
Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 301

References

1. Abdelfattah, M.S., Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Zhang, H., Henkel, J.,
Wunderlich, H.-J.: Transparent structural online test for reconfigurable systems. In: IEEE
International On-Line Testing Symposium (IOLTS), pp. 37–42 (2012)

2. Amrouch, H., van Santen, V.M., Ebi, T., Wenzel, V., Henkel, J.: Towards interdependencies
of aging mechanisms. In: IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 478–485 (2014)

3. Angermeier, J., Ziener, D., Glaß, M., Teich, J.: Stress-aware module placement on reconfig-
urable devices. In: International Conference on Field Programmable Logic and Applications
(FPL), pp. 277–281 (2011)

4. Bauer, L., Shafique, M., Henkel, J.: Concepts, architectures, and run-time systems for efficient
and adaptive reconfigurable processors. In: NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pp. 80–87 (2011)

5. Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Zhang, H., Wunderlich, H.-J., Henkel,
J.: OTERA: Online test strategies for reliable reconfigurable architectures. In: NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp. 38–45 (2012)

6. Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Schneider, E., Zhang, H., Henkel, J.,
Wunderlich, H.-J.: Test strategies for reliable runtime reconfigurable architectures. IEEE Trans.
Comput. (TC) 62(8), 1494–1507 (2013)

7. Bauer, L., Zhang, H., Kochte, M.A., Schneider, E., Wunderlich, H.-J., Henkel, J.: Advances
in hardware reliability of reconfigurable many-core embedded systems. In: Many-Core
Computing: Hardware and Software, pp. 395–416. Institution of Engineering and Technology
(IET) (2019)

8. Cao, Y., Velamala, J., Sutaria, K., Chen, M.S.-W., Ahlbin, J., Esqueda, I.S., Bajura, M., Fritze,
M.: Cross-layer modeling and simulation of circuit reliability. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. (TCAD) 33(1), 8–23 (2014)

9. Gaisler, A.: Homepage of the Leon Processor. Online available: https://www.gaisler.com/index.
php/products/processors/leon3. Accessed 13 Mar 2019

10. Guo, X., Burleson, W., Stan, M.: Modeling and experimental demonstration of accelerated self-
healing techniques. In: IEEE/ACM Design Automation Conference (DAC), pp. 1–6 (2014)

11. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,
Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. (TCAD) 32(1), 8–23 (2013)

12. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel, M.,
Ernst, R., Härtig, H., Hedrich, L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel, P.,
Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O., Tahoori, M., Teich, J., Wehn,
N., Wunderlich, H.-J.: Design and architectures for dependable embedded systems. In: Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 69–78 (2011)

13. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: lessons learnt and future trends. In: IEEE/ACM
Design Automation Conference (DAC), pp. 1–10 (2013)

14. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.R.: HotSpot:
a compact thermal modeling methodology for early-stage VLSI design. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)

15. Lala, P.K.: Self-checking and Fault-Tolerant Digital Design. Morgan Kaufmann, San Francisco
(2001)

16. Mahapatra, S.: Fundamentals of Bias Temperature Instability in MOS Transistors: Charac-
terization Methods, Process and Materials Impact, DC and AC Modeling. Springer Series in
Advanced Microelectronics, vol. 52. Springer, New Delhi (2015)

https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3

302 L. Bauer et al.

17. Srinivasan, S., Krishnan, R., Mangalagiri, P., Xie, Y., Narayanan, V., Irwin, M.J., Sarpatwari,
K.: Toward increasing FPGA lifetime. IEEE Trans. Depend. Sec. Comput. (TDSC) 5(2), 115–
127 (2008)

18. Stott, E.A., Wong, J.S., Sedcole, P., Cheung, P.Y.: Degradation in FPGAs: measurement and
modelling. In: ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA), pp. 229–238 (2010)

19. Xilinx: Partial Reconfiguration User Guide, UG702 (v14.1) (2012)
20. Yang, S.: Logic synthesis and optimization benchmarks user guide: version 3.0. MCNC

Technical Report, Microelectronics Center of North Carolina (MCNC). https://ddd.fit.cvut.cz/
prj/Benchmarks/

21. Zhang, H., Bauer, L., Kochte, M.A., Schneider, E., Braun, C., Imhof, M.E., Wunderlich,
H.-J., Henkel, J.: Module diversification: fault tolerance and aging mitigation for runtime
reconfigurable architectures. In: IEEE International Test Conference (ITC), pp. 1–10 (2013)

22. Zhang, H., Kochte, M.A., Schneider, E., Bauer, L., Wunderlich, H.-J., Henkel, J.: STRAP:
stress-aware placement for aging mitigation in runtime reconfigurable architectures. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 38–45 (2015)

23. Zhang, H., Bauer, L., Kochte, M.A., Schneider, E., Wunderlich, H.J., Henkel, J.: Aging
resilience and fault tolerance in runtime reconfigurable architectures. IEEE Trans. Comput.
(TC) 66(6), 957–970 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://ddd.fit.cvut.cz/prj/Benchmarks/
https://ddd.fit.cvut.cz/prj/Benchmarks/
http://creativecommons.org/licenses/by/4.0/

Reliability Analysis and Mitigation
of Near-Threshold Voltage (NTC) Caches

Anteneh Gebregiorgis, Rajendra Bishnoi, and Mehdi B. Tahoori

1 Introduction

SRAM based memory elements have been the prominent limiting factor in the near-
threshold voltage domain as the supply voltage of SRAM cells does not easily
downscale, as it is done for combinational logic. The supply voltage downscaling
limitation is due to the significant increase in the failure rate of SRAM cells
operating at lower supply voltage values, which in turn severely affects the yield.
Various state-of-the-art solutions have been proposed to address this issue. These
solutions include variation tolerant SRAM cell design [3, 13, 29] and heterogeneous
cache design [31], improve the robustness of cache memories. However, the
improvement comes at the cost of increased area and power overheads. Moreover,
these approaches mostly ignore the impact of runtime failure mechanisms, such as
aging and soft error, on the reliability of memory components. Therefore, design-
time reliability failure analysis and mitigation schemes are crucial for the reliable
operation of near-threshold caches.

Analyzing failures based on a particular reliability failure mechanism is insuf-
ficient for estimating the system-level reliability, as the interdependence among
different failure mechanisms has a considerable impact on the overall system
reliability. Moreover, the running workload affects the aging and SER of memory
components as it determines the SP and AVF of the memory elements. Therefore,
performing a combined analysis on the reliability failure mechanisms across
different layers of abstraction (as shown in Fig. 1) is crucial, and it helps designers
to choose the most reliable components at each abstraction layer, and tackle the
reliability challenges of NTC operation.

A. Gebregiorgis · R. Bishnoi · M. B. Tahoori (�)
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
e-mail: anteneh.gebregiorgis@kit.edu; rajendra.bishnoi@kit.edu; mehdi.tahoori@kit.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_13

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_13&domain=pdf
mailto:anteneh.gebregiorgis@kit.edu
mailto:rajendra.bishnoi@kit.edu
mailto:mehdi.tahoori@kit.edu
https://doi.org/10.1007/978-3-030-52017-5_13

304 A. Gebregiorgis et al.

Memory system Effects

Workload

Cache organization

SRAM

PV

AVF, SNM

Critical
charge SER

FIT rate

System

Architecture

Circuit

Device

Ab
st

ra
ct

io
n

l a
ye

r

Fig. 1 Cross-layer impact of memory system and workload application on system-level reliability
(Failure In-Time (FIT rate)) of NTC memory components, and their interdependence

For this purpose, a comprehensive cross-layer reliability analysis framework
addressing the combined effect of aging, process variation, and soft error on the
reliability of NTC cache designs is presented in this chapter. Moreover, the chapter
presents the advantages and limitations of two different NTC SRAM cell designs
(namely, 6T and 8T cells) in terms of reliability (SER and SNM) improvement, area,
and energy overheads. The framework presented in this chapter helps to explore
the cross-layer impact of different reliability failure mechanisms, and it is useful
to study the combined effect of workload and cache organization on the SER and
SNM of cache memories. The framework is also helpful to understand how the
reliability issues change from super-threshold to the near-threshold voltage domain.
Furthermore, it is important for architectural-level design space exploration to find
the best cache organization for better reliability and performance trade-offs of NTC
caches. Based on the comprehensive analysis using the framework, a memory failure
mitigation scheme is developed to improve the energy efficiency of NTC caches.

2 Functional Failure and Reliability Issues of NTC Memory
Components

The increase in sensitivity to process variation of NTC circuits affects not only the
performance but also functionality. Notably, the mismatch in device strength due to
process variation affects the state of positive feedback loop based storage elements
(SRAM cells) [3, 10, 14]. The mismatch in the transistors makes SRAM cells to
incline for one state over the other, a characteristic that leads to hard functional
failure or soft timing failure [17, 20]. The variation-induced functional failure rate of
SRAM cells is more pronounced in the nanoscale era as highly miniaturized devices
are used to satisfy the density requirements [1]. SRAM cells mainly suffer from
three main unreliability sources: (1) aging effects, (2) radiation-induced soft error,
and (3) variation-induced functional failures [19]. The SRAM cell susceptibility to
these issues increases with supply voltage downscaling.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 305

(a) (b)

Fig. 2 Schematic diagram of 6T and 8T SRAM cell, where WL = word-line, BL = bit-line and
RL = read-line. (a) 6T cell design. (b) 8T cell design

2.1 Aging Effects in SRAM Cells

Accelerated transistor aging is one of the main reliability concerns in CMOS
devices. Among various mechanisms, Bias Temperature Instability (BTI) is the
primary aging mechanism in nanoscale devices [18]. BTI gradually increases the
threshold voltage of a transistor over a long period, which in turn increases the gate
delay [18]. BTI-induced threshold voltage shift is a strong function of temperature as
it has an exponential dependency. Hence, BTI-induced aging rate is higher at high
operating voltage and temperature values. In SRAM cells, BTI reduces the Static
Noise Margin (SNM)1 of an SRAM cell, and makes it more susceptible to failures.
BTI-induced SNM degradation is higher when the cell stores the same value for a
longer period (e.g., storing “0” at node “A” of the SRAM cell shown in Fig. 2a).
Hence, the effect of BTI on an SRAM cell is a strong function of the cell’s Signal
Probability (SP).2

2.2 Process Variation in SRAM Cells

Variation in transistor parameters such as channel length, channel width, and
threshold voltage results in a mismatch in the strength of the transistors in an SRAM
cell, and in extreme cases it makes the cell to fail [15]. The variation-induced
memory failure rate increases significantly with supply voltage downscaling, for
instance, SRAM cells operating at NTC (0.5 V) have 5× higher failure rate than the
cells operating at a nominal voltage [15]. Process variation affects several aspects
of SRAM cells, and the main variation-induced SRAM cell failures are:

1SNM is the minimum amount of DC noise that leads to a loss of the stored value.
2Probability of storing logic “1” in the SRAM cell.

306 A. Gebregiorgis et al.

Read Failure Read failure/disturb is a phenomenon where the stored value is
distorted during read operation. For example, when reading the value of the cell
shown in Fig. 2a, (VL = “1” and VR = “0”), due to the voltage difference between
the access transistor NR and pull-down transistor N2, the voltage at node VR

increases [21, 39]. If this voltage is higher than the trip voltage (Vtrip) of the left
inverter, then the stored value of the cell is changed. Hence, the condition for read
failure is expressed as [33]:

read failure =

{
1, if VR > Vtrip

0, otherwise

where Vtrip = VP1 − VN1 (here VP1 and VN1 indicate the voltages of the PMOS
and NMOS transistors of the left inverter shown in Fig. 2a where P1 and N1 are the
corresponding PMOS and NMOS transistors of the inverter).

Write Failure Write failure occurs when the cell is not able to write/change its
state with the applied write voltage. For example, during a write operation (e.g.,
writing “0” to the SRAM cell shown in Fig. 2a), the node VL is discharged through
the bit-line BL. Write failure occurs when the node VL is not reduced to be lower
than Vtrip of the right inverter (VR) [21, 33]. In the standard 6T SRAM cell, write
failure is a challenging issue as the cell cannot be optimized without reducing its
read margin [21, 33, 39]. However, this is improved with the help of read/write
assist circuitries or differential read/write access as it is done in the 7T, 8T, and
10T SRAM cell designs [3, 8, 10]. In order to illustrate the write failure issue, the
write margin behaviors of 6T and 8T NTC SRAM cells are studied and compared
in Fig. 3. As shown in the figure, the 6T SRAM cell has a smaller write margin as it

 0

 0.25

 0.5

W
L

(V
)

 0

 0.25

 0.5

A
&

B
no

de
s

 fo
r 6

T
(V

)

 0

 0.25

 0.5

 9.8 10.1 10.4 10.7 11

A
&

B
no

de
s

 fo
r 8

T
(V

)

Time [ns]

Fig. 3 Write margin (in terms of write latency) comparison of 6T and 8T SRAM cell operating in
near-threshold voltage domain (0.5 V)

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 307

has longer write latency. On the other hand, the short write latency of the 8T design
enables it to have a relatively larger write margin. The improvement in the write
margin is because the 8T cell is optimized to improve the write operation without
affecting its read operation, as the write and read operations are decoupled.

Hold Failure Hold failure commonly known as metastability issue is a reliability
issue that occurs when the SRAM cell is not able to store the value for a longer
period [20, 33]. This problem happens during a standby mode if the voltage at
nodes VL or VR is smaller (smaller SNM value), then the stored value is easily
destroyed by a noise voltage due to various sources such as particle strike and
leakage current [20, 33].

2.3 Soft Error Rate in SRAM Cells

In SRAM cells, soft error is a transient phenomenon that occurs when charged
particles penetrate the cell’s cross junction creating an aberrant charge that changes
the state of the cell [27]. The primary source of soft errors is related to cosmic ray
events such as neutrons and alpha particles. Atmospheric neutrons are one of the
higher flux components, and their reaction has a high energy transfer. Thus, neutrons
are the most likely cosmic radiations to cause soft errors [16, 19]. Neutrons do not
generate electron-hole pairs directly. However, their interaction with the Si-atoms
generates secondary particles. These secondary particles produce charges/electron-
hole pairs [16]. If the generated charges are larger than the critical charge3 of
an SRAM cell, then the internal value of the cell is inverted, this phenomenon is
commonly referred to as soft error.

Radiation-induced Soft Error Rate (SER) of an SRAM cell increases significantly
with decrease in the supply voltage. Previous experiments have shown that the
radiation-induced SER increases by 50% for just 20% decrease in the supply
voltage [40]. Moreover, the SER of NTC designs is affected by variation and aging-
induced SNM degradation.

2.4 Interdependence and Combined Effects

Analyzing failures based on a particular reliability failure mechanism is insufficient
for estimating the system-level reliability as the interdependence among different
failure mechanisms (such as aging, soft error, and process variation) has a consid-
erable impact on the overall system reliability [4, 19, 20]. Figure 4 shows how the
interdependence between different reliability mechanisms (aging, SER, and process

3Minimum amount of charge required to upset the stored value, of an SRAM cell.

308 A. Gebregiorgis et al.

Supply voltage
scaling Performance

Aging SER PV

FIT rate

Reduce

Reduce
Reduce

Increase

Fig. 4 Interdependence of reliability failure mechanisms and their impact on the system Failure
In-Time (FIT) rate in NTC

variation) affects the overall system reliability of memory components in terms
of Failure In-Time (FIT rate). As shown in the figure, variation-induced threshold
voltage shift increases both aging and SER by reducing the SNM and critical charge
of the cell. Similarly, aging-induced SNM degradation increases the sensitivity of
SRAM cell to soft errors. The problem is more pronounced when the SRAM cell is
operating at NTC domain due to the wide variation extent and higher sensitivity to
aging effects [19]. It has been observed that aging has≈5% SNM and critical charge
degradation at NTC while process variation-induced SNM degradation reaches as
high as 60% [19]. In the super-threshold voltage domain (1.0 V), however, the aging
effect increases by 3× to be 15% while variation effect is reduced significantly.

Moreover, the running workload affects the aging rate and SER of memory
components, as it determines the signal probability and the Architectural Vulner-
ability Factor (AVF)4 of the memory elements [19]. Therefore, to overcome these
reliability challenges and improve the overall system reliability, combined analysis
of the reliability failure mechanisms at different levels of abstraction is imperative.
Besides, the cross-layer analysis should consider the impact of workload on signal
probability as well as architectural vulnerability factor of memory components, and
their circuit-level consequences on critical charge and SNM degradation.

2.5 Technology Scaling Effects on SRAM Reliability

Reliability has been an essential issue with the miniaturization of CMOS technol-
ogy, as different design-time and runtime failures are among the limiting factors of
technology scaling [24]. At smaller technology nodes, process variation increases
the permanent and transient failures of memory components significantly [11, 15].

4AVF is the probability that an error in memory structure propagates to the data path. AVF =
vulnerable period/total program execution period.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 309

The authors in [15] show that SRAM cell failure rate increases by more than 2×
with downscaling from 90 to 65 nm technology node. Similarly, the authors in [26]
demonstrated that technology downscaling increases the radiation-induced soft error
rate of SRAM cells significantly.

3 Cross-Layer Reliability Analysis Framework for NTC
Caches

The comprehensive cross-layer reliability estimation framework that abstracts the
impact of workload, cache organization, and reliability failure mechanisms at
different levels of abstraction is illustrated in Fig. 5. The reliability analysis and
simulation conducted in this work use the symmetric six-transistor (6T) and 8T
SRAM cells shown in Fig. 2a and b. In this work, the device-level critical charge
characterization is modeled according to the analytical model presented in [27].

This section presents the cross-layer reliability estimation framework in a top-
down manner. The system-level Failure In-Time (FIT) rate and SNM extraction
are described in Sect. 3.1 followed by the cross-layer SNM and SER estimation
in Sect. 3.2.

3.1 System FIT Rate Extraction

The system-level FIT rate of a cache memory is the sum of the FIT rate of
each row (cache line). The row FIT rate is calculated as the product of the
row-wise SER (extracted based on the circuit-level SER information) and its

SRAM
model

BTI
model

SNM, Vth (μ and σ)

Critical charge estimation as a function of
Vth, Vdd

Transistor parameter (SNM, and Vth)
calculation in the presence of aging

Critical charge Flux distribution

SER estimation

SER distribution

Workload Processor
model

Trace data Cache
organization

AVF analysis and Signal
Probability (SP) calculation

AVF valueSP values

System FIT rate and
SNM calculation

Ar
ch

ite
ct

ur
al

le
ve

lD
ev

ic
e

le
ve

l
C

irc
ui

tl
ev

el

Pr
oc

es
s

va
ria

tio
n

GEM5 (System level)

Fig. 5 Holistic cross-layer reliability estimation framework to analyze the impact of aging and
process variation effects on soft error rate

310 A. Gebregiorgis et al.

Architectural Vulnerability Factor (AVF). Cache AVF is a metrics used to determine
the probability that an error in a cache memory propagates to the datapath, and
results in a visible error in a program’s final output [38]. Equation (1) shows the
system-level FIT rate calculation of cache memories.

FITsystem =
N−1∑
i=0

AVFi × SERi (1)

where N is the total number of rows in the cache.

3.1.1 Architecture-Level AVF Analysis

One step of determining the failure rate of memory (cache) due to soft errors is to
determine the AVF value of the memory. AVF of a memory array is measured by the
ratio of vulnerable periods, time interval in which the memory content is exposed
to particle strike, to the total program execution period, and the probability of the
erroneous value being propagated [38]. Hence, the vulnerability factor of a memory
array is computed based on the liveness analysis commonly known as Architectural
Correct Execution (ACE) analysis which is the ratio of ACE (vulnerable) cycles to
the total number of operational cycles [42]. Therefore, the AVF value of a memory
array with M cells is computed as shown in Eq. (2).

AVFarray =
∑M−1

i=0 ACEi

T ×M
(2)

where T is the total number of cycles.

3.1.2 Architecture-Level SNM Analysis

Aging-induced SNM degradation of an SRAM cell strongly depends on the Signal
Probability (SP) of the cell. Thus, BTI-induced SNM degradation is minimized
when the signal probability of the cell is balanced (close to 0.5) [18]. In order to
determine the aging-induced SNM degradation, the worst-case SP of the memory
row is obtained as the maximum SP distance from 0.5 (D = |SP− 0.5|) as shown in
Eq. (3). Then, the worst-case SP is used by the SNM estimation tool given in Fig. 5
to determine the corresponding aging-induced SNM degradation.

SPworst-case = MAXZ
i=1Di (3)

where Di = |SPi − 0.5| and Z is the total number of cells in the memory row.
In order to extract the AVF and SNM of a cache unit, first, it is necessary to

extract the trace of the data stored in the cache, read-write accesses, and the duration
(number of cycles) of the running workload. Once the information is available, the

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 311

reliability analysis tool uses it along with the cache organization to determine the
AVF and SP of the cache memory according to Eqs. (2) and (3), and generates the
SNM LUT for different signal probability values.

The cache organization (size and associativity) has significant impact on the SER
and SNM of the cache, as it determines the hit ratio and the duration data is stored
in a cache entry. Hence, different cache size and associativity combinations result
in different SER and SNM values for the same workload application. Additionally,
SER and SNM are highly dependent on the running workload. In order to explore
the impact of cache organization and workload, various organizations and workload
applications are investigated.

3.2 Cross-Layer SNM and SER Estimation

3.2.1 SNM Degradation Estimation

Device-Level Aging Analysis

BTI-induced aging degrades the carrier mobility of CMOS transistors, and leads
to transistor threshold voltage (Vth) shift. In an SRAM cell, the Vth shift reduces
the noise tolerance margin of the cell, and makes it more susceptible to failures. In
the reliability analysis framework, the BTI-induced threshold voltage shift of the
transistors in an SRAM cell is evaluated at device-level using a Reaction-Diffusion
(RD) model [28]. Then, the device-level Vth shift results are used to estimate the
corresponding SNM degradation of an SRAM cell at the circuit-level.

Circuit-Level SNM Estimation

The SNM of an SRAM cell is extracted by conducting a circuit-level SPICE
simulation. The SPICE simulation uses device-level aging and architecture-level
SP results to determine the SNM of the SRAM cell. Finally, the SNM degradation
of a particular SP value is obtained according to Eq. (4).

DEGSP = SNMSP − SNMfresh

SNMfresh
× 100% (4)

where SNMSP is the SNM of the SRAM cell for a particular signal probability value
and SNMfresh is the SNM of a fresh (new) SRAM cell.

Aging and Process Variation-Induced SNM Degradation Analysis

BTI-induced SNM degradation of an SRAM cell depends not only on the cell
signal probability but also on process parameters, such as channel length and

312 A. Gebregiorgis et al.

15%

30%

45%

60%

75%

0.5 0.6 0.7 0.8 0.9 1.0 1.1

2.
5X

X

SN
M

 d
eg

ra
da

tio
n

Vdd

6T
8T

Fig. 6 SNM degradation in the presence of process variation and aging after 3 years of operation,
aging+PV-induced SNM degradation at NTC is 2.5× higher than the super-threshold domain

oxide thickness, which are highly affected by manufacturing variabilities. Due to
low operating temperature at NTC, aging has relatively less impact on the SNM
degradation of near-threshold voltage SRAM cells. However, in combination with
variation-induced threshold voltage shift, aging degrades the SNM of SRAM cells
significantly.

Figure 6 shows the worst-case aging (SP = 0.0) and variation-induced SNM
degradation of 6T and 8T SRAM cells after 3 years of operation for wide supply
voltage range. The obtained SNM degradation confirms the analytical expectation
as the SNM degradation in NTC is 2.5× higher than the degradation in the super-
threshold voltage domain (as shown by the gray boxes). While the use of 8T instead
of 6T SRAM cells in super-threshold voltage domain has limited improvement in
SNM degradation (only 7.7%), it achieves more than 14% reduction in the SNM
degradation in the near-threshold voltage domain.

3.2.2 SER Estimation

The SER of an SRAM cell depends on two main factors, the critical charge of the
cell and the flux rate of the strike. To determine SRAM cell SER, first, the critical
charge of an SRAM cell is obtained from a circuit-level model. Then, the SER
value is calculated by combining the critical charge, flux distribution, and the area
sensitive to strike.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 313

Device-Level Critical Charge Characterization

The sensitivity of an SRAM cell to radiation-induced soft errors is determined by
the critical charge (Qcritical) of the cell, as it determines the minimum amount of
charge required to alter the state of the cell. The Qcritical of an SRAM cell depends
on several factors such as supply voltage, threshold voltage, and strength of the
transistors of the SRAM cell [9]. The critical charge of an SRAM cell is computed
using analytical models or circuit simulators. An analytical model developed in [27]
is used to determine the Qcritical.

As shown in Fig. 5, the SPICE model of an SRAM cell along with the BTI model
is employed to evaluate the impact of BTI on the threshold voltage (Vth) of the
transistors of an SRAM cell. The BTI analysis uses the SP values of the memory
array from higher (architecture-level) analysis to determine the BTI-induced Vth

shift of the running workload. In this way, the aging effect of the workload is
incorporated into the framework. Once the fresh and aged Vth values are available,
the impact of process variation is incorporated as a normal distribution (μ ± 3σ)
of the transistor threshold voltage where μ is the mean Vth value and the standard
deviation (σ) which is obtained using an industrial standard, measurement based,
model (the “Pelgrom model”) given in Eq. (5) [30]. Finally, all these parameters are
used by the model given in [27] to extract the Qcritical.

σ�Vth = AV T√
L×W

(5)

where L and W are the length and width of transistors, and AV T is process specific
parameter (the “Pelgrom coefficient”).

Circuit-Level SER Analysis

The circuit-level SER analysis is conducted using the SER extraction module of the
framework given in Fig. 5. First, the critical charge of the SRAM cell is extracted
using the device-level model [27]. Afterward, the critical charge along with the
neutron-induced flux distribution is used to determine the SER of the cell using an
experimentally verified empirical model given in Eq. (6) [23]. As shown in Eq. (6),
the SER of an SRAM cell has an inverse exponential relation with its critical charge
(Qcritical). Hence, the higher the Qcritical, the lower the SER will be.

SER ∝ FAe

(
−Qcritical

Qs

)
(6)

where F is the flux in particles/cm2-s with energy higher than 1 MeV [6]; A is the
area sensitive to a strike in cm2, and QS is the charge collection efficiency.

314 A. Gebregiorgis et al.

The main observations from Eq. (6) are:

• The SER of an SRAM cell has an inverse exponential relation to its critical
charge. Hence, a small decrease in the Qcritical leads to an exponential increase in
the cell SER.

• For the same atmospheric neutrons, a small drift in Qcritical leads to a significant
increase in the SER. Furthermore, transistor up-sizing increases the area which
is sensitive to particle strike and hence, higher SER.

SER of 6T and 8T SRAM Cells

In the conventional 6T SRAM cell, the cell must maintain the stored value and it
should be stable during read/write accesses. SRAM cell stability is a challenging
task when the cell is operating in the near-threshold voltage domain, as the cell
mainly suffers from read-disturb. To address this issue, either a read-write assist
circuitry should be employed or the pull-down (NMOS) transistors of the SRAM
cell should be strengthened by transistor up-sizing [35]. However, the up-sizing also
increases the area of the cell that is sensitive to soft errors. Since the read-disturb of
the 6T SRAM cell is worst when it operates at lower voltage values, transistor up-
sizing cannot adequately mitigate the read-disturb issue which makes the 6T design
less desirable for near-threshold voltage operation.

This issue is addressed by using alternative SRAM cell designs (such as 8T [32]
and 10T [8] SRAM cells). For example, the read failure issue is solved in the 8T
design by decoupling the read and write lines using two additional NMOS access
transistors. The decoupling allows to downsize the pull-down NMOS transistors,
and reduce the area sensitive to soft errors. Therefore, alternative SRAM designs
(e.g., 8T) are recommended for NTC operation, which is verified by studying the
reliability and energy efficiency improvement of the 8T SRAM design over the
conventional 6T design. The transistor sizing specified in [32] is used for the design
of the 6T and 8T SRAM cells used in this study.

Figure 7 shows the fresh and aged SER of the 6T and 8T SRAM designs for
different supply voltage values. In the super-threshold voltage domain, (0.9–1.1 V)
the 6T and 8T designs have negligible differences in their SER. In NTC, however,
the 6T design has higher SER than the 8T design due to the effects of transistor up-
sizing which increases the area sensitive to radiation. The combined effect of aging
and process variation on 6T and 8T SRAM cells is shown in Fig. 8. Figure 8 shows
variation effect has severe impact at NTC, as the SER of the 6T and 8T SRAM cell
designs in the near-threshold voltage domain is 4× higher than their SER in the
super-threshold voltage domain.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 315

 0

 0.004

 0.008

 0.012

 0.016

 0.02

0.5 0.6 0.7 0.8 0.9 1.0 1.1

SE
R

Vdd

Fresh6T
Fresh8T
Aged6T
Aged8T

Fig. 7 SER rate of fresh and aged 6T and 8T SRAM cells for various Vdd values

Fig. 8 SER of 6T and 8T SRAM cells in the presence of process variation and aging effects after
3 years of operation

316 A. Gebregiorgis et al.

3.3 Experimental Evaluation and Trade-Off Analysis

3.3.1 Experimental Setup

The reliability analysis is conducted using an ALPHA implementation of an embed-
ded in-order core on the Gem5 architectural simulator [7]. Since cache memories are
the main focus, various cache sizes (4–16 KB) and wide associativity range from
simple directly mapped to 4-way set associative caches are assessed to perform a
reliability and performance trade-off analysis. The evaluation is conducted using
several workload applications from the SPEC2000 CPU benchmark suite [25]. The
workload applications were executed for five million cycles by fast-forwarding to
the memory intensive phases. The experimental setup used in this work is presented
in Table 1.

The BTI-induced Vth shift is extracted by assuming 10% BTI-induced aging
after 3 years of operation [37]. First, the 45 nm 6T and 8T SRAM cells are
modeled using the PTM model. Afterward, the BTI-induced Vth shift LUT and
the corresponding SNM degradation for various SP values (0.0–1.0) are obtained
using a SPICE simulation. The impact of process variation is considered as a normal
distribution of the transistor threshold voltage with a mean (μ = Vth, 300 mV) and
standard deviation (σ) obtained using the Pelgrom model given in Eq. (5).

To demonstrate the effect of soft error, neutron-induced soft errors are considered
as they are the dominant soft error mechanisms at terrestrial altitudes. In order to
ensure the proper functionality of both 6T and 8T SRAM cells in the near-threshold
voltage domain, their transistors are sized according to the transistor sizing used
to model and fabricate near-threshold 6T and 8T SRAM cells specified in [32]. It
should be noted that L1 cache is used for illustration purpose only as most embedded

Table 1 Experimental setup, configuration, and evaluated benchmark applications

Gem5

Simulation environment Near-threshold Super-threshold

Core configuration

Processor model Embedded Embedded

Architecture Single in-order core Single in-order core

ISA ALPHA ALPHA

Supply voltage 0.5 V 1.1 V

Frequency 100 MHz 1 GHz

Technology node 45 nm PTM 45 nm PTM

Cache configuration

L1 Cache Sizes = 4, 8, and 16 KB Sizes = 4, 8, and 16 KB

Associativity = 1, 2, and 4 way Associativity = 1, 2, and 4 way

Replacement policy = LRU Replacement policy = LRU

SRAM cells = 6T and 8T SRAM cell = 6T

Benchmark SPEC2000 SPEC2000

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 317

NTC processors have limited cache hierarchy. However, the framework is generic,
and it is applicable to any cache levels such as L2 and L3.

3.3.2 Workload Effect Analysis

As discussed in Sect. 3.2, BTI-induced SNM degradation of SRAM cell highly
depends on the cell’s signal probability and the residency time of valid data which
varies from one workload application to another. Similarly, the SER of memory
components is dependent on the data residency period which is commonly measured
using AVF. Hence, for SER analysis, the AVF of different workloads is obtained
based on the workload application’s data residency period. In order to show the
effect of workload variation on SER and SNM degradation, the AVF and signal
probabilities of the cache memory are extracted by running different workload
applications from the SPEC2000 benchmark suite. Then, the corresponding SNM
and SER of the cache memory are obtained using the SER and SNM models
presented in Sect. 3.2.

3.3.3 Aging and Variation-Induced SNM Degradation

SNM degradation affects the metastability of SRAM cells. Metastability of SRAM
cell determines the stability of the stored value, and it is highly dependent on the
worst-case SNM degradation [18]. Therefore, for any workload application, the
aging-induced SNM degradation should be evaluated based on the first cell to fail
(worst-case SNM degradation).

The impact of workload on the SNM degradation of 6T and 8T based caches
across wide supply voltage range is shown in Fig. 9a and b, respectively. For
both cases, the SNM degradation increases significantly with supply voltage
downscaling. Although the aging rate is slower at lower supply voltage values due
to the lower temperature, the wide variation extent in NTC leads to higher aging
sensitivity. Hence, in NTC the impact of process variation on SNM is more severe
and leads to a significant increase in the aging sensitivity of SRAM cells.

3.3.4 Soft Error Rate Analysis

In order to analyze the impact of workload variation on the soft error rate of cache
memories, the architectural vulnerability factor of each workload is extracted and
combined with the circuit-level information. Figure 10 shows the contribution of
the SPEC2000 workload applications on the SER of the 6T SRAM based cache. As
shown in the figure, for all workload applications the SER increases significantly
with supply voltage downscaling. For example, the SER of all workload applications
increases by five orders of magnitude when the supply voltage is downscaled from
the super-threshold voltage (1.1 V) to the near-threshold voltage domain (0.5 V).

318 A. Gebregiorgis et al.

0%

10%

20%

30%

40%

50%

60%

70%

0.5 0.6 0.7 0.8 0.9 1.0 1.1

SN
M

 d
eg

ra
da

ti
on

Vdd

Applu
Bzip2

Lucas
Mesa

Parser
Average

(a)

0%

10%

20%

30%

40%

50%

60%

70%

0.5 0.6 0.7 0.8 0.9 1.0 1.1

SN
M

 d
eg

ra
da

ti
on

Vdd

Applu
Bzip2

Lucas
Mesa

Parser
Average

(b)

Fig. 9 Workload effects on aging-induced SNM degradation in the presence of process variation
for 6T and 8T SRAM cell based cache after 3 years of operation (a) 6T SRAM based cache (b) 8T
SRAM based cache

Additionally, the workload variation has a considerable impact on the soft error
rate. For example, the SER of Bzip2 is almost two orders of magnitude higher
than the SER of Mesa and Parser workload applications. The workload variation
impact is observed because Bzip2 application has higher locality and hit rate
which increases the data residency period when compared to the other workload
applications. Although the higher hit rate of Bzip2 leads to a better performance
measured in Instructions Per Cycle (IPC), it has a significant impact on the soft
error rate of the cache. Hence, it is essential to exploit the workload variation in

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 319

Fig. 10 Workload effect on SER rate of 6T SRAM cell based cache memory for wide supply
voltage range

order to downscale the supply voltage of the cache memory in per-application bases
for a given target error rate. For a given target FIT rate (e.g., 10−2) the cache has
to operate at 0.6 V for Mesa and Parser workload applications. However, for Bzip2
the cache has to operate at a higher voltage (0.7 V) for the same target error rate.

3.3.5 Cache Organization Impact on System FIT Rate

Cache organization has a significant impact on the performance of embedded
processors [34]. Similarly, the organization has an impact on the reliability of
cache units. In NTC, the reliability impact of cache organization is even more
pronounced. Hence, a proper cache size and associativity selection should consider
both performance and reliability as target metrics. The system failure probability
(FIT rate and SNM) of a cache unit is highly dependent on the architectural
vulnerability factor and the values stored in the cache as well as their residency
time intervals, which is in turn is a strong function of the read-write accesses of the
cache. Hence, these parameters are influenced by cache size and associativity.

The performance and reliability impacts of different cache organizations in the
near and super-threshold voltage domains are evaluated using the configurations
described in Table 1. For near-threshold voltage (0.5 V) the processor core frequency
is set to 100 MHz, and the cache latency is set to 1 cycle as gate delay is the dominant
factor in the near-threshold voltage domain [12]. In the super-threshold voltage
domain, however, the cache latency and interconnect delay have a significant impact
on the overall delay. Thus, the cache hit latency is set to 2 cycles for 4 and 8 K cache
sizes and 3 cycles for the 16 K cache size [41].

320 A. Gebregiorgis et al.

20%

30%

40%

50%

60%

70%

4kdm 4k2w 4k4w 8kdm 8k2w 8k4w 16kdm 16k2w 16k4w

SN
M

 d
eg

ra
da

tio
n

Vdd

6TST 6TNT 8TNT

Fig. 11 Impact of cache organization on SNM degradation in near-threshold (NTC) and super-
threshold (ST) in the presence of process variation and aging effect after 3 years of operation

3.3.6 Cache Organization and SNM Degradation

Since cache organization determines the data residency period, it has a direct impact
on the SNM degradation. Figure 11 illustrates the impact of cache organization on
the SNM degradation of near and super-threshold voltage 6T and 8T SRAM cell
based memory arrays in the presence of process variation and aging effects after 3
years of operation. The figure shows smaller cache size with higher associativity
(4 k-4 w) has less impact on SNM degradation as the data resides in the cache for a
smaller duration.

3.3.7 Cache Organization and SER FIT Rate

The cache size and associativity also affect the ACE cycles of cache lines and their
failure probabilities. The impact of the cache organization on the FIT rate and per-
formance (IPC) varies along various supply voltage domains. In the super-threshold
voltage, an increase in cache size and associativity improves the performance.
However, from a FIT rate point of view, an increase in the cache size has a negative
impact on FIT rate as it increases the FIT of the cache. Smaller cache sizes, however,
have lower performance and better FIT rate. Figure 12 shows the design space
of FIT rate and performance (IPC) impact of various cache organizations in the
super-threshold voltage domain. In the figure, the FIT rate and performance optimal
configuration is (8 k-4 w) as indicated by the blue italic font in Fig. 12.

In the near-threshold voltage domain, the performance is mainly dominated
by the delay of the logic unit and the memory failure rate is significantly high.
Therefore, it is essential to select a cache organization that gives better reliability

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 321

 8

 16

 24

 32

 40

0.39
0.42

0.435
0.46

0.467
0.47

0.478
0.481

0.483
0.49

0.5

FI
T

 r
at

e

IPC

8k-4w
4k-4w

4k-2w

8k-2w

4k-dm

8k-dm16k-4w

16k-2w

16k-dm

Fig. 12 FIT rate and performance design space of various cache configurations in the super-
threshold voltage domain by considering average workload effect (the blue italic font indicates
optimal configuration)

 200

 400

 600

 800

 1000

0.25
0.3 0.31

0.34
0.345

0.35
0.351

0.359
0.367

0.375
0.4

FI
T

 ra
te

IPC

8k-4w

4k-4w
4k-2w

8k-2w

4k-dm

8k-dm 16k-4w

16k-2w

16k-dm
6T 8T

Fig. 13 FIT rate and performance design space of 6T and 8T designs for various cache
configurations in the near-threshold voltage domain by considering average workload effect (the
blue italic font indicates optimal configuration)

(FIT rate and SNM) than performance. Hence, in NTC a smaller cache size with
higher associativity gives the best reliability and performance trade-off. Figure 13
shows the design space for the FIT rate and performance trade-off for 6T and 8T
designs in NTC.

322 A. Gebregiorgis et al.

Fig. 14 FIT rate and performance trade-off analysis of near-threshold 6T and 8T caches for
various cache configurations and average workload effect in the presence of process variation and
aging effects. (a) Near-threshold 6T. (b) Near-threshold 8T

3.3.8 Reliability-Aware Optimal Cache Organization

The experimental results reported in Figs. 11, 12, 13, and 14 show an increase in
the cache associativity improves the performance and reliability (both FIT rate and
SNM). Hence, in the super-threshold voltage domain, medium cache size (e.g.,
8 KB) with higher associativity has a better reliability and performance trade-off.
In NTC, however, smaller cache sizes with higher associativity are preferable for
two main reasons: (1) The performance is mainly dominated by the processor core,
not by the cache units and hence, cache latency is not an important issue. (2) The
soft error rate and SNM degradation are higher in NTC than in the super-threshold
voltage domain. Hence, the cache size is reduced by half to obtain a better reliability
and performance trade-off in NTC.

In the NTC domain, the selection of an optimal cache organization for the 6T
SRAM cell based caches is different from the 8T based caches, depending on the
FIT rate and performance requirement. For example, for a target tolerable FIT rate
of 350 at NTC (as shown by the dotted line in Fig. 14a and b), only 4 KB 4-way
associative cache organization is within the acceptable zone for the 6T-based cache.
In the 8T-based cache, however, three additional cache organizations (4 K-dm, 4 k-
2 w, and 8 k-4 w) are within the acceptable zone. Hence, the 8 k-4 w cache is used
in the 8T-based cache to get ≈10% performance improvement without violating the
reliability constraint.

To implement the suggested cache organizations for a specific supply voltage
value (only near-threshold or super-threshold) is straightforward. For caches that are
expected to operate in both super and near-threshold voltage domains, the reliability-
performance optimum cache organization in the super-threshold voltage (e.g., 4-way
8 KB in this case) is preferable. Then, when switching to the near-threshold voltage
domain, some portion of the cache is disabled (power gated) in order to maintain
the reliability-performance trade-off at NTC.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 323

Fig. 15 Energy consumption profile of 6T and 8T based 4 K 4-way cache for wide supply voltage
value ranges averaged over the selected workloads from SPEC2000 benchmarks

3.3.9 Overall Energy-Saving Analysis of 6T and 8T Caches

The energy-saving potential of supply voltage downscaling is evaluated by extract-
ing the average energy consumption profile of the 4 K-Byte 4-way set associative
cache (i.e., the reliability-performance optimal cache configuration) using 6T and
8T implementations. The energy consumption of the cache memory consists of
three different components. These components are peripheries, row and column
decoders, and bit-cell array energy consumptions. Since the energy consumption of
the periphery and row/column decoder is independent of the bit-cell used, they are
assumed to be uniform for both 6T and 8T based caches. Hence, the energy-saving
comparison is done based only on the energy consumption of the bit-cell array.

Figure 15 compares the total energy consumption of the 6T and 8T based cache
memories for a wide supply voltage range. As shown in the figure, the 8T based
cache has slightly higher energy consumption in the super-threshold voltage domain
(0.7–1.1 V) than the 6T based cache. The slightly higher energy consumption is
because of the additional transistors used for read/write decoupling. However, due
to the increase in the failure rate in the near-threshold domain, the 6T based
cache consumes more energy than the corresponding 8T based implementation. The
energy cost of the higher failure rate is considered as an increase in the read/write
latency of the cache. This shows addressing the failures of the 6T cache in NTC
results in additional energy cost which makes it less attractive for operating at lower
supply voltage values (e.g., below 0.6 V).

324 A. Gebregiorgis et al.

3.3.10 Reliability Improvement and Area Overhead Analysis
of 8T Based Caches

In a near-threshold voltage SRAM design, the 8T cell improves the soft error rate
in the presence of aging and variation effects by up to 25%. Similarly, the SNM is
improved by ≈15% using 8T SRAM cells in NTC caches. However, it is expected
that the 8T SRAM design has 30% area overhead than the 6T design due to the two
additional access transistors. In practice, however, the overhead is much less. Since
the 6T SRAM has to be up-sized to increase its read stability, the up-sizing increases
the cell area of the 6T design to the extent of being larger than the area of 8T design,
as experimentally demonstrated in [32].

4 Voltage Scalable Memory Failure Mitigation Scheme

As shown in the analysis presented in Sect. 3, process variation has a significant
impact on the failure rate of memory components operating in the near-threshold
voltage domain. Hence, addressing variation-induced memory failures plays an
essential role in harnessing NTC benefits. One way of mitigating variation-induced
memory failures is by determining the voltage downscaling potential of cache
memories without surpassing the tolerable/correctable error margins. For this
purpose, the operating voltage of caches should be gracefully reduced so that the
number of failing bits due to permanent and transient failures remains tolerable.

This section presents a BIST based voltage scalable mitigation technique to
determine an error-free supply voltage downscaling potential of caches at runtime.
In order to reduce the runtime configuration complexities, the cache organizations
such as size, associativity, and block size are determined during design time. In this
work, the block size is considered as the smallest unit used to transfer data to and
from the cache. Then, a BIST based runtime cache operating voltage downscaling
analysis is performed for a given cache organization. To illustrate the impact of
block size selection, the voltage downscaling potential of two block sizes is studied.

4.1 Motivation and Idea

Due to the wide variation extent in NTC, different memory cells have different SNM
values; as a result, their minimum operating voltages for a proper functionality vary
significantly. The cells with smaller SNM values need to operate at a higher supply
voltage than the cells with larger SNM values. Therefore, the supply voltage of some
cells (cells with smaller SNM value) should be scaled down more conservatively
than the cells with larger SNM in order to maintain the overall reliability. This idea
is exploited in order to minimize the effect of process variation and determine error
tolerant/error-free voltage downscaling potential of near-threshold caches. Since

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 325

(a) (b)

Fig. 16 Error-free minimum operating voltage distribution of 8 MB cache, Set size = 128 Byte
(a) block size= 32 Bytes (4 blocks per set) and (b) block size= 64 Bytes (two blocks per set), the
cache is modeled as 45 nm node in CACTI

cache memories are divided into several blocks, block size selection has a significant
impact on the supply voltage downscaling potential of cache memories. Hence, one
needs to analyze the impact of process variation and supply voltage downscaling
potential of cache memories in a per block bases.

Cache block size has a substantial impact on the miss rate and miss penalty of
caches at the same time. In order to reduce the cache miss rate and its associated
penalty, a larger block size is preferable as it improves locality and reduces the miss
rate. From a reliability point of view, however, larger block sizes have wide variation
extent, and as a result more failing cells in NTC, which makes the entire block fail.
These failures force the cache memory to operate at a much higher voltage (i.e.,
more conservative scaling) leading to a significant reduction in the energy efficiency.
However, this is addressed by decreasing the cache block size in order to reduce
cache operating voltage as the variation extent is minimal in comparison to larger
block sizes.

To exploit this fact, the impact of block size selection on the supply voltage
downscaling potential of a near-threshold voltage 8 KB cache is evaluated as shown
in Fig. 16. The cache is modeled in CACTI [36] with 128 Byte set size and two
different block sizes, and the impact of process variation is modeled using the
threshold voltage variation model given in Eq. (5). As shown in the figure, the
smaller block size (Fig. 16a) has narrow variation extent, and hence, it has more
supply voltage downscaling potential than its larger block size counterpart (Fig. 16b)
at design time. During operation time, the supply voltage downscaling potential of
the larger block size cache is reduced further due to various runtime factors such
as aging-induced SNM degradation and SER. Moreover, smaller block sizes have
lower multiple bit failure rates, and hence, simpler ECC schemes are adopted at a
minimum cost [2]. Table 2 shows the ECC overhead comparison for 64 and 32 Byte

326 A. Gebregiorgis et al.

Table 2 ECC overhead analysis of different block sizes and correction capabilities

Block size = 64 Byte Block size = 32 Byte

ECC
schemes

Area
overhead

Storage
overhead

Latency
overhead

Area
overhead

Storage
overhead

Latency
overhead

SECDED 13k gates 11 bits 2 cycle ≈4k gates 10 bits 1 cycle

DECTED >50k gates 21 bits 4 cycles ≈10k gates 19 bits 2 cycle

4EC5ED ≈60k gates 41 bits 15 cycles ≈50k gates 37 bits 9 cycle

block sizes according to [2]. The table shows dividing the cache into smaller blocks
has an advantage in terms of ECC overhead. Therefore, appropriate cache block
size selection should consider both performance and reliability effects at the same
time in order to achieve maximum performance while operating within the tolerable
reliability margin. Once the cache block size is determined, the cache supply voltage
should be tuned at runtime to incorporate the runtime reliability effects such as
aging. For this purpose, a BIST based supply voltage tuning is used, and its concept
is discussed in the following subsection.

4.2 Built-In Self-Test (BIST) Based Runtime Operating
Voltage Adjustment

Built-In Self-Test (BIST) is a widely used technique to test VLSI system on
chip [22]. Since memory components occupy majority of the chip area, BIST plays a
significant role in testing large and complex memory arrays easily [5, 22]. In order to
determine the runtime supply voltage downscaling potential of caches, it is essential
to assume a cache memory is equipped with BIST infrastructure to test the entire
memory.

In a conventional BIST, the BIST controller generates the test addresses and test
patterns (finite number of read/write operations). Then, the test is performed, and the
test result is compared with the expected response to determine the failing cells [5].
In this case, however, since the BIST module has to determine the minimum scalable
voltage of each block, the test controller has to be modified in order to iteratively
test and generate the minimum scalable voltages of each block. The goal is first to
determine the error-free minimum scalable voltage of each cache block with/without
error correction hardware. Then, the cache operating voltage is determined based on
the block with higher operational voltage as shown in Eq. (7), such that the runtime
memory failure is minimized.

Vcache
dd = max

0≤i≤N−1
VBi

dd (7)

where N is the total number of cache blocks, and VBi

dd is the runtime minimum
scalable voltage of block Bi obtained using the iterative BIST.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 327

Algorithm 1 Runtime cache operating voltage adjustment
1: function CACHE-Vdd -SCALING (Cs, Vdd , Bs , Fm){Cs=cache size, Vdd = operating voltage, Bs=block size,

Fm=tolerable margin of failing bits}
2: Bt ← Cs

Bs
;{ Bt =total number of cache blocks}

3: for block i←1 to Bt do
4: Fc ←0; {Fc=failing cells counter}
5: Vnew

dd
← Vdd ; { Vnew

dd
=voltage used to perform BIST}

6: while Fc ≤Fm do
7: Perform BIST using Vnew

dd
;

8: Fc ← failing cells;{total number of failing cells per block}
9: Vnew

dd
←Vnew

dd
-�Vdd ;{reduce operating voltage by �Vdd }

10: end while
11: end for
12: Vcache

dd
← max

1≤i≤Bt
V new

ddi
;{ Vnew

ddi
new operating voltage of blocki}

Algorithm 1 presents the iterative BIST technique used to determine the min-
imum scalable voltage of cache memory by considering permanent and runtime
memory failures. The algorithm takes cache size (Cs), operating voltage (Vdd),
block size (Bs), and tolerance margin (Fm) as its input. Then, the number of
cache blocks is determined by dividing the cache size by the block size (Step 2).
Afterward, the minimum scalable voltage of each block is obtained by gradually
reducing the operating voltage, and conducting block-level BIST to determine the
total number of failing bits at each operating voltage level (Steps 3–10). It should
be noted that, the supply voltage is reduced as long as the number of failing bits per
block is within the tolerable/correction capability of the adopted error correction
scheme. For example, a cache memory equipped with a Single Error Correction
Double Error Detection (SECDED) infrastructure tolerates two failing bits per block
(hence Fm = 2) as SECDED corrects only one bit and detects two erroneous bits
at a time. Hence, whenever two failing bits are detected the error-free version is
loaded from the lower-level memory which makes SECDED sufficient solution for
tolerating two failing bits per block. Finally, the algorithm determines the operating
voltage of the cache based on the block with the highest voltage as shown in Step 12.

The overall flow of the cache access control logic along with the BIST infras-
tructure as well as mapping logic is presented in Fig. 17. The cache controller first
decodes the address and identifies the requested block. Then, it determines if the
requested block is functional or failing block for the specified operating voltage. If
the requested block is functional, then a conventional block access is performed. In
case the requested block is a failing one, the error tolerant block mapping scheme is
employed to redirect the access request.

Since this approach considers the effect of permanent and transient failure
mechanisms, it is orthogonal with different dynamic cache mitigation schemes such
as block disabling [1, 43] and strong ECC schemes [2]. For energy-critical systems,
block disabling technique is applied in combination with this approach to downscale
the cache operating voltage aggressively by disabling the failing blocks at lower
operating voltages at the cost of performance reduction (increase in miss rate).

328 A. Gebregiorgis et al.

Failing block?

Block mapping

Hit?

Respond request

Normal block
access

Hit? Access lower memory

Yes

Yes

No No

No

BIST

Cache access control

Failure map

Address decoder/ block identification

Mapped marginal block

Yes

Fig. 17 Cache access control flowchart equipped with BIST and block mapping logic

4.3 Error Tolerant Block Mapping

Once the minimum scalable voltages of the cache blocks are determined, the
next task is to disable the failing blocks, and map their read/write accesses to
the corresponding non-failing blocks in order to ensure reliable cache operation.
Additionally, in order to reduce the vulnerability to runtime failures (such as noise
and soft errors), the non-failing blocks are stored in a stack frame sorted by their
minimum scalable voltage values. Since the marginal blocks (blocks with less
voltage downscaling potential) are more sensitive to runtime failures, they are stored
at the top of the stack. Then, access to a disabled block is mapped to the marginal
blocks in the stack. The mapping enables to reduce soft error vulnerability of the
marginal blocks by reducing their data residency period. Since a stack is a linear
data structure in which the insertion and deletion operations are performed at only
one end commonly known as “top,” the marginal blocks need to be at the top (upper
half) of the stack to ensure their fast replacement.

The mapping process is illustrated in Fig. 18 by using an illustrative example.
As shown in the figure, the cache blocks are divided into three categories: (1) red
blocks are failing blocks. (2) yellow blocks are marginal blocks (non-failing but with
limited supply voltage downscaling potential). (3) blue blocks are robust blocks (i.e.,
non-failing with higher supply voltage downscaling potential). Hence, the marginal
blocks are stored at the top of the stack frame. Then, when a disabled (failing) block
is requested (e.g., B5) its access request is mapped to a marginal block at the top
of the stack frame (e.g., B4), and the stack pointer is updated to point to the next
element in the stack. This process continues until all the disabled blocks are mapped.
It should be noted that once a block is mapped, it is removed from the mapping stack

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 329

Block mapping stack frame

B0 B1 B2

B3 B4 B5

B6 B7 B8

B9 B10 B11

B12 B13 B14

Memory array

BIST
module

B14
B13
B7
B3
B9
B10
B0
B8
B11
B6
B1
B4

B14
B13
B7
B3
B9
B10
B0
B8
B11
B6
B1

B14
B13
B7
B3
B9
B10
B0
B8
B11
B6

Failure map and Vdd_min

B0 B1 B2

B3 B4 B5

B6 B7 B8

B9 B10 B11

B12 B13 B14

Requested

B5

Map B5 to B4
and update

stack pointer

Requested

B12

Map B12 to
B1 and update
stack pointer

Robust blocks Marginal blocks Failing blocks

Fig. 18 Error tolerant cache block mapping scheme (mapping failing blocks to marginal blocks)

Table 3 Minimum scalable voltage analysis for different ECC schemes

Minimum scalable voltage in [V]

ECC-Scheme Block size = 16Byte Block size = 32Byte Block size = 64Byte

No-ECC 0.50 0.53 0.54

Parity 0.47 0.51 0.53

SECDED 0.43 0.48 0.50

when updating the stack pointer. For example, when block B5 is mapped to block
B4, then, block B4 is removed from the stack as shown by the empty slot in Fig. 18.

4.4 Evaluation of Voltage Scalable Mitigation Scheme

4.4.1 Variation-Aware Voltage Scaling Analysis

The supply voltage scalability of three different block sizes (16, 32, and 64
Byte) with different error correction schemes is compared in order to analyze
the impact of block size selection on the supply voltage downscaling potential
of cache memories with and without error correction schemes. The error-free
(correctable error) minimum voltage of three block sizes is studied for 8 KB cache
memory without ECC, parity, and Single Error Correction Double Error Detection
(SECDED) configurations. Table 3 shows the supply voltage downscaling potential
of the studied block sizes. For all ECC schemes (given in Table 3), the cache
operating voltage has to be downscaled more conservatively when the block size is
larger (64 Bytes). However, larger block sizes help to reduce the cache miss rate that
results in a better cache performance. Therefore, for an aggressive supply voltage
downscaling, the block size should be selected as small as possible by making
performance and energy-saving trade-off analysis.

330 A. Gebregiorgis et al.

Fig. 19 Comparison of
voltage downscaling in the
presence of block disabling
and ECC induce overheads
for gzip, parser, and mcf
applications from SPEC2000
benchmark (a) energy
consumption comparison (b)
Performance comparison in
terms of IPC

(a)

(b)

4.4.2 Energy and Performance Evaluation of Voltage Scalable Cache
Different ECC Schemes

The average energy reduction and performance comparison of voltage scaled cache
memory with and without ECC are given in Fig. 19a and b by running selected
workloads (gzip, parser, and mcf) from the SPEC2000 benchmark. The energy
results in Fig. 19a are extracted from CACTI by considering block disabling, and
ECC induced delay and energy overheads. As shown in the figure, supply voltage
downscaling improves the energy efficiency significantly. However, the overheads of
this scheme, namely ECC energy overhead, block disabling induced cash miss rate,
and ECC encoding/decoding delay overhead outweigh the energy gain of supply
voltage downscaling when the cache operating voltage is below 0.7 V. Therefore,
the energy per access of Double Error Correction Triple Error Detection (DECTED)
is higher than SECDED when the supply voltage is scaled down to 0.7 V or below.
Similarly, Fig. 19b shows the cache performance (IPC) is reduced significantly with
the supply voltage downscaling as more blocks are disabled for reliable operation.

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 331

5 Conclusion

Embedded microprocessors, particularly for battery-powered mobile applications,
and energy-harvested Internet of Things (IoT) are expected to meet stringent
energy budgets. In this regard, operating in the near-threshold voltage domain
provides better performance and energy efficiency trade-offs. However, NTC faces
various challenges among which increase in functional failure rate of memory
components is the dominant issue. This chapter analyzed the combined effect of
aging, process variation, and soft error on the reliability of cache memories in
super and near-threshold voltage domains. It is observed that the combined effect
of process variation and aging has a massive impact on the soft error rate and
SNM degradation of NTC memories. Experimental results show process variation
and aging-induced SNM degradation is 2.5× higher in NTC than in the super-
threshold voltage domain while SER is 8× higher. The use of 8T instead of 6T
SRAM cells reduces the system-level SNM and SER by 14% and 22%, respectively.
Additionally, workload and cache organization have a significant impact on the FIT
rate and SNM degradation of memory components. This chapter demonstrated that
the reliability and performance optimal cache organization changes when going
from the super-threshold voltage to the near-threshold voltage domain.

References

1. Agarwal, A., Paul, B.C., Mahmoodi, H., Datta, A., Roy, K.: A process-tolerant cache
architecture for improved yield in nanoscale technologies. IEEE Trans. Very Large Scale Integr.
Syst. 13, 27–38 (2005)

2. Alameldeen, A.R., Wagner, I., Chishti, Z., Wu, W., Wilkerson, C., Lu, S.L.: Energy-efficient
cache design using variable-strength error-correcting codes. In: ACM SIGARCH Computer
Architecture News (2011)

3. Aly, R.E., Faisal, M.I., Bayoumi, M.A.: Novel 7T sram cell for low power cache design. In:
Proceedings of the 2005 IEEE International SOC Conference (2005)

4. Amrouch, H., van Santen, V.M., Ebi, T., Wenzel, V., Henkel, J.: Towards interdependencies of
aging mechanisms. In: Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (2014)

5. Au, A., Pogiel, A., Rajski, J., Sydow, P., Tyszer, J., Zawada, J.: Quality assurance in memory
built-in self-test tools. In: 17th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (2014)

6. Autran, J.L., Serre, S., Munteanu, D., Martinie, S., Semikh, S., Sauze, S., Uznanski, S.,
Gasiot, G., Roche, P.: Real-time soft-error testing of 40 nm SRAMS. In: Proceedings of IEEE
International Reliability Physics Symposium (IRPS) (2012)

7. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,
D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM SIGARCH Comput. Archit.
News 39, 1–7 (2011)

8. Calhoun, B.H., Chandrakasan, A.: A 256kb sub-threshold SRAM in 65nm CMOS. In: 2006
IEEE International Solid State Circuits Conference-Digest of Technical Papers (2006)

9. Cazeaux, J.M., Rossi, D., Omana, M., Metra, C., Chatterjee, A.: On transistor level gate
sizing for increased robustness to transient faults. In: 11th IEEE International On-Line Testing
Symposium, IOLTS (2005)

332 A. Gebregiorgis et al.

10. Chang, L., Montoye, R.K., Nakamura, Y., Batson, K.A., Eickemeyer, R.J., Dennard, R.H.,
Haensch, W., Jamsek, D.: An 8T-SRAM for variability tolerance and low-voltage operation in
high-performance caches. IEEE J. Solid-State Circ. 43, 956–963 (2008)

11. Chatterjee, I., Narasimham, B., Mahatme, N., Bhuva, B., Reed, R., Schrimpf, R., Wang, J.,
Vedula, N., Bartz, B., Monzel, C.: Impact of technology scaling on SRAM soft error rates.
IEEE Trans. Nuclear Sci. 61, 3512–3518 (2014)

12. Chen, H., Manzi, D., Roy, S., Chakraborty, K.: Opportunistic turbo execution in NTC:
exploiting the paradigm shift in performance bottlenecks. In: Proceedings of the 52nd Annual
Design Automation Conference (2015)

13. Chen, Y.H., Chan, W.M., Wu, W.C., Liao, H.J., Pan, K.H., Liaw, J.J., Chung, T.H., Li, Q., Lin,
C.Y., Chiang, M.C., et al.: A 16 nm 128 Mb SRAM in high-κ metal-gate FinFET technology
with write-assist circuitry for low-VMIN applications. IEEE J. Solid-State Circuits 50, 170–
177 (2015)

14. Dreslinski, R., Wieckowski, M., Blaauw, D.S., Mudge, T.: Near threshold computing: Over-
coming performance degradation from aggressive voltage scaling. In: Proceedings of the
Workshop Energy-Efficient Design (2009)

15. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold
computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE
98, 253–266 (2010)

16. Ebrahimi, M., Evans, A., Tahoori, M.B., Seyyedi, R., Costenaro, E., Alexandrescu, D.:
Comprehensive analysis of alpha and neutron particle-induced soft errors in an embedded
processor at nanoscales. In: Proceedings of the conference on Design, Automation & Test in
Europe (2014)

17. Gebregiorgis, A., Tahoori, M.B.: Reliability and performance challenges of ultra-low voltage
caches: A trade-off analysis. In: IEEE 24th International Symposium on On-Line Testing and
Robust System Design (IOLTS) (2018)

18. Gebregiorgis, A., Ebrahimi, M., Kiamehr, S., Oboril, F., Hamdioui, S., Tahoori, M.B.: Aging
mitigation in memory arrays using self-controlled bit-flipping technique. In: 20th Asia and
South Pacific Design Automation Conference (ASP-DAC) (2015)

19. Gebregiorgis, A., Kiamehr, S., Oboril, F., Bishnoi, R., Tahoori, M.B.: A cross-layer analysis of
soft error, aging and process variation in near threshold computing. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE) (2016)

20. Gebregiorgis, A., Bishnoi, R., Tahoori, M.B.: A comprehensive reliability analysis framework
for NTC caches: a system to device approach. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst. 38, 439–452 (2018)

21. Grossar, E., Stucchi, M., Maex, K., Dehraene, W.: Read stability and write-ability analysis of
SRAM cells for nanometer technologies. IEEE J. Solid-State Circuits 41, 2577–2588 (2006)

22. Hamdioui, S., Al-Ars, Z., Gaydadjiev, G.N., Van de Goor, A.: Generic march element based
memory built-in self test. US Patent 8,910,001, 2014

23. Hazucha, P., Svensson, C.: Impact of CMOS technology scaling on the atmospheric neutron
soft error rate. IEEE Trans. Nuclear Sci. 47, 2586–2594 (2000)

24. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: Lessons learnt and future trends. In: Proceedings of
the 50th Annual Design Automation Conference (2013)

25. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millennium. Com-
puter 33, 28–35 (2000)

Reliability Analysis and Mitigation of Near-Threshold Voltage (NTC) Caches 333

26. Hubert, G., Artola, L., Regis, D.: Impact of scaling on the soft error sensitivity of bulk, FDSOI
and FinFET technologies due to atmospheric radiation. Integration 50, 39–47 (2015)

27. Jahinuzzaman, S.M., Sharifkhani, M., Sachdev, M.: An analytical model for soft error critical
charge of nanometric SRAMs. IEEE Trans. Very Large Scale Integr. Syst. 17, 1187–1195
(2009)

28. Jeppson, K.O., Svensson, C.M.: Negative bias stress of MOS devices at high electric fields and
degradation of MNOS devices. J. Appl. Phys. 48, 2004–2014 (1977)

29. Jiang, C., Zhang, D., Zhang, S., Wang, H., Zhuang, Z., Yang, F.: A yield-driven near-
threshold 8-T SRAM design with transient negative bit-line scheme. In: 7th IEEE International
Conference on Electronics Information and Emergency Communication (ICEIEC) (2017)

30. Kuhn, K.J., Giles, M.D., Becher, D., Kolar, P., Kornfeld, A., Kotlyar, R., Ma, S.T., Maheshwari,
A., Mudanai, S.: Process technology variation. IEEE Trans. Electr. Devices 58, 2197–2208
(2011)

31. Maric, B., Abella, J., Valero, M.: Adam: An efficient data management mechanism for hybrid
high and ultra-low voltage operation caches. In: Proceedings of the Great Lakes Symposium
on VLSI (2012)

32. Morita, Y., Fujiwara, H., Noguchi, H., Iguchi, Y., Nii, K., Kawaguchi, H., Yoshimoto, M.:
An area-conscious low-voltage-oriented 8T-SRAM design under DVS environment. In: IEEE
Symposium on VLSI Circuits (2007)

33. Mukhopadhyay, S., Mahmoodi, H., Roy, K.: Modeling of failure probability and statistical
design of SRAM array for yield enhancement in nanoscaled CMOS. IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. 24, 1859–1880 (2005)

34. Olorode, O., Nourani, M.: Improving performance in sub-block caches with optimized
replacement policies. ACM J. Emerg. Technolo. Comput. Syst. 11, 1–22 (2015)

35. Seok, M., Chen, G., Hanson, S., Wieckowski, M., Blaauw, D., Sylvester, D.: CAS-FEST 2010:
Mitigating variability in near-threshold computing. IEEE J. Emer. Sel. Topics Circuits Syst. 1,
42–49 (2011)

36. Shivakumar, P., Jouppi, N.P.: Cacti 3.0: An integrated cache timing, power, and area model.
Technical Report, Compaq Computer Corporation (2001)

37. Siddiqua, T., Gurumurthi, S., Stan, M.R.: Modeling and analyzing NBTI in the presence of
process variation. In: 12th International Symposium on Quality Electronic Design (ISQED)
(2011)

38. Sridharan, V., Kaeli, D.R.: Using hardware vulnerability factors to enhance AVF analysis.
ACM SIGARCH Comput. Archit. News 38, 461–472 (2010)

39. Takeda, K., Hagihara, Y., Aimoto, Y., Nomura, M., Nakazawa, Y., Ishii, T., Kobatake, H.: A
read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications. IEEE J.
Solid-State Circuits 41, 113–121 (2006)

40. Tonfat, J., Azambuja, J.R., Nazar, G., Rech, P., Frost, C., Kastensmidt, F.L., Carro, L., Reis,
R., Benfica, J., Vargas, F., et al.: Analyzing the influence of voltage scaling for soft errors
in SRAM-based FPGAs. In: 14th European Conference on Radiation and Its Effects on
Components and Systems (RADECS) (2013)

41. Understanding CPU caching and performance (2015). http://http://arstechnica.com/gadgets/
2002/07/caching/2/

http://http://arstechnica.com/gadgets/2002/07/caching/2/
http://http://arstechnica.com/gadgets/2002/07/caching/2/

334 A. Gebregiorgis et al.

42. Wilkening, M., Sridharan, V., Li, S., Previlon, F., Gurumurthi, S., Kaeli, D.R.: Calculating
architectural vulnerability factors for spatial multi-bit transient faults. In: Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture (2014)

43. Wilkerson, C., Gao, H., Alameldeen, A.R., Chishti, Z., Khellah, M., Lu, S.L.: Trading off
cache capacity for reliability to enable low voltage operation. In: ACM SIGARCH Computer
Architecture News (2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part IV
Cross-Layer from Physics to Gate- and

Circuit- Levels

Mehdi Tahoori

The rapid shrinking of device geometries in the nanometer regime has led to the
need for new system-on-chip (SoC) design methodologies at various levels of
abstraction. Improvements in chip manufacturing technology and system integration
have propelled an astonishing growth of computing systems which are integrated
into almost all aspects of our daily lives. However, this trend is facing serious
challenges, both at device and system levels. At the device level, as the minimum
feature size continues to shrink, a host of vulnerabilities influence the robustness
and reliability of computing systems. Some of these factors are caused by the
stochastic nature of the nanoscale manufacturing process (e.g., process variability,
sub-wavelength lithographic inaccuracies), while other factors appear because of
high operating frequencies and intrinsic nanoscale features (e.g., RLC noise, on-
chip temperature variation, increased sensitivity to radiation and device aging).
Therefore, the reliability of systems on chip is not only limited to the technology
parameters and hardware design, it is highly influenced by the runtime environment
and executed workload, which can aggravate hardware stress and cause failures.

The chapters presented in this section are looking at the reliability issues from
the circuit, logic, and physical design perspective, while linking the issues to the
technology from one side and higher abstraction level (architecture, system, and
workload) from the other end, therefore they represent a cross-layer angle on these
reliability challenges.

The first chapter in this section addressed transistor aging in system bistables,
mainly flip-flops. It presents various methods to improve the reliability of gate-level
digital circuits by addressing the timing degradation of flip-flops under severe aging
and voltage-drop. This is achieved through selective flip-flop optimization. The idea
presented in this chapter is to find timing-critical flip-flops under high aging and/or
voltage-drop impact, and selectively re-optimize them for operating under such

M. Tahoori
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
e-mail: mehdi.tahoori@kit.edu

mailto:mehdi.tahoori@kit.edu

336 M. Tahoori

stress by appropriately sizing their transistors. Therefore, instead of replacing all
flip-flops in the netlist with the hardened versioned, only the ones which are subject
to extreme stress are replaced by hardened version. This is achieved by a cross-
layer analysis which based on the architecture and analyzing the running workload,
the flip-flops under severe aging and voltage fluctuation stress are identified. This
effectively improves the reliability and lifetime of circuits without imposing much
overhead, because these flip-flops constitute a small portion of all flip-flops.

The second chapter in this section focuses on electromigration (EM) which
is the major interconnect aging effect in advanced technology nodes. It provides
techniques for power grid network sizing while considering electromigration relia-
bility. This chapter starts with an overview power grid network and electromigration
fundamentals. The main issue addressed in this chapter is EM immortality and aging
effects, used as EM constraints when formulating the optimization problems. When
an interconnect line is below a critical stress, the void nucleation cannot occur and
hence the metal wires become immortal and will not fail. The chapter first shows
that the new Power/ground (P/G) optimization problem, subject to the voltage IR
drop and new EM constraints, can still be formulated as an efficient sequence of
linear programming (SLP) problem. The new optimization will ensure that none of
the wires fail if all the constraints are satisfied. However, requiring all the wires to be
EM immortal can be over-constrained. To mitigate this problem, the improvement
is to consider the aging effects of interconnect wires in P/G networks.

The third chapter is devoted to various monitoring circuitry for improving cross-
layer resiliency. The role of monitor circuits is to establish a bridge between
the hardware and other layers by providing information about the devices and
the operating environment in runtime. This chapter explores delay-based monitor
circuits for design automation with the existing cell-based design methodology.
The chapter reviews several design techniques to monitor parameters of threshold
voltage, temperature, leakage current, critical delay, and aging. The chapter then
demonstrates a reconfigurable architecture to monitor multiple parameters with
small area footprint. Finally, an extraction methodology of physical parameters is
discussed for model-hardware correlation.

The last chapter discusses yield and aging in scaled technologies. For the
robustness of VLSI design methodology and cycles, reliability and yield need to
be accurately modeled, systematically optimized, and seamlessly integrated into the
existing design flow. This chapter will survey critical aging and yield issues, and
then review the state-of-the-art techniques to tackle them, including both modeling
and optimization strategies which reside across the Physics and Circuit/Gate layers
as part of the overall dependability scheme. The strategies often involve synergistic
cross-layer optimization due to the complicated VLSI design procedures nowadays.
Novel modeling techniques leveraging machine learning are analyzed along with
analytical optimization approaches.

Selective Flip-Flop Optimization for
Circuit Reliability

Mohammad Saber Golanbari, Mojtaba Ebrahimi, Saman Kiamehr,
and Mehdi B. Tahoori

1 Introduction, Motivation, and Contributions

VLSI circuits are influenced by several sources of process and runtime variabilities
[16]. Among them, supply voltage fluctuation and transistor aging due to BTI are the
most important factors [2, 30, 36]. They degrade the performance of VLSI circuits
by increasing the delay, and consequently deteriorate lifetime.

The impacts of both voltage-drop and aging are significant on sequential ele-
ments such as flip-flops and latches. Due to particular aspects of flip-flops, such as
the internal feedback structure, degradation of the transistors of a flip-flop as well as
supply voltage fluctuation may lead to serious timing degradation or even functional
failure (inability to capture the input independent of timing) [24]. Furthermore,
many flip-flops are on the critical paths of a circuit because logic synthesis tools
balance the delays of circuit paths to achieve the best performance, area, and power.
Therefore, it is necessary to employ design-time mitigation techniques to consider
and control such gradual degradation, e.g. by adding appropriate timing margins
(aging and voltage-drop guardband) [20, 28].

Our analysis shows that in a typical digital design such as a microprocessor,
based on the functionality of different components, some flip-flops operate under
static or near-static BTI stress, irrespective of the workload. These flip-flops expe-
rience large timing degradation because the flip-flop input Signal Probability (SP)
is very close to 0.0 or 1.0. Being subject to severe BTI stress, the aforementioned
flip-flops degrade faster, imposing a large aging guardband to the entire circuit.
Flip-flops also experience a large temporally localized voltage-drop, because they
are synchronized with the clock edge and supposedly operate at the same time (at

M. S. Golanbari · M. Ebrahimi · S. Kiamehr · M. B. Tahoori (�)
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: golanbari@kit.edu; mehdi.tahoori@kit.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_14

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_14&domain=pdf
mailto:golanbari@kit.edu
mailto:mehdi.tahoori@kit.edu
https://doi.org/10.1007/978-3-030-52017-5_14

338 M. S. Golanbari et al.

clock edge), hence, drawing substantial current leading to a significant voltage-drop
over Power Delivery Network (PDN) [22]. Moreover, recent studies have shown
that the voltage-drop impact gets more severe by technology scaling [2, 21, 38].
Therefore, in a conventional design flow, costly voltage-drop timing guardband is
considered for reliable circuit operation [22].

In this chapter, we explore methods to improve circuit reliability by addressing
the timing degradation of flip-flops under severe aging1 and voltage-drop, i.e. selec-
tive flip-flop optimization. The idea is to find timing-critical flip-flops under high
aging and/or voltage-drop impact, and selectively re-optimize them for operating
under such stress by appropriately sizing their transistors. This effectively improves
the reliability and lifetime of circuits without imposing much overhead, because
these flip-flops constitute a small portion of all flip-flops.

Simulation results obtained by applying the proposed method to a processor
show that the flip-flops optimized with the proposed method exhibit much less
delay degradation, while imposing less than 0.1% leakage power overhead to the
processor. As a result, the required timing guardband of the processor using the
proposed method is significantly less compared to the original processor. Therefore,
given a specific clock period, the optimized processor design with the proposed
method has 36.9% longer lifetime and better reliability compared to the original
processor design.

2 Variability Impact on Flip-Flops

2.1 Flip-Flop Timing

Flip-flop timing metrics such as setup-time (U), hold-time (H), clock-to-q (DCQ),
and data-to-q (DDQ) are well discussed in [31, 34]. When the setup-time is large
enough, the clock-to-q value is almost constant, but further reduction of the setup-
time will increase the clock-to-q value monotonously until a value after which the
flip-flop is unable to capture and latch the input [31]. Based on this, the optimum
setup-time is defined as the setup-time value which causes the clock-to-q value to
increase by 10% from its minimum value [32]. Moreover, each flip-flop has two
internal paths; one for transferring the input state “zero” to the output i.e. High-to-
Low (HL) input transition, and the other for transferring the input state “one” to the
output i.e. Low-to-High (LH) input transition. Basically, the timing parameters for
these two internal paths can be different [24] as shown in Fig. 1, meaning that there
are two sets of timing parameters for internal LH and HL paths of a flip-flop:

{ULH ,DCQLH
,DDQLH

} for LH transition,

1We consider the impact of Negative Bias Temperature Instability (NBTI) on PMOS transistors,
and Positive Bias Temperature Instability (PBTI) on NMOS transistors.

Selective Flip-Flop Optimization for Circuit Reliability 339

C
lo

ck
 e

dg
e

Clock-to-q (LH)

Clock-to-q (HL)

Setup-time (LH)

Setup-time(HL)

LH
transition

HL
transition

Data-to-q (LH)

FF delay = Setup-time (LH)
+ Clock-to-q (HL)

Flip-flop
INPUT (D)

Flip-flop
OUTPUTS
(Q, QB)Data-to-q (HL)

Fig. 1 Different flip-flop timing parameters. The correct functionality is guaranteed by consider-
ing the flip-flop delay as illustrated

{UHL,DCQHL
,DDQHL

} for HL transition.

Flip-flop delay should be defined such that the correct functionality of the flip-flop
will be guaranteed, disregard of the transition. Therefore, we define the flip-flop
delay as the summation of the worst setup-time and the worst clock-to-q of both
transitions as shown in Fig. 1.

delay = max{ULH ,UHL} +max{DCQLH
,DCQHL

}. (1)

This guarantees that in both transitions the input signal is correctly captured and
propagated to the flip-flop output.

2.2 Runtime Variation Impacts on Flip-Flops

Several parameters such as supply voltage, workload, and temperature affect the
performance of flip-flops in a circuit. Parameters such as temperature and supply
voltage affect all the transistors of a flip-flop in the same way, whereas the impact
of the input SP is different for the transistors of a flip-flop [23]. This results in an
asymmetric aging of transistors according to their stress duty cycles. Therefore, the
delay degradation of internal LH and HL paths inside an aged flip-flop depends on
the input SP [24].

340 M. S. Golanbari et al.

ck

ckb

ckb

ck

ckb

ck

ck

ckb
D Q

c

ck
Q

ck

(a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fl
ip

-
)

%(esaercni yaled polf

Input Signal Probability (SP)

LH delay increase
HL delay increase

(b)

Fig. 2 Separate internal LH (red)/HL (blue) paths of a C2MOS flip-flop [31] (a), and delay of
internal LH/HL paths of an aged C2MOS flip-flop after 5 years (optimized for Power Delay Product
(PDP) in the fresh state) for different input SPs (b)

In the C2MOS flip-flop2 depicted in Fig. 2a, the internal LH and HL paths consist
of two separate groups of transistors, which makes the aging of these two paths
independent according to the input SP. Figure 2b illustrates the delay of LH and
HL transitions of an aged C2MOS flip-flop [31] for different input SPs. When the
flip-flop is aged under input SP = 0.0 (SP0), the worst delay degradation happens
on the flip-flop HL path; however, the delay of the flip-flop LH path is only slightly
affected. On the other hand, an aging under input SP = 1.0 (SP1) greatly degrades
the delay of the flip-flop LH path while slightly affecting the delay of the flip-flop
HL path. For moderate aging condition, i.e. 0.1 < SP < 0.9, the delay degradation
of both LH and HL paths is moderate. The reason is that under SP0 and SP1
conditions, Static BTI (S-BTI) asymmetrically alters the threshold voltages leading
to unbalanced aging of LH and HL paths of the flip-flop as the stress duty cycle of
some transistors is 1.0, i.e., always under BTI stress. However, in moderate aging
condition, the transistors can partially recover as the stress duty cycle is less than
1.0.

