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Whom is This Book For?

If your job involves working with data in any manner, you cannot afford to ignore
the R revolution! If your domain is called data analysis, analytics, informatics, data
science, reporting, business intelligence, data management, big data, or visualization,
you just have to learn R as this programming language is a game-changing
sledgehammer.

However, if you have looked at a standard text on R or read some of the online
discussions, you might feel that there is a steep learning curve of six months or more to
grok the language. I will debunk this myth through my book by focusing on practical
essentials instead of theory.

If you have programmed in some language in the past (whether that language be SAS,
SPSS, C, C++, C#, Java, Python, Per], Visual Basic, Ruby, Scala, shell scripts, or plain old
SQL), even if you are rusty, this book will get you up and running with R in a single day,
writing programs for data analysis and visualization.

At the end of this book you will be able to:
- write R programs to execute on the 3 major data-analysis phases.
- visualize data in an illustrative and interactive manner
- move on to using R for big data analytics

R you excited? You should be. Let us charge forward!
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Preface

R (https://en.wikipedia.org/wiki/R_(programming_language)) is an interpreted, open-
source, free, statistical-programming and data-analysis language. It was created by
Ross Thaka and Robert Gentleman. It is a functional language and has all the standard
programming features like variables, functions, objects, loops, and data-structures.

R is perfect for data analysis and visualization. Though R can, in theory, be used for
tasks like web programming and building software applications, it is not optimized for
these purposes and is not preferred for these tasks. R was created in 1993 and has
become very popular because of the rapid growth of the domains of big data, data
science, visualization, and analytics.

The aim of this book is to teach the elements of R programming in a single day. This
book is meant for people who already know how to program in at least one language
and want to learn R. After completing this book, the reader should be able to write
simple R programs for data analysis. Instead of adopting a spoon-feeding approach, I
assume that the reader is familiar with standard programming constructs like
variables, functions and the like — therefore, I only outline differences in the way R
does things. The emphasis is on writing and running programs in R for data analysis
and visualization. The book includes a sample data-analysis conducted on freely
available CMS-sourced (CMS: Centers for Medicare and Medicaid Services) healthcare
data. The book does not aim to teach all the elements of statistics, machine learning or
data science — since doing so would expand the scope of the book immensely.

Unlike many standard texts on R, the book teaches the most effective way to
accomplish any specific task in R. No effort is made to teach all the ways in which a
particular task can be completed: No TMTOWTDI
(https://en.wikipedia.org/wiki/There's more than one way to do it)!

All through the text, I provide a lot of Internet links to more information and detail.
This is one of the great things about open-source software - it is usually supported by a
very active web-based community of users and almost all the answers to questions
newbies might have can be found online. The R community is one of the largest and
best in this regard. Lastly, instead of laying out all the theory behind R programming
(for which there are numerous other sources on the Internet), the emphasis is on
learning by doing — the code samples provided throughout the book should be read and
understood line by line. The reader should make an effort to complete the practice
exercises offered at the ends of certain chapters.


https://en.wikipedia.org/wiki/There's_more_than_one_way_to_do_it
https://en.wikipedia.org/wiki/There's_more_than_one_way_to_do_it
https://en.wikipedia.org/wiki/R_(programming_language)

Preparation to Start

Computer

Any Windows® or Linux machine can be used. I would recommend at least 8 GB of
Random Access Memory be available on the computer.

The R programs used in this book were run on two different computers:

. R version 3.3.2 on a Windows laptop running Windows 10 Pro, Intel(R) Core(TM)
15-2520M CPU @ 2.50 GHz, 8Gb RAM, L3 cache size 3072 KB

. R version 3.3.3 on a Linux laptop running Ubuntu 14.04, Intel(R) Celeron(R) CPU
1007U @ 1.50GHz, 8Gb RAM, L3 cache size 2048 KB

R is available for Mac and other platforms as well - interested readers can use these.

Installation of Java

Some of the R packages we will be using are wrappers around Java-based libraries and
thus require the Java Runtime Environment (JRE) to be installed on the computer.
Please install the latest version of the Oracle JRE
(http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html) if
you are on Windows. On Linux, you can install either the OpenJDK
(http://openjdk.java.net/) Java Runtime (using apt-get or a similar software installation
tool) or the Oracle JRE for Linux.

After installation, ensure that the java executable is in the PATH. This can be tested by
running the java -version command at the Linux (bash) shell or Windows command
line (cmd.exe or powershell.exe) and seeing if the appropriate message appears:

Linux bash shell:

radium@aceraspiredelto:~$ java -version
java version "1.7.0_121"
OpendDK Runtime Environment (IcedTea 2.6.8) (7ul2l1-2.6.8-1lubuntu0.14.04.3)

OpendDK 64-Bit Server VM (build 24.121-b00, mixed mode)
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Windows cmd.exe shell:

C:\Users\shiminty\Desktop>java -version
java version "1.8.0_121"
Java (TM) SE Runtime Environment (build 1.8.0_121-bl3)

Java HotSpot (TM) 64-Bit Server VM (build 25.121-bl3, mixed mode)

If the java executable is not in the PATH, please edit the PATH variable (at the system
or user level) and add the path to java (java.exe on Windows) to the PATH variable.

Installation of R and associated software and packages

For Windows, R binaries can be downloaded and installed from the R website
(https://www.r-project.org/). After installing R on Windows, please edit the PATH
variable (at the system or user level) and add the paths to R.exe, Rscript.exe to the
variable.

For installation of R on Linug, it is best to use the software package management tool
for your Linux distribution. For Debian and Ubuntu Linux, the tool to use is apt-get.
Linux installs of R using tools like apt-get mostly add the paths to the R and Rscript
executables to the PATH variable. However, if this is not the case, please modify your
PATH variable on Linux.

After R has been installed, install the R packages we will need by running the
install.packages() command within R with a list of supplied package names. First, start
up the R interactive-session (also called a Read-Eval-Print-Loop or REPL) by typing R at
the command line. Then run the install.packages() command copied from the text-box
below with the full list of packages to be installed. Make sure you are connected to the
Internet and choose a CRAN (Comprehensive R Archive Network) package repository
mirror close to your geographical location. If R warns you about the fact that it is
installing the packages in a user-level local repository (since you are running R on the
machine without admin or root privileges), it is not a cause for concern: Respond with
a Yes to this message, and proceed.

On Linux, the command line session looks like this (list of R packages included):

radium@aceraspiredelto:~$ R



https://www.r-project.org/

R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch"
Copyright (C) 2016 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'g()' to quit R.

> install.packages (c("broom", "choroplethr", "data.table",
"datacheck", "dplyr", "dtplyr", "ggplot2", "ggvis",
"h2o", "htmlwidgets", "httr", "jsonlite", "leaflet",
"maps", "maptools", "OpenStreetMap", "plotly",
"randomForest", "R2HTML", "RDSTK", "readr", "rjson",
"rpart", "RSQLite", "scales", "sgldf", "stargazer",

"svglite", "tidyr", "tmap", "ztable"));
> al)

Save workspace image? [y/n/cl: n
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radium@aceraspiredelto:~$

Note: On Linux, some package and software dependencies might crop up while installing
the svglite package or other R packages. The svglite package depends on gdtools. But
the installation of gdtools first requires the Cairo
(https.//www.cairographics.org/download/) graphics software developer libraries to be
installed using apt-get or similar software package tool on Linux.The way to do it on
Ubuntu/Debian Linux is:

sudo apt-get install libcairo2-dev

After this, re-running the install.packages() command for svglite within the R REPL
should work smoothly:

radium@aceraspiredelto:~$ R

R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch"

Copyright (C) 2016 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

11
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Type 'q()' to quit R.

> install.packages (c("svglite"));

> al)

Re-running the install.packages() command for all of the packages also does not cause
any problems as already-present packages are just re-installed.

Text-Editor

A good text editor with features like code-folding, syntax highlighting, and auto-
completion is essential to be productive while programming in R. There are a whole
host of open-source and free text-editors available but I recommend the following:

» For Windows: Notepad++ (https://notepad-plus-plus.org/)
» For Linux: Geany (https://www.geany.org/)

Note: Notepadqq (http://notepadqq.altervista.org/s/), which is a Linux-platform clone of
Notepad++, is also available for interested users. The only reason I am not
recommending Notepadqq as the first-choice text-editor on Linux is because some
problems have been reported relating to the version of Qt (https://www.qt.io/) installed
on the machine.

Download and install the text-editor of your choice for your computer's platform.

Data-sets

The dataset used in the analysis executed in this book is the freely available Physician
and Other Supplier Data Calendar Year 2014 (https.//www.cms.gov/Research-Statistics-
Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-
Data/Physician-and-Other-Supplier2014.html) from the Centers for Medicare and
Medicaid Services (http://cms.gov). Download the tab-delimited text file (inside the zip
file) available on the website here: http://www.cms.gov/apps/ama/license.asp?
file=http://download.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-

12
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and-Reports/Medicare-Provider-Charge-
Data/Downloads/Medicare_Provider_Util_Payment_PUF_CY2014.zip. Also download the
PDF document on methodology that explains the file structure, format, and fields from
here: https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Medicare-Provider-Charge-Data/Downloads/Medicare-Physician-and-Other-
Supplier-PUF-Methodology.pdf

Sample code and directory-structure

The sample code can be downloaded as a zip file from this Dropbox link I have
created: https://www.dropbox.com/s/tyn5yabn49c1s6x/Just_Enough_R.zip?dl=0.
Extracting out the zip file to disk creates this tree-structure of folders and files:

Just_Enough R
- -Chapter_003_Code__ Variables_and_Scope_in R/
--Chapter_011_Code__ Reading Data_into_ R/
--Chapter_012_Code__Data_Wrangling in R/
--Chapter_013_Code__Data_gquality_checks_in_R
--Chapter_014_Code__ Descriptive_statistics_and_visualization_in_R/

- -Chapter_015_Code__Interactive_Charts_and Plots_using plotly in R/

--Chapter_017_Code__Linear Regression_and_Predictive_Models_in_R/
- -Chapter_018_Code_ Machine Learning_and_Predictive_Models_in_R/
--data/

- -LICENSE_FOR_BOOK_ CONTENT_ EXCLUDING_SOFTWARE_CODE. txt

|
|
|
|
|
|
| - -Chapter_016_Code__Geographical_ Maps_in_R/
|
|
|
|
|--LICENSE_FOR_SOFTWARE.tXt

Download the previously-named dataset from the CMS website. Extract out the
“Medicare_Provider_Util Payment_PUF_CY2014.txt” file from the dataset's zip-
archive file. Move the Medicare_Provider_Util Payment PUF_CY2014.txt file to the
data folder listed above in the tree diagram.
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Chapter 1: Introduction

R is an interpreted programming language. A good introduction to how R works is
available here: https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

Code written in text-files can be directly run by the R interpreter without the need for
a compilation step. While executing a program, R stores data-structures, variables,
functions, and other entities created during the course of the program as objects in
memory. In fact, even the results of functions and statistical procedures are objects
that can be examined, dissected, and pretty-printed. Functions are first-class objects in
R and can be directly manipulated within programs in many different ways.

Since R is primarily used for data-analysis (if we ignore the Bioinformatics and Natural
Language Processing capabilities of the language for now), it is not an over-
simplification to state that all data-analyses involve just three phases:

1. Reading in the data.

2. Data munging or data wrangling (to convert the data to a form or format
that makes it easy to analyze).

3. Running the analysis and publishing the results (which might include
visualization).

Each one of the three phases can have more than one iteration. In some cases, the
phases might repeat or cycle. For example to run a different kind of analysis, a
different kind of data-wrangling might be needed. But broadly speaking, the 3-phases
of data-analysis simplification holds.

Since R is a functional programming language, functions are first-class objects that can
be utilized broadly and even passed to other functions as arguments to be acted on
(more on this later).

R has all the programming concepts like variables, scope, functions, and loops that are
found in modern programming-languages.

R can be run interactively (one statement at a time) using the R shell-interface which
can also be described as a REPL (Read-Eval-Print-Loop). This R shell-interface is
invoked by typing the command R in the operating system's command shell:

radium@aceraspiredelto:~$ R

14
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R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch"
Copyright (C) 2016 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

Type 'g()' to quit R.

>

However, though the REPL is useful for exploratory analysis and training sessions, we
will be restricting its use to installing packages (as we did earlier in the Preparation
chapter) and exploring metadata. In most cases, for the purposes of data analysis, we
will use a text-editor to write R-programs in files that can then be executed by the R
interpreter.
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Chapter 2: R syntax

R has an easy-to-learn syntax similar to languages like C, Java, and Perl.

Statements to be executed are usually placed in lines in a program (unless using the
interactive Read-Eval-Print-Loop or REPL which we will cover later).

The usual practice is to have one statement per line. e.g.
myvarl <- 45

However, multi-line statements can be used if care is taken to let R know that the
statement is not complete — this is usually done by ending the line with an operator like
+, a comma, <-, etc. This indicates to R that the subsequent line has more code to be
read. e.g.

mynumber <- 2 + 5 + 5 + 6 + 7 +
8
In this case, mynumber will be equal to 33.
However, this is the incorrect way to write a multi-line statement:
mynumber <- 2 + 5 + 5 + 6 + 7
+ 8

In this case, mynumber will be equal to 25 since the first line is a complete R statement
on its own.

White-space is mostly not significant, except inside strings.

A statement can be ended with a semi-colon (like in Java or C) but this is not
mandatory. The semi-colon is useful when placing multiple statements on the same
line. Modern R style-guides recommend not using the semi-colon as a statement
terminator.

Variables are declared without type information (which is inferred from the value-side
of the assignment operator <- or =). Variable names have to follow rules: for example,
they cannot start with numbers. Access these rules by typing ?make.names in the R
REPL. Backticks () can be used, to accommodate special cases, to enclose variable
names that violate these rules.

Simple variable types include integer, logical, double (numeric), and character.

Complex data-structures (to be covered later) can also be represented by variables.
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Strings (which have the type of character in R) can be single-quoted or double-quoted.
Characters that have special meanings inside strings include \r, \n, \\, \t, etc.

Single quotes can appear as characters in double-quoted strings and double-quotes as
characters in single-quoted strings. However, to place double-quotes inside double-
quoted strings (and vice versa), they have to be escaped with the backslash: \"

Strings can be multi-line as long as the closing quotes are correctly placed and
matched.

Single line comments start with a hash (#) sign. The R interpreter ignores these lines
for execution purposes.

There is no mechanism for multi-line comments in R. However, one workaround is to
create a multi-line string variable holding the comment.

mycommentl <- "This is a multi-line comment created as

an example"

Loops (like for and while loops) and conditional statements (like if-then-else and ifelse)
utilize standard syntaxes. Curly braces are commonly used to encapsulate parts of
these loops and conditionals.
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Chapter 3: Variables and Scope
3.1: Variables in R

A very good introduction to variables is provided here:
https://www.tutorialspoint.com/r/r_variables.htm

As in most modern programming languages, variables help to tag pieces of data and
information with names. These named pieces of information can be acted upon and
manipulated by R programs. Variables can be initialized with values using the
leftward-assignment, rightward-assignment, or the equals operators. Thus, these three
statements are synonymous:

numl <- 4;
4 -> numl;

numl = 4;

Variables can represent simple entity/object types like logical, integer, double
(numeric), and character. But they can also be used to point to data structures like
vectors, lists, arrays, matrices, factors, or other R objects.

In the REPL or within an R program, all the variables declared can be listed using the
Is() or objects() commands. The latter works because all entities in R that are pointed to
by variables are objects. In fact, almost everything in R is an object. The details of the
object system in R are beyond the scope of this book but we will be using the class(),
mode(), str(), and typeof() functions to look at the characteristics of R objects.

Any named variable/object can be removed from memory using the rm(variable_name)
command. Garbage collection from memory can be hastened using the gc() function.

Variable names should be chosen carefully. A very good guide to R coding-style,
including variable-naming convention, is available on genius R-developer Hadley
Wickham's Advanced R Web Site: http://adv-r.had.co.nz/Style.html
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3.2: Variable Scope

Variables can be global or local. To understand these terms, it is necessary to
understand a bit about environments. An environment is considered to contain a
collection of objects.

The top-level environment, that exists at the R prompt and also the top level of an R-
program (script) is the global environment. Other environments are created within
individual functions and similar parts of an R program.

Global variables are variables that can be “seen”, accessed, read and modified
anywhere in the R program i.e. in all scopes. Global variables are usually defined in
the global environment. However, they can also be created or modified inside a local
environment (like a function) by using the super-assignment operator <<- instead of <-.
If the regular assignment operator <- is used inside a local environment to assign a
value to a global variable, a local variable with the same name (as the global variable)
is created instead inside the local environment. Here is an example R-prompt session
to help you understand.

radium@aceraspiredelto:~$ R

R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch"
Copyright (C) 2016 The R Foundation for Statistical Computing

Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
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Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

Type 'qg()' to quit R.

> varl <- 25

> var2 <- 50

> myfuncl <- function() {

+ print ("Inside function myfuncl");
+ print ("Environment is: ");

+ print (environment ()) ;

+ print("var2 is:");

+ print(var2);

+ var2 <- 55;

+ print("Local (but not global) var2 is modified to:");
+ print (var2);

+ 1}

> myfunc2 <- function() {

+ print ("Inside function myfunc2") ;

+ print ("Environment is: ");

+ print (environment ()) ;

+ var2 <<- 80;

+ var3 <<- 678;

+ vard <- 444;

+ print("Variables inside the myfunc2 environment:");
+ 1s();

+ 1}
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>
> print ("In the global environment") ;

[1] "In the global environment"

> environment ()

<environment: R_GlobalEnv>

> myfuncl ()

[1] "Inside function myfuncl"

[1] "Environment is: "

<environment: 0x27clac8>

[1] "var2 is:"

[1] 50

[1] "Local (but not global) var2 is modified to:"
[1] 55

> print ("In the global environment") ;

[1] "In the global environment"

> print ("Global var2:")

[1] "Global var2:"

> print (var2)

[1]1 50

>

> myfunc?2 ()

[1] "Inside function myfunc2"

[1] "Environment is: "

<environment: 0x27cabb8>

[1] "variables inside the myfunc2 environment:"
[1] "var4dn

>

> print ("In the global environment") ;

21




[1] "In the global environment"

> print ("Global var2 has been modified within myfunc2 to:");
[1] "Global var2 has been modified within myfunc2 to:"

> print (var2)

[1]1 80

> print ("Global var3 has been created within myfunc2:");
[1] "Global var3 has been created within myfunc2:"

> print (var3)

[1] 678

> print("Variables inside the global environment:") ;

[1] "variables inside the global environment:"

> 1s();

[1] "myfuncl" "myfunc2" "varl" "var2" "var3n"

> print ("Local var4 created within myfunc2 is NOT seen in the global environment

scope:") ;

[1] "Local var4 created within myfunc2 is NOT seen in the global environment

scope: "
> print (var4)

Error in print(var4) : object 'vard4' not found

The session-listing shows the text copied from the command console on a Linux
machine. It shows the commands as well as the results of running them.

The text to copy and paste into the R REPL prompt, if you want to run this on your
computer's command shell, is below:

varl <- 25
var2 <- 50
myfuncl <- function() {

print ("Inside function myfuncl") ;
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print ("Environment is: ");

print (environment () ) ;

print ("var2 is:");

print(var2) ;

var2 <- 55;

print ("Local (but not global) var2 is modified to:");

print (var2) ;

}
myfunc2 <- function() {
print ("Inside function myfunc2");
print ("Environment is: ");
print (environment () ) ;
var2 <<- 80;
var3d <<- 678;
vard <- 444;
print("Variables inside the myfunc2 environment:");
1s();
}

print ("In the global environment") ;
environment ()

myfuncl ()

print ("In the global environment") ;
print ("Global var2:")

print (var2)

myfunc?2 ()
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print ("In the global environment") ;

print ("Global var2 has been modified within myfunc2 to:");
print (var2)

print ("Global var3 has been created within myfunc2:");
print (var3)

print ("Variables inside the global environment:");

1s();

print ("Local var4 created within myfunc2 is NOT seen in the global environment

scope:");

print (var4)

In the session-listing above, there are three different environments: the global
environment, and the two local environments of the functions myfunc1 and myfunc2.
The global variables are var1, var2, and var3.

The variable var3 is global because, even though it was created within the function
myfunc2, the super-assignment operator <<- was used to define it. The same super-
assignment operator was also used to change the value of var2 within myfunc2.

Inside the function myfuncl, the attempt to assign a new value to var2 using the
regular assignment operator <- actually creates a new local variable var2 (with the
same name as the global variable var2) inside the environment of the function
myfuncl. The value of the global variable var2 remains unchanged in this case.

The environments form a kind of cascade. An inner environment (local environment)
like that created by a function can see all variables from outer environments, including
the global environment. However, the outer environment cannot see the variables of
the inner environment. This is true even for environments created by functions within
functions — where there will an inner function environment and an outer function
environment.

One other important thing to note about R variable-scope is that there is nothing called
“block scope” in R. In that sense, R is similar to JavaScript but different from
languages like Java where variables defined inside a block (which could be delimited
by curly braces) are local to that block. In R, only functions create a local environment.
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Simple curly braces do not create an environment. In the listing below, varConditional
is a global variable that is accessible after the end of the curly braces.

varé <- 34;
if (varé == 34) {
varConditional <- "Good";
} else {
varConditional <- "Bad";
}

print (varConditional) ;

One good method to ensure that global variables do not pollute function-local
environments is to set up a self-executing anonymous function (or a function called
main() which is called as the first statement in the R program). Another good practice
to follow is to ensure that functions are passed all the variables they need to act on.
Both these techniques are explained later in the chapter on functions.
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Chapter 4: Data Structures

As genius R-developer Hadley Wickham explains in his Advanced R book's chapter on
data structures (http://adv-r.had.co.nz/Data-structures.html), the common data
structures in R can be classified based on two characteristics: dimensionality and
diversity.

Dimensionality describes whether a data structure is one-dimensional, two-
dimensional, or multi-dimensional. Diversity describes whether the contents of a data
structure are all of the same type (homogeneous) or of different types (heterogeneous).

The homogeneous data structures are: atomic vector, matrix, and array.

The heterogeneous data structures are: list and data frame.

Of the above, the one-dimensional data structures are: atomic vector and list.
The two-dimensional data structures are: matrix and data frame.

The multi-dimensional data structure is the array. Actually, the matrix is just a 2-
dimensional array.

4.1: Atomic Vector

This contains values that are all of the same type — like integer, character, double, etc...
The c() function is used to create vectors.

E.g.
myCharVector <- c("Jim", "John", 'James',6 "Jeremy", 'Jonah') # of class character
myNumericVector <- c(2.3, 4.5, 6, 8, 9.0) # of class double

myIntegerVector <- c¢(2, 3, 4, 5, 6, 8, 9, 0, 1) # of class integer

Factors are special vectors used to store categorical data. They are basically integer
vectors but have the class “factor” that changes their behavior to being different from
regular integer vectors.

4.2: Array

An array is an atomic vector with a dimension attribute — that decides whether the
structure is 2-dimensional, 3-dimensional, 4-dimensional, etc.

e.g.
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# the vector c(2, 4, 8) is the dimension specification

myArray <- array(l:16, c(2, 4, 8))

4.3: Matrix

A matrix is a 2-dimensional array.

