
Rafael A. Irizarry

Introduction to Data Science

www.dbooks.org

https://www.dbooks.org/

Contents

Preface 23

Acknowledgments 25

Introduction 27

1 Getting started with R and RStudio 29

1.1 Why R? . 29

1.2 The R console . 29

1.3 Scripts . 30

1.4 RStudio . 31

1.4.1 The panes . 31

1.4.2 Key bindings . 33

1.4.3 Running commands while editing scripts 34

1.4.4 Changing global options . 36

1.5 Installing R packages . 36

I R 39

2 R basics 41

2.1 Case study: US Gun Murders . 41

2.2 The very basics . 43

2.2.1 Objects . 43

2.2.2 The workspace . 43

2.2.3 Functions . 44

2.2.4 Other prebuilt objects . 46

2.2.5 Variable names . 47

2.2.6 Saving your workspace . 47

2.2.7 Motivating scripts . 47

2.2.8 Commenting your code . 48

3

www.dbooks.org

https://www.dbooks.org/

4 0 Contents

2.3 Exercises . 48

2.4 Data types . 49

2.4.1 Data frames . 49

2.4.2 Examining an object . 49

2.4.3 The accessor: $. 50

2.4.4 Vectors: numerics, characters, and logical 51

2.4.5 Factors . 52

2.4.6 Lists . 52

2.4.7 Matrices . 54

2.5 Exercises . 55

2.6 Vectors . 56

2.6.1 Creating vectors . 56

2.6.2 Names . 57

2.6.3 Sequences . 58

2.6.4 Subsetting . 58

2.7 Coercion . 59

2.7.1 Not availables (NA) . 60

2.8 Exercises . 60

2.9 Sorting . 61

2.9.1 sort . 61

2.9.2 order . 61

2.9.3 max and which.max . 62

2.9.4 rank . 63

2.9.5 Beware of recycling . 63

2.10 Exercises . 64

2.11 Vector arithmetics . 65

2.11.1 Rescaling a vector . 65

2.11.2 Two vectors . 65

2.12 Exercises . 66

2.13 Indexing . 66

2.13.1 Subsetting with logicals . 67

2.13.2 Logical operators . 67

2.13.3 which . 68

2.13.4 match . 68

0.0 Contents 5

2.13.5 %in% . 69

2.14 Exercises . 69

2.15 Basic plots . 70

2.15.1 plot . 70

2.15.2 hist . 70

2.15.3 boxplot . 71

2.15.4 image . 72

2.16 Exercises . 72

3 Programming basics 73

3.1 Conditional expressions . 73

3.2 Defining functions . 75

3.3 Namespaces . 76

3.4 For-loops . 77

3.5 Vectorization and functionals . 78

3.6 Exercises . 79

4 The tidyverse 81

4.1 Tidy data . 81

4.2 Exercises . 82

4.3 Manipulating data frames . 83

4.3.1 Adding a column with mutate . 83

4.3.2 Subsetting with filter . 84

4.3.3 Selecting columns with select . 84

4.4 Exercises . 85

4.5 The pipe: %>% . 86

4.6 Exercises . 87

4.7 Summarizing data . 88

4.7.1 summarize . 88

4.7.2 pull . 90

4.7.3 Group then summarize with group_by 91

4.8 Sorting data frames . 92

4.8.1 Nested sorting . 93

4.8.2 The top n . 93

4.9 Exercises . 93

www.dbooks.org

https://www.dbooks.org/

6 0 Contents

4.10 Tibbles . 95

4.10.1 Tibbles display better . 95

4.10.2 Subsets of tibbles are tibbles . 96

4.10.3 Tibbles can have complex entries . 96

4.10.4 Tibbles can be grouped . 97

4.10.5 Create a tibble using tibble instead of data.frame 97

4.11 The dot operator . 97

4.12 do . 98

4.13 The purrr package . 100

4.14 Tidyverse conditionals . 101

4.14.1 case_when . 101

4.14.2 between . 102

4.15 Exercises . 102

5 Importing data 103

5.1 Paths and the working directory . 104

5.1.1 The filesystem . 104

5.1.2 Relative and full paths . 105

5.1.3 The working directory . 105

5.1.4 Generating path names . 106

5.1.5 Copying files using paths . 106

5.2 The readr and readxl packages . 107

5.2.1 readr . 107

5.2.2 readxl . 108

5.3 Exercises . 108

5.4 Downloading files . 109

5.5 R-base importing functions . 110

5.5.1 scan . 110

5.6 Text versus binary files . 111

5.7 Unicode versus ASCII . 111

5.8 Organizing data with spreadsheets . 112

5.9 Exercises . 112

II Data Visualization 113

6 Introduction to data visualization 115

0.0 Contents 7

7 ggplot2 119

7.1 The components of a graph . 120

7.2 ggplot objects . 121

7.3 Geometries . 122

7.4 Aesthetic mappings . 123

7.5 Layers . 124

7.5.1 Tinkering with arguments . 125

7.6 Global versus local aesthetic mappings . 126

7.7 Scales . 127

7.8 Labels and titles . 128

7.9 Categories as colors . 129

7.10 Annotation, shapes, and adjustments . 130

7.11 Add-on packages . 131

7.12 Putting it all together . 132

7.13 Quick plots with qplot . 133

7.14 Grids of plots . 134

7.15 Exercises . 134

8 Visualizing data distributions 137

8.1 Variable types . 137

8.2 Case study: describing student heights . 138

8.3 Distribution function . 138

8.4 Cumulative distribution functions . 139

8.5 Histograms . 140

8.6 Smoothed density . 141

8.6.1 Interpreting the y-axis . 145

8.6.2 Densities permit stratification . 146

8.7 Exercises . 146

8.8 The normal distribution . 150

8.9 Standard units . 152

8.10 Quantile-quantile plots . 153

8.11 Percentiles . 155

8.12 Boxplots . 155

8.13 Stratification . 157

8.14 Case study: describing student heights (continued) 157

www.dbooks.org

https://www.dbooks.org/

8 0 Contents

8.15 Exercises . 159

8.16 ggplot2 geometries . 160

8.16.1 Barplots . 161

8.16.2 Histograms . 162

8.16.3 Density plots . 163

8.16.4 Boxplots . 164

8.16.5 QQ-plots . 164

8.16.6 Images . 165

8.16.7 Quick plots . 166

8.17 Exercises . 168

9 Data visualization in practice 169

9.1 Case study: new insights on poverty . 169

9.1.1 Hans Rosling’s quiz . 170

9.2 Scatterplots . 171

9.3 Faceting . 172

9.3.1 facet_wrap . 174

9.3.2 Fixed scales for better comparisons 175

9.4 Time series plots . 175

9.4.1 Labels instead of legends . 178

9.5 Data transformations . 179

9.5.1 Log transformation . 179

9.5.2 Which base? . 181

9.5.3 Transform the values or the scale? 182

9.6 Visualizing multimodal distributions . 183

9.7 Comparing multiple distributions with boxplots and ridge plots 183

9.7.1 Boxplots . 184

9.7.2 Ridge plots . 185

9.7.3 Example: 1970 versus 2010 income distributions 187

9.7.4 Accessing computed variables . 193

9.7.5 Weighted densities . 196

9.8 The ecological fallacy and importance of showing the data 196

9.8.1 Logistic transformation . 197

9.8.2 Show the data . 197

0.0 Contents 9

10 Data visualization principles 199

10.1 Encoding data using visual cues . 199

10.2 Know when to include 0 . 202

10.3 Do not distort quantities . 205

10.4 Order categories by a meaningful value . 207

10.5 Show the data . 208

10.6 Ease comparisons . 211

10.6.1 Use common axes . 211

10.6.2 Align plots vertically to see horizontal changes and horizontally to see
vertical changes . 212

10.6.3 Consider transformations . 213

10.6.4 Visual cues to be compared should be adjacent 215

10.6.5 Use color . 216

10.7 Think of the color blind . 216

10.8 Plots for two variables . 217

10.8.1 Slope charts . 217

10.8.2 Bland-Altman plot . 219

10.9 Encoding a third variable . 219

10.10Avoid pseudo-three-dimensional plots . 221

10.11Avoid too many significant digits . 223

10.12Know your audience . 224

10.13Exercises . 224

10.14Case study: vaccines and infectious diseases 229

10.15Exercises . 232

11 Robust summaries 233

11.1 Outliers . 233

11.2 Median . 234

11.3 The inter quartile range (IQR) . 234

11.4 Tukey’s definition of an outlier . 235

11.5 Median absolute deviation . 236

11.6 Exercises . 236

11.7 Case study: self-reported student heights 237

III Statistics with R 241

www.dbooks.org

https://www.dbooks.org/

10 0 Contents

12 Introduction to statistics with R 243

13 Probability 245

13.1 Discrete probability . 245

13.1.1 Relative frequency . 245

13.1.2 Notation . 246

13.1.3 Probability distributions . 246

13.2 Monte Carlo simulations for categorical data 246

13.2.1 Setting the random seed . 248

13.2.2 With and without replacement . 248

13.3 Independence . 249

13.4 Conditional probabilities . 249

13.5 Addition and multiplication rules . 250

13.5.1 Multiplication rule . 250

13.5.2 Multiplication rule under independence 250

13.5.3 Addition rule . 251

13.6 Combinations and permutations . 251

13.6.1 Monte Carlo example . 255

13.7 Examples . 255

13.7.1 Monty Hall problem . 256

13.7.2 Birthday problem . 257

13.8 Infinity in practice . 259

13.9 Exercises . 260

13.10Continuous probability . 262

13.11Theoretical continuous distributions . 263

13.11.1 Theoretical distributions as approximations 263

13.11.2 The probability density . 265

13.12Monte Carlo simulations for continuous variables 266

13.13Continuous distributions . 267

13.14Exercises . 267

14 Random variables 269

14.1 Random variables . 269

14.2 Sampling models . 270

14.3 The probability distribution of a random variable 271

0.0 Contents 11

14.4 Distributions versus probability distributions 273

14.5 Notation for random variables . 273

14.6 The expected value and standard error . 274

14.6.1 Population SD versus the sample SD 276

14.7 Central Limit Theorem . 277

14.7.1 How large is large in the Central Limit Theorem? 278

14.8 Statistical properties of averages . 278

14.9 Law of large numbers . 280

14.9.1 Misinterpreting law of averages . 280

14.10Exercises . 280

14.11Case study: The Big Short . 282

14.11.1 Interest rates explained with chance model 282

14.11.2 The Big Short . 285

14.12Exercises . 288

15 Statistical inference 289

15.1 Polls . 289

15.1.1 The sampling model for polls . 290

15.2 Populations, samples, parameters, and estimates 292

15.2.1 The sample average . 292

15.2.2 Parameters . 293

15.2.3 Polling versus forecasting . 293

15.2.4 Properties of our estimate: expected value and standard error 294

15.3 Exercises . 295

15.4 Central Limit Theorem in practice . 296

15.4.1 A Monte Carlo simulation . 297

15.4.2 The spread . 299

15.4.3 Bias: why not run a very large poll? 299

15.5 Exercises . 300

15.6 Confidence intervals . 302

15.6.1 A Monte Carlo simulation . 304

15.6.2 The correct language . 305

15.7 Exercises . 305

15.8 Power . 306

15.9 p-values . 307

www.dbooks.org

https://www.dbooks.org/

12 0 Contents

15.10Association tests . 308

15.10.1 Lady Tasting Tea . 309

15.10.2 Two-by-two tables . 310

15.10.3 Chi-square Test . 310

15.10.4 The odds ratio . 311

15.10.5 Confidence intervals for the odds ratio 312

15.10.6 Small count correction . 313

15.10.7 Large samples, small p-values . 313

15.11Exercises . 314

16 Statistical models 315

16.1 Poll aggregators . 316

16.1.1 Poll data . 318

16.1.2 Pollster bias . 320

16.2 Data-driven models . 321

16.3 Exercises . 323

16.4 Bayesian statistics . 326

16.4.1 Bayes theorem . 326

16.5 Bayes theorem simulation . 327

16.5.1 Bayes in practice . 328

16.6 Hierarchical models . 329

16.7 Exercises . 331

16.8 Case study: election forecasting . 333

16.8.1 Bayesian approach . 334

16.8.2 The general bias . 335

16.8.3 Mathematical representations of models 335

16.8.4 Predicting the electoral college . 338

16.8.5 Forecasting . 342

16.9 Exercises . 345

16.10The t-distribution . 346

17 Regression 349

17.1 Case study: is height hereditary? . 349

17.2 The correlation coefficient . 350

17.2.1 Sample correlation is a random variable 352

0.0 Contents 13

17.2.2 Correlation is not always a useful summary 354

17.3 Conditional expectations . 354

17.4 The regression line . 357

17.4.1 Regression improves precision . 358

17.4.2 Bivariate normal distribution (advanced) 359

17.4.3 Variance explained . 361

17.4.4 Warning: there are two regression lines 361

17.5 Exercises . 362

18 Linear models 363

18.1 Case study: Moneyball . 363

18.1.1 Sabermetics . 364

18.1.2 Baseball basics . 365

18.1.3 No awards for BB . 366

18.1.4 Base on balls or stolen bases? . 367

18.1.5 Regression applied to baseball statistics 369

18.2 Confounding . 372

18.2.1 Understanding confounding through stratification 373

18.2.2 Multivariate regression . 376

18.3 Least squares estimates . 376

18.3.1 Interpreting linear models . 377

18.3.2 Least Squares Estimates (LSE) . 377

18.3.3 The lm function . 379

18.3.4 LSE are random variables . 380

18.3.5 Predicted values are random variables 381

18.4 Exercises . 382

18.5 Linear regression in the tidyverse . 383

18.5.1 The broom package . 386

18.6 Exercises . 387

18.7 Case study: Moneyball (continued) . 388

18.7.1 Adding salary and position information 392

18.7.2 Picking nine players . 393

18.8 The regression fallacy . 395

18.9 Measurement error models . 396

18.10Exercises . 399

www.dbooks.org

https://www.dbooks.org/

14 0 Contents

19 Association is not causation 401

19.1 Spurious correlation . 401

19.2 Outliers . 404

19.3 Reversing cause and effect . 406

19.4 Confounders . 407

19.4.1 Example: UC Berkeley admissions 407

19.4.2 Confounding explained graphically 408

19.4.3 Average after stratifying . 409

19.5 Simpson’s paradox . 410

19.6 Exercises . 411

IV Data Wrangling 413

20 Introduction to data wrangling 415

21 Reshaping data 417

21.1 gather . 417

21.2 spread . 419

21.3 separate . 419

21.4 unite . 422

21.5 Exercises . 423

22 Joining tables 425

22.1 Joins . 426

22.1.1 Left join . 427

22.1.2 Right join . 428

22.1.3 Inner join . 428

22.1.4 Full join . 428

22.1.5 Semi join . 429

22.1.6 Anti join . 429

22.2 Binding . 430

22.2.1 Binding columns . 430

22.2.2 Binding by rows . 430

22.3 Set operators . 431

22.3.1 Intersect . 431

22.3.2 Union . 432

0.0 Contents 15

22.3.3 setdiff . 432

22.3.4 setequal . 432

22.4 Exercises . 433

23 Web scraping 435

23.1 HTML . 436

23.2 The rvest package . 437

23.3 CSS selectors . 439

23.4 JSON . 440

23.5 Exercises . 441

24 String processing 443

24.1 The stringr package . 443

24.2 Case study 1: US murders data . 445

24.3 Case study 2: self-reported heights . 447

24.4 How to escape when defining strings . 449

24.5 Regular expressions . 451

24.5.1 Strings are a regexp . 451

24.5.2 Special characters . 451

24.5.3 Character classes . 453

24.5.4 Anchors . 454

24.5.5 Quantifiers . 454

24.5.6 White space \s . 455

24.5.7 Quantifiers: *, ?, + . 456

24.5.8 Not . 456

24.5.9 Groups . 457

24.6 Search and replace with regex . 458

24.6.1 Search and replace using groups . 460

24.7 Testing and improving . 461

24.8 Trimming . 463

24.9 Changing lettercase . 464

24.10Case study 2: self-reported heights (continued) 464

24.10.1 The extract function . 465

24.10.2 Putting it all together . 466

24.11String splitting . 467

www.dbooks.org

https://www.dbooks.org/

16 0 Contents

24.12Case study 3: extracting tables from a PDF 470
24.13Recoding . 473
24.14Exercises . 474

25 Parsing dates and times 477
25.1 The date data type . 477
25.2 The lubridate package . 478
25.3 Exercises . 481

26 Text mining 483
26.1 Case study: Trump tweets . 483
26.2 Text as data . 485
26.3 Sentiment analysis . 490
26.4 Exercises . 495

V Machine Learning 497

27 Introduction to machine learning 499
27.1 Notation . 499
27.2 An example . 500
27.3 Exercises . 502
27.4 Evaluation metrics . 502

27.4.1 Training and test sets . 503
27.4.2 Overall accuracy . 504
27.4.3 The confusion matrix . 506
27.4.4 Sensitivity and specificity . 507
27.4.5 Balanced accuracy and F1 score . 509
27.4.6 Prevalence matters in practice . 510
27.4.7 ROC and precision-recall curves . 511
27.4.8 The loss function . 512

27.5 Exercises . 514
27.6 Conditional probabilities and expectations 514

27.6.1 Conditional probabilities . 515
27.6.2 Conditional expectations . 516
27.6.3 Conditional expectation minimizes squared loss function 516

27.7 Exercises . 517
27.8 Case study: is it a 2 or a 7? . 517

0.0 Contents 17

28 Smoothing 521

28.1 Bin smoothing . 523

28.2 Kernels . 525

28.3 Local weighted regression (loess) . 526

28.3.1 Fitting parabolas . 530

28.3.2 Beware of default smoothing parameters 531

28.4 Connecting smoothing to machine learning 532

28.5 Exercises . 532

29 Cross validation 535

29.1 Motivation with k-nearest neighbors . 535

29.1.1 Over-training . 537

29.1.2 Over-smoothing . 538

29.1.3 Picking the k in kNN . 539

29.2 Mathematical description of cross validation 541

29.3 K-fold cross validation . 542

29.4 Exercises . 545

29.5 Bootstrap . 546

29.6 Exercises . 549

30 The caret package 551

30.1 The caret train functon . 551

30.2 Cross validation . 552

30.3 Example: fitting with loess . 554

31 Examples of algorithms 557

31.1 Linear regression . 557

31.1.1 The predict function . 558

31.2 Exercises . 559

31.3 Logistic regression . 561

31.3.1 Generalized linear models . 562

31.3.2 Logistic regression with more than one predictor 566

31.4 Exercises . 567

31.5 k-nearest neighbors . 568

31.6 Exercises . 569

31.7 Generative models . 569

www.dbooks.org

https://www.dbooks.org/

18 0 Contents

31.7.1 Naive Bayes . 570

31.7.2 Controlling prevalence . 571

31.7.3 Quadratic discriminant analysis . 573

31.7.4 Linear discriminant analysis . 575

31.7.5 Connection to distance . 577

31.8 Case study: more than three classes . 577

31.9 Exercises . 581

31.10Classification and regression trees (CART) 582

31.10.1 The curse of dimensionality . 582

31.10.2 CART motivation . 583

31.10.3 Regression trees . 586

31.10.4 Classification (decision) trees . 592

31.11Random forests . 594

31.12Exercises . 599

32 Machine learning in practice 601

32.1 Preprocessing . 602

32.2 k-nearest neighbor and random forest . 603

32.3 Variable importance . 606

32.4 Visual assessments . 607

32.5 Ensembles . 607

32.6 Exercises . 608

33 Large datasets 609

33.1 Matrix algebra . 609

33.1.1 Notation . 610

33.1.2 Converting a vector to a matrix . 612

33.1.3 Row and column summaries . 613

33.1.4 apply . 614

33.1.5 Filtering columns based on summaries 614

33.1.6 Indexing with matrices . 616

33.1.7 Binarizing the data . 618

33.1.8 Vectorization for matrices . 618

33.1.9 Matrix algebra operations . 619

33.2 Exercises . 619

0.0 Contents 19

33.3 Distance . 619

33.3.1 Euclidean distance . 620

33.3.2 Distance in higher dimensions . 620

33.3.3 Euclidean distance example . 621

33.3.4 Predictor space . 623

33.3.5 Distance between predictors . 623

33.4 Exercises . 623

33.5 Dimension reduction . 624

33.5.1 Preserving distance . 624

33.5.2 Linear transformations (advanced) 627

33.5.3 Orthogonal transformations (advanced) 628

33.5.4 Principal component analysis . 630

33.5.5 Iris example . 632

33.5.6 MNIST example . 635

33.6 Exercises . 637

33.7 Recommendation systems . 638

33.7.1 Movielens data . 638

33.7.2 Recommendation systems as a machine learning challenge 640

33.7.3 Loss function . 640

33.7.4 A first model . 641

33.7.5 Modeling movie effects . 642

33.7.6 User effects . 643

33.8 Exercises . 644

33.9 Regularization . 645

33.9.1 Motivation . 645

33.9.2 Penalized least squares . 647

33.9.3 Choosing the penalty terms . 650

33.10Exercises . 652

33.11Matrix factorization . 653

33.11.1 Factors analysis . 656

33.11.2 Connection to SVD and PCA . 658

33.12Exercises . 661

www.dbooks.org

https://www.dbooks.org/

20 0 Contents

34 Clustering 667

34.1 Hierarchical clustering . 668

34.2 k-means . 670

34.3 Heatmaps . 670

34.4 Filtering features . 671

34.5 Exercises . 672

VI Productivity Tools 673

35 Introduction to productivity tools 675

36 Organizing with Unix 677

36.1 Naming convention . 677

36.2 The terminal . 678

36.3 The filesystem . 678

36.3.1 Directories and subdirectories . 679

36.3.2 The home directory . 679

36.3.3 Working directory . 680

36.3.4 Paths . 681

36.4 Unix commands . 681

36.4.1 ls: Listing directory content . 682

36.4.2 mkdir and rmdir: make and remove a directory 682

36.4.3 cd: navigating the filesystem by changing directories 683

36.5 Some examples . 685

36.6 More Unix commands . 686

36.6.1 mv: moving files . 686

36.6.2 cp: copying files . 687

36.6.3 rm: removing files . 687

36.6.4 less: looking at a file . 688

36.7 Preparing for a data science project . 688

36.8 Advanced Unix . 689

36.8.1 Arguments . 689

36.8.2 Getting help . 690

36.8.3 Pipes . 691

36.8.4 Wild cards . 691

36.8.5 Environment variables . 692

0.0 Contents 21

36.8.6 Shells . 692

36.8.7 Executables . 693

36.8.8 Permissions and file types . 693

36.8.9 Commands you should learn . 694

36.8.10 File manipulation in R . 694

37 Git and GitHub 695

37.1 Why use Git and GitHub? . 695

37.2 GitHub accounts . 695

37.3 GitHub repositories . 698

37.4 Overview of Git . 699

37.4.1 Clone . 700

37.5 Initializing a Git directory . 704

37.6 Using Git and GitHub in RStudio . 706

38 Reproducible projects with RStudio and R markdown 711

38.1 RStudio projects . 711

38.2 R markdown . 714

38.2.1 The header . 716

38.2.2 R code chunks . 716

38.2.3 Global options . 717

38.2.4 knitR . 717

38.2.5 More on R markdown . 718

38.3 Organizing a data science project . 718

38.3.1 Create directories in Unix . 718

38.3.2 Create an RStudio project . 719

38.3.3 Edit some R scripts . 720

38.3.4 Create some more directories using Unix 721

38.3.5 Add a README file . 721

38.3.6 Initializing a Git directory . 721

www.dbooks.org

https://www.dbooks.org/

Preface

This book started out as the class notes used in the HarvardX Data Science Series1.

The link for the online version of the book is https://rafalab.github.io/dsbook/

The R markdown code used to generate the book is available on GitHub2. Note that,
the graphical theme used for plots throughout the book can be recreated using the
ds_theme_set() function from dslabs package.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0)3.

We make announcements related to the book on Twitter. For updates follow @rafalab4

1https://www.edx.org/professional-certificate/harvardx-data-science
2https://github.com/rafalab/dsbook
3https://creativecommons.org/licenses/by-nc-sa/4.0
4https://twitter.com/rafalab

23

www.dbooks.org

https://rafalab.github.io/dsbook/
https://www.edx.org/professional-certificate/harvardx-data-science
https://github.com/rafalab/dsbook
https://creativecommons.org/licenses/by-nc-sa/4.0
https://twitter.com/rafalab
https://www.dbooks.org/

Acknowledgments

This book is dedicated to all the people involved in building and maintaining R and the R
packages we use in this book. A special thanks to the developers and maintainers of R base,
the tidyverse, and the caret package.

A special thanks to my tidyverse guru David Robinson and Amy Gill for dozens of comments,
edits, and suggestions. Also, many thanks to Stephanie Hicks who twice served as a co-
instructor in my data science classes and Yihui Xie who patiently put up with my many
questions about bookdown. Thanks also to Karl Broman, from whom I borrowed ideas
for the Data Visualization and Productivity Tools parts, and to Hector Corrada-Bravo,
for advice on how to best teach machine learning. Thanks to Peter Aldhous from whom I
borrowed ideas for the principles of data visualization section and Jenny Bryan for writing
Happy Git and GitHub for the useR, which influenced our Git chapters. Thanks to Alyssa
Frazee for helping create the homework problem that became the Recommendation Systems
chapter and to Amanda Cox for providing the New York Regents exams data. Also, many
thanks to Jeff Leek, Roger Peng, and Brian Caffo, whose class inspired the way this book
is divided and to Garrett Grolemund and Hadley Wickham for making the bookdown code
for their R for Data Science book open. Finally, thanks to Alex Nones for proofreading the
manuscript during its various stages.

This book was conceived during the teaching of several applied statistics courses, starting
over fifteen years ago. The teaching assistants working with me throughout the years made
important indirect contributions to this book. The latest iteration of this course is a Har-
vardX series coordinated by Heather Sternshein and Zzofia Gajdos. We thank them for their
contributions. We are also grateful to all the students whose questions and comments helped
us improve the book. The courses were partially funded by NIH grant R25GM114818. We
are very grateful to the National Institutes of Health for its support.

A special thanks goes to all those who edited the book via GitHub pull requests
or made suggestions by creating an issue: nickyfoto (Huang Qiang), desautm (Marc-
André Désautels), michaschwab (Michail Schwab), alvarolarreategui (Alvaro Lar-
reategui), jakevc (Jake VanCampen), omerta (Guillermo Lengemann), espinielli (Enrico
Spinielli), asimumba(Aaron Simumba), braunschweig (Maldewar), gwierzchowski (Grze-
gorz Wierzchowski), technocrat (Richard Careaga), atzakas, defeit (David Emerson
Feit), shiraamitchell (Shira Mitchell), Nathalie-S, andreashandel (Andreas Handel),
berkowitze (Elias Berkowitz), Dean-Webb (Dean Webber), mohayusuf, jimrothstein,
mPloenzke (Matthew Ploenzke), and David D. Kane.

25

www.dbooks.org

https://www.dbooks.org/

Introduction

The demand for skilled data science practitioners in industry, academia, and government is
rapidly growing. This book introduces concepts and skills that can help you tackle real-world
data analysis challenges. It covers concepts from probability, statistical inference, linear re-
gression, and machine learning. It also helps you develop skills such as R programming, data
wrangling with dplyr, data visualization with ggplot2, algorithm building with caret, file
organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible
document preparation with knitr and R markdown. The book is divided into six parts: R,
Data Visualization, Data Wrangling, Statistics with R, Machine Learning, and
Productivity Tools. Each part has several chapters meant to be presented as one lecture
and includes dozens of exercises distributed across chapters.

Case studies

Throughout the book, we use motivating case studies. In each case study, we try to real-
istically mimic a data scientist’s experience. For each of the concepts covered, we start by
asking specific questions and answer these through data analysis. We learn the concepts as
a means to answer the questions. Examples of the case studies included in the book are:

Case Study Concept
US murder rates by state R Basics
Student heights Statistical Summaries
Trends in world health and economics Data Visualization
The impact of vaccines on infectious disease rates Data Visualization
The financial crisis of 2007-2008 Probability
Election forecasting Statistical Inference
Reported student heights Data Wrangling
Money Ball: Building a baseball team Linear Regression
MNIST: Image processing hand-written digits Machine Learning
Movie recommendation systems Machine Learning

27

www.dbooks.org

https://www.dbooks.org/

28 0 Introduction

Who will find this book useful?

This book is meant to be a textbook for a first course in Data Science. No previous knowl-
edge of R is necessary, although some experience with programming may be helpful. The
statistical concepts used to answer the case study questions are only briefly introduced, so
a Probability and Statistics textbook is highly recommended for in-depth understanding of
these concepts. If you read and understand all the chapters and complete all the exercises,
you will be well-positioned to perform basic data analysis tasks and you will be prepared to
learn the more advanced concepts and skills needed to become an expert.

What does this book cover?

We start by going over the basics of R and the tidyverse. You learn R throughout the
book, but in the first part we go over the building blocks needed to keep learning.

The growing availability of informative datasets and software tools has led to increased
reliance on data visualizations in many fields. In the second part we demonstrate how to
use ggplot2 to generate graphs and describe important data visualization principles.

In the third part we demonstrate the importance of statistics in data analysis by answering
case study questions using probability, inference, and regression with R.

The fourth part uses several examples to familiarize the reader with data wrangling.
Among the specific skills we learn are web scrapping, using regular expressions, and joining
and reshaping data tables. We do this using tidyverse tools.

In the fifth part we present several challenges that lead us to introduce machine learn-
ing. We learn to use the caret package to build prediction algorithms including K-nearest
neighbors and random forests.

In the final part, we provide a brief introduction to the productivity tools we use on a
day-to-day basis in data science projects. These are RStudio, UNIX/Linux shell, Git and
GitHub, and knitr and R Markdown.

What is not covered by this book?

This book focuses on the data analysis aspects of data science. We therefore do not cover
aspects related to data management or engineering. Although R programming is an essential
part of the book, we do not teach more advanced computer science topics such as data
structures, optimization, and algorithm theory. Similarly, we do not cover topics such as
web services, interactive graphics, parallel computing, and data streaming processing. The
statistical concepts are presented mainly as tools to solve problems and in-depth theoretical
descriptions are not included in this book.

1
Getting started with R and RStudio

1.1 Why R?

R is not a programming language like C or Java. It was not created by software engineers
for software development. Instead, it was developed by statisticians as an interactive envi-
ronment for data analysis. You can read the full history in the paper A Brief History of
S1. The interactivity is an indispensable feature in data science because, as you will soon
learn, the ability to quickly explore data is a necessity for success in this field. However,
like in other programming languages, you can save your work as scripts that can be easily
executed at any moment. These scripts serve as a record of the analysis you performed, a
key feature that facilitates reproducible work. If you are an expert programmer, you should
not expect R to follow the conventions you are used to since you will be disappointed. If
you are patient, you will come to appreciate the unequal power of R when it comes to data
analysis and, specifically, data visualization.
Other attractive features of R are:

1. R is free and open source2.
2. It runs on all major platforms: Windows, Mac Os, UNIX/Linux.
3. Scripts and data objects can be shared seamlessly across platforms.
4. There is a large, growing, and active community of R users and, as a result, there

are numerous resources for learning and asking questions3 4 5.
5. It is easy for others to contribute add-ons which enables developers to share

software implementations of new data science methodologies. This gives R users
early access to the latest methods and to tools which are developed for a wide
variety of disciplines, including ecology, molecular biology, social sciences, and
geography, just to name a few examples.

1.2 The R console

Interactive data analysis usually occurs on the R console that executes commands as you
type them. There are several ways to gain access to an R console. One way is to simply start
R on your computer. The console looks something like this:

1https://pdfs.semanticscholar.org/9b48/46f192aa37ca122cfabb1ed1b59866d8bfda.pdf
2https://opensource.org/history
3https://stats.stackexchange.com/questions/138/free-resources-for-learning-r
4https://www.r-project.org/help.html
5https://stackoverflow.com/documentation/r/topics

29

www.dbooks.org

https://pdfs.semanticscholar.org/9b48/46f192aa37ca122cfabb1ed1b59866d8bfda.pdf
https://opensource.org/history
https://stats.stackexchange.com/questions/138/free-resources-for-learning-r
https://www.r-project.org/help.html
https://stackoverflow.com/documentation/r/topics
https://www.dbooks.org/

30 1 Getting started with R and RStudio

As a quick example, try using the console to calculate a 15% tip on a meal that cost $19.71:

0.15 * 19.71
#> [1] 2.96

Note that in this book, grey boxes are used to show R code typed into the R
console. The symbol #> is used to denote what the R console outputs.

1.3 Scripts

One of the great advantages of R over point-and-click analysis software is that you can save
your work as scripts. You can edit and save these scripts using a text editor. The material
in this book was developed using the interactive integrated development environment (IDE)
RStudio6. RStudio includes an editor with many R specific features, a console to execute
your code, and other useful panes, including one to show figures.

6https://www.rstudio.com/

https://www.rstudio.com/

1.4 RStudio 31

Most web-based R consoles also provide a pane to edit scripts, but not all permit you to
save the scripts for later use.

All the R scripts used to generate this book can be found on GitHub7.

1.4 RStudio

RStudio will be our launching pad for data science projects. It not only provides an editor
for us to create and edit our scripts but also provides many other useful tools. In this section,
we go over some of the basics.

1.4.1 The panes

When you start RStudio for the first time, you will see three panes. The left pane shows the
R console. On the right, the top pane includes tabs such as Environment and History, while
the bottom pane shows five tabs: File, Plots, Packages, Help, and Viewer (these tabs may
change in new versions). You can click on each tab to move across the different features.

7https://github.com/rafalab/dsbook

www.dbooks.org

https://github.com/rafalab/dsbook
https://www.dbooks.org/

32 1 Getting started with R and RStudio

To start a new script, you can click on File, the New File, then R Script.

This starts a new pane on the left and it is here where you can start writing your script.

1.4 RStudio 33

1.4.2 Key bindings

Many tasks we perform with the mouse can be achieved with a combination of key strokes
instead. These keyboard versions for performing tasks are referred to as key bindings. For
example, we just showed how to use the mouse to start a new script, but you can also use
a key binding: Ctrl+Shift+N on Windows and command+shift+N on the Mac.

Although in this tutorial we often show how to use the mouse, we highly recommend that
you memorize key bindings for the operations you use most. RStudio provides a
useful cheat sheet with the most widely used commands. You can get it from RStudio
directly:

www.dbooks.org

https://www.dbooks.org/

34 1 Getting started with R and RStudio

You might want to keep this handy so you can look up key-bindings when you find yourself
performing repetitive point-and-clicking.

1.4.3 Running commands while editing scripts

There are many editors specifically made for coding. These are useful because color and
indentation are automatically added to make code more readable. RStudio is one of these
editors, and it was specifically developed for R. One of the main advantages provided by
RStudio over other editors is that we can test our code easily as we edit our scripts. Below
we show an example.

Let’s start by opening a new script as we did before. A next step is to give the script a
name. We can do this through the editor by saving the current new unnamed script. To do
this, click on the save icon or use the key binding Ctrl+S on Windows and command+S on
the Mac.

When you ask for the document to be saved for the first time, RStudio will prompt you for
a name. A good convention is to use a descriptive name, with lower case letters, no spaces,
only hyphens to separate words, and then followed by the suffix .R. We will call this script
my-first-script.R.

Now we are ready to start editing our first script. The first lines of code in an R script are
dedicated to loading the libraries we will use. Another useful RStudio feature is that once we
type library() it starts auto-completing with libraries that we have installed. Note what
happens when we type library(ti):

1.4 RStudio 35

Another feature you may have noticed is that when you type library(the second paren-
thesis is automatically added. This will help you avoid one of the most common errors in
coding: forgetting to close a parenthesis.
Now we can continue to write code. As an example, we will make a graph showing murder
totals versus population totals by state. Once you are done writing the code needed to make
this plot, you can try it out by executing the code. To do this, click on the Run button on
the upper right side of the editing pane. You can also use the key binding: Ctrl+Shift+Enter
on Windows or command+shift+return on the Mac.
Once you run the code, you will see it appear in the R console and, in this case, the
generated plot appears in the plots console. Note that the plot console has a useful interface
that permits you to click back and forward across different plots, zoom in to the plot, or
save the plots as files.

www.dbooks.org

https://www.dbooks.org/

36 1 Getting started with R and RStudio

To run one line at a time instead of the entire script, you can use Control-Enter on Windows
and command-return on the Mac.

1.4.4 Changing global options

You can change the look and functionality of RStudio quite a bit.

To change the global options you click on Tools then Global Options….

As an example we show how to make a change that we highly recommend. This is to
change the Save workspace to .RData on exit to Never and uncheck the Restore .RData into
workspace at start. By default, when you exit R saves all the objects you have created into
a file called .RData. This is done so that when you restart the session in the same folder,
it will load these objects. We find that this causes confusion especially when we share code
with colleagues and assume they have this .RData file. To change these options, make your
General settings look like this:

1.5 Installing R packages

The functionality provided by a fresh install of R is only a small fraction of what is possible.
In fact, we refer to what you get after your first install as base R. The extra functionality

1.5 Installing R packages 37

comes from add-ons available from developers. There are currently hundreds of these avail-
able from CRAN and many others shared via other repositories such as GitHub. However,
because not everybody needs all available functionality, R instead makes different compo-
nents available via packages. R makes it very easy to install packages from within R. For
example, to install the dslabs package, which we use to share datasets and code related to
this book, you would type:

install.packages("dslabs")

In RStudio, you can navigate to the Tools tab and select install packages. We can then load
the package into our R sessions using the library function:

library(dslabs)

As you go through this book, you will see that we load packages without installing them.
This is because once you install a package, it remains installed and only needs to be loaded
with library. The package remains loaded until we quit the R session. If you try to load a
package and get an error, it probably means you need to install it first.