The impact of supply voltage fluctuation on the flip-flops of a circuit depends on
the workload variation and dynamic power consumption of the circuit. Therefore,
each flip-flop may experience a specific amount of voltage-drop. A voltage-drop
causes performance degradation of the flip-flops, which is typically larger than the
degradation of simpler combinational gates in the standard cell library. Figure 3
compares the impact of a voltage-drop up to 10% on the delay of an aged flip-flop
and an aged inverter. Compared to a no-voltage-drop condition, the delay of the
flip-flop increases by 23.6% whereas the delay of the inverter is increased by 15%.

Moreover, the flip-flops of a circuit generally experience higher amount of
voltage-drop compared to combinational gates [37]. As a result of temporally

2A C2MOS flip-flop design is a master–slave flip-flop built of two connected C2MOS latches. It is
one of the commonly used flip-flops in modern processor designs [31].

Selective Flip-Flop Optimization for Circuit Reliability 341

10.07.55.02.50.0

Voltage drop (%)

0

5

10

15

20

25

D
e
la
y
in
cr
e
a
se
(%
)

Inverter

Flip-Flop

Fig. 3 Comparison between the voltage-drop induced delay degradation of a flip-flop and an
inverter, which are aged under same condition (Aging under SP1 for 5 years)

localized switching of flip-flops at the positive (or negative) edge of clock signal,
the instantaneous current drawn from PDN at the synchronized clock edge is
comparatively high. This leads to high voltage-drop at the clock edge, when the flip-
flops are processing their input signals. This peak current consumption is damped
over the rest of the clock period, when the combinational cells are active. Therefore,
in this work we focus on dealing with the impact of voltage fluctuation on the flip-
flops.

Temporal and spatial temperature variations can also affect the circuit per-
formance. The temporal temperature change could be rather high and has been
the subject of research since it affects the reliability of the VLSI circuits. It
is demonstrated in [17] that the circuit performance can be changed by up to
10% for 110 ◦C temperature variation. Therefore, in order to meet the reliability
constraints, the circuit timing should be adjusted according to the worst temperature
corner, which is typically at high temperature. On-chip spatial temperature gradient
puts different stress on circuit components across a chip. The amount of on-chip
spatial temperature difference (only on cores) based on simulation [3, 7], sensor
measurements [33], and thermal camera [3] is reported to be up to∼30◦C. Since the
delay change is approximately 4% for every 40 ◦C [17, 29], the overall difference
between the delay degradation of core flip-flops due to such spatial temperature
gradient is expected to be less than 3%, and hence, much smaller compared to
voltage-drop variation [11].

The combined impact of voltage-drop and aging significantly degrades the
performance of flip-flops. As an example, the delay of a fresh flip-flop optimized
with balanced HL/LH delay increases from 98.5 ps to 165.7 ps due to the combined
impact of voltage-drop (10%) and S-BTI (5-years under SP0). This is equivalent to
68% delay increase. If such a flip-flop is in a critical path of the circuit, a large timing
guardband is required for timing closure considering the reliability constraints.
Therefore, it is necessary to find such flip-flops at design-time and optimize them
for operating under such conditions.

342 M. S. Golanbari et al.

SP = 0
0 < SP ≤ 0.01

0.01 < SP ≤ 0.1

0.1 < SP ≤ 0.5

0. 5 < SP ≤ 0.9

0.9 < SP ≤ 0.99

0.99 < SP ≤ 1

SP = 1

0

100

200

300

400

500

600

#
of

Fl
ip

-fl
op

s

24

26

28

30

32

34

36

38

Fl
ip

-fl
op

de
la

y
in

cr
ea

se
(%

)

delay increase

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Voltage drop (relative to maximum voltage drop)

0

100

200

300

400

#
FF

s

Fig. 4 (a) Input signal probabilities and (b) voltage-drop analysis of Leon3 flip-flops executing
MiBench Workloads

2.3 Significance of Flip-Flops in Circuit Reliability

In a properly designed circuit, the timing of circuit paths are balanced during the
synthesis process. Therefore, many flip-flops are timing-critical as they lie on the
circuit critical paths. Studies [12, 37] have shown that in VLSI circuits, some flip-
flops are under severe static BTI leading to a large timing degradation over time.
Furthermore, the impact of voltage-drop on flip-flops could be very high as a result
of localized power consumption at a specific time (e.g. positive clock edge) or at a
specific location on the circuit layout.

The large impact of S-BTI and voltage-drop on flip-flops has a significant impact
on the reliability of a circuit when such flip-flops are timing-critical. In order to
investigate the likelihood of having such a scenario in a typical digital design, we
use the flow presented in Sect. 4 to extract the voltage-drop and the aging of the
Leon3 flip-flops by executing six MiBench workloads [15] namely stringsearch,
qsort, basicmath, bitcount, fft, and crc32 on Leon3 processor [10]. In order to be
fair, we excluded the flip-flops belonging to the parts which are not exercised by
the employed workloads such as interrupt handler, timers, and UART controller.
The synthesized netlist of the Leon3 processor has 2352 flip-flops, but the results
demonstrated in this section contain only 1686 flip-flops belonging to the parts
which are exercised by all employed workloads.

Figure 4a demonstrates the input SP distribution of the aforementioned 1686 flip-
flops. The results show that 181 flip-flops always experience input SP0, whereas
29 flip-flops are under input SP1. Our analysis shows that the flip-flops with
such behavior typically belong to either the error checking and exception handling
registers or higher bits of address registers which are constant due to temporal
and spatial locality of the executed instructions. Besides, the SP of a considerable
number of flip-flops is very close to either 0.0 or 1.0. Please note that the results
reported in Fig. 4a are the average of six employed workloads, and hence, the flip-

Selective Flip-Flop Optimization for Circuit Reliability 343

flops with SP= 0 or SP= 1 have such SP across all executed workloads. Similar
experiment has been carried out in [18] to study the impact of workload in real
systems, which shows that some flip-flops are always under S-BTI across different
workloads.

Figure 4b shows the distribution of the maximum voltage-drop impacting the flip-
flops of Leon3 processor compared to the peak voltage-drop across all the executed
workloads. Please note that it is necessary to consider the maximum voltage-drop
over the execution of all workloads, because it eventually impacts the flip-flop
characteristics. A significant portion of flip-flops experience on average 41% of the
maximum amount of voltage-drop; however, there are flip-flops at the right side tail
of the distribution which experience large voltage-drop comparable to the maximum
voltage-drop in the circuit.

According to the observations in Fig. 4, there are flip-flops experiencing both S-
BTI and high voltage-drop which leads to high-degradation. If such flip-flops are on
a critical path of the processor (i.e. timing-critical flip-flops), the degradation of the
flip-flops should be reflected in the timing guardband of the circuit. Timing-critical
flip-flops can be categorized into different groups based on the impact of voltage-
drop and aging as follows:

• low voltage-drop and low aging,
• low voltage-drop but S-BTI aging (SP0/SP1)*
• high voltage-drop but typical aging*
• high voltage-drop and S-BTI aging (SP0/SP1)*

Therefore, we propose to generate flip-flops specifically optimized for such high-
degradation conditions (marked by *) and add them to the standard cell library.
Using the proposed flow in Sect. 4, we determine such high-degradation and timing-
critical flip-flops and replace them with the optimized versions to improve the timing
and reliability of the circuit.

3 Reliability-Aware Flip-Flop Design

In a typical reliability-aware circuit design, one should consider the delay of the
elements under variation impacts to ensure the correct functionality of the circuit
during the expected lifetime. Therefore, higher delay degradation of timing-critical
flip-flops imposes a large timing guardband. In our proposed methodology, we
create optimized versions of the flip-flops for different stress conditions based on
aging and voltage fluctuations, and use these optimized versions only when a flip-
flop is timing-critical and subject to such stress conditions to avoid unnecessary over
design. This means that in the cell library, we add the following resilient versions of
the flip-flops:

• Aging-resilient flip-flops, optimized for different aging corners (SP0 and SP1),

344 M. S. Golanbari et al.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1E
-0

8

0.
00

00
00

1

0.
00

00
01

0.
00

00
1

0.
00

01

0.
00

1

0.
01 0.
1 1 10

)h se rf
ot

dezila
mron (

yal e
D

time (year)

Normalized HL (original)
Normalized HL (original)
Normalized HL (optimized)
Normalized LH (optimized)

Delay
Improvement

Fig. 5 Delay of a C2MOS flip-flop which is aged under SP= 0 over 5 years for LH/HL transitions,
compared to the flip-flop optimized for SP= 0 showing how the unbalanced aging of internal
LH/HL paths worsens the degradation in original flip-flop

• Voltage-drop resilient flip-flops, optimized to have lower performance degrada-
tion under voltage fluctuation,

• Aging and voltage-drop resilient flip-flops.

3.1 Aging-Resilient Flip-Flop Design

When the fresh delays of internal paths of a flip-flop (i.e., LH and HL paths) are
designed to be similar (depicted as solid lines in Fig. 5), the internal path with higher
degradation rate eventually becomes dominant and determines the total delay of
the flip-flop. In this case, a significant aging in flip-flop characteristics is observed
over time (corresponding to the internal path with higher degradation). On the
other hand, if the internal path with higher degradation rate is initially faster (by
design) than the internal path with lower degradation rate, the dominant internal
path would be the slower one, and hence the higher degradation rate of the faster
internal path is masked. Consequently, the overall aging of the flip-flop would
be rather small. The delay of the optimized flip-flop, shown in Fig. 5 by dashed
lines, exhibits such characteristics. The post-aging delay of the optimized flip-
flop would increase by ∼10 ps, which is much lower than ∼40 ps increase in the

Selective Flip-Flop Optimization for Circuit Reliability 345

delay of the original flip-flop. We exploit this method for designing aging-resilient
flip-flops.

In order to decrease the overall BTI-induced aging inflicted to a flip-flop, our
proposed method balances the delay of internal HL and LH paths of the flip-flop
for post-aging state of the flip-flop, by resizing the transistors of internal HL and
LH paths. In other words, the proposed method increases the fresh delay (t = 0) of
the flip-flop internal path which has lower degradation rate in order to compensate
the overall degradation of the flip-flop after aging. Although the fresh delay of
the optimized flip-flop might be slightly larger compared to the fresh delay of the
original flip-flop, the overall delay of the optimized flip-flop considering the aging-
induced timing margin would be smaller than those of the original flip-flop since the
aging rate is much smaller.

Please note that this method reduces the degradation for a given SP, but inevitably
worsens the aging at the other corners of SP. For example, if we optimize the
flip-flop for SP0, the degradation would be much higher if the optimized flip-
flop operates at SP1. Nevertheless, these flip-flops under S-BTI will not operate
at other SP corners, because their SP is determined by the circuit structure and
functionality. Therefore, we only optimize for the given SP corner. This means
that we intentionally sacrifice other corners, which never occur due to the specific
functionality of the circuit, to gain a larger improvement.

3.2 Voltage-Drop Resilient Flip-Flop Design

Other than aging, which affects each flip-flop transistor based on the input signal
probability, a drop in the supply voltage of the flip-flop slows down all flip-flop
transistors in the same way. However, a slight upsizing of specific transistors can
compensate the degradation in the flip-flop timing. Therefore, we evaluate the delay
of the flip-flop when operating under the impact of voltage-drop, and optimize the
flip-flop with the goal of improving the delay. Consequently, the optimized flip-flop
would have better timing at the cost of higher power consumption.

3.3 Aging and Voltage-Drop Resilient Flip-Flop Design

The degradation in the flip-flop timing due to both S-BTI and voltage-drop is very
large. Such timing degradation may not be effectively compensated by resizing the
transistors within a flip-flop area without upsizing the entire flip-flop. Therefore, in
addition to targeting for better timing under the impact of the aging and voltage-
drop, we allow the optimization algorithm to increase the area of the flip-flop by a
small percentage. Please note that an extra Engineering Change Order (ECO) might

346 M. S. Golanbari et al.

be needed to replace the original flip-flop with the optimized version in this case.
However, since there exist only a few flip-flops under such degradation it would not
be an issue to perform an ECO on placement.

3.4 Problem Formulation for Flip-Flop Resiliency
Optimization

The delay of a flip-flop under a specific working condition (including temperature,
voltage, and input SP) can be presented as a function of the transistors’ widths:

delay = f (W) , W = [wi], (2)

where [wi] is a vector containing the width of flip-flop transistors. Here, delay is
the delay (Data-to-q) of the flip-flop, according to Eq. (1), under variation impact,
which could be S-BTI stress, voltage-drop, or both depending on the optimization
approach.

The delay function f is a complicated function of transistors’ widths. Our
experimental results for flip-flops with different sizing show that f cannot be
presented with any general linear function. Therefore, we use Sequential Quadratic
Programming (SQP) which is a non-linear programming technique [19]. In SQP,
the problem is converted into quadratic sub-problems and solved in order to find a
better sizing in each iteration. For this purpose, we follow an iterative approach in
order to minimize the delay of Eq. (2). Given an initial sizing, the delay function f

is approximated with a quadratic function:

f (W) ≈ f (W0)+ f (W0)
T · (W −W0)+ 1

2
(W −W0)

T ·Hf (W0) · (W −W0),

(3)

where f (W) and Hf (W) are the gradient and the Hessian of the delay function
f , respectively. Minimizing the quadratic approximation of Eq. (3), with respect to
some constraints, which will be discussed later in this section, yields an optimized
transistor sizing. Thereafter, the obtained sizing is used as the initial sizing, and
a new iteration is launched. This cycle continues until the optimization reaches
the required precision, i.e. the difference between the optimized delays of two
consecutive iterations becomes smaller than a predefined threshold εdelay. Therefore,
the solver continues by checking the precision of the resulting delay:

∣∣delayi−1 − delayi

∣∣ < εdelay (4)

where delayi represents the delay of ith iteration.
Another reason to use the quadratic approximation is that the optimum result

of a linear problem always lies on the boundaries, while the optimum result of a

Selective Flip-Flop Optimization for Circuit Reliability 347

Table 1 Flip-flop
optimization method
summary

Parameters W = (w1, . . . , wn)

Initial guess W0= optimized W for PDP (fresh)

Constraints wi ≥ wmin∑n
1 wi ≤ (1+ λ)

∑
W0

power(W) ≤ (1+ β) power(W0)

Target minimize: delay = f (W)

Constants wmin Minimum size

λ Acceptable excessive area

β Acceptable excessive leakage

quadratic problem can be any point within the boundaries as well as the boundaries
themselves. In Sect. 5, we demonstrate that the optimum result does not necessarily
lie on the boundaries, and hence a non-linear programming technique is needed to
find a better result. Table 1 summarizes the optimization problem.

Several constraints are applied to the optimization problem, relating to transistors
size, flip-flop area, and leakage. The first constraint shown in Table 1 limits the
minimum size of transistors. The second constraint limits the area of the optimized
flip-flop. In case of optimizing for S-BTI or voltage-drop, we consider λ = 0 to
keep the flip-flop area within the area of the original flip-flop which also facilitates
keeping the aspect ratio almost equal to the aspect ratio of the original flip-flop.
This way, the optimized flip-flop can easily replace the original flip-flop without any
layout modifications at the circuit-level. This is achieved by limiting the summation
of transistor widths wi . However, for flip-flops under S-BTI and voltage-drop,
we assume a λ > 0 value to compensate the delay degradation better. The third
constraint sets an upper limit for the excessive leakage of the flip-flop by parameter
β. This constraint is applied to the optimization problem to limit the leakage
power of the optimized flip-flops within an acceptable range. The initial guess of
optimization W0 is the optimum sizing for minimum PDP in the fresh state.

3.5 Reliability-Aware Flip-Flop Optimization Flow

Figure 6 presents our proposed reliability-aware optimization flow. For a given
input SP, the SP of all transistors are once calculated using SPICE simulations.
Afterwards, based on the extracted SP for transistors and the operating corner of the
flip-flop (temperature, supply voltage, etc.), the BTI-induced threshold voltage shifts
of all transistors (�Vth) are obtained. Then, the �Vth values are back-annotated
into the original flip-flop SPICE netlist, and the SPICE netlist of aged flip-flop is
generated.

In each SQP iteration, the quadratic sub-problems are created and solved to
generate further improved flip-flop sizing. Subsequently, the new sizing is back-
annotated into the aged flip-flop netlist extracted before, and a new aged flip-flop
with the given sizing is generated. Then, Cadence Virtuoso Liberate [6] is used

348 M. S. Golanbari et al.

Flip-Flop
Netlist

Aged Flip-
Flop Netlist

Voltage (V)
Temperature (T)

Input SP

Leakage
Area

Calculate
Transistor Duty

Cycle (SPICE)

Calculate
and Back-annotate to

Netlist

Characterize
Aged Flip-Flop

considering
Voltage Drop

Aged Flip-Flop
Netlist with sizing

Op�mum sizing
found

Create and
solve quadra�c

sub-problem

Find new sizing
= and

back-annotate to
Aged Netlist

Enough
Precision?

Characterize
Aged Flip-Flop

Considering
Voltage Drop

Yes

No

Sequen�al Quadra�c Programming (SQP)

Start

End

Data Flow

Process Flow

Fig. 6 Overall flow to find the optimum flip-flop sizing for under S-BTI stress and voltage-drop
at a specific working corner (voltage, temperature)

to characterize the new flip-flop and extract its delay and power consumption.
When the improvement is small enough and the condition in Eq. (4) is met, the
SQP method terminates and returns the last sizing as the optimum solution for the
problem.

As the process is executed at a specific supply voltage (Vdd), it can inherently be
used to optimize for a voltage-drop as well, when the given supply voltage includes
the impact of the voltage-drop. We can also create voltage-drop resilient version of
a flip-flop for typical aging, by considering input SP of 0.5. Therefore, we execute
the flow presented in Fig. 6 for these conditions in order to create variation-resilient
versions of the flip-flop, assuming a supply voltage of Vdd and a maximum voltage-
drop of R%:

Supply voltage (V) Aging condition

Aging Vdd S-BTI (SP0, SP1)

Voltage-drop (1− R
100)Vdd Typical aging (SP= 0.5)

Aging and voltage-drop (1− R
100)Vdd S-BTI (SP0, SP1)

After optimization process, it is necessary to re-characterize the flip-flops for
different supply voltage ((1 − R

100)Vdd to Vdd) and aging conditions (0 ≤ SP ≤
1). The characterization results are then used to obtain overall circuit timing under
supply voltage fluctuation and aging impacts.

Selective Flip-Flop Optimization for Circuit Reliability 349

4 Selective Flip-Flop Optimization

This section explains how the optimized flip-flops in Sect. 3 can be employed to
improve the reliability of a circuit. The idea is to find the flip-flops affected by
S-BTI and/or voltage-drop impacts which are also influential on circuit reliability,
i.e. the timing-critical flip-flops, and replace them with the optimized versions. The
reason for this selective flip-flop optimization is that the reliability-aware flip-flop
optimization is costly in terms of leakage overhead per flip-flop. Therefore, flip-flop
replacement should be done only for the timing-critical flip-flops which experience
S-BTI and/or large voltage-drop to be cost-effective. Since they constitute a small
subset of the all flip-flops in the design, the proposed method is able to reduce the
overall timing guardband in a cost-effective way.

The overall flow of the proposed selective flip-flop optimization methodology
is presented in Fig. 7. The flow uses the results of the Synthesis and Place & Route
steps of a VLSI design flow and is composed of (I) Aging and Voltage-Drop Analysis
and (II) Selective Flip-flop Replacement steps. The optimization flow updates the
gate-level netlist and the circuit layout to improve the reliability of the circuit under
voltage-drop and aging impacts. The outputs of the optimization method can be
further used in the rest of the VLSI design flow. Therefore, the proposed method is
transparent to the VLSI design flow and can be easily integrated into it.

4.1 Aging and Voltage-Drop Analysis

In this step, the results of Synthesis and Place & Route steps of the VLSI design flow
are used to discover the flip-flops which are aging-critical, voltage-drop critical, and
timing-critical.

Aging-critical flip-flops are those flip-flops which experience large impact of
aging, i.e. flip-flops under S-BTI. To find the aging-critical flip-flops we need
to extract the SP of the flip-flops. Therefore, we perform a gate-level simulation
running some representative workloads. The representative workloads are pieces of
workloads which are typically executed on the circuit. The result of the gate-level
simulation is the Voltage Change Dump (VCD) of all nets inside the circuit. Based
on this information we can collect SP of all flip-flops and determine the aging-
critical flip-flops.

Dynamic power profiles of circuit components can be extracted from the VCD
reports. We estimate the dynamic voltage-drop in the circuit based on the power
profiles and the layout and packaging of the circuit. This accounts for the resistive
and inductive components of the voltage fluctuation. We generate a voltage-drop
map of the circuit by evaluating the maximum voltage-drop of each cell (gates,
flip-flops, etc.) over the time and over different workloads. As a result, we find
the maximum amount of voltage-drop that each flip-flop experiences over time.

350 M. S. Golanbari et al.

Se
le

c�
ve

 F
lip

- fl
op

 R
ep

la
ce

m
en

t
Ag

in
g

&
Vo

lta
ge

 D
ro

p
An

al
ys

is
Circuit HDL Synthesis and

Place and Route

Gate-level Netlist,
Timing info.

Placement
and Layout

info.

Representa�ve
Workloads

Gate-level
Simula�on

Power
Es�ma�on

Voltage Drop
Es�ma�on

Signal Probability (SP),
Switching Ac�vity (SA) of

all nets

Voltage Drop
-cri�cal

Flop-Flops

Aging-cri�cal
Flip-Flops

Timing-
cri�cal

Flip-Flops

Voltage Drop &
Aging-aware

�ming analysis

Layout ECO

Updated
Gate-level

Netlist

Updated
Layout

Any flip-Flop
replaced?

Yes

End

Selec�ve
Flip-flop

Replacement

Maximum
Voltage Drop

Map

Fig. 7 Circuit optimization flow using the proposed selective flip-flop optimization method

Accordingly, the flip-flops which experience a large amount of voltage-drop are
extracted.

Furthermore, the gate-level simulation results are used to perform a voltage-
drop and aging-aware timing analysis which obtains the delay of circuit paths
under variability impacts. We extended the aging-aware timing analysis in [8] by

Selective Flip-Flop Optimization for Circuit Reliability 351

considering voltage-drop related information. This is done by characterizing the
cells at two different supply voltages: the nominal Vdd and the supply voltage
considering the maximum drop (1 − R

100)Vdd . Then, for each gate/flip-flop in the
gate-level netlist, based on the amount of voltage-drop on the gate, we perform a
linear interpolation among the standard cell library entries for two supply voltages
and find the corresponding timing information. The linear interpolation is a valid
method under the assumption of limited change in the supply voltage, as shown
in Fig. 3. For a more aggressive voltage fluctuation, it could be necessary to
characterize the standard cell libraries for a few intermediate supply voltage values
and employ a PCHIP method. Accordingly, we find the timing-critical flip-flops,
which are parts of the critical and near-critical paths of the circuit considering the
impact of variations.

4.2 Selective Flip-Flop Replacement

In the selective flip-flop replacement step, we replace the flip-flops which are timing-
critical, aging-critical, or voltage-drop-critical with their optimized counterparts for
such aging and/or voltage-drop conditions. Although a small portion of the flip-
flops are replaced during the flip-flop replacement process, the circuit layout, timing,
and power properties change since the replaced flip-flops are timing-critical and
may have different area and power characteristics. Therefore, the proposed flip-flop
replacement is an iterative process which replaces a number of flip-flops with the
optimized versions in each iteration. The iterative process continues until no flip-
flop needs to be replaced by an optimized version anymore.

In iteration i of the method, we assume that the circuit delay is Di based on
timing analysis results, and di

j is the maximum delay of the paths terminating at flip-
flop j (including the delay of the flip-flop as well). Therefore, in each iteration:

1. We choose the timing-critical flip-flops with a timing slack value of less than k%
of the circuit delay, i.e. when:

di
j ≥

(
1− k

100

)
Di, j : index of flip-flops.

2. Among these flip-flops, those which are also included in the aging-critical and/or
voltage-drop-critical flip-flops, are replaced with the optimized versions.

3. A trial voltage-drop and aging-aware timing analysis is performed and the circuit
delay (Di++) is determined considering the replaced flip-flops.

4. We keep the optimized flip-flops only when the corresponding path delay of the
flip-flops before optimization is larger than a percentage of the evaluated circuit
delay (Di++):

di
j > r ×Di++ "⇒ FFj → FFj,opt . (5)

352 M. S. Golanbari et al.

The rest of the updated flip-flops in this iteration are rolled back to the original
versions. Please note that we also consider a ratio r < 1 into Eq. (5) to
compensate for the calculation errors due to simulation.

5. The layout and gate-level netlist of the circuit are updated. The layout is only
updated if a cell with larger area is used (particularly applicable to the flip-flops
under both aging and voltage-drop as explained in Sect. 3).

6. In case any flip-flop is replaced by an optimized version during this iteration,
we need to start a new iteration because the timing and power specification of
the circuit are modified. This is done by re-executing the aging and voltage-drop
analysis, as explained in Sect. 4.1. The gate-level simulation, which is a time
consuming process, does not need to be repeated as its results are not affected by
the flip-flop replacement.

The above flow replaces minimum number of flip-flops with the optimized versions
and impose minimum amount of overhead to the circuit. In our simulations the flow
is terminated within a few iterations, since the changes in the circuit layout, power,
and timing are not extensive.

5 Results and Discussions

In this section, we evaluate the efficiency of the proposed selective flip-flop
optimization based on simulation results.

5.1 Simulation Setup

We applied the method to several flip-flop topologies, namely C2MOS latch,
Dynamic/Static Single Transistor Clocked latch (DSTC/SSTC), and Semi-Dynamic
flip-flop (SDFF) [31]. The flip-flops are implemented using 45 nm Bulk CMOS
Predictive Technology Model (PTM) transistors [39]. All flip-flops are initially
optimized for the minimum PDP in the fresh state (original design). The aging
parameters of the model proposed in [4] are tuned so that the post-aging delay of a
Fan-Out 4 (FO4) inverter increases by 10% at SP= 0.5 over 5 years. For delay and
leakage measurements, the output load of flip-flops is set to FO4, and the cells are
characterized at room temperature and at different supply voltages, ranging from 80
to 100% of the nominal supply voltage of the technology node.

We used Leon3 processor as a case study for our proposed method. We used
Nangate 45 nm open cell library for combinational logic, and aging assumptions are
the same as described at the beginning of this section. The processor is synthesized
using Synopsys Design Compiler and placement and routing is done using Cadence
EDI [5].

Selective Flip-Flop Optimization for Circuit Reliability 353

We executed various MiBench workloads on the synthesized Leon3 processor
and extracted the VCD files. Based on the VCD files, the SP of each node of the
synthesized circuit is calculated and the power consumption of the gates and flip-
flops is calculated using Synopsys Power Compiler. The voltage-drop map of the
processor is also extracted using VoltSpot tool [38], which is able to extract the
voltage-drop caused by both resistive and inductive components.

Please note that the proposed technique is not restricted to a specific working
condition or flip-flop topology. We proceed with presenting detailed results and
analysis for a C2MOS flip-flop. Then, we discuss the results for other types of flip-
flops concisely. Afterwards, the dependency of the improvement achieved by the
proposed method to the excessive leakage will be investigated. At the end of this
section, the impact of using optimized flip-flops on a Leon3 processor lifetime will
be demonstrated.

5.2 Detailed Optimization Results of C2MOS Flip-Flop

We apply the proposed optimization flow presented in Sect. 3.5 (see Fig. 6) to
C2MOS flip-flop design to create optimized flip-flops for aging and voltage-drop
resilience. In order to create the aging-resilient versions of the C2MOS flip-flop, we
let the optimizer to consider designs with up to 25% more leakage compared to the
original flip-flop by setting the coefficient β in Table 1 to 0.25. At this point, we
limit the area of the flip-flop to the area of the original flip-flop, i.e. λ = 0. Please
note that the total overhead of the leakage power for the entire circuit would be
negligible since the number of optimized flip-flops in the design would be limited.
For example, if according to Sect. 2.3, 12.45% of flip-flops are working under S-
BTI, and the leakage overhead of an optimized flip-flop would be less than 25%,
the leakage overhead imposed on the flip-flops would be at most 3.11% (much less
overhead when considering the entire processor design). The aging and voltage-drop
resilient version of the C2MOS flip-flop can be created by assuming an extra area
up to 20% and more leakage overhead. For this, we assume λ = 0.2, β = 1. Using
the extra area, the optimizer is able to find a better design for those flip-flops which
are timing-critical and are under large impact of aging and voltage-drop. Since these
flip-flops are very rare, but have significant impact on the overall processor lifetime
and reliability, it is effective to spend more area for large reliability and lifetime
gains.

Table 2 compares the characteristics of an original and optimized C2MOS
flip-flop (such as setup-time (U), clock-to-q (DCQ), data-to-q (DDQ), delay, and
leakage) in three different optimization scenarios:

Scenario 1 post-aging PDP, optimized for PDP in post-aging.
Scenario 2 The proposed method (optimized for aging), in which the flip-flop

is optimized for aging resiliency, by minimizing its delay for post-

354 M. S. Golanbari et al.

Ta
bl

e
2

C
2M

O
S

fli
p-

flo
p

ch
ar

ac
te

ri
st

ic
s

fo
r

(1
)

O
ri

gi
na

lfl
ip

-fl
op

(O
pt

im
iz

ed
fo

r
PD

P
in

th
e

fr
es

h
st

at
e)

,(
2)

O
pt

im
iz

ed
fli

p-
flo

p
fo

r
PD

P
in

po
st

-a
gi

ng
[1

],
an

d
op

tim
iz

ed
by

th
e

pr
op

os
ed

m
et

ho
d

fo
r

(3
)

on
ly

ag
in

g,
an

d
(4

)
fo

r
ag

in
g
+

vd
ro

p

Po
st

-a
gi

ng
PD

P
Pr

op
os

ed
m

et
ho

d

O
ri

gi
na

l
(s

im
ila

r
to

[1
])

O
pt

im
iz

ed
fo

r
ag

in
g

O
pt

im
iz

ed
fo

r
ag

in
g
+

vd
ro

p

(o
pt

im
iz

ed
fo

r
fr

es
h

PD
P)

Sc
en

ar
io

1
Sc

en
ar

io
2

Sc
en

ar
io

3

Pa
ra

m
et

er
sc

Fr
es

h
A

ge
d

A
ge

d+
vd

ro
pb

Fr
es

h
A

ge
d

A
ge

d+
vd

ro
p

Fr
es

h
A

ge
d

A
ge

d+
vd

ro
p

Fr
es

h
A

ge
d

A
ge

d+
vd

ro
p

U
L

H
(p

s)
20

.2
22

.6
29

.2
25

.6
30

.0
32

.9
23

.0
24

.6
30

.3
30

.0
30

.0
37

.7

D
C

Q
,L

H
(p

s)
78

.3
10

1.
8

12
3.

3
91

.8
97

.6
11

7.
5

83
.3

88
.8

10
3.

9
72

.5
77

.5
92

.2

D
D

Q
,L

H
(p

s)
98

.5
12

4.
4

15
2.

5
11

7.
4

12
5.

6
15

0.
4

10
6.

3
11

3.
4

13
4.

2
10

2.
5

10
7.

6
12

9.
9

U
H

L
(p

s)
16

.6
30

.8
42

.4
13

.7
28

.2
39

.6
16

.0
30

.6
40

.6
11

.1
24

.6
30

.6

D
C

Q
,H

L
(p

s)
78

.1
10

0.
5

12
1.

0
82

.9
97

.9
11

7.
2

75
.9

88
.5

10
6.

4
65

.8
75

.6
91

.7

D
D

Q
,H

L
(p

s)
94

.7
13

1.
3

16
3.

4
96

.6
12

6.
1

15
6.

8
91

.9
11

9.
1

14
7.

0
76

.9
10

0.
2

12
2.

3

D
el

ay
(p

s)
(S

ec
t.

2.
1)

98
.5

13
2.

6
16

5.
7

11
7.

4
12

6.
1

15
7.

1
10

6.
3

11
9.

4
14

7.
0

10
2.

5
10

7.
6

12
9.

9

L
ea

ka
ge

(n
W

)
44

.3
30

.7
15

.5
42

.0
27

.9
14

.1
46

.4
31

.4
15

.8
67

.8
46

.1
23

.1

PD
P

43
68

40
74

25
73

49
36

35
25

22
15

49
28

37
44

23
18

69
52

49
63

30
00

D
el

ay
de

gr
ad

at
io

n,
E

q.
(6

)a
–

35
%

68
%

–
28

%
60

%
–

21
%

49
%

–
9.

2%
32

%

E
xc

es
si

ve
le

ak
ag

e
–

−5
.2

%
4.

7%
53

%

T
he

re
su

lts
ar

e
re

po
rt

ed
fo

r
“f

re
sh

”,
“a

ge
d,

”
an

d
“a

ge
d
+

vd
ro

p”
st

at
es

an
d

un
de

r
SP

0d
ag

in
g

a T
he

re
fe

re
nc

e
fo

r
ca

lc
ul

at
in

g
th

e
de

la
y

de
gr

ad
at

io
n

is
98

.5
ps

(O
ri

gi
na

l,
fr

es
h

fli
p-

flo
p)

b
M

ea
su

re
m

en
ts

ar
e

do
ne

un
de

r
10

%
de

la
y

de
gr

ad
at

io
n

as
su

m
pt

io
n

(S
ec

t.
5.

1)
an

d
10

%
vo

lta
ge

-d
ro

p
c D

yn
am

ic
po

w
er

is
no

tr
ep

or
te

d
be

ca
us

e
it

is
ir

re
le

va
nt

fo
r

fli
p-

flo
ps

un
de

r
S-

B
T

I
as

th
es

e
fli

p-
flo

ps
do

no
tc

ha
ng

e
st

at
e

fr
eq

ue
nt

ly
d
O

pt
im

iz
at

io
n

re
su

lts
fo

r
SP

1
ar

e
m

uc
h

be
tte

r.
Fo

r
ex

am
pl

e,
th

e
de

la
y

de
gr

ad
at

io
n

of
th

e
pr

op
os

ed
m

et
ho

d
fo

r
ag

in
g

is
on

ly
11

%
(f

or
SP

0
it

is
21

%
)

Selective Flip-Flop Optimization for Circuit Reliability 355

aging. The acceptable excessive area and leakage are 0% and 25%,
respectively (β = 0.25, λ = 0).

Scenario 3 The proposed method (optimized for aging+ vdrop), in which the flip-
flop is optimized for aging and voltage-drop resiliency, by minimizing
its delay for post-aging and under voltage-drop impact. The acceptable
excessive area and leakage are 20 and 100%, respectively (β = 1, λ =
0.2).

The optimization results in Table 2 are reported for “fresh” state (no aging
or voltage-drop), for “aged” state (under S-BTI aging SP0 for 5 years), and for
“aging+ vdrop” state (when the flip-flop is aged under S-BTI for 5 years, and
when the supply voltage is dropped by 10%). Setup-time, clock-to-q, and data-to-q
values are presented for LH/HL transitions and the delay is calculated according to
Sect. 2.1. The delay degradation is the relative post-aging delay increase of a design
compared to the fresh delay of the original design (marked as bold in the table):

delay degradation = delayopt.,aged − delayorig.,fresh

delayorig.,fresh
. (6)

Since the optimized flip-flop will replace the corresponding flip-flop in the design,
the delay degradation is compared to the fresh delay of the original flip-flop in order
to give a better understanding of how close the aged delay of the optimized flip-flop
is to the fresh delay of the original design.

Basically, scenario 1 is similar to the methods proposed in many flip-flop
optimization methods such as [1, 13] in the sense that they consider a multiplication
of energy and delay (e.g., the PDP or the Energy Delay Product (EDP)) as the
optimization target. Scenario 1 is able to effectively reduce the PDP by increasing
the delay and reducing the leakage, but this may result in an unacceptable timing
for S-BTI corners. Table 2 shows that due to not considering the flip-flop delay as
the optimization target, the PDP methods cannot find the optimum aging-resilient
sizing for S-BTI corners.

As presented, for the original flip-flop, the fresh delay of LH and HL paths is
almost identical (see DDQ,LH and DDQ,HL), but after aging HL path is much
slower than LH path. This leads to 35% delay degradation due to only aging and
about 68% when aging and voltage-drop affect the flip-flop. When this flip-flop is
optimized for scenario 1, the delay is not reduced well enough because the main
concern is PDP not delay. On the other hand, in scenario 2 (proposed method,
only for aging), the optimizer alters the sizing to equalize the post-aging delay of
the LH/HL paths to achieve the smallest possible post-aging delay with respect to
the constraints (119.4 ps). In this case, the post-aging delay is increased by 21%
compared to the fresh delay of the original flip-flop. Also the leakage overhead is
limited to 4.7%. Since the flip-flop operates in S-BTI zone, the switching rate of
the flip-flop is very small. This means that its dynamic power is almost negligible.
Therefore, the total power in of flip-flops under S-BTI is determined by the leakage
power.

356 M. S. Golanbari et al.

SP0 SP1
0

1

no
rm

al
iz

ed
de

la
y

SP0 SP1

C2MOS

0

20

40

le
ak

ag
e

(n
W

)

SP0 SP1
0

1

Original (Fresh)
Original (Aged)

Optimized (Fresh)
Optimized (Aged)

SP0 SP1

SDFF

0

25

50

Original Optimized

SP0 SP1
0

1

SP0 SP1

SSTC

0

25

50

Fig. 8 Performance of the original flip-flop vs. the flip-flop optimized by the proposed method at
SP0 and SP1, before and after aging (5 years)

Even though scenario 2’s design is much better for flip-flops which are only
under the aging impact compared to the original and the state-of-the-art [1] flip-
flop designs, the impact of 10% voltage-drop is significant on the delay, i.e. 49%
delay degradation. The flip-flop optimization results for scenario 3 show that such
flip-flops are more resilient against both aging and voltage-drop impacts. These flip-
flops consume about 53% more leakage; however, the delay degradation is only 32%
under both aging and voltage-drop. Please note that the number of flip-flops under
such condition is very small. Therefore, using flip-flops optimized by scenario 3 has
negligible impact on the overall processor power consumption.

5.3 Optimization Results for Other Flip-Flops

Figure 8 provides the optimization results for a set of representative flip-flops. It
compares the delay and the leakage of the original and optimized flip-flops, for both
fresh and post-aging states. All delay values are normalized to the fresh delay of the
corresponding original flip-flops (which are 114.8 ps for C2MOS, 28.5 ps for SDFF,
and 71.0 ps for SSTC).

For C2MOS flip-flop, the proposed method reduces the delay degradation in
Eq. (6) to 21%, while the delay degradation of the original design is 35% (14%
improvement). This flip-flop has a symmetric structure, which means it can have
balanced timing for LH/HL transitions (shown in Fig. 2b), while some flip-flop
topologies such as SDFF, always have an unbalanced timing for LH/HL transitions
due to their internal structure. For example, in an SDFF, the delay of HL transition is

Selective Flip-Flop Optimization for Circuit Reliability 357

20%

25%

30%

35%)
%(

noitadarged
yale

D

Delay degradation

Fig. 9 Delay of C2MOS flip-flops optimized for SP0 aging using extra leakage (scenario 2). Delay
degradation saturates as β increases (after β = 0.25)

always smaller than the LH transition. The reason is that, an intermediate precharged
node in this flip-flop should be discharged in LH transition in order to transfer
the input “one” to the output, while for the HL transition no such discharging is
required. Hence, the slower path is always the LH path. This may worsen the aging
if it is coupled with unbalanced aging. For these flip-flops, the optimizer minimizes
the delay of the slower path by taking as much area as it can from the faster path, and
giving the area to the slower path. For SDFF, this is attained with 15.8% additional
leakage at SP0, but it leads to better S-BTI resiliency.

5.4 Delay-Leakage Trade-Off

In order to understand the trade-off between additional leakage and delay, we
optimized a C2MOS flip-flop with several excessive leakage amounts ranging
from 0 to 50% (i.e. β ∈ {0, 0.125, 0.25, 0.5}). As shown by Fig. 9, lower delay
degradation can be achieved by allowing the optimization method to design flip-
flops with higher leakage. However, the improvement saturates as β increases.
Hence, providing extra leakage to the optimizer is only beneficial until about 25%,
because the improvement in the delay is not significant. Please note that the designed
flip-flops with looser leakage constraints, i.e. higher β, do not necessarily have very
high leakage. As shown in Table 2, the optimized flip-flop in scenario 2 (only aging)
has only 4.7% extra leakage while providing much better resiliency against S-BTI
aging compared to the original flip-flop and scenario 1 (state-of-the-art work).

358 M. S. Golanbari et al.

0%

10%

20%

30%

40%

50%

60%

70%

SP0 SP1 SP0 SP1

)
%(

noitadarged
yale

D
Original
Optimized - 0% extra area
Optimized - 20% extra area Ex

tra
 a

re
a

im
pr

ov
em

en
t

0% Voltage Drop 10% Voltage Drop

Fig. 10 Comparison of the aging-induced delay degradation under impact of voltage-drop, for
original flip-flop, optimized flip-flop with 0% extra area allowance (scenario 2), and optimized
flip-flop with 20% extra area allowance (scenario 3). The voltage-drop induced delay increase may
be compensated by 20% upsizing of the flip-flop cell during the optimization

5.5 Delay-Area Trade-Off

The impact of a small amount of extra area on the resiliency of the flip-flops
against both aging and voltage-drop impacts is studied by changing parameter
excessive area overhead λ (see Table 1). We run the optimization flow in Sect. 3
for λ ∈ {0, 0.2} values and compare the results to the original flip-flop design.
Based on the results shown in Fig. 10, the flip-flop designs with no extra area, i.e.
scenario 2, exhibit good resiliency against aging; however, under the impact of 10%
voltage-drop it has up to 49% delay degradation. Under the impact of voltage-drop,
the flip-flop designed with 20% extra area exhibits much better characteristics with
maximum 32% delay degradation. This observation confirms that using flip-flops
with 20% extra area can be beneficial for the cases when both aging and voltage-
drop impacts are severe.

5.6 Circuit-Level Results

The proposed selective flip-flop optimization method presented in Sect. 4 is applied
to Leon3 processor with the setup presented in Sect. 5.1 to evaluate the overall
impact on the processor timing and reliability. The “original flip-flop” designs are
optimized for different output loads for minimum PDP in the fresh state, while
the “optimized flip-flop” designs for “aging” and “aging+ vdrop” are obtained by
applying the proposed method. Therefore, per each original flip-flop design for a

Selective Flip-Flop Optimization for Circuit Reliability 359

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

Fig. 11 The layout map of the Leon3 flip-flops during the execution of some MiBench workloads
on Leon3, showing relative voltage-drop criticality, timing criticality, and aging-criticality of
different flip-flops. Values close to “1” correspond to higher criticality, and values closer to “0”
represent the non-critical parts. The top-left part of the processor layout is filled by combinational
gates. (a) Relative voltage-drop criticality of flip-flops. (b) Relative timing criticality of flip-flops.
(c) Relative aging-criticality of flip-flops

specific output load, there are different optimized designs for S-BTI corners SP0
and SP1 as well as no-vdrop and max-vdrop conditions (according to Sect. 3.5).

The timing of Leon3 processor is evaluated using the “aging and voltage-drop
analysis” step of the proposed flow (see Fig. 7). This incorporates using an improved
version of an aging-aware timing analysis tool [8] which also considers the impact
of supply voltage variation as explained in Sect. 4.1. This timing analysis determines
the processor delay under runtime variation impacts.

Figure 11 illustrates the timing of Leon3 flip-flops on the processor layout as well
as the calculated impacts of voltage-drop and aging on the processor timing. The
presented plots are all normalized to the maximum values (maximum voltage-drop,
maximum delay, maximum aging) for better visualization. Therefore, higher values
(darker colors) represent a critical situation. Figure 11a presents voltage-drop of the
flip-flops extracted using the “aging and voltage-drop analysis” step. The voltage-
drop values are normalized to the maximum voltage-drop value extracted during the
simulations. As shown, many flip-flops experience at least a moderate voltage-drop
during the workload execution. However, the flip-flops on the top-left corner of the
layout experience heavy voltage-drop. The timing criticality of the flip-flops is also
shown in Fig. 11b. The flip-flops with lower timing slack have values closer to 1.0
in this figure (darker). Interestingly, some of the flip-flops on the top-left corner are
also timing-critical. Additionally, the aging-criticality of the flip-flops is presented
in Fig. 11c. It is shown that many flip-flops which are under S-BTI are also timing-
critical. Most importantly, a few timing-critical flip-flops are affected by both aging
and voltage-drop impacts.

Table 3 presents processor delays obtained in fresh state, i.e. no aging or voltage-
drop, and when under aging and voltage-drop impacts. We compare the delay of
original processor (before applying the proposed method) with the delay of the
optimized processors, under runtime variation impacts (aging and voltage-drop)
after 7 years. The results are reported for:

360 M. S. Golanbari et al.

Table 3 Processor delay comparison when (1) using only original flip-flops, and (2) using proposed
method

Processor delay
in fresh state

Processor delay
after 7
years+ voltage-
drop

Delay
degradation

Guardband
reduction

Equivalent
lifetime
improvement

Using original
flip-flops 1389.6 ps 1528.2 ps 9.97% – –

Proposed (only
aging) 1391.3 ps 1494.8 ps 7.44% 33.4 ps 30.8%

Proposed
(aging+ voltage-
drop) 1379.7 ps 1486.7 ps 7.75% 41.5 ps 36.9%

1. “Original processor”: using only original flip-flops,
2. “Optimized processor for aging”: when only the impact of aging is considered

during optimization,
3. “Optimized processor for aging and voltage-drop”: when the impacts of aging

and voltage-drop are considered during optimization.

The “original processor” is synthesized using the original flip-flops designs in
Table 2. Then, we apply the proposed selective flip-flop optimization in two modes:
(I) when only aging is considered, and (II) when both aging and voltage-drop are
considered. This obtains two versions of the optimized processor, i.e. “Optimized
processor for aging” and “Optimized processor for aging and voltage-drop.” In
the optimization flow presented in Sect. 4.2, we assume k = 0.15. Therefore, all
flip-flops with a slack value less than 15% of the processor delay are assumed as
timing-critical flip-flops. Additionally, we assume r = 0.95, which means up to 5%
calculation error guardband in the timing analysis method is acceptable. In fact, r

value depends on the accuracy of the timing analysis method. After replacing the
critical flip-flops according to the proposed method, the processor delay is obtained
again using the “aging and voltage-drop analysis” step.

According to the table, delay of the “original processor” is increased by 9.97%
after 7 years. This translates into 138.6 ps timing guardband for 7 years of circuit
operation, i.e. Tclk ≥ 1528.2 ps. The “optimized processor for aging” has better
delay 1494.8 ps under the impacts of aging and voltage-drop which reduces the
required timing guardband by 33.4 ps for 7 years of operation, hence optimizing
the performance. Therefore, the degradation rate of this optimized processor is such
that it can operate for 9.2 years (30.8% lifetime improvement), if it is used with
the timing margins of Tclk = 1528.2 ps. Finally, the required timing guardband
of “Optimized processor for aging and voltage-drop” is further reduced by 41.5 ps
compared to the original processor. Therefore, the lifetime of the processor is
improved by 36.9% (9.6 years).

The reason for the achieved improvements in Table 3 is explained by Fig. 12.
Here, we only plotted the delay of timing-critical flip-flops with a slack smaller

Selective Flip-Flop Optimization for Circuit Reliability 361

1.20 1.25 1.30 1.35 1.40

Fresh delay (ns)

1.30

1.35

1.40

1.45

1.50
A

ge
d

de
la

y
af

te
r
7

ye
ar

s
(n

s)

Dynamic BTI (Original)
S-BTI (Original)
S-BTI (Optimized)

Fig. 12 Fresh delay (no aging, no voltage-drop) vs. increased delay (aged and 10% voltage-drop)
of critical paths of Leon3 processor. The proposed selective flip-flop optimization method replaces
the original flip-flops under S-BTI (red) with the optimized flip-flops (green) and suppresses the
aging and voltage-drop degradation of the most critical paths

than 15% of the processor delay (under aging and voltage-drop impacts). With this
assumption, there are 261 timing-critical flip-flops. Among the timing-critical flip-
flops, 92 flip-flops are under S-BTI impact (i.e. 0 ≤ SP < 0.01 or 0.99 < SP ≤
1), 235 flip-flops experience at least 33% relative voltage-drop. After applying the
selective flip-flop optimization method, 96 flip-flops are replaced with optimized
versions, from which 39 flip-flops are upsized (due to both aging and voltage-drop
impact).

As the optimized flip-flops constitute about 4% of all flip-flops in Leon3, the
overall leakage overhead with this method is 0.22% according to power analysis
results using Synopsys Design Compiler. Moreover, there is virtually no dynamic
power overhead because the replaced flip-flops are mostly under S-BTI impact and
they rarely switch. The additional area overhead is also very negligible because only
39 flip-flops are replaced by the upsized versions (less than 0.1% area overhead).
The ECO process easily fits these flip-flops into the existing layout by slightly
moving other cells. Please note that the impact of the voltage-drop and aging on
the driving logic paths is much less compared to the flip-flops. Therefore, these
paths are degraded at a much lower rate.

6 Comparison with the Related Work

Various methods have been proposed to address the impact of aging and voltage-
drop on flip-flops [1, 13, 23, 25]. For example, [1] proposes a method to improve
flip-flop reliability for a set of corners with different working conditions such as
temperatures and voltages by altering the sizing of transistors. These studies mostly
optimize flip-flops for dynamic BTI stress condition, and flip-flops under static BTI

362 M. S. Golanbari et al.

are mostly overlooked. As explained, the traditional optimization techniques such
as optimization for the PDP, or EDP cannot effectively address the delay increase
of flip-flops under such stress. There are techniques to reduce the overall impact
of voltage-drop on VLSI circuits by skewing the clock input of the flip-flops at
design-time in order to reduce the peak current at clock edge [9, 35]. However,
these methods are not applicable to flip-flops with zero (or close to zero) timing
slack on the critical paths. The techniques at high abstraction level by software-
guided thread scheduling [27] or by voltage emergency prediction [26] also impose
additional overhead at another abstraction level than circuit-level, in order to address
a circuit-level problem.

7 Summary

In many cases, NTC circuits are required to operate over a wide voltage range in
order to achieve energy efficiency and satisfy performance constraints as needed.
Therefore, an NTC circuit may be exposed to reliability issues such as aging and
voltage-drop which are significant in the super-threshold region.

In this chapter, we discussed that a non-negligible portion of circuit flip-flops
may be under severe aging or large voltage-drop impact, which leads to timing
and functional failures. Therefore, these flip-flops need to be treated separately and
specific stress-tolerant designs should be used in order to improve the reliability and
lifetime. Accordingly, we propose a method to selectively optimize the flip-flops
operating under severe aging stress and/or voltage-drop conditions. The proposed
optimization flow resizes the flip-flop transistors to obtain the variability-resilient
cells. Then, flip-flops which are under the impact of aging and/or voltage-drop are
determined using a variation-aware static timing analysis tool, and are replaced by
the optimized flip-flops which can withstand aging and voltage-drop impacts much
better. Simulation results show that the proposed selective flip-flop optimization
method can reduce Leon3 processor timing guardband, and improve the lifetime
of the processor by 36.9%, with negligible power and area overhead.

References

1. Abrishami, H., Hatami, S., Pedram, M.: Multi-corner, energy-delay optimized, NBTI-aware
flip-flop design. In: International Symposium on Quality Electronic Design (ISQED), pp. 652–
659 (2010). https://doi.org/10.1109/ISQED.2010.5450509

2. Ajami, A.H., Banerjee, K., Mehrotra, A., Pedram, M.: Analysis of IR-drop scaling with
implications for deep submicron P/G network designs. In: International Symposium on Quality
Electronic Design (ISQED), pp. 35–40 (2003)

3. Amrouch, H., Ebi, T., Schneider, J., Parameswaran, S., Henkel, J.: Analyzing the thermal
hotspots in FPGA-based embedded systems. In: International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–4 (2013)

https://doi.org/10.1109/ISQED.2010.5450509

Selective Flip-Flop Optimization for Circuit Reliability 363

4. Bhardwaj, S., Wang, W., Vattikonda, R., Cao, Y., Vrudhula, S.: Predictive modeling of the
NBTI effect for reliable design. In: Custom Integrated Circuits Conference (CICC), pp. 189–
192. IEEE, Piscataway (2006)

5. Cadence Encounter Timing System. http://www.cadence.com
6. Cadence Virtuoso Liberate Characterization Solution. http://www.cadence.com/products/cic/

liberate/pages/default.aspx
7. Denney, J., Ramsey, C.: Comparison of finite-difference and spice tools for thermal modeling

of the effects of nonuniform power generation in high-power CPUs. Hewlett-Packard J. 50,
37–45 (1998)

8. Ebrahimi, M., Oboril, F., Kiamehr, S., Tahoori, M.B.: Aging-aware Logic Synthesis. In:
International Conference on Computer-Aided Design (ICCAD), pp. 61–68 (2013)

9. Fishburn, J.P.: Clock skew optimization. IEEE Trans. Comput. 39(7), 945–951 (1990)
10. Gaisler, A., Göteborg, S.: Leon3 multiprocessing CPU core. Aeroflex Gaisler (2010)
11. Gnad, D.R.E., Oboril, F., Kiamehr, S., Tahoori, M.B.: An experimental evaluation and analysis

of transient voltage fluctuations in FPGAs. IEEE Trans. Very Large Scale Integr. VLSI Syst.
26(10), 1817–1830 (2018)

12. Golanbari, M.S., Kiamehr, S., Ebrahimi, M., Tahoori, M.B.: Aging guardband reduction
through selective flip-flop optimization. In: IEEE European Test Symposium (ETS) (2015)

13. Golanbari, M.S., Kiamehr, S., Tahoori, M.B., Nassif, S.: Analysis and optimization of flip-
flops under process and runtime variations. In: International Symposium on Quality Electronic
Design (ISQED) (2015)

14. Golanbari, M.S., Kiamehr, S., Ebrahimi, M., Tahoori, M.B.: Selective flip-flop optimization for
reliable digital circuit design. IEEE Trans. Very Large Scale Integr. VLSI Syst. 39(7), 1484–
1497 (2020)

15. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench:
a free, commercially representative embedded benchmark suite. In: IEEE International Work-
shop on Workload Characterization, pp. 3–14. IEEE, Piscataway (2001)

16. International Technology Roadmap for Semiconductors (ITRS). http://www.itrs2.net
17. Kaul, H., Anders, M.A., Mathew, S.K., Hsu, S.K., Agarwal, A., Krishnamurthy, R.K., Borkar,

S.: A 320 mv 56 μw 411 GOPS/watt ultra-low voltage motion estimation accelerator in 65 nm
CMOS. IEEE J. Solid State Circuits 44(1), 107–114 (2009)

18. Kiamehr, S., Ebrahimi, M., Firouzi, F., Tahoori, M.B.: Extending standard cell library for aging
mitigation. IET Comput. Digit. Tech. 9(4), 206–212 (2015)

19. Kraft, D.: A software package for sequential quadratic programming. Forschungsbericht-
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt 88–28, 1–33 (1988)

20. Krishnan, A.T., Cano, F., Chancellor, C., Reddy, V., Qi, Z., Jain, P., Carulli, J., Masin, J.,
Zuhoski, S., Krishnan, S., et al.: Product drift from NBTI: Guardbanding, circuit and statistical
effects. In: International Electron Devices Meeting, pp. 4–3 (2010)

21. Mezhiba, A.V., Friedman, E.G.: Scaling trends of on-chip power distribution noise. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 12(4), 386–394 (2004)

22. Nithin, S., Shanmugam, G., Chandrasekar, S.: Dynamic voltage (IR) drop analysis and design
closure: Issues and challenges. In: International Symposium on Quality Electronic Design
(ISQED), pp. 611–617 (2010)

23. Nunes, C., Butzen, P.F., Reis, A.I., Ribas, R.P.: BTI, HCI and TDDB aging impact in flip-flops.
Microelectron. Reliab. 53(9–11), 1355–1359 (2013)

24. Ramakrishnan, K., Wu, X., Vijaykrishnan, N., Xie, Y.: Comparative analysis of NBTI effects
on low power and high performance flip-flops. In: International Conference on Computer
Design (ICCD), pp. 200–205 (2008)

25. Rao, V.G., Mahmoodi, H.: Analysis of reliability of flip-flops under transistor aging effects in
nano-scale CMOS technology. In: International Conference on Computer Design (ICCD), pp.
439–440 (2011)

26. Reddi, V.J., Gupta, M.S., Holloway, G., Wei, G.Y., Smith, M.D., Brooks, D.: Voltage emer-
gency prediction: using signatures to reduce operating margins. In: International Symposium
on High-Performance Computer Architecture (HPCA), pp. 18–29 (2009)

http://www.cadence.com
http://www.cadence.com/products/cic/liberate/pages/default.aspx
http://www.cadence.com/products/cic/liberate/pages/default.aspx
http://www.itrs2.net

364 M. S. Golanbari et al.

27. Reddi, V.J., Kanev, S., Kim, W., Campanoni, S., Smith, M.D., Wei, G.Y., Brooks, D.: Voltage
smoothing: Characterizing and mitigating voltage noise in production processors via software-
guided thread scheduling. In: International Symposium on Microarchitecture, pp. 77–88 (2010)

28. Reddy, V., Carulli, J., Krishnan, A., Bosch, W., Burgess, B.: Impact of negative bias
temperature instability on product parametric drift. In: International Conference on Test, pp.
148–155 (2004)

29. Sato, T., Ichimiya, J., Ono, N., Hachiya, K., Hashimoto, M.: On-chip thermal gradient analysis
and temperature flattening for SoC design. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 88(12), 3382–3389 (2005)

30. Schlunder, C., Aresu, S., Georgakos, G., Kanert, W., Reisinger, H., Hofmann, K., Gustin,
W.: HCI vs. BTI? - Neither one’s out. In: IEEE International Reliability Physics Symposium
(IRPS), pp. 2F.4.1–2F.4.6 (2012)

31. Stojanovic, V., Oklobdzija, V.G.: Comparative analysis of master-slave latches and flip-flops
for high-performance and low-power systems. IEEE J. Solid State Circuits 34(4), 536–548
(1999)

32. Sundareswaran, S.: Statistical characterization for timing sign-off: from silicon to design and
back to silicon. Ph.D. Thesis, UT Austin (2009)

33. Tradowsky, C., Cordero, E., Deuser, T., Hübner, M., Becker, J.: Determination of on-chip tem-
perature gradients on reconfigurable hardware. In: International Conference on Reconfigurable
Computing and FPGAs (ReConFig), pp. 1–8 (2012)

34. Unger, S.H., et al.: Clocking schemes for high-speed digital systems. IEEE Trans. Comput.
C-35(10), 880–895 (1986)

35. Vittal, A., Ha, H., Brewer, F., Marek-Sadowska, M.: Clock skew optimization for ground
bounce control. In: International Conference on Computer-Aided Design (ICCAD), pp. 395–
399 (1996)

36. Wang, W., Yang, S., Bhardwaj, S., Vrudhula, S., Liu, F., Cao, Y.: The impact of NBTI effect
on combinational circuit: modeling, simulation, and analysis. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 18(2), 173–183 (2010). https://doi.org/10.1109/TVLSI.2008.2008810

37. Wu, J.K., Wu, T.Y., Lu, L.Y., Chen, K.Y.: IR drop reduction via a flip-flop resynthesis
technique. In: International Symposium on Quality Electronic Design (ISQED), pp. 78–83
(2008)

38. Zhang, R., Wang, K., Meyer, B.H., Stan, M.R., Skadron, K.: Architecture implications of pads
as a scarce resource. In: International Symposium on Computer Architecture (ISCA), pp. 373–
384 (2014)

39. Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45nm design
exploration. In: International Symposium on Quality Electronic Design (ISQED), pp. 585–
590. IEEE Computer Society, Washington (2006)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TVLSI.2008.2008810
http://creativecommons.org/licenses/by/4.0/

EM Lifetime Constrained Optimization
for Multi-Segment Power Grid Networks

Han Zhou, Zeyu Sun, Sheriff Sadiqbatcha, and Sheldon X.-D. Tan

1 Introduction

On-chip power supply or power-ground (P/G) networks provide power to the circuit
modules in a chip from external power supplies. Since power grid wires experience
the largest current flows on a chip, they are more susceptible to long-term reliability
issues and functional failures. These reliability issues and failures typically come
from metal electromigration (EM), excessive IR drops, and �I (Ldi/dt) noise
along with recently emerging back end of line time-dependent dielectric breakdown
(TDDB) [2, 3, 6].

As technology scales into smaller features with increasing current densities, EM-
induced reliability deteriorates, the EM lifetime was projected to be reduced by half
for each new technology node by ITRS 2015 [19]. As a result, EM still remains one
of the top killers of copper based damascene interconnects for technologies in the
sub-10 nm realm. This introduces additional challenges for designing robust power
supply networks to satisfy the demanding design requirements.

An important step for power supply synthesis in the typical EDA design flow
is sizing the wire width of the power grid stripes, after the topology of the power
supply network has been determined, so that the minimum amount of chip area
will be used while avoiding potential reliability failures due to electromigration
and excessive IR drops. Numerous works have been proposed for the power supply
network optimization in the past, primarily based on nonlinear or sequence of linear
programming (SLP) methods [8–10, 13, 26, 27, 31].

To satisfy the EM reliability, all the existing methods use the current density
of individual wires as the constraint, which is mainly based on the Black’s EM

H. Zhou · Z. Sun · S. Sadiqbatcha · S. X.-D. Tan (�)
Department of Electrical and Computer Engineering, University of California, Riverside, CA,
USA
e-mail: hzhou012@ucr.edu; zsun007@ucr.edu; ssadi003@ucr.edu; stan@ece.ucr.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_15

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_15&domain=pdf
mailto:hzhou012@ucr.edu
mailto:zsun007@ucr.edu
mailto:ssadi003@ucr.edu
mailto:stan@ece.ucr.edu
https://doi.org/10.1007/978-3-030-52017-5_15

366 H. Zhou et al.

model. However, this constraint is too conservative for modern power grid networks.
Furthermore, all existing power supply optimization methods fail to consider the
aging effects. With recent advancements in physics-based EM models and numerical
analysis techniques such as three-phase EM model [12, 24, 28, 33], it is possible
to provide more accurate time to failure (TTF) estimation for multi-segment
interconnects.

In this chapter, we present two new P/G network sizing and optimization
techniques, which were first introduced in [35, 36]. We will summarize the key
contributions and major computing steps from the P/G optimization technique
considering the new physics-based EM models. The chapter is organized as follows:
Sect. 2 describes the power grid network and its models. Section 3 presents the fun-
damentals of EM and the voltage-based EM immortality check method for general
multi-segment interconnect wires. Section 4 outlines a physics-based three-phase
EM model and a fast EM lifetime estimation method. Section 5 introduces the EM
immortality constrained P/G network optimization problem and its programming-
based solution. Section 6 presents the EM lifetime constrained P/G optimization
method, which deals with the EM-induced aging effect. Section 7 summarizes this
chapter.

2 Power Grid Modeling

Practical VLSI interconnects (especially the global networks such as power supply
and clock networks) have many multi-segment wires as shown in Fig. 1. A multi-
segment interconnect wire consists of continuously connected high-conductivity
metal within one layer of metallization.

Figure 2 shows a typical mesh-structured P/G network with multi-layer power
grids. The modeling assumptions for later optimization are listed as follows. Firstly,
because of the concern with the long-term average effects of the current, we focus
on the steady state (DC) problem, which means we are only interested in the
resistance of the power grid networks. Secondly, the P/G network is composed of
an orthogonal mesh of wires and contains multiple segments/branches, which is the
typical P/G structure. Lastly, to simplify the problem, the circuits are modeled with
shorted vias, which means the via resistance is ignored and vias will not be sized.
Figure 3 shows the equivalent circuit of the power grid network in Fig. 2.

As a result, the power grid systems are linear and driven by the DC effective
currents [17]. For a power grid network with n nodes,

G× V = I (1)

Fig. 1 Example of a multi-segment wire

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 367

Fig. 2 A small portion of a typical power supply network [22]

Fig. 3 Equivalent circuit of a small portion of a typical power grid

where G is a n × n conductance matrix; I is the current source vector; V is the
corresponding vector of nodal voltages.

3 Electromigration Fundamentals

3.1 Electromigration Introduction

EM is a physical phenomenon of material migration caused by an electrical field.
Wind force, which is produced by current flowing through a conductor, acts in
the direction of the current flow and is the primary cause of EM [21]. During
the migration process, hydrostatic stress is generated inside the metal wire due to
momentum transfer between lattice atoms. Void and hillock formation are caused
by conducting electrons at the opposite ends of the wire. The void may lead to early
failure or late failure of the wire [1].

368 H. Zhou et al.

Fig. 4 Side-view of void formation: (a) void in a via-above line (early failure mode); (b) void in
a via-below line (later failure mode)

Early failure typically happens in a via-to-via structure as shown in Fig. 4a. When
the void forms in a via-above line and reaches critical size [16, 34], which equals
the via’s diameter, the via will be blocked by the void and thus the connection to
the upper layer will also be blocked. This is because the capping layer is fabricated
with dielectrics such as Si3N4 which will block the current flow. On the contrary,
late failure typically happens in a via-below structure as shown in Fig. 4b. Since the
barrier layer is fabricated with Ta whose resistivity is much higher than Cu, when the
void reaches critical size, current can still go through the barrier layer. Sometimes
early failure can happen in a via-below structure and late failure can happen in a
via-above structure. Although the void can grow at these positions, the possibility is
very low.

When the compressive stress at the anode continues to be built up, hillocks
or extrusion may be formed, which will lead to a resistance decrease [30] and
can potentially cause short-circuit failure. However, the void nucleation is still the
dominant EM failure effect [15].

3.2 Steady State EM-Induced Stress Modeling

Steady state EM-induced stress modeling helps find the immortality information
of the interconnect wire quickly as no complex calculations are required. For
these kinds of models, stress on the cathode at steady state (σsteady), which is the
maximum stress the node experiences, is compared with critical stress (σcrit). If
σsteady is lower than σcrit, the wire is considered as immortal. One of the well-
known steady state analysis method is Blech product [4], but it is only suitable for a
single (i.e., one-segment) wire. Recently, a voltage-based EM immortality analysis
method for multi-segment interconnect structures has been proposed [23, 24]. In this
method, an EM voltage (VE) is calculated as

VE = 1

2A

∑
k �=g

akVk (2)

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 369

Fig. 5 Interconnect example for EM analysis for straight 3-terminal wire

where Vk is the normal nodal voltage (with respect to cathode node cat) at node
k, ak is the total area of branches connected to node k, and A is the total area of
the wire. With voltage of node i (Vi), steady state stress at that node (σi) can be
calculated as σi = β(VE−Vi), where β = eZ

�
, e is elementary charge, Z is effective

charge number, and � is the atomic lattice volume. A critical EM voltage Vcrit,EM

is defined by

Vcrit,EM = 1

β
(σcrit − σinit) (3)

where σinit is the initial stress. In order to check whether the interconnect wire is
immortal, we need to check the following condition

Vcrit,EM > VE − Vi (4)

Note that VE − Vi is proportional to the stress at cathode node (σcat).
If this condition is met for all the nodes, EM failure will not happen. Since

generally the cathode node has the lowest voltage within an interconnect wire, we
may just check the cathode node instead of all the nodes, which means

Vcrit,EM > VE − Vcat (5)

where Vcat is the voltage at the cathode. Note that inequality (5) can be applied to
both power and ground networks.

The method can be illustrated using the following example. Figure 5 shows a
3-terminal wire. In this wire, node 0 is treated as the ground node. Current densities
in two segments are ja and jb which may not be the same because they will be
determined by the rest of the circuit. The EM voltage become

VE = a0V0 + a1V1 + a2V2

2A
= a1V1 + a2V2

2A
(6)

370 H. Zhou et al.

where

V0 = 0, a0 = lawa, σ0 = βVE

V1 = jalaρ, a1 = lawa + lbwb, σ1 = β(VE − V1)

V2 = jblbρ + jalaρ, a2 = lbwb, σ2 = β(VE − V2)

(7)

A = a0 + a1 + a2

2
(8)

We can compare VE and Vcrit,EM to see if this wire is immortal.

4 Transient EM-Induced Stress Estimation

In general, the failure process of an interconnect is divided into nucleation phase,
incubation phase and growth phase. In the nucleation phase, the stress at the cathode
keeps increasing. When it reaches critical stress, a void will be nucleated. The time
to reach the critical stress is called nucleation time (tnuc). After the nucleation phase,
the void starts to grow (tinc) and eventually leads to wire failure after a period of time
(tgrowth). The TTF or lifetime of the wire can be described as

T T F = tlife = tnuc + tinc + tgrowth (9)

4.1 Transient EM-Induced Stress Modeling

4.1.1 Nucleation Phase Modeling

It is well-known that the nucleation phase is accurately modeled by Korhonen’s
equation [20]

∂σ (x, t)

∂t
= ∂

∂x

[
κ

(
∂σ (x, t)

∂x
+

)]
(10)

where κ = DaB�
kBT

, Da = D0exp(− Ea

kBT
), and
 = eZ

�
ρwj . B is effective bulk

elasticity modulus, � is atomic lattice volume, kB is Boltzmann constant, T is
temperature, Z is effective charge number, ρw is the wire electrical resistivity, x

is coordinate along the line, t is time, and j is current density.
Korhonen’s equation describes the stress distribution accurately; this PDE-based

model is hard to solve directly using numerical methods and has very low efficiency
for tree-based EM assessment. Recently a few numerical methods have been
proposed such as finite difference methods [5, 11] and analytical expressions based

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 371

approaches [7, 32]. In this work, an integral transformation method for straight
multi-segment wires [32] is employed. Suppose we have a multi-segment wire, after
discretizing Korhonen’s equation, the stress can be expressed as

σ (x, t) =
∞∑

m=1

ψm (x)

N (λm)
σ̄ (λm, t) (11)

where the norm of eigenfunctions N(λm) is

N(λm) =
∫ L

χ=0
[ψm(χ)]2dχ (12)

and the transformed solution of stress σ̄ (λm, t) is

σ̄ (λm, t) =
(∫ L

χ=0
ψm(χ) · σ0(χ)dχ

)
e−κλ2

mt + 1

λ2
m

(
1− eκλ2

mt
)

·
n∑

k=1

eZρ

�
jk ·

(
cos

xk−1

L
mπ − cos

xk

L
mπ

) (13)

Eigenvalues λm and eigenfunctions ψ(x) are the solutions of the Sturm–Liouville
problem corresponding to the diffusion Eq. (10) and the boundary conditions, which
are

λm = mπ

L
, ψm(x) = cos

x

L
mπ (14)

With Eq. (11), given critical stress σcrit, the nucleation time tnuc can be obtained
quickly by using nonlinear equation solving methods such as Newton’s method or
bisection method.

4.1.2 Incubation Phase Modeling

After the void is nucleated, the incubation phase starts. In this phase, resistance of
the interconnect remains almost unchanged since the cross section of the via is not
covered by the void and the current can still flow through the copper.

In power grid networks, the interconnect trees are generally multi-segment
wires. All segments connected with the void can contribute to the void growth
since electron wind at each segment can accelerate or slow down the void growth
according to their directions. In this phase, void growth rate vd is estimated to
be [25]

vd = DaeZρ

kT Wm

∑
i

jiWi (15)

372 H. Zhou et al.

where ji and Wi are the current density and width of the ith segment, respectively.
Wm is the width of the main segment where the void is formed.

Then the incubation time tinc can be expressed as

tinc = �Lcrit

vd

(16)

where �Lcrit is the critical void length.

4.1.3 Growth Phase Modeling

After the incubation phase, the void fully covers the via, initiating the growth phase.
In this phase the resistance starts increasing. It is important to note that, early failure
and late failure have different failure mechanisms.

For early failure, the wire fails once the void covers the via, which means the
wire fails at the end of incubation phase and there is no growth phase (tgrowth = 0).
Hence the failure time is the sum of tnuc and tinc.

For late failure, after the void size reaches the critical size, there will be no open
circuit because the current can still flow through the barrier layer. In this case, the
void growth will lead to resistance increase. When the resistance increases to the
critical level, the interconnect wire is considered to be failed. The growth time for
late failure is

tgrowth = �r(t)

vd

[
ρT a

hT a (2H +W)
− ρCu

HW

] (17)

where ρT a and ρCu are the resistivity of tantalum (the barrier liner material) and
copper, respectively. W is the line width, H is the copper thickness, and hT a is the
liner layer thickness.

However, the void may saturate before reaching the critical void length. The
saturation length is expressed in [18] as

Lss = Lline ×
[
σT

B
+ eZρjL

2B�

]
(18)

where Lss is the void saturated length, Lline is the total length of the wire, and σT

is thermal stress. Void growth may stop before the calculated tgrowth because of the
saturated void. If it happens, we treat the wire as immortal or its lifetime is larger
than the target lifetime.

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 373

Fig. 6 The electrical impact of different failure mechanisms on the interconnect wires: (a) early
failure mode; (b) late failure mode

4.2 Transient EM Analysis for a Multi-Segment Interconnect
Wire

One important aspect of transient EM analysis is calculating the lifetime of a given
wire and its electrical conditions. If the increased resistance of the nucleated branch
exceeds a threshold, the interconnect tree is marked as failed.

To compute the lifetime tlife of a given wire, we need to make sure that the wire
is mortal and Eq. (5) is not satisfied. If a target lifetime ttarget is given, the analysis
method will give the resistance change �R at the target lifetime.

For those mortal wires, we start with time t = 1000 years and use bisection
method to find tnuc. The transient hydrostatic stress will be computed by Eq. (11).
Once the stress of one segment hits the critical stress, the wire is deemed as
nucleated.

Then we need to determine if the wire is void incubation phase immortal. If the
saturated void length is less than the critical length, the incubation time (eventually
the lifetime) becomes infinite and the resistance remains unchanged.

Otherwise, the failure mode of the wire should be determined by looking at the
current direction in the cathode node based on the patterns in Fig. 4.

If the wire is in the early failure mode, then the wire will become an open circuit:
the whole interconnect tree will be disconnected from another interconnect wire as
shown in Fig. 6a. For the wire in the late failure mode, we have another solution.
The wire resistance change will be incurred and the growth time will be computed
when the resistance change reaches the threshold as shown in Fig. 6b. If the target
lifetime is given, then the wire resistance change �R will be computed at the target
lifetime.

374 H. Zhou et al.

5 EM Immortality Constrained Optimization for
Multi-Segment Interconnects

Study and experimental data show that the current-induced stress developed in the
individual segments within an interconnect tree is not independent [14, 29]. In other
words, if we just look at the current density for each segment individually, it may
appear as if all wire segments are immortal, but the whole interconnect tree could
still be mortal. The reason is that the stress in one segment of an interconnect tree
depends on other segments [28]. As discussed before, this issue has been resolved by
the recently proposed fast EM immortality check method for general multi-segment
interconnect wires [23].

In this section, we introduce the EM immortality constrained power grid wire-
sizing optimization method considering multi-segment interconnect wires. It can be
noticed that the new EM constraint will ensure that all the wires are EM immortal,
so we call this method EM immortal power supply optimization.

5.1 Problem Formulation

Let G = {N,B} be a P/G network with n nodes N = {1, . . . , n} and b branches
B = {1, . . . , b}. Each branch i in B connects two nodes i1 and i2 with current
flowing from i1 to i2. li and wi are the length and width of branch i, respectively. ρ

is the sheet resistivity. The resistance ri of branch i is

ri = Vi1 − Vi2

Ii

= ρ
li

wi

(19)

5.1.1 Objective Function

The total routing area of a power grid network in terms of voltages, currents, and
lengths of branches can be expressed as follows

f (V, I) =
∑
i∈B

liwi =
∑
i∈B

ρIi l
2
i

Vi1 − Vi2
(20)

We notice that the objective function is linear for branch current variables I and
nonlinear for node voltage variables V .

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 375

5.1.2 Constraints

The constraints that need to be satisfied for a reliable, working P/G network are
shown as follows.

Voltage IR Drop Constraints
In order to ensure proper logic operation, the IR drop from the P/G pads to the nodes
should be restricted. For each node, we must specify a threshold voltage

Vj > Vmin for power network (21)

where Vj is the nodal voltage and Vmin is the minimum required voltage for the
power nodes.

Minimum Width Constraints
The widths of the P/G segments are technologically limited to the minimum width
allowed for the layer where the segment lies in

wi = ρ
liIi

Vi1 − Vi2
≥ wi,min (22)

New Electromigration Constraints for Multi-Segment Interconnects
As described before, for a multi-segment interconnect m, the EM constraint should
be satisfied

Vcrit,EM > VE,m − Vcat,m (23)

where VE,m is the EM voltage for the mth interconnect tree, which is computed
using Eq. (2). Vcat,m is the cathode nodal voltage of that tree. Unlike previous
methods whose branch currents are monitored and used as constants, in our new
method, voltages are used as constraints. Thus, only the cathode node voltage for
a whole interconnect tree needs to be monitored and no other complex calculations
are required.

We remark that VE,m, which is defined in (2), is a function of both nodal voltage
and total area of wires. As a result, it is a nonlinear function of the nodal voltage (as
the area of a wire segment is a function of both nodal voltage and branch current as
defined in the cost function (20)). But if we have the equal width constrains as shown
below, then constraint (23) actually becomes a linear function of nodal voltage
again. For many practical P/G networks, most wire segments in an interconnect
tree indeed have the same width.

Equal Width Constraints
For typical chip layout designs, certain tree branches should have the same width.
The constraint is wi = wk , which can be written as

376 H. Zhou et al.

Vi1 − Vi2

liIi

= Vk1 − Vk2

lkIk

(24)

Kirchhoff’s Current Law (KCL)
For each node j , we have

∑
k∈B(j)

Ik = 0 (25)

where B(j) is the set of branches incident on node j .

5.2 New EM Immortality Constrained P/G Optimization

The power grid optimization aims to minimize objective function (20) subjected to
constraints (21)–(25). It will be referred as problem P. Problem P is a constrained
nonlinear optimization problem.

5.2.1 Relaxed Two-Step Sequence of Linear Programming Solution

In the aforementioned optimization problem, we notice that the newly added EM
constraint (23) is still linear in terms of nodal voltage. As a result, we can follow
the relaxed two-phase iterative optimization process [8, 27] and apply the sequence
of linear programming technique [27] to solve the relaxed problem. Specifically,
we have two phases: the voltage solving phase (P-V phase) and the current solving
phase (P-I phase).

