

Exploring .NET Core with Microservices,
ASP.NET Core, and Entity Framework Core

Selected by Dustin Metzgar

Manning Author Picks

 Copyright 2017 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617295089
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

http://www.manning.com

iii

contents
Introduction iv

REFACTORING 1
Refactoring
Chapter 4 from Re-Engineering Legacy Software by Chris Birchall. 2

IDENTIFYING AND SCOPING MICROSERVICES 39
Identifying and scoping microservices
Chapter 3 from Microservices in .NET Core by Christian Horsdal

Gammelgaard. 40

CREATING AND COMMUNICATING WITH WEB SERVICES 63
Creating a Microservice
Chapter 7 from .NET Core in Action by Dustin Metzgar. 64

CREATING WEB PAGES WITH MVC CONTROLLERS 85
Creating web pages with MVC Controllers
Chapter 4 from ASP.NET Core in Action by Andrew Lock. 86

QUERYING THE DATABASE 111
Querying the database
Chapter 2 from Entity Framework Core in Action by Jon Smith. 112

 index 141

iv

introduction
Developers love to write code. We follow the latest trends, learn new techniques, and
try to implement what we learn in our daily work. Most developers, however, are not
writing projects in completely green fields. Most often we write software to maintain,
augment, replace, or interact with older applications. .NET Core integrates modern
development practices into your daily work with legacy applications, and may be just
the option you’ve been looking for.

 If you’re not developing with the .NET Framework, you’ve likely heard of .NET
before and decided not to use it for various reasons. If you are one of the many users
who are not using .NET because it is only available on Windows, doesn’t have a strong
open source community, and isn’t keeping up with high performance web frame-
works, you should take another look at .NET Core. .NET Core is now available in
Linux with open-source source code. You’ll also find that current .NET Core frame-
works are lightweight, modular, and focused on delivering high-performance results.
Perhaps you are already a .NET Framework developer. If so, you may want to take
advantage of the latest advances like containers, ASP.NET Core, or Entity Framework
Core. Either way, there has never been a better time to use .NET.

 This collection of chapters from several Manning books offers guidance on refac-
toring legacy code, carving monolithic n-tier architectures into microservices, and
using ASP.NET Core and Entity Framework Core to build microservices and web
applications. Learn how to apply modern development practices to your daily work
and feel confident that the code you’re writing is making your applications better.

 We hope you’ll enjoy this selection and the code you’ll write because of it.

 Dustin Metzgar
 Author of .NET Core in Action

Legacy code is code that you have no confidence in your ability to change.
Chris Birchall’s book, Re-Engineering Legacy Software, gives you the tools and tech-
niques to tackle legacy projects with confidence. What better opportunity is
there to tackle those projects than to move to .NET Core? In this chapter, you’ll
learn how to understand, test, and refactor legacy code, which will make moving
to a modern development framework much easier.

Refactoring

https://www.manning.com/books/re-engineering-legacy-software

2

Chapter 4 from Re-Engineering
Legacy Software by Chris Birchall.

Refactoring

In this chapter we’ll look at your most important weapon in the fight against legacy,
namely refactoring. I’ll introduce some general tips for effective refactoring, as well
as a few specific refactorings that I often use in real-world code. We’ll also look at
techniques for writing tests for legacy code, which is vital if you want assurance that
your refactoring work hasn’t broken anything.

4.1 Disciplined refactoring
Before we start looking at specific refactoring techniques, I want to talk about the
importance of discipline when refactoring code. When performed correctly, refac-
toring should be perfectly safe. You can refactor all day long without fear of intro-
ducing any bugs. But if you’re not careful, what started out as a simple refactoring
can rapidly spiral out of control, and before you know it you’ve edited half the files

This chapter covers
 Methods for maintaining discipline when

refactoring

 Common smells found in legacy code, and
refactoring techniques for removing them

 Using automated tests to support refactoring

https://www.manning.com/books/re-engineering-legacy-software
https://www.manning.com/books/re-engineering-legacy-software

3Disciplined refactoring

in the project, and you’re staring at an IDE full of red crosses. At this point you have to
make a heart-wrenching decision: should you give up and revert half a day’s work, or
keep going and try to get the project back into a compiling state? Even if you can
reach the other side, you have no guarantee that the software still works as it’s sup-
posed to.

 The life of a software developer is stressful enough without having to make deci-
sions like that, so let’s look at some ways to avoid getting into that situation.

4.1.1 Avoiding the Macbeth Syndrome

I am in blood
Stepped in so far that, should I wade no more,
Returning were as tedious as go o’er.

—Macbeth, act 3, scene 4

When Macbeth uttered these words, he’d already done away with his beloved King
Duncan, two innocent guards, and his best friend Banquo, and he was debating with
himself whether to stop the carnage or to carry on slaughtering people until he had
no enemies left. (In the end he chooses the latter path, and, suffice it to say, it doesn’t
work out.)

 Now, if I’m interpreting the text correctly, and this may come as quite a shock to
the Shakespeare scholars among you, the Scottish play was actually intended to be an
allegory about undisciplined refactoring. Macbeth, spurred on by a feature request
from his wife and Project Manager, Lady Macbeth, starts out with the simple aim of
removing a piece of global mutable state called King Duncan. He succeeds in this, but
it turns out that there were some implicit dependencies that also needed to be refac-
tored. Macbeth tries to tackle all of these at once, leading to excessive amounts of
change, and the refactoring rapidly becomes unsustainable. In the end, our hero is
attacked by trees and decapitated, which is pretty much the worst result I can imagine
for a failed refactoring.

 So what can we do to avoid ending up like poor Macbeth? Let’s look at a few sim-
ple techniques.

4.1.2 Separate refactoring from other work

Often you realize that a piece of code is ripe for refactoring when you’re actually try-
ing to do something else. You may have opened the file in your editor in order to fix a
bug or add a new feature, but then decide that you may as well refactor the code at the
same time.

 For example, imagine you’ve been asked to make a change to the following Java
class.

/**
 * Note: This class should NOT be extended -- Dave, 4/5/2009
 */
public class Widget extends Entity {
 int id;
 boolean isStable;

4 CHAPTER 4 Refactoring

 public String getWidgetId() {
 return "Widget_" + id;
 }

 @Override
 public String getEntityId() {
 return "Widget_" + id;
 }

 @Override
 public String getCacheKey() {
 return "Widget_" + id;
 }

 @Override
 public int getCacheExpirySeconds() {
 return 60; // cache for one minute
 }

 @Override
 public boolean equals(Object obj) {
 ...
 }

}

The specification for widgets has changed so that the cache expiry of a widget should
depend on the value of its isStable flag. You’ve been asked to update the logic in the
#getCacheExpirySeconds() method accordingly. But as soon as you glance at the
code, you notice a number of things you’d like to refactor.

 There’s a comment from some guy called Dave saying the class shouldn’t be
extended, so why not mark it as final?

 The fields are mutable and they have package-private visibility. This is a danger-
ous combination, as it means other objects might change their values. Maybe
they should be private and/or final?

 There is redundancy among the various ID/key-generating methods. The ID
generation logic could be factored out into one place.

 The class overrides #equals(Object) but not #hashCode(). This is bad form
and can lead to some nasty bugs.

 There’s no comment explaining the meaning of the isStable flag. It might be
nice to add one.

The actual change to the cache expiry logic is quite simple, so it’s tempting to com-
bine it with a spot of refactoring. But be careful! Some of the refactorings in the pre-
ceding list are more complex than they first appear.

 Even though Dave says we shouldn’t extend Widget, maybe somebody already
did. If there are any subclasses of Widget anywhere in the project, then marking
the class as final will cause compilation errors. You’ll have to go through the
subclasses one by one and decide what should be done about them. Is it OK to

5Disciplined refactoring

extend Widget after all? Or should those subclasses be fixed to remove the
inheritance?

 What about those mutable fields? Is anybody actually mutating them? If so,
should they be? If you want to make them immutable, you’ll have to change any
code that is currently relying on their mutability.

 Although the lack of a #hashCode() method is generally a Bad Thing in Java
code, there might be some code somewhere that actually relies on this behav-
ior. (I’ve seen code like this in the wild.) You’ll have to check all code that deals
with Widgets. Also, if the person who wrote Widget (Dave?) also wrote any other
entity classes, the chances are that they’re all missing this method. If you decide
to fix all of them, it might become a much larger job.

If you try to take on all this refactoring at the same time as the change you were origi-
nally planning, that’s a lot of stuff to fit in your head. Maybe you’re a refactoring wiz-
ard, in which case go for it, but I wouldn’t trust myself to handle that kind of cognitive
load without making any mistakes.

 It’s much safer to split the work into stages: either make the change, then refactor,
or vice versa. Don’t try to do both at the same time. Splitting refactoring work and
other changes into separate commits in your version control system also makes it eas-
ier for you and other developers both to review the changes and to make sense of
what you were doing when you revisit the code later.

4.1.3 Lean on the IDE

Modern IDEs provide good support for the most popular refactoring patterns. They
can perform refactorings automatically, which obviously has a number of benefits over
performing them by hand.

 Faster —The IDE can update hundreds of classes in milliseconds. Doing this by
hand would take a prohibitively long time.

 Safer —They’re not infallible, but IDEs make far fewer mistakes than humans
when updating code.

 More thorough —The IDE often takes care of things that I hadn’t even thought of,
such as updating references inside code comments and renaming test classes to
match the corresponding production classes.

 More efficient —A lot of refactoring is boring drudge work, which is what comput-
ers were designed to do. Leave it to the IDE while you, rock star programmer
that you are, get on with more important things!

6 CHAPTER 4 Refactoring

To give you a taste of what the IDE is capable of, figure 4.1 shows a screenshot of
IntelliJ IDEA’s Refactor menu for a Java project. (Your menu might look slightly differ-
ent, depending on what IDE you use and what plugins you have installed.) It’s defi-
nitely worth the time to go through each of your IDE’s refactoring options, try them
out on some real code, and see what they do.

Figure 4.1 IntelliJ’s Refactor menu

As an example of what your IDE can do for you, let’s use IntelliJ IDEA to help us
replace a large and unwieldy constructor using the Builder pattern. Figure 4.2 shows a
Java class that represents a tweet. As you can see, the large number of fields results in a
constructor that’s frankly ridiculous.

 Figure 4.3 shows an example of using the class’s constructor directly. It’s very hard
to read, and a lot of the fields are optional, so this is an ideal candidate for using the
Builder pattern.

Figure 4.2 A Java class representing a tweet

7Disciplined refactoring

Figure 4.3 Using the Tweet constructor directly

8 CHAPTER 4 Refactoring

Let’s ask IntelliJ to create a Builder to fix this mess. Figure 4.4 shows the Replace Con-
structor with Builder wizard, where I can set default values for optional fields.

Figure 4.4 The Replace Constructor with Builder wizard

 When I click the Refactor button, the IDE generates a new class called Tweet-
Builder. It also automatically rewrites any code that’s calling the Tweet constructor,
updating it to use TweetBuilder instead. After a little manual reformatting, the code
to create a new Tweet now looks like figure 4.5. Much better!

Figure 4.5 Creating a Tweet using TweetBuilder

9Disciplined refactoring

IDEs make mistakes too
Occasionally the IDE can get it wrong. Sometimes it’s overzealous, trying to update
files that are completely unrelated to the change you want to make. If you rename a
method called execute(), the IDE might try to update an unrelated code comment
such as “I will execute anybody who touches this code.” Sometimes it doesn’t update
a file that it should. For example the IDE’s dependency analysis is often foiled by the
use of Java reflection.

With this in mind, it’s best not to trust the IDE unconditionally:

 If the IDE offers a preview of a refactoring, inspect it carefully.
 Check that the project still compiles afterward, and run automated tests if

you have them.
 Use tools like grep to get a second opinion.

4.1.4 Lean on the VCS

I assume that you’re using a version control system (VCS) such as Git, Mercurial, or
SVN to manage your source code. (If not, put this book down and go and fix that situ-
ation right now!) This can be really useful when refactoring. If you get into the habit
of committing regularly, you can treat the VCS as a giant Undo button. Any time you
feel like your refactoring is getting out of control, you have the freedom to back out
by hitting the Undo button (reverting to the previous commit).

 Refactoring is often an exploratory experience in which you don’t know whether a
particular solution will work out until you try it. The safety net of the VCS gives you the
freedom to experiment with a number of solutions, safe in the knowledge that you
can back out whenever you want. In fact, effective use of branches means that you can
have a few different solutions
on the go at the same time,
while you explore the pros
and cons of each approach.

 Figure 4.6 shows an exam-
ple of the Git commits and
branches that might be left
after a session of experimental
refactoring. The newest com-
mits are at the top. You can
see that there were a couple of
experimental branches that
didn’t end up getting merged
into the master branch. Figure 4.6 An example of using Git branches to aid refactoring

10 CHAPTER 4 Refactoring

4.1.5 The Mikado Method

One method that I have recently been using with great success to implement large
changes, including refactoring, is called the Mikado Method. It’s very simple but
effective. Basically it involves building up a dependency graph of all the tasks you need
to perform, so that you can then execute those tasks more safely and in an optimal
order. The dependency graph is constructed in an exploratory manner, with plenty of
backtracking and leaning on the VCS.

 For more details on the method itself and the motivations behind it, I highly rec-
ommend Ola Ellnestam and Daniel Brolund’s book The Mikado Method (Manning,
2014).

 Figure 4.7 shows an actual Mikado graph that I drew recently when I was porting
the UI layer of a large application from one web framework to another.

Switch
to play SwaggerConf files

Scaldi

Admin ctlr

Tests

Logging

Fix JSON
format

Hystrix
metrics

Hystrix
stream

Update
Ansible

Update
Vagrant

View
templates

Fix enum
order

Remove
unneeded

classes

DB
Evolutions

System
ctlrs

Cache ctlrs

Localization Fake App

Rewrite
tests

Flyway
pluginOpenID

auth

Pluggable
auth

Figure 4.7 An example of a dependency
graph drawn using the Mikado Method

4.2 Common legacy code traits and refactorings
Every legacy codebase is different, but a few common traits tend to surface time and
time again when reading through legacy code. In this section we’ll take a look at a few
of these traits and discuss ways in which we can remove them. It’s possible to devote
entire books to this subject, but I only have one chapter to play with, so I’ve picked
just a few representative examples of problems that have been especially prevalent in
my own experience.

11Common legacy code traits and refactorings

 Imagine that you maintain World of RuneQuest, an online fantasy RPG. You’re
planning to start development on a new version of the game, but recently you’ve
noticed that the code has become bloated and disorganized, and development veloc-
ity has dropped as a result. You want to give the codebase a thorough spring clean
before you start developing the new version. Let’s look at some areas you could tackle.

4.2.1 Stale code

Stale code is any code that remains in the codebase even though it’s no longer
needed. Deleting this unneeded code is one of the easiest, safest, and most satisfying
refactoring tasks you can hope for. Because it’s so easy, it’s often a good way to warm
up before embarking on more serious refactoring.

 Removal of stale code has a number of benefits:

 It makes the code easier to understand, because there’s now less code to read.
 It reduces the chance of somebody wasting time on fixing or refactoring code

that isn’t even used.
 As a satisfying bonus, every time you delete some code, the project’s test cover-

age increases.

Stale code can be divided into a few categories.

COMMENTED-OUT CODE

This is the lowest of all low-hanging fruit. If you see a block of code that has been com-
mented out, don’t think twice, just delete it! There’s absolutely no reason to leave
commented-out code lying around. It’s often left deliberately as a record of how the
code was changed, but that’s exactly what the version control system is for. It’s point-
less noise, making the surrounding code more difficult to read.

DEAD CODE

Dead code is any code in your software that will definitely never be executed. It might
be a variable that’s never used, a branch of an if statement that’s never taken, or even
a whole package of code that’s never referenced.

 In the following simple example of dead code, the armorStrength variable can
never have a value greater than 7, so it’s always less than 10 and the else block will
never run. It’s dead code and thus can and should be removed.

int armorStrength = 5;
if (player.hasArmorBoost()) {
 armorStrength += 2;
}
...
if (armorStrength < 10) {

Armor strength is always 7 or less,
so this branch will always run.

 defenceRatio += 0.1;
} else {
 defenceRatio += 0.2;

This branch is dead code.

}

12 CHAPTER 4 Refactoring

There are many tools that can help you find and remove dead code from your code-
base. Most IDEs will point out fields, methods, and classes that aren’t referenced, and
tools such as FindBugs (discussed in chapter 2) also include relevant rules.

ZOMBIE CODE

Some code that’s actually dead may look very much alive. I call this zombie code. Its
liveliness (or lack of) is impossible to discover just from reading the surrounding
source. Examples include

 Code that branches based on data received from an external source such as a
database, in which some of the branches are never triggered

 Pages of a website or screens of a desktop application that are no longer linked
from anywhere

As an example of the first point, let’s alter the previous code sample so that the value
of armorStrength is read from a DB. Just by reading the code, you have no idea what
value armorStrength might have, so the code looks alive and reasonable.

int armorStrength = DB.getArmorStrength(play.getId());
...
if (armorStrength < 10) {
 defenceRatio += 0.1;
} else {
 defenceRatio += 0.2;

Is this branch dead or alive?

}

But when you look at the actual data in the DB, you might find that all 5 million play-
ers have an armor strength of less than 10, so in fact the else will never run.

 In this case, you should check all the places that are setting this value in the DB (to
make sure that a strength of 10 or more is impossible), and then add a DB constraint
to act as documentation for your understanding of the model, before finally deleting
the unneeded else block.

 In the case of pages or screens that aren’t linked from anywhere, it’s often difficult
and time-consuming to confirm that a given page of a web application is dead. Even if
there are no links to it, users might still be accessing it directly, perhaps via browser
bookmarks, so you may have to trawl through web server access logs to check that the
page is safe to delete.

 I was affected by a real-world example of zombie code when I joined a team that
maintained a large legacy web application. Before I joined the team, they’d been A/B
testing a major update to the site’s top page. There were two separate versions of the
page, and users were directed to one or the other based on a per-user flag in the DB.
Little did I know, the A/B test had already finished (the flags in the DB had all been set
to the same value) but nobody had deleted the losing version of the page. So every
time I had to make a change to the top page, I faithfully replicated my changes across
both versions, wasting a lot of time in the process.

13Common legacy code traits and refactorings

A/B TESTING A/B testing is a commonly used process to investigate the effect
that a change to a website will have on users’ behavior. The basic idea is to
introduce the change to only a limited segment of the site’s users at first.
Users are separated into two buckets, A and B, and one group is served the
normal site, while the other is served a version of the site that includes the
change. You then measure key metrics (page views, attention time, scroll
depth, and so on) for each user segment and compare the results.

EXPIRED CODE

It’s common for business logic to apply only within a certain timespan, especially in
web applications. For example, you might run a particular ad campaign or A/B test
for a few weeks. In World of RuneQuest, perhaps you run half-price sales on in-game
purchases occasionally. This often requires corresponding date-specific logic in the
code, so it’s common to see code that looks like this:

if (new DateTime("2014-10-01").isBeforeNow() &&
 new DateTime("2014-11-01").isAfterNow()) {
 // do stuff ...
}

While there’s nothing wrong with temporary code like this, developers often forget to
go back and delete it after it has served its purpose, leading to a codebase littered with
expired code.

 There are a couple of ways of avoiding this problem. One is to file a ticket in your
issue tracker to remind yourself to delete the code. In this case, make sure that the
ticket has a deadline and is assigned to a specific person; otherwise it’s easily ignored.

 A smarter solution is to automate the check for expired code.

1 When writing code that has a limited lifespan, add a code comment in a specific
format to mark it as expiring code.

2 Write a script that can search through the codebase, parse these comments, and
flag any expired ones.

3 Set up your CI server to run this script regularly and fail the build if it finds any
expired code. This should be much harder to ignore than a ticket in the issue
tracker.

The following code shows an example of one of these comments.

// EXPIRES: 2014-11-01
if (new DateTime("2014-10-01").isBeforeNow() &&
 new DateTime("2014-11-01").isAfterNow()) {
 // do stuff ...
}

AUTOMATING EXPIRY CHECKS USING MACROS In languages that support mac-
ros (running code at compile time), it’s possible to make the project fail to
compile if there’s any expired code lying around. I know of a couple of Scala
libraries that can do this for you: Fixme (https://github.com/tysonjh/fixme)
and DoBy (https://github.com/leanovate/doby).

https://github.com/tysonjh/fixme
https://github.com/leanovate/doby

14 CHAPTER 4 Refactoring

4.2.2 Toxic tests

When you’re handed a legacy project to maintain, you might count yourself lucky if it
includes some automated tests. They can often act as a good substitute for documen-
tation, and the presence of tests gives a hint that the code quality might be reasonable.
But be careful: there are some kinds of tests that are worse than no tests at all. I call
these toxic tests. Let’s have a look at some of them.

TESTS THAT DON’T TEST ANYTHING

The basic template for a good software test, no matter whether it’s manual or auto-
mated, unit, functional, system, or whatever, can be summed up in just three words:
given-when-then.

 Given some preliminary conditions and assumptions,
 when I do this
 then this should be the result.

Surprisingly often I encounter tests in legacy projects that don’t fit this simple pattern.
I see a lot of tests that are missing the “then” part, meaning that they don’t include any
assertions to check the result of the test against what was expected.

 Imagine that World of RuneQuest uses an event bus to manage in-game events and
their corresponding notifications. For example, when a player proposes a treaty with
another player, an event is posted to the event bus. A listener might pick up this event
and send a notification mail to the player in question. The event bus is implemented
using a bounded queue data structure that automatically discards the oldest element
when it becomes full, in order to bound the amount of memory used. Here’s the
JUnit 3 test that the original developer wrote to check that the bounded queue
worked as expected.

public void testWorksAsItShould() {
 int queueSize = 5;
 BoundedQueue<Integer> queue =
 new BoundedQueue<Integer>(queueSize);
 for (int i = 1; i <= 20; i++) {
 queue.enqueue(i);
 }
 while (!queue.isEmpty()) {
 System.out.println(queue.dequeue());
 }
}

Most likely the test was written before the days of CI, so the author never expected it to
be run more than once. They ran the test, manually verified that the numbers printed
to the screen matched what they expected, and then forgot about it.

 But these days that kind of testing just doesn’t cut the mustard. We want our auto-
mated tests to guard against regressions, but the preceding test doesn’t. Even if you
accidentally change the behavior of the BoundedQueue class, the test won’t fail; it will
simply spit out a different set of numbers to the console.

15Common legacy code traits and refactorings

 Tests like this one are particularly toxic because they look and feel like a test, even
though they aren’t testing anything at all. They falsely inflate the project’s test count
and test coverage, giving developers a false sense of security. The solution is simple:
either fix the test by adding proper assertions, or delete it. (In this particular case, an
even better solution would be to delete both the test and the BoundedQueue class itself,
replacing it with a trustworthy third-party implementation such as Guava’s Evicting-
Queue.)

BRITTLE TESTS

Good unit tests can prove valuable when refactoring, by providing assurances that the
behavior of given parts of the codebase is preserved. But if you find that tests often
break when you refactor, it may be a sign that the tests are too brittle. In this case, the
tests become a hindrance, as you end up spending more time fixing them than refac-
toring.

 A common cause of fragility is unit testing at too fine-grained a level. Continuing
our BoundedQueue example, imagine you wrote a test for it like the following (this
time using JUnit 4 syntax).

@Test
public void wibbleFlagIsSet() throws Exception {
 int queueSize = 5;
 BoundedQueue<Integer> queue =
 new BoundedQueue<Integer>(queueSize);

 Field wibble =

Expose the private
field “wibble”

 BoundedQueue.class.getDeclaredField("wibble");
 wibble.setAccessible(true);

 assertThat(wibble.getBoolean(queue), is(false));

Flag should
start off
false

 for (int i = 1; i <= queueSize; i++) { Fill the queue
 queue.push(i);
 }

 assertThat(wibble.getBoolean(queue), is(true));

Flag should
now be true

}

This test uses Java reflection hackery to expose a private field and check its value. So if
you ever remove or rename this field in the course of a refactoring, the test will break.

 In general there’s no need to write tests like this. We should be testing the behav-
ior that components expose to each other, not any internal state they might be hold-
ing. If you ever find a test that’s accessing private members of a class, or you find
yourself wanting to write one, it might be a hint that the class contains too much state
or is doing too much. You should consider splitting it into smaller classes that are eas-
ier to test.

RANDOMLY FAILING TESTS

A good test is completely deterministic, meaning that its result shouldn’t be affected by
changes in CPU load, thread scheduling, network congestion, other tests running in
parallel, or any other external factor. But some tests don’t achieve this gold standard

16 CHAPTER 4 Refactoring

and will fail occasionally. Examples include concurrency tests that depend on process-
ing completing within a certain timeout, and integration tests that depend on the con-
tents of an external database or filesystem.

 These tests are dangerous, as they lead developers to start treating a test suite with
a few failing tests as normal. Your test suite should be as simple as possible to under-
stand: zero failing tests = GOOD, anything else = THE SKY IS FALLING! It’s difficult to
maintain this sense of urgency if two or three tests in your suite fail occasionally. Con-
sequently, any randomly failing tests should be

 Fixed —If it is easy to do so
 Disabled —If they can be fixed but you don’t have time to do so right now
 Deleted or rewritten —If they look very difficult to fix

4.2.3 A glut of nulls

Tony Hoare, the inventor of the null reference, calls the following his “billion-dollar
mistake.”

if (x == 0) {
 return null; NOOOOOOO!!!
}

Null references are the bane of the programmer’s existence, and my heart sinks every
time I see a NullPointerException (or .NET’s equivalent NullReferenceException).

 The use of null makes it more difficult to read and write code because nullability
is not made explicit, at least in languages like Java. When reading a block of code, it’s
not obvious that a given variable might be null, so the reader must remember to keep
the implicit nullability of references in mind at all times.

 Modern languages strive to make developers’ lives easier concerning null. Kotlin,
for example, builds the concept of nullability into its type system, so that String and
String? are separate types (non-nullable and nullable strings, respectively). The com-
piler is also smart enough to know whether you’ve performed a null check on a
nullable reference, so that this will fail to compile:

print(player.getCharacterId())

In contrast, the next example will compile just fine:

if (player != null) {
 print(player.getCharacterId())
}

Scala provides an Option type in its standard library to reduce the need for null. A
value with Option type can be either a Some(thing) or a None, where None assumes the
role for which null is used in other languages. You might wonder if there’s actually
any benefit to replacing a null with a None, but the point is that the Option type

Assuming player is
of type Player?

17Common legacy code traits and refactorings

makes the “there was no result” case more explicit and forces the developer to deal
with it, whereas a null result can be easily overlooked.

 Compare the following Java and Scala code for retrieving a Player from a data-
base. First the Java:

Player player = playerDao.findById(123);

Returns null if
player with ID 123
does not exist

System.out.println("Player name: " + player.getName());

In the Java case, the developer has forgotten to include a null check, so if player 123
isn’t found in the database, this code will throw a NullPointerException.

 Now let’s look at the same code written in Scala.

val maybePlayer = playerDao.findById(123) Returns an
Option[Player]// Do a pattern-match on the result

maybePlayer match {
 case Some(player) => println("Player name: " + player.getName())
 case None => println("No player with ID 123")
}

In this case, because the DAO gives us an Option, both the “player exists” and “player
does not exist” cases are obvious, and we’re forced to handle both cases appropriately.

 In Java it’s possible to emulate the approaches used in languages such as Scala. If
you’re using Java 8 (which is unlikely, if you’re working with legacy code), you can use
the java.util.Optional class. Otherwise, Google’s Guava library contains, among a
host of other useful utilities, a class called com.google.common.base.Optional. The
following code shows one way you could rewrite the previous code using Java 8’s
Optional.

Optional<Player> maybePlayer = playerDao.findById(123);
if (maybePlayer.isPresent()) {
 System.out.println("Player name: " + maybePlayer.get().getName());
} else {
 System.out.println("No player with ID 123");
}

If you have a lot of legacy Java code that uses null extensively and you don’t want to
rewrite it all to use Optional, there’s a simple way to keep track of null-ness and thus
make your code more readable. JSR 305 standardized a set of Java annotations that
you can use to document the nullability (or otherwise) of various parts of your code.
This can be useful purely as documentation, to make the code more readable, but the
annotations are also recognized by tools such as FindBugs and IntelliJ IDEA, which will
use them to aid static analysis and thus find potential bugs.

 To use these annotations, first add them to your project’s dependencies:

<dependency>
 <groupId>com.google.code.findbugs</groupId>
 <artifactId>jsr305</artifactId>
 <version>3.0.0</version>
</dependency>

18 CHAPTER 4 Refactoring

Once you’ve done that, you can add annotations such as @Nonnull, @Nullable, and
@CheckForNull to your code. It’s good to get into the habit of adding these annota-
tions whenever you read through legacy code, both to aid your own understanding
and to make life easier for the next reader. The following sample shows a method with
JSR 305 annotations added.

@CheckForNull
public List<Player> findPlayersByName(@Nonnull String lastName,
 @Nullable String firstName) {
 ...
}

Here the @CheckForNull annotation means that the method might return null (per-
haps if there are no matches or if an error occurred), the @Nonnull annotation means
that the first parameter must not be null, and the @Nullable annotation means that
it’s OK to pass null as the second parameter.

Null in other languages
Languages other than Java treat null in different ways. Ruby, for example, has the
nil object, which acts in a “falsey” way, so you often don’t need to check whether a
variable is nil before referencing it.

Regardless of the language, you can generally use the Null Object pattern, whereby
you define your own object to represent the absence of a value, instead of relying on
the language’s built-in null. Wikipedia has some simple examples of the Null Object
pattern in various languages here: https://en.wikipedia.org/wiki/Null_Object
_pattern.

4.2.4 Needlessly mutable state

Unnecessary use of mutability ranks alongside overuse of null in terms of making
code difficult to read and debug. In general, making objects immutable makes it eas-
ier for a developer to keep track of the state of a program. This is especially true in
multithreaded programming—there’s no need to worry about what happens when
two threads try to alter the same object at the same time, because the object is immu-
table and can’t be altered in the first place.

 Mutable state is common in legacy Java code for a couple of reasons:

 Historical —Back in the day when Java Beans were cool, it was standard practice
to make all model classes mutable, with getters and setters.

 Performance —Using immutable objects often results in more short-lived objects
being created and destroyed. This object churn caused early Java GCs to strug-
gle, but it usually isn’t a problem for modern GCs such as HotSpot’s G1.

https://en.wikipedia.org/wiki/Null_Object_pattern
https://en.wikipedia.org/wiki/Null_Object_pattern

19Common legacy code traits and refactorings

Mutability certainly has its place (for example, modeling a system as a finite state
machine is a useful technique that entails mutability), but I usually design code to be
immutable by default, only introducing mutability if it makes the code easier to reason
about or if profiling has shown the immutable code to be a performance bottleneck.

 Taking an existing mutable class and making it immutable usually goes something
like this.

1 Mark all fields as final.
2 Add constructor arguments to initialize all fields. You may also want to intro-

duce a builder, as shown earlier in the chapter.
3 Update all setters to create a new version of the object and return it. You might

want to rename the methods to reflect this change in behavior.
4 Update all client code to make it use instances of the class in an immutable

fashion.