We can install more than one package at once by feeding a character vector to this function:

install.packages(c("tidyverse", "dslabs"))

Note that installing tidyverse actually installs several packages. This commonly occurs
when a package has dependencies, or uses functions from other packages. When you load a
package using library, you also load its dependencies.

Once packages are installed, you can load them into R and you do not need to install them
again, unless you install a fresh version of R. Remember packages are installed in R not
RStudio.

It is helpful to keep a list of all the packages you need for your work in a script because
if you need to perform a fresh install of R, you can re-install all your packages by simply
running a script.

You can see all the packages you have installed using the following function:

installed.packages()

www.dbooks.org

https://www.dbooks.org/

Part I

R

www.dbooks.org

https://www.dbooks.org/

2
R basics

In this book, we will be using the R software environment for all our analysis. You will learn
R and data analysis techniques simultaneously. To follow along you will therefore need access
to R. We also recommend the use of an integrated development environment (IDE), such as
RStudio, to save your work. Note that it is common for a course or workshop to offer access
to an R environment and an IDE through your web browser, as done by RStudio cloud1.
If you have access to such a resource, you don’t need to install R and RStudio. However,
if you intend on becoming an advanced data analyst, we highly recommend installing these
tools on your computer2. Both R and RStudio are free and available online.

2.1 Case study: US Gun Murders

Imagine you live in Europe and are offered a job in a US company with many locations
across all states. It is a great job, but news with headlines such as US Gun Homicide
Rate Higher Than Other Developed Countries3 have you worried. Charts like this
may concern you even more:

3.2

0.71 0.5
0.1 00.2 0.1 No Data

Source UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide StatisticsSource UNODC Homicide Statistics

0

1

2

3

4

US ITALY CANADA GERMANY FRANCE UK JAPAN RUSSIA

of

 g
un

−
re

la
te

d
ho

m
ic

id
es

pe
r

10
0,

00
0

pe
op

le

HOMICIDE PER 100,000 IN G−8 COUNTRIES

Or even worse, this version from everytown.org:

1https://rstudio.cloud
2https://rafalab.github.io/dsbook/installing-r-rstudio.html
3http://abcnews.go.com/blogs/headlines/2012/12/us-gun-ownership-homicide-rate-higher-than-other-

developed-countries/

41

www.dbooks.org

https://everytownresearch.org
https://rstudio.cloud
https://rafalab.github.io/dsbook/installing-r-rstudio.html
http://abcnews.go.com/blogs/headlines/2012/12/us-gun-ownership-homicide-rate-higher-than-other-developed-countries/
http://abcnews.go.com/blogs/headlines/2012/12/us-gun-ownership-homicide-rate-higher-than-other-developed-countries/
https://www.dbooks.org/

42 2 R basics

3.61
0.5

0.48

0.35
0.35

0.33
0.26

0.2
0.2

0.2
0.19
0.19
0.18
0.16
0.16
0.15
0.12
0.1

0.06
0.04
0.04

0.01
0.01

JAPAN
REPUBLIC OF KOREA

NORWAY
UNITED KINGDOM

GERMANY
HUNGARY

CZECH REPUBLIC
SPAIN

AUSTRALIA
NEW ZEALAND

AUSTRIA
SLOVAKIA
SWEDEN

DENMARK
FRANCE

NETHERLANDS
FINLAND
BELGIUM
IRELAND

ITALY
PORTUGAL

CANADA
UNITED STATES

GUN HOMICIDES PER 100,000 RESIDENTS

But then you remember that the US is a large and diverse country with 50 very different
states as well as the District of Columbia (DC).

California, for example, has a larger population than Canada, and 20 US states have popu-
lations larger than that of Norway. In some respects, the variability across states in the US
is akin to the variability across countries in Europe. Furthermore, although not included in
the charts above, the murder rates in Lithuania, Ukraine, and Russia are higher than 4 per
100,000. So perhaps the news reports that worried you are too superficial. You have options
of where to live and want to determine the safety of each particular state. We will gain some
insights by examining data related to gun homicides in the US during 2010 using R.

Before we get started with our example, we need to cover logistics as well as some of the
very basic building blocks that are required to gain more advanced R skills. Be aware that
the usefulness of some of these building blocks may not be immediately obvious, but later
in the book you will appreciate having mastered these skills.

2.2 The very basics 43

2.2 The very basics

Before we get started with the motivating dataset, we need to cover the very basics of R.

2.2.1 Objects

Suppose a high school student asks us for help solving several quadratic equations of the
form ax2 + bx + c = 0. The quadratic formula gives us the solutions:

−b −
√

b2 − 4ac

2a
and −b +

√
b2 − 4ac

2a

which of course change depending on the values of a, b, and c. One advantage of programming
languages is that we can define variables and write expressions with these variables, similar
to how we do so in math, but obtain a numeric solution. We will write out general code for
the quadratic equation below, but if we are asked to solve x2 + x − 1 = 0, then we define:

a <- 1
b <- 1
c <- -1

which stores the values for later use. We use <- to assign values to the variables.

We can also assign values using = instead of <-, but we recommend against using = to avoid
confusion.

Copy and paste the code above into your console to define the three variables. Note that R
does not print anything when we make this assignment. This means the objects were defined
successfully. Had you made a mistake, you would have received an error message.

To see the value stored in a variable, we simply ask R to evaluate a and it shows the stored
value:

a
#> [1] 1

A more explicit way to ask R to show us the value stored in a is using print like this:

print(a)
#> [1] 1

We use the term object to describe stuff that is stored in R. Variables are examples, but
objects can also be more complicated entities such as functions, which are described later.

2.2.2 The workspace

As we define objects in the console, we are actually changing the workspace. You can see all
the variables saved in your workspace by typing:

www.dbooks.org

https://www.dbooks.org/

44 2 R basics

ls()
#> [1] "a" "b" "c" "dat" "img_path" "murders"

In RStudio, the Environment tab shows the values:

We should see a, b, and c. If you try to recover the value of a variable that is not in your
workspace, you receive an error. For example, if you type x you will receive the following
message: Error: object 'x' not found.

Now since these values are saved in variables, to obtain a solution to our equation, we use
the quadratic formula:

(-b + sqrt(b^2 - 4*a*c)) / (2*a)
#> [1] 0.618
(-b - sqrt(b^2 - 4*a*c)) / (2*a)
#> [1] -1.62

2.2.3 Functions

Once you define variables, the data analysis process can usually be described as a series
of functions applied to the data. R includes several predefined functions and most of the
analysis pipelines we construct make extensive use of these.

We already used the install.packages, library, and ls functions. We also used the func-
tion sqrt to solve the quadratic equation above. There are many more prebuilt functions and
even more can be added through packages. These functions do not appear in the workspace
because you did not define them, but they are available for immediate use.

In general, we need to use parentheses to evaluate a function. If you type ls, the function is
not evaluated and instead R shows you the code that defines the function. If you type ls()
the function is evaluated and, as seen above, we see objects in the workspace.

Unlike ls, most functions require one or more arguments. Below is an example of how we
assign an object to the argument of the function log. Remember that we earlier defined a
to be 1:

2.2 The very basics 45

log(8)
#> [1] 2.08
log(a)
#> [1] 0

You can find out what the function expects and what it does by reviewing the very useful
manuals included in R. You can get help by using the help function like this:

help("log")

For most functions, we can also use this shorthand:

?log

The help page will show you what arguments the function is expecting. For example, log
needs x and base to run. However, some arguments are required and others are optional.
You can determine which arguments are optional by noting in the help document that a
default value is assigned with =. Defining these is optional. For example, the base of the
function log defaults to base = exp(1) making log the natural log by default.

If you want a quick look at the arguments without opening the help system, you can type:

args(log)
#> function (x, base = exp(1))
#> NULL

You can change the default values by simply assigning another object:

log(8, base = 2)
#> [1] 3

Note that we have not been specifying the argument x as such:

log(x = 8, base = 2)
#> [1] 3

The above code works, but we can save ourselves some typing: if no argument name is used,
R assumes you are entering arguments in the order shown in the help file or by args. So by
not using the names, it assumes the arguments are x followed by base:

log(8,2)
#> [1] 3

If using the arguments’ names, then we can include them in whatever order we want:

log(base = 2, x = 8)
#> [1] 3

www.dbooks.org

https://www.dbooks.org/

46 2 R basics

To specify arguments, we must use =, and cannot use <-.

There are some exceptions to the rule that functions need the parentheses to be evaluated.
Among these, the most commonly used are the arithmetic and relational operators. For
example:

2 ^ 3
#> [1] 8

You can see the arithmetic operators by typing:

help("+")

or

?"+"

and the relational operators by typing:

help(">")

or

?">"

2.2.4 Other prebuilt objects

There are several datasets that are included for users to practice and test out functions.
You can see all the available datasets by typing:

data()

This shows you the object name for these datasets. These datasets are objects that can be
used by simply typing the name. For example, if you type:

co2

R will show you Mauna Loa atmospheric CO2 concentration data.

Other prebuilt objects are mathematical quantities, such as the constant π and ∞:

pi
#> [1] 3.14
Inf+1
#> [1] Inf

2.2 The very basics 47

2.2.5 Variable names

We have used the letters a, b, and c as variable names, but variable names can be almost
anything. Some basic rules in R are that variable names have to start with a letter, can’t
contain spaces, and should not be variables that are predefined in R. For example, don’t
name one of your variables install.packages by typing something like install.packages
<- 2.

A nice convention to follow is to use meaningful words that describe what is stored, use only
lower case, and use underscores as a substitute for spaces. For the quadratic equations, we
could use something like this:

solution_1 <- (-b + sqrt(b^2 - 4*a*c)) / (2*a)
solution_2 <- (-b - sqrt(b^2 - 4*a*c)) / (2*a)

For more advice, we highly recommend studying Hadley Wickham’s style guide4.

2.2.6 Saving your workspace

Values remain in the workspace until you end your session or erase them with the function
rm. But workspaces also can be saved for later use. In fact, when you quit R, the program
asks you if you want to save your workspace. If you do save it, the next time you start R,
the program will restore the workspace.

We actually recommend against saving the workspace this way because, as you start working
on different projects, it will become harder to keep track of what is saved. Instead, we recom-
mend you assign the workspace a specific name. You can do this by using the function save
or save.image. To load, use the function load. When saving a workspace, we recommend
the suffix rda or RData. In RStudio, you can also do this by navigating to the Session tab
and choosing Save Workspace as. You can later load it using the Load Workspace options in
the same tab. You can read the help pages on save, save.image, and load to learn more.

2.2.7 Motivating scripts

To solve another equation such as 3x2 + 2x − 1, we can copy and paste the code above and
then redefine the variables and recompute the solution:

a <- 3
b <- 2
c <- -1
(-b + sqrt(b^2 - 4*a*c)) / (2*a)
(-b - sqrt(b^2 - 4*a*c)) / (2*a)

By creating and saving a script with the code above, we would not need to retype everything
each time and, instead, simply change the variable names. Try writing the script above into
an editor and notice how easy it is to change the variables and receive an answer.

4http://adv-r.had.co.nz/Style.html

www.dbooks.org

http://adv-r.had.co.nz/Style.html
https://www.dbooks.org/

48 2 R basics

2.2.8 Commenting your code

If a line of R code starts with the symbol #, it is not evaluated. We can use this to write
reminders of why we wrote particular code. For example, in the script above we could add:

Code to compute solution to quadratic equation of the form ax^2 + bx + c
define the variables
a <- 3
b <- 2
c <- -1

now compute the solution
(-b + sqrt(b^2 - 4*a*c)) / (2*a)
(-b - sqrt(b^2 - 4*a*c)) / (2*a)

2.3 Exercises

1. What is the sum of the first 100 positive integers? The formula for the sum of integers 1
through n is n(n + 1)/2. Define n = 100 and then use R to compute the sum of 1 through
100 using the formula. What is the sum?

2. Now use the same formula to compute the sum of the integers from 1 through 1,000.

3. Look at the result of typing the following code into R:

n <- 1000
x <- seq(1, n)
sum(x)

Based on the result, what do you think the functions seq and sum do? You can use help.

a. sum creates a list of numbers and seq adds them up.
b. seq creates a list of numbers and sum adds them up.
c. seq creates a random list and sum computes the sum of 1 through 1,000.
d. sum always returns the same number.

4. In math and programming, we say that we evaluate a function when we replace the
argument with a given number. So if we type sqrt(4), we evaluate the sqrt function. In
R, you can evaluate a function inside another function. The evaluations happen from the
inside out. Use one line of code to compute the log, in base 10, of the square root of 100.

5. Which of the following will always return the numeric value stored in x? You can try out
examples and use the help system if you want.

a. log(10^x)
b. log10(x^10)
c. log(exp(x))
d. exp(log(x, base = 2))

2.4 Data types 49

2.4 Data types

Variables in R can be of different types. For example, we need to distinguish numbers from
character strings and tables from simple lists of numbers. The function class helps us
determine what type of object we have:

a <- 2
class(a)
#> [1] "numeric"

To work efficiently in R, it is important to learn the different types of variables and what
we can do with these.

2.4.1 Data frames

Up to now, the variables we have defined are just one number. This is not very useful
for storing data. The most common way of storing a dataset in R is in a data frame.
Conceptually, we can think of a data frame as a table with rows representing observations
and the different variables reported for each observation defining the columns. Data frames
are particularly useful for datasets because we can combine different data types into one
object.
A large proportion of data analysis challenges start with data stored in a data frame. For
example, we stored the data for our motivating example in a data frame. You can access
this dataset by loading the dslabs library and loading the murders dataset using the data
function:

library(dslabs)
data(murders)

To see that this is in fact a data frame, we type:

class(murders)
#> [1] "data.frame"

2.4.2 Examining an object

The function str is useful for finding out more about the structure of an object:

str(murders)
#> 'data.frame': 51 obs. of 5 variables:
#> $ state : chr "Alabama" "Alaska" "Arizona" "Arkansas" ...
#> $ abb : chr "AL" "AK" "AZ" "AR" ...
#> $ region : Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2
#> 2 ...
#> $ population: num 4779736 710231 6392017 2915918 37253956 ...
#> $ total : num 135 19 232 93 1257 ...

www.dbooks.org

https://www.dbooks.org/

50 2 R basics

This tells us much more about the object. We see that the table has 51 rows (50 states plus
DC) and five variables. We can show the first six lines using the function head:

head(murders)
#> state abb region population total
#> 1 Alabama AL South 4779736 135
#> 2 Alaska AK West 710231 19
#> 3 Arizona AZ West 6392017 232
#> 4 Arkansas AR South 2915918 93
#> 5 California CA West 37253956 1257
#> 6 Colorado CO West 5029196 65

In this dataset, each state is considered an observation and five variables are reported for
each state.

Before we go any further in answering our original question about different states, let’s learn
more about the components of this object.

2.4.3 The accessor: $

For our analysis, we will need to access the different variables represented by columns in-
cluded in this data frame. To do this, we use the accessor operator $ in the following way:

murders$population
#> [1] 4779736 710231 6392017 2915918 37253956 5029196 3574097
#> [8] 897934 601723 19687653 9920000 1360301 1567582 12830632
#> [15] 6483802 3046355 2853118 4339367 4533372 1328361 5773552
#> [22] 6547629 9883640 5303925 2967297 5988927 989415 1826341
#> [29] 2700551 1316470 8791894 2059179 19378102 9535483 672591
#> [36] 11536504 3751351 3831074 12702379 1052567 4625364 814180
#> [43] 6346105 25145561 2763885 625741 8001024 6724540 1852994
#> [50] 5686986 563626

But how did we know to use population? Previously, by applying the function str to the
object murders, we revealed the names for each of the five variables stored in this table. We
can quickly access the variable names using:

names(murders)
#> [1] "state" "abb" "region" "population" "total"

It is important to know that the order of the entries in murders$population preserves the
order of the rows in our data table. This will later permit us to manipulate one variable
based on the results of another. For example, we will be able to order the state names by
the number of murders.

Tip: R comes with a very nice auto-complete functionality that saves us the trouble of
typing out all the names. Try typing murders$p then hitting the tab key on your keyboard.
This functionality and many other useful auto-complete features are available when working
in RStudio.

2.4 Data types 51

2.4.4 Vectors: numerics, characters, and logical

The object murders$population is not one number but several. We call these types of
objects vectors. A single number is technically a vector of length 1, but in general we use
the term vectors to refer to objects with several entries. The function length tells you how
many entries are in the vector:

pop <- murders$population
length(pop)
#> [1] 51

This particular vector is numeric since population sizes are numbers:

class(pop)
#> [1] "numeric"

In a numeric vector, every entry must be a number.

To store character strings, vectors can also be of class character. For example, the state
names are characters:

class(murders$state)
#> [1] "character"

As with numeric vectors, all entries in a character vector need to be a character.

Another important type of vectors are logical vectors. These must be either TRUE or FALSE.

z <- 3 == 2
z
#> [1] FALSE
class(z)
#> [1] "logical"

Here the == is a relational operator asking if 3 is equal to 2. In R, if you just use one =, you
actually assign a variable, but if you use two == you test for equality.

You can see the other relational operators by typing:

?Comparison

In future sections, you will see how useful relational operators can be.

We discuss more important features of vectors after the next set of exercises.

Advanced: Mathematically, the values in pop are integers and there is an integer class
in R. However, by default, numbers are assigned class numeric even when they are round
integers. For example, class(1) returns numeric. You can turn them into class integer
with the as.integer() function or by adding an L like this: 1L. Note the class by typing:
class(1L)

www.dbooks.org

https://www.dbooks.org/

52 2 R basics

2.4.5 Factors

In the murders dataset, we might expect the region to also be a character vector. However,
it is not:

class(murders$region)
#> [1] "factor"

It is a factor. Factors are useful for storing categorical data. We can see that there are only
4 regions by using the levels function:

levels(murders$region)
#> [1] "Northeast" "South" "North Central" "West"

In the background, R stores these levels as integers and keeps a map to keep track of the
labels. This is more memory efficient than storing all the characters.

Note that the levels have an order that is different from the order of appearance in the
factor object. The default is for the levels to follow alphabetical order. However, often we
want the levels to follow a different order. We will see several examples of this in the Data
Visualization part of the book. The function reorder lets us change the order of the levels of
a factor variable based on a summary computed on a numeric vector. We will demonstrate
this with a simple example.

Suppose we want the levels of the region by the total number of murders rather than
alphabetical order. If there are values associated with each level, we can use the reorder
and specify a data summary to determine the order. The following code takes the sum of
the total murders in each region, and reorders the factor following these sums.

region <- murders$region
value <- murders$total
region <- reorder(region, value, FUN = sum)
levels(region)
#> [1] "Northeast" "North Central" "West" "South"

The new order is in agreement with the fact that the Northeast has the least murders and
the South has the most.

Warning: Factors can be a source of confusion since sometimes they behave like characters
and sometimes they do not. As a result, confusing factors and characters are a common
source of bugs.

2.4.6 Lists

Data frames are a special case of lists. We will cover lists in more detail later, but know
that they are useful because you can store any combination of different types. Below is an
example of a list we created for you:

2.4 Data types 53

record
#> $name
#> [1] "John Doe"
#>
#> $student_id
#> [1] 1234
#>
#> $grades
#> [1] 95 82 91 97 93
#>
#> $final_grade
#> [1] "A"
class(record)
#> [1] "list"

As with data frames, you can extract the components of a list with the accessor $. In fact,
data frames are a type of list.

record$student_id
#> [1] 1234

We can also use double square brackets ([[) like this:

record[["student_id"]]
#> [1] 1234

You should get used to the fact that in R, there are often several ways to do the same thing,
such as accessing entries.

You might also encounter lists without variable names.

record2
#> [[1]]
#> [1] "John Doe"
#>
#> [[2]]
#> [1] 1234

If a list does not have names, you cannot extract the elements with $, but you can still use
the brackets method and instead of providing the variable name, you provide the list index,
like this:

record2[[1]]
#> [1] "John Doe"

We won’t be using lists until later, but you might encounter one in your own exploration of
R. For this reason, we show you some basics here.

www.dbooks.org

https://www.dbooks.org/

54 2 R basics

2.4.7 Matrices

Matrices are another type of object that are common in R. Matrices are similar to data
frames in that they are two-dimensional: they have rows and columns. However, like numeric,
character and logical vectors, entries in matrices have to be all the same type. For this reason
data frames are much more useful for storing data, since we can have characters, factors,
and numbers in them.

Yet matrices have a major advantage over data frames: we can perform matrix algebra
operations, a powerful type of mathematical technique. We do not describe these operations
in this book, but much of what happens in the background when you perform a data analysis
involves matrices. We cover matrices in more detail in Chapter 33.1 but describe them briefly
here since some of the functions we will learn return matrices.

We can define a matrix using the matrix function. We need to specify the number of rows
and columns.

mat <- matrix(1:12, 4, 3)
mat
#> [,1] [,2] [,3]
#> [1,] 1 5 9
#> [2,] 2 6 10
#> [3,] 3 7 11
#> [4,] 4 8 12

You can access specific entries in a matrix using square brackets ([). If you want the second
row, third column, you use:

mat[2, 3]
#> [1] 10

If you want the entire second row, you leave the column spot empty:

mat[2,]
#> [1] 2 6 10

Notice that this returns a vector, not a matrix.

Similarly, if you want the entire third column, you leave the row spot empty:

mat[, 3]
#> [1] 9 10 11 12

This is also a vector, not a matrix.

You can access more than one column or more than one row if you like. This will give you
a new matrix.

mat[, 2:3]
#> [,1] [,2]
#> [1,] 5 9

2.5 Exercises 55

#> [2,] 6 10
#> [3,] 7 11
#> [4,] 8 12

You can subset both rows and columns:

mat[1:2, 2:3]
#> [,1] [,2]
#> [1,] 5 9
#> [2,] 6 10

We can convert matrices into data frames using the function as.data.frame:

as.data.frame(mat)
#> V1 V2 V3
#> 1 1 5 9
#> 2 2 6 10
#> 3 3 7 11
#> 4 4 8 12

You can also use single square brackets ([) to access rows and columns of a data frame:

data("murders")
murders[25, 1]
#> [1] "Mississippi"
murders[2:3,]
#> state abb region population total
#> 2 Alaska AK West 710231 19
#> 3 Arizona AZ West 6392017 232

2.5 Exercises

1. Load the US murders dataset.

library(dslabs)
data(murders)

Use the function str to examine the structure of the murders object. Which of the following
best describes the variables represented in this data frame?

a. The 51 states.
b. The murder rates for all 50 states and DC.
c. The state name, the abbreviation of the state name, the state’s region, and the

state’s population and total number of murders for 2010.
d. str shows no relevant information.

www.dbooks.org

https://www.dbooks.org/

56 2 R basics

2. What are the column names used by the data frame for these five variables?

3. Use the accessor $ to extract the state abbreviations and assign them to the object a.
What is the class of this object?

4. Now use the square brackets to extract the state abbreviations and assign them to the
object b. Use the identical function to determine if a and b are the same.

5. We saw that the region column stores a factor. You can corroborate this by typing:

class(murders$region)

With one line of code, use the function levels and length to determine the number of
regions defined by this dataset.

6. The function table takes a vector and returns the frequency of each element. You can
quickly see how many states are in each region by applying this function. Use this function
in one line of code to create a table of states per region.

2.6 Vectors

In R, the most basic objects available to store data are vectors. As we have seen, complex
datasets can usually be broken down into components that are vectors. For example, in a
data frame, each column is a vector. Here we learn more about this important class.

2.6.1 Creating vectors

We can create vectors using the function c, which stands for concatenate. We use c to
concatenate entries in the following way:

codes <- c(380, 124, 818)
codes
#> [1] 380 124 818

We can also create character vectors. We use the quotes to denote that the entries are
characters rather than variable names.

country <- c("italy", "canada", "egypt")

In R you can also use single quotes:

country <- c('italy', 'canada', 'egypt')

But be careful not to confuse the single quote ’ with the back quote ‘.

By now you should know that if you type:

2.6 Vectors 57

country <- c(italy, canada, egypt)

you receive an error because the variables italy, canada, and egypt are not defined. If we
do not use the quotes, R looks for variables with those names and returns an error.

2.6.2 Names

Sometimes it is useful to name the entries of a vector. For example, when defining a vector
of country codes, we can use the names to connect the two:

codes <- c(italy = 380, canada = 124, egypt = 818)
codes
#> italy canada egypt
#> 380 124 818

The object codes continues to be a numeric vector:

class(codes)
#> [1] "numeric"

but with names:

names(codes)
#> [1] "italy" "canada" "egypt"

If the use of strings without quotes looks confusing, know that you can use the quotes as
well:

codes <- c("italy" = 380, "canada" = 124, "egypt" = 818)
codes
#> italy canada egypt
#> 380 124 818

There is no difference between this function call and the previous one. This is one of the
many ways in which R is quirky compared to other languages.

We can also assign names using the names functions:

codes <- c(380, 124, 818)
country <- c("italy","canada","egypt")
names(codes) <- country
codes
#> italy canada egypt
#> 380 124 818

www.dbooks.org

https://www.dbooks.org/

58 2 R basics

2.6.3 Sequences

Another useful function for creating vectors generates sequences:

seq(1, 10)
#> [1] 1 2 3 4 5 6 7 8 9 10

The first argument defines the start, and the second defines the end which is included. The
default is to go up in increments of 1, but a third argument lets us tell it how much to jump
by:

seq(1, 10, 2)
#> [1] 1 3 5 7 9

If we want consecutive integers, we can use the following shorthand:

1:10
#> [1] 1 2 3 4 5 6 7 8 9 10

When we use these functions, R produces integers, not numerics, because they are typically
used to index something:

class(1:10)
#> [1] "integer"

However, if we create a sequence including non-integers, the class changes:

class(seq(1, 10, 0.5))
#> [1] "numeric"

2.6.4 Subsetting

We use square brackets to access specific elements of a vector. For the vector codes we
defined above, we can access the second element using:

codes[2]
#> canada
#> 124

You can get more than one entry by using a multi-entry vector as an index:

codes[c(1,3)]
#> italy egypt
#> 380 818

The sequences defined above are particularly useful if we want to access, say, the first two
elements:

2.7 Coercion 59

codes[1:2]
#> italy canada
#> 380 124

If the elements have names, we can also access the entries using these names. Below are two
examples.

codes["canada"]
#> canada
#> 124
codes[c("egypt","italy")]
#> egypt italy
#> 818 380

2.7 Coercion

In general, coercion is an attempt by R to be flexible with data types. When an entry does
not match the expected, some of the prebuilt R functions try to guess what was meant
before throwing an error. This can also lead to confusion. Failing to understand coercion
can drive programmers crazy when attempting to code in R since it behaves quite differently
from most other languages in this regard. Let’s learn about it with some examples.

We said that vectors must be all of the same type. So if we try to combine, say, numbers
and characters, you might expect an error:

x <- c(1, "canada", 3)

But we don’t get one, not even a warning! What happened? Look at x and its class:

x
#> [1] "1" "canada" "3"
class(x)
#> [1] "character"

R coerced the data into characters. It guessed that because you put a character string in
the vector, you meant the 1 and 3 to actually be character strings "1" and “3”. The fact
that not even a warning is issued is an example of how coercion can cause many unnoticed
errors in R.

R also offers functions to change from one type to another. For example, you can turn
numbers into characters with:

x <- 1:5
y <- as.character(x)
y
#> [1] "1" "2" "3" "4" "5"

www.dbooks.org

https://www.dbooks.org/

60 2 R basics

You can turn it back with as.numeric:

as.numeric(y)
#> [1] 1 2 3 4 5

This function is actually quite useful since datasets that include numbers as character strings
are common.

2.7.1 Not availables (NA)

When a function tries to coerce one type to another and encounters an impossible case, it
usually gives us a warning and turns the entry into a special value called an NA for “not
available”. For example:

x <- c("1", "b", "3")
as.numeric(x)
#> Warning: NAs introduced by coercion
#> [1] 1 NA 3

R does not have any guesses for what number you want when you type b, so it does not try.

As a data scientist you will encounter the NAs often as they are generally used for missing
data, a common problem in real-world datasets.

2.8 Exercises

1. Use the function c to create a vector with the average high temperatures in January for
Beijing, Lagos, Paris, Rio de Janeiro, San Juan, and Toronto, which are 35, 88, 42, 84, 81,
and 30 degrees Fahrenheit. Call the object temp.

2. Now create a vector with the city names and call the object city.

3. Use the names function and the objects defined in the previous exercises to associate the
temperature data with its corresponding city.

4. Use the [and : operators to access the temperature of the first three cities on the list.

5. Use the [operator to access the temperature of Paris and San Juan.

6. Use the : operator to create a sequence of numbers 12, 13, 14, . . . , 73.

7. Create a vector containing all the positive odd numbers smaller than 100.

8. Create a vector of numbers that starts at 6, does not pass 55, and adds numbers in
increments of 4/7: 6, 6 + 4/7, 6 + 8/7, and so on. How many numbers does the list have?
Hint: use seq and length.

9. What is the class of the following object a <- seq(1, 10, 0.5)?

10. What is the class of the following object a <- seq(1, 10)?

2.9 Sorting 61

11. The class of class(a<-1) is numeric, not integer. R defaults to numeric and to force an
integer, you need to add the letter L. Confirm that the class of 1L is integer.

12. Define the following vector:

x <- c("1", "3", "5")

and coerce it to get integers.

2.9 Sorting

Now that we have mastered some basic R knowledge, let’s try to gain some insights into the
safety of different states in the context of gun murders.

2.9.1 sort

Say we want to rank the states from least to most gun murders. The function sort sorts
a vector in increasing order. We can therefore see the largest number of gun murders by
typing:

library(dslabs)
data(murders)
sort(murders$total)
#> [1] 2 4 5 5 7 8 11 12 12 16 19 21 22
#> [14] 27 32 36 38 53 63 65 67 84 93 93 97 97
#> [27] 99 111 116 118 120 135 142 207 219 232 246 250 286
#> [40] 293 310 321 351 364 376 413 457 517 669 805 1257

However, this does not give us information about which states have which murder totals.
For example, we don’t know which state had 1257.

2.9.2 order

The function order is closer to what we want. It takes a vector as input and returns the
vector of indexes that sorts the input vector. This may sound confusing so let’s look at a
simple example. We can create a vector and sort it:

x <- c(31, 4, 15, 92, 65)
sort(x)
#> [1] 4 15 31 65 92

Rather than sort the input vector, the function order returns the index that sorts input
vector:

www.dbooks.org

https://www.dbooks.org/

62 2 R basics

index <- order(x)
x[index]
#> [1] 4 15 31 65 92

This is the same output as that returned by sort(x). If we look at this index, we see why
it works:

x
#> [1] 31 4 15 92 65
order(x)
#> [1] 2 3 1 5 4

The second entry of x is the smallest, so order(x) starts with 2. The next smallest is the
third entry, so the second entry is 3 and so on.

How does this help us order the states by murders? First, remember that the entries of
vectors you access with $ follow the same order as the rows in the table. For example, these
two vectors containing state names and abbreviations, respectively, are matched by their
order:

murders$state[1:6]
#> [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
#> [6] "Colorado"
murders$abb[1:6]
#> [1] "AL" "AK" "AZ" "AR" "CA" "CO"

This means we can order the state names by their total murders. We first obtain the index
that orders the vectors according to murder totals and then index the state names vector:

ind <- order(murders$total)
murders$abb[ind]
#> [1] "VT" "ND" "NH" "WY" "HI" "SD" "ME" "ID" "MT" "RI" "AK" "IA" "UT"
#> [14] "WV" "NE" "OR" "DE" "MN" "KS" "CO" "NM" "NV" "AR" "WA" "CT" "WI"
#> [27] "DC" "OK" "KY" "MA" "MS" "AL" "IN" "SC" "TN" "AZ" "NJ" "VA" "NC"
#> [40] "MD" "OH" "MO" "LA" "IL" "GA" "MI" "PA" "NY" "FL" "TX" "CA"

According to the above, California had the most murders.

2.9.3 max and which.max

If we are only interested in the entry with the largest value, we can use max for the value:

max(murders$total)
#> [1] 1257

and which.max for the index of the largest value:

2.10 Sorting 63

i_max <- which.max(murders$total)
murders$state[i_max]
#> [1] "California"

For the minimum, we can use min and which.min in the same way.

Does this mean California is the most dangerous state? In an upcoming section, we argue
that we should be considering rates instead of totals. Before doing that, we introduce one
last order-related function: rank.

2.9.4 rank

Although not as frequently used as order and sort, the function rank is also related to
order and can be useful. For any given vector it returns a vector with the rank of the first
entry, second entry, etc., of the input vector. Here is a simple example:

x <- c(31, 4, 15, 92, 65)
rank(x)
#> [1] 3 1 2 5 4

To summarize, let’s look at the results of the three functions we have introduced:

original sort order rank

31 4 2 3
4 15 3 1

15 31 1 2
92 65 5 5
65 92 4 4

2.9.5 Beware of recycling

Another common source of unnoticed errors in R is the use of recycling. We saw that vectors
are added elementwise. So if the vectors don’t match in length, it is natural to assume that
we should get an error. But we don’t. Notice what happens:

x <- c(1,2,3)
y <- c(10, 20, 30, 40, 50, 60, 70)
x+y
#> Warning in x + y: longer object length is not a multiple of shorter
#> object length
#> [1] 11 22 33 41 52 63 71

We do get a warning, but no error. For the output, R has recycled the numbers in x. Notice
the last digit of numbers in the output.

www.dbooks.org

https://www.dbooks.org/

64 2 R basics

2.10 Exercises

For these exercises we will use the US murders dataset. Make sure you load it prior to
starting.

library(dslabs)
data("murders")

1. Use the $ operator to access the population size data and store it as the object pop. Then
use the sort function to redefine pop so that it is sorted. Finally, use the [operator to
report the smallest population size.

2. Now instead of the smallest population size, find the index of the entry with the smallest
population size. Hint: use order instead of sort.

3. We can actually perform the same operation as in the previous exercise using the function
which.min. Write one line of code that does this.

4. Now we know how small the smallest state is and we know which row represents it. Which
state is it? Define a variable states to be the state names from the murders data frame.
Report the name of the state with the smallest population.

5. You can create a data frame using the data.frame function. Here is a quick example:

temp <- c(35, 88, 42, 84, 81, 30)
city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro",

"San Juan", "Toronto")
city_temps <- data.frame(name = city, temperature = temp)

Use the rank function to determine the population rank of each state from smallest popu-
lation size to biggest. Save these ranks in an object called ranks, then create a data frame
with the state name and its rank. Call the data frame my_df.

6. Repeat the previous exercise, but this time order my_df so that the states are ordered
from least populous to most populous. Hint: create an object ind that stores the indexes
needed to order the population values. Then use the bracket operator [to re-order each
column in the data frame.

7. The na_example vector represents a series of counts. You can quickly examine the object
using:

data("na_example")
str(na_example)
#> int [1:1000] 2 1 3 2 1 3 1 4 3 2 ...

However, when we compute the average with the function mean, we obtain an NA:

mean(na_example)
#> [1] NA

2.11 Vector arithmetics 65

The is.na function returns a logical vector that tells us which entries are NA. Assign this
logical vector to an object called ind and determine how many NAs does na_example have.
8. Now compute the average again, but only for the entries that are not NA. Hint: remember
the ! operator.

2.11 Vector arithmetics

California had the most murders, but does this mean it is the most dangerous state? What if
it just has many more people than any other state? We can quickly confirm that California
indeed has the largest population:

library(dslabs)
data("murders")
murders$state[which.max(murders$population)]
#> [1] "California"

with over 37 million inhabitants. It is therefore unfair to compare the totals if we are
interested in learning how safe the state is. What we really should be computing is the
murders per capita. The reports we describe in the motivating section used murders per
100,000 as the unit. To compute this quantity, the powerful vector arithmetic capabilities
of R come in handy.