4.4: List

A list is also unidimensional, but the elements of a list can be of different types and can
even be other lists. Thus, lists can be nested data structures.
E.g.

myList <- list(1:6, "tiger", c¢(TRUE, FALSE, TRUE), c(2.3, 5.9),
list("a", 4, 'nice', 'toy', 7.2))

4.5: Data Frame

A data frame is a list of equal-length vectors. It is a two-dimensional structure like a
relational database table. It is the most commonly used data structure in
R-programming for data analysis. Reading in data from text files or other sources
usually leads to the creation of a data frame object in memory.

E.g.

myDataFrame <- data.frame(x = 1:3, y = c("apple", "boy", "cat"))

4.6: Accessing members of a vector, list, or data frame

R has some confusing operators for accessing members/elements of a vector, list, or
data frame. This is well explained in this R-bloggers article: https://www.r-
bloggers.com/r-accessors-explained/

The three operators are:
1. Single square-brackets: []
2. Double square-brackets: [ []]
3. The dollar-sign operator: $

The gist is that the single-square brackets return a subset of the original object with the
same type (unless the returned object has a single result — in which case the type might
get reduced to a simpler one).
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The double-square brackets return a single item or element and the type of the
returned object is usually simpler than the original container.

The $ operator is synonymous with the double-square brackets but simplifies syntax by

allowing access-by-name of items like data frame column vectors.

The REPL example below clarifies how these access operators work and what they

return.

[1]

[26]

[1]

[1]

50 Levels:

> statesUSDataFrame <-

> statesUSDataFrame [ [1]]

AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD

> gstatesUSDataFrame [1]

state.abb
1 AL
2 AK
3 AZ
47 WA
48 WV
49 WI
50 WY

> class(statesUSDataFrame[1])
"data.frame"
> class (statesUSDataFrame[[1]])

"factor"

# state.abb and state.name are built-in factor-vectors available in R
# Create a data frame with three vectors

data.frame (state.abb,

AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO

MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY

state.name,

. WY
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> gstatesUSDataFrame$state.abb

[1] AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO
[26] MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY
50 Levels: AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ... WY
> class (statesUSDataFrame$state.abb)

[1] "factor"
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Chapter 5: Functions

Functions are pieces of code that perform specific tasks: they help in promoting the re-
usability and modularization of code. This is similar to macros in SAS® but significantly
more advanced.

Functions are supported by all good programming languages.

R is special in that it is a “functional” programming language — functions are first-class
objects.

Therefore, functions can be passed to other functions, returned from other functions,
and manipulated within programs!

Functions can be built-in (available as part of the base R software), supplied through
installed packages (a topic we will explore later), or user-defined:

1. Built-in functions e.g. mean () or sqrt ()

2. Functions from packages that are installed from the Comprehensive R Archive
Network (CRAN) or elsewhere.

3. User-defined functions.
A function performs a task and returns a value.

In R, the return value can be explicitly stated using the return() function at the end of
the function OR implicitly be the value of the last expression evaluated.

Functions can take parameters a.k.a formals a.k.a arguments.
R allows for named parameters as well as default parameters for functions.

Function scope for variables is active in R (however, as discussed before, R does not
have block scope for variables).

Function definition is how the function is written with the detail of its name,
parameters, and return value. A function that is defined can be called from an R
program or script. A function definition has to be available before an R program can
call it.

So, it is a good idea to have the function definitions at the top of the file containing the
R program.

Basic set up for functions:
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function.name <- function(arguments or parameters) {
purpose of function
i.e. computations involving the arguments

}

# Function definition
myfunctionl <- function(x, y) {
# This is what is returned by the function
# Could have been explicitly stated as return(x + y)

X tvy;

# Calling the function
sum <- myfunctionl (3, 4);

print (sum) ;

A function can return only a single object. However, the object can be a complex data
structure like a list, data-frame, vector, array, etc.

It is a good idea to modularize your R-code into functions of 40-100 lines instead of
putting it all in a giant R script of 1000 or more lines! As pugilist Mike Tyson once said
(http://articles.sun-sentinel.com/2012-11-09/sports/sfl-mike-tyson-explains-one-of-his-
most-famous-quotes-20121109_1_mike-tyson-undisputed-truth-famous-quotes),
“Everybody has a plan until they get punched in the mouth.” When the plan you had
for your R program falls apart and it starts doing things that you did not expect, having
modularized code in functions will bolster the attempt to fix things and get back on
track.

Larry Wall, the creator of the Perl programming language
(https://en.wikipedia.org/wiki/Perl) has a humorous yet insightful take on the three
virtues of a great programmer: http://threevirtues.com/.

Remembering Larry's words when starting to write R programs will go a long way in
helping you write beautiful and effective code that gets the job done.
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5.1: Anonymous Self-Executing Functions

An anonymous self-executing function helps encapsulate R code and prevent the
problems relating to global variables polluting function spaces. The idea is to put the
main part of the script inside an anonymous self-executing function of this sort:

(function() {
# All code that used to be in the top-level of the R script goes here

1) O

This anonymous self-executing function is the first piece of code that runs when an R
program is run. However, since it is also a function in its own right, variables created
inside it are not global and thus do not pollute other function spaces. If you find it
hard to grok the concept “anonymous self-executing”, an easier-to-understand solution
is to create a function named main() containing the top-level code (a concept borrowed
from languages like C and Java) and execute it as the first statement in your program:

main <- function() {

# All code that used to be in the top-level of the R script goes here

main () # Execute the main() function

# Function that increments an integer by 2 and returns it
incrementByTwo <- function (mynumber) {

mynumber = mynumber + 2

print ("Printing x within the function\n")

print (x)

x <- x + 100
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print ("Printing x within the function after incrementing by 100\n")

print (x)

print (x)

return (mynumber)

# Code encapsulation with a self-executing anonymous function

(function() {

x <- 2

print ("Printing x outside the function\n")

print (x)

print ("Printing x outside the function after incrementing by 3\n")

print (x)

y <- incrementByTwo (x)

print ("Printing y\n")

print (y)

1) O

In the code block above, the print(x) statement within the function incrementByTwo()
causes an error and a halt in execution since the variable x created within the top-level
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anonymous self-executing function is not seen within the local environment of the
function incrementByTwo().

One thing to remember though, is that objects from R packages loaded in any function
are actually available everywhere - this is because the package environment is
inserted in the hierarchy of environments as a parent of the global environment.

5.2: Passing a function all the variables it needs

Another strategy to prevent global variables from bleeding into function environments
is to pass to a function, as arguments, all the variables it needs for processing. Never
make functions act on global variables that are not passed to it as parameters or
arguments.
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Chapter 6: Objects

Objects are everywhere in R.
Data that are used for analysis are stored as objects in memory.
Functions are objects.

Functions return objects containing data and properties that can be read, manipulated,
and pretty-printed.

Even simple integers, strings, and doubles (numbers) are objects.

Use class(), typeof(), mode(), and str() on variables to know more about the objects they
represent and the structure of the objects.

Unlike in data-analysis languages like SAS®, in R, the return values or outputs of
statistical functions and tests like t-test [t.test()], anova [aov()], linear regression [Im()]
are objects containing data and properties that can be read, manipulated, used in
calculations, stored, and pretty-printed. This offers immense power in terms of being
able to work with the data and the outputs.
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Chapter 7: R packages

R packages are collections of functions that perform tasks related to a particular
domain or subject area. The concept is similar to modules in SAS® but much broader.

R packages are similar to “libraries” in other programming languages.

More than 9000 packages (https://cran.r-
project.org/web/packages/available_packages_by_name.html) are available on CRAN
(https://cran.r-project.org/), the Comprehensive R Archive Network. These have been
created by contributors in the R community.

The CRAN web-page for a package includes a lot of information, including a PDF that
documents the package and its functions. Also, highly-useful are the vignettes (for
packages that have them) that show you how to use the package.

Therefore, before thinking of writing your own function for anything, save time and
effort by doing a search on CRAN to see if there is an existing R package for the
purpose.

Sometimes, it is easier to just do a Google (or some other search-engine) query e.g.
“Gradient boosted machines in R”.

R packages have to be installed along with and accessible to your core R software
before the functions in them are made available to work inside your R programs. This
is as simple as using the install.packages() command in R within the REPL. This
automatically downloads the package through the Internet from a CRAN mirror-
repository and installs it on your computer in a location that makes it available to your
R software.

E.g.

install.packages ("dplyr") ;

# Multiple R packages can be installed in one go by providing
# their names as a character vector to the

# install.packages () function.

install.packages (c("data.table", "tidyr", "dtplyr", "rpart"));

Within an R program or the REPL, the R package has to be loaded using the library() or
require() command before the functions in it can be used.
E.g.
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library ("dplyr") ;
library ("readr") ;

One the package has been loaded using the library() command, the functions in the
package are available to use. A function can be utilized through the base function
name or the fully qualified name that includes the package name and :: as a prefix to
the function name.
E.g.

library ("dplyr") ;

dplyr::filter () ;
filter();

In most cases, I would recommend using the fully-qualified name of the function
(including the name of the package) in order to adjust for any masking of similarly-
named functions in other packages.
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Chapter 8: Interactive R through the REPL interface

The R interactive shell is of the type known as a REPL — Read-Eval-Print-Loop.

The REPL shell automatically prints the value of variables and expressions to the
screen — this automatic printing does not happen when running R programs as
scripts/programs.

The REPL is useful to step through small analyses, to install packages, and to access
the built-in help.

Exit the REPL by closing the window or using the quit() or q() command.

When exiting, R will prompt the user about saving the session and the data as an
.Rdata file. If you reply “yes or y”, the commands and the data objects used in the
REPL session will be available in the next session. If you reply “no or n”, the
commands and the data objects used in the REPL session will not be saved and will
not be available in the next session.
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Chapter 9: Inbuilt help in R

The R help mechanism is outlined here:
http://www.statmethods.net/interface/help.html

1. If you know the exact name of the object type, function or other entity to access
the help on, type a question mark followed by the entity name:

> ?mean
OR

> ?mean ()
In this case, the window shows information on the function mean ().

2. If you do not know the exact terms or want to do a deeper, wildcard-type search
across all of the documentation, type:

> ??7mean
The window shows information on all the libraries with a function named
mean.

3. Packages have to be loaded with the library() command before the REPL
interface can be used with a single question mark to look at functions within
them.

4. Using help (), apropos (), example (), RsiteSearch (), and other help
functions is easy and provides a ton of information.
Once R s installed, there is a comprehensive built-in help system. At the
program's command prompt you can use any of the following:

help.start () # general help

help (foo) # help about function foo

?foo # same thing

apropos ("foo") # list all functions containing string foo
example (foo) # show an example of function foo

# search for foo in help manuals and archived mailing lists

RSiteSearch ("foo")
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# get vignettes on using installed packages
vignette () # show available vingettes
vignette ("foo") # show specific vignette

5. Sample Datasets: R comes with a number of sample datasets that you can
experiment with. Type data ( ) to see the available datasets. The results will
depend on which packages you have loaded. Type help (datasetname) for
details on a sample dataset.
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Chapter 10: R programs and scripts

1. R programs or scripts are text files containing R commands that are executed by
the R interpreter.

2. Rscripts are created using a text-editor.

It is a good idea to use a text-editor that offers syntax highlighting for R language
programming-code, and other features like function folding and automatic
indentation.

3. One a program has been written and saved to a text-file, it needs to be
interpreted and executed by R.

a.
b.

C.

We can use the R GUI REPL (Read-Eval-Print-Loop shell) for this purpose.
The first step is to open up the R GUI REPL shell.

The next step is to navigate to the folder/directory in which the R script
file is stored. The setwd () (for set working directory) command is used
to navigate to the directory in which the R script file is stored. The
argument to setwd () is a directory specification like

C:/Users/my_user name/Desktop. Note that setwd () uses the front-
slash (/) as the folder separator, even on Windows, and not the back-slash
(\) that Windows uses by default.

The getwd () command can be used in the REPL to get information on
what the current working directory is.

In Windows, the shell() command can be used in the R REPL to execute
Windows command shell commands. E.g.

shell ("dir") # Lists the contents of the working directory
On Linux, the system () command does something similar.

Once it is confirmed that the R script file is in the same directory as the
working directory for the R REPL, the source() command can be used to
run the R script:

source ("my_R_program_script.R");
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g. The source () command can also be used within R scripts to read in and
execute R code located in other R script files. This is often used to bring in
and execute R function code that might exist in separate files.

4. Syntax for R programs

a. Commands are entered into the file, usually one per line. The semi-colon
at the end of each statement-line is optional.

b. Multi-line commands are allowed, but have to include an operator (like a
comma, plus-sign, etc.) at the end of each line that indicates that more of
the command follows on the next line.

c. Other R syntax rules have to be followed.

5. R scripts/programs stored in text files can be interpreted and executed by the R
software at the command line.

a. The best program to invoke for this purpose, at the Windows or Linux
Command shell prompt, is Rscript.

b. Torun an R program using Rscript at the command line:

o Navigate, in the command shell (using cd commands), to the
directory in which the R script/program is stored. R scripts are
usually created with the file extension .R.

o Execute the R script using this shell-prompt command that
instructs Rscript to read, interpret, and execute the program:

Rscript nameOfFileContainingRprogram.R argl arg2

c. The R executable can also be used at the command line to run R programes.
The syntax is a bit different. And on Windows, it can only be used in
cmd.exe and not in powershell.exe.

The command when using plain R is (all on one line of the command
shell):

R -no-save —-no-restore -args argl arg2 <
nameOfFileContainingRprogram.R > program output.txt 2>

program_errors.txt
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Chapter 11: Reading in Data

1. The three main steps in data analysis are:

i. Reading in the data (from text files, databases, binary files, web sources,
etc.).

ii. Data munging/wrangling/manipulation and cleaning to convert the data to
a format that facilitates analysis. The principles of Tidy Data
(https://www.jstatsoft.org/article/view/v059i10) apply.

iii. Running the statistical analysis or machine learning algorithm/function
on the manipulated data to get results and inferences.

2. Text data (delimited as well as fixed-width) can be easily read into R objects (like
data frames) using the read.table() function. However, newer read-operations
like fread() available through the data.table (https://cran.r-
project.org/web/packages/data.table/index.html) package and read_delim() (and
similar functions) from the readr (https://cran.r-
project.org/web/packages/readr/index.html) package are much more efficient.
The CRAN pages for the data.table and readr packages have good reference
material. We will be using these two packages in real examples of data analysis.

3. Rcanread data from relational databases by using the RODBC, RJDBC, DBI and
similar packages.

4. Text formats like JSON and XML can be parsed using packages like jsonlite and
XML.

5. Reading binary data is also quite easy but is rarely needed for data analysis
tasks. I will not be covering binary file reads and writes in this book.

The first code-listing we will run and analyze is a program to read in the CMS Medicare
data tab-separated-value text-file and save it as an R serialized-object to disk.

Code Listing 11.1
(Initial data-read using data.table)

The command to run the program on the command line (all on one line):

Rscript 11.1 Medicare_Provider Util_Payment_initial_dataread.R
../data/Medicare_Provider Util_Payment_PUF CY2014.txt
../data/Medicare_Provider Util_Payment_PUF CY2014__ FULL.rds
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# Copyright (C) 2017 Sivakumaran Raman
library("data.table™)

library ("dplyr")

library ("dtplyr")

HH#H#H#H#H#H#H#F#F ALL FUNCTIONS DEFINED
BHH R EHEE - - - - - - C o oo oo L L L L Lo

# Function that uses the data.table package to read in the data file
readFileIntoDataFrame <- function (CMSPhysicianDataFile) {
myDataFrame <- data.table::fread(CMSPhysicianDataFile, header = TRUE,

colClasses = c¢(npli = "character", nppes_provider zip = "character",
hecpes_code = "character", line srvc_cnt = "numeric"),
data.table = TRUE, verbose = TRUE)

return (myDataFrame)

# Function to manipulate a data frame using dplyr

manipulateDFUsingDplyr <- function (physicianDataDF) {
# Character vector of names of columns to convert to factors
varsToConvertToFactors <- c¢c('"nppes credentials", "nppes provider gender",
"nppes_entity code", "nppes_provider_state", "nppes_provider_country",

"provider_ type", "medicare_participation_indicator", "place of_service")

# Use the chained syntax of dplyr to convert certain columns to factors
# and to filter out the first row of data with the CPT Header from the AMA
physicianDataDF <- physicianDataDF %>%

dplyr: :mutate_at (varsToConvertToFactors, as.factor) %>%

dplyr::slice(2:nrow(physicianMedicareDataTable))

return (physicianDataDF)

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop("Error: stack trace printed above")

})

45




# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if data file to read and data file to write to are not
# provided on the command line as arguments 1 and 2 to the R program
if (length(myArgs) != 2) {

stop ("Error: please provide the name of the file to read and the file

to write to as the command line arguments")

# Read in the data by calling the function
physicianMedicareDataTable <- readFileIntoDataFrame (myArgs[[1]])

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

# Call the function to manipulate the data frame using the dplyr package
physicianMedicareDataTable <- manipulateDFUsingDplyr (physicianMedicareDataTable)

RDSFileToWriteTo <- myArgs|[[2]]

# Save the R data-frame+data-table object to a file
saveRDS (physicianMedicareDataTable, file = RDSFileToWriteTo, compress = TRUE)

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(physicianMedicareDataTable,

file = "../data/Medicare_Provider Util_Payment_PUF CY2014.csv",
append = FALSE,
quote = "auto'", col.names = TRUE, row.names = FALSE, na = "',

nThread = getDTthreads())

sink ("physicianMedicareDataTable_info.txt")

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

# Get summary statistics

providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)
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print ( )
print (providerMedicareUtilSummaryObj)

sink ()

The program is run using Rscript and supplied two arguments at the command line:
the name of the file to read and the name of the binary R dataset file to save the data
to.

The program first loads all the R packages which will be used.

library ( )
library ( )
library ( )

The program starts off with the statement:

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ( )

1)

This instructs R to print the stack trace and quit when an error occurs at the time of
any function-execution. This helps in debugging.

Next, the program reads in the first argument by calling a function and passing it the
first element of the myArgs vector:

# Read in the data by calling the function
physicianMedicareDataTable <- readFileIntoDataFrame (myArgs([[1]])

The function works like this:

# Function that uses the data.table package to read in the data file
readFileIntoDataFrame <- function (CMSPhysicianDataFile) {
myDataFrame <- data.table::fread(CMSPhysicianDataFile, header = TRUE,
colClasses = c(npi = , nppes_provider_zip = ,
hcpes_code = , line srvc_cnt = )
data.table = TRUE, verbose = TRUE)
return (myDataFrame)

}

The fread () function from the data.table package is used to read the tab-delimited
data file with the CMS Medicare Physician data. Using the colClasses option, some
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columns, which look like numbers in the file, are coerced into being read as
text/character data. Similarly, some columns that have non-numeric data are coerced
into being read as numbers. The data. table option set to TRUE ensures that the
object created and returned is a data table (and not just a data frame). Also, the
program is asked to be verbose in reporting output and errors.

Then, the program prints out information about the class, mode and structure of the
data-object created by the data-read:

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

Next, the function to manipulate the data-object created is called and the object is
passed to it as a parameter:

# Call the function to manipulate the data frame using the dplyr package
physicianMedicareDataTable <-
manipulateDFUsingDplyr (physicianMedicareDataTable)

The data-manipulation function uses the dplyr (https://cran.r-
project.org/web/packages/dplyr/index.html) package:
# Function to manipulate a data frame using dplyr
manipulateDFUsingDplyr <- function (physicianDataDF) {
# Character vector of names of columns to convert to factors

varsToConvertToFactors <- ¢ ’ ’

’ ’ ’

# Use the chained syntax of dplyr to convert certain columns to factors
# and to filter out the first row of data with the CPT Header from the AMA
physicianDataDF <- physicianDataDF %>%

dplyr::mutate_at (varsToConvertToFactors, as.factor) %>%

dplyr::slice(2:nrow(physicianMedicareDataTable))

return (physicianDataDF)

}

Some variables/columns in the data frame are converted to factors. Also, the first row
of data (after the header row), which contains the CPT® copyright line, is discarded
using the dplyr slice() function. The modified data object is returned back from the
function. The magic of dplyr lies in the chained-method/chained-function syntax
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implemented through the piping operator %>%. This allows a sequence of functions to
be applied to the same data-object (usually a data frame) where the transformed
output of one function becomes the input to the next function. The object returned at
the end of the chain of functions is the transformed/manipulated object with all of the
functions applied to it. We will see more extensive use of dplyr later in the book.

The modified data object is then saved to disk as a binary file (inside the data folder)
with compression applied:

# Save the R data-framet+data-table object to a file
saveRDS (physicianMedicareDataTable, file = RDSFileToWriteTo, compress = TRUE)

The data.table fwrite () function is then used to write out the same data object as a
CSV file. This works much faster than the traditionally used write.csv () function
from the utils package as it utilizes multiple threads on the multi-processor computers
that are commonly used nowadays. The options also request a header row of
column/variable names to be written out as the first row and missing or NA (Not
Available) values to be represented by the blank string :

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(physicianMedicareDataTable,
file = ,
append = FALSE,
quote = , col.names = TRUE, row.names = FALSE, na = ,
nThread = getDTthreads())

Finally, some information about the class, mode, and structure of the data object along
with summary statistics are written out to a text file. The sink() function redirects
standard-output of the program to whichever file is supplied as its argument. Calling
sink() again without a parameter resets the standard output channel to the default:

sink ( )

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

# Get summary statistics

providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)

print ( )
print (providerMedicareUtilSummaryObj)
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sink ()

The same program can also be written as one long script (top-to-bottom) without any
functions. But that is not the right way to write programs: using functions makes the
code modular, re-usable, and easier to debug. However, I am presenting, to bring out
the contrasts, the without-functions version of the code listing 11.1 as code listing 11.2.

Code Listing 11.2
(Initial data-read using data.table: no functions version)

To run this (all on one line):

Rscript
11.2_Medicare_Provider Util_ Payment_initial_ dataread no_functions.R
../data/Medicare Provider Util_ Payment_PUF_CY2014.txt
../data/Medicare Provider Util_ Payment_ PUF_CY2014_ FULL.rds

# Copyright (C) 2017 Sivakumaran Raman
library( )

library( )

library( )

HHH#HHHHE##H ALL FUNCTIONS DEFINED
g g T T e

# Set option to print the stack trace at the time of any error and then
# quit.
options (error = function() {
traceback (2)
stop ( )
1)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if data file to read and data file to write
# to are not provided on the command line as arguments 1 and 2 to the R
# program
if (length (myArgs) != 2) {
stop (
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write to as the command line arguments")

# Read in the data

physicianMedicareDataTable <- data.table::fread(myArgs[[1]], header = TRUE,
colClasses = c(npl = '"character", nppes_provider zip = "character",
hcpes_code = "character", line srvc_cnt = "numeric"), data.table = TRUE,

verbose = TRUE)

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

varsToConvertToFactors <- c("nppes_credentials", "nppes_provider gender',
"nppes_entity_ code", "nppes_provider_ state", "nppes_provider_country",
"orovider_ type", "medicare_participation_indicator", "place_ of_ service")

# Use the chained syntax of dplyr to convert certain columns to factors

# and to filter out the first row of data with the CPT Header from the

# AMA

physicianMedicareDataTable <- physicianMedicareDataTable %>%
dplyr::mutate_at (varsToConvertToFactors, as.factor) %>%
dplyr::slice(2:nrow(physicianMedicareDataTable))

RDSFileToWriteTo <- myArgs|[[2]]

# Save the R data-frame+data-table object to a file
saveRDS (physicianMedicareDataTable, file = RDSFileToWriteTo, compress = TRUE)

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(physicianMedicareDataTable,

file = '../data/Medicare_Provider_Util_Payment PUF CY2014.csv',

append=FALSE,

quote="auto",

col.names=TRUE,

row.names=FALSE,

na='",

nThread = getDTthreads () );

sink ("physicianMedicareDataTable_info.txt")

# Print out information about the class, mode and type of object
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class (physicianMedicareDataTable)
mode (physicianMedicareDataTable)
str (physicianMedicareDataTable)

# Get summary statistics
providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)

print ( )
print (providerMedicareUtilSummaryObj)

sink ()

For reading text data into R, another very useful package is readr. The read_delim()
function in readr can be used to read in delimited-data. The readr package functions
are slightly slower at reading files than the fread function in data.table. However,
readr offers functions like read_fwf (to read fixed-width-files) while data.table does not
contain functions to read fixed-width-files. Code listing 11.3 uses the read delim()
function from readr to read in the data. Otherwise, it is pretty much the same as code
listing 11.1.