Imagine that players of World of RuneQuest can acquire and use magic spells. There
are only a few different spells, and they’re large, heavyweight objects, so for memory
efficiency it would be nice if you could have only one singleton object in memory for
each spell, and share them among many different players. However, the spells are cur-
rently implemented in a mutable fashion, whereby the Spell object keeps track of how
many times its owner has used it, so you can’t share a given spell object between multi-
ple users. The following sample shows the current, mutable implementation of Spell.

class Spell {
 private final String name;
 private final int strengthAgainstOgres;
 private final int wizardry;
 private final int magicalness; Lots more fields

 private int timesUsed = 0; Only this field is mutable

Constructor, other
methods ... public void useOnce() {

 this.timesUsed += 1;
 }
}

If, however, we move the timesUsed field out of Spell, the class will become com-
pletely immutable, and thus safe to share among all users. We could create a new class
SpellWithUsageCount that holds the Spell instance and the usage count, as shown in
the following sample. Note that the new SpellWithUsageCount class is also immutable.

class SpellWithUsageCount {
 public final Spell spell; Spell#timesUsed

field has been
removed

 public final int timesUsed;

 public SpellWithUsageCount(Spell spell, int timesUsed) {
 this.spell = spell;
 this.timesUsed = timesUsed;

20 CHAPTER 4 Refactoring

 }

 /**
 * Increment the usage count.
 * @return a copy of this object, with the usage count incremented by one
 */
 public SpellWithUsageCount useOnce() {
 return new SpellWithUsageCount(spell, timesUsed + 1);
 }

}

This is an improvement over the original code for a couple of reasons. First, we can
now share the heavyweight Spell objects between all players in the system, with no
danger of one player’s actions accidentally affecting another player’s state, so we can
save a lot of memory. We’re also safe from any potential concurrency bugs whereby
two threads try to update the same Spell at the same time, resulting in corrupted
state. Immutable objects are safe to share both between multiple objects and between
threads.

Immutability in other languages
Mainstream languages other than Java provide differing degrees of support for immu-
tability.

 C# has good support for immutability. It has the readonly keyword to mark a
specific field as write-once (meaning it’s immutable once it has been initial-
ized), and anonymous types are an easy way to create immutable objects.
The standard library also contains some immutable collections.

 Dynamic languages such as Python, Ruby, and PHP don’t provide much support
for immutability, and idiomatic code written in those languages tends to be writ-
ten in a mutable style. Python at least provides the ability to “freeze” instances
of some built-in types, such as set. For Ruby, Hamster (https://github.com
/hamstergem/hamster) is a nice library of immutable collections.

4.2.5 Byzantine business logic

The business logic in legacy applications can often seem very complicated and diffi-
cult to follow. This is usually for a couple of reasons.

 The business rules really are complicated. Or rather, they started off simple and
gradually became more complicated over time. Over the years that the system
has been in production, more and more special cases and exemptions have
been added.

 Business logic is intertwined with other processing such as logging and excep-
tion handling.

https://github.com/hamstergem/hamster
https://github.com/hamstergem/hamster

21Common legacy code traits and refactorings

Let’s look at an example. Imagine that World of RuneQuest generates some of its rev-
enue from banner ads, and the following class is responsible for choosing a banner ad
to display to a given player on a given page.

public class BannerAdChooser {
 private final BannerDao bannerDao = new BannerDao();
 private final BannerCache cache = new BannerCache();

 public Banner getAd(Player player, Page page) {
 Banner banner;
 boolean showBanner = true;

 // First try the cache
 banner = cache.get(player, page);

 if (player.getId() == 23759) {
 // This player demands not to be shown any ads.
 // See support ticket #4839
 showBanner = false;
 }

 if (page.getId().equals("profile")) {
 // Don't show ads on player profile page
 showBanner = false;
 }

 if (page.getId().equals("top") &&
 Calendar.getInstance().get(DAY_OF_WEEK) == WEDNESDAY) {
 // No ads on top page on Wednesdays
 showBanner = false;
 }

 if (player.getId() % 5 == 0) {
 // A/B test - show banner 123 to these players
 banner = bannerDao.findById(123);
 }

 if (showBanner && banner == null) {
 banner = bannerDao.chooseRandomBanner();
 }

 if (banner.getClientId() == 393) {
 if (player.getId() == 36645) {
 // Bad blood between this client and this player!
 // Don't show the ad.
 showBanner = false;
 }
 }

Dozens more checks
and conditions ...

 // cache our choice for 30 minutes
 cache.put(player, page, banner, 30 * 60);

 if (showBanner) {
 // make a record of what banner we chose
 logImpression(player, page, banner);
 }

 return banner;
 }

}

22 CHAPTER 4 Refactoring

All of these special cases that have accumulated over
the years have made the method very long and
unwieldy. They’re all necessary, as far as we know, so
we can’t just delete them, but we can refactor the
code to make it easier to read, test, and maintain.
Let’s combine a couple of standard design patterns,
Decorator and Chain of Responsibility, to refactor
the BannerAdChooser. The plan is as follows.

1 Use the Chain of Responsibility pattern to sepa-
rate business rules into their own testable unit.

2 Use the Decorator pattern to separate the
implementation details (caching and logging)
from the business logic.

Once we’re finished, a conceptual view of our code
should look something like figure 4.8.

 First, we’ll create an abstract Rule class that each
of our business rules will extend. Each concrete sub-
class will have to implement two methods: one to
decide whether the rule applies to a given player and
page, and another to actually apply the rule.

abstract class Rule {
 private final Rule nextRule;

 protected Rule(Rule nextRule) {
 this.nextRule = nextRule;
 }

 /**
 * Does this rule apply to the given player and page?
 */
 abstract protected boolean canApply(Player player, Page page);

 /**
 * Apply the rule to choose a banner to show.
 * @return a banner, which may be null
 */
 abstract protected Banner apply(Player player, Page page);

 Banner chooseBanner(Player player, Page page) {
 if (canApply(player, page)) {
 // apply this rule
 return apply(player, page);
 } else if (nextRule != null) {
 // try the next rule
 return nextRule.chooseBanner(player, page);
 } else {
 // ran out of rules to try!
 return null;
 }
 }
}

Logging

Caching

Business logic

Rule

Rule

Rule

Figure 4.8 Our plan for refactoring
the BannerAdChooser class
using the Chain of Responsibility
and Decorator patterns

23Common legacy code traits and refactorings

Next, we’ll write a concrete subclass of Rule for each of our business rules. I’ll show a
couple of examples.

final class ExcludeCertainPages extends Rule {

 // Pages on which banners should not be shown
 private static final Set<String> pageIds =
 new HashSet<>(Arrays.asList("profile"));

 public ExcludeCertainPages(Rule nextRule) {
 super(nextRule);
 }

 protected boolean canApply(Player player, Page page) {
 return pageIds.contains(page.getId());
 }

 protected Banner apply(Player player, Page page) {
 return null;
 }
}

final class ABTest extends Rule {
 private final BannerDao dao;

 public ABTest(BannerDao dao, Rule nextRule) {
 super(nextRule);
 this.dao = dao;
 }

 protected boolean canApply(Player player, Page page) {
 // check if player is in A/B test segment
 return player.getId() % 5 == 0;
 }

 protected Banner apply(Player player, Page page) {
 // show banner 123 to players in A/B test segment
 return dao.findById(123);
 }
}

Once we have our Rule implementations, we can chain them together into a Chain of
Responsibility.

Rule buildChain(BannerDao dao) {
 return new ABTest(dao,

Only showing a few links
of the chain, for brevity

 new ExcludeCertainPages(
 new ChooseRandomBanner(dao)));
}

Whenever we want to choose a banner to show, each rule will be tried in turn until a
matching one is found.

 Now that we have our business rules cleanly isolated from each other, the next step
of our plan is to move the caching and logging code into decorators. First let’s extract
an interface from the BannerAdChooser class. Each of our decorators will implement
this interface.

24 CHAPTER 4 Refactoring

 We’ll use the name BannerAdChooser for the interface and rename the concrete
class to BannerAdChooserImpl. (This is a horrible name, but we’re about to replace
this class anyway.)

interface BannerAdChooser {

 public Banner getAd(Player player, Page page);

}

final class BannerAdChooserImpl implements BannerAdChooser {

 public Banner getAd(Player player, Page page) {
 ...
 }

}

Next we’ll split the method into a base case and a couple of decorators. The base case
will be the main Chain of Responsibility-based implementation.

final class BaseBannerAdChooser implements BannerAdChooser {
 private final BannerDao dao = new BannerDao();
 private final Rule chain = createChain(dao);

 public Banner getAd(Player player, Page page) {
 return chain.chooseBanner(player, page);
 }
}

We’ll also have decorators that transparently take care of caching and logging
respectively.

 The following code shows a decorator for wrapping the existing banner ad logic
with caching. When asked for an ad, it first checks if it already has an appropriate ad
in its cache. If so, it returns it. Otherwise, it delegates the choice of ad to the underly-
ing BannerAdChooser, and then caches the result.

final class CachingBannerAdChooser implements BannerAdChooser {
 private final BannerCache cache = new BannerCache();
 private final BannerAdChooser base;

 public CachingBannerAdChooser(BannerAdChooser base) {
 this.base = base;
 }

 public Banner getAd(Player player, Page page) {
 Banner cachedBanner = cache.get(player, page);
 if (cachedBanner != null) {
 return cachedBanner;
 } else {
 // Delegate to next layer
 Banner banner = base.getAd(player, page);
 // Store the result in the cache for 30 minutes
 cache.put(player, page, banner, 30 * 60);
 return banner;
 }
 }
}

25Common legacy code traits and refactorings

The next code segment shows another decorator, this time for adding logging. The
choice of ad is delegated to the underlying BannerAdChooser, and then the result is
logged before being returned to the caller.

final class LoggingBannerAdChooser implements BannerAdChooser {
 private final BannerAdChooser base;

 public LoggingBannerAdChooser(BannerAdChooser base) {
 this.base = base;
 }

 public Banner getAd(Player player, Page page) {
 // Delegate to next layer
 Banner banner = base.getAd(player, page);
 if (banner != null) {
 // Make a record of what banner we chose
 logImpression(player, page, banner);
 }
 return banner;
 }

 private void logImpression(...) {
 ...
 }
}

Finally, we need a factory to take care of wiring up all our decorators in the correct
order.

final class BannerAdChooserFactory {

 public static final BannerAdChooser create() {
 return new LoggingBannerAdChooser(
 new CachingBannerAdChooser(
 new BaseBannerAdChooser()));
 }

}

Now that we’ve separated each business rule into a separate class and separated the
implementation concerns of caching and logging from the business logic, the code
should be easier to read, maintain, and extend. Both the Chain of Responsibility and
Decorator patterns make it very easy to add, remove, or reorder layers as needed.
Also, each business rule and implementation concern can now be tested in isolation,
which was not possible before.

4.2.6 Complexity in the view layer

The Model-View-Controller pattern is commonly used in applications that provide a
GUI, especially web applications. In theory, all business logic is kept out of the view
and encapsulated inside the model, while the controller takes care of the details of
accepting user input and manipulating the model.

26 CHAPTER 4 Refactoring

 In practice, however, it’s easy for logic to infect the view layer. This is often a conse-
quence of trying to reuse the same model for multiple purposes. For example, a
model that’s designed for easy serialization to a relational database will directly reflect
the DB schema, but this model is probably not suitable for being passed as-is to the
view layer. If you try to do so, you’ll end up having to put a lot of logic into the view
layer to transform the model into a form suitable for showing to the user.

 This accumulation of logic in the view layer is a problem for a few reasons:

 The technologies used in the view layer (such as JSP in a Java web application)
are usually not amenable to automated testing, so the logic contained within
them can’t be tested.

 Depending on the technology used, the files in the view layer might not be
compiled, so errors can’t be caught at compile time.

 You might want people such as visual designers or front-end engineers to work
on the view layer, but this is difficult if the markup is interspersed with snippets
of source code.

We can alleviate these problems by introducing a transformation layer between the
model and the view. This layer, as shown in figure 4.9, is sometimes called a presentation
model or a ViewModel, but I tend to call it a view adapter. By moving the logic out of the
view and into the view adapter, we can simplify the view templates, making them more
readable and easier to maintain. This also makes the transformation logic easier to
test, because the view adapters are plain old objects, with no dependencies on the view
technology, and can thus be tested just like any other source code.

Model

DB

Before

View

Logic

Model

View

DB

After

View adapter

Logic

Figure 4.9 Introducing a view adapter

 Let’s look at an example. World of RuneQuest has a CharacterProfile object that
holds information about a player’s character: name, species, special skills, and so on.

27Common legacy code traits and refactorings

This model is passed to a JSP in order to render the character profile page. The Char-
acterProfile is shown here.

class CharacterProfile {
 String name;
 Species species;
 DateTime createdAt;
 ...
}

The following code is a snippet of the JSP.

<table>
 <tr>
 <td>Name</td>
 <td>${profile.name}</td>
 </tr>

 <c:choose>
 <c:when test="${species.name == 'orc'>
 <c:set var="speciesTextColor" value="brown" />
 </c:when>
 <c:when test="${species.name == 'elf'>
 <c:set var="speciesTextColor" value="green" />
 </c:when>
 <c:otherwise>
 <c:set var="speciesTextColor" value="black" />
 </c:otherwise>
 </c:choose>
 <tr>
 <td>Species</td>
 <td style="color: $speciesTextColor">${profile.species.name}</td>
 </tr>

 <%
 CharacterProfile profile = (CharacterProfile)(request.getAttribute("profi

le"));
 DateTime today = new DateTime();
 Days days = Days.daysBetween(profile.createdAt, today);
 request.setAttribute("ageInDays", days.getDays());
 %>
 <tr>
 <td>Age</td>
 <td>${ageInDays} days</td>
 </tr>
</table>

This JSP is horrible! It has logic jumbled together with presentation, making it very
hard to read. Let’s introduce a view adapter and pass that to the JSP, instead of passing
the CharacterProfile model directly.

 In the following code, I’ve extracted all the logic from the JSP and put it into a view
adapter. I could have called the class CharacterProfileViewAdapter, but that’s a bit
of a mouthful. For brevity’s sake I usually follow the view adapter class for a Foo model
as FooView.

28 CHAPTER 4 Refactoring

class CharacterProfileView {
 private final CharacterProfile profile:

 public CharacterProfileView(CharacterProfile profile) {
 this.profile = profile;
 }

 public String getName() {
 // return the underlying model's property as is
 return profile.getName();
 }

 public String getSpeciesName() {
 return profile.getSpecies().getName();
 }

 public String getSpeciesTextColor() {
 if (profile.getSpecies().getName().equals("orc")) {
 return "brown";
 } else if (profile.getSpecies().getName().equals("elf")) {
 return "green";
 } else {
 return "black";
 }
 }

 public int getAgeInDays() {
 DateTime today = new DateTime();
 Days days = Days.daysBetween(profile.createdAt, today);
 return days.getDays();
 }

 ...

}

The next code snippet shows how the JSP looks when we make use of the view adapter.

<table>
 <tr>
 <td>Name</td>
 <td>${profile.name}</td>
 </tr>
 <tr>
 <td>Species</td>
 <td style="color: ${profile.speciesTextColor}">${profile.speciesName}</td

>
 </tr>
 <tr>
 <td>Age</td>
 <td>${profile.ageInDays} days</td>
 </tr>
</table>

There, that’s better! The logic is now contained in a testable Java class, and the tem-
plate is much more readable than before.

 It’s worth noting that if you don’t trust yourself to keep logic out of the view layer,
you can force yourself to do by choosing a logic-less template technology for your

29Testing legacy code

views. I’ve had success with logic-less template languages such as Mustache for build-
ing simple, readable views for web applications. The templates can be written and
maintained by web designers, allowing the developers to focus on the business logic.

APPLICABILITY TO OTHER LANGUAGES The View Adapter pattern is not specific
to Java and JSP templates. It’s useful no matter whether you’re using Ruby and
ERB, ASP.NET, or any other technology. Whenever you have an application
with a UI of some kind, you can and should keep complex logic out of the
view layer.

4.3 Testing legacy code
When refactoring legacy code, automated tests can provide valuable assurances that
the refactoring has not inadvertently affected the behavior of the software. In this sec-
tion I’ll talk about how to write these automated tests, and what to do when you’re
faced with untestable code.

4.3.1 Testing untestable code

Before you start refactoring, you want to have unit tests in place. But before you can
write unit tests, you need to refactor the code to make it testable. But before you start
refactoring, you want to have unit tests in place ...

Further reading
I’ve just scratched the surface in this brief foray into refactoring. If you’d like to learn
more about refactoring, there are plenty of excellent books dedicated to the subject.
Here are three recommendations.

 Refactoring: Improving the Design of Existing Code by Martin Fowler et al.
(Addison-Wesley Professional, 1999). Although it’s getting a little dated (it
was written when Java was at version 1.2), it’s a classic and still a great refer-
ence. It takes a pattern-based approach, describing in what situation you
might want to use a particular refactoring.

 Refactoring to Patterns by Joshua Kerievsky (Addison-Wesley Professional,
2004). This book cleverly shows how you can take legacy code that lacks a
clear structure, and migrate it toward well-known design patterns using the
refactorings described in Martin Fowler’s book. If you want to brush up on
design patterns before reading this book, read Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley Professional, 1994), also
known as the Gang of Four book.

 Principle-Based Refactoring by Steve Halladay (Principle Publishing, 2012).
This book is full of useful refactoring techniques, but it takes more of a “teach
a man to fish” approach, promoting the value of studying the underlying princi-
ples of software design rather than slavishly learning dozens of rules by rote.

30 CHAPTER 4 Refactoring

 This chicken-and-egg situation is something we often face when trying to retroac-
tively add tests to legacy code. If we insist on having unit tests in place before refactor-
ing, then it seems like an unbreakable paradox. But it’s worth remembering that if we
can manage to get a few tests in place, we can start refactoring, making the software
more testable, allowing us to write more tests, in turn allowing more refactoring, and
so on.

 Think of it like peeling an orange. At first it seems perfectly round and impenetra-
ble, but once you apply a little force to break the skin, the thing practically peels itself.
So we need to lower our standards temporarily in order to break the skin and get our
first few tests in place. When we do this, we can use code review to make up for the
lack of tests.

 Our first priority when trying to make code testable is to isolate it from its depen-
dencies. We want to replace all of the objects that the code interacts with, with objects
that we control. That way we can feed it whatever inputs we like and measure its
response, whether it consists of returning a value or calling methods on other objects.

 Let’s look at an example of how we can refactor a piece of legacy code in order to
get it into a test harness. Imagine we want to write tests for the Battle class, which is
used when two players fight each other in World of RuneQuest. Unfortunately, Battle
is riddled with dependencies on a so-called “God class,” a 3,000-line monster of a class
called Util. This class is filled with static methods that do all kinds of useful things,
and it’s referenced from all over the place.

BEWARE THE UTIL Whenever you see a class with Util in the name, alarm
bells should start ringing in your head. It may well be a good candidate for
refactoring, if only to rename it to something more meaningful.

Here’s how the code looks before we start.

public class Battle {
 private BattleState = new BattleState();
 private Player player1, player2;

 public Battle(Player player1, Player player2) {
 this.player1 = player1;
 this.player2 = player2;
 }

 ...

 public void registerHit(Player attacker, Weapon weapon) {
 Player opponent = getOpponentOf(attacker);
 int damageCaused = calculateDamage(opponent, weapon);
 opponent.setHealth(opponent.getHealth() - damageCaused);

 Util.updatePlayer(opponent);

 updateBattleState();
 }

31Testing legacy code

 public BattleState getBattleState() {
 return battleState;
 }

 ...

}

The class has a nice, simple constructor, so we can easily construct an instance in
order to test it. It also has a public method exposing its internal state, which should be
useful for our tests. We have no idea what that suspicious call to Util.updatePlayer
(opponent) is doing, but let’s ignore it for now and try writing a test.

public class BattleTest {

 @Test
 public void battleEndsIfOnePlayerAchievesThreeHits() {
 Player player1 = ...;
 Player player2 = ...;
 Weapon axe = new Axe();
 Battle battle = new Battle(player1, player2);

 battle.registerHit(player1, axe);
 battle.registerHit(player1, axe);
 battle.registerHit(player1, axe);

 BattleState state = battle.getBattleState();
 assertThat(state.isFinished(), is(true));
 }

}

OK, let’s run the test, and ... whoops! It turns out that the Util.updatePlayer
(player) method not only writes the Player object to a database, it may also send an
email to the user to inform them that their character is unhealthy/lonely/running
out of gold. These are side effects that we definitely want to avoid in our tests. Let’s see
how we can fix this.

 Because the Battle class’s dependency is on a static method, we can’t use any
tricks such as subclassing Util and overriding the method. Instead, we’ll have to cre-
ate a new class with a method that wraps the static method call, and then have Battle
call the method on the new class. In other words, we’ll introduce a layer of indirection
between Battle and Util. In tests, we’ll be able to substitute our own implementation
of this buffer class, thus avoiding any unwanted side effects.

 First, let’s create an interface.

interface PlayerUpdater {

 public void updatePlayer(Player player);

}

We’ll also create an implementation of this interface for use in production code:

32 CHAPTER 4 Refactoring

public class UtilPlayerUpdater implements PlayerUpdater {

 @Override
 public void updatePlayer(Player player) {
 Util.updatePlayer(player);
 }

}

We now need a way to pass the PlayerUpdater to Battle, so let’s add a constructor
parameter. Notice how we create a protected constructor for use in tests, and we
avoid changing the signature of the existing public constructor.

public class Battle {
 private BattleState = new BattleState();
 private Player player1, player2;
 private final PlayerUpdater playerUpdater;

 public Battle(Player player1, Player player2) {
 this(player1, player2, new UtilPlayerUpdater());
 }

 protected Battle(Player player1, Player player2,
 PlayerUpdater playerUpdater) {
 this.player1 = player1;
 this.player2 = player2;
 this.playerUpdater = playerUpdater;
 }

 ...

 public void registerHit(Player attacker, Weapon weapon) {
 Player opponent = getOpponentOf(attacker);
 int damageCaused = calculateDamage(opponent, weapon);
 opponent.setHealth(opponent.getHealth() - damageCaused);

 playerUpdater.updatePlayer(opponent);

 updateBattleState();
 }

 ...

}

PROTECTED METHODS IN JAVA Because we added the new constructor with
protected visibility, it will only be visible to subclasses of Battle or classes in
the same package. We should put our test class in the same package as Battle
so that it can call the constructor we added.

So far we’ve made changes to the Battle class, but we think we’ve maintained the
existing behavior. Now is the time to pause, commit what we have so far, and ask a col-
league for a code review, just to check that we haven’t done anything silly. Once that’s
complete, we can move on to fixing our test.

 In the test, we could create a dummy implementation of PlayerUpdater that does
nothing, and pass it to the Battle constructor. But actually we can do better. If we use

33Testing legacy code

a mock implementation, we can also check that Battle calls our updatePlayer()
method as we expected. Let’s use the Mockito library (http://mockito.github.io/) to
create our mock implementation.

import static org.mockito.Mockito.*;

public class BattleTest {

 @Test
 public void battleEndsIfOnePlayerAchievesThreeHits() {
 Player player1 = ...;
 Player player2 = ...;
 Weapon axe = new Axe();

 PlayerUpdater updater = mock(PlayerUpdater.class);

Creates a mock
implementation
of PlayerUpdater
interface

Passes the
mock to
the Battle
instance

Battle battle = new Battle(player1, player2, updater);

 battle.registerHit(player1, axe);
 battle.registerHit(player1, axe);
 battle.registerHit(player1, axe);

 BattleState state = battle.getBattleState();
 assertThat(state.isFinished(), is(true));

 verify(updater, times(3)).updatePlayer(player2);

Checks that the
updatePlayer()
method was
called 3 times

 }

}

Yay, we’ve broken the skin and our first working test is in place. Not only did we break
the dependency on the Util class, we also managed to verify the test subject’s interac-
tions with other classes.

Further reading
For a whole book dedicated to examples like this one, as well as detailed explana-
tions of the reasoning behind the approach taken in each case, I highly recommend
Working Effectively with Legacy Code by Michael Feathers (Prentice Hall, 2004).

4.3.2 Regression testing without unit tests

Here’s a deliberately inflammatory statement for you:

Writing unit tests before refactoring is sometimes impossible and often pointless.

Of course I’m exaggerating, but I wanted to get two points across here:

 “Sometimes impossible” is a reference to the difficulty of retroactively adding
unit tests to legacy code that wasn’t designed with testability in mind, as seen in
the previous section. Although you can try to exploit a seam in order to inject
mocks and stubs and test a piece of code in isolation, in practice this often
requires a lot of effort.

http://mockito.github.io/

34 CHAPTER 4 Refactoring

 Writing tests is “often pointless” because refactoring isn’t always restricted to an
individual unit (a single class, in object-oriented languages). If your refactoring
affects multiple units, then the very refactoring that you’re about to perform
can wipe out the value of the unit tests you’re writing.

For example, if you’re about to perform a refactoring that combines existing
classes A and B into a new class C, then there’s little point in writing tests for A
and B beforehand. As part of the refactoring, A and B will be deleted, so their
tests will no longer compile, and you’ll have to write tests for the newly created
class C anyway.

UNIT TESTS ARE NOT A SILVER BULLET

If your refactoring is going to break unit tests, you need to have a backup—functional
tests for the module that contains those units. Likewise, if you’re planning a larger-
scale refactoring of a whole module, then you need to be prepared for your refactor-
ing to break all of that module’s tests. You’ll need to have tests in place at a higher
level, that can survive the refactoring. As a general rule, you should make sure that
you have tests at a level of modularity one level higher than the code that will be affected
by your refactoring.

 For this reason, it’s important to build up a suite of tests at multiple levels of mod-
ularity (see figure 4.10). When working with legacy code that wasn’t designed for test-
ability, it’s often easiest to start at the outside, writing system tests, and then working
your way in as far as you can.

System

Component

Levels of modularity

Module

Unit

System tests

Integration tests

Levels of testing

Functional tests

Unit
tests

Figure 4.10 Levels of modularity and their corresponding tests

DON’T GET HUNG UP ON COVERAGE

Because test coverage is easy to measure, and increasing it is quite a satisfying pastime,
it’s easy to focus on it too much. But when you’ve inherited code with a very low test
coverage, and you’re trying to add tests retroactively to untestable code, getting test
coverage up to what you consider an acceptable level can require a mammoth effort.
I’ve seen a number of teams inherit code with test coverage of less than 10%, spend

35Testing legacy code

weeks trying to increase the coverage, and then give up at around 20% with no notice-
able improvement in quality or maintainability. (I also saw a team inherit a large C#
codebase with no tests, and 18 months later they had achieved their goal of 80% cov-
erage, so there are exceptions to every rule!)

 The problem with setting an arbitrary goal of improved test coverage is that you’ll
start by writing the easiest tests first. In other words, you’ll write dozens of tests for

 Code that happens to be easily testable, neglecting more important but less test-
able parts of the codebase

 Code that is well written and easy to reason about, even though a code review
might be enough to verify that this code works as expected

AUTOMATE ALL YOUR TESTS

Most developers would agree that unit tests should be fully automated, but the level of
automation for other kinds of tests (such as integration tests) is often much lower.
Although we want to run these tests as often as possible when refactoring, in order to
spot regressions quickly, we can’t do so if they rely on manual labor. Even if we had an
army of willing testers to rerun the whole integration test suite every time we made a
commit, it’s possible that they would forget to run a test, or misinterpret the results.
Plus it would slow down the development cycle. Ideally we want all of our regression
tests, not just the unit tests, to be 100% automated.

 One area that cries out for automation is UI testing. Whether you’re testing a desk-
top application, a website, or a smartphone app, there’s a huge selection of tools avail-
able to help you automate your tests. For example, tools such as Selenium and
Capybara make it easy to write automated web UI tests. The following code sample
shows a Capybara script that you could use to test World of RuneQuest’s player profile
page, which you saw earlier in the chapter. This simple Ruby script opens a web
browser, logs in to World of RuneQuest, opens the My Profile page, and checks that it
contains the correct content, all within a matter of seconds.

require "rspec"
require "capybara"
require "capybara/dsl"
require "capybara/rspec"

Capybara.default_driver = :selenium
Capybara.app_host = "http://localhost:8080"

describe "My Profile page", :type => :feature do

 it "contains character's name and species" do
 visit "/"

Login as a
known
test user

 fill_in "Username", :with => "test123"
 fill_in "Password", :with => "password123"
 click_button 'Login'

 visit "/profile"

Opens the 'My Profile'
page and checks its
content

 expect(find("#playername")).to have_content "Test User 123"
 expect(find("#speciesname")).to have_content "orc"
 end

end

36 CHAPTER 4 Refactoring

This test can easily be run by a developer on their local machine or by a CI server such
as Jenkins. It could also be configured to run in headless mode instead of opening
and manipulating a web browser, in order to speed up the test execution.

 Of course, it’s not possible to test everything in your application using UI tests
alone, but they make a valuable addition to your test suite, especially when working
with legacy code that may be difficult to test by other means.

4.3.3 Make the users work for you

You’ve done pair programming, you’ve conducted code reviews, you’ve run your unit
tests, functional tests, integration tests, system tests, UI tests, performance tests, load
tests, smoke tests, fuzz tests, wobble tests (OK, I made that last one up), and they’ve all
passed. This means your software has no bugs, right?

 No, of course not! No matter how much testing you do, there will always be a pat-
tern you haven’t managed to check. Every test that you run before release is, in a
sense, an attempt to emulate the actions of a typical user, based on your best guess
about how users will use the software. But the quality and rigor of this simulacrum will
never match the real thing—the users themselves. So why not put this army of unwit-
ting testers to good use?

 You can make use of user data to help ensure the quality of your software in a few
ways.

 Perform gradual rollouts of new releases, while monitoring for errors and regressions. If
you start to see unusually high error counts, you can stop the rollout, investigate
the cause, and either roll back to the previous version or fix the problem before
continuing the release. Of course, error monitoring and subsequent rollback
can be automated. Google is one company known for its dedication to gradual
rollouts, with major releases of Android taking many weeks to reach all devices.

 Gather real user data and use it to make your tests more productive. When load testing
a web application, it’s difficult to generate traffic that reflects real usage pat-
terns, so why not record the traffic of a few real users and feed that into your
test scripts?

 Perform stealth releases of new versions, whereby software is released into the production
environment but not yet visible to the users. All traffic is sent to both the old and new
versions, so you can see how the new version works against real user data.

4.4 Summary
 Successful refactoring takes discipline. Perform refactorings in a structured way

and avoid combining them with other work.
 Removal of stale code and low-quality tests is a nice way to get the refactoring

ball rolling.
 Use of null pointers is a very common source of bugs, no matter what language

you’re using.

37Summary

 Prefer immutable state over mutable.
 Use standard design patterns to separate business logic from implementation

details or to make complex business logic more manageable and composable.
 Use the View Adapter pattern to keep complex logic out of your application’s

view layer.
 Beware any class or module with Util in the name.
 Introduce a layer of indirection in order to inject mock dependencies in tests.
 Unit tests aren’t a silver bullet. You need tests at multiple levels of abstraction to

protect against regressions caused by refactoring.
 Automate as many tests as possible—not only the unit tests.

38 CHAPTER 4 Refactoring

As a developer, you may inherit projects built on exist-
ing codebases with design patterns, usage assumptions,
infrastructure, and tooling from another time and ano-
ther team. Fortunately, there are ways to breathe new
life into legacy projects so you can maintain, improve,
and scale them without fighting their limitations.

 Re-Engineering Legacy Software is an experience-
driven guide to revitalizing inherited projects. It covers
refactoring, quality metrics, toolchain and workflow,
continuous integration, infrastructure automation,
and organizational culture. You’ll learn techniques for
introducing dependency injection for code modular-

ity, quantitatively measuring quality, and automating infrastructure. You’ll also
develop practical processes for deciding whether to rewrite or refactor, organizing
teams, and convincing management that quality matters. Core topics include deci-
phering and modularizing awkward code structures, integrating and automating tests,
replacing outdated build systems, and using tools like Vagrant and Ansible for infra-
structure automation.

What's inside:

 Refactoring legacy codebases
 Continuous inspection and integration
 Automating legacy infrastructure
 New tests for old code
 Modularizing monolithic projects

This book is written for developers and team leads comfortable with an OO language
like Java or C#.

https://www.manning.com/books/re-engineering-legacy-software
https://www.manning.com/books/re-engineering-legacy-software

Microservices are more than just the latest buzzword. They allow inde-
pendent scaling, enforce componentization, and fix many of the issues associ-
ated with monolithic n-tier architectures. In this chapter from Microservices in
.NET Core by Christian Horsdal Gammelgaard, you’ll learn how to carve out
microservices from a design or an existing application. Whether refactoring leg-
acy software or building a new application, microservices offer a lot of advan-
tages that are introduced in this selection.