2.11.1 Rescaling a vector

In R, arithmetic operations on vectors occur element-wise. For a quick example, suppose we
have height in inches:

inches <- c(69, 62, 66, 70, 70, 73, 67, 73, 67, 70)

and want to convert to centimeters. Notice what happens when we multiply inches by 2.54:

inches * 2.54
#> [1] 175 157 168 178 178 185 170 185 170 178

In the line above, we multiplied each element by 2.54. Similarly, if for each entry we want
to compute how many inches taller or shorter than 69 inches, the average height for males,
we can subtract it from every entry like this:

inches - 69
#> [1] 0 -7 -3 1 1 4 -2 4 -2 1

2.11.2 Two vectors

If we have two vectors of the same length, and we sum them in R, they will be added entry
by entry as follows:

www.dbooks.org

https://www.dbooks.org/

66 2 R basics

a
b
c
d

+

e
f
g
h

 =

a + e
b + f
c + g
d + h

The same holds for other mathematical operations, such as -, * and /.
This implies that to compute the murder rates we can simply type:

murder_rate <- murders$total / murders$population * 100000

Once we do this, we notice that California is no longer near the top of the list. In fact, we
can use what we have learned to order the states by murder rate:

murders$abb[order(murder_rate)]
#> [1] "VT" "NH" "HI" "ND" "IA" "ID" "UT" "ME" "WY" "OR" "SD" "MN" "MT"
#> [14] "CO" "WA" "WV" "RI" "WI" "NE" "MA" "IN" "KS" "NY" "KY" "AK" "OH"
#> [27] "CT" "NJ" "AL" "IL" "OK" "NC" "NV" "VA" "AR" "TX" "NM" "CA" "FL"
#> [40] "TN" "PA" "AZ" "GA" "MS" "MI" "DE" "SC" "MD" "MO" "LA" "DC"

2.12 Exercises

1. Previously we created this data frame:

temp <- c(35, 88, 42, 84, 81, 30)
city <- c("Beijing", "Lagos", "Paris", "Rio de Janeiro",

"San Juan", "Toronto")
city_temps <- data.frame(name = city, temperature = temp)

Remake the data frame using the code above, but add a line that converts the temperature
from Fahrenheit to Celsius. The conversion is C = 5

9 × (F − 32).
2. What is the following sum 1 + 1/22 + 1/32 + . . . 1/1002? Hint: thanks to Euler, we know
it should be close to π2/6.
3. Compute the per 100,000 murder rate for each state and store it in the object
murder_rate. Then compute the average murder rate for the US using the function mean.
What is the average?

2.13 Indexing

R provides a powerful and convenient way of indexing vectors. We can, for example, subset
a vector based on properties of another vector. In this section, we continue working with
our US murders example, which we can load like this:

2.13 Indexing 67

library(dslabs)
data("murders")

2.13.1 Subsetting with logicals

We have now calculated the murder rate using:

murder_rate <- murders$total / murders$population * 100000

Imagine you are moving from Italy where, according to an ABC news report, the murder
rate is only 0.71 per 100,000. You would prefer to move to a state with a similar murder rate.
Another powerful feature of R is that we can use logicals to index vectors. If we compare a
vector to a single number, it actually performs the test for each entry. The following is an
example related to the question above:

ind <- murder_rate < 0.71

If we instead want to know if a value is less or equal, we can use:

ind <- murder_rate <= 0.71

Note that we get back a logical vector with TRUE for each entry smaller than or equal to
0.71. To see which states these are, we can leverage the fact that vectors can be indexed
with logicals.

murders$state[ind]
#> [1] "Hawaii" "Iowa" "New Hampshire" "North Dakota"
#> [5] "Vermont"

In order to count how many are TRUE, the function sum returns the sum of the entries of
a vector and logical vectors get coerced to numeric with TRUE coded as 1 and FALSE as 0.
Thus we can count the states using:

sum(ind)
#> [1] 5

2.13.2 Logical operators

Suppose we like the mountains and we want to move to a safe state in the western region of
the country. We want the murder rate to be at most 1. In this case, we want two different
things to be true. Here we can use the logical operator and, which in R is represented with
&. This operation results in TRUE only when both logicals are TRUE. To see this, consider this
example:

www.dbooks.org

https://www.dbooks.org/

68 2 R basics

TRUE & TRUE
#> [1] TRUE
TRUE & FALSE
#> [1] FALSE
FALSE & FALSE
#> [1] FALSE

For our example, we can form two logicals:

west <- murders$region == "West"
safe <- murder_rate <= 1

and we can use the & to get a vector of logicals that tells us which states satisfy both
conditions:

ind <- safe & west
murders$state[ind]
#> [1] "Hawaii" "Idaho" "Oregon" "Utah" "Wyoming"

2.13.3 which

Suppose we want to look up California’s murder rate. For this type of operation, it is
convenient to convert vectors of logicals into indexes instead of keeping long vectors of
logicals. The function which tells us which entries of a logical vector are TRUE. So we can
type:

ind <- which(murders$state == "California")
murder_rate[ind]
#> [1] 3.37

2.13.4 match

If instead of just one state we want to find out the murder rates for several states, say
New York, Florida, and Texas, we can use the function match. This function tells us which
indexes of a second vector match each of the entries of a first vector:

ind <- match(c("New York", "Florida", "Texas"), murders$state)
ind
#> [1] 33 10 44

Now we can look at the murder rates:

murder_rate[ind]
#> [1] 2.67 3.40 3.20

2.14 Exercises 69

2.13.5 %in%

If rather than an index we want a logical that tells us whether or not each element of a
first vector is in a second, we can use the function %in%. Let’s imagine you are not sure if
Boston, Dakota, and Washington are states. You can find out like this:

c("Boston", "Dakota", "Washington") %in% murders$state
#> [1] FALSE FALSE TRUE

Note that we will be using %in% often throughout the book.

Advanced: There is a connection between match and %in% through which. To see this,
notice that the following two lines produce the same index (although in different order):

match(c("New York", "Florida", "Texas"), murders$state)
#> [1] 33 10 44
which(murders$state%in%c("New York", "Florida", "Texas"))
#> [1] 10 33 44

2.14 Exercises

Start by loading the library and data.

library(dslabs)
data(murders)

1. Compute the per 100,000 murder rate for each state and store it in an object called
murder_rate. Then use logical operators to create a logical vector named low that tells us
which entries of murder_rate are lower than 1.

2. Now use the results from the previous exercise and the function which to determine the
indices of murder_rate associated with values lower than 1.

3. Use the results from the previous exercise to report the names of the states with murder
rates lower than 1.

4. Now extend the code from exercises 2 and 3 to report the states in the Northeast with
murder rates lower than 1. Hint: use the previously defined logical vector low and the logical
operator &.

5. In a previous exercise we computed the murder rate for each state and the average of
these numbers. How many states are below the average?

6. Use the match function to identify the states with abbreviations AK, MI, and IA. Hint:
start by defining an index of the entries of murders$abb that match the three abbreviations,
then use the [operator to extract the states.

7. Use the %in% operator to create a logical vector that answers the question: which of the
following are actual abbreviations: MA, ME, MI, MO, MU?

www.dbooks.org

https://www.dbooks.org/

70 2 R basics

8. Extend the code you used in exercise 7 to report the one entry that is not an actual
abbreviation. Hint: use the ! operator, which turns FALSE into TRUE and vice versa, then
which to obtain an index.

2.15 Basic plots

In Chapter 7 we describe an add-on package that provides a powerful approach to producing
plots in R. We then have an entire part on Data Visualization in which we provide many
examples. Here we briefly describe some of the functions that are available in a basic R
installation.

2.15.1 plot

The plot function can be used to make scatterplots. Here is a plot of total murders versus
population.

x <- murders$population / 10^6
y <- murders$total
plot(x, y)

0 10 20 30

0
20

0
40

0
60

0
80

0
12

00

x

y

For a quick plot that avoids accessing variables twice, we can use the with function:

with(murders, plot(population, total))

The function with lets us use the murders column names in the plot function. It also works
with any data frames and any function.

2.15.2 hist

We will describe histograms as they relate to distributions in the Data Visualization part
of the book. Here we will simply note that histograms are a powerful graphical summary of

2.15 Basic plots 71

a list of numbers that gives you a general overview of the types of values you have. We can
make a histogram of our murder rates by simply typing:

x <- with(murders, total / population * 100000)
hist(x)

Histogram of x

x

F
re

qu
en

cy

0 5 10 15

0
5

10
15

20

We can see that there is a wide range of values with most of them between 2 and 3 and one
very extreme case with a murder rate of more than 15:

murders$state[which.max(x)]
#> [1] "District of Columbia"

2.15.3 boxplot

Boxplots will also be described in the Data Visualization part of the book. They provide a
more terse summary than histograms, but they are easier to stack with other boxplots. For
example, here we can use them to compare the different regions:

murders$rate <- with(murders, total / population * 100000)
boxplot(rate~region, data = murders)

Northeast South North Central West

0
5

10
15

region

ra
te

We can see that the South has higher murder rates than the other three regions.

www.dbooks.org

https://www.dbooks.org/

72 2 R basics

2.15.4 image

The image function displays the values in a matrix using color. Here is a quick example:

x <- matrix(1:120, 12, 10)
image(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2.16 Exercises

1. We made a plot of total murders versus population and noted a strong relationship. Not
surprisingly, states with larger populations had more murders.

library(dslabs)
data(murders)
population_in_millions <- murders$population/10^6
total_gun_murders <- murders$total
plot(population_in_millions, total_gun_murders)

Keep in mind that many states have populations below 5 million and are bunched up. We
may gain further insights from making this plot in the log scale. Transform the variables
using the log10 transformation and then plot them.

2. Create a histogram of the state populations.

3. Generate boxplots of the state populations by region.

3
Programming basics

We teach R because it greatly facilitates data analysis, the main topic of this book. By coding
in R, we can efficiently perform exploratory data analysis, build data analysis pipelines, and
prepare data visualization to communicate results. However, R is not just a data analysis
environment but a programming language. Advanced R programmers can develop complex
packages and even improve R itself, but we do not cover advanced programming in this
book. Nonetheless, in this section, we introduce three key programming concepts: conditional
expressions, for-loops, and functions. These are not just key building blocks for advanced
programming, but are sometimes useful during data analysis. We also note that there are
several functions that are widely used to program in R but that we will not cover in this
book. These include split, cut, do.call, and Reduce, as well as the data.table package.
These are worth learning if you plan to become an expert R programmer.

3.1 Conditional expressions

Conditional expressions are one of the basic features of programming. They are used for what
is called flow control. The most common conditional expression is the if-else statement. In
R, we can actually perform quite a bit of data analysis without conditionals. However, they
do come up occasionally, and you will need them once you start writing your own functions
and packages.

Here is a very simple example showing the general structure of an if-else statement. The
basic idea is to print the reciprocal of a unless a is 0:

a <- 0

if(a!=0){
print(1/a)

} else{
print("No reciprocal for 0.")

}
#> [1] "No reciprocal for 0."

Let’s look at one more example using the US murders data frame:

library(dslabs)
data(murders)
murder_rate <- murders$total / murders$population*100000

73

www.dbooks.org

https://www.dbooks.org/

74 3 Programming basics

Here is a very simple example that tells us which states, if any, have a murder rate lower
than 0.5 per 100,000. The if statement protects us from the case in which no state satisfies
the condition.

ind <- which.min(murder_rate)

if(murder_rate[ind] < 0.5){
print(murders$state[ind])

} else{
print("No state has murder rate that low")

}
#> [1] "Vermont"

If we try it again with a rate of 0.25, we get a different answer:

if(murder_rate[ind] < 0.25){
print(murders$state[ind])

} else{
print("No state has a murder rate that low.")

}
#> [1] "No state has a murder rate that low."

A related function that is very useful is ifelse. This function takes three arguments: a
logical and two possible answers. If the logical is TRUE, the value in the second argument is
returned and if FALSE, the value in the third argument is returned. Here is an example:

a <- 0
ifelse(a > 0, 1/a, NA)
#> [1] NA

The function is particularly useful because it works on vectors. It examines each entry of
the logical vector and returns elements from the vector provided in the second argument, if
the entry is TRUE, or elements from the vector provided in the third argument, if the entry
is FALSE.

a <- c(0, 1, 2, -4, 5)
result <- ifelse(a > 0, 1/a, NA)

This table helps us see what happened:

a is_a_positive answer1 answer2 result

0 FALSE Inf NA NA
1 TRUE 1.00 NA 1.0
2 TRUE 0.50 NA 0.5

-4 FALSE -0.25 NA NA
5 TRUE 0.20 NA 0.2

Here is an example of how this function can be readily used to replace all the missing values
in a vector with zeros:

3.2 Defining functions 75

data(na_example)
no_nas <- ifelse(is.na(na_example), 0, na_example)
sum(is.na(no_nas))
#> [1] 0

Two other useful functions are any and all. The any function takes a vector of logicals and
returns TRUE if any of the entries is TRUE. The all function takes a vector of logicals and
returns TRUE if all of the entries are TRUE. Here is an example:

z <- c(TRUE, TRUE, FALSE)
any(z)
#> [1] TRUE
all(z)
#> [1] FALSE

3.2 Defining functions

As you become more experienced, you will find yourself needing to perform the same opera-
tions over and over. A simple example is computing averages. We can compute the average
of a vector x using the sum and length functions: sum(x)/length(x). Because we do this
repeatedly, it is much more efficient to write a function that performs this operation. This
particular operation is so common that someone already wrote the mean function and it
is included in base R. However, you will encounter situations in which the function does
not already exist, so R permits you to write your own. A simple version of a function that
computes the average can be defined like this:

avg <- function(x){
s <- sum(x)
n <- length(x)
s/n

}

Now avg is a function that computes the mean:

x <- 1:100
identical(mean(x), avg(x))
#> [1] TRUE

Notice that variables defined inside a function are not saved in the workspace. So while we
use s and n when we call avg, the values are created and changed only during the call. Here
is an illustrative example:

s <- 3
avg(1:10)
#> [1] 5.5
s
#> [1] 3

www.dbooks.org

https://www.dbooks.org/

76 3 Programming basics

Note how s is still 3 after we call avg.

In general, functions are objects, so we assign them to variable names with <-. The function
function tells R you are about to define a function. The general form of a function definition
looks like this:

my_function <- function(VARIABLE_NAME){
perform operations on VARIABLE_NAME and calculate VALUE
VALUE

}

The functions you define can have multiple arguments as well as default values. For example,
we can define a function that computes either the arithmetic or geometric average depending
on a user defined variable like this:

avg <- function(x, arithmetic = TRUE){
n <- length(x)
ifelse(arithmetic, sum(x)/n, prod(x)^(1/n))

}

We will learn more about how to create functions through experience as we face more
complex tasks.

3.3 Namespaces

Once you start becoming more of an R expert user, you will likely need to load several add-on
packages for some of your analysis. Once you start doing this, it is likely that two packages
use the same name for two different functions. And often these functions do completely
different things. In fact, you have already encountered this because both dplyr and the
R-base stats package define a filter function. There are five other examples in dplyr. We
know this because when we first load dplyr we see the following message:

The following objects are masked from ‘package:stats’:

filter, lag

The following objects are masked from ‘package:base’:

intersect, setdiff, setequal, union

So what does R do when we type filter? Does it use the dplyr function or the stats
function? From our previous work we know it uses the dplyr one. But what if we want to
use the stats version?

These functions live in different namespaces. R will follow a certain order when searching
for a function in these namespaces. You can see the order by typing:

3.4 For-loops 77

search()

The first entry in this list is the global environment which includes all the objects you define.
So what if we want to use the stats filter instead of the dplyr filter but dplyr appears
first in the search list? You can force the use of a specific name space by using double colons
(::) like this:

stats::filter

If we want to be absolutely sure we use the dplyr filter we can use

dplyr::filter

Also note that if we want to use a function in a package without loading the entire package,
we can use the double colon as well.
For more on this more advanced topic we recommend the R packages book1.

3.4 For-loops

The formula for the sum of the series 1 + 2 + · · · + n is n(n + 1)/2. What if we weren’t sure
that was the right function? How could we check? Using what we learned about functions
we can create one that computes the Sn:

compute_s_n <- function(n){
x <- 1:n
sum(x)

}

How can we compute Sn for various values of n, say n = 1, . . . , 25? Do we write 25 lines of
code calling compute_s_n? No, that is what for-loops are for in programming. In this case,
we are performing exactly the same task over and over, and the only thing that is changing
is the value of n. For-loops let us define the range that our variable takes (in our example
n = 1, . . . , 10), then change the value and evaluate expression as you loop.
Perhaps the simplest example of a for-loop is this useless piece of code:

for(i in 1:5){
print(i)

}
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
#> [1] 5

1http://r-pkgs.had.co.nz/namespace.html

www.dbooks.org

http://r-pkgs.had.co.nz/namespace.html
https://www.dbooks.org/

78 3 Programming basics

Here is the for-loop we would write for our Sn example:

m <- 25
s_n <- vector(length = m) # create an empty vector
for(n in 1:m){
s_n[n] <- compute_s_n(n)

}

In each iteration n = 1, n = 2, etc…, we compute Sn and store it in the nth entry of s_n.

Now we can create a plot to search for a pattern:

n <- 1:m
plot(n, s_n)

5 10 15 20 25

0
50

10
0

20
0

30
0

n

s_
n

If you noticed that it appears to be a quadratic, you are on the right track because the
formula is n(n + 1)/2.

3.5 Vectorization and functionals

Although for-loops are an important concept to understand, in R we rarely use them. As you
learn more R, you will realize that vectorization is preferred over for-loops since it results
in shorter and clearer code. We already saw examples in the Vector Arithmetic section. A
vectorized function is a function that will apply the same operation on each of the vectors.

x <- 1:10
sqrt(x)
#> [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16
y <- 1:10
x*y
#> [1] 1 4 9 16 25 36 49 64 81 100

To make this calculation, there is no need for for-loops. However, not all functions work this

3.6 Exercises 79

way. For instance, the function we just wrote, compute_s_n, does not work element-wise
since it is expecting a scalar. This piece of code does not run the function on each entry of
n:

n <- 1:25
compute_s_n(n)

Functionals are functions that help us apply the same function to each entry in a vector,
matrix, data frame, or list. Here we cover the functional that operates on numeric, logical,
and character vectors: sapply.

The function sapply permits us to perform element-wise operations on any function. Here
is how it works:

x <- 1:10
sapply(x, sqrt)
#> [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

Each element of x is passed on to the function sqrt and the result is returned. These results
are concatenated. In this case, the result is a vector of the same length as the original x.
This implies that the for-loop above can be written as follows:

n <- 1:25
s_n <- sapply(n, compute_s_n)

Other functionals are apply, lapply, tapply, mapply, vapply, and replicate. We mostly
use sapply, apply, and replicate in this book, but we recommend familiarizing yourselves
with the others as they can be very useful.

3.6 Exercises

1. What will this conditional expression return?

x <- c(1,2,-3,4)

if(all(x>0)){
print("All Postives")

} else{
print("Not all positives")

}

2. Which of the following expressions is always FALSE when at least one entry of a logical
vector x is TRUE?

a. all(x)
b. any(x)

www.dbooks.org

https://www.dbooks.org/

80 3 Programming basics

c. any(!x)
d. all(!x)

3. The function nchar tells you how many characters long a character vector is. Write a line
of code that assigns to the object new_names the state abbreviation when the state name is
longer than 8 characters.

4. Create a function sum_n that for any given value, say n, computes the sum of the integers
from 1 to n (inclusive). Use the function to determine the sum of integers from 1 to 5,000.

5. Create a function altman_plot that takes two arguments, x and y, and plots the difference
against the sum.

6. After running the code below, what is the value of x?

x <- 3
my_func <- function(y){
x <- 5
y+5

}

7. Write a function compute_s_n that for any given n computes the sum Sn = 12 + 22 +
32 + . . . n2. Report the value of the sum when n = 10.

8. Define an empty numerical vector s_n of size 25 using s_n <- vector("numeric", 25)
and store in the results of S1, S2, . . . S25 using a for-loop.

9. Repeat exercise 8, but this time use sapply.

10. Repeat exercise 8, but this time use map_dbl.

11. Plot Sn versus n. Use points defined by n = 1, . . . , 25.

12. Confirm that the formula for this sum is Sn = n(n + 1)(2n + 1)/6.

4
The tidyverse

Up to now we have been manipulating vectors by reordering and subsetting them through
indexing. However, once we start more advanced analyses, the preferred unit for data storage
is not the vector but the data frame. In this chapter we learn to work directly with data
frames, which greatly facilitate the organization of information. We will be using data frames
for the majority of this book. We will focus on a specific data format referred to as tidy and
on specific collection of packages that are particularly helpful for working with tidy data
referred to as the tidyverse.
We can load all the tidyverse packages at once by installing and loading the tidyverse
package:

library(tidyverse)

We will learn how to implement the tidyverse approach throughout the book, but before
delving into the details, in this chapter we introduce some of the most widely used tidyverse
functionality, starting with the dplyr package for manipulating data frames and the purrr
package for working with functions. Note that the tidyverse also includes a graphing package,
ggplot2, which we introduce later in Chapter 7 in the Data Visualization part of the
book; the readr package discussed in Chapter 5; and many others. In this chapter, we first
introduce the concept of tidy data and then demonstrate how we use the tidyverse to work
with data frames in this format.

4.1 Tidy data

We say that a data table is in tidy format if each row represents one observation and columns
represent the different variables available for each of these observations. The murders dataset
is an example of a tidy data frame.

#> state abb region population total
#> 1 Alabama AL South 4779736 135
#> 2 Alaska AK West 710231 19
#> 3 Arizona AZ West 6392017 232
#> 4 Arkansas AR South 2915918 93
#> 5 California CA West 37253956 1257
#> 6 Colorado CO West 5029196 65

Each row represent a state with each of the five columns providing a different variable related
to these states: name, abbreviation, region, population, and total murders.

81

www.dbooks.org

https://www.dbooks.org/

82 4 The tidyverse

To see how the same information can be provided in different formats, consider the following
example:

#> country year fertility
#> 1 Germany 1960 2.41
#> 2 South Korea 1960 6.16
#> 3 Germany 1961 2.44
#> 4 South Korea 1961 5.99
#> 5 Germany 1962 2.47
#> 6 South Korea 1962 5.79

This tidy dataset provides fertility rates for two countries across the years. This is a tidy
dataset because each row presents one observation with the three variables being country,
year, and fertility rate. However, this dataset originally came in another format and was
reshaped for the dslabs package. Originally, the data was in the following format:

#> country 1960 1961 1962
#> 1 Germany 2.41 2.44 2.47
#> 2 South Korea 6.16 5.99 5.79

The same information is provided, but there are two important differences in the format:
1) each row includes several observations and 2) one of the variables, year, is stored in the
header. For the tidyverse packages to be optimally used, data need to be reshaped into tidy
format, which you will learn to do in the Data Wrangling part of the book. Until then, we
will use example datasets that are already in tidy format.

Although not immediately obvious, as you go through the book you will start to appreciate
the advantages of working in a framework in which functions use tidy formats for both inputs
and outputs. You will see how this permits the data analyst to focus on more important
aspects of the analysis rather than the format of the data.

4.2 Exercises

1. Examine the built-in dataset co2. Which of the following is true:

a. co2 is tidy data: it has one year for each row.
b. co2 is not tidy: we need at least one column with a character vector.
c. co2 is not tidy: it is a matrix instead of a data frame.
d. co2 is not tidy: to be tidy we would have to wrangle it to have three columns

(year, month and value), then each co2 observation would have a row.

2. Examine the built-in dataset ChickWeight. Which of the following is true:

a. ChickWeight is not tidy: each chick has more than one row.
b. ChickWeight is tidy: each observation (a weight) is represented by one row. The

chick from which this measurement came is one of the variables.

4.3 Manipulating data frames 83

c. ChickWeight is not tidy: we are missing the year column.
d. ChickWeight is tidy: it is stored in a data frame.

3. Examine the built-in dataset BOD. Which of the following is true:

a. BOD is not tidy: it only has six rows.
b. BOD is not tidy: the first column is just an index.
c. BOD is tidy: each row is an observation with two values (time and demand)
d. BOD is tidy: all small datasets are tidy by definition.

4. Which of the following built-in datasets is tidy (you can pick more than one):

a. BJsales
b. EuStockMarkets
c. DNase
d. Formaldehyde
e. Orange
f. UCBAdmissions

4.3 Manipulating data frames

The dplyr package from the tidyverse introduces functions that perform some of the most
common operations when working with data frames and uses names for these functions that
are relatively easy to remember. For instance, to change the data table by adding a new
column, we use mutate. To filter the data table to a subset of rows, we use filter. Finally,
to subset the data by selecting specific columns, we use select.

4.3.1 Adding a column with mutate

We want all the necessary information for our analysis to be included in the data table. So
the first task is to add the murder rates to our murders data frame. The function mutate
takes the data frame as a first argument and the name and values of the variable as a second
argument using the convention name = values. So, to add murder rates, we use:

library(dslabs)
data("murders")
murders <- mutate(murders, rate = total / population * 100000)

Notice that here we used total and population inside the function, which are objects that
are not defined in our workspace. But why don’t we get an error?
This is one of dplyr’s main features. Functions in this package, such as mutate, know to
look for variables in the data frame provided in the first argument. In the call to mutate
above, total will have the values in murders$total. This approach makes the code much
more readable.
We can see that the new column is added:

www.dbooks.org

https://www.dbooks.org/

84 4 The tidyverse

head(murders)
#> state abb region population total rate
#> 1 Alabama AL South 4779736 135 2.82
#> 2 Alaska AK West 710231 19 2.68
#> 3 Arizona AZ West 6392017 232 3.63
#> 4 Arkansas AR South 2915918 93 3.19
#> 5 California CA West 37253956 1257 3.37
#> 6 Colorado CO West 5029196 65 1.29

Although we have overwritten the original murders object, this does not change the ob-
ject that loaded with data(murders). If we load the murders data again, the original will
overwrite our mutated version.

4.3.2 Subsetting with filter

Now suppose that we want to filter the data table to only show the entries for which the
murder rate is lower than 0.71. To do this we use the filter function, which takes the data
table as the first argument and then the conditional statement as the second. Like mutate,
we can use the unquoted variable names from murders inside the function and it will know
we mean the columns and not objects in the workspace.

filter(murders, rate <= 0.71)
#> state abb region population total rate
#> 1 Hawaii HI West 1360301 7 0.515
#> 2 Iowa IA North Central 3046355 21 0.689
#> 3 New Hampshire NH Northeast 1316470 5 0.380
#> 4 North Dakota ND North Central 672591 4 0.595
#> 5 Vermont VT Northeast 625741 2 0.320

4.3.3 Selecting columns with select

Although our data table only has six columns, some data tables include hundreds. If we
want to view just a few, we can use the dplyr select function. In the code below we select
three columns, assign this to a new object and then filter the new object:

new_table <- select(murders, state, region, rate)
filter(new_table, rate <= 0.71)
#> state region rate
#> 1 Hawaii West 0.515
#> 2 Iowa North Central 0.689
#> 3 New Hampshire Northeast 0.380
#> 4 North Dakota North Central 0.595
#> 5 Vermont Northeast 0.320

In the call to select, the first argument murders is an object, but state, region, and rate
are variable names.

4.4 Exercises 85

4.4 Exercises

1. Load the dplyr package and the murders dataset.

library(dplyr)
library(dslabs)
data(murders)

You can add columns using the dplyr function mutate. This function is aware of the column
names and inside the function you can call them unquoted:

murders <- mutate(murders, population_in_millions = population / 10^6)

We can write population rather than murders$population. The function mutate knows
we are grabbing columns from murders.

Use the function mutate to add a murders column named rate with the per 100,000 murder
rate as in the example code above. Make sure you redefine murders as done in the example
code above (murders <- [your code]) so we can keep using this variable.

2. If rank(x) gives you the ranks of x from lowest to highest, rank(-x) gives you the ranks
from highest to lowest. Use the function mutate to add a column rank containing the rank,
from highest to lowest murder rate. Make sure you redefine murders so we can keep using
this variable.

3. With dplyr, we can use select to show only certain columns. For example, with this
code we would only show the states and population sizes:

select(murders, state, population) %>% head()

Use select to show the state names and abbreviations in murders. Do not redefine murders,
just show the results.

4. The dplyr function filter is used to choose specific rows of the data frame to keep.
Unlike select which is for columns, filter is for rows. For example, you can show just the
New York row like this:

filter(murders, state == "New York")

You can use other logical vectors to filter rows.

Use filter to show the top 5 states with the highest murder rates. After we add murder
rate and rank, do not change the murders dataset, just show the result. Remember that you
can filter based on the rank column.

5. We can remove rows using the != operator. For example, to remove Florida, we would do
this:

www.dbooks.org

https://www.dbooks.org/

86 4 The tidyverse

no_florida <- filter(murders, state != "Florida")

Create a new data frame called no_south that removes states from the South region. How
many states are in this category? You can use the function nrow for this.

6. We can also use %in% to filter with dplyr. You can therefore see the data from New York
and Texas like this:

filter(murders, state %in% c("New York", "Texas"))

Create a new data frame called murders_nw with only the states from the Northeast and
the West. How many states are in this category?

7. Suppose you want to live in the Northeast or West and want the murder rate to be less
than 1. We want to see the data for the states satisfying these options. Note that you can
use logical operators with filter. Here is an example in which we filter to keep only small
states in the Northeast region.

filter(murders, population < 5000000 & region == "Northeast")

Make sure murders has been defined with rate and rank and still has all states. Create
a table called my_states that contains rows for states satisfying both the conditions: it is
in the Northeast or West and the murder rate is less than 1. Use select to show only the
state name, the rate, and the rank.

4.5 The pipe: %>%

With dplyr we can perform a series of operations, for example select and then filter, by
sending the results of one function to another using what is called the pipe operator: %>%.
Some details are included below.

We wrote code above to show three variables (state, region, rate) for states that have murder
rates below 0.71. To do this, we defined the intermediate object new_table. In dplyr we can
write code that looks more like a description of what we want to do without intermediate
objects:

original data → select → filter

For such an operation, we can use the pipe %>%. The code looks like this:

murders %>% select(state, region, rate) %>% filter(rate <= 0.71)
#> state region rate
#> 1 Hawaii West 0.515
#> 2 Iowa North Central 0.689
#> 3 New Hampshire Northeast 0.380
#> 4 North Dakota North Central 0.595
#> 5 Vermont Northeast 0.320

4.6 Exercises 87

This line of code is equivalent to the two lines of code above. What is going on here?
In general, the pipe sends the result of the left side of the pipe to be the first argument of
the function on the right side of the pipe. Here is a very simple example:

16 %>% sqrt()
#> [1] 4

We can continue to pipe values along:

16 %>% sqrt() %>% log2()
#> [1] 2

The above statement is equivalent to log2(sqrt(16)).
Remember that the pipe sends values to the first argument, so we can define other arguments
as if the first argument is already defined:

16 %>% sqrt() %>% log(base = 2)
#> [1] 2

Therefore, when using the pipe with data frames and dplyr, we no longer need to specify
the required first argument since the dplyr functions we have described all take the data
as the first argument. In the code we wrote:

murders %>% select(state, region, rate) %>% filter(rate <= 0.71)

murders is the first argument of the select function, and the new data frame (formerly
new_table) is the first argument of the filter function.
Note that the pipe works well with functions where the first argument is the input data.
Functions in tidyverse packages like dplyr have this format and can be used easily with
the pipe.

4.6 Exercises

1. The pipe %>% can be used to perform operations sequentially without having to define
intermediate objects. Start by redefining murder to include rate and rank.

murders <- mutate(murders, rate = total / population * 100000,
rank = rank(-rate))

In the solution to the previous exercise, we did the following:

my_states <- filter(murders, region %in% c("Northeast", "West") &
rate < 1)

select(my_states, state, rate, rank)

www.dbooks.org

https://www.dbooks.org/

88 4 The tidyverse

The pipe %>% permits us to perform both operations sequentially without having to define
an intermediate variable my_states. We therefore could have mutated and selected in the
same line like this:

mutate(murders, rate = total / population * 100000,
rank = rank(-rate)) %>%

select(state, rate, rank)

Notice that select no longer has a data frame as the first argument. The first argument is
assumed to be the result of the operation conducted right before the %>%.

Repeat the previous exercise, but now instead of creating a new object, show the result and
only include the state, rate, and rank columns. Use a pipe %>% to do this in just one line.

2. Reset murders to the original table by using data(murders). Use a pipe to create a new
data frame called my_states that considers only states in the Northeast or West which have
a murder rate lower than 1, and contains only the state, rate and rank columns. The pipe
should also have four components separated by three %>%. The code should look something
like this:

my_states <- murders %>%
mutate SOMETHING %>%
filter SOMETHING %>%
select SOMETHING

4.7 Summarizing data

An important part of exploratory data analysis is summarizing data. The average and
standard deviation are two examples of widely used summary statistics. More informative
summaries can often be achieved by first splitting data into groups. In this section, we cover
two new dplyr verbs that make these computations easier: summarize and group_by. We
learn to access resulting values using the pull function.

4.7.1 summarize

The summarize function in dplyr provides a way to compute summary statistics with
intuitive and readable code. We start with a simple example based on heights. The heights
dataset includes heights and sex reported by students in an in-class survey.

library(dplyr)
library(dslabs)
data(heights)

The following code computes the average and standard deviation for females:

4.7 Summarizing data 89

s <- heights %>%
filter(sex == "Female") %>%
summarize(average = mean(height), standard_deviation = sd(height))

s
#> average standard_deviation
#> 1 64.9 3.76

This takes our original data table as input, filters it to keep only females, and then produces
a new summarized table with just the average and the standard deviation of heights. We get
to choose the names of the columns of the resulting table. For example, above we decided to
use average and standard_deviation, but we could have used other names just the same.

Because the resulting table stored in s is a data frame, we can access the components with
the accessor $:

s$average
#> [1] 64.9
s$standard_deviation
#> [1] 3.76

As with most other dplyr functions, summarize is aware of the variable names and we can
use them directly. So when inside the call to the summarize function we write mean(height),
the function is accessing the column with the name “height” and then computing the average
of the resulting numeric vector. We can compute any other summary that operates on vectors
and returns a single value. For example, we can add the median, minimum, and maximum
heights like this:

heights %>%
filter(sex == "Female") %>%
summarize(median = median(height), minimum = min(height),

maximum = max(height))
#> median minimum maximum
#> 1 65 51 79

We can obtain these three values with just one line using the quantile function: for example,
quantile(x, c(0,0.5,1)) returns the min (0th percentile), median (50th percentile), and
max (100th percentile) of the vector x. However, if we attempt to use a function like this
that returns two or more values inside summarize:

heights %>%
filter(sex == "Female") %>%
summarize(range = quantile(height, c(0, 0.5, 1)))

we will receive an error: Error: expecting result of length one, got : 2. With the
function summarize, we can only call functions that return a single value. In Section 4.12,
we will learn how to deal with functions that return more than one value.

For another example of how we can use the summarize function, let’s compute the average
murder rate for the United States. Remember our data table includes total murders and
population size for each state and we have already used dplyr to add a murder rate column:

www.dbooks.org

https://www.dbooks.org/

90 4 The tidyverse

murders <- murders %>% mutate(rate = total/population*100000)

Remember that the US murder rate is not the average of the state murder rates:

summarize(murders, mean(rate))
#> mean(rate)
#> 1 2.78

This is because in the computation above the small states are given the same weight as the
large ones. The US murder rate is the total number of murders in the US divided by the
total US population. So the correct computation is:

us_murder_rate <- murders %>%
summarize(rate = sum(total) / sum(population) * 100000)

us_murder_rate
#> rate
#> 1 3.03

This computation counts larger states proportionally to their size which results in a larger
value.

4.7.2 pull

The us_murder_rate object defined above represents just one number. Yet we are storing
it in a data frame:

class(us_murder_rate)
#> [1] "data.frame"

since, as most dplyr functions, summarize always returns a data frame.
This might be problematic if we want to use this result with functions that require a numeric
value. Here we show a useful trick for accessing values stored in data when using pipes: when
a data object is piped that object and its columns can be accessed using the pull function.
To understand what we mean take a look at this line of code:

us_murder_rate %>% pull(rate)
#> [1] 3.03

This returns the value in the rate column of us_murder_rate making it equivalent to
us_murder_rate$rate.
To get a number from the original data table with one line of code we can type:

us_murder_rate <- murders %>%
summarize(rate = sum(total) / sum(population) * 100000) %>%
pull(rate)

us_murder_rate
#> [1] 3.03

4.7 Summarizing data 91

which is now a numeric:

class(us_murder_rate)
#> [1] "numeric"

4.7.3 Group then summarize with group_by

A common operation in data exploration is to first split data into groups and then compute
summaries for each group. For example, we may want to compute the average and standard
deviation for men’s and women’s heights separately. The group_by function helps us do
this.

If we type this:

heights %>% group_by(sex)
#> # A tibble: 1,050 x 2
#> # Groups: sex [2]
#> sex height
#> <fct> <dbl>
#> 1 Male 75
#> 2 Male 70
#> 3 Male 68
#> 4 Male 74
#> 5 Male 61
#> # ... with 1,045 more rows

The result does not look very different from heights, except we see Groups: sex [2] when
we print the object. Although not immediately obvious from its appearance, this is now a
special data frame called a grouped data frame and dplyr functions, in particular summarize,
will behave differently when acting on this object. Conceptually, you can think of this table
as many tables, with the same columns but not necessarily the same number of rows, stacked
together in one object. When we summarize the data after grouping, this is what happens:

heights %>%
group_by(sex) %>%
summarize(average = mean(height), standard_deviation = sd(height))

#> # A tibble: 2 x 3
#> sex average standard_deviation
#> <fct> <dbl> <dbl>
#> 1 Female 64.9 3.76
#> 2 Male 69.3 3.61

The summarize function applies the summarization to each group separately.