Code Listing 11.3
(Initial data-read using readr)

To run this (all on one line):

Rscript

11.3_Medicare_Provider Util_Payment_initial_ dataread_using_ readr.R
../data/Medicare Provider Util Payment_ PUF_CY2014.txt

../data/Medicare Provider Util_ Payment_ PUF_CY2014__ FULL from readr.rds

# Copyright (C) 2017 Sivakumaran Raman
library( )

library( )

library( )

HH#H#H#H#H#H#H##F ALL FUNCTIONS DEFINED
BHH R EEE - - - - - - C o oo C o f o h et C i h e e e e e

# Function that uses the readr package to read in the data file
readFileIntoDataFrame <- function (CMSPhysicianDataFile) ({
# The first row contains the header (column names) .
myDataFrame <- readr::read_delim(file = CMSPhysicianDataFile,
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delim = "\t",
col_names = TRUE) ;
return (myDataFrame)

# Function to manipulate a data frame using dplyr
manipulateDFUsingDplyr <- function (physicianDataDF) {
# Character vector of names of columns to convert to factors

varsToConvertToFactors <- c("nppes_credentials'", "nppes_provider gender",
"nppes_entity code", "nppes_provider_ state", "nppes_provider_country",
"orovider_ type", "medicare_participation_indicator", "place_ of_ service")

# Use the chained syntax of dplyr to convert certain columns to factors
# and to filter out the first row of data with the CPT Header from the
# AMA
physicianDataDF <- physicianDataDF %>%
dplyr::mutate_at (varsToConvertToFactors, as.factor) %>%
dplyr::slice(2:nrow(physicianMedicareDataTable))

return (physicianDataDF)

# Set option to print the stack trace at the time of any error and then
# quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if data file to read and data file to write
# to are not provided on the command line as arguments 1 and 2 to the R
# program
if (length (myArgs) != 2) {
stop("Error: please provide the name of the file to read and the file to

write to as the command line arguments")
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# Read in the data by calling the function
physicianMedicareDataTable <- readFileIntoDataFrame (myArgs[[1]])

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

# Call the function to manipulate the data frame using the dplyr
# package
physicianMedicareDataTable <-

manipulateDFUsingDplyr (physicianMedicareDataTable)

RDSFileToWriteTo <- myArgs|[[2]]

# Save the R data-frame+data-table object to a file
saveRDS (physicianMedicareDataTable, file = RDSFileToWriteTo, compress = TRUE)

Commented out

Save the R data-frame+data-table object to a CSV file

write.csv (physicianMedicareDataTable, file =
'../data/Medicare Provider Util_Payment PUF CY2014.csv', row.names=FALSE,

H H H H =+

na='");

sink ("physicianMedicareDataTable_info.txt")

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable)

mode (physicianMedicareDataTable)

str (physicianMedicareDataTable)

# Get summary statistics

providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)

print ("Summary statistics: ")

print (providerMedicareUtilSummaryObj)

sink ()

R can also read in data from various other sources like relational databases, binary
files, URLs, XML files, and various others. Relational databases are an important and
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commonly used source of data — so we will cover how to get data from a relational
database management system (RDBMS). To create a relational database source that R
can read from, we will use the SQLite RDBMS: https://www.sqlite.org/

Download and install SQLite for your operating system. Then, open up the
Medicare_Provider_Util Payment_PUF_CY2014.txt tab-delimited file in a text-editor,
delete the first two rows (the header row with variable names and the second row
with the CPT copyright notice from the American Medical Association), and save it as a
new file with the name

Medicare_Provider_Util Payment_PUF_CY2014_NO_HEADER_ROW.txt. Open up a
command shell (bash in Linux, cmd.exe in Windows) and use change-directory (cd)
commands to navigate to the same folder as the one containing the tab-delimited text
file with the two top rows removed.

Next, type this at the shell command prompt to create a new SQLite database file
named Medicare_Provider_Util Payment PUF_CY2014.db:

sqlite3 Medicare_Provider_Util_Payment_PUF_CY2014.db

You will now be at the sqlite3 prompt. Run these commands at the sqlite3 prompt to
create a database table named physicianMedicareDataTable and load it with data from
the tab-delimited CMS Physician Utilization file with the top two rows removed:

create table physicianMedicareDataTable (npi text,
nppes_provider_last_org name text, nppes_provider_ first_name text,
nppes_provider_mi text, nppes_credentials text,
nppes_provider_gender text, nppes_entity code text,
nppes_provider_streetl text, nppes_provider_ street2 text,
nppes_provider_city text, nppes_provider_zip text,
nppes_provider_state text, nppes_provider_country text,
provider type text, medicare participation_indicator text,
place_of_service text, hcpcs_code text,

hcpes_description text, hcpces_drug_indicator text,
line_srvc_cnt integer, bene_unique_cnt integer,

bene_day srvc_cnt integer, average Medicare allowed_amt real,

average_submitted_chrg_amt real, average Medicare payment_amt real,
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average_Medicare_standard_amt real) ;
.separator "\t"

.import Medicare_Provider Util_Payment_PUF _CY2014_NO_HEADER_ROW. txt

physicianMedicareDataTable

.exit

The whole session in the shell console looks like this:

radium@aceraspiredelto:~/Desktop$ sglite3
Medicare_ Provider_Util_Payment_PUF _CY2014.db

SQLite version 3.8.2 2013-12-06 14:53:30
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sglite> create table physicianMedicareDataTable (npi text,

.> nppes_provider_ last_org name text,

.> nppes_provider_ first_name text,

.> nppes_provider_mi text,

.> nppes_credentials text,

.> nppes_provider gender text,

.> nppes_entity code text,

.> nppes_provider_streetl text,

.> nppes_provider_ street2 text,

.> nppes_provider_city text,

.> nppes_provider_zip text,

.> nppes_provider_state text,

.> nppes_provider_country text,

.> provider_ type text,

.> medicare participation_indicator text,
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.> place_of_service text,
.> hcpcs_code text,
.> hcpes_description text,
.> hcpes_drug_indicator text,
.> line_srvc_cnt integer,
.> bene_unique_cnt integer,
.> bene_day_ srvc_cnt integer,
.> average_Medicare allowed_amt real,
.> average_submitted_chrg amt real,
.> average Medicare_ payment_amt real,
.> average_Medicare standard_amt real) ;
sglite>
sqglite> .separator "\t"

sglite> .import Medicare_Provider_ Util_Payment_PUF _CY2014_NO_HEADER_ROW. txt

physicianMedicareDataTable

sglite> .exit

Move the SQLite database file Medicare_Provider_Util Payment_PUF_CY2014.db to
the data folder before running the code.

Code Listing 11.4
(Initial data-read from a relational database)

To run this (all on one line):

Rscript

11.4_Medicare_Provider Util_Payment_initial_ dataread_from SQLite RDB.R
../data/Medicare_Provider Util_Payment_PUF_CY2014.db
physicianMedicareDataTable

../data/Medicare_Provider Util_Payment_PUF CY2014__ FULL_from RDBMS.rds

# Copyright (C) 2017 Sivakumaran Raman

library ( ) # Load the DBI package in order to use the RSQLite package
library( )

library( )
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# Function that uses the RSQLite package to read in a database table
# from a SQLite relational database
readDBTableIntoDataFrame <-
function (CMSPhysicianDataBaseNameSQLite, DBTableName) {
# Connect to the SQLite relational database
mydb <- dbConnect (RSQLite::SQLite (), CMSPhysicianDataBaseNameSQLite) ;

# Run the SQL query to read in data from the table into a dataframe
myDataFrame <- dbGetQuery (mydb, paste('SELECT * FROM ', DBTableName)) ;

# Disconnect from the relational database

dbDisconnect (mydb) ;

# Return the dataframe with the data
return (myDataFrame)

# Function to manipulate a data frame using dplyr
manipulateDFUsingDplyr <- function (physicianDataDF) {
# Character vector of names of columns to convert to factors

varsToConvertToFactors <- c¢('"nppes credentials", "nppes provider gender",
"nppes_entity code", "nppes_provider_state", "nppes_provider_country",
"provider_ type", "medicare_participation_indicator", "place of_service")

# Use the chained syntax of dplyr to convert certain columns to factors
physicianDataDF <- physicianDataDF %>%

dplyr::mutate_at (varsToConvertToFactors, as.factor);

return (physicianDataDF)

# Set option to print the stack trace at the time of any error and then
# quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")
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})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message i1f SQLite database name, database table to read,
# and data file to write to are not provided on the command line as arguments
# 1, 2, and 3 to the R program
if (length (myArgs) != 3) {
stop ("Error: please provide the name of the SQLite DB file, the DB table

to read, and the file to write to as the command line arguments")

# Read in the data from the SQLite relational database table by calling
# the function
physicianMedicareDataTableDF <-

readDBTableIntoDataFrame (myArgs [[1]], myArgs[[2]])

# Print out information about the class, mode and type of object
class (physicianMedicareDataTableDF)

mode (physicianMedicareDataTableDF)

str (physicianMedicareDataTableDF)

# Call the function to manipulate the data frame using the dplyr
# package
physicianMedicareDataTableDF <-

manipulateDFUsingDplyr (physicianMedicareDataTableDF)

RDSFileToWriteTo <- myArgs|[[3]]

# Save the R data-frame+data-table object to a file
saveRDS (physicianMedicareDataTableDF, file = RDSFileToWriteTo, compress = TRUE)

# Save the R data-frame+data-table object to a CSV file

# write.csv(physicianMedicareDataTableDF, file =

# '../data/Medicare_Provider_Util_ Payment PUF CY2014.csv', row.names=FALSE,
# na='");

sink ("physicianMedicareDataTable info.txt")

# Print out information about the class, mode and type of object
class (physicianMedicareDataTableDF)

mode (physicianMedicareDataTableDF)
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str (physicianMedicareDataTableDF)

# Get summary statistics
providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTableDF)

print ( )
print (providerMedicareUtilSummaryObj)

sink ()

Code listing 11.4 is almost the same as listing 11.1 except for the part where data is
read from the SQLite relational database table. R uses the common DBI package
interface for most relational database systems (including SQLite) while the SQLite-
specific driver details are taken care of by the RSQLite package. The tasks of
connecting to the database, running a query to pull data from a table, and returning
the data as a data frame are performed by calling this function:

# Function that uses the RSQLite package to read in a database table
# from a SQLite relational database
readDBTableIntoDataFrame <-
function (CMSPhysicianDataBaseNameSQLite, DBTableName) {
# Connect to the SQLite relational database
mydb <- dbConnect (RSQLite::SQLite (), CMSPhysicianDataBaseNameSQLite) ;

# Run the SQL query to read in data from the table into a dataframe
myDataFrame <- dbGetQuery (mydb, paste( , DBTableName)) ;

# Disconnect from the relational database

dbDisconnect (mydb) ;

# Return the dataframe with the data
return (myDataFrame)

}

Inside the readDBTableIntoDataFrame() function, the dbConnect() function from the
DBI package uses the SQLite database driver to connect to the SQLite database. The
dbGetQuery() function is used to submit a query to the relational database engine. The
results of the query are returned into a data frame. There is an explicit disconnect
from the database and the function returns the data frame object. The rest of code
listing 11.4 does the same things as code listing 11.1.
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Chapter 12: Data Wrangling/Munging/Manipulation

1. The older R ways of manipulating data in structures like data-frames are slow,
inefficient, and no longer recommended.

2. Instead, data manipulation is best done through the use of the data.table
(https://cran.r-project.org/web/packages/data.table/index.html) , tidyr
(https://cran.r-project.org/web/packages/tidyr/index.html) , dplyr (https://cran.r-
project.org/web/packages/dplyr/index.html) and sqgldf (https://cran.r-
project.org/web/packages/sqldf/index.html) packages.

3. Of these, I am going to use tidyr and dplyr in this book because:

a. The syntax is easy to understand and lends itself to chained methods and
pipelines using the %>% operator from the magrittr (https://cran.r-
project.org/web/packages/magrittr/index.html) package.

b. dplyr-like functions are supported by Hadoop and Spark-related big-data
R packages like sparklyr (https://cran.r-
project.org/web/packages/sparklyr/index.html). Therefore, learning dplyr
makes the transition to data-wrangling on big-data platforms like Hadoop
and Spark much easier.

c. The tidyr and dplyr packages provide a variety of functions for cleaning,
processing, & manipulating data

e tidyr
» gather ()
» spread()
» separate()
» unite ()
« dplyr
» select()
» filter()
» group_by ()
>

summarize ()
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» arrange ()
> join|()
» mutate ()

A really good introduction to the use of tidyr and dplyr is available in this
web article by Brad Boehmke: https://rstudio-pubs-
static.s3.amazonaws.com/58498_dd3b603ba4fb4b469bb1c57b5a951¢39.ht
ml

As part of understanding how data wrangling works using dplyr, we will summarize
the Medicare data set by provider (a term used for any provider of health care
services). The code listing for this is below.

Code Listing 12.1
(Data wrangling using dplyr)

To run this (all on one line):

Rscript 12.1_Medicare Provider Util_ Payment_manipulate_dataset.R
../data/Medicare_Provider Util_Payment_PUF CY2014__ FULL.rds

../data/Medicare_Provider Util_Payment_PUF _CY2014_SUMMARIZED.rds
../data/Medicare_Provider Util_Payment_PUF_CY2014_SUMMARIZED.csSV

# Copyright (C) 2017 Sivakumaran Raman
library( )

library( )

library( )

####H4H4#### ALL FUNCTIONS DEFINED
BHEHEHEHEHE - - - - - - - oo
HE##H##H##H#H Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyr <- function (myDataFrame) {

# SUMMARIZE THE DATA BY PROVIDER

myDataFrame <- myDataFrame %>%
# Create a new variable to represent total allowed amount in the year for
# the physician for the HCPCS code
dplyr::mutate(total_allowed_amt_ for_ hcpcs_code =
line_srvec_cnt * average_Medicare_allowed_amt) %>%
# Group by the variables of interest

dplyr: :group_by (npi, nppes_provider_last_ org_name,

nppes_provider_ first_name,
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nppes_provider_mi, nppes_credentials, nppes_provider gender,
nppes_entity code, nppes_provider_streetl, nppes_provider_ street2,
nppes_provider_city, nppes_provider_zip, nppes_provider_state,
nppes_provider_country, provider_ type,
medicare_participation_indicator) %>%

# Aggregate/summarize

dplyr: :summarize (

total_medicare_prof_srv_revenue = sum(total_allowed_ amt_for hcpcs_code,
na.rm = TRUE),

total_line_srvc_cnt = sum(line srvc_cnt, na.rm = TRUE),

total_bene unique cnt = sum(bene unique cnt, na.rm = TRUE),

total_bene day srvc_cnt = sum(bene_day_srvc_cnt, na.rm = TRUE)) %>%

# Add a random value between 1 and 3 as an extra column
dplyr: :mutate (random_val_between_one_and_three = sample(1:3, 1))

return (myDataFrame)

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read, the RDS file to write
# summarized output to, and the CSV file to write summarized output to are not
# provided on the command line
if (length (myArgs) != 3) {
stop ("Error: please provide the name of the RDS file to read, the RDS file
to write summarized data to, and the CSV file to write summarized data to as

the two command line arguments")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]])
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# Call the function to manipulate the data frame using the dplyr and tidyr
# packages
summarizedPhysicianMedicareDataTable <-

manipulateDFUsingDplyr (physicianMedicareDataTable)

# Print out information about the class, mode and type of object
class (summarizedPhysicianMedicareDataTable)

mode (summarizedPhysicianMedicareDataTable)

str (summarizedPhysicianMedicareDataTable)

typeof (summarizedPhysicianMedicareDataTable)

RDSFileNameForSummarizedDataFrame <- myArgs|[[2]]

# Save the R data-frame object to a file
saveRDS (summarizedPhysicianMedicareDataTable,
file = RDSFileNameForSummarizedDataFrame,

compress = TRUE)

CSVFileNameForSummarizedData <- myArgs|[[3]]

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite (summarizedPhysicianMedicareDataTable,

FALSE,

FALSE, na = ,

file = CSVFileNameForSummarizedData, append

quote = , col.names = TRUE, row.names
nThread = getDTthreads())

The initial parts of this R program are similar to what we have seen in previous code
listings: loading of R packages, setting debugging options, and reading the command
line parameters that the R program is invoked with. But, one big difference is that the
data is read directly from the binary R object that was saved to disk after the initial
text-file data-read in chapter 12. The data frame that this object on disk is read into is
then passed as a parameter to the function manipulateDFUsingDplyr () that does all
the work (using dplyr functions) of manipulating the data. Here is the
manipulateDFUsingDplyr () function:

#H###H###EH Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyr <- function (myDataFrame) {
# SUMMARIZE THE DATA BY PROVIDER

myDataFrame <- myDataFrame %>%

# Create a new variable to represent total allowed amount in the year for
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# the physician for the HCPCS code
dplyr::mutate(total_allowed_amt_ for_hcpcs_code =
line_srvc_cnt * average Medicare_allowed_amt) %>%
# Group by the variables that are NOT in the summarize by clause
dplyr: :group_by (npi, nppes_provider_last_org_name,
nppes_provider_ first_name,
nppes_provider_mi, nppes_credentials, nppes_provider_ gender,
nppes_entity_code, nppes_provider_streetl, nppes_provider_ street2,
nppes_provider_city, nppes_provider_zip, nppes_provider_state,
nppes_provider_country, provider_type,
medicare participation_indicator) %>%
# Aggregate/summarize
dplyr: :summarize (
total_medicare prof_srv_revenue = sum(total_allowed amt_for hcpcs_code,
na.rm = TRUE),
total_line srvc_cnt = sum(line_srvc_cnt, na.rm = TRUE),
total_bene unique_cnt = sum(bene_unique_cnt, na.rm = TRUE),
total_bene day_srvc_cnt = sum(bene_day srvc_cnt, na.rm = TRUE)) %>%
# Add a random value between 1 and 3 as an extra column
dplyr::mutate (random_val_between_one_and_three = sample(1:3, 1))

return (myDataFrame)

}

The mutate() function from the dplyr package is used to create new variables
(columns) to add to the dataset represented by the data frame. In the function above,
mutate() is used to create a new variable that represents the total allowed dollar
amount for the HCPCS procedure code for the particular provider: this is done by
multiplying the number of times the code was used by the provider (line_srvc_cnt)
with the average allowed Medicare dollar amount for the code.

The data is then summarized by individual provider using the group_by () and
summarize () functions. For those familiar with SQL queries that are run against
relational databases, this will seem very similar to executing group by queries with
aggregate functions. In SQL, from the list of columns being returned by a query, all
columns to which an aggregate function is not being applied should appear in the
group by clause. Something similar is done in the dplyr group_by () and
summarize () functions.

Once the data has been aggregated/summarized, one more mutate () statement is
issued to create a new random integer variable between 1 and 3 as a new column. This
will be used in the statistical and machine learning programs run later in the book.
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The chained-function syntax is used all along and the result of each function being
applied to the data-object is the input to the next function in the chain or pipe.

The aggregated data is returned by the function. This aggregated/summarized data is
then saved to disk as an RDS binary object and also as a CSV file.

Exercise 12.1: For the Reader

Modify code listing 12.1 to summarize the data by provider_type instead of
summarizing by individual providers.
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Chapter 13: Data Quality Checks in R

A critical part of any data analysis effort is ensuring that the data is clean, well-
structured, and of good quality. There are several ways to achieve this in R. One way is
to write custom data-quality rules in R that are then run against the data. Another
option is to use an existing R package that helps run data-quality checks. We are going
to use the latter method. For this purpose, we will use the datacheck (https://cran.r-
project.org/web/packages/datacheck/index.html) CRAN package that simplifies the task
of creating data-quality checks.

The datacheck package expects the data-quality rules to be presented as a list of
assertions. These string-based assertions are read and executed by the R program
against the data.

One problem with the datacheck package is that it creates a copy of the whole dataset
in memory as part of the data dictionary profile object returned as a result of the data
quality rules being run. Therefore, running the data quality rules on the whole dataset
requires the computer to have 2-3 times the memory of the dataset. Since my machine
did not have so much memory, I used (for demonstration purposes) a smaller dataset
using the first 100,000 rows of the data-file. However, if you have to run data quality
rules against the whole dataset and do not have enough memory on your machine, one
method to use is to split the dataset into multiple smaller ones to run the rules against.
The data quality results from all the datasets can then be combined at the end.

Also, in the code listing coming up, I use the ztable and stargazer packages to pretty-
print the data quality rules-result object. These two packages will be used in
subsequent chapters as well in order to pretty-print the output from descriptive,
statistical, and machine-learning procedures.

To create a smaller dataset containing only the first 100,000 data-rows from the
original dataset on Linux, use the head command in the shell (all on one line):

head -n 100002 Medicare Provider_ Util Payment PUF_CY2014.txt >
Medicare Provider_Util_ Payment PUF_CY2014_HEAD100000.txt

The reason I use -n 100002 instead of -n 100000 is because I want to adjust for the
header row and the CPT® copyright row.

On Windows, the command equivalent to head is the Get-Content command. But it is
available only in powershell.exe and not in cmd.exe. The command is (all on one line):
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Get-Content "Medicare Provider_ Util_Payment_PUF_CY2014.txt" -TotalCount 100002 |
Set-Content "Medicare_ Provider Util_Payment_ PUF_CY2014_HEAD100000.txt"

After creating the Medicare_Provider_Util_Payment_PUF_CY2014_HEAD100000.txt file,
the R program in code listing 11.1 should be run on it (by changing the arguments) in
order to create an R dataset (with just the first 100,000 rows of data) named
Medicare_Provider_Util_Payment_PUF_CY2014_HEAD100000.rds in the data folder. Then, code-
listing 13.1 below can be run to execute the data quality rule checks.

