Although this chapter has focused on radiation-induced soft errors, our cross-
layer methodology and framework are equally effective at protecting against
additional error sources such as supply voltage variations, early-life failures, circuit
aging, and their combinations. For example, [6] demonstrates that cost-effective
protection against supply voltage variation is achieved using Critical Path Monitor
(CPM) circuit failure prediction and instruction throttling at 2.5% energy cost for a
64 in-order core design.

For error sources (such as early-life failures and circuit aging) that result from
system degradation over longer duration of time (days to years), periodic on-line
self-test and diagnostic are particularly effective at generating signatures to observe
such degradation [27, 32, 34]. Since many of the resilience techniques considered in
this chapter operate independently of the underlying error source, our conclusions
regarding these particular techniques are broadly applicable.

Finally, an open question that remains is how to efficiently exploit the inherent
resilience of CPS workloads. Full system simulation can help in a fast evaluation,
but it remains to be seen in future research how the cost of resilience can be reduced
by fully exploiting this potential in a cross-layer fashion.
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Online Test Strategies and Optimizations
for Reliable Reconfigurable Architectures

Lars Bauer, Hongyan Zhang, Michael A. Kochte, Eric Schneider,
Hans-Joachim Wunderlich, and Jörg Henkel

1 Introduction and Motivation

Runtime/reconfigurable architectures based on Field-Programmable Gate Arrays
(FPGAs) are a promising augment to conventional processor architectures such as
Central Processing Units (CPUs) and Graphic Processing Units (GPUs). Since the
reconfigurable parts are typically manufactured in the latest technology, they may
suffer from aging and environmentally induced dependability threats. In this chapter,
strategic online test methods for dependable runtime-reconfigurable architectures
as well as cross-layer optimizations for high reliability and lifetime are developed.
Firstly, two orthogonal online tests are proposed that ensure reliable configuration
of the reconfigurable fabric and aid fault detection. Secondly, a novel design method
called module diversification is presented that enables self-repair of the system
in case of faults caused by degradation effects as well as single-event upsets in
the configuration. Thirdly, a novel stress-aware placement method is proposed that
aims for slowing down system degradation by aging effects. The combined methods
ensure reliable operation across architectural and gate level and allow to prolong the
lifetime of dependable runtime-reconfigurable architectures.

The dependable operation of VLSI circuits is not only threatened by test escapes,
intermittent or transient errors, but also by emerging hardware defects due to aging
[11–13]. In nano-scale CMOS circuits, aging is related to stress which is defined
as the condition under which a circuit structure experiences electrical and physical
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Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
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Fig. 2 Threshold voltage increase due to HCI-related stress (based on [22])

degradations. Two types of stress are distinguished: static stress and dynamic stress.
Dynamic stress is typically characterized by the toggle rate of a transistor during
which high currents flow between drain and source. A transistor is under static
stress when an electric field is exerted across its gate oxide to induce a conducting
channel. The stress is characterized by the duty cycle, i.e., the fraction of operation
time the transistor is conducting. Dynamic stress leads to aging effects like Hot
Carrier Injection (HCI), while static stress can lead to Bias Temperature Instability
(BTI). Both are dominating aging mechanisms in nano-CMOS technologies [8, 16]
and cause shifts in the threshold voltage �Vth of a transistor, which ultimately
impacts the device performance over time. In this chapter, strategic online test
methods for dependable runtime-reconfigurable architectures as well as cross-layer
optimizations for high reliability and lifetime are developed (see Fig. 1).

The Mean Time to Failure (MTTF) of a transistor is defined as the time until
its threshold voltage exceeds a certain critical value at which the transistor cannot
deliver the required performance anymore. As shown in Fig. 2, the MTTF can be
greatly increased if the transistor stress and consequently the threshold voltage shift
are reduced.

Different aging models exist [2, 8], which indicate that both dynamic and static
stress are generally additive through accumulation of the degradation effects. As a
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result, this additive stress accumulation causes a monotonic increase in the transistor
degradation over long terms. Although BTI degradation may experience a recovery
effect, the recovery requires complex conditions or long relaxation periods [10] and
will thus hardly affect the additive property. The monotonic and additive properties
allow to consider stress during runtime (e.g., for resource management) with limited
computational resources.

1.1 Application Model

In this work, a general application model is considered, as shown in Fig. 3. An
application (Fig. 3a) consists of a mixture of normal operations, e.g., memory
allocation and data preparation, and one or multiple computationally intensive parts,
the so-called kernels. A kernel (Fig. 3b) corresponds to an outer loop that iterates
through the whole data set and that contains one or multiple inner loops that work
on small data parts, specified by the current iteration of the outer loop. For example,
in a stencil operation of an image, the outer loop iterates over each output pixel
and the inner loop computes the output value based on multiple neighboring input
pixel values. Such an inner loop is a good candidate to be implemented as a Special
Instruction (SI) that is composed of one or multiple accelerators of potentially
different types. An SI (Fig. 3c) is represented by a data-flow graph (DFG) where
each node corresponds to an accelerator and the edges correspond to data-flow
between the accelerators [4]. Before the execution of an SI, all required accelerators
need to be configured into the reconfigurable fabric, or otherwise the SI has to be
emulated in software on the GPP. A sophisticated H.264 video encoder is the main
application used for evaluation. The encoder consists of three kernels that require
different SIs, implemented by nine types of accelerators [6].

Special Instruc�on (SI)Applica�on

Accelerator reconfig.
Kernel 1

Accelerator reconfig.
kernel 2

Normal opera�ons

Normal opera�ons

Special Instruc�on 1

Normal opera�ons

Special Instruc�on 2

Normal opera�ons

Normal opera�ons Normal opera�ons

Accelerated kernel

Control 
step 1

Control 
step 2

Control 
step 3

Accelerators: 
(a) (b) (c)

Fig. 3 This generic application model considers applications that consist of one or multiple
kernels that may use Special Instructions (SIs) that are implemented by accelerators (based on
[23])
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1.2 Runtime-Reconfigurable Architectures

Runtime reconfiguration enables dynamic hardware customization to adapt to
changing application requirements or environmental constraints, which maximizes
performance at very low energy consumption. A reconfigurable architecture consists
of a general-purpose processor and a reconfigurable fabric, partitioned into multiple
reconfigurable regions (used to implement application-specific accelerators on-
demand) that are interconnected via a communication infrastructure.