P-V Optimization Phase
In this phase, we assume that all branch currents are fixed, then the objective
function can be rewritten as

f (V) =
∑
i∈B

αi

Vi1 − Vi2
(26)

where αi = ρIi l
2
i , subject to constraints (21)–(24). We further restrict the changes

of nodal voltages such that their current directions do not change during the
optimization process

Vi1 − Vi2

Ii

≥ 0 (27)

Problem P-V is nonlinear; however, it can be converted to a sequence of linear
programming problem. By taking the first-order Taylor’s expansion of Eq. (26)
around the initial solution V 0, the linearized objective function can be written as

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 377

g (V) =
∑
i∈B

2αi

V 0
i1 − V 0

i2

−
∑
i∈B

αi(
V 0

i1 − V 0
i2

)2 (Vi1 − Vi2) (28)

Besides, an additional constraint will be added [27]

ξsign(Ii)
(
V 0

i1 − V 0
i2

)
≤ sign((Ii) (Vi1 − Vi2) (29)

where ξ ∈ (0, 1) is a restriction factor, which will be selected by some trials and
experience and sign(x) is the sign function.

Now, the procedure for solving problem P-V is transformed to the problem of
repeatedly choosing ξ and minimizing g (V) until the optimal solution is found.
Theoretically, given g (Vm) < g (Vm−1), there always exists a ξ such that f (Vm) <

f (Vm−1); however, one-dimensional line search method is a more efficient way to
find the solution point. Specifically, given Vm and Vm−1, the search direction can be
defined as dm = Vm − Vm−1. Line search finds an α ∈ [0, 1] such that

f (αdm + Vm−1) < f (Vm−1) (30)

αdm + Vm−1 becomes new Vm for the next iteration.

P-I Optimization Phase
In this phase, we assume that all nodal voltages are fixed, so the objective function
becomes

f (I) =
∑
i∈B

βiIi (31)

where βi = ρl2
i

Vi1 − Vi2
, subject to constraints (22), (24), and (25). Similarly, we

restrict the changes of current directions during the optimization process

Ii

Vi1 − Vi2
≥ 0 (32)

As can be seen, problem P-I is a linear programming problem.

5.2.2 New EM Immortality Constrained P/G Optimization Algorithm

The new EM immortality constrained P/G optimization starts with an initial
feasible solution. We iteratively solve P-V and P-I. The global minimum of convex
problem P-V will be achieved by performing several linear programming processes
iteratively. The entire EM immortality constrained power grid network optimization
procedure is summarized as Algorithm 1.

378 H. Zhou et al.

Algorithm 1 New EM immortality constrained P/G wire-sizing algorithm
Input: Spice netlist GI containing a P/G network.
Output: Optimized P/G network parameters.
1: /*Problem Setup*/
2: k := 0.
3: Compute the initial V k , I k from GI .
4: repeat
5: /*P-V Phase*/
6: Construct constraints (22), (23), (24), (27) and (29) with I k .
7: m := 1.
8: Compute V k

m := arg min g
(
V k
)

subject to constraints (21), (22), (23), (24), (27) and (29).
9: while f

(
V k

m

)
> f

(
V k

m−1

)
do

10: Determine the search direction dm := V k
m−1 − V k

m.
11: Choose step size α for line search.
12: V k

m+1 := V k
m + αdm.

13: m := m+ 1.
14: end while
15: V k+1 := V k

m.
16: /*P-I Phase*/
17: Construct constraints (22), (24) and (32) with V k+1.
18: Compute I k+1 := arg min f

(
I k
)

subject to (22), (24), (25), and (32) constraints.
19: k := k + 1.
20: until

∣∣f (V k, I k
)− f

(
V k−1, I k−1

)∣∣ < ε

21: Return f (V, I).

In practice, only a few linear programmings are needed to reach the optimum
solution. Thus the time complexity of our method is proportional to the complexity
of linear programming.

6 EM Lifetime Constrained Optimization

In the previous sections, we discussed the power grid sizing optimization ensuring
none of the interconnect trees fails based on the voltage-based EM immortality
check. However, such EM constraint may be too conservative because in reality,
some wires can be allowed to have EM failure as long as the power grid network is
still functional (its IR drop is still less than the given threshold) at the target lifetime
(e.g., 10 years).

6.1 New EM Lifetime Constrained Optimization Flow

In this section, we propose a new EM lifetime constrained P/G wire sizing
optimization method in which some segments of multi-segment interconnect wires
will be allowed to fail or to age. The impacts of these segments in terms of resistance
change or even wire openings will be explicitly considered and modeled. Such

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 379

Fig. 7 Flowchart of the EM lifetime constrained P/G optimization process

aging-aware EM optimization essentially takes the EM aging-induced impacts or
guard bands into account so that the designed P/G networks can still function
nominally during the target lifetime. In this work, we only consider void formation,
which is the dominant EM failure effect and will lead to an increase in resistance.

The new optimization flow is shown in Fig. 7. In this new flow, we first check
whether a given power supply network can be optimized using Algorithm 1. If the
optimization fails due to EM constraint, then the lifetime of all the interconnect trees
will be computed based on the EM lifetime estimation method. We have several
scenarios to discuss before we perform the optimization again. Let us define tlife,m
as the lifetime of the mth interconnect tree and ttarget as the target lifetime.

If VE,m − Vcat,m > Vcrit,EM and tlife,m < ttarget

The mth interconnect wire will be marked as a failed wire. Then we have the
following changes for the wire before the next round of optimization.

If it is an early failure case, the cathode node of the wire segment connected
by the failed via will be disconnected, which is called wire disconnection. The
failure cases will depend on the current directions around the cathode node. Also
the disconnection will depend on whether the void growth can eventually reach the
critical void size or not as discussed in Sect. 4.1.

380 H. Zhou et al.

If it is a late failure case, the wire segment associated with the cathode node will
have a resistance change. The specific resistance change for each failed segment will
be calculated based on the target lifetime using our EM lifetime estimation method.

If an interconnect tree is marked as failed, then its EM constraint will be disabled
as we do not need to consider its immortality anymore.

If VE,m − Vcat,m > Vcrit,EM and tlife,m > ttarget

The lifetime of interconnect wire still meets the target lifetime even though it will
have void nucleation and resistance change. This also includes the case in which
void growth saturates before its size reaches the critical void size. The wire still
works since the current can flow through the barrier layer.

The existing VE,m − Vcat,m value is used as the new EM constraint (defined
as VE,m,next − Vcat,m,next) for the mth wire only: VE,m − Vcat,m < VE,m,next −
Vcat,m,next. This is called constraint relaxation. The rational behind it is that we
expect the EM status of this wire to become worse during the next optimization
so its lifetime will not change too much and still meet the given lifetime after the
follow-up optimizations.

After resistance change, or wire disconnection, or constraint relaxation, a new
round of SLP programming optimization, which is similar to Algorithm 1, is carried
out.

7 Summary

In this chapter, a new P/G network sizing technique is presented, which is based
on a voltage-based EM immortality check method for general multi-segment
interconnect wires and a physics-based EM assessment technique for fast time
to failure analysis. The new P/G optimization problem subject to the voltage IR
drop and new EM constraints can still be formulated as an efficient sequence
of linear programming problem, and will ensure that none of the wires fails
if all the constraints are satisfied. To mitigate the overly conservative nature
of the optimization formulation, the EM-induced aging effects on power supply
networks for a target lifetime are further considered and an EM lifetime constrained
optimization method is demonstrated, which allows some short-lifetime wires to
fail and optimizes the rest of the wires. The new methods can effectively reduce the
area of the power grid networks while ensuring reliability in terms of immortality
or target lifetime, which is not the case for the existing current density constrained
P/G optimization methods.

Acknowledgments This chapter is supported in part by NSF grant under No. CCF-1527324, and
in part by NSF grant under No. CCF-1816361, and in part by NSF grant under No. OISE-1854276
in part by DARPA grant under No. HR0011-16-2-0009. We also thank Prof. Naehyuck Chang of
KAIST for some suggestions to improve presentation of this work.

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 381

References

1. Alam, S.M., Gan, C.L., Thompson, C.V., Troxel, D.E.: Reliability computer-aided design tool
for full-chip electromigration analysis and comparison with different interconnect metalliza-
tions. Microelectr. J. 38(4), 463–473 (2007)

2. Bakoglu, H.B.: Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley, Mas-
sachusetts (1990)

3. Black, J.R.: Electromigration-A brief survey and some recent results. IEEE Trans. Electr.
Devices 16(4), 338–347 (1969)

4. Blech, I.A. (1976) Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys.
47(4), 1203–1208

5. Chatterjee, S., Sukharev, V., Najm, F.N.: Power grid electromigration checking using physics-
based models. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 37(7), 1317–1330
(2018)

6. Chen, F., Bravo, O., Chanda, K., McLaughlin, P., Sullivan, T., Gill, J., Lloyd, J., Kontra, R.,
Aitken, T.: A comprehensive study of low-k SiCOH TDDB phenomena and its reliability
lifetime model development. In: 2006 IEEE International Reliability Physics Symposium
Proceedings, pp. 46–53. IEEE, Piscataway (2006)

7. Chen, H.B., Tan, S.X.D., Huang, X., Kim, T., Sukharev, V.: Analytical modeling and
characterization of electromigration effects for multibranch interconnect trees. IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. 35(11), 1811–1824 (2016)

8. Chowdhury, S.: Optimum design of reliable IC power networks having general graph topolo-
gies. In: Proceedings of the 1989 26th ACM/IEEE Design Automation Conference (DAC), pp.
787–790. IEEE, Piscataway (1989)

9. Chowdhury, S.U., Breuer, M.A.: Minimal area design of power/ground nets having graph
topologies. IEEE Trans. Circuits Syst. 34(12), 1441–1451 (1987)

10. Chowdhury, S., Breuer, M.A.: Optimum design of IC power/ground nets subject to reliability
constraints. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 7(7), 787–796 (1988)

11. Cook, C., Sun, Z., Kim, T., Tan, S.X.D.: Finite difference method for electromigration analysis
of multi-branch interconnects. In: Proceedings of the 2016 13th International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), pp. 1–4. IEEE, Piscataway (2016)

12. Cook, C., Sun, Z., Demircan, E., Shroff, M.D., Tan, S.X.D.: Fast electromigration stress
evolution analysis for interconnect trees using Krylov subspace method. IEEE Trans. Very
Large Scale Integr. Syst. 26(5), 969–980 (2018)

13. Dutta, R., Marek-Sadowska, M.: Automatic sizing of power/ground (P/G) networks in VLSI.
In: Proceedings of the 1989 26th ACM/IEEE Design Automation Conference (DAC), pp. 783–
786. IEEE, Piscataway (1989)

14. Hau-Riege, S.P., Thompson, C.V.: Experimental characterization and modeling of the reliabil-
ity of interconnect trees. J. Appl. Phys. 89(1), 601–609 (2001)

15. Hu, C.K., Small, M.B., Ho, P.S.:Electromigration in Al (Cu) two-level structures: effect of Cu
and kinetics of damage formation. J. Appl. Phys. 74(2), 969–978 (1993)

16. Hu, C.K., Anaperi, D., Chen, S.T., Gignac, L.M., Herbst, B., Kaldor, S., Krishnan, M., Liniger,
E., Rath, D.L., Restaino, D., Rosenberg, R., Rubino, J., Seo, S.C., Simon, A., Smith, S.,
Tseng, W.T.: Effects of overlayers on electromigration reliability improvement for Cu/low k
interconnects. In: 2004 IEEE International Reliability Physics Symposium Proceedings, pp.
222–228. IEEE, Piscataway (2004)

17. Huang, X., Yu, T., Sukharev, V., Tan, S.X.D.: Physics-based electromigration assessment for
power grid networks. In: Proceedings of the 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, Piscataway (2014)

382 H. Zhou et al.

18. Huang, X., Kteyan, A., Tan, S.X.D., Sukharev, V.: Physics-based electromigration models and
full-chip assessment for power grid networks. IEEE Trans. Computer-Aided Design Integr.
Circuits Syst. 35(11), 1848–1861 (2016)

19. ITRS: International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2015
edition (2015). http://public.itrs.net

20. Korhonen, M.A., Bo/rgesen, P., Tu, K.N., Li, C.Y.: Stress evolution due to electromigration in
confined metal lines. J. Appl. Phys. 73(8), 3790–3799 (1993)

21. Lienig, J., Thiele, M.: Fundamentals of Electromigration-Aware Integrated Circuit Design.
Springer, Berlin (2018)

22. Nassif, S.R.: Power grid analysis benchmarks. In: Proceedings of the 2008 Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 376–381. IEEE, Piscataway (2008)

23. Sun, Z., Demircan, E., Shroff, M.D., Kim, T., Huang, X., Tan, S.X.D.: Voltage-based
electromigration immortality check for general multi-branch interconnects. In: Proceedings
of the 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
1–7. IEEE, Piscataway (2016)

24. Sun, Z., Demircan, E., Shroff, M.D., Cook, C., Tan, S.X.D.: Fast electromigration immortality
analysis for multisegment copper interconnect wires. IEEE Trans. Comput. Aided Design
Integr. Circuits Syst. 37(12), 3137–3150 (2018)

25. Sun, Z., Sadiqbatcha, S., Zhao, H., Tan, S.X.D.: Accelerating electromigration aging for fast
failure detection for nanometer ICs. In: Proceedings of the 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 623–630. IEEE, Piscataway (2018)

26. Tan, S.X.D., Shi, C.J.R.: Efficient very large scale integration power/ground network sizing
based on equivalent circuit modeling. IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
22(3), 277–284 (2003)

27. Tan, S.X.D., Shi, C.J.R., Lee, J.C.: Reliability-constrained area optimization of VLSI power/-
ground networks via sequence of linear programmings. IEEE Trans. Comput. Aided Design
Integr. Circuits Syst. 22(12), 1678–1684 (2003)

28. Tan, S.X.D., Amrouch, H., Kim, T., Sun, Z., Cook, C., Henkel, J.: Recent advances in EM
and BTI induced reliability modeling, analysis and optimization. Integr. VLSI J. 60, 132–152
(2018)

29. Thompson, C.V., Hau-Riege, S.P., Andleigh, V.K.: Modeling and experimental characterization
of electromigration in interconnect trees. In: AIP Conference Proceedings, AIP, vol. 491, pp.
62–73 (1999)

30. Verbruggen, A.H., van den Homberg, M.J.C., Jacobs, L.C., Kalkman, A.J., Kraayeveld, J.R.,
Radelaar, S.: Resistance changes induced by the formation of a single void/hillock during
electromigration. In: AIP Conference Proceedings, AIP, vol. 418, pp. 135–146 (1998)

31. Wang, K., Marek-Sadowska, M.: On-chip power-supply network optimization using multigrid-
based technique. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 24(3), 407–417
(2005)

32. Wang, X., Wang, H., He, J., Tan, S.X.D., Cai, Y., Yang, S.: Physics-based electromigration
modeling and assessment for multi-segment interconnects in power grid networks. In: Proceed-
ings of the 2017 Design, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 1727–1732. IEEE, Piscataway (2017)

http://public.itrs.net

EM Lifetime Constrained Optimization for Multi-Segment Power Grid Networks 383

33. Wang, X., Yan, Y., He, J., Tan, S.X.D., Cook, C., Yang, S.: Fast physics-based electromigration
analysis for multi-branch interconnect trees. In: Proceedings of the 2017 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pp. 169–176. IEEE, Piscataway
(2017)

34. Zhang, L.: Effects of scaling and grain structure on electromigration reliability of cu intercon-
nects. PhD Thesis, University of Texas at Austin (2010)

35. Zhou, H., Sun, Y., Sun, Z., Zhao, H., Tan, S.X.D.: Electromigration-lifetime constrained power
grid optimization considering multi-segment interconnect wires. In: Proceedings of the 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 399–404. IEEE,
Piscataway (2018)

36. Zhou, H., Sun, Z., Sadiqbatcha, S., Chang, N., Tan, S.X.D.: EM-aware and lifetime-constrained
optimization for multisegment power grid networks. IEEE Trans. Very Large Scale Integr. Syst.
27(4), 940–953 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Monitor Circuits for Cross-Layer
Resiliency

Mahfuzul Islam and Hidetoshi Onodera

1 Introduction

The end of supply voltage scaling has pushed circuit designers to find for new
solutions to reduce power consumption. One key reason for the stoppage of supply
scaling is variability including aging. The International Technology Roadmap for
Semiconductors (ITRS) highlights performance variability and reliability manage-
ment in the next decade as a red brick (i.e., a problem with no known solutions) for
the design of computing hardware [1]. Instead of operating under predefined supply
voltage and clock frequency, the circuit must adapt itself according to its process
conditions, as well as to the dynamic changes of temperature, aging, and workload
to harness the full potential of technology scaling. With the resilient operations, a
chip’s lifetime can be extended, and energy consumption can be reduced.

Due to significant variations in temperature, workload, and aging, dynamic
tuning of not only the supply voltage and clock frequency but also the threshold
voltages has become a necessity for energy-efficient operation. However, without
knowing the device and environmental parameters, tuning of these parameters is not
possible. On-chip monitor circuits which provide the information about device and
environment come to play an important role. On-chip monitors realize an interface
between hardware and software, which then can be utilized for software-controlled
optimization. The future LSI (Large Scale Integration) chip will require lots of mon-
itors to track transistor performances, temperature changes, supply voltage droops,
and leakage current variations. This chapter describes some design techniques of
monitor circuits based on delay cells and then presents a reconfigurable monitor

M. Islam (�) · H. Onodera
Kyoto University, Kyoto, Japan
e-mail: islam.akmmahfuzul.3w@kyoto-u.ac.jp; onodera.hidetoshi.4x@kyoto-u.ac.jp

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_16

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_16&domain=pdf
mailto:islam.akmmahfuzul.3w@kyoto-u.ac.jp
mailto:onodera.hidetoshi.4x@kyoto-u.ac.jp
https://doi.org/10.1007/978-3-030-52017-5_16

386 M. Islam and H. Onodera

architecture to realize different delay characteristics with a small area footprint. An
extraction methodology of physical parameters from a set of monitor circuits is
presented for model-hardware correlation.

2 Cross-Layer Resiliency

This section describes the benefit of realizing cross-layer resiliency by dynamic
tuning of threshold voltage, supply voltage, and clock frequency. Cross-layer
resiliency enables energy-efficient operation by eliminating excessive margins. We
highlight the importance of run-time sensing of circuit delay, leakage current,
switching power, temperature, and threshold voltage to realize minimum energy
operation under process, voltage, temperature, activity and temperature variations.
Multiple on-chip monitor circuits are required to sense these parameters. Although
monitor circuits are not a part of the actual circuit, they are essential components
for run-time tuning.

2.1 Parameter Fluctuation and Aging

Variations in physical parameters such as transistor threshold voltage, and temper-
ature have spatial distributions over a chip with both of the random and systematic
components. Besides the physical parameter variations, environmental variations
also affect circuit performance significantly. Temperature variations of more than
50 ◦C between different parts within a chip are reported [2]. Increase in temperature
degrades circuit performance and increases leakage power. According to ITRS,
supply voltage fluctuation is considered to be ±10% of the nominal voltage.
Sudden drop of supply voltage may cause critical timing failure causing system
malfunctioning. Because of process variation, some chips can be slow and some
chips can be fast. Fast chips tend to be leaky causing larger energy consumption.
Designers thus face a challenge to meet both of the delay and power constraints,
since the circuit needs to operate correctly under all of the variation scenarios.

Device characteristics also degrade over time. Aging causes reliability issues
where high temperature accelerates device aging. Device phenomena such as
Negative Bias Temperature Instability (NBTI) is reported to cause 10% of delay
degradation in digital circuits for a 70-nm process over 10 years [3]. Designing the
circuit for the worst possible scenario is energy inefficient as it increases area, power,
and cost. A chip may face extreme worst-case scenarios once in several years.
The conventional worst-case design methodology, where the operating conditions
of a circuit are set such as to meet the worst-case performance, is way too energy
inefficient and new design paradigm incorporating on-chip monitor circuits have
become indispensable. In the new design paradigm, parameters such as the supply
voltage and threshold voltage are tuned in the run-time such that the target delay

Monitor Circuits for Cross-Layer Resiliency 387

and power profile are achieved. As a result, instead of worrying for the worst-case
performance, the circuit can now be designed to achieve optimal performances.

2.2 Cross-Layer Resiliency for Energy-Efficient Operation

Figure 1 shows a typical design hierarchy of a system-on-a-chip. First, transistor
models for a target process technology node are given to circuit designers. These
transistor models contain statistical models to simulate the effects of variations on
circuit performance. To guarantee error-free circuit operation, a circuit is tested for
extreme cases by using the assumed models. As a result, the circuits tend to be over-
designed which result in excessive energy consumption. From a system perspective,
the circuits need to operate at different supply voltages and clock frequencies
while ensuring correct operations. The selection of adequate clock frequency and
supply voltage is performed pessimistically. Design-time optimization is an open-
loop operation; thus the operating conditions are set for the worst-cases. The
solution obviously is to create a feedback loop into the system which can only be
realized by tuning circuit parameters in the run-time. Run-time tuning relaxes the
design constraints on the circuit and as a result the circuit become better optimized
compared with the one where no run-time tuning is performed.

Figures 2 and 3 show two profiles of energy consumption for an LSI. Figure 2
shows simulated energy and frequency contour plots on the threshold voltage (Vth)
and the supply voltage (Vdd) plane for a model circuit operating at an activity rate of
1%. The model circuit used here is a delay line of 40 inverter cells. A commercial

Device

Transistor model

Variation model

Circuit

On-chip
monitors

System

Temperature

Supply voltage
Vth
Critical delay
Leakage

Activity

1. Estimation technique
2. Monitor circuit
3. Interface
4. Adaptation technique
5. System optimization

Design issues

Fig. 1 Cross-layer optimization with the use of monitor circuits

388 M. Islam and H. Onodera

Fig. 2 Energy and frequency
contour plot on the Vth and
Vdd plane. Activity rate of
0.01 is assumed

Fig. 3 Total energy per clock
cycle against the ratio
between static and dynamic
energy for a clock frequency
of 100 MHz. Having a
balanced static and dynamic
energy is the key to minimum
energy operation

Dynamic-energy
dominant

Leakage-energy
dominantOptimaldominant dominant

65 nm process is assumed here. Cross points in the plot show the sets of Vth and
Vdd values that give the minimum energy operation for each operating frequency.
We observe that the required Vth and Vdd values, that realize the minimum energy
operation, differ significantly with the changes in the clock frequency. Dynamic
adaptation of Vth and Vdd values ensures minimum energy operation for any
operating frequency. Figure 3 shows the total energy of the circuit operating at 100
MHz under different combinations of Vth and Vdd against the ratio of static energy
(Estatic) to dynamic energy (Edynamic). We observe that a ratio of 10 to 50% realizes
near minimum energy operation. Under the variations of circuit activity, operating
frequency and temperature, the energy ratio varies largely. To ensure minimum
energy operation, Vdd and Vth values need to be tuned such that a ratio between
10 and 50% is realized. From the figures, the need for run-time tuning of Vdd and
Vth values are apparent but the problem is how to realize such a mechanism.

Monitor Circuits for Cross-Layer Resiliency 389

Two key mechanisms are required to realize a feedback system. One is the
sensing mechanism of the output. The other is to feedback the output to the input
of the system. Sensing mechanism is an essential component here. In the case of an
LSI, the output parameters are the Vth values, circuit delays, temperature, leakage
current, and switching current. Sensing these parameters requires multiple on-chip
monitor circuits. The monitors provide real-time information of the hardware which
can then be used to set the parameters of Vdd, Vth and clock frequency optimally for
reliable operation.

2.3 Role of Monitor Circuits

The past trend of using smaller transistors to achieve higher operating frequency
has come to an end [4]. Instead of the clock frequency, system throughput and
energy per throughput are the modern specifications for a device. The new era of
LSI scaling is a system-on-a-chip (SoC) approach that combines a diverse set of
components including adaptive circuits, integrated on-chip monitors, sophisticated
power-management techniques, and increased parallelism to build products that are
many-core, multi-core, and multi-function [5]. The ability to adapt to the changes
in environment and performance will give us the full benefit of technology scaling.
Tuning mechanisms and on-chip monitors are needed to realize circuits that have
the ability to adapt. The future SoC must have capabilities of post-silicon self-
healing, self-configuration, and error correction. Effective use of on-chip monitor
circuits will play a major role in continuing the advancement of LSI. Use of on-chip
monitors provides us the following advantages:

1. Reduce design margin in each layer of design hierarchy by eliminating pes-
simism.

2. Tune system parameters based on the actual hardware profile.
3. Provide information for silicon debugging and timing analysis.

To harness the above advantages, the following characteristics of on-chip monitor
circuits are preferred:

Digital Digital in nature realizes robust operation under different
supply voltages.

Design automation Monitor circuits for threshold voltage, temperature, sup-
ply voltage, interconnect, activity, and leakage current are
required. Thus, design automation is a key factor here for
low-cost implementation of the monitors. Cell-based design
with delay cells are preferred.

Area efficiency Area efficiency is an important parameter for fine-grain and
distributed implementation of monitor circuits on the chip.

390 M. Islam and H. Onodera

As the target parameters such as the temperature and leakage current are analog
values, mechanisms to convert the analog values to digital values are required to
interface with the other components of the system. Two design methodologies can
be adopted for designing monitor circuit. One methodology performs operations in
the analog domain to sense and amplify the effect of the parameter variation and
then convert the analog value to a digital value. The other methodology converts the
analog value to a digital value as early as possible and then make operations in the
digital domain. Incorporating the analog value in the delay of a logic gate realizes
the later. Furthermore, the well established cell-based design methodology for
automation can be adopted readily for the delay-based implementation of monitor
circuits. We therefore explore several delay-based implementations of monitor
circuits in this chapter.

3 Delay-Based On-Chip Monitor Design

Delay-based monitor circuits use the mechanisms of converting the target analog
value to the delay of a logic gate. The topology of the logic gate thus need to
be designed such that the target parameter variation is amplified in the delay. To
understand the delay-based monitoring, we first give an overview of the general
delay characteristics of logic gates. Then we explore several techniques to tune the
delay characteristics such that the monitoring of a target parameter can be realized.
Finally, we demonstrate a cell-based design of a reconfigurable monitor circuit that
can sense the parameters of nMOSFET and pMOSFET threshold voltages.

3.1 Delay Characteristics

Delay-based monitoring is based on the fact that the delay of a logic gate contains
information of the transistor drain current Id. Figure 4 shows four delay paths
consisting of different logic gates and interconnects. A delay path of Fig. 4a consists
of inverter gates. Delay paths of Fig. 4b and c consist of NAND2 and NOR2 gates.
A delay path of Fig. 4d consists of inverter gates with long interconnecting wires.
Depending on the topology of the logic gate and the interconnect length, delays
of different gates and interconnect show different behavior to process, voltage, and
temperature variation. Figure 5 shows the topology of four different logic gates.
Figure 5a shows a conventional inverter topology. Figure 5b shows a NAND2
topology where two nMOSFETs are placed in stack. Figure 5c shows a NOR2
topology where two pMOSFETs are placed in stack. Figure 5d shows an inverter
topology where two pMOSFETs and two nMOSFETs are placed in stack to mimic
the delay behavior of the both of the NAND2 and NOR2 gates.

Under the presence of large within-die random variation, each delay path might
behave differently. At a higher supply voltage, a particular path may show the

Monitor Circuits for Cross-Layer Resiliency 391

Interconnect

(a)

(b)

(c)

(d)

Fig. 4 Delay paths consisting of (a) inverter gates, (b) NAND2 gates, (c) NOR2 gates, and (d)
inverter gates with long wires

A YB

(a)

A

B

YB

(b)

A

B
YB

(c)

A YB

(d)

Fig. 5 Topology of different delay cells. (a) Inverter gate. (b) NAND2 gate. (c) NOR2 gate. (d)
Universal delay cell

worst-case delay, whereas at a lower supply voltage, a different path may show
the worst-case delay. Figure 6 shows the delay change against the change of supply
voltage. Topology with a stacked transistor shows higher sensitivity to Vdd change
than that without a stacked transistor. Topology with a reduced Vgs value shows
much higher sensitivity to Vdd change. The important point is that the delays of
different topologies show different sensitivities to process, supply voltage, and
temperature changes. Under the presence of within-die variation, the gates of the
same logic type also show different delay behavior. Thus, accurate delay estimation
of a circuit is challenging. Instead, we can monitor the delay of a representative
circuit that gives us a reasonable prediction of the actual delay of the circuit.

392 M. Islam and H. Onodera

Fig. 6 Delay versus supply
voltage for different inverter
topologies

3.2 Delay Model

A delay model is useful to intuitively understand the different delay characteristics
for different topology. The rise and fall delays of an inverter gate can be approxi-
mated by the following equations:

drise = Cload Vlogic

Idp
, (1)

dfall = Cload (Vdd − Vlogic)

Idn
. (2)

Here, Idp and Idn are the drain currents of pMOSFET and nMOSFET during the ON
state, respectively. Cload is the load capacitance that consists of the gate capacitance
of MOSFETs of the next gate, drain capacitance of pMOSFET and nMOSFET, and
interconnect parasitic capacitance. Vlogic is the logical threshold voltage at which
the next gate switches its output value. To model the transistor drain current, EKV
model based equation of Eq. 3 is useful to express the drain current that is continuous
from weak-inversion to strong-inversion operation: [6, 7].

Id = k · W

L
· lnα

[
1+ exp

(
Vgs − (Vth − γVbs − λVds)

α nVT

)]
. (3)

Here, k is a technology-related parameter. γ is the body bias coefficient and λ is the
short-channel coefficient. Short-channel effect reduces the threshold voltage when
large Vds is applied to the transistor. Thus, large Vds value increases ON current
which is beneficial to switching delay, but causes exponential increase in the leakage
current.

For the pull-down operation of an inverter gate of Fig. 5a, Vbs is zero and Vds
changes from Vdd to Vlogic. However, in the case of a NAND2 gate, the values of
Vbs and Vds differ. The source of the nMOSFET that is connected to the output is

Monitor Circuits for Cross-Layer Resiliency 393

not tied to ground. As a result, Vbs becomes negative that causes the Vth to increase.
Consequently, the Vds value remains within a small value. Smaller Vds value causes
less short-channel effect resulting in a higher Vth value than a larger Vds value. As a
result of negative Vbs value and smaller Vds value, the drain current decreases which
causes the delay to increase.

3.3 Delay-Based Monitor Circuits

Design of on-chip monitors requires careful choosing of the right topology. Here,
we discuss several delay-based design techniques that realize monitoring of different
parameters.

3.3.1 Critical Path Monitor

The first and the most important parameter to monitor is the maximum delay of a
circuit to ensure that the circuit operates at a certain clock frequency without any
timing error. The maximum delay of a circuit is the maximum of delays of all the
paths. As a circuit consists of thousands of delay paths, we can choose the following
two methods to monitor the maximum delay.

1. Monitor the delays of actual paths, and
2. Monitor the delay of a representative delay path.

The first method, which is in-situ monitoring, requires additional circuitry in the
actual delay paths. In the case of in-situ monitors, the Flip-Flops (FF) in a circuit
are replaced with special FFs with error detection sequential (EDS) functions. The
EDS can either detect whether a timing error has occurred [8, 9] or warn us before
the occurrence of actual errors [10–12]. Supply voltage and clock frequency are
adapted accordingly based on the EDS signals. The drawback of EDS-based in-
situ monitors is that the additional circuits add extra delays, and increase area and
power. To reduce the delay and area overhead, we can replace only those FFs where
the delays are critical. During the design phase, we can make a list of the potential
critical delay paths. However, as shown in Fig. 6, paths show different sensitivity
to process, supply and temperature changes. Thus, the number of candidates tend
to increase drastically under process, voltage, and temperature variations. Another
fundamental drawback to be overcame is that a critical path is not always sensitized.
Thus, it is necessary to properly estimate the actual timing slack of the critical path.

The second method requires an additional delay path that is placed near the actual
circuit that can track the delay of the actual circuit. This delay path is often called
a critical path monitor (CPM). The requirement of such a CPM is that it tracks
the maximum delay of the target circuit for all conditions of process, voltage, and
temperature variations. CPM is thus a delay path that is synthesized such that it
tracks the worst delay of the circuit. However, there is no universal solution on how

394 M. Islam and H. Onodera

IN t

Path 1

Path 2

Path 3

Path n

OUT

(a) (b)

% RC delay

0 n

IN % Tr. delay

0 n

OUT

Calibration bits

Calibration bits Calibration bits

Fig. 7 Synthesis of critical delay path from a combination of series and parallel delay paths.
(a) Parallel paths. (b) Series paths

to design a CPM that meets the above criterion. Two approaches have been proposed
on how to synthesize a CPM. One approach is to synthesize a critical path monitor
from a list of potential critical paths during the design phase [13–15]. The other
approach is to design a reconfigurable delay path consisting of different logic gates
and wire lengths, and then configuring the delay path during the test time, such
that the delay correlates with the maximum achievable frequency [16–19]. Figure 7
shows a general concept of the synthesis framework of a critical delay path [20].
Several paths such as the paths shown in Fig. 4 are put in parallel. Then the several
paths are placed in series. During the calibration process, combinations of parallel
and series paths are explored to find a combination that gives the worst delay for all
the operating conditions.

Instead of using a reconfigurable delay line, a general purpose delay line
consisting of inverter cells with stacked transistors are also proposed so that the path
mimics the worst-case delay [21]. Calibration is nonetheless required which can be
performed during the design phase and during the test. To encounter the effect of
systematic within-die variations, multiple CPMs can be used that are distributed at
various places on the chip [15, 21].

3.3.2 Threshold Voltage Monitor

For adaptation of Vth values to their optimum values, Vth monitors are required.
Although there is no universal definition of Vth, an arbitrary definition can be used
as a reference. For example, the Vgs value that gives a fixed Id value is often used
to define the Vth value. Conversely, we can track the Vth value by observing the
change of Id value if the Vgs can be set as a function of Vth. Then the delay change
resulting from the Id change can be measured and converted to digital with the
use of a reference clock signal. Figures 8 and 9 show two delay cells consisting
of inverter gates where either the nMOSFET Vgs or the pMOSFET Vgs voltage
becomes a function of the corresponding Vth values (Vthp for pMOSFET and Vthn for

Monitor Circuits for Cross-Layer Resiliency 395

Fig. 8 Vthp-dominant delay
cell for Vthp monitoring

Vss�|Vthp| Vss

Vdd Vdd

Fig. 9 Vthn-dominant delay
cell for Vthn monitoring

Vdd- Vthn
Vss

Vdd

Vss

nMOSFET). The Vth-sensitive gate-source voltage is realized using pass-transistors
as shown in Figs. 8 and 9 [22, 23]. To illustrate the Vth monitoring capability of
the monitor cells, sensitivity vectors of different inverter topologies are shown in
Fig. 10 at nominal supply voltage for a 65 nm bulk process. Here, the sensitivity
vector consists of the sensitivity coefficients of the delay to Vthn and Vthp changes.
We observe that the sensitivity coefficients of the pass-transistor inserted cells are
multiple times larger than those of conventional inverter, NAND2, and NOR2 cells.
An all-digital process variability monitor based on a shared structure of a buffer
ring and a ring oscillator is proposed in [24]. The technique utilizes the differences
of rise and fall delays of inverter gates because of process variations.

As will be shown next, driving the load with the transistor leakage current also
gives us a delay that is exponentially related to Vth value change. However, driving
the load using leakage current requires careful design because leakage currents
through the pull-up and the pull-down paths get involved also. Gate-leakage current
is also a factor to degrade the accuracy of such monitors. The topologies of Figs. 8
and 9 give us compact designs that are minimal and fulfill the purpose.

396 M. Islam and H. Onodera

Fig. 10 Sensitivity vectors of
different inverter topologies

NAND2

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7
Sensitivity to V thn

S
en

si
tiv

ity
 to

V
th

p

IN
VERTER

NOR2

V -dominantthp

V -dominantthn

Fig. 11 Ioffp-dominated
delay cell

Ioffp

3.3.3 Aging Monitor

A critical path monitor also acts as an aging monitor. However, the differences in
activity rate may cause deviations in the aging between an actual critical path and a
monitor path. Therefore, delay paths of different activity rates can be implemented
to track aging. Multiple delay lines consisting of inverter gates with different activity
would give us precise aging information. Decoupling the NBTI and PBTI effects can
be useful for debugging and modeling purposes. In that case, different architectures
are proposed for independent NBTI and PBTI monitoring [25].

3.3.4 Sub-threshold Leakage Monitor

Sub-threshold leakage monitor helps us to estimate the leakage current of a circuit.
The information can then be used to tune Vth, Vdd or frequency optimally. Figure 11
shows a delay cell whose rise delay is several orders of magnitude larger than the
fall delay. The rise delay is driven by the pMOSFET OFF current, while the fall

Monitor Circuits for Cross-Layer Resiliency 397

Fig. 12 Ioffn-dominated
delay cell

Ioffn

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

0 10 20 30 40 50 60 70 80

ln
(D

)

Temperature [0C]

chip #1
chip #2
chip #3

(a)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

 0 10 20 30 40 50 60 70 80

E
rr

or
 [0 C

]

Temperature [0C]

chip #1
chip #2
chip #3

(b)

Fig. 13 Temperature monitoring utilizing inverter delay driven by nMOSFET OFF current.
(a) Logarithm of oscillation period driven by nMOSFET OFF current against temperature. (b)
Monitoring error against temperature after an one-point calibration

delay is driven by the nMOSFET ON current. As a result, the delay of a path
consisting of this cell is proportional to the pMOSFET OFF current. Similarly, delay
of a path consisting of delay cells of Fig. 12 is proportional to the nMOSFET OFF
current. Figure 13a shows the change of measured oscillation period for a delay
path consisting of 125 inverter stages against the temperature change. The inverter
topology of Fig. 12 is used here. The target process is a 65 nm bulk process. The
oscillation period here corresponds to the average OFF current of 125 nMOSFETs.
The logarithm of the delay changes linearly with the temperature showing that the
monitor tracks the leakage current change correctly.

3.3.5 Temperature Monitor

As leakage current is sensitive to temperature variation, a leakage current monitor
can be used for on-chip temperature monitoring. The logarithm of the oscillation
period, D, can be expressed by the following equation:

398 M. Islam and H. Onodera

ln (D) = aT + bT · T , (4)

where T is the absolute temperature, aT and bT are temperature coefficients.
Figure 13b shows the monitoring error after a one-point calibration for a 65 nm bulk
process. Calibration is performed at 15 ◦C. An error range of −1.3 ◦C to 1.4 ◦C is
observed. The above error range is small enough for real-time thermal and reliability
management.

3.3.6 Supply Voltage Monitor

Supply voltage fluctuation has always been a concern which is getting more
severe with the reduction of supply voltage. Supply voltage fluctuation has a static
component which results from the power delivery network (PDN) and a dynamic
component which is the result of transition from idle to active state of a circuit. As
critical path monitors are also sensitive to supply voltage fluctuations and have a
high bandwidth, they can also detect dynamic supply voltage fluctuations [17]. In
the case of CPMs, the output is the timing information obtained by comparing the
path delay and clock period. Thus, the error information does not give whether the
error is from temperature or supply voltage for example. However, when combined
with other monitors such as temperature and threshold voltage, identification of the
causes of timing error becomes possible. The identification of the sources of timing
error allows correct optimization and lifetime enhancement. On-chip supply voltage
droop monitoring mechanisms have been proposed to evaluate the power delivery
network (PDN) [26].

3.3.7 Activity Monitor

Run-time estimation of the static and the dynamic energy can be used to achieve
the minimum energy operation as suggested by Fig. 3. As the dynamic energy
is proportional to circuit activity rate, we can estimate the dynamic energy by
calculating the activity rate of a circuit. A digital dynamic power meter (DDPM)
has been used that computes a rolling average of signal activity over a fixed number
of clock cycles [27]. The accuracy of the power estimation here depends on careful
selection of signals, such that they correspond to the activity of structures that have
high power consumption. Instead of monitoring key logic signals, a clock activity
adder (CAA) for switching power estimation is also proposed [28]. The approach
of the CAA takes advantage of the fact that switching power is highly correlated
to register clock activity. Similarly, hardware-event monitors such as memory-
access counters and instruction-execution counters can be used for dynamic energy
estimation [29]. These monitors depend on counting signal transitions rather than
the delay itself.

Monitor Circuits for Cross-Layer Resiliency 399

(a) (b) (c)

in
out

C

in
out

C

in
out

Fig. 14 A reconfigurable inverter cell topology for Vthp and Vthn monitoring. “C” is a control
signal. (a) Reconfigurable topology. (b) Vthp-sensitive configuration, and (c) Vthn-sensitive config-
uration

3.4 Reconfigurable Delay Path for Multiple Parameter
Monitoring

Delay-based sensing enables us to design a reconfigurable architecture to monitor
multiple parameters by configuring the delay path accordingly [30, 31]. For
example, we can use the topology of Fig. 14a to monitor both of the Vthp and Vthn
variations. Figure 14b and c shows the two configurations to make the delay Vthp-
and Vthn-sensitive, respectively.

3.5 Cell-Based Design

The use of delay cells provides the advantage of the use of cell-based design flow
that enables us to place and distribute the monitors into different parts of the chip.
For example, temperature monitors need to be placed at hot-spots where power
density is high. Power density maps are generated during the design phase. A cell-
based design example in a 65 nm bulk triple-well process for a reconfigurable Vth
monitoring circuit is shown in Fig. 15. The cells with green highlights in Fig. 15b
are the monitor cells of Fig. 15a. The placements of the cells are performed carefully
utilizing the “do not touch” and “relative adjacent placement” features of the place
and route tool.

3.6 On-Chip Measurement and System Interface

The monitoring circuit needs to be interfaced with system for adaptation and self-
tuning. The following three mechanisms can be adopted for on-chip measurement
of monitor circuits.

400 M. Islam and H. Onodera

pMOSFET pass-gate pair

nMOSFET pass-gate pair

1.8 mm

3.2 mm

(a)

194 mm

44
m

m

1.
4

m
m

3.3 mm

Reconfigurable inverter cell

(b)

Fig. 15 Delay characteristics for different topology and supply voltage. (a) Cell layout of a
reconfigurable Vth monitor delay cell. (b) Chip micrograph and layout of a reconfigurable monitor
circuit including the controller

Delay monitor

(a)

(b)

(c)

Delay monitor OutEdge

Sequential
adaptation

LUT-based
adaptation

Counter

Vthp-sensitive

Vthn-sensitive

Reference

Counter

LUT-based
adaptation

f1
fref

f2
fref

System clock

System clock

D

D
Edge up/down

Fig. 16 Three different measurement methods for system interfacing. (a) EDS-based method. (b)
Time-to-digital conversion based method, and (c) Frequency ratio based method

1. Edge detection [16, 17, 32].
2. Frequency counting [33].

Edge detection based system can have either a single bit output [16] or multiple
bits output [17, 32]. Figure 16 shows three different methods for digitizing the
monitored delay. Figure 16a checks whether the delay is smaller or larger than the
system clock period [17, 32]. If the delay is smaller, adaptation such as slowing

Monitor Circuits for Cross-Layer Resiliency 401

down the system by reducing the supply voltage can be performed. If the delay is
larger, the system will speed up by increasing the supply voltage for example. To
ensure that the transitions occur without any timing error, margins are added in the
delay path. These margins include within-die random delay effects as well as the
response time of the adaptation. A resolution window can also be added to ensure
that the adaptation occurs without inducing any timing error.

Figure 16b uses multiple edge detectors to convert the time between the path
delay and the clock period to digital codes [16]. The digital codes are then
sent to the system controller where a look-up table (LUT) based adaptation can
be implemented. Figure 16c shows a measurement method that uses frequency
counting [33]. This measurement method is particularly useful for monitoring
device parameters of Vth, temperature, and so on. Using the system clock for the
conversion will require calibration of the monitoring circuit for every supply voltage
which will increase the test cost. Instead, we can utilize a locally generated clock
using a ring oscillator. The output in this case is the ratio of the monitor frequency
and the reference frequency. The measured values of the frequency ratio are then
compared with predefined values to monitor how much the monitoring parameter
varied from the targeted values. For applications where the clock frequency is
fixed, process and temperature sensitive monitors can also implemented with edge
detection mechanisms. An up/down counter based detection circuit to detect the Vth
deviation from predefined values has been employed for dynamic adaptation of Vth
values [34].

4 Parameter Extraction for Model-Hardware Correlation

The circuit techniques described in Sect. 3 realize delay characteristics that are
sensitive to particular parameter variations. However, they do not give us the value
of the parameter variation itself. In this section, we describe a parameter extraction
technique that takes the delay values of multiple delay paths and then estimates the
variations in each of the parameters. The parameters can be transistor threshold
voltage, temperature, gate-length or any device related parameter. We can then
utilize the extracted parameters for test strategies and process optimization.

4.1 Parameter Extraction Methodology

In the case of an inverter gate, the gate–source voltage of each transistor goes
through different values during a “High” to “Low” and a “Low” to “High”switching
events. Thus, it is not straight forward to relate physical device parameters to the
delay information. Parameter estimation gets harder when the supply voltage is
lowered, such that the delay becomes non-linear to the parameter changes. So, the
question is how to correlate the model to each chip to get a good accuracy.

402 M. Islam and H. Onodera

Delay of path 1

D
el

ay
 o

f p
at

h
2

Parameter 1

P
ar

am
et

er
 2

Sensitivity
matrix

Reference

Measurement

Estimation

Reference

Fig. 17 Estimation of physical parameters from multiple delay paths. Sensitivity coefficient links
the physical parameters to delay values

Section 3 demonstrates different types of delay paths to monitor various physical
and environmental parameters. The designs are carefully performed to make the
delay particularly sensitive to the parameter of interest. The techniques allow us to
comparatively track the change of the parameters in the run-time. However, because
of the mismatch in the model and hardware, the absolute parameter monitoring
contains errors. Calibrations need to be performed to reduce the errors to acceptable
ranges. For debugging purposes, we may want to correlate our transistor models to
actual transistor characteristics in the chip. To perform model-hardware correlation,
key model parameters such as the Vth and β may suffice as they are the dominant
sources of fluctuations, although other parameters may also be used.

Figure 17 illustrates the concept of parameter extraction from multiple delay
values. The left side of the figure plots the delay of a path against the delay of a dif-
ferent path. The round point shows a point which is obtained by circuit simulation.
The cross point emulates a measured value from a chip. The difference between the
two points here contains process information. Using sensitivity coefficients, we can
estimate the amount of deviation in the process parameters and transform the delay
space to process space which is shown in the right side of the figure. The key point
here is not to use transistor I–V characteristics, rather use the delay characteristics to
extract these parameters. For robust extraction of the parameters, we need to design
the delay paths, such that the sensitivity matrix has a low condition number [22].
We can then build a system of linear equations using the sensitivity coefficients.

4.2 Measurement Results

To demonstrate the monitoring capability of the Vthp-sensitive and Vthn-sensitive
delay cells of Figs. 8 and 9, measurements of ring oscillators are performed for a
65 nm bulk process. Figure 18 plots the values of Vthp and Vthn estimated under
different body bias conditions for a particular chip. In the figure, the x-axis refers
to Vthp estimations and the y-axis refers to Vthn estimations. Rectangular points are

Monitor Circuits for Cross-Layer Resiliency 403

Fig. 18 Estimation results of
Vthn and Vthp of a chip for
different body bias values.
Either the pMOSFETs or the
nMOSFETs are biased
simultaneously

nM
O

SF
ET

 T
hr

es
ho

ld
 V

ol
ta

ge
 [a

.u
.]

pMOSFET Threshold Voltage [a.u]

TT

FF

FS
SS

SF

Reverse 0.6V

Forward 0.6V

pMOSFET only Bias
nMOSFET only Bias

Fig. 19 Vthp-sensitive RO
(ring oscillator) frequencies
against Vthn-sensitive RO
frequencies

 0.5

 1

 1.5

 2

 2.5

 0.5 1 1.5 2 2.5

pM
O

S
F

E
T

-s
en

si
tiv

e
fr

eq
ue

nc
y

[n
or

m
al

iz
ed

]

nMOSFET-sensitive frequency [normalized]

SF

FF

FS
TT

SS

Model predictions

Measurements

estimated values of Vthp and Vthn when only pMOSFET is biased. Triangular points
refer to estimated values of Vthp and Vthn when only nMOSFET is biased. When
only pMOSFET is biased, the estimated point moves in the horizontal direction
referring that only Vthp is being changed in the estimation. When only nMOSFET
is biased, the estimated point moves in the vertical direction referring that only Vthn
is being changed in the estimation. Thus, it is demonstrated that any change in the
threshold voltage can be detected correctly by the proposed monitor circuits.

Figure 19 shows the measured frequencies of Vthp-sensitive and Vthn-sensitive
ring oscillators from several chips (open circles). The chips have been fabricated
targeting either of the five process corners of “TT,” “SS,” “FF,” “FS,” and “SF.” The
values are normalized by the values simulated with the transistor models targeted for
the “TT” process corner. Frequency values simulated using the other corner models

404 M. Islam and H. Onodera

Fig. 20 Vth estimation
results for different corner
chips

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.7 0.8 0.9 1 1.1 1.2 1.3

pM
O

S
F

E
T

 th
re

sh
ol

d
[n

or
m

al
iz

ed
]

nMOSFET threshold [normalized]

Estimation
Model

PCM(corners)
PCM(TT)

are also plotted in the figure (closed squares). In the figure, process shifts from the
“TT” model prediction are observed. Clear deviations are observed for “TT,” “SS,”
“SF,” and “FS” corners. The silicon values are higher than the model predictions.
With comparison with the models, we can have quick understanding of process shift
for each chip. This information allow us to take decisions for silicon debug and test
pattern generation. We can now extract the device parameters of Vthp, Vthn, and β

using sensitivity analysis, model-hardware correlation can be obtained that allows
us accurately predict the delay performance. Figure 20 plots the estimated Vthp and
Vthn values. Vth values provided in the corner models are also plotted in the figure.
Furthermore, Vth values provided by the Process Control Modules (PCM) that are
generally placed in the scribe-lines are also plotted. The estimated values correlate
with the PCM data and also show die-to-die variations.

5 Conclusion

In this chapter, we have shown the importance of cross-layer resiliency for energy-
efficient and robust operation of circuits. Cross-layer resiliency is performed by
tuning the threshold voltage and supply voltage in run-time based on information
of process, leakage current, circuit activity, and temperature. Run-time monitoring
of these parameters are essential in achieving cross-layer resiliency. To incorporate
the monitor circuits into a cell-based design flow, we have discussed delay-based
monitoring techniques. Cell-based design of monitor circuits enables to place the
monitors inside the circuit. Placing the monitors inside the target circuit realizes
better correlations between the monitor behavior and the actual circuit behavior.

We have discussed a general design methodology to synthesize a critical path
monitor. There are several methods to monitoring the critical delay having a trade-
off relationship between accuracy and implementation cost. Implementation cost

Monitor Circuits for Cross-Layer Resiliency 405

here can be area overhead, test cost, and/or both. The selection of a suitable critical
path monitor thus has to be made based on the critical nature of the application.

Besides the critical path monitoring, run-time monitoring of physical parameters
of threshold voltage, temperature, and leakage current are essential for energy-
efficient operation under parameter fluctuation and aging. Utilizing the relationship
between the delay of a logic gate and the physical parameters, several circuit
topologies are discussed that amplify the effect a certain parameter. Threshold-
dominant inverter topologies and leakage current driven inverters are suitable for
temperature, leakage current, and threshold voltage monitoring.

References

1. ITRS, International Technology Roadmap for Semiconductors. Technical Report [Online].
Available: http://www.itrs.net

2. Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., De, V.: Parameter variations
and impact on circuits and microarchitecture. In: Design Automation Conference, pp. 338–342
(2003)

3. Paul, B.C., Kang, K., Kufluoglu, H., Alam, M.A., Roy, K.: Impact of NBTI on the temporal
performance degradation of digital circuits. IEEE Electron Device Lett. 26(8), 560–562 (2005)

4. Horowitz, M.: 1.1 Computing’s energy problem (and what we can do about it). In: IEEE
International Solid-State Circuits Conference, pp. 10–14 (2014)

5. Bohr, M.: The new era of scaling in an SoC world. In: IEEE International Solid State Circuits
Conference, pp. 23–28 (2009)

6. Enz, C.C., Krummenacher, F., Vittoz, E.A.: An analytical MOS transistor model valid in all
regions of operation and dedicated to low-voltage and low-current applications. Analog Integr.
Circ. Sig. Process 8(1), 83–114 (1995)

7. Marr, B., Degnan, B., Hasler, P., Anderson, D.: Scaling energy per operation via an asyn-
chronous pipeline. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21(1), 147–151 (2013)

8. Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin, T.,
Flautner, K., Mudge, T., Ave, B., Arbor, A.: Razor: a low-power pipeline based on circuit-level
timing speculation. In: IEEE/ACM International Symposium on Microarchitecture, pp. 7–18
(2003)

9. Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw, D.T.:
RazorII: In situ error detection and correction for PVT and SER tolerance. IEEE J. Solid State
Circuits 44(1), 32–48 (2009)

10. T. Nakura, K. Nose, M. Mizuno, Fine-grain redundant logic using defect-prediction flip-flops.
In: IEEE International Solid-State Circuits Conference, pp. 21–23 (2007)

11. Bowman, K.A., Tschanz, J.W., Kim, N.S., Lee, J.C., Wilkerson, C.B., Lu, S.L.L., Karnik, T.,
De, V.K.: Energy-efficient and metastability-immune resilient circuits for dynamic variation
tolerance. IEEE J. Solid State Circuits 44(1), 49–63 (2009)

12. Das, B.P., Onodera, H.: Frequency-independent warning detection sequential for dynamic
voltage and frequency scaling in ASICs. IEEE Trans. Very Large Scale Integr. VLSI Syst.
22(12), 2535–2548 (2014)

13. Firouzi, F., Ye, F., Chakrabarty, K., Tahoori, M.B.: Aging-and variation-aware delay monitor-
ing using representative critical path selection. ACM Trans. Des. Autom. Electron. Syst. 20(3),
39:1–39:23 (2015)

14. Chan, T.-B., Gupta, P., Kahng, A. B., Lai, L.: Synthesis and analysis of design-dependent ring
oscillator (DDRO) performance monitors. IEEE Trans. Very Large Scale Integr. VLSI Syst.
22(10), 2117–2130 (2014)

http://www.itrs.net

406 M. Islam and H. Onodera

15. Park, J., Abraham, J.A.: A fast, accurate and simple critical path monitor for improving Energy-
Delay product in DVS systems. In: IEEE/ACM International Symposium on Low Power
Electronics and Design, pp. 391–396 (2011)

16. Drake, A., Senger, R., Deogun, H., Carpenter, G., Ghiasi, S., Nguyen, T., James, N., Floyd,
M., Pokala, V.: A distributed critical-path timing monitor for a 65nm high-performance
microprocessor. In: IEEE International Solid-State Circuits Conferencepp. 398–399 (2007)

17. Tschanz, J., Bowman, K., Walstra, S., Agostinelli, M., Karnik, T., De, V.: Tunable replica
circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and
aging variation tolerance. In: IEEE Symposium on VLSI Circuits, pp. 112–113 (2009)

18. Drake, A.J., Floyd, M.S., Willaman, R.L., Hathaway, D.J., Hernandez, J., Soja, C., Tiner,
M.D., Carpenter, G.D., Senger, R.M.: Single-cycle, pulse-shaped critical path monitor in the
POWER7+ microprocessor. In: Proceedings of the International Symposium on Low Power
Electronics and Designpp. 193–198 (2013)

19. Tokunaga, C., Ryan, J.F., Karnik, T., Tschanz, J.W.: Resilient and adaptive circuits for voltage,
temperature, and reliability guardband reduction. In: IEEE International Reliability Physics
Symposium, pp. 1–5 (2014)

20. Drake, A.J., Senger, R.M., Singh, H., Carpenter, G.D., James, N.K.: Dynamic measurement
of critical-path timing. In: IEEE International Conference on Integrated Circuit Design and
Technology, pp. 249–252 (2008)

21. Ikenaga, Y., Nomura, M., Suenaga, S., Sonohara, H., Horikoshi, Y., Saito, T., Ohdaira, Y.,
Nishio, Y., Iwashita, T., Satou, M., Nishida, K., Nose, K., Noguchi, K., Hayashi, Y., Mizuno,
M.: A 27% Active-Power-Reduced 40-nm CMOS multimedia SoC with adaptive voltage
scaling using distributed universal delay lines. IEEE J. Solid State Circuits 47(4), 832–840
(2012)

22. Islam, A.K.M.M., Tsuchiya, A., Kobayashi, K., Onodera, H.: Variation-sensitive monitor
circuits for estimation of global process parameter variation. IEEE Trans. Semicond. Manuf.
25(4), 571–580 (2012)

23. Fujimoto, S., Mahfuzul Islam, A.K., Matsumoto, T., Onodera, H.: Inhomogeneous ring
oscillator for within-die variability and RTN characterization. IEEE Trans. Semicond. Manuf.
26(3), 296–305 (2013)

24. Iizuka, T., Asada, K.: All-digital PMOS and NMOS process variability monitor utilizing shared
buffer ring and ring oscillator. IEICE Trans. Electron. E95-C(4), 627–634 (2012)

25. Kim, T.T.H., Lu, P.F., Jenkins, K.A., Kim, C.H.: A ring-oscillator-based reliability monitor for
isolated measurement of NBTI and PBTI in high-k/metal gate technology. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 23(7), 1360–1364 (2015)

26. Nishizawa, S., Onodera, H.: A ring oscillator with calibration circuit for on-chip measurement
of static IR-drop. IEEE Trans. Semicond. Manuf. 26(3), 306–313 (2013)

27. Krishnaswamy, V., Brooks, J., Konstadinidis, G., Curtis, M., Pham, H., Turullols, S., Shin, J.,
Yifan, Y., Zhang, H.: Fine-grained adaptive power management of the SPARC m7 processor.
In: IEEE International Solid-State Circuits Conference, pp. 1–3 (2015)

28. Mair, H.T., Gammie, G., Wang, A., Lagerquist, R., Chung, C., Gururajarao, S., Kao, P.,
Rajagopalan, A., Saha, A., Jain, A., et al.: A 20nm 2.5 GHz ultra-low-power tri-cluster CPU
subsystem with adaptive power allocation for optimal mobile SoC performance. In: IEEE
International Solid-State Circuits Conference, pp. 76–77 (2016)

29. Hokimoto, S., Ishihara, T., Onodera, H.: Minimum energy point tracking using combined
dynamic voltage scaling and adaptive body biasing. In: IEEE International System-on-Chip
Conference, pp. 1–6 (2016)

30. Islam, A.K.M.M., Onodera, H.: Area-efficient reconfigurable ring oscillator for device and
circuit level characterization of static and dynamic variations. Jpn. J. Appl. Phys. 53(4S),
04EE08 (2014)

31. Islam, A.K.M.M., Shiomi, J., Ishihara, T., Onodera, H.: Wide-supply-range all-digital leakage
variation sensor for on-chip process and temperature monitoring. IEEE J. Solid State Circuits
50(11), 2475–2490 (2015)

Monitor Circuits for Cross-Layer Resiliency 407

32. Bowman, K., Tschanz, J., Lu, S., Aseron, P., Khellah, M., Raychowdhury, A., Geuskens, B.,
Tokunaga, C., Wilkerson, C., Karnik, T., et al.: A 45 nm resilient microprocessor core for
dynamic variation tolerance. IEEE J. Solid State Circuits 46(1), 194–208 (2011)

33. Kim, Y., Shin, D., Lee, J., Lee, Y., Yoo, H.J.: A 0.55 V 1.1 mW artificial intelligence processor
with on-chip PVT compensation for autonomous mobile robots. IEEE Trans. Circuits Syst.
Regul. Pap. 65(2), 567–580 (2018)

34. Mahfuzul, I., Kamae, N., Ishihara, T., Onodera, H.: A built-in self-adjustment scheme with
adaptive body bias using P/N-sensitive digital monitor circuits. In: IEEE Asian Solid State
Circuits Conferencepp. 101–104 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dealing with Aging and Yield in Scaled
Technologies

Wei Ye, Mohamed Baker Alawieh, Che-Lun Hsu, Yibo Lin, and David Z. Pan

1 Introduction

The aging and yield issues arise with aggressive scaling of technologies and
increasing design complexity [51, 53]. These issues impact the circuit performance
and functionality throughout the product life cycles. The sources of aging and yield
concerns lie in different aspects, getting more severe with technology scaling.

Modern VLSI designs have to cope with unreliable components and processes.
Device aging and interconnect electromigration effects are likely to cause unex-
pected performance degradation and even malfunctions at the end of circuit life
cycles. Meanwhile, process variations may lead to manufacturing defects and
inconsistent device characterization, causing yield issues. Ignoring these effects
leads short lifetime of designs and low yield, eventually increases the costs in
volume production and maintenance.

Thus, for the robustness of VLSI design methodology and cycles, reliability
and yield need to be accurately modeled, systematically optimized, and seamlessly
integrated into the existing design flow. This chapter will survey critical aging and
yield issues, and then review the state-of-the-art techniques to tackle them, including
both modeling and optimization strategies which reside across the Physics and
Circuit/Gate layers as part of the overall dependability scheme shown in Fig. 1. The
strategies often involve synergistic cross-layer optimization due to the complicated
VLSI design procedures nowadays. Novel modeling techniques leveraging machine
learning are analyzed along with analytical optimization approaches.

W. Ye · M. B. Alawieh · C.-L. Hsu · D. Z. Pan (�)
University of Texas at Austin, Austin, TX, US
e-mail: weiye@utexas.edu; mohdbaker@utexas.edu; chsu1@utexas.edu; dpan@ece.utexas.edu

Y. Lin
Peking University, Beijing, China
e-mail: yibolin@pku.edu.cn

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_17

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_17&domain=pdf
mailto:weiye@utexas.edu
mailto:mohdbaker@utexas.edu
mailto:chsu1@utexas.edu
mailto:dpan@ece.utexas.edu
mailto:yibolin@pku.edu.cn
https://doi.org/10.1007/978-3-030-52017-5_17

410 W. Ye et al.

Fig. 1 This chapter covers
reliability and yield issues
across the borders between
Physics and Circuit/Gate
levels

Circuit/Gate

Application

Architecture

SW/OS

Physics

C
irc

ui
t/G

at
e

Ap
pl

ic
at

io
n

Ar
ch

ite
ct

ur
e

SW
/O

S

Ph
ys

ic
s

The chapter starts by investigating the device and interconnect reliability issues
for modern VLSI designs in Sect. 2. It covers different device aging effects, such
as bias temperature instability and hot carrier injection, as well as electromigration
effects on power/ground and signal interconnections. The section introduces the
modeling techniques along with optimization strategies to increase the design
robustness under these effects. Section 3 dives into the state-of-the-art practices in
yield issues for both analog and digital circuits. This section examines the impacts
of process variations on circuit performance and manufacturing defects followed by
effective modeling techniques to capture these issues early in the design flow. In the
end, the chapter is concluded with Sect. 4.

2 Reliability Modeling and Optimization

With the continued feature size shrinking, reliability issue becomes increasingly
severe. This section covers recent researches on aging modeling and analysis and
divide the aging concerns into two sub-categories: aging at the device level and
aging at the interconnect level.

2.1 Device Aging

As CMOS technologies continue to shrink, device reliability becomes a major
challenge for high performance computing (HPC) and automotive applications
which require robust circuit design. This section presents the device reliability
modeling and optimization techniques along with mitigation strategies in advanced
CMOS technologies.

Device reliability can be divided into time-independent and time-dependent cat-
egories. Time-independent reliability issues are caused by manufacturing variations

Dealing with Aging and Yield in Scaled Technologies 411

Fig. 2 Bathtub curve that illustrates the device life cycle

or noise such as random telegraph noise (RTN) or soft errors. Time-dependent
reliability issues, also known as aging effects, can be illustrated using the bathtub
curve in Fig. 2 which has high but decreasing failure rate in early life, low and
constant failure rate in normal operation, and increasing high failure rate at the end
of life wear-out period. This section focuses on modeling time-dependent reliability
issues including bias temperature instability (BTI) and hot carrier injection (HCI).

BTI is an aging mechanism characterized by an increase in the device threshold
voltage and a decrease in its mobility which eventually lead to an increase in
the gate delay, and thus performance degradation [9, 58]. The two major factors
contributing to the BTI phenomenon are the voltage bias and temperature. The term
bias refers to the gate-to-source voltage bias applied to the transistor gate which
is mostly a negative bias for PMOS, and a positive bias for NMOS. The theory
behind BTI can be jointly explained by the reaction–diffusion (R-D) model and the
charge trapping (CT) model [58]. The R-D model describes the degradation process
when hole accumulation dissolves Si-H bond (reaction) and hydrogen diffuses away
(diffusion), whereas the recovery stage takes place when voltage bias and duty
factor stress is not present [25, 26]. The CT model explains the threshold voltage
degradation by the trapped charge in the defected gate dielectrics. Early studies
focused on BTI mitigation partially due to the fact that BTI dominates aging in
early stages; however, HCI is more important at later stages where HCI contributes
40%–80% of device aging after 10 years of deployment [21, 47].

HCI is an aging phenomenon that degrades device drain current and is caused
by the accumulation of carriers (electrons or holes) under the lateral electric fields,
which can gain enough energy to damage and degrade the device mobility [16]. The
traditional theory behind HCI was called lucky electron model, which is a field-
based model [12, 57]. However, with the scaling of the supply voltage, the reduced
electric field made HCI prediction based on field-based models a challenging task.

412 W. Ye et al.

Fig. 3 BTI threshold voltage shift vs time for sub-45nm CMOS. BTI effect has stochastic nature
in deep-sub-micro devices. Averaging each sample across large sample size of 800 (a) can achieve
a well-defined voltage vs stress time curve while the voltage vs stress time trend in a much small
sample size (b) contains larger variation [34]

Recent researches have proposed energy-driven theories to generalize HCI effects
when devices are in low supply voltage [27, 52].

Characterizing aging degradation on circuit performance using aging model is a
crucial step prior to optimization. Researchers can build deterministic models for
BTI and HCI-related aging in old technologies such as 180 nm node. However,
Kaczer et al. studied the threshold voltage shift vs time under the BTI effect and
found its stochastic nature in deep-sub-micron nodes as shown in Fig. 3 [34]. Lorenz
et al. proposed the first gate-level timing analysis considering NBTI and HCI [43].
Huard et al. [32] characterized a digital library gates under NBTI and HCI aging
effects. Ren et al. discovered that BTI and HCI-related aging effects have layout
dependencies [54]. In [21, 22], Fang et al. proposed frameworks to analyze BTI
and HCI impacts on large digital circuits and [59] used ring oscillator-based sensors
to estimate HCI/BTI induced circuit aging. Moreover, flip-flop based sensor was
introduced in [2] to predict BTI aging circuit failure.

Recent researches not only model the aforementioned aging issues, but also
propose design methods and optimizations for more reliable designs. Reliability
optimization can be done at architecture level, logic synthesis level, and physi-
cal design level. At the architecture level, [48] demonstrated an aging analysis
framework that examines NBTI and HCI to predict performance, power, and
aging in the early design phase. Firouzi et al. [23] alleviated NBTI effects by
using NOP (No operation) assignment and insertion in the MIPS processor. At
synthesis level, Kumar et al. introduced standard cell mapping that considers signal
probabilities to reduce BTI stress [35]. In [20], both HCI and BTI were considered
during logic synthesis stage and put tighter timing constraint on paths with higher
aging rate. Chakraborty et al. [13] optimized NBTI-induced clock skew in gated
clock tree. Gate sizing [55, 64] and pin-reordering/logic restructuring [68] are also

Dealing with Aging and Yield in Scaled Technologies 413

implemented to minimize BTI effects. At the physical design level, Hsu et al.
[29] proposed a layout-dependent aging mitigation framework for critical path
timing during standard cell placement stage and [81] introduced aging-aware FPGA
placement. Gate replacement techniques were used in [65] to co-optimize circuit
aging and leakage.

2.2 Interconnect Electromigration

As IC technologies continue to scale, complex chip functionalities have been
made possible by virtue of increasing transistor densities and aggressive scaling of
interconnects. Besides, interconnects are getting thinner and running longer. These
factors bring along higher current densities in metal wires, a phenomenon that
further exacerbates electromigration (EM). The failure time from EM is worsened
even further by the local temperature increase caused by self-heating of underlying
FinFETs.

EM is the gradual displacement of atoms in metal under the influence of an
applied electric field and is considered the primary failure mechanism for metal
interconnects. After the migration of atoms with electrons in a metal line for a
certain period, a void grows on one side, which increases the resistance of the metal
line and may eventually lead to open circuits. Hillock is formed on the other side and
may cause short circuits. Figure 4 shows the scanning electron microscopy (SEM)
images of void and hillock.

2.2.1 Power EM Modeling

An empirical model for the mean time to failure (MTTF) of a metal line subjected
to EM is given by Black’s equation [11]

MTTF = A

Jn
exp

(
Ea

kT

)
, (1)

Fig. 4 A void and a hillock generated by electromigration [10]

414 W. Ye et al.

where A is a constant which comprises the material properties and the geometry
of the interconnect, J is the current density, Ea is the activation energy, k is the
Boltzmann constant, and T is the temperature. n is the constant exponent of the
current density and is usually set to 2. With Black’s equation in Eq. (1), the relation
between interconnect lifetime and both current and temperature can be readily
estimated.

Power grid is one of the interconnect structures most vulnerable to EM due to
its high unidirectional currents. Lower-level metal layers of power grids are more
susceptible to EM failures due to smaller wire width. Besides, EM violations are
most likely to occur around weak power grid connections, which deliver current to
high power-consuming regions.

Hsu et al. [30] proposed an average power-based model to evaluate power
grid static EM at placement stage. Ye et al. [78] further modified the model by
considering the sum of the dynamic and leakage currents for a standard cell at this
stage, which is given by:

I = α · C · VDD · f + Ileak,

where α is the cell activity factor, VDD is the supply voltage, and f is the system
clock frequency. C is the sum of the load capacitance and the output pin capacitance.
Load capacitance further includes downstream gate capacitance and interconnect
capacitance. Since nets have not been routed at this stage, half-perimeter wirelength
(HPWL) [8] is widely adopted to estimate interconnect capacitance in placement.
Power tile is defined as the region between two adjacent VDD (or VSS) power
stripes and the adjacent power rails. Figure 5 demonstrates how to calculate the
maximum current in the local power rails within a power tile. Pl and Pr are the
left and right endpoints of the VDD power rail. dl

i and dr
i are the distances from the

midpoint of the i-th cell to Pl and Pr , respectively. Rl
i and Rr

i are the wire resistances
of the corresponding metal segments, which are proportional to dl

i and dr
i . The

following equations hold

I l
i = dr

i /
(
dl
i + dr

i

)
Ii, I r

i = dl
i /
(
dl
i + dr

i

)
Ii .

The currents drawn by all the cells in the power tile from Pl and Pr are computed
as:

I l =
∑

i

I l
i , I r =

∑
i

I r
i .

Therefore, there exists an EM violation in a particular power tile if max{I l, I r } >

Ilimit. In this way, the EM failures in the local power rails can be estimated at the
placement stage; thus, enabling an EM-aware placement that can effectively reduce
the EM violations.

Dealing with Aging and Yield in Scaled Technologies 415

Fig. 5 The power grid model
for current calculation in a
power tile [78]

dr
idl

i

Rl
i Rr

iIr
iI l

i

Ci

Pl Pr

2.2.2 Signal EM Modeling

Previously, electromigration on signal interconnects does not draw great attention.
Alternating current (AC) flows inside signal interconnects; when the direction of the
current in an interconnect is reversed, the direction of EM diffusion is also reversed.
The damage caused by EM can be partially cleared due to this compensation by
material backflow. This effect is known as a self-healing, which can significantly
extend the lifetime of a wire. Black’s equation for AC is given by [40, 63]:

MTTF = A

(J+ − γ J−)n
exp

(
Ea

kT

)
, (2)

where J+ and J− are the current densities during positive and negative pulses. γ

is the self-healing coefficient which is determined by the duty factor of the current
and other factors influencing the scale of self-healing, such as the frequency [39].
Previously, signal electromigration has attracted little attention due to the benefits of
healing effect. However, EM failures in signal interconnects are no longer negligible
due to higher clock frequencies, large transistor density, and the negative impact of
FinFET self-heating at advanced nodes.

In [76], a set of features from the placement is extracted to train a machine
learning model for EM detection before routing. Despite the fact that the current
profile for the design is not available at the placement stage, multiple features
that are highly correlated with the current can be crafted. These features can
be divided into net-specific features and neighborhood related features. The net-
specific features—including HPWL, the number of net pins, etc.—capture the net
attributes. On the other hand, neighborhood related features are used to capture
information about possible congestion around net pins.

The pre-routing signal EM hotspot prediction can be reduced to a classification
problem [76]. A two-stage detection approach based on logistic regression shown
in Fig. 6 is introduced to reduce the number of false alarms. In the first stage, a
classification model M1 is trained to predict EM hotspots using all the nets in the
training dataset. After the first stage, all nets with NH (Non-hotspot) prediction
will be labeled as NH without further processing. For nets labeled H (Hotspot)
by M1, a new model, M2, is trained to prune out false alarms. With an accurate
classification model to detect signal EM hotspots based on the information available

416 W. Ye et al.

Input Nets M1
Prediction Hotspot?

Label: NH

M2
Prediction Hotspot? Label: HTrue True

FalseFalse

Fig. 6 The flow of the two-stage signal EM hotspot detection approach [76]

at the placement stage, early stage EM handling is enabled, which reduces iterative
EM fixing cost.

2.2.3 EM Optimization Flow

Through the preceding EM modeling in Eqs. (1) and (2), EM failures can
be detected after the physical design stage, and then be fixed through layout
modification. Xie et al. [69] proposed control logics to balance currents in both
directions of power rails to mitigate the EM effects. Lienig [38] suggested the
exploitation of several EM inhibiting measures, such as bamboo structure, short-
length, and reservoir effects. Other studies [14, 33] considered global routing for
EM optimization. In [49] de Paris et al. adopted a design strategy using non-default
routing (NDR) rules to re-route the wire segments of EM-unsafe signal nets that
present high current densities.

Conventionally, EM checking is invoked after the routing stage [36]. Current
densities in metal wires are computed and compared with foundry-specified limits to
detect EM failures. Next, the failures are fixed with engineering change order (ECO)
efforts. EM checking leverages post-routing information to detect violations, which
consequently limits the efficiency of addressing techniques. In the routing phase,
the locations of standard cells and the corresponding current distribution are already
fixed and the traditional fixing approaches such as wire widening and cell resizing
are not effective enough to handle the ever-growing number of EM violations [1]. It
is of vital importance to incorporate EM detection and fixing techniques into earlier
stages of physical design (PD).

Two clear benefits are associated with such early stage EM handling. First, the
number of EM violations can be decreased further by using various techniques at
different design stages. Second, introducing early stage mitigation techniques can
help reduce the resulting overhead when compared to post-routing fixing techniques.
Thus, moving the EM detection and resolving steps to earlier stages of the physical
design can help in reducing runtime or the number of iterations needed for design
closure. In [78], a series of detailed placement techniques was proposed to mitigate
power grid EM. Ye et al. [76] proposed a multistage EM mitigation approach
at placement and routing phases to address the problematic nets detected by the
classification model.

Dealing with Aging and Yield in Scaled Technologies 417

3 Yield Modeling and Optimization

3.1 Performance Modeling

With technologies descending deep into the sub-micron spectrum, process variation
manifests itself among the most prominent factors limiting the product yield of
analog and mixed-signal (AMS) circuits. Thus, it is indispensable to consider
this variation in the design flow of modern ICs [42]. Conventionally, performance
modeling has been adopted to capture this variability through analytical models
that can be used in various applications such as yield estimation and design
optimization [4].

Given a set of samples, the performance model coefficients are conventionally
obtained through least-squares regression (LSR). However, LSR can build accurate
models only when the number of samples is much greater than the number of
unknown coefficients. Thus, given the high dimensionality of the performance
models in complex AMS circuit designs, the simulation cost for building accurate
models can be exorbitant. Hence, most recent performance modeling techniques
incorporate additional information about the model to reduce the number of
simulations needed [3, 5, 7].

3.1.1 Sparse Modeling

Although the number of basis functions representing the process variability is
large, a few of these basis functions are required to accurately model a specific
performance of interest (PoI). Hence, the vector of coefficients contains a small
number of non-zero values corresponding to important basis functions [37]. This
information can be incorporated in the modeling by constraining the number of
non-zero coefficients in the final model.

While constraining the number of non-zero coefficients accurately reflects the
sparse regression concept, the optimization problem is NP-hard. Besides heuristic
approaches that select important basis functions in a greedy manner, Bayesian
approaches have been widely applied to address this challenge [37]. In practice,
a shrinking prior on the model coefficients is used to push their values close to zero.
Examples of this include applying a Gaussian or Laplacian prior which results in
Ridge and Lasso regression formulations, respectively. This allows incorporating
sparse prior knowledge; however, such approaches do not perform explicit variable
selection and they penalize high coefficients values by pushing all coefficients close
to zero instead of selectively setting unimportant ones to zero.

On the other hand, a Bayesian spike and slab feature selection technique can
be employed to efficiently build accurate performance models [7]. Spike and slab
models explicitly partition variables into important and non-important, and then
solve for the values of the important variables independently of the feature selection
mechanism. A hierarchical Bayesian framework is utilized to determine both the

418 W. Ye et al.

importance and value of the coefficients simultaneously. At its highest level, the
hierarchy dictates that a particular coefficient is sampled from one of the two zero-
mean prior Gaussian distributions: a low variance distribution centered around zero,
referred to as the spike, and a large variance distribution, referred to as the slab.

This mixture of priors approach has demonstrated superior results compared
to traditional sparse modeling schemes while also providing a feature selection
framework that can easily select important features in the model [7].

3.1.2 Semi-Supervised Modeling

Traditionally, performance modeling has been approached from a purely supervised
perspective. In other words, performance models were built by using labeled
samples obtained through expensive simulations. However, as the complexity of
designs increased, obtaining enough samples to build accurate models has become
exorbitant. Recently, a new direction, derived from semi-supervised learning, has
been explored to take advantage of unlabeled data to further improve the accuracy
of performance modeling for AMS designs [3, 5].

In practice, the hierarchical structure of many AMS circuits can be leveraged
to incorporate unlabeled data via Bayesian co-learning [5]. In particular, such an
approach is composed of three major components. First, the entire circuit of interest
is partitioned into multiple blocks based on the netlist hierarchy. Second, circuit-
level performance models are built to map the block-level performance metrics to
the PoI at the circuit level. Such a mapping is often low-dimensional; thus it can be
accurately approximated by using a small number of simulation samples. Third, by
combining the aforementioned low-dimensional models and an unlabeled data set,
a complex, high-dimensional performance model for the PoI can be built based on
semi-supervised learning.

To implement this modeling technique, a Bayesian inference is formulated to
integrate the aforementioned three components, along with the prior knowledge
on model coefficients, in a unified framework. Experimental results shown in [5]
demonstrate that the proposed semi-supervised leaning approach can achieve up to
3.6× speedup when compared to sparse regression-based approaches.

While many AMS circuits exhibit a hierarchical structure, this feature is not
always present. Hence, a more general semi-supervised framework which makes no
assumption about the AMS circuit structure is desirable [3]. This can be achieved by
incorporating a co-learning technique that leverages multiple views of the process
variability to efficiently build a performance model. The first is the device level
variations such as �VTH or �weff, while the second view is the underlying set
of independent random variables, referred to as process variables. Traditionally,
performance modeling targets expressing the PoI as an analytical function of
process variables; however, capitalizing on information provided by the device level
variability as an alternative view can help efficiently build the performance model
for the PoI [3].