Code Listing 13.1
(Data quality checks using datacheck)

To run this (all on one line):

Rscript 13.1_Medicare_Provider Util_Payment_data_checks.R
../data/Medicare_Provider Util_Payment_PUF _CY2014_HEAD100000.rds

# Copyright (C) 2017 Sivakumaran Raman
library( ) ;

library (

library (

library( )i
library (

library( ) ;

# library('broom'); library('tidyr');

HHHHHHAAAHS ALL FUNCTIONS DEFINED ---------mmm--mmmmmmoooooooooo oo
# Function to run data-quality-check rules
runDataCheckRules <- function (myDataFrame, dataqualityRulesCharVector) {

# Convert the rules vector to a rules data frame

datacheck _rules_dataframe <- datacheck::as_rules (dataqualityRulesCharVector)

# Run the data checks
rules_results_db <-
datacheck: :datadict_profile(physicianMedicareDataTable,
datacheck_rules_dataframe)

return (rules_results_db) ;

# Function to pretty print data-quality rules checks results using ztable
prettyPrintHTMLRulesResultsUsingZtable <-
function (rulesOutputChecksDF, fileForHTMLOutput) {
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# Rules checks output in pretty HTML
# Set the options for the ztable printing of pretty tabular output
options (ztable.type="html", ztable.colnames.bold=TRUE) ;

# Use ztable to get pretty-table output about rules checks data-frame
ztable_object <- ztable::ztable(rulesOutputChecksDF,
caption="Data-check rules results", caption.bold=TRUE,
tablewidth=0.1, zebra=1,
zebra.type=2, zebra.color=5, position="left", show.footer=FALSE,
hline.after=c(-1:nrow(rulesOutputChecksDF)),
wraptable=TRUE, wraptablewidth=6)

# Add vertical lines
ztable::vlines (ztable_object, type="all");

sink (fileForHTMLOutput) ;
print (ztable_object) ;
sink () ;

return(ztable object) ;

# Function to pretty print data-quality rules checks results using stargazer
prettyPrintHTMLRulesResultsUsingStargazer <-
function (rulesOutputChecksDF, fileForHTMLOutput) {

stargazer_object <- stargazer::stargazer (rulesOutputChecksDF, type="html",
out=fileForHTMLOutput, summary=FALSE,
title="Data-check rules results")

return (stargazer_object) ;

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {
traceback(2) ;

stop("Error: stack trace printed above");

}
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) ;

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided
# on the command line
if (length (myArgs) != 1) {
stop ("Error: please provide the name of the RDS file to read as the command

line argument") ;

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]1]);

# Print out information about the class, mode and type of object
class (physicianMedicareDataTable) ;

mode (physicianMedicareDataTable) ;

str (physicianMedicareDataTable) ;

# Create vector of datacheck rules

datacheck _rules_vector = c(
'sapply (bene_unique_cnt, is.integer) # is right datatype’',
'is within range (average_Medicare_standard_amt, 0, 200) # is within range',
'sapply (average_Medicare_standard_amt, is.numeric) # is of correct datatype',
'sapply (hcpces_code, is.character) # is of correct datatype'

)

# Call the function to run the data-quality rules check
rules_results_db <- runDataCheckRules (physicianMedicareDataTable,
datacheck rules_vector) ;

# Is the type of the object a data dictionary profile?
print ("Is the type of the datacheck rules-results object
data-dictionary profile?\n");

datacheck::is_datadict_profile(rules_results_db) == TRUE;

print ("Plot rule coverage for db object:\n");

datacheck: :rule_coverage (rules_results_db) ;

print ("Plot score summary for db object:\n");

datacheck: :score_sum(rules_results_db) ;
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sink ("rules_output.txt");

# Print out information about the class, mode and type of data-quality
# rules object

class (rules_results_db) ;

mode (rules_results_db) ;

str(rules_results_db) ;

print ("Dump rules object:\n")

print (rules_results_db) ;

sink () ;

# File to write out the HTML output from ztable for the datacheck data-quality

# rules run
outputZTableHTMLFile <- "R output ztable rules checks.html"

# Call the function to pretty-print data check rules output using the ztable
# package
myZtableObject <-
prettyPrintHTMLRulesResultsUsingZtable (rules_results_db$checks,
outputZTableHTMLFile) ;

# File to write out the HTML output from stargazer for the datacheck

# data-quality rules run
outputStargazerHTMLFile <- "R output stargazer rules checks.html"

# Use stargazer to get pretty-table output about rules checks data-frame
myStargazerObject <-
prettyPrintHTMLRulesResultsUsingStargazer (rules_results_db$checks,
outputStargazerHTMLFile) ;

Parts of the above program are similar to others we have seen earlier in the book. The
data (100,000 rows) are read in from the .rds file. Then, the data quality rules checks
are set up as a character vector.

# Create vector of datacheck rules
datacheck _rules_vector = c(
'sapply (bene_unique_cnt, is.integer) # is right datatype',
'is within range (average_Medicare_standard_amt, 0, 200) # is within range',

'sapply (average_Medicare_standard_amt, is.numeric) # 1is of correct datatype',
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) ;

The rules use the sapply () function (which applies a particular function to each
element of a list) and other helper functions in order to define the rules to be run
against each row of a particular, named variable-column. The rules we are applying
are:

1. The beneficiary unique count or bene_unique_cnt variable value should always be an
integer.

2. The average Medicare standardized amount should be within a certain numerical
range.

3. The average Medicare standardized amount should be a numeric value.
4. The HCPCS code should be a character/string value.

The rules checks are then executed by calling the runDataCheckRules function.

# Call the function to run the data-quality rules check
rules_results_db <- runDataCheckRules (physicianMedicareDataTable,

datacheck_rules_vector) ;

The runDataCheckRules () function converts the character vector of rules passed to it
to a rules data frame and then runs the rules against the dataset. The results of the
rules checks are collected in a data dictionary profile object.

# Run the data checks
rules_results_db <-
datacheck: :datadict_profile(physicianMedicareDataTable,
datacheck_rules_dataframe)

The prettyPrintHTMLRulesResultsUsingZtable () and
prettyPrintHTMLRulesResultsUsingStargazer () functions then use the ztable
(https://cran.r-project.org/web/packages/ztable/) and stargazer (https://cran.r-
project.org/web/packages/stargazer/index.html) packages respectively to pretty-print
the rules-results object as HTML tables. We will be using these two packages again
later to pretty-print the output from machine-learning and statistical procedures.

The tabular output lists, in columns, the variable name, the data-type, the rule applied
to the variable, the comment that accompanies the rule, the execution status, the
number of failed data-values, and an actual listing of data-values that fail the rule.
Here are the first two rows of the output from ztable for the rules object.
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Variable Type

Rule

Comment

Execut|
ion

Error.sum

Error.list

1| bene_unique_cnt| integer

sapply(bene
_unique_cnt
, is.integer)

is right
datatype

ok

none

average_Medicar

numeric
e_standard_amt

is_within_ra
nge(average
_Medicare_s
tandard_am
t, 0, 200)

is within
range

ok

4916

120,121,133,165,195,

Using the datacheck package, data-quality can be validated or checked and subsequent
steps can be taken to clean the data and fix data-quality issues.

Exercise 13.1: For the Reader

Modify the program in code listing 13.1 add an additional data quality check: The NPI
number (which is supposed to have numeric characters but is read in as a character
string) should consist of only digits and contain no letters or other characters.
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Chapter 14: Descriptive Statistics and Visualization

Descriptive statistics are the first step in any data analysis. They help the analyst get
familiarized with the characteristics of the data, the patterns, the distributions, and the
variables of interest. Visualization, when used as part of initial exploration, is a great
tool to further enhance the process of describing the characteristics of the data.

The simplest function available in R for creating summary statistics on a data set is the
appropriately-named summary () function. Running this on a data set in memory (like
a data frame) will generate information on each variable in the data set. The
information available in the summary includes the number of observations, missing
values, class, mode, and levels (for factors). For numeric variables, the minimum,
maximum, mean, median, and quartiles are included in the summary.

The book Practical Data Science with R (by Nina Zumel and John Mount, 2014, Manning
Publications: https://www.manning.com/books/practical-data-science-with-r) outlines
various visualizations that can be used for different types of data. For a single variable,
histograms and bar charts are the commonly-used visualizations. For two variables,
line plots, scatter plots, stacked bar charts, and other visualizations can be used.

Code Listing 14.1
(Descriptive statistics)

To run this (all on one line):

Rscript 14.1 descriptive_statistics.R
../data/Medicare Provider Util_ Payment_ PUF_CY2014_ FULL.rds

# Copyright (C) 2017 Sivakumaran Raman
library( )

library
library
library

(
(
(

library( )
library (
(

library

HH#H#H#H#H#H#H### ALL FUNCTIONS DEFINED

BHHHBERREHE - - - - - - - oo
# Function to pretty print summary statistics object using R2HTML
prettyPrintHTMLSummaryResultsUsingR2HTML <-

function (physicianMedicareDataSummaryObj, HTMLFilenameMinusExtension) {
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R2HTML: : HTMLStart (outdir=".",
file=HTMLFilenameMinusExtension,
extension="html",
echo=FALSE,

HTMLframe=FALSE)

R2HTML: :HTML.title ("HTML Output for Summary Statistics'", HR=1)

R2HTML: :HTML.title ("Summary Statistics for the 2014 CMS Physician data'",
HR=3)

# Write the summary statistics object out as HTML
R2HTML: : HTML (physicianMedicareDataSummaryObj)

R2HTML: : HTMLhr ()

R2HTML: : HTMLStop ()

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not
# provided as the command line argument
if (length (myArgs) != 1) {
stop ("Error: please provide the name of the RDS file to read as the

command line argument")

# Read in the R data-object from disk by calling the function readRDS

physicianMedicareDataTable <- readRDS (myArgs[[1]])

# Get summary statistics

providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)

75




# Print plain-text summary-statistics output to a file
sink ( )

class (providerMedicareUtilSummaryObj)

mode (providerMedicareUtilSummaryQObj)

str (providerMedicareUtilSummaryObj)

print (providerMedicareUtilSummaryObj)

sink ()

# Write out pretty-printed HTML format summary statistics using stargazer
stargazer_summary_stats <- stargazer::stargazer (physicianMedicareDataTable,
type = , out = ’
summary = TRUE, title = )

# Call the function to pretty-print the summary object of the data as HTML
# using the R2HTML package
prettyPrintHTMLSummaryResultsUsingR2HTML (providerMedicareUtilSummaryObj,

)

Code listing 14.1 aims at producing summary statistics for the read-in full data set (not
the data set which was aggregated by provider).

The traceback options and the reading-in of the binary RDS file from disk are similar to
what we have seen in previous code listings. The program then runs the summary ()
function on the data set and reads the results into a summary object.

# Get summary statistics
providerMedicareUtilSummaryObj <- summary (physicianMedicareDataTable)

The summary is then printed to a plain text file along with information on the
summary object itself.

# Print plain-text summary-statistics output to a file

sink ( )

class (providerMedicareUtilSummaryObj)

mode (providerMedicareUtilSummaryObj)

str (providerMedicareUtilSummaryObj)

print (providerMedicareUtilSummaryObj)

sink ()
However, since this plain-text summary-statistics file is not pleasing to the eye, we use
the stargazer and R2ZHTML (https://cran.r-
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project.org/web/packages/RZHTML/index.html) packages to pretty-print the summary
as HTML tables. The stargazer package is simpler to use for this as it has the built-in
ability to process and pretty-print a summary-statistics object. However, this stargazer
printing only processes the numeric variables and the other variables in the data set
do not appear in the table output. To address this, we also use the RZHTML package to
print out the summary-statistics object as a nice-looking HTML table.

As the next step in the initial data exploration, we want to look at the data in visual
form. For this purpose, we use R's excellent charting packages (ggplot2 and plotly) in
code listing 14.2.

Code Listing 14.2
(Descriptive visualizations on the complete data set)

To run this (all on one line):

Rscript 14.2_descriptive visualizations.R
../data/Medicare_Provider Util_Payment_PUF CY2014__ FULL.rds

# Copyright (C) 2017 Sivakumaran Raman
library( )

library
library
library

(
(
(

library( )
library (
(

library

#H#H#H#E#H#H# ALL FUNCTIONS DEFINED
g g e T e e I

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ( )
1)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)
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# Exit with error message if RDS data-object file to read is not provided as the
# command line argument
if (length (myArgs) != 1) {

stop("Error: please provide the name of the RDS file to read as the

command line argument")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]])

# Ceate a density plot for Average Medicare Allowed amount
ggplot_density plot <- ggplot (physicianMedicareDataTable) +
labs (list (title = "Density Plot of Average Medicare Allowed Amount",
X = "Average Medicare Allowed Amount")) +
geom _density(aes (x = average_Medicare allowed_amt)) +
scale x_continuous (labels = dollar)

ggplot2::ggsave (filename =
"Average_ Medicare_Allowed_ Amount_Density Plot.jpg",
plot = ggplot_density plot,
dpi = 1200, device = "jpeg")

ggplot2::ggsave (filename =
"Average_Medicare_Allowed_Amount_Density Plot.svg",
plot = ggplot_density plot,

device = "svg")

# Ceate a density plot for Average Medicare Allowed amount on a
# logarithmic scale
ggplot_density plot <- ggplot (physicianMedicareDataTable) +
labs (list (title = "Density Plot on Log Scale of Average Medicare
Allowed Amount",
X = "Average Medicare Allowed Amount: Log 10 scale")) +
geom_density(aes (x = average Medicare_allowed_amt)) +
# scale_x_ continuous (trans='logl0', breaks=c (10, 100,1000,10000,100000),
# expand=c(0.07, 0), labels=dollar) +
scale_x 1o0gl0 (breaks = ¢(10, 100, 1000, 10000, le+05),
expand = ¢(0.07, 0), labels = dollar) +

annotation_logticks (sides = "bt")

ggplot2::ggsave (filename =

"Average_Log_Scale_Medicare Allowed_Amount_Density Plot.jpg",
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plot = ggplot_density plot, dpi = 1200, device = )

ggplot2::ggsave (filename =

plot = ggplot_density plot, device = )

# Bar chart for count of providers by state
ggplot_bar_chart <- ggplot (physicianMedicareDataTable) +
geom _bar (aes (x = nppes_provider_ state),
fill = )+
labs (list (title = ,
y = )) +
coord_flip() +
theme (axis.text.y = element_text(size = rel(0.5)))

ggplot2::ggsave(filename =

plot = ggplot_bar_chart,
dpi = 1200, device = )

ggplot2::ggsave(filename =

plot = ggplot_bar_ chart,

device = )

# Make an interactive plotly chart out of the ggplot2 chart
ggplotly bar_chart <- ggplotly(ggplot_bar_chart) %>%
# Edit configuration to turn off the plotly logo along with the
# "Produced with Plotly" message and the sendDataToCloud button on the modeBar

plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =
list( ))

# Save as an HTML file
htmlwidgets: :saveWidget (ggplotly_bar_ chart,
file =
selfcontained = TRUE)

Code listing 14.2 is quite complex, and uses a lot of packages and concepts that have
not been seen before in this book. The dplyr, data.table, and dtplyr (which implements
the data table backend for dplyr), and tidyr packages are still being used. However,
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some new packages we encounter in the library() function calls are ggplot2
(https://cran.r-project.org/web/packages/ggplot2/index.html), scales (https://cran.r-
project.org/web/packages/scales/index.html), and plotly (https://cran.r-
project.org/web/packages/plotly/index.html).

The ggplot2 library written by genius R-developer Hadley Wickham is now considered
the de-facto standard for static charting and plotting in the R world. It has largely
replaced the standard plotting functions available in R. The scales library is used to
access specialized X and Y axis scales for the ggplot2 charts.

The plotly library, which we will see more of later, is special. It is actually a JavaScript
interactive-visualization library which offers R, Python, and MATLAB® wrappers. The
library was made open-source and free in 2015 by its creator-company and is great for
interactive charting. The charts output from plotly are usually HTML files that are
viewed in a browser with full interactivity (hover, click, drag, zoom, etc.).

Code listing 14.2 starts off in the usual way by reading in arguments from the
command line. It then reads in the binary RDS file with the full-detail data from disk
into a data frame. Next however, we encounter the plotting function ggplot () from
ggplot2 that creates the density plot for the average Medicare allowed amount in
dollars (because this is a variable of interest that we will analyze further later):

# Ceate a density plot for Average Medicare Allowed amount
ggplot_density_plot <- ggplot (physicianMedicareDataTable) +
labs (list(title =
X = )) +
geom_density (aes (x = average_Medicare_allowed_amt)) +

scale_x continuous (labels = dollar)

The ggplot2 package uses the same piping mechanism you have seen used by dplyr but
instead of using the magrittr-derived %>% piping symbol, ggplot2 uses the + sign. Still,
the effect is the same as the chained-function syntax used in dplyr. The chained
method syntax allows the output of one function to be fed as input to the next one. In
the code segment above, the ggplot () function is asked to act on the
physicianMedicareDataTable data frame. The 1abs () function applies the label-texts
for the title and x axis. The geom _density () function is the one that creates the
smooth density estimate for display in the plot. The ggplot2 package uses the term
aesthetics (http://docs.ggplot2.org/current/vignettes/ggplot2-specs.html) to describe the
visual characteristics of the plot. In this case, we do not specify any special visual
characteristics like color or line type but simply specify that the x-axis has to display
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the average_Medicare_allowed_amt variable. The last function in the chain is the
scale_x_continuous () function to apply the dollar-sign notation to the x-axis (the
dollar-sign scale actually comes from the scales package).

The density plot is held as an object in memory with the name ggplot_density_plot and
this object is then written to disk using the ggsave () function as both a JPEG image
and an SVG file :

ggplot2::ggsave (filename =

plot = ggplot_density plot,
dpi = 1200, device = )

ggplot2::ggsave(filename =
plot = ggplot_density plot,

device = )

Figure 14.1 (Density Plot)

Density Plot of Average Medicare Allowed Amount

density

]




We also create a second density plot on a logarithmic scale:

# Ceate a density plot for Average Medicare Allowed amount on a

# logarithmic scale

ggplot_density_plot <- ggplot (physicianMedicareDataTable) +
labs (list(title =

X = )) +

geom_density (aes (x = average_Medicare_allowed_amt)) +

# scale _x_continuous (trans='logl0', breaks=c (10, 100,1000,10000,100000),

# expand=c(0.07, 0), labels=dollar) +

scale_x 1ogl0 (breaks = c¢(10, 100, 1000, 10000, 1le+05),
expand = ¢(0.07, 0), labels = dollar) +

annotation_logticks (sides = )

The two big differences between this and the earlier density plot are the use of the

scale x logl0 () and annotation_logticks () functions.

We use the scale_x_1o0g10 () function to create the log10 x-axis scale. We use the
breaks argument to the function to specify the numeric values to be shown on the axis.
The argument expand is (from the CRAN ggplot2 manual): a numeric vector of length
two giving multiplicative and additive expansion constants. These constants ensure that

the data is placed some distance away from the axes. The defaults are c(0.05, 0) for

continuous variables, and c(0, 0.6) for discrete variables.

The labels argument is (as before) for the dollar-scale. The annotation_logticks ()
function is used to add the log tick-marks on the x-axis. The argument sides set to the

value "bt" requests log tick-marks on both the bottom and the top of the plot.
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Figure 14.2 (Density Plot - logarithmic scale)

Density Plot on Log Scale of Average Medicare
Allowed Amount
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Next, we want to plot a horizontal bar chart of provider-counts by American state.

# Bar chart for count of providers by state

ggplot_bar_chart <- ggplot (physicianMedicareDataTable) +
geom_bar (aes (x = nppes_provider_state),

fill = )+
labs (list (title = , X = P
y = )) +

coord_flip() +

theme (axis.text.y = element_text(size = rel(0.5)))

The code for this uses the same chained method syntax as most ggplot2 plots do. The
geom_bar() function creates the bars on the x-axis in the color green. The 1abs ()
function applies the labels for the title, x-axis and y-axis. The coord_f1ip () function
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is critical because this flips the Cartesian coordinates so that horizontal becomes
vertical, and vertical, horizontal: that is how we get a horizontal bar-chart instead of a
vertical one. The theme () function sets the tick-labels for the Y-axis (the US state
abbreviations) to a relative-size of half (0.5).

Figure 14.3 (Bar-chart of provider-count by state)
Counts of providers by state
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The last thing we do in code listing 14.2 is to use the plotly package to create an
interactive, HTML-format bar-chart from the ggplot2 bar-chart we created above. We
will look at plotly in more detail in subsequent chapters. But for now, we use the
convenient plotly function named ggplotly () that automatically converts a ggplot2
plot to an interactive plotly plot.

g
=

# Make an interactive plotly chart out of the ggplot2 chart
ggplotly bar_chart <- ggplotly(ggplot_bar_chart) %>%
# Edit configuration to turn off the plotly logo along with the
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# "Produced with Plotly" message and the sendDataToCloud button

# on the modeBar

plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =
list( ))

The Plotly (https://en.wikipedia.org/wiki/Plotly) company open-sourced the plotly
JavaScript library and its R API in November-2015. The default plots produced by plotly
include the plotly logo and other buttons that reference the Plotly organization.
However, we can configure the plotly plot using the displaylogo and
modeBarButtonsToRemove options to turn off the default plotly logo and the “Send
Data to Cloud” button.

Since a plotly object is also an htmlwidgets (https://cran.r-
project.org/web/packages/htmlwidgets/index.html) object, the htmlwidgets function
saveWidget() can be used to save the plotly object as an HTML file. The selfcontained
option is special. If it is set to FALSE, the HTML file is created separately and the
accessory objects (like the plotly JavaScript library .js file and other objects) are placed
in a directory with the same base-name as the HTML file plus a “_files” suffix.
However, setting the selfcontained option to TRUE causes the JavaScript libraries and
other accessory files to be inlined within the HTML file: so all that is created is a single
HTML file. The caveat is that the selfcontained=TRUE option requires the Pandoc
(http://pandoc.org/) software tool to be installed on the computer on which the R code
is run.

# Save as an HTML file

htmlwidgets: :saveWidget (ggplotly_bar chart,
file = ,
selfcontained = TRUE)

An interactive HTML-format plot is best explored in a browser like Mozilla Firefox,
Google Chrome or Microsoft Edge. An interactive visualization creates a better user-
experience than a static plot because the viewer can hover over or click on data points
to get more info, zoom in, pan left or right, and carry out many other actions to glean
more detail from the chart. One problem with HTML format output (including charts)
that it cannot be put into a report-format like PDF and retain its interactivity. However,
there are several ways around this. One is to create the HTML output files and zip
them up in a zip archive. Another is to use a web-based notebook like Apache Zeppelin
(http://zeppelin.apache.org/) to publish results.
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This is a static-picture example of how interactivity works in an HTML plot. Hovering
over the bar for the state brings up a pop-up that displays the provider-count for the
state:

Figure 14.4 (Interactive Bar-chart of provider-count by state)
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The last code listing in this chapter, 14.3, aims to create bar-charts faceted by country
that show provider gender.