This chapter presents Online Test Strategies for Reliable Reconfigurable Archi-
tectures (OTERA), which targets FPGA-based fine-grained reconfigurable architec-
tures as shown in Fig. 4. While transient faults due to single-event upsets are also
addressed by OTERA (more details in [7]), this chapter focuses on aging-related
challenges. To support dependable operation by online testing, stress balancing,
and resource management for reliability and graceful degradation, a reconfigurable
baseline architecture is extended by the following components:

• a test manager including a test-pattern generator (TPG) and an output response
analyzer (ORA) to perform structural tests on the reconfigurable fabric and
functional tests on the reconfigured accelerators;

• a workload monitor to track when a region is reconfigured and how often the
currently configured accelerator is executed, which is used for stress estimation;

• a configuration memory scrubber to detect and correct errors in the configuration
memory by periodical read-back and check of the configuration;

• a runtime system for dynamic dependability management by environmental
monitoring, online test, reliability management, and aging mitigation.

The architecture is implemented using a LEON processor [9] and a parameteriz-
able number of reconfigurable regions. A SystemC-based cycle-accurate simulator
is used to evaluate the architecture and its runtime system. A hardware prototype is
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developed on a Xilinx Virtex-5 FPGA and operates at a clock frequency of 100 MHz
with a reconfiguration bandwidth of 50 MB/s.

FPGA hardware is composed of a two-dimensional array of reconfigurable
primitive logic elements and routing structures that logic functions are mapped
to. The two essential components are Configurable Logic Blocks (CLBs) and
Programmable Switching Matrices (PSMs). The CLBs are the basic reconfigurable
resources for implementing combinatorial and sequential logic functions. The
interconnection between the components is configured using the PSMs. The logic
function in a reconfigurable region is determined by configuration bits, called its
bitstream, stored in SRAM-based configuration memory. Modern FPGAs support
partial reconfiguration and allow to change the logic function without interrupting
the operation in other parts of the chip [19].

An FPGA-based reconfigurable fabric, manufactured in latest technology nodes
(e.g., 16 nm for Xilinx’ UltraScale+ family), may suffer from degradation due
to aging [10, 18]. Due to the increasing susceptibility of ever-shrinking nano-
CMOS devices, these effects cannot be ignored anymore [11–13]. The resilience
of the reconfigurable fabric is essential to the dependability of reconfigurable
architectures, since most of the application’s computations are offloaded to the
fabric. The dependable operation of a hardware accelerator in the reconfigurable
fabric relies on both the structural integrity of the fabric and the accelerator’s
functional correctness. While structural integrity of the reconfigurable fabric is a
prerequisite for functional correctness of accelerators, the latter requires the correct
completion of the reconfiguration process and correctness of the configuration data.
However, the functionality of accelerators can be impacted during operation, for
instance by SEUs that corrupt configuration data [7] as well as degradation of
the hardware. To increase the dependability of the reconfigurable architecture, the
structural integrity and functional correctness need to be addressed at different
layers.

2 Fault Detection Through Strategic Online Testing

As latent defects and aging threaten the structural integrity of nano-CMOS devices,
conventional manufacturing and burn-in tests are no longer sufficient to guar-
antee dependable operation over the whole lifetime. Therefore, online tests are
required to check the system functionality. This task is particularly challenging
for runtime-reconfigurable architectures, since the hardware organization changes
during runtime as part of the normal operation [4]. This chapter presents two
complementing types of online tests that are scheduled concurrently by the runtime
system: pre-configuration online tests (PRET) and post-configuration online tests
(PORT).
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2.1 Generation and Runtime Scheduling of Online Tests

PRET is designed to exhaustively test the underlying hardware structure in the
reconfigurable fabric (e.g., logic resources in CLBs) periodically or on-demand. For
PRET, an array-based structural test approach is used to generate test configurations
for the exhaustive test of all logic resources in a reconfigurable region [1, 5]. Addi-
tional PRET test configurations are generated to target the application-dependent
interconnects [6].

Since errors may also occur during the loading of bitstreams (e.g., due to faults
in the configuration logic or transient events like SEUs), the configured function
of the targeted region may be wrong or the configuration in other parts of the
reconfigurable fabric may be adversely altered. For this reason, PORT is designed
to perform at-speed functional tests on accelerators after their instantiation to ensure
that they were configured correctly. At runtime, PORT also periodically checks the
accelerators for malfunctions due to emergent permanent faults or soft errors in
the configuration memory. An Automatic Test Pattern Generation (ATPG) tool is
used to generate accelerator-specific test patterns to target the LUTs, combinational
functions, and sequential elements in CLBs, as well as interconnects. The stuck-
at fault model is used for components for which sufficient structural information
is available to derive the faults and for the interconnects. For the remaining
components, structural and cell faults are targeted during test generation resulting
in a hybrid fault model [6].

Figure 5 shows the proposed online test flow for a reconfigurable fabric with three
regions. In the first step (Fig. 5a), the runtime system decides that an accelerator
shall be reconfigured into a particular region, which triggers the demand to test the
hardware structures in that region before the actual configuration of accelerators
(the so-called on-demand PRET). To exhaustively test all reconfigurable resources
in the region, multiple test configurations (TCs) are required. The runtime system
can choose to execute PRET incrementally to reduce the delay, applying only a
subset of TCs (possibly none) prior to an accelerator reconfiguration. In practice,
on-demand PRET-TCs are only scheduled after a certain number of accelerator
configurations (ACs) have been configured. To reduce the impact on the application
performance due to unavailable regions, PRET is only executed at times when the
system needs to be reconfigured anyway. The runtime system tracks which TCs were
applied to a region in the past and how much time passed since the last exhaustive
PRET. Depending on this history, it activates PRET prior to an AC, reconfigures
the selected TCs into the region, and uses TPG and ORA of the Test Manager to
exercise the region (Fig. 5b).

In addition to on-demand PRETs, the runtime system also schedules periodic
PRETs to ensure that seldom-reconfigured regions are properly tested. Note that
PRET also needs to be executed regularly for regions that the application only
reconfigures once and then never again (e.g., if the application only consists of
one kernel; see Sect. 1.1). The reason is that PORT—despite its generally high
fault coverage (see [6])—cannot always identify all faults. For instance, when an
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accelerator contains internal state, it is not always possible to apply an input value
that propagates a possibly faulty value to an observable output. The periodic PRET
is implemented using a timer interrupt and a handler that consists of two phases:
(1) triggering the reconfiguration of a TC for a particular region and (2) executing
PRET after the TC is reconfigured.