For another example, let’s compute the median murder rate in the four regions of the
country:

murders %>%
group_by(region) %>%
summarize(median_rate = median(rate))

www.dbooks.org

https://www.dbooks.org/

92 4 The tidyverse

#> # A tibble: 4 x 2
#> region median_rate
#> <fct> <dbl>
#> 1 Northeast 1.80
#> 2 South 3.40
#> 3 North Central 1.97
#> 4 West 1.29

4.8 Sorting data frames

When examining a dataset, it is often convenient to sort the table by the different columns.
We know about the order and sort function, but for ordering entire tables, the dplyr
function arrange is useful. For example, here we order the states by population size:

murders %>%
arrange(population) %>%
head()

#> state abb region population total rate
#> 1 Wyoming WY West 563626 5 0.887
#> 2 District of Columbia DC South 601723 99 16.453
#> 3 Vermont VT Northeast 625741 2 0.320
#> 4 North Dakota ND North Central 672591 4 0.595
#> 5 Alaska AK West 710231 19 2.675
#> 6 South Dakota SD North Central 814180 8 0.983

With arrange we get to decide which column to sort by. To see the states by population,
from smallest to largest, we arrange by rate instead:

murders %>%
arrange(rate) %>%
head()

#> state abb region population total rate
#> 1 Vermont VT Northeast 625741 2 0.320
#> 2 New Hampshire NH Northeast 1316470 5 0.380
#> 3 Hawaii HI West 1360301 7 0.515
#> 4 North Dakota ND North Central 672591 4 0.595
#> 5 Iowa IA North Central 3046355 21 0.689
#> 6 Idaho ID West 1567582 12 0.766

Note that the default behavior is to order in ascending order. In dplyr, the function desc
transforms a vector so that it is in descending order. To sort the table in descending order,
we can type:

murders %>%
arrange(desc(rate))

4.9 Exercises 93

4.8.1 Nested sorting

If we are ordering by a column with ties, we can use a second column to break the tie.
Similarly, a third column can be used to break ties between first and second and so on. Here
we order by region, then within region we order by murder rate:

murders %>%
arrange(region, rate) %>%
head()

#> state abb region population total rate
#> 1 Vermont VT Northeast 625741 2 0.320
#> 2 New Hampshire NH Northeast 1316470 5 0.380
#> 3 Maine ME Northeast 1328361 11 0.828
#> 4 Rhode Island RI Northeast 1052567 16 1.520
#> 5 Massachusetts MA Northeast 6547629 118 1.802
#> 6 New York NY Northeast 19378102 517 2.668

4.8.2 The top n

In the code above, we have used the function head to avoid having the page fill up with the
entire dataset. If we want to see a larger proportion, we can use the top_n function. This
function takes a data frame as it’s first argument, the number of rows to show in the second,
and the variable to filter by in the third. Here is an example of how to see the top 5 rows:

murders %>% top_n(5, rate)
#> state abb region population total rate
#> 1 District of Columbia DC South 601723 99 16.45
#> 2 Louisiana LA South 4533372 351 7.74
#> 3 Maryland MD South 5773552 293 5.07
#> 4 Missouri MO North Central 5988927 321 5.36
#> 5 South Carolina SC South 4625364 207 4.48

Note that rows are not sorted by rate, only filtered. If we want to sort, we need to use
arrange. Note that if the third argument is left blank, top_n, filters by the last column.

4.9 Exercises

For these exercises, we will be using the data from the survey collected by the United States
National Center for Health Statistics (NCHS). This center has conducted a series of health
and nutrition surveys since the 1960’s. Starting in 1999, about 5,000 individuals of all ages
have been interviewed every year and they complete the health examination component of
the survey. Part of the data is made available via the NHANES package. Once you install
the NHANES package, you can load the data like this:

www.dbooks.org

https://www.dbooks.org/

94 4 The tidyverse

library(NHANES)
data(NHANES)

The NHANES data has many missing values. Remember that the main summarization
function in R will return NA if any of the entries of the input vector is an NA. Here is an
example:

library(dslabs)
data(na_example)
mean(na_example)
#> [1] NA
sd(na_example)
#> [1] NA

To ignore the NAs we can use the na.rm argument:

mean(na_example, na.rm = TRUE)
#> [1] 2.3
sd(na_example, na.rm = TRUE)
#> [1] 1.22

Let’s now explore the NHANES data.

1. We will provide some basic facts about blood pressure. First let’s select a group to set the
standard. We will use 20-to-29-year-old females. AgeDecade is a categorical variable with
these ages. Note that the category is coded like ” 20-29“, with a space in front! What is the
average and standard deviation of systolic blood pressure as saved in the BPSysAve variable?
Save it to a variable called ref.

Hint: Use filter and summarize and use the na.rm = TRUE argument when computing the
average and standard deviation. You can also filter the NA values using filter.

2. Using a pipe, assign the average to a numeric variable ref_avg. Hint: Use the code similar
to above and then pull.

3. Now report the min and max values for the same group.

4. Compute the average and standard deviation for females, but for each age group separately
rather than a selected decade as in question 1. Note that the age groups are defined by
AgeDecade. Hint: rather than filtering by age and gender, filter by Gender and then use
group_by.

5. Repeat exercise 4 for males.

6. We can actually combine both summaries for exercises 4 and 5 into one line of code.
This is because group_by permits us to group by more than one variable. Obtain one big
summary table using group_by(AgeDecade, Gender).

7. For males between the ages of 40-49, compare systolic blood pressure across race as
reported in the Race1 variable. Order the resulting table from lowest to highest average
systolic blood pressure.

4.10 Tibbles 95

4.10 Tibbles

Tidy data must be stored in data frames. We introduced the data frame in Section 2.4.1 and
have been using the murders data frame throughout the book. In Section 4.7.3 we introduced
the group_by function, which permits stratifying data before computing summary statistics.
But where is the group information stored in the data frame?

murders %>% group_by(region)
#> # A tibble: 51 x 6
#> # Groups: region [4]
#> state abb region population total rate
#> <chr> <chr> <fct> <dbl> <dbl> <dbl>
#> 1 Alabama AL South 4779736 135 2.82
#> 2 Alaska AK West 710231 19 2.68
#> 3 Arizona AZ West 6392017 232 3.63
#> 4 Arkansas AR South 2915918 93 3.19
#> 5 California CA West 37253956 1257 3.37
#> # ... with 46 more rows

Notice that there are no columns with this information. But, if you look closely at the
output above, you see the line A tibble followd by dimensions. We can learn the class of
the returned object using:

murders %>% group_by(region) %>% class()
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"

The tbl, pronounced tibble, is a special kind of data frame. The functions group_by and
summarize always return this type of data frame. The group_by function returns a special
kind of tbl, the grouped_df. We will say more about these later. For consistency, the
dplyr manipulation verbs (select, filter, mutate, and arrange) preserve the class of the
input: if they receive a regular data frame they return a regular data frame, while if they
receive a tibble they return a tibble. But tibbles are the preferred format in the tidyverse
and as a result tidyverse functions that produce a data frame from scratch return a tibble.
For example, in Chapter 5 we will see that tidyverse functions used to import data create
tibbles.

Tibbles are very similar to data frames. In fact, you can think of them as a modern version
of data frames. Nonetheless there are three important differences which we describe in the
next.

4.10.1 Tibbles display better

The print method for tibbles is more readable than that of a data frame. To see this, compare
the outputs of typing murders and the output of murders if we convert it to a tibble. We
can do this using as_tibble(murders). If using RStudio, output for a tibble adjusts to
your window size. To see this, change the width of your R console and notice how more/less
columns are shown.

www.dbooks.org

https://www.dbooks.org/

96 4 The tidyverse

4.10.2 Subsets of tibbles are tibbles

If you subset the columns of a data frame, you may get back an object that is not a data
frame, such as a vector or scalar. For example:

class(murders[,4])
#> [1] "numeric"

is not a data frame. With tibbles this does not happen:

class(as_tibble(murders)[,4])
#> [1] "tbl_df" "tbl" "data.frame"

This is useful in the tidyverse since functions require data frames as input.

With tibbles, if you want to access the vector that defines a column, and not get back a
data frame, you need to use the accessor $:

class(as_tibble(murders)$population)
#> [1] "numeric"

A related feature is that tibbles will give you a warning if you try to access a column that
does not exist. If we accidentally write Population instead of population this:

murders$Population
#> NULL

returns a NULL with no warning, which can make it harder to debug. In contrast, if we try
this with a tibble we get an informative warning:

as_tibble(murders)$Population
#> Warning: Unknown or uninitialised column: 'Population'.
#> NULL

4.10.3 Tibbles can have complex entries

While data frame columns need to be vectors of numbers, strings, or logical values, tibbles
can have more complex objects, such as lists or functions. Also, we can create tibbles with
functions:

tibble(id = c(1, 2, 3), func = c(mean, median, sd))
#> # A tibble: 3 x 2
#> id func
#> <dbl> <list>
#> 1 1 <fn>
#> 2 2 <fn>
#> 3 3 <fn>

4.11 The dot operator 97

4.10.4 Tibbles can be grouped

The function group_by returns a special kind of tibble: a grouped tibble. This class stores
information that lets you know which rows are in which groups. The tidyverse functions, in
particular the summarize function, are aware of the group information.

4.10.5 Create a tibble using tibble instead of data.frame

It is sometimes useful for us to create our own data frames. To create a data frame in the
tibble format, you can do this by using the tibble function.

grades <- tibble(names = c("John", "Juan", "Jean", "Yao"),
exam_1 = c(95, 80, 90, 85),
exam_2 = c(90, 85, 85, 90))

Note that base R (without packages loaded) has a function with a very similar name,
data.frame, that can be used to create a regular data frame rather than a tibble. One
other important difference is that by default data.frame coerces characters into factors
without providing a warning or message:

grades <- data.frame(names = c("John", "Juan", "Jean", "Yao"),
exam_1 = c(95, 80, 90, 85),
exam_2 = c(90, 85, 85, 90))

class(grades$names)
#> [1] "factor"

To avoid this, we use the rather cumbersome argument stringsAsFactors:

grades <- data.frame(names = c("John", "Juan", "Jean", "Yao"),
exam_1 = c(95, 80, 90, 85),
exam_2 = c(90, 85, 85, 90),
stringsAsFactors = FALSE)

class(grades$names)
#> [1] "character"

To convert a regular data frame to a tibble, you can use the as_tibble function.

as_tibble(grades) %>% class()
#> [1] "tbl_df" "tbl" "data.frame"

4.11 The dot operator

One of the advantages of using the pipe %>% is that we do not have to keep naming new
objects as we manipulate the data frame. As a quick reminder, if we want to compute the
median murder rate for states in the southern states, instead of typing:

www.dbooks.org

https://www.dbooks.org/

98 4 The tidyverse

tab_1 <- filter(murders, region == "South")
tab_2 <- mutate(tab_1, rate = total / population * 10^5)
rates <- tab_2$rate
median(rates)
#> [1] 3.4

We can avoid defining any new intermediate objects by instead typing:

filter(murders, region == "South") %>%
mutate(rate = total / population * 10^5) %>%
summarize(median = median(rate)) %>%
pull(median)

#> [1] 3.4

We can do this because each of these functions takes a data frame as the first argument.
But what if we want to access a component of the data frame. For example, what if the
pull function was not available and we wanted to access tab_2$rate? What data frame
name would we use? The answer is the dot operator.
For example to access the rate vector without the pull function we could use

rates <-filter(murders, region == "South") %>%
mutate(rate = total / population * 10^5) %>%
.$rate

median(rates)
#> [1] 3.4

In the next section, we will see other instances in which using the . is useful.

4.12 do

The tidyverse functions know how to interpret grouped tibbles. Furthermore, to facilitate
stringing commands through the pipe %>%, tidyverse functions consistently return data
frames, since this assures that the output of a function is accepted as the input of an-
other. But most R functions do not recognize grouped tibbles nor do they return data
frames. The quantile function is an example we described in Section 4.7.1. The do func-
tion serves as a bridge between R functions such as quantile and the tidyverse. The do
function understands grouped tibbles and always returns a data frame.
In Section 4.7.1, we noted that if we attempt to use quantile to obtain the min, median
and max in one call, we will receive an error: Error: expecting result of length one,
got : 2.

data(heights)
heights %>%
filter(sex == "Female") %>%
summarize(range = quantile(height, c(0, 0.5, 1)))

4.13 do 99

We can use the do function to fix this.

First we have to write a function that fits into the tidyverse approach: that is, it receives a
data frame and returns a data frame.

my_summary <- function(dat){
x <- quantile(dat$height, c(0, 0.5, 1))
tibble(min = x[1], median = x[2], max = x[3])

}

We can now apply the function to the heights dataset to obtain the summaries:

heights %>%
group_by(sex) %>%
my_summary

#> # A tibble: 1 x 3
#> min median max
#> <dbl> <dbl> <dbl>
#> 1 50 68.5 82.7

But this is not what we want. We want a summary for each sex and the code returned just
one summary. This is because my_summary is not part of the tidyverse and does not know
how to handled grouped tibbles. do makes this connection:

heights %>%
group_by(sex) %>%
do(my_summary(.))

#> # A tibble: 2 x 4
#> # Groups: sex [2]
#> sex min median max
#> <fct> <dbl> <dbl> <dbl>
#> 1 Female 51 65.0 79
#> 2 Male 50 69 82.7

Note that here we need to use the dot operator. The tibble created by group_by is piped to
do. Within the call to do, the name of this tibble is . and we want to send it to my_summary.
If you do not use the dot, then my_summary has __no argument and returns an error telling
us that argument "dat" is missing. You can see the error by typing:

heights %>%
group_by(sex) %>%
do(my_summary())

If you do not use the parenthesis, then the function is not executed and instead do tries to
return the function. This gives an error because do must always return a data frame. You
can see the error by typing:

heights %>%
group_by(sex) %>%
do(my_summary)

www.dbooks.org

https://www.dbooks.org/

100 4 The tidyverse

4.13 The purrr package

In Section 3.5 we learned about the sapply function, which permitted us to apply the same
function to each element of a vector. We constructed a function and used sapply to compute
the sum of the first n integers for several values of n like this:

compute_s_n <- function(n){
x <- 1:n
sum(x)

}
n <- 1:25
s_n <- sapply(n, compute_s_n)

This type of operation, applying the same function or procedure to elements of an object,
is quite common in data analysis. The purrr package includes functions similar to sapply
but that better interact with other tidyverse functions. The main advantage is that we can
better control the output type of functions. In contrast, sapply can return several different
object types; for example, we might expect a numeric result from a line of code, but sapply
might convert our result to character under some circumstances. purrr functions will never
do this: they will return objects of a specified type or return an error if this is not possible.

The first purrr function we will learn is map, which works very similar to sapply but always,
without exception, returns a list:

library(purrr)
s_n <- map(n, compute_s_n)
class(s_n)
#> [1] "list"

If we want a numeric vector, we can instead use map_dbl which always returns a vector of
numeric values.

s_n <- map_dbl(n, compute_s_n)
class(s_n)
#> [1] "numeric"

This produces the same results as the sapply call shown above.

A particularly useful purrr function for interacting with the rest of the tidyverse is map_df,
which always returns a tibble data frame. However, the function being called needs to return
a vector or a list with names. For this reason, the following code would result in a Argument
1 must have names error:

s_n <- map_df(n, compute_s_n)

We need to change the function to make this work:

4.14 Tidyverse conditionals 101

compute_s_n <- function(n){
x <- 1:n
tibble(sum = sum(x))

}
s_n <- map_df(n, compute_s_n)

The purrr package provides much more functionality not covered here. For more details
you can consult this online resource.

4.14 Tidyverse conditionals

A typical data analysis will often involve one or more conditional operations. In Section
3.1 we described the ifelse function, which we will use extensively in this book. In this
section we present two dplyr functions that provide further functionality for performing
conditional operations.

4.14.1 case_when

The case_when function is useful for vectorizing conditional statements. It is similar to
ifelse but can output any number of values, as opposed to just TRUE or FALSE. Here is an
example splitting numbers into negative, positive, and 0:

x <- c(-2, -1, 0, 1, 2)
case_when(x < 0 ~ "Negative", x > 0 ~ "Positive", TRUE ~ "Zero")
#> [1] "Negative" "Negative" "Zero" "Positive" "Positive"

A common use for this function is to define categorical variables based on existing variables.
For example, suppose we want to compare the murder rates in three groups of states: New
England, West Coast, South, and other. For each state, we need to ask if it is in New England,
if it is not we ask if it is in the West Coast, if not we ask if it is in the South, and if not we
assign other. Here is how we use case_when to do this:

murders %>%
mutate(group = case_when(

abb %in% c("ME", "NH", "VT", "MA", "RI", "CT") ~ "New England",
abb %in% c("WA", "OR", "CA") ~ "West Coast",
region == "South" ~ "South",
TRUE ~ "Other")) %>%

group_by(group) %>%
summarize(rate = sum(total) / sum(population) * 10^5)

#> # A tibble: 4 x 2
#> group rate
#> <chr> <dbl>
#> 1 New England 1.72
#> 2 Other 2.71

www.dbooks.org

https://jennybc.github.io/purrr-tutorial/
https://www.dbooks.org/

102 4 The tidyverse

#> 3 South 3.63
#> 4 West Coast 2.90

4.14.2 between

A common operation in data analysis is to determine if a value falls inside an interval. We
can check this using conditionals. For example to check if the elements of a vector x are
between a and b we can type

x >= a & x <= b

However, this can become cumbersome, especially within the tidyverse approach. The
between function performs the same operation.

between(x, a, b)

4.15 Exercises

1. Load the murders dataset. Which of the following is true?

a. murders is in tidy format and is stored in a tibble.
b. murders is in tidy format and is stored in a data frame.
c. murders is not in tidy format and is stored in a tibble.
d. murders is not in tidy format and is stored in a data frame.

2. Use as_tibble to convert the murders data table into a tibble and save it in an object
called murders_tibble.

3. Use the group_by function to convert murders into a tibble that is grouped by region.

4. Write tidyverse code that is equivalent to this code:

exp(mean(log(murders$population)))

Write it using the pipe so that each function is called without arguments. Use the dot
operator to access the population. Hint: The code should start with murders %>%.

5. Use the map_df to create a data frame with three columns named n, s_n, and s_n_2.
The first column should contain the numbers 1 through 100. The second and third columns
should each contain the sum of 1 through n with n the row number.

5
Importing data

We have been using data sets already stored as R objects. A data scientist will rarely have
such luck and will have to import data into R from either a file, a database, or other sources.
Currently, one of the most common ways of storing and sharing data for analysis is through
electronic spreadsheets. A spreadsheet stores data in rows and columns. It is basically a file
version of a data frame. When saving such a table to a computer file, one needs a way to
define when a new row or column ends and the other begins. This in turn defines the cells
in which single values are stored.

When creating spreadsheets with text files, like the ones created with a simple text editor,
a new row is defined with return and columns are separated with some predefined special
character. The most common characters are comma (,), semicolon (;), space (), and tab
(a preset number of spaces or \t). Here is an example of what a comma separated file looks
like if we open it with a basic text editor:

The first row contains column names rather than data. We call this a header, and when we
read-in data from a spreadsheet it is important to know if the file has a header or not. Most
reading functions assume there is a header. To know if the file has a header, it helps to look
at the file before trying to read it. This can be done with a text editor or with RStudio.
In RStudio, we can do this by either opening the file in the editor or navigating to the file
location, double clicking on the file, and hitting View File.

However, not all spreadsheet files are in a text format. Google Sheets, which are rendered
on a browser, are an example. Another example is the proprietary format used by Microsoft
Excel. These can’t be viewed with a text editor. Despite this, due to the widespread use of
Microsoft Excel software, this format is widely used.

103

www.dbooks.org

https://www.dbooks.org/

104 5 Importing data

We start this chapter by describing the difference between text (ASCII), Unicode, and binary
files and how this affects how we import them. We then explain the concepts of file paths
and working directories, which are essential to understand how to import data effectively.
We then introduce the readr and readxl package and the functions that are available to
import spreadsheets into R. Finally, we provide some recommendations on how to store and
organize data in files. More complex challenges such as extracting data from web pages or
PDF documents are left for the Data Wrangling part of the book.

5.1 Paths and the working directory

The first step when importing data from a spreadsheet is to locate the file containing the
data. Although we do not recommend it, you can use an approach similar to what you do
to open files in Microsoft Excel by clicking on the RStudio “File” menu, clicking “Import
Dataset”, then clicking through folders until you find the file. We want to be able to write
code rather than use the point-and-click approach. The keys and concepts we need to learn
to do this are described in detail in the Productivity Tools part of this book. Here we provide
an overview of the very basics.
The main challenge in this first step is that we need to let the R functions doing the importing
know where to look for the file containing the data. The simplest way to do this is to have
a copy of the file in the folder in which the importing functions look by default. Once we do
this, all we have to supply to the importing function is the filename.
A spreadsheet containing the US murders data is included as part of the dslabs package.
Finding this file is not straightforward, but the following lines of code copy the file to the
folder in which R looks in by default. We explain how these lines work below.

filename <- "murders.csv"
dir <- system.file("extdata", package = "dslabs")
fullpath <- file.path(dir, filename)
file.copy(fullpath, "murders.csv")

This code does not read the data into R, it just copies a file. But once the file is copied, we
can import the data with a simple line of code. Here we use the read_csv function from
the readr package, which is part of the tidyverse.

library(tidyverse)
dat <- read_csv(filename)

The data is imported and stored in dat. The rest of this section defines some important
concepts and provides an overview of how we write code that tells R how to find the files
we want to import. Chapter 36 provides more details on this topic.

5.1.1 The filesystem

You can think of your computer’s filesystem as a series of nested folders, each containing
other folders and files. Data scientists refer to folders as directories. We refer to the folder

5.1 Paths and the working directory 105

that contains all other folders as the root directory. We refer to the directory in which we
are currently located as the working directory. The working directory therefore changes as
you move through folders: think of it as your current location.

5.1.2 Relative and full paths

The path of a file is a list of directory names that can be thought of as instructions on what
folders to click on, and in what order, to find the file. If these instructions are for finding
the file from the root directory we refer to it as the full path. If the instructions are for
finding the file starting in the working directory we refer to it as a relative path. Section 36.3
provides more details on this topic.

To see an example of a full path on your system type the following:

system.file(package = "dslabs")

The strings separated by slashes are the directory names. The first slash represents the root
directory and we know this is a full path because it starts with a slash. If the first directory
name appears without a slash in front, then the path is assumed to be relative. We can use
the function list.files to see examples of relative paths.

dir <- system.file(package = "dslabs")
list.files(path = dir)
#> [1] "data" "DESCRIPTION" "extdata" "help"
#> [5] "html" "INDEX" "Meta" "NAMESPACE"
#> [9] "R" "script"

These relative paths give us the location of the files or directories if we start in the directory
with the full path. For example, the full path to the help directory in the example above is
/Library/Frameworks/R.framework/Versions/3.5/Resources/library/dslabs/help.

Note: You will probably not make much use of the system.file function in your day-to-
day data analysis work. We introduce it in this section because it facilitates the sharing of
spreadsheets by including them in the dslabs package. You will rarely have the luxury of
data being included in packages you already have installed. However, you will frequently
need to navigate full and relative paths and import spreadsheet formatted data.

5.1.3 The working directory

We highly recommend only writing relative paths in your code. The reason is that full paths
are unique to your computer and you want your code to be portable. You can get the full
path of your working directory without writing out explicitly by using the getwd function.

wd <- getwd()

If you need to change your working directory, you can use the function setwd or you can
change it through RStudio by clicking on “Session”.

www.dbooks.org

https://www.dbooks.org/

106 5 Importing data

5.1.4 Generating path names

Another example of obtaining a full path without writing out explicitly was given above
when we created the object fullpath like this:

filename <- "murders.csv"
dir <- system.file("extdata", package = "dslabs")
fullpath <- file.path(dir, filename)

The function system.file provides the full path of the folder containing all the files and
directories relevant to the package specified by the package argument. By exploring the
directories in dir we find that the extdata contains the file we want:

dir <- system.file(package = "dslabs")
filename %in% list.files(file.path(dir, "extdata"))
#> [1] TRUE

The system.file function permits us to provide a subdirectory as a first argument, so we
can obtain the fullpath of the extdata directory like this:

dir <- system.file("extdata", package = "dslabs")

The function file.path is used to combine directory names to produce the full path of the
file we want to import.

fullpath <- file.path(dir, filename)

5.1.5 Copying files using paths

The final line of code we used to copy the file into our home directory used
the function file.copy. This function takes two arguments: the file to copy and the name
to give it in the new directory.

file.copy(fullpath, "murders.csv")
#> [1] TRUE

If a file is copied successfully, the file.copy function returns TRUE. Note that we are giving
the file the same name, murders.csv, but we could have named it anything. Also note that
by not starting the string with a slash, R assumes this is a relative path and copies the file
to the working directory.

You should be able to see the file in your working directory and can check by using:

list.files()

5.2 The readr and readxl packages 107

5.2 The readr and readxl packages

In this section we introduce the main tidyverse data importing functions. We will use the
murders.csv file provided by the dslabs package as an example. To simplify the illustration
we will copy the file to our working directory using the following code:

filename <- "murders.csv"
dir <- system.file("extdata", package = "dslabs")
fullpath <- file.path(dir, filename)
file.copy(fullpath, "murders.csv")

5.2.1 readr

The readr library includes functions for reading data stored in text file spreadsheets into
R. readr is part of the tidyverse package, or you can load it directly:

library(readr)

The following functions are available to read-in spreadsheets:

Function Format Typical suffix
read_table white space separated values txt
read_csv comma separated values csv
read_csv2 semicolon separated values csv
read_tsv tab delimited separated values tsv
read_delim general text file format, must define delimiter txt

Although the suffix usually tells us what type of file it is, there is no guarantee that these
always match. We can open the file to take a look or use the function read_lines to look
at a few lines:

read_lines("murders.csv", n_max = 3)
#> [1] "state,abb,region,population,total"
#> [2] "Alabama,AL,South,4779736,135"
#> [3] "Alaska,AK,West,710231,19"

This also shows that there is a header. Now we are ready to read-in the data into R. From
the .csv suffix and the peek at the file, we know to use read_csv:

dat <- read_csv(filename)
#> Parsed with column specification:
#> cols(
#> state = col_character(),
#> abb = col_character(),

www.dbooks.org

https://www.dbooks.org/

108 5 Importing data

#> region = col_character(),
#> population = col_double(),
#> total = col_double()
#>)

Note that we receive a message letting us know what data types were used for each column.
Also note that dat is a tibble, not just a data frame. This is because read_csv is a
tidyverse parser. We can confirm that the data has in fact been read-in with:

View(dat)

Finally, note that we can also use the full path for the file:

dat <- read_csv(fullpath)

5.2.2 readxl

You can load the readxl package using

library(readxl)

The package provides functions to read-in Microsoft Excel formats:

Function Format Typical suffix
read_excel auto detect the format xls, xlsx
read_xls original format xls
read_xlsx new format xlsx

The Microsoft Excel formats permit you to have more than one spreadsheet in one file.
These are referred to as sheets. The functions listed above read the first sheet by default,
but we can also read the others. The excel_sheets function gives us the names of all the
sheets in an Excel file. These names can then be passed to the sheet argument in the three
functions above to read sheets other than the first.

5.3 Exercises

1. Use the read_csv function to read each of the files that the following code saves in the
files object:

path <- system.file("extdata", package = "dslabs")
files <- list.files(path)
files

5.5 Downloading files 109

2. Note that the last one, the olive file, gives us a warning. This is because the first line of
the file is missing the header for the first column.
Read the help file for read_csv to figure out how to read in the file without reading this
header. If you skip the header, you should not get this warning. Save the result to an object
called dat.
3. A problem with the previous approach is that we don’t know what the columns represent.
Type:

names(dat)

to see that the names are not informative.
Use the readLines function to read in just the first line (we later learn how to extract values
from the output).

5.4 Downloading files

Another common place for data to reside is on the internet. When these data are in files,
we can download them and then import them or even read them directly from the web. For
example, we note that because our dslabs package is on GitHub, the file we downloaded
with the package has a url:

url <- "https://raw.githubusercontent.com/rafalab/dslabs/master/inst/
extdata/murders.csv"

The read_csv file can read these files directly:

dat <- read_csv(url)

If you want to have a local copy of the file, you can use the download.file function:

download.file(url, "murders.csv")

This will download the file and save it on your system with the name murders.csv. You
can use any name here, not necessarily murders.csv. Note that when using download.file
you should be careful as it will overwrite existing files without warning.
Two functions that are sometimes useful when downloading data from the internet are
tempdir and tempfile. The first creates a directory with a random name that is very likely
to be unique. Similarly, tempfile creates a character string, not a file, that is likely to be a
unique filename. So you can run a command like this which erases the temporary file once
it imports the data:

tmp_filename <- tempfile()
download.file(url, tmp_filename)
dat <- read_csv(tmp_filename)
file.remove(tmp_filename)

www.dbooks.org

https://www.dbooks.org/

110 5 Importing data

5.5 R-base importing functions

R-base also provides import functions. These have similar names to those in the tidyverse,
for example read.table, read.csv and read.delim. However, there are a couple of impor-
tant differences. To show this we read-in the data with an R-base function:

dat2 <- read.csv(filename)

An important difference is that the characters are converted to factors:

class(dat2$abb)
#> [1] "factor"
class(dat2$region)
#> [1] "factor"

This can be avoided by setting the argument stringsAsFactors to FALSE.

dat <- read.csv("murders.csv", stringsAsFactors = FALSE)
class(dat$state)
#> [1] "character"

In our experience this can be a cause for confusion since a variable that was saved as char-
acters in file is converted to factors regardless of what the variable represents. In fact, we
highly recommend setting stringsAsFactors=FALSE to be your default approach when us-
ing the R-base parsers. You can easily convert the desired columns to factors after importing
data.

5.5.1 scan

When reading in spreadsheets many things can go wrong. The file might have
a multiline header, be missing cells, or it might use an unexpected encod-
ing1. We recommend you read this post about common issues found here:
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-
developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/.
With experience you will learn how to deal with different challenges. Carefully reading the
help files for the functions discussed here will be useful. Two other functions that are helpful
are scan. With scan you can read-in each cell of a file. Here is an example:

path <- system.file("extdata", package = "dslabs")
filename <- "murders.csv"
x <- scan(file.path(path, filename), sep=",", what = "c")
x[1:10]
#> [1] "state" "abb" "region" "population" "total"
#> [6] "Alabama" "AL" "South" "4779736" "135"

Note that the tidyverse provides read_lines, a similarly useful function.
1https://en.wikipedia.org/wiki/Character_encoding

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://en.wikipedia.org/wiki/Character_encoding

5.8 Text versus binary files 111

5.6 Text versus binary files

For data science purposes, files can generally be classified into two categories: text files
(also known as ASCII files) and binary files. You have already worked with text files. All
your R scripts are text files and so are the R markdown files used to create this book.
The csv tables you have read are also text files. One big advantage of these files is that we
can easily “look” at them without having to purchase any kind of special software or follow
complicated instructions. Any text editor can be used to examine a text file, including freely
available editors such as RStudio, Notepad, textEdit, vi, emacs, nano, and pico. To see this,
try opening a csv file using the “Open file” RStudio tool. You should be able to see the
content right on your editor. However, if you try to open, say, an Excel xls file, jpg or png
file, you will not be able to see anything immediately useful. These are binary files. Excel
files are actually compressed folders with several text files inside. But the main distinction
here is that text files can be easily examined.

Although R includes tools for reading widely used binary files, such as xls files, in general
you will want to find data sets stored in text files. Similarly, when sharing data you want to
make it available as text files as long as storage is not an issue (binary files are much more
efficient at saving space on your disk). In general, plain-text formats make it easier to share
data since commercial software is not required for working with the data.

Extracting data from a spreadsheet stored as a text file is perhaps the easiest way to bring
data from a file to an R session. Unfortunately, spreadsheets are not always available and
the fact that you can look at text files does not necessarily imply that extracting data from
them will be straightforward. In the Data Wrangling part of the book we learn to extract
data from more complex text files such as html files.

5.7 Unicode versus ASCII

A pitfall in data science is assuming a file is an ASCII text file when, in fact, it is something
else that can look a lot like an ASCII text file: a Unicode text file.

To understand the difference between these, remember that everything on a computer needs
to eventually be converted to 0s and 1s. ASCII is an encoding that maps characters to
numbers. ASCII uses 7 bits (0s and 1s) which results in 27 = 128 unique items, enough to
encode all the characters on an English language keyboard. However, other languages use
characters not included in this encoding. For example, the é in México is not encoded by
ASCII. For this reason, a new encoding, using more than 7 bits, was defined: Unicode. When
using Unicode, one can chose between 8, 16, and 32 bits abbreviated UTF-8, UTF-16, and
UTF-32 respectively. RStudio actually defaults to UTF-8 encoding.

Although we do not go into the details of how to deal with the different encodings here, it is
important that you know these different encodings exist so that you can better diagnose a
problem if you encounter it. One way problems manifest themselves is when you see “weird
looking” characters you were not expecting. This StackOverflow discussion is an example:
https://stackoverflow.com/questions/18789330/r-on-windows-character-encoding-hell.

www.dbooks.org

https://stackoverflow.com/questions/18789330/r-on-windows-character-encoding-hell
https://www.dbooks.org/

112 5 Importing data

5.8 Organizing data with spreadsheets

Although there are R packages designed to read this format, if you are choosing a file format
to save your own data, you generally want to avoid Microsoft Excel. We recommend Google
Sheets as a free software tool for organizing data. We provide more recommendations in
the section Data Organization with Spreadsheets. This book focuses on data analysis. Yet
often a data scientist needs to collect data or work with others collecting data. Filling out
a spreadsheet by hand is a practice we highly discourage and instead recommend that the
process be automatized as much as possible. But sometimes you just have to do it. In this
section, we provide recommendations on how to store data in a spreadsheet. We summarize
a paper by Karl Broman and Kara Woo2. Below are their general recommendations. Please
read the paper for important details.

• Be Consistent - Before you commence entering data, have a plan. Once you have a plan,
be consistent and stick to it.

• Choose Good Names for Things - You want the names you pick for objects, files, and
directories to be memorable, easy to spell, and descriptive. This is actually a hard balance
to achieve and it does require time and thought. One important rule to follow is do not
use spaces, use underscores _ or dashes instead -. Also, avoid symbols; stick to letters
and numbers.

• Write Dates as YYYY-MM-DD - To avoid confusion, we strongly recommend using
this global ISO 8601 standard.

• No Empty Cells - Fill in all cells and use some common code for missing data.
• Put Just One Thing in a Cell - It is better to add columns to store the extra information

rather than having more than one piece of information in one cell.
• Make It a Rectangle - The spreadsheet should be a rectangle.
• Create a Data Dictionary - If you need to explain things, such as what the columns

are or what the labels used for categorical variables are, do this in a separate file.
• No Calculations in the Raw Data Files - Excel permits you to perform calculations.

Do not make this part of your spreadsheet. Code for calculations should be in a script.
• Do Not Use Font Color or Highlighting as Data - Most import functions are not

able to import this information. Encode this information as a variable instead.
• Make Backups - Make regular backups of your data.
• Use Data Validation to Avoid Errors - Leverage the tools in your spreadsheet software

so that the process is as error-free and repetitive-stress-injury-free as possible.
• Save the Data as Text Files - Save files for sharing in comma or tab delimited format.

5.9 Exercises

1. Pick a measurement you can take on a regular basis. For example, your daily weight or
how long it takes you to run 5 miles. Keep a spreadsheet that includes the date, the hour,
the measurement, and any other informative variable you think is worth keeping. Do this
for 2 weeks. Then make a plot.

2https://www.tandfonline.com/doi/abs/10.1080/00031305.2017.1375989

https://www.tandfonline.com/doi/abs/10.1080/00031305.2017.1375989

Part II

Data Visualization

www.dbooks.org

https://www.dbooks.org/

6
Introduction to data visualization

Looking at the numbers and character strings that define a dataset is rarely useful. To
convince yourself, print and stare at the US murders data table:

library(dslabs)
data(murders)
head(murders)
#> state abb region population total
#> 1 Alabama AL South 4779736 135
#> 2 Alaska AK West 710231 19
#> 3 Arizona AZ West 6392017 232
#> 4 Arkansas AR South 2915918 93
#> 5 California CA West 37253956 1257
#> 6 Colorado CO West 5029196 65

What do you learn from staring at this table? How quickly can you determine which states
have the largest populations? Which states have the smallest? How large is a typical state?
Is there a relationship between population size and total murders? How do murder rates
vary across regions of the country? For most human brains, it is quite difficult to extract
this information just by looking at the numbers. In contrast, the answer to all the questions
above are readily available from examining this plot:

AL

AK

AZ
AR

CA

CO
CT

DE
DC

FL
GA

HI

ID

IL
IN

IA

KS
KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ
NM

NY
NC

ND

OHOK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA
WV

WI

WY
10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

Region Northeast South North Central West

US Gun Murders in 2010

We are reminded of the saying “a picture is worth a thousand words”. Data visualization pro-
vides a powerful way to communicate a data-driven finding. In some cases, the visualization
is so convincing that no follow-up analysis is required.
The growing availability of informative datasets and software tools has led to increased re-
liance on data visualizations across many industries, academia, and government. A salient

115

www.dbooks.org

https://www.dbooks.org/

116 6 Introduction to data visualization

example is news organizations, which are increasingly embracing data journalism and in-
cluding effective infographics as part of their reporting.

A particularly effective example is a Wall Street Journal article1 showing data related to the
impact of vaccines on battling infectious diseases. One of the graphs shows measles cases
by US state through the years with a vertical line demonstrating when the vaccine was
introduced.