Dealing with Aging and Yield in Scaled Technologies 419

Fig. 7 An iteration of the semi-supervised co-learning modeling framework is illustrated [3]

As shown in Fig. 7, the key idea is to use a small number of labeled samples to
build an initial model for each of the views of the data (x and v), then attempt to
iteratively bootstrap from the initial models using unlabeled data. In other words,
initial models can be used to give pseudo-labels for unlabeled data, then the most
confident predictions from a particular model are used as pseudo-samples for the
other model. In each iteration step, highly confident pseudo-samples are fused with
the small number of available labeled samples to build a new model. Experimental
results demonstrated up to 30% speedup compared to sparse regression-based
approaches [3].

3.1.3 Performance Optimization

Besides capturing the major sources of variability in AMS designs, one of the main
applications of performance modeling is yield estimation and optimization. In prac-
tice, performance optimization can make use of trained models towards optimizing
the performance of the design. This is established by first capturing correlations
between the performance variability and the device sizes or reconfiguration knobs,
then adjusting these parameters to improve the parametric yield [4, 6].

Moreover, with the increase in AMS circuits complexity, increasing nonlinearity
stands out as major factor limiting the capabilities of performance modeling
and optimization. Hence, performance optimization techniques relying on non-
parametric surrogate models and Bayesian optimization frameworks have been
recently proposed [31, 83]. These surrogate models are typically Gaussian Pro-
cesses, and Bayesian optimization is used to find optimal values given a black-box
function.

Bayesian Optimization is a sequential sampling based optimization technique for
optimizing block-box objective functions. At each step, a set of optimal sampling
locations are selected based on a chosen acquisition function. Then, queries of the

420 W. Ye et al.

objective function to be optimized, e.g. performance of an AMS circuit, which can
be costly, are only made at these optimized locations, e.g. via circuit simulations for
AMS verification. The new data collected at each step augments the training dataset
to retrain a probabilistic surrogate model that approximates the black-box function.
Such iterative sampling scheme contributes directly to the accuracy of the surrogate
model and guides the iterative global optimization process [31, 83].

3.2 Hotspot Detection

As the feature size of semiconductor transistors continues shrinking, the gap
between exploding design demands and semiconductor manufacturability using
current mainstream 193 nm lithography is becoming wider. Various designs for
manufacturability (DFM) techniques have been proposed; however, due to the
complexity of lithography systems and process variation, failures to print specific
patterns still happen, which are referred to as lithography hotspots. Examples of
two hotspot patterns are shown in Fig. 8.

The hotspot detection problem is to locate the lithography hotspots on a given
layout in physical design and verification stages. Conventional simulation-based
hotspot detection often relies on accurate yet complicated lithography models and
therefore is extremely time-consuming. Efficient and accurate lithography hotspot
detection is more desired for layout finishing and design closure in advanced
technology nodes.

Pattern matching and machine learning based techniques have been proposed
for quick and accurate detection of hotspots. Pattern matching forms a predefined
library of hotspot layout patterns, and then compares any new pattern with the
patterns in the library [70, 79]. There are some extensions that use fuzzy pattern
matching to increase the coverage of the library [41, 66]. However, pattern matching,

Core

Fig. 8 Example of two hotspot patterns. Core corresponds to the central location where a hotspot
appears

Dealing with Aging and Yield in Scaled Technologies 421

C
on

vo
lu

tio
n

La
ye

r

M
ax

 P
oo

lin
g

La
ye

r

C
on

vo
lu

tio
n

La
ye

r

R
eL

U

R
eL

U

C
on

vo
lu

tio
n

La
ye

r

M
ax

 P
oo

lin
g

La
ye

r

C
on

vo
lu

tio
n

La
ye

r

R
eL

U

R
eL

U

Hotspot

Non-Hotspot

Fully Connected Layers

Fig. 9 An example of a neural network for hotspot detection [74]

including fuzzy pattern matching, is insufficient to handle never-before-seen hotspot
patterns. Recently, machine learning based approaches have demonstrated good
generalization capability to recognize unseen hotspot patterns [17, 18, 45, 50, 80,
82].

3.2.1 Lithography Hotspot Detection with Machine Learning Models

Various machine learning models have been used as hotspot detection kernels
with the goal of achieving high accuracy and low false alarms, including support
vector machine (SVM) [18, 80], artificial neural network (ANN) [18], and boosting
methods [45, 82]. Zhang et al. [82] have also proposed an online learning scheme to
verify newly detected hotspots and incrementally update the model. Recently, deep
neural networks (DNNs) have been adopted for hotspot detection [46, 60]. DNNs are
able to perform automatic feature extraction on the high-dimensional layout during
training, which spares the efforts spent on manual feature extraction. Promising
empirical results have been observed with DNNs in several papers [46, 60, 73, 74].
Figure 9 shows a typical configuration of the structure of a DNN.

The performance of DNNs usually relies heavily on manual efforts to tune the
networks, e.g., the number and types of layers. Matsunawa et al. [46] proposed a
DNN structure for hotspot detection that can achieve low false alarms. Yang et al.
[74] proposed Discrete Cosine Transform (DCT) based feature representation to
reduce the image size for DNNs with a biased learning to improve accuracy and
decrease false alarms.

3.2.2 Evaluation of Hotspot Detection Models

One special characteristic of lithography hotspot detection tasks is the imbalance in
the layout datasets. Those lithography defects are critical, but their relative number
is significantly small across the whole chip. Among various machine learning

422 W. Ye et al.

Threshold

True positives

False positives

Hotspot
Non-hotspot

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Classifier 1
Classifier 2

(b)

Fig. 10 (a) An overlapping distribution of predicted scores for positive and negative samples and
(b) the ROC curves of two example classifiers. As the threshold in (a) moves to the left, both FPR
and TPR in (b) go up accordingly [77]

models at hand, the one with a highest true positive rate (TPR) and a lowest false
positive rate (FPR) is preferred, but in real-world scenarios, there is always a trade-
off between the two metrics. As Fig. 10a demonstrates, if the predicted score implies
the belief of the classifier that a sample belongs to the positive class, decreasing the
decision threshold (i.e., moving the threshold to the left) will increase both TPRs
and FPRs.

The receiver operating characteristic (ROC) curve is considered a robust perfor-
mance evaluation and model selection metric for imbalanced learning problems. For
each setting of the decision threshold of a binary classification model (Fig. 10a), a
pair of TPR and FPR values is obtained. By varying the decision threshold over
the range [0, 1], the ROC curve plots the relationship between TPR and the FPR
(Fig. 10b).

The area under the ROC curve (AUC) is a threshold-independent metric which
measures the fraction of times a positive instance is ranked higher than a negative
one [62]. The closer the curve is pulled towards the upper left corner, the better is
the ability of the classifier to discriminate between the two classes. For example, in
Fig. 10b, classifier 2 has a better performance compared to classifier 1. Given that
AUC is a robust measure of classification performances especially for imbalanced
problems, it is useful to devise algorithms that directly optimize this metric during
the training phase.

It has been proven that AUC is equivalent to the Wilcoxon–Mann–Whitney
(WMW) statistic test of ranks [28, 44, 67]. However, AUC defined by the WMW
metric is a sum of indicator functions which is not differentiable, to which gradient-
based optimization methods cannot be applied. In order to make the problem
tractable, it is necessary to apply convex relaxation to the AUC by replacing the
indicator function with pairwise convex surrogate loss function. There are different
forms of surrogate functions: pairwise squared loss [19, 24], pairwise hinge loss
[61, 84], pairwise logistic loss [56], and piecewise function given in [71]. Ye et
al. [77] compare these surrogate functions and show that those new surrogate loss
functions are promising to outperform the cross-entropy loss when applied to the
state-of-the-art neural network model for hotspot detection.

Dealing with Aging and Yield in Scaled Technologies 423

3.2.3 Data Efficient Hotspot Detection

Despite the effective machine learning models for hotspot detection, most of them
rely on a large amount of data for training, resulting in huge data preparation
overhead. Thus, it is necessary to improve the data efficiency during model training,
i.e., to achieve high accuracy with as small amount of data as possible.

Chen et al. [15] proposed to leverage the information in unlabeled data during
model training, when the amount of labeled data is small. They develop a semi-
supervised learning framework, using a multi-task network with two branches
to train the classification task for hotspot detection and the other unsupervised
clustering task at the same time. The network will label those unlabeled data samples
with pseudo-labels in each iteration. The pseudo-labeled data will be selected and
added to training with different weights in the next iteration, where the weights here
are determined by the clustering branch. The experimental results demonstrate over
3–4% accuracy improvement with 10%–50% amount of labeled training data.

Sometimes, there is additional flexibility to the learning problem where labels
for unlabeled data be can queried. This extra capability enables the use of active
learning which can actively select the data samples for training a better model. Yang
et al [72] propose to iteratively query the actual labels for unlabeled data samples
with low classification confidence in each training step and add these samples for
training in the next step. The experiments on ICCAD 2016 contest benchmarks show
similar accuracy with only 17% of training data samples.

One should note that semi-supervised learning and active learning are two
orthogonal approaches to tackle the insufficient of labeled training data. Semi-
supervised learning assumes the availability of unlabeled data, while active learning
assumes the capability of querying the labels for unlabeled data. They can even be
combined to achieve better data efficiency [85].

3.2.4 Trustworthiness of Hotspot Detection Models

Conventionally, hotspot detection approaches have been evaluated by judging upon
the detection accuracy and the false alarm rate. While these metrics are indeed
important, model trustworthiness is yet another metric that is critical for adopting
machine learning based approaches. Addressing this concern requires machine
learning models to provide confidence guarantees alongside the label predictions.

In practice, methods for obtaining confidence guarantees when using deep neural
network are costly and not yet mature. However, Bayesian-based methods are the
typical option when confidence estimation is needed. This can be achieved by
adopting a Gaussian Process (GP) based classification that can provide a confidence
metric for each predicted instance. With this approach, a label from a trained model
is only valid when its confidence level matches a user-defined metric, otherwise, the
prediction is marked as untrusted and lithography simulation can be used to further
verify the results [75].

424 W. Ye et al.

Train SVM

Clip pool

New H
detected?

Training set

True

Select samples

Run simulation Predict using GP

Confident?

Output H/NH

Run simulation

Train GP model

True

False

False

Active learning

Fig. 11 Overall flow of Litho-GPA including data preparation with active sampling and hotspot
detection with Gaussian process [75]

The flow of Litho-GPA, a framework for hotspot detection with Gaussian Process
assurance, is illustrated in Fig. 11. In addition to addressing the issue of trust, Litho-
GPA adopts active learning to reduce the amount of training data while favoring
balance between classes in this dataset.

As a first step, an iterative weak classifier-based sampling scheme is leveraged
to prepare a training set containing enough hotspots. Next, a Gaussian Process
Regression (GPR) model is trained for the classification task with the selected
data samples. This learned model is then used to make predictions with confidence
estimation on the testing set. If GPR demonstrated high confidence in the predicted
label, the result is trusted; otherwise, the unsure testing samples are verified with
lithography simulations.

Experimental results shown in [75] demonstrate Litho-GPA can achieve compa-
rable accuracy to the state-of-the-art deep learning approaches while obtaining on
average 28% reduction in false alarms.

4 Conclusion

In this chapter, different important aging and yield issues in modern VLSI design
and manufacturing have been discussed. These issues include device aging, inter-
connect electromigration, process variation, and manufacturing defects are likely
to cause severe performance degradation or functionality failure, and thus need
to be addressed early in the physical design flow. The chapter has surveyed
recent techniques to not only build models for capturing these effects, but also to

Dealing with Aging and Yield in Scaled Technologies 425

develop strategies for optimizing them with the proposed models. These practices
demonstrate that synergistic optimization and cross-layer feedback are encouraged
to resolve the aforementioned aging and yield issues for robust VLSI design cycles.

References

1. Addressing signal electromigration (EM) in today’s complex digital designs. https://www.
eetimes.com/document.asp?docid=1280370

2. Agarwal, M., Paul, B.C., Zhang, M., Mitra, S.: Circuit failure prediction and its application to
transistor aging. In: 25th IEEE VLSI Test Symposium (VTS’07), pp. 277–286 (2007)

3. Alawieh, M.B., Tang, X., Pan, D.: S2PM: semi-supervised learning for efficient performance
modeling of analog and mixed signal circuit. In: IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 268–273 (2019)

4. Alawieh, M.B., Wang, F., Kang, R., Li, X., Joshi, R.: Efficient analog circuit optimization
using sparse regression and error margining. In: IEEE International Symposium on Quality
Electronic Design (ISQED), pp. 410–415 (2016)

5. Alawieh, M.B., Wang, F., Li, X.: Efficient hierarchical performance modeling for analog
and mixed-signal circuits via bayesian co-learning. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(12), 1–13 (2018)

6. Alawieh, M.B., Wang, F., Tao, J., Yin, S., Jun, M., Li, X., Mukherjee Tamal Negi, R.N.:
Efficient programming of reconfigurable radio frequency (RF) systems. In: IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 772–779 (2017)

7. Alawieh, M.B., Williamson, S.A., Pan, D.Z.: Rethinking sparsity in performance modeling for
analog and mixed circuits using spike and slab models In: ACM/IEEE Design Automation
Conference (DAC) (2019)

8. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S.: Handbook of Algorithms for Physical Design
Automation. CRC press, New York (2008)

9. Amrouch, H., Khaleghi, B., Gerstlauer, A., Henkel, J.: Reliability-aware design to suppress
aging. In: ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2016)

10. Arnaud, L., Tartavel, G., Berger, T., Mariolle, D., Gobil, Y., Touet, I.: Microstructure and
electromigration in copper damascene lines. Microelectron. Reliab. 40(1), 77–86 (2000)

11. Black, J.R.: Electromigration—a brief survey and some recent results. IEEE Trans. Electron
Devices 16(4), 338–347 (1969)

12. C. Hu S. Tam, F.H.P.K.T.C., Terrill, K.W.: Hot-electron-induced MOSFET degradation—
model, monitor, and improvement. IEEE J. Solid-State Circuits 20(1), 295–305 (1985)

13. Chakraborty, A., Ganesan, G., Rajaram, A., Pan, D.Z.: Analysis and optimization of NBTI
induced clock skew in gated clock trees. In: IEEE/ACM Proceedings Design, Automation and
Test in Europe (DATE), pp. 296–299 (2009)

14. Chen, X., Liao, C., Wei, T., Hu, S.: An interconnect reliability-driven routing technique for
electromigration failure avoidance. IEEE Trans. Dependable Secure Comput. 9(5), 770–776
(2012)

15. Chen, Y., Lin, Y., Gai, T., Su, Y., Wei, Y., Pan, D.Z.: Semi-supervised hotspot detection with
self-paced multi-task learning. In: IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), pp. 420–425 (2019)

16. Chen Ih-Chin, C.J.Y., Chenming, H.: The effect of channel hot-carrier stressing on gate-oxide
integrity in MOSFETs. IEEE Trans. Electron Devices 35(12), 2253–2258 (1988)

17. Ding, D., Torres, J.A., Pan, D.Z.: High performance lithography hotspot detection with
successively refined pattern identifications and machine learning. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 30(11), 1621–1634 (2011)

https://www.eetimes.com/document.asp?docid=1280370
https://www.eetimes.com/document.asp?docid=1280370

426 W. Ye et al.

18. Ding, D., Yu, B., Ghosh, J., Pan, D.Z.: EPIC: efficient prediction of IC manufacturing hotspots
with a unified meta-classification formulation. In: IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 263–270 (2012)

19. Ding, Y., Zhao, P., Hoi, S.C.H., Ong, Y.S.: An adaptive gradient method for online AUC
maximization. In: AAAI Conference on Artificial Intelligence, pp. 2568–2574 (2015)

20. Ebrahimi, M., Oboril, F., Kiamehr, S., Tahoori, M.B.: Aging-aware logic synthesis. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 61–68 (2013)

21. Fang, J., Sapatnekar, S.S.: The impact of hot carriers on timing in large circuits. In: 17th Asia
and South Pacific Design Automation Conference, pp. 591–596 (2012)

22. Fang, J., Sapatnekar, S.S.: The impact of BTI variations on timing in digital logic circuits.
IEEE Trans. Device Mater. Reliab. 13(1), 277–286 (2013)

23. Firouzi, F., Kiamehr, S., Tahoori, M.B.: NBTI mitigation by optimized NOP assignment and
insertion. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE), pp.
218–223 (2012)

24. Gao, W., Jin, R., Zhu, S., Zhou, Z.H.: One-pass AUC optimization. In: International Confer-
ence on Machine Learning (ICML), pp. III906–III914 (2013)

25. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., Wagner, P.,
Schanovsky, F., Franco, J., Roussel, P., Nelhiebel, M.: Recent advances in understanding the
bias temperature instability. In: 2010 International Electron Devices Meeting, pp. 4.4.1–4.4.4
(2010). doi:10.1109/IEDM.2010.5703295

26. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., Wagner, P.J.,
Schanovsky, F., Franco, J., Luque, M.T., et al.: The paradigm shift in understanding the bias
temperature instability: from reaction–diffusion to switching oxide traps. IEEE Trans. Electron
Devices 58(11), 3652–3666 (2011)

27. Guerin, C., Huard, V., Bravaix, A.: The energy-driven hot-carrier degradation modes of
nMOSFETs. IEEE Trans. Device Mater. Reliab. 7(2), 225–235 (2007)

28. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology 143(1), 29–36 (1982)

29. Hsu, C., Guo, S., Lin, Y., Xu, X., Li, M., Wang, R., Huang, R., Pan, D.Z.: Layout-dependent
aging mitigation for critical path timing. In: IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 153–158 (2018)

30. Hsu, M.K., Katta, N., Lin, H.Y.H., Lin, K.T.H., Tam, K.H., Wang, K.C.H.: Design and
manufacturing process co-optimization in nano-technology. In: IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 574–581 (2014)

31. Hu, H., Li, P., Huang, J.Z.: Enabling high-dimensional Bayesian optimization for efficient
failure detection of analog and mixed-signal circuits. In: ACM/IEEE Design Automation
Conference (DAC) (2019)

32. Huard, V., Parthasarathy, C., Bravaix, A., Guerin, C., Pion, E.: CMOS device design-in
reliability approach in advanced nodes. In: 2009 IEEE International Reliability Physics
Symposium, pp. 624–633 (2009)

33. Jiang, I.H.R., Chang, H.Y., Chang, C.L.: WiT: optimal wiring topology for electromigration
avoidance. IEEE Trans. Very Large Scale Integr. Syst. 20(4), 581–592 (2012)

34. Kaczer, B., Mahato, S., Valduga de Almeida Camargo, V., Toledano-Luque, M., Roussel, P.J.,
Grasser, T., Catthoor, F., Dobrovolny, P., Zuber, P., Wirth, G., Groeseneken, G.: Atomistic
approach to variability of bias-temperature instability in circuit simulations. In: 2011 Interna-
tional Reliability Physics Symposium, pp. XT.3.1–XT.3.5 (2011)

35. Kumar, S.V., Kim, C.H., Sapatnekar, S.S.: NBTI aware synthesis of digital circuits. In:
ACM/IEEE Design Automation Conference (DAC), pp. 370–375 (2007)

36. Li, B., Muller, P., Warnock, J., Sigal, L., Badami, D.: A case study of electromigration
reliability: from design point to system operations. In: IEEE International Reliability Physics
Symposium (IRPS), pp. 2D.1.1–2D.1.6 (2015)

37. Li, X.: Finding deterministic solution from underdetermined equation: large-scale performance
modeling by least angle regression. In: ACM/IEEE Design Automation Conference (DAC), pp.
364–369 (2009)

http://dx.doi.org/10.1109/IEDM.2010.5703295

Dealing with Aging and Yield in Scaled Technologies 427

38. Lienig, J.: Electromigration and its impact on physical design in future technologies. In: ACM
International Symposium on Physical Design (ISPD), pp. 33–40 (2013)

39. Lienig, J., Thiele, M.: Fundamentals of Electromigration-Aware Integrated Circuit Design.
Springer, Berlin (2018)

40. Liew, B.K., Cheung, N.W., Hu, C.: Projecting interconnect electromigration lifetime for
arbitrary current waveforms. IEEE Trans. Electron Devices 37(5), 1343–1351 (1990)

41. Lin, S.Y., Chen, J.Y., Li, J.C., Wen, W.Y., Chang, S.C.: A novel fuzzy matching model for
lithography hotspot detection. In: ACM/IEEE Design Automation Conference (DAC), pp.
68:1–68:6 (2013)

42. Lin, Y., Alawieh, M.B., Ye, W., Pan, D.: Machine learning for yield learning and optimization.
In: IEEE International Test Conference (ITC), pp. 1–10 (2018)

43. Lorenz, D., Georgakos, G., Schlichtmann, U.: Aging analysis of circuit timing considering
NBTI and HCI. In: 2009 15th IEEE International On-Line Testing Symposium, pp. 3–8 (2009)

44. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically
larger than the other. Ann. Math. Statist. 18(1), 50–60 (1947)

45. Matsunawa, T., Gao, J.R., Yu, B., Pan, D.Z.: A new lithography hotspot detection framework
based on AdaBoost classifier and simplified feature extraction. In: Proceedings of SPIE, vol.
9427 (2015)

46. Matsunawa, T., Nojima, S., Kotani, T.: Automatic layout feature extraction for lithography
hotspot detection based on deep neural network. In: SPIE Advanced Lithography, vol. 9781
(2016)

47. Nigam, T., Parameshwaran, B., Krause, G.: Accurate product lifetime predictions based on
device-level measurements. Proceedings of the 2009 IEEE International Reliability Physics
Symposium, pp. 634–639 (2009)

48. Oboril, F., Tahoori, M.B.: ExtraTime: modeling and analysis of wearout due to transistor aging
at microarchitecture-level. In: IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 1–12 (2012)

49. de Paris, L., Posser, G., Reis, R.: Electromigration aware circuits by using special signal non-
default routing rules. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp.
2795–2798 (2016)

50. Park, J.W., Torres, A., Song, X.: Litho-aware machine learning for hotspot detection. IEEE
Trans. Comput. Aided Design Integr. Circuits Syst. 37(7), 1510–1514 (2018)

51. Pecht, M., Radojcic, R., Rao, G.: Guidebook for managing silicon chip reliability. CRC Press,
New York (2017)

52. Rauch, S.E., La Rosa, G.: The energy-driven paradigm of nMOSFET hot-carrier effects. IEEE
Trans. Device Mater. Reliab. 5(4), 701–705 (2005)

53. Reis, R., Cao, Y., Wirth, G.: Circuit design for reliability. Springer, Berlin (2015)
54. Ren, P., Xu, X., Hao, P., Wang, J., Wang, R., Li, M., Wang, J., Bu, W., Wu, J., Wong, W.,

Yu, S., et al.: Adding the missing time-dependent layout dependency into device-circuit-layout
co-optimization: new findings on the layout dependent aging effects. In: IEEE International
Electron Devices Meeting (IEDM) (2015)

55. Roy, S., Pan, D.Z.: Reliability aware gate sizing combating NBTI and oxide breakdown. In:
International Conference on VLSI Design, pp. 38–43 (2014)

56. Rudin, C., Schapire, R.E.: Margin-based ranking and an equivalence between AdaBoost and
RankBoost. J. Mach. Learn. Res. 10(Oct), 2193–2232 (2009)

57. Tam, S., Ko, P.K., Hu, C.: Lucky-electron model of channel hot-electron injection in MOS-
FET’s. IEEE Trans. Electron Devices 31(9), 1116–1125 (1984)

58. Sapatnekar, S.S.: What happens when circuits grow old: aging issues in CMOS design. In:
2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA),
pp. 1–2 (2013)

59. Sengupta, D., Sapatnekar, S.S.: Estimating circuit aging due to BTI and HCI using ring-
oscillator-based sensors. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 36(10),
1688–1701 (2017)

428 W. Ye et al.

60. Shin, M., Lee, J.H.: Accurate lithography hotspot detection using deep convolutional neural
networks. J. Micro/Nanolithogr. MEMS MOEMS 15(4), 043507 (2016)

61. Steck, H.: Hinge rank loss and the area under the ROC curve. In: European Conference on
Machine Learning, pp. 347–358. Springer, Berlin (2007)

62. Swets, J.A., Pickett, R.M.: Evaluation of diagnostic systems: methods from signal detection
theory. Academic Press, New York (1982)

63. Ting, L., May, J., Hunter, W., McPherson, J.: AC electromigration characterization and
modeling of multilayered interconnects. In: IEEE International Reliability Physics Symposium
(IRPS), pp. 311–316 (1993)

64. Vattikonda, R., Wang, W., Cao, Y.: Modeling and minimization of PMOS NBTI effect for
robust nanometer design. In: ACM/IEEE Design Automation Conference (DAC), pp. 1047–
1052 (2006)

65. Wang, Y., Chen, X., Wang, W., Cao, Y., Xie, Y., Yang, H.: Leakage power and circuit aging
cooptimization by gate replacement techniques. IEEE Trans. Very Large Scale Integr.(VLSI)
Syst. 19(4), 615–628 (2011)

66. Wen, W.Y., Li, J.C., Lin, S.Y., Chen, J.Y., Chang, S.C.: A fuzzy-matching model with
grid reduction for lithography hotspot detection. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst. 33(11), 1671–1680 (2014)

67. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bullet. 1(6), 80–83 (1945)
68. Wu, K.C., Marculescu, D.: Joint logic restructuring and pin reordering against NBTI-induced

performance degradation. In: IEEE/ACM Proceedings Design, Automation and Test in Europe
(DATE), pp. 75–80 (2009)

69. Xie, J., Narayanan, V., Xie, Y.: Mitigating electromigration of power supply networks using
bidirectional current stress. In: ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 299–
302 (2012)

70. Xu, J., Sinha, S., Chiang, C.C.: Accurate detection for process-hotspots with vias and
incomplete specification. In: IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 839–846 (2007)

71. Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing classifier performance via
an approximation to the Wilcoxon-Mann-Whitney statistic. In: International Conference on
Machine Learning (ICML), pp. 848–855 (2003)

72. Yang, H., Li, S., Tabery, C., Lin, B., Yu, B.: Bridging the gap between layout pattern sampling
and hotspot detection via batch active sampling (2018). arXiv preprint:1807.06446

73. Yang, H., Luo, L., Su, J., Lin, C., Yu, B.: Imbalance aware lithography hotspot detection: a
deep learning approach. In: SPIE Advanced Lithography, vol. 10148 (2017)

74. Yang, H., Su, J., Zou, Y., Yu, B., Young, E.F.Y.: Layout hotspot detection with feature tensor
generation and deep biased learning. In: ACM/IEEE Design Automation Conference (DAC),
pp. 62:1–62:6 (2017)

75. Ye, W., Alawieh, M.B., Li, M., Lin, Y., Pan, D.Z.: Litho-GPA: Gaussian process assurance
for lithography hotspot detection. In: IEEE/ACM Proceedings Design, Automation and Test in
Europe (DATE) (2019)

76. Ye, W., Alawieh, M.B., Lin, Y., Pan, D.Z.: Tackling signal electromigration with learning-based
detection and multistage mitigation. In: IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), pp. 167–172 (2019)

77. Ye, W., Lin, Y., Li, M., Liu, Q., Pan, D.Z.: LithoROC: lithography hotspot detection with
explicit ROC optimization. In: IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), pp. 292–298 (2019)

78. Ye, W., Lin, Y., Xu, X., Li, W., Fu, Y., Sun, Y., Zhan, C., Pan, D.Z.: Placement mitigation
techniques for power grid electromigration. In: IEEE International Symposium on Low Power
Electronics and Design (ISLPED) (2017)

79. Yu, Y.T., Chan, Y.C., Sinha, S., Jiang, I.H.R., Chiang, C.: Accurate process-hotspot detection
using critical design rule extraction. In: ACM/IEEE Design Automation Conference (DAC),
pp. 1167–1172 (2012)

Dealing with Aging and Yield in Scaled Technologies 429

80. Yu, Y.T., Lin, G.H., Jiang, I.H.R., Chiang, C.: Machine-learning-based hotspot detection using
topological classification and critical feature extraction. IEEE Trans. Comput. Aided Design
Integr. Circuits Syst. 34(3), 460–470 (2015)

81. Zhang, H., Kochte, M.A., Schneider, E., Bauer, L., Wunderlich, H., Henkel, J.: Strap:
Stress-aware placement for aging mitigation in runtime reconfigurable architectures. In: 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 38–45 (2015)

82. Zhang, H., Zhu, F., Li, H., Young, E.F.Y., Yu, B.: Bilinear lithography hotspot detection. In:
ACM International Symposium on Physical Design (ISPD), pp. 7–14 (2017)

83. Zhang, S., Lyu, W., Wang, F., Yan, C., Hu, X., Zeng, X.: An efficient multi-fidelity Bayesian
optimization approach for analog circuit synthesis. In: ACM/IEEE Design Automation Con-
ference (DAC) (2019)

84. Zhao, P., Hoi, S.C.H., Jin, R., Yang, T.: Online AUC maximization. In: International Confer-
ence on Machine Learning (ICML), pp. 233–240 (2011)

85. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning
using Gaussian fields and harmonic functions. In: ICML 2003 workshop on the continuum
from labeled to unlabeled data in machine learning and data mining, vol. 3 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part V
Cross-Layer from Architecture to

Application

Michael Glaß

Possibly since the proposal of the von Neumann architecture, there exists an
invisible barrier between hardware and software in the narrower or architecture
and application in the broader sense. Given that powerful compilers have become
omnipresent for almost all architectures and languages, application developers are
able to treat the architecture layer and respective system components as black
boxes—as long as the architecture overprovides in the sense that requirements of
the application can be trivially fulfilled. Two well-known requirements that have
questioned this view in the past are performance and energy considerations. The for-
mer gave rise to DSPs and GPUs to name two exemplary architectures that address
the special needs of complete application domains while at the same time, the
applications have to be adapted to efficiently make use of the architectures and avoid
performance bottlenecks. The latter—together with real-time requirements—fueled
hardware/software co-design in the embedded system domain where individual
applications and their requirements are tailored and deployed to typically multiple
components featuring different architectures.

In the area of dependable—emphasis on reliable, available, and safe—systems,
respective and often stringent requirements have traditionally been addressed by
either (a) architectures/components that give guarantees on dependability properties
and achieve these by significant conservative margins and guard banding or by (b)
system-wide mitigation strategies like dual or triple modular redundancy schemes.
In these domains, one can assume dependability to be a prime, if not the prime,
design objective while accepting to sacrifice other objectives such as energy, area
consumption, or monetary costs.

M. Glaß
Ulm University, Institute of Embedded Systems/Real-Time Systems, Ulm, Germany;
michael.glass@uni-ulm.de

mailto:michael.glass@uni-ulm.de

432 M. Glaß

Continuous technology scaling with all its tremendous advantages has at the
same time threatened the dependability of CMOS devices: Increasing suscep-
tibility to aging and radiation effects combined with significant variation has
reached a point where hiding such effects from the application completely may
require excessive and—for many domains and especially embedded systems—
uneconomical overheads. At the same time, mentioned system-wide coarse-grained
mitigation techniques may be prohibitive due to other important design objectives
for embedded systems such as energy budgets, space constraints, and the like.
Assuming that errors at architecture layer may have to be exposed to the application,
an interesting and key observation is that not all parts of an application are equally
prone to errors on component/architecture layer and are equally costly to harden.

In this area of the book at hand, seven chapters present their endeavors to analyze
and exploit architectural as well as application properties concurrently to form
cross-layer approaches that combine architecture and application layer. At the center
of this area is the interplay of specific application (domain) properties on the one and
the computational and memory elements on the other hand. The area and its chapters
are organized as follows:

The following two chapters put focus on the interplay of applications and
memory: chapter “Exploiting Memory Resilience for Emerging Technologies: An
Energy-Aware Resilience Exemplar for STT-RAM Memories” investigates Spin
Transfer Torque Magnetic RAM (STT-RAM) as a technology which may replace
SRAM in near-future devices. However, the susceptibility of STT-RAMs to errors
especially during write operations depends on the state transition as well as the
applied current level. The chapter presents an architectural scheme for STT-RAM
cache memories that dynamically profiles the use of each individual bit by the
respective application to select cache way and current level; guaranteeing a maxi-
mum error rate while minimizing energy consumption. chapter “Design of Efficient,
Dependable SoCs Based on a Cross-Layer-Reliability Approach with Emphasis
on Wireless Communication as Application and DRAM Memories” investigates
inherently error-resilient applications—particularly wireless baseband processing—
and proposes to treat hardware errors in a similar fashion as transmission errors
over a noisy channel by means of the so-called dynamic resilience actuators. Since
wireless baseband applications are not only compute, but can as well be memory
intensive, their error resiliency is further exploited by a proposed approximate
DRAM technique which trades-off refresh rate and, thus, energy consumption, for
reliability according to the robustness of the application.

The next three chapters focus on variation when deploying applications to
multi-/many-core systems, covering dependable dynamic resource management,
uncertainty-aware reliability analysis, as well as approximate computing: chap-
ter “Power-Aware Fault-Tolerance for Embedded Systems” puts focus on appli-
cations to be deployed to multi-/many-core chips under thermal design power
constraints. The addressed challenge is to provide an optimal mix of hardware
and software hardening techniques for an application such that reliability goals
are met without violating power and/or performance constraints. As a remedy,
the chapter introduces a power-reliability management technique that combines

V Cross-Layer from Architecture to Application 433

design-time analysis and optimization as well as run-time adaptation to account
for variation in performance, occurring faults, and power. Chapter “Uncertainty-
Aware Compositional System-Level Reliability Analysis” addresses the problem
that uncertainties arising from manufacturing tolerances, environmental influences,
or application inputs may not be known at design time such that respective worst-
case assumptions result in extremely pessimistic reliability analysis results. As
a remedy, the chapter presents a compositional and uncertainty-aware reliability
analysis approach that explicitly models uncertainties and, thus, exposes not only
best-case or worst-case values but probability distributions. These can enhance cost-
efficient error mitigation by quantifying the probability of different best-/average-
/worst-case situations. Chapter “Hardware/Software Codesign for Energy Efficiency
and Robustness: From Error-Tolerant Computing to Approximate Computing”
puts focus on the margins that are applied to compensate for the ever-increasing
variability. The chapter first presents an approach to drastically reduce margins
for GPUs by means of an adaptive compiler that aims at equalizing the lifetime
of each processing element. Then, the reduction of margins is pushed so far that
errors have to accepted and computations become approximations for which the
chapter proposes an automatic FPGA design flow for accelerators that employ such
approximate computations.

The last two chapters in this area put their attention to two important appli-
cation domains in current and future embedded systems: Cyber-physical systems
and machine learning. Chapter “Reliable CPS Design for Unreliable Hardware
Platforms” investigates cyber-physical systems and especially battery-operated
systems where control loops are the key part of their applications. While such
control loops traditionally focus on certain metrics such as stability or overshoot,
they may affect system components such as the batteries themselves as well
as the processing components the applications are deployed to by accelerating
their aging. As a remedy, the chapter proposes a design flow that combines an
optimization of (a) quality-of-control and battery behavior at design time as well as
(b) quality-of-control and processor aging at run-time to satisfy safety requirements.
Chapter “Robust Computing for Machine Learning-Based Systems” investigates
machine learning approaches as key enablers for various upcoming safety-critical
applications from the domain of autonomous systems. Especially in this context,
the chapter investigates the susceptibility of these both intrinsically compute and
memory-intensive applications to reliability as well as security threats. The chapter
discusses techniques to enhance the robustness/resilience of machine learning
applications and outlines open research challenges in this domain.

Design of Efficient, Dependable SoCs
Based on a Cross-Layer-Reliability
Approach with Emphasis on Wireless
Communication as Application and
DRAM Memories

Christian Weis, Christina Gimmler-Dumont, Matthias Jung,
and Norbert Wehn

1 Introduction

Technology scaling has reached a point at which process and environmental variabil-
ities are no longer negligible, and can no longer be hidden from system designers,
as the exact behavior of CMOS devices becomes increasingly less predictable. This
will show in the form of static and dynamic variations, time-dependent device
degradation and early life failures, sporadic timing errors, radiation-induced soft
errors, and lower resilience to varying operating conditions [35]. Already today,
conservative margining, guardbanding, and conservative voltage scaling, come at a
large cost. Only turning away from conservative worst-case design methodologies
for a 100% reliable physical hardware layer will make further downscaling of
CMOS technologies a profitable endeavor [7, 32]. This calls for radically new cross-
layer-design concepts [14–16] (Fig. 1).

Until today, these problems have mostly been addressed at the lower design
levels. At the higher levels, systems are typically designed under the premise of
fault-free underlying hardware. Only in extremely critical applications, such as
avionics, where the system cost is less important than its dependability, triple
modular redundancy (TMR) and similar techniques are employed on a system
level. Thus, to no big surprise, the large body of related work focuses on low-level

C. Weis (�) · N. Wehn
TU Kaiserslautern, Kaiserslautern, Germany
e-mail: weis@eit.uni-kl.de; wehn@eit.uni-kl.de

C. Gimmler-Dumont
European Patent Office, Bruxelles, Belguim
e-mail: cgimmlerdumont@epo.org

M. Jung
Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
e-mail: Matthias.Jung@iese.fraunhofer.de

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_18

435

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_18&domain=pdf
mailto:weis@eit.uni-kl.de
mailto:wehn@eit.uni-kl.de
mailto:cgimmlerdumont@epo.org
mailto:Matthias.Jung@iese.fraunhofer.de
https://doi.org/10.1007/978-3-030-52017-5_18

436 C. Weis et al.

Fig. 1 Main abstraction
layers of embedded systems
as used in the SPP1500
Dependable Embedded
Systems Priority Program of
the German Research
Foundation (DFG) and this
chapter’s major (green, solid)
and minor (yellow, dashed)
cross-layer contributions

ap
pl
ica

tio
n

SW
/O

S

ar
ch

ite
ctu

re

cir
cu

it/
ga

te

ph
ys
ics

application

SW/OS

architecture

circuit/gate

physics

techniques to present higher abstraction and design levels with a practically error-
free platform built from potentially faulty elements.

To make a platform resilient against transient or permanent faults built-in
redundancy or built-in self-recovery techniques have to be employed. They all come
at the cost of chip area, power consumption, reduced system throughput, or other
implementation related metrics. Lower implementation cost, especially with regard
to energy consumption can be obtained when a degradation of hardware reliability
to a certain degree is tolerated. In fact, energy consumption and dependability of
integrated circuits can be seen as strongly interrelated problems: by decreasing
the operating voltage, the energy efficiency increases but at the same time the
dependability decreases. Thus, energy efficiency and dependability have to be
carefully traded off against each other.

An error-resilient architecture that can be seen as practically error-free can be
composed of protected components. Applications for these platforms can be imple-
mented in a traditional way, still assuming fault-free operation of the underlying
hardware. In addition to this horizontal integration, recent research also evaluates
the additional potential of a vertical integration of error resilience on the application
level with platforms having a reduced reliability. True cross-layer optimization
approaches do not only exploit the fact that some important classes of algorithms
are inherently error-tolerant, but also adapt applications and hardware architectures
jointly to achieve the best possible trade-offs. This chapter focuses on cross-layer
optimization for wireless communication systems with emphasis on errors on data
path and SRAMs. Furthermore, we consider undependable DRAM subsystems,
named approximate DRAM.

2 Wireless Baseband Processing

In this section, we present a wireless baseband processing system and a novel
cross-layer methodology using resilience actuators (see Sect. 2.1.2) to improve the
reliability of this system. Wireless communication systems have an inherent error

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 437

Fig. 2 Wireless communication systems suffer from different sources of errors (indicated by red
arrows): channel errors, quantization errors, errors from suboptimal algorithms, and hardware
errors. Here, we focus on the receiver side only

resilience. They are designed to recover the originally transmitted data sequence in
spite of errors that occur during transmission over a noisy channel. Figure 2 shows
a simplified structure of such a system. To achieve a reliable transmission, today’s
communication systems use advanced forward error correction (FEC) techniques,
i.e. the sender adds redundancy to the actual information prior to transmission in
the channel encoder. This encoder connects to the modulator via an interleaver
(). The interleaver is required to break dependencies between neighboring bits
while the modulator performs the mapping on symbols (e.g. QAM—quadrature
amplitude modulation) that are transmitted over the physical channel. On the
receiver side, the noisy signal is converted to the digital domain and fed into
the demodulator, which recovers the originally transmitted symbols by exploiting
the channel characteristics. After the deinterleaver (−1) the channel decoder uses
the redundancy to correct transmission errors.

The primary goal is to correct errors from the noisy channel. But implementation
efficiency of communication systems in hardware mandates e.g. quantization of data
values and the use of suboptimal algorithms, i.e., algorithms that generate results
which deviate from the theoretically correct values. Both can be seen as further
sources of errors in addition to the noise on channel. In the same way, errors induced
by hardware faults can be considered as yet another error source in a communication
system. The question is if the hardware errors can be processed in a similar way than
the channel and what are the costs.

2.1 Methodology: Error Mitigation Using Dynamic Resilience
Actuators

Modeling of hardware errors is crucial for the design of dependable systems. Radi-
ation, thermal effects, aging, or process or parameter variations cause distortions on
a physical level which can be modeled by probabilistic bit flips according to the
resilience articulation point (RAP) model [16] (see also the chapter “RAP Model—
Enabling Cross-Layer Analysis and Optimization for System-on-Chip Resilience”
in this book). Depending on its location, a bit flip can have very different effects. An

438 C. Weis et al.

error in the controller, for example, usually leads to a system malfunction, whereas
individual errors in the memories or the data flow are often inherently corrected by a
wireless receiver ([12, 31]). Efficiency in terms of area and energy will be achieved
by recovering only from those errors which have a significant impact on the system
output and by choosing the layer on which the treatment of these error results in the
least overhead.

Dynamic approaches for error resilience also have to monitor the current hard-
ware status. This monitoring can be done on different abstraction layers. Examples
are error detection sequential (EDS) circuits on microarchitectural layer. EDS
circuits are very popular [6]; however, they require pre- and post-silicon calibration.
Monitors on higher abstraction layers are application-specific and normally more
efficient. For example, [3] proposed to detect timing errors with a small additional
hardware block which mimics the critical path under relaxed timing constraints.
The result of the mimic hardware is compared to the normally operating unit.
Deviations indicate timing errors. For a turbo and convolutional code decoder, the
mimic hardware only required 0.7% of the decoder area. In this article we focus on
resilience techniques which are employed after hardware errors have been detected,
not on the detection methods themselves.

Many state-of-the art publications utilize low-level static resilience techniques
to combat the effects of unreliable hardware, e.g., ECC protection of memories,
Razor flip flops, or stochastic logic [36]. Static methods have the disadvantage
of permanently decreasing the system performance in at least one of the terms
of throughput, area, or power, even when no errors occur. In [31] for example,
the static protection of a complete LDPC (Low-Density Parity Check) decoder for
WiMax/WiFi resulted in an area overhead of 21%.

Dynamic techniques often use available hardware resources or have very low
additional costs as we will show in Sect. 2.2.1. However, error detection circuits
result in additional costs. When comparing static and dynamic methods, this
additional cost has to be taken into account. In general, the choice of the protection
method will also depend on the expected hardware error statistics as we will
demonstrate in the next paragraph. Eventually, a combination of static and dynamic
protection will likely result in the least overhead.

2.1.1 The Dynamic Behavior of Wireless Systems

Modern wireless communication standards, such as LTE (Long Term Evolution)
or HSDPA (High Speed Downlink Packet Access) provide mechanisms to monitor
and dynamically adapt to changes in the Quality-of-Service (QoS). The QoS in a
wireless transmission system is typically defined as the bit or frame error rate with
respect to a given signal-to-noise ratio. If the desired QoS cannot be achieved for the
current transmission channel, communication parameters like code type, code rate,
etc. are adjusted to improve the communications performance (see Fig. 3a). A good
example for this dynamic behavior is the hybrid automatic repeat request (H-ARQ),
which is used in LTE, HSDPA. These systems typically transmit blocks of data at

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 439

(a)

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

-14 -12 -10 -8 -6 -4 -2

Th
ro

ug
hp

ut
[k

bi
t/

s]

x104

Signal-to-noise ra�o

(b)

Fig. 3 The standard communication flow dynamically adjusts communication parameters to
achieve the required QoS, e.g., the code rate in Hybrid-ARQ systems. (a) Dynamic QoS flow of a
modern wireless communication system. (b) In Hybrid-ARQ systems the code rate is dynamically
adjusted for each block to ensure error-free transmission

a high data rate and with little error protection, i.e., with a very high code rate. If
the decoder fails, the transmission of additional data is requested until the block
is correctly decoded. Note that such a retransmission does not contain the same
data as before. Instead, different information will be sent every time, which had
been punctured on the transmitter side before. The additional information decreases
the data rate but at the same time increases the probability that the block can be
correctly decoded at the receiver. Figure 3b shows the throughput of a H-ARQ
system over different SNR values. For high SNR values, decoding succeeds after
the first transmission, i.e., the channel decoder can correct all errors, and a high
throughput is obtained. With a decreasing SNR, more and more blocks require
additional transmissions and the throughput is lowered. The system dynamically
adapts the code rate and the throughput for each block.

This example shows how wireless receivers adapt dynamically to changes in
the transmission channel, i.e., varying SNR, and correct transmission errors. The
question is how this idea can be applied to the case of hardware errors. It has been
shown that low rates of hardware errors in a wireless receiver are not visible on the
system level. This is due to the fact that for low SNR the channel errors dominate.
For high SNR, when the channel error rate is very low, the channel decoder is able
to correct the hardware errors. For moderate hardware error rates, some dynamic
high-level techniques exist, e.g., increasing the number of decoder iterations to
counterbalance the impact of hardware errors. However, for very high error rates

440 C. Weis et al.

on the hardware level, a purely software-based mitigation is not possible. An
increase of reliability can generally be achieved by either static low-level techniques,
like e.g., Razor flip flops, triple modular redundancy, or by dynamic high-level
techniques, which exploit the flexibility of the receiver, e.g., increase of decoder
iterations, or a combination of both. To their advantage, dynamic techniques are
mainly algorithmic changes, which can be controlled by software and do not require
a more costly change of the underlying hardware.

Consequently, it is possible to use high-level techniques to mitigate hardware
errors in wireless communication systems. However, the channel quality changes
over the time and channel noise and hardware noise may change independently from
each other. In good channel conditions, we can use a part of the error correction
capability of the receiver to combat hardware errors if needed. When the channel
quality is very poor, all high-level techniques are needed to obtain the required
QoS, and hardware errors have to be counterbalanced by static low-complexity
methods. This is shown in Fig. 4a. When the hardware reliability is very high, no
action has to be taken. High amounts of hardware errors cannot be overcome using
dynamic techniques exclusively. A combination of dynamic and static techniques
is mandatory. When the channel quality is very poor, only static techniques are
available. For medium noise levels, there are potential trade-offs between dynamic
and static techniques.

2.1.2 Concept of Dynamic Resilience Actuators

As mentioned before current standards, like HSDPA or LTE, adjust dynamically
the QoS at runtime, e.g., higher data throughput rates are specified for higher
SNR. This is due to the fact that the computational requirements on the different
algorithms decrease with higher SNR in order to enable higher throughput. In
future technologies the negotiated QoS may also depend on the reliability of the
receiver hardware under given operating conditions. This leads to an entirely new
paradigm—adaptive QoS with respect to communication reliability and hardware
reliability. An illustration of this is the possibility to relax reliability requirements on
the underlying hardware instead of providing a higher throughput at high SNR. For
example, voltage overscaling can be applied, where the voltage is reduced beyond
the point at which fault-free operation of the circuit is guaranteed in order to lower
the power consumption of the receiver. In this way, QoS, hardware reliability, and
implementation efficiency can be traded off against one another at runtime.

In [3], we presented how this new paradigm can be integrated into the existing
QoS flow of wireless communication systems. Figure 4b shows the extended version
of the original QoS flow from Fig. 3a. Low rates of hardware errors are implicitly
corrected by a wireless receiver. In that case no further action is required. A higher
rate of hardware errors results in a degradation of the QoS and, thus, can be detected
by the standard QoS flow. The standard QoS flow is already error-resilient by
itself, as it dynamically adjusts the communication parameters to obtain a certain
QoS. In most cases, however, it will be cheaper in terms of energy to correct a

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 441

(a) Depending on the current hardware reli-
ability and channel quality, different static
and dynamic techniques (resilience actua-
tors) are available to mitigate the impact of
hardware errors. Entries in cyan color quan-
tify the example in Section 2.2.

(b) Extended dynamic QoS flow: The relia-
bility control unit chooses the resilience ac-
tuatorswhich result in the least overhead and,
thus, in an energy efficient design.

No

No

Fig. 4 Our new methodology integrates seamlessly into the existing QoS flow of today’s
communication systems. The available resilience techniques depend on the current channel quality
and hardware reliability. (a) Depending on the current hardware reliability and channel quality,
different static and dynamic techniques (resilience actuators) are available to mitigate the impact
of hardware errors. Entries in cyan color quantify the example in Sect. 2.2. (b) Extended dynamic
QoS flow: The reliability control unit chooses the resilience actuators which result in the least
overhead and, thus, in an energy-efficient design

temporary hardware error by the activation of a dynamic protection mechanism than
by changing the communication parameters as, e.g., a H-ARQ based correction is
very costly with respect to energy consumption.

As already mentioned a degradation of the QoS can be caused by either channel
errors or hardware errors. A differentiation of these two error sources is not possible
with the existing QoS monitoring system only. Therefore, it is necessary to monitor
the reliability status of each hardware component. Single bit flips in the data path
for example are often mitigated by the algorithmic error resilience of the receiver.
Application-specific detection circuits like the reduced-size ACS (add-compare-
select)-unit for turbo decoding proposed in [3] can indicate the status of one
component with only a small overhead.

We introduced a reliability control unit which activates one or several resilience
actuators according to the current monitoring status. A resilience actuator is a
dynamic protection mechanism, which can increase the error resilience either on
component or on system level. Resilience actuators can be found on hardware
level and on software level. So far, we identified four classes of actuators. On the

442 C. Weis et al.

lowest level, we can change the hardware operating point, e.g., the supply voltage
or the clock frequency. The trade-off between supply voltage, clock frequency,
and power consumption is well studied in the literature. Another possibility is the
use of low-level hardware techniques, such as the selective protection of critical
parts, or setting erroneous likelihood values to zero [31]. Many algorithms have
parameters which can be changed at runtime. Advanced channel decoders operate
iteratively. The number of iterations is a parameter which can easily be changed
for each individual block by the software. For many components, we have a choice
of different algorithms, starting from optimal algorithms with a high complexity
down to suboptimal algorithms with a very low complexity, which offers a trade-
off between QoS and implementation efficiency. The choice of parameters and
algorithms is another class of actuators [3]. There also exist resilience actuators on
system level. Adjusting the communication parameters, e.g., by choosing a channel
code with a better error correction capability, improves the error resilience, but the
effects are not immediate. A faster solution is to shift complexity between different
components, when one of the components has a low hardware reliability. It is
important to note that resilience actuators are only activated when hardware errors
cause a degradation of the QoS.

In general, different actuators or combinations of actuators are suited to deal
with different types of hardware errors. Normally, it is preferable to use actuators
which do not require changes inside the components or which can be implemented
with low complexity. Each actuator offers a different trade-off between hardware
reliability, QoS, and implementation performance (throughput, energy). Based on
the channel quality and the respective requirements on QoS, throughput, and
energy, the reliability control chooses those actuators, which will best fulfill the
requirements. Therefore, it is mandatory to characterize each actuator with regard
to its influence on communications performance, throughput, area, and energy
overhead. Sometimes, the reliability requirements necessitate the use of resilience
actuators which have a severe effect, e.g., on the system throughput. In these
cases, the reliability control also needs actuators which trade-off throughput and
communications performance. The big advantage of this reliability extension is the
dynamic protection of the wireless receiver, which is only activated when necessary.

2.2 A Case Study

In the last section, our new methodology was generally introduced. The trade-off
between channel quality and hardware resilience and the choice of the resilience
actuators are application-specific and cannot be quantified in a general fashion. In
this paragraph, we demonstrate our methodology on a concrete example in order to
make it more seizable.

Multiple-antenna or MIMO systems have the potential to increase the data rate of
wireless communication systems. They belong to the most advanced systems in 4G
and 5G communication standards, and their very high complexity is a challenge for

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 443

Fig. 5 Generic architecture of an iterative MIMO-BICM receiver including main building blocks
and system memories

any hardware implementation. To demonstrate our novel methodology, we chose
to apply it to a double-iterative MIMO-BICM (bit-interleaved coded modulation)
transmission system.

Aforementioned, a channel code provides redundancy, which allows the correc-
tion of transmission errors in the receiver. An interleaver between channel encoder
and modulator reduces dependencies between neighboring bits. The modulated
symbols are multiplexed to an array of antennas and then transmitted in parallel
to increase the data rate. Such a system setup is called MIMO-BICM system. On
the receiver side, a MIMO detector decouples the multiple transmission streams,
and the channel decoder corrects errors, which have been induced by noise on
the communication channel. The most advanced receiver techniques combine the
MIMO detector and the channel decoder in an iterative feedback loop to further
improve the communications performance of the receiver [17]. These two blocks
exchange likelihood values, which reflect their confidence in the results of their
computations. The channel decoder can be iterative itself (and often is), which
results in a double-iterative receiver structure. The number of iterations is dynamic
and depends strongly on the respective system state and QoS requirements.

Multiple-antenna systems are combined with different types of channel codes in
the existing standards. WiFi features LDPC codes and convolutional codes, whereas
LTE supports only the trellis based convolutional and turbo codes. WiMax supports
all three kinds of channel codes. Therefore, we mapped the iterative receiver
structure from [11] onto a general architecture framework, which allows us to plug
in different MIMO detectors and channel decoders [13]. The generic architecture
shown in Fig. 5 connects the main building blocks via several system memories.

We presented in [11] the details of the implementation results for all components
of the iterative receiver [13, 34]. All designs were synthesized in a 65 nm low-power
bulk CMOS standard cell library. Target frequency after place and route is 300 MHz,
which is typical of industrial designs (exception WiMax/WiFi LDPC decoder). The
size of the system memories is determined by the largest block length in each

444 C. Weis et al.

communication standard. For example, LTE turbo codes include up to 18,432 bits.
In this case, the system memories require approximately 40% of the total system
area. For WiMax/WiFi, the maximum block length is only 2304 bits which results
in a much smaller area for the system memories. The power consumption of the
memories is not neglectable when compared to the other components [13]. The total
power consumption depends heavily on the number of inner and outer iterations.

The system memories add substantially to the die area of such an iterative
MIMO-BICM receiver. Memories are very susceptible to hardware errors due to
their dense and highly optimized layouts. In [12], we analyzed the impact of
hardware errors in the different system memories on the system performance of
a MIMO-BICM system. We found out that especially the memories containing
complex-valued data, i.e. the channel information and the received vectors, are very
sensitive. Figure 6 shows the degradation of the communications performance when
errors are injected in the channel information memory. Up to a bit error probability
of pb = 10−6 the degradation is negligible for the typical frame error rates (FERs)
of a wireless system. Afterwards, the performance decreases gradually with an
increasing pb.

We assume that the memory errors result from supply voltage drops which occur
regularly during power state switching. In this context, several resilience actuators
exist, which can be applied to different degrees of hardware unreliability in order
to mitigate the impact of the hardware errors on the system performance [26].
Table 1 lists them with their influence on area, power consumption, and throughput

7 8 9 10 11 12 13 14 15 16 17 18
10-5

10-4

10-3

10-2

10-1

100

Eb/N0 / dB

FE
R

Fig. 6 The system communication performance is gradually decreasing for random bit flips in the
channel information memory. pb depicts the bit error probability

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 445

Table 1 Quantitative comparison of resilience actuators for the system memories of an iterative
MIMO-BICM receiver

Tolerated hardware Tolerated hardware
Resilience actuator Impacts (un-) reliability error probability

Algorithmic Area +0% −200 mV supply voltage 10−6

error resilience Power +0%

Throughput −0%

1 outer iteration Area +0% −300 mV supply voltage 4 · 10−5

Power +0%

Throughput −75%

1-bit error Area +30% −400 mV supply voltage 8 · 10−4

correction code Power +30%

Throughput −0%

8T memory cells Area +25% −500 mV supply voltage 8 · 10−3

Power +0% for the equivalent

Throughput −0% 6T memory cells

and their error resilience. In Fig. 4a, these actuators are arranged according to
our methodology (cyan text). No action has to be taken as long as there is a
high hardware reliability, i.e. voltage drops of no more than 200 mV. Within
this region, the receiver shows an inherent algorithmic error resilience. For a
decreased reliability in which voltage drops up to 300 mV occur, we can react
on the highest level by increasing the number of iterations in order to regain
communications performance. For transient errors, this leads only to a temporary
throughput degradation without loss of communications performance. When errors
occur with a high probability pb > 5 · 10−5, high-level resilience actuators cannot
provide the necessary resilience. On a lower level, the contents of the memory can
be protected by a simple 1-bit error correction code. The resilience can be even
further increased on technology level by employing 8-transistor (8T) memory cells
instead of 6-transistor (6T) cells resulting in a smaller implementation overhead. 8T
memory cells can even tolerate voltage drops of 500 mV. However, the increase in
area and power is in both cases permanent.

2.2.1 Resilience Actuators

Error resilience techniques for channel decoding have already been thoroughly
investigated (cf. [11]). However, there are potential trade-offs on system level
between MIMO detection and channel decoding, which we will discuss in the
following. Except for the hardware operating point, we will restrict ourselves to
application-specific resilience actuators. Universal, already established, low-level
hardware techniques can be applied to any application and result in a constant
overhead. Here, we focus on dynamic resilience techniques, which can be switched

446 C. Weis et al.

on and off as necessary and which do not have a large impact on implementation
complexity and energy consumption.

As MIMO detectors have no inherent error correction capability, algorithmic
changes inside the detector component cannot improve the error resilience. This
has to be done either on system level or by changing the hardware operating
point. These actions usually have a negative influence on system throughput and/or
communications performance. Therefore, we also introduce algorithmic resilience
actuators, enabling a trade-off of throughput and communications performance in
order to counterbalance these effects.

• Hardware operating point: When timing errors occur, the clock frequency can
be reduced or the supply voltage can be increased to make the circuit faster.
However, both approaches require additional control circuits and energy. The
trade-off between supply voltage and energy is well-understood. The number of
bit flips in a memory, for example, strongly depends on the voltage: Increasing
the supply voltage decreases the soft error rate. According to [8], the soft error
rate drops by about 30% when the operating voltage is increased by 100 mV
compared to the nominal voltage. Changing the hardware operating point offers
a trade-off between reliability and energy consumption, which is often used for
voltage overscaling.

• Adjustment of detection quality: Changing the detection quality offers a trade-off
between communications performance and throughput but has no direct influence
on the error resilience. However, a higher throughput augments the available time
budget and, thus, offers a higher potential for error resilience. This resilience
actuator uses the available algorithmic flexibility and thus has only a negligible
influence on power and area consumption.

• External LLR (log-likelihood ratio) manipulations: Instead of accessing the
MIMO detector directly, we propose low-complexity techniques, which work
only on the LLR-input and -output values of the detector. LLR values have a high
robustness against hardware errors. If an LLR value is equal to zero, it contains
no information. Thus, the most important information is stored in the sign bit.
As long as this sign bit is not compromised, the core information is still correct
and the channel decoder can correct the hardware errors. For more details see
additionally [11].

Instead of increasing the reliability of components individually, the problem
can also be tackled on system level. The double-iterative structure of a MIMO-
BICM receiver offers several high-level possibilities to combat the unreliability of
its components. We present the most promising techniques in the remainder of this
section.

• Iteration control mechanisms: An iteration control typically monitors exchanged
values in an iterative system and checks stopping conditions to detect the
convergence of the processed block. In [12] we analyzed the impact of memory
errors on the system behavior of an iterative MIMO system. We observed that
errors in any of the memories before the MIMO detector have an increased

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 447

 Signal-to-noise ratio Eb/N 0 in dB
6 7 8 9 10 11 12

Fr
am

e
Er

ro
r

Ra
te

10-3

10-2

10-1

100

1 outer - 5 code
2 outer - 5 code
3 outer - 5 code
4 outer - 5 code
1 outer - 20 code
2 outer - 20 code
3 outer - 20 code

Fig. 7 Example for complexity shifting in a double-iterative MIMO-BICM receiver by varying
the number of outer loop and channel decoder iterations

impact on the communications performance if the incorrect values are processed
repeatedly during the outer iterations. In [10], it was possible to reduce the
number of outer iterations to an average below 2 (from a maximum of 10)
without sacrificing communications performance. A further throughput increase
is possible by allowing a degradation of communications performance. The
additional effort for an iteration control is very low compared to channel
decoding [11].

• Complexity shifting between components: An example for a global algorithmic
adaption is to shift the complexity between system components: When a building
block cannot compensate an error locally, the system convergence can still be
achieved by increasing the computational effort of other building blocks. Such a
shift can be achieved, for instance, between the channel decoder and the MIMO
detector, leveraging the outer feedback loop. When the MIMO detector is not able
to counterbalance the impact of hardware errors, the number of channel decoder
iterations and/or the number of outer loop iterations can be increased in order to
maintain the communications performance. Figure 7 shows the frame error rate
for a 4×4 antennas, 16-QAM system employing a WiMax-like LDPC code where
complexity shifting can be used. We compare the frame error rate for different
numbers of decoder iterations and outer iterations. Let us consider the case when
the receiver is performing 3 outer iterations and 5 LDPC iterations. When the
MIMO detector suffers from hardware errors, e.g. due to a temperature increase,
we can temporarily shift more processing to the LDPC decoder by performing
only 2 outer iterations and 20 LDPC iterations. The new configuration provides

448 C. Weis et al.

0.01

0.1

1

10

100

2 20 200 2000

En
er

gy
 E

ffi
ci

en
cy

:
de

co
de

d
bi

t/e
ne

rg
y

(b
it/

nJ
)

Area Efficiency: (Mbit/s)/mm²
MIMO detector LDPC decoder System 5 LDPC System 20 LDPC

same performance

Fig. 8 Implementation efficiency of MIMO detector, WiMax/WiFi LDPC decoder, and two
system configurations using the efficiency metrics from [25]

the same communications performance. The question is how such a shift changes
the energy efficiency of the MIMO receiver. Figure 8 shows the implementation
efficiency of MIMO-BICM receiver and its components. The red curve shows
the efficiency of the MIMO detector for different search radii and in a MMSE-
SIC configuration (single red point). The blue curve shows the efficiency of an
LDPC decoder running with different number of iterations. The LDPC decoder
is a flexible decoder which supports all code rates and code lengths from WiMax
and WiFi standard. The yellow and the green curve show the system efficiency
for different numbers of outer iterations with 5 LDPC iterations (yellow) and
20 LDPC iterations (green), respectively. With the help of this graph, we can
quantify the influence of a complexity shift: when changing from 3 outer and
5 LDPC iterations to 2 outer and 20 LDPC iterations, the energy efficiency
of the system is reduced by approximately 50% (blue circle). However, the
same communications performance is achieved and when the temperature in
the MIMO detector decreases, the reliability control can return to the original
configuration.

• Shifting of error correction capability between components: Typically, MIMO
detector and channel decoder are designed and implemented independently of
each other. The MIMO transmission scheme provides a large data rate but has
no error correction abilities. The error correction capability is solely provided
by the channel code to improve the error rate performance of the transmission
system. From a system point of view, the MIMO detector does not work on

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 449

completely independent data as there are dependencies from the overlaying
channel code. However, this diversity cannot be exploited by the detector as the
channel interleaver hides the code structure from the detector and because most
channel code constraints span over many MIMO detection vectors. Kienle [24]
introduced a small block code in each MIMO detection vector in order to generate
a small diversity gain in the MIMO detector while simplifying the outer channel
code to keep the overall coding rate constant. While this approach targeted the
decoding complexity, it can also be used to increase the error resilience of the
MIMO detector. Each parity check in one MIMO vector improves the error
correction capabilities of the detector. On a system level, the diversity gain can
be split between detector and decoder dynamically, thus, allowing the system to
react dynamically to changing hardware error rates. The only drawback of this
approach is that the diversity separation has to be done on the transmitter side,
which causes a higher latency.

3 Approximate DRAM

Some communication systems require large data block sizes that cannot be stored in
on-chip memories (SRAMs) anymore. In this case data has to be stored externally
in DRAMs. Thus, in the following we shift our focus on DRAMs.

Approximate DRAM is a new concept that adapts the idea of approximate
computing to DRAMs [23, 30]. Approximate DRAM exploits this fact by lowering
the refresh frequency (reducing vendor guardbands) or even disable the refresh
completely and accepting the risk of data errors. The underlying motivation for an
Approximate DRAM is the increasing power consumption and performance penalty
caused by unavoidable DRAM refresh commands. The authors of [29] and [1]
predicted that 40–50% of the power consumption of future DRAM devices will
be caused by refresh commands. Moreover, 3D integrated DRAMs like Wide I/O
or HMC worsen the scenario with respect to increased cell leakage, due to the
much higher temperature. Therefore, the refresh frequency needs to be increased
accordingly to avoid retention errors [37].

The characteristic refresh parameters of DRAMs, listed in datasheets, are very
pessimistic due to the high process margins added by the vendors to ensure correct
functionality under worst-case conditions and most important a high yield [28].
Thus, the DRAM refresh rate recommended by the vendors and JEDEC (tREF =
64 ms) adds a large guardband, as shown in Fig. 9.

As mentioned before many applications like wireless systems have an inherent
error resilience that tolerates these errors and therefore, refresh power often can be
reduced with a minimal loss of the output quality.

Figure 9 qualitatively shows the retention error behavior over time and the design
space for Approximate DRAM. The sphere around the curve represents the process
variation, Variable Retention Times (VRT), and Data Pattern Dependencies (DPD).
In general, we have two key parameters for Approximate DRAM: The data lifetime

450 C. Weis et al.

alu
muC

tiv
e

eruliaF

ytilibaborP
 (l

og
)

Retention Time (log)

Data Lifetime

Application
Robustnes

Working Point

Standard
Refresh Period

(e.g. 64ms)

Fig. 9 Qualitative retention error behavior of DRAMs

and the application robustness. Both parameters lead to three possibilities in this
design space:

• Refresh can be switched off if the data lifetime is smaller than the actual required
refresh period.

• Refresh can be turned off if the data lifetime is larger than the required refresh
period and the application provides resilience to the resulting number of errors at
this working point.

• If the application only provides a maximal robustness the refresh rate is
configured according to the resulting working point.

The reliability-energy trade-off for Approximate DRAMs can be explored only by
using fast and accurate retention error-aware DRAM models.

In [39] we developed such a model that is usable in full system level simulations.
The model was calibrated to the measurement results of DDR3 DRAM devices. A
measurement statistic is shown in Fig. 10. Here we measured 40 identical 4 Gbit
DDR3 chips from the same vendor. Each single device has been measured ten
times at four different temperatures and five retention times, resulting in a total
of 8000 measurement points. We plot the retention times versus the normalized and
averaged number of errors obtained during each measurement step. The bars mark
the minimum and the maximum measured number of errors. We find here a quite
prominent variation in the order of 20% (max. number of errors), which shows a
large temperature dependency. This needs to be considered as realistic guardband
in approximate computing platforms utilizing the Approximate DRAM approach
(cf. the sphere in Fig. 9). Additionally, the figure shows a histogram of the absolute
number of bit errors (between 1 · 106 and 4 · 106) measured at the data point with
100s retention time and a temperature of 25 ◦C.

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 451

0%

10%

20%

30%

40%

50%

60%

70%

0 20 40 60 80 100

dez ila
mro

N

r eb
mu

N
 o

f
srorrE

Reten�on Time [s]

25°C 60°C
80°C 90°C

1E+06
0

20

40

60

4E+06

100s 25°C

Number of Errors

F
re

qu
en

cy

Fig. 10 Retention error measurements of 40 4 Gbit DRAM Devices with different temperatures

Fig. 11 Simulation
Framework for Approximate
DRAM Explorations and
Reliability Management in
SoCs

[39]

[21] [6]

[38]

Figure 11 shows our closed-loop simulation flow for investigations on Approx-
imate DRAM. It is based on SystemC Transaction Level Models (TLM) for
fast and accurate simulation. This simulation loop uses the modular DRAMSys
framework [21] and consists of four key components: DRAM and core models [21],
a DRAM power model [5], thermal models [38], and the aforementioned DRAM
retention error model. The remaining models are shortly introduced in the follow-
ing:

• DRAM and Core Models: The DRAM model of the framework is based on a
DRAM specific TLM protocol called DRAM-AT [20]. Due to TLM’s modular
fashion several types of DRAM and controller configurations can be modeled.
For modeling the cores the gem5 simulator is used [2]. We developed a coupling

452 C. Weis et al.

between gem5 and SystemC to be able to integrate this powerful research
platform in our simulation loop [19].

• DRAM Power Model: Since DRAMs contribute significantly to the power
consumption of today’s systems [9, 27], there is a need for accurate power
modeling. For our framework we use DRAMPower [4, 5], which uses either
parameters from datasheets, estimated via DRAMSpec [33] or measurements to
model DRAM power.

• Thermal Model: 3D packaging of systems like Wide I/O DRAM starts to
break down the memory and bandwidth walls. However, this comes at the
price of increased power density and less horizontal heat removal capability of
the thinned dies. Therefore, we integrated the thermal simulator 3D-ICE [38]
in a SystemC wrapper [18] that is included in our closed-loop simulation for
Approximate DRAM analysis.

In a detailed case study [22] we used the presented simulation framework
(Fig. 11) to investigate the influence of Approximate DRAM on three different
applications. We achieved in average a more than 10% decrease of the total energy
consumption.

4 Conclusions

Technology scaling is leading to a point where traditional worst-case design
is no longer feasible. In this chapter, we presented a new methodology for
the design of dependable wireless systems. We combined cross-layer reliability
techniques to treat hardware errors with the least possible overhead leading to
a high energy efficiency. This methodology enables efficient trade-offs between
communications performance, throughput, and energy efficiency. However, the
exact trade-off depends on the real application requirements, which was not in the
focus of this work. Application-specific resilience actuators together with low-level
techniques offer the ability to respond to the changing requirements on reliability
and quality-of-service. We illustrated our new methodology on a state-of-the-art
generic double-iterative MIMO-BICM receiver which belongs to the most complex
systems in modern communication standards.

We identified dynamic resilience actuators on all layers of abstraction. Each
actuator offers a trade-off between communications performance, implementation
performance (throughput, power), and error resilience. Any actuator which trades
off communications performance for throughput, e.g., the sphere radius, can be
reused to increase the error resilience, when combined with a reduction of the clock
frequency. Throughput and error resilience are, thus, closely related. As we have
shown, algorithmic resilience actuators offer a great potential for dynamic trade-
offs between communications performance, implementation performance, and error
resilience. This work emphasizes the strong mutual dependencies between these
three design metrics in a wireless receiver.

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 453

When the requirement in communication systems on data block sizes exceeds the
capacities of the on-chip memories (SRAMs), external memories, such as DRAMs,
have to be used. To reduce their impact on energy and performance we exploited
the concept of Approximate DRAM. However, this comes at the cost of reduced
reliability. For the exploration of approximate DRAMs we introduced a holistic
simulation framework that includes an advanced DRAM retention error model. This
model is calibrated to real measurements of recent DRAM devices. Finally, we
demonstrated using the holistic simulation platform that the impact of Approximate
DRAM on the quality (QoS or QoR) is negligible while saving refresh energy for
three selected applications.

References

1. Bhati, I., Chishti, Z., Lu, S.L., Jacob, B.: Flexible auto-refresh: Enabling scalable and
energy-efficient DRAM refresh reductions. In: Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pp. 235–246. ACM, New York (2015)

2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,
D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood,
D.A.: The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1–7 (2011). http://doi.
acm.org/10.1145/2024716.2024718

3. Brehm, C., May, M., Gimmler, C., Wehn, N.: A case study on error resilient architectures
for wireless communication. In: Proceedings of the Architecture of Computing Ssystems, pp.
13–24 (2012)

4. Chandrasekar, K., Akesson, B., Goossens, K.: Improved power modeling of DDR SDRAMs.
In: 2011 14th Euromicro Conference on Digital System Design (2011). http://dx.doi.org/10.
1109/DSD.2011.17

5. Chandrasekar, K., Weis, C., Li, Y., Akesson, B., Naji, O., Jung, M., Wehn, N., Goossens,
K.: DRAMPower: Open-source DRAM power & energy estimation tool (2012). http://www.
drampower.info

6. Das, S., Tokunaga, C., Pant, S., Ma, W.H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw, D.T.:
RazorII: in situ error detection and correction for PVT and SER tolerance. IEEE J. Solid State
Circuits 44(1), 32–48 (2009). https://doi.org/10.1109/JSSC.2008.2007145

7. Designing Chips without Guarantees. IEEE Design & Test of Computers 27(5), 60–67 (2010).
https://doi.org/10.1109/MDT.2010.105

8. Dixit, A., Wood, A.: The impact of new technology on soft error rates. In: Proceedings of
the IEEE International Reliability Physics Symposium (IRPS) (2011). https://doi.org/10.1109/
IRPS.2011.5784522

9. Farahini, N., Hemani, A., Lansner, A., Clermidy, F., Svensson, C.: A scalable custom simula-
tion machine for the Bayesian confidence propagation neural network model of the brain. In:
2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 578–585
(2014). https://doi.org/10.1109/IRPS.2011.578452210.1109/ASPDAC.2014.6742953

10. Gimmler, C., Lehnigk-Emden, T., Wehn, N.: Low-complexity iteration control for MIMO-
BICM systems. In: Proceedings of the IEEE 21th International Symposium on Personal, Indoor
and Mobile Radio Communications PIMRC 2010. Istanbul (2010)

11. Gimmler-Dumont, C., Wehn, N.: A cross-layer reliability design methodology for efficient,
dependable wireless receivers. ACM Trans. Embed. Comput. Syst. 13, 1–29 (2014)

12. Gimmler-Dumont, C., Brehm, C., Wehn, N.: Reliability study on system memories of an
iterative MIMO-BICM system. In: Proceedings of the IFIP/IEEE International Conference on
Very Large Scale Integration 2012 (2012)

http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/DSD.2011.17
http://dx.doi.org/10.1109/DSD.2011.17
http://www.drampower.info
http://www.drampower.info
https://doi.org/10.1109/JSSC.2008.2007145
https://doi.org/10.1109/MDT.2010.105
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/IRPS.2011.5784522
https://doi.org/10.1109/IRPS.2011.578452210.1109/ASPDAC.2014.6742953

454 C. Weis et al.

13. Gimmler-Dumont, C., Kienle, F., Wu, B., Masera, G.: A system view on iterative MIMO
detection: dynamic sphere detection versus fixed effort list detection. VLSI Design J. 2012,
Article ID 826350 (2012). https://doi.org/10.1155/2012/826350

14. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,
Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst. 32(1), 8–23 (2013). https://doi.org/10.1109/TCAD.2012.2223467

15. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel, M.,
Ernst, R., Hartig, H., Hedrich, L., et al.: Design and architectures for dependable embedded
systems. In: 2011 Proceedings of the 9th International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), pp. 69–78. IEEE, Piscataway (2011)

16. Herkersdorf, A., Aliee, H., Engel, M., Glaß, M., Gimmler-Dumont, C., Henkel, J., Kleeberger,
V.B., Kochte, M.A., Kühn, J.M., Mueller-Gritschneder, D., Wehn, N., et al.: Resilience
articulation point (RAP): cross-layer dependability modeling for nanometer system-on-chip
resilience. Microelectr. Reliab. 54(6), 1066–1074 (2014)

17. Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE
Trans. Commun. 51(3), 389–399 (2003). https://doi.org/10.1109/TCOMM.2003.809789

18. Jung, M.: Icewrapper - a systemC wrapper for 3D-ICE (2015). http://www.uni-kl.de/3d-dram/
tools/icewrapper/

19. Jung, M., Wehn, N.: Coupling gem5 with systemC TLM 2.0 virtual platforms. In: gem5 User
Workshop, International Symposium on Computer Architecture (ISCA). Portland (2015)

20. Jung, M., Weis, C., Wehn, N., Chandrasekar, K.: TLM modelling of 3D stacked wide I/O
DRAM subsystems: a virtual platform for memory controller design space exploration. In:
Proceedings of the 2013 Workshop on Rapid Simulation and Performance Evaluation: Methods
and Tools, RAPIDO ’13, pp. 5:1–5:6. ACM, New York (2013). http://doi.acm.org/10.1145/
2432516.2432521

21. Jung, M., Weis, C., Wehn, N.: DRAMSys: A flexible DRAM subsystem design space
exploration framework. IPSJ Trans. Syst. LSI Design Methodol. 8, 63–74 (2015)

22. Jung, M., Zulian, E., Mathew, D., Herrmann, M., Brugger, C., Weis, C., Wehn, N.: Omitting
refresh - A case study for commodity and wide I/O DRAMs. In: 1st International Symposium
on Memory Systems (MEMSYS 2015). Washington (2015)

23. Jung, M., Mathew, D.M., Weis, C., Wehn, N.: Efficient reliability management in SoCs -
An approximate DRAM perspective. In: 21st Asia and South Pacific Design Automation
Conference (ASP-DAC) (2016)

24. Kienle, F.: Low-Density MIMO Codes. In: Proceedings of the 5th International Symposium on
Turbo Codes and Related Topics, pp. 107–112. Lausanne (2008)

25. Kienle, F., Wehn, N., Meyr, H.: On complexity, energy- and implementation-efficiency of
channel decoders. IEEE Trans. Commun. 59(12), 3301–3310 (2011). https://doi.org/10.1109/
TCOMM.2011.092011.100157

26. Kleeberger, V., Gimmler-Dumont, C., Weis, C., Herkersdorf, A., Mueller-Gritschneder, D.,
Nassif, S., Schlichtmann, U., Wehn, N.: A cross-layer technology-based study of the impact of
memory errors on system resilience. IEEE Micro 33(4), 46–55 (2013)

27. Krueger, J., Donofrio, D., Shalf, J., Mohiyuddin, M., Williams, S., Oliker, L., Pfreundt, F.J.:
Hardware/software co-design for energy-efficient seismic modeling. In: Proceedings of the
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12 (2011)

28. Lee, D., Kim, Y., Pekhimenko, G., Khan, S., Seshadri, V., Chang, K., Mutlu, O.: Adaptive-
latency DRAM: Optimizing DRAM timing for the common-case. In: 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA), pp. 489–501
(2015). https://doi.org/10.1109/HPCA.2015.7056057

29. Liu, J., Jaiyen, B., Veras, R., Mutlu, O.: RAIDR: Retention-aware intelligent DRAM refresh.
In: Proceedings of the 39th Annual International Symposium on Computer Architecture, ISCA
’12, pp. 1–12. IEEE Computer Society, Washington (2012). http://dl.acm.org/citation.cfm?id=
2337159.2337161

https://doi.org/10.1155/2012/826350
https://doi.org/10.1109/TCAD.2012.2223467
https://doi.org/10.1109/TCOMM.2003.809789
http://www.uni-kl.de/3d-dram/tools/icewrapper/
http://www.uni-kl.de/3d-dram/tools/icewrapper/
http://doi.acm.org/10.1145/2432516.2432521
http://doi.acm.org/10.1145/2432516.2432521
https://doi.org/10.1109/TCOMM.2011.092011.100157
https://doi.org/10.1109/TCOMM.2011.092011.100157
https://doi.org/10.1109/HPCA.2015.7056057
http://dl.acm.org/citation.cfm?id=2337159.2337161
http://dl.acm.org/citation.cfm?id=2337159.2337161

Design of Efficient, Dependable SoCs Based on a Cross-Layer-Reliability Approach 455

30. Lucas, J., Alvarez-Mesa, M., Andersch, M., Juurlink, B.: Sparkk: Quality-scalable approxi-
mate storage in DRAM. In: The Memory Forum (2014). http://www.redaktion.tu-berlin.de/
fileadmin/fg196/publication/sparkk2014.pdf

31. May, M., Alles, M., Wehn, N.: A case study in reliability-aware design: A resilient LDPC
code decoder. In: Proceedings of the Design, Automation and Test in Europe DATE ’08, pp.
456–461. Munich (2008)

32. Mitra, S., Brelsford, K., Kim, Y.M., Lee, H.H.K., Li, Y.: Robust system design to overcome
CMOS reliability challenges. IEEE J. Emer. Sel. Topics Circuits Syst. 1(1), 30–41 (2011).
https://doi.org/10.1109/JETCAS.2011.2135630

33. Naji, O., Weis, C., Jung, M., Wehn, N., Hansson, A.: A high-level DRAM timing, power
and area exploration tool. In: Embedded Computer Systems Architectures Modeling and
Simulation (SAMOS) (2015)

34. Nazar, G.L., Gimmler, C., Wehn, N.: Implementation comparisons of the QR decomposition
for MIMO detection. In: Proceedings of the 23rd Symposium on Integrated Circuits and
System Design (SBCCI ’10), pp. 210–214. ACM, New York (2010). https://doi.org/10.1145/
1854153.1854204

35. Nowka, K., Nassif, S., Agarwal, K.: Characterization and design for variability and reliability.
In: Proceedings of the IEEE Custom Integrated Circuits Conference CICC 2008, pp. 341–346
(2008). https://doi.org/10.1109/CICC.2008.4672092

36. Qian, W., Li, X., Riedel, M., Bazargan, K., Lilja, D.: An architecture for fault-tolerant
computation with stochastic logic. IEEE Trans. Comput. 60(1), 93–105 (2011). https://doi.
org/10.1109/TC.2010.202

37. Sadri, M., Jung, M., Weis, C., Wehn, N., Benini, L.: Energy optimization in 3D MPSoCs
with Wide-I/O DRAM using temperature variation aware bank-wise refresh. In: Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–4 (2014).
https://doi.org/10.7873/DATE2014.294

38. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., Atienza, D.: 3D-ICE: Fast compact
transient thermal modeling for 3D ICs with inter-tier liquid cooling. In: Proceedings of the
IEEE International Conference on Computer-Aided Design ICCAD 2010 (2010)

39. Weis, C., Jung, M., Ehses, P., Santos, C., Vivet, P., Goossens, S., Koedam, M., Wehn, N.:
Retention time measurements and modelling of bit error rates of WIDE I/O DRAM in
MPSoCs. In: Proceedings of the IEEE Conference on Design, Automation & Test in Europe
(DATE). European Design and Automation Association (2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.redaktion.tu-berlin.de/fileadmin/fg196/publication/sparkk2014.pdf
http://www.redaktion.tu-berlin.de/fileadmin/fg196/publication/sparkk2014.pdf
https://doi.org/10.1109/JETCAS.2011.2135630
https://doi.org/10.1145/1854153.1854204
https://doi.org/10.1145/1854153.1854204
https://doi.org/10.1109/CICC.2008.4672092
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.7873/DATE2014.294
http://creativecommons.org/licenses/by/4.0/

Uncertainty-Aware Compositional
System-Level Reliability Analysis

Hananeh Aliee, Michael Glaß, Faramarz Khosravi, and Jürgen Teich

Acronyms

BDD binary decision diagram
CRA compositional reliability analysis
CRN compositional reliability node
CDF cumulative distribution function
DSE design space exploration
EA evolutionary algorithm
ESL electronic system level
MOEA multi-objective evolutionary algorithm
MPSoC multiprocessor system-on-chip
MTTF mean-time-to-failure
RAL reliability abstraction level
RTC Real-Time Calculus
SER soft error rate

H. Aliee
Helmholtz Zentrum München, Munich, Germany
e-mail: hananeh.aliee@helmholtz-muenchen.de

M. Glaß (�)
Ulm University, Ulm, Germany
e-mail: michael.glass@uni-ulm.de

F. Khosravi · J. Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: faramarz.khosravi@fau.de; juergen.teich@fau.de

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_19

457

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_19&domain=pdf
mailto:hananeh.aliee@helmholtz-muenchen.de
mailto:michael.glass@uni-ulm.de
mailto:faramarz.khosravi@fau.de
mailto:juergen.teich@fau.de
https://doi.org/10.1007/978-3-030-52017-5_19

458 H. Aliee et al.

1 Introduction

Continuous technology scaling necessitates to design today’s embedded systems
from electronic components with growing inherent unreliability. This unreliability
arises from susceptibility to neutron-induced soft errors, negative-bias temperature
instability, short-channel effect, gate leakage, etc. Therefore, it is vital to analyze
system reliability at design time and employ appropriate reliability-improving
techniques if necessary. A variety of reliability analysis techniques have been
proposed for both the relatively low levels of abstraction that focus on technology as
well as the system level that considers the interplay of hardware and software. But,
there exists a gap between the levels where the faults originate, e. g., transistor level,
and the system level for which the analysis is required. To close this gap and tame the
ever increasing system complexity, cross-level analysis methodologies are required.
These collect knowledge at lower levels by combining different analysis techniques
and provide proper data for the analysis at higher levels of abstraction [24].