Code Listing 14.3
(Descriptive visualizations on the aggregated-by-provider dataset)

To run this (all on one line):

Rscript 14.3_descriptive visualizations_summarized data.R
../data/Medicare_Provider Util_Payment_PUF CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman
library("data.table™)

library ("dplyr")

library ("dtplyr")

library ("tidyr")

library ("ggplot2")

library ("scales")

HEHH#H####F ALL FUNCTIONS DEFINED
BEER R EH - - - - o oo oo C Lo e e e e e

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {
traceback (2)
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stop("Error: stack trace printed above")

b

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not provided as the
# command line argument
if (length(myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the

command line argument")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataSummaryTable <- readRDS (myArgs[[1]])

# Get summary statistics
providerMedicareUtilSummaryObj <- summary (physicianMedicareDataSummaryTable)

# Print plain-text summary-statistics output to a file
sink ("summary statistics_aggregated_data.txt")

print (providerMedicareUtilSummaryObj)

sink ()

# Create bar charts for provider-gender faceted by country
ggplot_faceted _bar_ chart <- ggplot (physicianMedicareDataSummaryTable) +
geom_bar (aes (x = nppes_provider_ gender),

position = "dodge", fill = "darkgray") +
labs (list (title = "Provider Gender faceted by country",
y = "count", x = "Provider Gender")) +
facet_wrap (~nppes_provider_ country, scales = "free y") +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

ggplot2::ggsave (filename =
"Bar_Chart_Medicare provider gender_faceted_ by Country.pdf",
plot = ggplot_faceted_bar_chart, dpi = 1200, device = "pdf")

ggplot2::ggsave (filename =
"Bar_Chart_Medicare provider gender_faceted_ by Country.svg",

plot = ggplot_faceted_bar_chart, device = "svg")
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The initial code is pretty much the same as seen before: setting the traceback options,
reading in arguments from the command line, and reading in the binary RDS file from
disk. The difference is that the file read in is the summarized dataset where the
aggregation has been performed by provider.

The code then seeks to create faceted bar-charts in a grid:

# Create bar charts for provider-gender faceted by country
ggplot_faceted_bar chart <- ggplot (physicianMedicareDataSummaryTable) +
geom_bar (aes (x = nppes_provider_ gender),

position = , f£ill = ) o+
labs (list (title = ,
y = , X = )) o+
facet_wrap (~nppes_provider_country, scales = ) +
theme (axis.text.x = element_text(angle = 45, hjust = 1))

The geom _bar () function is similar to the one we saw in code listing 14.2, except for
the position argument. This is used (with the value supplied of "dodge") to dodge the
bar chart using gender. The labels are applied using the labs() function as in previous
code listings. The facet_wrap () function is new and it creates the faceting by the
country of the provider. This leads to multiple bar-charts being created in a grid — one
per country. The scales argument to facet_wrap () is set to "free_y" to indicate that
the scale for each individual bar-chart is different on the y-axis. The theme () function
then sets the x-axis category-label text (for gender) to lie right-justified at a 45 degree
angle.
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Figure 14.5 (Bar-charts of provider-gender faceted by country)
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The visualization examples presented in this chapter barely scratch the surface of the
capabilities of ggplot2 and plotly. The vast universe of charts, plots, and visualizations
available in ggplot2 is too big to explore in this book: the reader is urged to refer to
various web-resources and Hadley Wickham's book, ggplot2: Elegant Graphics for Data
Analysis (http://www.springer.com/us/book/9780387981413).

Plotly will be explored further later in this book. But it also too vast to cover
completely in this text. The reader is pointed towards the plotly website: https://plot.ly/.
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Exercise 14.1: For the Reader

Modify code listing 14.3 to create bar-charts of provider-gender faceted by provider-
type.
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Chapter 15: Interactive Charts and Plots

Plotly is a JavaScript (https://en.wikipedia.org/wiki/JavaScript) library for visualization.
It was open-sourced and made free in November-2015. In addition, an R Application
Program Interface (API) was made available through an R package that allows the
utilization of plotly within R. Plotly helps create beautiful interactive charts and plots.
Info on the plotly R package and its use is available at https://plot.ly/r/ and
https://cran.r-project.org/web/packages/plotly/index.html.

In this chapter, we will see a few examples of code listings to highlight the power,
beauty, and descriptive capabilities of interactive plotly charts, graphs and plots. Plotly
uses other JavaScript libraries like D3 (https://d3js.org/) under the covers.

The first code listing, 15.1, seeks to create a horizontal bar-chart of Medicare 2014
dollar-amount payout by provider.

Code Listing 15.1
(Interactive plotly bar chart of Medicare 2014 payout by state)

To run this (all on one line):

Rscript 15.1_plotly _bar chart_ Medicare pro-fee_payout_by US state.R
../data/Medicare_Provider Util_Payment_PUF CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman
# Use the plotly plotting interface
library( )

library( )

# library('tidyr');

HH###H##### ALL FUNCTIONS DEFINED

BHBHHHHHES - - - - - - oo o oo oo
#H##H#H###### Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyrAggregateByState <- function (myDataFrame) {

# Summarize the data by state

myDataFrame <- myDataFrame %>%

o°
W
o°

dplyr::filter (nppes_provider_country == )
dplyr: :group_by (nppes_provider_state) %>%
dplyr::summarize (total_medicare prof_srv_payout =

sum(total_medicare_prof_srv_revenue,

na.rm = TRUE), provider_count = n()) %>%
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dplyr::mutate_at (c("nppes _provider state"), as.character)

return (myDataFrame)

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not provided

# on the command line

1) {
stop ("Error: please provide the name of the RDS file to read as the

if (length (myArgs) !

command line argument")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]1])

# Call the function to manipulate the data frame using the dplyr package

# Aggregate Medicare payout for 2014 by American state

summarizedByStateMedicareDataTable <-
manipulateDFUsingDplyrAggregateByState (physicianMedicareDataTable)

# Remove the original data-frame object and garbage collect it.
rm (physicianMedicareDataTable)
gc (verbose = FALSE)

# Plot the bar chart of Medicare pro-fee payout by US state

my_plot <- plot_ly(summarizedByStateMedicareDataTable,
x = ~gummarizedByStateMedicareDataTable$total_medicare_prof_srv_payout,
y = ~summarizedByStateMedicareDataTable$nppes_provider_state,
color = ~summarizedByStateMedicareDataTable$nppes_provider_state,

type = "bar'", orientation = "h") %>%
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layout (title =

xaxis = list(title

Il
-
<

)) %>%

yvaxis = list(title

# Edit configuration to turn off the plotly logo along with the
# "Produced with Plotly" message and the sendDataToCloud button
# on the modeBar
plotly::config(displaylogo = FALSE,
modeBarButtonsToRemove =
list ( ))

# Save as an HTML file
htmlwidgets: :saveWidget (my_plot, file =

selfcontained = FALSE)

By now, the first few parts of the program must be familiar to readers. The program
reads in the summarized-data RDS binary file from disk and aggregates (using dplyr)
the Medicare payout dollar-amounts for 2014 by American state using the
manipulateDFUsingDplyrAggregateByState () function. The plotly interactive
barchart is produced using this code segment:

# Plot the bar chart of Medicare pro-fee payout by US state
my_plot <- plot_ly(summarizedByStateMedicareDataTable,
X = ~summarizedByStateMedicareDataTablef$total medicare_prof_srv_payout,
y = ~summarizedByStateMedicareDataTable$nppes _provider_state,
color = ~summarizedByStateMedicareDataTable$nppes_provider_state,
type = , orientation = ) %>%
layout (title =

xaxis = list(title

Il
-
~

yvaxis = list(title )) %>%
# Edit configuration to turn off the plotly logo along with the
# "Produced with Plotly" message and the sendDataToCloud button
# on the modeBar
plotly::config(displaylogo = FALSE,
modeBarButtonsToRemove =
list( ))

Plotly also uses the chained-method syntax like dplyr using the %>% pipe operator.
The plot_1y () function is called to act on the summarized-by-state data frame and
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sets the x-axis parameter, the y-axis parameter, the color-palette to use for the 50
different American states (plotly automatically chooses the colors in this case), type of
the chart ("bar"), and the orientation (horizontal).

The layout () function called next in the chain sets the title, and the x-axis and y-axis
labels.

The config () function from the plotly package is then called to turn off the
publishing of the Plotly logo and the “Send to Cloud” buttons to the chart. The
saveWidget () function from the htmlwidgets package is supplied the selfcontained =
FALSE option this time, which leads to multiple files being created for one chart
instead of a single HTML file.

Figure 15.1 (Interactive plotly bar-chart of Medicare payout by American
state in 2014)
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Code listing 15.2 below seeks to create a box-plot of the number of beneficiaries served
per Family Practice Provider within a small list of American states.

Code Listing 15.2
(Interactive plotly box-plot: Family Practice provider patients)
To run this (all on one line):

Rscript 15.2_plotly boxplots_provider FamPrac_Medicare_beneficiaries_served.R
../data/Medicare_Provider Util_Payment_PUF CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman
# Use the plotly plotting interface
library ( )

library( )
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# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback (2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector
myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not provided
# on the command line
if (length(myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the

command line argument")

# Read in the R data-object from disk by calling the function readRDS

physicianMedicareDataTable <- readRDS (myArgs|[[1]])

# Filter down to just family practice providers

physicianMedicareDataTable <- physicianMedicareDataTable %>%

dplyr::mutate_at (c("nppes _provider state'"), as.character) %>%
dplyr::filter (provider_type == "Family Practice" &
nppes_provider_state %in% c("MN", "WI", "IN", "IA", "OH"))

# Plot the box plot for Medicare beneficiaries served per Family Practice
# provider in specific US states
my_plot <- plot_ly(physicianMedicareDataTable,

x = physicianMedicareDataTable$total_bene_unique_cnt,

vy = physicianMedicareDataTable$nppes_provider_state,

color = physicianMedicareDataTable$nppes_provider_state,

type = "box") %>%

layout (title =
paste ("Number of Medicare beneficiaries served by Family Practice ",
"Providers 1in gpecific US states: 2014", sep = "")) %>%

# Edit configuration to turn off the plotly logo along with the
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# 'Produced with Plotly' message and the sendDataToCloud button
# on the modeBar
plotly::config(displaylogo = FALSE,

modeBarButtonsToRemove = list( ))

# Save as an HTML file
htmlwidgets: :saveWidget (my_plot,
file = paste(
, sep = )
selfcontained = FALSE)

Program 15.2 reads in the aggregated-by-provider RDS dataset from disk as before. It
then uses dplyr functions to filter the data down to just “Family Practice Providers” in
5 mid-Western US states: Minnesota, Wisconsin, Indiana, Iowa, and Ohio.

The code to request the box-plot is quite similar to the code to create the bar chart in
listing 15.1: the one difference is that the type of plot requested within the plot_1y ()
function is “box”. The layout () and config () functions work quite the same as in
listing 15.1.

Like in listing 15.1, the savewidget () function from the htmlwidgets package is
supplied the selfcontained = FALSE option, which leads to multiple files being created
for one chart instead of a single HTML file.

Figure 15.2 (Interactive plotly box plot: Beneficiaries served per Family
Practice Provider in certain mid-Western American states in 2014)
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Exercise 15.1: For the Reader

Modify code-listing 15.2 to create box-plots of number of beneficiaries served by
provider for the provider-types of “General Surgery”, “Family Practice”, “Internal
Medicine”, “Endocrinology”, and “Emergency Medicine”.
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Chapter 16: Geographical Maps and Charts

Geographical maps can be of various kinds: choropleths, map sub-plots, maps with
lines, scatter-plots on maps, bubble maps, etc.

Also, maps can either be rendered statically (as PDF, JPG, PNG, and similar outputs) or
interactively (as HTML documents with JavaScript providing the interactivity).

Static map creation packages include using maps, choroplethr, maptools, tmap, etc.
Interactive map creation packages include plotly, leaflet, etc.

If there is a need to plot geographical points on a map projection, we need to make use
of geocoding tools. Geocoding (https://en.wikipedia.org/wiki/Geocoding) is the process
of using a geographical address to assign a latitude and longitude to the data-point,
thus giving it spatial representation. Geocoding allows points to be plotted on a map.
There are various free, non-free, and restricted-use geocoding tools available.

Gisgraphy (http://www.gisgraphy.com/) is a free and open-source geocoder but it is not
usable in R. To use R program with Gisgraphy , we will have to run the address data-
points through it beforehand to geocode them.

For our purposes, since the number of points we want to geocode is small, we use the
geocoder available within the R Data Science ToolKkit (https://cran.r-
project.org/web/packages/RDSTK/index.html) CRAN package. This is directly usable
within an R program and does geocoding-on-the-fly using a web-service call (which is
slow but adequate for our purposes) to the Data Science Toolkit
(http://www.datasciencetoolkit.org/about).

Other geocoding options include the Google Geocoding API which is accessible through
the ggmap (https://cran.r-project.org/web/packages/ggmap/index.html) CRAN package -
but Google places restrictions on the number of points that can be geocoded by a single
user within a 24 hour period. The ggmap package also allows access to the geocoding
web-service of the Data Science Toolkit (http://www.datasciencetoolkit.org/about).

Still other geocoding options available are Texas A&M Geoservices
(http://geoservices.tamu.edu/Services/Geocode/), geocodio (https://geocod.io/), the US
Census Bureau Geocoding API (https://geocoding.geo.census.gov/), ArcGIS Pro
Geocoding (http://pro.arcgis.com/en/pro-app/help/data/geocoding/what-is-
geocoding-.htm), and many others.
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Our first set of maps are going to be static choropleths
(https://en.wikipedia.org/wiki/Choropleth_map) showing the Medicare Fee For Service
non-institutional claims payout for 2014 and provider-counts by US state. A choropleth
uses density-of-shading proportional to the values of the variable in the regions being
represented in the map.

For this program, we will use the choroplethr (https://cran.r-
project.org/web/packages/choroplethr/index.html) and choroplethrMaps
(https://cran.r-project.org/web/packages/choroplethrMaps/index.html) CRAN packages
in addition to dplyr and ggplot2. The code is presented in listing 16.1.

Code Listing 16.1
(Static choropleth maps)

To run this (all on one line):

Rscript 16.1_Medicare_Provider Util_Payment_choroplethr_geo_maps.R
../data/Medicare_Provider Util_Payment_PUF CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman

# Use the choropleth maps interface to create geographical choropleth maps of

# Medicare professional-fees payout and provider-count in 2014 by US state

library( )

library (

library( )
( )

# library('tidyr');

library

FH###H####E ALL FUNCTIONS DEFINED
e e I
#H##H#H###### Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyrForGeoMaps <- function (myDataFrame, state_regions) {

# Summarize the data by state

myDataFrame <- myDataFrame %>%

o°
v
o°

dplyr::filter (nppes_provider_country == )

dplyr: :group_by (nppes_provider_state) %>%

dplyr::summarize (total_medicare_ prof_srv_payout =
sum(total_medicare_prof_srv_revenue, na.rm = TRUE),

provider_count = n()) %>%

o°
i
o°

dplyr::left_join(state_regions, by = c(nppes_provider_state = ))
dplyr::rename (value = total_medicare_prof_srv_payout) %>%

dplyr::filter (complete.cases(.))
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return (myDataFrame)

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback(2)

stop ("Error: stack trace printed above")

})

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not provided on the
# command line
if (length(myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the command

line argument")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]1])

# Load the state.regions data frame from the choroplethrMaps package
data(state.regions)

# Call the function to manipulate the data frame using the dplyr package
summarizedStateMedicareDataTable <-
manipulateDFUsingDplyrForGeoMaps (physicianMedicareDataTable, state.regions)

sink ("dataframes_info.txt")
# Print out information about the objects
str (summarizedStateMedicareDataTable)

print (summarizedStateMedicareDataTable)

# New data frame to allow creation of choropleth map of provider counts by state
summarizedPhysicianCountMedicareDataTable <-

summarizedStateMedicareDataTable %>%

dplyr: :rename (total_medicare prof_srv_payout = value, value = provider_count)

# Print out information about the objects
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str (summarizedPhysicianCountMedicareDataTable)

print (summarizedPhysicianCountMedicareDataTable)

sink ()

# Remove the original data-frame object and garbage collect it.
rm (physicianMedicareDataTable)
gc (verbose = FALSE)

# Create the choropleth maps and save them to PNG files
my_ state_choropleth profee_payout_map <-
choroplethr::state_choropleth (summarizedStateMedicareDataTable,

title = ,
legend = )

my_state_choropleth _Medicare providers_map <-
choroplethr::state_choropleth (summarizedPhysicianCountMedicareDataTable,

tltle = ’
legend = )

ggplot2::ggsave (filename =
plot = my state_choropleth profee_payout_map,
dpi = 600,
device = )
ggplot2::ggsave (filename =
plot = my state choropleth Medicare providers_map,

dpi = 600,

device = )

The program starts by reading in the aggregated-by-provider RDS binary data file from
disk. Then, the state.regions data frame from the choroplethrMaps package is loaded:

# Load the state.regions data frame from the choroplethrMaps package

data (state.regions)

This data frame contains column vectors representing info about the 50 US states:

- the state-name (region) as a lower-case string-based
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- the state 2-letter abbreviation
- the FIPS numeric code for the state
- the FIPS character code for the state

The read-in data set along with the state.regions data frame are passed as parameters
to the manipulateDFUsingDplyrForGeoMaps () function that uses dplyr to
manipulate the data and perform a join-operation on the two data frames.

# Call the function to manipulate the data frame using the dplyr package
summarizedStateMedicareDataTable <-

manipulateDFUsingDplyrForGeoMaps (physicianMedicareDataTable, state.regions)
The function works like this:

#H###H#H#EH Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyrForGeoMaps <- function (myDataFrame, state_regions) {
# Summarize the data by state

myDataFrame <- myDataFrame %>%

o°
v
o

dplyr::filter (nppes_provider_ country == )

dplyr: :group_by (nppes_provider_ state) %>%

dplyr::summarize (total_medicare prof_srv_payout =
sum (total_medicare_prof_srv_revenue, na.rm = TRUE),

provider count = n()) %>%

o°
v
o°

dplyr::left_Jjoin(state_regions, by = c(nppes_provider state = ))
dplyr: :rename (value = total_medicare_prof_srv_payout) %>%
dplyr::filter (complete.cases (.))

return (myDataFrame)

}

The function starts by applying the dplyr filter () function to restrict the data-set to
US providers. Next, we see the group_by () and summarize () functions used like
before in order to aggregate the dollar pay-out data by US state and create a variable
for provider-count by US state.

The dplyr package offers the ability to do SQL-like joins between data frames
(https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html). We see this
functionality in the use of the left_join() function that left-joins the Medicare pay-out
dataset with the state.regions dataset.

To draw a US state-level choropleth map, the state_choropleth () function in the
choroplethr package expects, as one of the parameters passed to it, a data frame with a
column named "region” and a column named "value". Elements in the "region" column
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must exactly match how regions (states) are named in the "region" column in the
state.regions dataset available from the choroplethrMaps package.

The rename () function is used in the code above to change the name of the total
Medicare professional services payout variable to value. The variable named region is
already available in the dataset because of the left-join that was performed with the
state.regions dataset.

Finally, the filter () function is applied to retain only complete cases i.e. the rows
with all variables present.

A second data-frame with the provider-counts variable renamed to value is created to
allow the creation of the provider-counts-by-state choropleth:

# New data frame to allow creation of choropleth map of provider
# counts by state
summarizedPhysicianCountMedicareDataTable <-
summarizedStateMedicareDataTable %>%
dplyr: :rename (total_medicare_prof_srv_payout = value,

value = provider_count)

The actual calls to the state_choropleth () function are very simple. Since the
objects returned by the state_choropleth() functions are ggplot2 objects, the
ggplot2::ggsave () function can be used to save them as PNG image files.

# Create the choropleth maps and save them to PNG files
my_state_choropleth profee payout_map <-
choroplethr::state_choropleth (summarizedStateMedicareDataTable,
title = ,
legend = )

my_state choropleth_Medicare providers_map <-
choroplethr::state_choropleth (summarizedPhysicianCountMedicareDataTable,
title = ,
legend = )

ggplot2::ggsave(filename =
plot = my state choropleth profee_payout_map,

dpi = 600,

device = )

ggplot2::ggsave (filename =
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"ChoroplethMap_ US_States_Medicare_Providers_2014.png",
plot = my_ state choropleth Medicare providers_map,
dpi = 600,
device = "png")
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Figure 16.1 (Static choropleth of Medicare payout by US state)
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Figure 16.2 (Static choropleth of Medicare provider-count by US state)
2014 Medicare Providers by US State
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The next map we will create is also a choropleth but an interactive one. We will use the
previously encountered plotly package to create interactive, HTML-format
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choropleths. The interactivity of the plotly choropleth map allows more information to
be presented in a single map. We will be able to present the information from both
choroplethr choropleths created previously in code listing 16.1 in a single plotly
choropleth. The code is presented in listing 16.2.

Code Listing 16.2
(Interactive choropleth map using plotly)

To run this (all on one line):

Rscript 16.2_Medicare_ Provider Util_Payment_plotly choropleth_geo_maps.R
../data/Medicare_Provider_Util_Payment_ PUF_CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman

# Use the plotly maps interface to create a geographical choropleth map of

# Medicare professional-fees payout in 2014 by US state that also shows info
# on per-state provider count

library( )

library( )

# library('tidyr') ;

#4444 ### ALL FUNCTIONS DEFINED

BHEHEHHEHEHE - - - - -
H#######H#E Function to manipulate the data frame using the dplyr package
manipulateDFUsingDplyrForGeoMaps <- function (myDataFrame) {

# Summarize the data by state

myDataFrame <- myDataFrame %>%

o°
i
o°

dplyr::filter (nppes_provider country == )
dplyr: :group_by (nppes_provider_ state) %>%
dplyr::summarize (total_medicare prof_srv_payout =
sum(total_medicare_prof_srv_revenue, na.rm = TRUE), provider_count = n())

return (myDataFrame)

# Set option to print the stack trace at the time of any error and then quit.
options (error = function() {

traceback (2)

stop ( )
1)
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# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly = TRUE)

# Exit with error message if RDS data-object file to read is not provided on the
# command line
if (length(myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the command

line argument")

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]])

# Call the function to manipulate the data frame using the dplyr package
summarizedPhysicianMedicareDataTable <-

manipulateDFUsingDplyrForGeoMaps (physicianMedicareDataTable)

# Remove the original data-frame object and garbage collect it.
rm (physicianMedicareDataTable)
gc (verbose = FALSE)

# Set up the hover pop-up on the map
summarizedPhysicianMedicareDataTable$hover <-
with (summarizedPhysicianMedicareDataTable,

paste (nppes_provider_state, "<br>", "No. of providers:", provider_count))

# give state boundaries a white border
# 1 <- list(color = toRGB("white"), width = 2)

specify some map projection/options

g <- list(scope = "usa'", projection = list(type = "albers usa'),
showlakes = TRUE,
lakecolor = toRGB("white'))

plotly_geo_choropleth _map <- plotly::plot_geo(data =
summarizedPhysicianMedicareDataTable,
locationmode = "USA-states'") %>%
add_trace(z = ~total_medicare_prof_srv_payout, text = ~hover, locations =
~nppes_provider_state,
color = ~total_medicare prof_srv_payout, colors = "Purples") %>%

colorbar (title = "Medicare pro-fee payout 2014 USD") %>%
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layout (title =

geo = g) %>%
# Edit configuration to turn off the plotly logo along with the
# 'Produced with Plotly' message and the sendDataToCloud button on the modeBar
plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =
list( ))

htmlwidgets: :saveWidget (plotly geo_choropleth_map,
file = ’
selfcontained = FALSE)

Like in code listing 16.1, the program starts by reading in the aggregated-by-provider
RDS binary data file, and calling a function to manipulate the data using dplyr. The
function starts, as in listing 16.1, by applying the dplyr £ilter () function to restrict
the data-set to US providers. Next, we see the group_by () and summarize () functions
used like before in order to aggregate the dollar pay-out data by US state and create a
variable for provider-count by US state. Unlike in code listing 16.1, we do not use the
state.regions dataset.