If no structural fault is found by PRET, the runtime system reconfigures the
desired accelerator into the region (Fig. 5c). Before the accelerator is used by
the application, the runtime system triggers an on-demand PORT (Fig. 5d) to test
whether the reconfiguration process has completed without error. Additionally,
accelerators instantiated in other regions are tested as well to check that they
were not adversely affected by the reconfiguration. As PORT does not require
any reconfiguration of TCs, it operates significantly faster than PRET and is also
scheduled periodically during normal operation.

2.2 Online Test Integration

The test manager, TPG, and ORA are integrated into the reconfigurable architecture
and coupled to the interconnect for the reconfigurable fabric such that commu-
nication channels between the regions and the test manager can be established.
PRET and PORT are implemented as dedicated test-SI. In the base architecture,
all SIs implicitly configure the interconnect infrastructure for the required data-flow
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among accelerators and the system. The test-SIs reuse this mechanism to establish
the connections between the test manager and the regions under test.

When the runtime system initiates a test-SI, the test parameters such as the target
region or selection of test patterns are sent as the SI input data from the register file
of the processor to the test manager. The test manager then generates the patterns by
the TPG or sends stored patterns to the regions. While the PRET responses are sent
back to the test manager for comparison, the PORT responses are compacted locally
in space and time using a 32-bit multiple input signature register (MISR). The MISR
is integrated into the interconnect infrastructure such that the outputs and the bus
interface of a region are tested as well. After the test, the locally stored signatures are
transferred to the test manager and compared with the expected signatures that are
specific for each accelerator. At the end of PRET, the pass/fail information is written
back to the register file of the processor. On-demand PORT is executed directly after
an accelerator configuration to assure that the reconfiguration process completed
without error and that the configured accelerator delivers the expected functionality.
As PORT tests all configured accelerators in one test session, errors in the other
accelerators, e.g., due to address decoder faults, are detected as well.

2.3 Experimental Evaluation

The effectiveness of PRET and PORT as well as the impact on the system
performance is evaluated for the targeted platform. A test session consists of
multiple test configurations (TCs) as shown in Table 1. In total nine TCs are required
to test all logic primitives in the CLBs [1], and another nine TCs are required to test
the interconnects of the accelerators of the H.264 application [6]. Each TC tests
a subset of the logic primitives in the CLBs of a region or a set of interconnects
used by the accelerator to be configured (Column 2). Columns 3 and 4 give the area
overhead of PRET and the size of the generated partial bitstreams. The total area
overhead introduced by PRET for all TCs is 17 CLBs. That is a one-time overhead
to implement the test-pattern generator (TPG) and output response analyzer (ORA)
for PRET, independent of which reconfigurable region is to be tested, whereas the
other numbers in the table are per reconfigurable region. Note that the configuration
time with tens of thousands of cycles dominates the actual application of the test
patterns (Column 6).

The PRET overhead for the interconnect TCs is not applicable as the determin-
istic patterns are not generated by a TPG but stored similar to PORT patterns. The
responses are compacted in the MISR introduced for PORT. In total 3780 bytes
are required to store the test patterns of all interconnect TCs together with their
signatures. The interconnect test reaches a fault coverage of up to 100% with the
lowest being 98.28% [6].

The application performance loss introduced by PRET depends on the test
frequency and number of reconfigurable regions. In this experiment, architectures
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Table 1 Test configurations for CLBs and interconnects for reconfigurable regions of 4 × 20
CLBs (based on [6])

PRET over- Bitstream Freq. Test length

TC Tested primitives head [CLBs] size [KB] [MHz] [Patterns]

1 LUT conf. as XOR, connected to
FF

2 24.0 207 64

2 LUT conf. as XNOR, connected to
FF

2 24.0 207 64

3 Carry MUX, interleaved with
MUX and latch

1 28.6 168 6

4 Carry MUX, interleaved with
MUX and latch

1 26.1 154 6

5 Carry XOR, interleaved with MUX
and FF

1 28.0 168 6

6 Carry XOR, interleaved with MUX
and FF

1 28.2 154 6

7 Carry-in/-out with multiplexed
scan chain

1 27.1 183 6

8 LUT conf. as SR with slice MUX 1 22.9 157 6

9 LUT conf. as RAM with slice
output

7 22.3 225 320

10–18 Interconnect and PIPs of 9
accelerators

n.a. 29.6 78.8–191.9 13–123

with 5 and up to 14 reconfigurable regions are considered. The PRET handler is
triggered every 1 ms and performs PRET if a region has not been tested for 500 ms.
The observed test latencies until a region is completely tested ranged from 3.8 to
8.1 s, i.e., emergent faults do not remain undetected in the system for longer than 1.9
to 4.05 s on average. Table 2 reports the PORT performance impact and test latency.
The upper part of the table shows the performance impact for PORT frequencies
from 143 to 1000 Hz, i.e., test intervals from 1 to 7 ms. For each PORT frequency,
the table shows the minimum and maximum performance loss of ten reconfigurable
systems with different number of regions (5–14). The performance overhead due to
PORT is very low (between 0.51% and 3.73%) and scales well with higher PORT
frequencies. The observed worst case test latency, which corresponds to the longest
untested time period of a region, is shown in the lower part of Table 2.

With PRET and PORT both enabled, the system is able to defend the configured
accelerators against structural faults induced by aging effects or latent faults and
transient events such as radiation [6]. For a PORT frequency of less than 100 Hz,
the performance loss was dominated by the configuration frequency. After that
point, the PORT frequency dominates the performance loss. The highest observed
performance loss of only 4.4% occurs for a PORT frequency of 1000 Hz and a
configuration frequency of 41 Hz.
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Table 2 Performance loss and worst case test latency under PORT (based on [6])

PORT application frequency [Hz]

143 167 200 250 333 500 1000

Performance loss min.a [%] 0.51 0.59 0.72 0.89 1.20 1.81 3.68

max.a [%] 0.56 0.63 0.75 0.92 1.23 1.85 3.73

Worst case test latencyb min.a [ms] 7.0 6.0 5.0 4.1 3.3 2.3 1.7

max.a [ms] 7.8 6.8 5.8 4.8 3.8 2.8 1.8
aSummarizing ten reconfigurable systems with 5–14 regions
bCorresponds to the longest time period in the whole runtime in which a configured accelerator
remains untested

3 Self-Repair by Module Diversification

Using PRET and PORT we can detect faults in the reconfigurable fabric. We now
present a design method called module diversification [21] that generates a set of
diversified configurations for each module/accelerator to tolerate any single-CLB
fault and part of multi-CLB faults. The diversified configurations of an accelerator
provide all the same functionality, but they vary in their CLB usage. They are
reconfigured into the region at runtime without performance degradation. If a faulty
CLB is detected, it is isolated from the system (i.e., a configuration is chosen that
does not use it) to avoid any errors.