Evaluating the reliability of a system at design time, proper reliability-improving
techniques can be explored and integrated into the system. However, these tech-
niques typically come with higher monetary costs, latency, energy consumption,
etc. This necessitates a multi-objective DSE! (DSE!) which maximizes reliability
without deteriorating other design objectives. Usually, DSE! explores and evaluates
millions of possible design alternatives (also called implementations) to find the
Pareto-optimal ones. Herein, the efficiency of the reliability evaluation and explo-
ration algorithm are the main challenging issues [2]. In [3], we propose an efficient
and scalable reliability analysis technique based on Success Trees (STs) which is
integrated into a DSE! framework to automatically evaluate an implementation’s
reliability. Most existing analysis techniques quantify a system’s reliability without
giving any hint on what to change to improve it, such that exploration algorithms
basically perform random changes, e. g., through genetic operators in case of
EA!s (EA!s). In [4, 6, 7, 11], we propose to employ the notion of component
importance to rank components based on their contribution to the system reliability.
Later, to improve the reliability of a system with limited budgets, we only need to
improve the reliability of highly important components. In [5, 28], we show this
guides the DSE! towards highly reliable, yet affordable implementations. So far,
most existing analysis approaches assume that the reliabilities of components—
or their lower bound—are more or less known precisely. Due to shrinking cell
geometries, semiconductor devices encounter higher susceptibility to environmental
changes and manufacturing tolerances such that a component’s reliability has to be
considered uncertain. An overview of the most important types of uncertainties for
system design is given in Fig. 1.

Effects of unreliability and the associated uncertainty of components can propa-
gate to the system level and become a challenge for system-level design method-
ologies. Even worse, destructive effects such as extreme temperature can affect
several components simultaneously, resulting in correlated uncertainties. Neglecting
such correlations can impose an intolerable inaccuracy to reliability analysis.

Uncertainty-Aware Compositional System-Level Reliability Analysis 459

environment
system

y = fe,m (x)

input

manufacturing

y

e
x

m

Fig. 1 Uncertainties that influence a system’s response and its characteristics: Uncertain environ-
mental influences $e like cosmic rays may cause soft errors. Manufacturing tolerances $m may
lead to changing system behavior and permanent defects. Finally, uncertainty may also be present
in case the inputs to a system may vary ($x) or might not be known at design time

normalized system MTTF

no
rm

al
iz

ed
pr

ob
ab

ili
ty

de
ns

it
y best/worst case

2.5%/97.5% quantiles
mean

(a)

normalized system MTTF

no
rm

al
iz

ed
pr

ob
ab

ili
ty

de
ns

it
y best/worst case

2.5%/97.5% quantiles
mean

(b)

Fig. 2 Impact of uncertainty correlation among the reliability functions of different components
on the uncertainty of the system MTTF! for an implementation candidate of an H.264 encoder/de-
coder. (a) Correlated component uncertainty. (b) Non-correlated component uncertainty

As an example, Fig. 2 depicts the distribution of system MTTF! (MTTF!) for
an H.264 encoder/decoder implementation with and without the consideration of
uncertainty correlations. While considering these correlations shows a good match
between the simulated cases and the bounds, neglecting them may result in huge
deviations from those bounds. This motivates the consideration of uncertainties
and especially their correlations in cross-level reliability analysis. In this realm,
this chapter introduces a methodology for CRA! (CRA!) that combines various
reliability analysis techniques across different levels of abstraction while being
aware of existing uncertainties and their correlations.

Considering uncertainty, system reliability is no longer a single value, but instead
represented by a set of samples, upper and lower bound curves, or distribution
functions which requires that a DSE! can consider implementations with uncertain
objectives. Therefore, this chapter focuses on (a) the explicit modeling of uncer-
tainties and their correlations in reliability analysis and (b) the integration of such
an analysis into a framework for system-level DSE!. The techniques proposed are
not tailored to a specific abstraction layer, but can be best classified as combining

460 H. Aliee et al.

Fig. 3 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions

ap
pl
ica

tio
n

SW
/O

S

ar
ch

ite
ct
ur

e

cir
cu

it/
ga

te

ph
ys
ics

application

SW/OS

architecture

circuit/gate

physics

architecture and application layers according to the embedded system abstraction
layers as depicted in Fig. 3.

The rest of this chapter is organized as follows: Sect. 2 reviews related work and
introduces required fundamentals. Section 3 introduces a formal CRA! framework
and its application using a case study. An explicit modeling of uncertainty in
reliability analysis and optimization is given in Sect. 4. Finally, Sect. 5 concludes
the chapter.

2 Related Work and Fundamentals

2.1 Reliability Analysis and Optimization

Reliability analysis and optimization are thoroughly studied research topics that are
of great importance fornearly every safety-critical system [12], especially embedded
systems [36]. However, one can observe that the different areas raise significantly
diverse needs for the applied analysis techniques. An overview of well-known
reliability analysis techniques can be found in [35].

Up to now, several approaches have been presented for analyzing the reliability
of embedded systems at system level which are typically integrated into system-
level DSE!. In [16], fault-tolerant schedules are synthesized using task re-execution,
rollback recovery, and active replication. The authors of [47] try to maximize
reliability by selectively introducing redundancy while treating area consumption
and latency as constraints. Reliability is introduced as an objective into system-
level design in [13]. However, the employed reliability analysis techniques are
restricted to series-parallel system structures which render them infeasible for
typical embedded systems where processing and communication resources have to
be shared. On the other hand, reliability analysis at low levels of abstraction has been
studied thoroughly, e. g., transistor level [42] or for prospective switching devices
like carbon nanotubes [32].

Uncertainty-Aware Compositional System-Level Reliability Analysis 461

So far, few systematic approaches have been proposed to upscale the knowledge
gathered at low abstraction levels to the system level. The work in [1] proposes a
system-level dynamic temperature management scheme to prevent thermal hot spots
through a run-time application re-mapping, and to efficiently mitigate aging effects
in a many-core architecture. In [23], thermal effects in a Multiprocessor System-
on-Chip (MPSoC) on its reliability are propagated into a scheduling and binding
optimization at system level. Their analysis is based on a simulation of the MPSoC
and given relations between the temperature profile and the resulting reliability.
Similar reliability analysis techniques are used in [34] in order to optimize the
lifetime of MPSoCs using the so-called slack allocation. However, these techniques
are able to capture thermal effects only, without investigating the possibility to
include and propagate these effects into a more holistic analysis that also takes into
account, e. g., soft errors or a complex system structure like a networked embedded
system consisting of several interconnected processors or MPSoCs.

2.2 Compositional Approaches to Reliability Analysis

A first attempt to close the gap on accurate power models for reliability analysis
between the ESL! (ESL!) and the gate level is presented in [40]. While the approach
sounds promising in modeling thermal effects on the component reliability, it fails to
offer a formal framework that allows to integrate different analysis techniques cross
level. Herkersdorf et al. [24] [RAP-Chap.] propose a framework for probabilistic
fault abstraction and error propagation and show that all physically induced faults
manifest in higher abstraction levels as a single or multiple bit flip(s). Similarly, the
proposed CRA! model aims to propagate the effects of uncertainty and the resulting
faults originating from lower levels of abstraction into the system-level analysis
by incorporating appropriate reliability analysis techniques for each relevant error
model at a specific level of abstraction. As a result, the developed concepts become
independent of an actual error model since it abstracts from the actual source
of unreliability during upscaling, i. e., the propagation of data from lower levels
to higher levels by means of abstraction and data conversion. CRA! approaches
that consider component-based software are presented in [37]. Although these
approaches try to develop a more general compositional analysis scheme, they miss
a well-defined mathematical underpinning and do not focus on automatic analysis
as needed during DSE!.

The use of composition and decomposition in well-defined formal models that
allow abstraction to avoid state space explosion has been addressed in, e.g., [25].
An especially interesting and formally sound approach can be found in [9]. In this
chapter, we develop a formal approach, inspired by techniques from the verification
area, for CRA!. A particular challenge will be the consideration and explicit
modeling of uncertainties in the formal model where there is no similar technique
or need in the area of verification given.

462 H. Aliee et al.

2.3 Uncertainty Considerations

There exist intense studies on the effect of uncertainties on the system reliability for
general engineering problems, cf. [38], as well as circuits and microarchitectures,
cf. [27]. However, few studies focus on the cross-level reliability analysis of
embedded systems in the presence of uncertainty arising from manufacturing
tolerances, etc.

Uncertainty-Aware Analysis One example is a cross-level adaptive reliability
prediction technique proposed in [17] that derives information from different levels
of abstraction and allows to consider the simultaneous effects of process, voltage,
temperature and aging variations, and soft errors on a processor. The authors of [18]
propose a cross-level framework to analyze the combined impact of aging and
process variation on the SER! (SER!) and static noise margin of memory arrays
in near threshold voltage regimes. This framework enables to explore workload, as
instruction per second, and cache configuration, as cache size and associativity, in
order to minimize SER! and its variations for 6T and 8T SRAM cells. Contrary
to all mentioned approaches, this chapter explicitly treats each effect of uncertainty
during reliability analysis of a system. Proposed is an analysis technique that obtains
the range of reliability that is achievable for a system given its configuration and the
uncertainties of its components.

Uncertainty-Aware Optimization Optimization problems may be affected by var-
ious sources of uncertainty including perturbation of decision variables as well
as effects of noise and approximation on objective functions [26]. In this work,
uncertainty is explicitly modeled as variations in component failure rates and
costs. The uncertainty propagates through reliability analysis and cost evaluation at
system level and renders design objectives to be uncertain as well. To make correct
decisions when comparing and discriminating implementations during DSE!, the
employed optimization algorithm needs to take the uncertainty of the design
objectives into account as well. The work in [44] proposes a mathematical approach
to calculate the probability of an implementation dominating another, given all
uncertain objectives follow either uniform or any discrete distributions. However,
extending this approach to consider diversely distributed uncertain objectives
requires solving difficult integrals demanding a huge computational effort. To this
end, approximate simulation-based approaches, e. g., in [30], provide trade-offs
between execution time and accuracy of calculating this probability. In [33], it is
proposed to compare uncertain objectives with respect to their lower and upper
bounds. However, this approach fails to distinguish largely overlapping intervals
with even significantly different distributions. A lot of work has been proposed
for problems with continuous search spaces and linear objective functions, see
e. g.,[15]. However, typical embedded system design problems have discrete search
spaces, non-linear and often not differentiable objective functions, and have to cope
with stringent constraints. Thus, these optimization techniques cannot be applied
without further investigation and modification. In [39], an approach based on an

Uncertainty-Aware Compositional System-Level Reliability Analysis 463

uncertainty-aware MOEA! (MOEA!) that targets reliability as one design objective
is presented. The approach takes into account the uncertainty of the reliability of
each system component and tries to maximize the robustness of the system. This
chapter presents a novel uncertainty-aware multi-objective optimization approach
applicable for DSE! of reliable systems at system level, see Sect. 4.

2.4 System-Level Design Fundamentals

This chapter targets the system-level design of embedded MPSoCs, typically
specified by an application graph, a resource graph, and a set of possible task-to-
resource mappings. The application graph includes a set of tasks to be executed and
specifies the data and control flow among them. The resource graph consists of hard-
ware resources, namely, processors and accelerators connected by communication
infrastructures such as buses or networks-on-a-chip. The mappings specify which
tasks can be executed on which resources. Figure 4 shows an example specification
with three tasks ti , i ∈ [0 . . . 2], five resources rj , j ∈ [0 . . . 4], and eight mappings
mi,j from ti to rj .

Implementation candidates are derived via system-level synthesis [10] perform-
ing the steps: (a) Resource allocation selects a subset of resources that are part of
the implementation. (b) Task binding associates at least one instance of each task
to an allocated resource by activating the respective task-to-resource mapping. (c)
Scheduling determines a feasible start time for each task instance. An implementa-
tion is feasible if and only if all constraints regarding, e. g., communication, timing,
or utilization are fulfilled. Figure 4 highlights a possible feasible implementation

t0

t1

t2

r0

r1

r2 r3

r4

m0,0

m0,1
m0,4

m1,2

m1,4

m2,1

m2,2

m2,3

application graph mapping edges resource graph

Fig. 4 A specification comprising (a) an application graph where edges indicate data dependen-
cies of tasks, (b) a resource graph with edges representing dedicated communication between
resources, and (c) a set of task-to-resource mappings which model possible execution of tasks
on resources. A possible implementation candidate obtained by system-level synthesis is depicted
with non-allocated resources and non-active bindings being grayed out

464 H. Aliee et al.

with non-allocated resources and non-activated mappings being grayed out. More
details of the underlying system synthesis and DSE! in the context of reliability
analysis and optimization can be found in [22, 43].

3 Compositional Reliability Analysis (CRA)

This section introduces models and methods for CRA! as proposed in [21]. Figure 5
shows a schematic view of CRA! and its required mechanisms. To realize a cross-
level analysis, it encapsulates existing reliability analysis techniques in CRN!s
(CRN!s) at multiple RAL!s (RAL!s). It tames analysis complexity within a certain
RAL! using composition and decomposition and connects different RAL!s through
adapters. Each CRN! applies an analysis step Y(t) = X(S) at a specific RAL!
where X is a concrete analysis technique and S is a (sub)system. A CRN! derives
a specific measure Y over time t . A RAL! in CRA! may combine several (design)
abstraction levels where the same errors and, especially, their causes are significant.

Adjacent RAL!s are connected by the concept of adapters that have to perform
three tasks: (a) refinement provides the data required for the analysis in the lower
RAL!, (b) data conversion transforms the output measures from the lower RAL! to
the input required at the higher RAL!, and (c) abstraction during both refinement
and data conversion tames analysis complexity. A concrete example of CRA!
describing a temperature-reliability adapter for MPSoCs is presented in Sect. 3.1.

CRN i

CRN j

CRN j′ CRN j′′

composition /
decomposition

adapteri,j

R
A

L
i

R
A

L
j

time t

Y
i
(t

)

time t

Y
j
(t

)

time t

Y
j
(t

)

time t

Y
j
(t

)

Fig. 5 A schematic view of CRA!

Uncertainty-Aware Compositional System-Level Reliability Analysis 465

Another important aspect of CRA! concerns the feasibility of composition and
decomposition with respect to reliability analysis. While, of course, composition
and decomposition should reduce the complexity of the analysis, errors caused by
approximation or abstraction should be bounded. For example, a rule to bound the
approximation error of a decomposition D of a given system S into n subsystems
S1, . . . , Sn is as follows:

D(S) = {S1, . . . , Sn} is feasible, if ∃ε : |X(S)− (X(S1) ◦ . . . ◦X(Sn)
)| ≤ ε

with ◦ being an analysis-dependent operator, e. g., multiplication, and ε being the
maximum approximation error. A special focus of these investigations is the proper
handling of decomposed nodes that influence each other. Nowadays, hardly any
subsystem of an embedded system is truly independent of all other subsystems.
Thus, this rule should be extended as follows to consider both the truly independent
individual properties of the decomposed nodes and their dependencies during
composition C:

D(S) = {S1, . . . , Sn} is feasible, if ∃ε :
|X(S)− C

(
X(S1) ◦ . . . ◦X(Sn), P ({S1, . . . , Sn})

)| ≤ ε. (1)

In this case, the composition C not only takes into account the parts of the subsystem
that can be analyzed independently, but also performs a corrective postprocessing P

to take into account their interactions.
Similarly, we have developed rules for the connection of different RAL!s. The

task of an adapter is to convert the measure Y used at the lower RAL! into the
measure Y ′ used at the higher RAL!s, for example, Y ′ = A(Y). Especially because
of the models and methods needed for converting from one RAL! to another, a
thorough analysis of the function A needs to be carried out. In most cases, this
function will not provide an exact result, but will require an abstraction such as by
the determination of tight upper and lower bounds. Thus, the developed rules will
define requirements for the functions in the adapter used for abstraction and data
conversion.

3.1 CRA Case Study and Uncertainty Investigations

In [21], a concrete application of CRA! to realize a temperature-aware redundant
task mapping approach is presented. In the following, a brief summary of the case
study is given with focus being put on the aspect of uncertainty introduced due to
the application of composition and decomposition. This further motivates the need
to develop techniques to explicitly model and consider uncertainty during analysis
and optimization as is presented in Sect. 4.

466 H. Aliee et al.

3.1.1 CRA Case Study

In the context of system-level design and especially the design of reliable embedded
systems as introduced in Sect. 2, deploying redundant (software) tasks can be
considered a rather cost-efficient technique to enhance system reliability. However,
the resulting additional workload may lead to increased temperature and, thus, a
reliability degradation of the (hardware) components executing the tasks. The case
study in [21] combines three different techniques on three RAL!s: At the highest
RAL!, a reliability analysis based on BDD! (BDD!), see, e. g.,[20], computes the
system reliability of a complete 8-core MPSoC and requires the reliability function
of each component (core) in the system. To determine the latter, an intermediate
RAL! uses the behavioral analysis approach RTC! (RTC!) [45] to derive the upper
bound for the workload of each core over time. This workload is passed to the
lowest RAL! where this information is used to carry out a temperature simulation
based on HotSpot [41] to deliver a temperature profile of each core. Using these
temperature profiles and assuming electromigration as a fault model, [21] proposes
an adapter that—based on the works in [14, 46]—delivers a temperature-aware
reliability function for each core back to the highest RAL! in order to complete
the system analysis.

3.1.2 Uncertainty Investigations

As given in Eq. 1, composition/decomposition may result in an imprecision εo of an
output measure o ∈ O. In [19], we present techniques for formal decomposition
and composition for CRN!s that describe the system via Boolean formulas,
typically used by BDD!s, Fault Trees, etc. Here, functional correlations between
components are fully captured in the Boolean formulas, and we propose an exact
composition/decomposition scheme on the basis of early quantification. However,
correlations are typically non-functional, with heat dissipation between adjacent
cores being a prominent one. Consider again the case study described before and
Fig. 6: Not decomposing the system into individual cores results in a temperature
simulation of all cores at the lowest level, implicitly including the effect of heat
dissipation in-between cores, see Fig. 6 (top-left). A naive decomposition could
decompose the system into independent cores such that the workload of each core is
determined and a reliability function would be gathered by per-core temperature
simulations on the lowest level, see Fig. 6 (middle-left). This, however, would
completely neglect the effect of heat dissipation between cores. As a third option,
[21] investigates a corrective postprocessing within the adapter between the lower
levels where the workload of cores and the temperature simulation are analyzed
independently, while a simple model that considers the distance and steady-state
temperature of each core is used to approximate the respective heat flow, see Fig. 6
(bottom-left).

The imprecision resulting from the three discussed decomposition variants is
given in Fig. 6 (right), derived from ≈8000 different system implementations

Uncertainty-Aware Compositional System-Level Reliability Analysis 467

ex
ac

t
na

iv
e

de
co

m
po

si
ti

on
po

st
pr

oc
es

si
ng

core A core B

simulation

core A

simulation A simulation B

core A core B

simulation A simulation B

P
exact naive P

− 0.1

0

0.1

0.2

0.3

er
ro

r
in

sy
st

em
M

T
T

F
(%

)

core B

Fig. 6 A simulation of two cores captures heat dissipation (exact, top) while a decomposition
(naive, middle) is unable to capture heat dissipation between cores. A corrective postprocessing (P ,
bottom) enables to reduce analysis complexity while providing a basic notion of heat dissipation.
The resulting imprecisions in percentage on system-wide MTTF! are depicted on the right

analyzed as part of a DSE!: While no decomposition is treated as an exact
base value—with respect to heat dissipation being considered and not the overall
exactness of the simulation—the naive decomposition constantly overestimates the
system-wide MTTF! by ≈26%. On the other hand, the corrective postprocessing
delivers results with a rather good match in terms of the median and average error,
but also shows that the correction may come at errors of up to ≈10%. At the same
time, compared to the complete simulation, the decomposition including corrective
postprocessing achieves a≈2× average speed-up. These results further motivate the
need for analysis and optimization techniques—as presented in the next section—
that can explicitly model uncertainty such as the shown imprecision.

4 Uncertainty in Reliability Analysis and Optimization

To design and optimize systems for reliability, existing uncertainties in their envi-
ronment and internal states, see Fig. 1, must be explicitly integrated into reliability
analysis techniques. Implicit uncertainty modeling hides the effects of controllable
and non-controllable uncertainties, e. g., into a single reliability function, and fails
to distinguish between them. On the other hand, explicit modeling determines the
range of achievable reliability of a component or subsystem, e. g., using upper and
lower bound functions.

We introduce two solutions for uncertainty modeling: (a) using upper and
lower bounding curves for the achievable reliability and (b) abstracting various
uncertainties into a finite set of typical use cases and providing a system reliability

468 H. Aliee et al.

Ru(t)

Rl(t)

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

time t

re
li
a
b
il
it
y
R

(t
)

Fig. 7 Reliability functions R(t) that result from uncertainties in the internal heat dissipation of
a silicon system that arise from, e. g., changing task binding on a processing unit. Shown is a
range that is determined by an upper Ru(t) and a lower bound Rl (t) reliability function and the
reliability functions for 5 use cases, e. g., 5 favored task schedules that show a distribution within
the range

function for each case, see Fig. 7. While the former offers a range and abstracts
from the distributions in between bounds, the latter variant explicitly determines
important cases in that range, but of course, comes with an increased complexity.
This section covers both approaches and assumes that uncertainty obtained from
lower abstraction levels is available at higher levels as known distributions or
sampled data.

As introduced earlier, incorporating reliability-increasing techniques into a sys-
tem at design time may deteriorate other design objectives. Due to the explicit mod-
eling of uncertainties, a multi-objective uncertainty-aware optimization becomes
necessary. Given that the system reliability is no more a single value, optimization
algorithms must be able to handle uncertain objectives given as probability distribu-
tions, a set of samples or upper and lower bound curves, and allow for a quantitative
comparison of different designs.

4.1 Uncertainty-Aware Reliability Analysis

The uncertainty-aware reliability analysis technique introduced in the following
is originally proposed in [29]. It models the reliability of a component r with
uncertain characteristics Ur using reliability functions Rr (t) that are distributed
within given lower and upper bound reliability functions, i. e., Ur =

[
Rl

r (t),Ru
r (t)

]
.

A sampler is used to take Ur as input and deliver a sampled reliability function
Rs

r (t) with Rl
r (t) ≤ Rs

r (t) ≤ Ru
r (t). It ensures that the sampled reliability

functions follow the intended distribution within the given bounds, and enables

Uncertainty-Aware Compositional System-Level Reliability Analysis 469

Analysis Core

Construction

r1

r2

0 1

1

0
0

1

EvaluationSampler Simulator

Statistics of Rimp(t)

8ri 2 R : Rs
ri

(t)

sample()

Rs
imp(t)

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

t

R r
1
(t

)

r1

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

t

R r
2
(t

)

r2

Implementation imp

r1 r2

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

t

R i
m

p
(t

)

System Reliability Function

r1 r2

Fig. 8 An overview of the proposed uncertainty-aware reliability analysis

the consideration of arbitrary distributions, in particular well-known discrete and
continuous distributions.

In practice, component reliability is typically derived from measurements that are
fitted to closed-form exponential (Rr (t) = e−λr ·t) and Weibull (Rr (t) = e−λr ·tβr)
reliability functions with λ being the component’s failure rate. The uncertainty
model Ur includes a set of uncertain parameters Pr , distributed within the bounds
[P l

r , P
u
r]. The sampler takes a sample from each parameter pr ∈ Pr and constructs a

sample reliability function. For example, for an exponential distribution with bounds
[λl

r , λ
u
r] = [0.0095, 0.0099], a sample reliability function Rs

r (t) = e−0.0098 t can be
generated.

The overall flow of the analysis approach is shown in Fig. 8 and includes the
following steps: (a) The sampler samples a reliability function Rs

r (t) from the
uncertainty distribution of each component r , (b) an analysis core uses these samples
and calculates a sample reliability function for the given system implementation
Rs

imp(t), and (c) a statistical simulator collects a set of sampled reliability functions

Φimp = ⋃n
s=1{Rs

imp(t)} and constructs the uncertainty distribution of the system
reliability.

The analysis core can be realized by any existing technique that requires a
reliability function of each component and calculates the system reliability function.
In the concrete case, Fig. 8 shows a formal technique based on BDD!s that models
the reliability of a system implementation with two components in series. The
statistical simulator determines the number of required samples n to later obtain

470 H. Aliee et al.

desired statistics like mean and quantiles from Φimp with a guaranteed confidence
level.1 As an example, for each sample Rs

imp(t) in Φimp, the MTTF! can be
calculated using the integration below:

MTTF!s =
∫ ∞

0
t · f s(t) dt where f s(t) = −dRs

imp(t)

dt
. (2)

Using sample MTTF!s, design objectives such as the best-, worst-, and average-case
MTTF! can be derived.

4.1.1 Uncertainty Correlation

To model any existing correlation between uncertain parameters of system com-
ponents, we investigate whether they are exposed to common uncertainty sources,
and are, thus, subject to correlative variations. Take temperature as an example:
Components that are fabricated in the same package may be exposed to the same
temperature, which means their reliability characteristics can be considered in a
correlation group, whereas components in different packages might be considered
independent. Assuming that the uncertainty sources and the correlation groups are
given, we introduce models for obtaining correlated samples from the uncertainty
distribution of component reliability functions in [29, 31]: To sample from an
uncertain parameter p, we check if it is a member of any correlation group or not.
If p is a member of G, we first generate a random probability g for the group
G at the beginning of each implementation evaluation step and then calculate a
sample from p using the inverse CDF! (CDF!) of the probability distribution of
p at point g. Otherwise, a sample is taken independently from the distribution
of p. Note that since the uncertain parameters in a correlation group might be
differently distributed, returning the same quantile g from their distributions does
not necessarily yield the same value, see Fig. 9. Thus, through sampling, the
uncertain parameters in G vary together, and their variations are independent of
those of the parameters outside G.

4.2 Uncertainty-Aware Multi-Objective Optimization

Finally, to enable the optimization of system implementations with multiple uncer-
tain objectives, we propose an uncertainty-aware framework in [29]. It extends a
state-of-the-art DSE! [43] and employs a MOEA! as the optimization core. These
techniques introduce dominance criteria to compare different implementations and
select which one to store in an archive and vary for the next iteration.

1Efficient sampling techniques [8] can be used to reduce the number of required samples.

Uncertainty-Aware Compositional System-Level Reliability Analysis 471

pl
1 F − 1

1 (g) pu
1

0

g

1

p1

cu
m

u
la

ti
ve

d
is

tr
ib

u
ti

on

pl
2 F − 1

2 (g) pu
2

0

g

1

p2

pl
1 F − 1

1 (g) pu
1

g

p1

p
ro

b
ab

il
it
y

d
en

si
ty

pl
2 F − 1

2 (g) pu
2

g

p2

Fig. 9 Generating samples for correlated uncertain parameters p1 and p2

To maximize m objectives O1, . . . , Om, each being a single value, the dominance
of two implementations A and B is defined as follows:

A % B ⇐⇒ ∀i ∈ [1, v] : OA(i) ≥ OB(i) ∧ ∃j ∈ [1, v] : OA(j) > OB(j)

(3)

Here, A % B means “A dominates B” and OA(j) > OB(j) means “A is better
than B in the j -th objective.” Since this dominance criterion compares each of the
m objectives independently, we refer to O(i) as O for brevity.

The proposed uncertainty-aware optimization compares uncertain objectives
using the following three-stage algorithm: (a) If the intervals of O, specified by
the lower bound Ol and upper bound Ou, of two implementations A and B do not
overlap, one is trivially better (>) than the other. (b) If the intervals overlap, we
check if one objective is significantly better with respect to an average criterion,
e. g., mean, mode, or median. (c) If the average criterion does not find a preference,
a spread criterion compares objectives based on their deviation, e. g., standard
deviation, variance, or quantile intervals, and judges whether one is considerably
better. In case none of the three stages determines that one objective is better, the
objectives are considered equal. The flow of this comparison operator is illustrated
in Fig. 10.

To find if one uncertain objective has significantly better average Oavg or
deviation Odev compared to the other, we use two configurable threshold values

472 H. Aliee et al.

Start

OA > OB OA = OB OA < OB

Ol
A > Ou

B

yes

Ou
A < Ol

B

no

yes

Oavg
A >> Oavg

B

no

yes

Oavg
A

>>

Oavg
B

no

yes

Odev
A

>>

Odev
B

no

yes

Odev
A >> Odev

B

no

yesno

End

optimum

optimum

optimum

Fig. 10 The flow of the proposed three-stage comparison operator

εavg and εdev, respectively. For the average criterion, a configurable threshold value
εavg determines if the difference of the considered average-case objective values is
significant with respect to the given objective bounds. This enables to control the
sensitivity of the second stage of the comparison:

O
avg
A −O

avg
B

max
(
Ou

A,Ou
B

)−min
(
Ol

A,Ol
B

) ≥ εavg. (4)

Here, εavg = 0 always prefers the objective with better average case, while εavg = 1
renders the average criterion ineffective since the left-hand side of Eq. (4) is always
less than one. Thus, the scope of εavg must be carefully selected based on the
objective’s criticality to guarantee a required precision.

The spread criterion prefers the objective value with smaller deviation and uses
a threshold value εdev to control the sensitivity of the comparison, i. e.,

Odev
B −Odev

A

Odev
A +Odev

B

≥ εdev ⇒ OA > OB. (5)

Uncertainty-Aware Compositional System-Level Reliability Analysis 473

Given εdev = 0, any small difference between Odev
A and Odev

B is reckoned,
which can lead to crowding in the solution archive. It causes solution A which is
indeed weakly dominated by another solution B to be regarded as non-dominated
because one of its uncertain objectives has a slightly better deviation than the
corresponding objective of B. On the other hand, the spread criterion becomes
ineffective if εdev = 1 and any significant difference between deviations of two
uncertain objectives would be overlooked. Therefore, the value of εdev must be
carefully selected.

Note that the statistics of an uncertain objective O required in the proposed
comparison operator are calculated using samples from its distribution. Given a set
of n samples for O, its variance can be calculated as follows:

Oσ 2 = 1

n

n∑
i=j

(
Oj −Oμ

)2
where Oμ = 1

n

n∑
i=j

Oj , (6)

with Oμ denoting the mean of the distribution of O. Moreover, to find the qth

quantile of this distribution, we use the inverse empirical distribution function which
traverses the samples in the ascending order and returns the very first sample after
the q% smallest samples.

Figure 11 shows the resulting Pareto fronts for optimizing MTTF! and cost
of an H.264 specification using the proposed comparison operator vs. a common
uncertainty-oblivious approach that compares instances of uncertain objectives with
respect to their mean values. The specification incorporates 15 resources, 66 tasks,
and 275 mappings. The proposed operator uses mean and 95% quantile interval
as the average and spread criteria, respectively. Depicted are the mean values,

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

5

6

7

8

9

cost [a. u.]

M
T

T
F

[a
]

common (bounds)

common (worst cases)

common (mean)

proposed (bounds)

proposed (worst cases)

proposed (mean)

Fig. 11 Pareto fronts when optimizing MTTF! and cost of an H.264 encoder/decoder using a
common uncertainty-oblivious approach vs. the proposed comparison operator

474 H. Aliee et al.

boxes enclosing the uncertainty distributions, and lines connecting the worst cases.
The results show that the proposed comparison operator enables the DSE! to find
implementation candidates of smaller uncertainty, and yet comparable quality in the
average case.

5 Conclusion

Progressive shrinkage in electronic devices has brought them vulnerabilities to
manufacturing tolerances as well as environmental and operational changes. The
induced uncertainty in component reliability might propagate to system level,
which necessitates uncertainty-aware cross-level reliability analysis. This chapter
presents a cross-level reliability analysis methodology that enables handling the
ever increasing analysis complexity of embedded systems under the impact of
different uncertainties. It combines various reliability analysis techniques across
different abstraction levels by introducing mechanisms for (a) the composition
and decomposition of the system during analysis and (b) converting analysis data
over abstraction levels through adapters. It also provides an explicit modeling of
uncertainties and their correlations. The proposed methodology is incorporated
in an automatic reliability analysis tool that enables the evaluation of reliability-
increasing techniques within a DSE! framework. The DSE! employs meta-heuristic
optimization algorithms and is capable of comparing system implementation candi-
dates with objectives regarded as probability distributions.

Acknowledgments This work is supported in part by the German Research Foundation (DFG)
as associated project CRAU (GL 819/1-2 & TE 163/16) of the priority program Dependable
Embedded Systems (SPP 1500).

References

1. Al Faruque, M., Jahn, J., Ebi, T., Henkel, J.: Runtime thermal management using software
agents for multi-and many-core architectures. IEEE Design Test Comput. 27(6), 58–68 (2010)

2. Aliee, H.: Reliability analysis and optimization of embedded systems using stochastic logic and
importance measures. Doctoral Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) (2017)

3. Aliee, H., Glaß, M., Reimann, F., Teich, J.: Automatic success tree-based reliability analysis for
the consideration of transient and permanent faults. In: Design, Automation & Test in Europe
(DATE), pp. 1621–1626 (2013)

4. Aliee, H., Glaß, M., Khosravi, F., Teich, J.: An efficient technique for computing importance
measures in automatic design of dependable embedded systems. In: Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 34:1–34:10 (2014)

5. Aliee, H., Borgonovo, E., Glaß, M., Teich, J.: Importance measures in time-dependent relia-
bility analysis and system design. In: European Safety and Reliability Conference (ESREL)
(2015)

Uncertainty-Aware Compositional System-Level Reliability Analysis 475

6. Aliee, H., Borgonovo, E., Glaß, M., Teich, J.: On the Boolean extension of the Birnbaum
importance to non-coherent systems. Reliab. Eng. Syst. Safe. 160, 191–200 (2016)

7. Aliee, H., Banaiyianmofrad, A., Glaß, M., Teich, J., Dutt, N.: Redundancy-aware design space
exploration for memory reliability in many-cores. In: Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen (MBMW) (2017)

8. Aliee, H., Khosravi, F., Teich, J.: Efficient treatment of uncertainty in system reliability analysis
using importance measures. In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) (2019)

9. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.: Compositional verification for component-
based systems and application. In: Automated Technology for Verification and Analysis
(ATVA), pp. 64–79 (2008)

10. Blickle, T., Teich, J., Thiele, L.: System-level synthesis using evolutionary algorithms. Des.
Autom. Embed. Syst. 3(1), 23–58 (1998)

11. Borgonovo, E., Aliee, H., Glaß, M., Teich, J.: A new time-independent reliability importance
measure. Eur. J. Oper. Res. 254(2), 427–442 (2016)

12. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards. Softw. Eng. J.
8, 189–189 (1993)

13. Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic
algorithm. IEEE Trans. Reliab. 45(1), 254–260 (1996)

14. Council, J.E.D.E.: Failure Mechanisms and Models for Semiconductor Devices. JEDEC
Publication JEP122-B (2003)

15. Deb, K., Gupta, H.: Searching for robust Pareto-optimal solutions in multi-objective optimiza-
tion. In: Evolutionary Multi-Criterion Optimization (EMO), pp. 150–164 (2005)

16. Eles, P., Izosimov, V., Pop, P., Peng, Z.: Synthesis of fault-tolerant embedded systems. In:
Design, Automation & Test in Europe (DATE), pp. 1117–1122 (2008)

17. Farahani, B., Safari, S.: A cross-layer approach to online adaptive reliability prediction of
transient faults. In: Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),
pp. 215–220 (2015)

18. Gebregiorgis, A., Kiamehr, S., Oboril, F., Bishnoi, R., Tahoori, M.B.: A cross-layer analysis of
soft error, aging and process variation in near threshold computing. In: Design, Automation &
Test in Europe (DATE), pp. 205–210 (2016)

19. Glaß, M., Lukasiewycz, M., Haubelt, C., Teich, J.: Towards scalable system-level reliability
analysis. In: Design Automation Conference (DAC), pp. 234–239 (2010)

20. Glaß, M., Lukasiewycz, M., Reimann, F., Haubelt, C., Teich, J.: Symbolic system level
reliability analysis. In: International Conference on Computer-Aided Design (ICCAD), pp.
185–189 (2010)

21. Glaß, M., Yu, H., Reimann, F., Teich, J.: Cross-level compositional reliability analysis for
embedded systems. In: International Conference on Computer Safety, Reliability and Security
(SAFECOMP), pp. 111–124 (2012)

22. Glaß, M., Teich, J., Lukasiewycz, M., Reimann, F.: Hybrid Optimization Techniques for
System-Level Design Space Exploration, pp. 1–31. Springer, Dordrecht (2017)

23. Gu, Z., Zhu, C., Shang, L., Dick, R.: Application-specific MPSoC reliability optimization.
IEEE Trans. Very Large Scale Integr. Syst. 16(5), 603 (2008)

24. Herkersdorf, A., Aliee, H., Engel, M., Glaß, M., Gimmler-Dumont, C., Henkel, J., Kleeberger,
V., Kochte, M., Kühn, J., Mueller-Gritschneider, D., Nassif, S., Rauchfuss, H., Rosenstiel, W.,
Schlichtmann, U., Shafique, M., Tahoori, M., Teich, J., Wehn, N., Weis, C., Wunderlich, H.:
Resilience articulation point (RAP): cross-layer dependability modeling for nanometer system-
on-chip resilience. Microelectr. Reliab. 54(6–7), 1066–1074 (2014)

25. Hooman, J.: Specification and Compositional Verification of Real-Time Systems. Springer,
Berlin (1991)

26. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey. IEEE Trans.
Evol. Comput. 9(3), 303–317 (2005)

27. Jung, S., Lee, J., Kim, J.: Variability-aware, discrete optimization for analog circuits. IEEE
Trans. Comput. Aided Design Integr. Circuits Syst. 33(8), 1117–1130 (2014)

476 H. Aliee et al.

28. Khosravi, F., Reimann, F., Glaß, M., Teich, J.: Multi-objective local-search optimization using
reliability importance measuring. In: Design Automation Conference (DAC), pp. 1–6 (2014)

29. Khosravi, F., Müller, M., Glaß, M., Teich, J.: Uncertainty-aware reliability analysis and
optimization. In: Design, Automation & Test in Europe (DATE), pp. 97–102 (2015)

30. Khosravi, F., Borst, M., Teich, J.: Probabilistic dominance in robust multi-objective optimiza-
tion. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1597–1604 (2018)

31. Khosravi, F., Müller, M., Glaß, M., Teich, J.: Simulation-based uncertainty correlation
modeling in reliability analysis. The Institution of Mechanical Engineers, Part O J. Risk Reliab.
232, 725–737 (2018)

32. Liang, S., Zhang, Z., Pei, T., Li, R., Li, Y., Peng, L.: Reliability tests and improvements for
Sc-contacted n-type carbon nanotube transistors. Nano Res. 6(7), 535–545 (2013)

33. Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Evolu-
tionary Multi-Criterion Optimization (EMO), pp. 413–427 (2005)

34. Meyer, B., Hartman, A., Thomas, D.: Cost-effective slack allocation for lifetime improvement
in NoC-based MPSoCs. In: Design, Automation & Test in Europe (DATE), pp. 1596–1601
(2010)

35. Misra, K.B.: Reliability Analysis and Prediction: A Methodology Oriented Treatment, vol. 15.
Elsevier, Amsterdam (2012)

36. Narayanan, V., Xie, Y.: Reliability concerns in embedded system designs. Computer 39, 118–
120 (2006)

37. Pham, T.T., Defago, X., Huynh, Q.T.: Reliability prediction for component-based software
systems: dealing with concurrent and propagating errors. Sci. Comput. Program. 97, 426–457
(2015)

38. Rakshit, P., Konar, A., Das, S.: Noisy evolutionary optimization algorithms–a comprehensive
survey. Swarm Evol. Comput. 33, 18–45 (2017)

39. Salazar, A.D., Rocco, S.C.: Solving advanced multi-objective robust designs by means of
multiple objective evolutionary algorithms (MOEA): a reliability application. Reliab. Eng.
Syst. Safe. 92(6), 697–706 (2007)

40. Sander, B., Schnerr, J., Bringmann, O.: ESL power analysis of embedded processors for
temperature and reliability estimations. In: Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 239–248 (2009)

41. Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan, D.:
Temperature-aware microarchitecture. In: 30th Annual International Symposium on Computer
Architecture (ISCA), pp. 2–13 (2003)

42. Stathis, J.: Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev.
46(2–3), 265–286 (2002)

43. Streichert, T., Glaß, M., Haubelt, C., Teich, J.: Design space exploration of reliable networked
embedded systems. J. Syst. Architect. 53(10), 751–763 (2007)

44. Teich, J.: Pareto-front exploration with uncertain objectives. In: Evolutionary Multi-Criterion
Optimization (EMO), pp. 314–328 (2001)

45. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006). http://www.mpa.ethz.ch/
Rtctoolbox

46. Xiang, Y., Chantem, T., Dick, R.P., Hu, X.S., Shang, L.: System-level reliability modeling
for MPSoCs. In: Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp.
297–306 (2010)

47. Xie, Y., Li, L., Kandemir, M., Vijaykrishnan, N., Irwin, M.: Reliability-aware co-synthesis for
embedded systems. J. VLSI Signal Proce. 49(1), 87–99 (2007)

http://www.mpa.ethz.ch/Rtctoolbox
http://www.mpa.ethz.ch/Rtctoolbox

Uncertainty-Aware Compositional System-Level Reliability Analysis 477

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Robust Computing for Machine
Learning-Based Systems

Muhammad Abdullah Hanif, Faiq Khalid, Rachmad Vidya Wicaksana Putra,
Mohammad Taghi Teimoori, Florian Kriebel, Jeff (Jun) Zhang, Kang Liu,
Semeen Rehman, Theocharis Theocharides, Alessandro Artusi,
Siddharth Garg, and Muhammad Shafique

1 Introduction

Machine learning (ML) has emerged as the principal tool for performing complex
tasks which are impractical (if not impossible) to code by humans. ML techniques
provide machines the capability to learn from experience and thereby learn to
perform complex tasks without much (if any) human intervention. Over the past
decades, many ML algorithms have been proposed. However, Deep Learning (DL),
using Deep Neural Networks (DNNs), has shown state-of-the-art accuracy, even
surpassing human-level accuracy in some cases, for many applications [31]. These
applications include, but are not limited to, object detection and localization, speech
recognition, language translation, and video processing [31].

The state-of-the-art performance of the DL-based methods has also led to the
use of DNNs in complex safety-critical applications, for example, autonomous
driving [11] and smart healthcare [10]. DNNs are intrinsically computationally

M. A. Hanif (�) · F. Khalid · R. V. W. Putra · M. T. Teimoori · F. Kriebel · S. Rehman
M. Shafique
Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: muhammad.hanif@tuwien.ac.at; faiq.khalid@tuwien.ac.at; rachmad.putra@tuwien.ac.at;
florian.kriebel@tuwien.ac.at; semeen.rehman@tuwien.ac.at; muhammad.shafique@tuwien.ac.at

J. Zhang · K. Liu · S. Garg
New York University, New York, NY, USA
e-mail: jeffjunzhang@nyu.edu; kang.liu@nyu.edu; sg175@nyu.edu

T. Theocharides
University of Cyprus, Nicosia, Cyprus
e-mail: ttheocharides@ucy.ac.cy

A. Artusi
University of Cyprus, Nicosia, Cyprus

MRG DeepCamera RISE, Nicosia, Cyprus

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_20

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_20&domain=pdf
mailto:muhammad.hanif@tuwien.ac.at
mailto:faiq.khalid@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:florian.kriebel@tuwien.ac.at
mailto:semeen.rehman@tuwien.ac.at
mailto:muhammad.shafique@tuwien.ac.at
mailto:jeffjunzhang@nyu.edu
mailto:kang.liu@nyu.edu
mailto:sg175@nyu.edu
mailto:ttheocharides@ucy.ac.cy
https://doi.org/10.1007/978-3-030-52017-5_20

480 M. A. Hanif et al.

DrainSource

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

NBTI

Aging

HCID

Process Variations Soft Errors

n+ n+

P-Well

P-Substrate

Isolation
Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

Side Channel Attacks

1 0 1 1 0

Processing
Computations

M
em

oryPower Supply

Machine Learning-based SystemHardware Trojans

Structural Attacks Training/Inference Attacks

+ �� ��

Inference

era
wtfoS

-
leveL

seit iliba renluV
era

wdra
H

-
seitil ibarenluVleveL

Input Adversarial
Noise

Detected
Class

Input Deterministic
Noise

Projected
to Class

Training

Trigger
Neuron

Trigger
Neuron

Fig. 1 Overview of different reliability and security vulnerabilities to machine learning-based
systems. (Picture sources: [47, 49])

Fig. 2 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) contributions app

lic
ati

on

SW
/O

S

arc
hit

ect
ure

cir
cui

t/g
ate

ph
ysi

cs

application

SW/OS

architecture

circuit/gate

physics

intensive and also require high memory resources [53]. Current research mainly
focuses on the development of less computationally intensive and resource-efficient
DNNs that can offer high accuracy, and energy and performance efficient DNN
accelerators for ML-based applications [1, 18, 23, 29, 34, 36, 37, 44, 53]. However,
when considered for safety-critical applications, the robustness of these DNN-based
systems to different reliability and security vulnerabilities also becomes one of
the foremost objectives. An overview of different types of vulnerabilities in ML-
based systems is shown in Fig. 1, which are discussed from the architectural- and
application-layer perspective in this chapter. Figure 2 shows the abstraction layers
in the context of the SPP 1500 covered in this chapter.

Robust Computing for Machine Learning-Based Systems 481

Reliability Threats: In hardware design, reliability is the ability of the hardware to
perform as intended for a specified duration, i.e., the lifetime of the hardware. There
are a number of hardware related vulnerabilities that can disrupt the functionality of
a digital system in its lifetime.

1. Soft Errors are transient faults caused by high energy particle strikes. These
faults surface at hardware-layer as bit-flips and can propagate to the application
layer resulting in incorrect output.

2. Aging is the gradual degradation of the hardware due to different physical phe-
nomena like Hot carrier Injection (HCI), Negative-Bias Temperature Instability
(NBTI), and Electromigration (EM). It leads to timing errors and eventually can
also lead to permanent faults [56].

3. Process variations are the imperfections caused by the variations in the fabrica-
tion process of the chips. This can lead to variations in the timing and leakage
power characteristics within a chip as well as across different chips [45].

Apart from the above-listed vulnerabilities, environmental conditions can also
affect the reliability of a system. Such factors include temperature, altitude, high
electric fields, etc.

A number of techniques have been proposed for improving the resilience of the
systems against the reliability threats. However, most of these mitigation techniques
are based on redundancy, for example, DMR: dual modular redundancy [58] and
TMR: triple modular redundancy [35]. The redundancy based approaches, although
considered to be very effective for other application domains [19], are highly
inefficient for DNN-based systems because of the compute intensive nature of
the DNNs [48], and may incur significant area, power/energy, and performance
overheads. Hence, a completely new set of resource-efficient reliability mechanisms
is required for robust machine learning systems. A list of techniques proposed for
improving the reliability of DNN-based systems, which are later discussed in the
following sections of the chapter, are mentioned in Fig. 3.

Security Threats: In system design, security is defined as the property of a system
to ensure the confidentiality, integrity, and availability of the hardware and the data
while performing the assigned tasks. There are several security vulnerabilities that
can be exploited to perform security attacks.

1. Data Manipulation: The input data or data during inter-/intra-module commu-
nication in a system can be manipulated to perform several security attacks. For
example, in DNNs, the training dataset and the inference data can be manipulated
to perform misclassification or confidence reduction attacks [17, 24, 26, 27, 43,
51].

2. Denial-of-Service: A tiny piece of code/hardware or flooding the communi-
cation channels can be used to trigger the malfunctioning or failure of the
system. For example, in DNNs, adding an extra neuron/set of neurons [17] or
introducing the kill switch in DNN-based hardware can lead to system failure or
malfunctioning, i.e., misclassification.

482 M. A. Hanif et al.

Robust Deep
Learning

Reliability Security
• Gradient Sign-based Adversarial A�acks [28,25,43]
• Op�miza�on-based Adversarial a�acks [6,54]
• Backdooring A�acks [15]

• Pruning-based Defenses [15]
• Preprocessing-based Defenses [26,27,3,55]
• GAN-based Defenses [52,9,63,67]

• Methodology for Building Resilient Hardware [18]
• Error-Resilience Analysis [18,17]
• Fault-Aware Pruning (FAP) [66]
• Fault-Aware Pruning + Training (FAP+T) [66]
• Timing Error-Drop (TE-Drop) [64]
• Sta�c Voltage Underscaling (ThVolt-Sta�c) [64]
• Per-layer Voltage Underscaling (ThVolt-Dynamic) [64]

Fig. 3 Overview of the works discussed in this chapter for addressing reliability and security
vulnerabilities of deep learning-based systems

3. Data/IP Stealing: The side-channel information (in hardware, power, timing,
and loopholes or behavior leaking properties of the algorithms) can be exploited
to steal the confidential information. For example, in DNNs, the gradient
information can be used to steal trained model [50, 57, 60].

Several countermeasures have been developed to address these threats, but most of
these defenses are either based on obfuscation or run-time monitoring [3, 22]. These
techniques are very effective for traditional systems, however, DNN-based systems
require different approaches because of their unique security vulnerabilities, i.e.,
training/inference data manipulation. Some of the techniques proposed for address-
ing the security of DNN-based systems are listed in Fig. 3 and are later discussed in
the chapter.

In the following sections, we discuss:

1. A brief overview of DNNs and the hardware accelerators used for efficiently
processing these networks.

2. In Sect. 3, we present our methodology for building reliable systems and discuss
techniques for mitigating permanent and timing errors.

3. The security vulnerabilities in different types of DNNs are discussed in Sect. 4.
4. Open challenges and further research opportunities for building robust systems

for ML-based safety-critical applications

2 Preliminaries

2.1 Deep Neural Networks

A neural network can be described as a network of interconnected neurons. Neurons
are the fundamental computational units in a neural network where each neuron
performs a weighted sum of inputs (dot-product operation), using the inputs and
the weights associated with each input connection of the neuron. Each output
is then (optionally) passed through an activation function which introduces non-
linearity and thereby allows the network to learn complex classification boundaries.

Robust Computing for Machine Learning-Based Systems 483

wij

Input layer

Hidden layer H1

Hidden layer H2

Output layer

i

j

k

l

wjk

wkl

= ()

=

= ()

=

H1

= ()

=

H2

(a) (b)

…

Input feature maps
Output feature maps

Filters

Fig. 4 Illustration of (a) a multi-layer perceptron and (b) a convolutional layer

In neural networks, neurons are arranged in the form of layers. There are several
types of NNs, for instance, Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Multi-Layer Perceptrons (MLPs) [31]. Although the
techniques discussed in the following sections are not limited to a specific type
of NNs, in this chapter, we mainly focus on feed-forward neural networks (i.e.,
CNNs and MLPs) because of their widespread use in many artificial intelligence
applications.

An MLP is a type of NN that is composed of multiple fully-connected layers. In a
fully-connected layer, each neuron is connected to all the neurons in the neighboring
layers. An example illustration of a three layer MLP is shown in Fig. 4a.

A CNN is a type of NN that is composed of several convolutional layers and the
fully-connected layers. An example illustration of a convolutional layer is shown
in Fig. 4b. The layer is composed of multiple filters which are convolved with the
input feature maps to generate the output feature maps. The depth of the filters and
the input feature maps is the same. Each filter results in one output feature map
and, therefore, the number of output feature maps is equal to the number of filters
in a convolutional layer. These input and output feature maps are also referred to as
activation maps. A detailed description of CNNs can be found in [53].

2.2 Hardware Accelerators for Deep Neural Networks

To enable the use of DNNs in energy-/power-constraint scenarios as well as in
high performance applications, several different hardware architectures for DNN
acceleration have been proposed. While all the accelerators provide some unique

484 M. A. Hanif et al.

features and support some specific dataflows in a more efficient manner, systolic
array-based designs are considered among the promising ones [18, 23, 37, 61].

A systolic array is a homogeneous network of processing elements (PEs),
which are tightly coupled together. Each PE in the network receives data from its
nearest neighbors, performs some function, and passes on the result and data to
the neighboring PE/s. The systolic array-based architectures alleviate the memory
bottleneck issue by locally reusing the data, without the need of expensive memory
read and write operations. Moreover, the systolic arrays are intrinsically efficient at
performing matrix multiplications, which is the core operation of neural networks.
Therefore, many accelerators use these arrays at their core for accelerating the neural
networks [18, 23, 37, 61]. The Tensor Processing Unit (TPU), a DNN accelerator
that is currently in use in the datacenters of Google, is a systolic array-based
architecture that uses an array of 256× 256 multiply-and-accumulate (MAC) units.
The TPU provides 15 × −30× faster execution, and 30 × −80× more efficient
(in terms of performance/Watt) performance than the K80 GPU and the Haswell
CPU [23].

Figure 5 illustrates a design overview of an exemplar DNN accelerator which is
based on the TPU architecture. The design is used as the basic architecture in the
following section. The architecture is composed of a systolic array of MAC units,
similar to that in the TPU. Prior to the computations, the weights are pre-loaded
in the PEs from the weight memory in a manner that the weights from the same
filter/neuron are loaded in the same column of the array. During processing, the

a11a12…

a21

…

…

…

… … …

PE PE PE

PE PE PE

PE PE PE

…

× +

a
8

w
8

PE

24

24

Ac
cu

m
ul

at
or

s

16

…

psum

a

psum

+

…

+

…

+

…

Systolic Array

LEGEND:

PE : Processing Element
a : Ac�va�on
w : Weight
psum : Par�al sum

psum psum

yr o
me

M noi tavitcA

Weight Memory

Par�al
sums

Ac�va�ons
a22

a13a14

a23

Clock
cycles

a24

Fig. 5 A systolic array-based DNN accelerator architecture (adapted from [65])

Robust Computing for Machine Learning-Based Systems 485

weights are held stationary inside the PEs and the activations are streamed in from
the activation memory. At each clock cycle, the activations are passed-on from left
to right while the partial sums are moved downstream. The activations across rows
are aligned such that the activations corresponding to a particular output reaches a
particular PE at the same instance when its partial sum reaches that PE. In case, the
size of a filter/neuron is larger than the number of rows in the array, each output
computation related to the filter/neuron is divided into multiple portions and the
accumulators at the bottom are used for temporarily holding the partial sums while
rest of the corresponding partial sums are computed by the array. A more detailed
explanation of the architecture can be found in [65].

3 Reliable Deep Learning

In this section, we present our methodology for building reliable hardware for DNN-
based applications. We also highlight a few case studies, targeting different types
of reliability threats, for building reliable yet efficient hardware for DNN-based
applications.

3.1 Our Methodology for Designing Reliable DNN Systems

Figure 6 presents our design flow for developing reliable hardware for DNN-based
applications [17]. The methodology is composed of two parts: (1) Design-time
steps; and (2) Run-time steps.

The design-time steps focus on proposing a hardware architecture which is
capable of mitigating different types of reliability faults that arise due to process
variations and aging, as well as aggressive voltage scaling (i.e., permanent faults

Deep Neural Networks (DNNs)

DNN 1 DNN n...
Resilience Evaluation
of Parts of the DNNs
as well as the Whole

Resilience- and Fault-
Aware DNN Mapping

DNN Accelerator
Adaptive Voltage

and Frequency
Control

Online Error
Monitoring

Post-fabrication
Testing for Identifying

Faults

Design Constraints (Area, Energy, Power,
Latency, Throughput, Accuracy, etc.)

Error Resilient
Accelerator

Design

Permanent Fault
Mitigation Circuitry

Timing Error
Detection and

Mitigation Circuitry

Reliability-
Aware Synthesis

InputsRun-time stepsDesign-time steps

Fig. 6 Our methodology for designing reliable hardware for DNN-based applications (adapted
from [17])

486 M. A. Hanif et al.

and timing errors). Provided a set of design constraints, representative DNN
models, and resilience of the DNNs to different types of reliability threats and
errors, a baseline hardware architecture is designed. We then reinforce it with
different architectural enhancements for mitigating permanent faults (see Sect. 3.3)
and handling timing errors (see Sect. 3.4). The architectural enhancements are
performed in a manner that they do not significantly affect the resource efficiency
of the baseline architecture. Once the architecture is finalized, the hardware is
synthesized using reliability-aware synthesis techniques, for example, by using
standard cells to selectively harden vulnerable nodes in the hardware [33], to harden
the more vulnerable parts of the hardware design.

The run-time steps focus on proposing mapping policies for mapping DNN
computations to the synthesized hardware. The mapping policies are decided
based on the fault maps generated using post-fabrication and testing, and the
error resilience of the DNNs. Techniques like error injection can be used for
the resilience analysis [16, 46]. Fault-aware training of DNNs can also be used
for designing/modifying network architecture/parameters (see Sect. 3.3). Moreover,
adaptive voltage scaling can be employed for trading off reliability with energy
efficiency based on the error resilience of the DNNs. If required, software-level
redundancy can also be employed to further improve the reliability by performing
the computations related to critical neurons/filters multiple times.

3.2 Resilience of DNNs to Reliability Threats

Neural Networks are assumed to be inherently error resilient [12]. However,
different types of errors can have different impact on the output of a DNN. This
section presents the accuracy analysis of DNNs in the presence of different types of
reliability faults.

3.2.1 Resilience of DNNs to Permanent Faults

This section highlights the resilience of DNNs to permanent faults by empirically
analyzing the effects of stuck-at permanent faults in the TPU-based accelerator
(presented in Fig. 5) on the classification accuracy of different DNNs. The datasets
(i.e., MNIST and TIMIT) and the corresponding network architectures used for this
analysis are listed in Table 1. To study the resilience, the TPU with a systolic array of
256×256 MAC units is synthesized using 45 nm OSU PDK to generate a gate-level
netlist and then stuck-at faults are inserted at internal nodes in the netlist. For this
analysis, faults only in the data-path were considered as the faults in the memory
components can be mitigated using Error Correction Codes (ECC) and faults in
control-path can lead to undesirable results.

Figure 7a shows the impact of using a faulty TPU for two different classification
tasks, i.e., image classification using the MNIST dataset and speech recognition

Robust Computing for Machine Learning-Based Systems 487

Table 1 Datasets and the corresponding 8-bit DNNs used for evaluation (adapted from [65])

Dataset Network architecture Accuracy(%)

MNIST [30] Fully-connected (L1–L4): 784×256×256×256×10 98.15

TIMIT [4] Fully-connected (L1–L4):
1845×2000×2000×2000×183

73.91

ImageNet [7] Convolutional (L1–L2): (224, 224, 3)×(27, 27,
64)×(13, 13, 192)

76.33 (Top-5)

Convolutional (L3–L5): (13, 13, 384)×(13, 13,
256)×(6, 6, 256)

Fully-connected (L6–L8): 4096×4096×1000

Fig. 7 Impact of stuck-at-faults in the baseline TPU-based architecture on DNN applications.
(a) Classification accuracy drop due to stuck-at-fault MACs. (b) Impact of TPU stuck-at-faults
on DNN applications (adapted from [66])

using the TIMIT dataset. It can be seen in the figure that the classification accuracy
of both the tasks decreases significantly with the increase in the number of faulty
PEs in the hardware. For example, the classification accuracy for the TIMIT dataset
drops from 74.13 to 39.69% when only four (out of 256×256) MAC units are faulty
and is almost 0% when the number of faulty MACs increases to 16 or more.

The reason for the significant drop in accuracy can be understood by comparing
the golden (fault-free) output of the neurons of a particular layer with the outputs
computed by the faulty TPU. Figure 7b shows that the computed output of the final
layer of the network used for the TIMIT dataset in most of the cases has higher
activation value as compared to the expected. This is mainly because of the fact
that stuck-at faults, in some of the cases, affect the higher order bits of the MACs
output. This highlights the need for permanent fault mitigation in the hardware to
increase the yield as hardware with permanent faults cannot be used for ML-based
applications, specifically for the safety-critical applications.

488 M. A. Hanif et al.

3.2.2 Resilience of DNNs to Timing Faults

Timing failures in high performance nanometer technology-based digital circuits
are a major reliability concern and are caused by various mechanisms, e.g., power
supply disturbance, crosstalk, process variations, as well as aging. Moreover, the
operating conditions, which play a vital role in defining the performance and
energy efficiency of the hardware, also have a significant impact on the frequency
of the timing errors. Although it is assumed that the critical paths, which are
more vulnerable to timing errors, are rarely exercised, the timing errors can
significantly affect the functionality of an application. Here, we highlight this
for DNN-based applications by analyzing the energy-quality trade-off achieved
using voltage underscaling. We show the analysis for two widely accepted types
of timing error mitigation techniques: (1) timing error detection and recovery
(TED) [9]; and (2) timing error propagation (TEP) [41, 62]. The TED makes use of
additional components (e.g., using Razor flip-flops [9]) for detecting timing errors,
and recovers by reliably re-executing the function in case of errors. On the other
hand, TEP allows errors to propagate through to the application layer in the hope
that the application is error resilient.

For this analysis, the TPU-based hardware architecture discussed in Sect. 2.2 is
considered. The architecture is assumed to be composed of a 256×256 MAC array.
The terms Local Timing Error and Global Timing Error are used to characterize
the resilience. The local timing error is used to denote the error in a single MAC
unit. The global timing error defines the error in the complete systolic array. Figure
8b shows the impact on the classification accuracy for the MNIST dataset with
voltage underscaling when the timing errors are allowed to propagate through to
the application layer. It can be seen from the figure that as soon as the timing errors
start occurring, i.e., below the voltage underscaling ratio of r = 0.9 (as shown in
Fig. 8b), the classification accuracy of the DNN for TEP drops sharply.

As mentioned above, the TED-based approaches work on the principle of error
detection and recovery. The recovery phase in TED defines its limitation for huge
systolic array-based systems as, for synchronization of the data flow, the complete
systolic array has to be stalled to recover the error in a single PE. This limitation of
the TED-based approach can be highlighted using Fig. 8a which shows the impact of
voltage underscaling on the overall energy consumption of the TPU-based hardware
architecture for generating accurate outputs. It can be noted from the figure that
the overall energy consumption for a recovery based technique starts increasing as
soon as errors start appearing, which is the case for even the most naive type of
error recovery mechanism, i.e., single cycle recovery.

3.2.3 Resilience of DNNs to Memory Faults

To illustrate the importance of memory faults, we presented an analysis in [17]
where we injected random faults at bit-level in the weight memory (i.e., the memory
storing the network parameters) and studied the impact of those faults on the

Robust Computing for Machine Learning-Based Systems 489

Fig. 8 (a) Timing error probabilities versus voltage underscaling ratio, and the corresponding
energy cost for global TED. (b) DNN accuracy on the MNIST versus voltage underscaling for
TEP. (Adapted from [65])

accuracy of a DNN. The analysis concluded that, for the higher significance bits
of the weights, the accuracy of the DNNs drop sharply with the increase in error
rate. We also studied the impact of different types of bit-flips, i.e., from 0 to 1 bit-
flips and from 1 to 0 bit-flips, and found that the 0 to 1 bit-flips result in erroneous
output while the 1 to 0 bit-flips do not impact the accuracy much. This is inline
with the concept of dropout [20] and dropconnect [59] in the sense that in case of
1 to 0 bit-flips the erroneous output is leaned towards 0 value, whereas in case of 0
to 1 bit-flips the error can increase significantly if the bit-flip occurs in any of the
higher significance bits. This analysis was performed on the AlexNet network using
the ImageNet dataset. Similar, fault injection methods, e.g., [16] and [46], can also
be used for analyzing the resilience of DNNs, as a whole as well as of individual
layers/neurons of the networks.

3.3 Permanent Fault Mitigation

To mitigate permanent faults in the computing units of the hardware, two different
methods have been proposed: (1) Fault-Aware Pruning (FAP); and (2) Fault-Aware
Pruning + Training (FAP+T).

The Fault-Aware Pruning (FAP) works on the principle of pruning the weights
(i.e., setting them to zero) that have to be mapped on faulty MAC units. The
principle is inline with the concepts of dropout [20] and dropconnect [59] which
are commonly used for regularization and avoiding over-fitting. For this work, the
TPU architecture shown in Fig. 5 with static mapping policy is assumed. The static
mapping policy means that each weight is mapped to a specific PE while multiple
weights can be mapped to the same PE at different time instances. Moreover, it is
also assumed that post-fabrication tests are performed on each TPU chip to extract
the fault map which indicates the faulty PEs.

490 M. A. Hanif et al.

Fig. 9 Systolic array-based
architecture for permanent
fault mitigation (adapted from
[66])

PE PE PE

… …

PE PE PE

…

PE PE PE

snoitavitcA

…

…

…Systolic
Array

…

PE

psum
110

PE

…

PE

PE

psum psum psumpsum

PE

PE

PE

PE

psum
010

psum

Par�al Sum (psum)

PE PE PE…PE PE

Faulty PE

Figure 9 shows an implementation that can be used to realize the concept where
a bypass path is provided for each MAC unit [66]. The bypass path enables to skip
the contribution of a specific partial sum in case the specific PE is faulty, which is
equivalent to setting the weight to zero. The area overhead of the modified design is
only around 9% [66].

The Fault-Aware Pruning + Training (FAP+T) technique starts with the FAP
approach, however, it additionally retrains the unpruned weights while forcing the
pruned weights to zero to optimize the network parameters. One drawback of this
approach is that the fault map of each chip can be different which means that a
network has to be retained for each chip based on its own fault map.

Figure 10 shows the impact on the classification accuracy versus the percentage
of faulty MAC units for three different classification problems mentioned in
Table 1. The results show that both the techniques show significant resilience to the
permanent faults. Moreover, the FAP+T technique outperforms FAP because of the
involved optimization of the network parameters and allows the DNN-based system
to run with negligible accuracy loss even when 50% of its MAC units are faulty.
However, in cases where FAP+T is impractical FAP can also provide reasonable
accuracy, specifically in cases where the number of faulty units is less.

3.4 Timing Fault Mitigation

As mentioned in Sect. 3.2.2, the conventional TED approaches have significant
overheads when used for DNN accelerators. Here, we discuss the new architectural
innovations proposed in Thundervolt [65] for mitigating timing errors in DNN
accelerators in a performance efficient manner.

Robust Computing for Machine Learning-Based Systems 491

Fig. 10 Classification accuracy versus percentage of faulty MACs using FAP and FAP+T for the
networks used corresponding to (a) MNIST and TIMIT; and (b) ImageNet datasets (adapted from
[66])

Fig. 11 A block-level
diagram illustrating the
architectural modifications
for TE-Drop and the impact
of timing errors on the
computation of a neuron
(adapted from [65])

PE

PE

CLK
D D’

CLK CLK+Δ

CLK+Δ

Q1

Q2

Error

CLK+Δ

CLK

Q1

D

D’

Error

Q2

3’h000 3’hFFF

3’h000

3’hFFF

3’hFFF

Timing Diagram

3.4.1 TE-Drop

Thundervolt [65] proposed a novel technique to deal with timing errors in a systolic
array-based DNN accelerator, i.e., TE-Drop. TE-Drop utilizes the Razor flip-flops to
detect timing errors, however, it does not re-execute erroneous MAC operations.
Similar to the FAP techniques, TE-Drop also works on the principle that the
contribution of each individual MAC output to the output of a neuron in DNNs is
small. Hence, a few MAC operations can be ignored without significantly affecting
the overall accuracy of the network. In case of a timing error, TE-Drop allows the
MAC unit to sample the correctly computed output to an alternate register operating
on a delayed clock. The succeeding PE is then bypassed and the correctly computed
output is provided instead. The architectural modifications required to realize the
concept are shown in Fig. 11.

Figure 11 illustrates the functionality of the TE-Drop with the help of a timing
diagram. Here, it is assumed that the shadow clock is delayed by 50% of the clock

492 M. A. Hanif et al.

Fig. 12 Timing error probabilities for each layer of the networks used corresponding to
(a) MNIST. (b) TIMIT, and (c) ImageNet datasets (adapted from [65])

period. It is assumed that the clock frequency is defined such that the error signal
and correct partial sum from the erroneous MAC become available after this much
duration. Note that the error signal is obtained by OR-ing the bitwise XOR of all the
individual Razor flip-flop at the output of the MAC unit.

3.4.2 Per-Layer Voltage Underscaling

In most of the accelerators, it is assumed that the layers of a DNN are executed in
a serial fashion (i.e., one after the other), where processing of each layer can take
thousands of clock cycles, depending on the size of the layer. Figure 12 shows the
timing error rate versus voltage underscaling ratio plots for each individual layer of
three DNN architectures mentioned in Table 1. It can be seen from the figures that
the error rate varies significantly across layers. Based on this observation, a per-layer
voltage underscaling scheme was proposed in Thundervolt [65] that distributes the
total timing error budget equally among the layers of a network to ensure that the
more sensitive layers should not consume a significant part of the budget and limits
the achievable efficiency gains.

Figure 13 compares two versions of Thundervolt:

1. ThVolt-Static where each voltage underscaling ratio is kept the same throughout
a DNN execution.

2. ThVolt-Dynamic that utilizes per-layer voltage underscaling based on the
sensitivity of each layer.

For the baseline, the results of the TEP scheme are also shown. The plot for
ThVolt-Static is obtained by sweeping voltage underscaling ratios, and that of
ThVolt-Dynamic is obtained by sweeping the total timing error budget. The figures
show that for each case Thundervolt outperforms TEP scheme, and for complex
tasks (e.g., image classification on the ImageNet dataset) the ThVolt-Dynamic
outperforms the ThVolt-Static approach.

Robust Computing for Machine Learning-Based Systems 493

Fig. 13 Accuracy versus energy trade-off using Thundervolt [65] on validation data. (a) MNIST.
(b) TIMIT (c) ImageNet (adapted from [65])

4 Secure Deep Learning

In this section, we present different security attacks on DNNs and potential
countermeasures.

4.1 Security Attacks on DNNs

Several security attacks have been proposed by exploiting the security vulnerabil-
ities, especially data dependency and unpredicted behavior of intermediate layers
of DNN-algorithms during training as well as inference. However, adversarial and
backdooring attacks are some of the most effective and popular attacks for DNNs.
Therefore, in the following subsections, we analyze the state-of-the-art adversarial
attacks and proposed backdoor attacks.

4.1.1 Adversarial Perturbation Attacks

It can be defined as the crafted imperceptible noise to perform targeted or untargeted
misclassification in a DNN-based system. In these attacks, an attacker’s objective
can be summarized as follows: given an image x with a classification label y =
classifier(x), where classifier is the function of the neural network. The attacker aims
to find an image x′ whose classification label is y′, such that y′ = classifier(x′) �= y,
and ‖x′ − x‖ ≤ δ, where δ is an upper bound of the distortion from x to x′. For
example, some input adversarial attacks are shown in Fig. 14.

Several attacks have proposed to exploit the adversarial vulnerabilities in DNN-
based systems. However, based on the attack methodology, these attacks can broadly
be categorized into Gradient Sign Methods and Optimization-based approaches.

1. Gradient Sign Methods: These attacks exploit the derivatives and backpropa-
gation algorithm to generate the attack images with imperceptible crafted noise.
The main goal of these attacks is to minimize the prediction probability of the
true label so as to mislead the network to output a different label (can be targeted
or untargeted) other than the ground truth. Some of the most commonly proposed

494 M. A. Hanif et al.

Fig. 14 Clean and adversarial images with different prediction labels, where the clean image of
a horse and its adversarial images remain extremely similar, however, their prediction labels are
quite distinct and each targets a totally different class

attacks are Fast Gradient Sign (FGS), Iterative Fast Gradient Sign (IFGS), and
Jacobian-based saliency map attack (JSMA) methods [42]. Based on the similar
principle, there are following attacks which do not require training data and also
have less convergence time (in terms of queries):

• TrISec: This attack exploits the backpropagation algorithm to identify the
small change (attack noise) in input pixels with respect to misclassification
at the output, while ensuring the imperceptibility [25].

• RED-Attack: Most of the state-of-the-art attacks require a large number of
queries to generate an imperceptible attack. However, in resource-constraint
scenarios, these attacks may fail, therefore, we proposed a methodology that
generates an attack image with imperceptible noise while requiring a very less
number of queries [26].

2. Optimization-based Approaches: Unlike the gradient-based approaches, these
attacks redefine the loss function (i.e., the cost function used for optimization) by
adding extra constraints with respect to targeted or untargeted misclassification,
and then propose different optimization algorithms to generate adversarial
images. For example, Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
[54] and Carlini and Wagner (CW) [5] attacks use the box-constrained L-BFGS
algorithm with single and multi-objective optimization, respectively.

Other types of neural networks, i.e., Capsule Networks and Spiking Neural Net-
works, are emerging as an alternative because of their robustness to affine transfor-
mations and potential for offering higher energy efficiency, respectively. However,
recent works showed that these networks are also vulnerable to adversarial attacks
[38, 39].

Robust Computing for Machine Learning-Based Systems 495

4.1.2 Backdoor Attacks

Due to expensive and computationally intensive training, the training (or fine-
tuning) of DNNs is usually outsourced which opens the new frontiers of security
threats, e.g., backdoored neural networks (BadNets [14]). These threats arise
due to the involvement of untrusted third party service providers that can insert
backdoors by training the ML models on compromised training data, or by altering
the DNN structure. The untrusted third party also ensures the required accuracy
of the backdoored model on most validation and testing inputs, but cause targeted
misclassification or confidence reduction based on backdoor trigger. For example,
in case of autonomous driving use case, an attacker can introduce the backdoor
in a street sign detector while ensuring the required accuracy for classifying street
signs in most of the cases, however, it can perform either targeted or untargeted
misclassification, i.e., classifies stop signs with a particular sticker as speed limit
signs or any other sign different from stop sign. This kind of misclassification
can lead to catastrophic effects, e.g., in case of misclassification of a stop sign,
autonomous vehicle does not stop at the intersection which can result in an accident.