Vaccine introduced

Alabama
Arizona

Arkansas
California
Colorado

Connecticut
Delaware

District Of Columbia
Florida

Georgia
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

1940 1960 1980 2000

0 100 200 300

rate

Measles

Another striking example comes from a New York Times chart2, which summarizes scores
from the NYC Regents Exams. As described in the article3, these scores are collected for
several reasons, including to determine if a student graduates from high school. In New York
City you need a 65 to pass. The distribution of the test scores forces us to notice something
somewhat problematic:

1http://graphics.wsj.com/infectious-diseases-and-vaccines/?mc_cid=711ddeb86e
2http://graphics8.nytimes.com/images/2011/02/19/nyregion/19schoolsch/19schoolsch-popup.gif
3https://www.nytimes.com/2011/02/19/nyregion/19schools.html

http://graphics.wsj.com/infectious-diseases-and-vaccines/?mc_cid=711ddeb86e
http://graphics8.nytimes.com/images/2011/02/19/nyregion/19schoolsch/19schoolsch-popup.gif
https://www.nytimes.com/2011/02/19/nyregion/19schools.html

6.0 117

MINIMUM
REGENTS DIPLOMA
SCORE IS 65

2010 Regents scores on
the five most common tests

0

10000

20000

30000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

N
um

ber of tests

Scraping by

The most common test score is the minimum passing grade, with very few scores just below
the threshold. This unexpected result is consistent with students close to passing having
their scores bumped up.

This is an example of how data visualization can lead to discoveries which would otherwise
be missed if we simply subjected the data to a battery of data analysis tools or procedures.
Data visualization is the strongest tool of what we call exploratory data analysis (EDA).
John W. Tukey4, considered the father of EDA, once said,

“The greatest value of a picture is when it forces us to notice what we never
expected to see.”

Many widely used data analysis tools were initiated by discoveries made via EDA. EDA is
perhaps the most important part of data analysis, yet it is one that is often overlooked.

Data visualization is also now pervasive in philanthropic and educational organizations. In
the talks New Insights on Poverty5 and The Best Stats You’ve Ever Seen6, Hans Rosling
forces us to notice the unexpected with a series of plots related to world health and eco-
nomics. In his videos, he uses animated graphs to show us how the world is changing and
how old narratives are no longer true.

1962 2013

2 4 6 8 2 4 6 8

30

40

50

60

70

80

Fertility rate (births per woman)

Li
fe

 E
xp

ec
ta

nc
y

The West Sub−Saharan Africa East Asia Latin America Others

4https://en.wikipedia.org/wiki/John_Tukey
5https://www.ted.com/talks/hans_rosling_reveals_new_insights_on_poverty?language=en
6https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen

www.dbooks.org

https://en.wikipedia.org/wiki/John_Tukey
https://www.ted.com/talks/hans_rosling_reveals_new_insights_on_poverty?language=en
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
https://www.dbooks.org/

118 6 Introduction to data visualization

It is also important to note that mistakes, biases, systematic errors and other unexpected
problems often lead to data that should be handled with care. Failure to discover these
problems can give rise to flawed analyses and false discoveries. As an example, consider
that measurement devices sometimes fail and that most data analysis procedures are not
designed to detect these. Yet these data analysis procedures will still give you an answer.
The fact that it can be difficult or impossible to notice an error just from the reported
results makes data visualization particularly important.

In this part of the book, we will learn the basics of data visualization and exploratory data
analysis by using three motivating examples. We will use the ggplot2 package to code. To
learn the very basics, we will start with a somewhat artificial example: heights reported
by students. Then we will cover the two examples mentioned above: 1) world health and
economics and 2) infectious disease trends in the United States.

Of course, there is much more to data visualization than what we cover here. The following
are references for those who wish to learn more:

• ER Tufte (1983) The visual display of quantitative information. Graphics Press.
• ER Tufte (1990) Envisioning information. Graphics Press.
• ER Tufte (1997) Visual explanations. Graphics Press.
• WS Cleveland (1993) Visualizing data. Hobart Press.
• WS Cleveland (1994) The elements of graphing data. CRC Press.
• A Gelman, C Pasarica, R Dodhia (2002) Let’s practice what we preach: Turning tables

into graphs. The American Statistician 56:121-130.
• NB Robbins (2004) Creating more effective graphs. Wiley.
• A Cairo (2013) The functional art: An introduction to information graphics and visual-

ization. New Riders.
• N Yau (2013) Data points: Visualization that means something. Wiley.

We also do not cover interactive graphics, a topic that is too advanced for this book. Some
useful resources for those interested in learning more can be found below:

• https://shiny.rstudio.com/
• https://d3js.org/

https://shiny.rstudio.com/
https://d3js.org/

7
ggplot2

Exploratory data visualization is perhaps the greatest strength of R. One can quickly go
from idea to data to plot with a unique balance of flexibility and ease. For example, Excel
may be easier than R for some plots, but it is nowhere near as flexible. D3.js may be more
flexible and powerful than R, but it takes much longer to generate a plot.

Throughout the book, we will be creating plots using the ggplot21 package.

library(dplyr)
library(ggplot2)

Many other approaches are available for creating plots in R. In fact, the plotting capabil-
ities that come with a basic installation of R are already quite powerful. There are also
other packages for creating graphics such as grid and lattice. We chose to use ggplot2
in this book because it breaks plots into components in a way that permits beginners to
create relatively complex and aesthetically pleasing plots using syntax that is intuitive and
comparatively easy to remember.

One reason ggplot2 is generally more intuitive for beginners is that it uses a grammar of
graphics2, the gg in ggplot2. This is analogous to the way learning grammar can help a
beginner construct hundreds of different sentences by learning just a handful of verbs, nouns
and adjectives without having to memorize each specific sentence. Similarly, by learning a
handful of ggplot2 building blocks and its grammar, you will be able to create hundreds of
different plots.

Another reason ggplot2 is easy for beginners is that its default behavior is carefully chosen
to satisfy the great majority of cases and is visually pleasing. As a result, it is possible to
create informative and elegant graphs with relatively simple and readable code.

One limitation is that ggplot2 is designed to work exclusively with data tables in tidy
format (where rows are observations and columns are variables). However, a substantial
percentage of datasets that beginners work with are in, or can be converted into, this format.
An advantage of this approach is that, assuming that our data is tidy, ggplot2 simplifies
plotting code and the learning of grammar for a variety of plots.

To use ggplot2 you will have to learn several functions and arguments. These are hard to
memorize, so we highly recommend you have the ggplot2 cheat sheet handy. You can get a
copy here: https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
or simply perform an internet search for “ggplot2 cheat sheet”.

1https://ggplot2.tidyverse.org/
2http://www.springer.com/us/book/9780387245447

119

www.dbooks.org

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
https://ggplot2.tidyverse.org/
http://www.springer.com/us/book/9780387245447
https://www.dbooks.org/

120 7 ggplot2

7.1 The components of a graph

We will construct a graph that summarizes the US murders dataset that looks like this:

AL

AK

AZ
AR

CA

CO
CT

DE
DC

FL
GA

HI

ID

IL
IN

IA

KS
KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ
NM

NY
NC

ND

OHOK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA
WV

WI

WY
10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

Region Northeast South North Central West

US Gun Murders in 2010

We can clearly see how much states vary across population size and the total number
of murders. Not surprisingly, we also see a clear relationship between murder totals and
population size. A state falling on the dashed grey line has the same murder rate as the
US average. The four geographic regions are denoted with color, which depicts how most
southern states have murder rates above the average.

This data visualization shows us pretty much all the information in the data table. The code
needed to make this plot is relatively simple. We will learn to create the plot part by part.

The first step in learning ggplot2 is to be able to break a graph apart into components.
Let’s break down the plot above and introduce some of the ggplot2 terminology. The main
three components to note are:

• Data: The US murders data table is being summarized. We refer to this as the data
component.

• Geometry: The plot above is a scatterplot. This is referred to as the geometry com-
ponent. Other possible geometries are barplot, histogram, smooth densities, qqplot, and
boxplot. We will learn more about these in the Data Visualization part of the book.

• Aesthetic mapping: The plot uses several visual cues to represent the information pro-
vided by the dataset. The two most important cues in this plot are the point positions on
the x-axis and y-axis, which represent population size and the total number of murders,
respectively. Each point represents a different observation, and we map data about these
observations to visual cues like x- and y-scale. Color is another visual cue that we map
to region. We refer to this as the aesthetic mapping component. How we define the
mapping depends on what geometry we are using.

We also note that:

• The points are labeled with the state abbreviations.

7.2 ggplot objects 121

• The range of the x-axis and y-axis appears to be defined by the range of the data. They
are both on log-scales.

• There are labels, a title, a legend, and we use the style of The Economist magazine.

We will now construct the plot piece by piece.

We start by loading the dataset:

library(dslabs)
data(murders)

7.2 ggplot objects

The first step in creating a ggplot2 graph is to define a ggplot object. We do this with the
function ggplot, which initializes the graph. If we read the help file for this function, we
see that the first argument is used to specify what data is associated with this object:

ggplot(data = murders)

We can also pipe the data in as the first argument. So this line of code is equivalent to the
one above:

murders %>% ggplot()

It renders a plot, in this case a blank slate since no geometry has been defined. The only
style choice we see is a grey background.

What has happened above is that the object was created and, because it was not assigned,
it was automatically evaluated. But we can assign our plot to an object, for example like
this:

www.dbooks.org

https://www.dbooks.org/

122 7 ggplot2

p <- ggplot(data = murders)
class(p)
#> [1] "gg" "ggplot"

To render the plot associated with this object, we simply print the object p. The following
two lines of code each produce the same plot we see above:

print(p)
p

7.3 Geometries

In ggplot2 we create graphs by adding layers. Layers can define geometries, compute sum-
mary statistics, define what scales to use, or even change styles. To add layers, we use the
symbol +. In general, a line of code will look like this:

DATA %>% ggplot() + LAYER 1 + LAYER 2 + … + LAYER N

Usually, the first added layer defines the geometry. We want to make a scatterplot. What
geometry do we use?
Taking a quick look at the cheat sheet, we see that the function used to create plots with
this geometry is geom_point.

(Image courtesy of RStudio3. CC-BY-4.0 license4.)
Geometry function names follow the pattern: geom_X where X is the name of the geometry.
Some examples include geom_point, geom_bar, and geom_histogram.
For geom_point to run properly we need to provide data and a mapping. We have already
connected the object p with the murders data table, and if we add the layer geom_point it
defaults to using this data. To find out what mappings are expected, we read the Aesthetics
section of the help file geom_point help file:

3https://github.com/rstudio/cheatsheets
4https://github.com/rstudio/cheatsheets/blob/master/LICENSE

https://github.com/rstudio/cheatsheets
https://github.com/rstudio/cheatsheets/blob/master/LICENSE

7.4 Aesthetic mappings 123

> Aesthetics
>
> geom_point understands the following aesthetics (required aesthetics are in bold):
>
> x
>
> y
>
> alpha
>
> colour

and, as expected, we see that at least two arguments are required x and y.

7.4 Aesthetic mappings

Aesthetic mappings describe how properties of the data connect with features of the
graph, such as distance along an axis, size, or color. The aes function connects data with
what we see on the graph by defining aesthetic mappings and will be one of the functions
you use most often when plotting. The outcome of the aes function is often used as the
argument of a geometry function. This example produces a scatterplot of total murders
versus population in millions:

murders %>% ggplot() +
geom_point(aes(x = population/10^6, y = total))

We can drop the x = and y = if we wanted to since these are the first and second expected
arguments, as seen in the help page.
Instead of defining our plot from scratch, we can also add a layer to the p object that was
defined above as p <- ggplot(data = murders):

p + geom_point(aes(population/10^6, total))

0

400

800

1200

0 10 20 30
population/10^6

to
ta

l

www.dbooks.org

https://www.dbooks.org/

124 7 ggplot2

The scale and labels are defined by default when adding this layer. Like dplyr functions, aes
also uses the variable names from the object component: we can use population and total
without having to call them as murders$population and murders$total. The behavior
of recognizing the variables from the data component is quite specific to aes. With most
functions, if you try to access the values of population or total outside of aes you receive
an error.

7.5 Layers

A second layer in the plot we wish to make involves adding a label to each point to identify
the state. The geom_label and geom_text functions permit us to add text to the plot with
and without a rectangle behind the text, respectively.

Because each point (each state in this case) has a label, we need an aesthetic mapping to
make the connection between points and labels. By reading the help file, we learn that we
supply the mapping between point and label through the label argument of aes. So the
code looks like this:

p + geom_point(aes(population/10^6, total)) +
geom_text(aes(population/10^6, total, label = abb))

AL

AK

AZ

AR

CA

COCT
DE

DC

FL

GA

HIID

IL

IN

IA
KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MTNE
NV

NH

NJ

NM

NY

NC

ND

OH

OK
OR

PA

RI

SC

SD

TN

TX

UTVT

VA

WA
WV

WI
WY0

400

800

1200

0 10 20 30
population/10^6

to
ta

l

We have successfully added a second layer to the plot.

As an example of the unique behavior of aes mentioned above, note that this call:

p_test <- p + geom_text(aes(population/10^6, total, label = abb))

is fine, whereas this call:

p_test <- p + geom_text(aes(population/10^6, total), label = abb)

7.5 Layers 125

will give you an error since abb is not found because it is outside of the aes function. The
layer geom_text does not know where to find abb since it is a column name and not a global
variable.

7.5.1 Tinkering with arguments

Each geometry function has many arguments other than aes and data. They tend to be
specific to the function. For example, in the plot we wish to make, the points are larger than
the default size. In the help file we see that size is an aesthetic and we can change it like
this:

p + geom_point(aes(population/10^6, total), size = 3) +
geom_text(aes(population/10^6, total, label = abb))

AL

AK

AZ

AR

CA

COCT
DE

DC

FL

GA

HIID

IL

IN

IA
KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MTNE
NV

NH

NJ

NM

NY

NC

ND

OH

OK
OR

PA

RI

SC

SD

TN

TX

UTVT

VA

WA
WV

WI
WY0

400

800

1200

0 10 20 30
population/10^6

to
ta

l

size is not a mapping: whereas mappings use data from specific observations and need to
be inside aes(), operations we want to affect all the points the same way do not need to be
included inside aes.

Now because the points are larger it is hard to see the labels. If we read the help file for
geom_text, we see the nudge_x argument, which moves the text slightly to the right or to
the left:

p + geom_point(aes(population/10^6, total), size = 3) +
geom_text(aes(population/10^6, total, label = abb), nudge_x = 1.5)

www.dbooks.org

https://www.dbooks.org/

126 7 ggplot2

AL

AK

AZ

AR

CA

COCT
DE
DC

FL

GA

HIID

IL

IN

IA
KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MTNE
NV

NH

NJ

NM

NY

NC

ND

OH

OK
OR

PA

RI

SC

SD

TN

TX

UTVT

VA

WA
WV

WI
WY0

400

800

1200

0 10 20 30 40
population/10^6

to
ta

l

This is preferred as it makes it easier to read the text. In Section 7.11 we learn a better way
of assuring we can see the points and the labels.

7.6 Global versus local aesthetic mappings

In the previous line of code, we define the mapping aes(population/10^6, total) twice,
once in each geometry. We can avoid this by using a global aesthetic mapping. We can do
this when we define the blank slate ggplot object. Remember that the function ggplot
contains an argument that permits us to define aesthetic mappings:

args(ggplot)
#> function (data = NULL, mapping = aes(), ..., environment = parent.frame())
#> NULL

If we define a mapping in ggplot, all the geometries that are added as layers will default to
this mapping. We redefine p:

p <- murders %>% ggplot(aes(population/10^6, total, label = abb))

and then we can simply write the following code to produce the previous plot:

p + geom_point(size = 3) +
geom_text(nudge_x = 1.5)

We keep the size and nudge_x arguments in geom_point and geom_text, respectively,
because we want to only increase the size of points and only nudge the labels. If we put
those arguments in aes then they would apply to both plots. Also note that the geom_point
function does not need a label argument and therefore ignores that aesthetic.

If necessary, we can override the global mapping by defining a new mapping within each
layer. These local definitions override the global. Here is an example:

7.7 Scales 127

p + geom_point(size = 3) +
geom_text(aes(x = 10, y = 800, label = "Hello there!"))

Hello there!

0

400

800

1200

0 10 20 30
population/10^6

to
ta

l

Clearly, the second call to geom_text does not use population and total.

7.7 Scales

First, our desired scales are in log-scale. This is not the default, so this change needs
to be added through a scales layer. A quick look at the cheat sheet reveals the
scale_x_continuous function lets us control the behavior of scales. We use them like this:

p + geom_point(size = 3) +
geom_text(nudge_x = 0.05) +
scale_x_continuous(trans = "log10") +
scale_y_continuous(trans = "log10")

AL

AK

AZ

AR

CA

CO
CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

10

100

1000

1 3 10 30
population/10^6

to
ta

l

www.dbooks.org

https://www.dbooks.org/

128 7 ggplot2

Because we are in the log-scale now, the nudge must be made smaller.

This particular transformation is so common that ggplot2 provides the specialized functions
scale_x_log10 and scale_y_log10, which we can use to rewrite the code like this:

p + geom_point(size = 3) +
geom_text(nudge_x = 0.05) +
scale_x_log10() +
scale_y_log10()

7.8 Labels and titles

Similarly, the cheat sheet quickly reveals that to change labels and add a title, we use the
following functions:

p + geom_point(size = 3) +
geom_text(nudge_x = 0.05) +
scale_x_log10() +
scale_y_log10() +
xlab("Populations in millions (log scale)") +
ylab("Total number of murders (log scale)") +
ggtitle("US Gun Murders in 2010")

AL

AK

AZ

AR

CA

CO
CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

US Gun Murders in 2010

We are almost there! All we have left to do is add color, a legend, and optional changes to
the style.

7.9 Categories as colors 129

7.9 Categories as colors

We can change the color of the points using the col argument in the geom_point function.
To facilitate demonstration of new features, we will redefine p to be everything except the
points layer:

p <- murders %>% ggplot(aes(population/10^6, total, label = abb)) +
geom_text(nudge_x = 0.05) +
scale_x_log10() +
scale_y_log10() +
xlab("Populations in millions (log scale)") +
ylab("Total number of murders (log scale)") +
ggtitle("US Gun Murders in 2010")

and then test out what happens by adding different calls to geom_point. We can make all
the points blue by adding the color argument:

p + geom_point(size = 3, color ="blue")

AL

AK

AZ

AR

CA

CO
CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

US Gun Murders in 2010

This, of course, is not what we want. We want to assign color depending on the geographical
region. A nice default behavior of ggplot2 is that if we assign a categorical variable to color,
it automatically assigns a different color to each category and also adds a legend.

Since the choice of color is determined by a feature of each observation, this is an aesthetic
mapping. To map each point to a color, we need to use aes. We use the following code:

p + geom_point(aes(col=region), size = 3)

www.dbooks.org

https://www.dbooks.org/

130 7 ggplot2

AL

AK

AZ

AR

CA

CO
CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

region

Northeast

South

North Central

West

US Gun Murders in 2010

The x and y mappings are inherited from those already defined in p, so we do not redefine
them. We also move aes to the first argument since that is where mappings are expected in
this function call.

Here we see yet another useful default behavior: ggplot2 automatically adds a legend
that maps color to region. To avoid adding this legend we set the geom_point argument
show.legend = FALSE.

7.10 Annotation, shapes, and adjustments

We often want to add shapes or annotation to figures that are not derived directly from the
aesthetic mapping; examples include labels, boxes, shaded areas, and lines.

Here we want to add a line that represents the average murder rate for the entire country.
Once we determine the per million rate to be r, this line is defined by the formula: y = rx,
with y and x our axes: total murders and population in millions, respectively. In the log-
scale this line turns into: log(y) = log(r) + log(x). So in our plot it’s a line with slope 1 and
intercept log(r). To compute this value, we use our dplyr skills:

r <- murders %>%
summarize(rate = sum(total) / sum(population) * 10^6) %>%
pull(rate)

To add a line we use the geom_abline function. ggplot2 uses ab in the name to remind us
we are supplying the intercept (a) and slope (b). The default line has slope 1 and intercept
0 so we only have to define the intercept:

p + geom_point(aes(col=region), size = 3) +
geom_abline(intercept = log10(r))

7.11 Add-on packages 131

AL

AK

AZ

AR

CA

CO
CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)

region

Northeast

South

North Central

West

US Gun Murders in 2010

Here geom_abline does not use any information from the data object.

We can change the line type and color of the lines using arguments. Also, we draw it first
so it doesn’t go over our points.

p <- p + geom_abline(intercept = log10(r), lty = 2, color = "darkgrey") +
geom_point(aes(col=region), size = 3)

Note that we have redefined p and used this new p below and in the next section.

The default plots created by ggplot2 are already very useful. However, we frequently need
to make minor tweaks to the default behavior. Although it is not always obvious how to
make these even with the cheat sheet, ggplot2 is very flexible.

For example, we can make changes to the legend via the scale_color_discrete function.
In our plot the word region is capitalized and we can change it like this:

p <- p + scale_color_discrete(name = "Region")

7.11 Add-on packages

The power of ggplot2 is augmented further due to the availability of add-on packages. The
remaining changes needed to put the finishing touches on our plot require the ggthemes
and ggrepel packages.

The style of a ggplot2 graph can be changed using the theme functions. Several themes are
included as part of the ggplot2 package. In fact, for most of the plots in this book, we use
a function in the dslabs package that automatically sets a default theme:

ds_theme_set()

Many other themes are added by the package ggthemes. Among those are the

www.dbooks.org

https://www.dbooks.org/

132 7 ggplot2

theme_economist theme that we used. After installing the package, you can change the
style by adding a layer like this:

library(ggthemes)
p + theme_economist()

You can see how some of the other themes look by simply changing the function. For instance,
you might try the theme_fivethirtyeight() theme instead.

The final difference has to do with the position of the labels. In our plot, some of the labels
fall on top of each other. The add-on package ggrepel includes a geometry that adds labels
while ensuring that they don’t fall on top of each other. We simply change geom_text with
geom_text_repel.

7.12 Putting it all together

Now that we are done testing, we can write one piece of code that produces our desired plot
from scratch.

library(ggthemes)
library(ggrepel)

r <- murders %>%
summarize(rate = sum(total) / sum(population) * 10^6) %>%
pull(rate)

murders %>% ggplot(aes(population/10^6, total, label = abb)) +
geom_abline(intercept = log10(r), lty = 2, color = "darkgrey") +
geom_point(aes(col=region), size = 3) +
geom_text_repel() +
scale_x_log10() +
scale_y_log10() +
xlab("Populations in millions (log scale)") +
ylab("Total number of murders (log scale)") +
ggtitle("US Gun Murders in 2010") +
scale_color_discrete(name = "Region") +
theme_economist()

7.14 Quick plots with qplot 133

AL

AK

AZ

AR

CA

CO
CT

DE
DC

FL
GA

HI

ID

IL
IN

IA

KS
KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ
NM

NY
NC

ND

OHOK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA
WV

WI

WY
10

100

1000

1 3 10 30
Populations in millions (log scale)

To
ta

l n
um

be
r

of
 m

ur
de

rs
 (

lo
g

sc
al

e)
Region Northeast South North Central West

US Gun Murders in 2010

7.13 Quick plots with qplot

We have learned the powerful approach to generating visualization with ggplot. However,
there are instances in which all we want is to make a quick plot of, for example, a histogram
of the values in a vector, a scatterplot of the values in two vectors, or a boxplot using
categorical and numeric vectors. We demonstrated how to generate these plots with hist,
plot, and boxplot. However, if we want to keep consistent with the ggplot style, we can
use the function qplot.

If we have values in two vectors, say:

data(murders)
x <- log10(murders$population)
y <- murders$total

and we want to make a scatterplot with ggplot, we would have to type something like:

data.frame(x = x, y = y) %>%
ggplot(aes(x, y)) +
geom_point()

This seems like too much code for such a simple plot. The qplot function sacrifices the
flexibility provided by the ggplot approach, but allows us to generate a plot quickly.

qplot(x, y)

We will learn more about qplot in Section 8.16

www.dbooks.org

https://www.dbooks.org/

134 7 ggplot2

7.14 Grids of plots

There are often reasons to graph plots next to each other. The gridExtra package permits
us to do that:

library(gridExtra)
p1 <- qplot(x)
p2 <- qplot(x,y)
grid.arrange(p1, p2, ncol = 2)

0

1

2

3

4

5

6.0 6.5 7.0 7.5
x

0

400

800

1200

6.0 6.5 7.0 7.5
x

y

7.15 Exercises

Start by loading the dplyr and ggplot2 library as well as the murders and heights data.

library(dplyr)
library(ggplot2)
library(dslabs)
data(heights)
data(murders)

1. With ggplot2 plots can be saved as objects. For example we can associate a dataset with
a plot object like this

p <- ggplot(data = murders)

Because data is the first argument we don’t need to spell it out

p <- ggplot(murders)

and we can also use the pipe:

7.15 Exercises 135

p <- murders %>% ggplot()

What is class of the object p?
2. Remember that to print an object you can use the command print or simply type the
object. Print the object p defined in exercise one and describe what you see.

a. Nothing happens.
b. A blank slate plot.
c. A scatterplot.
d. A histogram.

3. Using the pipe %>%, create an object p but this time associated with the heights dataset
instead of the murders dataset.
4. What is the class of the object p you have just created?
5. Now we are going to add a layer and the corresponding aesthetic mappings. For the
murders data we plotted total murders versus population sizes. Explore the murders data
frame to remind yourself what are the names for these two variables and select the correct
answer. Hint: Look at ?murders.

a. state and abb.
b. total_murders and population_size.
c. total and population.
d. murders and size.

6. To create the scatterplot we add a layer with geom_point. The aesthetic mappings require
us to define the x-axis and y-axis variables, respectively. So the code looks like this:

murders %>% ggplot(aes(x = , y =)) +
geom_point()

except we have to define the two variables x and y. Fill this out with the correct variable
names.
7. Note that if we don’t use argument names, we can obtain the same plot by making sure
we enter the variable names in the right order like this:

murders %>% ggplot(aes(population, total)) +
geom_point()

Remake the plot but now with total in the x-axis and population in the y-axis.
8. If instead of points we want to add text, we can use the geom_text() or geom_label()
geometries. The following code

murders %>% ggplot(aes(population, total)) + geom_label()

will give us the error message: Error: geom_label requires the following missing
aesthetics: label

Why is this?

www.dbooks.org

https://www.dbooks.org/

136 7 ggplot2

a. We need to map a character to each point through the label argument in aes.
b. We need to let geom_label know what character to use in the plot.
c. The geom_label geometry does not require x-axis and y-axis values.
d. geom_label is not a ggplot2 command.

9. Rewrite the code above to abbreviation as the label through aes

10. Change the color of the labels through blue. How will we do this?

a. Adding a column called blue to murders.
b. Because each label needs a different color we map the colors through aes.
c. Use the color argument in ggplot.
d. Because we want all colors to be blue, we do not need to map colors, just use the

color argument in geom_label.

11. Rewrite the code above to make the labels blue.

12. Now suppose we want to use color to represent the different regions. In this case which
of the following is most appropriate:

a. Adding a column called color to murders with the color we want to use.
b. Because each label needs a different color we map the colors through the color

argument of aes .
c. Use the color argument in ggplot.
d. Because we want all colors to be blue, we do not need to map colors, just use the

color argument in geom_label.

13. Rewrite the code above to make the labels’ color be determined by the state’s region.

14. Now we are going to change the x-axis to a log scale to account for the fact the distri-
bution of population is skewed. Let’s start by defining an object p holding the plot we have
made up to now

p <- murders %>%
ggplot(aes(population, total, label = abb, color = region)) +
geom_label()

To change the y-axis to a log scale we learned about the scale_x_log10() function. Add
this layer to the object p to change the scale and render the plot.

15. Repeat the previous exercise but now change both axes to be in the log scale.

16. Now edit the code above to add the title “Gun murder data” to the plot. Hint: use the
ggtitle function.

8
Visualizing data distributions

You may have noticed that numerical data is often summarized with the average value.
For example, the quality of a high school is sometimes summarized with one number: the
average score on a standardized test. Occasionally, a second number is reported: the standard
deviation. For example, you might read a report stating that scores were 680 plus or minus
50 (the standard deviation). The report has summarized an entire vector of scores with just
two numbers. Is this appropriate? Is there any important piece of information that we are
missing by only looking at this summary rather than the entire list?

Our first data visualization building block is learning to summarize lists of factors or numeric
vectors. More often than not, the best way to share or explore this summary is through
data visualization. The most basic statistical summary of a list of objects or numbers is its
distribution. Once a vector has been summarized as a distribution, there are several data
visualization techniques to effectively relay this information.

In this chapter, we first discuss properties of a variety of distributions and how to visualize
distributions using a motivating example of student heights. We then discuss the ggplot2
geometries for these visualizations in Section 8.16.

8.1 Variable types

We will be working with two types of variables: categorical and numeric. Each can be divided
into two other groups: categorical can be ordinal or not, whereas numerical variables can be
discrete or continuous.

When each entry in a vector comes from one of a small number of groups, we refer to
the data as categorical data. Two simple examples are sex (male or female) and regions
(Northeast, South, North Central, West). Some categorical data can be ordered even if
they are not numbers per se, such as spiciness (mild, medium, hot). In statistics textbooks,
ordered categorical data are referred to as ordinal data.

Examples of numerical data are population sizes, murder rates, and heights. Some numer-
ical data can be treated as ordered categorical. We can further divide numerical data into
continuous and discrete. Continuous variables are those that can take any value, such as
heights, if measured with enough precision. For example, a pair of twins may be 68.12 and
68.11 inches, respectively. Counts, such as population sizes, are discrete because they have
to be round numbers.

Keep in mind that discrete numeric data can be considered ordinal. Although this is tech-
nically true, we usually reserve the term ordinal data for variables belonging to a small
number of different groups, with each group having many members. In contrast, when we

137

www.dbooks.org

https://www.dbooks.org/

138 8 Visualizing data distributions

have many groups with few cases in each group, we typically refer to them as discrete nu-
merical variables. So, for example, the number of packs of cigarettes a person smokes a
day, rounded to the closest pack, would be considered ordinal, while the actual number of
cigarettes would be considered a numerical variable. But, indeed, there are examples that
can be considered both numerical and ordinal when it comes to visualizing data.

8.2 Case study: describing student heights

Here we introduce a new motivating problem. It is an artificial one, but it will help us
illustrate the concepts needed to understand distributions.

Pretend that we have to describe the heights of our classmates to ET, an extraterrestrial
that has never seen humans. As a first step, we need to collect data. To do this, we ask
students to report their heights in inches. We ask them to provide sex information because
we know there are two different distributions by sex. We collect the data and save it in the
heights data frame:

library(tidyverse)
library(dslabs)
data(heights)

One way to convey the heights to ET is to simply send him this list of 1050 heights. But there
are much more effective ways to convey this information, and understanding the concept
of a distribution will help. To simplify the explanation, we first focus on male heights. We
examine the female height data in Section 8.14.

8.3 Distribution function

It turns out that, in some cases, the average and the standard deviation are pretty much all
we need to understand the data. We will learn data visualization techniques that will help
us determine when this two number summary is appropriate. These same techniques will
serve as an alternative for when two numbers are not enough.

The most basic statistical summary of a list of objects or numbers is its distribution. The
simplest way to think of a distribution is as a compact description of a list with many entries.
This concept should not be new for readers of this book. For example, with categorical data,
the distribution simply describes the proportion of each unique category. The sex represented
in the heights dataset is:

#>
#> Female Male
#> 0.227 0.773

8.4 Cumulative distribution functions 139

This two-category frequency table is the simplest form of a distribution. We don’t really need
to visualize it since one number describes everything we need to know: 23% are females and
the rest are males. When there are more categories, then a simple barplot describes the
distribution. Here is an example with US state regions:

0.0

0.1

0.2

0.3

Northeast North Central West South

P
ro

po
rt

io
n

This particular plot simply shows us four numbers, one for each category. We usually use
barplots to display a few numbers. Although this particular plot does not provide much
more insight than a frequency table itself, it is a first example of how we convert a vector
into a plot that succinctly summarizes all the information in the vector. When the data is
numerical, the task of displaying distributions is more challenging.

8.4 Cumulative distribution functions

Numerical data that are not categorical also have distributions. In general, when data is
not categorical, reporting the frequency of each entry is not an effective summary since
most entries are unique. In our case study, while several students reported a height of 68
inches, only one student reported a height of 68.503937007874 inches and only one student
reported a height 68.8976377952756 inches. We assume that they converted from 174 and
175 centimeters, respectively.

Statistics textbooks teach us that a more useful way to define a distribution for numeric
data is to define a function that reports the proportion of the data below a for all possible
values of a. This function is called the cumulative distribution function (CDF). In statistics,
the following notation is used:

F (a) = Pr(x ≤ a)

Here is a plot of F for the male height data:

www.dbooks.org

https://www.dbooks.org/

140 8 Visualizing data distributions

0.00

0.25

0.50

0.75

1.00

50 60 70 80
a

F
(a

)

Similar to what the frequency table does for categorical data, the CDF defines the distri-
bution for numerical data. From the plot, we can see that 16% of the values are below 65,
since F (66) = 0.164, or that 84% of the values are below 72, since F (72) = 0.841, and so
on. In fact, we can report the proportion of values between any two heights, say a and b, by
computing F (b) − F (a). This means that if we send this plot above to ET, he will have all
the information needed to reconstruct the entire list. Paraphrasing the expression “a picture
is worth a thousand words”, in this case, a picture is as informative as 812 numbers.

A final note: because CDFs can be defined mathematically the word empirical is added to
make the distinction when data is used. We therefore use the term empirical CDF (eCDF).

8.5 Histograms

Although the CDF concept is widely discussed in statistics textbooks, the plot is actually
not very popular in practice. The main reason is that it does not easily convey characteristics
of interest such as: at what value is the distribution centered? Is the distribution symmetric?
What ranges contain 95% of the values? Histograms are much preferred because they greatly
facilitate answering such questions. Histograms sacrifice just a bit of information to produce
plots that are much easier to interpret.

The simplest way to make a histogram is to divide the span of our data into non-overlapping
bins of the same size. Then, for each bin, we count the number of values that fall in that
interval. The histogram plots these counts as bars with the base of the bar defined by the
intervals. Here is the histogram for the height data splitting the range of values into one
inch intervals: [49.5, 50.5], [51.5, 52.5], (53.5, 54.5], ..., (82.5, 83.5]

8.6 Smoothed density 141

0

25

50

75

100

50 60 70 80
height

co
un

t

As you can see in the figure above, a histogram is similar to a barplot, but it differs in that
the x-axis is numerical, not categorical.

If we send this plot to ET, he will immediately learn some important properties about our
data. First, the range of the data is from 50 to 84 with the majority (more than 95%)
between 63 and 75 inches. Second, the heights are close to symmetric around 69 inches.
Also, by adding up counts, ET could obtain a very good approximation of the proportion of
the data in any interval. Therefore, the histogram above is not only easy to interpret, but
also provides almost all the information contained in the raw list of 812 heights with about
30 bin counts.

What information do we lose? Note that all values in each interval are treated the same
when computing bin heights. So, for example, the histogram does not distinguish between
64, 64.1, and 64.2 inches. Given that these differences are almost unnoticeable to the eye,
the practical implications are negligible and we were able to summarize the data to just 23
numbers.

We discuss how to code histograms in Section 8.16.

8.6 Smoothed density

Smooth density plots are aesthetically more appealing than histograms. Here is what a
smooth density plot looks like for our heights data:

www.dbooks.org

https://www.dbooks.org/

142 8 Visualizing data distributions

0.00

0.03

0.06

0.09

0.12

50 60 70 80
height

de
ns

ity

In this plot, we no longer have sharp edges at the interval boundaries and many of the local
peaks have been removed. Also, the scale of the y-axis changed from counts to density.

To understand the smooth densities, we have to understand estimates, a topic we don’t
cover until later. However, we provide a heuristic explanation to help you understand the
basics so you can use this useful data visualization tool.

The main new concept you must understand is that we assume that our list of observed
values is a subset of a much larger list of unobserved values. In the case of heights, you can
imagine that our list of 812 male students comes from a hypothetical list containing all the
heights of all the male students in all the world measured very precisely. Let’s say there
are 1,000,000 of these measurements. This list of values has a distribution, like any list of
values, and this larger distribution is really what we want to report to ET since it is much
more general. Unfortunately, we don’t get to see it.

However, we make an assumption that helps us perhaps approximate it. If we had 1,000,000
values, measured very precisely, we could make a histogram with very, very small bins. The
assumption is that if we show this, the height of consecutive bins will be similar. This is
what we mean by smooth: we don’t have big jumps in the heights of consecutive bins. Below
we have a hypothetical histogram with bins of size 1:

0

50000

100000

150000

200000

50 60 70 80
height

co
un

t

8.6 Smoothed density 143

The smaller we make the bins, the smoother the histogram gets. Here are the histograms
with bin width of 1, 0.5, and 0.1:

0

50000

100000

150000

200000

50 60 70 80
height

co
un

t

binwidth=1

0

25000

50000

75000

100000

50 60 70 80
height

co
un

t

binwidth=0.5

0

5000

10000

15000

20000

50 60 70 80
height

co
un

t

binwidth=0.1

The smooth density is basically the curve that goes through the top of the histogram bars
when the bins are very, very small. To make the curve not depend on the hypothetical size
of the hypothetical list, we compute the curve on frequencies rather than counts:

0.00

0.03

0.06

0.09

50 60 70 80
height

de
ns

ity

Now, back to reality. We don’t have millions of measurements. Instead, we have 812 and we
can’t make a histogram with very small bins.