3.1 Diversified Configurations

A module defines the logic functions to be implemented in a region which consists
of CLBs that are arranged regularly in a 2-dimensional array in the FPGA fabric.
The CLB usage of a configuration is described by a configuration matrix as shown
in Eq. (1) whose dimensions X × Y match the width X and height Y of a region
in CLBs. If a configuration uses a certain CLB, the corresponding element in
the matrix is 1, otherwise 0. For each module, a set C = {A1, · · · , Aw} of
configurations matrices with different CLB usage is generated. To be able to tolerate
any single-CLB fault, this set of configurations must satisfy the completeness
condition (Eq. (2)), which ensures that for any CLB in a region at least one
diversified configuration Ai exists where the CLB is not used. Given that all
diversified configurations implemented in a X × Y region occupy the same amount
U(< X · Y ) of CLBs (with at least one free CLB) a minimum number of wmin

configurations (Eq. (3)) is required for the completeness condition [21].

A =
⎡
⎣1 1 1

1 1 0
0 0 0

⎤
⎦ (1)
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∀x, y, 1 ≤ x ≤ X, 1 ≤ y ≤ Y : ∃Ai ∈ C with [Ai]x,y = 0 (2)

wmin :=
⌈

X·Y
X·Y−U

⌉
(3)

Two configurations Ai , Aj ∈ C are said to be maximally diversified if their
difference in the CLB usage is maximized. The max diversification condition [21]
states that for every configuration Ai ∈ C there exists a maximally diversified
configuration Aj ∈ C with a common number of CLBs:

∀i, 1 ≤ i ≤ wmin : ∃Aj ∈ C, j �= i such that

∑
x,y

(
[Ai]xy ·

[
Aj
]
xy

)
=
{

2U −X · Y if
(
U > 1

2X · Y )
0 else.

(4)

3.2 Generation Algorithm

Algorithm 1 allows to generate maximally diversified configurations that satisfy the
completeness condition [21]. Starting from an initial configuration A1 (Line 1) of a
module, it incrementally generates diversified versions. A score matrix G stores

Algorithm 1 Generation of diversified configurations C

1. C := {A1} // A1 is the initial configuration (X × Y )

2. G := A1 // Score matrix G stores swapping priority of CLBs (X × Y )

3. Anew := A1
4. while |C| �= desired number of config. ∧ |C| �= (XY

U

)
do

5. zero_elem_list := {(x, y) | [Anew]xy = 0} // unused CLBs
6. cand_list := {(x, y) | [Anew]xy = 1} // candidate list
7. sort cand_list in descending order according to the score in Gxy

8. for all (x, y) in zero_elem_list do
9. swap_candidates := {(p, q) | (p, q) ∈ cand_list and Gpq = Gcand_list[0]} //

all CLBs with the highest score
10. farthest_swap_candidate := (p, q) ∈ swap_candidates with max.

Manhattan distance between (x, y) and (p, q)
11. swap([Anew]xy, [Anew]farthest_swap_candidate)
12. cand_list.pop(farthest_swap_candidate)
13. if cand_list = ∅ then
14. break
15. end if
16. end for
17. while Anew ∈ C do
18. swap a random zero- with random one-element in Anew
19. end while
20. G := G+ Anew // update CLB score
21. C := C ∪ {Anew}
22. end while



288 L. Bauer et al.

for each CLB the number of available diversified configurations in C that use
the respective CLB resources. The new configuration matrix Anew is initialized
by A1 and modified in the inner loop (Lines 8–16) by swapping zero- and
one-elements. The loop iterates over each element in Anew and swaps all zero-
elements with one-elements in an order given by the score matrix (Line 7). If a
CLB has a higher score, it is used more often in the diversified configurations.
Thus the corresponding one-element in Anew will be swapped first. If CLBs have
the same score, the distance-wise farthest one from the current zero-element is
swapped first (Lines 9–11) so that the used CLBs are located near each other in
the resulting configuration. The first wmin generated configurations correspond to
the minimal set of configurations [21]. More configurations can be generated to
achieve higher reliability or more alternatives during stress balancing (see Sect. 4).
Random swapping in Line 18 allows to shuffle CLBs with different stress profiles.
The algorithm terminates when either the desired number of configurations or all
possible configurations have been generated.

3.3 Experimental Evaluation

To evaluate the reliability improvement and timing costs, the presented method is
applied to a set of functional modules from the MCNC benchmark suite [20] and
OpenCores.1 The dimensions of the reconfigurable regions were chosen as 20 CLBs
in height (80 CLBs for large modules) and 3–13 CLBs in width, which provides
different degrees of CLB redundancy. For each module and region size the minimal
set of configurations is generated using the proposed module diversification method.
Since the design method applies additional constraints to prohibit certain CLB
placements (PROHIBIT commands in Xilinx tools), additional routing effort is
introduced that can affect the maximum clock frequency. To assess the impact on the
system performance, the maximum frequency of diversified modules was compared
to the original configuration. Initially, the clock frequencies of the modules ranged
from 122.4 MHz (apex2) to 150.8 MHz (pdc). Experiments show that the timing
penalty of the diversified configurations ranges from 0.04% (aes_core) to 9.7%
(misex3). While the maximal frequency is given by the slowest configuration of
a module, the original implementation also belongs to the configuration set and can
be used when full performance is required. Also, if the system frequency is lower
than the maximal frequency of the diversified modules, there are no timing penalties
at all. Thus, module diversification is a promising approach to obtain fault tolerance
without additional area overhead and little to no cost in system performance.