4.2 Defences Against Security Attacks on DNNs

Several countermeasures have been proposed to defend against the adversarial
attacks, i.e., DNN masking, gradient masking, training for known adversarial
attacks, and pre-processing of the CNN inputs [6]. For examples, Fig. 15 shows

L-BFGS FGSM BIM

99.47%Classify as Stop Sign
with Confidence 99.47% 99.47%

85.68%Classify as Speed limit
60km/h with Confidence 75.68% 89.68%

72.74%Classify as Stop Sign
with Confidence 78.45% 70.39%

78.64%Classify as Speed limit
60km/h with Confidence 68.45% 85.64%

Classification of the Original
samples

Classification the perturbed
samples

Classification of the perturbed
samples after filtering

Classification of the perturbed
samples with filtering effects

Input Label = Stop

Output Label =
Speed Limit

(60km/h)

Buffer Preprocessing
Noise filters

(a) Attack Model I: An attacker can directly perturb the
pre-processed data and does not have input of the pre-

processing noise filter.

DNN

Integrated IP

Input Label = Stop

Output Label =
Speed Limit

(60km/h)

Buffer

Preprocessing
Noise filters

(b) Attack Model II: An attacker have access to the input of
the pre-processing noise filter.

DNN

Integrated IP

Fig. 15 Impact of the pre-processing filtering on the state-of-the-art adversarial attacks with
different attack models with and without the access of filters. (a) Attack model I: an attacker can
directly perturb the pre-processed data and does not have input of the pre-processing noise filter.
(b) Attack model II: an attacker have access to the input of the pre-processing noise filter (adapted
from [24, 27])

496 M. A. Hanif et al.

that low-pass pre-processing filters that can nullify the adversarial attacks if they
are not known to the attacker [24, 27]. Therefore, based on this analysis, we have
proposed to utilize the pre-processing quantization to improve the perceptibility of
the attack noise [2]. Similarly, Sobel-filers can also be used to decrease the attack
strength [55].

However, these defences are not applicable to backdoor-based attacks because
the backdoor attacks intrude the networks and are activated through a specific
trigger. Therefore, to address these attacks, we propose to use pruning as a natural
defense because it eliminates the neurons that are dormant on clean inputs, conse-
quently disabling backdoor behavior [14]. Although these defenses are effective,
most of them provide defense against known adversarial and backdoor attacks.
Therefore, one of the most important problems in designing secure machine learning
systems is the ability to define threats, and model them sufficiently so that any
learning system can be trained to be able to identify such threats.

4.2.1 Generative Adversarial Networks

To address the above-mentioned challenge, Generative Adversarial Networks
(GANs) have emerged as one of the prime solutions because of their ability to
generate the model by learning to mimic actual models [13]. In particular, GANs
is a framework to estimate generative models where simultaneously two models
are trained, generator (G) and discriminator (D) (see Fig. 16). This is achieved
through an adversarial process where the two models are competing with each other
for achieving two opposite goals. Simply speaking, D is trying to distinguish real
images from fake images and G is trying to create images as close as possible to
real images so as D will not be able to distinguish them, as illustrated in Fig. 16.
When dealing with inference scenarios, the challenge is to provide a training set
which includes attack-generated data patterns labeled of course correctly as attacks.
For example, an autonomous system may rely on visual information to orient and
steer itself or to undertake significant decisions. However, white or patterned noise
can be maliciously inserted into a camera feed that may fool the system, and thus
results in potentially catastrophic scenarios. The problem with modeling these types
of attacks is that the attack models are hard to mathematically formulate, and thus

G D cost

∇
1

σ =1 log + log 1 − ′

−∇
1

σ =1 log 1 − ′ ∇
1

σ =1 log

Fig. 16 GANs framework: an illustration of how G and D are trained, adapted from [21]

Robust Computing for Machine Learning-Based Systems 497

hard, if not impossible, to replicate and therefore, train the system to recognize them
as attacks. Hence, GANs provide us with this capability, as we can utilize the G

model to generate-and-evaluate threat models and train the D model to differentiate
between what we consider an attack or not. However, GAN-based threat comes
with the following challenges [21, 40]:

1. Collapsing: In this case G produces only a single sample or set of similar
samples, regardless the type of input given to it.

2. Convergence: Since G and D models are competing towards achieving two
opposite goals, this may make the model parameters to oscillate, destabilizing
the training process.

3. Gradient Vanish: If one of the two models becomes more powerful than the
other, the learning signal is becoming useless, making the system incapable to
learn.

4. Over-Fitting: This is typically due to the unbalance optimization of G and the
D models, e.g., if too much time is spent on minimizing G, then D will most
likely collapse to a few states.

5. Sensitive: It is characterized by being highly sensitive to the selection of the
hyperparameters, i.e., learning rate, momentum, etc.; making the training process
much more tedious.

4.2.2 Case Study: Noisy Visual Data, and How GANs Can be Used to
Remove Noise and Provide Robustness

To illustrate how a GAN-based framework can be used to define threats and
subsequently to provide robustness in a DNN-based system, we use computer vision
as an example because security threats in computer vision applications may arise
from either physical attacks, cyber attacks or a combination of both. We use the
hazing in images to model such threats. To remove this threat, we use the GANs
because of their capability in preserving fine details in images and producing results
that look perceptually convincing [28]. The goal is to translate the input image with
haze, into a haze-free output image. In this case, the noise distribution z is the noisy
image, and it is given as input to the GANs, i.e., haze input image. Afterwards, a
new sample image F is generated by G. D will receive as input the generated image
F and the ground truth haze-free image, to be trained to distinguish between real
and artificially generated images (see Fig. 17).

This approach has recently been used for haze removal [8, 52, 63]. These methods
mainly differ from each other, based on the utilized deep learning structure for G

and D, i.e., using three types of G to solve the optimization of the haze removal
problem [63], using the concept of cycle GAN introduced in [67]. Also they may
differ for the type of loss function used for the training process, where the overall
objective functions is constrained to preserve certain features or priors. However,
they provide a solution that, in most of the cases, is capable to improve the quality
performances of the state-of-the-art haze removal methods for single image, so as
making this quite a promising area.

498 M. A. Hanif et al.

Generator (G) Discriminator (D)

GAN ModelFine Tuning

Clear Image

F

Hazy Image (z)

GAN Clear Image

Fig. 17 Example of GANs used for removing haze noise from a single image. The haze image is
input to G that generate an output image F and D receives as input both the generated image F

and the free-haze image. Input images taken from [32]

5 Open Research Challenges

Machine learning has paved its way to a majority of the fields that involve data
processing. However, regardless of all the work which has been carried out in
interpreting the neural networks and making the ML-based systems reliable, there
are still quite some challenges which are to be addressed before ML algorithms
(specifically, DNNs) can be widely accepted for complex safety-critical applica-
tions. Following is a list of a few of the main challenges in this direction.

• Error-Resilience Evaluation Frameworks: One approach towards this for
timing error estimation is proposed in [64]. However, more sophisticated frame-
works are required to study the impact of multiple types of reliability threats and
their interdependence in a time efficient manner.

• Methodologies for Designing Robust and Resource-Efficient DNNs: Retrain-
ing a DNN in the presence of hardware-induced faults [15] can improve their
resilience. However, there is a need to investigate the types of DNN architectures
which are inherently resilient to most (if not all) of the reliability threats.
Furthermore, there is a need to investigate frameworks to develop robust ML
systems by synergistically investigating reliability and security vulnerabilities.

• Reliable and Resource-Efficient Hardware Architectures: With all the secu-
rity and reliability challenges highlighted in the chapter, there is a dire need to
re-think the way current DNN hardware is designed, such that the vulnerabilities
that cannot be addressed at the software-level have to be addressed through a
robust DNN hardware.

• Interpretability of Deep Neural Networks: Developing interpretable DNNs
is a challenge, however, it has to be addressed in order to better understand
the functionality of the DNNs. This will help us in improving the learning
capabilities of the DNNs, as well as in uncovering their true vulnerabilities and
thereby will help is developing more efficient and robust network architectures.

• Practicality of the Attacks: With the ongoing pace of the research in ML, new
methods and types of network architectures are surfacing, e.g., CapsuleNets.

Robust Computing for Machine Learning-Based Systems 499

Also, the focus of the community is shifting more towards semi-/un-supervised
learning methods as they overcome the need for large labeled datasets. Therefore,
there is a dire need to align the focus with the current trends in the ML
community. Also, the attacks should be designed considering the constraints of
the real systems, i.e., without making unrealistic assumptions about the number
of queries and the energy/power resources available to generate an attack. An
early work in this direction by our group can be found at [26].

Acknowledgments This work was supported in parts by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded Systems” (SPP 1500—
spp1500.itec.kit.edu) and in parts by the National Science Foundation under Grant 1801495.

References

1. Ahmad, H., Tanvir, M., Abdullah, M., Javed, M.U., Hafiz, R., Shafique, M.: Systimator: a
design space exploration methodology for systolic array based CNNs acceleration on the
FPGA-based edge nodes (2018). arXiv:1901.04986

2. Ali, H., Tariq, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: QuSecNets:
quantization-based defense mechanism for securing deep neural network against adversarial
attacks (2018). arXiv:1811.01437

3. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:
circumventing defenses to adversarial examples (2018). arXiv:1802.00420

4. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information
Processing Systems, vol. 27, pp. 2654–2662. Curran Associates, New York (2014). http://
papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks (2016).
arXiv:1608.04644

6. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial
attacks and defences: a survey (2018). arXiv:1810.00069

7. Deng, J., Dong, W., Socher, R., Li, L.: ImageNet: a large-scale hierarchical image database.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

8. Engin, D., Genç, A., Ekenel, H.K.: Cycle-Dehaze: enhanced cycleGAN for single image
dehazing. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, June 18–22, 2018, pp. 825–833 (2018). https://doi.org/
10.1109/CVPRW.2018.00127. http://openaccess.thecvf.com/content_cvpr_2018_workshops/
w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html

9. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro 24(6), 10–20
(2004)

10. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24 (2019)

11. Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep learning-based multi-scale multi-object
detection and classification for autonomous driving. In: Fahrerassistenzsysteme 2018, pp. 233–
242. Springer, Berlin (2019)

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPRW.2018.00127
https://doi.org/10.1109/CVPRW.2018.00127
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html

500 M. A. Hanif et al.

12. Gebregiorgis, A., Kiamehr, S., Tahoori, M.B.: Error propagation aware timing relaxation for
approximate near threshold computing. In: Proceedings of the 54th Annual Design Automation
Conference 2017, p. 77. ACM, New York (2017)

13. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, NIPS’14, pp. 2672–2680. MIT
Press, Cambridge (2014). http://dl.acm.org/citation.cfm?id=2969033.2969125

14. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning
model supply chain (2017). arXiv:1708.06733

15. Hacene, G.B., Leduc-Primeau, F., Soussia, A.B., Gripon, V., Gagnon, F.: Training modern
deep neural networks for memory-fault robustness. In: 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–5. IEEE, Piscataway (2019)

16. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: 2018 Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 913–916. IEEE, Piscataway (2018)

17. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 257–260. IEEE,
Piscataway (2018)

18. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: MPNA: a
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks (2018). arXiv:1810.12910

19. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: lessons learnt and future trends. In: Proceedings of
the 50th Annual Design Automation Conference, p. 99. ACM, New York (2013)

20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580

21. Hui, J.: Gan why it is so hard to train generative adversarial networks! Elsevier, Amster-
dam (2018). https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-
advisory-networks-819a86b3750b

22. Jia, J., Gong, N.Z.: Attriguard: a practical defense against attribute inference attacks via
adversarial machine learning. In: 27th {USENIX} Security Symposium ({USENIX} Security
18), pp. 513–529 (2018)

23. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12. IEEE, Piscataway (2017)

24. Khalid, F., Hanif, M.A., Rehman, S., Qadir, J., Shafique, M.: Fademl: understanding the impact
of pre-processing noise filtering on adversarial machine learning (2018). arXiv:1811.01444

25. Khalid, F., Hanif, M.A., Rehman, S., Shafique, M.: ISA4ML: training data-unaware imper-
ceptible security attacks on machine learning modules of autonomous vehicles (2018).
arXiv:1811.01031

26. Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: Red-attack: resource
efficient decision based attack for machine learning (2019). arXiv:1901.10258

27. Khalid, F., Hanif, M.A., Rehman, S., Qadir, J., Shafique, M.: FAdeML: understanding
the impact of pre-processing noise filtering on adversarial machine learning. In: Design,
Automation and Test in Europe. IEEE, Piscataway (2019)

28. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion
deblurring using conditional adversarial networks. In: Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

29. Kwon, H., Samajdar, A., Krishna, T.: MAERI: enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 461–475. ACM, New York (2018)

http://dl.acm.org/citation.cfm?id=2969033.2969125
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

Robust Computing for Machine Learning-Based Systems 501

30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
32. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image

dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2019)
33. Limbrick, D.B., Mahatme, N.N., Robinson, W.H., Bhuva, B.L.: Reliability-aware synthesis

of combinational logic with minimal performance penalty. IEEE Trans. Nuclear Sci. 60(4),
2776–2781 (2013)

34. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: a flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 553–564. IEEE, Piscataway (2017)

35. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Development 6(2), 200–209 (1962)

36. Marchisio, A., Shafique, M.: Capstore: energy-efficient design and management of the on-chip
memory for CapsuleNet inference accelerators (2019). arXiv:1902.01151

37. Marchisio, A., Hanif, M.A., Shafique, M.: CapsAcc: an efficient hardware accelerator for
CapsuleNets with data reuse (2018). arXiv:1811.08932

38. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Capsattacks:
robust and imperceptible adversarial attacks on capsule networks (2019). arXiv:1901.09878

39. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: SNN
under attack: are spiking deep belief networks vulnerable to adversarial examples? (2019).
arXiv:1902.01147

40. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In:
Proceedings of the International Conference on Learning Representations (ICLR’17) (2017)

41. Nakhaee, F., Kamal, M., Afzali-Kusha, A., Pedram, M., Fakhraie, S.M. Dorosti, H.: Lifetime
improvement by exploiting aggressive voltage scaling during runtime of error-resilient appli-
cations. Integr. VLSI J. 61, 29–38 (2018)

42. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387. IEEE, Piscataway (2016)

43. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-
box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 506–519. ACM, New York (2017)

44. Putra, R.V.W., Hanif, M.A., Shafique, M.: ROMANet: fine-grained reuse-driven data organi-
zation and off-chip memory access management for deep neural network accelerators (2019).
arXiv:1902.10222

45. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: 2013 Design, Automation
and Test in Europe Conference and Exhibition (DATE), pp. 39–44. IEEE, Piscataway (2013)

46. Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D.,
Wei, G.Y.: Ares: a framework for quantifying the resilience of deep neural networks. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, Piscataway
(2018)

47. Rehman, S., Shafique, M., Henkel, J.: Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer, Berlin (2016)

48. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitigation for deep
neural network accelerators. In: International Conference on Computer Safety, Reliability, and
Security, pp. 205–219. Springer, Berlin (2018)

49. Shafique, M., Garg, S., Henkel, J., Marculescu, D.: The EDA challenges in the dark silicon era:
temperature, reliability, and variability perspectives. In: Proceedings of the 51st Annual Design
Automation Conference, pp. 1–6. ACM, New York (2014)

50. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18.
IEEE, Piscataway (2017)

https://doi.org/10.1109/5.726791

502 M. A. Hanif et al.

51. Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning
{FAIL}? Generalized transferability for evasion and poisoning attacks. In: 27th {USENIX}
Security Symposium ({USENIX} Security’18), pp. 1299–1316 (2018)

52. Swami, K., Das, S.K.: Candy: conditional adversarial networks based fully end-to-end system
for single image haze removal (2018). https://arxiv.org/abs/1801.02892v2

53. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a
tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

54. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks (2013). arXiv:1312.6199

55. Tariq, H., Ali, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: SSCNets: a
selective sobel convolution-based technique to enhance the robustness of deep neural networks
against security attacks (2018). arXiv:1811.01443

56. Tiwari, A., Torrellas, J.: Facelift: hiding and slowing down aging in multicores. In: Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, pp. 129–140.
IEEE Computer Society, Washington (2008)

57. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction APIs. In: 25th {USENIX} Security Symposium ({USENIX} Security’16), pp.
601–618 (2016)

58. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 27–32. European Design and Automation Association, Leuven (2010)

59. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using
dropconnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)

60. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP), pp. 36–52. IEEE, Piscataway (2018)

61. Wei, X., Yu, C.H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., Cong, J.: Automated
systolic array architecture synthesis for high throughput CNN inference on FPGAs. In:
Proceedings of the 54th Annual Design Automation Conference 2017, p. 29. ACM, New York
(2017)

62. Whatmough, P.N., Das, S., Bull, D.M., Darwazeh, I.: Circuit-level timing error tolerance for
low-power DSP filters and transforms. IEEE Trans. Very Large Scale Integration Syst. 21(6),
989–999 (2013)

63. Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentangle-
ment and adversarial training. In: Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI) (2018)

64. Zhang, J.J., Garg, S.: Fate: fast and accurate timing error prediction framework for low power
DNN accelerator design. In: Proceedings of the International Conference on Computer-Aided
Design, p. 24. ACM, New York (2018)

65. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: ThUnderVolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep neural network accelerators
(2018). arXiv:1802.03806

66. Zhang, J.J., Gu, T., Basu, K., Garg, S.: Analyzing and mitigating the impact of permanent faults
on a systolic array based neural network accelerator. In: 2018 IEEE 36th VLSI Test Symposium
(VTS), pp. 1–6. IEEE, Piscataway (2018)

67. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244

https://arxiv.org/abs/1801.02892v2
https://doi.org/10.1109/ICCV.2017.244

Robust Computing for Machine Learning-Based Systems 503

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Exploiting Memory Resilience
for Emerging Technologies: An
Energy-Aware Resilience Exemplar
for STT-RAM Memories

Amir Mahdi Hosseini Monazzah, Amir M. Rahmani, Antonio Miele,
and Nikil Dutt

1 Introduction

In the recent years, the aggressive progress in technology scaling has allowed
to integrate a larger number of processing cores in the same chip thus leading
to the fabrication of multicore and manycore devices. To efficiently exploit such
processing power, it is imperative to proportionally increase the performance and
bandwidth of the on-chip cache memory sub-system.

Unfortunately, the commonly-used static RAM (SRAM) technology imposes
fundamental limitations for the quest of high memory performance in the next
generation computing systems. Indeed, the low density of SRAM cells forces to
dedicate approximately 60% of the area of today’s chips to the cache memo-
ries [7, 19]. Moreover, SRAM memories present a considerably high leakage power
consumption becoming a considerable issue with the continuous technology scaling

A. M. H. Monazzah (�)
Iran University of Science and Technology (IUST), Tehran, Iran

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
e-mail: monazzah@iust.ac.ir

A. M. Rahmani
University of California, Irvine (UCI), Irvine, CA, USA
e-mail: a.rahmani@uci.edu

Institute of Computer Technology, TU Wien, Austria
e-mail: antonio.miele@polimi.it

A. Miele
Politecnico di Milano, Milano, Italy
e-mail: dutt@uci.edu

N. Dutt
University of California, Irvine (UCI), Irvine, CA, USA

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_21

505

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_21&domain=pdf
mailto:monazzah@iust.ac.ir
mailto:a.rahmani@uci.edu
mailto:antonio.miele@polimi.it
mailto:dutt@uci.edu
https://doi.org/10.1007/978-3-030-52017-5_21

506 A. M. H. Monazzah et al.

beyond 40 nm leading to the leakage power to contribute up to 80% of the overall
energy consumption of the cache memories [7].

For these reasons, a recent trend is to consider Non-Volatile Memory (NVM)
technologies, such as Phase Change Memory (PCM), Resistive RAM (ReRAM),
Ferroelectric RAM (FeRAM), and Spin Transfer Torque Magnetic RAM (STT-
MRAM or STT-RAM) as alternative solutions to SRAMs in multicore and many-
core chips [23]. Among them, various studies [2, 3, 11, 17, 20] have observed that
STT-RAM represents the most promising technology for on-chip cache memories.
In particular, STT-RAM allows to increase the memory size, thanks to its higher
density, and outperforms the SRAM counterpart in terms of energy consumption. In
fact, since STT-RAM is a non-volatile technology, its leakage power consumption
is negligible.

Unfortunately, STT-RAM technology suffers from a different set of reliability
issues that has to be carefully addressed in order to realize its deployment in
commercial products. STT-RAMs present a high susceptibility to failure both during
write/read operations and in idle status [2, 23]. More precisely, the memory cell
may suffer from retention errors, which are caused by thermal noises that lead to
an unintentional bit flip of the value stored in an idle cell. Moreover, during read
operations, it may occur that the cell content incorrectly flips leading to the so-
called read disturbance, or the returned value has an undistinguished state, dubbed
as false read. Finally, also the write operation may suffer from write errors, which
are caused by thermal fluctuations in the magnetization process that lead to storing
a wrong value in the cell w.r.t. the one in the input. Among these reliability threats,
write errors impose the most challenging issue [2, 7].

A circuit-level strategy to eliminate write errors is to increase the current
(voltage) applied during the write operation [23]. However, it mainly leads to
higher energy consumption, and secondarily to a higher probability of permanent
failures of the device. Indeed, higher current implies an increase in the temperature
and in turn to an increase in the probability of junction barrier breakdown [7].
An alternative design strategy is the use of Error Correction Codes (ECCs) to
harden the architecture of the cache memory [1]. However, if it is applied in a
naive way, it may result in a significant area overhead. For instance, when Bose–
Chaudhuri–Hocquenghem (BCH) 7 ECC is employed, such overhead can be as
high as 15% of the data block area [2]. Such additional area causes a significant
energy overhead. Given such rationale, several studies [2, 3, 6, 7, 17, 18, 20, 21, 24]
have individually investigated these techniques and proposed strategies to improve
their effectiveness. Given this background, we believe that there is an opportunity
for a larger improvement of these hardening schemes by holistically amalgamating
these two techniques. Moreover, an opportunistic integration and tuning of these
two techniques can also lead to a considerable improvement in energy consumption
of the cache memory architecture while at the same time guaranteeing the error rate
threshold.

This chapter proposes FlexRel, a reliability improvement technique which
utilizes the STT-RAM write current as an actuation knob and multi-level ECC

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 507

Fig. 1 Positioning of the
proposed approach in the
overall cross-layer vision of
the book

protection scheme to conduct an optimal trade-off between reliability and energy
consumption in STT-RAM cache memories. Targeting an overall block write error
rate threshold that should be guaranteed in applications running on a platform,
FlexRel proposes a cache way partitioning scheme that utilizes different combi-
nations of write currents and ECC protection codes in each partition to satisfy
that threshold. Then, during the run-time of applications, the FlexRel controller
redirects the more vulnerable blocks to more robust partitions to keep the write
error rate below the write error threshold. Within the overall cross-layer vision of
the book, the main contribution of this chapter can be primarily classified as an
architecture-to-application cross-layer approach, also using gate/circuit-level actua-
tion, as illustrated in Fig. 1. In fact, this approach exploits application-level profiled
information as an input to an architecture-level memory hardening technique based
on ECC while using current tuning at circuit-level, with the final goal of optimizing
energy consumption and application reliability.

We evaluate FlexRel using gem5 simulator [4] running SPEC CPU2006 [9]
workloads. We compare the efficiency of FlexRel against an optimized uniform pro-
tection (OUP) scheme from reliability, energy, area, and performance perspectives.
The simulation results show that, while FlexRel meets the write error rate threshold,
it outperforms OUP scheme in terms of energy and area by up to 13.2 and 7.9%,
respectively. Furthermore, The restriction of write traffics to specific partitions in
FlexRel incurs only a 1.7% performance overhead to the system, on average.

The rest of the chapter is organized as follows. Section 2 introduces the necessary
background presenting the basic architecture of a STT-RAM cell and the energy/er-
ror rate issues of this technology. Section 3 briefly surveys the previous approaches
for hardening STT-RAMs highlighting the adopted strategies and differentiating
them from the proposed approach. Section 4 is the core of this chapter and presents
our proposed FlexRel approach, consisting of an enhanced memory architecture
capable of trading off reliability and energy consumption. The proposed solution has
been experimentally validated and results are discussed in Sect. 5. Finally, Sect. 6
draws conclusions.

508 A. M. H. Monazzah et al.

2 STT-RAMs and Their Energy-Reliability Challenges

This section introduces the basics of STT-RAM technology, its architecture and
how read/write operations are performed. The second part of the section focuses on
energy vs. write error issues in this type of memory. This discussion represents the
preliminaries for the proposed energy-aware error-tolerant scheme for STT-RAM.

2.1 Basic Architecture of STT-RAM

Figure 2 shows the basic cell structure of a STT-RAM, called 1 Transistor 1
Magnitude Tunnel Junction (MTJ), shortly 1T-1J. The cell is constructed from an
MTJ element and an access NMOS transistor. MTJ itself includes three layers which
are a MgO-based barrier (called tunneling oxide barrier), a ferromagnetic layer with
fixed magnetic field direction (called reference layer), and a ferromagnetic layer
with free magnetic field direction (called free layer). The MgO-based barrier layer
is sandwiched between two ferromagnetic layers. STT-RAM works based on the
relative magnetic field direction of the free layer and the reference layer (parallel
or anti-parallel states). As shown in the figure, the parallel state will represent a
logic value ”0” while the anti-parallel one a logic value ”1.” The different relative
ferromagnetic field directions lead to different resistances in MTJ, i.e. RHigh and
RLow (RH and RL) [5]. In the following, we explore the read and write operation
mechanisms in a STT-RAM cell.

The read operation in a STT-RAM cell is initiated by setting the word line (WL
in the figure) to turn on the access NMOS transistor. Then, a small read current IR

(or read voltage, VR) is applied to the MTJ from the source line (SL in the figure)
through an access transistor [30]. By applying IR to MTJ, a current (or voltage) is

WL

Free Layer

Reference Layer

I

0
BL

WL

I

SL

1

Free Layer

Reference Layer

Sense
Amplifire

Reference
Value

“0” or “1”

Fig. 2 A typical STT-RAM cell structure: on the left side, a parallel magnetic field direction
represents a logic value 0, while on the right side, an anti-parallel magnetic field direction a logic
value “1”

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 509

sensed on the bit line (BL in the figure). Based on the sensed values of current or
voltage in the BL during the read operations,the resistance of MTJ is determined as
high (RH) or low (RL). The STT-RAM cell value is determined by calculating the
Tunneling Magneto Resistance (TMR), a ratio parameter defined as

TMR = (RH − RL)

RL

(1)

The parallel (anti-parallel) state of MTJ leads to low (high) resistance of MTJ,
calculated by means of the following equations:

VBLL
= IR × (RL + RNMOS) (2)

VBLH
= IR × (RH + RNMOS) (3)

If the sense amplifier which calculates the voltage (current) of bit line decides the
sensed voltage is the same as VBLL

, the MTJ value is logically “0,” otherwise, if the
sensed voltage is the same as VBLH

, MTJ value is logically “1.”
To perform a write operation and modify the value stored in MTJ, we need to

change the magnetic field direction of MTJ free layer. By changing the magnetic
field direction of the free layer, the resistance of MTJ will change [5, 10]. To this
end, again the access transistor should be turned on by setting the word line. Then,
a write current is applied from the source line to the baseline or vice versa. The
direction of applied write current determines the magnetic field direction of the free
layer. By applying the write pulse to the MTJ, when the amount of spin polarized
current exceeds a threshold value, the magnetic field direction of the free layer flips.

2.2 Error Rate vs. Energy Consumption Trade-Off

One of the main issues in STT-RAM is its stochastic switching nature caused by
the effects of thermal fluctuations. Among the side-effects of stochastic switching,
write failure is the most important reliability challenge [2, 7]. More precisely, write
failure occurs during the write operation and its effect is that the value stored in the
MTJ will be different from the one provided as data input. From a physical point
of view, it happens according to the stochastic behavior of STT-RAM cell when the
magnetic field direction of the free layer could not change during the pre-determined
write pulse width [12, 27]. There are many parameters that contribute to switching
the MTJ state during the write operations, e.g., MTJ switching current, process
variations, thermal fluctuations, and switching pulse width. According to [16], the
write failure probability can be calculated using the following equation:

510 A. M. H. Monazzah et al.

Pwf (tw) = exp

⎛
⎝−tw · 2μBp

(
Iw − IC0

)
(
c + ln

(
Π2�

4

))
· (em (1+ p2

))
⎞
⎠ (4)

where � is the thermal stability factor, IC0 is the critical MTJ switching current at
0 ◦K, c is the Euler constant, e is the magnitude of electron charge, m denotes the
magnetic momentum of the free layer, p is the tunneling spin polarization, μB is the
Bohr magneton, Iw is the write current, and tw is the write pulse width.

While STT-RAM technology is a promising candidate to resolve the static energy
challenge of SRAM technology in on-chip memories, from the dynamic energy
consumption perspective, it imposes considerable energy consumption for a reliable
write operation due to its stochastic switching feature; the higher the Iw, the lower
the write error rate of STT-RAM will be. For example, we used NVSim [8] to
experimentally compare two alternative implementations, in SRAM and STT-RAM
technologies, with the same 32 KB cache architecture with 64 Byte word lines
implemented in 45 nm. Our results show that from the leakage power point of
view, the SRAM cache imposes 41.896 mW power consumption, while STT-RAM
cache only charges 9.066 mW power consumption to the design. On the other hand,
each read operation in SRAM and STT-RAM implementations uses 11.421 and
82.493 pJ dynamic energy consumption, respectively. Finally, each write operation
in SRAM and STT-RAM technologies enforces 5.712 and 534.375 pJ dynamic
energy consumption to the design, responsively. As a conclusion, Iw in Eq. 4 is the
main contributor for dynamic energy consumption in STT-RAM. Accordingly, Iw

is one of the effective circuit-level knobs available to control the reliability-energy
trade-off during a write operation. Generally, a lower Iw decreases the write energy,
but it also amplifies the probability of write failure.

To systematically analyze this aspect, we performed a quantitative evaluation of
the write error rate of STT-RAM at different write current amplitudes by using the
STT-RAM SPICE model introduced in [14]. In particular, we characterized a STT-
RAM cell by using parameters reported in Table 1 and ran several Monte Carlo
simulations. Figure 3 depicts the write error rate of the STT-RAM cell when the
write current is varied and the cell is flipped from 0 → 1 (in red) or vice versa
(in blue). As shown in Fig. 3, we retrieved the trend lines of error rate patterns in
both directions to generate the STT-RAM write error rate formulas. These formulas
are useful to estimate the write error rates of STT-RAM at any write current. We
therefore conclude that Iw is an effective circuit-level knob available to control the

Table 1 STT-RAM HSPICE
model configurations

Parameter Value (μ± 3σ)

MTJ length 32 nm

MTJ width 96 nm

MTJ thickness 2.44 nm

Relative initial angle 0± 35◦/180± 35◦

Transistors technology size 32 ± 1 nm

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 511

y = 1047.2e-0.024x

R² = 0.9818

y = 287.32e-0.032x

R² = 0.9872

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.50E+02 2.50E+02 3.50E+02 4.50E+02 5.50E+02 6.50E+02 7.50E+02

W
rit

e
Er

ro
r R

at
e

Write Current (uA)

0->1 Transition 1->0 Transition Expon. (0->1 Transition) Expon. (1->0 Transition)

Fig. 3 STT-RAM cell write error rate vs. write current in different MTJ state transitions (write
pulse width fixed at 10 ns)

quality-energy trade-off during a write operation. Moreover, it can be noted that the
write error rate is asymmetric and 0 → 1 is the most critical transition. This is due
to the fact that the initial MTJ state affects the total energy required to change its
resistance [29]. For 0 → 1 bit transition, to change the MTJ state from parallel (low
resistance) to anti-parallel (high resistance), more energy (powercdot time) needs to
be spent compared to the amount of energy needed for the transition in the opposite
direction (1 → 0) [28]. As a consequence, the MTJ state transition is asymmetric
from the error rate vs. energy consumption perspective.

Finally, it is worth mentioning that unlike the provided knob in SRAM technol-
ogy (memory bank voltage scaling) that is coarse-grained and affects a large portion
of data in memory, STT-RAM exploits Iw which is fine-grained and can be tuned
for granularity of a data block in memory. As we show in the following, this feature
offered by STT-RAM provides a unique opportunity for flexible adjustment of the
energy-reliability knob.

3 Related Work on STT-RAM Reliability

In recent years, several studies have addressed reliability issues of STT-RAM. In
[23], the authors present a survey of the preliminary approaches addressing faults
in various non-volatile memory technologies with the focus on both permanent and
transient faults. Regarding permanent faults, the basic strategies are to (1) increase
the current during write operations and (2) augment the architecture by using Error
Correction Codes (ECCs). Indeed these strategies are the ones later used by many
subsequent approaches.

In [22], the authors propose a strategy, Verify and Correct (VnC), which consists
of reading each value immediately after the write operation in the STT-RAM cache
to assess its correctness. Since read delay is negligible, such an approach may lead to
performance degradation in case of high failure rate. The approach is later enhanced
by combining VnC with a limited ECC to reduce the need of rewriting upon

512 A. M. H. Monazzah et al.

failures. Ahn et al. [1] propose a scheme where ECC is shared among several cache
blocks thus reducing its hardware cost. Cheshmikhani et al. [6] and Azad et al. [3]
present ECC schemes with an optimized interleaved bit selection mechanism to
minimize codewords’ vulnerability variations. Finally, the authors of [25] introduce
adaptiveness in the hardening scheme; where two different levels of ECC can be
selectively chosen for each incoming block in the STT-RAM cache. The level of
protection is selected based on the vulnerability of the incoming block which is
calculated by enumerating the number of 0 → 1 bit transitions. The idea of using
several ECC scheme in an adaptive way is further explored in [2] by defining an
STT-RAM cache architecture, called A2PT using several ECC levels and integrating
a specific hardware module which selects the replacement candidate in order to
minimize the Hamming distance between the stored block the newly incoming one.

A different strategy is proposed in [11] where the classical Least-Recently-
Used (LRU) cache replacement policy is substituted with a new algorithm which
performs a Least-Error-Rate (LER) replacement. To reduce the probability of write
errors in STT-RAM, this algorithm tries to write the incoming block in a location
which imposes the least number of 0 → 1 bit transitions among the victim
block candidates. In [7], the authors observe that the stochastic switching in write
operations is mainly caused by the device heating. Therefore, to reduce the write
errors, they propose to replace the LRU policy with a thermal-aware counterpart,
which tries to write the incoming block in a location which imposes the least
temperature increase among the victim block candidates.

As discussed in Sect. 2, acting on the current applied during the write operation
sensibly affects the correctness of the stored value; moreover, 0 → 1 is the
most susceptible bit transition. For these reasons, Kim et al. [13] propose two
different circuit design techniques applied at each single bit-line to balance out
the asymmetric write current and optimize the memory design in terms of write-
power and reliability. In a similar manner, Monazzah et al. [17] exploit the tuning
of the write current to explicitly trade memory reliability for energy saving in the
context of approximate computing. The approach considers software applications
capable of tolerating a certain degree of errors in the results, such as image
processing applications. Therefore, for each write operation, the current to be
applied is dynamically selected based on the reliability requirement annotated in
the application source code as well as the Hamming distance between the block to
be written and the candidate to be replaced. In such a way, the energy consumption is
minimized under a predefined number of errors that can be ignored in the application
output.

The main contribution of our approach presented in this chapter is to holistically
integrate ECC deployment and write current tuning based on our prior works
presented in [2] and [17]. The main property of our approach is its self-adaptiveness
to dynamically tune the system operating point to the characteristics of the running
applications to optimize the energy consumption of the system while keeping the
observed error rate under control.

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 513

4 FlexRel: An Energy-Aware Reliability Improvement
Approach for STT-RAM Caches

In this section, we present our proposed approach called FlexRel. As a preliminary
discussion, first we explore the conventional ECC deficiency in tolerating the write
failures of STT-RAM caches. Then, we observe how different data patterns lead
to different write error rates in cache blocks. At the end, we discuss in detail
the FlexRel approach for the STT-RAM caches which utilizes the STT-RAM
write current actuation knob and multi-level ECC protection scheme to conduct an
optimum trade-off between reliability and energy consumption.

4.1 The Effects of Write Patterns on ECC Protection Level

As mentioned in previous sections, the write error rate in the STT-RAM cache
depends on the bit differences between the contents of data that was previously
stored in the cache block and the contents of the new incoming block. Indeed, during
a write operation while failure may occur in the bit locations that should be toggled,
for the other bit locations that will not experience any toggle, we do not observe
any write error. In Sect. 2.2, we observed that in STT-RAM the write error rates of
0 → 1 bit transitions is higher than 1 → 0 bit transitions by about two orders of
magnitude for the same current amplitude in both directions. Accordingly, FlexRel
will mainly focus on 0 → 1 bit transitions since they represent the main contributor
to write error rate in STT-RAM.

Generally, the total number of 0 → 1 bit transitions in a STT-RAM cache block
is proportional to the Hamming Weight (HW) of the new incoming block, that is the
total number of 1 in the bit representation of each block [2, 26]. On the other hand,
the maximum number of 0 → 1 bit transitions in a cache block write operation
happens when all of the bit locations storing value “1” in the new incoming block
should store on bit locations that previously contained “0.” Considering this fact,
for a STT-RAM cache that is protected with an ECC code with t-bit error correction
capability, we can estimate the Block Error Rate (BER) of a STT-RAM cache write
operation according to Eq. 5 [26]:

BER(w, t) ≈ 1−
t∑

i=0

Ci
wP i

ER 0→1(1− PER 0→1)
w−i (5)

where, PER 0→1 is the bit failure rate in 0 → 1 switching, t the error correction
capability of ECC, w the HW of the incoming data, and Ci

w the combination of HW
taken i at a time.

We conducted an experimental evaluation of the BER of STT-RAM cache write
operations for the incoming blocks when varying HW. In particular, we configured

514 A. M. H. Monazzah et al.

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1 51 101 151 201 251 301 351 401 451 501

B
lo

ck
 E

rr
or

 R
at

e
(B

ER
)

Hamming Weight (HW)

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

Fig. 4 Block Error Rate (BER) in different ECC schemes for various Hamming Weight (HW)
data

a 512-bit STT-RAM cache block, with 0 → 1 write error rate, i.e., PER 0→1 of
10−3 as reported in [1, 22, 26]. Figure 4 depicts the results of the experiments which
verify that the BER of the cache blocks with different ECC protection scheme are
considerably affected by the HW of the incoming data. For example, if we consider
ECC with protection capability of t bit errors in a cache block, for HW of 25 we
observed the BER of 10−15, while for HW of 50 and 100 this protection scheme
delivers BER of 10−13 and 10−11, respectively, which is considerably different.

The results shown in Fig. 4 are calculated based on Bose, Chaudhuri, and
Hocquenghem (BCH) coding scheme [15] which is a well-known scheme in
protecting memory architectures. In BCH code, ECC converts to k-bit data and
(n − k) ECC check bits. The complexity of the peripherals that is required to
protect the k-bit data is also increased with the increase in the ECC protection
capability. Generally, for protecting a k = 512 bit cache line using BCH code
with (t + 1) bit error correction capability, we require (10t + 1) check bits [2].
The results demonstrated in Fig. 4 is calculated for various coding schemes: SEC-
DED (Single Error Correction-Double Error Detection), DEC-TED (Double Error
Correction-Triple Error Detection), 3EC4ED, 4EC5ED, 5EC6ED, 6EC7ED, and
7ED8EC codes with t = 1, t = 2, t = 3, t = 4, t = 5, t = 6, and t = 7
error(s) correction capabilities, respectively.

With the emergence of ECC protection scheme in the cache memories to
protect the data, conventionally, all the cache blocks are protected with the same
ECC protection capability (t). This conventional ECC protection scheme is called
Uniform, i.e., all of the blocks in the cache utilize the same ECC protection level.
However, as we can see in Fig. 4, the different HWs in write requests lead to
various BER for each cache block during the execution time. Accordingly, in the
Uniform protection scheme the highest HW needs to be considered to select an
ECC protection level that satisfies the write error rate threshold. As an example,
considering Fig. 4, the ECC protection level t = 6 should be selected to satisfy the

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 515

1
4

16
64

256
1024
4096

16384
65536

262144
1048576

N
um

be
r o

f W
rit

e
op

er
at

io
ns

HW (Total number of '1') in cache block for each write operation

comb1 comb2 comb3 comb4 comb5 comb6 comb7 comb8 comb9 comb10

Fig. 5 The distribution of write operations based on Hamming Weight (HW) across a 4-MB 16-
way shared L2 cache

write error rate threshold of 10−6 in the worst case where all of the bit locations
in the target cache block experience toggle for the new incoming write request.
However, satisfying a write request that all of its bit locations experience 0 → 1 bit
transition is a very rare event. Therefore, using ECC with t = 6 correction capability
is usually more than enough.

Accordingly, we investigated the distribution of HW across a 4-MByte 16-way
set associative shared L2 cache during the execution of workloads. To this end,
we ran combinations of benchmarks that are selected from SPEC CPU2006 [9]
benchmark suite.1 Figure 5 depicts the distribution of write requests’ HWs across
the shared L2 cache. Figure 5 illustrates that most of the write requests had less than
350 HW, while for the uniform full-protection ECC schemes we need to consider the
worst-case HW (512 in 512 bit cache line size) for reliable write operations leading
to significant under-utilization of resources.

One of the main concerns in utilizing uniform full-protection ECC configuration
for the caches is the amount of energy consumption that is imposed to the system.
Indeed, as illustrated in Figs. 4 and 5, while utilizing the full-protection configura-
tion guarantees the reliable write operations, it imposes high energy consumption for
most of the time that the write operations contain lower number of value 1 than the
considered ECC-related threshold. For this reason, FlexRel exploits a non-uniform
multi-protection level ECCs scheme to save energy. In addition, it improves the
hardening scheme by deploying different write current levels introducing different
STT-RAM write error rates.

1The details of simulator configurations and workload combinations will be mentioned later in
Sect. 5, in particular in Tables 3 and 4.

516 A. M. H. Monazzah et al.

4.2 FlexRel Organization

In FlexRel, we divide a cache memory into several protection level zones. Unlike
the previous studies that benefit only from different ECC codes to conduct multi-
level protection scheme (e.g. [2, 3, 25]), in FlexRel we consider a combination of
write current level and ECC protection level to satisfy a pre-determined write error
rate threshold at each zone. The main strategy that is considered in FlexRel for
cache partitioning is to assign the lowest possible write current for the zones that
face high amounts of write operations to alleviate STT-RAM high write energy
consumption and instead apply stronger ECC protection codes in these zones to
satisfy the write error threshold. On the other hand, for the zones that experience
low amounts of write operations we consider high write current with weaker ECC
protection codes to alleviate the static energy consumption of ECC parts of the
cache ways. For the sake of better intuition, in the following we explain the FlexRel
approach considering a STT-RAM L2 cache memory architecture being 16-way
set-associative and having a 64 Byte (512 bit) cache line as our case study example,
while in general, FlexRel approach is applicable to all associative STT-RAM caches
with any configuration and at any memory abstraction level.

The first step in designing a FlexRel-equipped cache is to classify the write
requests of the cache based on the HW (which shows the vulnerability of write
requests) and the portion of write requests. The partitioning in FlexRel applies at
way granularity. Here, as an example, we consider four protection levels in our
case study FlexRel-equipped cache. The straightforward approach to assign the
cache ways to one of the four protection levels is the uniform assignment (in case
of 16-way set associative cache it implies to assign four ways to each protection
level). Considering the efficiency challenge that was mentioned for the uniform ECC
protection technique, this straightforward assignment may face a considerable waste
of resources. Therefore, our approach to enhance FlexRel has been to consider once
again the write request patterns depicted in Fig. 5 to configure the portion of cache
ways in each protection level. For this decision, we need to consider the cumulative
amount of write requests in each protection level to provide enough space for them
and keep the system performance as high as possible.

Thus, we partition the 16-way FlexRel-equipped cache to four protection levels
as depicted in Fig. 6. According to the figure, we assign half of the cache ways
to protection level 2 (101 ≤ HW ≤ 250) which should serve the most amount of
write requests. Furthermore, protection level 1 (HW ≤ 100) which should serve the
second most amount of write requests benefits from a quarter of cache ways, while
each of protection levels 3 and 4 only utilizes two ways to serve their low-intensive
write requests. Figure 7 depicts the proposed FlexRel scheme for our case study
example which includes four zones regarding protection levels.

After the way partitioning of FlexRel-equipped cache is completed, we should
determine combinations of STT-RAM write current and ECC code to deliver a
reliable write operation in each zone. To select these combinations, first we should
consider a write error rate threshold to meet during the write operations in FlexRel-

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 517

1
4

16
64

256
1024
4096

16384
65536

262144
1048576

N
um

be
r o

f W
rit

e
op

er
at

io
ns

HW (Total number of '1') in cache block for each write operation

comb1 comb2 comb3 comb4 comb5 comb6 comb7 comb8 comb9 comb10

Way 14 and 15
Over 400 HW

Way 12 and 13
HW: 251 ~ 400

Way 4 ~ 11
HW: 101 ~ 250

Way 0 ~ 3
Less 100 HW

Fig. 6 Way partitioning across a 4-MB 16-way FlexRel-equipped shared L2 cache

WL1, HW>=251
and HW<=400

WL2
HW >= 101 and HW <=250

WL3
HW<= 100

tseuqe
R

etir
W Cache Controller

SET 0

SET 1

SET 2

SET 3

SET n-1

SET n-2
R

ea
d

R
eq

ue
st

Way
0

D
EC

-T
ED Way

4

D
EC

-T
ED Way

5

TE
C

-F
ED Way

11

TE
C

-F
ED Way

12

D
EC

-T
ED Way

13

D
EC

-T
ED Way

14
SE

C
-D

ED Way
15

SE
C

-D
ED

WL0, HW>=401

Bit-Line Write Controller

FlexRel Cache Replacement PolicyHamming Weight Calculator

Fig. 7 A 16-way set associative FlexRel-equipped cache

equipped cache. To guarantee this threshold, FlexRel can either increase the write
voltage and decrease the protection level of ECCs or vice versa. As an example, we
consider 10−8 as write error rate threshold that should be met in all protection levels
considering the write requests’ HWs.

Consequently, Table 2 depicts a transducer map considered for FlexRel. As
shown in the table, based on the configuration of write currents and ECC protection
capabilities different dynamic energies and static powers are consumed in FlexRel-
equipped cache ways. The last row of the table shows the amount of dynamic energy
and static power of a uniform full-protection scheme with the same write error rate

518 A. M. H. Monazzah et al.

Ta
bl

e
2

T
ra

ns
du

ce
r

m
ap

fo
r

a
25

6
K

B
w

ay
em

be
dd

ed
in

a
4

M
B

16
-w

ay
se

t-
as

so
ci

at
iv

e
Fl

ex
R

el
-e

qu
ip

pe
d

ca
ch

e

W
ay

st
at

ic

C
ac

he
0
→

1
bl

oc
k

er
ro

r
ra

te
W

ay
dy

na
m

ic
en

er
gy

en
er

gy

Pr
ot

ec
tio

n
W

ri
te

E
C

C
pr

ot
ec

tio
n

le
ve

l
cu

rr
en

t
0
→

1
E

rr
or

ra
te

le
ve

l(
t)

L
ow

es
tH

W
H

ig
he

st
H

W
R

ea
d

W
ri

te

1
70

6.
2

μ
A

3
×

10
−5

2
N

on
e

4.
4
×

10
−9

67
.3

pJ
4.

79
nJ

50
.6

m
W

2
66

6.
9

μ
A

8
×

10
−5

3
1.

5
×

10
−1

0
6.

4
×

10
−9

68
.5

pJ
4.

61
nJ

53
.1

m
W

3
77

8.
2

μ
A

5
×

10
−6

2
3.

2
×

10
−1

0
1.

3
×

10
−9

67
.5

pJ
5.

27
nJ

50
.6

m
W

4
93

5.
0

μ
A

1
×

10
−7

1
7.

9
×

10
−1

0
1.

3
×

10
−9

66
.6

pJ
6.

19
nJ

48
.5

m
W

O
U

P
58

6.
0

μ
A

6
×

10
−4

7
N

on
e

1.
42
×

10
−9

73
.3

pJ
4.

37
nJ

60
.6

m
W

T
he

en
er

gy
co

ns
um

pt
io

n
an

d
E

rr
or

ra
te

s
de

pi
ct

ed
in

th
is

ta
bl

e
ar

e
re

tr
ie

ve
d

w
ith

th
e

ai
d

of
N

V
Si

m
[8

]
an

d
H

SP
IC

E
M

on
te

C
ar

lo
®

si
m

ul
at

io
ns

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 519

threshold mentioned for FlexRel-equipped cache. It is worthy of mentioning that
in each protection level, FlexRel should provide the required facilities so that the
highest HW write request in that level meets write error rate thresholds. The write
currents at different protection levels in Table 2 reveal the mentioned strategy in
FlexRel way partitioning. For example, comparing protection level 2 (with high
amounts of write operations) with protection level 4 (with low amounts of write
operations), for level 2 we considered lower write current (666.9 μA) with stronger
ECC code (t = 3) to alleviate the high write energy consumption of STT-RAMs.
On the other hand, for level 4, we consider higher write current (935.0 μA) with
weaker ECC code (t = 1) to alleviate the ECC static energy consumption.

Now that the data storage architecture of FlexRel is explored, the final element
that we should consider in the architecture of FlexRel-enable cache is to design a
mechanism to redirect the write request to their corresponding ways based on their
HW during the execution. As depicted in Fig. 7, we developed a new replacement
policy to perform this redirection.

Considering our case study example, Algorithm 1 depicts the traffic controller
and replacement policy defined for FlexRel-equipped cache. This algorithm can
be easily modified to apply to any other FlexRel-equipped cache with different
configurations than the case study example. The FlexRel controller is responsible
for calculating the HW of the incoming write request (Line 1). Then, if the write
request is hit in the cache (Lines 3–10), FlexRel controller will verify the possibility
of writing the new request to the hit block. To this end, FlexRel controller checks
the HW of the new incoming request with the HW boundaries of the hit block’s way
protection level (Line 4). If the new incoming block satisfies the HW boundaries of
the hit block’s way protection level, FlexRel controller will satisfy the write request
(Lines 5–7). Otherwise, the hit block will become invalid, and a cache miss signal
will be triggered for the new incoming write request (Lines 7–10).

On the other hand, if the new incoming write request is missed in the cache (Line
11–24), based on the HW of this request that was calculated previously (Line 1),
the FlexRel replacement policy should select the appropriate protection level for
this request and evict a block from the protection level’s assigned ways. It should
be noted that FlexRel replacement policy uses LRU replacement policy in each
protection level to evict the blocks (Lines 13, 16, 19, and 22).

5 Experimental Results

To explore the effectiveness of FlexRel in saving the energy consumption while
meeting the reliability constraints we conducted a set of simulations. To this end,
we used gem5 [4] simulating a quad-core ARM processor. The frequency of this
processor is set to 1 GHz. The details of simulation configurations are summarized
in Table 3. We extracted the dynamic and leakage power of STT-RAM cache ways
from NVSim [8] with the aid of HSPICE. SPEC CPU2006 benchmark suites [9]

520 A. M. H. Monazzah et al.

Algorithm 1: FlexRel controller and replacement policy for 16-way set
associative cache

input : New incoming write request (WR)
output : The target block in cache for satisfying request

1 HW = calculate_HW(WR);
2 blk = Hit(WR);
/* Check the availability of the requested block. */

3 if blk then
/* The requested blk is found in the cache (hit). */

4 satisfy_request = check_way_boundary(blk→way,HW);
5 if satisfy_request then
6 return(blk);
7 else
8 Invalidate(blk);
9 blk = null;

/* After generating a miss signal for this request,
FlexRel replacement policy will decide about the new
location of this block. */

10 end
11 else

/* The requested blk is not found in the cache (miss). */
12 if HW ≤ 100 then
13 blk = LRU(way0 ∼ way3);
14 return(blk);
15 else if 101 ≤ HW ≤ 250 then
16 blk = LRU(way4 ∼ way11);
17 return(blk);
18 else if 251 ≤ Hw ≤ 400 then
19 blk = LRU(way12 and way13);
20 return(blk);
21 else
22 blk = LRU(way14 and way15);
23 return(blk);
24 end
25 end

were used as the workloads in this study. Table 4 depicts the combination of
benchmarks in each workload.

It should be noted that, for the sake of improving the accuracy of the experiments,
all of the simulation results were retrieved after skipping the L2 cache warm-
up phase. During the experiments, we implemented and compared the following
schemes:

• Optimized Uniform Protection—In this scheme, L2 cache ways were protected
with uniform 7EC8ED BCH code with low write current mentioned in the last
row of Table 2 (OUP). This uniform protection satisfied the considered block
write error rate considered in this study (i.e., 10−8).

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 521

Table 3 Experimental setup
for gem5 simulations

Parameter Value

ISA ARMv7-A

No. of cores 4

L1 $ size, assoc. 32 KB, 4

L2 $ size, assoc. 4 MB, 16

Cache configuration L1 (Private)

L2 (Shared, FlexRel-enabled)

Cache block size 64B

Cache warm-up instructions 100 million

No. simulated instructions 100 million

Table 4 Workload
combinations

Combination Core 0 Core 1 Core 2 Core 3

Comb1 perlbench bzip2 mcf soplex

Comb2 perlbench bzip2 omnetpp xalancbmk

Comb3 perlbench mcf omnetpp xalancbmk

Comb4 bzip2 mcf soplex xalancbmk

Comb5 gcc bwaves mcf cactusADM

Comb6 namd dealII soplex calculix

Comb7 perlbench gcc mcf namd

Comb8 perlbench namd soplex xalancbmk

Comb9 bwaves dealII namd calculix

Comb10 gcc bwaves soplex xalancbmk

• FlexRel —In this scheme, L2 cache ways were protected with variable strength
ECCs and write currents mentioned in Table 2, according to the discussed cache
structure in FlexRel.

Figure 8 depicts the normalized energy consumption of FlexRel-equipped shared
L2 cache compared with the optimized uniform scheme. We evaluated the efficiency
of FlexRel in terms of energy consumption from three perspectives, i.e., dynamic
energy consumption, static energy consumption, and overall energy consumption.
According to Fig. 8, FlexRel increased the dynamic energy consumption of ways
by up to 19% in comb1 which intensively used the protection levels that consume
high write energy consumption. It is worth noting that since the optimized uniform
scheme utilizes the least write current, the FlexRel scheme will impose more
dynamic energy. On the other hand, since FlexRel utilizes low protection ECCs in
comparison with optimized uniform ECC scheme, it significantly improves the static
energy consumption in almost all of the combinations. Indeed, while the leakage
power of the ways in the FlexRel-equipped cache was significantly lower than the
optimized uniform scheme, the high-performance overhead experienced in comb2
(see Fig. 9) led to the same static energy consumption in both schemes, and further
increased the overall energy consumption by 3%.

522 A. M. H. Monazzah et al.

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

N
or

m
al

iz
ed

 E
ne

rg
y

to
 O

pt
im

iz
ed

U

ni
fo

rm
 S

ch
em

e

Workloads

Dynamic Energy Static Energy Overall Energy

Fig. 8 Energy consumption of the ways of 4 MB shared FlexRel-equipped L2 cache normalized
to optimized uniform scheme

9.00E-01

9.20E-01

9.40E-01

9.60E-01

9.80E-01

1.00E+00

1.02E+00

N
or

m
al

iz
ed

 I
PC

 to
 O

pt
im

iz
ed

U
ni

fo
rm

 S
ch

em
e

Workloads

Uniform FlexRel

Fig. 9 The Instruction per Clock (IPC) of a system includes a 4 MB shared FlexRel-equipped L2
cache normalized to the IPC of a system that includes optimized uniform scheme in its L2 cache

In general, since static energy consumption is the main contributor in the energy
consumption of the cache ways, FlexRel achieves a considerable improvement in
the overall energy consumption (static + dynamic) of ways in the L2 cache. On
average, while FlexRel increases the dynamic energy consumption of the ways by
8%, it saves the static energy consumption and overall energy consumption of L2
cache ways by 12% and 9%, respectively. The calculated amount of saved static
power in each FlexRel-equipped cache’s way is about 70.6 mW. With this amount
of power, we will be able to supply the static power of more than seven 32 KB L1
caches (like the ones considered in this study) each consuming 8.9 mW static power.

Figure 9 shows the Instruction per Clock (IPC) of a system using a 4 MB shared
FlexRel-equipped L2 cache normalized to the IPC of a system that incorporates the
optimized uniform scheme in its L2 cache. Since FlexRel modifies the replacement
policy of the L2 cache to redirect the write requests to their corresponding protection
level’s ways it may impose some performance penalty to the system in the situations
when (1) the target protection level’s ways face intensive write requests from

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 523

Table 5 The amount of way area saving in FlexRel at different protection levels compared with
optimized uniform scheme

ECC protection
level (t)

ECC check bits % of area improvement
Protection Level

1 2 21 8.5

2 3 31 6.6

3 2 21 8.5

4 1 11 10.2

% of average area improvement 7.9

different addresses or (2) we should evict a hit block because the total number of
“1”s in this block forces FlexRel to change its location.

According to Fig. 9, in the worst case scenario, i.e., comb2 that the miss penalty
in FlexRel approach is considerable, the IPC of the system is degraded by 6%.
This result illustrates the importance of cache partitioning in the performance of
the system. In other words, while the considered partitioning provides reasonable
performance for most of the workloads, for comb1, comb2, and comb4, the con-
sidered partitioning utilized by Algorithm 1 led to high-performance overheads for
these workloads. Previously we mentioned that these performance overheads even
affect the energy efficiency of FlexRel for comb1, comb2, and comb4 workloads.
On average, FlexRel decreases the IPC of the system by a negligible 1.7%.

Finally, w.r.t. area, ECC check bits assigned at each protection level are the
main contributor. Accordingly, Table 5 reports ECC check-bits, and the area saving
at different protection levels of FlexRel compared with the optimized uniform
protection scheme. In general, considering a 16-way set associative L2 cache, the
flexible scheme provided by FlexRel could save the occupied ways’ area by about
7.9%, on average.

6 Conclusions and Future Work

In this chapter, we proposed FlexRel, an energy-aware reliability improvement
architectural scheme for STT-RAM cache memories. FlexRel is an architecture-
to-application cross-layer approach that considers a memory architecture provided
with Error Correction Codes (ECCs) and a custom current regulator for the various
cache ways and conducts a trade-off between reliability and energy consumption.
The FlexRel cache controller dynamically profiles the number of 0 → 1 bit
transitions of each write operation and, based on this critical parameter it selects
the most-suitable cache way and current level to deliver the necessary reliability
level (in terms of occurred write errors) while minimizing the energy consumption.

The results of evaluating FlexRel show that, while the scheme satisfies the
reliability requirements, it delivers up to 13.2% energy saving and up to 10.2% cache
ways’ area saving, compared with the most efficient uniform protection scheme. The

524 A. M. H. Monazzah et al.

performance overhead imposed by FlexRel to the system due to the modifications
of cache ways’ access traffics is 1.7%, on average.

As future work, we will further improve and refine the FlexRel in two aspects.
First, we will focus on the proposed replacement policy to improve the performance
of the system for workloads that face significant block evictions due to HW
boundary violations. To minimize the performance overhead, we will attempt to
devise a dynamic cache partitioning scheme capable of changing the configuration
of the FlexRel-equipped cache when considerable performance degradation is
observed.

References

1. Ahn, J., Choi, K.: Selectively protecting error-correcting code for area-efficient and reliable
STT-RAM caches. In: Proceedings of the Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 285–290 (2013)

2. Azad, Z., Farbeh, H., Monazzah, A.M.H., Miremadi, S.G.: An efficient protection technique
for last level STT-RAM caches in multi-core processors. IEEE Trans. Parallel Distr. Syst.
28(6),1564–1577 (2017)

3. Azad, Z., Farbeh, H., Monazzah, A.M.H.: ORIENT: Organized interleaved ECCs for new STT-
MRAM caches. In: Proceedings of the Design, Automation Test in Europe Conference and
Exhibition (DATE), pp. 1187–1190 (2018)

4. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,
D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM SIGARCH Comput. Archit.
News 39(2), 1–7 (2011)

5. Chen, Y., Li, H., Wang, X., Zhu, W., Xu, W., Zhang, T.: A nondestructive self-reference scheme
for spin-transfer torque random access memory (STT-RAM). In: Proceedings of the Design,
Automation Test in Europe Conference and Exhibition (DATE), pages 148–153, 2010.

6. Cheshmikhani, E., Farbeh, H., Asadi, H.: ROBIN: Incremental oblique interleaved ECC for
reliability improvement in STT-MRAM caches. In: Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 173–178 (2019)

7. Cheshmikhani, E., Farbeh, H., Miremadi, S.G., Asadi, H.: TA-LRW: A replacement policy for
error rate reduction in STT-MRAM caches. IEEE Trans. Comput. 68(3), 455–470 (2019)

8. Dong, X., Xu, C., Xie, Y., Jouppi, N.: NVSim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans. Comput. Aided Design Integr. Circuits
Syst. 31(7), 994–1007 (2012)

9. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput. Archit.
News 34(4), 1–17 (2006)

10. Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada,
H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel nonvolatile memory
with spin torque transfer magnetization switching: Spin-ram. In: Proceedings of the IEEE
International Electron Devices Meeting (IEDM), pp. 459–462 (2005)

11. Monazzah, A.M.H., Farbeh, H., Miremadi, S.G.: LER: Least-error-rate replacement algorithm
for emerging STT-RAM caches. IEEE Trans. Device Mat. Rel. 16(2), 220–226 (2016)

12. Jin, Y., Shihab, M., Jung, M.: Area power and latency considerations of STT-MRAM to
substitute for main memory. In: Proceedings of the Symposium on Computer Architecture
(ISCA) (2014)

Exploiting Memory Resilience for Emerging Technologies: An Energy-Aware. . . 525

13. Kim, Y., Gupta, S., Park, S., Panagopoulos, G., Roy, K.: Write-optimized reliable design of
STT MRAM. In: Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), ISLPED ’12, pp. 3–8 (2012)

14. Kim, J., Chen, A., Behin-Aein, B., Kumar, S., Wang, J., Kim, C.: A technology-agnostic
MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies. In:
Proceedings of the Custom Integrated Circuits Conference (CICC), pp. 1–4 (2015)

15. Lin, S., Costello, D.: Error Control Coding: Fundamentals and Applications. Prentice Hall,
Upper Saddle River (1983)

16. Marins de Castro, M., Sousa, R.C., Bandiera, S., Ducruet, C., Chavent, A., Auffret, S., Papusoi,
C., Prejbeanu, I.L., Portemont, C., Vila, L., et al.: Precessional spin-transfer switching in a
magnetic tunnel junction with a synthetic antiferromagnetic perpendicular polarizer. J. Appl.
Phys. 111(7), 07C912 (2012)

17. Monazzah, A.M.H., Shoushtari, M., Miremadi, S.G., Rahmani, A.M., Dutt, N.: QuARK:
Quality-configurable approximate STT-MRAM cache by fine-grained tuning of reliability-
energy knobs. In: Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), pp. 1–6 (2017)

18. Oboril, F., Shirvanian, A., Tahoori, M.: Fault tolerant approximate computing using emerging
non-volatile spintronic memories. In: Proceedings of the VLSI Test Symposium (VTS), pp.
1–1 (2016)

19. Rahmani, A.M., Liljeberg, P., Hemani, A., Jantsch, A., Tenhunen, H.: The Dark Side of Silicon,
1st edn. Springer, Berlin (2016)

20. Ranjan, A., Venkataramani, S., Fong, X., Roy, K., Raghunathan, A.: Approximate storage for
energy efficient spintronic memories. In: Proceedings of the Design Automation Conference
(DAC), pp. 1–6 (2015)

21. Shoushtari, M., Rahmani, A.M., Dutt, N.: Quality-configurable memory hierarchy through
approximation: Special session. In: Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), pp. 1–2 (2017)

22. Sun, H., Liu, C., Zheng, N., Min, T., Zhang, T.: Design techniques to improve the device write
margin for MRAM-based cache memory. In: Proceedings of the Great Lakes Symposium on
VLSI (GLSVLSI), pp. 97–102 (2011)

23. Swami, S., Mohanram, K.: Reliable nonvolatile memories: techniques and measures. IEEE
Design Test 34(3), 31–41 (2017)

24. Teimoori, M.T., Hanif, M.A., Ejlali, A., Shafique, M.: Adam: adaptive approximation manage-
ment for the non-volatile memory hierarchies. In: Proceedings of the Design, Automation Test
in Europe Conference and Exhibition (DATE), pp. 785–790 (2018)

25. Wang, X., Mao, M., Eken, E., Wen, W., Li, H., Chen, Y.: Sliding basket: An adaptive ECC
scheme for runtime write failure suppression of STT-RAM cache. In: Proceedings of the
Design, Automation Test in Europe Conference and Exhibition (DATE), pp. 762–767 (2016)

26. Wen, W., Mao, M., Zhu, X., Kang, S., Wang, D., Chen, Y.: CD-ECC: Content-dependent
error correction codes for combating asymmetric nonvolatile memory operation errors. In:
Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 1–8.
IEEE, New York (2013)

27. Xu, W., Sun, H., Wang, X., Chen, Y., Zhang, T.: Design of Last-level on-chip cache using spin-
torque transfer RAM (STT RAM). IEEE Trans.Very Large Scale Integr. Syst. 19(3), 483–493
(2011)

28. Zhang, Y., Wang, X., Li, Y., Jones, A.K., Chen, Y.: Asymmetry of MTJ switching and its
implication to STT-RAM designs. In: Proceedings of the Design, Automation Test in Europe
Conference and Exhibition (DATE), pp. 1313–1318 (2012)

29. Zhang, Y., Zhang, L., Chen, Y.: MLC STT-RAM design considering probabilistic and
asymmetric MTJ switching. In: Proceedings on International Symposium on Circuits and
Systems (ISCAS), pp. 113–116 (2013)

30. Zhang, Y., Li, Y., Sun, Z., Li, H., Chen, Y., Jones, A.K.: Read performance: The newest barrier
in scaled STT-RAM. IEEE Trans. Very Large Scale Integr. Syst. 23(6), 1170–1174 (2015)

526 A. M. H. Monazzah et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Hardware/Software Codesign for Energy
Efficiency and Robustness: From
Error-Tolerant Computing to
Approximate Computing

Abbas Rahimi and Rajesh K. Gupta

1 Introduction

Let us step back and first look at an ideal hardware where the entire software
stack can be executed. In reality, however, the hardware underneath of computing is
being challenged as CMOS scaling continues to nanometer dimensions [14, 41]. The
hardware experiences different sources of variability over time, or across different
parts (see Fig. 1a). These variations include: manufacturing process variability that
causes static variations in critical dimension, channel length, and threshold voltage
of devices [6]; temporal aging/wear out variability that causes slow degradation in
devices [22]; and finally, dynamic variability in ambient condition that is caused
by fluctuations in operating temperature and supply voltage [8, 25]. The way that
designers typically combat with these sources of variability is to consider worst-
case design by imposing a large margin in hardware to ensure the correct execution
of the software stack. This conservative margin leads to a loss of energy efficiency.
Further, the ever-increasing amount of variability [15] limits how far we can drive
down the energy per operation (i.e., voltage scaling). This means that we cannot
reduce the energy as we used to.

What if we reduce the excessive margin to enable better energy scaling? The
direct manifestation of reducing margin is a timing error as shown in Fig. 1b. A tim-
ing error means capturing an invalid value to a storage element like a flip-flop or a
memory cell, so the result of computation might become wrong. Instead of blindly
dealing with variability and its resulting timing errors, we propose to expose them to

A. Rahimi (�)
ETH Zurich, Zurich, Switzerland
e-mail: abbas@iis.ee.ethz.ch

R. K. Gupta
University of California San Diego, La Jolla, CA, USA
e-mail: gupta@cs.ucsd.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_22

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_22&domain=pdf
mailto:abbas@iis.ee.ethz.ch
mailto:gupta@cs.ucsd.edu
https://doi.org/10.1007/978-3-030-52017-5_22

528 A. Rahimi and R. K. Gupta

Reality: variability in �me or part

Worst-case Design:
Excessive Margin

Process

Aging
Temperature

Supply

Hardware Abstrac�on Layer

Applica�on Applica�on

(a) Worst-case design by considering excessive margin leads to loss of energy efficiency.

Reducing
Excessive
Margin by

Opportunis�c
So�ware

Errors!
Hardware Abstrac�on Layer

Applica�on Applica�on

Underdesigned
Hardware

Reality: variability in �me or part

(b) Reducing excessive margin results in timing errors.

Fig. 1 Overdesigned (i.e., worst-case) hardware vs. underdesigned hardware and their interactions
with software stack. (a) Worst-case design by considering excessive margin leads to loss of energy
efficiency. (b) Reducing excessive margin results in timing errors

the higher levels in the stack where their side effects can be mitigated [27]. Essen-
tially, we develop an opportunistic software layer that can operate with reduced
margins and sense variability in underdesigned hardware—instead of overdesigned
hardware with positive margins. The software layer accordingly performs adaptation
by means of metadata mechanisms that reflect the state of hardware and variability,
then the software can perform introspection and adaptation. The main continuations
of this chapter lie on the application, software, and architectural layers as illustrated
in Fig. 2.

Hardware/Software Codesign for Energy Efficiency and Robustness 529

Fig. 2 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions

app
lic

ati
on

SW
/O

S

arc
hit

ect
ure

cir
cui

t/g
ate

ph
ysi

cs

application

SW/OS

architecture

circuit/gate

physics

1.1 Clockwise Y-Chart: From Positive Margin, to Zero Margin,
to Negative Margin

In the following, we discuss about the possible approaches to reduce margin and
handle timing errors. The tree possible approaches are conceptualized in a Y-chart
shown in Fig. 3.

This first approach is to predict and prevent the errors by keeping a positive
margin. Hence, we try to reduce the excessive margin but it is still positive to ensure
the error-free execution of software. In this direction, our work spans defining and
measuring the notion of error tolerance, from instruction set architecture (ISA)
to procedures, and to parallel programs. These measures essentially capture the
likelihood of errors and associated cost of error correction at different levels. We
first characterize the manifestations of variability in ISA [28] that is the finest
granularity to represent a processor functionality. Then, we characterize a sequence
of instructions where the timing errors can be eliminated [31]. Going higher in the
software stack, we schedule different procedure calls in multi-core architecture [29]
and finally a large number of kernels on massively parallel cores [32] such that there
are no timing errors. At the boundary of hardware/software, we focus on adaptive
compilation methods to reduce the side effects of aging and increase lifetime for
massively parallel integrated architectures like GPUs [30].

What is the next approach? The next approach is about detecting and correction
errors by reducing the margin to zero (i.e., operating at the edge of errors). Basically,
we reduce the margin to zero such that the errors can occur. Hence, we first need
to detect the errors by means of circuit sensors [7, 11, 46] and then take actions
to correct them. Our focus was instead on reducing the cost of error correction in
software. In this direction, we focus on variability-aware runtime environment to
cover various embedded parallel workloads in OpenMP including tasks [34, 38],
parallel sections, and loops [37].

Finally, the third approach is about accepting errors—i.e., approximate
computing—by pushing the margin to negative. This means that the errors and
approximations are becoming acceptable as long as the outcomes have a well-

530 A. Rahimi and R. K. Gupta

Hardware

Software

+ Margin: Predicting and Preventing Errors 0 Margin: Detecting and Correcting Errors

- Margin: Accepting Errors (Approximate Computing)

Kernel-Level Tolerance

Procedure-Level Tolerance

Adaptive Compilation

Sequence-Level Tolerance

Instruction-Level Tolerance

Work-Unit Tolerance
Scalable Task-Level Tolerance

Task-Level Tolerance

OpenMP Support for Approximation

HDl Support for Approximation

FPGA Workflow Support for Approximation

Approximate Functional Unit

Approximate Instruction Reuse

Fig. 3 Taxonomy of error tolerance in a clockwise Y-Chart: from positive margin, to zero margin,
to finally negative margin

defined statistical behavior. In this approach, fatal errors can be avoided at the
cost of benign approximation that can in fact allow for improving throughput
and energy efficiency. Toward this goal, we enable approximate computing
in instructions [33, 36, 39, 40], functional units [16–19], runtime execution
environments [35], and ultimately hardware description languages [47], and high-
level synthesis [23].

By looking at the Y-chart clockwise, we go from preventing errors, to correcting
errors, and finally to accepting errors. This move also changes the margin from
positive, to zero, and eventually to negative, leading to higher energy efficiency. In
the rest of this chapter, we only focus on two methods describing how cooperative
hardware/software techniques can improve energy efficiency and robustness in
the presence of variability. These two methods, highlighted with bold in the Y-
chart, cover examples from approaches with positive margin (i.e., predicting and
preventing errors in Sect. 2) and negative margin (i.e., accepting errors in Sect. 3).
Interested readers can refer to [42] for reading more about approaches with zero
margin (i.e., detecting and correcting errors).

Hardware/Software Codesign for Energy Efficiency and Robustness 531

2 Positive Margin Example: Mitigating Aging in GPUs
by Adaptive Compilation

In this section, we demonstrate a prime example of software that can respond to
hardware variations due to aging. The goal is to reduce the excessive margin due to
device aging in a setting where margin is still positive to guarantee correct execution.
The idea is to combine hardware sensing circuits and adaptive software (an aging-
aware compiler) to manage the workload stress. One major aging mechanism is
negative bias temperature instability (NBTI) that adversely affects the reliability of
a processing element by introducing new delay-induced faults. However, the effect
of these delay variations is not uniformly spread across processing elements within
a chip: some are affected more—hence less reliable—than others. We propose
an NBTI-aware compiler-directed very long instruction word (VLIW) assignment
that uniformly distributes the stress of instructions among available processing
elements, with the aim of minimizing aging without any performance penalty [30].
The compiler matches the measured aging degradation with the distribution of
instructions to equalize the expected lifetime of each processing element.

The rest of this chapter is organized as follows: Section 2.1 covers an overview of
NBTI-induced performance degradation. Section 2.2 describes a GPU architecture
and its workload distribution used in this study. Finally, our adaptive compiler is
presented in Sect. 2.3.

2.1 NBTI Degradation

Among various aging mechanisms in hardware, the generation of interface traps
under NBTI in PMOS transistors has become a critical issue in determining
the lifetime of CMOS devices [10]. NBTI manifests itself as an increase in the
PMOS transistor voltage threshold (Vth) that causes delay-induced failures (see
Fig. 4 (left)). NBTI is best captured by the reaction–diffusion model [26]. This
model describes NBTI in two stress and recovery phases. NBTI occurs due to
the generation of the traps at the Si–SiO2 interface when the PMOS transistor is
negatively biased (i.e., during the stress phase). As a result, Vth of the transistor
increases which in turn slows down the device. Removing stress from the PMOS
transistor can eliminate some of the traps which partially recover the Vth shift. This
is also known as the recovery phase. The work in [5] derived a long-term cycle-to-
cycle model of NBTI. NBTI effects can be significant: its impact on circuit delay is
about 15% on a 65 nm technology node and it gets worse in sub-65 nm nodes [4].
Further, NBTI-induced performance degradation is typically non-uniform which is a
major concern for many-core GPUs, e.g., with up to 320 five-way VLIW processing
elements [1].

532 A. Rahimi and R. K. Gupta

390

395

400

405

410

415

0 60 120 180 240 300 360

Vt
h

(m
V)

Time (hour)

390

395

400

405

410

415

0 60 120 180 240 300 360

Vt
h

(m
V)

Time (hour)

Reduced margin

Margin

Equalizes expected life�me of PEs: ΔVth 34%↓Fa�gued PE (X) limits life�me!

Margin

X Y
Z W

Initial ΔVth

Uneven VLIW
workload!

X
40%

Y
21%

Z
20%

W
19%

Naive kernel execu�on

Naive Kernel

AMD
Evergreen

GPU
Device

Adap�ve healthy kernel execu�on

NBTI Sensors

Naive Kernel

Adap�ve Com.

Host CPU

Uniform VLIW
assignment:
Relax “fa�gued” PEs
Stress “young” PEs

Healthy Kernel

AMD
Evergreen

GPU
DeviceStress � Aging � Vth shi�

Adap�ve SW:
Aging-aware compiler

]V[tfihs
htV Stress Recovery

Time

HW

Fig. 4 Adaptive compiler to mitigating aging in GPUs: (left) sensing NBTI degradation; (middle)
naive kernel execution and its impact on degradation of processing elements; (right) adaptive
compiler and healthy kernel execution

2.2 GPU Architecture and Workload

We focus on the evergreen family of AMD GPUs (a.k.a. Radeon HD 5000 series),
designed to target not only graphics applications but also general-purpose data-
intensive applications. The Radeon HD 5870 GPU compute device consists of 20
compute units (CUs), a global front-end ultra-thread dispatcher, and a crossbar to
connect the global memory to the L1-caches. Every CU contains a set of 16 stream
cores. Finally, each stream core contains five processing elements (PEs), labeled X,
Y, Z, W, and T constituting a VLIW processor to execute machine instructions in
a vector-like fashion. The five-way VLIW processor capable of issuing up to five
floating point scalar operations from a single VLIW consists primarily of five slots
(slotX, slotY , slotZ , slotW , slotT). Each slot is related to its corresponding PE. Four
PEs (X, Y, Z, W) can perform up to four single-precision operations separately and
perform two double-precision operations together, while the remaining one (T) has a
special function unit for transcendental operations. In each clock cycle, VLIW slots
supply a bundle of data-independent instructions to be assigned to the related PEs
for simultaneous execution. In an n-way VLIW processor, up to n data-independent
instructions, available on n slots, can be assigned to the corresponding PEs and be
executed simultaneously. Typically, this is not done in practice because the compiler
may fail to find sufficient instruction-level parallelism to generate complete VLIW
instructions. On average, if m out of n slots are filled during an execution, we call
the achieved packing ratio is m/n. The actual performance of a program running on
a VLIW processor largely depends on the packing ratio.

Hardware/Software Codesign for Energy Efficiency and Robustness 533

2.2.1 GPU Workload Distribution

Here, we analyze the workload distribution on the Radeon HD GPUs at architecture
level, where there are many PEs to carry out computations. As it is mentioned
earlier, the NBTI-induced degradation strongly depends on the resource utilization,
which depends on the execution characteristics of the workload. Thus, it is essential
to analyze how often the PEs are exercised during the execution of the workload.
To this end, we first monitor the utilization of various CUs (inter-CU) and then the
utilization of PEs within a CU (intra-CU).

To examine the inter-CU workload variation, the total number of executed
instructions by each CU is collected during a kernel execution. We observe that the
CUs execute almost equal number of instructions, and there is a negligible workload
variation among them. We have configured six compute devices with different
number of CUs, {2, 4,..., 64}, to finely examine the effect of the workload variation
on a variety of GPU architectures.1 For instance, during DCT kernel execution,
the workload variation between CUs ranges from 0% to 0.26% depending on the
number of physical CUs on the compute device. Execution of a large number of
different kernels confirms that the inter-CU workload variation is less than 3%,
when running on the device with 20 CUs (i.e., HD 5870). This nearly uniform inter-
CU workload distribution is accomplished by load balancing and uniform resource
arbitration algorithms of dispatcher in the GPU architecture.