We therefore make a histogram, using bin sizes appropriate for our data and computing
frequencies rather than counts, and we draw a smooth curve that goes through the tops of
the histogram bars. The following plots demonstrate the steps that lead to a smooth density:

www.dbooks.org

https://www.dbooks.org/

144 8 Visualizing data distributions

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity
0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

However, remember that smooth is a relative term. We can actually control the smoothness
of the curve that defines the smooth density through an option in the function that computes
the smooth density curve. Here are two examples using different degrees of smoothness on
the same histogram:

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

We need to make this choice with care as the resulting visualizations can change our inter-
pretation of the data. We should select a degree of smoothness that we can defend as being
representative of the underlying data. In the case of height, we really do have reason to
believe that the proportion of people with similar heights should be the same. For example,

8.6 Smoothed density 145

the proportion that is 72 inches should be more similar to the proportion that is 71 than to
the proportion that is 78 or 65. This implies that the curve should be pretty smooth; that
is, the curve should look more like the example on the right than on the left.

While the histogram is an assumption-free summary, the smoothed density is based on some
assumptions.

8.6.1 Interpreting the y-axis

Note that interpreting the y-axis of a smooth density plot is not straightforward. It is scaled
so that the area under the density curve adds up to 1. If you imagine we form a bin with a
base 1 unit in length, the y-axis value tells us the proportion of values in that bin. However,
this is only true for bins of size 1. For other size intervals, the best way to determine the
proportion of data in that interval is by computing the proportion of the total area contained
in that interval. For example, here are the proportion of values between 65 and 68:

0.00

0.03

0.06

0.09

0.12

50 60 70 80
height

de
ns

ity

The proportion of this area is about 0.3, meaning that about that proportion is between 65
and 68 inches.

By understanding this, we are ready to use the smooth density as a summary. For this
dataset, we would feel quite comfortable with the smoothness assumption, and therefore
with sharing this aesthetically pleasing figure with ET, which he could use to understand
our male heights data:

www.dbooks.org

https://www.dbooks.org/

146 8 Visualizing data distributions

0.00

0.03

0.06

0.09

0.12

50 60 70 80
height

de
ns

ity

8.6.2 Densities permit stratification

As a final note, we point out that an advantage of smooth densities over histograms for
visualization purposes is that densities make it easier to compare two distributions. This
is in large part because the jagged edges of the histogram add clutter. Here is an example
comparing male and female heights:

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

sex

Female

Male

With the right argument, ggplot automatically shades the intersecting region with a dif-
ferent color. We will show examples of ggplot2 code for densities in Section 9 as well as
Section 8.16.

8.7 Exercises

1. In the murders dataset, the region is a categorical variable and the following is its distri-
bution:

8.7 Exercises 147

0.0

0.1

0.2

0.3

Northeast North Central West South

P
ro

po
rt

io
n

To the closet 5%, what proportion of the states are in the North Central region?

2. Which of the following is true:

a. The graph above is a histogram.
b. The graph above shows only four numbers with a bar plot.
c. Categories are not numbers, so it does not make sense to graph the distribution.
d. The colors, not the height of the bars, describe the distribution.

3. The plot below shows the eCDF for male heights:

0.00

0.25

0.50

0.75

1.00

50 60 70 80
a

F
(a

)

Based on the plot, what percentage of males are shorter than 75 inches?

a. 100%
b. 95%
c. 80%
d. 72 inches

4. To the closest inch, what height m has the property that 1/2 of the male students are
taller than m and 1/2 are shorter?

www.dbooks.org

https://www.dbooks.org/

148 8 Visualizing data distributions

a. 61 inches
b. 64 inches
c. 69 inches
d. 74 inches

5. Here is an eCDF of the murder rates across states:

0.00

0.25

0.50

0.75

1.00

0 5 10 15
a

F
(a

)

Knowing that there are 51 states (counting DC) and based on this plot, how many states
have murder rates larger than 10 per 100,000 people?

a. 1
b. 5
c. 10
d. 50

6. Based on the eCDF above, which of the following statements are true:

a. About half the states have murder rates above 7 per 100,000 and the other half
below.

b. Most states have murder rates below 2 per 100,000.
c. All the states have murder rates above 2 per 100,000.
d. With the exception of 4 states, the murder rates are below 5 per 100,000.

7. Below is a histogram of male heights in our heights dataset:

8.7 Exercises 149

0

25

50

75

100

50 60 70 80
height

co
un

t

Based on this plot, how many males are between 63.5 and 65.5?

a. 10
b. 24
c. 34
d. 100

8. About what percentage are shorter than 60 inches?

a. 1%
b. 10%
c. 25%
d. 50%

9. Based on the density plot below, about what proportion of US states have populations
larger than 10 million?

0.00

0.25

0.50

0.75

1 3 10 30
Population in millions

de
ns

ity

a. 0.02
b. 0.15

www.dbooks.org

https://www.dbooks.org/

150 8 Visualizing data distributions

c. 0.50
d. 0.55

10. Below are three density plots. Is it possible that they are from the same dataset?

0.00

0.02

0.04

0.06

0 10 20 30
Population in millions

de
ns

ity

1

0.0

0.4

0.8

1.2

1 3 10 30
Population in millions

de
ns

ity

2

0.0

0.1

0.2

0.3

1 3 10 30
Population in millions

de
ns

ity

3

Which of the following statements is true:

a. It is impossible that they are from the same dataset.
b. They are from the same dataset, but the plots are different due to code errors.
c. They are the same dataset, but the first and second plot undersmooth and the

third oversmooths.
d. They are the same dataset, but the first is not in the log scale, the second under-

smooths, and the third oversmooths.

8.8 The normal distribution

Histograms and density plots provide excellent summaries of a distribution. But can we
summarize even further? We often see the average and standard deviation used as summary
statistics: a two-number summary! To understand what these summaries are and why they
are so widely used, we need to understand the normal distribution.

The normal distribution, also known as the bell curve and as the Gaussian distribution,
is one of the most famous mathematical concepts in history. A reason for this is that ap-
proximately normal distributions occur in many situations, including gambling winnings,
heights, weights, blood pressure, standardized test scores, and experimental measurement
errors. There are explanations for this, but we describe these later. Here we focus on how
the normal distribution helps us summarize data.

Rather than using data, the normal distribution is defined with a mathematical formula.
For any interval (a, b), the proportion of values in that interval can be computed using this
formula:

8.8 The normal distribution 151

Pr(a < x < b) =
∫ b

a

1√
2πs

e− 1
2 (x−m

s)2

dx

You don’t need to memorize or understand the details of the formula. But note that it is
completely defined by just two parameters: m and s. The rest of the symbols in the formula
represent the interval ends that we determine, a and b, and known mathematical constants
π and e. These two parameters, m and s, are referred to as the average (also called the
mean) and the standard deviation (SD) of the distribution, respectively.

The distribution is symmetric, centered at the average, and most values (about 95%) are
within 2 SDs from the average. Here is what the normal distribution looks like when the
average is 0 and the SD is 1:

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

de
ns

ity

The fact that the distribution is defined by just two parameters implies that if a dataset is
approximated by a normal distribution, all the information needed to describe the distribu-
tion can be encoded in just two numbers: the average and the standard deviation. We now
define these values for an arbitrary list of numbers.

For a list of numbers contained in a vector x, the average is defined as:

m <- sum(x) / length(x)

and the SD is defined as:

s <- sqrt(sum((x-mu)^2) / length(x))

which can be interpreted as the average distance between values and their average.

Let’s compute the values for the height for males which we will store in the object x:

index <- heights$sex == "Male"
x <- heights$height[index]

The pre-built functions mean and sd (note that for reasons explained in Section 16.2, sd
divides by length(x)-1 rather than length(x)) can be used here:

www.dbooks.org

https://www.dbooks.org/

152 8 Visualizing data distributions

m <- mean(x)
s <- sd(x)
c(average = m, sd = s)
#> average sd
#> 69.31 3.61

Here is a plot of the smooth density and the normal distribution with mean = 69.3 and SD
= 3.6 plotted as a black line with our student height smooth density in blue:

0.00

0.03

0.06

0.09

0.12

50 60 70 80
height

de
ns

ity

The normal distribution does appear to be quite a good approximation here. We now will see
how well this approximation works at predicting the proportion of values within intervals.

8.9 Standard units

For data that is approximately normally distributed, it is convenient to think in terms of
standard units. The standard unit of a value tells us how many standard deviations away
from the average it is. Specifically, for a value x from a vector X, we define the value of x
in standard units as z = (x - m)/s with m and s the average and standard deviation of X,
respectively. Why is this convenient?

First look back at the formula for the normal distribution and note that what is being
exponentiated is −z2/2 with z equivalent to x in standard units. Because the maximum
of e−z2/2 is when z = 0, this explains why the maximum of the distribution occurs at the
average. It also explains the symmetry since −z2/2 is symmetric around 0. Second, note
that if we convert the normally distributed data to standard units, we can quickly know if,
for example, a person is about average (z = 0), one of the largest (z ≈ 2), one of the smallest
(z ≈ −2), or an extremely rare occurrence (z > 3 or z < −3). Remember that it does not
matter what the original units are, these rules apply to any data that is approximately
normal.

In R, we can obtain standard units using the function scale:

8.10 Quantile-quantile plots 153

z <- scale(x)

Now to see how many men are within 2 SDs from the average, we simply type:

mean(abs(z) < 2)
#> [1] 0.95

The proportion is about 95%, which is what the normal distribution predicts! To further
confirm that, in fact, the approximation is a good one, we can use quantile-quantile plots.

8.10 Quantile-quantile plots

A systematic way to assess how well the normal distribution fits the data is to check if the
observed and predicted proportions match. In general, this is the approach of the quantile-
quantile plot (QQ-plot).

First let’s define the theoretical quantiles for the normal distribution. In statistics books we
use the symbol Φ(x) to define the function that gives us the probability of a standard normal
distribution being smaller than x. So, for example, Φ(−1.96) = 0.025 and Φ(1.96) = 0.975.
In R, we can evaluate Φ using the pnorm function:

pnorm(-1.96)
#> [1] 0.025

The inverse function Φ−1(x) gives us the theoretical quantiles for the normal distribution.
So, for example, Φ−1(0.975) = 1.96. In R, we can evaluate the inverse of Φ using the qnorm
function.

qnorm(0.975)
#> [1] 1.96

Note that these calculations are for the standard normal distribution by default (mean = 0,
standard deviation = 1), but we can also define these for any normal distribution. We can
do this using the mean and sd arguments in the pnorm and qnorm function. For example, we
can use qnorm to determine quantiles of a distribution with a specific average and standard
deviation

qnorm(0.975, mean = 5, sd = 2)
#> [1] 8.92

For the normal distribution, all the calculations related to quantiles are done without data,
thus the name theoretical quantiles. But quantiles can be defined for any distribution, includ-
ing an empirical one. So if we have data in a vector x, we can define the quantile associated
with any proportion p as the q for which the proportion of values below q is p. Using R
code, we can define q as the value for which mean(x <= q) = p. Notice that not all p have

www.dbooks.org

https://www.dbooks.org/

154 8 Visualizing data distributions

a q for which the proportion is exactly p. There are several ways of defining the best q as
discussed in the help for the quantile function.
To give a quick example, for the male heights data, we have that:

mean(x <= 69.5)
#> [1] 0.515

So about 50% are shorter or equal to 69 inches. This implies that if p = 0.50 then q = 69.5.
The idea of a QQ-plot is that if your data is well approximated by normal distribution then
the quantiles of your data should be similar to the quantiles of a normal distribution. To
construct a QQ-plot, we do the following:

1. Define a vector of m proportions p1, p2, . . . , pm.
2. Define a vector of quantiles q1, . . . , qm for your data for the proportions p1, . . . , pm.

We refer to these as the sample quantiles.
3. Define a vector of theoretical quantiles for the proportions p1, . . . , pm for a normal

distribution with the same average and standard deviation as the data.
4. Plot the sample quantiles versus the theoretical quantiles.

Let’s construct a QQ-plot using R code. Start by defining the vector of proportions.

p <- seq(0.05, 0.95, 0.05)

To obtain the quantiles from the data, we can use the quantile function like this:

sample_quantiles <- quantile(x, p)

To obtain the theoretical normal distribution quantiles with the corresponding average and
SD, we use the qnorm function:

theoretical_quantiles <- qnorm(p, mean = mean(x), sd = sd(x))

To see if they match or not, we plot them against each other and draw the identity line:

qplot(theoretical_quantiles, sample_quantiles) + geom_abline()

66

69

72

75

63 66 69 72 75
theoretical_quantiles

sa
m

pl
e_

qu
an

til
es

8.12 Percentiles 155

Notice that this code becomes much cleaner if we use standard units:

sample_quantiles <- quantile(z, p)
theoretical_quantiles <- qnorm(p)
qplot(theoretical_quantiles, sample_quantiles) + geom_abline()

The above code is included to help describe QQ-plots. However, in practice it is easier to
use the ggplot2 code described in Section 8.16:

heights %>% filter(sex == "Male") %>%
ggplot(aes(sample = scale(height))) +
geom_qq() +
geom_abline()

While for the illustration above we used 20 quantiles, the default from the geom_qq function
is to use as many quantiles as data points.

8.11 Percentiles

Before we move on, let’s define some terms that are commonly used in exploratory data
analysis.

Percentiles are special cases of quantiles that are commonly used. The percentiles are the
quantiles you obtain when setting the p at 0.01, 0.02, ..., 0.99. We call, for example, the case
of p = 0.25 the 25th percentile, which gives us a number for which 25% of the data is below.
The most famous percentile is the 50th, also known as the median.

For the normal distribution the median and average are the same, but this is generally not
the case.

Another special case that receives a name are the quartiles, which are obtained when setting
p = 0.25, 0.50, and 0.75.

8.12 Boxplots

To introduce boxplots we will go back to the US murder data. Suppose we want to summarize
the murder rate distribution. Using the data visualization technique we have learned, we
can quickly see that the normal approximation does not apply here:

www.dbooks.org

https://www.dbooks.org/

156 8 Visualizing data distributions

0

5

10

15

0 5 10 15
rate

co
un

t

Histogram

0

5

10

15

−3 0 3 6 9
theoretical

sa
m

pl
e

QQ−plot

In this case, the histogram above or a smooth density plot would serve as a relatively succinct
summary.

Now suppose those used to receiving just two numbers as summaries ask us for a more
compact numerical summary.

Here Tukey offered some advice. Provide a five-number summary composed of the range
along with the quartiles (the 25th, 50th, and 75th percentiles). Tukey further suggested
that we ignore outliers when computing the range and instead plot these as independent
points. We provide a detailed explanation of outliers later. Finally, he suggested we plot
these numbers as a “box” with “whiskers” like this:

0

5

10

15

ra
te

with the box defined by the 25% and 75% percentile and the whiskers showing the range.
The distance between these two is called the interquartile range. The two points are outliers
according to Tukey’s definition. The median is shown with a horizontal line. Today, we call
these boxplots.

From just this simple plot, we know that the median is about 2.5, that the distribution

8.14 Stratification 157

is not symmetric, and that the range is 0 to 5 for the great majority of states with two
exceptions.

We discuss how to make boxplots in Section 8.16.

8.13 Stratification

In data analysis we often divide observations into groups based on the values of one or more
variables associated with those observations. For example in the next section we divide the
height values into groups based on a sex variable: females and males. We call this procedure
stratification and refer to the resulting groups as strata.

Stratification is common in data visualization because we are often interested in how the
distribution of variables differs across different subgroups. We will see several examples
throughout this part of the book. We will revisit the concept of stratification when we learn
regression in Chapter 17 and in the Machine Learning part of the book.

8.14 Case study: describing student heights (continued)

Using the histogram, density plots, and QQ-plots, we have become convinced that the male
height data is well approximated with a normal distribution. In this case, we report back
to ET a very succinct summary: male heights follow a normal distribution with an average
of 69.3 inches and a SD of 3.6 inches. With this information, ET will have a good idea of
what to expect when he meets our male students. However, to provide a complete picture
we need to also provide a summary of the female heights.

We learned that boxplots are useful when we want to quickly compare two or more distri-
butions. Here are the heights for men and women:

50

60

70

80

Female Male
sex

he
ig

ht

sex

Female

Male

www.dbooks.org

https://www.dbooks.org/

158 8 Visualizing data distributions

The plot immediately reveals that males are, on average, taller than females. The standard
deviations appear to be similar. But does the normal approximation also work for the female
height data collected by the survey? We expect that they will follow a normal distribution,
just like males. However, exploratory plots reveal that the approximation is not as useful:

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

−4

−2

0

2

4

−3 −2 −1 0 1 2 3
theoretical

S
ta

nd
ar

d
U

ni
ts

We see something we did not see for the males: the density plot has a second “bump”.
Also, the QQ-plot shows that the highest points tend to be taller than expected by the
normal distribution. Finally, we also see five points in the QQ-plot that suggest shorter
than expected heights for a normal distribution. When reporting back to ET, we might
need to provide a histogram rather than just the average and standard deviation for the
female heights.

However, go back and read Tukey’s quote. We have noticed what we didn’t expect to see. If
we look at other female height distributions, we do find that they are well approximated with
a normal distribution. So why are our female students different? Is our class a requirement
for the female basketball team? Are small proportions of females claiming to be taller than
they are? Another, perhaps more likely, explanation is that in the form students used to
enter their heights, FEMALE was the default sex and some males entered their heights, but
forgot to change the sex variable. In any case, data visualization has helped discover a
potential flaw in our data.

Regarding the five smallest values, note that these values are:

heights %>% filter(sex == "Female") %>%
top_n(5, desc(height)) %>%
pull(height)

#> [1] 51 53 55 52 52

Because these are reported heights, a possibility is that the student meant to enter 5'1",
5'2", 5'3" or 5'5".

8.15 Exercises 159

8.15 Exercises

1. Define variables containing the heights of males and females like this:

library(dslabs)
data(heights)
male <- heights$height[heights$sex == "Male"]
female <- heights$height[heights$sex == "Female"]

How many measurements do we have for each?

2. Suppose we can’t make a plot and want to compare the distributions side by side. We
can’t just list all the numbers. Instead, we will look at the percentiles. Create a five row
table showing female_percentiles and male_percentiles with the 10th, 30th, 50th, …,
90th percentiles for each sex. Then create a data frame with these two as columns.

3. Study the following boxplots showing population sizes by country:

1

10

100

1000

Africa Americas Asia Europe Oceania
continent

P
op

ul
at

io
n

in
 m

ill
io

ns

Which continent has the country with the biggest population size?

4. What continent has the largest median population size?

5. What is median population size for Africa to the nearest million?

6. What proportion of countries in Europe have populations below 14 million?

a. 0.99
b. 0.75
c. 0.50
d. 0.25

7. If we use a log transformation, which continent shown above has the largest interquartile
range?

8. Load the height data set and create a vector x with just the male heights:

www.dbooks.org

https://www.dbooks.org/

160 8 Visualizing data distributions

library(dslabs)
data(heights)
x <- heights$height[heights$sex=="Male"]

What proportion of the data is between 69 and 72 inches (taller than 69, but shorter or
equal to 72)? Hint: use a logical operator and mean.

9. Suppose all you know about the data is the average and the standard deviation. Use
the normal approximation to estimate the proportion you just calculated. Hint: start by
computing the average and standard deviation. Then use the pnorm function to predict the
proportions.

10. Notice that the approximation calculated in question two is very close to the exact cal-
culation in the first question. Now perform the same task for more extreme values. Compare
the exact calculation and the normal approximation for the interval (79,81]. How many
times bigger is the actual proportion than the approximation?

11. Approximate the distribution of adult men in the world as normally distributed with an
average of 69 inches and a standard deviation of 3 inches. Using this approximation, estimate
the proportion of adult men that are 7 feet tall or taller, referred to as seven footers. Hint:
use the pnorm function.

12. There are about 1 billion men between the ages of 18 and 40 in the world. Use your
answer to the previous question to estimate how many of these men (18-40 year olds) are
seven feet tall or taller in the world?

13. There are about 10 National Basketball Association (NBA) players that are 7 feet tall
or higher. Using the answer to the previous two questions, what proportion of the world’s
18-to-40-year-old seven footers are in the NBA?

14. Repeat the calculations performed in the previous question for Lebron James’ height: 6
feet 8 inches. There are about 150 players that are at least that tall.

15. In answering the previous questions, we found that it is not at all rare for a seven footer
to become an NBA player. What would be a fair critique of our calculations:

a. Practice and talent are what make a great basketball player, not height.
b. The normal approximation is not appropriate for heights.
c. As seen in question 3, the normal approximation tends to underestimate the

extreme values. It’s possible that there are more seven footers than we predicted.
d. As seen in question 3, the normal approximation tends to overestimate the extreme

values. It’s possible that there are fewer seven footers than we predicted.

8.16 ggplot2 geometries

In Chapter 7, we introduced the ggplot2 package for data visualization. Here we demon-
strate how to generate plots related to distributions, specifically the plots shown earlier in
this chapter.

8.16 ggplot2 geometries 161

8.16.1 Barplots

To generate a barplot we can use the geom_bar geometry. The default is to count the number
of each category and draw a bar. Here is the plot for the regions of the US.

murders %>% ggplot(aes(region)) + geom_bar()

0

5

10

15

Northeast South North Central West
region

co
un

t

We often already have a table with a distribution that we want to present as a barplot. Here
is an example of such a table:

data(murders)
tab <- murders %>%
count(region) %>%
mutate(proportion = n/sum(n))

tab
#> # A tibble: 4 x 3
#> region n proportion
#> <fct> <int> <dbl>
#> 1 Northeast 9 0.176
#> 2 South 17 0.333
#> 3 North Central 12 0.235
#> 4 West 13 0.255

We no longer want geom_bar to count, but rather just plot a bar to the height provided by
the proportion variable. For this we need to provide x (the categories) and y (the values)
and use the stat="identity" option.

tab %>% ggplot(aes(region, proportion)) + geom_bar(stat = "identity")

www.dbooks.org

https://www.dbooks.org/

162 8 Visualizing data distributions

0.0

0.1

0.2

0.3

Northeast South North Central West
region

pr
op

or
tio

n

8.16.2 Histograms

To generate histograms we use geom_histogram. By looking at the help file for this function,
we learn that the only required argument is x, the variable for which we will construct a
histogram. We dropped the x because we know it is the first argument. The code looks like
this:

heights %>%
filter(sex == "Female") %>%
ggplot(aes(height)) +
geom_histogram()

If we run the code above, it gives us a message:

stat_bin() using bins = 30. Pick better value with binwidth.

We previously used a bin size of 1 inch, so the code looks like this:

heights %>%
filter(sex == "Female") %>%
ggplot(aes(height)) +
geom_histogram(binwidth = 1)

Finally, if for aesthetic reasons we want to add color, we use the arguments described in the
help file. We also add labels and a title:

heights %>%
filter(sex == "Female") %>%
ggplot(aes(height)) +
geom_histogram(binwidth = 1, fill = "blue", col = "black") +
xlab("Male heights in inches") +
ggtitle("Histogram")

8.16 ggplot2 geometries 163

0

10

20

30

50 60 70 80
Male heights in inches

co
un

t

Histogram

8.16.3 Density plots

To create a smooth density, we use the geom_density. To make a smooth density plot with
the data previously shown as a histogram we can use this code:

heights %>%
filter(sex == "Female") %>%
ggplot(aes(height)) +
geom_density()

To fill in with color, we can use the fill argument.

heights %>%
filter(sex == "Female") %>%
ggplot(aes(height)) +
geom_density(fill="blue")

0.00

0.05

0.10

50 60 70 80
height

de
ns

ity

To change the smoothness of the density, we use the adjust argument to multiply the

www.dbooks.org

https://www.dbooks.org/

164 8 Visualizing data distributions

default value by that adjust. For example, if we want the bandwidth to be twice as big we
use:

heights %>%
filter(sex == "Female") +
geom_density(fill="blue", adjust = 2)

8.16.4 Boxplots

The geometry for boxplot is geom_boxplot. As discussed, boxplots are useful for comparing
distributions. For example, below are the previously shown heights for women, but compared
to men. For this geometry, we need arguments x as the categories, and y as the values.

50

60

70

80

Female Male
sex

he
ig

ht

8.16.5 QQ-plots

For qq-plots we use the geom_qq geometry. From the help file, we learn that we need to
specify the sample (we will learn about samples in a later chapter). Here is the qqplot for
men heights.

heights %>% filter(sex=="Male") %>%
ggplot(aes(sample = height)) +
geom_qq()

8.16 ggplot2 geometries 165

50

60

70

80

−2 0 2
theoretical

sa
m

pl
e

By default, the sample variable is compared to a normal distribution with average 0 and
standard deviation 1. To change this, we use the dparams arguments based on the help file.
Adding an identity line is as simple as assigning another layer. For straight lines, we use the
geom_abline function. The default line is the identity line (slope = 1, intercept = 0).

params <- heights %>% filter(sex=="Male") %>%
summarize(mean = mean(height), sd = sd(height))

heights %>% filter(sex=="Male") %>%
ggplot(aes(sample = height)) +
geom_qq(dparams = params) +
geom_abline()

Another option here is to scale the data first and then make a qqplot against the standard
normal.

heights %>%
filter(sex=="Male") %>%
ggplot(aes(sample = scale(height))) +
geom_qq() +
geom_abline()

8.16.6 Images

Images were not needed for the concepts described in this chapter, but we will use images
in Section 10.14, so we introduce the two geometries used to create images: geom_tile and
geom_raster. They behave similarly; to see how they differ, please consult the help file.
To create an image in ggplot2 we need a data frame with the x and y coordinates as well
as the values associated with each of these. Here is a data frame.

x <- expand.grid(x = 1:12, y = 1:10) %>%
mutate(z = 1:120)

www.dbooks.org

https://www.dbooks.org/

166 8 Visualizing data distributions

Note that this is the tidy version of a matrix, matrix(1:120, 12, 10). To plot the image
we use the following code:

x %>% ggplot(aes(x, y, fill = z)) +
geom_raster()

With these images you will often want to change the color scale. This can be done through
the scale_fill_gradientn layer.

x %>% ggplot(aes(x, y, fill = z)) +
geom_raster() +
scale_fill_gradientn(colors = terrain.colors(10))

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0 12.5
x

y

30

60

90

120
z

8.16.7 Quick plots

In Section 7.13 we introduced qplot as a useful function when we need to make a quick
scatterplot. We can also use qplot to make histograms, density plots, boxplot, qqplots and
more. Although it does not provide the level of control of ggplot, qplot is definitely useful
as it permits us to make a plot with a short snippet of code.

Suppose we have the female heights in an object x:

x <- heights %>%
filter(sex=="Male") %>%
pull(height)

To make a quick histogram we can use:

qplot(x)

The function guesses that we want to make a histogram because we only supplied one
variable. In Section 7.13 we saw that if we supply qplot two variables, it automatically
makes a scatterplot.

8.17 ggplot2 geometries 167

To make a quick qqplot you have to use the sample argument. Note that we can add layers
just as we do with ggplot.

qplot(sample = scale(x)) + geom_abline()

If we supply a factor and a numeric vector, we obtain a plot like the one below. Note that
in the code below we are using the data argument. Because the data frame is not the first
argument in qplot, we have to use the dot operator.

heights %>% qplot(sex, height, data = .)

We can also select a specific geometry by using the geom argument. So to convert the plot
above to a boxplot, we use the following code:

heights %>% qplot(sex, height, data = ., geom = "boxplot")

We can also use the geom argument to generate a density plot instead of a histogram:

qplot(x, geom = "density")

Although not as much as with ggplot, we do have some flexibility to improve the results of
qplot. Looking at the help file we see several ways in which we can improve the look of the
histogram above. Here is an example:

qplot(x, bins=15, color = I("black"), xlab = "Population")

0

100

200

50 60 70 80
Population

Technical note: The reason we use I("black") is because we want qplot to treat "black"
as a character rather than convert it to a factor, which is the default behavior within aes,
which is internally called here. In general, the function I is used in R to say “keep it as it
is”.

www.dbooks.org

https://www.dbooks.org/

168 8 Visualizing data distributions

8.17 Exercises

1. Now we are going to use the geom_histogram function to make a histogram of the heights
in the height data frame. When reading the documentation for this function we see that it
requires just one mapping, the values to be used for the histogram. Make a histogram of all
the plots.

What is the variable containing the heights?

a. sex
b. heights
c. height
d. heights$height

2. Now create a ggplot object using the pipe to assign the heights data to a ggplot object.
Assign height to the x values through the aes function.

3. Now we are ready to add a layer to actually make the histogram. Use the object created
in the previous exercise and the geom_histogram function to make the histogram.

4. Note that when we run the code in the previous exercise we get the warning: stat_bin()
using bins = 30. Pick better value with binwidth.‘

Use the binwidth argument to change the histogram made in the previous exercise to use
bins of size 1 inch.

5. Instead of a histogram, we are going to make a smooth density plot. In this case we will
not make an object, but instead render the plot with one line of code. Change the geometry
in the code previously used to make a smooth density instead of a histogram.

6. Now we are going to make a density plot for males and females separately. We can do
this using the group argument. We assign groups via the aesthetic mapping as each point
needs to a group before making the calculations needed to estimate a density.

7. We can also assign groups through the color argument. This has the added benefit that
it uses color to distinguish the groups. Change the code above to use color.

8. We can also assign groups through the fill argument. This has the added benefit that
it uses colors to distinguish the groups, like this:

heights %>%
ggplot(aes(height, fill = sex)) +
geom_density()

However, here the second density is drawn over the other. We can make the curves more
visible by using alpha blending to add transparency. Set the alpha parameter to 0.2 in the
geom_density function to make this change.

9
Data visualization in practice

In this chapter, we will demonstrate how relatively simple ggplot2 code can create insightful
and aesthetically pleasing plots. As motivation we will create plots that help us better
understand trends in world health and economics. We will implement what we learned in
Chapters 7 and 8.16 and learn how to augment the code to perfect the plots. As we go
through our case study, we will describe relevant general data visualization principles and
learn concepts such as faceting, time series plots, transformations, and ridge plots.

9.1 Case study: new insights on poverty

Hans Rosling1 was the co-founder of the Gapminder Foundation2, an organization dedicated
to educating the public by using data to dispel common myths about the so-called developing
world. The organization uses data to show how actual trends in health and economics
contradict the narratives that emanate from sensationalist media coverage of catastrophes,
tragedies, and other unfortunate events. As stated in the Gapminder Foundation’s website:

Journalists and lobbyists tell dramatic stories. That’s their job. They
tell stories about extraordinary events and unusual people. The piles
of dramatic stories pile up in peoples’ minds into an over-dramatic
worldview and strong negative stress feelings: “The world is getting
worse!”, “It’s we vs. them!”, “Other people are strange!”, “The pop-
ulation just keeps growing!” and “Nobody cares!”

Hans Rosling conveyed actual data-based trends in a dramatic way of his own, using effec-
tive data visualization. This section is based on two talks that exemplify this approach to
education: [New Insights on Poverty]3 and The Best Stats You’ve Ever Seen4. Specifically,
in this section, we use data to attempt to answer the following two questions:

1. Is it a fair characterization of today’s world to say it is divided into western rich
nations and the developing world in Africa, Asia, and Latin America?

2. Has income inequality across countries worsened during the last 40 years?

To answer these questions, we will be using the gapminder dataset provided in dslabs.
This dataset was created using a number of spreadsheets available from the Gapminder
Foundation. You can access the table like this:

1https://en.wikipedia.org/wiki/Hans_Rosling
2http://www.gapminder.org/
3https://www.ted.com/talks/hans_rosling_reveals_new_insights_on_poverty?language=en
4https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen

169

www.dbooks.org

https://en.wikipedia.org/wiki/Hans_Rosling
http://www.gapminder.org/
https://www.ted.com/talks/hans_rosling_reveals_new_insights_on_poverty?language=en
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
https://www.dbooks.org/

170 9 Data visualization in practice

library(tidyverse)
library(dslabs)
data(gapminder)
gapminder %>% as_tibble()
#> # A tibble: 10,545 x 9
#> country year infant_mortality life_expectancy fertility population
#> <fct> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 Albania 1960 115. 62.9 6.19 1636054
#> 2 Algeria 1960 148. 47.5 7.65 11124892
#> 3 Angola 1960 208 36.0 7.32 5270844
#> 4 Antigu~ 1960 NA 63.0 4.43 54681
#> 5 Argent~ 1960 59.9 65.4 3.11 20619075
#> # ... with 1.054e+04 more rows, and 3 more variables: gdp <dbl>,
#> # continent <fct>, region <fct>

9.1.1 Hans Rosling’s quiz

As done in the New Insights on Poverty video, we start by testing our knowledge regarding
differences in child mortality across different countries. For each of the six pairs of countries
below, which country do you think had the highest child mortality rates in 2015? Which
pairs do you think are most similar?

1. Sri Lanka or Turkey
2. Poland or South Korea
3. Malaysia or Russia
4. Pakistan or Vietnam
5. Thailand or South Africa

When answering these questions without data, the non-European countries are typically
picked as having higher child mortality rates: Sri Lanka over Turkey, South Korea over
Poland, and Malaysia over Russia. It is also common to assume that countries considered
to be part of the developing world: Pakistan, Vietnam, Thailand, and South Africa, have
similarly high mortality rates.

To answer these questions with data, we can use dplyr. For example, for the first compar-
ison we see that:

gapminder %>%
filter(year == 2015 & country %in% c("Sri Lanka","Turkey")) %>%
select(country, infant_mortality)

#> country infant_mortality
#> 1 Sri Lanka 8.4
#> 2 Turkey 11.6

Turkey has the higher infant mortality rate.

We can use this code on all comparisons and find the following:

9.2 Scatterplots 171

country infant mortality country infant mortality

Sri Lanka 8.4 Turkey 11.6
Poland 4.5 South Korea 2.9
Malaysia 6.0 Russia 8.2
Pakistan 65.8 Vietnam 17.3
Thailand 10.5 South Africa 33.6

We see that the European countries on this list have higher child mortality rates: Poland
has a higher rate than South Korea, and Russia has a higher rate than Malaysia. We also
see that Pakistan has a much higher rate than Vietnam, and South Africa has a much
higher rate than Thailand. It turns out that when Hans Rosling gave this quiz to educated
groups of people, the average score was less than 2.5 out of 5, worse than what they would
have obtained had they guessed randomly. This implies that more than ignorant, we are
misinformed. In this chapter we see how data visualization helps inform us.

9.2 Scatterplots

The reason for this stems from the preconceived notion that the world is divided into two
groups: the western world (Western Europe and North America), characterized by long
life spans and small families, versus the developing world (Africa, Asia, and Latin America)
characterized by short life spans and large families. But do the data support this dichotomous
view?
The necessary data to answer this question is also available in our gapminder table. Using
our newly learned data visualization skills, we will be able to tackle this challenge.
In order to analyze this world view, our first plot is a scatterplot of life expectancy versus
fertility rates (average number of children per woman). We start by looking at data from
about 50 years ago, when perhaps this view was first cemented in our minds.

filter(gapminder, year == 1962) %>%
ggplot(aes(fertility, life_expectancy)) +
geom_point()

30

40

50

60

70

2 4 6 8
fertility

lif
e_

ex
pe

ct
an

cy

www.dbooks.org

https://www.dbooks.org/

172 9 Data visualization in practice

Most points fall into two distinct categories:

1. Life expectancy around 70 years and 3 or fewer children per family.
2. Life expectancy lower than 65 years and more than 5 children per family.

To confirm that indeed these countries are from the regions we expect, we can use color to
represent continent.

filter(gapminder, year == 1962) %>%
ggplot(aes(fertility, life_expectancy, color = continent)) +
geom_point()

30

40

50

60

70

2 4 6 8
fertility

lif
e_

ex
pe

ct
an

cy

continent

Africa

Americas

Asia

Europe

Oceania

In 1962, “the West versus developing world” view was grounded in some reality. Is this still
the case 50 years later?

9.3 Faceting

We could easily plot the 2012 data in the same way we did for 1962. To make comparisons,
however, side by side plots are preferable. In ggplot2, we can achieve this by faceting
variables: we stratify the data by some variable and make the same plot for each strata.

To achieve faceting, we add a layer with the function facet_grid, which automatically
separates the plots. This function lets you facet by up to two variables using columns to
represent one variable and rows to represent the other. The function expects the row and
column variables to be separated by a ~. Here is an example of a scatterplot with facet_grid
added as the last layer:

filter(gapminder, year%in%c(1962, 2012)) %>%
ggplot(aes(fertility, life_expectancy, col = continent)) +
geom_point() +
facet_grid(continent~year)

9.3 Faceting 173

1962 2012

A
frica

A
m

ericas
A

sia
E

urope
O

ceania

2 4 6 8 2 4 6 8

30
40
50
60
70
80

30
40
50
60
70
80

30
40
50
60
70
80

30
40
50
60
70
80

30
40
50
60
70
80

fertility

lif
e_

ex
pe

ct
an

cy

continent

Africa

Americas

Asia

Europe

Oceania

We see a plot for each continent/year pair. However, this is just an example and more than
what we want, which is simply to compare 1962 and 2012. In this case, there is just one
variable and we use . to let facet know that we are not using one of the variables:

filter(gapminder, year%in%c(1962, 2012)) %>%
ggplot(aes(fertility, life_expectancy, col = continent)) +
geom_point() +
facet_grid(. ~ year)

1962 2012

2 4 6 8 2 4 6 8

30

40

50

60

70

80

fertility

lif
e_

ex
pe

ct
an

cy

continent

Africa

Americas

Asia

Europe

Oceania

This plot clearly shows that the majority of countries have moved from the developing world

www.dbooks.org

https://www.dbooks.org/

174 9 Data visualization in practice

cluster to the western world one. In 2012, the western versus developing world view no
longer makes sense. This is particularly clear when comparing Europe to Asia, the latter of
which includes several countries that have made great improvements.