For the information we will display when the viewer hovers over a particular state on
the map, we set up an additional column named hover in the data frame with the
value being the state-abbreviation and the number of providers in the state separated
by an HTML line-break:

# Set up the hover pop-up on the map
summarizedPhysicianMedicareDataTable$hover <-
with (summarizedPhysicianMedicareDataTable,

paste (nppes_provider_ state, , , provider_count))

We then set up some map projection options. Many standard map projections are
available within plotly. Specifically, we are restricting the area shown on the map to
the US, using the projection type Albers USA (https://bl.ocks.org/mbostock/5545680). We
want water bodies like lakes to be shown, and request that lake-color be white.

# specify some map projection/options

g <- list(scope = , projection = list(type = ).
showlakes = TRUE,
lakecolor = toRGB/( ))
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The actual creation of the interactive choropleth happens in the plotly plot_geo ()
function:

plotly geo_choropleth map <- plotly::plot_geo(data =

summarizedPhysicianMedicareDataTable,

locationmode = ) %>%
add_trace(z = ~total_medicare_prof_srv_payout, text = ~hover,
locations = ~nppes_provider_state,
color = ~total _medicare_prof_srv_payout, colors = ) %>%
colorbar (title = ) %>%

layout (title =

geo = g) %>%
# Edit configuration to turn off the plotly logo along with the
# 'Produced with Plotly' message and the sendDataToCloud button on the
# modeBar
plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =
list( ))

Plotly too uses the chained-method syntax through the %>% operator. The data frame
is passed to the plot_geo () function and the location-mode is set to US states.

The next function called in the chain is add_trace () which is supplied the numeric
matrix of the total Medicare professional services payout (the variable that the
choropleth map will represent) through the parameter z. The hover text is set and the
function is asked to find locations information from the nppes_provider_state variable
in the data frame. The color gradient is set to be based on the total Medicare
professional services payout and the color-scheme for the map is set to shades of
purple.

The next function called in the chain is colorbar () which sets the title for the color-
legend bar that shows the shades of purple.

The layout () function then sets the title for the plot and assigns the previously-
created g object with geographic map-properties to the attribute geo.

The last part of the plot is what we have seen previously — the config () function
being used to turn off the default plotly logo and some buttons.

Finally, the plot is saved as an HTML file using the savewidget () function from the
htmlwidgets package. Figure 16.3 shows (in a static manner) how the interactive plot
looks and works: hovering over any state displays a pop-up showing both the Medicare
payout amount and the provider-count for the state. The density of the purple color for
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any state is correlated with the Medicare-payout for the state. Thus, this interactive
choropleth map is able to display the information from both previously created static
choropleth maps and adds exploration capabilities because of the interactivity. For
experiencing the interactive features of the map, please open the HTML file in a
browser.

Figure 16.3 (Interactive choropleth of Medicare pro-fee payout by US state)

2014 US Medicare Pro-fee Payout by State o=

Hover for provider count
( P ) Medicare pro-fee payout 2014 USD

10B

4B

2B

No. pf providers: 57116

Next, we will create an interactive geographical scatterplot map with plotly. We will be
identifying the top Medicare Fee-For-Service Professional Services Revenue-Earning
Provider in each US state and plotting the data on an interactive map. This will require
geocoding in order to convert the address of the provider to a latitude+longitude value.
For geocoding, we will be using the R Data Science Toolkit package (RDSTK:
https://cran.r-project.org/web/packages/RDSTK/index.html), which is a wrapper around
the Data Science Toolkit: http://www.datasciencetoolkit.org/

Some packages like httr and rjson are required to use RDSTK.
The data manipulation will still be done using dplyr.
Let us dive right into the code listing.

Code Listing 16.3
(Interactive geographical scatterplot map using plotly)

To run this (all on one line):
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Rscript
16.3_Medicare_Provider Util_Payment_plotly scatterplot_geo_maps_top_providers
.R ../data/Medicare_Provider_ Util_Payment_PUF_CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman

# Use the plotly maps interface to create a geographical scatterplot map of
# the top Medicare revenue providers in 2014 by US state

library ("plotly");

library ("RDSTK") ;

"httr") ;

"rjson") ;

(
library (
library (
(

library ("dplyr") ;

HH#H#HA#AE ALL FUNCTIONS DEFINED - - ----------c-sommomooomomooo oo
# Get latitude by geocoding the address
geo.dsk.lat <- function (addr) {

# single address geocode with data sciences toolkit to return latitude

url <- "http://www.datasciencetoolkit.org/maps/api/geocode/json";

response <- GET (url, query=list (sensor="FALSE",address=addr)) ;

json <- fromJSON (content (response, type='"text", encoding="UTF-8"));

loc <- json['results'][[1]][[1]]9$geometry$location;

return(loc$lat) ;

# Get longitude by geocoding the address

geo.dsk.long <- function (addr) {
# single address geocode with data sciences toolkit to return longitude
url <- "http://www.datasciencetoolkit.org/maps/api/geocode/json";
response <- GET (url, query=list (sensor="FALSE",address=addr)) ;
json <- fromJSON (content (response, type='"text'", encoding="UTF-8"));
loc <- json['results'][[1]1]1[[1]]3%geometry$location;
return (loc$lng) ;

# Function to manipulate the data frame using the dplyr and tidyr packages
manipulateDFUsingDplyrForGeoMaps <- function (myDataFrame) {
# Summarize the data by selecting only the top-earning provider by
# US state (if there is more than one provider in a state with the same
# min-revenue, choose one of them at random)
myDataFrame <- myDataFrame %>%

dplyr::filter (nppes_provider_country == "US") %>%

dplyr: :group_by (nppes_provider_ state) %>%
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dplyr::mutate(the _rank = rank(-total_medicare prof_srv_revenue,
ties.method="random")) %>%
dplyr::filter(the _rank == 1) %>%
dplyr::select (-the_rank) %>%
# Filter to only those rows with a valid zip code
dplyr::filter (nchar (nppes_provider_zip) >= 5) %>%
# Has to be a US State
dplyr::filter (nppes_provider_state %in% state.abb) %>%
dplyr: :mutate(fulladdress = paste(nppes_provider_streetl,
nppes_provider_city,
nppes_provider_state,
substr (nppes_provider_ zip, 1, 5),
nppes_provider_country, sep=", "),
fullname = paste(nppes_provider_first name,
nppes_provider_mi,
nppes_provider_last_org name,

Sep:ﬂ ||)) ;

# Add in latitude, longitude as columns to the data frame.
myDataFrame <- myDataFrame %>%

dplyr::mutate(latitude = geo.dsk.lat(fulladdress),
longitude = geo.dsk.long(fulladdress)) ;

write.csv (myDataFrame, file="topRevenueProvidersByUSState.csv");

return (myDataFrame) ;

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback (2) ;

stop("Error: stack trace printed above");

}
)i

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;
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# Exit with error message if RDS data-object file to read is not provided
# on the command line
if (length (myArgs) != 1) {

stop("Error: please provide the name of the RDS file to read as the

command line argument");

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]1]);

# Call the function to manipulate the data frame using the dplyr package
summarizedPhysicianMedicareDataTable <-

manipulateDFUsingDplyrForGeoMaps (physicianMedicareDataTable) ;

# Remove the original data-frame object and garbage collect it.
rm (physicianMedicareDataTable) ;
gc (verbose=FALSE) ;

# geo styling
geo_info <- list(
scope = ‘'usa',
projection = list(type = 'albers usa'),
showland = TRUE,
landcolor = toRGB("gray95"),
toRGB ("gray85"),
toRGB ("gray85"),
countrywidth = 0.5,
subunitwidth = 0.5

subunitcolor

countrycolor

# Plot the map showing top-Medicare-revenue providers by US state
plotly geo_scatterplot_map <- plot_geo (summarizedPhysicianMedicareDataTable,
lat = ~latitude, lon = ~longitude) %>%
add_markers (text = ~paste(fullname,
nppes_provider_state,
paste("Total Medicare Revenue 2014 in USD: ",
total_medicare_prof_srv_revenue),
sep = "<br />"),

color = ~total_medicare_prof_srv_revenue,
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symbol I("square"),

size = I(8),
hoverinfo = "text") %>%
colorbar(title = "Medicare Pro-Fee Revenue 1in USD<br />2014") %>%

layout (title

paste('Top 2014 Medicare-Revenue Providers by US State',

'<br /> (Hover for provider info)'),

geo = geo_info) %>%

# Edit configuration to turn off the plotly logo along with the

# "Produced with Plotly" message and the sendDataToCloud button on the
# modeBar

plotly::config(displaylogo
list ("sendbDataToCloud")) ;

FALSE, modeBarButtonsToRemove

# Save the map to HTML
htmlwidgets: :saveWidget (plotly geo_scatterplot_map,
file=
"plotly geo_map_Medicare_pro-fee_ top_revenue providers_by state 2014.html",
selfcontained=FALSE) ;

The program reads in the summarized-by-provider RDS binary-file dataset from disk.
It then calls the manipulateDFUsingDplyrForGeoMaps() function to manipulate the
data using dplyr.

# Function to manipulate the data frame using the dplyr and tidyr packages

manipulateDFUsingDplyrForGeoMaps <-
# Summarize the data by selecting

# US state (if there is more than

function (myDataFrame) {

only the top-earning provider by

one provider in a state with the same

# max-revenue, choose one of them at random)

myDataFrame <- myDataFrame %>%

dplyr::filter (nppes_provider_country == "US") %>%

dplyr: :group_by (nppes_provider_state) %>%

dplyr::mutate(the_rank = rank(-total_medicare prof_srv_revenue,
ties.method="random")) %>%

dplyr::filter (the_rank == 1) %>%

dplyr::select (-the rank) %>%

# Filter to only those rows with a valid zip code
dplyr::filter (nchar (nppes_provider_zip) >= 5)
# Has to be a US State

dplyr::filter (nppes_provider_state %in% state.abb)

dplyr: :mutate (fulladdress

%>%

%>%

paste (nppes_provider_ streetl,
nppes_provider_city,
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nppes_provider_state,

substr (nppes_provider_ zip, 1, 5),

nppes_provider_country, sep= ),
fullname = paste (nppes_provider first name,

nppes_provider_mi,

nppes_provider_ last_org_name,

sep= ))

# Add in latitude, longitude as columns to the data frame.
myDataFrame <- myDataFrame %>%

dplyr::mutate(latitude = geo.dsk.lat(fulladdress),
longitude = geo.dsk.long(fulladdress)) ;

write.csv (myDataFrame, file= ) ;

return (myDataFrame) ;

}

The dplyr function-chain first restricts the data to US providers. It then groups and
summarizes by US state. The rank () function applied to the

total_medicare_prof srv_revenue variable (with a negative sign) helps to identify the
top-revenue provider in each state. Ties are broken using random selection. The data is
filtered down to just those rows that have a valid 5-or-more-digit zip codes. The
nppes_provider_state variable is then checked against the state.abb dataset of two-
character state-abbreviations to ensure that the data is only for valid US states. String-
concatenation is used through the paste() function to create new variables fullname
and fulladdress.

Next, the data is geocoded. This is done by calling the geo.dsk.lat () and
geo.dsk.long () functions for each row of the data. These two functions use the web-
services provided by the Data Science Toolkit to assign latitude and longitude to each
address data-point.

The function also saves this top-revenue-provider-by-state data as a CSV file using the
write.csv () function.

Next, we move on to the actual plotting. The geographical map criteria are set up as a
list using this segment of code:

# geo styling
geo_info <- list(

scope = ,
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projection = list(type = ),
showland = TRUE,

landcolor = toRGB ( ),
subunitcolor = toRGB ( ),

toRGB ( ),
countrywidth = 0.5,

subunitwidth = 0.5

countrycolor

)
As in the interactive choropleth map, we are using the Albers USA map projection.
Next, the scatterplot map is drawn:

# Plot the map showing top-Medicare-revenue providers by US state
plotly _geo_scatterplot_map <- plot_geo(summarizedPhysicianMedicareDataTable,
lat = ~latitude, lon = ~longitude) %>%
add_markers (text = ~paste(fullname,
nppes_provider_state,
paste (

total_medicare prof_srv_revenue),

sep = ),
color = ~total_medicare_prof_srv_revenue,
symbol = I( ),

size = I(8),

hoverinfo = )

o°
v
o°

colorbar (title = )

o°
v
o°

layout (title = paste(
) I

geo = geo_info) %>%

# Edit configuration to turn off the plotly logo along with the

# "Produced with Plotly" message and the sendDataToCloud button on the
# modeBar

plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =
list( ))

The plot_geo () function sets up the dataset to work with, and the latitude and
longitude variables to use from within the dataset.

The add_markers () function then sets up the text-string to display when hovering
over a plotted data-point, the variable (total_medicare_prof_srv_revenue) to be used to
create the color-gradient for the plotted points, the symbol (square) to be used for the
plotted point, and the size of the plotted point.
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The colorbar () function sets up the title for the color-legend bar. The 1ayout ()
function sets the title for the plot and sets the geo parameter (the geographical info for
the layout) to the geo_info list created earlier.

Lastly, like before, the config () function is used to turn off the plotly logo and some
buttons.

The HTML file containing the plot is saved using the htmlwidgets: : saveWidget ()
function.

The interactivity in the HTML plot is experienced by hovering over any plotted
provider data-point: doing so displays a pop-up showing the name of the provider, the
state, and Medicare FFS professional services revenue in 2014.
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Figure 16.4 (Interactive geographical scatterplot map of the top Medicare
professional services revenue providers by US state)

Top 2014 Medicare-Revenue Providers by US State &
(Hover for provider info)

Medicare Pro-Fee Revenue in USD
2014

COMPANION DX REFERENCE LAE- HAWAIL LLC
2 HI
Total Medicare Revenue 2014 in USD: 11637367.2500611

The next code listing, 16.4, is very similar to 16.3. It creates an interactive geographical
scatterplot map of the top individual Medicare professional services revenue
providers by US state. The things that code listing 16.4 does differently from code
listing 16.3 are;

- In the data-manipulation function, the data is filtered by nppes_entity_code to
include only individual providers.

-The htmlwidgets: :saveWidget () function to save the HTML plot-file uses
the selfcontained=TRUE option to create a single HTML file as the output with all
the JavaScript and other accessory libraries inlined. This option requires the
Pandoc software library to be installed and available on the computer.

Code Listing 16.4
(Interactive geographical scatterplot map using plotly)
To run this (all on one line):

Rscript
16.4_Medicare_Provider Util_Payment_plotly scatterplot_geo _maps_top_indiv_pro
viders.R ../data/Medicare_Provider Util_Payment_PUF_CY2014_SUMMARIZED.rds

# Copyright (C) 2017 Sivakumaran Raman

# Use the plotly maps interface to create a geographical scatterplot map of
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# the top Medicare revenue individual-providers in 2014 by US state
library ("plotly");

library ("RDSTK") ;

library ("httr");

library("rjson") ;

library ("dplyr");

HH#HAHA#AE ALL FUNCTIONS DEFINED - -------------m-mommooooooooooooooo oo
# Get latitude by geocoding the address
geo.dsk.lat <- function (addr) {

# single address geocode with data sciences toolkit to return latitude

url <- "http://www.datasciencetoolkit.org/maps/api/geocode/json";

response <- GET (url, query=list (sensor="FALSE",address=addr)) ;

json <- fromJSON (content (response, type='"text'", encoding="UTF-8"));

loc <- json['results'][[1]1]1[[1]]3%geometry$location;

return(loc$lat) ;

# Get longitude by geocoding the address

geo.dsk.long <- function (addr) {
# single address geocode with data sciences toolkit to return longitude
url <- "http://www.datasciencetoolkit.org/maps/api/geocode/json";
regsponse <- GET (url, query=list (sensor="FALSE",address=addr)) ;
json <- fromJSON (content (response, type='"text'", encoding="UTF-8"));
loc <- json['results'][[1]1]1[[1]]3$geometry$location;
return (loc$lng) ;

# Function to manipulate the data frame using the dplyr and tidyr packages
manipulateDFUsingDplyrForGeoMaps <- function (myDataFrame) {

# Summarize the data by selecting only the top-earning provider by US state
# (if there is more than one provider in a state with the same max-revenue,
# choose one of them at random)
myDataFrame <- myDataFrame %>%

dplyr::filter (nppes_provider_country == "US") %>%

o°

o
>%

dplyr::filter (nppes_entity_code == "I1")

dplyr: :group_by (nppes_provider_state) %>%

dplyr::mutate(the rank = rank(-total_medicare prof_srv_revenue,
ties.method="random")) %>%

dplyr::filter (the_rank == 1) %>%
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dplyr::select(-the rank) %>%
# Filter to only those rows with a valid zip code
dplyr::filter (nchar (nppes_provider_zip) >= 5) %>%
# Has to be a US State
dplyr::filter (nppes_provider_ state %in% state.abb) %>%
dplyr::mutate(fulladdress = paste(nppes_provider_streetl,
nppes_provider_city,
nppes_provider_state,
substr (nppes_provider zip, 1, 5), nppes_provider country, sep=", "),
fullname = paste (nppes_provider_ first_name,
nppes_provider_mi,
nppes_provider_ last_org_name,

sep=" ")) ;

# Add in latitude, longitude as columns to the data frame.
myDataFrame <- myDataFrame %>%
dplyr::mutate(latitude = geo.dsk.lat(fulladdress),
longitude = geo.dsk.long(fulladdress)) ;

write.csv (myDataFrame, file="topRevenuelndivProvidersByUSState.csv");

return (myDataFrame) ;

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback(2) ;

stop ("Error: stack trace printed above");

}
)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided
# on the command line
if (length (myArgs) != 1) {
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stop("Error: please provide the name of the RDS file to read as the command

line argument") ;

# Read in the R data-object from disk by calling the function readRDS
physicianMedicareDataTable <- readRDS (myArgs[[1]1]);

# Call the function to manipulate the data frame using the dplyr package
summarizedPhysicianMedicareDataTable <-
manipulateDFUsingDplyrForGeoMaps (physicianMedicareDataTable) ;

# Remove the original data-frame object and garbage collect it.
rm (physicianMedicareDataTable) ;
gc (verbose=FALSE) ;

# geo styling

geo_info <- list(
scope = 'usa',
projection = list(type = 'albers usa'),
showland = TRUE,
landcolor = toRGB("gray9s5"),
subunitcolor = toRGB("gray85"),

countrycolor = toRGB("gray85"),
0.5,
0.5

countrywidth
subunitwidth

# Plot the map showing top-Medicare-revenue providers by US state
plotly geo_scatterplot_map <-
plot_geo (summarizedPhysicianMedicareDataTable,
lat = ~latitude, lon = ~longitude) %>%
add_markers (text =
~paste (fullname,
nppes_provider_state,
paste("Total Medicare Revenue 2014 in USD: ",
total_medicare_prof_srv_revenue),
sep = "<br />"),
color = ~total_medicare_prof_srv_revenue,
symbol = I("square'),

size = I(8),
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hoverinfo =

) %>%
colorbar (title = ) %>%
layout (title =
paste ( ,

) I
geo = geo_info) %>%
# Edit configuration to turn off the plotly logo along with the
# "Produced with Plotly" message and the sendDataToCloud button on

# the modeBar
plotly::config(displaylogo = FALSE, modeBarButtonsToRemove =

list( ) )

# Save the map to HTML

htmlwidgets: :saveWidget (plotly _geo_scatterplot_map,
file=
paste ( ,

selfcontained=TRUE) ;

Figure 16.5 (Interactive geographical scatterplot map of the top individual
Medicare professional services revenue providers by US state)

Top 2014 Medicare-Revenue Individual Providers by US State am

- . Med Pro-Fee R 1e in USD
(Hover for provider info) el il
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Total Medicare Revenue 2014 in USD: 2114188 .43000028
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The static and interactive charting/visualization capabilities of R are very extensive
and need book-level treatments to do them justice. The reader is encouraged to explore

ggplot2, plotly, and various other charting and visualization packages in R:
http://www.computerworld.com/article/2921176/business-intelligence/great-r-

packages-for-data-import-wrangling-visualization.html.

Exercise 16.1: For the Reader

Modify code listing 16.4 and create a scatterplot map that shows the highest-revenue-
earning and the lowest-revenue-earning individual provider in each state.

Exercise 16.2: For the Reader

Modify code listing 16.4 and create a scatterplot map that shows the highest-revenue-
earning male and the highest-revenue-earning female individual provider in each
state.

Exercise 16.3: For the Reader

Modify code listing 16.4 and create a scatterplot map that shows the highest-revenue-
earning individual provider for each provider_type.
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Chapter 17: Regression Modeling & Predictive Models

Regression analysis/modeling is commonly used in data analysis. From the Wikipedia
page on Regression Analysis (https://en.wikipedia.org/wiki/Regression_analysis): In
statistical modeling, regression analysis is a statistical process for estimating the
relationships among variables. It includes many techniques for modeling and analyzing
several variables, when the focus is on the relationship between a dependent variable
and one or more independent variables (or 'predictors’).

Regression analysis is also used to create predictive models and forecast outcomes.
Predictive Regression models can be developed by training a model on a particular
data set and using it to make predictions on a different but similar data set. We will see
this in in action.

For our analysis, we are working with the summarized-by-provider Medicare non-
institutional medical claims for 2014 that we created from the full Public Use File
dataset, which was unsummarized. Our dependent variable is

total_medicare_prof _srv_revenue (Total Medical Fee-for-Service Professional Services
Revenue for the provider in 2014). We will run a multiple linear regression to develop
a model that uses a set of explanatory variables to predict the total Medicare
professional services revenue for a provider. Then, we will use the model to make
predictions and see if our predictions are close to reality or not.

We will also be using the ggplot2 package to create plots that visualize the accuracy of
the predictive model.

Code listing 17.1 runs a multiple linear regression model with
total_medicare_prof _srv_revenue as the dependent variable and utilizes a whole lot of
explanatory variables.