Next, we examine the workload distribution among the PEs. Figure 4 (middle)
shows the percentage of the executed instructions by various PEs during execution
of kernels. We only consider four PEs (PEX, PEY , PEZ , PEW) which are identical
in their functions [1]; they differ only in the vector elements to which they write
their result at the end of the VLIW. As shown, the instructions are not uniformly
distributed among PEs. For instance, the PEX executes 40% of ALU instructions,
while the PEW executes only 19% of the instructions. This non-uniform workload
variation causes non-uniform aging among PEs. In other words, some PEs are
exhausted more than other and thus have shorter lifetime as shown in Fig. 4
(middle). Unfortunately, this non-uniformity happens within all CUs since their
workload is highly correlated together. Therefore, no PE throughout the entire
compute device is immune from this unbalanced utilization.

The root cause of non-uniform aging among PEs is the frequent and non-uniform
execution of VLIW slots. In other words, higher utilization of PEX implies that
slotX of VLIW is occupied more frequently than the other slots. This substantiates
that the compiler does not uniformly assign the independent instructions to various
VLIW slots, mainly because the compiler only employs optimization for increasing
the packing ratio through finding more parallelism to fully pack the VLIW slots.
The VLIW processors are designed to give the compiler tight control over program

1The latest Radeon HD 5000 series, HD 5970, has 40 CUs featuring 4.3 billion transistors in 40 nm
technology.

534 A. Rahimi and R. K. Gupta

execution; however, the flexibility afforded by such compilers, for instance, to tune
the order of instructions packing, can be used towards reliability improvement.

2.3 Adaptive Aging-Aware Compiler

The key idea of an aging-aware compilation is to assign independent instructions
uniformly to all slots: idling a fatigued PE and reassigning its instructions to a
young PE through swapping the corresponding slots during the VLIW bundle code
generation. This basically exposes the inherent idleness in VLIW slots and guides
its distribution that does matter for aging. Thus, the job of dynamic binary optimizer,
for k-independent instructions, is to find k-young slots, representing k-young PEs,
among all available n slots, and then assign instructions to those slots. Therefore,
the generated code is a “healthy” code that balances workload distribution through
various slots maximizing the lifetime of all PEs (see Fig. 4 (right)). Here, we briefly
describe how these statistics can be obtained from silicon, and how the compiler can
predict and thus control the non-uniform aging. The adaptation flow includes four
steps: (1) aging sensor readout; (2) kernel disassembly, static code analysis, and
calibration of predictions; (3) uniform slot assignment; (4) healthy code generation.
We explain them in the following.

The compiler first needs to access the current aging data (�Vth) of PEs to be
able to adapt the code accordingly. The �Vth is caused by the temporal degradation
due to NBTI and/or the intrinsic process variation, thus PEs even during the early
life of a chip might have different aging. Employing the compact per-PE NBTI
sensors [44, 45] which provide �Vth measurement with 3σ accuracy of 1.23 mV
for a wide range of temperature enables large scale data-collection across all PEs.
The performance degradation of every PE can be reliably reported by a per-PE
NBTI sensor, thanks to the small overhead of these sensors. The sensors support
digital frequency outputs that are accessed through memory-mapped I/O by the
compiler in arbitrary epochs of the post-silicon measurement. After sensor readouts,
the compiler estimates the degradation of PEs using the NBTI models. In addition to
the current aging data, the compiler needs to have an estimate regarding the impact
of future workload stress on the various PEs. Hence, a just-in-time disassembler
disassembles a naive kernel binary to a device-dependent assembly code in which
the assignment of instructions to the various slots (corresponding PEs) are explicitly
defined and are thus observable by the compiler. Then, a static code analysis
technique is applied that estimates the percentage of instructions that will be carried
out on every PE in a static sense. It extracts the future stress profile, and thus
the utilization of various PEs using the device-dependent assembly code. If the
predicted stress of a PE is overestimated or underestimated, mainly due to the static
analysis of the branch conditions of the kernel’s assembly code, a linear calibration
module fits the predicted stress to the observed stress, in the next adaptation period.

Thus far, we have described how the compiler evaluates the current performance
degradation (aging) of every PE and their future performance degradation due to

Hardware/Software Codesign for Energy Efficiency and Robustness 535

the naive kernel execution. Then, the compiler uses this information to perform
code transformations with the goal of improving reliability, without any penalty in
the throughput of code execution (maintaining the same parallelism). To minimize
stress, the compiler sorts the predicted performance degradation of the slots increas-
ingly and the aging of the slots decreasingly and then applies a permutation to assign
fewer/more instructions to higher/lower stressed slots. This algorithm is applied for
every adaptation period. As a result of the slot reallocation, the minimum/maximum
number of instructions is assigned to the highest/lowest stressed slot for the future
kernel execution. This reduces �Vth shifts by 34%, thus uniforming the lifetime of
PEs and allowing for reducing the positive margin as shown in Fig. 4 (right).

Execution of all examined kernels shows that the average packing ratio is 0.3
which means there is a large fraction of empty slots in which PEs can be relaxed
during kernels execution. This low packing ratio is mainly due to the limitation of
instruction-level parallelism. The proposed adaptive compilation approach super-
poses on top of all optimization performed by a naive compiler and does not
incur any performance penalty since it only reallocates the VLIW slots (slips the
scheduled instructions from one slot to another) within the same scheduling and
order determined by the naive compiler. In other words, our compiler guarantees
the iso-throughput execution of the healthy kernel. It also runs fully in parallel with
GPU on a host CPU, thus there will be no penalty for GPU kernel execution if
dynamic compilation of one kernel can be overlapped with the execution of another
kernel. You can refer to [49] for further details.

3 Negative Margin Example: Enabling Approximate
Computing in FPGA Workflow

Modern applications including graphics, multimedia, web search, and data analytics
exhibit significant degrees of tolerance to imprecise computation. This amenability
to approximation provides an opportunity to reduce the excessive margin, namely to
negative, by accepting errors that trade the quality of the results for higher efficiency.
Approximate computing is a promising avenue that leverages such tolerance of
applications to errors [12, 13, 20, 21, 24, 47]. However, there is a lack of techniques
that exploits this opportunity in FPGAs.

In [23], we aim to bridge the gap between approximation and the FPGA
acceleration through an automated design workflow. Exploiting this opportunity is
particularly important for FPGA accelerators that are inherently subject to many
resource constraints. To better utilize the FPGA resources, we devise an automated
design workflow for FPGAs [23] that leverages imprecise computation to increase
data-level parallelism and achieve higher computational throughput. The core of
our workflow is a source-to-source compiler that takes in an input kernel and
applies a novel optimization technique that selectively reduces the precision of the
kernel data and operations. By selectively reducing the precision of the data and

536 A. Rahimi and R. K. Gupta

operation (analogous to setting margin to negative), the required area to synthesize
the kernel on the FPGA decreases allowing to integrate a larger number of
operations and parallel kernels in the fixed area of the FPGA (i.e., improving energy
efficiency per unit of area). The larger number of integrated kernels provides more
hardware context to better exploit data-level parallelism in the target applications.
To effectively explore the possible design space of approximate kernels, we exploit
a genetic algorithm to find a subset of safe-to-approximate operations and data
elements and then tune their precision levels until the desired output quality is
achieved. Our method exploits a fully software technique and does not require
any changes to the underlying FPGA hardware. We evaluate it on a diverse set of
data-intensive OpenCL benchmarks from the AMD accelerated parallel processing
(APP) SDK v2.9 [3]. We later describe OpenCL execution model and its mapping
on FPGA in Section 3.1. The synthesis result on a Stratix V Altera FPGA shows that
our approximation workflow yields 1.4×–3.0× higher throughput with less than 1%
quality loss (see Sect. 3.2).

3.1 OpenCL Execution Model and Mapping on FPGAs

Altera and Xilinx recently offer high-level acceleration frameworks for OpenCL [2,
43], hence we target acceleration of data-intensive computational OpenCL applica-
tions. The challenge is however devising a workflow that can be plugged into the
existing toolsets and can automatically identify the opportunities for approximation
while keeping the quality loss reasonably low. OpenCL is a platform-independent
framework for writing programs that execute across a heterogeneous system
consisting of multiple compute devices including CPUs or accelerators such as
GPUs, DSPs, and FPGAs. OpenCL uses a subset of ISO C99 with added extensions
for supporting data and task-based parallel programming models. The programming
model in OpenCL comprises of one or more device kernel codes in tandem with
the host code. The host code typically runs on a CPU and launches kernels on
other compute devices like the GPUs, DSPs, and/or FPGAs through API calls.
The instance of an OpenCL kernel is called a work-item. These kernels execute on
compute devices that are a set of compute units (CUs), each comprising of multiple
PEs having ALUs. The work-items execute on a single PE and exercise the ALU.

The Altera OpenCL SDK [2] allows programmers to use high-level OpenCL
kernels, written for GPUs, to generate an FPGA design with higher performance
per Watt [9]. In this work, an OpenCL kernel is first compiled and then synthesized
as a special dedicated hardware for mapping on an FPGA. FPGAs can further
improve the performance benefits by creating multiple copies of the kernel pipelines
(synthesized version of an OpenCL kernel). For instance, this replication process
can make n copies of the kernel pipeline. As the kernel pipelines can be executed
independently from one another, the performance would scale linearly with the
number of copies created owing to the data-level parallelism model supported by
OpenCL.

Hardware/Software Codesign for Energy Efficiency and Robustness 537

In the following, we describe how our method can reduce the amount of resources
for a kernel pipeline to save area and exploit remaining area resources to boost
performance by replication. Our method systematically reduces the precision of data
and operations in OpenCL kernels to shrink the resources used per kernel pipeline by
transforming complex kernels to simple kernels that produce approximate results.

3.2 Source-to-Source Compiler

We provide a source-to-source compiler to generate approximate kernels from
OpenCL kernels with exact specification as shown in Fig. 5. This transformation
automatically detects and simplifies parts of the kernel code that can be executed
with reduced precision while preserving the desired quality-of-result. To achieve
this goal, our compiler takes in as inputs, an exact OpenCL kernel, a set of input
test cases, and a metric for measuring the quality-of-result target. The compiler
investigates the exact kernel code and detects data elements, i.e., OpenCL kernel
variables, that provide possible opportunities for increased performance in exchange
for accuracy. It then automatically generates a population of approximate kernels by

Mutation/
Crossover

Selection

GPU accelerated
profiling
Fitness evaluation

GGenetic-basedd Approximationn Algorithm

Quality
Constraint

Test cases

Exactt OpenCL kernel

Source-to-sourcee Compiler

Population
(Modified kernels)

……………………………
……………………………
……………………………
……………………………
……………………….......
.......................................

……………………………� Approximable

� Approximable
……………………………
……………………….......

Analysis and Pruning

Approximatee
kernel

� Least area
� Acceptablee quality

HLSS Tool
(OpenCLL too

FPGA)

Fig. 5 FPGA approximation design workflow

538 A. Rahimi and R. K. Gupta

1.00

2.02

3.01

Exact Best Approximate Unacceptable
Approximate

Improved
Throughput (×)

PSNR=7.8dBPSNR>30dB

5
Kernels

13
Kernels

16
Kernels

Exact
OpenCL kernel

Source-to-
source

compiler

Approximate
kernel

Precision
tuning

No loss

Fig. 6 Example of mapping exact and approximate kernels of Sobel filter on FPGA

means of a genetic algorithm. It can select the approximate kernels that produce
acceptable results with the help of GPU profiling. These approximate kernels
provide improved performance benefits by reducing the area when implemented
on the FPGAs. The compiler finally outputs an optimized approximate kernel with
the least area whose output quality satisfies the quality-of-result target.

The compiler uses the precision of the operations and data to tune performance as
a trade-off against precision. The transformation investigates a set of kernels where
in each version, some of these potential variables are replaced with a less accurate
variable. To avoid a huge design space exploration, we devise an algorithm that
first detects those variables that are amenable to approximation and then applies a
genetic algorithm to approximate the kernel. We discuss the details of our algorithm
in [23].

Figure 6 shows an example of Sobel filter kernel that is optimized by our
compiler. Naive mapping of exact Sobel kernel allows us to map five instances of
the kernel on the FPGA. However, by using the approximate version of kernel, we
can map 13 instances of kernel on the same FPGA roughly improving throughput
by 2×, thanks to the data-level parallel execution of the kernel, while meeting
the quality constraint. We set the quality loss target to a maximum of 0.7% for
image processing applications (which is equivalent to PSNR of a minimum 30 dB)
and 1% for other applications which is conservatively aligned with other work on
quality trade-offs [20, 21, 24, 48]. Benchmarking five kernels from OpenCL AMD
APP SDK v2.9 shows that our compiler integrates a larger number of parallel
kernels on the same FPGA fabric that leads to 1.4×–3.0× higher throughput on

Hardware/Software Codesign for Energy Efficiency and Robustness 539

a modern Altera FPGA with less than 1% loss of quality. This is a prime example of
accepting disciplined errors, in the context of approximate computing, for improved
throughput. The approach can be generalized to any controllable error caused by
various sources. Further details are provided in [23].

4 Conclusion

Microelectronic variability is a phenomenon at the intersection of microelectronic
scaling, semiconductor manufacturing, and how electronic systems are designed and
deployed. To address this variability, designers resort to margins. We show how such
excessive margins can be reduced, and their effects can be mitigated, by a synergy
between hardware and software leading to efficient and robust microelectronic
circuit and systems.

We first explore approaches to reduce the margin and enable better than worst-
case design while avoiding the errors. We demonstrate its effectiveness on GPUs
where the effect of variations is not uniformly spread across over thousands
processing elements. Hence, we devise an adaptive compiler that equalizes the
expected lifetime of each processing element by regenerating an aging-aware
healthy kernel. Such new kernel guides its workload distribution that does matter
for the aging, hence effectively responding to the specific health state of GPUs.

Next, we focus on approaches that significantly reduce the margins by accepting
errors and exploiting approximation opportunities in computation. We explore
purely software transformation methods to unleash untapped capabilities of the
contemporary fabrics for exploiting approximate computing. Exploiting this oppor-
tunity is particularly important for FPGA accelerators that are inherently subject
to many resource constraints. To better utilize the FPGA resources, we develop
an automated design workflow for FPGA accelerators that leverages approximate
computation to increase data-level parallelism and achieve higher computational
throughput.

References

1. Advanced Micro Devices, Inc: AMD Evergreen Family Instruction Set Architecture
2. Altera sdk for opencl: http://www.altera.com/products/software/opencl/opencl-index.html
3. Amd app sdk v2.9: http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-

parallel-processing-app-sdk/
4. Bernstein, K., Frank, D., Gattiker, A., Haensch, W., Ji, B., Nassif, S., Nowak, E., Pearson, D.,

Rohrer, N.: High-performance cmos variability in the 65-nm regime and beyond. IBM J. Res.
Dev. 50(4.5), 433–449 (2006). https://doi.org/10.1147/rd.504.0433

5. Bhardwaj, S., Wang, W., Vattikonda, R., Cao, Y., Vrudhula, S.: Predictive modeling of the
nbti effect for reliable design. In: Custom Integrated Circuits Conference, 2006, CICC ’06,
pp. 189–192. IEEE (2006). https://doi.org/10.1109/CICC.2006.320885

http://www.altera.com/products/software/opencl/opencl-index.html
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://doi.org/10.1147/rd.504.0433
https://doi.org/10.1109/CICC.2006.320885

540 A. Rahimi and R. K. Gupta

6. Bowman, K., Duvall, S., Meindl, J.: Impact of die-to-die and within-die parameter fluctuations
on the maximum clock frequency distribution. In: Solid-State Circuits Conference, 2001.
Digest of Technical Papers, ISSCC, 2001, pp. 278–279. IEEE International (2001). https://
doi.org/10.1109/ISSCC.2001.912637

7. Bowman, K., Tschanz, J., Kim, N.S., Lee, J., Wilkerson, C., Lu, S., Karnik, T., De, V.: Energy-
efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J.
Solid State Circuits 44(1), 49–63 (2009). https://doi.org/10.1109/JSSC.2008.2007148

8. Bowman, K., Tokunaga, C., Tschanz, J., Raychowdhury, A., Khellah, M., Geuskens, B., Lu,
S.L., Aseron, P., Karnik, T., De, V.: Dynamic variation monitor for measuring the impact of
voltage droops on microprocessor clock frequency. In: Custom Integrated Circuits Conference
(CICC), 2010, pp. 1–4. IEEE (2010). https://doi.org/10.1109/CICC.2010.5617415

9. Chen, D., Singh, D.: Invited paper: Using opencl to evaluate the efficiency of cpus, gpus and
fpgas for information filtering. In: 22nd International Conference on Field Programmable
Logic and Applications (FPL), 2012, pp. 5–12. https://doi.org/10.1109/FPL.2012.6339171

10. Chen, G., Li, M.F., Ang, C., Zheng, J., Kwong, D.L.: Dynamic nbti of p-mos transistors and
its impact on mosfet scaling. IEEE Electron Device Lett. 23(12), 734–736 (2002). https://doi.
org/10.1109/LED.2002.805750

11. Drake, A., Senger, R., Deogun, H., Carpenter, G., Ghiasi, S., Nguyen, T., James, N., Floyd,
M., Pokala, V.: A distributed critical-path timing monitor for a 65nm high-performance
microprocessor. In: Solid-State Circuits Conference, 2007, ISSCC 2007. Digest of Technical
Papers, pp. 398–399. IEEE International (2007). https://doi.org/10.1109/ISSCC.2007.373462

12. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Architecture support for disciplined
approximate programming. In: Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,
pp. 301–312. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2150976.2151008.
http://doi.acm.org/10.1145/2150976.2151008

13. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for general-
purpose approximate programs. In: Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-45, pp. 449–460. IEEE Computer
Society, Washington, DC, USA (2012). https://doi.org/10.1109/MICRO.2012.48

14. Ghosh, S., Roy, K.: Parameter variation tolerance and error resiliency: New design paradigm
for the nanoscale era. Proc. IEEE 98(10), 1718–1751 (2010). https://doi.org/10.1109/JPROC.
2010.2057230

15. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,
Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 32(1), 8–23 (2013). https://doi.org/10.1109/TCAD.2012.2223467

16. Jiao, X., Rahimi, A., Narayanaswamy, B., Fatemi, H., de Gyvez, J.P., Gupta, R.K.: Supervised
learning based model for predicting variability-induced timing errors. In: 2015 IEEE 13th
International New Circuits and Systems Conference (NEWCAS), pp. 1–4 (2015). https://doi.
org/10.1109/NEWCAS.2015.7182029

17. Jiao, X., Jiang, Y., Rahimi, A., Gupta, R.K.: Wild: A workload-based learning model to predict
dynamic delay of functional units. In: 2016 IEEE 34th International Conference on Computer
Design (ICCD), pp. 185–192 (2016). https://doi.org/10.1109/ICCD.2016.7753279

18. Jiao, X., Jiang, Y., Rahimi, A., Gupta, R.K.: Slot: A supervised learning model to predict
dynamic timing errors of functional units. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2012 (2017)

19. Jiao, X., Rahimi, A., Jiang, Y., Wang, J., Fatemi, H., de Gyvez, J.P., Gupta, R.K.: Clim: A
cross-level workload-aware timing error prediction model for functional units. IEEE Trans.
Comput. 67(6), 771–783 (2018). https://doi.org/10.1109/TC.2017.2783333

20. Kahng, A., Kang, S.: Accuracy-configurable adder for approximate arithmetic designs. In:
Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 820–825 (2012)

https://doi.org/10.1109/ISSCC.2001.912637
https://doi.org/10.1109/ISSCC.2001.912637
https://doi.org/10.1109/JSSC.2008.2007148
https://doi.org/10.1109/CICC.2010.5617415
https://doi.org/10.1109/FPL.2012.6339171
https://doi.org/10.1109/LED.2002.805750
https://doi.org/10.1109/LED.2002.805750
https://doi.org/10.1109/ISSCC.2007.373462
https://doi.org/10.1145/2150976.2151008
http://doi.acm.org/10.1145/2150976.2151008
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/JPROC.2010.2057230
https://doi.org/10.1109/JPROC.2010.2057230
https://doi.org/10.1109/TCAD.2012.2223467
https://doi.org/10.1109/NEWCAS.2015.7182029
https://doi.org/10.1109/NEWCAS.2015.7182029
https://doi.org/10.1109/ICCD.2016.7753279
https://doi.org/10.1109/TC.2017.2783333

Hardware/Software Codesign for Energy Efficiency and Robustness 541

21. Kulkarni, P., Gupta, P., Ercegovac, M.: Trading accuracy for power with an underdesigned
multiplier architecture. In: 2011 24th International Conference on VLSI Design (VLSI
Design), pp. 346–351 (2011). https://doi.org/10.1109/VLSID.2011.51

22. Li, X., Qin, J., Bernstein, J.: Compact modeling of mosfet wearout mechanisms for circuit-
reliability simulation. IEEE Trans. Device Mater. Reliab. 8(1), 98–121 (2008). https://doi.org/
10.1109/TDMR.2008.915629

23. Lotfi, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., Gupta, R.K.: Grater: An approx-
imation workflow for exploiting data-level parallelism in fpga acceleration. In: 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1279–1284 (2016)

24. Moreau, T., Wyse, M., Nelson, J., Sampson, A., Esmaeilzadeh, H., Ceze, L., Oskin, M.: Snnap:
Approximate computing on programmable socs via neural acceleration. In: 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA), pp. 603–614
(2015). https://doi.org/10.1109/HPCA.2015.7056066

25. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., Benini, L., De Micheli, G.:
Temperature control of high-performance multi-core platforms using convex optimization. In:
Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’08, pp. 110–
115. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1403375.1403405. http://doi.
acm.org/10.1145/1403375.1403405

26. Ogawa, S., Shiono, N.: Generalized diffusion-reaction model for the low-field charge-buildup
instability at the si-sio2 interface. Phys. Rev. 51(7), 4218–4230 (1995)

27. Rahimi, A.: From variability-tolerance to approximate computing in parallel computing
architectures. Ph.D. thesis, University of California San Diego, https://escholarship.org/uc/
item/1c68g008 (2015)

28. Rahimi, A., Benini, L., Gupta, R.K.: Analysis of instruction-level vulnerability to dynamic
voltage and temperature variations. In: Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2012, pp. 1102–1105 (2012). https://doi.org/10.1109/DATE.2012.6176659

29. Rahimi, A., Benini, L., Gupta, R.K.: Procedure hopping: A low overhead solution to mitigate
variability in shared-l1 processor clusters. In: Proceedings of the 2012 ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, ISLPED ’12, pp. 415–420. ACM,
New York, NY, USA (2012). https://doi.org/10.1145/2333660.2333754. http://doi.acm.org/10.
1145/2333660.2333754

30. Rahimi, A., Benini, L., Gupta, R.K.: Aging-aware compiler-directed vliw assignment for
gpgpu architectures. In: Proceedings of the 50th Annual Design Automation Conference,
DAC ’13, pp. 16:1–16:6. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2463209.
2488754. http://doi.acm.org/10.1145/2463209.2488754

31. Rahimi, A., Benini, L., Gupta, R.K.: Application-adaptive guardbanding to mitigate static and
dynamic variability. IEEE Trans. Comput. (2013). https://doi.org/10.1109/TC.2013.72

32. Rahimi, A., Benini, L., Gupta, R.K.: Hierarchically focused guardbanding: An adaptive
approach to mitigate pvt variations and aging. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pp. 1695–1700 (2013). https://doi.org/10.7873/DATE.
2013.342

33. Rahimi, A., Benini, L., Gupta, R.K.: Spatial memoization: Concurrent instruction reuse to
correct timing errors in simd architectures. IEEE Trans. Circuits Syst. II Express Briefs 60(12),
847–851 (2013). https://doi.org/10.1109/TCSII.2013.2281934

34. Rahimi, A., Marongiu, A., Burgio, P., Gupta, R.K., Benini, L.: Variation-tolerant openmp
tasking on tightly-coupled processor clusters. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pp. 541–546 (2013). https://doi.org/10.7873/DATE.
2013.121

35. Rahimi, A., Marongiu, A., Gupta, R.K., Benini, L.: A variability-aware openmp environment
for efficient execution of accuracy-configurable computation on shared-fpu processor clusters.
In: 2013 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 1–10 (2013). https://doi.org/10.1109/CODES-ISSS.2013.6659022

https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/TDMR.2008.915629
https://doi.org/10.1109/TDMR.2008.915629
https://doi.org/10.1109/HPCA.2015.7056066
https://doi.org/10.1145/1403375.1403405
http://doi.acm.org/10.1145/1403375.1403405
http://doi.acm.org/10.1145/1403375.1403405
https://escholarship.org/uc/item/1c68g008
https://escholarship.org/uc/item/1c68g008
https://doi.org/10.1109/DATE.2012.6176659
https://doi.org/10.1145/2333660.2333754
http://doi.acm.org/10.1145/2333660.2333754
http://doi.acm.org/10.1145/2333660.2333754
https://doi.org/10.1145/2463209.2488754
https://doi.org/10.1145/2463209.2488754
http://doi.acm.org/10.1145/2463209.2488754
https://doi.org/10.1109/TC.2013.72
https://doi.org/10.7873/DATE.2013.342
https://doi.org/10.7873/DATE.2013.342
https://doi.org/10.1109/TCSII.2013.2281934
https://doi.org/10.7873/DATE.2013.121
https://doi.org/10.7873/DATE.2013.121
https://doi.org/10.1109/CODES-ISSS.2013.6659022

542 A. Rahimi and R. K. Gupta

36. Rahimi, A., Benini, L., Gupta, R.K.: Temporal memoization for energy-efficient timing error
recovery in gpgpus. In: Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, pp. 1–6 (2014). https://doi.org/10.7873/DATE2014.113

37. Rahimi, A., Cesarini, D., Marongiu, A., Gupta, R.K., Benini, L.: Improving resilience to timing
errors by exposing variability effects to software in tightly-coupled processor clusters. IEEE
J. Emerging Sel. Top. Circuits Syst. 4(2), 216–229 (2014). https://doi.org/10.1109/JETCAS.
2014.2315883

38. Rahimi, A., Cesarini, D., Marongiu, A., Gupta, R.K., Benini, L.: Task scheduling strategies
to mitigate hardware variability in embedded shared memory clusters. In: Proceedings of
the 52Nd Annual Design Automation Conference, DAC ’15, pp. 152:1–152:6. ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2744769.2744915. http://doi.acm.org/10.1145/
2744769.2744915

39. Rahimi, A., Ghofrani, A., Cheng, K.T., Benini, L., Gupta, R.K.: Approximate associative
memristive memory for energy-efficient gpus. In: Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE ’15, pp. 1497–1502 (2015). http://dl.acm.
org/citation.cfm?id=2757012.2757158

40. Rahimi, A., Benini, L., Gupta, R.K.: Circa-gpus: Increasing instruction reuse through inexact
computing in gp-gpus. IEEE Des. Test 33(6), 85–92 (2016). https://doi.org/10.1109/MDAT.
2015.2497334

41. Rahimi, A., Benini, L., Gupta, R.K.: Variability mitigation in nanometer cmos integrated
systems: A survey of techniques from circuits to software. Proc. IEEE 104(7), 1410–1448
(2016). https://doi.org/10.1109/JPROC.2016.2518864

42. Rahimi, A., Benini, L., Gupta, R.K.: From Variability Tolerance to Approximate Computing in
Parallel Integrated Architectures and Accelerators. Springer International Publishing (2017)

43. SDAccel: http://www.xilinx.com/products/design-tools/sdx/sdaccel.html (2015)
44. Singh, P., Karl, E., Sylvester, D., Blaauw, D.: Dynamic nbti management using a 45 nm multi-

degradation sensor. IEEE Trans. Circuits Syst. I Regular Papers 58(9), 2026–2037 (2011).
https://doi.org/10.1109/TCSI.2011.2163894

45. Singh, P., Karl, E., Blaauw, D., Sylvester, D.: Compact degradation sensors for monitoring nbti
and oxide degradation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(9), 1645–1655
(2012). https://doi.org/10.1109/TVLSI.2011.2161784

46. Tschanz, J., Bowman, K., Walstra, S., Agostinelli, M., Karnik, T., De, V.: Tunable replica
circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and
aging variation tolerance. In: 2009 Symposium on VLSI Circuits, pp. 112–113 (2009)

47. Yazdanbakhsh, A., Mahajan, D., Thwaites, B., Park, J., Nagendrakumar, A., Sethuraman, S.,
Ramkrishnan, K., Ravindran, N., Jariwala, R., Rahimi, A., Esmaeilzadeh, H., Bazargan, K.:
Axilog: Language support for approximate hardware design. In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 812–817 (2015). https://doi.org/10.7873/
DATE.2015.0513

48. Yazdanbakhsh, A., Park, J., Sharma, H., Lotfi-Kamran, P., Esmaeilzadeh, H.: Neural acceler-
ation for gpu throughput processors. In: Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, pp. 482–493. ACM, New York, NY, USA (2015). https://doi.
org/10.1145/2830772.2830810. http://doi.acm.org/10.1145/2830772.2830810

49. Yuan, F., Xu, Q.: Intimefix: A low-cost and scalable technique for in-situ timing error masking
in logic circuits. In: Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE,
pp. 1–6 (2013)

https://doi.org/10.7873/DATE2014.113
https://doi.org/10.1109/JETCAS.2014.2315883
https://doi.org/10.1109/JETCAS.2014.2315883
https://doi.org/10.1145/2744769.2744915
http://doi.acm.org/10.1145/2744769.2744915
http://doi.acm.org/10.1145/2744769.2744915
http://dl.acm.org/citation.cfm?id=2757012.2757158
http://dl.acm.org/citation.cfm?id=2757012.2757158
https://doi.org/10.1109/MDAT.2015.2497334
https://doi.org/10.1109/MDAT.2015.2497334
https://doi.org/10.1109/JPROC.2016.2518864
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html
https://doi.org/10.1109/TCSI.2011.2163894
https://doi.org/10.1109/TVLSI.2011.2161784
https://doi.org/10.7873/DATE.2015.0513
https://doi.org/10.7873/DATE.2015.0513
https://doi.org/10.1145/2830772.2830810
https://doi.org/10.1145/2830772.2830810
http://doi.acm.org/10.1145/2830772.2830810

Hardware/Software Codesign for Energy Efficiency and Robustness 543

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reliable CPS Design for Unreliable
Hardware Platforms

Wanli Chang, Swaminathan Narayanaswamy, Alma Pröbstl,
and Samarjit Chakraborty

1 Introduction

Battery-operated cyber-physical systems (CPS) increasingly exist in households,
factories, and the public area. For instance, zero local emission, independence from
fossil fuels, and potential improvement of energy conversion efficiency have made
electric vehicles (EVs) an alternative of conventional vehicles with internal com-
bustion engines (ICEs). Design of the underlying embedded control loops such as
electric motor control, braking control, stabilization, and battery management plays
a crucial role in EVs and other types of battery-operated devices. Conventionally,
these control loops are evaluated by a number of quality-of-control (QoC) indices.
One common QoC metric is settling time. In order to ensure performance and
reliability, the design also needs to take into account a number of issues on the
hardware implementation platforms, such as battery behaviour and semiconductor
aging. Battery is the key component influencing the device performance, when
being the main power source. As the integrated circuit fabrication technology has
progressed, processors become more and more susceptible to aging. In order to
ensure correct functioning, the processor operating frequency has to be reduced,
which could potentially worsen QoC and compromise reliability. The focus of this

W. Chang (�)
University of York, York, YO10 5DD, UK
e-mail: wanli.chang@york.ac.uk

S. Narayanaswamy · A. Pröbstl
TU Munich, München, Germany
e-mail: swaminathan.narayanaswamy@tum.de; alma.proebst@tum.de

S. Chakraborty
UNC Chapel Hill, Chapel Hill, NC, United States
e-mail: samarjit@cs.unc.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_23

545

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_23&domain=pdf
mailto:wanli.chang@york.ac.uk
mailto:swaminathan.narayanaswamy@tum.de
mailto:alma.proebst@tum.de
mailto:samarjit@cs.unc.edu
https://doi.org/10.1007/978-3-030-52017-5_23

546 W. Chang et al.

chapter is on a design framework towards reliability of CPS considering unreliable
hardware platforms.

A battery pack with large capacity is needed to offer longer usage. However,
with larger capacity, the battery weight also increases leading to higher energy
consumption. Moreover, the capacity is often restricted by the space that can be
allocated to the battery pack. One potential solution to the above problem is to
design the controller in such a way that the energy consumption of the control task
can be minimized.

All off-the-shelf battery packs are labelled with a nominal capacity. However,
due to the rate capacity effect, the full charge capacity (FCC) of a battery pack,
which is defined to be the amount of electric charges that can be delivered from
the battery after it is fully charged, actually varies with different discharging current
profiles. Generally speaking, larger discharging current tends to reduce the FCC.
For most common lithium-ion batteries in the market, the capacity could potentially
get significantly compromised if the rate capacity effect is not properly considered
in the control systems design. In this chapter, we discuss an optimization framework
considering QoC as one design objective and battery usage as the other. We quantify
the battery usage by the total duration that the battery can be used to continuously
run the control task after one full charge. In order to maximize the battery usage, the
energy consumption of the control task should be small and the battery FCC should
be increased by generating a battery-friendly discharging current profile. The battery
aging effect can also be incorporated. That is, the battery behaviour in the long run
is another optimization dimension.

The other important design aspect is processor aging. As a processor ages, the
switching time of its transistors increases, resulting in longer path delays. On-chip
monitors could be used to measure the delay of the critical path. It always has to be
guaranteed that the signal transmission can be completed along any path within one
clock cycle. Therefore, the processor operating frequency is reduced based on the
new critical path delay. On the other hand, a shorter sampling period can potentially
provide a better QoC. Therefore, with a smaller processor operating frequency, the
sampling period increases and QoC gets deteriorated, which is dangerous and thus
highly unwanted for safety-critical applications such as electric motor control in
EVs. To deal with the above situation, we can re-optimize the controller with the
longer sampling period, which results from processor aging.

The entire design flow towards CPS reliability considering unreliable hardware
platforms is divided into two phases. In Phase I, before the processor ages, an
optimization framework is used with QoC and battery behaviour considered as
design objectives. With heuristic methods implemented, this battery-aware con-
troller design gives a Pareto front of well-distributed and non-dominated solutions.
The trade-off between these objectives is explored. In Phase II, after the processor
ages, QoC is found to get degraded if the controller design does not change. The
same optimization framework is used with slight modification. The processor aging
effect is mitigated in the way that there is a minimal change of QoC with all safety
requirements satisfied.

The remainder of this chapter is organized as follows: Sect. 2 gives an overview
of the background on embedded control systems design, battery rate capacity effect

Reliable CPS Design for Unreliable Hardware Platforms 547

and aging, as well as processor aging. In Sect. 3, we present the reliable CPS design
framework, and finally, Sect. 4 concludes the chapter.

2 Background

2.1 Control Systems

In this subsection, we first describe the feedback control application considered
in this chapter and several background concepts. Then, we present the system
modelling of the electric motor control application in EVs.

2.1.1 Basic Concepts

Plant Dynamics A control scheme is responsible for controlling a plant or
dynamical system. In this chapter, we consider linear time-invariant (LTI) single-
input single-output (SISO) systems,

ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t),
(1)

where x(t) ∈ R
m is the state vector, ẋ(t) is the derivative of x(t) with respect to

time, y(t) is the output, and u(t) is the control input applied to the system. The
number of dimensions for the system is m. Constant matrices A, B, and C are of
appropriate dimensions with respect to m. In a state-feedback control algorithm, the
control input u(t) is computed utilizing the plant states x(t) as feedback signals. The
computed u(t) is then applied to the plant, which is expected to achieve the desired
behaviour.

Discretized Dynamics In most applications, the controller is implemented in a
digital fashion on a computer. This implies that the plant states must be sampled
when measured by the sensors. Assuming the sampling period to be a constant, the
continuous-time system in (1) can be transformed into the following discrete-time
system:

x[k + 1] = Adx[k] + Bdu[k],
y[k] = Cdx[k], (2)

where sampling instants are {tk | k ∈ N}, the sampling period is tk+1 − tk = h, and

Ad = eAh, Bd =
∫ h

0

(
eAt dt

)
B, Cd = C. (3)

548 W. Chang et al.

It is noted that x[k] and y[k] are the values of x(t) and y(t) at t = tk . The initial
condition is denoted as x[0]. The control input u[k] is applied to the plant from tk
to tk+1.

Feedback Controller One common goal of a control task is to make y[k] → r as
soon as possible, where r is the reference for y[k] to track. Towards this and other
application-specific objectives, we design u[k] utilizing the states x[k]. This is then
a state-feedback controller with a general structure as follows:

u[k] = Kx[k] + Fr, (4)

where K is the feedback gain vector and F is the feedforward gain.

Closed-Loop System With the feedback controller as shown in (4), the system
closed-loop dynamics from (2) becomes

x[k + 1] = (Ad + BdK)x[k] + BdF r = Aclx[k] + BdF r, (5)

where Acl is the closed-loop system matrix. Different locations of the closed-loop
system poles, i.e., eigenvalues of Acl , result in different system behaviours. In the
pole placement, poles are placed (eigenvalues are set) to fulfil various high-level
goals, such as optimization of QoC and other application-specific objectives, and
constraints satisfaction. In order to ensure system stabilization, all the poles must be
less than unity. In this chapter, we restrict the poles in the real non-negative plane—
which is common in most of the real-life design problems.

Once the poles are decided, the feedback gain vector K can be computed with
Ackermann’s formula. The static feedforward gain F used to make y[k] track the
reference r can be computed by

F = 1

(Cd(I− Acl)−1Bd)
, (6)

where I is an n-dimensional identity matrix [2].

QoC We use settling time as the metric to quantify the QoC. The time it takes for
the system output y[k] to reach and stay in a closed region around the reference
value r (e.g., 0.98r–1.02r) is the settling time and denoted as ts . Shorter ts indicates
better QoC. When the controller poles are given, and the feedback and feedforward
gains are computed accordingly, the output behaviour can be simulated, and the
settling time can be derived.

Constraints There are often hard physical constraints that have to be respected in
the embedded control systems, as part of the safety requirements [6, 8]. For instance,
the input signal u[k] could be constrained by an upper limit Umax and a lower limit
Umin. Similarly, the plant states could be constrained by a region. With the given
controller poles and the corresponding gains, both the plant states and the control
input throughout the entire control task can be simulated. Therefore, the constraints
satisfaction can be evaluated.

Reliable CPS Design for Unreliable Hardware Platforms 549

V

R L

e
PWM Signal Shaft

θ

b
.

θ

Field

Fixed

Fig. 1 A diagram of a DC motor with the armature circuit powered up by a battery pack

Fig. 2 Pulse-width
modulation control signals in
the armature circuit to adjust
the DC voltage applied to the
rotor

Switch Off

Switch On

Duty Cycle 70%

tper iod

ton

2.1.2 Electric Motor Control

Electric motor control is a key function in EVs. As shown in Fig. 1, we consider
a DC motor running in the speed control mode. The controller is supposed to
operate the motor at various speeds according to the driver input and environmental
conditions. The DC voltage provided by the battery pack is V . The resistance and
inductance in the armature circuit are R and L, respectively. The back electromotive
force (EMF) from the motor is e. The insulated gate bipolar transistor (IGBT) works
as a switch controlled by pulse-width modulation (PWM) signals at the gate. When
the switch is on, V is applied to the armature circuit. When the switch is off, the
diode flows out the remaining current in the motor and thus the applied voltage is
equivalent to zero. Periodic PWM signals are shown in Fig. 2, where the duty cycle
c is calculated as

c = ton

tperiod

, (7)

and the effective voltage applied in the armature circuit is

Veff = cV . (8)

We can clearly see that Veff is adjustable between 0 and V by controlling the PWM
signals.

In general, the torque T generated by a DC motor is proportional to the armature
current i and the strength of the magnetic field. We assume the magnetic field to be
constant and thus the torque is calculated as

T = Kti, (9)

550 W. Chang et al.

where Kt is the motor torque constant. We denote the angular position of the motor
to be θ . The angular velocity and acceleration are then θ̇ and θ̈ , respectively. The
back EMF is proportional to the angular velocity of the shaft by a constant factor
Ke as follows:

e = Keθ̇. (10)

A viscous friction model is assumed and the friction torque is proportional to the
shaft angular velocity θ̇ by a factor of b. Now we can derive the following governing
equations based on Newton’s second law and Kirchhoff’s law:

J θ̈ + bθ̇ = Kti,

L
di

dt
+ Ri = Veff −Keθ̇,

(11)

where J is the moment of inertia of the motor. It is noted that in the steady state
(i.e., θ̈ = 0),

θ̇ = Kti

b
. (12)

The state-space system modelling as in (1) becomes

d

dt

[
θ̇

i

]
=
[− b

J
Kt

J

−Ke

L
−R

L

] [
θ̇

i

]
+
[

0
1
L

]
Veff ,

y = [1 0
] [θ̇

i

]
.

(13)

The states are the angular velocity of the motor θ̇ , constrained in [0, θ̇max], and the
armature current i, constrained in [0, imax]. The control input is the effective voltage
Veff , constrained in [0, V] as discussed above. The system output is θ̇ . The control
goal is to make θ̇ track r .

2.2 Battery

Batteries are increasingly used as power source for many applications nowadays
ranging from low-power applications such as portable electronics, wearable devices
to high-power applications such as EVs and stationary electrical energy storage
(EES) systems for smart grid applications [3]. Lithium-ion battery chemistry has
been dominating the market for most low-power and high-power applications
mainly due to their high energy and power densities compared to other rechargeable
battery chemistry. While the terminal voltage and nominal capacity of a single

Reliable CPS Design for Unreliable Hardware Platforms 551

lithium-ion cell are limited for achieving high operating voltages and high capacities
required for EVs, multiple individual lithium-ion cells are combined in series or
parallel to form a high-power battery pack.

Major concerns affecting the widespread adoption of EVs include range anxiety
and battery degradation that will result in an early replacement of their power
source. For instance, battery packs in EVs have to be replaced when their state-
of-health (SoH), a ratio of capacity at present to the capacity when the battery was
new, falls below 70%. In addition to the long-term aging, battery packs are also
subject to capacity degradation within individual charging–discharging cycles. This
is mainly due to the rate capacity effect, which states that discharging a battery
with a higher current will reduce the overall capacity of the pack that can be used
in this cycle. Therefore, while designing control applications that use battery as a
power source, the capacity degradation at single charging–discharging cycles and
long-term battery aging have to be considered for maximizing the battery usage and
its lifetime.

2.2.1 Battery Basics

Batteries are electrochemical storage devices, meaning their chemical reaction is
coupled with an electron transfer. They perform a reversible chemical reaction,
which allows them to store electrical energy (charging) and release the stored
electrical energy by performing the opposite reaction (discharging). The basic unit
of a rechargeable battery is an electrochemical cell, which consists of a positive
electrode cathode, a negative electrode anode, and an electrolyte to favour the
movement of the charge carriers between the two electrodes inside the cell as shown
in Fig. 3.

Fig. 3 Electrochemical cell.
Shuttle ions (M+) are
oxidized at the anode and
move towards the cathode
releasing an electron (e−) to
the outer circuit powering the
load [13]

552 W. Chang et al.

During the discharging process, shuttle ions (M+) are oxidized at the anode side
and release electrons (e−), which travel through the outer circuit to power the load.
The oxidized shuttle ions move through the electrolyte to the cathode inside the cell
and are reduced by the incoming electrons from the outer circuit. This process is
represented by the following equations:

Anode : M → M+ + e− (Oxidation) (14)

Cathode : M+ + e− → M (Reduction). (15)

The opposite reaction takes place during charging, facilitating storage of electrical
energy in the form of chemical reactions.

In the ideal case, one would assume that while discharging the voltage of the
electrochemical cell as seen by the load stays constant throughout the discharging
process and suddenly drops to zero when the battery capacity is empty. Moreover,
the capacity of the battery stays constant irrespective of the amplitude of the
discharge current. However, in reality, the battery exhibits several non-linear
effects and as a result the battery voltage instead of remaining constant slowly
decreases with time while discharging. Furthermore, the usable capacity of a battery
significantly depends on the rate of the load current. Discharging a battery with a
higher current will result in a reduced effective capacity obtained from the cell.

2.2.2 Rate Capacity Effect

The FCC of a battery pack is reduced when a battery is discharged with a higher
discharge current [5]. This can be seen from Fig. 4 where discharging a cell with
a higher current reaches the lower threshold voltage faster than discharging with a
lower current. This effect is termed as rate capacity or rate effect. The fundamental
concept behind the rate capacity effect can be explained in terms of overpotential
as in [13]. Whenever a current is drawn from a battery, the voltage of that battery
will drop depending upon the magnitude of the discharging current. For a battery
to obtain maximum energy output, the cell voltage VT should follow the discharge
profile of the equilibrium voltage V0, which is defined as the cell voltage at the
chemical equilibrium at a given state of charge and temperature. However, the
cell voltage deviates with the discharging current and this deviation is termed as
overpotential η, which can be expressed as

η = V0 − VT . (16)

This overpotential is mainly divided into three parts as ohmic, activation, and
concentration overpotentials. At higher states of charge, the cell voltage is predomi-
nantly dominated by ohmic overpotentials, which behaves like a resistive drop to the
cell voltage and as the cell discharges to a lower state of charge, the activation and

Reliable CPS Design for Unreliable Hardware Platforms 553

Vcut-off

Time [h]

Vo
lta
ge
[V
]

1C

5C

Fig. 4 Higher discharge current results in a reduced usable capacity of the cell due to rate capacity
effect. The discharge rate is given by C rating, where 1C means the cell is discharged completely
within 1 h [9]

concentration overpotentials dominate the ohmic drop. This reduction in cell voltage
and the capacity due to the overpotentials of the cell is termed as rate capacity effect.

In battery terminology, the C-rate is often used to define the charge or discharge
current of a battery. 1C corresponds to the current necessary to charge or discharge
the battery completely in 1 h, whereas a 2C discharge will deplete the battery in half
hour. The rate capacity effect is modelled by using Peukert’s law [9] as

L = a

Ib
, (17)

where L is the battery lifetime, I is the discharge current, a and b are constants
obtained from experiments. In ideal case a would be the battery capacity and b

would be equal to 1, whereas in reality a is close to the battery’s capacity and b is
greater than one. While this model holds good for predicting battery capacity for
constant continuous load, it does not work well with variable or interrupted loads.
An extended version of Peukert’s law was proposed in [15] as

Lt = a(∑n
k=1 Ik

(
t ′k+1−t ′k

)
Lt

)b
, (18)

where t ′1 = 0 is the starting time stamp and Lt = t ′n+1 is the total duration that the
battery can be used and divided into n slots.

554 W. Chang et al.

2.2.3 Battery Aging

In addition to the single cycle capacity loss due to rate capacity effect, which can be
rectified by reducing the discharging current at subsequent cycles, battery aging is
a long-term process where the battery cell cannot hold the same amount of charge
as it was new. Battery aging can be classified into calendar aging and cycling aging,
where the former refers to the loss of capacity due to storing at high states of charge
and high temperatures and the latter refers to the loss of lithium-ions due to the
charge/discharge process. The main factors for battery cycling aging are depth of
discharge (DoD), average state of charge, state-of-charge swing, temperature, and
the rate of the discharge current [18] as

Qloss = f (t, T ,DoD,Rate) , (19)

where t is the cycling time. Without the DoD, which does not significantly affect
the cycling capability of lithium-ion cells, the capacity loss can be modelled with
the following equation:

Qloss = B.exp

(−Ea

RT

)
(Ah)

z, (20)

where R is the gas constant, T is the temperature, Ah is the ampere-hour throughput
of the cell, z is the power law factor, and B is a constant obtained by experimental
data. With multiple experimental analysis for different discharge rates performed in
[18], the value of z was approximated to 0.55 and the constant B was calculated for
each C-rate. Figure 5 shows that with a higher discharge current the battery capacity
drops significantly and will reach their end-of-life faster than discharging at a lower
discharge current.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

20

40

Throughput [Ah]

Ca
pa

ci
ty

lo
ss

[%
]

2C
6C
10C

Fig. 5 Capacity loss due to higher discharge rates [5]

Reliable CPS Design for Unreliable Hardware Platforms 555

The capacity loss with discharging can be approximately modelled by the
following equation as proposed in [18]:

Qloss = B.exp

[−31700+ 370.3 · Crate

RT

]
(Ah)

0.55. (21)

2.3 Processor Aging

Processors are known to age over time and stress resulting in reduced operating
speed. This is problematic in the sense that lower processor speed negatively impacts
the performance of applications running on it.

2.3.1 Aging Mechanisms

The main transistor aging mechanisms are hot carrier injection and negative bias
temperature instability [1, 17]. Hot carrier injection results in changes in the
threshold voltage of the semiconductor. Similarly in the case of negative bias
temperature instability, the threshold voltage of MOSFETs is increased. These
aging-induced voltage changes result in longer transistor switching time. And as
a consequence, the operation of the transistor becomes less reliable, which is of
course highly undesirable. Such increased switching time lowers the performance
of a processor and of applications running on the processor. Applications then
potentially violate performance requirements and produce faulty calculation results,
which in most cases is not acceptable.

2.3.2 Countermeasures

As a countermeasure to increased path delays, chips typically would run at very
conservative clock rates, also called guard bands or safety margins. Such guard
bands include enough margin to achieve the same clock rate throughout the whole
intended lifetime of a processor. Intuitively, we see that this pessimistic approach
results in a huge waste of resources or energy as the processor could generally
achieve much higher speeds [11]. The problem even becomes more severe as we
see a trend to decreasing transistor sizes which increases operational variations.

However an increase in the supply voltage could compensate for aging circuits
[16]. By that, the delays could be kept constant and the operating frequency could
stay the same throughout the intended lifetime of the processor. An adaptive control
circuit accommodates for the currently required voltage settings. The downside
of this approach is quadratically increased dynamic power consumption of the
processor [14] and additional constraints such as maximum input current, cooling
requirements, and temperature-dependent reliability problems [17].

556 W. Chang et al.

Another measure to be taken is to decrease the operating frequency of the
processor to compensate for critical path delays [1]. Other than increasing the supply
voltage, decreasing the operating frequency actually lowers the power consump-
tion. However, the processor becomes slower, which results in degraded control
performance [4] and schedulability issues [12]. Nevertheless, dynamic operating
frequency adjustments are a promising approach due to not negatively impacting
the overall energy consumption while maintaining high usage of resources.

If aging could be measured on-chip in real-time, the operating voltage and
frequency could be adjusted to always provide the maximum speed possible. This
however means that control applications—that were designed for a higher speed,
which becomes infeasible at some point in time—need to be readjusted to the
changes. Such on-chip aging monitors have been developed for the delay of critical
paths. Paths that potentially become critical in the future need to be identified first
and then their degradation needs to be watched [19]. The path timing monitors
typically work on replications of the paths that have statically been identified as the
critical ones to not interfere with real functions. The information gathered from the
replicated paths is then used to decide if the operating frequency needs to be changed
and the according new frequency can be determined from the monitored delays.
Processors that implement such critical path monitors are also called autonomic
frequency scaling processors.

From the application designers’ perspective, the processors lose speed over
time and this needs to be considered when designing applications that will run
on those processors. Lower processor operating frequency results in longer worst-
case execution time of programs. However, in control applications that require high
sampling frequencies this worst-case execution time may become the bottleneck for
reliable control output. As already outlined above, safety margins between worst-
case execution time and sampling period are possible but costly as the processor
would run much below its capabilities throughout most of its lifetime. Hence,
making full use of the available resources, here the processor speed, is of high
interest in cost-sensitive domains.

2.3.3 Aging Estimation

A simple model of critical path delays uses temperature, supply voltage, and stress
time, i.e., time during which the processor is active [12]. Let us use this model to
consider the use case of processor aging in an electrical taxi. Assuming that the
electrical taxi is in use for two-thirds of a day with drivers taking shifts, i.e., for
16 h, we can now estimate the decrease of the processor speed used in the car. We
find that after 2 years of taxi use, the on-time of the processor is approximately
1.33 years. As a consequence, the processor speed has degraded in the worst case
by roughly 7%. The degradation then continues. After four and then 10 years, the
corresponding duration of the processor being switched on amounts to 2.66 and 6.66
years, respectively. These on-times relate to critical path delays of roughly 9% and
12%. As a vehicle usually incorporates many real-time and safety-critical tasks on

Reliable CPS Design for Unreliable Hardware Platforms 557

multiple processors and at the same time the automotive domain can be considered
to be very cost-sensitive, such delays need to be considered in the design stage.

2.3.4 Related Work from the Software Perspective

Multiple works have proposed techniques to design software for aged processors
or to reduce the aging process. Processors that have slowed down due to aging
have higher execution delays of tasks, which is particularly problematic in the
context of hard real-time systems and safety-critical applications [12]. As a result,
the schedulability analysis for such safety-critical systems needs to take the
estimated worst-case execution delays into consideration and the traditional problem
formulation needs to be extended by system lifetime constraints. All scheduled tasks
with worst-case delays need to meet their respective deadlines at all times even with
severe aging-induced slow-down of the processor speed.

Mitigation of aging can be done in multi-core systems. Such systems often use
redundant multi-threading to reduce soft errors. The aging variation among cores
is due to varying workloads. Such unbalanced aging states are highly undesired as
the system lifetime is constrained by the weakest component, i.e., the slowest core.
As a remedy, the mapping of tasks should consider the current aging status of the
respective cores. The proposed system [10] maps tasks in a way that aging variations
are mitigated and aging of already slower cores is reduced.

3 Reliable CPS Design Framework

We formulate the reliable CPS design on unreliable hardware platforms to be an
optimization problem with two objectives—ts to quantify QoC and Lt to quantify
the battery usage. We aim to minimize ts and maximize Lt . Usually an optimization
technique takes objectives either to minimize or maximize but not both. Therefore,
we minimize f1 = ts and f2 = −Lt . It is noted that Lt is only related to the single-
cycle behaviour with the battery rate capacity effect. Other objectives with respect
to battery aging can also be defined, such as the total duration that a battery can
run the control task after some time like 1 year, i.e., the Lt in 1 year, or when the
capacity drops below the threshold like 70%.

The constraints are on the plant states and control input. Additional constraints
on the objectives can be imposed depending on the requirements. For example, ts
can be set as shorter than or equal to 20 s. The decision variables are the poles that
are less than unity on the real non-negative plane. Clearly, the decision space is
continuous. Given a set of decision variables, the objectives and constraints can be
evaluated as explained in Sect. 2.

There are generally two goals to pursue in solving bi-objective or multi-objective
optimization problems. First, the final solution set (i.e., the obtained Pareto front)
only consists of non-dominated points. By convention, Point A is said to dominate

558 W. Chang et al.

Point B, if Point A is better than or equal to Point B in all objectives and better
than Point B in at least one objective. Second, the final solution set has a good
distribution in terms of objective values. This gives designers better options under
different circumstances.

It is challenging to solve the formulated non-convex optimization problem with
a continuous design space. Stochastic population-based heuristics such as the non-
dominated sorting genetic algorithm (NSGA) can be used. In NSGA, an initial
population is first generated and serves as parents. Offspring are then produced
with crossover and mutation. The crossover function tries to keep the good genes
of parents, which in this context means that the offspring are close to parents in the
decision space.1 The mutation function aims to better explore the decision space.
Elitism is implemented for environmental selection, so that the next generation is
selected among both the parents and offspring. This not only speeds up convergence
but also ensures that good solutions will not be lost once they are found. There are
two termination conditions whether the population has converged and whether the
maximum allowed number of generations has been reached.

In selection, all the parents and offspring are sorted and ranked by domination.
For each point, the number of points that dominate it (i.e., dominating points)
is its rank. The new generation is filled in a way that points with lower ranks
have priorities. This sorting feature values dominance more than the differences
in individual objectives.

Among all the non-dominated points obtained by the above NSGA-based
optimization, some may be very close to others in both the objectives. Therefore,
it is not necessary to keep all of them. We need to choose a few points to form
a well-distributed final solution set. First of all, we define the crowding distance
below. As illustrated in Fig. 6, assuming that there are two objectives {f1, f2} and
n solution points {x1, x2, . . . , xn}2 ordered by the value of either objective, for each
point xi , i ∈ {1, 2, . . . , n}, that is not at the end of this point sequence, the crowding
distance of xi in terms of the objective fk , k ∈ {1, 2} can be calculated as

qk
i = |fk(xi+1)− fk(xi−1)|, (22)

Fig. 6 Illustration of the
crowding distance calculation x1 x2

x3

x4 x5

q 2
3

q 1
3 f1

f2

1This may not be the case in general. Offspring can be quite different from the parents.
2These are just general notations to explain the method. In this chapter, the decision variables are
the poles as discussed earlier.

Reliable CPS Design for Unreliable Hardware Platforms 559

Algorithm 1 Removal of less representative solution points according to the
crowding distance ranking
Input: S = {x1, x2, . . . , xn}, nd , {ρ1, ρ2}, {f1, f2}
Output: Sd = {x1, x2, . . . , xnd

}
26 for j ∈ {1, 2, . . . , n− nd } do
27 for i ∈ {1, 2, . . . , n− j + 1} do
28 calculate q1

i and q2
i for the element xi as in (22)

29 for k ∈ {1, 2} do
30 sort S based on qk

i from maximum to minimum for i ∈ {1, 2, . . . , n− j + 1} do
31 assign the position index (1 for maximum to n − j + 1 for minimum) of xi in S to

rk
i

32 for i ∈ {1, 2, . . . , n− j + 1} do
33 calculate r0

i as in (23)

34 Remove the element with the maximum r0
i from S

35 Sd = S

where xi+1 and xi−1 are the two closest points to xi on each side, respectively.
Since we deal with a set of Pareto points that are non-dominated, xi+1 and xi−1 are
closest to xi in terms of both objectives. Both the end points of the point sequence
are assumed to have infinite crowding distance calculation.

The algorithm removing the less representative points to achieve a good distri-
bution is shown in Algorithm 1. The desired number of Pareto points is denoted as
nd . First, for each point, we calculate the two crowding distances corresponding to
the two objectives. (Lines 2–4) Two ranks r1 and r2 are assigned to it based on the
comparison in crowding distances with other points. (Lines 5–10) If the point xi has
the maximum crowding distance in terms of f1 among all the n points, then r1

i = 1.
If xi has the minimum crowding distance, then r1

i = n. The overall rank of xi is

r0
i = ρ1r

1
i + ρ2r

2
i , (23)

where ρ1 and ρ2 are importance factors of the two objectives, respectively. (Lines
11–13) These values depend on the application and

ρ1 + ρ2 = 1. (24)

For example, if in an application, only the distribution in terms of f1 is important,
we may set ρ1 to be 1 and ρ2 to be 0. In this case, r0

i is equal to r1
i and all the points

are ranked according to their crowding distances in terms of f1. After each point xi

has an overall rank r0
i , the point with the largest r0

i is removed from the solution
set. (Line 14) The entire process starting from crowding distance calculation is
iterated until the desired number of points nd is reached. Both the end points of
the point sequence are always kept in the set (due to the infinite crowding distances)

560 W. Chang et al.

Fig. 7 An example trade-off
between QoC and battery
usage

0 5 10 15 20

4

4.5

5

5.5

6

Settling Time [s]

Ba
tte

ry
U

sa
ge

[h
]

Table 1 The ten design options: the original values and the aged values

Design option ts Lt Aged ts Aged Lt

1 1.1257 s 4.2643 h 1.2369 s 9.88% 4.4601 h 4.59%

2 2.8972 s 5.4000 h 3.1859 s 9.96% 5.2717 h −2.38%

3 3.9540 s 5.4182 h 4.3483 s 9.97% 5.2742 h −2.66%

4 5.6430 s 5.5315 h 6.2062 s 9.98% 5.3111 h −3.98%

5 7.2314 s 5.5412 h 7.9534 s 9.99% 5.5423 h 0.02%

6 8.2142 s 5.5959 h 9.0345 s 9.99% 5.5141 h −1.46%

7 10.0238 s 5.6377 h 11.0251 s 9.99% 5.5639 h −1.31%

8 11.1746 s 5.6506 h 12.2910 s 9.99% 5.5627 h −1.56%

9 13.3920 s 5.6663 h 14.7302 s 9.99% 5.4613 h −3.62%

10 18.0271 s 5.6930 h 19.8287 s 9.99% 5.5239 h −2.97%

The percentage with the aged values is computed based on the original values

to maintain the coverage of the solution set. It is noted that Algorithm 1 takes two
objectives into account and can be trivially extended for more objectives.

An example trade-off between QoC and battery usage with the electric motor
control presented earlier in this chapter is illustrated in Fig. 7. As the processor
ages, there is a decrease in the processor operating frequency and an increase in
the sampling period. Taking the number 10% as an example, the change of both
objectives is reported in Table 1. In 8 out of the 10 design options shown in Fig. 7,
the aged points are dominated by the original points. That is, the settling time is
increased (with a positive percentage) and the battery usage is decreased (with
a negative percentage). The average deterioration in the control performance is
9.97%. The average deterioration in the battery usage is 1.53%. It is noted that for
design option 2, the constraints on the plant states and control input, as discussed
earlier in this chapter, are not satisfied anymore.

The processor aging effect can be mitigated by re-optimizing the controller poles
with the prolonged sampling period, using the design framework earlier in this
chapter. After obtaining the Pareto front, there can be different ways to reach the
final solution set. For instance, Algorithm 1 can be deployed again. Alternatively,
for each design option, we can keep the point that is closest to the original point

Reliable CPS Design for Unreliable Hardware Platforms 561

Table 2 The ten design
options: the recovered values
with re-optimization

Design option Recovered ts Recovered Lt

1 1.1475 s −7.23% 4.2345 h −5.06%

2 2.8389 s −10.89% 5.3361 h 1.22%

3 3.9264 s −9.70% 5.4116 h 2.60%

4 5.9551 s −4.05% 5.5294 h 4.11%

5 7.5233 s −5.41% 5.5676 h 0.46%

6 8.1094 s −10.24% 5.5754 h 1.11%

7 10.8225 s −1.84% 5.6383 h 1.34%

8 10.8225 s −11.95% 5.6383 h 1.36%

9 13.7615 s −6.58% 5.6595 h 3.63%

10 13.7615 s −30.60% 5.6595 h 2.45%

The percentage is computed based on the aged values

in the settling time. The latter is executed in this case. The recovered results
after re-optimization are shown in Table 2. In 9 out of the 10 design options, the
recovered points dominate the aged points. That is, the settling time is decreased
(with a negative percentage) and the battery usage is increased (with a positive
percentage). The average improvement in the control performance is 9.85%. The
average improvement in the battery usage is 1.32%. It should be noted that the
design options 7 and 8 have the same recovered point. So do the design options 9
and 10. For all the design options, the constraints on the plant states and control
input are guaranteed to be satisfied.

4 Concluding Remarks

In this chapter, we have discussed a design optimization framework for CPS. We
consider unreliable hardware platforms with respect to processor aging and battery
aging and rate capacity effect. The trade-off between the QoC and battery usage is
explored. Furthermore, when the processor ages, both the QoC and battery usage get
deteriorated, and safety requirements may be violated. The processor aging effect
can be mitigated by re-optimizing the controller with the prolonged sampling period,
using the same design framework. The change of QoC is minimal and the safety
requirements are guaranteed to be met—leading to reliable CPS design. Besides the
processor and battery, there are other hardware components that can be unreliable
and should be investigated, e.g., the memory and communication systems [7].

562 W. Chang et al.

References

1. Bowman, K., Tschanz, J., Wilkerson, C., Lu, S.L., Karnik, T., De, V., Borkar, S.: Circuit
techniques for dynamic variation tolerance. In: 2009 46th ACM/IEEE Design Automation
Conference, pp. 4–7. IEEE, New York (2009)

2. Chang, W., Chakraborty, S.: Resource-aware automotive control systems design: a cyber-
physical systems approach. Found. Trends Electron. Des. Autom. 10(4), 249–369 (2016)

3. Chang, W., Lukasiewycz, M., Steinhorst, S., Chakraborty, S.: Dimensioning and configuration
of ees systems for electric vehicles with boundary-conditioned adaptive scalarization. In: Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)
(2013)

4. Chang, W., Pröbstl, A., Goswami, D., Zamani, M., Chakraborty, S.: Battery-and aging-
aware embedded control systems for electric vehicles. In: 2014 IEEE Real-Time Systems
Symposium, pp. 238–248. IEEE, New York (2014)

5. Chang, W., Proebstl, A., Goswami, D., Zamani, M., Chakraborty, S.: Reliable CPS design
for mitigating semiconductor and battery aging in electric vehicles. In: 2015 IEEE 3rd
International Conference on Cyber-Physical Systems, Networks, and Applications, pp. 37–42
(2015)

6. Chang, W., Roy, D., Zhang, L., Chakraborty, S.: Model-based design of resource-efficient
automotive control software. In: IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2016)

7. Chang, W., Goswami, D., Chakraborty, S., Ju, L., Xue, C., Andalam, S.: Memory-aware
embedded control systems design. IEEE Trans. Comput. Aided Design Integr. Circuits Syst.
36(4), 586–599 (2017)

8. Chang, W., Goswami, D., Chakraborty, S., Hamann, A.: OS-aware automotive controller
design using non-uniform sampling. ACM Trans. Cyber-Phys. Syst. 2(4), 26 (2018)

9. Jongerden, M., Haverkort, B.: Battery Modeling. No. TR-CTIT-08-01 in CTIT Technical
Report Series, Design and Analysis of Communication Systems (DACS) (2008)

10. Knebel, F., Rehman, S., Shafique, M., Henkel, J.: Ageopt-rmt: compiler-driven variation-aware
aging optimization for redundant multithreading. In: 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6 (2016). doi:10.1145/2897937.2897980

11. Lefurgy, C.R., Drake, A.J., Floyd, M.S., Allen-Ware, M.S., Brock, B., Tierno, J.A., Carter,
J.B.: Active management of timing guardband to save energy in power7. In: Proceedings of the
2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
1–11. IEEE, New York (2011)

12. Masrur, A., Kindt, P., Becker, M., Chakraborty, S., Kleeberger, V., Barke, M., Schlichtmann,
U.: Schedulability analysis for processors with aging-aware autonomic frequency scaling.
In: Proceedings of the 2012 IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 11–20. IEEE, New York (2012)

13. Narayanaswamy, S., Schlueter, S., Steinhorst, S., Lukasiewycz, M., Chakraborty, S., Hoster,
H.E.: On battery recovery effect in wireless sensor nodes. ACM Trans. Des. Autom. Electron.
Syst. 21(4), 60:1–60:28 (2016)

14. Park, J., Abraham, J.A.: A fast, accurate and simple critical path monitor for improving energy-
delay product in dvs systems. In: Proceedings of the 17th IEEE/ACM international symposium
on Low-power electronics and design, pp. 391–396. IEEE, New York (2011)

15. Rakhmatov, D.N., Vrudhula, S.B.K.: An analytical high-level battery model for use in
energy management of portable electronic systems. In: IEEE/ACM International Conference
on Computer Aided Design (ICCAD 2001). IEEE/ACM Digest of Technical Papers (Cat.
No.01CH37281), pp. 488–493 (2001)

16. Stojanovic, V., Markovic, D., Nikolic, B., Horowitz, M.A., Brodersen, R.W.: Energy-delay
tradeoffs in combinational logic using gate sizing and supply voltage optimization. In:
Proceedings of the 28th European Solid-State Circuits Conference, pp. 211–214. IEEE, New
York (2002)

http://dx.doi.org/10.1145/2897937.2897980

Reliable CPS Design for Unreliable Hardware Platforms 563

17. Tschanz, J., Kim, N.S., Dighe, S., Howard, J., Ruhl, G., Vangal, S., Narendra, S., Hoskote,
Y., Wilson, H., Lam, C., et al.: Adaptive frequency and biasing techniques for tolerance to
dynamic temperature-voltage variations and aging. In: 2007 IEEE International Solid-State
Circuits Conference. Digest of Technical Papers, pp. 292–604. IEEE, New York

18. Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H.,
Musser, J., Finamore, P.: Cycle-life model for graphite-lifepo4 cells. J. Power Sour. 196(8),
3942–3948 (2011)

19. Wang, S., Chen, J., Tehranipoor, M.: Representative critical reliability paths for low-
cost and accurate on-chip aging evaluation. In: Proceedings of the International Confer-
ence on Computer-Aided Design (ICCAD ’12), pp. 736–741. ACM, New York (2012).
doi:10.1145/2429384.2429543. http://doi.acm.org/10.1145/2429384.2429543

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://dx.doi.org/10.1145/2429384.2429543
http://doi.acm.org/10.1145/2429384.2429543
http://creativecommons.org/licenses/by/4.0/

Power-Aware Fault-Tolerance
for Embedded Systems

Mohammad Salehi, Florian Kriebel, Semeen Rehman,
and Muhammad Shafique

1 Introduction

High core integration in multi-/many-core chips can facilitate reliability man-
agement through exploiting different hardening modes considering variants of
redundant multithreading (RMT) [17]. However, in such large-scale chips the
maximum number of cores that can simultaneously operate is constrained by
the thermal design power (TDP, i.e., the maximum amount of power a chip is
expected to dissipate and the nominal value for the cooling system to be designed
around). Under a given TDP budget either less cores can be powered-on at the full
performance level (the power-gated cores are referred to as dark silicon) or relatively
more cores can be powered-on at a lower performance level (referred to as “dim”
or “gray” silicon) [16]. In case TDP is exceeded, the elevated on-chip temperatures
beyond the cooling capacity aggravate reliability threats like temperature-dependent
transient faults and aging [1, 5, 6], unless the chip is throttled down which may
lead to performance degradation. Reliability management under TDP constraints
becomes even more challenging in the presence of manufacturing process variations
that result in chip-to-chip or core-to-core variations in the maximum operating
frequency and leakage power. This chapter presents a system-level power–reliability
management technique for dark silicon multi-/many-core processors that jointly
accounts for transient faults, process variations, and the TDP constraint.

M. Salehi (�)
Guilan University, Rasht, Iran
e-mail: mohammad.salehi@guilan.ac.ir

F. Kriebel · S. Rehman · M. Shafique
Technische Universität Wien (TU Wien), Wien, Austria
e-mail: florian.kriebel@tuwien.ac.at; semeen.rehman@tuwien.ac.at;
muhammad.shafique@tuwien.ac.at

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_24

565

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_24&domain=pdf
mailto:mohammad.salehi@guilan.ac.ir
mailto:florian.kriebel@tuwien.ac.at
mailto:semeen.rehman@tuwien.ac.at
mailto:muhammad.shafique@tuwien.ac.at
https://doi.org/10.1007/978-3-030-52017-5_24

566 M. Salehi et al.

Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions

app
lic

ati
on

SW
/O

S

arc
hit

ect
ure

cir
cui

t/g
ate

ph
ysi

cs

application

SW/OS

architecture

circuit/gate

physics

In this chapter, at first, the system modeling including the power consumption
and reliability models, as well as the reliability techniques are presented. Then, the
power, reliability, and performance tradeoffs at the software and hardware levels as
well as for different hardening modes are studied. After that, the power–reliability
management technique is presented. It jointly considers multiple hardening modes
at the software and hardware levels, each offering distinct power, reliability, and
performance properties. At the software level, it leverages multiple reliable code
versions that vary in terms of their reliability, performance, and power properties.
At the hardware level it exploits different protection features and different RMT
modes, subjected to the manufacturing process variations and different operating
conditions (like changing the voltage–frequency levels). Finally, a framework for
the system-level optimization is introduced. It considers different power–reliability–
performance management problems for many-core processors depending upon
the target system and user constraints (i.e., power, reliability, and performance
constraints).

The main contributions of this chapter in the scope of this book lie on the
application, SW/OS, and architectural layers as illustrated in Fig. 1.

2 System Models

2.1 Power Consumption Model

Power consumption in digital systems consists of static power (e.g., due to
sub-threshold leakage) and dynamic power (mainly dissipated due to the circuit
switching activities). The power consumption, when the system is operating under
a supply voltage and a corresponding maximum allowable frequency (we call it a
voltage and frequency (V-f) level), can be written as Eq. 1. For the systems that
support the dynamic voltage and frequency scaling (DVFS), different V-f levels are
specified at the design time, while at run time, a V-f level is selected considering the

Power-Aware Fault-Tolerance for Embedded Systems 567

system workload [10]. The static power PStatic increases exponentially when the
threshold voltage (Vth) decreases and is proportional to the supply voltage (V). The
dynamic power PDynamic is proportional to the circuit switching activity (α), load
capacitance (CL), operating frequency (f), and the square of the supply voltage (V)
[11, 12, 14, 15].

P(V, f) = PStatic + PDynamic = I0e
−Vth
ηVT V + αCLV 2f (1)

2.2 Fault and Reliability Models

In this chapter, transient faults which appear randomly in the underlying hardware
and then disappear after certain time are considered. Examples of transient faults
are single- and multiple-bit upsets due to energetic radiation particle strikes, circuit
metastability, signals cross-talk, voltage noises due to electromagnetic interference
(EMI), etc. [1, 5]. Transient faults in the hardware level may manifest themselves as
bit-flips in the memory or combinational logic, i.e., the so-called soft errors. These
errors may propagate to the software level (e.g., as silent data corruption, crash, halt,
and wrong register values) and may finally result in a software failure [5].

These transient faults occur randomly and are typically modeled as a Poisson
process with rate λ. The fault rate increases exponentially with a decrease in supply
voltage V , as Eq. 2 [11, 12, 15].

λ(V) = λ010
Vmax−V

� (2)

In Eq. 2, λ0 is the raw fault rate at the maximum voltage Vmax (i.e., the minimum
value for fault rate λ) and the parameter � determines the amount of increase in
fault rate with one step decrease in voltage.

The software’s vulnerability to soft errors due to hardware-level transient faults
at the instruction-level can be quantified by the function vulnerability index (FVI)
model [8, 9]. This model projects the error probability for an application software
considering vulnerabilities of different instructions (modeled using instruction
vulnerability index (IVI)) when executing through different hardware units (e.g.,
different pipeline stages) in a core. The IVI refers to the probability of an
instruction’s result being erroneous. It accounts for temporal vulnerabilities of
different instructions (i.e., different instructions have different execution latency,
instruction dependency, and intervals of the operand values) as well as spatial
vulnerabilities (i.e., different hardware components occupy different chip area and
perform different operations) [8, 9]. Knowing the hardware-level fault rate (λ)
and the software vulnerability to soft errors (FV I), the software failure rate can
be projected as λ(V) · FV I . Accordingly, the functional reliability FR of an
application execution that is defined as the probability of failure-free execution of
the application can be written as [11, 12, 15]:

568 M. Salehi et al.

FR(FV I, c, V , f) = e
−λ(V)·FV I · c

f (3)

In Eq. 3, c
f

is the application execution time under the operating frequency f and c

is the number of clock cycles that are required by the core to finish the application
execution.

Besides the functional reliability of an application, in many systems (e.g., real-
time embedded systems), it is also required that the application execution has to
finish before a deadline, referred to as timing reliability (i.e., probability of meeting
deadlines). To jointly consider the functional reliability FR and timing reliability
T R, the functional–timing reliability model of Eq. 4 can be employed. In this model,
the parameter 0 ≤ β ≤ 1 specifies the priority for functional and timing reliability.
For example, for the systems with tight timing constraints, lower values for β are
considered, and for the systems with severe constraints of timing and reliability
(e.g., hard real-time systems), β = 0.5 can be considered to represent the same
priority for functional and timing reliability.

R = βFR + (1− β)T R (4)

The reliability for a single application execution given by Eq. 4 may not satisfy
the reliability constraint of the target system. In the following section, we study
reliability techniques and hardening modes that can be used for soft error mitigation
and reliability improvement in many-core processors.

2.3 Reliability Techniques

One prominent technique for tolerating transient faults in many-core processors is
process level redundancy (PLR), where multiple identical copies of an application
task are executed on different cores and the application finishes successfully
if at least one of the task executions finishes successfully (i.e., the application
execution fails only if all the task executions fail). Therefore, the total application
reliability is defined as the probability of at least one application task being executed
successfully. Suppose that n identical copies of an application task are executed on
n different cores and possible faults can be detected with the probability of μFD .
The total reliability of the application can be calculated as:

Rtotal(R1, R2, . . . , Rn) = μFD

(
1−

n∏
i=1

(1− Ri)

)
(5)

In Eq. 5, Ri is the reliability of the i-th task copy execution (given by Eq. 4). Here,
it is assumed that (1) there is no spatial correlation between fault occurrences in
different cores and (2) parallel task executions on different cores are not dependent
from the viewpoint of fault propagation, i.e., a fault occurrence in a core does not

Power-Aware Fault-Tolerance for Embedded Systems 569

affect the operation of the other cores. This assumption is also considered for the
other reliability techniques in this chapter in which we have parallel task executions
on different cores.

2.3.1 Software Error Detection with Re-execution (SEDR)

In this technique, each application task is executed on a single core and a
software error detection mechanism (e.g., software-based control flow checking and
acceptance tests) is used for error detection. Here, if an error occurs during the task
execution, the task is re-executed once again on the same core for error recovery.

Therefore, the reliability of this technique can be calculated by Eq. 6, where
μSFD is the error detection coverage of the software error detection mechanism
(i.e., the probability of detecting existing errors).

RSEDR(R) = μSFD(R + (1− R)R) = μSFD(2R − R2) (6)

Here, it is assumed that there is no temporal correlation between the fault occur-
rences in consecutive executions of the same task, i.e., a fault occurrence during
an execution of a task does not affect the next execution of the same task. This
assumption is also considered for the other reliability techniques in this chapter in
which we have consecutive task executions on the same core.

2.3.2 Dual Modular Redundancy (DMR) with Re-execution (DMRR)

Software-based error detection in the SEDR technique may not provide a high
error detection coverage and also it may not be useful for some applications, e.g.,
it may entail incurring extra delay that may not be acceptable for hard real-time
systems. One practical and powerful error detection mechanism is the comparison
of the output result. In this mechanism, two identical copies of each application
task are executed on different cores in parallel and the output results of the task
are compared for error detection (i.e., DMR is applied at the individual core
level). If the comparison task finds that the results are in agreement, the result is
assumed to be correct. The implicit assumption here is that it is highly unlikely
that both task executions experience the identical errors and they produce identical
erroneous results. If the results are different, an error has occurred during the task
execution, and the task is re-executed on another core for error recovery. Let Rcmp

be the reliability of the result comparison process. Assuming that the two cores are
identical, each with a reliability R, the reliability of the DMRR technique can be
calculated by Eq. 7.

RDMRR(R,Rcmp) = Rcmp

(
R2 + 2(1− R)R2

)
= Rcmp(3R2 − 2R3) (7)

570 M. Salehi et al.

2.3.3 Triple Modular Redundancy (TMR)

N-Modular redundancy (NMR) that is an M − of − N system with N (an odd
number) and M = (N + 1)/2 can be applied at the individual core level, where
N copies of each task are executed on N different cores in parallel and the results
of at least M of them are required to be identical for proper operation. Thus, the
task execution fails when the majority voting task finds that fewer than M results
are identical [13]. This is similar to the redundant multithreading (RMT) approach if
considering architecture-level redundancy management or process level redundancy
(PLR) approach if considering operating system-level redundancy management.
Here, it is considered that TMR (N = 3) is applied at the individual core level,
i.e., three copies of each task are executed in parallel on three different cores,
and majority voting is performed on the results for error masking. Let Rvot be the
reliability of the majority voting task. The reliability of TMR can be calculated by
Eq. 8.