The reliability of an entity is the probability that the entity can operate without
failure over a time period t . Without any fault-tolerance techniques applied, the
overall reliability of a module with U CLBs depends on the reliability RCLB(t) of
each individual CLB (Eq. (5)). With module diversification, the reliability of the

1https://www.opencores.org.

https://www.opencores.org
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module changes, as shown in Eq. (6). The first term states the probability that all
CLBs are fault free. The second term aggregates all possible scenarios of multiple
fault occurrences until all CLBs become faulty. The fault coverage Cf ∈ [0, 1] is
the fraction of f -CLB faults which are detected by an online test or concurrent error
detection scheme such that reconfiguration with a diversified configuration allows
to continue the operation. The fraction of f -CLB faults which can be tolerated with
the set of available configurations is denoted by αf ∈ [0, 1].

RNo_FT (t) = (RCLB (t))U (5)

RDiv (t) = RCLB (t)XY +
XY∑
f=1

Cf αf

(
XY

f

)
(1−RCLB(t))f RCLB(t)(XY−f )

Probability that f -fold CLB failures can be tolerated

(6)

We use the module apex4 for the reliability analysis. Without fault-tolerance
measures, the module has a very low reliability (≈0.91). Figure 6 shows the
module reliability for a varying number of configurations and region sizes with
CLB reliability RCLB(t) = 0.999 and Cf = 1.0. The region size varies from
20 × 6 to 20 × 9 CLBs and corresponds to CLB redundancies from 22.4% to
111.8%. Larger region sizes reduce the overall module reliability since they have
increased probability of a faulty CLB. By using diversified configurations, the
module reliability increases dramatically. As shown, the tolerance of f -CLB faults
rises with increasing number of configurations and very high module reliability is
achieved (>0.999).
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Fig. 7 Reliability improvement factor after module diversification (based on [21])

To estimate the effectiveness of the module diversification, the reliability
improvement factor (RIF) is used [15]. The RIF is the ratio of the failure probability
of the original system and the failure probability of the fault tolerant system using
diversified module configurations (Eq. (7)). Figure 7 plots the RIF for the five
investigated modules and CLB reliabilities ranging from 0.9990 to 0.9999. As
shown, the proposed design method achieves reliability improvement factors of up
to 330×.

RIF := 1− RNo FT

1− RDiv

(7)

4 Prolonging Lifetime via Stress Balancing

In addition to reacting on detected faulty CLBs (e.g., by using diversified modules as
in Sect. 3), it is of crucial importance to proactively delay the occurrence of perma-
nent faults (or increasing transistor switching delay) by aging mitigation via stress
balancing. Different aging mechanisms have been reported for the current genera-
tion of CMOS designs, as discussed in Sect. 1. The main causes of these effects are
environmental and electrical stress. Stress can be induced in different ways, e.g.,
through the presence of strong electrical fields or high current density [17, 18].
We propose the novel STRess-Aware Placement method STRAP that reduces
the peak stress by aging mitigation. It combines complex offline optimizations
at synthesis time with situation-dependent adaptation at runtime to optimize the
intra- and inter-region stress distribution simultaneously. At runtime, STRAP places
accelerators to different reconfigurable regions (i.e., it decides to which region they
shall be reconfigured) while considering the induced intra- and inter-region stress
distribution simultaneously. At synthesis time, STRAP diversifies stress during
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place-and-route by preventing overlapping of high stress CLBs from different
accelerators, which further improves the intra-region stress distribution at runtime.

4.1 Overview of the Stress-Aware Placement Method STRAP

The MTTF of a system is constrained by the component with the highest stress
[17]. In order to prolong the MTTF of a reconfigurable fabric, stress accumulation
on individual resources need to be avoid to reduce the peak stress. Figure 8a shows
a typical reconfigurable fabric with 8 reconfigurable regions and 4 × 20 CLBs per
region. The figure visualizes the distribution of HCI stress after running an H.264
video encoder. Higher HCI stress corresponds to more toggles per second of a
transistor (see Sect. 1). For each CLB, the highest toggle rate of any transistor is
identified and plotted in a color-scale from 0 (low stress, bright gray) to 20 million
toggles per second (high stress, dark red). It is noticeable that several CLBs are
not used (e.g., most parts of region 5), whereas some CLBs in region 1 contain
transistors that are highly stressed. The latter represent stress hotspots where high
stress accumulates in some of the components in the fabric which have a higher
chance to fail much earlier than others, hence reducing the MTTF of the system.

The basic idea of STRAP is to place accelerators such that the maximal stress
is minimized. Our method abstracts stress to the granularity of CLBs, whereas the
evaluation of our method in Sect. 4.6 considers stress at transistor granularity. If the
stress from a stress hotspot can be distributed to less stressed CLBs (like in region 5
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Fig. 8 Transistor stress distribution in a reconf. fabric with eight regions; each region consists of
4 × 20 CLBs with 8 LUTs each (same setup as for evaluation); the color of a CLB corresponds
to the highest toggle rate of any of its transistors; the symbol “filled triangle right” on the scale
denotes the maximum stress over all regions (based on [22]). (a) Conventional execution without
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in Fig. 8a), then the maximum stress in the reconfigurable regions is reduced (like
in Fig. 8b), leading to increased MTTF.

Figure 9 provides an overview of the stress-aware placement method STRAP,
showing the synthesis time techniques, the runtime techniques, and how they
interact with the hardware architecture of a reconfigurable system. For logic
placement at synthesis time, the challenge is to place-and-route accelerators in a way
that supports stress balancing at runtime, but without having runtime information.
STRAP first performs an offline application profiling of each application kernel to
obtain estimates on (1) how often accelerators will be executed relative to each
other and (2) how long each accelerator executes to finish its task. This information
is used to steer runtime accelerator placement (Sect. 4.3) and synthesis time logic
placement (Sect. 4.4).

Based on the accelerator configuration after place-and-route, the stress estimation
process in Fig. 9 analyzes the signal activities in all CLBs used by the accelerator
to obtain the information how much stress it induces to a reconfigurable region.
Accelerator execution and stress profiles are stored together with the accelerator
bitstreams in main memory for runtime decision making.