Code Listing 17.1
(Multiple linear regression model)

To run this (all on one line):

Rscript 17.1 _Medicare_Provider Util_Payment_linear_regression_model.R
../data/Medicare_Provider Util_Payment_PUF CY2014_SUMMARIZED.rds >
LM output.txt 2> LM errors.txt

# Copyright (C) 2017 Sivakumaran Raman
library ( ) ;
library( ) ;
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library ("dtplyr");

library ("broom") ;

(
library ("ggplot2") ;
(
library("ztable") ;

library ("stargazer'")

# library("tidyr") ;

HH#HAHA#AE ALL FUNCTIONS DEFINED - -------------m-mommooooooooooooooo oo
# Function to pretty print linear regression model info using ztable
prettyPrintHTMLRulesResultsUsingZtableStargazer <-
function (linearRegressionModelTidyDF, linearRegressionModel,
fileForHTMLOutput) {

# Rules checks output in pretty HTML
# Set the options for the ztable printing of pretty tabular output
options (ztable.type="html", ztable.colnames.bold=TRUE) ;

# Use ztable to get pretty-table output about Linear Regression Model

# data-frame

ztableObject <- ztable::ztable(linearRegressionModelTidyDF,
caption="Linear Regression Model Info (using ztable)", caption.bold=TRUE,
tablewidth=0.1, zebra=1,
zebra.type=2, zebra.color=5, position="left", show.footer=FALSE,
hline.after=c(-1l:nrow(linearRegressionModelTidyDF)),
wraptable=TRUE, wraptablewidth=6) ;

sink (fileForHTMLOutput) ;
print (ztableObject) ;

# Use stargazer to get pretty-table output about the
# Linear Regression Model data-frame
stargazer (linearRegressionModel,
type = "html",
title = "Linear Regression Model Info (using stargazer)",
nobs = TRUE,
single.row = TRUE)
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sink () ;

return (ztableObject) ;

# Function to calculate the R-Squared value for a linear regression model
rsquared_value <- function(y,f) {
return(l - sum((y-£f)A2)/sum((y-mean(y))A2));

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback(2) ;

stop ("Error: stack trace printed above");

}
)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided on
# the command line
if (length (myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the

command line argument") ;

# Read in the R data-object from disk by calling the function readRDS

summarizedPhysicianMedicareDataTable <- readRDS (myArgs|[[1]]);

print ("Minimum value for actual total_medicare prof_srv_revenue:\n");
min (summarizedPhysicianMedicareDataTable$total medicare prof_srv_revenue) ;
print ("Maximum value for actual total_medicare prof_srv_revenue:\n");

max (summarizedPhysicianMedicareDataTable$total _medicare prof_srv_revenue) ;

# Develop the linear regression model on the data
linearRegressionModel <-
lm(total_medicare_prof_srv_revenue -~

nppes_provider_gender +

nppes_entity_code +
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provider type +
medicare_participation_indicator +
total_line srvc_cnt +

total_bene unique cnt +
total_bene day srvc_cnt +
nppes_provider_country +
nppes_provider_state,

data=summarizedPhysicianMedicareDataTable) ;

print ( )
summary (linearRegressionModel) ;

# Get a tidy data-frame representation of the linear regression model object

linearRegressionModelTidyBroomDataFrame <- broom::tidy(linearRegressionModel) ;

# File to write out the HTML output from ztable for the linear regression
# model object
outputZTableHTMLFile <- ;

# Call the function to pretty-print the linear regression model info using
# the ztable and stargazer packages
myZtableObject <-
prettyPrintHTMLRulesResultsUsingZtableStargazer (
linearRegressionModelTidyBroomDataFrame, linearRegressionModel,
outputZTableHTMLFile) ;

Code listing 17.1 sets up the multiple linear regression model. The summarized-by-
provider dataset is read in from the binary RDS file. The linear regression model is set
up using specific model-notation in R:

# Develop the linear regression model on the data
linearRegressionModel <-
Ilm(total_medicare_prof_srv_revenue ~
nppes_provider_gender +
nppes_entity_code +
provider_ type +
medicare participation_indicator +
total_line srvc_cnt +
total_bene_unique_cnt +
total_bene day_srvc_cnt +

nppes_provider_ country +
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nppes_provider_state,

data=summarizedPhysicianMedicareDataTable) ;

Here, 1m () is the function that runs the multiple linear regression model. The results
of the model are read into the linearRegressionModel object. The notation used to set
up the regression model inside the call to the 1m () function is special and specific to R.
The dependent variable (total_medicare_prof_srv_revenue) is named first. Then comes
the tilde (~) symbol. The complete list of explanatory variables comes after the tilde
and they are separated by + signs. The data parameter to the 1m () function specifies
the dataset to act on — the variables specified in the regression model are all columns
of this data frame.

After the model has completed running, the results are read into the
linearRegressionModel object named in the code. Since the results are in a data object,
they can be manipulated and pretty-printed. The tidy () function from the broom
package is used to tidy-up the results-object before it is pretty-printed as an HTML
table using the ztable package. The results-object is again pretty-printed as an HTML
table using the stargazer package — however, this does not require any tidying up of
the results-object.

Partial-views of the results tables created by ztable and stargazer are available in
Figure 17.1.
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Figure 17.1 (Multiple linear regression results pretty-printed using ztable

and stargazer)

Linear Regression Model Info (using ztable)

term

estimate std.error statistic p.value-

| (Intercept)

42326045 373747.75 0.11 091

2 nppes_provider genderF

-122218.66 247066.60 -493  0.00

3 nppes_provider genderM

-91375.23 2476393 -3.69 0.00-

4 provider typeAllergy/Immunology

-10079.50 35089.79 -0.29 0.77

5 provider typeAll Other Suppliers

80539.10 44878.13 e 0.07

6 provider typeAmbulance Service Supplier

37357799 4258134 877 0.00

7 provider typeAmbulatory Surgical Center

495727.55 4278044 1159  0.00

8 provider typeAnesthesiologist Assistants

-42073.62 360158.61 -1.16 024

9 provider typeAnesthesiology

-22277.84 34530.61° 065 052

Linear Regression Model Info (using stargazer)

Dependent variable:

total medicare prof srv_revenue

nppes_provider genderF

nppes_provider genderM
nppes_entity codeO
provider typeAllergy/Immunology

provider typeAll Other Suppliers
provider typeAmbulance Service Supplier
provider typeAmbulatory Surgical Center

provider typeAnesthesiologist Assistants

provider typeAnesthesiology
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373,578.000°"" (42,581.340)

495.727.600°"" (42.786.440)
-42,073.620 (36,158.610)
-22.277.840 (34.530.610)



Looking at the results of the multiple linear regression model, we pick out the
explanatory variables that meet our threshold level of significance as defined by a p
value of < 0.01. For variables that are factors with multiple levels, we consider the
variable significant if any one of its factor-levels has a p value < 0.01. In the next code
listing, 17.2, we re-run the multiple linear regression model (on a random two-thirds of
the data that we call the training dataset) but, this time, we include only the
significant explanatory variables from the model we created in code listing 17.1. We
then use this regression model object to make predictions on the left-over one-third of
the data (which we call the test dataset).

Code Listing 17.2
(Multiple linear regression predictive model)

To run this (all on one line):

Rscript
17.2_ALLDATA_Medicare Provider Util_Payment_ linear regression_with_prediction
.R ../data/Medicare_Provider_Util_Payment PUF_CY2014_SUMMARIZED.rds >

LM _and_predictions_output.txt 2> LM _and predictions_errors.txt

# Copyright (C) 2017 Sivakumaran Raman
library( ) ;

library
library

(
(
library (
library (
library (
library (
# library("tidyr") ;

HH#H#HA#AE ALL FUNCTIONS DEFINED - - ----------c-sommomooomomooo oo
# Function to pretty print linear regression model info using ztable
prettyPrintHTMLRulesResultsUsingZtableStargazer <-
function (linearRegressionModelTidyDF, linearRegressionModel,
fileForHTMLOutput) {

# Rules checks output in pretty HTML
# Set the options for the ztable printing of pretty tabular output
options (ztable. type= , ztable.colnames.bold=TRUE) ;

# Use ztable to get pretty-table output about Linear Regression Model
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# data-frame

ztableObject <- ztable::ztable(linearRegressionModelTidyDF,
caption="Linear Regression Model Info - Sign. variables (using ztable)",
caption.bold=TRUE,
tablewidth=0.1, zebra=1,
zebra.type=2, zebra.color=5, position="left", show.footer=FALSE,
hline.after=c(-1:nrow(linearRegressionModelTidyDF)),
wraptable=TRUE, wraptablewidth=6) ;

sink (fileForHTMLOutput) ;
print (ztableObject) ;

# Use stargazer to get pretty-table output about the
# Linear Regression Model data-frame
stargazer (linearRegressionModel,
type = "html",
title = "Linear Regression Model Info - Sign. variables (using stargazer)™",
nobs = TRUE,
single.row = TRUE)

sink () ;

return (ztableObject) ;

# Function to calculate the R-Squared value for a linear regression model
rsquared_value <- function(y,f) {
return(l - sum((y - £)A2)/sum((y - mean(y))A2));

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback (2) ;

stop("Error: stack trace printed above");

}
)i

# Read in the command line arguments into a character vector
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myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided on
# the command line
if (length (myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the

command line argument") ;

# Read in the R data-object from disk by calling the function readRDS
summarizedPhysicianMedicareDataTable <- readRDS (myArgs[[1]]);

print ("Minimum value for actual total_medicare prof_srv_revenue:\n");
min (summarizedPhysicianMedicareDataTable$total medicare prof_srv_revenue) ;
print ("Maximum value for actual total_medicare prof_srv_revenue:\n");

max (summarizedPhysicianMedicareDataTable$total medicare prof_srv_revenue) ;

# Create a training data set
trainingDataFrame <- summarizedPhysicianMedicareDataTable %>%
dplyr::filter (random val_between_one and_three == 1 |

random_val_between_one_and_three == 2);

# Create a test data set
testDataFrame <- summarizedPhysicianMedicareDataTable %>%

dplyr::filter (random _val_between_one_and_three == 3);

# Develop the linear regression model on the training data
linearRegressionModel <-
Im(total_medicare_prof_srv_revenue -~

nppes_provider_gender +

# nppes_entity code +

provider_ type +

medicare_participation_indicator +

total_line srvc_cnt +

total_bene unique_cnt +

total_bene day_ srvc_cnt

data=trainingDataFrame) ;

print ("Summary for linear regression model:");

summary (linearRegressionModel) ;

# Get a tidy data-frame representation of the linear regression model object
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linearRegressionModelTidyBroomDataFrame <- broom::tidy(linearRegressionModel) ;

# File to write out the HTML output from ztable for the linear regression
# model object
outputZTableHTMLFile <- "R _output linear regression significant variables.html";

# Call the function to pretty-print the linear regression model info using
# the ztable and stargazer packages
myZtableObject <-
prettyPrintHTMLRulesResultsUsingZtableStargazer (
linearRegressionModelTidyBroomDataFrame, linearRegressionModel,
outputZTableHTMLFile) ;

# Predict values using the linear regression model and store them in an
# additional column in the test data frame
testDataFrame$predicted_value total_medicare prof_srv_revenue =

predict (linearRegressionModel, newdata=testDataFrame) ;

# Predict values using the linear regression model and store them in an
# additional column in the training data frame
trainingDataFrame$predicted_value_total_medicare_prof_srv_revenue =

predict (linearRegressionModel, newdata=trainingDataFrame) ;

print ("Minimum value for predicted total_medicare_prof_srv_revenue in
training data set:\n");

min (trainingDataFrame$predicted_value_ total_medicare prof_srv_revenue) ;

print ("Maximum value for predicted total_medicare prof_srv_revenue in
training data set:\n");

max (trainingDataFrame$predicted_value_total_medicare_prof_srv_revenue) ;

print ("Minimum value for predicted total _medicare prof_srv_revenue in
test data set:\n");

min (testDataFrame$predicted_value_total_medicare prof_srv_revenue) ;

print ("Maximum value for predicted total_medicare prof_srv_revenue in
test data set:\n");

max (testDataFrame$predicted_value_ total_medicare prof_srv_revenue) ;

# Quick plot using the ggplot2 library: Plotting physician revenue as a
# function of predicted physician revenue for the test data
ggplotTestPredAgainstActualsQuick <- ggplot2::gplot(data=testDataFrame,
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x=predicted_value_total_medicare_prof_srv_revenue,

y=total_medicare prof_srv_revenue,

geom=c¢ ("point", "smooth")) +

labs (list(title = "Predicted versus Actual Values",
X = "Predicted total Medicare Professional Fees Revenue",
y = "Actual total Medicare Professional Fees Revenue"));

# Save the plot as a JPG file
ggplot2::ggsave (filename="TestPredAgainstActualsQuickPlot. Jpg",
plot=ggplotTestPredAgainstActualsQuick, dpi=1200, device="Jpeg");

# Plotting physician revenue as a function of predicted physician revenue for
# the test data
ggplotTestLMPredictionsAgainstActualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x=predicted_value_total _medicare_prof_srv_revenue,
y=total_medicare prof_srv_revenue)) +
geom_point (alpha=0.2,color="black") +
geom_smooth (aes (x=predicted_value_total _medicare_prof_srv_revenue,
y=total_medicare prof_srv_revenue), color = "black") +
geom_line (aes (x=total_medicare prof_srv_revenue,
y=total_medicare prof_srv_revenue), color = "blue", linetype = 2) +
scale_x continuous (limits = ¢ (-0, 5000000)) +
scale_y continuous (limits = ¢ (-0, 5000000)) +
labs (list(title = "Predicted versus Actual Values',
x = "Predicted total Medicare Professional Fees Revenue',

y = "Actual total Medicare Professional Fees Revenue")) ;

# Save the plot as a JPG file
ggplot2::ggsave (filename="TestlLMPredictionsAgainstActuals.jpg",
plot=ggplotTestLMPredictionsAgainstActualsObject, dpi=1200, device="jpeg");

# Plotting residuals income as a function of predicted income for the test data
ggplotTestLMPredictionsAgainstResidualsObject <-
ggplot2::ggplot (data=testDataFrame,
aes (x=predicted_value_total_medicare_prof_srv_revenue,
y=predicted_value_total_medicare_prof_srv_revenue -
total_medicare_prof_srv_revenue)) +

geom_point (alpha = 0.2,color = "black") +
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geom_smooth (aes (x = predicted_value_total_medicare prof_srv_revenue,

Y

predicted_value total_medicare prof_srv_revenue

total_medicare_prof_srv_revenue),

color="black") +

scale _x continuous (limits = ¢ (-0, 5000000)) +

labs (list(title = "Predicted versus Residual Values'",
x = "Predicted total Medicare Professional Fees Revenue",
y = "Residuals"));

# Save the plot as a JPG file

ggplot2::ggsave (filename="TestLMPredictionsAgainstResiduals. pg",
plot=ggplotTestLMPredictionsAgainstResidualsObject,
dpi=1200, device="Jpeg");

# R-squared value for the Test Data
rSquredvValueForTestData <-
rsquared_value (testDataFrame$total medicare_prof_srv_revenue,
testDataFrame$predicted_value total_medicare prof_srv_revenue

)

print ("R-squared value for the Test Data:\n");

print (rSquredvalueForTestData) ;

# R-squared value for the Training Data
rSquredvValueForTrainingData <-
rsquared_value (trainingDataFrame$total_medicare prof_srv_revenue,
trainingDataFrame$predicted_value_total_medicare_prof_srv_revenue

) ;

print ("R-squared value for the Training Data:\n");

print (rSquredvalueForTrainingData) ;

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(testDataFrame,

file = 'LinearModel_ Predictions_Medicare Prov_Util 2014 testDataFrame.csv',

append=FALSE,

quote="auto",
col.names=TRUE,
row.names=FALSE,

na="'",

nThread = getDTthreads () );
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Code listing 17.2 starts, like 17.1, by reading in the summarized-by-provider dataset
and running a multiple linear regression on it. However, there are some critical
differences from listing 17.1:

- The random_val _between_one_and_three variable in the dataset, which was
created in code listing 12.1, is used to create a training and a test dataset. All
rows where the random_val_between_one_and_three variable was assigned a
value of 1 or 2 go into the training dataset. The rows where the
random_val_between_one_and_three variable was assigned a value of 3 go into
the test dataset.

- The multiple linear regression model is run only on the training dataset. Also,
only the significant explanatory variables from the previously-run regression
model (run in code listing 17.1) are included in this model-run in 17.2.

Using the regression model object held in memory in the variable
linearRegressionModel, predictions are made (using the predict () function) for the
values of “total Medicare professional services revenue for the provider” in both the
training and test datasets.

# Predict values using the linear regression model and store them in an
# additional column in the test data frame
testDataFrame$predicted_value total_medicare prof_srv_revenue =

predict (linearRegressionModel, newdata=testDataFrame) ;

# Predict values using the linear regression model and store them in an
# additional column in the training data frame
trainingDataFrame$predicted_value_total_medicare_prof_srv_revenue =

predict (linearRegressionModel, newdata=trainingDataFrame) ;
Two different kinds of plots are created using the test dataset:

- a plot of the predicted values for total-Medicare-professional-services-revenue
against the actual values

- a plot of the predicted values for total-Medicare-professional-services-revenue
against the residual (predicted minus actual) values

All these plots are created using the ggplot2 package. However, the first plot of the
predicted against the actual values is created in two different ways for the purposes of
illustration:

136

www . dbooks . org


https://www.dbooks.org/

- using the gplot () (quick-plot: http://docs.ggplot2.org/dev/vignettes/qplot.html)
function from the ggplot2 package, which allows a user to create simple plots
without being burdened by all the options and parameters that a full-featured
ggplot2 plot can contain

- using the full-featured ggplot () function from the ggplot2 package

The gplot () function-use is self-explanatory. So, we will concentrate on the code for
the ggplot () function used to create the predicted-versus-actuals plot:

# Plotting physician revenue as a function of predicted physician revenue for
# the test data
ggplotTestLMPredictionsAgainstActualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x=predicted_value_total_medicare_prof_srv_revenue,
y=total_medicare prof_srv_revenue)) +
geom_point (alpha=0.2,color= )+
geom_smooth (aes (x=predicted_value_ total medicare_prof_srv_revenue,
y=total_medicare prof_srv_revenue), color = ) +
geom_line (aes (x=total_medicare_prof_srv_revenue,
y=total_medicare prof_srv_revenue), color = , linetype = 2) +
scale x continuous (limits = ¢ (-0, 5000000)) +
scale_y continuous(limits = c¢(-0, 5000000)) +
labs (list (title = ,

X
y = ));

# Save the plot as a JPG file
ggplot2: :ggsave (filename= ’
plot=ggplotTestLMPredictionsAgainstActualsObject, dpi=1200, device= ) ;

The data parameter given to the ggplot () function is the test dataset. The aesthetic
parameters (aes) set are the variables to be plotted on the x and y axes.

Next, the geom_point () function is called in the chain (remember: the + sign is the
function-chaining operator in ggplot2) to set the color of the plotted points to black and
the transparency to 80% (alpha=0.2). Transparent plotted data-points are very useful to
visualize large-dataset plots. The gplot () function used earlier did not use the alpha
parameter for plotted-point-transparency.

The geom_smooth () function is then called to create a best-fit-line or smoothing curve
in black.
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This is then followed by the geom_1ine () function used to create what can be called a
faultless-prediction line in blue. This represents the case where the predictions are
100% accurate and all the predicted values are equal to the actual values. The closer
the best-fit-line is to the faultless-prediction line, the better the predictive model is
performing. The linetype for this line is set to the value 2 to denote a dashed-line.

The scale_x continuous () and scale_y continuous () functions are then used to
set up the x axis and y axis scales respectively. The 1abs () function is then used to set
up the title for the plot, and the x and y axis labels.

The plot is then saved as a JPEG image file with 1200 dots per inch resolution.

The plotting of the predicted values against the residuals is also done similarly and
another image is saved.

R-squared values are calculated for the predictions on both the training and the test
data. R-squared value is one of indicators of the quality of a predictive model. R-
squared values greater than 0.7 usually indicate a model with good predictive abilities
when applied to new data.

In our case, the regression model's R-squared value for our training dataset is
0.6040586 while the R-squared value for the test dataset is 0.6597319. This is a bit of a
weirdly-surprising result that we are getting — usually, one expects the R-squared value
for the training data to be higher than that for the test data. However, others seem to
have seen the same situation: http://stats.stackexchange.com/questions/86314/higher-r-
squared-value-on-test-data-than-training-data. The explanation for why this happens
sometimes is best supplied by a statistician.

The reason the training dataset is named so is because it actually trains the model to be
able to predict. We also save the predictions data from the program as a CSV file.

If you see weird errors like “provider_type has a new level” when running the
prediction program, it might mean that your randomly chosen training dataset did not
reflect all the factor levels for a variable that were found in the test data. In this case,
you might have to run code listing 12.1 again to this time (hopefully ©) create both
training and test datasets with all of the levels for all of the factors represented.
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Figure 17.2 (Linear Model: Predicted against actual values for Medicare
revenue)

Predicted versus Actual Values
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Figure 17.3 (Linear Model: Predicted against residual values for Medicare
revenue)
Predicted versus Residual Values
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Statistical models (like those utilizing linear regression or logistic regression)
are one category of predictive-models encountered. R has a plethora of packages
and functions that can run statistical procedures and make predictions.

In the next chapter, we will take a look at machine-learning packages in R that
can also be used for predictive models.
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Exercise 17.1: For the Reader

Modify the code in listing 17.1 and run a multiple linear regression model where the
dependent variable is total_line_srvc_cnt (the total number of service lines that the
provider has billed for in calendar year 2014).
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Chapter 18: Machine Learning & Predictive Models

A hugely popular part of data analytics, data mining, and data science is the use of

machine learning (and statistical learning) algorithms and tools to examine, detail out,
explore, analyze, and find patterns in data. R has a lot of packages in this machine and
statistical learning (https://cran.r-project.org/web/views/MachineLearning.html) space.

However, the R package we will be utilizing in this chapter, h2o (https://cran.r-
project.org/web/packages/h2o/index.html), is actually a wrapper around the Java-
based, open source H20 (http://www.h20.ai/) machine learning and predictive
analytics library.

The reason I chose to use the h20 R-package instead of any of the other native-R
machine learning packages is because:

- The Java H20 library is extremely efficient and able to accommodate big-data
size datasets with no degradation in performance. As an example, the
h2o.randomForest () function I used in my code was easily able to
accommodate our Medicare dataset. On the other hand, the CRAN randomForest
(https://cran.r-project.org/web/packages/randomForest/index.html) R package
was not able to complete the building of the random forest model using our
dataset on my notebook computer.

- The sparklyr (https://cran.r-project.org/web/packages/sparklyr/index.html)
package, which is an R interface into the Spark big-data platform, has a new
extension-package called rsparkling (https://cran.r-
project.org/web/packages/rsparkling/index.html) that offers an R interface to
H20.

Thus, there are exciting times ahead in terms of the potential to run R on top of big-
data platforms like Spark, Hadoop, and H20.

Since H20 is written in Java, we need the Java runtime to be installed on the machine
before we run our code. The R code in this case merely provides an interface to the
H20 engine that does the heavy lifting of modeling and predictive analytics.

We are going to use two different machine learning algorithms available within H20 to
carry out the same prediction that we saw in the previous chapter: predicting the “total
Medicare professional services revenue for the provider”. The two H20 algorithms we
will use are Gradient Boosted Machines
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(https://en.wikipedia.org/wiki/Gradient_boosting) and Random Forests
(https://en.wikipedia.org/wiki/Random_forest).

An introductory tutorial on how to use the R h20 package is available: http://h2o-
release.s3.amazonaws.com/h2o/rel-lambert/5/docs-website/Ruser/rtutorial.html

The programs in listings 18.1 and 18.2 use these concepts to create the predictive
models and make the predictions. One thing to note is that Rscript is not able to run the
code that uses the h2o0 package — errors are seen when running the h2o package code
with Rscript. So, we run the code in this chapter in the command shell using the R
executable (which requires a slightly different syntax than Rscript). Also, on Microsoft
Windows, R cannot be run in powershell.exe because the < character (which is used in
the command syntax to run the program with R) is a reserved one in powershell.exe.
On Windows, the programs from this chapter should be run using R in cmd.exe.