Identifying and
Scoping Microservices

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core

40

Chapter 3 from Microservices in .NET Core
by Christian Horsdal Gammelgaard.

 Identifying and
 scoping microservices

To succeed with microservices, it’s important to be good at scoping each microser-
vice appropriately. If your microservices are too big, the turnaround on creating new
features and implementing bug fixes becomes too long. If they’re too small, the cou-
pling between microservices tends to grow. If they’re the right size but have the
wrong boundaries, coupling also tends to grow, and higher coupling leads to longer
turnaround. In other words, if you aren’t able to scope your microservices correctly,
you’ll lose much of the benefit microservices offer. In this chapter, I’ll teach you how
to find a good scope for each microservice so they stay loosely coupled.

 The primary driver in identifying and scoping microservices is business capabil-
ities; the secondary driver is supporting technical capabilities. Following these two

This chapter covers
 Scoping microservices for business capability

 Scoping microservices to support technical capabilities

 Managing when scoping microservices is difficult

 Carving out new microservices from existing ones

https://www.manning.com/books/microservices-in-net-core

41The primary driver for scoping microservices: business capabilities

drivers leads to microservices that align nicely with the list of microservice characteris-
tics from chapter 1:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A microservice consists of one or more processes.
 A microservice owns its own data store.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

Of these characteristics, the first two and last two can only be realized if the microser-
vice’s scope is good. There are also implementation-level concerns that come into
play, but getting the scope wrong will prevent the service from adhering to those four
characteristics.

3.1 The primary driver for scoping microservices:
business capabilities
Each microservice should implement exactly one capability. For example, a Shopping
Cart microservice should keep track of the items in the user’s shopping cart. The pri-
mary way to identify capabilities for microservices is to analyze the business problem
and determine the business capabilities. Each business capability should be imple-
mented by a separate microservice.

3.1.1 What is a business capability?

A business capability is something an organization does that contributes to business
goals. For instance, handling a shopping cart on an e-commerce website is a business
capability that contributes to the broader business goal of allowing users to purchase
items. A given business will have a number of business capabilities that together make
the overall business function.

 When mapping a business capability to a microservice, the microservice models
the business capability. In some cases, the microservice implements the entire busi-
ness capability and automates it completely. In other cases, the microservice imple-
ments only part of the business capability and thus only partly automates it. In both
cases, the scope of the microservice is the business capability.

Business capabilities and bounded contexts
Domain-driven design is an approach to designing software systems that’s based on
modeling the business domain. An important step is identifying the language used by
domain experts to talk about the domain. It turns out that the language used by
domain experts isn’t consistent in all cases.

(continued)
In different parts of a domain, different things are in focus, so a given word like cus-
tomer may have different focuses in different parts of the domain. For instance, for
a company selling photocopiers, a customer in the sales department may be a com-
pany that buys a number of photocopiers and may be primarily represented by a pro-
curement officer. In the customer service department, a customer may be an end
user having trouble with a photocopier. When modeling the domain of the photocopier
company, the word customer means different things in different parts of the model.

A bounded context in domain-driven design is a part of a larger domain within which
words mean the same things. Bounded contexts are related to but different from busi-
ness capabilities. A bounded context defines an area of a domain within which the
language is consistent. Business capabilities, on the other hand, are about what the
business needs to get done. Within one bounded context, the business may need to
get several things done. Each of these things is likely a business capability.

42 CHAPTER 3 Identifying and scoping microservices

3.1.2 Identifying business capabilities

A good understanding of the domain will enable you to understand how the business
functions. Understanding how the business functions means you can identify the busi-
ness capabilities that make up the business and the processes involved in delivering the
capabilities. In other words, the way to identify business capabilities is to learn about the
business’s domain. You can gain this type of knowledge by talking with the people who
know the business domain best: business analysts, the end users of your software, and so
on—all the people directly involved in the day-to-day work that drives the business.

 A business’s organization usually reflects its domain. Different parts of the domain
are handled by different groups of people, and each group is responsible for delivering
certain business capabilities; so, this organization can give you hints about how the
microservices should be scoped. For one thing, a microservice’s responsibility should
probably lie within the purview of only one group. If it crosses the boundary between
two groups, it’s probably too widely scoped and will be difficult to keep cohesive, lead-
ing to low maintainability. These observations are in line with what is known as Con-
way’s Law: 1

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

Sometimes you may uncover parts of the domain where the organization and the
domain are at odds. In such situations, there are two approaches you can take, both of
which respect Conway’s Law. You can accept that the system can’t fully reflect the
domain, and implement a few microservices that aren’t well aligned with the domain
but are well aligned with the organization; or you can change the organization to
reflect the domain. Both approaches can be problematic. The first risks building

1 Melvin Conway, “How Do Committees Invent?” Datamation Magazine (April 1968).

43The primary driver for scoping microservices: business capabilities

microservices that are poorly scoped and that might become highly coupled. The sec-
ond involves moving people and responsibilities between groups. Those kinds of
changes can be difficult. Your choice should be a pragmatic one, based on an assess-
ment of which approach will be least troublesome.

 To get a better understanding of what business capabilities are, it’s time to look at
an example.

3.1.3 Example: point-of-sale system

The example we’ll explore in this chapter is a point-of-sale system, illustrated in fig-
ure 3.1. I’ll briefly introduce the domain, and then we’ll look at how to identify busi-
ness capabilities within it. Finally, we’ll consider in more detail the scope of one of
the microservices in the system.

iPad
client

Web
client Till

iPad
client

Web
client Till

iPad
client

Web
client Till

Point-of-sales system backend

GUI clients used in stores

Price catalog
Coupons

Sales records Special offers

Invoices

iPad
client

Web
client Till

Figure 3.1 A point-of-sale system for a large chain of stores, consisting of a backend that
implements all the business capabilities in the system and thin GUI clients used by cashiers
in the stores. Microservices in the backend implement the business capabilities.

 This point-of-sale system is used in all the stores of a large chain. Cashiers at the
stores interact with the system through a thin GUI client—it could be a tablet applica-
tion, a web application, or a purpose-built till (or register, if you prefer). The GUI cli-
ent is just a thin layer in front of the backend. The backend is where all the business
logic (the business capabilities) is implemented, and it will be our focus.

44 CHAPTER 3 Identifying and scoping microservices

The system offers cashiers a variety of functions:

 Scan products and add them to the invoice
 Prepare an invoice
 Charge a credit card via a card reader attached to the client
 Register a cash payment
 Accept coupons
 Print a receipt
 Send an electronic receipt to the customer
 Search in the product catalog
 Scan one or more products to show prices and special offers related to the

products

These functions are things the system does for the cashier, but they don’t directly
match the business capabilities that drive the point-of-sale system.

IDENTIFYING BUSINESS CAPABILITIES IN THE POINT-OF-SALE DOMAIN

To identify the business capabilities that drive the point-of-sale system, you need to
look beyond the list of functions. You must determine what needs to go on behind the
scenes to support the functionality.

 Starting with the “Search in the product catalog” function, an obvious business
capability is maintaining a product catalog. This is the first candidate for a business
capability that could be the scope of a microservice. Such a Product Catalog microser-
vice would be responsible for providing access to the current product catalog. The
product catalog needs to be updated every so often, but the chain of stores uses
another system to handle that functionality. The Product Catalog microservice would
need to reflect the changes made in that other system, so the scope of the Product
Catalog microservice would include receiving updates to the product catalog.

 The next business capability you might identify is applying special offers to
invoices. Special offers give the customer a discounted price when they buy a bundle
of products. A bundle may consist of a certain number of the same product at a
discounted price (for example, three for the price of two) or may be a combination
of different products (say, buy A and get 10% off B). In either case, the invoice
the cashier gets from the point-of-sale GUI client must take any applicable special
offers into account automatically. This business capability is the second candidate to
be the scope for a microservice. A Special Offers microservice would be responsible
for deciding when a special offer applies and what the discount for the customer
should be.

 Looking over the list of functionality again, notice that the system should allow
cashiers to “Scan one or more products to show prices and special offers related to the
products.” This indicates that there’s more to the Special Offers business capability
than just applying special offers to invoices: it also includes the ability to look up spe-
cial offers based on products.

45The primary driver for scoping microservices: business capabilities

 If you continued the hunt for business capabilities in the point-of-sale system, you
might end up with this list:

 Product Catalog
 Price Catalog
 Price Calculation
 Special Offers
 Coupons
 Sales Records
 Invoice
 Payment

Figure 3.2 shows a map from functionalities to business capabilities. The map is a logi-
cal one, in the sense that it shows which business capabilities are needed to implement
each function, but it doesn’t indicate any direct technical dependencies. For instance,
the arrow from Prepare Invoice to Coupons doesn’t indicate a direct call from some
Prepare Invoice code in a client to a Coupons microservice. Rather, the arrow indi-
cates that in order to prepare an invoice, coupons need to be taken into account, so
the Prepare Invoice function depends on the Coupons business capability.

Price catalog

Product catalog

Coupons

Price calculation

Sales records

Special offers

Invoice

Payment

Scan goods and add to invoice

Search in product catalog

Prepare invoice

Scan goods to show price

Register cash payment

Charge credit card

Print receipt

Send electronic receipt

Accept coupons

Figure 3.2 The functions on the left depend on the business capabilities on the right. Each arrow
indicates a dependency between a function and a capability.

 I find creating this kind of map to be enlightening, because it forces me to think
explicitly about how each function is attained and also what each business capability

46 CHAPTER 3 Identifying and scoping microservices

must do. Finding the business capabilities in real domains can be hard work and often
requires a good deal of iterating. The list of business capabilities isn’t a static list made
at the start of development; rather, it’s an emergent list that grows and changes over
time as your understanding of the domain and the business grows and deepens.

 Now that we’ve gone through the first iteration of identifying business capabilities,
let’s take a closer look at one of these capabilities and how it defines the scope of a
microservice.

THE SPECIAL OFFERS MICROSERVICE

The Special Offers microservice is based on the Special Offers business capability. To
narrow the scope of this microservice, we’ll dive deeper into this business capability
and identify the processes involved, illustrated in figure 3.3. Each process delivers part
of the business capability.

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability

Prepare invoice

Figure 3.3 The Special Offers business capability includes a number of different processes.

The Special Offers business capability is broken down into five processes. Four of
these are oriented toward the point-of-sale GUI clients. The fifth—tracking the use of
special offers—is oriented toward the business itself, which has an interest in which
special offers customers are taking advantage of.

 Implementing the business capability as a microservice means you need to do the
following:

 Expose the four client-oriented processes as API endpoints that other microser-
vices can call.

 Implement the usage-tracking process through an event feed. The business-
intelligence parts of the point-of-sale system can subscribe to these events and
use them to track which special offers are used by customers.

The components of the Special Offers microservice are shown in figure 3.4.

EventStore
Special Offers
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module: used for tracking

• GetApplicableSpecialOffers (list of products)
• ApplySpecialOffers (invoice, special offers)
• GetPotentialOffers (product)
• GetRecommendedSpecialOffers
 (list of products)

SpecialOffersStore

Special Offers microservice

Special
Offers store

Figure 3.4 The processes in the Special Offers business capability are reflected in the implementation of the Special
Offers microservice. The processes are exposed to other microservices through the microservice’s HTTP API.

47The primary driver for scoping microservices: business capabilities

The components of the Special Offers microservice are similar to the components of
the Shopping Cart microservice in chapter 2, which is shown again in figure 3.5. This
is no coincidence. These are the components microservices typically consist of: an
HTTP API that exposes the business capability implemented by the microservice, an
event feed, a domain model implementing the business logic involved in the business
capability, a data store component, and a database.

EventStore
Shopping Cart
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

Shopping Cart microservice

ProductCatalogClient

Shopping
Cart store

Figure 3.5 The components of the Shopping Cart microservice from chapter 2 are similar to the components of
the Special Offers microservice.

48 CHAPTER 3 Identifying and scoping microservices

3.2 The secondary driver for scoping microservices:
supporting technical capabilities
The secondary way to identify scopes for microservices is to look at supporting techni-
cal capabilities. A supporting technical capability is something that doesn’t directly con-
tribute to a business goal but supports other microservices, such as integrating with
another system or scheduling an event to happen some time in the future.

3.2.1 What is a technical capability?

Supporting technical capabilities are a secondary driver in scoping microservices
because they don’t directly contribute to the system’s business goals. They exist to sim-
plify and support the other microservices that implement business capabilities.

 Remember, one characteristic of a good microservice is that it’s replaceable; but if
a microservice that implements a business capability also implements a complex tech-
nical capability, it may grow too large and too complex to be replaceable. In such
cases, you should consider implementing the technical capability in a separate
microservice that supports the original one. Before discussing how and when to iden-
tify supporting technical capabilities, a couple of examples would probably be helpful.

3.2.2 Examples of supporting technical capabilities

To give you a feel for what I mean by supporting technical capabilities, let’s consider
two examples: an integration with another system, and the ability to send notifications
to customers.

INTEGRATING WITH AN EXTERNAL PRODUCT CATALOG SYSTEM

In the example point-of-sale system, you identified the product catalog as a business
capability. I also mentioned that product information is maintained in another sys-
tem, external to the microservice-based point-of-sale system. That other system is an
Enterprise Resource Planning (ERP) system. This implies that the Product Catalog
microservice must integrate with the ERP system, as illustrated in figure 3.6. The inte-
gration can be handled in a separate microservice.

Other
microservices

SOAP request:
Get all products in
“shirts” category

SOAP response:
XML array of

“shirt” products

Query product
catalog Product Catalog

microservice
Enterprise resource

planning (ERP) system

Product data is pulled
from the ERP system.

Figure 3.6 Product data flows from the ERP system to the Product Catalog microservice. The protocol used
to get product information from the ERP system is defined by the ERP system. It could expose a SOAP web
service for fetching the information, or it might export product information to a proprietary file format.

49The secondary driver for scoping microservices: supporting technical capabilities

Let’s assume that you aren’t in a position to make changes to the ERP system, so the
integration must be implemented using whatever interface the ERP system has. It
might use a SOAP web service to fetch product information, or it might export all the
product information to a proprietary file format. In either case, the integration must
happen on the ERP system’s terms. Depending on the interface the ERP system
exposes, this may be a smaller or larger task. In any case, it’s a task primarily con-
cerned with the technicalities of integrating with some other system, and it has the
potential to be at least somewhat complex. The purpose of this integration is to sup-
port the Product Catalog microservice.

 You’ll take the integration out of the Product Catalog microservice and implement
it in a separate ERP Integration microservice that’s responsible solely for that one inte-
gration, as illustrated in figure 3.7. You’ll do this for two reasons:

 By moving the technical complexities of the integration to a separate microser-
vice, you keep the scope of the Product Catalog microservice narrow and
focused.

 By using a separate microservice to deal with how the ERP data is formatted and
organized, you keep the ERP system’s view of what a product is separate from
the point-of-sale system. Remember that in different parts of a large domain,
there are different views of what terms mean. It’s unlikely that the Product Cat-
alog microservice and the ERP system agree on how the product entity is mod-
eled. A translation between the two views is needed and is best done by the new
microservice. In domain-driven-design terms, the new microservice acts as an
anti-corruption layer.

NOTE The anti-corruption layer is a concept borrowed from domain-driven
design. It can be used when two systems interact; it protects the domain
model in one system from being polluted with language or concepts from the
model in the other system.

SOAP request:
Get all products in
“shirts” category

SOAP response:
XML array of

“shirt” products

Product
data

Query
product
catalog

Product data flows to the
Product Catalog microservice
in a format that’s easy for the
Product Catalog microservice
to consume.

Product Catalog
microservice

ERP Integration
microservice

Enterprise resource
planning (ERP) system

Product data is pulled
from the ERP system.

Other
microservices

Figure 3.7 The ERP Integration microservice supports the Product Catalog microservice by handling the
integration with the ERP system. It translates between the way the ERP system exposes product data and
the way the Product Catalog microservice consumes it.

50 CHAPTER 3 Identifying and scoping microservices

An added benefit of placing the integration in a separate microservice is that it’s a
good place to address any reliability issues related to integration. If the ERP system is
unreliable, the place to handle that is in the ERP Integration microservice. If the ERP
system is slow, the ERP Integration microservice can deal with that. Over time, you can
tweak the policies used in the ERP Integration microservice to address any reliability
issues with the ERP system without touching the Product Catalog microservice at all.
This integration with the ERP system is an example of a supporting technical capabil-
ity, and the ERP Integration microservice is an example of a microservice implement-
ing that capability.

SENDING NOTIFICATIONS TO CUSTOMERS

Now let’s consider extending the point-of-sale system with the ability to send notifica-
tions about new special offers to registered customers via email, SMS, or push notifica-
tion to a mobile app. You can put this capability into one or more separate
microservices.

 At the moment, the point-of-sale system doesn’t know who the customers are. To
drive better customer engagement and customer loyalty, the company decides to start
a small loyalty program where customers can sign up to be notified about special
offers. The customer loyalty program is a new business capability and will be the
responsibility of a new Loyalty Program microservice. Figure 3.8 shows this microser-
vice, which is responsible for notifying registered customers every time a new special
offer is available.

Notify registered customers
about special offers

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

Figure 3.8 The Loyalty Program microservice subscribes to events from the Special
Offers microservice and notifies registered customers when new offers are available.

As part of the registration process, customers can choose to be notified by email, SMS,
or, if they have the company’s mobile app, push notification. This introduces some
complexity in the Loyalty Program microservice in that it must not only choose which
type of notification to use but also deal with how each one works. As a first step, you’ll
introduce a supporting technical microservice for each notification type. This is
shown in figure 3.9.

 This is better. The Loyalty Program microservice doesn’t have to implement all
the details of dealing with each type of notification, which keeps the microservice’s

Subscribe to events

Send SMS
to customer

Request to
send SMS

Send email
to customer

Request to
send email

Send push
notification to

customer

Request
to send push
notification

Special Offers
microservice

Loyalty Program
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Figure 3.9 To avoid bogging down the Loyalty Program microservice in technical details for handling each type
of notification, you’ll introduce three supporting technical microservices, one for each type of notification.

51The secondary driver for scoping microservices: supporting technical capabilities

scope narrow and focused. The situation isn’t perfect, though: the microservice still
has to decide which of the supporting technical microservices to call for each regis-
tered customer.

 This leads you to introducing one more microservice, which acts as a front for the
three microservices handling the three types of notifications. This new Notifications
microservice is depicted in figure 3.10 and is responsible for choosing which type of
notification to use each time a customer needs to be notified. This isn’t really a busi-
ness capability, although it’s less technical than dealing with sending SMSs. I consider
the Notifications microservice a supporting technical microservice rather than one
implementing a business capability.

Send SMS
to customer

Request to
send SMS

Request
to send

notification

Send email
to customerRequest to

send email

Send push
notification to

customer

Request
to send push
notification

Notifications
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

Figure 3.10 To remove more complexity from the Loyalty Program microservice, you’ll introduce a Notifications
microservice that’s responsible for choosing a type of notification based on customer preferences. Introducing this
microservice has the added benefit of making notifications easier to use from other microservices.

 This example of a supporting technical capability differs from the previous exam-
ple of the ERP integration in that other microservices may also need to send notifica-
tions to specific customers. For instance, one of the functionalities of the point-of-
sales system is to send the customer an electronic receipt. The microservice in charge

52 CHAPTER 3 Identifying and scoping microservices

of that business capability can also take advantage of the Notifications microservice.
Part of the motivation for moving this supporting technical capability to separate
microservices is that you can reuse the implementation.

3.2.3 Identifying technical capabilities

When you introduce supporting technical microservices, your goal is to simplify the
microservices that implement business capabilities. Sometimes—such as with sending
notifications—you identify a technical capability that several microservices need, and
you turn that into a microservice of its own, so other microservices can share the
implementation. Other times—as with the ERP integration—you identify a technical
capability that unduly complicates a microservice and turn that capability into a
microservice of its own. In both cases, the microservices implementing business capa-
bilities are left with one less technical concern to take care of.

 When deciding to implement a technical capability in a separate microservice, be
careful that you don’t violate the microservice characteristic of being individually
deployable. It makes sense to implement a technical capability in a separate microser-
vice only if that microservice can be deployed and redeployed independently of any
other microservices. Likewise, deploying the microservices that are supported by the
microservice providing the technical capability must not force you to redeploy the
microservice implementing the technical capability.

 Identifying business capabilities and microservices based on business capabilities is
a strategic exercise, but identifying technical supporting capabilities that could be
implemented by separate microservices is an opportunistic exercise. The question of
whether a supporting technical capability should be implemented in its own microser-
vice is about what will be easiest in the long run. You should ask these questions:

 If the supporting technical capability stays in a microservice scoped to a busi-
ness capability, is there a risk that the microservice will no longer be replaceable
with reasonable effort?

 Is the supporting technical capability implemented in several microservices
scoped to business capabilities?

 Will a microservice implementing the supporting capability be individually
deployable?

 Will all microservices scoped to business capabilities still be individually deployable
if the supporting technical capability is implemented in a separate microservice?

If your answer is “Yes” to the last two questions and to at least one of the others, you
have a good candidate for a microservice scope.

3.3 What to do when the correct scope isn’t clear
At this point, you may be thinking that scoping microservices correctly is difficult: you
need to get the business capabilities just right, which requires a deep understanding of
the business domain, and you also have to judge the complexity of supporting technical

53What to do when the correct scope isn’t clear

capabilities correctly. And you’re right: it is difficult, and you will find yourself in situa-
tions where the right scoping for your microservices isn’t clear.

 This lack of clarity can have several causes, including the following:

 Insufficient understanding of the business domain —Analyzing a business domain
and building up a deep knowledge of that domain is difficult and time consum-
ing. You’ll sometimes need to make decisions about the scope of microservices
before you’ve been able to develop sufficient understanding of the business to
be certain you’re making the correct decisions.

 Confusion in the business domain —It’s not only the development side that can be
unclear about the business domain. Sometimes the business side is also unclear
about how the business domain should be approached. Maybe the business is
moving into new markets and must learn a new domain along the way. Other
times, the existing business market is changing because of what competitors are
doing or what the business itself is doing. Either way, on both the business side
and the development side, the business domain is ever-changing, and your
understanding of it is emergent.

 Incomplete knowledge of the details of a technical capability —You may not have access
to all the information about what it takes to implement a technical capability. For
instance, you may need to integrate with a badly documented system, in which
case you’ll only know how to implement the integration once you’re finished.

 Inability to estimate the complexity of a technical capability —If you haven’t previously
implemented a similar technical capability, it can be difficult to estimate how
complex the implementation of that capability will be.

None of these problems means you’ve failed. They’re all situations that occur time
and again. The trick is to know how to move forward in spite of the lack of clarity. In
this section, I’ll discuss what to do when you’re in doubt.

3.3.1 Starting a bit bigger

When in doubt about the scope of a microservice, it’s best to err on the side of making
the microservice’s scope bigger than it would be ideally. This may sound weird—I’ve
talked a lot about creating small, narrowly focused microservices and about the bene-
fits that come from keeping microservices small. And it’s true that significant benefits
can be gained from keeping microservices small and narrowly focused. But you must
also look at what happens if you err on the side of too narrow a scope.

 Consider the Special Offers microservice discussed earlier in this chapter. It imple-
ments the Special Offers business capability in a point-of-sale system and includes five
different business processes, as illustrated in figure 3.3 and reproduced on the left
side of figure 3.11. If you were uncertain about the boundaries of the Special Offers
business capability and chose to err on the side of too small a scope, you might split
the business capability as shown on the right side of figure 3.11.

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability

The Special Offers business capability
wrongly split over two microservices

Apply special
offers to invoice

Recommend
special offers based on

a list of products
Track usage

of special offers

Unclear factoring of responsibility: two processes
with related functionality that need the same data
and the same search logic

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

Figure 3.11 If you make the scope of a microservice too small, you’ll find that a single business
capability becomes split over several highly coupled parts.

54 CHAPTER 3 Identifying and scoping microservices

If you base the scope of your microservices on only part of the Special Offers business
capability, you’ll incur some significant costs:

 Data and data-model duplication between the two microservices —Both parts of the
implementation need to store all the special offers in their data stores.

 Unclear factoring of responsibility —One part of the divided business capability can
answer whether a given product is part of any special offers, whereas the other
part can recommend special offers to customers based on past purchases.
These two functions are closely related, and you’ll quickly get into a situation
where it’s unclear in which microservice a piece of code belongs.

55What to do when the correct scope isn’t clear

 Obstacles to refactoring the code for the business capability —This can occur because
the code is spread across the code bases for the two microservices. Such cross-
code base refactorings are difficult because it’s hard to get a complete picture
of the consequences of the refactoring and because tooling support is poor.

 Difficulty deploying the two microservices independently —After refactoring or imple-
menting a feature that involves both microservices, the two microservices may
need to be deployed at the same time or in a particular order. Either way, cou-
pling between versions of the two microservices violates the characteristic of
microservices being individually deployable. This makes testing, deployment,
and production monitoring more complicated.

These costs are incurred from the time the microservices are first created until you’ve
gained enough experience and knowledge to more correctly identify the business capa-
bility and a better scope for a microservice (the entire Special Offers business capability,
in this case). Added to those costs is the fact that difficulty refactoring and implementing
changes to the business capability will result in you doing less of both, so it will take you
longer to learn about the business capability. In the meantime, you pay the cost of the
duplicated data and data model and the cost of the lack of individual deployability.

 We’ve established that preferring to err on the side of too narrow a scope easily
leads to scoping microservices in a way that creates costly coupling between the
microservices. To see if this is better or worse than erring on the side of too big a
scope, we need to look at the costs of that approach.

 If you err on the side of bigger scopes, you might decide on a scope for the Special
Offers microservice that also includes handling coupons. The scope of this bigger
Special Offers microservice is shown in figure 3.12.

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Issue coupon
code

Apply coupon
to invoice

Check if coupon
code is valid

The Special Offers and Coupons business capabilities
both included in the Special Offers microservice

No data and no logic are
shared across this line.

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

Figure 3.12 If you choose to err on the side of bigger scopes, you might decide to include the handling of
coupons in the Special Offers business capability.

56 CHAPTER 3 Identifying and scoping microservices

There are costs associated with including too much in the scope of a microservice:

 The code base becomes bigger and more complex, which can lead to changes
being more expensive.

 The microservice is harder to replace.

These costs are real, but they aren’t overwhelming when the scope of the microservice
is still fairly small. Beware, though, because these costs grow quickly with the size of
each microservice’s scope and become overwhelming when the scope is so big that it
approaches a monolithic architecture.

 Nevertheless, refactoring within one code base is much easier than refactoring
across two code bases. This gives you a better chance to experiment and to learn
about the business capability through experiments. If you take advantage of this
opportunity, you can arrive at a good understanding of both the Special Offers busi-
ness capability and the Coupons business capability more quickly than if you scoped
your microservices too narrowly.

 This argument holds true when your microservices are a bit too big, but it falls
apart if they’re much too big, so don’t get lazy and lump several business capabilities
together in one microservice. You’ll quickly have a large, hard-to-manage code base
with many of the drawbacks of a full-on monolith.

 All in all, microservices that are slightly bigger than they should ideally be are both
less costly and allow for more agility than if they’re slightly smaller than they should
ideally be. Thus, the rule of thumb is to err on the side of slightly bigger scopes.

 Once you accept that you’ll sometimes—if not often—be in doubt about the best
scope for a microservice and that in such cases you should lean toward a slightly bigger
scope, you can also accept that you’ll sometimes—if not often—have microservices in
your system that are somewhat larger than they should ideally be. This means you should
expect to have to carve new microservices out of existing ones from time to time.

3.3.2 Carving out new microservices from existing microservices

When you realize that one of your microservices is too big, you’ll need to look at how
to carve a new microservice out of it. First you need to identify a good scope for both
the existing microservice and the new microservice. To do this, you can use the drivers
described earlier in this chapter.

 Once you’ve identified the scopes, you must look at the code to see if the way it’s
organized aligns with the new scopes. If not, you should begin refactoring toward that
alignment. Figure 3.13 illustrates on a high level the refactorings needed to prepare
to carve out a new microservice from an existing one. First, everything that will even-
tually go into the new microservice is moved to its own class library. Then, all commu-
nication between code that will stay in the existing microservice and code that will be
moved to the new microservice is refactored to go through an interface. This inter-
face will become part of the public HTTP interface of the two microservices once
they’re split apart.

Step 0: Special Offers microservice
including Coupons capability

Step 1: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored into
a separate project.

Step 2: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored and
all communication is going through
a public API.

Public API

Figure 3.13 Preparing to carve out a new microservice by refactoring: first move everything belonging
to the new microservice into its own project, and then make all communication go through a public API
similar to the one the new microservice will end up having.

57What to do when the correct scope isn’t clear

When you’ve reached step 2 in figure 3.13, the new microservice can be split out from
the old one with a manageable effort. Create a new microservice, move the code that
needs to be carved out of the existing microservice over to the new microservice, and
change the communication between the two parts to go over HTTP.

58 CHAPTER 3 Identifying and scoping microservices

3.3.3 Planning to carve out new microservices later

Because you consciously err on the side of making your microservices a bit too big
when you’re in doubt about the scope of a microservice, you have a chance to foresee
which microservices will have to be divided at some point. If you know a microservice
is likely to be split later, it would be nice if you could plan for that split in a way that
will save you one or two of the refactoring steps shown in figure 3.13. It turns out you
can often make that kind of plan.

 Often you’ll be unsure whether a particular function is a separate business capabil-
ity, so you’ll follow the rule of thumb and include it in a larger business capability,
implemented within a microservice scoped to that larger business capability. But you
can remain conscious of the fact that this area might be a separate business capability.

 Think about the definition of the Special Offers business capability that includes
processes for dealing with coupons. You may well have been in doubt about whether
handling coupons was a business capability on its own, so the Special Offers business
capability was modeled as including all the processes shown in figure 3.12.

 When you first implement a Special Offers microservice scoped to the understand-
ing of the Special Offers business capability illustrated in figure 3.12, you don’t know
whether the coupons functionality will eventually be moved to a Coupons microser-
vice. You do know, however, that the coupons functionality isn’t as closely related to
the rest of the microservice as some of the other areas. It’s therefore a good idea to
put a clear boundary around the coupons code in the form a well-defined public API
and to put the coupons code in a separate class library. This is sound software design,
and it will also pay off if one day you end up carving out the coupons code to create a
new Coupons microservice.

3.4 Well-scoped microservices adhere to the microservice
characteristics
I’ve talked about scoping microservices by identifying business capabilities first and
supporting technical capabilities second. In this section, I’ll discuss how this approach
to scoping aligns with these four characteristics of microservices mentioned at the
beginning of this chapter:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

NOTE It’s important to note that the relationship between the drivers for
scoping microservices and the characteristics of microservices goes both ways.
The primary and secondary drivers lead toward adhering to the characteris-
tics, but the characteristics also tell you whether you’ve scoped your microser-
vices well or need to push the drivers further to find better scopes for your
microservices.

59Well-scoped microservices adhere to the microservice characteristics

3.4.1 Primarily scoping to business capabilities leads to good microservices

The primary driver for scoping microservices is identifying business capabilities. Let’s
see how that makes for microservices that adhere to the microservice characteristics.

RESPONSIBLE FOR A SINGLE CAPABILITY

A microservice scoped to a single business capability by definition adheres to the first
microservice characteristic: it’s responsible for a single capability. As you saw in the
examples of identifying supporting technical capabilities, you have to be careful: it’s
easy to let too much responsibility slip into a microservice scoped to a business capa-
bility. You have to be diligent in making sure that what a microservice implements is
just one business capability and not a mix of two or more. You also have to be careful
about putting supporting technical capabilities in their own microservices. As long as
you’re diligent, microservices scoped to a single business capability adhere to the first
characteristic of microservices.