At runtime, STRAP decides into which reconfigurable region an accelerator shall
be reconfigured, whenever the application demands different accelerators. It per-
forms online monitoring of each region to track when the region was reconfigured
last and how often the currently reconfigured accelerator was executed. Whenever
a region is reconfigured, the execution counter and reconfiguration timestamp are
read and reset. Together with the accelerator stress profile created at synthesis
time, STRAP then calculates the exact stress state for all CLBs of the region. This
information is used to decide the runtime accelerator placement.
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4.2 Representation of Stress

Stress Granularity In order to handle the transistor stress in an algorithmic way,
it needs to be represented compactly to allow an efficient runtime computation for
the stress states of regions and the placement decision making. The transistors of
a reconfigurable region are stressed by the reconfigured accelerator in a way that
is determined by its logic functionality and input signal patterns. As the number of
transistors in a region may be huge, the stress experienced by individual transistors
is lumped to CLB granularity for the stress-aware placement method. CLB stress is
defined as the sum of the stress experienced by all transistors in a CLB. With this
definition, CLB stress preserves the additive property of transistor stress, i.e., the
total stress a CLB experienced from different accelerators is the sum of the induced
stress from individual accelerators.

Stress Accumulation With the established stress properties (see Sect. 1), the stress
in the reconfigurable fabric can be described in a formal way. The stress state of
a reconfigurable region (as it is visualized in Fig. 8) is denoted as matrix S, where
each entry represents the stress experienced by the corresponding CLB in the region.
The stress that a particular accelerator induces per clock cycle is obtained from
offline stress estimation and called unit stress, denoted by a matrix of the same
size as S. In general, the stress increase due to the work done by an accelerator
is shown in Eq. (8). Matrices sunit

exec and sunit
idle denote the unit stress induced by the

accelerator during execution or idle time and Sect. 4.6 explains how we use aging
models to obtain these values by power/temperature analysis of placed-and-routed
accelerators. Scalars τexec and τidle denote the number of clock cycles when the
accelerator is executing or idle.

s := τexecsunit
exec + τidlesunit

idle (8)

The values for τexec and τidle are obtained from offline application profiling to
construct the stress matrices (Eq. (8)) for every accelerator. The runtime system
uses them to determine how much stress an accelerator would induce to a region
before actually placing it. It also uses online monitoring (see Sect. 4.1) that provides
the actual number of accelerator executions and idle times for each region after
a computational kernel finished execution. This allows to keep track of the actual
stress that a region experienced, which is the starting point for the next placement
decision.

4.3 Runtime Accelerator Placement

The reconfigurable fabric consists of N equally sized rectangular regions. During
runtime, the application requests to configure M ≤ N accelerators to speed up
its computational kernels. The runtime system has to decide to which regions the
M accelerators shall be configured, by first deciding which N −M regions shall
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not be reconfigured, e.g., by using a least recently used replacement policy. The
decision to which of the remaining regions an accelerator is placed does not affect
the application performance, but it affects the stress applied to the regions.

Each region contains X × Y CLBs with an (x, y) coordinate. The stress
experienced so far by the CLBs in region k is denoted as [Sk]xy and the stress that
will be induced by an accelerator j is denoted as [sj]xy (see Eq. (8)). It depends on
how often the accelerator will be executed, as determined by offline profiling (see
Sect. 4.1). If an accelerator j is placed into region k, then the accelerator executions
increase the stress state of the region to S′k = Sk + sj. The challenge is to place
each accelerator to a region, such that upon completion of the application kernel
the maximum CLB stress over the N regions is minimized, i.e., maxk,x,y [S′k]xy is
minimized. It can be easily seen that the strict lower bound of the maximum CLB
stress is given by Eq. (9), which is reached if and only if the stress is uniformly
distributed over all CLBs. To achieve this at runtime, we propose a heuristic that
follows these two rules: (1) maximal utilization of under-stressed CLBs within one
region, i.e., the stress shall be evenly distributed among different CLBs within the
region (intra-region distribution) and (2) avoid placing high stress accelerators into
highly stressed regions, i.e. the stress shall be evenly distributed among different
regions (inter-region distribution). The heuristic uses a profit function (Eq. (10)) for
placing accelerator j into region k that considers the stress distribution within one
region and across all regions, respectively.

1

NXY

⎛
⎝ N∑

k

∑
x,y

[Sk]xy +
M∑
j

∑
x,y

[
sj
]
xy

⎞
⎠ (9)

Profitjk = Profitintra
jk + Profitinter

jk (10)

To calculate Profitintra
jk , the average CLB stress in region k is determined as

AvgStressk and then used to calculate the absolute deviation of the stress of CLBxy

in region k from AvgStressk . The sum over all CLBs in region k denotes the
intra-region stress imbalance. It is calculated (1) before placing accelerator j to
region k and (2) after hypothetically placing it. The difference of these two values
corresponds to the degree of increased stress imbalance if placing accelerator j to
region k and is used as Profitintra

jk . The idea for Profitinter
jk is very similar. There, the

stress of region k is compared with the average stress of all regions before and after
hypothetically placing accelerator j to region k [22].

The stress-aware runtime accelerator placement iterates over all required accel-
erators. In each iteration, it calculates the profits of placing the accelerator into all
available regions and then places the accelerator into the region that provides the
highest profit. The complexity of this algorithm is O

(
M2XY

)
. If the application

does not reconfigure a region for a longer time, then this region would be constantly
stressed by one accelerator without stress redistribution. As a solution, the runtime
accelerator placement forces that region to be reconfigured after a user-defined time
period that should not be too short to prevent increased reconfiguration overhead
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and also not too long to avoid stress accumulation. For instance, a time period of
100 million cycles (1 s at 100 MHz) is short enough to avoid aging accumulation
and the induced application performance degradation is only 0.21%.

4.4 Synthesis Time Logic Placement

Our runtime accelerator placement uniformly distributes the stress over all reconfig-
urable regions, compared to the stress-unaware placement. The maximal transistor
toggle rate is reduced by more than 73% from 18.8 million toggles/s (see Fig. 8a)
down to 5.0. However, when high stress CLBs of different accelerators overlap
at the same relative (x, y) location, the runtime accelerator placement cannot
achieve intra-region stress distribution. STRAP addresses this problem by applying
placement constraints at synthesis time to diversify (similar to Sect. 3.1) the CLB
usage among different accelerators, which reduces the overlapping of high stress
CLBs. To minimize the timing impact on accelerators, STRAP only constrains
which CLBs shall be used and leaves everything else to the vendor place-and-route
algorithm.