Code Listing 18.1
(Gradient Boosted Machine predictive model in H20)

To run this (all on one line):

R --no-save --no-restore --args
../data/Medicare_Provider Util Payment_ PUF CY2014_SUMMARIZED.rds <
18.1_Medicare_Provider Util_ Payment_h2o_GBM with_prediction.R >
outputH20_GBM. txt 2> errorsH20_GBM. txt

# Copyright (C) 2017 Sivakumaran Raman
library( )i

library (

library(

library( )i
library (

library (

library( )i

# library ("tidyr");

#HH#HHEHE#E ALL FUNCTIONS DEFINED - - - - - - - - - - -ooomooooooooooo oo oo oo
# Function to calculate the R-Squared value
rsquared_value <- function(y,f) {

return(l - sum((y - £)A2)/sum((y - mean(y))A2));
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# Send textual output to file

sink ("GradientBoostedMachine H20_regression_output.txt");

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback(2) ;

stop ("Error: stack trace printed above");

}
)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided on
# the command line
if (length (myArgs) != 1) {

stop ("Error: please provide the name of the RDS file to read as the

command line argument") ;

# Read in the R data-object from disk by calling the function readRDS
summarizedPhysicianMedicareDataTable <- readRDS (myArgs[[1]1]);

# Initialize the h2o engine

h2o.init(
# -1: asks the program to use all available threads
nthreads = -1,

# Specifing the memory size for the h2o cloud
max_mem Size = "2G"

)

# Clean up everything - just in case the cluster was already running
h2o.removeAll ()

Convert the provider_ type variable to a character from a factor
summarizedPhysicianMedicareDataTable <-
summarizedPhysicianMedicareDataTable %>%
dplyr::mutate (provider_type = as.character (provider_type)) %>%

H H H H H=H

dplyr::filter(!is.na (provider_type)) ;

# Create a training data set
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trainingDataFrame <- summarizedPhysicianMedicareDataTable %>%
dplyr::filter (random val_between_one_and_ three == 1 ||

random_val between one_and_ three == 2);

# Convert the R training data frame to an H20 data frame
trainingDataFrameH20 <- as.h2o(trainingDataFrame,

destination frame = "trainH20");

# Create a test data set
testDataFrame <- summarizedPhysicianMedicareDataTable %>%

dplyr::filter (random_val_between one_and_three == 3);

# Convert the R test data frame to an H20 data frame

testDataFrameH20 <- as.h2o(testDataFrame, destination_ frame = "testH20");

# Assign the first result to the R variable train and the H20 name train.h2o

train <- h2o.assign(trainingDataFrameH20, "train.h2o0");

# R variable test and the H20 name test.h2o0
test <- h2o.assign(testDataFrameH20, "test.h2o")

# Remove objects and release memory
rm(trainingDataFrame, trainingDataFrameH20, testDataFrameH20) ;
gc();

# Predictor and response variables
predictor_variables = c("nppes provider gender',
# "nppes_entity code",
"medicare participation_indicator",
"total_ line srvc_cnt",
"total_ bene_unique_cnt",
"provider_ type",
"total_bene_day_srvc_cnt");

response_variable = "total medicare prof srv revenue';

# Run the first predictive model
gbml <- h2o.gbm/(
# THE H20 GRADIENT BOOSTED MACHINE FUNCTION
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# The H20 frame for training the machine

training frame = train,

# The H20 frame for validation

validation frame = test,

# The predictor columns/variables, by column index

x=predictor_variables,

# The target index or dependent variable (what we are predicting)

y=response_variable,

distribution = "AUTO",

# Naming the model in H20 - this is not required, but helps use Flow.

model_id = "gbm Medicare vi1'",

# Use a maximum of 50 trees to create the Gradient Boosted Machine model

ntrees = 50,

# Increase the learning rate

learn_rate = 0.3,

max_depth = 10,

# Use a random 70% of the rows to fit each tree

sample rate = 0.7,

# Use a random 70% of the columns to fit each tree

col_sample_rate = 0.7,

stopping_tolerance = 0.01,

# Stop fitting new trees when the 2-tree average is within 0.001 (default) of
# the prior two 2-tree averages. Can be thought of as a convergence setting.

stopping_rounds = 2,

# Predict against training and validation for each tree. The default will skip

# several trees.

score_each_iteration = T,
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# Set the random seed so that this can be reproduced.
seed = 2000000
)i

# View information about the Gradient Boosted Machine model. The Keys to examine
# are validation performance and variable importance

summary (gbml) ;

This is a more direct way to access the validation metrics. Performance
metrics depend on the type of model being built. With a multinomial

classification, we will primarily look at the confusion matrix,

H H H FH*

and overall accuracy via hit_ratio @ k=1.

gbml@model$validation_metrics;

# Make predictions on the test data

gbmpredictions <- h2o.predict (gbml, newdata=test) ;

# Get Gradient Boosted Machine Regression Model performance for the
# predictions on the test data

gbmPerf <- h2o.performance(gbml, newdata=test) ;

print ("Mean squared error for the Gradient Boosted Machine Performance
Model object on the test data\n");

# Get mean squared error for the Gradient Boosted Machine

# Performance Model object on the test data

h2o.mse (gbmPerf) ;

# Convert the H20frame to an R dataframe

testPredictionsDF <- as.data.frame (gbmpredictions) ;

# Add the predicted values to the test data frame
testDataFrame$predicted_value total _medicare prof_srv_revenue =

testPredictionsDF$predict;

# R-squared value for the Test Data
rSquredvValueForTestData <-
rsquared_value (testDataFrame$total medicare_prof_srv_revenue,
testDataFrame$predicted_value total_medicare prof_srv_revenue
)

print ("R-squared value for the Test Data:\n");
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print (rSquredvalueForTestData) ;

sink () ;

# Plotting physician revenue as a function of predicted physician revenue
# for the test data
ggplotTestPredictionsAgainstActualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x = predicted_value_total_medicare prof_srv_revenue,
y = total_medicare_prof_srv_revenue)) +
geom _point (alpha = 0.2, color = "black") +
geom_smooth (aes (x = predicted_value_total_medicare prof_srv_revenue,
y = total_medicare_prof_srv_revenue), color = "black") +
geom_line(aes(x = total_medicare prof_srv_revenue,
y = total_medicare_prof_srv_revenue), color = "blue", linetype = 2)
scale x_continuous (limits = c (-0, 5e+06)) +
c(-0, 5et06)) +
labs (list (title = "Predicted versus Actual Values",

scale_y continuous (limits

x = "Predicted total Medicare Professional Fees Revenue",

y = "Actual total Medicare Professional Fees Revenue"))

# Save the plot as a JPG file

ggplot2::ggsave(filename = "TestGBMPredictionsAgalinstActuals.jpg",
plot = ggplotTestPredictionsAgainstActualsObject,
dpi = 1200, device = "jpeg")

# Plotting residuals income as a function of predicted income for the test data

ggplotTestPredictionsAgainstResidualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x = predicted_value_total_medicare prof_srv_revenue,
y = predicted_value_total_medicare prof_srv_revenue -
total_medicare prof_srv_revenue)) +
geom _point (alpha = 0.2, color = "black") +
geom_smooth (aes (x = predicted_value_total_medicare prof_srv_revenue,

y = predicted_value_total_medicare prof_srv_revenue -

total_medicare prof_srv_revenue), color = "black") +
scale_x continuous (limits = c¢(-0, 5e+06)) +
labs (list(title = "Predicted versus Residual Values",
x = "Predicted total Medicare Professional Fees Revenue",
y = "Residuals"))

# Save the plot as a JPG file

148

www . dbooks . org


https://www.dbooks.org/

ggplot2::ggsave (filename =
plot = ggplotTestPredictionsAgainstResidualsObject,
dpi = 1200, device = )

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(testDataFrame,
file =
append = FALSE, quote = , col.names = TRUE, row.names = FALSE, na = ,
nThread = getDTthreads())

’

The program starts by reading in the summarized-by-provider dataset RDS file from
disk into a data frame.

The Java H20 engine is then initialized from within R, setting the options for the
number of threads to use, and the maximum memory-size of the H20 cloud that can be
created:

# Initialize the h2o engine

h2o0.init (
# -1: asks the program to use all available threads
nthreads = -1,
# Specifing the memory size for the h2o cloud
max_mem_size =

) ;

A clean-up statement is issued in order to remove any previously running Java H20
clusters:

# Clean up everything - just in case the cluster was already running
h2o.removeAll ()

Training and test datasets are created as in code listing 17.2. However, the additional
step required when using H20 is to convert the R training and test data frames to H20
data frames. To convert the R training data frame to an H20 data frame:

# Convert the R training data frame to an H20 data frame
trainingDataFrameH20 <- as.h2o(trainingDataFrame,
destination_frame = ) ;

And the same for the test data frame:

# Convert the R test data frame to an H20 data frame

testDataFrameH20 <- as.h2o(testDataFrame, destination_ frame = ) ;
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H20 names are then assigned for these:
# Assign the first result to the R variable train and the H20 name train.h2o

train <- h2o.assign(trainingDataFrameH20, ) ;

# R variable test and the H20 name test.h2o0
test <- h2o.assign(testDataFrameH20, )

The predictor (explanatory) variables and the response (dependent) variable are then
set up:

# Predictor and response variables
predictor_variables = c( ,

# "nppes_entity_ code",

) ;

response_variable = ;

The H20 Gradient Boosted Machine (GBM) predictive model is then set-up and trained
using the training dataset. A number of options are provided for the h20.gbm()
function:

# Run the first predictive model
gbml <- h2o.gbm(
# THE H20 GRADIENT BOOSTED MACHINE FUNCTION

# The H20 frame for training the machine

training frame = train,

# The H20 frame for validation

validation frame = test,

# The predictor columns/variables, by column index

x=predictor_variables,

# The target index or dependent variable (what we are predicting)

y=response_variable,
distribution = ,

# Naming the model in H20 - this is not required, but helps use Flow.
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model_id = "gbm Medicare v1",

# Use a maximum of 50 trees to create the Gradient Boosted Machine model
ntrees = 50,

# Increase the learning rate
learn_rate = 0.3,
max_depth = 10,

# Use a random 70% of the rows to fit each tree

sample _rate = 0.7,

# Use a random 70% of the columns to fit each tree

col_sample rate = 0.7,

stopping_tolerance = 0.01,

# Stop fitting new trees when the 2-tree average is within 0.001 (default)

of

# the prior two 2-tree averages. Can be thought of as a convergence
setting.

stopping_rounds = 2,

# Predict against training and validation for each tree. The default will
skip
# several trees.

score_each iteration = T,

# Set the random seed so that this can be reproduced.
seed = 2000000
) ;

The summary from the GBM model run is printed out. Validation metrics are also
printed.

# View information about the Gradient Boosted Machine model.
# The Keys to examine are validation performance and variable importance
summary (gbml) ;

# This is a more direct way to access the validation metrics. Performance
# metrics depend on the type of model being built. With a multinomial

# classification, we will primarily look at the confusion matrix,
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# and overall accuracy via hit_ratio @ k=1.

gbml@model$validation_metrics;

Predictions are then made on the test data using the trained GBM model and the
performance metrics for the predictions are collected:

# Make predictions on the test data
gbmpredictions <- h2o.predict (gbml, newdata=test) ;

# Get Gradient Boosted Machine Regression Model performance for the
# predictions on the test data
gbmPerf <- h2o.performance (gbml, newdata=test) ;

The mean square error value is printed for the predictions made on the test data.

The H20 data frame with the predictions made on the test data is then converted to an
R data frame and the predict variable added as a column to the original test R dataset.

# Convert the H20frame to an R dataframe

testPredictionsDF <- as.data.frame (gbmpredictions) ;

# Add the predicted values to the test data frame
testDataFrame$predicted_value total_medicare prof_srv_revenue =

testPredictionsDF$predict;

The R-squared value for the predictions made on the test data is calculated like was
done for the multiple linear regression model in code listing 17.2. Both the predictions
against actuals and the predictions against residuals plots are created using the ggplot2
package, like was done in code listing 17.2. The test data with the predictions column
included is saved to a CSV file.

The H20 GBM model does significantly better at predicting “Total Medicare
Professional Services Revenue for a Provider” than the multiple linear regression
model seen earlier. The R-squared value for the GBM model predictions on the test
data comes out to be 0.7507081. The parameters for running the GBM model can be
tweaked to improve its predictive capabilities. This is left as an exercise for the reader.
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Figure 18.1 (GBM: Predicted against actual values for Medicare revenue)
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Figure 18.2 (GBM: Predicted against residual values for Medicare revenue)

Predicted versus Residual Values
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In the next code listing, 18.2, we use the H20 Random Forest model to make the same
predictions that we made in code listing 18.1 using the Gradient Boosted Machine.

Code Listing 18.2
(Random Forests predictive model in H20)

To run this (all on one line):

R --no-save --no-restore --args
../data/Medicare_ Provider Util_ Payment_ PUF_CY2014_SUMMARIZED.rds <
18.2_Medicare_Provider Util_ Payment_h2o_randomForest_with prediction.R >
outputH20_RandomForest.txt 2> errorsH20_ RandomForest.txt

# Copyright (C) 2017 Sivakumaran Raman

library( ) ;
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library("data.table");
library ("dtplyr");
library ("ggplot2");
library ("broom") ;
library("ztable");
library ("h2o0") ;

# library("tidyr") ;

HHA#HA#HEHS ALL FUNCTIONS DEFINED - -------m--m-mmommomoo oo oo
# Function to calculate the R-Squared value
rsquared_value <- function(y,f) {

return(l - sum((y - £)A2)/sum((y - mean(y))A2));

# Send textual output to file

sink ("randomForest_H20_regression_output.txt");

# Set option to print the stack trace at the time of any error and then quit.
options (error= function () {

traceback (2) ;

stop("Error: stack trace printed above");

}
)

# Read in the command line arguments into a character vector

myArgs <- commandArgs (trailingOnly=TRUE) ;

# Exit with error message if RDS data-object file to read is not provided on the
command line
if (length (myArgs) != 1) {

stop("Error: please provide the name of the RDS file to read as the

command line argument");

# Read in the R data-object from disk by calling the function readRDS

summarizedPhysicianMedicareDataTable <- readRDS (myArgs[[1]1]);

# Initialize the h2o engine
h2o.init(

# -1 means to use all available threads
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nthreads = -1,

# The memory size for the H20 cloud

max_mem size = "2G");

# Fresh start - just in case the cluster was already running
h2o.removeAll ()

Convert the provider type variable to a character from a factor
summarizedPhysicianMedicareDataTable <-
summarizedPhysicianMedicareDataTable %>%

dplyr::mutate (provider_type = as.character (provider_type)) %>%

H+ O o H

dplyr::filter(!is.na(provider_type)) ;

# Create a training data set
trainingDataFrame <- summarizedPhysicianMedicareDataTable %>%
dplyr::filter (random val_between_one_and_ three == 1 ||

random_val between one_and_ three == 2);

# Convert to an H20 data frame
trainingDataFrameH20 <- as.h2o(trainingDataFrame,

destination frame = "trainH20");

# Create a test data set

testDataFrame <- summarizedPhysicianMedicareDataTable %>%

dplyr::filter (random_val_between one_and_three == 3);
# Convert to an H20 data frame
testDataFrameH20 <- as.h2o(testDataFrame, destination_ frame = "testH20");

# Give the first result the R variable name train and the H20 name train.h2o

train <- h2o.assign(trainingDataFrameH20, "train.h2o0");

# Give the test result the R variable name test and the H20 name test.h2o
test <- h2o.assign(testDataFrameH20, "test.h2o")

# Remove objects and release memory
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rm(trainingDataFrame, trainingDataFrameH20, testDataFrameH20) ;
ge();

# Predictor and response variables
predictor_variables = c('"nppes provider gender',
# "nppes_entity code",
"medicare participation_indicator",
"total line srvc_cnt",
"total bene_unique_cnt",
"orovider_ type",
"total bene_day srvc_cnt");

response_variable = "total medicare prof grv revenue';

## run our first predictive model
rfl <- h2o.randomForest (
# THE H20 RANDOM FOREST FUNCTION

# The H20 frame for training

training frame = train,

# the H20 frame for validation
validation frame = test,

# The predictor columns/variables, by column index

x = predictor_variables,

## The variable being predicted (target index)
y=response_variable,

# Give the model a name in H20 - not required, but helps use Flow.
model_id = "rf Medicare vl1'",

# Use a maximum of 200 trees to create the random forest model.

# The default is 50. We have increased it because we will let

# the early stopping criteria decide when the random forest is sufficiently
# accurate.

ntrees = 200,

# Increase depth, from the default of 20
max_depth = 30,

# Set mtries to number of_predictors/2 instead of the default of
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# number_ of_ predictors/3 for regression

mtries=as.integer (length (predictor_variables) /2),

# Stop fitting new trees when the 2-tree average is within 0.001 (default) of
# the prior two 2-tree averages. This can be thought of as a convergence

# setting.

stopping_rounds = 2,

# Predict against training and validation for each tree. Default will skip
# several trees.

score_each_iteration = T,

# Set the random seed so that this can be reproduced.
seed = 3000000
)

# View information about the random forest model. The Keys to examine are
# validation performance and variable importance
summary (rfl) ;

This is a more direct way to access the validation metrics. Performance
metrics depend on the type of model being built. With a multinomial

classification, we will primarily look at the confusion matrix,

H+ O

and overall accuracy via hit_ratio @ k=1.
rfl@emodel$validation_metrics;

# Make predictions on the test data
rfpredictions <- h2o.predict(rfl, newdata=test) ;

# Get Random Forest Regression Model performance for the predictions on
# the test data
rfPerf <- h2o.performance(rfl, newdata=test) ;

print ("Mean squared error for the Random Forest Performance Model object on
the test data\n");

# Get mean squared error for the Random Forest Performance Model object

# on the test data

h2o.mse (rfPerf) ;

# Convert the H20frame to an R dataframe
testPredictionsDF <- as.data.frame(rfpredictions) ;
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# Add the predicted values to the test data frame
testDataFrame$predicted_value_ total_medicare prof_srv_revenue =
testPredictionsDF$predict;

# R-squared value for the Test Data
rSquredValueForTestData <-
rsquared_value (testDataFrame$total _medicare_prof_srv_revenue,
testDataFrame$predicted_value_ total_medicare prof_srv_revenue

)

print ("R-squared value for the Test Data:\n");
print (rSquredvalueForTestData) ;

sink () ;

# Plotting physician revenue as a function of predicted physician revenue
# for the test data
ggplotTestPredictionsAgainstActualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x = predicted_value_total_medicare_ prof_srv_revenue,

y = total_medicare_prof_srv_revenue)) +

geom_point(alpha = 0.2, color = "black") +
geom_smooth (aes (x = predicted_value_total_medicare prof_srv_revenue,
y = total_medicare_prof_srv_revenue), color = "black") +
geom_line (aes(x = total_medicare prof_srv_revenue,
y = total_medicare_prof_srv_revenue), color = "blue", linetype = 2) +
scale_x continuous (limits = ¢ (-0, 5e+06)) +

scale_y_continuous (limits = c¢(-0, 5e+06)) +

labs (list(title = "Predicted versus Actual Values',
x = "Predicted total Medicare Professional Fees Revenue',
y = "Actual total Medicare Professional Fees Revenue"))

# Save the plot as a JPG file

ggplot2::ggsave(filename = "TestRFPredictionsAgainstActuals.jpg",
plot = ggplotTestPredictionsAgainstActualsObject,
dpi = 1200, device = "jpeg")

# Plotting residuals income as a function of predicted income for the test data
ggplotTestPredictionsAgainstResidualsObject <-
ggplot2::ggplot (data = testDataFrame,
aes (x = predicted_value_total_medicare prof_srv_revenue,

y = predicted_value_total_medicare_prof_srv_revenue -
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total_medicare_ prof_srv_revenue)) +
geom_point (alpha = 0.2, color = ) +
geom_smooth (aes (x = predicted_value_total_medicare prof_srv_revenue,

y = predicted_value_total_medicare prof_srv_revenue -

total_medicare_prof_srv_revenue), color = )+
scale _x continuous (limits = ¢ (-0, 5e+06)) +
labs (list(title = ,
X = '
y = ))

# Save the plot as a JPG file

ggplot2::ggsave (filename = ,
plot = ggplotTestPredictionsAgainstResidualsObject,
dpi = 1200, device = )

# Save the R data-frame+data-table object to a CSV file
data.table::fwrite(testDataFrame,
file = ,
append = FALSE, quote = , col.names = TRUE, row.names = FALSE, na = ,
nThread = getDTthreads ())

Code listing 18.2 for the H20 Random Forest model is almost exactly the same as code
listing 18.1 for the H20 Gradient Boosted Machine model - except for the slight
differences in the options passed to the h2o.randomForest () function.

## run our first predictive model
rfl <- h2o.randomForest (
# THE H20 RANDOM FOREST FUNCTION

# The H20 frame for training

training frame = train,

# the H20 frame for validation
validation_frame = test,

# The predictor columns/variables, by column index

x = predictor_variables,

## The variable being predicted (target index)
y=response_variable,
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) ;

# Give the model a name in H20 - not required, but helps use Flow.

model_ id = ,

# Use a maximum of 200 trees to create the random forest model.
# The default is 50. We have increased it because we will let

# the early stopping criteria decide when the random forest is sufficiently

# accurate.

ntrees = 200,

# Increase depth, from the default of 20
max_depth = 30,

# Set mtries to number_ of predictors/2 instead of the default of
# number of_ predictors/3 for regression

mtries=as.integer (length (predictor_variables) /2),

# Stop fitting new trees when the 2-tree average is within 0.001 (default)
# of the prior two 2-tree averages. This can be thought of as a convergence
# setting.

stopping rounds = 2,

# Predict against training and validation for each tree. Default will skip
# several trees.

score_each iteration = T,

# Set the random seed so that this can be reproduced.
Seed = 3000000

The H20 Random Forest model does only slightly better at predicting “Total Medicare
Professional Services Revenue for a Provider” than the H20 Gradient Boosted Machine
model seen earlier. The R-squared value for the Random Forest model predictions on
the test data comes out to be 0.7527851. The parameters for running the Random
Forest model can be tweaked to improve its predictive capabilities. This is left as an
exercise for the reader.
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Figure 18.3 (Random Forest: Predicted against actual values for Medicare
revenue)

Predicted versus Actual Values
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Figure 18.4 (Random Forest: Predicted against residual values for Medicare
revenue)

Predicted versus Residual Values
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This chapter gives the reader an introduction into the use of machine learning
libraries and algorithms in R. There is a whole lot more to explore in this realm as the
capabilities of R with regard to machine learning and big data analytics are getting
better and more exciting every day.

Exercise 18.1: For the Reader

Use a Random Forest predictive model from the H20 package to predict the
total_line_srvc_cnt (the total number of service lines that the provider has billed for in
calendar year 2014). Refer to Reader Exercise 17.1 for the linking details.
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Epilogue
The light-speed introduction to data analysis using R presented in this book should be
able to get the reader started on a journey of self-exploration and self-improvement in

order to understand and utilize the full set of capabilities of R. There are a whole lot of
resources available on the Internet and through other sources for interested readers:

* CRAN (https://cran.r-project.org/)

* Google and other search engines to find answers and solutions

+ Stack Overflow (http://stackoverflow.com/)

+ Stat Methods (http://www.statmethods.net/)

* R Pubs (https://rpubs.com/)

* R Bloggers (https://www.r-bloggers.com/)

» Courses on coursera.org and other learning sites

» Aplethora of free books on R available on the Internet

I hope I have whetted your appetite to acquire more knowledge about R and have a
blast along the way, exploring and visualizing data while programming!
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