INDIVIDUALLY DEPLOYABLE

Business capabilities are those that can be performed by largely independent groups
within an organization, so the business capabilities themselves must be largely inde-
pendent. As a result, microservices scoped to business capabilities are largely inde-
pendent. This doesn’t mean there’s no interaction between such microservices—
there can be a lot of interaction, both through direct calls between services and
through events. The point is that the interaction happens through well-defined pub-
lic interfaces that can be kept backward compatible. If implemented well, the interac-
tion is such that other microservices continue to work even if one has a short outage.
This means well-implemented microservices scoped to business capabilities are indi-
vidually deployable.

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

A business capability is something a small group in an organization can handle. This
limits its scope and thus also limits the scope of microservices scoped to business capa-
bilities. Again, if you’re diligent about making sure a microservice handles only one
business capability and that supporting technical capabilities are implemented in
their own microservices, the microservices’ scope will be small enough that a small
team can maintain at least a handful of microservices and a microservice can be
replaced fairly quickly if need be.

3.4.2 Secondarily scoping to supporting technical capabilities leads to
good microservices

The secondary driver for scoping microservices is identifying supporting technical
capabilities. Let’s see how that makes for microservices that adhere to the microser-
vice characteristics.

60 CHAPTER 3 Identifying and scoping microservices

RESPONSIBLE FOR A SINGLE CAPABILITY

Just as with microservices scoped to business capabilities, scoping a microservice to a
single supporting technical capability by definition means it adheres to the first char-
acteristic of microservices: it’s responsible for a single capability.

INDIVIDUALLY DEPLOYABLE

Before you decide to implement a technical capability as a separate supporting techni-
cal capability in a separate microservice, you need to ask whether that new microser-
vice will be individually deployable. If the answer is “No,” you shouldn’t implement it
in a separate microservice. Again, by definition, a microservice scoped to a supporting
technical capability adheres to the second microservice characteristic.

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

Microservices scoped to a supporting technical capability tend to be narrowly and
clearly scoped. On the other hand, part of the point of implementing such capabilities
in separate microservices is that they can be complex. In other words, microservices
scoped to a supporting technical capability tend to be small, which points toward adher-
ing to the microservice characteristics of replaceability and maintainability; but the
code inside them may be complex, which makes them harder to maintain and replace.

 This is an area where there’s a certain back and forth between using supporting
technical capabilities to scope microservices on one hand, and the characteristics of
microservices on the other. If a supporting technical microservice is becoming so
complex that it will be hard to replace, this is a sign that you should probably look
closely at the capability and try to find a way to break it down further. As in the exam-
ple about notification (see section 3.2.2), it’s fine to have one supporting technical
microservice use others behind the scenes.

3.5 Summary
 The primary driver in scoping microservices is identifying business capabilities.

Business capabilities are the things an organization does that contribute to ful-
filling business goals.

 You can use techniques from domain-driven design to identify business capabil-
ities. Domain-driven design is a powerful tool for gaining better and deeper
understanding of a domain. That kind of understanding enables you to identify
business capabilities.

 The secondary driver in scoping microservices is identifying supporting techni-
cal capabilities. A supporting technical capability is a technical function needed
by one or more microservices scoped to business capabilities.

 Supporting technical capabilities should be moved to their own microservices
only if they’re sufficiently complex to be a problem in the microservices they
would otherwise be part of, and if they can be individually deployed.

61Summary

 Identifying supporting technical capabilities is an opportunistic form of design.
You should only pull a supporting technical capability into a separate microser-
vice if it will be an overall simplification.

 When you’re in doubt about the scope of a microservice, lean toward making
the scope slightly bigger rather than slightly smaller.

 Because scoping microservices well is difficult, you’ll probably be in doubt some-
times. You’re also likely to get some of the scopes wrong in your first iteration.

 You must expect to have to carve new microservices out of existing ones from
time to time.

 You can use your doubt about scope to organize the code in your microservices
so that they lend themselves to carving out new microservices at a later stage.

62 CHAPTER 3 Identifying and scoping microservices

Microservice applications are built by connecting sin-
gle-capability, autonomous components that commu-
nicate via APIs. These systems can be challenging to
develop because they demand clearly defined inter-
faces and reliable infrastructure. Fortunately for .NET
developers, OWIN (the Open Web Interface for
.NET), and the Nancy web framework help minimize
plumbing code and simplify the task of building
microservice-based applications.

 Microservices in .NET Core provides a complete guide
to building microservice applications. After a crystal-
clear introduction to the microservices architectural

style, the book will teach you practical development skills in that style, using OWIN
and Nancy. You'll design and build individual services in C# and learn how to com-
pose them into a simple but functional application back end. Along the way, you'll
address production and operations concerns like monitoring, logging, and security.

What's inside:

 Design robust and ops-friendly services
 Build HTTP APIs with Nancy
 Expose events via feeds with Nancy
 Use OWIN middleware for plumbing

This book is written for C# developers. No previous experience with microservices
required.

https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/microservices-in-net-core

Much of software development involves writing and using web services.
After learning about microservices in the previous selection, this chapter from
.NET Core in Action walks you through the creation of an ASP.NET Core
microservice that communicates with Microsoft Azure blob storage.

Creating and
Communicating with

Web Services

https://www.manning.com/books/dotnet-core-in-action

64

Chapter 7 from .NET Core in
Action by Dustin Metzgar.

Creating a Microservice

My personal blog’s written in .NET Core (http://mode19.net). Originally, I wrote
each post in its own page. Those pages were part of the source code of the blog and
had corresponding metadata in a database. As the number of posts increased, the
site became hard to manage because older pages were written using older libraries
and techniques. The contents of the blog posts didn’t change—only the formatting
changed.

 That’s when I decided to convert my blog posts to Markdown. Markdown allows
me to write the content of the blog post without having to worry about the format-
ting. That way, I could store my blog posts in a database or blob storage and without
having to rebuild the web application every time I posted a new entry. I could con-
vert every page on the blog to use the latest libraries I wanted to try out without
touching the posts' content.

This chapter covers
 Writing web services with ASP.NET

 Making HTTP requests to web services

 Guidelines for creating microservices

https://www.manning.com/books/dotnet-core-in-action
https://www.manning.com/books/dotnet-core-in-action
http://mode19.net

65Writing an ASP.NET web service

To handle the storing of posts and conversion from Markdown to HTML, I created a
microservice. To best describe what a microservice is, I’ll borrow the characteristics
listed on the first page of Christian Horsdal Gammelgaard’s Microservices in .NET
Core (also from Manning publications). A microservice is:

 Responsible for a single piece of functionality (blog posts)
 Individually deployable (separate from blog web app)
 Singularly responsible for its datastore (creates, updates, and deletes posts in

Azure blob storage)
 Replaceable (another service can replace it if it implements the same interface)

In this chapter, we’ll create a blog post microservice. The data store will be Azure blob
storage.. I picked Azure blob storage because it presents a challenge. While the Azure
SDK is available for the .NET Standard, let’s in learn how to make the HTTP requests
directly.

7.1 Writing an ASP.NET web service
Our template’s tuned more for web sites than web services. We’ll start with this tem-
plate and make the necessary adjustments to turn it into a web service-only project,
but before we begin, let’s find something interesting for our service to do.

7.1.1 Converting Markdown to HTML

Many implementations of Markdown exist and several are available in .NET Core or the
.NET Standard. The library we’ll be using is called MarkdownLite. Let’s see how it works
by creating an empty web application. Create a new folder called MarkdownLiteTest
and run the dotnet new console command in it. Add a reference to "Microsoft.Doc-
AsCode.MarkdownLite" to the project file as shown in Adding MarkdownLite as a pack-
age reference and run dotnet restore.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.DocAsCode.MarkdownLite"
 Version="2.13.1" /> Or pick a later version

from nuget.org

 </ItemGroup>
</Project>

Now, let’s try out some sample code. Test console application using MarkdownLite has
a test to convert a simple Markdown text into HTML and write the HTML to the console.

Listing 7.1 Adding MarkdownLite as a package reference

http://localhost:5000?container=netcorebook
http://localhost:5000

66 CHAPTER 7 Creating a Microservice

using System;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownLiteTest
{
 public class Program
 {
 public static void Main()
 {
 string source = @"
Building Your First .NET Core Applications
=======

In this chapter, we will learn how to setup our development environment,
create an application, and
";

 var builder = new GfmEngineBuilder(new Options());
 var engine = builder.CreateEngine(
 new HtmlRenderer()); Render to HTML
 var result = engine.Markup(source); Output to a string
 Console.WriteLine(result);
 }
 }
}

The output should look like Output from MarkdownLite console test.

<h1 id="building-your-first-net-core-applications">
Building Your First .NET Core Applications</h1>
<p>In this chapter, we will learn how to setup our development environment,
create an application, and</p>

MarkdownLite doesn’t add the <html> or <body> tags, which is nice for inserting the
generated HTML into a template. Now that we know how to use MarkdownLite, let’s
put it into a web service.

7.1.2 Creating an ASP.NET web service

We need to process the input coming in. ASP.NET has some built-in mechanisms to
route requests based on URI and HTTP verb that we’ll take advantage of in this chapter.

 Start by creating a new folder called MarkdownService and running dotnet new
web. Modify the project file as shown in Modify default web template project file.

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

wwwroot folder
reference isn’t needed

Listing 7.2 Test console application using MarkdownLite

Listing 7.3 Output from MarkdownLite console test

Listing 7.4 Modify default web template project file

67Writing an ASP.NET web service

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc"
 Version="1.1.2" />

Add MVC
reference

 <PackageReference Include="Microsoft.DocAsCode.MarkdownLite"
 Version="2.13.1" />
 </ItemGroup>

</Project>

The Program.cs is responsible for starting the web server. The code can be simplified
down to what’s shown in Program.cs for the MarkdownLite service starts the Kestrel
web server.

using Microsoft.AspNetCore.Hosting;

namespace MarkdownService
{
 public class Program
 {
 public static void Main()
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
}

The Startup class is where we configure ASP.NET MVC. MVC handles the incoming
request and routes depending on configuration and convention. Modify the Startup.cs
file to look like the code from Startup.cs for the MarkdownLite service that sets up
MVC.

Listing 7.5 Program.cs for the MarkdownLite service starts the Kestrel web server

MVC and Web API
MVC stands for Model View Controller, which is a pattern for building web applica-
tions. ASP.NET MVC was introduced as an alternative to the old WebForms approach
for building web applications. Neither were intended for REST services so another
product called Web API was introduced for which purpose.was intended for building
HTTP REST services. In ASP.NET Core, Web API and MVC have been merged into one
and WebForms no longer exists.

68 CHAPTER 7 Creating a Microservice

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownService
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.UseMvc(); Use ASP.NET MVC
 }

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc(); ASP.NET MVC will handle the routing of requests

 var builder = new GfmEngineBuilder(new Options());
 var engine = builder.CreateEngine(new HtmlRenderer());
 services.AddSingleton<IMarkdownEngine>(engine);

ASP.NET Core has dependency
injection built in

 }
 }
}

The IMarkdownEngine object’s created at startup and added as a singleton to the
dependency injection. If you’re unfamiliar with dependency injection, see "A brief
introduction to dependency injection" in chapter 6. ASP.NET Core uses the same
Microsoft.Extensions.DependencyInjection library we used in chapter 6.

 The next thing we need to do’s create a controller. MVC uses reflection to find your
controllers and route incoming requests to them. We need to follow the conventions. Cre-
ate a new file called MdlController.cs and add the code from MdlController.cs is a con-
troller for the MarkdownLite service that accepts Markdown text and returns HTML.

using System.Collections.Generic;
using System.IO;
using Microsoft.AspNetCore.Mvc;
using Microsoft.DocAsCode.MarkdownLite;

namespace MarkdownService
{
 [Route("/")]

Indicates we want calls made
to the root URL path

 public class MdlController : Controller
 {
 private readonly IMarkdownEngine engine;

 public MdlController(IMarkdownEngine engine)

IMarkdownEngine comes from
dependency injection

 {
 this.engine = engine;
 }

Listing 7.6 Startup.cs for the MarkdownLite service that sets up MVC

Listing 7.7 MdlController.cs is a controller for the MarkdownLite service that accepts
Markdown text and returns HTML

69Making HTTP calls

 [HttpPost]

This method
handles POSTs

 public IActionResult Convert()
 {
 var reader = new StreamReader(Request.Body);

Request.Body is a
System.IO.Stream

 var markdown = reader.ReadToEnd();

Reads the full incoming
request body into a string

 var result = engine.Markup(markdown);
 return Content(result);

Writes generated HTML to response body

 }
 }
}

7.1.3 Testing the web service with Curl

After executing dotnet restore and dotnet run, you should have a web server run-
ning on http://localhost:5000, but if you navigate to this URL with a browser, you’ll get
a 404. The reason’s because in MdlController.cs is a controller for the MarkdownLite
service that accepts Markdown text and returns HTML we only created a HttpPost
method. No HttpGet method exists. To test the service, we need to be able to send a
POST with some Markdown text in it. The quickest way to do this is with Curl.

Curl’s a command line tool that you’ll find useful when developing web services and
applications. It handles more protocols than HTTP or HTTPS. For our purposes, we
can create an HTTP POST with the body contents taken from a file. First, create a file,
such as test.md, with some Markdown text in it. Then execute a curl command like
the one in Curl command to test the MarkdownLite service.

curl -X POST --data-binary @test.md http://localhost:5000

If all goes correctly, the generated HTML should be printed on the command line.
Curl made it possible to test our web service before writing client code. Because we
now have a working service, let’s learn how to make requests to web services as a client
in .NET Core.

7.2 Making HTTP calls
We’ll use the MarkdownLite service created in the previous section to test with. Leave
it running and open another terminal to create this next project. Go to the Mark-
downLiteTest folder created earlier. Copy the test.md file used in the previous section
to the project folder and add it to the project file as shown in Copying test.md file to
the project output and remove MarkdownLite package reference.

Curl is available on all platforms. Visit https://curl.haxx.se/download.html to
download the version for your OS.

Listing 7.8 Curl command to test the MarkdownLite service

Use --data-binary instead of -d to preserve newlines.

http://localhost:5000
https://curl.haxx.se/download.html

70 CHAPTER 7 Creating a Microservice

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <None Include="test.md">

Recall from chapter 3

 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>

</Project>

Next, let’s write the code to POST data to an HTTP endpoint. The best option for this
in .NET Core is HttpClient. Modify the Program.cs to add the code from Using Http-
Client to call a web service, POST a file, and read the response.

using System;
using System.IO;
using System.Net.Http;

namespace MarkdownLiteTest
{
 public class Program
 {
 public static void Main(string[] args)
 {
 using (var client = new HttpClient())

Optional to set a base address
in the HttpClient constructor

 {
 var response = client.PostAsync(
 "http://localhost:5000",
 new StreamContent(
 new FileStream("test.md", FileMode.Open))

Read the test.md
markdown file into an
HttpContent object

).Result; Result blocks until

the PostAsync
operation’s
finished

 string markdown = response.Content.
 ReadAsStringAsync().Result; ReadAsStringAsync

returns a Task object,
call Result to get the
string

 Console.WriteLine(markdown);
 }
 }
 }
}

Listing 7.9 Copying test.md file to the project output and remove MarkdownLite
package reference

.NET Framework veterans may remember WebClient, which wasn’t originally
included in .NET Core because HttpClient is a better option. But developers
asked for WebClient to be included because some old WebClient code can’t be
ported to HttpClient easily. When writing new code, stick with HttpClient.

Listing 7.10 Using HttpClient to call a web service, POST a file, and read the response

71Making the service asynchronous

The StreamContent object inherits from HttpContent. You can provide any stream
to StreamContent, which means you don’t have to keep the full content of the POST
in memory. The PostAsync method’s also nice if you don’t want to block the thread
as you wait for the POST to complete. In this example, we didn’t take advantage of the
async features of .NET. But to build high performance microservices applications, we
need to understand how to use these features.

7.3 Making the service asynchronous
In the code from Using HttpClient to call a web service, POST a file, and read the
response, we explicitly call .Result on the returned values of two async methods:
PostAsync and ReadAsStringAsync. These methods return Task objects. Our cli-
ent doesn’t need to be asynchronous because it’s only doing one thing. It doesn’t mat-
ter if we block the main thread, because there’s nothing else that needs to happen.

 Services can’t afford to tie up threads waiting for something. Let’s take a closer look
at the service code the converts the posted Markdown to HTML. The method is shown
in Synchronous Convert method blocks a thread waiting for the request content.

[HttpPost]
public IActionResult Convert()
{
 var reader = new StreamReader(Request.Body);
 var markdown = reader.ReadToEnd(); This is the call that

blocks the thread

 var result = engine.Markup(markdown);
 return Content(result);
}

The problem with blocking the thread to read the incoming HTTP request is when
the client doesn’t execute as fast as you think. If the client has a slow upload speed or
is malicious, it could take minutes to upload all the data. Meanwhile, the service has a
whole thread stuck on this client. Add enough of these clients and soon you’ll run out
of available threads and/or memory.

 The answer’s to rely on two powerful C# constructs called async and await. Asyn-
chronous Convert method that does not block the thread waiting for the request con-
tent shows how we could rewrite the Convert method to be asynchronous.

[HttpPost]
public async Task<IActionResult> Convert()

Mark the method async and
return a Task or Task<T>

{
 using (var reader = new StreamReader(Request.Body)) using block’s to

clean up reader,
not necessary
for async

 {
 var markdown = await reader.ReadToEndAsync();

await on the result of
ReadToEndAsync()

 var result = engine.Markup(markdown);
 return Content(result);
 }
}

Listing 7.11 Synchronous Convert method blocks a thread waiting for the request
content

Listing 7.12 Asynchronous Convert method that doesn’t block the thread waiting for
the request content

72 CHAPTER 7 Creating a Microservice

If the client’s slowly uploading its request content, the only impact’s the socket held
open. The layers beneath your service code are responsible for gathering the network
IO and buffering it until the request content length’s reached. This means your ser-
vice can handle more requests with fewer threads. Writing asynchronous code
becomes more important as the service depends on other services, which limits opera-
tions to the speed of the network. We’ll see an example of this in the next section.

7.4 Getting data from Azure blob storage
Now that we’ve figured out how to convert Markdown to HTML, let’s incorporate stor-
age of the posts in Azure blob storage. Instead of posting data to the Markdown ser-
vice, I prefer to send it a blob name and have it return the converted HTML. We can
do this by adding a GET method to our service. Before going into that, we’ve some val-
ues we need to pull from configuration.

7.4.1 Getting values from configuration

Our code uses the Microsoft.Extensions.Configuration library, which we learned
about in chapter 6. Consult chapter 6 for instructions on adding a config.json file to
your project, copying it to the build output, and adding the dependency on the Con-
figuration library. The code for getting the config values is shown in Code to read the
Azure storage account information from configuration.

public class MdlController : Controller
{
 private readonly IMarkdownEngine engine;
 private readonly string AccountName;
 private readonly string AccountKey;
 private readonly string BlobEndpoint;
 private readonly string ServiceVersion;

 public MdlController(IMarkdownEngine engine)
 {
 this.engine = engine;
 var configBuilder = new ConfigurationBuilder();
 configBuilder.AddJsonFile("config.json", true);

Only using JSON config,
no default config

 var configRoot = configBuilder.Build();
 AccountName = configRoot["AccountName"];
 AccountKey = configRoot["AccountKey"];
 BlobEndpoint = configRoot["BlobEndpoint"];

Blob endpoint is determined
differently in emulator than in Azure

 ServiceVersion = configRoot["ServiceVersion"];
 }

The async/await constructs are a bit of compiler magic that make asynchronous
code much easier to write. The await signals a point in the method where the code
needs to wait for something. The C# compiler splits the Convert method into two
methods, with the second being invoked when the awaited item’s finished. This all
happens behind the scenes, but if you’re curious how it works, try viewing the IL
generated for async methods in the ILDASM tool that comes with Visual Studio.

Listing 7.13 Code to read the Azure storage account information from configuration

73Getting data from Azure blob storage

The config.json has the four properties read in Code to read the Azure storage account
information from configuration. An example config file’s shown in Example con-
fig.json file for the Markdown service.

{
 "AccountName": "myaccount",
 "AccountKey": "<accountkey>",
 "BlobEndpoint": "https://myaccount.blob.core.windows.net/",
 "ServiceVersion": "2009-09-19"
}

If you’re using the Azure emulator, often referred to as development storage, use the
configuration settings from config.json when connecting to the Azure emulator.

{
 "AccountName": "devstoreaccount1",
 "AccountKey":

The account key’s well known
and can be found online

"Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTO
tr/KBHBeksoGMGw==",

 "BlobEndpoint": "http://127.0.0.1:10000/devstoreaccount1/",
 "ServiceVersion": "2009-09-19"
}

7.4.2 Creating the GetBlob method

In GetBlob method that gets Markdown content from Azure blob storage and returns
the converted HTML, we expect the caller to pass in the container and blob names in
the querystring. The method makes a request to Azure blob storage to retrieve the
Markdown content. It converts the result to HTML and sends the response.

using System.Security.Cryptography;
Add these usings to
the top of the file

using System.Threading.Tasks;
using Microsoft.Extensions.Configuration;

[HttpGet]

HttpGet indicates this method’s
hit when using a GET verb

public async Task<IActionResult> GetBlob(
 string container, string blob)

Parameters can be specified in
querystring or request body

{
 var path = $"{container}/{blob}";
 var rfcDate = DateTime.UtcNow.ToString("R");
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";

Storage emulator
computes URI

slightly
differently

 var signme = "GET\n\n\n\n\n\n\n\n\n\n\n\n" +

The empty lines are header
properties we don’t want to specify

 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" + ServiceVersion comes from config
 $"/{AccountName}/{path}";

Listing 7.14 Example config.json file for the Markdown service

Listing 7.15 config.json when connecting to the Azure emulator

Listing 7.16 GetBlob method that gets Markdown content from Azure blob storage and
returns the converted HTML

74 CHAPTER 7 Creating a Microservice

 var uri = new Uri(BlobEndpoint + path); BlobEndpoint
comes from
config

 var request = new HttpRequestMessage(HttpMethod.Get, uri);
 request.Headers.Add("x-ms-blob-type", "BlockBlob");
 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion);

Notice the same
properties in
headers string string signature = "";

 using (var sha = new HMACSHA256(
 System.Convert.FromBase64String(AccountKey)))

AccountKey comes from config, used to created signature

 {
 var data = Encoding.UTF8.GetBytes(headers);

Use SHA to create the signature
in the authorization property

 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 var authHeader = $"SharedKey {AccountName}:{signature}";
 request.Headers.Add("Authorization", authHeader);

AccountName comes from config

 using (var client = new HttpClient())
 {
 var response = await client.SendAsync(request);

Sending the request and receiving the
response are both async methods

 var markdown = await response.Content.ReadAsStringAsync();
 var result = engine.Markup(markdown);
 return Content(result);
 }
}

The code in GetBlob method that gets Markdown content from Azure blob storage
and returns the converted HTML can seem overwhelming, and we’ll break it down
into manageable pieces. The first part’s the method signature, shown in Signature for
the GetBlob method.

[HttpGet]
public async Task<IActionResult> GetBlob(
 string container, string blob)

The HttpGet attribute tells ASP.NET MVC that GetBlob receives client HTTP requ-
ests using the GET verb. The parameters of the method, "container" and "blob" are
expected to be passed from the client in the querystring. For example, the client could
make a GET request to "http://localhost:5000?container=netcorebook&blob=test.md".
MVC extracts the name/value pairs from the querystring and matches them to the
method parameters.

 As of the time this book was written, there’s no .NET Core version of the Azure
SDK. Luckily, it’s still accessible as an HTTP REST service. Most of the code in Get-
Blob is creating an HTTP request to send to Azure blob storage. You’ll need an Azure
storage account to test it. Azure has a 30-day free trial if you don’t already have a sub-
scription. An Azure storage emulator is available, which is part of the Azure SDK, but
it only works on Windows.

 The GET blob request’s encapsulated in an HttpRequestMessage object. Let’s
put the code that creates that object into it’s own method, as shown in Code to create
an HttpRequestMessage to send a GET blob request to Azure storage.

Listing 7.17 Signature for the GetBlob method

75Getting data from Azure blob storage

private HttpRequestMessage CreateRequest(
 HttpMethod verb, string container, string blob)
{
 var path = $"{container}/{blob}";
 var rfcDate = DateTime.UtcNow.ToString("R");

The date and time of the
request in RFC format

 var uri = new Uri(BlobEndpoint + path);

Constructs the URI

 var request = new HttpRequestMessage(verb, uri);
 request.Headers.Add("x-ms-blob-type", "BlockBlob");

Indicates blob type—
blocks are a good default

 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion); Azure

storage
version var authHeader = GetAuthHeader(Covered later

in this section

 verb.ToString().ToUpper(), path, rfcDate);
 request.Headers.Add("Authorization", authHeader);

 return request;
}

This chapter focuses on making requests to Azure blob storage, which are the same
techniques that apply to other HTTP services. Because we’ll be writing several opera-
tions against Azure blob storage in this chapter, we’ll be able to reuse CreateRe-
quest in other operations.

 Azure blob containers have different levels of exposure. It’s possible to expose the
contents publicly to prevent a request from needing authentication. In our case, the
container’s private. The only way to access it’s to use a shared key to create an authen-
tication header in the request. In Code to create an HttpRequestMessage to send a
GET blob request to Azure storage, the code for creating the authentication header’s
split into a separate method called GetAuthHeader. The code for GetAuthHeader is
shown in Creates the authentication header for accessing the Azure storage endpoint
using the shared account key.

private string GetAuthHeader(string verb, string path, string rfcDate)
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = $"{verb}\n\n\n\n\n\n\n\n\n\n\n\n" + The newlines are fields

we don’t need to specify

 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";

 string signature;
 using (var sha = new HMACSHA256(
 System.Convert.FromBase64String(AccountKey))) The account key’s available

in the Azure portal

 {
 var data = Encoding.UTF8.GetBytes(signme);

Listing 7.18 Code to create an HttpRequestMessage to send a GET blob request to
Azure storage

Listing 7.19 Creates the authentication header for accessing the Azure storage
endpoint using the shared account key

76 CHAPTER 7 Creating a Microservice

 signature = System.Convert.ToBase64String(
 sha.ComputeHash(data)); Hashes the headers

with the account key

 }

 return $"SharedKey {AccountName}:{signature}";

SharedKeyLite has
fewer newlines

}

The aim of this method’s to produce a hashed version of the request header. The
server performs the same hash and compares against the value you sent. If they don’t
match, it reports an error and tells you what content it hashed. This helps in case
you’ve mistyped something.

The helper methods above have made the GetBlob method much shorter. Updated
GetBlob method that uses the helper methods for creating the HTTP request against
Azure blob storage has the updated version.

[HttpGet]
public async Task<IActionResult> GetBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Get, container, blob);

 using (var client = new HttpClient())
 {
 var response = await client.SendAsync(request);
 var markdown = await response.Content.ReadAsStringAsync();
 var result = engine.Markup(markdown);
 return Content(result);
 }
}

7.4.3 Testing the new Azure storage operation

The Markdown service now has a GET operation. The first step in testing it’s to put a
Markdown file in an Azure blob container. Many tools exist that do this, including the
Azure portal. You’ll also need to get the account name and key from the Azure portal
to populate the values in the config.json.

 Once the Markdown files are in place, you can make a request to the Markdown
service with a console application. Console application that calls Markdown service’s
Azure storage operation shows the contents of the Program.cs file in a console appli-
cation that tests the new Azure storage operation.
using System;
using System.IO;

Authentication for Azure storage’s covered in depth here:
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices
/authentication-for-the-azure-storage-services

Listing 7.20 Updated GetBlob method that uses the helper methods for creating the
HTTP request against Azure blob storage

https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/authentication-for-the-azure-storage-services
https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/authentication-for-the-azure-storage-services

77Uploading and receiving uploaded data

using System.Net.Http;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 using (var client = new HttpClient())
 {
 var response = client.GetAsync(
 "http://localhost:5000?container=somecontainer&blob=test.md")
 .Result;
 string markdown = response.Content.
 ReadAsStringAsync().Result;
 Console.WriteLine(markdown);
 }
 }
 }
}

Conversely, you can use the curl command shown in Curl command to make get
request against the Markdown service.

curl "http://localhost:5000?container=netcorebook&blob=test.md"

7.5 Uploading and receiving uploaded data
Our Markdown service isn’t technically a micro-service. One of the key principals of a
micro-service is that it has its own isolated data source. In the previous section, we added
blobs to the Azure storage account either through the Azure portal or an external tool.
In order to isolate the data source for the Markdown service, we’ll need to add methods
to upload new blobs and change existing blobs. For this, we’ll add a PUT operation, as
in Operation to upload a blob to Markdown service’s blob storage account.

[HttpPut("{container}/{blob}")]
public async Task<IActionResult> PutBlob(string container, string blob)
{
 var contentLen = this.Request.ContentLength;

Get content length from request

 var request = CreateRequest(HttpMethod.Put,
 container, blob, contentLen); Content length needed to create request header

Listing 7.21 Console application that calls Markdown service’s Azure storage
operation

Listing 7.22 Curl command to make get request against the Markdown service

The quotations around the URL in Curl command to make get request against the
Markdown service are necessary for Windows. The & symbol has a special meaning
in Windows command line scripting.

Listing 7.23 Operation to upload a blob to Markdown service’s blob storage account

78 CHAPTER 7 Creating a Microservice

 request.Content = new StreamContent(
 this.Request.Body); Read the stream

from the request
into our request

 request.Content.Headers.Add("Content-Length",
 contentLen.ToString()); Notice this header’s on

the request content

 using (var client = new HttpClient())
 {
 var response = await client.SendAsync(request);
 if (response.StatusCode = HttpStatusCode.Created)
 return Created(
 $"{AccountName}/{container}/{blob}", null); Respond with 201

status code and path

 else
 return Content(await
 response.Content.ReadAsStringAsync()); Send any errors back to client
 }
}

In the PutBlob method, we’re taking a PUT request and creating our own request
with the right Authorization header for Azure blob storage. In a production service,
you wouldn’t expose a secure resource through an unsecure one. Securing services
with ASP.NET Core’s a deep subject that you can read about in ASP.NET Core in
Action (also from Manning publications). The purpose of this example’s to explore
how PUT operations work.

 An HTTP PUT operation’s considered idempotent. This means that no matter how
many times you call it, it’ll result in the same outcome. If you PUT the same blob multi-
ple times, each call returns a 201. Contrast this with POST, which isn’t idempotent. If
you perform a POST and it times out, the state of the resource’s unknown and we need
to make a GET call to verify the state of the resource before retrying the POST. But
with a PUT, we retry knowing that a duplicate call won’t result in adverse effects. In the
Markdown service, we use POST only for an operation that doesn’t save data.

 The content of the Markdown file that the client’s requesting to store in our ser-
vice’s in the body of the request. We can get a Stream with the content data directly
from this.Request.Body. Rather than measure the length of the content ourselves,
we get it from the incoming request using this.Request.ContentLength. The
content length’s a required header for PUT operations to Azure blob storage. But
you’ll notice it’s added to Request.Content.Headers instead of Request.Head-
ers. Content headers include things like length, type, and encoding. This probably
has to do with the fact that these headers are special and are indicated by position
rather than name. To see what I mean by that, look at how the authentication header’s
created in GetAuthHeader method modified to allow content length specification.

private string GetAuthHeader(string verb, string path,
 string rfcDate, long? contentLen) Optional value for content length
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";

Listing 7.24 GetAuthHeader method modified to allow content length specification

79Uploading and receiving uploaded data

 var signme = $"{verb}\n\n\n" + Content length’s three lines after the verb
 $"{contentLen}\n" +

Only the number’s
written, not
"Content-Length: "

 "\n\n\n\n\n\n\n\n" +
 "x-ms-blob-type:BlockBlob\n" +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";

 string signature;
 using (var sha = new

HMACSHA256(System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 return $"SharedKey {AccountName}:{signature}";
}

For a PUT operation against Azure blob storage, only the content length’s required. It
goes three lines after the verb. Because contentLen is a nullable long, nothing’s writ-
ten if it’s null. This means we don’t have to change the GetBlob method. But we do
need to change the CreateRequest helper method, as shown in CreateRequest
method changed to allow content length specification.

private HttpRequestMessage CreateRequest(HttpMethod verb,
 string container, string blob,
 long? contentLen = default(long?))