9.3.1 facet_wrap

To explore how this transformation happened through the years, we can make the plot for
several years. For example, we can add 1970, 1980, 1990, and 2000. If we do this, we will
not want all the plots on the same row, the default behavior of facet_grid, since they will
become too thin to show the data. Instead, we will want to use multiple rows and columns.
The function facet_wrap permits us to do this by automatically wrapping the series of
plots so that each display has viewable dimensions:

years <- c(1962, 1980, 1990, 2000, 2012)
continents <- c("Europe", "Asia")
gapminder %>%
filter(year %in% years & continent %in% continents) %>%
ggplot(aes(fertility, life_expectancy, col = continent)) +
geom_point() +
facet_wrap(~year)

2000 2012

1962 1980 1990

2.5 5.0 7.5 2.5 5.0 7.5

2.5 5.0 7.5

40

60

80

40

60

80

fertility

lif
e_

ex
pe

ct
an

cy

continent

Asia

Europe

This plot clearly shows how most Asian countries have improved at a much faster rate than
European ones.

9.4 Time series plots 175

9.3.2 Fixed scales for better comparisons

The default choice of the range of the axes is important. When not using facet, this range
is determined by the data shown in the plot. When using facet, this range is determined
by the data shown in all plots and therefore kept fixed across plots. This makes comparisons
across plots much easier. For example, in the above plot, we can see that life expectancy
has increased and the fertility has decreased across most countries. We see this because the
cloud of points moves. This is not the case if we adjust the scales:

filter(gapminder, year%in%c(1962, 2012)) %>%
ggplot(aes(fertility, life_expectancy, col = continent)) +
geom_point() +
facet_wrap(. ~ year, scales = "free")

1962 2012

2 4 6 8 2 4 6
45

55

65

75

85

30

40

50

60

70

fertility

lif
e_

ex
pe

ct
an

cy

continent

Africa

Americas

Asia

Europe

Oceania

In the plot above, we have to pay special attention to the range to notice that the plot on
the right has a larger life expectancy.

9.4 Time series plots

The visualizations above effectively illustrate that data no longer supports the western versus
developing world view. Once we see these plots, new questions emerge. For example, which
countries are improving more and which ones less? Was the improvement constant during
the last 50 years or was it more accelerated during certain periods? For a closer look that
may help answer these questions, we introduce time series plots.
Time series plots have time in the x-axis and an outcome or measurement of interest on the
y-axis. For example, here is a trend plot of United States fertility rates:

gapminder %>%
filter(country == "United States") %>%
ggplot(aes(year, fertility)) +
geom_point()

www.dbooks.org

https://www.dbooks.org/

176 9 Data visualization in practice

2.0

2.5

3.0

3.5

1960 1980 2000
year

fe
rt

ili
ty

We see that the trend is not linear at all. Instead there is sharp drop during the 1960s and
1970s to below 2. Then the trend comes back to 2 and stabilizes during the 1990s.
When the points are regularly and densely spaced, as they are here, we create curves by
joining the points with lines, to convey that these data are from a single series, here a
country. To do this, we use the geom_line function instead of geom_point.

gapminder %>%
filter(country == "United States") %>%
ggplot(aes(year, fertility)) +
geom_line()

2.0

2.5

3.0

3.5

1960 1980 2000
year

fe
rt

ili
ty

This is particularly helpful when we look at two countries. If we subset the data to include
two countries, one from Europe and one from Asia, then adapt the code above:

countries <- c("South Korea","Germany")

gapminder %>% filter(country %in% countries) %>%
ggplot(aes(year,fertility)) +
geom_line()

9.4 Time series plots 177

1

2

3

4

5

6

1960 1980 2000
year

fe
rt

ili
ty

Unfortunately, this is not the plot that we want. Rather than a line for each country, the
points for both countries are joined. This is actually expected since we have not told ggplot
anything about wanting two separate lines. To let ggplot know that there are two curves
that need to be made separately, we assign each point to a group, one for each country:

countries <- c("South Korea","Germany")

gapminder %>% filter(country %in% countries & !is.na(fertility)) %>%
ggplot(aes(year, fertility, group = country)) +
geom_line()

1

2

3

4

5

6

1960 1980 2000
year

fe
rt

ili
ty

But which line goes with which country? We can assign colors to make this distinction.
A useful side-effect of using the color argument to assign different colors to the different
countries is that the data is automatically grouped:

countries <- c("South Korea","Germany")

gapminder %>% filter(country %in% countries & !is.na(fertility)) %>%
ggplot(aes(year,fertility, col = country)) +
geom_line()

www.dbooks.org

https://www.dbooks.org/

178 9 Data visualization in practice

1

2

3

4

5

6

1960 1980 2000
year

fe
rt

ili
ty

country

Germany

South Korea

The plot clearly shows how South Korea’s fertility rate dropped drastically during the 1960s
and 1970s, and by 1990 had a similar rate to that of Germany.

9.4.1 Labels instead of legends

For trend plots we recommend labeling the lines rather than using legends since the viewer
can quickly see which line is which country. This suggestion actually applies to most plots:
labeling is usually preferred over legends.
We demonstrate how we can do this using the life expectancy data. We define a data table
with the label locations and then use a second mapping just for these labels:

labels <- data.frame(country = countries, x = c(1975,1965), y = c(60,72))

gapminder %>%
filter(country %in% countries) %>%
ggplot(aes(year, life_expectancy, col = country)) +
geom_line() +
geom_text(data = labels, aes(x, y, label = country), size = 5) +
theme(legend.position = "none")

South Korea

Germany

60

70

80

1960 1980 2000
year

lif
e_

ex
pe

ct
an

cy

9.5 Data transformations 179

The plot clearly shows how an improvement in life expectancy followed the drops in fertility
rates. In 1960, Germans lived 15 years longer than South Koreans, although by 2010 the
gap is completely closed. It exemplifies the improvement that many non-western countries
have achieved in the last 40 years.

9.5 Data transformations

We now shift our attention to the second question related to the commonly held notion that
wealth distribution across the world has become worse during the last decades. When general
audiences are asked if poor countries have become poorer and rich countries become richer,
the majority answers yes. By using stratification, histograms, smooth densities, and boxplots,
we will be able to understand if this is in fact the case. First we learn how transformations
can sometimes help provide more informative summaries and plots.

The gapminder data table includes a column with the countries’ gross domestic product
(GDP). GDP measures the market value of goods and services produced by a country in a
year. The GDP per person is often used as a rough summary of a country’s wealth. Here
we divide this quantity by 365 to obtain the more interpretable measure dollars per day.
Using current US dollars as a unit, a person surviving on an income of less than $2 a day is
defined to be living in absolute poverty. We add this variable to the data table:

gapminder <- gapminder %>% mutate(dollars_per_day = gdp/population/365)

The GDP values are adjusted for inflation and represent current US dollars, so these values
are meant to be comparable across the years. Of course, these are country averages and
within each country there is much variability. All the graphs and insights described below
relate to country averages and not to individuals.

9.5.1 Log transformation

Here is a histogram of per day incomes from 1970:

past_year <- 1970
gapminder %>%
filter(year == past_year & !is.na(gdp)) %>%
ggplot(aes(dollars_per_day)) +
geom_histogram(binwidth = 1, color = "black")

www.dbooks.org

https://www.dbooks.org/

180 9 Data visualization in practice

0

5

10

15

20

0 10 20 30 40 50
dollars_per_day

co
un

t

We use the color = "black" argument to draw a boundary and clearly distinguish the
bins.

In this plot, we see that for the majority of countries, averages are below $10 a day. However,
the majority of the x-axis is dedicated to the 35 countries with averages above $10. So the
plot is not very informative about countries with values below $10 a day.

It might be more informative to quickly be able to see how many countries have average daily
incomes of about $1 (extremely poor), $2 (very poor), $4 (poor), $8 (middle), $16 (well off),
$32 (rich), $64 (very rich) per day. These changes are multiplicative and log transformations
convert multiplicative changes into additive ones: when using base 2, a doubling of a value
turns into an increase by 1.

Here is the distribution if we apply a log base 2 transform:

gapminder %>%
filter(year == past_year & !is.na(gdp)) %>%
ggplot(aes(log2(dollars_per_day))) +
geom_histogram(binwidth = 1, color = "black")

0

5

10

15

20

−2.5 0.0 2.5 5.0
log2(dollars_per_day)

co
un

t

In a way this provides a close-up of the mid to lower income countries.

9.5 Data transformations 181

9.5.2 Which base?

In the case above, we used base 2 in the log transformations. Other common choices are
base e (the natural log) and base 10.

In general, we do not recommend using the natural log for data exploration and visualization.
This is because while 22, 23, 24, . . . or 102, 103, . . . are easy to compute in our heads, the same
is not true for e2, e3, . . ., so the scale is not intuitive or easy to interpret.

In the dollars per day example, we used base 2 instead of base 10 because the resulting
range is easier to interpret. The range of the values being plotted is 0.327, 48.885.

In base 10, this turns into a range that includes very few integers: just 0 and 1. With base
two, our range includes -2, -1, 0, 1, 2, 3, 4, and 5. It is easier to compute 2x and 10x when
x is an integer and between -10 and 10, so we prefer to have smaller integers in the scale.
Another consequence of a limited range is that choosing the binwidth is more challenging.
With log base 2, we know that a binwidth of 1 will translate to a bin with range x to 2x.

For an example in which base 10 makes more sense, consider population sizes. A log base
10 is preferable since the range for these is:

filter(gapminder, year == past_year) %>%
summarize(min = min(population), max = max(population))

#> min max
#> 1 46075 8.09e+08

Here is the histogram of the transformed values:

gapminder %>%
filter(year == past_year) %>%
ggplot(aes(log10(population))) +
geom_histogram(binwidth = 0.5, color = "black")

0

20

40

4 5 6 7 8 9
log10(population)

co
un

t

In the above, we quickly see that country populations range between ten thousand and ten
billion.

www.dbooks.org

https://www.dbooks.org/

182 9 Data visualization in practice

9.5.3 Transform the values or the scale?

There are two ways we can use log transformations in plots. We can log the values before
plotting them or use log scales in the axes. Both approaches are useful and have different
strengths. If we log the data, we can more easily interpret intermediate values in the scale.
For example, if we see:

----1----x----2--------3----

for log transformed data, we know that the value of x is about 1.5. If the scales are logged:

----1----x----10------100---

then, to determine x, we need to compute 101.5, which is not easy to do in our heads. The
advantage of using logged scales is that we see the original values on the axes. However,
the advantage of showing logged scales is that the original values are displayed in the plot,
which are easier to interpret. For example, we would see “32 dollars a day” instead of “5 log
base 2 dollars a day”.

As we learned earlier, if we want to scale the axis with logs, we can use the
scale_x_continuous function. Instead of logging the values first, we apply this layer:

gapminder %>%
filter(year == past_year & !is.na(gdp)) %>%
ggplot(aes(dollars_per_day)) +
geom_histogram(binwidth = 1, color = "black") +
scale_x_continuous(trans = "log2")

0

5

10

15

20

1 8 64
dollars_per_day

co
un

t

Note that the log base 10 transformation has its own function: scale_x_log10(), but cur-
rently base 2 does not, although we could easily define our own.

There are other transformations available through the trans argument. As we learn later
on, the square root (sqrt) transformation is useful when considering counts. The logistic
transformation (logit) is useful when plotting proportions between 0 and 1. The reverse
transformation is useful when we want smaller values to be on the right or on top.

9.7 Visualizing multimodal distributions 183

9.6 Visualizing multimodal distributions

In the histogram above we see two bumps: one at about 4 and another at about 32. In
statistics these bumps are sometimes referred to as modes. The mode of a distribution is
the value with the highest frequency. The mode of the normal distribution is the average.
When a distribution, like the one above, doesn’t monotonically decrease from the mode, we
call the locations where it goes up and down again local modes and say that the distribution
has multiple modes.

The histogram above suggests that the 1970 country income distribution has two modes:
one at about 2 dollars per day (1 in the log 2 scale) and another at about 32 dollars per day
(5 in the log 2 scale). This bimodality is consistent with a dichotomous world made up of
countries with average incomes less than $8 (3 in the log 2 scale) a day and countries above
that.

9.7 Comparing multiple distributions with boxplots and ridge plots

A histogram showed us that the 1970 income distribution values show a dichotomy. However,
the histogram does not show us if the two groups of countries are west versus the developing
world.

Let’s start by quickly examining the data by region. We reorder the regions by the median
value and use a log scale.

gapminder %>%
filter(year == past_year & !is.na(gdp)) %>%
mutate(region = reorder(region, dollars_per_day, FUN = median)) %>%
ggplot(aes(dollars_per_day, region)) +
geom_point() +
scale_x_continuous(trans = "log2")

Southern Asia
Western Africa
Eastern Africa
Middle Africa

Southern Africa
Northern Africa

South−Eastern Asia
Micronesia
Melanesia

Central America
South America

Eastern Europe
Western Asia

Caribbean
Eastern Asia

Southern Europe
Polynesia

Western Europe
Australia and New Zealand

Northern America
Northern Europe

1 4 16
dollars_per_day

re
gi

on

www.dbooks.org

https://www.dbooks.org/

184 9 Data visualization in practice

We can already see that there is indeed a “west versus the rest” dichotomy: we see two clear
groups, with the rich group composed of North America, Northern and Western Europe,
New Zealand and Australia. We define groups based on this observation:

gapminder <- gapminder %>%
mutate(group = case_when(

region %in% c("Western Europe", "Northern Europe","Southern Europe",
"Northern America",

"Australia and New Zealand") ~ "West",
region %in% c("Eastern Asia", "South-Eastern Asia") ~ "East Asia",
region %in% c("Caribbean", "Central America",

"South America") ~ "Latin America",
continent == "Africa" &
region != "Northern Africa" ~ "Sub-Saharan",

TRUE ~ "Others"))

We turn this group variable into a factor to control the order of the levels:

gapminder <- gapminder %>%
mutate(group = factor(group, levels = c("Others", "Latin America",

"East Asia", "Sub-Saharan",
"West")))

In the next section we demonstrate how to visualize and compare distributions across groups.

9.7.1 Boxplots

The exploratory data analysis above has revealed two characteristics about average income
distribution in 1970. Using a histogram, we found a bimodal distribution with the modes
relating to poor and rich countries. We now want to compare the distribution across these
five groups to confirm the “west versus the rest” dichotomy. The number of points in each
category is large enough that a summary plot may be useful. We could generate five his-
tograms or five density plots, but it may be more practical to have all the visual summaries
in one plot. We therefore start by stacking boxplots next to each other. Note that we add the
layer theme(axis.text.x = element_text(angle = 90, hjust = 1)) to turn the group
labels vertical, since they do not fit if we show them horizontally, and remove the axis label
to make space.

p <- gapminder %>%
filter(year == past_year & !is.na(gdp)) %>%
ggplot(aes(group, dollars_per_day)) +
geom_boxplot() +
scale_y_continuous(trans = "log2") +
xlab("") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))

p

9.7 Comparing multiple distributions with boxplots and ridge plots 185

1

4

16

O
th

er
s

La
tin

 A
m

er
ic

a

E
as

t A
si

a

S
ub

−
S

ah
ar

an

W
es

t

do
lla

rs
_p

er
_d

ay

Boxplots have the limitation that by summarizing the data into five numbers, we might miss
important characteristics of the data. One way to avoid this is by showing the data.

p + geom_point(alpha = 0.5)

1

4

16

O
th

er
s

La
tin

 A
m

er
ic

a

E
as

t A
si

a

S
ub

−
S

ah
ar

an

W
es

t

do
lla

rs
_p

er
_d

ay

9.7.2 Ridge plots

Showing each individual point does not always reveal important characteristics of the dis-
tribution. Although not the case here, when the number of data points is so large that there
is over-plotting, showing the data can be counterproductive. Boxplots help with this by
providing a five-number summary, but this has limitations too. For example, boxplots will
not permit us to discover bimodal distributions. To see this, note that the two plots below
are summarizing the same dataset:

www.dbooks.org

https://www.dbooks.org/

186 9 Data visualization in practice

0.00

0.05

0.10

0.15

0.20

0 5
x

−2.5

0.0

2.5

5.0

7.5

x

In cases in which we are concerned that the boxplot summary is too simplistic, we can
show stacked smooth densities or histograms. We refer to these as ridge plots. Because we
are used to visualizing densities with values in the x-axis, we stack them vertically. Also,
because more space is needed in this approach, it is convenient to overlay them. The package
ggridges provides a convenient function for doing this. Here is the income data shown above
with boxplots but with a ridge plot.

library(ggridges)
p <- gapminder %>%
filter(year == past_year & !is.na(dollars_per_day)) %>%
ggplot(aes(dollars_per_day, group)) +
scale_x_continuous(trans = "log2")

p + geom_density_ridges()

Others

Latin America

East Asia

Sub−Saharan

West

0.25 2.00 16.00 128.00
dollars_per_day

gr
ou

p

Note that we have to invert the x and y used for the boxplot. A useful geom_density_ridges
parameter is scale, which lets you determine the amount of overlap, with scale = 1 mean-
ing no overlap and larger values resulting in more overlap.

9.7 Comparing multiple distributions with boxplots and ridge plots 187

If the number of data points is small enough, we can add them to the ridge plot using the
following code:

p + geom_density_ridges(jittered_points = TRUE)

Others

Latin America

East Asia

Sub−Saharan

West

0.25 2.00 16.00 128.00
dollars_per_day

gr
ou

p

By default, the height of the points is jittered and should not be interpreted in any way.
To show data points, but without using jitter we can use the following code to add what is
referred to as a rug representation of the data.

p + geom_density_ridges(jittered_points = TRUE,
position = position_points_jitter(height = 0),
point_shape = '|', point_size = 3,
point_alpha = 1, alpha = 0.7)

||| | ||||| | ||| || | || | || |

| ||| ||| | | | |||| || ||| | || || | || ||| ||

| || |||| ||

| |||| | || |||| ||| | ||| || | || || |

|| | | || || | |||| ||| | || | | | |Others

Latin America

East Asia

Sub−Saharan

West

0.25 2.00 16.00 128.00
dollars_per_day

gr
ou

p

9.7.3 Example: 1970 versus 2010 income distributions

Data exploration clearly shows that in 1970 there was a “west versus the rest” dichotomy. But
does this dichotomy persist? Let’s use facet_grid see how the distributions have changed.
To start, we will focus on two groups: the west and the rest. We make four histograms.

www.dbooks.org

https://www.dbooks.org/

188 9 Data visualization in practice

past_year <- 1970
present_year <- 2010
years <- c(past_year, present_year)
gapminder %>%
filter(year %in% years & !is.na(gdp)) %>%
mutate(west = ifelse(group == "West", "West", "Developing")) %>%
ggplot(aes(dollars_per_day)) +
geom_histogram(binwidth = 1, color = "black") +
scale_x_continuous(trans = "log2") +
facet_grid(year ~ west)

Developing West

1970
2010

0.125 1.000 8.000 64.000 0.125 1.000 8.000 64.000

0

5

10

15

20

25

0

5

10

15

20

25

dollars_per_day

co
un

t

Before we interpret the findings of this plot, we notice that there are more countries repre-
sented in the 2010 histograms than in 1970: the total counts are larger. One reason for this
is that several countries were founded after 1970. For example, the Soviet Union divided
into several countries during the 1990s. Another reason is that data was available for more
countries in 2010.

We remake the plots using only countries with data available for both years. In the data
wrangling part of this book, we will learn tidyverse tools that permit us to write efficient
code for this, but here we can use simple code using the intersect function:

country_list_1 <- gapminder %>%
filter(year == past_year & !is.na(dollars_per_day)) %>%
pull(country)

country_list_2 <- gapminder %>%
filter(year == present_year & !is.na(dollars_per_day)) %>%
pull(country)

country_list <- intersect(country_list_1, country_list_2)

These 108 account for 86% of the world population, so this subset should be representative.

Let’s remake the plot, but only for this subset by simply adding country %in%
country_list to the filter function:

9.7 Comparing multiple distributions with boxplots and ridge plots 189

Developing West

1970
2010

0.125 1.000 8.000 64.000 0.125 1.000 8.000 64.000

0

5

10

15

20

0

5

10

15

20

dollars_per_day

co
un

t

We now see that the rich countries have become a bit richer, but percentage-wise, the
poor countries appear to have improved more. In particular, we see that the proportion of
developing countries earning more than $16 a day increased substantially.

To see which specific regions improved the most, we can remake the boxplots we made
above, but now adding the year 2010 and then using facet to compare the two years.

gapminder %>%
filter(year %in% years & country %in% country_list) %>%
ggplot(aes(group, dollars_per_day)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_y_continuous(trans = "log2") +
xlab("") +
facet_grid(. ~ year)

www.dbooks.org

https://www.dbooks.org/

190 9 Data visualization in practice

1970 2010
O

th
er

s

La
tin

 A
m

er
ic

a

E
as

t A
si

a

S
ub

−
S

ah
ar

an

W
es

t

O
th

er
s

La
tin

 A
m

er
ic

a

E
as

t A
si

a

S
ub

−
S

ah
ar

an

W
es

t

1

8

64

do
lla

rs
_p

er
_d

ay

Here, we pause to introduce another powerful ggplot2 feature. Because we want to compare
each region before and after, it would be convenient to have the 1970 boxplot next to the
2010 boxplot for each region. In general, comparisons are easier when data are plotted next
to each other.

So instead of faceting, we keep the data from each year together and ask to color (or fill)
them depending on the year. Note that groups are automatically separated by year and each
pair of boxplots drawn next to each other. Because year is a number, we turn it into a factor
since ggplot2 automatically assigns a color to each category of a factor. Note that we have
to convert the year columns from numeric to factor.

gapminder %>%
filter(year %in% years & country %in% country_list) %>%
mutate(year = factor(year)) %>%
ggplot(aes(group, dollars_per_day, fill = year)) +
geom_boxplot() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_y_continuous(trans = "log2") +
xlab("")

9.7 Comparing multiple distributions with boxplots and ridge plots 191

1

8

64

O
th

er
s

La
tin

 A
m

er
ic

a

E
as

t A
si

a

S
ub

−
S

ah
ar

an

W
es

t

do
lla

rs
_p

er
_d

ay

year

1970

2010

Finally, we point out that if what we are most interested in is comparing before and after
values, it might make more sense to plot the percentage increases. We are still not ready to
learn to code this, but here is what the plot would look like:

0

500

1000

1500

S
ub

−
S

ah
ar

an

La
tin

 A
m

er
ic

a

W
es

t

O
th

er
s

E
as

t A
si

a

P
er

ce
nt

 in
cr

ea
se

: 1
97

0
to

 2
01

0

The previous data exploration suggested that the income gap between rich and poor coun-
tries has narrowed considerably during the last 40 years. We used a series of histograms and
boxplots to see this. We suggest a succinct way to convey this message with just one plot.

Let’s start by noting that density plots for income distribution in 1970 and 2010 deliver the
message that the gap is closing:

gapminder %>%
filter(year %in% years & country %in% country_list) %>%
ggplot(aes(dollars_per_day)) +
geom_density(fill = "grey") +
scale_x_continuous(trans = "log2") +
facet_grid(. ~ year)

www.dbooks.org

https://www.dbooks.org/

192 9 Data visualization in practice

1970 2010

1 8 64 1 8 64

0.00

0.05

0.10

0.15

dollars_per_day

de
ns

ity

In the 1970 plot, we see two clear modes: poor and rich countries. In 2010, it appears that
some of the poor countries have shifted towards the right, closing the gap.

The next message we need to convey is that the reason for this change in distribution is that
several poor countries became richer, rather than some rich countries becoming poorer. To
do this, we can assign a color to the groups we identified during data exploration.

However, we first need to learn how to make these smooth densities in a way that preserves
information on the number of countries in each group. To understand why we need this,
note the discrepancy in the size of each group:

Developing West

87 21

But when we overlay two densities, the default is to have the area represented by each
distribution add up to 1, regardless of the size of each group:

gapminder %>%
filter(year %in% years & country %in% country_list) %>%
mutate(group = ifelse(group == "West", "West", "Developing")) %>%
ggplot(aes(dollars_per_day, fill = group)) +
scale_x_continuous(trans = "log2") +
geom_density(alpha = 0.2) +
facet_grid(year ~ .)

9.7 Comparing multiple distributions with boxplots and ridge plots 193

1970
2010

1 8 64

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

dollars_per_day

de
ns

ity

group

Developing

West

This makes it appear as if there are the same number of countries in each group. To change
this, we will need to learn to access computed variables with geom_density function.

9.7.4 Accessing computed variables

To have the areas of these densities be proportional to the size of the groups, we can simply
multiply the y-axis values by the size of the group. From the geom_density help file, we
see that the functions compute a variable called count that does exactly this. We want this
variable to be on the y-axis rather than the density.

In ggplot2, we access these variables by surrounding the name with two dots. We will
therefore use the following mapping:

aes(x = dollars_per_day, y = ..count..)

We can now create the desired plot by simply changing the mapping in the previous code
chunk. We will also expand the limits of the x-axis.

p <- gapminder %>%
filter(year %in% years & country %in% country_list) %>%
mutate(group = ifelse(group == "West", "West", "Developing")) %>%
ggplot(aes(dollars_per_day, y = ..count.., fill = group)) +
scale_x_continuous(trans = "log2", limit = c(0.125, 300))

p + geom_density(alpha = 0.2) +
facet_grid(year ~ .)

www.dbooks.org

https://www.dbooks.org/

194 9 Data visualization in practice

1970
2010

0.5 4.0 32.0 256.0

0

5

10

15

20

0

5

10

15

20

dollars_per_day

co
un

t group

Developing

West

If we want the densities to be smoother, we use the bw argument so that the same bandwidth
is used in each density. We selected 0.75 after trying out several values.

p + geom_density(alpha = 0.2, bw = 0.75) + facet_grid(year ~ .)

1970
2010

0.5 4.0 32.0 256.0

0

5

10

15

0

5

10

15

dollars_per_day

co
un

t group

Developing

West

This plot now shows what is happening very clearly. The developing world distribution is
changing. A third mode appears consisting of the countries that most narrowed the gap.

To visualize if any of the groups defined above are driving this we can quickly make a ridge
plot:

gapminder %>%
filter(year %in% years & !is.na(dollars_per_day)) %>%
ggplot(aes(dollars_per_day, group)) +
scale_x_continuous(trans = "log2") +
geom_density_ridges(adjust = 1.5) +
facet_grid(. ~ year)

9.7 Comparing multiple distributions with boxplots and ridge plots 195

1970 2010

0.5 8.0 128.0 0.5 8.0 128.0

Others

Latin America

East Asia

Sub−Saharan

West

dollars_per_day

gr
ou

p

Another way to achieve this is by stacking the densities on top of each other:

gapminder %>%
filter(year %in% years & country %in% country_list) %>%

group_by(year) %>%
mutate(weight = population/sum(population)*2) %>%
ungroup() %>%
ggplot(aes(dollars_per_day, fill = group)) +
scale_x_continuous(trans = "log2", limit = c(0.125, 300)) +
geom_density(alpha = 0.2, bw = 0.75, position = "stack") +
facet_grid(year ~ .)

1970
2010

0.5 4.0 32.0 256.0

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

dollars_per_day

de
ns

ity

group

Others

Latin America

East Asia

Sub−Saharan

West

Here we can clearly see how the distributions for East Asia, Latin America, and others shift
markedly to the right. While Sub-Saharan Africa remains stagnant.

Notice that we order the levels of the group so that the West’s density is plotted first, then
Sub-Saharan Africa. Having the two extremes plotted first allows us to see the remaining
bimodality better.

www.dbooks.org

https://www.dbooks.org/

196 9 Data visualization in practice

9.7.5 Weighted densities

As a final point, we note that these distributions weigh every country the same. So if most
of the population is improving, but living in a very large country, such as China, we might
not appreciate this. We can actually weight the smooth densities using the weight mapping
argument. The plot then looks like this:

1970
2010

0.5 4.0 32.0 256.0

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

dollars_per_day

de
ns

ity

group

Others

Latin America

East Asia

Sub−Saharan

West

This particular figure shows very clearly how the income distribution gap is closing with
most of the poor remaining in Sub-Saharan Africa.

9.8 The ecological fallacy and importance of showing the data

Throughout this section, we have been comparing regions of the world. We have seen that,
on average, some regions do better than others. In this section, we focus on describing
the importance of variability within the groups when examining the relationship between a
country’s infant mortality rates and average income.

We define a few more regions and compare the averages across regions:

9.8 The ecological fallacy and importance of showing the data 197

East Asia

Latin America
Northern Africa

Pacific Islands

Southern Asia

Sub−Saharan

West

0.850

0.900

0.950

0.990

0.995

0.998

1 8 64
income

in
fa

nt
_s

ur
vi

va
l_

ra
te

The relationship between these two variables is almost perfectly linear and the graph shows
a dramatic difference. While in the West less than 0.5% of infants die, in Sub-Saharan Africa
the rate is higher than 6%!

Note that the plot uses a new transformation, the logistic transformation.

9.8.1 Logistic transformation

The logistic or logit transformation for a proportion or rate p is defined as:

f(p) = log
(

p

1 − p

)
When p is a proportion or probability, the quantity that is being logged, p/(1 − p), is called
the odds. In this case p is the proportion of infants that survived. The odds tell us how
many more infants are expected to survive than to die. The log transformation makes this
symmetric. If the rates are the same, then the log odds is 0. Fold increases or decreases turn
into positive and negative increments, respectively.

This scale is useful when we want to highlight differences near 0 or 1. For survival rates
this is important because a survival rate of 90% is unacceptable, while a survival of 99% is
relatively good. We would much prefer a survival rate closer to 99.9%. We want our scale
to highlight these difference and the logit does this. Note that 99.9/0.1 is about 10 times
bigger than 99/1 which is about 10 times larger than 90/10. By using the log, these fold
changes turn into constant increases.

9.8.2 Show the data

Now, back to our plot. Based on the plot above, do we conclude that a country with a
low income is destined to have low survival rate? Do we conclude that survival rates in
Sub-Saharan Africa are all lower than in Southern Asia, which in turn are lower than in the
Pacific Islands, and so on?

Jumping to this conclusion based on a plot showing averages is referred to as the ecological
fallacy. The almost perfect relationship between survival rates and income is only observed

www.dbooks.org

https://www.dbooks.org/

198 9 Data visualization in practice

for the averages at the region level. Once we show all the data, we see a somewhat more
complicated story:

Angola

Bolivia
BotswanaCambodia

Chile

Haiti

Mauritius
Serbia

Sierra Leone

Singapore

Sudan

Sweden

Tunisia

United States

0.850

0.900

0.950

0.990

0.995

0.998

1 8 64
dollars_per_day

1
−

 in
fa

nt
_m

or
ta

lit
y/

10
00

group

East Asia

Latin America

Northern Africa

Pacific Islands

Southern Asia

Sub−Saharan

West

Specifically, we see that there is a large amount of variability. We see that countries from
the same regions can be quite different and that countries with the same income can have
different survival rates. For example, while on average Sub-Saharan Africa had the worse
health and economic outcomes, there is wide variability within that group. Mauritius and
Botswana are doing better than Angola and Sierra Leone, with Mauritius comparable to
Western countries.

10
Data visualization principles

We have already provided some rules to follow as we created plots for our examples. Here, we
aim to provide some general principles we can use as a guide for effective data visualization.
Much of this section is based on a talk by Karl Broman1 titled “Creating Effective Figures
and Tables”2 and includes some of the figures which were made with code that Karl makes
available on his GitHub repository3, as well as class notes from Peter Aldhous’ Introduction
to Data Visualization course4. Following Karl’s approach, we show some examples of plot
styles we should avoid, explain how to improve them, and use these as motivation for a list
of principles. We compare and contrast plots that follow these principles to those that don’t.

The principles are mostly based on research related to how humans detect patterns and
make visual comparisons. The preferred approaches are those that best fit the way our brains
process visual information. When deciding on a visualization approach, it is also important
to keep our goal in mind. We may be comparing a viewable number of quantities, describing
distributions for categories or numeric values, comparing the data from two groups, or
describing the relationship between two variables. As a final note, we want to emphasize
that for a data scientist it is important to adapt and optimize graphs to the audience. For
example, an exploratory plot made for ourselves will be different than a chart intended to
communicate a finding to a general audience.

We will be using these libraries:

library(tidyverse)
library(dslabs)
library(gridExtra)

10.1 Encoding data using visual cues

We start by describing some principles for encoding data. There are several approaches at
our disposal including position, aligned lengths, angles, area, brightness, and color hue.

To illustrate how some of these strategies compare, let’s suppose we want to report the
results from two hypothetical polls regarding browser preference taken in 2000 and then
2015. For each year, we are simply comparing four quantities – the four percentages. A
widely used graphical representation of percentages, popularized by Microsoft Excel, is the
pie chart:

1http://kbroman.org/
2https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf
3https://github.com/kbroman/Talk_Graphs
4http://paldhous.github.io/ucb/2016/dataviz/index.html

199

www.dbooks.org

http://kbroman.org/
https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf
https://github.com/kbroman/Talk_Graphs
http://paldhous.github.io/ucb/2016/dataviz/index.html
https://www.dbooks.org/

200 10 Data visualization principles

2000 2015

Browser

Opera

Safari

Firefox

Chrome

IE

Here we are representing quantities with both areas and angles, since both the angle and
area of each pie slice are proportional to the quantity the slice represents. This turns out to
be a sub-optimal choice since, as demonstrated by perception studies, humans are not good
at precisely quantifying angles and are even worse when area is the only available visual
cue. The donut chart is an example of a plot that uses only area:

2000 2015

Browser

Opera

Safari

Firefox

Chrome

IE

To see how hard it is to quantify angles and area, note that the rankings and all the
percentages in the plots above changed from 2000 to 2015. Can you determine the actual
percentages and rank the browsers’ popularity? Can you see how the percentages changed
from 2000 to 2015? It is not easy to tell from the plot. In fact, the pie R function help file
states that:

Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas. A bar chart or dot chart is a preferable way
of displaying this type of data.

In this case, simply showing the numbers is not only clearer, but would also save on printing
costs if printing a paper copy:

10.1 Encoding data using visual cues 201

Browser 2000 2015

Opera 3 2
Safari 21 22
Firefox 23 21
Chrome 26 29
IE 28 27

The preferred way to plot these quantities is to use length and position as visual cues,
since humans are much better at judging linear measures. The barplot uses this approach
by using bars of length proportional to the quantities of interest. By adding horizontal
lines at strategically chosen values, in this case at every multiple of 10, we ease the visual
burden of quantifying through the position of the top of the bars. Compare and contrast
the information we can extract from the two figures.

2000 2015

Browser

Opera

Safari

Firefox

Chrome

IE

2000 2015

Opera Safari Firefox Chrome IE Opera Safari Firefox Chrome IE

0

10

20

30

Browser

P
er

ce
nt

 u
si

ng
 th

e
B

ro
w

se
r

Notice how much easier it is to see the differences in the barplot. In fact, we can now
determine the actual percentages by following a horizontal line to the x-axis.

If for some reason you need to make a pie chart, label each pie slice with its respective
percentage so viewers do not have to infer them from the angles or area:

www.dbooks.org

https://www.dbooks.org/

202 10 Data visualization principles

2.0%

22.0%

21.0%

27.0%

29.0%
Browser

Opera

Safari

Firefox

Chrome

IE

2015

In general, when displaying quantities, position and length are preferred over angles and/or
area. Brightness and color are even harder to quantify than angles. But, as we will see later,
they are sometimes useful when more than two dimensions must be displayed at once.

10.2 Know when to include 0

When using barplots, it is misinformative not to start the bars at 0. This is because, by
using a barplot, we are implying the length is proportional to the quantities being displayed.
By avoiding 0, relatively small differences can be made to look much bigger than they
actually are. This approach is often used by politicians or media organizations trying to
exaggerate a difference. Below is an illustrative example used by Peter Aldhous in this
lecture: http://paldhous.github.io/ucb/2016/dataviz/week2.html.

(Source: Fox News, via Media Matters5.)

5http://mediamatters.org/blog/2013/04/05/fox-news-newest-dishonest-chart-immigration-enf/193507

http://paldhous.github.io/ucb/2016/dataviz/week2.html
http://mediamatters.org/blog/2013/04/05/fox-news-newest-dishonest-chart-immigration-enf/193507

10.2 Know when to include 0 203

From the plot above, it appears that apprehensions have almost tripled when, in fact, they
have only increased by about 16%. Starting the graph at 0 illustrates this clearly:

0

50000

100000

150000

200000

2011 2012 2013
Year

S
ou

th
w

es
t_

B
or

de
r_

A
pp

re
he

ns
io

ns

Here is another example, described in detail in a Flowing Data blog post:

(Source: Fox News, via Flowing Data6.)