The logic placement algorithm (Algorithm 2) diversifies the high stress CLBs of
different accelerators to different CLB locations in the regions. First, unconstrained
configurations of all accelerators are generated (Lines 1–5). For each accelerator

Algorithm 2 Stress-diversifying logic placement
Input: List of accelerators Acc.

1. for j := 1 to len(Acc) do
2. Place-and-route Acc[j] without any placement constraints
3. sj := get_stress(Acc[j])
4. Acc[j].max_freq := get_max_freq(Acc[j])
5. end for
6. Acc := sort_ascending(Acc, key=max_freq)
7. R := s1
8. for j := 2 to len(Acc) do
9. prohibit_xy := ∅

10. for x := 1 to Acc[j].n_cols do
11. for y := 1 to Acc[j].n_rows do
12. if Condition Eq. (11) is satisfied for (x,y) then
13. prohibit_xy.add((x,y))
14. end if
15. end for
16. end for
17. Place-and-route Acc[j] with prohibited CLB locations listed in prohibit_xy
18. if Place-and-route failed then

19. prohibit_xy.remove

(
argminxy∈prohibit_xy

{[
R̂+ ŝj

]
xy

})
20. goto Line 17
21. end if
22. R := R + get_stress(Acc[j])
23. end for
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configuration the CLB stress is estimated (see Sect. 4.2), and the maximal achievable
frequency is extracted from the place-and-route log files (Lines 3–4). The generated
initial configurations are then sorted in ascending order of their maximal achievable
frequencies (Line 6). The fabric typically runs at the frequency of the slowest
accelerator fmin. In order to minimize the impact on system performance, it is
placed and routed without stress-diversifying placement constraints. Its CLB stress
distribution is taken as the initial reference distribution (Line 7). As long as the
proposed logic placement does not reduce the frequency of an accelerator below
fmin, there is no performance impact/penalty for the whole system. During the
generation of other accelerator configurations, R keeps track of the sum of the stress
distribution of all j−1 previously generated accelerators, i.e., R =∑j−1

i=1 si.
The remaining accelerators will be placed-and-routed again in ascending order

of their maximal frequencies (Lines 8–23). To avoid that high stress CLBs of
the currently placed accelerator Acc[j] overlap with those in previously placed
accelerators Acc[1],...,Acc[j-1], we prohibit the placement to specific
CLB locations for Acc[j] (Lines 9–17) if Eq. (11) is satisfied, where Lj is the
number of used CLBs by the currently place-and-routed accelerator Acc[j]. R̂
and ŝj are normalized stress matrices of R and sj. In earlier iterations, the reference
distribution is less even, which implies that few CLB locations in the reference
distribution have much higher values than the others, and therefore it is less likely
that the condition in Eq. (11) is satisfied. In turn, fewer locations are prohibited
for placement in earlier iterations, which implies less timing impact on slower
accelerators. If place-and-route fails due to too many prohibited CLB locations,
the locations xy where the stress overlapping [R̂ + ŝj]xy is lowest are removed
from prohibit_xy (Line 19), and place-and-route is re-executed with the relaxed
constraints.

[
R̂
]
xy

>
1

Lj

∑
uv

[ŝj]uv

with R̂ = R
maxuv [R]uv

and ŝj = sj

maxuv

[
sj
]
uv

(11)

With synthesis time stress diversification, high stress CLBs from different
accelerators are placed to different CLB locations, and thus better intra-region
stress distribution can be achieved during runtime placement. After applying both
stress-aware runtime placement and synthesis time stress diversification for dynamic
stress, the maximal transistor toggle rate is further reduced by additional 44% from
5.0 million toggles/s down to 2.8 (see Fig. 8b).
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4.5 Extended Accelerator Placement with Module
Diversification

The module diversification method (see Sect. 3) generates a set of configurations for
each accelerator that are diversified in terms of CLB usage. This not only allows to
tolerate any single-CLB fault in a region but can also improve the stress distribution
with the extra CLB diversity. When faults are detected in the reconfigurable fabric,
the placement freedom of accelerators is reduced. The placement freedom of an
accelerator corresponds to the number of regions for which the accelerator has
at least one diversified configuration that can be placed into that region (i.e., that
tolerates the permanent faults in that region). Such a region is called a compatible
region. If the available regions (i.e., those into which no accelerators are placed by
the placement algorithm so far) have rather many permanent faults, it can happen
that no configuration of the accelerator can be placed into any of them. If an
accelerator cannot be placed, then its hardware functionality has to be emulated in
software on the processor pipeline, which comes at a significant performance loss.

To avoid such situations, the runtime accelerator placement (see Sect. 4.3) is
modified to place the accelerators one after the other in ascending order of their
number of compatible regions. If it comes to the situation that some accelerator
cannot be placed into the available regions, then the algorithm re-evaluates some
of its previous placement decisions (note that the actual reconfigurations are just
started after all placements are finally decided). It tries whether it can swap one
of the already placed accelerators into one of the still available regions such that
accelerator can be placed into the region that became free due to swapping. When
calculating the placement profit (see Eq. (10)), the algorithm also iterates through all
diversified configurations to find out which configuration of the accelerator produces
the highest placement profits.

4.6 Experimental Evaluation

For prototyping purposes, we have integrated STRAP into the Xilinx tool-chain
and the runtime system of the target reconfigurable architecture. In our evaluation
platform, each region consists of 4 × 20 CLBs with eight 6-input LUTs per CLB.
STRAP performs optimizations on CLB granularity. To evaluate the actual stress
for each transistor, a transistor-level model of LUTs using NMOS pass transistors
for multiplexers is used [22]. To evaluate the threshold voltage shift due to stress,
state-of-the-art aging models are employed (detailed equations and used parameters
are given in [22]). The resource usage of each accelerator within one region for the
H.264 application ranges from 8.8% to 66.3%. Our architectural simulator is used to
evaluate the STRAP method for systems that differ in the number of reconfigurable
regions and runtime strategies, and to compare it with related work.
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Evaluation Flow The placed-and-routed accelerators are fed to Xilinx XPower
analyzer to obtain the signal activities and power consumption of logic elements and
nets. The power consumption is then aggregated to CLB granularity by summing
up the power consumed by LUTs and their fan-in nets in one CLB. The leakage
power of a region is proportional to its size. Architectural simulation produces the
accelerator execution trace, i.e., the complete execution and idle history of each
accelerator in each region. Together with the power profile of each accelerator, we
obtain the power trace of each CLB. The power trace and the fabric floorplan of the
FPGA2 are then fed into Hotspot3 [14] to obtain the temperature trace of each CLB,
which will be used to evaluate the threshold voltage shift. The accelerator execution
trace and the LUT signal activities of each accelerator are combined to calculate
the LUT signal activities for the regions. This is then used to evaluate the stress of
individual transistors by using the before-mentioned LUT transistor model.