Default parameter in
case it’s not specified

{
 ...

 var authHeader = GetAuthHeader(verb.ToString().ToUpper(),
 path, rfcDate, contentLen);

Default contentLen
is null

 request.Headers.Add("Authorization", authHeader);

 return request;
}

To test this new method in the Markdown service, you can use the same code and Curl
commands as used early in this chapter for the POST operation. Change POST to
PUT and modify the URL to include the container and blob name. Curl command to
test the PutBlob operation and C# client code to test the PutBlob operation show how
to do this.

curl -X PUT --data-binary @test.md http://localhost:5000/netcorebook/foo.md

Listing 7.25 CreateRequest method changed to allow content length specification

Default parameters are a handy C# feature. They must go at the end of the
parameter list and are specified by assigning a default value with =.
The default() keyword creates a constant value. In the case of nullable types,
like long?, the default is null.

Listing 7.26 Curl command to test the PutBlob operation

80 CHAPTER 7 Creating a Microservice

var response = client.PutAsync(
 "http://localhost:5000/netcorebook/foo.md",
 new StreamContent(
 new FileStream("test.md", FileMode.Open))
).Result;

7.6 Listing containers and blobs
Now that we’ve the ability to upload blobs to containers, we should expose a way for
clients to get the list of containers and blobs in the containers. The most straightfor-
ward way’s to modify the HttpGet operation to allow null values for blob or con-
tainer. A null blob parameter indicates that the client wants a list of all blobs in the
container. A null container parameter indicates that they want a list of all containers.
Azure blob storage supports list requests. It returns the list in an XML document. Up
until now, we haven’t specified a content type for the response. The default content
type from ASP.NET is "text/html", which is perfect for a response which has been con-
verted from Markdown to HTML. In this example, we’ll return the result of the Azure
storage call. HttpGet operation modified to support listing containers and blobs and
return XML shows the modifications to support returning XML.

[HttpGet]
public async Task<IActionResult> GetBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Get, container, blob);
 var contentType = blob == null ? "text/xml" : Assuming the container

is null, the blob is also

 "text/html";

 using (var client = new HttpClient())
 {
 var response = await client.SendAsync(request);
 var responseContent = await response.Content.ReadAsStringAsync();
 if (blob != null) Only convert if

it’s Markdown

 responseContent = engine.Markup(responseContent);
 return Content(responseContent, contentType);

Overrides default content type of text/html

 }
}

Making a GET request to the service with the blob or container parameter not speci-
fied results in null values passed into the GetBlob method. For example, to request a
list of blobs in the "netcorebook" container, use URL http://localhost:5000?conta-
iner=netcorebook. To get a list of all the containers, use URL http://localhost:5000.

Listing 7.27 C# client code to test the PutBlob operation

Listing 7.28 HttpGet operation modified to support listing containers and blobs and
return XML

81Listing containers and blobs

 The request to Azure blob storage’s slightly different for list requests. Modifica-
tions to Azure blob storage helper methods to support listing blobs and contain-
ers shows the updates to the helper methods to list blobs and containers.

private HttpRequestMessage CreateRequest(HttpMethod verb,
 string container, string blob, long? contentLen = default(long?))
{
 string path;
 Uri uri;
 if (blob != null) Gets blob content
 {
 path = $"{container}/{blob}";
 uri = new Uri(BlobEndpoint + path);
 }
 else if (container != null) Lists blobs in a container
 {
 path = container;
 uri = new Uri($"{BlobEndpoint}{path}?restype=container&comp=list");
 }
 else Lists containers
 {
 path = "";
 uri = new Uri($"{BlobEndpoint}?comp=list");
 }

 var rfcDate = DateTime.UtcNow.ToString("R");
 var request = new HttpRequestMessage(verb, uri);
 if (blob != null)

Don’t write this header
for list requests

 request.Headers.Add("x-ms-blob-type", "BlockBlob");
 request.Headers.Add("x-ms-date", rfcDate);
 request.Headers.Add("x-ms-version", ServiceVersion);

 var authHeader = GetAuthHeader(verb.ToString().ToUpper(), path, rfcDate,
 contentLen, blob == null, container == null);
 request.Headers.Add("Authorization", authHeader);

 return request;
}

private string GetAuthHeader(string verb, string path, string rfcDate,
 long? contentLen, bool listBlob, bool listContainer)
{
 var devStorage = BlobEndpoint.StartsWith("http://127.0.0.1:10000") ?
 $"/{AccountName}" : "";
 var signme = $"{verb}\n\n\n" +
 $"{contentLen}\n" +
 "\n\n\n\n\n\n\n\n" +

Leave blob type out
of auth header

 (listBlob ? "" : "x-ms-blob-type:BlockBlob\n") +
 $"x-ms-date:{rfcDate}\n" +
 $"x-ms-version:{ServiceVersion}\n" +
 $"/{AccountName}{devStorage}/{path}";
 if (listContainer)

Add querystring
parameters to auth
header when listing

 signme += "\ncomp:list";

Listing 7.29 Modifications to Azure blob storage helper methods to support listing
blobs and containers

82 CHAPTER 7 Creating a Microservice

 else if (listBlob)
 signme += "\ncomp:list\nrestype:container";

 string signature;
 using (var sha = new

HMACSHA256(System.Convert.FromBase64String(AccountKey)))
 {
 var data = Encoding.UTF8.GetBytes(signme);
 signature = System.Convert.ToBase64String(sha.ComputeHash(data));
 }

 return $"SharedKey {AccountName}:{signature}";
}

7.7 Deleting a blob
To round out the functionality of the Markdown service, we’ll add the ability to delete
a blob from a container. A request with a DELETE verb has a similar structure as a
GET request. The only real consideration’s what status code to return. Azure blob
storage returns a 202 (Accepted) status code when issuing a delete blob command.
This is because the blob immediately becomes unavailable but isn’t deleted until a
garbage collection happens. This is inline with RFC 2616 of the HTTP specification.

A successful response SHOULD be 200 (OK) if the response includes an entity describing
the status, 202 (Accepted) if the action hasn’t yet been enacted, or 204 (No Content) if
the action has been enacted but the response doesn’t include an entity.

— RFC 2616 (https://tools.ietf.org/html/rfc2616#section-9.7)

For the Markdown service, the blob’s deleted. We won’t return the value of the blob in
the response, and a 204 (No Content) seems more appropriate. DeleteBlob operation
to delete a blob from container shows how to write the delete operation.

[HttpDelete]
public async Task<IActionResult> DeleteBlob(string container, string blob)
{
 var request = CreateRequest(HttpMethod.Delete, Don’t forget to use

the right verb here

 container, blob);

 using (var client = new HttpClient())
 {
 var response = await client.SendAsync(request);
 if (response.StatusCode==HttpStatusCode.Accepted) If Azure returns 202,

we’ll return 204 return NoContent();
 else
 return Content(await response.Content.ReadAsStringAsync());
 }
}

Listing 7.30 DeleteBlob operation to delete a blob from a container

83Summary

7.8 Summary
In this chapter, we learned how to write a microservice and communicate with other
HTTP services as a client. The key concepts covered were:

 Use HttpClient to make requests
 ASP.NET Core routes messages based on the HttpGet, HttpPost, etc. attributes
 ASP.NET Core automatically populates method parameters and allows access to

the raw stream from the request
 Microservices control their own data store

Some important techniques to remember from this chapter:

 A library called MarkdownLite’s available for quick and easy conversion of
Markdown to HTML

 Async programming leaves threads unblocked, which improves the perfor-
mance of your application

 Curl’s a powerful and simple tool for quickly testing your services

Much of modern programming involves writing and communicating with HTTP ser-
vices. ASP.NET Core makes writing HTTP REST services quick and intuitive by using a
convention-based approach. Methods like Content, Created, Accepted, etc. match
the HTTP specifications. Routing requests to the right methods are handled via
the Http* attributes and accessing parameters from the URI or querystring doesn’t
require manual parsing.

 Making HTTP requests from .NET Core code’s straightforward. The HttpCli-
ent class offers useful helper methods. In this chapter, we used HttpClient to com-
municate with Azure storage. For .NET Framework developers used to having the
Azure SDK, contacting the HTTP services directly can seem daunting. But once you
understand how to authenticate, it’s easy.

 Now that we've an idea of how to build services, we need to find out how to add
logging to those services. This way, we can see what’s going on with our services in pro-
duction. In the next chapter, we’ll look at the logging mechanisms built into the .NET
Standard.

84 CHAPTER 7 Creating a Microservice

.NET Core is what it sounds like. It's a subset of the

.NET framework with libraries and runtimes that drasti-
cally reduce its footprint, so you can write and run
.NET applications more efficiently. In addition to Win-
dows, .NET Core includes runtimes for Mac and Linux,
making it a high-productivity cross-platform option for
web, cloud, and server-based applications. It's open
source and backed by Microsoft, so supported operat-
ing systems, CPUs, and application scenarios will con-
tinue to grow over time.

 .NET Core in Action shows .NET developers how to
build professional software applications with .NET

Core. You'll start by getting the big picture of how to build .NET Core applications and
use the tools. Then you'll learn unit testing, debugging, and logging. You'll also dis-
cover simple data access and networking. The last part of the book goes into more
advanced topics, like performance profiling, localization, and signing assemblies, that
you need to know so you can release your library or application to the world. By the
end of this book, you'll be able to convert existing .NET code to work on multiple plat-
forms or start new projects with knowledge of the tools and capabilities of .NET Core.

What's inside:

 Debugging .NET Core applications
 Using PerfView to investigate performance issues
 Enabling localization in a library
 Creating unit tests with XUnit
 Converting existing .NET projects to Core
 Working with relational data stores
 Interacting with web services
 Tools for writing .NET Core apps
 All examples are in C#

This book is for developers who are familiar with a C-like language.

https://www.manning.com/books/dotnet-core-in-action
https://www.manning.com/books/dotnet-core-in-action

The previous selection introduced ASP.NET Core for writing simple ser-
vices. Andrew Lock takes you into the realm of writing web sites with ASP.NET
Core Model-View-Controller in an excerpt from his book, ASP.NET Core in Action.
You’ll learn how to separate data, business logic, and the display of the data into
well-defined sections. This chapter also covers the conventions used by ASP.NET
Core MVC that save you time and make code easier to read.

Creating Web Pages
with MVC Controllers

https://www.manning.com/books/asp-dot-net-core-in-action

86

Chapter 4 from ASP.NET Core in Action
by Andrew Lock.

Creating web pages
with MVC Controllers

In the previous chapter, you learned about the middleware pipeline, which defines
how an ASP.NET Core application responds to a request. Each piece of middleware
has an opportunity to either modify or handle an incoming request, before passing
the request to the next middleware in the pipeline.

 In ASP.NET Core web applications, the final piece of middleware in the pipe-
line will normally be the MvcMiddleware. This is typically where you write the bulk
of your application logic, by calling out to various other classes in your app. It also
serves as the main entry-point for users to interact with your app. It typically takes
one of two forms:

 An HTML web application, designed for direct use by users. If the applica-
tion’s consumed directly by users, as in a traditional web application, then

This chapter covers
 What the MVC design pattern is

 How MVC is used in ASP.NET Core

 Creating MVC controllers for serving web pages

https://www.manning.com/books/asp-dot-net-core-in-action

87

the MvcMiddleware is responsible for generating the “web pages” that the user
interacts with. It handles requests for URLs, it receives data posted using forms,
and it generates the HTML that users use to view and navigate your app.

 An API designed for consumption by another machine or in code. The other
main possibility for a web application’s to serve as an API, either to back-end
server processes, to a mobile app, or to a client framework for building single
page applications (SPAs). The same MvcMiddleware can fulfill this role by serv-
ing data in machine-readable formats such as JSON or XML, instead of the
human-focused HTML output.

 In this chapter, you’ll learn how ASP.NET Core uses the MvcMiddleware to serve
these two requirements. You’ll start by looking at the Model-View-Controller (MVC)
design pattern to see the benefits that can be achieved through its use, and learn why
it’s been adopted by many web frameworks as a model for building maintainable
applications.

 Next you’ll learn how the MVC design pattern applies specifically to ASP.NET
Core. The MVC pattern’s a broad concept that can be applied in a variety of situa-
tions, but the use case in ASP.NET Core’s specifically as a user interface (UI) abstrac-
tion. You’ll see how to add the MvcMiddleware to your application, as well as how to
customize it for your needs.

 Once you’ve installed the middleware in your app, I’ll show how to create your first
MVC controllers. You’ll learn how to define action methods to execute when your
application receives a request, and how to generate a result that can be used to create
an HTTP response to return. For traditional MVC web applications, this’ll be a
ViewResult that can generate HTML.

 I won’t cover how to create Web APIs in this chapter. Web APIs still use the Mvc-
Middleware, but they’re used slightly differently. Instead of returning web pages that
are directly displayed on a user’s browser, they return data formatted for consumption
in code. They’re often used for providing data to mobile and web applications, or to
other server applications, but they still follow the same general MVC pattern. You’ll
see how to create a Web API more generally in chapter eight.

NOTE This chapter’s the first of several on MVC in ASP.NET Core and the
MvcMiddleware. As I’ve already mentioned, this middleware’s often responsi-
ble for handling all the business logic and UI code for your application, and
it’s, perhaps unsurprisingly, large and somewhat complicated. The next five
chapters all deal with a different aspect of the MVC pattern that makes up the
MVC middleware.

 In this chapter I’ll try and prepare you for each of the upcoming topics, but you
may find that some of the behavior feels a bit like magic at this stage. Try not to
become too concerned with exactly how all the pieces tie together at this stage; focus
on the specific concepts being addressed. It should all become clear as we cover the
associated details in the remainder of this first part of the book.

88 CHAPTER 4 Creating web pages with MVC Controllers

4.1 An introduction to MVC
Depending on your background in software development, you may’ve previously
come across the MVC pattern in some form. In web development, MVC is a common
paradigm and is used in various frameworks such as Django, Rails, and Spring MVC.
But as it is such a broad concept, you can find MVC in everything from mobile apps to
rich client desktop applications. Hopefully that is indicative of the benefits the pattern
can bring if used correctly!

 In this section, I’ll look at the MVC pattern in general, how it applies to ASP.NET
Core, and how to add the MvcMiddleware to your application. By the end of this sec-
tion you should have a good understanding of the benefits of this approach and how
to get started.

4.1.1 The MVC design pattern

The MVC design pattern’s a common pattern for designing apps that have user inter-
faces. Many different interpretations of the original MVC pattern can be found, each
of which focuses on a slightly different aspect of the pattern. For example, the original
MVC design pattern was specified with rich-client graphical user interface (GUIs)
apps in mind, rather than web applications, and it uses terminology and paradigms
associated with a GUI environment. Fundamentally though, the pattern aims to sepa-
rate the management and manipulation of data from its visual representation.

 Before I dive too far into the design pattern itself, let’s consider a typical request.
Imagine a user of your application requests a page that displays a ToDo list. What hap-
pens when the MvcMiddleware gets this request? Figure 4.1 shows how the MVC pat-
tern’s used to handle different aspects of that single page request, all of which
combine to generate the final response.

Figure 4.1 Requesting a ToDo list page for an MVC application. A different component
handles each aspect of the request.

Request for ToDoList
is received from a user�

1

Model

Request

Controller

View

List items

5

The ToDoList controller�
handles the request

2

The controller class requests�the current items�
on the list from the ToDoList model.�The model�

may retrieve them from memory, a file or a�
database, for instance

3

4

Response

Thecontroller class find the correct HTML�
template for the to do list (also calledthe view)�

and passes it the list items from the model.

The ToDoList view plugs the items into the the�
HTML template and sends the completed�

HTML page back to the user

89An introduction to MVC

 In general, three components make up the MVC design pattern:

 Model—The data that needs to be displayed
 View—The template that displays the data provided by the model
 Controller—Updates the model and selects the appropriate View.

 Each of the components in an MVC application is responsible for a single aspect of
the overall system that, when combined, can be used to generate a user interface. The
ToDo list example considers MVC in terms of a web application, but a request could
also be equivalent to the click of a button in a desktop GUI application for example.

 In general, the order of events when an application responds to a user interaction
or request is as follows:

1 The controller receives the request.
2 Depending on the request, the controller either fetches the requested data

from the application model, or it updates the data that makes up the model.
3 The controller selects a view to display and passes the model to it.
4 The view uses the data contained in the model to generate the user interface.

 When we describe MVC in this format, the controller serves as the entry point for
the interaction. The user communicates with the controller to instigate an interac-
tion. In web applications, this interaction takes the form of an HTTP request, and
when a request to a URL is received, the controller handles it.

 Depending on the nature of the request, the controller may take a variety of
actions, but the key point’s that the actions are undertaken using the model. The
model here contains the business logic for the application, and it’s able to provide
requested data or perform actions.

NOTE In this description of MVC, the model is a complex beast, containing
all the logic for how to perform an action, as well as any internal state.

 For example, consider a request to view a product page for an ecommerce applica-
tion. The controller would receive the request, and would know how to contact some
product service which is part of the application model. This might fetch the details of
the requested product from a database and return them back to the controller.

 Alternatively, imagine the controller receives a request to add a product to the
user’s shopping cart. The controller would receive the request, and most likely invoke
a method on the model to request that the product be added. The model would then
update its internal representation of the user’s cart, for example by adding a new row
to a database table holding the user’s data.

 After the model’s been updated, the controller needs to select a way to display the
data. One of the advantages of using the MVC design pattern is that the model repre-
senting the data’s decoupled from the final representation of that data, called the
view.

90 CHAPTER 4 Creating web pages with MVC Controllers

 This separation creates the possibility for the controller to choose to display the
model using a different view, based on where the original request originated, as shown
in figure 4.2. If the request came from a standard web application, then the controller
can display an HTML view. If the request came from another application, then the
controller can choose to display the model in a format the application understands,
such as JSON or XML.

A request is received�
from a user�

1

Model

Request

Controller

Standard
web app

Model

In this case, the standard�
web app is selected, so an�

HTML�response is�generated.

5

The controller handles
the request

2

The controller fetches data�
from, or updates, the model�

to�perform the requested action

3

The controller selects a view
based on the caller that made the�
request and passes it the model.

4

HTML

Select a
View

SPA / mobile
application

JSON

Text based
UI application

Plain text

The selected view uses�the�
provided�model�to generate an

appropriate response.

5

Figure 4.2 Selecting a different view using MVC depending on the caller. The final representation
of the model, created by the view, is independent of the controller and business logic.

 The other advantage of the model being independent of the view’s that it improves
testability. User interface code’s classically hard to test, as it’s dependent on the environ-
ment—anyone who’s written UI tests simulating a user clicking on buttons and typing
in forms knows that it’s fragile. By keeping the model independent of the view, you can
ensure the model stays easily testable, without any dependencies on UI constructs. As
the model often contains your application’s business logic, this is clearly a good thing!

 Once the controller has selected a view, it passes the model to it. The view can use
the data passed to it to generate an appropriate user interface, for example an HTML
web page or a simple JSON object. The view’s only responsible for the generating of
the final representation.

 This is all there is to the MVC design pattern as applied to web applications. Much
of the confusion related to MVC seems to stem from slightly different usages of the
term for slightly different frameworks and types of application. In the next section, I’ll
show how the ASP.NET Core framework uses the MVC pattern, along with some more
examples of the pattern in action.

91An introduction to MVC

4.1.2 MVC in ASP.NET Core

As you’ve seen in previous chapters, ASP.NET Core implements MVC using a single
piece of middleware, which is normally placed at the end of the middleware pipeline,
as shown in figure 4.3. Once a request has been processed by each middleware (and
assuming none of them handle the request and short-circuit the pipeline), it’ll be
received by the MVC middleware.

Error handling
middleware

Static file
middleware

MVC middleware

The request passes�
through�each middleware�

in the pipeline

Each middleware gets�
an�opportunity to�
handle the request

The MVC middleware is typically�
the �last middleware in the�

pipeline. It encompasses the
whole MVC design pattern

Request Response

Figure 4.3 The middleware pipeline.
The MVC middleware’s typically
configured as the last middleware in
the pipeline.

 Middleware often handles cross cutting concerns or narrowly defined requests,
such as requests for files. For requirements that fall outside of these functions, or that
have many external dependencies, a more robust framework’s required. The MvcMid-
dleware in ASP.NET Core can provide this framework, allowing interaction with your
application’s core business logic, and generation of a user interface. It handles every-
thing from mapping the request to an appropriate controller, to generating the
HTML or API response.

 In the traditional description of the MVC design pattern, there’s only a single type
of model, which holds all the non-UI data and behavior. The controller updates this
model as appropriate and then passes it to the view, which uses it to generate a UI.
This simple, three component pattern may be sufficient for some basic applications,
but for more complex applications it often doesn’t scale.

 One of the problems when discussing MVC is the vague and overloaded terms that
it uses, such as “controller” and “model.” Model is such an overloaded term that it’s
often difficult to be sure exactly what it refers to—is it an actual object, a collection of
objects, or an abstract concept? Even ASP.NET Core uses the word “model” to
describe several related, but different, components, as you’ll see shortly.

92 CHAPTER 4 Creating web pages with MVC Controllers

DIRECTING A REQUEST TO A CONTROLLER AND BUILDING A BINDING MODEL

The first step when the MvcMiddleware receives a request is the routing of the request
to an appropriate controller. Let’s think about another page in our ToDo application.
On this page, you’re displaying a list of items marked with a given category, assigned
to a particular user. If you’re looking at the list of items assigned to the user “Andrew”
with a category of “Simple”, you’d make a request to the URL /todo/list/Sim-
ple/Andrew.

 Routing takes the path of the request, /todo/list/Simple/Andrew, and maps it
against a preregistered list of patterns. These patterns match a path to a single con-
troller class and action method. You’ll learn more about routing in the next chapter.

DEFINITION An action (or action method) is a method that runs in response to a
request. A controller is a class that contains several logically grouped action
methods.

Once an action method’s selected, the binding model (if applicable) is generated, based
on the incoming request and the method parameters required by the action method,
as shown in figure 4.4. A binding model’s normally a standard class, with properties
that map to the request data. We’ll look in detail at binding models in chapter six.

DEFINITION A binding model’s an object that acts a “container” for the data
provided in a request which is required by an action method.

 In this case, the binding model contains two properties: Category, which is
“bound” to the value "Simple"; and the property User, which is bound to the value
"Andrew.” These values are provided in the request URL’s path and are used to popu-
late a binding model of type TodoModel.

A request is received�to�
and is handled by the Middleware

1 Request

Action

The routing module directs the�
request to a specific controller

and action�

2

Binding Model

Routing

A binding model is built�from�the�
details provided�in the�request.

3

Controller

The action is�passed the�
binding model and as a method

parameter and is executed

4

URL mapped to action method

m.Category = "Simple"
m.User = "Andrew"

var m = new ToDoModel()

ListCategory(TodoModel m)

TodoController.ListCategory

GET URL
/todo/list/Simple/Andrew

Action method is executed

Figure 4.4 Routing a request to a controller, and building a binding model. A request to the
URL /todo/list/Simple/Andrew results in the ListCategory action being
executed, passing in a populated binding model.

93An introduction to MVC

 This binding model corresponds to the method parameter of the ListCategory
action method. This binding model’s passed to the action method when it executes,
and it can be used to decide how to respond. For this example, the action method
uses it to decide which ToDo items to display on the page.

EXECUTING AN ACTION USING THE APPLICATION MODEL

The role of an action method in the controller’s to coordinate the generation of a
response to the request it is handling. That means it should only perform a limited
number of actions. It should

 Validate the binding model provided for the request
 Invoke the appropriate actions on the application model
 Select an appropriate response to generate, based on the response from the

application model

 Figure 4.5 shows the action model invoking an appropriate method on the applica-
tion model. Here you can see that the “application model” is a somewhat abstract con-
cept, which encapsulates the remaining non-UI part of your application. It contains
the domain model, numerous services, database interaction, and so on.

1

Action

The action uses the Category
and User provided in the binding�

model�to�determine which method�
to�invoke�in the application model

2

Application Model

Domain
Model

Services

Database
interaction

The action method calls into�
services that make up the application

model. This might use the domain
model to calculate the price of the

product for example

3

Controller

The services load the details
of the product from the�

database and return them
back to the action method

Figure 4.5 When executed, an action invokes the appropriate methods in the application model.

DEFINITION The domain model encapsulates complex business logic in a series
of classes that don’t depend on any infrastructure and can be easily tested

 The action method typically calls into a single point in the application model. In
our example of viewing a product page, the application model might use a variety of
different services to check whether the user is allowed to view the product, to calculate
the display price for the product, to load the details from the database, or to load a
picture of the product from a file.

 Assuming the request’s valid, the application model returns the required details
back to the action method. It’s then up to the action method to choose a response to
generate.

94 CHAPTER 4 Creating web pages with MVC Controllers

GENERATING A RESPONSE USING A VIEW MODEL

Once the action method’s called out to the application model that contains the appli-
cation business logic, it’s time to generate a response. A view model captures the details
necessary for the view to generate a response.

DEFINITION A view model is a simple object that contains data required by the
view to render a UI.

 The action method selects an appropriate view template and passes the view model
to it. Each view is designed to work with a specific view model, which it uses to gener-
ate the final HTML response. Finally, this is sent back through the middleware pipe-
line and out to the user’s browser, as shown in figure 4.6.

The ListCategory action�
builds a view model from
the data provided by the

application model

1 Action

View

2 The controller selects the�
ListCategory view and passes

it the view model containing the
list of relevant ToDos

The view uses the provided�
view model to generate an�
HTML response containing�

the details of the ToDos to display

3

View Model

Controller

HTML

The response is sent
back through the

middleware pipeline to the user

4

Figure 4.6 The action method builds a view model, selects which view to use to generate the response, and
passes it the view model. It’s the view which generates the response itself.

 It’s important to note that, although the action method selects which view to dis-
play, it doesn’t select what’s generated. It’s the view that decides what the actual con-
tent of the response will be.

PUTTING IT ALL TOGETHER: A COMPLETE MVC REQUEST

Now you’ve seen each of the steps that go into handling a request in ASP.NET Core
using MVC, let’s put it all together from request to response. Figure 4.7 shows how
each of the steps combine to handle the request to display the list of ToDos for user
“Andrew” and category “Simple.” The traditional MVC pattern’s still visible in ASP.NET
Core, made up of the action/controller, the view, and the application model.

 By now, you might be thinking this whole process seems rather convoluted –many
steps to display some HTML! Why not allow the application model to create the view

A request is received�to�the�
URL /todo/list/Simple/Andrew

1 Request

Action

View

The routing module directs
the request to the ListCategory�
action on�the ToDoController�
and builds a binding model

2

The controller selects the�
ListCategory view and passes

it the view model containing the
details about the product

4

The view uses the provided�
view model to generate an HTML

response which is returned to the user

5

Application Model

Binding Model

View Model

Domain
Model

Services

Database
interaction

Routing
The action method calls into�

services that make up the application
model to fetch details about the

product and to build a view model

3

Controller

HTML

Figure 4.7 A complete MVC request for the list of ToDos in the “Simple” category for user “Andrew”.

95An introduction to MVC

directly, rather than having to go on a dance back and forth with the control-
ler/action method?

 The key benefit throughout this process is the separation of concerns.
 The view’s responsible only for taking some data and generating HTML.
 The application model’s responsible only for executing the required business

logic.
 The controller’s responsible only for validating the incoming request and

selecting the appropriate view to display, based on the output of the application
model.

 By having clearly defined boundaries it’s easier to update and test each of the com-
ponents without depending on any of the others. If your UI logic changes, you don’t
have to modify any of your business logic classes, and you’re less likely to introduce
errors in unexpected places.

96 CHAPTER 4 Creating web pages with MVC Controllers

 The examples shown here demonstrate the majority of the MVC middleware func-
tionality. Some additional features exist, such as the filter pipeline that I’ll cover later
(chapter thirteen), and I’ll discuss binding models in greater depth in chapter six, but
the overall behavior of the system’s the same.

 Similarly, I’ll discuss how the MVC design pattern applies when you’re generating
machine-readable responses using Web API controllers in chapter nine. The process
is, for all intents and purposes, identical, with one exception; the result generated.

 In the next section, you’ll see how to add the MVC middleware to your applica-
tion.Most templates in Visual Studio and the .NET CLI includes the MVC middleware
by default, but you’ll see how to add it to an existing application, and explore the vari-
ous options available.

4.1.3 Adding the MvcMiddleware to your application

The MVC middleware’s a foundational aspect of all but the simplest ASP.NET Core
applications, and virtually all templates include it configured by default. To make sure
you’re comfortable with adding MVC to an existing project, I’ll show how to start with
a basic empty application and add the MVC middleware to it from scratch.

 The result of your efforts won’t be exciting, yet we’ll display “Hello World” on a
web page, but it’ll show how simple it is to convert an ASP.NET Core application to use
MVC. It also emphasizes the pluggable nature of ASP.NET Core—if you don’t need
the functionality provided by the MVC middleware, then you don’t have to include it.

1 In Visual Studio 2017, choose File > New > Project
2 From the New Project dialog, choose .NET Core, and then select ASP.NET Core

Web Application (.NET Core).
3 Enter a Name, Location, and optionally a solution name and click OK.

The dangers of tight coupling
It’s often a good idea to reduce coupling between logically separate parts of your
application as much as possible. This makes it easier to update your application with-
out causing adverse effects or requiring modifications in seemingly unrelated areas.
Applying the MVC pattern’s one way to help with this goal.

As an example of when coupling rears its head, I remember a case a few years ago
when working on a small web app. In our haste, we hadn’t properly decoupled our
business logic from our HTML generation code, but initially there were no obvious
problems—the code worked, ship it!

A few months later, someone new started working on the app, and immediately
“helped” by renaming an innocuous spelling error in a class in the business layer.
Unfortunately, the names of those classes had been used to generate our HTML
code, and renaming the class caused the whole website to break in user’s browsers!
Suffice to say, we made a concerted effort to apply the MVC pattern after that, and
ensure we’d a proper separation of concerns.

97An introduction to MVC

4 Create a basic template without MVC, for example by selecting the Empty Proj-
ect template in Visual Studio, as shown in figure 4.8.

5 Edit your project file by Right Clicking on the project, and selecting Edit Proj-
ect.csproj, where Project is the name of your project, as show in figure 4.9.

Ensure Enable Docker
Support is unchecked

Select Empty
template

Click OK to generate the
application from the
selected template

1

2

3

Figure 4.8 Creating an empty ASP.NET Core template. The empty template creates a simple ASP.NET Core
application that contains a small middleware pipeline, but not the MvcMiddleware.

Right Click on your
project's name in
Solution Explorer

1

Choose Edit csproj. The
csproj file has the same

name as your project

2

Figure 4.9 You can edit the csproj file in Visual Studio while the project is open. Alternatively, edit the csproj file
directly in a text editor

98 CHAPTER 4 Creating web pages with MVC Controllers

6 Add the Microsoft.AspNetCore.Mvc package reference to your project’s depen-
dencies in the csproj file:

 <!--Other configuration -->
 <ItemGroup>
 <PackageReference

Include="Microsoft.ApplicationInsights.AspNetCore"
Version="2.0.0" />

 <PackageReference Include="Microsoft.AspNetCore" Version="1.0.4" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc"

Version="1.0.3" />
 </ItemGroup>
 <!--Other configuration -->

7 Add the necessary MVC services in your Startup.cs file’s ConfigureServices
method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
}

8 Add the MvcMiddleware to the end of your middleware pipeline with the
UseMvc extension method. For simplicity, remove any other middleware from
the Configure method of Startup.cs for now:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
ILoggerFactory loggerFactory)

{
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
}

9 Right-click on your project in solution explorer and choose Add > Class, as
shown in figure 4.10.

10 In the dialog, name your class HomeController and click OK as in figure 4.11
11 Add an action called Index to the generated class:

public class HomeController
{
 public string Index()
 {
 return "Hello world!";
 }
}

 Once you’ve completed these steps, you should be able to restore, build, and run
your application.