RT MR(R,Rvot) = Rvot

(
R3 + 3R2(1− R)

)
= Rvot

(
3R2 − 2R3

)
(8)

3 Power–Reliability–Performance Tradeoffs

3.1 Tradeoffs at the Hardware Level

Due to technology process variations, the maximum operating frequency and the
leakage power consumption vary for different cores in a single chip [3]. Figure
2a illustrates that the core-to-core frequency and leakage power variations in
an Intel’s 80-core test chip are up to 38 and 47%, respectively [7]. Therefore,
regardless of which application is executed, different processing cores present
different performance and power consumption.

Fig. 2 (a) Core-to-core variations in maximum operating frequency and leakage power and (b)
hardware-level fault rate and power variations at different V-f levels. Adapted from [15]

Power-Aware Fault-Tolerance for Embedded Systems 571

Fig. 3 Core-to-core variations in power, execution time, and reliability when executing the same
application. Adapted from [15]

One effective way to reduce power consumption is to decrease the operating V-
f level through the DVFS technique. However, based on Eq. 2, decreasing the V-f
level increases the hardware-level fault rate. Figure 2b shows that how the total
power consumption (Eq. 1) and the hardware-level fault rate (given by Eq. 2) for a
given core vary at different V-f levels. For the processor cores in our experiments, it
is considered that the V-f level can have five different values as shown in Fig. 2b, i.e.,
the minimum V-f level is [0.72 V, 490 MHz] and the maximum V-f level is [1.23 V,
970 GHz], see details in Sect. 5.

Due to the core-to-core variations in the frequency and leakage power, when a
given application is executed on different cores but under the same supply voltage, it
presents different power consumption, performance (execution time), and reliability.
Figure 3 shows core power consumption, application reliability, and execution time
for the discrete cosine transform (DCT) application when it is executed on different
cores but under the same supply voltage. Figure 3a illustrates that due to core-to-
core variations in operating frequency, executing a given application on different
cores presents different power consumption and performance properties.

According to Eq. 3, the application reliability depends upon the hardware-
level fault rate, software vulnerability, and application execution time. Figure 3b
illustrates that when a given application is executed on different cores, it provides
different reliability levels. This is because, in this case, software vulnerability
(FV I) and hardware-level fault rate (λ) remain the same in Eq. 3 (the same
application is executed under the same voltage level) but due to core-to-core
variations in operating frequency, the application execution time (c

f
) varies when

executed on different cores.
The analyses in Figs. 2 and 3 illustrate that the diversities in power and perfor-

mance of different cores in a chip when executing the same application along with
exploiting different V-f levels can be utilized for efficient reliability management at
hardware level.

572 M. Salehi et al.

3.2 Tradeoffs at the Software Level

Since different applications execute different instructions on different operand
values, they present different power, performance, and reliability properties even
when executed on the same core and under the same V-f level. Figure 4 shows
the power consumption, execution time, software vulnerability, and reliability for
different applications when executed on the same core and under the same V-
f level. Different applications exhibit different circuit switching activity and also
require different clock cycles to complete, and hence, they exhibit distinct power
consumption and execution time properties even when executed on the same core;
see Fig. 4a.

Also, since different instructions present different vulnerabilities to soft errors
(e.g., single event upsets), as shown in Fig. 4b, different applications exhibit distinct
software vulnerabilities. Figure 4b shows that different applications, even when
executed under the same V-f level (i.e., under the same hardware-level fault rate) and
on the same core, exhibit different system-wide reliability. This is because, based
on Eq. 3, the application reliability also depends upon its software vulnerability
and execution time.

The above analysis shows that different applications exhibit different power,
performance, and reliability levels when executed on different cores, thus enabling
power–reliability–performance tradeoffs at software level.

3.3 Tradeoffs for Hardening Modes

3.3.1 Tradeoffs for Reliability Techniques

Reliability techniques usually employ different types of redundancy (e.g., hardware,
software, and time redundancy) and different redundancy levels (e.g., dual or triple
modular redundancy). Therefore, they offer different reliability, performance, and
power properties. Also, two different reliability techniques may provide the same
error tolerance capability but at different performance and power cost. For example,

Fig. 4 Application-to-application variations in power, execution time, software vulnerability, and
application reliability when executed by the same core. Adapted from [15]

Power-Aware Fault-Tolerance for Embedded Systems 573

Fig. 5 System-wide reliability and power for different reliability techniques when performed at
the minimum and maximum V-f levels (V-fmin and V-fmax, respectively). Adapted from [12]

both the DMRR and TMR techniques can tolerate one single task failure; however,
when an error occurs, DMRR requires more time to re-execute the task for error
recovery, which incurs a performance overhead. Nevertheless, DMRR may consume
less power and energy when compared to TMR. This is because when no error
occurs, which could be a case for most of the time, DMRR does not require re-
executing the task, while TMR always executes the third copy.

Figure 5 shows system reliability and power consumption when the reliability
techniques in Sect. 2.3 are employed. To illustrate the effects of scaling the operating
V-f level on the system reliability and power consumption, the reliability techniques
are executed under the minimum and maximum V-f levels (i.e., V-fmin and V-
fmax). Also, in this figure, reliability techniques with different redundancy levels
are considered (i.e., SEDR with a low redundancy level and TMR with a high
redundancy level). Figure 5 illustrates that increasing the redundancy level (from
SEDR to TMR) and V-f level (from V-fmin to V-fmax) improves reliability but at the
cost of increased power consumption.

The experiment in Fig. 5 shows that different reliability techniques when oper-
ating in different V-f levels exhibit distinct power, performance, and reliability
properties, enabling power–reliability–performance tradeoffs that can be employed
for power–reliability management.

3.3.2 Tradeoffs for Software Hardening

To further expand the power–reliability–performance optimization space, a
reliability-aware compiler can be used to generate multiple reliable compiled
code versions for a given application task through reliability-driven software

574 M. Salehi et al.

Fig. 6 Different compiled code versions of each application have different: (a) Power and
performance (execution time); and (b) Software vulnerability (in log scale) and application
reliability. Adapted from [15]

code transformations (see more details in [8, 9]). Different code versions of the
same task present dissimilar power, reliability, and performance properties while
implementing the same functionality. For instance, Fig. 6 shows power, execution
time (in terms of clock cycles), software vulnerability, and overall reliability (given
by Eq. 3) of different compiled code versions for five applications.

The reliability and execution time of an application task also vary with the
operating V-f level of the underlying core. Figure 7 shows the reliability and
execution time of three code versions for the ADPCM application under different
V-f levels. Figure 7a illustrates that how different code versions of the ADPCM
application when executed under different V-f levels can be used to achieve a given
reliability requirement for the application (Rreq in this figure). For instance, to meet
the reliability requirement Rreq ≥ 0.999, shown by the dotted horizontal line in
Fig. 7a, the operating V-f level for the code versions cv1 and cv2 should be at least
[0.97 V, 730 MHz], whereas the V-f level for the code version cv3 can be [0.85 V,
650 MHz]. Assume that the application execution has a deadline constraint to finish
within 5ms, as shown by the dotted horizontal line in Fig. 7b. In this case, the
operating V-f level for the code version cv2 should be at least of [0.85 V, 650 MHz],
for cv1 should be at least [0.97 V, 730 MHz], and for cv3 should be at least [1.1 V,

Power-Aware Fault-Tolerance for Embedded Systems 575

Fig. 7 Reliability and execution time of three compiled code versions for the ADPCM application
under different voltage–frequency levels. Adapted from [11]

850 MHz]. Now assume that the underlying core has a TDP constraint that requires
its operating V-f level should be at most [0.85 V, 650 MHz] (the TDP1 constraint
in Fig. 7). Under the TDP1 constraint, to meet the reliability constraint we should
select the code version cv3; see Fig. 7a. However, under the given TDP1 constraint,
if the deadline constraint has to be met, we would select the code version cv2; see
Fig. 7b. As another example assume that the core has the TDP2 constraint (i.e.,
the operating V-f level for the core should be at most [0.97 V, 730 MHz]). In this
case, the code version cv1 is the best choice since it can satisfy both the reliability
constraints of Rreq ≥ 0.999 and the deadline constraints within 5 ms while meeting
the power constraint TDP2.

576 M. Salehi et al.

4 Power–Reliability–Performance Management

From Sects. 2 and 3, the following key observations can be derived that lay the
foundation of designing an efficient system for power–reliability–performance
Management.

1. Executing tasks at a higher V-f level provides lower execution time and fault rate,
resulting in higher system-wide reliability. However, the task power consumption
at a high V-f level may be beyond the chip power constraint.

2. An effective way to decrease the power consumption is to lower the operating V-f
level, e.g., through DVFS. However, lowering the V-f level leads to an increased
execution time of the task that may result in a performance degradation and a
missed deadline.

3. Different compiled code versions for an application task exhibit different vulner-
ability and execution time properties when executed on the same core.

4. Different compiled code versions for each application task when executed by
different reliability techniques on different cores with frequency variations and
supporting different V-f levels present distinct power, reliability, and performance
properties.

In short, the variations in vulnerability and execution time of different compiled
versions for each task along with the variations in reliability, power, and perfor-
mance when using different reliability techniques and V-f levels can be exploited
for power–reliability–performance optimization.

The previous works, dynamic redundancy and voltage scaling (DRVS) [12]
and dark silicon reliability management (dsReliM) [11], consider the above-
mentioned variations at hardware and software levels for run-time power–reliability
management. DRVS exploits run-time reliability technique (task-level redundancy)
with V-f selection for each application task to minimize system power consumption
under reliability and timing (deadline) constraints. dsReliM leverages multiple
pre-compiled code versions for each application task with V-f selection at run
time to maximize reliability under timing and power constraints. However, such
techniques that solely use task-level redundancy or pre-compiled code versions may
impose the following restrictions on power–reliability management. Although task-
level redundancy can substantially increase reliability, it may increase chip power
consumption beyond its power constraint. Also, this technique can only be used
if sufficient cores are available for task-level redundancy. In this case, it may be
useful to leverage reliable compiled codes to improve reliability, since no extra cores
are required to execute different code versions for each application task. Although
compile-time software hardening can decrease power consumption, it may increase
the execution time of the tasks beyond their timing constraint. Therefore, power–
reliability management requires joint considerations of reliability, performance, and
power properties of hardening techniques at both software and hardware levels,
which is the primary consideration of this chapter.

Power-Aware Fault-Tolerance for Embedded Systems 577

4.1 Problem Definition

System reliability and total power consumption, V-f level and code version assign-
ments, and task-to-core mapping are represented by different matrices with n×m×
c × v elements. Here, n is the number of ready tasks, m is the number of available
code versions for each task, c is the number of free cores, and v is the number of
available V-f levels for each core. The matrices are:

• R ∈ R
n×m×c×v: A matrix to represent the system reliability. In this matrix, each

element Ri,j,k,l represents the reliability of the task i when the code version j of
the task is executed by the core k under the V-f level l.

• P ∈ R
n×m×c×v: A matrix to represent the system total power consumption. In

this matrix, each element Pi,j,k,l represents the power consumption for the task i

when the code version j of the task is executed by the core k under the V-f level l.
• X ∈ {0, 1}n×m×c×v: A matrix to represent the code version and V-f level

assignments and task-to-core mapping. Code version j for the task i is mapped
to the core k and is executed under the V-f level l if and only if Xi,j,k,l = 1.

Considering power, reliability, and performance as a design object or a design
constraint, the potential goals of a power-aware reliable system design can be:

1. Maximize system reliability while keeping total power consumption under a
given power constraint (e.g., TDP) and meeting tasks timing requirements (e.g.,
tasks deadlines) OR

2. Minimize power consumption while satisfying the system reliability and timing
requirements.

The power–reliability–performance management problems can be formulated as
a constrained 0-1 integer linear program (ILP). In the following, the problem is
formulated where reliability is the design objective, while power and performance
are the design constraints. That is,

• Optimization Goal: Maximizing the system reliability that is defined by the
correct execution of all the application tasks.

maximize
∏

i,j,k,l

Xi,j,k,lRi,j,k,l (9)

This is a 0–1 assignment problem, and hence, we have

Xi,j,k,l ∈ {0, 1} (10)

• Chip Power Constraint: Total power consumption of the chip, i.e., the sum of
power consumption of all cores should be less than the chip power constraint
(i.e., chip-level TDP).

578 M. Salehi et al.

∑
i,j,k,l

Xi,j,k,lPi,j,k,l ≤ PT DP,chip (11)

• Cores Power Constraint: Power consumption of each core should be less than
the core power constraint (i.e., core-level TDP).

Xi,j,k,lPi,j,k,l ≤ PT DP,k (12)

• Tasks Timing Constraint: The execution time
wi,j

fk,l
of a task i when the code

version j of the task (with wi,j clock cycles) is executed on the core k at the V-f
level l should satisfy the task timing constraint (defined by the deadline di).

Xi,j,k,l

wi,j

fk,l

≤ di (13)

• Code Version Constraint: The code version does not change during a task
execution, i.e., for each execution of a task only one code version can be used.

∀ i, k, l
∑
j

Xi,j,k,l = 1 (14)

• V-f Levels Assignment Constraint: The V-f level does not change during a task
execution, i.e., during a task execution the underlying core can only perform
under a single V-f level.

∀ i, j, k
∑

l

Xi,j,k,l = 1 (15)

4.2 Proposed Solution

The power-aware fault-tolerance (PAFT) technique in this chapter jointly accounts
for soft errors, process variations, user defined reliability constraint, and processor
power constraint (i.e., TDP). At design time, considering the inherent software-
level variations in the execution time of the applications, power, and vulnerability,
the PAFT technique selects suitable code versions from multiple compiled codes
for each application task (Sect. 4.2.1). At run time, considering the hardware-level
variations in performance, fault rate, and power, the PAFT approach selects the
hardware/software hardening mode (i.e., reliability technique and code version for
each task) and performs task mapping and V-f level allocation (Sect. 4.2.2).

Power-Aware Fault-Tolerance for Embedded Systems 579

4.2.1 Design-Time Code Selection

As discussed in Sect. 3.3, different compiled code versions for an application
task and also different reliability techniques (with different redundancy levels)
exhibit different reliability, performance, and power properties. Therefore, for each
application task, a tradeoff can be made between two cases:

1. Exploiting a code version with higher reliability and a reliability technique with
lower redundancy level (e.g., SEDR) to achieve both high reliability and low
power consumption.

2. Exploiting a code version with higher performance and a reliability technique
with a higher redundancy level (e.g., TMR) to achieve both high performance
and high reliability.

To enable the above tradeoff at run time, we leverage the design-time generated
multiple code versions for each task using a reliability-aware compiler (see details
in [8, 9]). Then, two types of code versions are chosen as follows (as shown
in Fig. 8):

1. Reliability-Driven Code Selection: At run time, the reliability of executing
a code version of a task on a single core (in the SEDR mode) may be high
enough to satisfy the system reliability requirement. In this case, for the task,
there is no need to employ a reliability technique with a higher redundancy
level. However, the execution time of all the code versions with high reliability,
even when executed on a high-performance core and at the maximum V-f level
may not be low enough to meet the task deadline constraint. Also, the power
consumption of a code version with high reliability may be higher than the
processor power budget. Therefore, at design time, for each application task,
a set of code versions with high reliability, low execution time, and low power
consumption is selected. To do this, first we find the reliability-wise best code
versions. Then, from the highly reliable code versions, the performance-wise
best code versions (i.e., the code versions with the lowest execution time) are
selected. Finally, from the selected code versions, the code versions that provide
the lowest power consumption are chosen.

2. Performance-Driven Code Selection: The reliability of executing a single task
on a single core (in SEDR mode) may not be high enough to satisfy the task
reliability requirement. In this case, the task can be executed under a reliability
technique with a higher redundancy level (e.g., in the DMRR or TMR mode)
to improve its reliability. Here, a code version with a high performance is
executed under a high redundancy level to make a balance between timing and
functional reliability. Therefore, the performance-wise best code versions with
high reliability and low power consumption are chosen.

580 M. Salehi et al.

Fig. 8 Overview of the design-time part of the power-aware fault-tolerance (PAFT) technique

4.2.2 Run-Time Hardening Mode and V-f Level Selection and
Task-to-Core Mapping

The run-time part of the PAFT technique is shown in Fig. 9. It chooses the hardening
mode (reliable code version and reliability technique), operating V-f levels and set
of cores to implement the reliability techniques, such that the design objectives are
achieved while satisfying the design constraints (e.g., maximized system reliability
under timing and power constraints). The problem can be effectively solved by
the use of existing ILP solvers (formulated in Sect. 4.1). Since 0-1 ILP problems
belong to the class of NP-complete problems, ILP solvers generally exploit branch-
and-bound mechanisms to find the optimal solution which leads to an exponential
increase in their run-time complexity. Therefore, ILP solvers cannot be used in
online scenarios where the parameters that are required for decision-making are

Power-Aware Fault-Tolerance for Embedded Systems 581

Fig. 9 Overview of the run-time part of the power-aware fault-tolerance (PAFT) technique

determined at run time (e.g., ready tasks and free cores). In the case of this problem,
the complexity of ILP solvers increases at run time with the number of ready
tasks, code versions for each task, reliability techniques, free cores, and V-f levels.
Therefore, for this problem, a heuristic is developed, which at first aggressively
chooses the hardening mode, operating V-f levels and set of cores in such a way that
the highest possible reliability and performance are obtained. Afterwards, it iterates
and updates the hardening mode, operating V-f levels and task-to-core mapping until
the design constraints (e.g., reliability, deadline, and power constraints) are satisfied.
To do this, the run-time part of the PAFT technique gives the chip processor variation
map, chip-level redundancy map, design constraints, and library of selected code
versions for each application task as input and performs the following four key steps
to each ready application:

1. Initial Hardening Mode Assignment: First, a reliability-wise best code version
is assigned to each task to achieve the highest possible functional reliability
for each task. Then, beginning from the task with the lowest reliability, the
reliability-wise best technique is assigned to the reliability-wise worst tasks.
Therefore, the reliability of the tasks with the lowest reliability is improved,
resulting in an improvement in the overall system reliability (the overall system
reliability is less than or equal to the reliability of the task with the lowest
reliability).

2. Initial Mapping: In this step, starting from the task with the highest execution
time (lowest performance), the performance-wise worst tasks are mapped on the
performance-wise best cores (cores with the highest operating frequency).

582 M. Salehi et al.

3. Finding the Base Solution: Until now, the highest possible reliability and
performance have been achieved for the tasks which may be higher than the
system performance and reliability requirements. Also, this may lead to an
increased chip power consumption beyond its power constraint. In this step,
starting from the task with the highest power consumption, the redundancy and
V-f level assigned to the task are increased to reduce power consumption until
the point that the chip power constraint is satisfied. Here, reducing the operating
V-f level may lead to a task deadline miss. In this case, the task code is replaced
with a code version with less execution time.

4. Updating the Base Solution: At run time, missed deadlines can be considered
for performance monitoring and the number of encountered errors can be
considered for making the reliability decision. Also, the power information
can be acquired from a proxy power monitor. By the use of the run-time
reliability, performance, and power monitoring information the system considers
the following cases for power–reliability–performance management:

(a) When the execution of a task finishes, the free cores are employed to
improve the system reliability and performance through updating reliability
techniques and task-to-core mapping.

(b) When an error occurs, after tolerating the error by the use of a recovery
mechanism, the redundancy and V-f levels assigned to the tasks are increased
to compensate the reliability degradation and also to provide high reliability
against possible consequent errors.

(c) When chip power consumption approaches its power constraint, redundancy
and V-f levels are decreased to reduce power consumption.

Since estimating the tasks reliability, power, and performance properties is time-
consuming, the decisions in steps (a)–(c) are made at run time based on the
reliability, power, and performance values that are obtained through the design-time
measurements and simulations.

Figure 10 shows how the run-time part of the system works on a ready task.
In this figure, for simplicity of the explanations, it is assumed that the reliability
technique (e.g., SEDR, DMR, and TMR) and the underlying cores for the task
execution are already determined and now the code version and V-f level should be
chosen under timing (deadline) and power (TDP) constraints. Suppose that, for the
task, the design-time code selection part has selected different pre-compiled code
versions (cv1, cv2, cv3, . . .) with different reliability and execution time properties.
At run time, to achieve maximum reliability without considering the deadline and
power constraints, the code version with the highest reliability (i.e., cv1 in Fig. 10)
is selected to be executed at the maximum V-f level (V-fmax). In Fig. 10, without
loss of generality, it is assumed that the execution time of cv1 at V-fmax is less than
its deadline but its power consumption at V-fmax exceeds the chip power (TDP)
constraint. In this case, the V-f level is scaled down until the power consumption
decreases below the TDP constraint. Suppose the case where reducing the V-f level
to a lower level increases the task execution time beyond the task deadline (the task
timing constraint is missed). In this case, the code is changed to a version with less

Power-Aware Fault-Tolerance for Embedded Systems 583

Fig. 10 Code version and
V-f level assignment for
reliability management under
timing (deadline) and power
(TDP) constraints

execution time (the code version that can meet the deadline). Here, among the code
versions that can meet the deadline, the one is selected that provides the maximum
execution time reduction and the minimum reliability loss (i.e., the code version
with the maximum �time/�reliability). However, if there is no code version
that can meet the deadline, to achieve the minimum performance degradation, the
one with the minimum execution time is selected. After selecting the suitable code
version, the V-f level is scaled down and if needed, the code version is updated until
the TDP constraint is met (as shown in Fig. 10).

5 Experimental Setup and Results

Figure 11 shows the experimental setup and evaluation framework. Experiments
were conducted by the use of a system-level many-core simulator developed in
the C/C++ language. Accurate power and performance (execution time) parameters
of applications and underlying hardware were provided for the simulator through
processor synthesis, logic simulation, and power estimation. To do this, the Synop-
sys Design Compiler and a TSMC 45 nm technology file were used to synthesize
a VHDL implementation of a LEON3 processor core [2]. Different benchmark
applications of MiBench [4] (listed in Fig. 4) were used, and multiple compiled code
versions for each application task were generated by the use of a reliability-aware
compiler of [8, 9]. ModelSim was used for logic simulation to acquire execution
time (clock cycles) and activity factors for each compiled code versions of each
application. Power estimation was done using the Synopsys Power Compiler with
the process synthesis and logic simulation outputs.

As another input for the simulator, the process variation maps were generated
through SPICE simulations. The frequency and leakage power variations were
modeled through simulating a 13-stage ring oscillator containing FO4 inverters
based on two-input NAND gates (like in [11, 12, 15]). To implement DVFS for

584 M. Salehi et al.

Fig. 11 The experimental setup and simulation flow

the processor cores, it is considered that the voltage level can change from 0.72
to 1.23 V, with 0.13 V steps, and the corresponding frequency to the minimum and
maximum voltage levels is 490 MHz and 970 GHz, respectively.

For reliability evaluations, multiple fault vectors were generated by a Poisson
process where the transient fault rate at different V-f levels was modeled based on
Eq. 2 with λ0 = 10−4 and � = 1V . Also, for the system, two types of reliability
requirements were considered: (1) functional reliability (FR) where only correct
output of the tasks is required and the tasks have no deadline and (2) functional–
timing reliability (FTR) where both correct output of the tasks and meeting tasks
deadlines are required. For FTR, for each task, we considered a deadline between
its execution time and 1.5× its execution time. Considering the stochastic behavior
of transient faults, multiple combinations of benchmark applications were executed
for 100,000 times (as a Monte Carlo simulation) and reported the average results.

To model chip power budget, different TDP constraints were considered for each
chip between 40 and 100% of its maximum power consumption when all cores
perform at their maximum V-f level. This determines a wide range of TDP from a
high TDP constraint where up to 40% of the cores can perform at their highest V-f
level (i.e., at least 60% dark silicon) to no TDP constraint where all of the cores can
perform at their highest V-f level (i.e., 0% dark silicon). Also, two types of system
workload were considered in the experiments: (1) high workload, when the number
of ready tasks is more than 50% of available cores and (2) low workload, when the
number of ready tasks is less than 50% of the number of available cores.

To evaluate the accuracy and run-time efficiency of the power-aware fault-
tolerance (PAFT) technique in finding solutions at run time, it was compared with
the following techniques:

• dsReliM [11]: which uses compile-time software hardening (different reliable
code versions) with run-time code version and V-f level selection.

• DRVS [12]: which exploits run-time task-level redundancy through the SEDR,
DMRR, and TMR modes (explained in Sect. 3.3) with V-f level selection.

• ILP Solver: which exploits both compile-time software hardening and run-time
task-level redundancy with code version and V-f selection. It searches for the

Power-Aware Fault-Tolerance for Embedded Systems 585

Fig. 12 Reliability and execution time for different power–reliability management techniques. (a)
Reliability under low workload. (b) Reliability under high workload. (c) Execution time. Adapted
from [15]

optimum solution through ILP solving. For this system, Gurobi1 was used as a
well-known ILP solving tool.

The results of the reliability and execution time efficiency evaluations are shown
in Fig. 12. From this figure, the following observations can be made:

• All four techniques achieve higher reliability when there is no timing constraint
for the tasks (denoted by FR in Fig. 12) compared to the case when the tasks
have a timing constraint (denoted by FTR in Fig. 12). This is because when
tasks have no deadline, a higher task-level redundancy (more task copies) can
be considered for the execution of the tasks, resulting in a higher reliability. In
addition, highly reliable code versions even with a high execution time can be
executed. However, when there are timing constraints only the code versions that
can satisfy the timing constraints can be selected. For the same reasons, similar
results are obtained for higher system workloads (see Fig. 12b).

• All four techniques provide higher reliability when the chip power budget
increases from 40 to 100% of the maximum chip power consumption. This is
because more cores can be powered-on and higher redundancy levels can be
leveraged for more task executions. In addition, highly reliable code versions
even with higher power consumption can be executed.

• From the viewpoint of accuracy, reliability levels provided by PAFT deviate far
less than one order of magnitude from the optimum reliability provided by ILP
Solver, while the execution time of PAFT is up to 1680× less than the execution

1http://www.gurobi.com/.

http://www.gurobi.com/

586 M. Salehi et al.

time of ILP Solver for an 8× 8 cores chip (Fig. 12c shows the average execution
time for chips with 4× 4, 6× 6, and 8× 8 cores).

• As Fig. 12c shows, the execution time for PAFT is up to 3% higher than the
execution time of DRVS and dsReliM, while it achieves at least one order
of magnitude more reliability. This is because PAFT leverages both task-level
redundancy and code version and V-f selection to discover better tradeoffs
between reliability, power, and performance.

6 Conclusion

This chapter presents a power-aware fault-tolerance technique (PAFT) that jointly
accounts for transient faults, process variations, and the TDP constraint in multi-
/many-core chips. It synergistically exploits different reliability techniques, software
hardening modes, and V-f levels at run time for power–reliability management. The
problem was modeled as a constrained 0–1 integer linear program (ILP), and a
computationally lightweight yet efficient heuristic-based technique for solving the
problem was proposed. Results have shown that compared to an ILP solver tool,
PAFT deviates far less than one order of magnitude in terms of reliability efficiency
while seeding up the reliability management decision time by a factor of up to 1680.
PAFT also provides at least one order of magnitude reliability improvement under
different TDP constraints when compared to the systems that use either hardware
reliability techniques or software hardening modes while increasing the execution
time less than 3%.

Acknowledgments This work was supported in parts by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded Systems” (SPP 1500—
spp1500.itec.kit.edu).

References

1. Brooks, D.M., Dick, R.P., Joseph, R., Shang, L.: Power, thermal, and reliability modeling in
nanometer-scale microprocessors. IEEE Micro 27(3), 49–62 (2007). https://doi.org/10.1109/
MM.2007.58

2. Gaisler, C.: LEON3 processor. http://www.gaisler.com/index.php/products/processors/leon3.
Accessed 07 June 2019

3. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N.D., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,
Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. CAD Integr. Circuits Syst. 32(1),
8–23 (2013). https://doi.org/10.1109/TCAD.2012.2223467

4. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: a
free, commercially representative embedded benchmark suite. In: Proceedings of the Workload
Characterization, IEEE International Workshop, WWC’01, pp. 3–14. IEEE Computer Society,
Washington (2001). https://doi.org/10.1109/WWC.2001.15

https://doi.org/10.1109/MM.2007.58
https://doi.org/10.1109/MM.2007.58
http://www.gaisler.com/index.php/products/processors/leon3
https://doi.org/10.1109/TCAD.2012.2223467
https://doi.org/10.1109/WWC.2001.15

Power-Aware Fault-Tolerance for Embedded Systems 587

5. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel,
M., Ernst, R., Härtig, H., Hedrich, L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel,
P., Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O., Tahoori, M.B., Teich, J.,
Wehn, N., Wunderlich, H.: Design and architectures for dependable embedded systems. In:
Proceedings of the 9th International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2011, Part of ESWeek ’11 Seventh Embedded Systems Week, Taipei,
9–14 October, 2011, pp. 69–78 (2011). https://doi.org/10.1145/2039370.2039384

6. Henkel, J., Bauer, L., Zhang, H., Rehman, S., Shafique, M.: Multi-layer dependability: from
microarchitecture to application level. In: The 51st Annual Design Automation Conference
2014, DAC’14, San Francisco, June 1–5, 2014, pp. 47:1–47:6 (2014). https://doi.org/10.1145/
2593069.2596683

7. Rangan, K.K., Powell, M.D., Wei, G., Brooks, D.M.: Achieving uniform performance and
maximizing throughput in the presence of heterogeneity. In: 17th International Conference
on High-Performance Computer Architecture (HPCA-17 2011), February 12–16 2011, San
Antonio, pp. 3–14 (2011). https://doi.org/10.1109/HPCA.2011.5749712

8. Rehman, S., Shafique, M., Kriebel, F., Henkel, J.: Reliable software for unreliable hardware:
embedded code generation aiming at reliability. In: Proceedings of the 9th International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2011, part
of ESWeek’11 Seventh Embedded Systems Week, Taipei, 9–14 October, 2011, pp. 237–246
(2011). https://doi.org/10.1145/2039370.2039408

9. Rehman, S., Kriebel, F., Shafique, M., Henkel, J.: Reliability-driven software transformations
for unreliable hardware. IEEE Trans. CAD Integr. Circuits Syst. 33(11), 1597–1610 (2014).
https://doi.org/10.1109/TCAD.2014.2341894

10. Salehi, M., Ejlali, A.: A hardware platform for evaluating low-energy multiprocessor embedded
systems based on COTS devices. IEEE Trans. Ind. Electron. 62(2), 1262–1269 (2015). https://
doi.org/10.1109/TIE.2014.2352215

11. Salehi, M., Shafique, M., Kriebel, F., Rehman, S., Tavana, M.K., Ejlali, A., Henkel, J.:
dsRelim: power-constrained reliability management in dark-silicon many-core chips under
process variations. In: 2015 International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS 2015, Amsterdam, October 4–9, 2015, pp. 75–82 (2015).
https://doi.org/10.1109/CODESISSS.2015.7331370

12. Salehi, M., Tavana, M.K., Rehman, S., Kriebel, F., Shafique, M., Ejlali, A., Henkel, J.: DRVS:
power-efficient reliability management through dynamic redundancy and voltage scaling under
variations. In: IEEE/ACM International Symposium on Low Power Electronics and Design,
ISLPED 2015, Rome, July 22–24, 2015, pp. 225–230 (2015). https://doi.org/10.1109/ISLPED.
2015.7273518

13. Salehi, M., Ejlali, A., Al-Hashimi, B.M.: Two-phase low-energy n-modular redundancy for
hard real-time multi-core systems. IEEE Trans. Parallel Distrib. Syst. 27(5), 1497–1510 (2016).
https://doi.org/10.1109/TPDS.2015.2444402

14. Salehi, M., Tavana, M.K., Rehman, S., Shafique, M., Ejlali, A., Henkel, J.: Two-state
checkpointing for energy-efficient fault tolerance in hard real-time systems. IEEE Trans. VLSI
Syst. 24(7), 2426–2437 (2016). https://doi.org/10.1109/TVLSI.2015.2512839

15. Salehi, M., Ejlali, A., Shafique, M.: Run-time adaptive power-aware reliability management for
manycores. IEEE Des. Test 35(5), 36–44 (2018). https://doi.org/10.1109/MDAT.2017.2775738

16. Shafique, M., Garg, S., Henkel, J., Marculescu, D.: The EDA challenges in the dark silicon era:
temperature, reliability, and variability perspectives. In: The 51st Annual Design Automation
Conference 2014, DAC’14, San Francisco, June 1–5, 2014, pp. 185:1–185:6 (2014). https://
doi.org/10.1145/2593069.2593229

17. Shye, A., Moseley, T., Reddi, V.J., Blomstedt, J., Connors, D.A.: Using process-level redun-
dancy to exploit multiple cores for transient fault tolerance. In: Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, 25–28
June 2007, Edinburgh, pp. 297–306 (2007). https://doi.org/10.1109/DSN.2007.98

https://doi.org/10.1145/2039370.2039384
https://doi.org/10.1145/2593069.2596683
https://doi.org/10.1145/2593069.2596683
https://doi.org/10.1109/HPCA.2011.5749712
https://doi.org/10.1145/2039370.2039408
https://doi.org/10.1109/TCAD.2014.2341894
https://doi.org/10.1109/TIE.2014.2352215
https://doi.org/10.1109/TIE.2014.2352215
https://doi.org/10.1109/CODESISSS.2015.7331370
https://doi.org/10.1109/ISLPED.2015.7273518
https://doi.org/10.1109/ISLPED.2015.7273518
https://doi.org/10.1109/TPDS.2015.2444402
https://doi.org/10.1109/TVLSI.2015.2512839
https://doi.org/10.1109/MDAT.2017.2775738
https://doi.org/10.1145/2593069.2593229
https://doi.org/10.1145/2593069.2593229
https://doi.org/10.1109/DSN.2007.98

588 M. Salehi et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Our Perspectives

Jian-Jia Chen and Joerg Henkel

Research and development in the last decades have led to a silicon process that has
been expected to become inherently undependable in the near future when migrating
towards new technologies. The special priority program (SPP) 1500 funded by the
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in 2010–
2016 and the Variability Expedition funded by the National Science Foundation
(NSF) in 2010–2015 made a joint effort to explore design challenges of Power
Consumption, Reliability, Interference, and Manufacturability under such a design
requirement.

The exploration started with a vision to go beyond simply developing fault-
tolerant systems that monitor the device at run-time and react to error detection.
Instead, the design should consider error as a design constraint and develop method-
ologies to achieve resilience at the presence of errors. Under such a design principle,
error is inevitable and the error rate should be a tradeoff against performance.

This book summarizes the achievements of the SPP 1500 partners, the Variability
Expedition partners, and their collaborators. After telling the successful stories in
the previous chapters, this chapter provides a summary of our perspectives of the
exploration and a short outlook of future.

One important perspective to achieve resilience at the presence of faults is to
quantitatively define resilience and errors and use the resilience in a cross-layer
manner. Specifically, the RAP model summarized in chapter “RAP Model–Enabling
Cross-Layer Analysis and Optimization for System-on-Chip Resilience” provides a
milestone to help annotate how variability related to physical faults can be expressed

J.-J. Chen
TU Dortmund, Dortmund, Germany
e-mail: jian-jia.chen@tu-dortmund.de

J. Henkel (�)
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: henkel@kit.edu

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_25

589

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_25&domain=pdf
mailto:jian-jia.chen@tu-dortmund.de
mailto:henkel@kit.edu
https://doi.org/10.1007/978-3-030-52017-5_25

590 J.-J. Chen and J. Henkel

at higher abstraction levels. RAP is a result of several working group meetings
and collaborative efforts among SPP 1500 partners. It has been also used as a
demonstrator in several projects. We believe that RAP is an initial step towards
good abstractions that can be used to model the faulty hardware and its impact on
the software. It may be possible that the probabilistic information encoded in RAP
is not precise enough for further optimizations. We envision that a more flexible and
more precise model to correctly quantify the resilience will be needed in the future.
It may be a set of models that can be configured depending on the required accuracy
level.

One possible way to analyze system-level resilience in a modularized manner
is to enable compositional reliability analysis. The support of composition and
decomposition is important for modularized analysis and can be used to model
uncertainties in both functional and non-functional properties. The modulability
provided in chapter “EM Lifetime Constrained Optimization for Multi-Segment
Power Grid Networks” extends the existing compositional performance analysis
(CPA) (or real-time calculus) to handle reliability. We believe that there is a great
potential to utilize the concept in the system design. However, to achieve composi-
tion and decomposition, rules to bound the approximation errors of composition
and/or decomposition would be needed. The automatic design of efficient and
effective rules is essential for compositional reliability analysis.

In many of the results of the SPP 1500 and Variability Expedition partners,
cross-layer and interactive optimization has been explored. Unlike the classic
multi-layered approach, in which each layer passively takes the input from the
higher/lower layers, the cross-layer approach applies active optimization routines
across multiple layers. Since the system-level resilience cannot be optimized unless
all the layers are optimized, such a cross-layer approach has been used as interfaces
between different layers. An overview of the (coarse-grained) layers and their
interactions can be found in Fig. 10 in chapter “RAP Model–Enabling Cross-Layer
Analysis and Optimization for System-on-Chip Resilience”.

To validate the research results, fault injection through instrumentation, emula-
tion, and simulation has been developed and used. Fault injection is an important
routine that should be deployed before fault detection. The computational effort of
fault injection can become a bottleneck. Proper models and tools for fault injections
are important contributions of the research partners. For example, the FPGA
fault injection tool in chapter “Dependability Aspects in Configurable Embedded
Operating Systems” can be used to emulate the entire SoC with specific faults.
Different fault injection scenarios can be found in chapter “Lightweight Software-
Defined Error Correction for Memories”. Despite its importance, to the best of our
knowledge, there is no integrated tool that can be used for benchmarking the quality
and (intended) consequence of fault injection. Although there have been several
attempts to provide an integrated tool from the partners in SPP1500 for different
types of fault injection, the diverse scenarios in the cross-layer settings made the
integration very difficult. We envision that fault injection tools that can be configured
and applied for different layers and scenarios can be developed in the near future so
that cross-layer design and optimization can be further modularized and deployed.

Our Perspectives 591

When the design considers error as a design constraint, the system has to be
adaptive to react (or even be proactive) according to the faults and errors to
achieve the targeted resilience. Adaptive methods in physical, micro-architecture,
architecture (ISA), compiler, and operating systems are explored and discussed.
It has been demonstrated in several research results that adaptivity should be applied
across layers. For example, the error semantics in chapter “Soft Error Handling for
Embedded Systems using Compiler-OS Interaction” in the software development
process provides the information in the compilation needed for the operating
systems to be adaptive according to faults. Moreover, the annotation of multiple
execution versions in chapter “Cross-Layer Dependability: From Architecture to
Software and Operating System” provides a means to the run-time system to execute
different versions according to the reliability condition. Furthermore, the depend-
ability aspects can be further configured in operating systems as demonstrated in
chapter “ASTEROID and the Replica-Aware Co-scheduling for Mixed-Criticality”.
We strongly believe that adaptivity is a key insight. However, the reported achieve-
ment is based on ad hoc treatments for well-defined scenarios. It will be very
practical and impactful to explore automatic adaptivity so that suggestions of proper
means can be provided to the designers for achieving high resilience.

The adaptive handling of errors and faults naturally makes the timing behavior
dynamic over time. When there is no fault, an embedded system functions correctly
with respect to the specified timing. However, when there are faults, the embedded
system may not function correctly anymore since some jobs may be aborted or may
miss their deadlines. Therefore, it is of importance to explore both functional and
timing correctness. If all jobs have to meet their deadlines, the hardware may have
to be over-dimensioned. If some jobs can be allowed to miss their deadlines when
faults are present, the system designer just has to ensure that all the desired timing
behavior can be verified offline. Such dynamic timing requirements can be modeled
as mixed criticality. When the system does not suffer from any fault, it is at the low-
criticality mode. When the system suffers from some faults, it is promoted to the
high-critical mode. Such a treatment has been presented in chapter “Dependability
Aspects in Configurable Embedded Operating Systems”. An alternative is to explore
the probability (or miss rate) of deadline misses, presented in chapter “Cross-Layer
Dependability: From Architecture to Software and Operating System”. Although
the above treatments are successful, they are not originally from the resilience
perspectives. It remains open whether the timing requirements to achieve system
resilience should be treated as the first-class design objective. More specifically,
although dynamic timing behavior and requirements are considered, they are not
directly related to resilience. Moreover, the tradeoffs of the timing requirement and
system resilience in the presence of faults are still in the infant stage and require
more research efforts to reach a conclusion.

We believe that the successful stories in the previous chapters and the perspec-
tives presented in this chapter provide cornerstones for the design of dependable
systems on unreliable hardware. Based on the foundation established by the part-
ners, designs which consider faults/errors as a design constraint will be continued in
different directions, including physical, micro-architecture, architecture (ISA), com-
piler, and operating systems layers, and, most importantly, in a cross-layer manner.

592 J.-J. Chen and J. Henkel

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Index

A
Accelerator

ACs, 282
costs and improvements for resilience, 265,

268
diversified configurations, 286–287
DNN, 483–485, 490, 491
placed-and-routed, 298
placement freedom, 297
PORT tests, 284
runtime accelerator placement, 293–295
runtime reconfiguration, 280
SIs, 279
STRAP, 291–292, 298
test-SIs, 283

Accelerator configurations (ACs), 282
Adaptive aging-aware compiler, 534–535
Adaptive compilation methods, GPUs

aging-aware compilation, 534–535
GPU workload distribution, 533–534
mitigating aging, 531, 532
NBTI degradation, 531–432

Adaptive compiler, 531, 532
Adaptive cross-layer techniques, see

Dynamically Reconfigurable
Processors (DRPs)

Adaptive cruise control (ACC) system,
268

Adaptive design, 591
Adaptive modular redundancy (AMR), 184,

196, 199–201
Adaptive reliability, 462
Adaptive run-time manager for soft error

resilience (ASER), 164, 165
Adversarial attacks, 482, 493–496

Aging
adaptive aging-aware compiler, 534–535
aging-induced SNM degradation, 308, 310
device aging, 311, 410–413
dynamic stress, 278
HCI and BTI, 300
interconnect electromigration (see

Electromigration (EM))
mitigation, 280, 290, 300
monitor, 396, 556
NBTI degradation, 531
physics and circuit/gate levels, 409, 410
in SRAM cells, 305
static stress, 278
stress balancing, 290–291
and voltage-drop resilient flip-flop design,

345–436
and yield (see Yield modeling and

optimization)
Algorithm Based Fault Tolerance (ABFT), 258
Application-level optimization, 23–24
Application programming interface (API), 105,

106, 175
Application-specific error handling, 47
Application-specific instruction set processors

(ASIPs), 177
Application-Specific Integrated Circuit

(ASIC), 59
Application-Specific Knowledge, 156
Approximate computing, 3, 19, 51–53, 432,

512, 530, 535, 539
Approximate DRAM

application robustness, 450
characteristic refresh parameters, 449
closed-loop simulation flow, 451

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5

593

https://doi.org/10.1007/978-3-030-52017-5

594 Index

Approximate DRAM (cont.)
concept, 449
data lifetime, 449–450
DDR3 chips, 450
DRAM and core models, 451–452
DRAM power model, 452
DRAM subsystems, 436
power consumption and performance

penalty, 449
qualitative retention error behavior, 450
reliability-energy trade-off, 450
retention error measurements, 40 4Gbit

DRAM devices, 451
thermal models, 452
3D integrated, 449

Architectural-level fault injection, 252
Architecture support

AMR, 199–201
network on chip (NoC), 196
NoC virtualization, 196–197
protection switching, 197–199

Aspect-Oriented Programming (AOP), 86
ASTEROID Project

architecture, 58, 59
characterization, 76
complex applications, 57
error detection, 58
error model, 65
error propagation, 57
fork-join tasks, 77
independent tasks, 77–78
MiBench applications, 75–76
mixed-critical applications, 58
off-chip real-time communication, 59
offsets, 66–67
OS-assisted replication, 59
soft errors, 57, 58
sufficient independence, 57
synthetic workload, 78–81
system model, 63
task model, 63–65

Asymmetric write error, 511, 512
Asynchronous DRAM refresh (ADR), 104
Automatic repeat request (ARQ), 59
Automatic test pattern generation (ATPG) tool,

282
Automotive safety integration levels (ASIL),

249
Avionics, 435

B
Backdoor attacks, 493, 495, 496
Backdoored neural networks (BadNets), 495

Batteries
basic unit, 551
capacity, 552
discharging process, 552
electrochemical cell, 552
EVs, 551
lithium-ion battery, 550

Battery aging, 554
ampere-hour throughput, 554
calendar and cycling, 554
capacity loss, 555

Biased voltage scaling (BIVOS), 51
Bias temperature instability (BTI), 182, 192,

247, 278, 305, 386, 411–413
Binary decision diagrams (BDD), 466, 469
Bit flip error manifestation, 2, 4, 7, 16
Built-in self-test (BIST)

cache access control flowchart, 328
conventional, 326
iterative BIST technique, 327
VLSI system on chip, 326
voltage scalable mitigation technique, 324

C
Cache memories, 309, 325, 329, 506, 507, 514,

516
Cell-based design, 336
Checkpointing, 37, 74, 171, 175
Chip-Level Redundant Threading (CRT), 148
Circuit aging, 272, 412
Circuit-level results

aging, 358
Leon3 flip-flops, 359
processor, 359, 360

Clockwise Y-chart, 529–530
C2MOS flip-flop

characteristics, 353
LH and HL paths, 355
optimization, 353
performance, 356
proposed method, 355
sense, 355

CMOS technologies, 2, 311, 410
Coarse-grained reconfigurable architectures

(CGRA), 123, 124
Commercial off-the-shelf (COTS), 86
Communication reconfiguration, 197–199
Communication systems

implementation efficiency, 437
wireless, 436–437

Communication virtualization, see
Multiprocessor systems on
chip (MPSoCs)

Index 595

Compiler-based fault injection, 252
Compiler-OS interaction

approximate computing approaches, 51–53
class of applications, 44
control-based systems, 48–50
error handling, 44, 47
error impacts, 48
evaluation, 44
fault tolerance, 33
FEHLER system, 35–37, 42–43
flexible error handling, 47
generic error correction, 46
injection rates, 45
microbenchmarks, 43
quality assessment tool, 45
reliable memory, 46, 47
selective error correction approach, 43
semantic annotations, 35–37
semantics of errors, 33–35
static analyses, 39–42
timing behavior, 37–39

Compositional analysis, 461–462
Compositional Performance Analysis (CPA),

59
Compositional reliability analysis (CRA)

approaches, 461
BDD, 466, 469
corrective postprocessing, 465–467
models and methods, 464
and RAL, 464–466
temperature-reliability adapter for

MPSoCs, 465–467
Configurable Logic Blocks (CLBs)

combinatorial and sequential logic
functions, 281

configuration matrix, 286
max diversification condition, 287
module reliability, 289
RIF, 290
TC tests, 284
test configurations, 285

Constrained-optimization, 590
Context Adaptive Variable Length Coding

(CAVLC), 155
Continuous technology scaling, 432, 458, 505
Control-based systems, 48–50
Controller design, 546
Control performance, 48, 560, 561
Critical errors, 35
Critical Instant Event Model, 72
Critical path monitor, 393
Cross-layer

ASTEROID approach, 30
automotive industry, 29

DanceOS approach, 30
design, 590
embedded real-time systems, 29
embedded software, 29
error semantics, 29
fault-tolerance hardening process, 30
non-annotated variables, 30
non-functional properties, 29
optimization, 436

Cross-Layer Early Reliability Evaluation
for the Computing Continuum
(CLERECO) project, 6

Cross-Layer Exploration for Architecting
Resilience (CLEAR)

abstraction layers, 257
costs vs. SDC (DUE) improvements,

265–267
error injection, 265
execution time evaluation, 258
exploration, 261
framework, 257
general-purpose processor cores, 264
hardware designs, 257
physical design evaluation, 258
reliability analysis, 257–258
resilience library, 258–260

Cross-layer resilience
abstraction layers, 250
aging, 386
applications, 247
architectural level, 263
complex memory organizations, 247
cost-effective application, 263
CPS, 262
custom accelerators, 261, 265, 268
design method, 248
device aging, 248
dynamic adaptation, 388
dynamic tuning, 386
energy consumption, 387
energy per clock cycle, 388
fault injection (see Fault injection)
fixed-hardware micro-controller, 268–270
hardware design, 248
low-cost soft error protection, 256
memory cells, 250
micro-architectural faults, 263, 264
monitor circuits, 387, 389–390
Moore’s law, 247, 248
on-chip caches, 248
physical parameters, 386
protection techniques, 250
radiation test, 263
random hardware faults, 249

596 Index

Cross-layer resilience (cont.)
requirement, 250
safety-critical applications, 247, 249
safety-critical digital systems, 250, 256
safety standards, 249
self-balancing robot system, 270–272
sensing mechanism, 389
soft errors, 248, 250
SoiF, 249
SRAM memories, 261–262
system components, 248, 251
worst-case design methodology, 386–387

Cross-level analysis, 458, 459, 462, 474
Cyber-physical systems (CPS), 262

algorithm, 559
battery pack, 546
closed-loop dynamics, 548
constraints, 548, 557
crowding distance calculation, 558, 559
design flow, 546
discrete-time system, 547
FCC, 546
feedback control application, 547
feedback controller, 548
hardware platforms, 557
in households, 545
non-convex optimization, 558
non-dominated points, 558
optimization problems, 557–558
plant dynamics, 547
processor aging, 546
QoC metric, 545
reliability, 546

D
Dark silicon reliability management (dsReliM),

576
Data memory, 220–221
Data recovery policy, 212–213
Data similarity, 212–213
Deadline-Miss Probability (DMP), 142,

153–155
Deadline-Miss Rate, 142
Debug-based fault injection, 251
Deep learning (DL)

Litho-GPA, 424
reliability and security vulnerabilities, 482
reliable (see Reliable deep learning)
robustness, 481
secure (see Secure deep learning)

Deep neural network (DNNs)
accelerator, 483–484
autonomous driving, 479
CNN, 483

convolutional layer, 483
DL-based methods, 479
hardware accelerators, 483–485
multi-layer perceptron, 483
neural network, 482
resilience

to memory faults, 488–489
to permanent faults, 486–487
to timing faults, 488

robustness, 497
security attacks

adversarial perturbation attacks,
493–494

backdoor attacks, 495
smart healthcare, 479
systolic array, 484, 486, 488

Defense, 482, 496
Delay-area trade-off, 358
Delay-based monitor circuits

aging monitor, 396
characteristics, 390
critical path monitor, 393, 394
gate-leakage current, 395
logic gates, 390
pMOSFET OFF current, 397
sub-threshold leakage monitor, 396
temperature monitoring, 397–398
threshold voltage monitor, 394–395
topology, 390

Delay-based on-chip monitor design
delay model, 392
parameters, 390
topology, 391

Delay-based sensing
cell-based design, 399–400
edge detection based system, 400
monitoring circuit, 400
system interfacing, 400

Delay-leakage trade-off, 357–358
Delay monitor, 400
Dependability

instruction scheduling, 144
reconfigurable architecture, 280, 281
selective instruction redundancy, 144–145
software transformations, 142–144
system software

functional and timing, 145–147
multi-core systems, 147–150

Dependability aspects, see Embedded
operating systems

Dependable CAVLC Hardware Architecture,
156

Dependable CAVLC processing flow,
156–157

Index 597

Dependable embedded systems, see Resilience
articulation point (RAP) model

Dependable Embedded Systems Priority
Program, 436

Dependable systems on unreliable hardware,
437

Design constraint, 591
Design optimization, 561
Design space exploration (DSE), 167, 304,

458–464, 467, 474, 538
Design-time code selection

overview, 580
performance, 580
reliability, 579

Detected-but-uncorrectable errors (DUE), 207,
258

Device-level state, 131–133
Device under test (DUT), 20
Digital dynamic power meter (DDPM), 398
Directed acyclic graphs (DAGs), 149
Direct impact of temperature, 191
Discrete cosine transformation (DCT), 190
Distributed Multi-Threaded Checkpointing

(DMTCP), 175
DNV memory

API functions, 105, 106
atomic blocks, 105, 108
crashes, 106
data layout, 108, 109
data validation, 108
durability on demand, 106
ECC, 107
error detection, 107
error vector, 108
evaluation, 109–111
power failure, 106
PSU, 106
random distributed seven-bit error, 111
reliable transactions, 107
SECDED Hamming code, 107
software transactions, 111
TxStaging section, 108

Double/Triple Modular Redundancy
(DMR/TMR), 161

Dual modular redundancy (DMR), 58, 147,
569

Duplication with comparison (DWC), 20, 122,
126

Dynamically reconfigurable processors
(DRPs), 20–21

abstraction layers, 121–122
CPU pipelines, 126–127
cross-layer reliability approaches, 121,

133–135

device-level state, 131–133
dynamic remapping, 129–130
dynamic testing, 127–129
hardware architects, 121
PE clusters, 125–126
reliability threats, 123
semiconductors, 121
software layers, 122, 123
spectrum, 122
testing reliability, 130–131

Dynamic compensation, 50
Dynamic random access memories (DRAMs)

ADR, 104
approximate (see Approximate DRAM)
DDR3-1600 DRAM, 76
SDECC, 211

Dynamic redundancy and voltage scaling
(DRVS), 576

Dynamic remapping, 129–130
Dynamic resilience actuators, 432, 440–442
Dynamic stress, 278, 299
Dynamic testing

banking transactions, 20
characteristics, 23
DRPs, 20–21
DUT, 20
DWC, 20
feasibility region, 22
probability, 20
TMR, 20

Dynamic timing requirements, 592

E
EarlyWriteBack (EWB), 168
Electric motor control

DC voltage, 549
state-space system modelling, 550

Electromigration (EM)
checking, 416
failure effect, 368
failure time, 413
hydrostatic stress, 367
immortality check method

constraints, 375, 376
objective function, 374

multi-segment wire, 366
optimization flow, 416
P/G optimization

linear programming technique, 376
restriction factor, 377
Taylor’s expansion, 376
technique, 366
wire-sizing algorithm, 378

598 Index

Electromigration (EM) (cont.)
power EM modeling, 413–415
power grid wires, 365
power supply synthesis, 365
reliability, 365
SEM image, 413
single EM modeling, 415–416
steady state, 368
straight 3-terminal wire, 369
two-stage signal EM hotspot detection, 416
void formation, 368
voltage, 369

Electronic system level (ESL), 461
Embedded Configurable operating system

(eCos), 96
Embedded field programmable gate array

(eFPGA), 21
Embedded operating systems

abstraction layers, 87
AspectC++, 96, 97
compile-time introspection, 97–98
control flow, 98–99
cross-layer techniques, 119
data access, 98–99
design constraints, 117
eCos-kernel data structures, 99
EDM/ERM variants, 99
evaluation, 93–95, 100
fault-avoiding operating system, 89–90
fault-detecting operating system, 91–93
fault injection (FI) experiment, 99
generic object-protection mechanisms,

100–101
Hamming code, 96
hard-and software stack, 118
hardware designs, 85
lifetime reliability, 118–119
memory errors, 118
MPSoCs, 118
non-functional properties, 119
object-oriented programming, 96
online health monitoring, 118
OS kernel data structures, 96
protection effectiveness and overhead,

101–103
reliability, 95
soft-error reliability, 118–119
software-based redundancy techniques, 86
software-based soft-error detection and

correction, 87–88
software-stack hardening, 86
state consistency, 88
supply voltages, 117
system components, 117

system-software stacks, 96
Embedded systems, see Power-aware

fault-tolerance
abstraction layers, 140
adaptive soft error handling, 150–151
application-specific dependability, 155–157
dependability (see Dependability)
dependability-driven adaptive run-time

system, 140
dependability modeling, 141–142
DMP, 153–155
dynamic real-time guarantees, 151–153
estimation approaches, 139, 141–142
multiple system layers, 139
offline and online optimizations, 140
real-time systems, 139
reliability and resilience modeling, 139
soft error mitigation techniques, 139

EM lifetime constrained optimization
interconnect, 380
P/G wire sizing, 378
wire disconnection, 379

Emulation-based fault injection, 251
Energy consumption, 323, 436, 488, 509–511,

519, 521, 522
Error correcting codes (ECCs), 167, 207
Error detection and recovery mechanisms

(EDMs/ERMs), 87
Error detection sequential (EDS) circuits, 438
Error Propagation Index (EPI), 15
Error rate, 509–511
Error resilience

ASER, 164, 165
DNNs, 486
resilience actuators, 441, 442, 445
soft error resilience (see Soft error

resilience)
Error-resilient architecture, 436
Error tolerance, 118, 162, 529, 530, 572
Experimental setup and evaluation framework,

583–584
Extrapolated absolute failure count (EAFC),

101

F
Failure Mode and Effects Analyses (FMEAs),

59
FAME Runtime Environment (FAMERE),

42–43
Fault abstraction, 25
Fault and reliability models

functional reliability, 568
simulation setup, 552

Index 599

soft errors, 567
software’s vulnerability, 567
temporal vulnerabilities, 567
timing, 568
transient faults, 567

Fault-aware Microvisor Environment (FAME),
37

Fault-aware pruning (FAP), 489–490
Fault-aware pruning + training (FAP+T)

technique, 490
Fault injection, 590

flip-flop-level simulation, 254–255
ISS mode, 254–255
methods, 251–252
multi-level, 253–254
simulation-based, 252
SRAM memories, 255–256
uncore components, 255

Fault-tolerance, 30, 43, 288, 289
Fault trees, 466
Federated Scheduling, 149
Field programmable gate array (FPGA), 123,

247
accelerators, 535
chip hardware, 251
CLBs, 281
DRPs, 20–21, 123
embedded (eFPGA), 21
execution time, 258
mapping, 131
OpenCL execution model and mapping,

536–537
PSMs, 281
reconfigurable fabric, 280–281
source-to-source compiler, 537–539

Figures of merit, 190–191
Finite state machines (FSMs), 197
Flexible Error Handling Module, 34, 125
Flip-flop-level fault injection, 252
Flip-flop optimization

C2MOS, 340
degradation conditions, 343
designed circuit, 342
digital design, 337
LH and HL, 338, 356
optimization results, 356
parameters, 339
processor design, 338
runtime variation, 339
S-BTI and voltage-drop, 342–343
setup-time, 338
simulation, 338
temporal and spatial temperature, 341
VLSI circuits, 337

voltage-drop, 340
Flip-flop resiliency optimization

boundaries, 346
delay function, 346
flow, 347
transistors, 347
voltage, 348

Forward error correction (FEC) techniques,
437

Frequency scaling, 177, 236
Full charge capacity (FCC), 546
Full-processor vulnerability factor (FPVF),

171, 172
Full timing guarantees, 153
Fully Depleted Silicon on Insulator (FDSOI)

processes, 122
Functional correctness, 2, 15, 16, 139, 141,

150, 157, 281
Functional units (FU), 124
Function Resilience model, 15, 141
Function Vulnerability Index (FVI), 14

G
Generative Adversarial Networks (GANs),

496–498
Generic Object Protection (GOP), 96, See also

Embedded operating systems
Graceful degradation, 122, 123, 199, 200, 280

H
Hardening embedded processors, 165, 166
Hardware-based fault injection, 251
Hardware variations, 531
Hash-Based Incremental Checkpointing Tool

(HBICT), 175
Heterogeneity

abstraction layers, 163, 164
fault-tolerant

cache hierarchy, 167–168
design-and run-time methodology, 164,

165
hardening embedded processors, 165,

166
last-level caches, 166–167
microprocessors, 164

hardening modes, 163
hardware and software layers, 162
memory components, 177
reliability-heterogeneous architectures, 162
reliability techniques, 161, 162
reliability threats, 161
run-time management system, 162

600 Index

Heterogeneity (cont.)
run-time systems

adaptive hardware techniques, 176
ASIPs, 177
multi/many-core processors, 176
techniques, 176

safety-critical applications, 161
software layer, 161
superscalar processors (see Superscalar

processors)
transistor fabrication, 161

Heterogeneous reliability modes, 172–174
High-critical tasks (HCT), 200
High-level synthesis (HLS), 265, 537
High Speed Downlink Packet Access

(HSDPA), 438, 440
Hot carrier injection (HCI), 118, 122–123, 134,

192, 247, 278, 411–412
Hungarian Algorithm, 149
Hybrid automatic repeat request (H-ARQ),

438, 439
Hybrid RMT-Tuning technique, 147

I
Instruction Error Masking Index (IMI), 15, 141
Instruction Error Propagation Index (EPI), 141
Instruction memory, 218–220
Instruction set architecture (ISA), 165
Instruction Set Simulation (ISS), 23
Instruction Set Simulator (ISS), 252
Instruction vulnerability

application softwares, 12, 13
hardware components, 12
hardware layer, 13
microarchitectural components, 14
microarchitectural layer, 15
modeling approaches, 16
processor components, 14
real-time systems, 15
software layer models, 13, 15
temporal and spatial vulnerabilities, 14, 15
types of errors, 12

Instruction Vulnerability Index (IVI), 13–14,
141

Integrated circuits, 436
Interconnect

failure mode, 373
transient EM analysis, 373

Interference, 567, 589
Intermediate representation (IR), 270
International Organization for Standardization,

2
Inter-process communication (IPC) level, 86

J
Join-Point Template Library (JPTL), 98

K
Kernels, 279
Korhonen’s equation, 370

L
Leakage monitor, 396
LEON processor, 280
Lifetime reliability (LTR) model

device-level, 237
levels of models, 237
metal and dielectric materials, 237
metal atoms, 237
optimization, 237–238
Weibull distribution, 237

Lithography, 420–424
Long Term Evolution (LTE), 438, 440, 443,

444
Look-up table (LUT), 401

M
Machine learning (ML)

DNNs, 479–480 (see also Deep neural
network (DNNs))

effective, 423
embedded systems, 480
lithography hotspot detection, 421–422
model trustworthiness, 423
and pattern matching, 420
reliability threats, 481
robustness, 481
security threats, 481–482
techniques, 479

Max diversification condition, 287
Mean time to failure (MTTF), 5, 236

LTR, 237
STRAP, 291–292
stress accumulation, 291
system-level modeling tool, 237
threshold voltage, HCI-related stress, 278
transistor, definition, 278

Memories
DRAMs (see Dynamic random access

memories (DRAMs))
ECC protection, 438
iterative MIMO-BICM receiver, 443
MIMO-BICM system, 444
power consumption, 444

Index 601

resilience actuators, 445
SRAMs (see Static random-access

memories (SRAMs))
6T memory cells, 445
8T memory cells, 445

Meta heuristic, 474
Micro-architectural simulators, 252
Microelectronic variability, 539
Microprocessors, 164, 166, 177, 185, 186, 188,

222, 331, 337
MIMO system

complexity shifting, 447–448
detection quality, adjustment, 446
dynamic resilience techniques, 445–446
error correction capability, 448–449
external LLR manipulations, 446
generic architecture, iterative MIMO-BICM

receiver, 443
hardware operating point, 446
iteration control, 446–447
MIMO-BICM system, 443, 444
multiple-antenna systems, 442, 443
resilience actuators, quantitative

comparison, 445
system memories, 444
wireless communication systems, 442–443

Mis-corrected errors (MCEs), 211
Mixed-criticality

co-scheduling approach, 60
critical components, 61
error recovery strategies, 61
gang scheduling, 62
implicit synchronization, 61
levels of protection, 61
mapping replicated tasks, 61–62
operating system service, 61
pipeline fingerprinting, 61
set of mechanisms, 61
software execution, 60
SPP, 60
TDM-based scheduling, 62

Mixed Redundant Threading (MRT),
149

Model chip power budget, 584
Model-hardware correlation

circuit techniques, 401
frequencies, 403
linear equations, 402
monitoring capability, 402
parameter extraction methodology,

401–402
pMOSFET, 403

Modeling Function Resilience, 15

Modeling Reliability under Variation (MoRV)
project, 6

Modern FPGAs, 281
Modern wireless communication standards,

438
Module diversification

diversified configurations, 286–287
experimental evaluation, 288–290
generation algorithm, 287–288
RIF, 290

Monte Carlo simulations, 128
MPSoC temperature

abstraction layers, 184
electrical properties, 181
indirect impact, 182, 183
management layer, 184
mechanisms, 184
physical level, 183
signal-to-noise ratio, 183, 184
SRAM memory cell, 181, 182
system management, 184
thermal management techniques, 183
transistors, 182
two-fold impact, 182

Multi-bit upsets (MBU), 7, 9, 255
Multi-cores, 145
Multi-objective optimization strategy, 194
Multiple-antenna systems, 442, 443
Multiple input signature register (MISR), 284
Multi-processor systems on a chip (MPSoCs)

abstraction layers, 235
cross-layer, 181, 201–203
energy-efficient task replication method,

235
integrated GPUs, 233
LTR, 235–237
multicore processors, 233
permanent faults, 234
physical modeling, 181
real-time applications, 234
reliability-aware techniques, 234
reliability requirements, 234
SER, 236–237
system level

aging, 192–193
direct impact of temperature, 191
figures of merit, 190–191

temperature (see MPSoC temperature)
thermal cycling, 234, 235
thermal measurement, 187–189
thermal simulations, 185–187
transient faults, 234

Multi-threading, 557

602 Index

N
Nanometer CMOS variability, 2
Nano-scale CMOS circuits, 277
Near threshold computing (NTC)

aging and variation-induced SNM
degradation, 317

cache designs, 304
cache organization

and SER FIT rate, 320–321
and SNM degradation, 320
on system FIT rate, 319

cross-layer reliability estimation framework
SER estimation, 312–315
SNM degradation estimation, 311–312
system-level FIT rate, 309–311

experimental setup, 316–317
interdependence and combined effects,

307–308
overall energy-saving analysis, 6T and 8T

caches, 323
reliability-aware optimal cache

organization, 322
soft error rate analysis, 317–319
SRAM cells

aging effects, 305
process variation, 305–307
soft error rate, 307

system-level reliability, 304
technology scaling, SRAM reliability,

308–309
voltage scalable memory failure

BIST (see Built-in self-test (BIST))
block size selection, 325
cache block size, 325
energy and performance evaluation, 330
error tolerant block mapping, 328–329
SNM values, 324
variation-aware voltage scaling

analysis, 329
workload effect analysis, 317

Negative-bias temperature instability (NBTI),
2, 118, 123

aging, 386, 531
degradation, 531–532
and HCI-related aging, 412
online health monitoring, 118
in PMOS transistors, 531
sensors, 534

Network on chip (NoC), 59, 196, 236
Non-functional properties, 17, 29, 94, 119, 590
Nonlinear programming, 375
Non-silent data corruption (NSDC), 211
Non-volatile memories (NVM), 88, 506, 511

O
Object-oriented programming model, 96
On-chip memories, 123, 164, 166, 399–401,

510
On-chip monitor, 385
Online test

ATPG tool, 282
experimental evaluation, 284–286
generation and runtime scheduling,

282–283
MISR, 284
on-demand PORT, 283
PORT (see Post-configuration online tests

(PORT))
PRET (see Pre-configuration online tests

(PRET))
system functionality, 281
TC tests, 284
test configurations for CLBs, 284, 285

Online Test Strategies for Reliable
Reconfigurable Architectures
(OTERA), 280

OpenCL execution model, 536–537
Open Systems Interconnection (OSI) model, 2
Optimal Priority Assignment (OPA), 152
Optimization

CRA, 465
MPSoC, 461
reliability analysis, 460–461
uncertainty-aware, 462, 470–473

Out-of-order, see Superscalar processors

P
Partitioned Strict Priority Preemptive (SPP),

60
Peak signal-to-noise ratio (PSNR), 45–46, 190
Performance compensation, 50
Permanent faults

FAP, 489–490
FAP+T technique, 490

Persistent memory (PM), 86
durability on demand, 104
reliable transactions, 104
system model, 104–105

Peukert’s law, 553
Phase Change Memory (PCM), 104
Post-configuration online tests (PORT)

effectiveness, 284
frequencies, 285
functional tests, 282
module diversification, 286
on-demand, 283

Index 603

performance loss and worst case test
latency, 286

test flow, 283
Potentially critical tasks (PCT), 200
Power-aware fault-tolerance (PAFT) technique,

578, 586
Power consumption

circuit switching activity, 567
static power, 566

Power-efficiency, 155
Power grid network

DC effective, 366
mesh-structured P/G network, 366
multi-segment wires, 366
nodal voltages, 367
power supply network, 367

Power-management techniques, 389
Power monitor, 582
Power–reliability management, 573, 576, 585,

586
Power–reliability–performance management,

576
chip power constraint, 577
code version constraint, 578
cores power constraint, 578
design-time code selection, 579–580
DRVS, 576
dsReliM leverages, 576
optimization goal, 577
system reliability, 577
tasks timing constraint, 578
V-f level, 578

Power–reliability–performance tradeoffs
at hardware level

application reliability, 571
core-to-core frequency, 570
power consumption, 571
V-f levels, 571

at software level
applications, 572
power consumption, 572

Power supply unit (PSU), 106
Pre-configuration online tests (PRET)

accelerator configurations (ACs), 282
application performance loss, 284–285
array-based structural test approach, 282
effectiveness, 284
module diversification, 286
on-demand, 283
test configurations (TCs), 282
test flow, 283

Probabilistic error propagation, 3, 4
Probabilistic Wallace-tree multiplier (PWTM),

51

Process Control Modules (PCM), 404
Processing elements (PE), 21
Processor aging

aging estimation, 556–557
aging mechanisms, 555
countermeasure, 555–556
design software, 557

Processor delay, 361
Process variation, 147–148

of NTC circuits, 304
SER, 6T and 8T SRAM cells, 315
SNM degradation analysis, 311–312
in SRAM cells, 305–307

Profitable semiconductor scaling, 34
Program counter (pc), 222
Prohibit and propagation rules, 39
Protection switching, 197–199

Q
Quality-of-control (QoC) indices, 545

and battery usage, 560
constraints, 560

Quality-of-Service (QoS)
adaptive, 440
extended dynamic flow, 441
standard flow, 440
wireless transmission system, 438, 440

R
Radiation-induced soft errors, 247, 250, 263,

272, 304, 307, 309, 313, 435
Random Telegraph Noise (RTN), 192
Rate capacity effect

cell voltage, 552
concept, 552
discharge current, 553

Read-only memory (ROM), 91
Real-time systems, 154
Reconfigurable baseline architecture, 280–281
Reconfigurable monitor, 385
Redundant multithreading (RMT), 147
Reliability

aging, 343
analysis techniques, 458, 460–461
BTI-induced aging, 345
C2MOS flip-flop, 344
compositional approaches, 461
cross-level analysis, 458, 459, 462, 474
embedded systems, 460
ML, 481
module diversification, 288, 290
optimization, 460–461

604 Index

Reliability (cont.)
post-aging delay, 344
reconfigurable baseline architecture, 280
reliability-improving techniques, 458
RIF, 290
SRAMs, 513

Reliability abstraction level (RAL), 464–466
Reliability and execution time, 587
Reliability-aware reconfigurable cache

architecture, 166–167
Reliability block diagrams (RBDs), 5
Reliability-energy tradeoff, 450, 510
Reliability-heterogeneous cores, 162
Reliability improvement factor (RIF), 290
Reliability Information Interchange Format

(RIIF), 6
Reliability management, 451, 565, 571
Reliability modeling, 6, 13, 203
Reliability Profit Function (RPF), 165
Reliability techniques

DMRR technique, 569
SEDR, 569
spatial correlation, 568
TMR, 570
total application, 568

Reliability-Timing Optimizing Technique
(RTO), 148

Reliability-Timing Penalty (RTP), 16, 141
Reliability type qualifiers, 39
Reliable Computing Base (RCB), 30, 34–35,

59, 88
Reliable CPS Design for Unreliable Hardware

Platforms, 57
Reliable deep learning

design-time steps, 485–486
DNN-based applications, 485
permanent faults

FAP, 489–490
FAP+T technique, 490

resilience of DNNs
to memory faults, 488–489
to permanent faults, 486–487
timing error mitigation techniques, 488
to timing faults, 488

run-time steps, 486
timing fault mitigation

per-layer voltage underscaling, 492–493
TE-Drop, 491–492

Re-order Buffer (ROB), 168
Resilience actuators

algorithmic, 452
application-specific, 445, 452
dynamic protection mechanism, 441
extended dynamic QoS flow, 441

hardware operating point, 442
low-level hardware techniques, 442
power state switching, 444
quantitative comparison, 445

Resilience articulation point (RAP) model,
255, 437

application-and system-level software, 2
application-level optimization, 23–24
application-level software, 2
complex situations, 6
cross-layer optimization, 2, 3
data vulnerability analysis and mitigation

binary classification, 19
code and data flow analyses, 16
context of execution, 16
data flow analyses, 17, 18
FEHLER system, 18
horizontal propagation, 17
invalid assignments, 18, 19
logic errors, 16
memory bit flips, 16
non-functional properties, 17
propagation analysis, 18

device level, 4
divide and conquer strategies, 2
dynamic testing (see Dynamic testing)
electronic components, 6
environmental and operating conditions, 6
error probability, 7
error transformation function, 5
generic model, 6
graph theory, 4
hardware/software complexity, 2
hardware/software system abstraction, 4
logic testing, 3
MTTF, 5
probability, 4
reliability analysis approaches, 5
semiconductor material and device levels,

3, 4
SoC, 2
SRAM (see SRAM)
system design, 7
transformation functions, 4
Variability Expedition program, 2

Resilience of DNNs
to memory faults, 488–489
to permanent faults, 486–487
to timing faults, 488

Resistive random-access memory (RRAM),
104

Resource management, 280, 432
Response-time analysis

error recovery, 74–75

Index 605

fork-join task, 67–70
independent tasks, 70–74
time interval, 67

Retention time, 449, 450
Robustness, 450, 480, 497
Robustness constraint model, 141–142
Run-time hardening mode

base solution, 582
ILP solvers, 580
initial hardening mode assignment, 581
initial mapping, 581
overview, 581
PAFT technique, 580
TDP constraint, 582, 583

Run-time manager, 156
Runtime reconfiguration, 280–281
Runtime system

accelerator placement, 293–295
FAMERE, 42–43
PRET and PORT, 282–283
test-SI, 283

S
Safety-critical systems, 88, 117, 248, 249, 256,

460, 557
Safety of the intended functionality (SoiF), 249
Scheduling, 154
Scratchpad memories (SPMs), 221
Secure deep learning

defences against security attacks
GAN-based framework, 497
noisy visual data, 497

security attacks on DNNs
adversarial perturbation attacks,

493–494
backdoor attacks, 495

Security
data/IP stealing, 482
data manipulation, 481
definition, 481
denial-of-service, 481
reliability and security vulnerabilities,

481–482
Selective data redundancy, 156
Selective flip-flop optimization

aging and voltage-drop analysis, 349–350
gate-level simulation, 350
methodology, 349
VLSI design flow, 349

Selective flip-flop replacement step, 351
Self-balancing robot system, 270–272
Semantic annotation of criticality, 35–37
Semantics of errors, 33–35

Settling time, 545, 548, 560
Side information (SI), 207, 217
Silent data corruption (SDC), 24, 87, 256, 258
Simulation-based fault injection, 252
Simultaneous Redundant Threading (SRT),

149
Single-bit error correction (SEC), 216, 224
Single error correcting-double error detecting

(SEC-DED), 105, 167
Single-error detecting (SED), 216, 223–224
Single event effects (SEEs), 57
Single event upsets (SEUs), 2

data memory, 220–221
instruction memory, 218–220

Single point of failure (SPOF), 86
Soft error, 566, 572

aging-induced SNM degradation, 308
AVF analysis, 310
neutron-induced, 316
radiation-induced, 304
in SRAM cells, 307

Soft-error reliability (SER), 234
big–little, 240–242
CPU and GPU fabrication processes, 236
frequency scaling, 236
integrated CPU–GPU, 242–244
optimization, 238–240
probability, 236
supply voltage, 236
task scheduling, 235, 240
utilization control, 236, 238

Software-Defined Error Correcting Codes
(SDECC)

abstraction layers, 208
analysis, 210
architecture, 211, 212, 221–222
candidate codewords, 208–210
data recovery policy, 212–213
hybrid hardware/software technique,

216
parity++

application characteristics, 224
architecture, 227–228
cache capacity, 230
correction, 226–227
error detection, 226–227
error protection, 224
experimental methodology, 228–229
Gem5 simulations, 229
generator matrix, 226
Hamming code, 225
Internet-of-Things (IoT), 230
memory capacity, 230
polynomial coding methods, 225

606 Index

Software-Defined Error Correcting Codes
(SDECC) (cont.)

SECDED, 229
unequal message protection code, 224

reliability evaluation
methodology, 213–214
recovery breakdown, 214–216

SEUs (see Single event upsets (SEUs))
side information (SI), 209
soft fault recovery, 222–223
terms and notation, 208, 209
UL-ELC, 216–218

Software error detection with re-execution
(SEDR), 569

Software-implemented fault injection, 251
Software-level fault injection, 252
Software transactional memory (STM), 86, 105
Special Instructions (SIs), 279
Special priority program (SPP), 589–590
Spike simulator, 213
Spin Transfer Torque Magnetic RAM

(STT-RAM)
alternative solutions, 506
basic cell structure, 508
error rate vs. energy consumption trade-off,

509–511
FlexRel approach

effectiveness, 519–520
energy consumption, 521
FlexRel-equipped cache, 516
static energy consumption, 522
write patterns, 513–515

non-volatile technology, 516–519
read disturbance, 506
read operation, 508
reliability, 511–512
retention errors, 506
susceptibility, 432
TMR, 509
write errors, 506

Spin-transfer-torque magnetoresistive random-
access memory (STT-MRAM),
104

Stability, 8, 16, 17
State compression techniques, 174–175
Static analyses, 36
Static Mapping Library (StML) approach, 130
Static Pattern-Based Reliable Execution, 50
Static random-access memories (SRAMs), 105

accelerated transistor aging, 305
aging and process variation, 309
approximate DRAM, 449
cross-layer approach for soft error

resilience, 261–262

error function, 7
fast fault injection, 255–256
heterogeneous cache design, 303
NTC circuits, 304
particle strikes, 8–10
process variation, 305–307
pull-down transistors (PD), 8
read delay/WTV, 10–11
self-balancing robot system, 270–272
SER rate, 6T and 8T SRAM cells, 314,

315, 319
SNM degradation estimation, 311
soft error rate, 307
SPICE model, 313
state variables, 7
STT-RAM, 432
supply voltage drops, 11–12
SVNM, 10
technology scaling effects, 308–309
tolerant SRAM cell design, 303
6-transistor (6T), 7
8-transistor (8T), 7
unreliability sources, 304

Static stress, 278, 298, 299
Stress-aware placement method (STRAP),

291–292, 295, 297–300
Stress distribution, 290, 291, 294, 298, 370
Structural test, 280
Success trees (STs), 458
Superscalar processors

cloud servers, 168
data-centers, 168
experimental setup, 169
methodology

FPVF, 171, 172
heterogeneous reliability modes,

172–174
state compression techniques,

174–175
vulnerability analysis, 169–171

Supply voltage fluctuation, 398
Synopsys design compiler, 361
System-level management

task migration, 194–195
voltage scaling, 193–194

System level reliability analysis, 463–464
System model, 63
System-on-Chip (SoC), 2

approximate DRAM, 451
LSI scaling, 389
RAP model, 437

System reliability, 577
Systems with Dynamic Real-Time Guarantees,

152