The number of regions is varied from 5 to 12 and separate evaluation is performed
for dynamic and static stress mitigation, since STRAP optimizes either for dynamic
or for static stress. The baseline system does not use any stress distribution
method. For comparison, two state-of-the-art stress distribution methods [3, 21]
were implemented. Zhang et al. [21] use three different configurations for each
accelerator and switch between them to migrate stress, whereas Angermeier et al.
[3] consider the peak stress of regions to place an accelerator. As proposed for
STRAP, Angermeier et al. [3] and Zhang et al. [21] were extended to replace an
accelerator if its reconfigurable region has not been reconfigured for 100 million
cycles (see Sect. 4.3). This improvement reduces the peak stress of [3, 21] and
thus makes the comparison with state-of-the-art more competitive. Regarding
temperature variation, a conservative comparison is performed. To calculate the
threshold voltage shift for [3, 21], the lowest temperature that was observed for
any CLB at any time in the obtained temperature trace is used as the constant
temperature for all CLBs, while the highest observed temperature is applied for
STRAP. Thus, the threshold voltage shift reported for [3, 21] is a lower limit,
whereas the one for STRAP is a conservative upper limit.

Timing Overhead STRAP’s stress-diversifying logic placement at synthesis time
may affect the accelerator frequency. The place-and-route tool is given a target
frequency of 250 MHz as timing constraint to obtain the maximum operating
frequency of each accelerator. On average, the maximum accelerator frequency
decreases by 7%. Since accelerators with longer critical path (lower maximum
frequency) are imposed with fewer constraints (see Sect. 4.4), their maximum
frequencies are less affected. The maximum system frequency is however limited by
the accelerator with the longest critical path (in our case the PointFilter accelerator,
which runs at fmin = 89 MHz). Therefore, STRAP has no negative timing impact
on the system.

2Based on a high-resolution die image acquired from https://chipworks.com (now https://
techinsights.com).
3Smallest possible heat spreader and heat sink with 10 µm thickness, ambient temperature 50 ◦C.

https://chipworks.com
https://techinsights.com
https://techinsights.com
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Fig. 10 The dynamic stress in systems with different number of reconfigurable regions when using
our STRAP approach compared to the baseline, Angermeier et al. [3] and Zhang et al. [21] (based
on [22])

Stress Reduction and MTTF Improvement Figure 10 shows the maximal (lighter
color) and average (darker color; arithmetic mean) dynamic transistor stress,
measured in million toggles/s, in the whole reconfigurable fabric for systems with
different number of regions. It shows that all methods reduce the average stress
compared to the baseline because they all distribute the stress to more transistors.
While the reduction of the average stress is similar for all three methods, the
reduction of the maximal stress (i.e., the critical part for system mean time to
failure (MTTF)) differs significantly and requires both runtime and synthesis time
optimization. The reason is that Angermeier et al. [3] perform only runtime inter-
region stress distribution, while Zhang et al. [21] perform only synthesis time
intra-region stress distribution for individual accelerators. In contrast, STRAP
performs cross-layer stress-aware placement at runtime and synthesis time, which
leads to the highest reduction of maximal stress in all evaluated cases. The reduction
of the maximum stress by STRAP is up to 64% and 35% higher than the closest
competitors w.r.t. dynamic and static stress, respectively. Table 3 summarizes the
stress reduction.

Although during optimization only one type of stress is considered, actually both
types of stress are reduced simultaneously. With STRAP targeting the static stress
distribution, a reduction of 52% in dynamic and 38% in static stress is observed.
When targeting dynamic stress, STRAP delivers 82% reduction in dynamic stress
and 21% reduction in static stress. The reason behind the reduction of both stress
types is that STRAP implicitly distributes the transistor usage as well, which reduces
the individual static and dynamic transistor stress.
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Table 3 Reduction of avg./max. stress and MTTF increase of STRAP and state-of-the-art [3, 21]
compared to the baseline; averaged over all numbers of reconfigurable regions (based on [22])

Reduction of avg.
stress [%]

Reduction of max.
stress [%] MTTF improvement [%]

Strategy Dyn. Stat. Dyn. Stat. HCI BTI

Angermeier et
al. [3]

60.6 47.4 61.2 0.02 157.7 0.0

Zhang et al.
[21]

62.6 49.6 39.9 4.5 66.4 2.3

STRAP 67.9 59.6 80.5 33.1 413.0 13.4

The MTTF improvement due to the stress reduction is calculated by assuming
that a device fails when �Vth of any transistor exceeds 50% of its original value
(Vth0). The MTTF improvement due to dynamic and static stress reduction is
shown in the last two columns in Table 3. With the STRAP method, the MTTF
improvement relative to the baseline is 413% and 13% in average for HCI and BTI
aging, respectively. Relative to the closest competitors, STRAP achieves up to 177%
and 14% MTTF improvement w.r.t. HCI and BTI aging, respectively.

5 Conclusion

The dependable operation of runtime-reconfigurable architectures is threatened by
aging. This chapter presented novel methods to ensure reliable reconfiguration,
mitigate aging, and tolerate emerging faults in the reconfigurable fabric. The pre-
configuration online tests (PRET) and post-configuration online tests (PORT) check
with minor application performance loss, if the reconfigurable fabric is faulty
and if the reconfiguration process completed without errors during runtime. The
module diversification design method generates the minimal number of diversified
configurations required to tolerate at least any single CLB-fault in a reconfigurable
region. The cross-layer stress-aware placement method STRAP mitigates aging
by balancing stress both within a reconfigurable region as well as across all
reconfigurable regions in the system. Relative to the closest competitors, STRAP
achieves up to 177% and 14% MTTF improvement w.r.t. HCI and BTI aging. This
shows that intelligently considering and managing aging threats during runtime can
significantly improve the system dependability at limited overheads.
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