99An introduction to MVC

NOTE Remember that Visual Studio automatically restores your project and
installs the referenced NuGet packages. You can run your project by pressing
F5 from within Visual Studio (or by calling dotnet run at the command line).
This’ll build your project and start your application, opening a browser win-
dow to access your application’s home page.

Choose Class to add
a basic class to

your project

Right click on your
project name to bring
up the context menu

1

Click Add to open
the Add submenu

2

3

Figure 4.10 Adding a new class to your project

Click Add to
add the class
to your project

Leave Class selected

Enter a name for
the new controller

Figure 4.11 Creating a new MVC controller class using the Add New Item dialog

100 CHAPTER 4 Creating web pages with MVC Controllers

 When you make a request to the path "/", the application invokes the method
Index on HomeController, due to the way we configured routing in the call to UseMvc.
Don’t worry about this for now; we’ll go into it in detail in the next chapter.

 This returns the string value "Hello world!", which is rendered in the browser as
plain text. You’re returning data rather than a view here, and it’s more of a Web API
controller, but you could’ve created a ViewResult to render HTML instead.

 You access the MVC functionality by adding the Microsoft.AspNetCore.Mvc pack-
age to your project. The MvcMiddleware relies on several internal services to perform
its function, which must be registered during application startup. This is achieved
with the call to AddMvc in the ConfigureServices method of Startup.cs. Without this,
you’ll get exceptions at runtime when the MvcMiddleware is invoked, reminding you
that the call’s required.

 The call to UseMvc in Configure registers the MvcMiddleware in the middleware
pipeline. As part of this call, the routes used to map URL paths to controllers and
actions are registered. We used the default convention here, but you can easily cus-
tomize these to match your requirements.

NOTE I’ll cover routing in detail in the next chapter.

 As you might expect, the MvcMiddleware comes with many options for configuring
how it behaves in your application. This can be useful when the default conventions
and configuration don’t meet your requirements. You can modify these options by
passing a configuration function to the AddMvc call that adds the MVC services. As an
example, the following listing shows how you could use this method to customize the
maximum number of validation errors that the MVC middleware can handle.

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc(options =>

AddMvc has an overload that takes a lambda function

 {
 options.MaxModelValidationErrors = 100;

Many properties are available
to customize the MvcMiddleware behavior

 });
}

You can completely replace many parts of the MVC middleware internals this way
thanks to the extensible design of the middleware. You won’t often need to touch the
MVC options, but it’s nice to be able to customize them when the need arises!

Listing 4.1 Configuring MVC options in Startup.cs

Customizing the MVC middleware internals
As I’ve hinted, the MvcMiddleware exposes a large amount of its internal configura-
tion through the AddMvc method, as shown in the figure below. The options object
contains many different properties that you can use to extend and modify the default
behavior of the middleware.

101An introduction to MVC

 The final part of adding MVC to your application’s creating the controllers that
are invoked when a request arises. But what makes a class act as a controller?

4.1.4 What makes a controller a controller?

Controllers in ASP.NET Core are classes that contain a logical grouping of action
methods. How you define them is largely up to you, but there are several conventions
used by the runtime to identify controllers.

 MVC or Web API controllers are discovered and used by the MvcMiddleware if they

 Are instantiable (they’ve a public constructor, aren’t static, and aren’t abstract);
and either:

 Have a name ending in “Controller”, for example HomeController; or
 Inherit from the Controller or ControllerBase class (or a class that inherits

from these).

 The MvcMiddleware identifies any class that meets these requirements at runtime,
and make it available to handle requests as required.

 Although not required, the Microsoft.AspNetCore.Mvc package provides a base
class, Controller, which your controllers can inherit from. It’s often a good idea to
use this class as it contains several helper methods for returning results, as you’ll see
later in this chapter.

TIP If you’re building a WebApi, you can also inherit from ControllerBase.
This includes many of the same helper methods, but no helpers for creating
Views.

(continued)

By manipulating these options, you can control things such as how data’s read from
the request, how the data should be validated, and how the output data’s formatted.
You can even modify the way actions function across your whole application. For details
on the options available, see the API reference on https://docs.microsoft.com.

Some of the customizations options
available when configuring the
MvcMiddleware

102 CHAPTER 4 Creating web pages with MVC Controllers

 Another common convention’s to place your controller files in a “Controllers” sub
folder in your project, as shown in figure 4.12. This can be useful for organizing some
projects, but it isn’t required for the MvcMiddleware to discover them. You’re free to
place your controller files anywhere you like in your project folder.

By convention, controllers are
placed in a "Controllers" sub-folder

�
Controllers do not have to be

placed in the Controllers folder -
they will still be discovered

Figure 4.12 Controller location conventions in ASP.NET Core. MVC applications often place Controllers in a
Controllers sub folder, but they can be located anywhere in your project—the MvcMiddleware still identifies
and makes them available to handle requests.

Convention over configuration
Convention over configuration’s a sometimes-controversial approach to building
applications, in which a framework makes certain assumptions about the structure
or naming of your code. Conforming to these assumptions reduces the amount of
boilerplate code a developer must write to configure a project—you typically only need
to specify the cases where your requirements don’t match the assumptions.

For example, imagine you’ve several provider classes that can load different types of
files. At runtime, you want to be able to let the user select a file and you’d automatically
select the correct provider. To do this, you could explicitly register the providers in some
sort of central configuration service, or you could use a convention to rely on the run-
time to “find” your classes and do the wiring up for you. Typically, in .NET, this is
achieved by using reflection to search through all the types in an assembly and find
those with a specific name, that derive from a base class, or that contain specific
named methods.

ASP.NET Core takes this approach in many cases, perhaps most notably with the
Startup class, whose configuration methods are “discovered” at runtime, rather than
by implementing an interface explicitly.

This approach can sometimes result in an almost magical effect of things working for
no apparent reason, which some people find confusing. It can occasionally make
debugging problems tricky due to the additional level of indirection at play. On the
other hand, using conventions can result in terser code, as there’s no explicit wiring-
up necessary, and can provide additional flexibility, for example by allowing the sig-
nature of the methods in your Startup class to vary.

103MVC Controllers and action methods

 Based on these requirements, it’s possible to come up with a variety of naming con-
ventions and hierarchies for your controllers, all of which will be discovered and
found at runtime. In general, though, it’s far better to stick to the common conven-
tion of naming your controllers by ending them with “Controller”, and optionally
inheriting from the Controller base class, as shown in the following listing.

public class HomeController: Controller

Suffix your controller
names with “Controller”

{
 public ViewResult Index()
 {
 return View();

Inheriting from the Controller base class
allows access to utility methods like View()

 }
}

public class ValuesController

If not using the utility methods in your controller,
you don’t need to inherit from Controller

{
 public string Get()
 {
 return "Hello world!";
 }
}

It’s worth noting that although these examples have (implicit) parameterless con-
structors, it’s perfectly acceptable to have dependencies in your constructor. In fact,
this is one of the preferred mechanisms of accessing other classes and services from
your controllers. By requiring them to be passed during construction of the control-
ler, you explicitly define the dependencies of your controller, which, among other
things, makes testing easier. The dependency injection container automatically popu-
lates any required dependencies when the controller’s created.

NOTE See chapter gten for details about configuring and using dependency
injection.

The controllers you’ve seen this far contain a single action method, which is invoked
when handling a request. In the next section, I’ll look at action methods, how to
define them, how to invoke them, and how to use them to return views.

4.2 MVC Controllers and action methods
In the first section of this chapter I described the MVC design pattern and how it
relates to ASP.NET Core. In the design pattern, the controller receives a request and is
the entry point for the UI generation. In ASP.NET Core, the entry point’s an action
method that resides in a controller. An action, or action method, is a method that runs in
response to a request.

 MVC controllers can contain any number of action methods. Controllers provide a
mechanism to logically group actions together and apply a common set of rules to

Listing 4.2 Common conventions for defining controllers

104 CHAPTER 4 Creating web pages with MVC Controllers

them. For example, it’s simple to require a user to be logged in when accessing any
action method on a given controller by applying an attribute to the controller; you
don’t need to apply the attribute to every individual action method.

NOTE You’ll see how to apply authorization requirements to your actions and
controllers in chapter fourteen.

 Any public method on a controller acts as an action method, and can be invoked
by a client (assuming the routing configuration allows for it). The responsibility of an
action method’s generally threefold:

1 Confirm the incoming request’s valid.
2 Invoke the appropriate business logic corresponding to the incoming request.
3 Choose the appropriate kind of response to return.

 An action doesn’t need to perform every one of these actions, but it must choose
the kind of response to return. For a traditional MVC application returning HTML to a
browser, action methods typically return either a ViewResult that the MvcMiddleware
uses to generate an HTML response, or a RedirectResult, which indicates the user
should be redirected to a different page in your application. In Web API applications,
action methods often return a variety of different results, as you’ll see in chapter nine.

 It’s important to realize that an action method doesn’t generate a response
directly; it selects the type of response and prepares the data. For example, returning a
ViewResult doesn’t generate any HTML, it indicates which view template to use and
the view model it has access to. This is in keeping with the MVC design pattern in
which it’s the view that generates the response, not the controller.

TIP The action method’s responsible for choosing what sort of response to
send; the view engine in the MvcMiddleware uses the action result to generate
the response.

 It’s also worth bearing in mind that action methods should generally not be per-
forming business logic directly. Instead, they should call appropriate services in the
application model to handle requests. For example, if an action method receives a
request to add a product to a user’s cart, it shouldn’t directly manipulate the database
or recalculate cart totals. Instead, it should make a call to another class to handle the
details. This approach of separating concerns ensures that your code stays testable
and manageable as it grows.

4.2.1 Accepting parameters to action methods

Some requests made to action methods require additional values with details about the
request. For example, if the request’s for a search page, the request might contain
details of the search term and the page number they’re looking at. If the request’s post-
ing a form to your application, for example a user logging in with their username and
password, then those values must be contained in the request. In other cases, there’ll
be no such values, such as when a user requests the home page for your application.

105MVC Controllers and action methods

 The request may contain additional values from a variety of different sources. They
could be part of the URL, the query string, headers, or in the body of the request
itself. The middleware extracts values from each of these sources, and converts them
into .NET types.

 If an action method definition has method arguments, the additional values in the
request are used to create the required parameters. If the action has no arguments,
then the additional values goes unused. The method arguments can be simple types,
such as strings and integers, or they can be a complex type, as shown in the following
listing.

public class HomeController: Controller
{
 private SearchService _searchService; The SearchService

is provided to the
HomeController
for use in action
methods

 public HomeController(SearchService searchService)
 {
 _searchService = searchService;
 }

 public ViewResult Index()

An action without parameters requires no additional values in the request

 {
 return View();

The method doesn’t need to check
if the model’s valid, it only returns a response.

 }

 public IActionResult Search(SearchModel searchModel)

The action
method requires

the request to
have values for

the properties in
SearchModel

 {
 if(ModelState.IsValid) If the model’s valid,

a view model’s
created and passed
to the view

 {
 var viewModel = _searchService.Search(searchModel);
 return View(viewModel);
 }
 return Redirect("/")

If the model isn’t valid, the method indicates the
user should be redirected to the path “/”

 }
}

In this example, the Index action method doesn’t require any parameters, and the
method’s simple—it returns a view to the user. The Search action method, on the
other hand, accepts a SearchModel object. This could contain multiple different prop-
erties that are obtained from the request and are set on the model in a process called
model binding. The SearchModel object’s often described as a binding model.

NOTE I’ll discuss model binding in detail in chapter six.

 When an action method accepts parameters, it should always check that the model
provided’s valid using ModelState.IsValid. The ModelState property’s exposed
when you inherit from the base Controller class, and can be used to check the

Listing 4.3 Example action methods

106 CHAPTER 4 Creating web pages with MVC Controllers

method parameters are valid. You’ll see how the process works in chapter six when
you learn about validation.

 Once an action establishes that the method parameters provided to an action are
valid, it can execute the appropriate business logic and handle the request. In the case
of the Search action, this involves calling the provided SearchService, to obtain a
view model. This view model’s returned in a ViewResult by calling the base method
return View(viewModel);

 If the model wasn’t valid, then we don’t have any results to display! In this exam-
ple, the action returns a RedirectResult using the Redirect helper method. When
executed, this result sends a 302 redirect response to the user, which causes their
browser to navigate to the home page.

 Note that the Index method returns a ViewResult in the method signature, but the
Search method returns an IActionResult. This is required in the Search method to
allow the C# to compile (as the View and Redirect helper methods return different
types of values), but it doesn’t change the final behavior of the methods. You could’ve
returned an IActionResult in the Index method and the behavior would be identical.

TIP If you’re returning more than one type of result from an action method,
you’ll need to ensure your method returns an IActionResult.

4.2.2 Using ActionResults

In the previous section I emphasized that action methods only decide what to gener-
ate, and don’t perform the actual generation of the response. It’s the IActionResult
returned by an action method which, when executed by the MvcMiddleware, gener-
ates the response. The MvcMiddleware uses the view engine to execute.

 This approach is key to following the MVC design pattern. It separates the decision
of what sort of response to send from the actual generation of the response. This
allows you to test your action method logic to confirm the right sort of response is sent
for a given output. You can separately test that a given IActionResult generates the
expected HTML.

 Many different types of IActionResult exist in ASP.NET Core, such as:

 ViewResult—Generates an HTML view.
 RedirectResult—Sends a 302 HTTP redirect response to automatically send a

user to a specified URL.
 RedirectToRouteResult—Sends a 302 HTTP redirect response to automati-

cally send a user to another page, where the URL is defined using routing.
 FileResult—Returns a file as the response.
 ContentResult—Returns a provided string as the response.
 StatusCodeResult—Sends a raw HTTP status code as the response, optionally

with associated response body content.
 NotFoundResult—Sends a raw 404 HTTP status code as the response.

 Each of these, when executed by the MvcMiddleware, generates a response to send
back through the middleware pipeline and out to the user.

107MVC Controllers and action methods

VIEWRESULT AND REDIRECTRESULT

When you’re building a traditional web application and generating HTML, most of
the time you’ll use the ViewResult, which generates an HTML response using Razor
(by default). We’ll look in detail as to how this happens in chapter seven.

 You’ll also commonly use the various redirect-based results to send the user to a
new web page. For example, when you place an order on an ecommerce website you
typically navigate through multiple pages, as shown in figure 4.13.

Browser ASP.NET Core Application

Checkout

Buy

Payment

Submit

Order Complete!

The user clicks the buy�
button on the�checkout page
which sends a POST to the

web application

POST to /checkout

302 REDIRECT to /payment

GET to /payment

200 OK (HTML)

POST to /payment

302 REDIRECT to /order-complete

GET to /order-complete

200 OK (HTML)

The ASP.NET Core application
begins the checkout process

and sends a 302 redirect
response to the payment page

The user's browser�
automatically follows the�

redirect to the payment page

The request for the payment page
is handled by the app, generating

an HTML page and returning it
to the browser

The user fills in the the payment�
form and�clicks the submit�

button which sends a POST
to the web application

The ASP.NET Core application
processes the payment and�

sends a 302 redirect response�
to the order complete page

The user's browser�
automatically follows the�

redirect to the order complete�
page

The request for the order complete
�page is handled by generating
an HTML page and returning it

to the browser

The user views the HTML
order complete page

GET to /checkout

200 OK (HTML)

The user begins by navigating
to the checkout page, which
sends a GET request to the
ASP.NET Core application

The request for the checkout page
is handled by the app, generating

an HTML page and returning it
to the browser

✔

£

Figure 4.13 A typical POST, REDIRECT, GET flow through a website. A user sends their shopping basket to a
checkout page which validates its contents and redirects to a payment page without the user having to manually
change the URL.

 The web applica-

108 CHAPTER 4 Creating web pages with MVC Controllers

tion sends HTTP redirects whenever it needs you to move to a different page, such as
when a user submits a form. Your browser automatically follows the redirect requests
giving a seamless flow through the checkout process.

NOTFOUNDRESULT AND STATUSCODERESULT

As well as HTML and redirect responses, you’ll occasionally need to send specific
HTTP status codes. For example, if you request a page for viewing a product on an
ecommerce application, and that product doesn’t exist, a 404 HTTP status code is
returned to the browser and you’ll typically see a “Not found” web page. The MvcMid-
dleware can achieve this behavior by returning a NotFoundResult, which returns a
raw 404 HTTP status code. You could achieve a similar result using the StatusCodeRe-
sult and setting the status code returned explicitly to 404.

 Note that the NotFoundResult doesn’t generate any HTML; it only generates a raw
404 status code and returns it back through the middleware pipeline. But, as dis-
cussed in the previous chapter, you can use the StatusCodePagesMiddleware to inter-
cept this raw 404 status code after it’s been generated, and provide a user friendly
HTML response for it.

CREATING ACTIONRESULTS USING HELPER METHODS

ActionResults can be created and returned using the normal new syntax of C#

return new ViewResult()

but if your controller inherits from the base Controller class, then you can also use
one of the helper methods for generating an appropriate response. It’s common to
use the View method to generate an appropriate ViewResult, the Redirect method
to generate a RedirectResponse, or the NotFound method to generate a NotFound-
Result.

TIP Most ActionResults have a helper method on the base Controller
class. They’re typically named Type where the result generated’s called
TypeResult. For example, the Content method returns a ContentResult
instance.

As discussed, the act of returning an IActionResult doesn’t immediately generate the
response—it’s the execution of an IActionResult by the MvcMiddleware, which occurs
outside the action method. After producing the response, the MvcMiddleware returns
it back to the middleware pipeline. From there, it passes through the registered mid-
dleware in the pipeline, before the ASP.NET Core web serve finally sends it to the user.

 By now you should have an overall understanding of the MVC design pattern and
how it relates to ASP.NET Core. The action methods on a controller are invoked in
response to given requests and are used to select the type of response to generate by
returning an IActionResult.

 In traditional web apps, the MvcMiddleware generates HTML web pages. These
can be served to a user who is browsing your app with a web browser, as you’d see with
a traditional website. It’s also possible to use the MvcMiddleware to send data in a
machine-readable format such as JSON, by returning data directly from action meth-

109Summary

ods, as you’ll see in chapter nine. Controllers handle these use cases, the only tangible
difference being the data they return. These are typically known as MVC and Web API
controllers respectively.

 It’s important to remember that the whole MVC infrastructure in ASP.NET Core’s
a piece of middleware that runs as part of the middleware pipeline, as you saw in the
previous chapter. Any response generated, whether a ViewResult or a RedirectRe-
sult, will pass back through the middleware pipeline, giving a potential opportunity
for middleware to modify the response before the web server sends it to the user.

 An aspect I’ve only vaguely touched on is how the MvcMiddleware decides which
action method to invoke for a given request. This process is handled by the routing
infrastructure, and is a key part of MVC in ASP.NET Core. In the next chapter, you’ll
see how to define routes, how to add constraints to your routes, and how they decon-
struct URLs to match a single action and controller.

4.3 Summary
In this chapter, you learned that

 MVC allows for a separation of concerns between the business logic of your
application, the data passed around, and the display of data in a response.

 Controllers contain a logical grouping of action methods.
 ASP.NET Core Controllers inherit from the Controller base class, or have a

name that ends in “Controller”.
 Action methods decide what sort of response to generate; action results handle

the actual generation.
 Action methods should generally delegate to services to handle the business

logic required by a request, instead of performing the changes themselves. This
ensures a clean separation of concerns that aids testing and improves applica-
tion structure.

 Action methods can have parameters whose values are taken from properties of
the incoming request.

 When building a traditional web application, you’ll generally use a ViewResult
to generate an HTML response.

 You can send users to a new URL using a RedirectResult.
 The Controller base class exposes many helper methods for creating an

ActionResult.
 The MVC and Web API infrastructure’s unified in ASP.NET Core. The only

thing that differentiates a traditional MVC controller from a Web API control-
ler’s the data it returns. MVC controllers normally return a ViewResult,
whereas Web API controllers typically return data or a StatusCodeResult.

110 CHAPTER 4 Creating web pages with MVC Controllers

ASP.NET Core is a re-imagining of the .NET Framework
that frees developers from Visual Studio and Windows.
You can now build and run cross-platform .NET applica-
tions on any OS, with any IDE, and using the tools that
you choose. The entire framework is open-source, and
has been developed with many contributions from the
community. While ASP.NET Core is relatively new, Micro-
soft is heavily investing in it, promoting ASP.NET Core as
their web framework of choice for the foreseeable future.
Whether you are building traditional web applications or
highly performant APIs for client side or mobile applica-
tions, ASP.NET Core could be the framework for you.

 ASP.NET Core in Action is for C# developers without any web development experi-
ence who want to get started and productive using ASP.NET Core to build web appli-
cations. In the first half of the book, you will work through the basics of a typical
ASP.NET Core application, focusing on how to create basic web pages and APIs using
MVC controllers and the Razor templating engine. In the second half, you will build
on this core knowledge looking at more advanced requirements and how to add extra
features to your application. You will learn how to secure your application behind a
login screen, how to handle configuration and dependency injection, and how to
deploy your application to production. In the last part of the book you will look in
depth at further bending the framework to your will by creating custom components
and using more advanced features of the framework.

What's inside:

 Using MVC to deliver dynamically generated web pages
 Securing applications with login requirements
 Interacting with a RDMS using Entity Framework Core
 Publishing an ASP.NET Core application to a server
 Unit and integration testing
 Creating custom middleware and filters

Readers should have experience with C#. No web development experience needed.

https://www.manning.com/books/asp-dot-net-core-in-action
https://www.manning.com/books/asp-dot-net-core-in-action

Many applications access relational databases. This chapter from Jon P.
Smith’s Entity Framework Core in Action introduces how to use the completely
rewritten Entity Framework Core for data access. Despite being rebuilt from the
ground up, migrating from Entity Framework to Entity Framework Core is fairly
straightforward. If you’re new to Entity Framework, Jon will introduce you to this
powerful library and its many benefits.

Querying the
Database

https://www.manning.com/books/entity-framework-core-in-action

112

Chapter 2 from Entity Framework
Core in Action by Jon Smith.

Querying the database

This chapter’s all about reading, called querying, the database using EF Core. To
help explain this I create a database which contains the three main types of data-
base relationship that you’ll come across in EF Core. On the way, I show you how to
create and change a database’s structure from EF Core.

 Once I’ve set you up with that, I then explain how to access a database via EF
Core—reading data from the database tables. I start by describing the basic format of
EF Core queries before looking at the different approaches to loading related data
with the main data, for instance loading the Author with the book in chapter one.

This chapter covers
 The three main types of database relationship and how they’re modelled

in EF Core

 How to create and change a database using EF Core’s migration feature

 How to define and create an application DbContext

 The three ways of loading related data

 How EF Core’s Client vs. Server feature works

 A technique for splitting complex queries down into smaller sub-queries
to make them easier to write, with no inherent loss in database
performance

https://www.manning.com/books/entity-framework-core-in-action
https://www.manning.com/books/entity-framework-core-in-action
https://github.com/aspnet/EntityFramework/issues/3797
https://github.com/aspnet/EntityFramework/issues/3797

113Setting the scene—my book-selling site example

 Once I’ve explained the different ways to load related data, I start to build the
more complex queries needed to make the book-selling site work. This covers sorting,
filtering, and paging, plus some approaches to combine each of these separate query
commands to create one composite database query.

2.1 Setting the scene—my book-selling site example
In this chapter, I start building the book-selling site. This example application pro-
vides a good vehicle for looking at relationships in queries. In this section, I introduce
the database, the various classes, and EF Core parts that the book-selling site applica-
tion needs to access the database.

NOTE You can see a live site of the book-selling site at http://efcoreinac-
tion.com/ .

2.1.1 Our book-selling site relational database

Although I could’ve created a database with all the data about a book, its author(s),
and its reviews in one table, that wouldn’t have worked well in a relational database
because the reviews are variable in length. The norm for relational databases is to split
out any repeated data (in this case the Authors).

 I could’ve arranged the various parts of the book data in the database in several
different ways, but for this example I designed the database to have one of each of the
main types of relationships you can have in EF Core. The three types are:

 One-to-One relationship: PriceOffer to a Book
 One-to-Many relationship: Reviews to a Book
 Many-to-Many relationship: Books to Authors

ONE-TO-ONE RELATIONSHIP: PRICEOFFER TO A BOOK

A book can have a promotional price applied to it. This is done with an optional Pri-
ceOffer, which is an example of a One-to-One (technically it’s a One-to-ZeroOrOne
relationship, but EF Core handles this the same way)—see figure 2.1.

Figure 2.1 This shows the one-to-one relationship between a book and an optional PriceOffer relationship.

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

114 CHAPTER 2 Querying the database

 To calculate the final price of the book I need to check for the PriceOffer. If it’s
found then the NewPrice would supersede the price in the original book and the Pro-
motionalText will be shown on-screen, for instance:

 $40 $30 Our summer-time price special, for this week only!

ONE-TO-MANY RELATIONSHIP: REVIEWS TO A BOOK

I want to allow customers to review a book; they can give a book a star rating and have
the option to leave a comment. Because a books’ reviews may range from no reviews to
many (unlimited) reviews, it’s best to create its own table, which I’ve called Review. The
Books table has a One-to-Many relationship to the Review table—see figure 2.2.

Figure 2.2 This shows the one-to-many relationship between a book and its zero-to-many reviews.

In the summary display I need to do a bit of math on the reviews to show a summary,
for instance a typical on-screen display might produce from this one-to-many relation-
ship:

 Votes 4.5 by 2 customers

MANY-TO-MANY RELATIONSHIP: BOOKS TO AUTHORS

Books can be written by one or more authors, and an author may be involved in writ-
ing one or more books. I need a table called Books holding the books data and
another table called Authors holding the authors. The link between the Books and
Authors tables is called a Many-to-Many relationship, which needs a linking table (see
figure 2.3).
The typical on-screen display from this relationship would look like is:

 by Dino Esposito, Andrea Saltarello

EF6 An EF6.x user can define a Many-to-Many relationship without needing
to define a linking class. For instance, the BookAuthor class in listing 2.2. EF
6.x creates a hidden linking table for you. EF Core doesn’t create that linking
table—you must do that.

Figure 2.3 This shows the three tables involved in creating the many-to-many relationship between the
Books table and the Authors table.

115Setting the scene—my book-selling site example

2.1.2 Other relationship types not covered in this chapter

In EF Core, you can include a class in the application’s DbContext that inherits from
another class in the application’s DbContext. For instance, I could’ve defined the
PriceOffer class as inheriting the Book class. That would’ve achieved a similar result
to the One-to-One relationship I showed earlier. This type of inheritance’s supported
by EF Core as a table-per-hierarchy (TPH) configuration. I cover this in chapter seven.

 Another relationship type’s hierarchical- a set of data items that are related to each
other by hierarchical relationships. A typical example’s an Employee class that has a
relationship that points to the employee’s Manager, who in turn’s an Employee. This
type of relationship’s handled by EF Core using the same approaches as One-to-One
and One-to-Many, and I won’t provide an example in part 1. I talk more about hierar-
chical relationships in chapter seven, where I explain how to configure them.

2.1.3 The final database showing all the tables

.Figure 2.4 shows you the complete database for the book-selling site example that I’ll
be using for the examples. It contains all the tables I’ve already described, including
the full definition of all the columns in the Books table.

NOTE The database diagram uses the same layout and terms as in the first
chapter, where PK means Primary Key and FK means Foreign Key.

Figure 2.4 The complete relational database schema for the book selling site showing all the
tables and their columns.

116 CHAPTER 2 Querying the database

To help you make sense of this database, figure 2.5 shows the on-screen output of the
list of books, but focuses on one book. As you can see, the book-selling site application
needs to access every table in the database to build the book list. Later on, I show you
this same book display, but with the query that supplies each element.

Figure 2.5 A listing of a single book showing which database table provides each part of the information

TIP You can see a live site running the example book site code at http://efc-
oreinaction.com/. This might help you understand the rest of this chapter.

117Setting the scene—my book-selling site example

2.1.4 The classes that EF Core maps to the database

I’ve created five .NET classes to map onto the five tables in my database. They‘re
called Book, PriceOffer, Review, Author, and finally BookAuthor for the Many-to-
Many-linking table.

 These classes are referred to as entity classes to show that they’re mapped by EF
Core to the database. From the software point of view there’s nothing special about
entity classes—they’re normal .NET classes, sometimes referred to as POCO (Plain Old
CLR Objects). The term entity class identify the class as one that EF Core has mapped
to the database.

 The primary entity class is the Book class, shown in listing 2.1. You can see it refers to
a single PriceOffer class, a collection of Review classes, and finally a collection of
BookAuthor classes, which links the book data to one or more Author classes that con-
tain the author’s name.

public class Book The Book class contains the main book information //#A
{
 public int BookId { get; set; } I use EF Core's 'by convention' approach

to defining the primary key of this entity
class. In this case, I use <ClassName>Id,
and because the property if of type int EF
Core assumes that the database will use
the SQL IDENTITY command to create a
unique key when a new row is added

 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 public string Publisher { get; set; }
 public decimal Price { get; set; }
 /// <summary>
 /// Holds the url to get the image of the book
 /// </summary>
 public string ImageUrl { get; set; }

 //---
 //relationships

 public PriceOffer Promotion { get; set; }

This is the link to the
optional PriceOffer

 public ICollection<Review> Reviews { get; set; } There can be zero to many
Reviews of the book public ICollection<BookAuthor>

 AuthorsLink { get; set; }

This provides a link to the Many-to-Many
linking table that links to the

}

For simplicity, I’ve used EF Core’s by convention modelling of the database.I use spe-
cific names defined by EF Core for the class properties that hold the primary key and
foreign keys plus the relationship are defined by the type of the relationships and the
type of the foreign key.

 In chapters six and seven I describe the other approaches for configuring the EF
Core database model.

Listing 2.1 The Book class which is mapped to the Books table in the database

118 CHAPTER 2 Querying the database

2.2 Creating the application’s DbContext
To access the database, I need to:

1 Define my application’s DbContext, which I do by creating a class and inherit-
ing from EF Core’s DbContext class.

2 Create an instance of that class every time I want to access the database.

All the database queries you’ll see later in this chapter use these steps, which I now
describe in more detail.

2.2.1 Defining my application’s DbContext: EfCoreContext

The key class you need to use EF Core is the application’s DbContext. This is a class
you define by inheriting EF Core’s DbContext and adding various properties to allow
your software to access the database tables. It also contains methods you can override
to access other features in EF Core, such as configuring the database modelling.

NOTE I’m going skip over configuring the database modelling, done in the
OnModelCreating method in my application’s DbContext. I cover how to
model the database in detail in chapters six and seven.

Listing 2.2 shows you the application’s DbContext, called EfCoreContext. You’ll see
that I’ve only provided properties to access the Books, Authors and PriceOffers
tables—the other two tables, Review and the BookAuthor linking table, are accessed
via the Book class, as you’ll see later.

public class EfCoreContext : DbContext
{
 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }

The three properties link
to the database tables
with the same name

 public DbSet<PriceOffer> PriceOffers { get; set; }

 public EfCoreContext(
 DbContextOptions<EfCoreContext> options)

This constructor’s how the
ASP.NET creates an
instance of EfCoreContext

 : base(options) {}

 protected override void
 OnModelCreating(ModelBuilder modelBuilder)
 {

I need to tell EF Core
about a few things to
make the database
modelling work.

 modelBuilder.Entity<BookAuthor>()
 .HasKey(x => new {x.BookId, x.AuthorId});
 }
}

Listing 2.2 The example book setting site’s DbContext, called EfCoreContext

119Creating the application’s DbContext

2.2.2 Creating an instance of my application’s DbContext

In chapter one I showed you one way set up the application’s DbContext by overriding
its OnConfiguring method. The downside is that the connection string is fixed. In this
chapter I use another approach.I want to use a different database for development
and unit testing, and the application’s DbContext constructor provides that.

 Listing 2.3 shows me providing the options for the database at the time I create my
application DbContext called EfCoreContext. This listing’s based on what I use in my
unit testing, as it has the benefit of showing you the component parts. In chapter five,
which is about using EF Core in an ASP.NET Core application, I cover a more powerful
way to create the application’s DbContext using a feature called dependency injection.

const string connection =
 "Data Source=(localdb)\\mssqllocaldb;"+
 "Database=EfCoreInActionDb.Chapter02;"+

This is the "connection string".
Its format’s dictated by the
sort of database provider and
hosting you’re using "Integrated Security=True;";

var optionsBuilder = I need a EF Core
DbContextOptionsBuilder<> instance
to be able to set the options we need.

 new DbContextOptionsBuilder
 <EfCoreContext>();

optionsBuilder.UseSqlServer(connection); I’m accessing a SQL Server

database and use the
UseSqlServer method from the
Microsoft.EntityFrameworkCore.S
qlServer library, need the
connection string.

var options = optionsBuilder.Options;

using (var context = new EfCoreContext(options))
This creates the all-important EfCoreContext using the options we’ve set

up. Note that I use a 'using' statement, as the DbContext is disposable, i.e.
it should be 'disposed' once you’ve finished your data access

{

 var bookCount = context.Books.Count();
This code uses the DbContext to find out how

many books are in the database.
 //... etc.

At the end of listing 2.3 I create an instance of the EfCoreContext inside a using state-
ment. This is because DbContext has an IDisposable interface and should be disposed
after you’ve used it. From now on, if you see a variable called context it was created
using the code in listing 2.3, or a similar approach.

2.2.3 Creating a database for your own application

TIP If you’re running my example application downloaded from the Git
repo that goes with this book, you don’t need to use the Migrate commands
that follows. If run in development mode, it uses the command EnsureCre-
ated to create the database. This is less flexible than the Migrate, but it
doesn’t need you to type any commands.

A few ways to create a database using EF Core work, but the normal way’s to use EF
Core’s Migrations feature. This uses your application’s DbContext and the entity
classes, like the ones I’ve described, as the model for the database structure. The Add-

Listing 2.3 Creating an instance of the applications DbContext to access the database

120 CHAPTER 2 Querying the database

Migration command first models your database and then, using that model, builds
commands to create a database that fits that model.

 Besides creating the database, the great thing about Migrations is that it can
update the database with any changes you make in the software. If you change your
entity classes or any of your application’s DbContext configuration, the Add-Migration
command will build a set of commands to update the existing database.

 To use the migration feature you need to install one extra EF Core NuGet libraries
in your application called Microsoft.EntityFrameworkCore.Tools to your applica-
tion startup project. This allows you to use the Migrate commands in the Visual Stu-
dio Package Manager Console (PMC). The ones we need are:

1 Add-Migration MyMigrationName
This creates a set of commands that migrate the database from its current state
to a state that matches your application’s DbContext and the entity classes when
you run your command. The MyMigrationName shown in the command’s the
name used for the migration.

2 Update-Database
This will apply the commands created by the Add-Migration command to your
database. If there’s no database, it creates one. If there’s a database that migrate
created last time, it will update it.

NOTE You can also use EF Core’s command line Interface (CLI) to run these
commands—see https://docs.microsoft.com/en-us/ef/core/miscellaneous
/cli/dotnet. In this book, I use Visual Studio 2017 based commands.

An alternative to using the Update-Database command’s to call the context.Data-
base.Migrate() method in the startup code of your application. This is particularly
useful for a ASP.NET Core web application that’s hosted—I cover this in chapter five,
including some of its limitations.

NOTE Although EF Core’s Migrate feature’s useful, it doesn’t cover all types
of database structure changes. Also, for some projects the database’s defined
and managed outside of EF Core, which means you can’t use EF Core’s
Migrate feature. I explore the various options available for database migra-
tion, with their pros and cons, in chapter eleven.

WHAT TO DO IF YOUR APPLICATION USES MULTIPLE PROJECTS?
If your application has a separate project for the application’s DbContext from the
main, startup application (the book-selling site example application does), then the
Add-Migration command’s more complex.

 In the example book-selling site my application’s DbContext is in a project called
DataLayer, and my ASP.NET Core application’s in a project called EfCoreInAction (I
describe why this is later in this chapter). To add an EF Core migration the Add-
Migration commands would be:

Add-Migration Chapter02 -Project DataLayer -StartupProject
[CA] EfCoreInAction

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns

121Anatomy of a database query

You need to provide a way for the Migrations to create an instance of your applica-
tion’s DbContext. In the book-selling site application, the DbContext, EfCoreContext
has no parameter-less constructor and the Add-Migration command will fail. Various
ways can get around this. Have a look at the class ContextFactoryNeededForMigra-
tions in the DataLayer in the Git repo for one solution.

2.3 Anatomy of a database query
Now we can start looking at how to query a database using EF Core. Figure 2.6 shows
an example EF Core database query, with the three main parts of the query high-
lighted:

Figure 2.6 This shows the three parts of an EF Core database query, with some example code

TIME SAVER If you’re familiar with EF and/or LINQ you could skip this section.

 The command shown in 2.6 consists of several methods, one after the other. This is
known as a fluent interface. Fluent interfaces like this flow logically and intuitively,
making them easy to read. I’ve highlighted the three parts of this overall command
and I describe each part in turn:

2.3.1 Application’s DbContext Property access

The first part’s something which is connected via EF Core to the database. The most
common way to refer to a database table’s via a DbSet<T> property in the application’s
DbContext, which I’ve shown in figure 2.6.

 I use this DbContext property access throughout this chapter, but in later chapters
I introduce other ways to get to a class or property. But the basic idea’s the same—you
need to start with something that’s connected to the database via EF Core.

2.3.2 A series of LINQ/EF Core command

The major part of the command’s a set of LINQ and/or EF Core methods that creates
the type of query you need—this can range from nothing to complicated. This chap-
ter starts with simple examples of queries, but by the end of it you’ll know how to
build some complex queries.

NOTE If you aren’t familiar with LINQ, then you’ll be at a disadvantage in
reading this book. I’ve provided an appendix at the end of this book which
gives you a brief overview of LINQ. You can also find plenty of online
resources; see https://msdn.microsoft.com/en-us/library/bb308959.aspx.

122 CHAPTER 2 Querying the database

2.3.3 The execute command

The last part of the command reveals something about LINQ. Until a final execute
command at the end’s used, the LINQ is held as a series of commands; it hasn’t been
executed on the data yet. This means that EF Core can ‘translate’ each command in
the LINQ query into the correct commands to use for the database you’re using. In
EF Core a query’s executed against the database when

 It’s enumerated by a foreach statement.
 It’s enumerated by a collection operation such as ToArray, ToDictionary, ToL-

ist, or ToListAsync.
 LINQ operators, such as First or Any, are specified in the outermost part of

the query.
 When you use certain EF Core commands, like Load() which I use in the explicit

loading of relationship later in this chapter.

2.4 The three ways of loading related data
I’ve shown you the Book entity class, which has links to three other entity classes: Pri-
ceOffer, Review and BookAuthor. I now want to deal with how you as a developer can
access the data behind these relationships. There are three ways, known as: eager load-
ing, explicit loading and select loading, with a subsection dedicated to each type.

 Before I cover these approaches, you need to be aware that EF Core won’t load any
relationships in an entity class unless you ask it to. This means if I load a Book class
then, by default, each of the relationship properties in the Book entity class, Promotion,
Reviews and AuthorsLink will be null.

 This default behavior of not loading relationships is correct, as it means that EF
Core minimizes the database accesses. If you want to load a relationship, then you
need to add some code to tell EF Core to do that. The next three sections describe the
three different approaches, with their pros and cons, to get EF Core to load a relation-
ship.

2.4.1 Eager loading: loading relationships with the primary entity class

The first approach to loading related data’s eager loading. Eager loading entails telling
EF Core to load the relationship in the same query that loads the primary entity class.
Eager loading is specified via two fluent methods, Include() and ThenInclude(). List-
ing 2.4 shows the loading of the first row of the Books table as an instance of the Book
entity class, and the eager loading of the single relationship, Reviews.

var book = context.Books
 .Include(r => r.Reviews)

The Include() gets a collection of Reviews,
which may be an empty collection

 .First(); This takes the first book

Listing 2.4 Eager loading of first book with the corresponding Reviews relationship

123The three ways of loading related data

If you look at the SQL command this EF Core query creates, which is shown in the fol-
lowing snippet, you’ll see two SQL commands. The first loads the first row in the
Books table and the second loads the reviews where the foreign key, BookId, has the
same value as the first Books row primary key.

-- First SQL command to get the first row in the Books table
SELECT TOP(1)
 [r].[BookId], [r].[Description], [r].[ImageUrl],
 [r].[Price], [r].[PublishedOn], [r].[Publisher],
 [r].[Title]
FROM [Books] AS [r]
ORDER BY [r].[BookId]
-- Second SQL command to get the reviews for this book
SELECT [r0].[ReviewId], [r0].[BookId],
 [r0].[Comment], [r0].[NumStars], [r0].[VoterName]
FROM [Review] AS [r0]
INNER JOIN (
 SELECT DISTINCT TOP(1) [r].[BookId]
 FROM [Books] AS [r]
 ORDER BY [r].[BookId]
) AS [r1] ON [r0].[BookId] = [r1].[BookId]
ORDER BY [r1].[BookId]

EF6 Eager loading is like EF Core as EF6.x, but with improved syntax and a
different SQL implementation. First syntax: In EF6.x there isn’t a ThenIn-
clude() method, and you must use Select(), for example Books.Include(p
=> p.AuthorLink.Select(q => q.Author). Second SQL implementation: In
EF6.x it’d try to load all the data in one query, including collections. This can
be inefficient and EF Core loads collections in a separate query—you can see
this in the SQL snippet produced by the code in listing 2.4

Now let’s look at a more complex example in listing 2.5 which shows a query to get the
first book, with eager loading of all its relationships—in this case AuthorsLink and the
second-level Author table, the Reviews and the optional Promotion.

var book = context.Books
 .Include(r => r.AuthorsLink)

The first Include() gets a collection of
BookAuthor

 .ThenInclude(r => r.Author) The ThenInclude()
gets the next link,
in this case the
link to the Author

 .Include(r => r.Reviews) The Include() gets a
collection of Reviews,
which may be an
empty collection

 .Include(r => r.Promotion)

This loads any optional
PriceOffer class, if one’s assigned

 .First(); //

This takes the first book

Listing 2.5 Eager loading of the Book class and all of the related data

124 CHAPTER 2 Querying the database

Listing 2.5 shows the use of eager loading method Include() to get AuthorsLink rela-
tionship. This is a first level relationships, which are relationships referred to directly
from the entity class you’re loading. That Include() is followed by a ThenInclude() to
load the second level relationship, in this case the Author table at the other end of the
linking table BookAuthor. This Include() followed by a ThenInclude() pattern’s the
standard way of accessing relationships that go deeper than a first level relationship.
You can go to any depth with multiple ThenInclude()s one after the other.

 If the relationship doesn’t exist, like the optional PriceOffer class pointed to by the
Promotion property in the Book class, then Include() doesn’t fail—nor does it load any-
thing, or in the case of collections, it returns an empty collection; a valid collection but
with zero entries. This applies to ThenInclude() as well, and if the previous Include()
or ThenInclude() was empty, then subsequent ThenInclude()s are ignored.

 Eager loading has the advantage that EF Core will load all the data referred to by the
Include() and ThenInclude() in an efficient manner, using the minimum of database
accesses, called database round trips. I find this type of loading useful in relational updates
where I need to update an existing relationship—chapter three cover this. I also find
eager loading useful in business logic—chapter four cover this in much more detail.

 The downside is that it loads all the data, when sometimes you don’t need a part of
that data, for instance the book list display doesn’t need the book description, which
could be quite large.

2.4.2 Explicit loading: loading relationships after the primary entity class

The second approach to loading data is explicit loading, where, after you’ve loaded the
primary entity class, you can explicitly load any other relationships you want. Listing 2.6
shows a series of commands that first loads the book and then uses explicit loading com-
mands to read all the relationships.

var book = context.Books.First(); This reads in the first book on its own
context.Entry(book)
 .Collection(c => c.AuthorsLink).Load();

This explicitly loads the linking table, BookAuthor

foreach (var authorLink in book.AuthorsLink) To load all the possible Authors
it loops through all the
BookAuthor entries and loads
each linked Author class

{
 context.Entry(authorLink)
 .Reference(r => r.Author).Load();
}
context.Entry(book) This loads all the Reviews
 .Collection(c => c.Reviews).Load();
context.Entry(book) This loads the optional PriceOffer class
 .Reference(r => r.Promotion).Load();

Explicit loading has an extra command that allows a query to be applied to the relation-
ship, rather than only loading it. The example in listing 2.7 shows use of the explicit
loading method Query() to obtain the count of the number of reviews and also load all

Listing 2.6 Explicit loading of the Book class and some related data

125The three ways of loading related data

the star ratings of each review. You can use any standard LINQ command after the
Query() method, for instance Where or OrderBy.

var book = context.Books.First();// This reads in the first book on its own
var numReviews = context.Entry(book)// This executes a query to count how

many reviews there are for this book .Collection(c => c.Reviews) //
 .Query().Count(); //
var starRatings = context.Entry(book)// This executes a query to get all

the star ratings for the book .Collection(c => c.Reviews) //
 .Query().Select(x => x.NumStars) //
 .ToList(); //

The advantage of explicit loading is that you can load a relationship of an entity class
later. I’ve found this useful using a library that only loads the primary entity class when
I need one of its relationships. Explicit loading can also be useful if you only need that
related data in some circumstances. You might also find explicit loading useful in com-
plex business logic, as you can leave the job of loading the specific relationships to the
parts of the business logic that needs it.

 The downside of explicit loading is that there are more database round trips, which
can be inefficient. If you know up front what data you need, it’s normally more effi-
cient to eager load the data to take the minimum database round trips.

2.4.3 Select loading: loading the specific parts of primary entity class
and any relationships

The third approach to loading data’s to use the LINQ Select method to specifically
pick out the data you want, which I call select loading. Listing 2.8 shows the use of the
Select method to select a few standard properties from the Book class and execute
specific code inside the query to get the count of customer reviews for this book.

var result = context.Books
 .Select(p => new This uses the LINQ select keyword and creates

an anonymous type to hold the results {
 p.Title, These are simple copies of

a couple of properties p.Price,
 NumReviews This runs a query that counts

the number of reviews = p.Reviews.Count,
 }
).First();

Listing 2.7 Explicit loading of the Book class with refined set of related data

Listing 2.8 Select of the Book class picking specific properties and one calculation

126 CHAPTER 2 Querying the database

The advantage of the select query approach is that only the data you need is loaded,
which can be more efficient if you don’t need all the data. In the case shown in listing
2.8 it only takes one SQL SELECT command to get all that data, which is also efficient
in terms of database round-trips. In fact EF Core turns the p.Reviews.Count part of
the query into a SQL command, and that count’s done inside the database, as you can
see in the following listing of the SQL created by EF Core.

SELECT TOP(1) [p].[Title], [p].[Price], (
 SELECT COUNT(*)
 FROM [Review] AS [r0]
 WHERE [p].[BookId] = [r0].[BookId]
)
FROM [Books] AS [p]

The downside to the select loading approach is that you need to write code for each
property/calculation you want. But, later in this book, I show a way you can automate
this.

NOTE You’ll see a much more complex select loading example later in this
chapter, as I use this type of loading to build the book list query for the book-
selling site.

2.5 Client vs. Server evaluation: moving part of your query
into software
All the queries you’ve seen are ones that EF Core can convert to commands that can
be run on the database server. But EF Core has a feature called Client vs. Server evalua-
tion which allows you to include methods in your query that can’t be run on the data-

Lazy loading: loading relationships when you need them—coming some-
time?
I can’t write this section without mentioning lazy loading. This is a feature in EF6.x
which allows you to mark a property as virtual, and the database access occurs only
when you read that property. Lazy loading is, at the time of writing this book, not in
EF Core, but there’ve been numerous requests to put it back—see https://git-
hub.com/aspnet/EntityFramework/issues/3797.

The proponents of lazy loading say that it’s easy to use, because you don’t need the
application’s DbContext when you read the property. The downside is that you get a
database access for every property you access. I should say that I don’t use lazy load-
ing because it can be extremely inefficient.

I believe lazy loading may be added to EF Core because of the requests from devel-
opers, but I’ve no idea in what form. I’d recommend you look at the approaches I use
in this book, which should allow you to work round any issues you have with the loss
of lazy loading.

127Client vs. Server evaluation: moving part of your query into software

base, for example on relational databases methods that EF Core can’t convert to SQL
commands. EF Core runs these non-server runnable commands after the data returns
from the database. Let me show you an example and then provide you with a diagram
to show you what’s happening inside EF Core to make Client vs. Server evaluation work.

EF6 Client vs. Server evaluation is a new feature in EF Core, and a useful one
too.

2.5.1 An example of using Client vs. Server evaluation to create the
display string of s book’s authors

For the list display of the books on the book-selling site web site I need to a) extract all
the author’s names in order from the Authors table and b) turn them into one string
with commas between each name. Listing 2.9 shows an example which loads two prop-
erties, BookId and Title, in the normal manner and a third property, AuthorsString,
which uses client vs. server evaluation.

var book = context.Books
 .Select(p => new
 {
 p.BookId, These parts of the select can be

converted to SQL and run on the server p.Title,
 AuthorsString = string.Join(", ", The String.Join is executed

on the client in software p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),
 }
).First();

The result of running this on a book that had two authors, Jack and Jill, would cause
the AuthorsString to contain “Jack, Jill”, and the BookId and Title would be set to
the value of the corresponding columns in the Books Table.

 Figure 2.7 gives you a view of how listing 2.9 is processed through four stages. The
one I want to focus on is stage , where EF Core runs the client-side code that it
couldn’t convert into SQL.
The Client vs. Server evaluation feature gives you, as a developer, the ability to create
complex queries, and EF Core optimizes the query to run as much as it can on the
database Server. But if there’s some method in your query that can’t be run on the
database server then the query won’t fail, but EF Core will apply that method after
SQL Server has done its part.

 The example shown in listing 2.9 is simple, but the possibilities are endless. You
should watch out for a few things.

Listing 2.9 Showing a Select query that includes a non-SQL command, string.Join

Figure 2.7 This shows what parts of the query are converted to SQL and run in the SQL server , and
the part, in this case the string.Join, that had to be done client-side, , by EF Core before the
combined result, , is handed back to my application code.

128 CHAPTER 2 Querying the database

2.5.2 Understanding the limitations of Client vs. Server evaluation

I think the Client vs. Server evaluation feature is a useful addition to EF, but, like all pow-
erful features, it’s best to understand what’s going on to use it in the right way.

 Firstly, the obvious thing’s the method you provide is run on every entry (row) you
read from the database. If you’ve 10,000 rows in the database and don’t filter/limit
what’s loaded then, as well as a SQL command that takes a long time, your processor
will spend a long time running your method 10,000 times.

 The second point’s subtler: The Client vs. Server evaluation feature blurs the lines
between what’s run in the database and what’s run in the client. It’s possible to create
a query that works, but which is slower than it could be because it had to use client-
side evaluation. To give you some context, in EF6.x this form of mixed client/server
query would’ve failed because it didn’t support that. That meant in EF6.x you had to
do something about it—often by changing the query to better suit the database. Now
your query may work, but perform worse than one you write such that EF Core can
convert it directly to SQL commands.

129Building complex queries—the book-selling site

 One extreme example of the problem’s that Client vs. Server evaluation allows you to
sort on a client-side evaluated property, which means the sorting is done in the client
rather than in the database server. I tried this by replacing the .First() command
with .Sort(p => p. AuthorsString) in listing 2.9 and returning a list of books. In
that case EF Core produces SQL code that reads all the books, then reads each row
individually, twice, which isn’t optimal.

 My experiments with Client vs. Server evaluation showed that EF Core’s quite intelli-
gent and builds an optimal SQL query for all the sensible cases I gave it; maybe this
isn’t such a big worry. I suggest you use it and performance tune later (see chapter
twelve on finding and improving database performance).

TIP You can use EF Core’s logging to identify possible bad performing Client
vs. Server queries. EF Core logs a warning on the first use of a Client vs. Server
query that can adversely effect the query. Also, you can configure logging to
throw an exception on a Client vs. Server query warnings—for more informa-
tion see https://docs.microsoft.com/en-us/ef/core/querying/client-eval#
disabling-client-evaluation.

2.6 Building complex queries—the book-selling site
Having covered the basics of querying the database, let’s look at some examples that
are more common in real applications. I’m going to build a query to list all the books
on the book-selling site with a range of features like sorting, filtering, and paging.

2.6.1 Building the book list query using select loading

We could build the book display by using eager loading; we could load all the data and
combine the authors, calculate the actual price, or calculate the average votes with
our code. The problem with that approach is that the book list query includes various
sorting options, such as on price, and filtering options, for instance only showing
books with four or more customer star ratings.

 With eager loading, I could load ALL the books and then, in memory, sort or filter
the books. For our chapter two book-selling site, which has fifty books, that’d work,
but I don’t think that approach would work for Amazon! The better solution’s for the
values to be calculated inside SQL Server where sorting and filtering can be done
before the data’s returned to the application.

 Although I could add sorting and filtering methods in front of eager loading (or
explicit loading), I’ve chosen to use a select loading approach, where I combine all the
individual queries into one big select query. This select precedes the sorting, filtering,
and paging parts of the query. That way EF Core knows, via the select query, how to
load each part of the query and can therefore use any property in the LINQ select in a
SQL ORDER BY (sort) or SQL WHERE (filter) clause as it needs to.

NOTE I use a Client vs. Server evaluation to get the string containing the
author(s) of the book. That excludes, for performance reasons, that property
from being used in a SQL sort or filter command.

130 CHAPTER 2 Querying the database

 Before I show you the select query that loads the book data, let’s go back to the
book list display of the book “Quantum Networking” that I showed near the begin-
ning of this chapter, but this time figure 2.8 shows each individual LINQ query that’s
needed to get each piece of data.

Figure 2.8 Showing each individual query needed to build the book list display

This diagram, shown in figure 2.8, is complicated because the queries needed to get
all the data are complicated. But with this diagram in mind, let’s look at how we build
the book select query.

 I start with the class we’re going to put the data in. This type of class, which only
exist to bring together the exact data we want, are referred to in many ways. In
ASP.NET they’re referred to as a ViewModel, but the term ViewModel has other con-
notations and uses. I therefore refer to this type of class as a Data Transfer Object
(DTO). Listing 2.10 shows you the DTO class, BookListDto.

DEFINITION The term Data Transfer Object (DTO) is used to describe “an
object that carries data between processes” (Wikipedia) or “object that is used
to encapsulate data, and send it from one subsystem of an application to
another” (stackoverflow answer). The usage of the DTO class in this book-sell-
ing site example’s closer to the stackoverflow answer.

131Building complex queries—the book-selling site

public class BookListDto
{
 public int BookId { get; set; }

I need the Primary Key if the customer
clicks the entry to buy the book

 public string Title { get; set; }
 public DateTime PublishedOn { get; set; }

Although the publish
date isn't shown, we’ll

want to sort by it, which
is why we must include it

 public decimal Price { get; set; } This is the normal Price
 public decimal
 ActualPrice { get; set; } This is the selling price—either the normal price,

or the promotional.NewPrice if present public string
 PromotionPromotionalText { get; set; }

The
promotiona

l text to
show if

there’s a
new price

 public string AuthorsOrdered { get; set; }
An array of

the authors'
names in the

right order

 public int ReviewsCount { get; set; }
 The number

of people
who

reviewed
the book

 public decimal?
 ReviewsAverageVotes { get; set; }

 The average of all the
Votes—null if no votes

}

To work with EF Core’s select loading, the class that’s going to receive the data must
have a default constructor (it can be created without needing to provide any proper-
ties to the constructor), the class mustn’t be static and the properties must have public
setters.

 Next, we build a select query that fills in every property in the BoolListDto.
Because I want to use this with other query parts, like sort, filter, and paging, I use the
IQueryable<T> type to create a method called MapBookToDto that takes in IQuery-
able<Book> and returns IQueryable<BookListDto>. Listing 2.11 shows this method
and, as you can see, the LINQ Select pulls together all the individual queries you saw
in figure 2.8.

public static IQueryable<BookListDto> This method takes in
IQueryable<Book> and returns
IQueryable<BookListDto>

 MapBookToDto(this IQueryable<Book> books)
{
 return books.Select(p => new BookListDto
 {
 BookId = p.BookId, These are simple copies

of existing columns in
the Books table

 Title = p.Title,
 Price = p.Price,
 PublishedOn = p.PublishedOn,
 ActualPrice = p.Promotion == null This calculates the selling price, which

is the normal price, or the promotion
price if that relationship exists

 ? p.Price
 : p.Promotion.NewPrice,
 PromotionPromotionalText = The PromotionalText depends

on whether a PriceOffer
exists for this book

 p.Promotion == null
 ? null
 : p.Promotion.PromotionalText,
 AuthorsOrdered = string.Join(", ", This obtains an array of Authors' names,

in the right order. We’re using a Client
vs. Server evaluation as we want the
author's names combined into one string

 p.AuthorsLink
 .OrderBy(q => q.Order)
 .Select(q => q.Author.Name)),

Listing 2.10 The DTO (Date Transfer Object) BookListDto

Listing 2.11 The Select query to fill the BookListDto

132 CHAPTER 2 Querying the database

 ReviewsCount = p.Reviews.Count,

We need to
calculate how many

reviews there are

 ReviewsAverageVotes = We can’t calculate
the average of zero
reviews, and we
need to check the
count first

 p.Reviews.Count == 0
 ? null
 : (decimal?) p.Reviews
 .Select(q => q.NumStars).Average()
 });
}

NOTE The individual parts of the Select query in listing 2.11 are the repeti-
tive code I mention in “my lightbulb moment” section of chapter one. In
chapter ten I introduce Mappers to automate much of this coding, but in part
one I’m going to list all the code in full to show the whole picture. But be
assured—there’s a way to automate the select loading approach of querying
which improves productivity.

The MapBookToDto method’s using a pattern known as a query object. This pattern’s
all about encapsulating a query, or part of a query, in a method. That way the query’s
isolated in one place, which makes it easier find, debug and performance tune. I’ll use
the query objects pattern for the sort, filter, and paging parts of the query too.

NOTE I think query objects are a useful pattern for building queries like the
book list in this example, but there are alternative approaches, such as the
repository pattern. I cover this topic in more detail in chapter ten, which is all
about the different patterns that can be used with EF Core.

The MapBookToDto method’s also what .NET calls an extension method. Extension
methods allow you to chain query objects together. You’ll see this chaining used later
when I combine each individual part of the book list query to create the final, com-
posite query.

NOTE A method can become an extension method if a) it is declared in a
static class, b) the method is static, and c) the first parameter has the keyword
this in front of it.

Because the MapBookToDto method uses IQueryable<T> for both input and output
the LINQ commands inside the method doesn’t get executed. This means the input
can be the DbSet<Books> property in the application’s DbContext, or another source
of type IQueryable<Book>. Also, the MapBookToDto method’s output can either be
fed into a method that takes IQueryable<BookListDto> and returns IQuery-
able<BookListDto>, in which case the LINQ commands are still un-executed.

 EF Core turns this into a reasonable query, but certainly not the best possible per-
forming SQL query, but for now it’s sufficient. In chapter thirteen on performance
tuning I use this query in a worked example of the techniques you can use to improve
a query.

133Building complex queries—the book-selling site

NOTE You can see the results of this query by cloning the code from the Git
repo, selecting the Chapter02 branch, and then running the EfCoreInAction
web application locally. I provide a ‘Logs’ menu feature which shows you the
SQL used to load the book list with the specific sorting, filtering, and paging
setting you’ve selected.

2.6.2 Introducing the architecture of the book-selling site application

I’ve waited until this point to talk about the design of the book-selling site application,
because it should make more sense now that we’ve created the BookListDto class. At
this stage, we’ve the entity classes, for example Book, Author, which maps to the data-
base via EF Core. We also have a BookListDto class, which holds the data in the form
that the presentation side needs, in this case a ASP.NET Core web server.

 In a simple example application, we might put the entity classes in one folder and
the DTOs in another. But even with a small application like this book-selling site, this
can be quite confusing as the approach you use with the database is different to the
approach you use when displaying data to the customer. It’s all about what’s called
separation of concerns—see https://en.wikipedia.org/wiki/Separation_of_concerns.

 I could’ve split up the parts of the book selling site application in many ways, but I
used a common design called layered architecture. The layered architecture approach works
well for small-to-medium .NET web applications. Figure 2.9 shows you the architec-
ture of the book-selling site for this chapter.

Figure 2.9 Diagram of the layered architectural approach for the example book-selling web site.

 Each of the three large rectangles are .NET projects, with their names at the bot-
tom of the figure. I’ve split the classes and code between these three projects in the
following way:

134 CHAPTER 2 Querying the database

 DataLayer:
This layer’s focus is the database access. The entity classes and the application’s
DbContext are in this project. It doesn’t know anything about the layers above.

 ServiceLayer:
This is the layer that acts as an adapter between the DataLayer and the ASP.NET
Core web application. It does this using DTOs, query objects and various classes to
run the commands. The idea is that the front-end ASP.NET Core layer has
enough to do that the ServiceLayer hands it pre-made data for display.

 EfCoreInAction:
The focus of this layer’s on presenting data in a way that’s convenient and appli-
cable to the user. That is a challenge, which is why I move as much of the data-
base and data adapting to the ServiceLayer. In the example book-selling site,
I’m using an ASP.NET Core web application mainly serving html pages, with a
small amount of JavaScript running in the browser.

Using a layered architecture makes the book-selling site example more complex to
understand, but it’s how real applications are built. It also means you can more easily
know what each bit of the code’s supposed to be doing in the associated Git repo as
the code isn’t all tangled up together.

2.7 Adding Sorting, Filtering, and Paging to the book-selling site
With the project structure out of the way, we can now push on more quickly and build
the remaining query objects to create the final book list display. Let me start by showing
you a screen shot in figure 2.10 of the book-selling site’s sort, filter, and page controls
to give you an idea of what we’re implementing.

Figure 2.10 The three commands, sorting, filtering, and paging, as shown on the example book-selling
site.

2.7.1 The sorting of books by price, publication date and customer ratings

Sorting in LINQ is done by the two methods: OrderBy and OrderByDescending. I cre-
ated a query object called OrderBooksBy as an extension method– see listing 2.12.

135Adding Sorting, Filtering, and Paging to the book-selling site

You’ll see that with the IQueryable<BookListDto> parameter it also takes in an enum
parameter. This enum defines the type of sort the user wants.

public static IQueryable<BookListDto> OrderBooksBy
 (this IQueryable<BookListDto> books,
 OrderByOptions orderByOptions)
{
 switch (orderByOptions)
 {
 case OrderByOptions.SimpleOrder: Because of paging we always need to sort.

I default to showing latest entries first return books.OrderByDescending(
 x => x.BookId);
 case OrderByOptions.ByVotes: This orders the book by

votes. Books without any
votes go at the bottom

 return books.OrderByDescending(x =>
 x.ReviewsCount > 0
 ? x.ReviewsAverageVotes : 0);
 case OrderByOptions.ByPublicationDate: Order by publication

date—latest books at the return books.OrderByDescending(
 x => x.PublishedOn);
 case OrderByOptions.ByPriceLowestFirst:

Order by actual price, which
considers promotional
price—both lowest first
and highest first

 return books.OrderBy(x => x.ActualPrice);
 case OrderByOptions.ByPriceHigestFirst:
 return books.OrderByDescending(
 x => x.ActualPrice);
 default:
 throw new ArgumentOutOfRangeException(
 nameof(orderByOptions), orderByOptions, null);
 }
}

Calling the OrderBooksBy method returns the original query with the appropriate
LINQ sort command added to the end. We then pass this onto the next query object,
or, if we’re finished, we call a command to execute the code, like ToList.

NOTE You’ll see that even if the user doesn’t select a sort, I still sort (see Sim‐
pleOrder switch statement). This is because I’ll be using paging, which pro-
vides a page at a time rather than all the data, and SQL requires the data to be
sorted to handle paging. The most efficient sort’s on the primary key, and I
sort on that.

2.7.2 The filtering of books by publication year and customer ratings

The filtering I created for the book-selling site’s a bit more complex than the sorting
we covered. That’s because I get the customer to first select the type of filter they want
and then select the actual filter value. The filter value for votes is easy, it’s a set of fixed
values—4 or above, 3 or above, and so on. But for the filter by date I need to find the
dates of the publications to put into the dropdown list.

 It’s instructive to look at the code for working out the years that have books, as it’s
a nice example of combining several LINQ commands to create the final dropdown

Listing 2.12 The OrderBooksBy query object method

136 CHAPTER 2 Querying the database

list. Listing 2.13 shows a snippet of code taken from the GetFilterDropDownValues
method.

var comingSoon = _db.Books. This returns true if there’s a book
in the list which isn’t yet published Any(x => x.PublishedOn > DateTime.UtcNow);

var nextYear = DateTime.UtcNow.AddYears(1).Year; This gets next year and we can
filter out all future publicationsvar result = _db.Books

This long command gets the year of
publication, uses distinct to only have one
of each year, filters out the future books
and orders with newest year at the top

 .Select(x => x.PublishedOn.Year)
 .Distinct()
 .Where(x => x < nextYear)
 .OrderByDescending(x => x)
 .Select(x => new DropdownTuple

I finally use two client/server evaluations
to turn the values into strings

 {
 Value = x.ToString(),
 Text = x.ToString()
 }).ToList();
if (comingSoon) Finally I add a "coming soon"

filter for all the future books result.Insert(0, new DropdownTuple
 {
 Value = BookListDtoFilter.AllBooksNotPublishedString,
 Text = BookListDtoFilter.AllBooksNotPublishedString
 });

return result;

The result of the code in listing 2.13 is a list of Value/Text pairs holding each year that
we’ve published books, plus a “coming soon” section for books yet to be published.
This is turned into a HTML dropdown list by ASP.NET Core and sent to the browser.

 I’ve listed the filter query object called FilterBooksBy in listing 2.14. This takes as
an input the ‘Value’ part of the dropdown list you saw created in listing 2.13, plus
whatever type of filtering the customer has asked for.

public static IQueryable<BookListDto> FilterBooksBy(
 this IQueryable<BookListDto> books,
 BooksFilterBy filterBy, string filterValue)

The method’s given both
the type of filter and the
user selected filter value

{
 if (string.IsNullOrEmpty(filterValue)) If the filter value isn't set then it

returns the IQueryable with no change return books;

 switch (filterBy)
 {
 case BooksFilterBy.NoFilter: Same for no filter selected—it returns

the IQueryable with no change return books;
 case BooksFilterBy.ByVotes:
 var filterVote = int.Parse(filterValue); The filter by votes is a

value and above, for
example 3 and above.
We also ignore books
with no reviews

 return books.Where(
 x => x.ReviewsCount > 0
 && x.ReviewsAverageVotes > filterVote);

Listing 2.13 The code to produce a list of the years that we’ve published books

Listing 2.14 The FilterBooksBy query object method

137Adding Sorting, Filtering, and Paging to the book-selling site

 case BooksFilterBy.ByPublicationYear:
 if (filterValue == AllBooksNotPublishedString) If the "coming soon"

was picked then we
only return books
not yet published

 return books.Where(
 x => x.PublishedOn > DateTime.UtcNow);

 var filterYear = int.Parse(filterValue); If we’ve a specific year we
filter on that. Note that we
also remove future books
(in case the user chose this
year's date)

 return books.Where(
 x => x.PublishedOn.Year == filterYear
 && x.PublishedOn <= DateTime.UtcNow);
 default:
 throw new ArgumentOutOfRangeException
 (nameof(filterBy), filterBy, null);
 }
}

I could’ve created loads of other types of filters/search of books– search by title, or
books between $20-$40, but this gives you a feel for how filtering works. It’s all about
finding the right value to filter/search on and then using the right combination of
LINQ commands to achieve the result you want.

2.7.3 The paging of the books in the list

If you used Google search, then you’ve used paging—Google presents the first dozen
results and you can ‘page’ through the rest. The book-selling site uses paging, which is
simple to implement use the LINQ commands Skip and Take methods.

 In fact, although the other query objects were tied to the BookListDto class because
the LINQ paging commands are simple, I can create a generic paging query object
which works with any IQueryable<T> query. This query object is shown in listing 2.15,
but it does rely on getting a page number in the right range, but another part of my
application does that anyway to show the correct paging information on screen.

public static IQueryable<T> Page<T>(
 this IQueryable<T> query,
 int pageNumZeroStart, int pageSize)
{
 if (pageSize == 0)
 throw new ArgumentOutOfRangeException
 (nameof(pageSize), "pageSize cannot be zero.");

 if (pageNumZeroStart != 0)
 query = query
 .Skip(pageNumZeroStart * pageSize); It skips the correct number of pages

 return query.Take(pageSize); It then takes the number for this page size
}

As I said earlier, paging only works if the data’s ordered, otherwise SQL Server throws
an exception. This is because relational databases don’t guarantee the order in which
data’s handed back, and there’s no default row order in a relational database.

Listing 2.15 A generic Page query object method

138 CHAPTER 2 Querying the database

2.8 Putting it all together: how to combine query objects
I’ve covered each query object we need to build book list for the book-selling site. Now
it’s time to see how we combine each of these query objects to create a composite query
to work with the web site. The benefit of building a complex query as separate parts is
that it makes writing and testing the overall query simpler, as you can test each part on
its own.

 Listing 2.16 shows a class called ListBooksService, which has one method, SortFil-
terPage, which uses all the query objects, select, sort, filter, and page, to build the com-
posite query. It needs the application’s DbContext to access the Books property, which
we provide via the constructor.

public class ListBooksService
{
 private readonly EfCoreContext _context;

 public ListBooksService(EfCoreContext context)
 {
 _context = context;
 }

 public IQueryable<BookListDto> SortFilterPage
 (SortFilterPageOptions options)
 {
 var booksQuery = _context.Books

This starts by selecting
the Books property in the

Application's DbContext

 .AsNoTracking()

Because this is a read-only query,
I add .AsNoTracking(). It makes

the query faster

 .MapBookToDto()

It then uses the
Select query object
which will pick
out/calculate the
data it needs

 .OrderBooksBy(options.OrderByOptions)

 It then adds
the commands

to order the
data using the
given options

 .FilterBooksBy(options.FilterBy, Then it adds the commands
to filter the data options.FilterValue);

 options.SetupRestOfDto(booksQuery); This stage sets up
the number of
pages and makes
sure PageNum is in
the right range

 return booksQuery.Page(options.PageNum-1,
Finally it
applies the
paging
commands

 options.PageSize);
 }
}

At you can see the four query objects, select, sort, filter, and page, are added in turn
(called chaining) to form the final composite query. Note that the options.Setup-
RestOfDto(booksQuery) code before the Page query object sorts things out such as
how many pages there are, ensures that the PageNum is in the right range, and a few
other housekeeping items.

Listing 2.16 The ListBookService class which provides a sorted, filtered, and paged list

139Summary

2.9 Summary
I started this chapter by describing the various types of relationships in the example
book-selling site example application, and showed you how to set up an application’s
DbContext to access and create a database. From that base, I could start talking about
querying a database, with progressively more complex versions of queries. Takeaways
from this chapter are:

 To access a database in any way via EF Core, you need to define an application
DbContext.

 An EF Core query consists of three parts: The application’s DbContext prop-
erty, a series of LINQ/EF Core commands and finally a command to execute
the query.

 Using EF Core you can model three primary database relationships: One-to-
One, One-to-Many, and Many-to-Many. Another is hierarchical, which I cover in
chapter seven.

 The classes that EF Core maps to the database are referred to as entity classes. I
use this term to highlight that the class I’m referring to is mapped by EF Core
to database.

 If you load an entity class, by default, it won’t load any of its relationships. For
example, querying the Book entity class won’t load its relationship properties,
Reviews, AuthorsLink, and Promotion, but leave them as null.

 Here’s three ways you can load related data that’s attached to an entity class: eager
loading, explicit loading, and select loading. It’s likely that another technique called
lazy loading will be added to EF Core at some point.

 EF Core has a feature called Client vs. Server evaluation which allows you to
include commands that can’t be converted to SQL commands in your database
query. EF Core extracts these non-SQL commands and executes them after the
database access has finished.

 I’ve used the term query object to refer to an encapsulated query, or section of a
query. These query objects are often built as .NET extension methods which
means they can easily be chained together, in a similar style to how LINQ is writ-
ten.

 For readers who are familiar with EF6.x, the extra takeaways are:

 Many of the concepts in this chapter are the same as in EF6.x, but in some
cases, for instance eager loading, the EF Core commands have changed slightly,
but often for the better.

 Some features in EF6.x, such as automatic Many-to-Many relationship setup and
lazy loading are, at the time of writing this chapter, missing from EF Core. Alter-
natives exist, but it changes the way you use EF.

 EF Core’s Client vs. Server evaluation feature’s new and allows you to write queries
that would’ve previously thrown an exception in EF6.x.

140 CHAPTER 2 Querying the database

141Summary

Entity Framework Core in Action teaches developers how to
add database functionality to .NET applications with EF
Core. Part 1 starts with a clear introduction to what EF
Core is and how it fits into your applications. Next, you'll
get hands-on quickly by building a .NET application that
uses a relational database with EF Core's default configu-
ration. By the end of part 1 you will be able to build a
well-structured application that uses EF Core for database
access.

 The second part of the book dives deeper and shows
you how to change default settings as well as teaching you
many EF Core commands. You'll learn how to create a

database exactly the way you want it, as well as how to link to an existing database, and
how to change the way database data is exposed inside your .NET application.

 The last part is all about improving your skills and making you a better developer
and debugger of EF Core applications. You'll learn from real-world applications of EF
Core starting with a range of known patterns and practices that you can use, extending
ER Core, and how to find and fix EF Core performance issues. Software developers who
have never used Entity Framework and seasoned EF6.x developers, as well as anyone
who wants to know what EF Core is capable of will find this book great at deepening
their knowledge and making them more productive with EF Core.

What's inside:

 Querying a database
 Creating, updating and deleting data
 Using EF Core in business logic
 Building a .NET web application EF Core

This book assumes readers are familiar with .NET development and some understand-
ing of what relational databases are. No experience with SQL needed.

https://www.manning.com/books/entity-framework-core-in-action
https://www.manning.com/books/entity-framework-core-in-action

141

Symbols

.NET Core
and writing blog posts 64

.NET web applications, layered architecture
and 133

@CheckForNull annotation 17–18
@Nonnull annotation 17–18
@Nullable annotation 17–18
& symbol 77
#equals(Object) method 4
#getCacheExpirySeconds() method 4
#hashCode() method 4–5

Numerics

202 (Accepted) status code 82
404 status code, raw 108

A

A class 34
action method 94

and threefold responsibility of 104
defined 92, 103
example 105
method arguments 105
MVC controllers and 103–109
returning more than one type of result 106
view engine and generating a response 104

action model, and invoking an appropriate
action 93

action See action method
Add New Item dialog 99

Add-Migration, Migrate command 120
and multiple projects used by an

application 120
AddMvc call 100
anti-corruption layer 49
application model, executing an action

using 93
armorStrength variable 11–12
ASP.NET Core

and convention over configuration 102
and different types of IActionResult 106
and MVC implementation 91
and writing HTTP REST services 83
dependency injection 68
empty template 97
pluggable nature of 96
securing services, reference literature 78

ASP.NET Core application
and a request response 86
middleware and 86

ASP.NET MVC 67
ASP.NET web service, creation of 66–69
ASP.NET, and built-in mechanisms to route

requests 66
async/await constructs 72
authentication header 75
Azure blob container 75

Markdown file in 76
Azure blob storage 65

and creating the GetBlob method 73
authorization header 78
incorporating post storage in 72
requests and 80

Azure emulator 73
Azure portal 76
Azure storage account 74

 index

142 INDEX

B

B class 34
BannerAdChooser class 22–25
BannerAdChooserImpl class 24
binding model 105

building 92
defined 92

blob storage See Azure blob storage
blob(s)

deleting 82
listing 80–81

bounded context 42
BoundedQueue class 14–15
Brolund, Daniel 10
business capabilities 40–47, 59

identifying 42–43
individually deployable 59
overview 41–42
point-of-sale system example 43–47

identifying business capabilities in point-of-
sale domain 44–46

Special Offers microservice 46–47
replaceable and maintainable by small team 59
responsible for single capability 59

business logic, action methods and 104
business logic, complex, explicit loading in 125

C

C class 34
chaining 138
characteristics of microservices

individually deployable 59–60
maintainable by small team 59–60
replaceable 59–60
responsible for single capability 59–60

CharacterProfile object 26–27
CharacterProfileViewAdapter class 27
CLI See command line interface (CLI)
Client vs. Server evaluation 126, 139

as a new feature in EF Core 127
benefits 127
example of using 127
understanding the limitations 128–129

client, slow upload speed 71
code communication 56
collection operations 122
com.google.common.base.Optional class 17
command line Interface (CLI) 120
commented-out code 11
composite query, query objects for building 138
config file, an example 73
config.json file

Azure emulator 73

config.json file
adding to a project 72

configuration, getting values from 72–73
Configure method 98
ConfigureServices method 98, 100
connection string 119
console application, testing the new Azure storage

operation 76
container(s)

deleting a blob from 82
listing 80–81

content header 78
content length 79
ContentResult, a type of IActionResult 106
context.Database.Migrate() method, startup code

and 120
ContextFactoryNeededForMigrations class 121
controller 101–103

action methods and 103
and using a different view for model display 90
as a MVC design pattern component 89
as interaction entry point 89
common conventions for defining 103
data display and 90
defined 92
incoming request and 95
instantiable 101
location conventions 102
the role of an action method in 93

Controller class 101
controller, creating 68–69
Controllers sub folder 102
convention over configuration 102
Convert method, rewriting to be

asynchronous 71
Conway’s law 42
coupling, reduction of 96
Coupons microservice 58
CreateRequest helper method 79
CreateRequest, reusing 75
csproj file 97
Curl command line tool

and web service testing 69
described 69

Curl command, testing the new Azure storage
operation 77

D

data display, and advantage of using MVC design
pattern 89

Data Transfer Object (DTO) 130
database

by convention modelling of 117
creating for an application 119–121

143INDEX

EF Core and accessing 112
EF Core and mapping .NET classes onto 117
example of complete 115

database diagram 115
database query, anatomy of See also query

121–122
database relationship

and default behavior of not loading 122
EF Core and modelling 112, 139

database round trips 124
explicit loading and 125

database, blog post storage 64
DataLayer 134
data-model duplication 54
DbContext

creating an instance of the application's 119
defining the application's 118
IDisposable interface 119

DbContext property access 121
DbSet property 121
dead code 11–12
default constructor 131
default web template project file, modified 66
default() keyword 79
dependency injection 119
dependency injection, IMarkdownEngine object

added to 68
dependency, adding on the Configuration

library 72
Design Patterns: Elements of Reusable Object-Oriented

Software (Kerievsky) 29
development mode 119
development storage See Azure emulator
Django, MVC design pattern and 88
DoBy Scala library 13
domain model, defined 93
domain-driven design 41
dotnet new console command, converting

Markdown to HTML 65
dotnet restore, converting Markdown to

HTML 65
dotnet run, and running a project from the

command line 99
drivers 58–59
DTO See Data Transfer Object (DTO)

E

eager loading
and loading relationships with the primary

entity class 122
benefits 124

described 123
downside 124
example of a complex 123

EF Core database model 117
EF Core, database querying and 112
EF6.x user, Many-to-Many relationship and 114
EfCoreContext, defining the application's

DbContext 118
EfCoreInAction 134
Ellnestam, Ola 10
else block 11–12
Empty Project template 97
EnsureCreated command, database creation

and 119
entity class 117

and simple example application 133
as database structure model 119

entry point, ASP.NET Core 103
enum parameter 135
ERP (Enterprise Resource Planning) system 48,

50
execute command 122
execute() method 9
expired code 13
explicit loading

and loading relationships after the primary
entity class 124

benefits 125
downside 125
example of 124
Load() command and 122

exposure, level of, Azure blob containers and 75
extension method 132, 134
external product catalog system, integrating

with 48–50

F

Feathers, Michael 33
FileResult, a type of IActionResult 106
filtering 135–137
final class 4
FindBugs 12
first level relationship 124
Fixme Scala library 13
FK abbreviation 115
fluent interface 121
FooView Pattern 27
foreach statement, execute command and 122
foreign keys, used as primary keys 115
Fowler, Martin 29

144 INDEX

G

Gamma, Erich 29
generic paging query object 137
GET method, Azure blob storage and 72
GET request 82

GetBlob method 74
GetAuthHeader method 75
GetBlob method

creation of 73–76
updated 76

GetFilterDropDownValues method 136
gradual rollouts 36
GUI environment, MVC design pattern and 88

H

Halladay, Steve 29
Helm, Richard 29
helper methods

and creating ActionResults 108–109
returning results 101

hierarchical relationship, EF Core and 115
Hoare, Tony 16
HTML view, model display and 90
HTML web application 86
HTTP calls, making 69–71
HTTP PUT operation, idempotency of 78
HTTP REST service, .NET Core version and 74
HTTP REST services 67
HttpClient vs. WebClient 70
HttpGet attribute, GetBlob method 74
HttpGet operation, listing containers and

blobs 80
HttpPost method 69
HttpRequestMessage object 74

I

IActionResult 106–109
ID/key-generating methods 4
IDE

refactoring and 5–9
if statement 11
ILSpy tool, Visual Studio 72
IMarkdownEngine object 68
Include() method, eager loading and 122
Index method 106
IntelliJ IDEA 6
IQueryable method 131
IQueryable query 137
isStable flag 4

J

java.util.Optional class 17
Johnson, Ralph 29
JSON, as a machine-readable format 87

K

Kerievsky, Joshua 29

L

layered architecture approach 133
diagram of 133

lazy loading 126
linking table 114
LINQ

execute command and 122
online resources for 121

LINQ/EF Core command 121

M

Macbeth Syndrome 3
maintainable applications, MVC design pattern as

a model for building 87
Many-to-Many relationship 113–114

automatic 139
Mappers 132
mapping capabilities 41
Markdown

and writing blog posts 64
availability in .NET Core or .NET Standard 65

Markdown file, content of 78
Markdown service, GET operation 76
Markdown text, conversion into HTML, sample

code 65–66
MarkdownLite library 65

and and tags 66
method signature, GetBlob method 74
microservice

and building high performance microservice
applications 71

and its own isolated data source 77, 83
described 65
individually deployable 65
replaceability 65

Microservices in .NET Core 65
Microsoft.AspNetCore.Mvc package 101
Microsoft.AspNetCore.Mvc package reference 98
Microsoft.EntityFrameworkCore.Tools 120
Microsoft.Extensions.Configuration library 72

145INDEX

middleware pipeline 91
small 97

Migrate commands 119
migration feature 120
Mikado Method 10
model

as a MVC design pattern component 89
view independent 90

Model View Controller See MVC
ModelState property 105
Model-View-Controller (MVC) design pattern See

MVC design pattern
Model-View-Controller pattern 25
mutable state 18–20
MVC 68

and Web API 67
HttpGet attribute 74

MVC application
responsibilities of each component of 89
the order of events in responding to a

request 89
traditional, action methods for 104

MVC design pattern 88–90
and handling different aspects of a single page

request 88
and traditional description 91
different interpretations of the original 88
terminology issues 91

MVC functionality, accessing 100
MVC middleware internals

customization of 100–101
replacing parts of 100

MVC options, configurations of 100
MVC request, complete 94–96
MvcMiddleware 91

adding to an application 96–101
and handling UI code for an application 87
view engine in 104

Mvcmiddleware
and generating web pages 87
as a final piece of middleware in the

pipeline 86, 91

N

new syntax, ActionResults and 108
nil object 18
non-server runnable commands, EF Core

and 127
NotFoundResult, a type of IActionResult 106, 108
Notifications microservice 51
notifications, sending to customers 50–52

null blob parameter 80
null container parameter 80
null references 16–18
NullPointerException 16–17

O

OnConfiguring method 119
One-to-Many relationship 113

example of 114
hierarchical relationship and 115

One-to-One relationship 113
hierarchical relationship and 115

One-to-ZeroOrOne relationship 113
OnModelCreating method 118
Option type 16–17
OrderBy method 134
OrderByDescending, method 134

P

paging 137
parameter-less constructor 121
parameters, action methods and 104–106
PK abbreviation 115
Plain Old CLR Objects 117
Player object 31
PlayerUpdater 32
POCO See Plain Old CLR Objects
point-of-sale system example 43–47

identifying business capabilities in point-of-sale
domain 44–46

Special Offers microservice 46–47
POST vs. HTTP PUT 78
POST, REDIRECT, GET flow 107
PostAsync method 71
presentation model 26
Principle-Based Refactoring 29
Product Catalog microservice 44
Program.cs 67
project

adding a new class to 99
restoring and running 99

public API 58
public constructor 32
public method See action method
PUT operation 77
PutBlob operation

C# client code and testing 80
Curl command and testing 79

PutBlob method 78

146 INDEX

Q

query object 132, 134
encapsulated query 139

query, building complex See also database
query 129–134

Query() method, explicit loading and 124
querying 112

R

Rails, MVC design pattern and 88
readonly keyword 20
Redirect helper method, and model validity 106
RedirectResult, a type of IActionResult 107
RedirectResult, action methods and returning a

response 104
RedirectToRouteResult, a type of

IActionResult 106
refactoring 2–10

common legacy code traits and 10–29
business logic 20–25
complexity in view layer 25–29
needlessly mutable state 18–20
null references 16–18
stale code 11–13
toxic tests 14–16

disciplined
avoiding Macbeth Syndrome 3
IDE and 5–9
Mikado Method 10
separate refactoring from other work 3–5
VCS (version control system) and 9

testing legacy code 29–36
regression testing without unit tests 33–36
untestable code 29–33
using user data 36

Refectoring to Patterns (Kerievsky) 29
Refectoring: Improving the Design of Existing Code

(Fowler et. al) 29
related data

different approaches to loading 112
loading 122
three ways of loading 122–126

relational database schema, example of
complete 115–116

relational database, splitting out any repeated
data and 113

request
creating authentication header in 75
handling more requests with fewer threads 72
HttpClient and making 70–71, 83

request header, hashed version of 76

request, routing to an appropriate controller 92
response, action method and appropriate kind

of 104
Rule class 22–23
RuneQuest 11
runtime, exceptions at 100

S

scoping microservices
business capabilities 41–47

identifying 42–43
overview 41–42
point-of-sale system example 43–47

microservice characteristics and 58–60
primarily scoping to business capabilities

leads to good microservices 59
secondarily scoping to supporting technical

capabilities leads to good
microservices 59–60

technical capabilities 48–52
identifying 52
overview 48
supporting, examples of 48–52

unclear scope, moving forward despite 52–58
carving out new microservices from

existing 56–57
planning to carve out new microservices

later 58
starting bigger 53–56

Search action method 105
SearchModel object 105
second level relationship 124
secure resource, production service 78
select loading 125–126, 129–133

and combining individual queries 129
Select method, example of use 125
separation of concerns 95, 133
service code, responsibility of the layers

beneath 72
ServiceLayer 134
sorting 134–135
Special Offers microservice 44, 46–47, 53, 58
Spell object 19–20
SpellWithUsageCount class 19–20
Spring MVC, MVC design pattern and 88
SQL commands, loading related data 123
SQL IDENTITY command 117
stale code 11–13

commented-out code 11
dead code 11–12
expired code 13
zombie code 12–13

147INDEX

standard web application, model display and 90
Startup class 67
Startup.cs file 98
Startup.cs file, modified 67
StatusCodeResult, a type of IActionResult 106,

108
stealth releases of versions 36
StreamContent object, making HTTP calls

and 71

T

table-per-hierarchy (TPH) configuration 115
Task objects, async methods and 71
technical capabilities 40, 48–52, 59–60

identifying 52
individually deployable 60
overview 48
replaceable and maintainable by small team 60
responsible for single capability 60
supporting, examples of 48–52

integrating with external product catalog
system 48–50

sending notifications to customers 50–52
test.md file, and making HTTP calls 69
testability, view independent model and 90
testing

legacy code 29–36
regression testing without unit tests 33–36
untestable code 29–33
using user data 36

ThenInclude() method, eager loading and 122–
123

this, keyword, extension method and 132
thread, problem with blocking 71
tight coupling 96
timesUsed field 19
TPH configuration See table-per-hierarchy (TPH)

configuration
Tweet code 8
TweetBuilder class 8

U

UNIQUE index 113
Update-Database, Migrate command 120
updatePlayer() method 32

uploaded data, receiving 77–79
usage-tracking process 46
UseMvc extension method 98
user data, using with legacy code testing 36
using statement 119
Util class 30–31, 33, 37
Util.updatePlayer method 31

V

VCS (version control system) 9
view

as a final data representation 89
as a MVC design pattern component 89
generating of the final representation and 90
model independent of 90

view layer, complexity in 25–29
view model

defined 94
generating a response using 94

ViewModel 26
ViewModel, ASP.NET 130
ViewResult, a type of IActionResult 107
ViewResult, action methods and returning a

response 104
Visual Studio Package Manager Console

(PMC) 120
Vlissides, John 29

W

Web API, building HTTP REST services and 67
web application, MarkdownLite library and

example of creating 65
web server, Program.cs and starting 67
web service, testing with Curl 69
WebClient 70
Working Effectively with Legacy Code (Feathers) 33

X

XML, as a machine-readable format 87

Z

zombie code 12–13

Re-Engineering Legacy Software
by Chris Birchall

ISBN: 9781617292507
232 pages
$64.99
April 2016

Microservices in .NET Core
with examples in Nancy
by Christian Horsdal Gammelgaard

ISBN: 9781617293375
344 pages
$49.99
January 2017

.NET Core in Action
by Dustin Metzgar

ISBN: 9781617294273
350 pages
$44.99
Early 2018

Save 50% on these selected books—eBook, pBook, and MEAP. Just enter feecore50 in the
Promotional Code box when you check out. Only at manning.com.

https://www.manning.com/books/re-engineering-legacy-software
https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/dotnet-core-in-action
http://manning.com
https://www.manning.com/books/dotnet-core-in-action
https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/re-engineering-legacy-software

ASP.NET Core in Action
by Andrew Lock

ISBN: 9781617294617
500 pages
$49.99
Spring 2018

Entity Framework Core in Action
by Jon Smith

ISBN: 9781617294563
500 pages
$49.99
Spring 2018

https://www.manning.com/books/entity-framework-core-in-action
https://www.manning.com/books/asp-dot-net-core-in-action
https://www.manning.com/books/entity-framework-core-in-action
https://www.manning.com/books/asp-dot-net-core-in-action

	contents
	Introduction
	Refactoring
	Refactoring
	4.1 Disciplined refactoring
	4.1.1 Avoiding the Macbeth Syndrome
	4.1.2 Separate refactoring from other work
	4.1.3 Lean on the IDE
	4.1.4 Lean on the VCS
	4.1.5 The Mikado Method

	4.2 Common legacy code traits and refactorings
	4.2.1 Stale code
	4.2.2 Toxic tests
	4.2.3 A glut of nulls
	4.2.4 Needlessly mutable state
	4.2.5 Byzantine business logic
	4.2.6 Complexity in the view layer

	4.3 Testing legacy code
	4.3.1 Testing untestable code
	4.3.2 Regression testing without unit tests
	4.3.3 Make the users work for you

	4.4 Summary

	What's inside:

	Identifying and Scoping Microservices
	Identifying and scoping microservices
	3.1 The primary driver for scoping microservices: business capabilities
	3.1.1 What is a business capability?
	3.1.2 Identifying business capabilities
	3.1.3 Example: point-of-sale system

	3.2 The secondary driver for scoping microservices: supporting technical capabilities
	3.2.1 What is a technical capability?
	3.2.2 Examples of supporting technical capabilities
	3.2.3 Identifying technical capabilities

	3.3 What to do when the correct scope isn’t clear
	3.3.1 Starting a bit bigger
	3.3.2 Carving out new microservices from existing microservices
	3.3.3 Planning to carve out new microservices later

	3.4 Well-scoped microservices adhere to the microservice characteristics
	3.4.1 Primarily scoping to business capabilities leads to good microservices
	3.4.2 Secondarily scoping to supporting technical capabilities leads to good microservices

	3.5 Summary

	What's inside:

	Creating and Communicating with Web Services
	Creating a Microservice
	7.1 Writing an ASP.NET web service
	7.1.1 Converting Markdown to HTML
	7.1.2 Creating an ASP.NET web service
	7.1.3 Testing the web service with Curl

	7.2 Making HTTP calls
	7.3 Making the service asynchronous
	7.4 Getting data from Azure blob storage
	7.4.1 Getting values from configuration
	7.4.2 Creating the GetBlob method
	7.4.3 Testing the new Azure storage operation

	7.5 Uploading and receiving uploaded data
	7.6 Listing containers and blobs
	7.7 Deleting a blob
	7.8 Summary
	What's inside:

	Creating Web Pages with MVC Controllers
	Creating web pages with MVC Controllers
	4.1 An introduction to MVC
	4.1.1 The MVC design pattern
	4.1.2 MVC in ASP.NET Core
	4.1.3 Adding the MvcMiddleware to your application
	4.1.4 What makes a controller a controller?

	4.2 MVC Controllers and action methods
	4.2.1 Accepting parameters to action methods
	4.2.2 Using ActionResults

	4.3 Summary

	What's inside:

	Querying the Database
	Querying the database
	2.1 Setting the scene—my book-selling site example
	2.1.1 Our book-selling site relational database
	2.1.2 Other relationship types not covered in this chapter
	2.1.3 The final database showing all the tables
	2.1.4 The classes that EF Core maps to the database

	2.2 Creating the application’s DbContext
	2.2.1 Defining my application’s DbContext: EfCoreContext
	2.2.2 Creating an instance of my application’s DbContext
	2.2.3 Creating a database for your own application

	2.3 Anatomy of a database query
	2.3.1 Application’s DbContext Property access
	2.3.2 A series of LINQ/EF Core command
	2.3.3 The execute command

	2.4 The three ways of loading related data
	2.4.1 Eager loading: loading relationships with the primary entity class
	2.4.2 Explicit loading: loading relationships after the primary entity class
	2.4.3 Select loading: loading the specific parts of primary entity class and any relationships

	2.5 Client vs. Server evaluation: moving part of your query into software
	2.5.1 An example of using Client vs. Server evaluation to create the display string of s book’s authors
	2.5.2 Understanding the limitations of Client vs. Server evaluation

	2.6 Building complex queries—the book-selling site
	2.6.1 Building the book list query using select loading
	2.6.2 Introducing the architecture of the book-selling site application

	2.7 Adding Sorting, Filtering, and Paging to the book-selling site
	2.7.1 The sorting of books by price, publication date and customer ratings
	2.7.2 The filtering of books by publication year and customer ratings
	2.7.3 The paging of the books in the list

	2.8 Putting it all together: how to combine query objects
	2.9 Summary

	What's inside:

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Promo