This plot makes a 13% increase look like a five fold change. Here is the appropriate plot:

6http://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/

www.dbooks.org

http://flowingdata.com/2012/08/06/fox-news-continues-charting-excellence/
https://www.dbooks.org/

204 10 Data visualization principles

0

10

20

30

40

Now Jan 1, 2013

Top Tax Rate If Bush Tax Cut Expires

Finally, here is an extreme example that makes a very small difference of under 2% look like
a 10-100 fold change:

(Source: Venezolana de Televisión via Pakistan Today7 and Diego Mariano.)

Here is the appropriate plot:

7https://www.pakistantoday.com.pk/2018/05/18/whats-at-stake-in-venezuelan-presidential-vote

https://www.pakistantoday.com.pk/2018/05/18/whats-at-stake-in-venezuelan-presidential-vote

10.3 Do not distort quantities 205

0

10

20

30

40

50

Maduro Capriles
Candidate

P
er

ce
nt

When using position rather than length, it is then not necessary to include 0. This is partic-
ularly the case when we want to compare differences between groups relative to the within-
group variability. Here is an illustrative example showing country average life expectancy
stratified across continents in 2012:

0

20

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
e_

ex
pe

ct
an

cy

45

55

65

75

85

Africa Americas Asia Europe Oceania
continent

lif
e_

ex
pe

ct
an

cy

Note that in the plot on the left, which includes 0, the space between 0 and 43 adds no
information and makes it harder to compare the between and within group variability.

10.3 Do not distort quantities

During President Barack Obama’s 2011 State of the Union Address, the following chart was
used to compare the US GDP to the GDP of four competing nations:

www.dbooks.org

https://www.dbooks.org/

206 10 Data visualization principles

(Source: The 2011 State of the Union Address8)

Judging by the area of the circles, the US appears to have an economy over five times
larger than China’s and over 30 times larger than France’s. However, if we look at the
actual numbers, we see that this is not the case. The actual ratios are 2.6 and 5.8 times
bigger than China and France, respectively. The reason for this distortion is that the radius,
rather than the area, was made to be proportional to the quantity, which implies that the
proportion between the areas is squared: 2.6 turns into 6.5 and 5.8 turns into 34.1. Here is
a comparison of the circles we get if we make the value proportional to the radius and to
the area:

France

Germany

Japan

China

United States

Radius Area

Not surprisingly, ggplot2 defaults to using area rather than radius. Of course, in this case,
we really should not be using area at all since we can use position and length:

8https://www.youtube.com/watch?v=kl2g40GoRxg

https://www.youtube.com/watch?v=kl2g40GoRxg

10.4 Order categories by a meaningful value 207

0

2

4

6

France Germany Japan China United States
Country

G
D

P
 in

 tr
ill

io
ns

 o
f U

S
 d

ol
la

rs

10.4 Order categories by a meaningful value

When one of the axes is used to show categories, as is done in barplots, the default ggplot2
behavior is to order the categories alphabetically when they are defined by character strings.
If they are defined by factors, they are ordered by the factor levels. We rarely want to use
alphabetical order. Instead, we should order by a meaningful quantity. In all the cases
above, the barplots were ordered by the values being displayed. The exception was the
graph showing barplots comparing browsers. In this case, we kept the order the same across
the barplots to ease the comparison. Specifically, instead of ordering the browsers separately
in the two years, we ordered both years by the average value of 2000 and 2015.
We previously learned how to use the reorder function, which helps us achieve this goal.
To appreciate how the right order can help convey a message, suppose we want to create a
plot to compare the murder rate across states. We are particularly interested in the most
dangerous and safest states. Note the difference when we order alphabetically (the default)
versus when we order by the actual rate:

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

District of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

0 5 10 15
murder_rate

Vermont
New Hampshire

Hawaii
North Dakota

Iowa
Idaho
Utah

Maine
Wyoming

Oregon
South Dakota

Minnesota
Montana
Colorado

Washington
West Virginia
Rhode Island

Wisconsin
Nebraska

Massachusetts
Indiana
Kansas

New York
Kentucky

Alaska
Ohio

Connecticut
New Jersey

Alabama
Illinois

Oklahoma
North Carolina

Nevada
Virginia

Arkansas
Texas

New Mexico
California

Florida
Tennessee

Pennsylvania
Arizona
Georgia

Mississippi
Michigan
Delaware

South Carolina
Maryland
Missouri

Louisiana
District of Columbia

0 5 10 15
murder_rate

www.dbooks.org

https://www.dbooks.org/

208 10 Data visualization principles

We can make the second plot like this:

data(murders)
murders %>% mutate(murder_rate = total / population * 100000) %>%
mutate(state = reorder(state, murder_rate)) %>%
ggplot(aes(state, murder_rate)) +
geom_bar(stat="identity") +
coord_flip() +
theme(axis.text.y = element_text(size = 6)) +
xlab("")

The reorder function lets us reorder groups as well. Earlier we saw an example related to
income distributions across regions. Here are the two versions plotted against each other:

0

10

20

30

40

50

A
us

tr
al

ia
 a

nd
 N

ew
 Z

ea
la

nd
C

ar
ib

be
an

C
en

tr
al

 A
m

er
ic

a
E

as
te

rn
 A

fr
ic

a
E

as
te

rn
 A

si
a

E
as

te
rn

 E
ur

op
e

M
el

an
es

ia
M

ic
ro

ne
si

a
M

id
dl

e
A

fr
ic

a
N

or
th

er
n

A
fr

ic
a

N
or

th
er

n
A

m
er

ic
a

N
or

th
er

n
E

ur
op

e
P

ol
yn

es
ia

S
ou

th
 A

m
er

ic
a

S
ou

th
−

E
as

te
rn

 A
si

a
S

ou
th

er
n

A
fr

ic
a

S
ou

th
er

n
A

si
a

S
ou

th
er

n
E

ur
op

e
W

es
te

rn
 A

fr
ic

a
W

es
te

rn
 A

si
a

W
es

te
rn

 E
ur

op
e

do
lla

rs
_p

er
_d

ay

0

10

20

30

40

50
S

ou
th

er
n

A
si

a
W

es
te

rn
 A

fr
ic

a
E

as
te

rn
 A

fr
ic

a
M

id
dl

e
A

fr
ic

a
S

ou
th

er
n

A
fr

ic
a

N
or

th
er

n
A

fr
ic

a
S

ou
th

−
E

as
te

rn
 A

si
a

M
ic

ro
ne

si
a

M
el

an
es

ia
C

en
tr

al
 A

m
er

ic
a

S
ou

th
 A

m
er

ic
a

E
as

te
rn

 E
ur

op
e

W
es

te
rn

 A
si

a
C

ar
ib

be
an

E
as

te
rn

 A
si

a
S

ou
th

er
n

E
ur

op
e

P
ol

yn
es

ia
W

es
te

rn
 E

ur
op

e
A

us
tr

al
ia

 a
nd

 N
ew

 Z
ea

la
nd

N
or

th
er

n
A

m
er

ic
a

N
or

th
er

n
E

ur
op

e

do
lla

rs
_p

er
_d

ay

The first orders the regions alphabetically, while the second orders them by the group’s
median.

10.5 Show the data

We have focused on displaying single quantities across categories. We now shift our attention
to displaying data, with a focus on comparing groups.

To motivate our first principle, “show the data”, we go back to our artificial example of
describing heights to ET, an extraterrestrial. This time let’s assume ET is interested in the

10.5 Show the data 209

difference in heights between males and females. A commonly seen plot used for comparisons
between groups, popularized by software such as Microsoft Excel, is the dynamite plot, which
shows the average and standard errors (standard errors are defined in a later chapter, but
do not confuse them with the standard deviation of the data). The plot looks like this:

0

20

40

60

Female Male
sex

H
ei

gh
t i

n
in

ch
es

The average of each group is represented by the top of each bar and the antennae extend
out from the average to the average plus two standard errors. If all ET receives is this
plot, he will have little information on what to expect if he meets a group of human males
and females. The bars go to 0: does this mean there are tiny humans measuring less than
one foot? Are all males taller than the tallest females? Is there a range of heights? ET
can’t answer these questions since we have provided almost no information on the height
distribution.

This brings us to our first principle: show the data. This simple ggplot2 code already
generates a more informative plot than the barplot by simply showing all the data points:

heights %>%
ggplot(aes(sex, height)) +
geom_point()

www.dbooks.org

https://www.dbooks.org/

210 10 Data visualization principles

50

60

70

80

Female Male
sex

he
ig

ht

For example, this plot gives us an idea of the range of the data. However, this plot has
limitations as well, since we can’t really see all the 238 and 812 points plotted for females and
males, respectively, and many points are plotted on top of each other. As we have previously
described, visualizing the distribution is much more informative. But before doing this, we
point out two ways we can improve a plot showing all the points.
The first is to add jitter, which adds a small random shift to each point. In this case, adding
horizontal jitter does not alter the interpretation, since the point heights do not change, but
we minimize the number of points that fall on top of each other and, therefore, get a better
visual sense of how the data is distributed. A second improvement comes from using alpha
blending: making the points somewhat transparent. The more points fall on top of each
other, the darker the plot, which also helps us get a sense of how the points are distributed.
Here is the same plot with jitter and alpha blending:

heights %>%
ggplot(aes(sex, height)) +
geom_jitter(width = 0.1, alpha = 0.2)

50

60

70

80

Female Male
sex

he
ig

ht

Now we start getting a sense that, on average, males are taller than females. We also note
dark horizontal bands of points, demonstrating that many report values that are rounded
to the nearest integer.

10.6 Ease comparisons 211

10.6 Ease comparisons

10.6.1 Use common axes

Since there are so many points, it is more effective to show distributions rather than indi-
vidual points. We therefore show histograms for each group:

Female Male

50 60 70 80 50 60 70 80

0.00

0.05

0.10

0.15

height

de
ns

ity

However, from this plot it is not immediately obvious that males are, on average, taller than
females. We have to look carefully to notice that the x-axis has a higher range of values
in the male histogram. An important principle here is to keep the axes the same when
comparing data across two plots. Below we see how the comparison becomes easier:

Female Male

50 60 70 80 50 60 70 80

0.00

0.05

0.10

0.15

height

de
ns

ity

www.dbooks.org

https://www.dbooks.org/

212 10 Data visualization principles

10.6.2 Align plots vertically to see horizontal changes and horizontally to
see vertical changes

In these histograms, the visual cue related to decreases or increases in height are shifts to
the left or right, respectively: horizontal changes. Aligning the plots vertically helps us see
this change when the axes are fixed:

F
em

ale
M

ale

50 60 70 80

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

height

de
ns

ity

heights %>%
ggplot(aes(height, ..density..)) +
geom_histogram(binwidth = 1, color="black") +
facet_grid(sex~.)

This plot makes it much easier to notice that men are, on average, taller.

If , we want the more compact summary provided by boxplots, we then align them horizon-
tally since, by default, boxplots move up and down with changes in height. Following our
show the data principle, we then overlay all the data points:

50

60

70

80

Female Male
sex

H
ei

gh
t i

n
in

ch
es

10.6 Ease comparisons 213

heights %>%
ggplot(aes(sex, height)) +
geom_boxplot(coef=3) +
geom_jitter(width = 0.1, alpha = 0.2) +
ylab("Height in inches")

Now contrast and compare these three plots, based on exactly the same data:

0

20

40

60

Female Male
sex

H
ei

gh
t i

n
in

ch
es

F
em

ale
M

ale

50 60 70 80

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

height

de
ns

ity

50

60

70

80

Female Male
sex

H
ei

gh
t i

n
in

ch
es

Notice how much more we learn from the two plots on the right. Barplots are useful for
showing one number, but not very useful when we want to describe distributions.

10.6.3 Consider transformations

We have motivated the use of the log transformation in cases where the changes are multi-
plicative. Population size was an example in which we found a log transformation to yield
a more informative transformation.

The combination of an incorrectly chosen barplot and a failure to use a log transformation
when one is merited can be particularly distorting. As an example, consider this barplot
showing the average population sizes for each continent in 2015:

www.dbooks.org

https://www.dbooks.org/

214 10 Data visualization principles

0

25

50

75

Oceania Europe Africa Americas Asia
Continent

P
op

ul
at

io
n

in
 M

ill
io

ns

From this plot, one would conclude that countries in Asia are much more populous than in
other continents. Following the show the data principle, we quickly notice that this is due
to two very large countries, which we assume are India and China:

0

500

1000

Oceania Americas Europe Asia Africa
Continent

P
op

ul
at

io
n

in
 M

ill
io

ns

Using a log transformation here provides a much more informative plot. We compare the
original barplot to a boxplot using the log scale transformation for the y-axis:

10.6 Ease comparisons 215

0

25

50

75

Oceania Europe Africa Americas Asia
Continent

P
op

ul
at

io
n

in
 M

ill
io

ns

1

10

100

1000

Oceania Americas Europe Asia Africa

Continent

P
op

ul
at

io
n

in
 M

ill
io

ns

With the new plot, we realize that countries in Africa actually have a larger median popu-
lation size than those in Asia.

Other transformations you should consider are the logistic transformation (logit), useful
to better see fold changes in odds, and the square root transformation (sqrt), useful for
count data.

10.6.4 Visual cues to be compared should be adjacent

For each continent, let’s compare income in 1970 versus 2010. When comparing income data
across regions between 1970 and 2010, we made a figure similar to the one below, but this
time we investigate continents rather than regions.

1

8

64

19
70

 A
fr

ic
a

19
70

 A
m

er
ic

as

19
70

 A
si

a

19
70

 E
ur

op
e

19
70

 O
ce

an
ia

20
10

 A
fr

ic
a

20
10

 A
m

er
ic

as

20
10

 A
si

a

20
10

 E
ur

op
e

20
10

 O
ce

an
ia

labels

In
co

m
e

in
 d

ol
la

rs
 p

er
 d

ay

www.dbooks.org

https://www.dbooks.org/

216 10 Data visualization principles

The default in ggplot2 is to order labels alphabetically so the labels with 1970 come before
the labels with 2010, making the comparisons challenging because a continent’s distribution
in 1970 is visually far from its distribution in 2010. It is much easier to make the comparison
between 1970 and 2010 for each continent when the boxplots for that continent are next to
each other:

1

8

64

A
fr

ic
a

19
70

A
fr

ic
a

20
10

A
m

er
ic

as
 1

97
0

A
m

er
ic

as
 2

01
0

A
si

a
19

70

A
si

a
20

10

E
ur

op
e

19
70

E
ur

op
e

20
10

O
ce

an
ia

 1
97

0

O
ce

an
ia

 2
01

0

labels

In
co

m
e

in
 d

ol
la

rs
 p

er
 d

ay

10.6.5 Use color

The comparison becomes even easier to make if we use color to denote the two things we
want to compare:

1

8

64

A
fr

ic
a

A
m

er
ic

as

A
si

a

E
ur

op
e

O
ce

an
ia

continent

In
co

m
e

in
 d

ol
la

rs
 p

er
 d

ay

year

1970

2010

10.7 Think of the color blind

About 10% of the population is color blind. Unfortunately, the default colors used in gg-
plot2 are not optimal for this group. However, ggplot2 does make it easy to change the

10.8 Plots for two variables 217

color palette used in the plots. An example of how we can use a color blind friendly palette
is described here: http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-
friendly-palette:

color_blind_friendly_cols <-
c("#999999", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")

Here are the colors

There are several resources that can help you select colors, for example this one: http:
//bconnelly.net/2013/10/creating-colorblind-friendly-figures/.

10.8 Plots for two variables

In general, you should use scatterplots to visualize the relationship between two variables.
In every single instance in which we have examined the relationship between two variables,
including total murders versus population size, life expectancy versus fertility rates, and
infant mortality versus income, we have used scatterplots. This is the plot we generally
recommend. However, there are some exceptions and we describe two alternative plots here:
the slope chart and the Bland-Altman plot.

10.8.1 Slope charts

One exception where another type of plot may be more informative is when you are com-
paring variables of the same type, but at different time points and for a relatively small
number of comparisons. For example, comparing life expectancy between 2010 and 2015. In
this case, we might recommend a slope chart.

There is no geometry for slope charts in ggplot2, but we can construct one using geom_line.
We need to do some tinkering to add labels. Below is an example comparing 2010 to 2015
for large western countries:

west <- c("Western Europe","Northern Europe","Southern Europe",
"Northern America","Australia and New Zealand")

dat <- gapminder %>%
filter(year%in% c(2010, 2015) & region %in% west &

!is.na(life_expectancy) & population > 10^7)

dat %>%
mutate(location = ifelse(year == 2010, 1, 2),

www.dbooks.org

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette
http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/
http://bconnelly.net/2013/10/creating-colorblind-friendly-figures/
https://www.dbooks.org/

218 10 Data visualization principles

location = ifelse(year == 2015 &
country %in% c("United Kingdom", "Portugal"),

location+0.22, location),
hjust = ifelse(year == 2010, 1, 0)) %>%

mutate(year = as.factor(year)) %>%
ggplot(aes(year, life_expectancy, group = country)) +
geom_line(aes(color = country), show.legend = FALSE) +
geom_text(aes(x = location, label = country, hjust = hjust),

show.legend = FALSE) +
xlab("") + ylab("Life Expectancy")

Australia

Belgium

CanadaFrance

GermanyGreece

Italy

Netherlands

Portugal

Spain

United Kingdom

United States

Australia

Belgium

CanadaFrance

Germany
Greece

Italy

Netherlands

Portugal

Spain

United Kingdom

United States79

80

81

82

2010 2015

Li
fe

 E
xp

ec
ta

nc
y

An advantage of the slope chart is that it permits us to quickly get an idea of changes
based on the slope of the lines. Although we are using angle as the visual cue, we also have
position to determine the exact values. Comparing the improvements is a bit harder with a
scatterplot:

Australia

Belgium

Canada

France

Germany
Greece

Italy

Netherlands

Portugal

Spain

United Kingdom

United States
79

80

81

82

83

79 80 81 82 83
2010

20
15

In the scatterplot, we have followed the principle use common axes since we are comparing
these before and after. However, if we have many points, slope charts stop being useful as
it becomes hard to see all the lines.

10.9 Encoding a third variable 219

10.8.2 Bland-Altman plot

Since we are primarily interested in the difference, it makes sense to dedicate one of our
axes to it. The Bland-Altman plot, also known as the Tukey mean-difference plot and the
MA-plot, shows the difference versus the average:

library(ggrepel)
dat %>%
mutate(year = paste0("life_expectancy_", year)) %>%
select(country, year, life_expectancy) %>%
spread(year, life_expectancy) %>%
mutate(average = (life_expectancy_2015 + life_expectancy_2010)/2,

difference = life_expectancy_2015 - life_expectancy_2010) %>%
ggplot(aes(average, difference, label = country)) +
geom_point() +
geom_text_repel() +
geom_abline(lty = 2) +
xlab("Average of 2010 and 2015") +
ylab("Difference between 2015 and 2010")

Australia

Belgium
Canada France

Germany

Greece

Italy

Netherlands

Portugal

Spain
United Kingdom

United States

0.4

0.6

0.8

79 80 81 82
Average of 2010 and 2015

D
iff

er
en

ce
 b

et
w

ee
n

20
15

 a
nd

 2
01

0

Here, by simply looking at the y-axis, we quickly see which countries have shown the most
improvement. We also get an idea of the overall value from the x-axis.

10.9 Encoding a third variable

An earlier scatterplot showed the relationship between infant survival and average income.
Below is a version of this plot that encodes three variables: OPEC membership, region, and
population.

www.dbooks.org

https://www.dbooks.org/

220 10 Data visualization principles

0.850

0.900

0.950

0.990

0.995

0.998

1 8 64
dollars_per_day

In
fa

nt
 s

ur
vi

va
l p

ro
po

rt
io

n

No

Yes

region

East Asia

Latin America

Northern Africa

Pacific Islands

Southern Asia

Sub−Saharan Africa

The West

population/10^6

500

1000

We encode categorical variables with color and shape. These shapes can be controlled with
shape argument. Below are the shapes available for use in R. For the last five, the color
goes inside.

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25

For continuous variables, we can use color, intensity, or size. We now show an example of
how we do this with a case study.

When selecting colors to quantify a numeric variable, we choose between two options: se-
quential and diverging. Sequential colors are suited for data that goes from high to low.
High values are clearly distinguished from low values. Here are some examples offered by
the package RColorBrewer:

library(RColorBrewer)
display.brewer.all(type="seq")

10.10 Avoid pseudo-three-dimensional plots 221

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

Diverging colors are used to represent values that diverge from a center. We put equal
emphasis on both ends of the data range: higher than the center and lower than the center.
An example of when we would use a divergent pattern would be if we were to show height in
standard deviations away from the average. Here are some examples of divergent patterns:

library(RColorBrewer)
display.brewer.all(type="div")

BrBG
PiYG

PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral

10.10 Avoid pseudo-three-dimensional plots

The figure below, taken from the scientific literature9, shows three variables: dose, drug type
and survival. Although your screen/book page is flat and two-dimensional, the plot tries to
imitate three dimensions and assigned a dimension to each variable.

9https://projecteuclid.org/download/pdf_1/euclid.ss/1177010488

www.dbooks.org

https://projecteuclid.org/download/pdf_1/euclid.ss/1177010488
https://www.dbooks.org/

222 10 Data visualization principles

(Image courtesy of Karl Broman)

Humans are not good at seeing in three dimensions (which explains why it is hard to parallel
park) and our limitation is even worse with regard to pseudo-three-dimensions. To see this,
try to determine the values of the survival variable in the plot above. Can you tell when the
purple ribbon intersects the red one? This is an example in which we can easily use color to
represent the categorical variable instead of using a pseudo-3D:

0.4

0.6

0.8

2.5 5.0 7.5 10.0
log.dose

su
rv

iv
al

drug

A

B

C

Notice how much easier it is to determine the survival values.

Pseudo-3D is sometimes used completely gratuitously: plots are made to look 3D even when
the 3rd dimension does not represent a quantity. This only adds confusion and makes it
harder to relay your message. Here are two examples:

10.11 Avoid too many significant digits 223

(Images courtesy of Karl Broman)

10.11 Avoid too many significant digits

By default, statistical software like R returns many significant digits. The default behavior
in R is to show 7 significant digits. That many digits often adds no information and the
added visual clutter can make it hard for the viewer to understand the message. As an
example, here are the per 10,000 disease rates, computed from totals and population in R,
for California across the five decades:

state year Measles Pertussis Polio

California 1940 37.8826320 18.3397861 18.3397861
California 1950 13.9124205 4.7467350 4.7467350
California 1960 14.1386471 0.0000000 0.0000000
California 1970 0.9767889 0.0000000 0.0000000
California 1980 0.3743467 0.0515466 0.0515466

We are reporting precision up to 0.00001 cases per 10,000, a very small value in the context
of the changes that are occurring across the dates. In this case, two significant figures is
more than enough and clearly makes the point that rates are decreasing:

state year Measles Pertussis Polio

California 1940 37.9 18.3 18.3
California 1950 13.9 4.7 4.7
California 1960 14.1 0.0 0.0
California 1970 1.0 0.0 0.0
California 1980 0.4 0.1 0.1

Useful ways to change the number of significant digits or to round numbers are signif and
round. You can define the number of significant digits globally by setting options like this:
options(digits = 3).

Another principle related to displaying tables is to place values being compared on columns
rather than rows. Note that our table above is easier to read than this one:

www.dbooks.org

https://www.dbooks.org/

224 10 Data visualization principles

state disease 1940 1950 1960 1970 1980

California Measles 37.9 13.9 14.1 1 0.4
California Pertussis 18.3 4.7 0.0 0 0.1
California Polio 18.3 4.7 0.0 0 0.1

10.12 Know your audience

Graphs can be used for 1) our own exploratory data analysis, 2) to convey a message to
experts, or 3) to help tell a story to a general audience. Make sure that the intended audience
understands each element of the plot.

As a simple example, consider that for your own exploration it may be more useful to log-
transform data and then plot it. However, for a general audience that is unfamiliar with
converting logged values back to the original measurements, using a log-scale for the axis
instead of log-transformed values will be much easier to digest.

10.13 Exercises

For these exercises, we will be using the vaccines data in the dslabs package:

library(dslabs)
data(us_contagious_diseases)

1. Pie charts are appropriate:

a. When we want to display percentages.
b. When ggplot2 is not available.
c. When I am in a bakery.
d. Never. Barplots and tables are always better.

2. What is the problem with the plot below:

10.13 Exercises 225

200

240

280

Clinton Trump

E
le

ct
or

al
 V

ot
es

Results of Presidential Election 2016

a. The values are wrong. The final vote was 306 to 232.
b. The axis does not start at 0. Judging by the length, it appears Trump received 3

times as many votes when, in fact, it was about 30% more.
c. The colors should be the same.
d. Percentages should be shown as a pie chart.

3. Take a look at the following two plots. They show the same information: 1928 rates of
measles across the 50 states.

Alabama
Arizona

Arkansas
California
Colorado

Connecticut
Delaware

District Of Columbia
Florida

Georgia
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Missouri
Montana

Nebraska
New Hampshire

New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Washington

West Virginia
Wisconsin
Wyoming

0 50 100 150 200
rate

Utah
Idaho
Iowa

North Dakota
California

Minnesota
Nebraska

Illinois
Texas

Wisconsin
Kansas

Montana
Florida

Georgia
South Dakota
West Virginia

Missouri
Colorado

Oregon
Arizona
Indiana

Louisiana
Oklahoma

New Hampshire
Delaware
Kentucky
Wyoming
Alabama

Washington
Vermont

Ohio
Tennessee

Maine
Arkansas
Michigan

Pennsylvania
New York

Connecticut
Rhode Island
New Mexico

District Of Columbia
New Jersey

Massachusetts
Maryland

South Carolina
North Carolina

0 50 100 150 200
rate

Which plot is easier to read if you are interested in determining which are the best and
worst states in terms of rates, and why?

a. They provide the same information, so they are both equally as good.
b. The plot on the right is better because it orders the states alphabetically.

www.dbooks.org

https://www.dbooks.org/

226 10 Data visualization principles

c. The plot on the right is better because alphabetical order has nothing to do with
the disease and by ordering according to actual rate, we quickly see the states
with most and least rates.

d. Both plots should be a pie chart.

4. To make the plot on the left, we have to reorder the levels of the states’ variables.

dat <- us_contagious_diseases %>%
filter(year == 1967 & disease=="Measles" & !is.na(population)) %>%
mutate(rate = count / population * 10000 * 52 / weeks_reporting)

Note what happens when we make a barplot:

dat %>% ggplot(aes(state, rate)) +
geom_bar(stat="identity") +
coord_flip()

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

District Of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

0 5 10 15
rate

st
at

e

Define these objects:

state <- dat$state
rate <- dat$count/dat$population*10000*52/dat$weeks_reporting

Redefine the state object so that the levels are re-ordered. Print the new object state and
its levels so you can see that the vector is not re-ordered by the levels.
5. Now with one line of code, define the dat table as done above, but change the use mutate
to create a rate variable and re-order the state variable so that the levels are re-ordered by
this variable. Then make a barplot using the code above, but for this new dat.
6. Say we are interested in comparing gun homicide rates across regions of the US. We see
this plot:

10.13 Exercises 227

library(dslabs)
data("murders")
murders %>% mutate(rate = total/population*100000) %>%
group_by(region) %>%
summarize(avg = mean(rate)) %>%
mutate(region = factor(region)) %>%
ggplot(aes(region, avg)) +
geom_bar(stat="identity") +
ylab("Murder Rate Average")

0

1

2

3

4

Northeast South North Central West
region

M
ur

de
r

R
at

e
A

ve
ra

ge

and decide to move to a state in the western region. What is the main problem with this
interpretation?

a. The categories are ordered alphabetically.
b. The graph does not show standarad errors.
c. It does not show all the data. We do not see the variability within a region and

it’s possible that the safest states are not in the West.
d. The Northeast has the lowest average.

7. Make a boxplot of the murder rates defined as

data("murders")
murders %>% mutate(rate = total/population*100000)

by region, showing all the points and ordering the regions by their median rate.

8. The plots below show three continuous variables.

www.dbooks.org

https://www.dbooks.org/

228 10 Data visualization principles

0.0 0.5 1.0 1.5 2.0 2.5 3.0−
2

−
1

 0
 1

 2
 3

0.5
1.0

1.5
2.0

2.5

x

z

y

The line x = 2 appears to separate the points. But it is actually not the case, which we can
see by plotting the data in a couple of two-dimensional points.

0.5 1.0 1.5 2.0 2.5

1.
0

1.
5

2.
0

2.
5

x

y

0.5 1.0 1.5 2.0 2.5

−
1

0
1

2

x

z

Why is this happening?

a. Humans are not good at reading pseudo-3D plots.
b. There must be an error in the code.
c. The colors confuse us.
d. Scatterplots should not be used to compare two variables when we have access to

3.

9. Reproduce the image plot we previously made but for smallpox. For this plot, do not
include years in which cases were not reported in 10 or more weeks.

10. Now reproduce the time series plot we previously made, but this time following the
instructions of the previous question.

11. For the state of California, make time series plots showing rates for all diseases. Include
only years with 10 or more weeks reporting. Use a different color for each disease.

12. Now do the same for the rates for the US. Hint: compute the US rate by using summarize,
the total divided by total population.

10.14 Case study: vaccines and infectious diseases 229

10.14 Case study: vaccines and infectious diseases

Vaccines have helped save millions of lives. In the 19th century, before herd immunization
was achieved through vaccination programs, deaths from infectious diseases, such as small-
pox and polio, were common. However, today vaccination programs have become somewhat
controversial despite all the scientific evidence for their importance.

The controversy started with a paper10 published in 1988 and led by Andrew Wakefield
claiming there was a link between the administration of the measles, mumps, and rubella
(MMR) vaccine and the appearance of autism and bowel disease. Despite much scientific
evidence contradicting this finding, sensationalist media reports and fear-mongering from
conspiracy theorists led parts of the public into believing that vaccines were harmful. As
a result, many parents ceased to vaccinate their children. This dangerous practice can be
potentially disastrous given that the Centers for Disease Control (CDC) estimates that
vaccinations will prevent more than 21 million hospitalizations and 732,000 deaths among
children born in the last 20 years (see Benefits from Immunization during the Vaccines for
Children Program Era — United States, 1994-2013, MMWR11). The 1988 paper has since
been retracted and Andrew Wakefield was eventually “struck off the UK medical register,
with a statement identifying deliberate falsification in the research published in The Lancet,
and was thereby barred from practicing medicine in the UK.” (source: Wikipedia12). Yet
misconceptions persist, in part due to self-proclaimed activists who continue to disseminate
misinformation about vaccines.

Effective communication of data is a strong antidote to misinformation and fear-mongering.
Earlier we used an example provided by a Wall Street Journal article13 showing data related
to the impact of vaccines on battling infectious diseases. Here we reconstruct that example.

The data used for these plots were collected, organized, and distributed by the Tycho
Project14. They include weekly reported counts for seven diseases from 1928 to 2011, from
all fifty states. We include the yearly totals in the dslabs package:

library(tidyverse)
library(RColorBrewer)
library(dslabs)
data(us_contagious_diseases)
names(us_contagious_diseases)
#> [1] "disease" "state" "year"
#> [4] "weeks_reporting" "count" "population"

We create a temporary object dat that stores only the measles data, includes a per 100,000
rate, orders states by average value of disease and removes Alaska and Hawaii since they
only became states in the late 1950s. Note that there is a weeks_reporting column that
tells us for how many weeks of the year data was reported. We have to adjust for that value
when computing the rate.

10http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(97)11096-0/abstract
11https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6316a4.htm
12https://en.wikipedia.org/wiki/Andrew_Wakefield
13http://graphics.wsj.com/infectious-diseases-and-vaccines/
14http://www.tycho.pitt.edu/

www.dbooks.org

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(97)11096-0/abstract
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6316a4.htm
https://en.wikipedia.org/wiki/Andrew_Wakefield
http://graphics.wsj.com/infectious-diseases-and-vaccines/
http://www.tycho.pitt.edu/
https://www.dbooks.org/

230 10 Data visualization principles

the_disease <- "Measles"
dat <- us_contagious_diseases %>%
filter(!state%in%c("Hawaii","Alaska") & disease == the_disease) %>%
mutate(rate = count / population * 10000 * 52 / weeks_reporting) %>%
mutate(state = reorder(state, rate))

We can now easily plot disease rates per year. Here are the measles data from California:

dat %>% filter(state == "California" & !is.na(rate)) %>%
ggplot(aes(year, rate)) +
geom_line() +
ylab("Cases per 10,000") +
geom_vline(xintercept=1963, col = "blue")

0

50

100

1940 1960 1980 2000
year

C
as

es
 p

er
 1

0,
00

0

We add a vertical line at 1963 since this is when the vaccine was introduced [Control, Centers
for Disease; Prevention (2014). CDC health information for international travel 2014 (the
yellow book). p. 250. ISBN 9780199948505].

Now can we show data for all states in one plot? We have three variables to show: year,
state, and rate. In the WSJ figure, they use the x-axis for year, the y-axis for state, and
color hue to represent rates. However, the color scale they use, which goes from yellow to
blue to green to orange to red, can be improved.

In our example, we want to use a sequential palette since there is no meaningful center, just
low and high rates.

We use the geometry geom_tile to tile the region with colors representing disease rates. We
use a square root transformation to avoid having the really high counts dominate the plot.
Notice that missing values are shown in grey. Note that once a disease was pretty much
eradicated, some states stopped reporting cases all together. This is why we see so much
grey after 1980.

dat %>% ggplot(aes(year, state, fill = rate)) +
geom_tile(color = "grey50") +
scale_x_continuous(expand=c(0,0)) +

10.14 Case study: vaccines and infectious diseases 231

scale_fill_gradientn(colors = brewer.pal(9, "Reds"), trans = "sqrt") +
geom_vline(xintercept=1963, col = "blue") +
theme_minimal() +
theme(panel.grid = element_blank(),

legend.position="bottom",
text = element_text(size = 8)) +

ggtitle(the_disease) +
ylab("") + xlab("")

Alabama
Arizona

Arkansas
California
Colorado

Connecticut
Delaware

District Of Columbia
Florida

Georgia
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

1940 1960 1980 2000

0 100 200 300

rate

Measles

This plot makes a very striking argument for the contribution of vaccines. However, one
limitation of this plot is that it uses color to represent quantity, which we earlier explained
makes it harder to know exactly how high values are going. Position and lengths are better
cues. If we are willing to lose state information, we can make a version of the plot that shows
the values with position. We can also show the average for the US, which we compute like
this:

avg <- us_contagious_diseases %>%
filter(disease==the_disease) %>% group_by(year) %>%
summarize(us_rate = sum(count, na.rm = TRUE) /

sum(population, na.rm = TRUE) * 10000)

www.dbooks.org

https://www.dbooks.org/

232 10 Data visualization principles

Now to make the plot we simply use the geom_line geometry:

dat %>%
filter(!is.na(rate)) %>%
ggplot() +

geom_line(aes(year, rate, group = state), color = "grey50",
show.legend = FALSE, alpha = 0.2, size = 1) +

geom_line(mapping = aes(year, us_rate), data = avg, size = 1) +
scale_y_continuous(trans = "sqrt", breaks = c(5, 25, 125, 300)) +
ggtitle("Cases per 10,000 by state") +
xlab("") + ylab("") +
geom_text(data = data.frame(x = 1955, y = 50),

mapping = aes(x, y, label="US average"),
color="black") +

geom_vline(xintercept=1963, col = "blue")

US average

5

25

125

300

1940 1960 1980 2000

Cases per 10,000 by state

In theory, we could use color to represent the categorical value state, but it is hard to pick
50 distinct colors.

10.15 Exercises

1. Reproduce the image plot we previously made but for smallpox. For this plot, do
not include years in which cases were not reported in 10 or more weeks.

2. Now reproduce the time series plot we previously made, but this time following
the instructions of the previous question for smallpox.

3. For the state of California, make a time series plot showing rates for all diseases.
Include only years with 10 or more weeks reporting. Use a different color for each
disease.

4. Now do the same for the rates for the US. Hint: compute the US rate by using
summarize: the total divided by total population.

11
Robust summaries

11.1 Outliers

We previously described how boxplots show outliers, but we did not provide a precise defi-
nition. Here we discuss outliers, approaches that can help detect them, and summaries that
take into account their presence.

Outliers are very common in data science. Data recording can be complex and it is common
to observe data points generated in error. For example, an old monitoring device may read
out nonsensical measurements before completely failing. Human error is also a source of
outliers, in particular when data entry is done manually. An individual, for instance, may
mistakenly enter their height in centimeters instead of inches or put the decimal in the
wrong place.

How do we distinguish an outlier from measurements that were too big or too small simply
due to expected variability? This is not always an easy question to answer, but we try to
provide some guidance. Let’s begin with a simple case.

Suppose a colleague is charged with collecting demography data for a group of males. The
data report height in feet and are stored in the object:

library(tidyverse)
library(dslabs)
data(outlier_example)
str(outlier_example)
#> num [1:500] 5.59 5.8 5.54 6.15 5.83 5.54 5.87 5.93 5.89 5.67 ...

Our colleague uses the fact that heights are usually well approximated by a normal distri-
bution and summarizes the data with average and standard deviation:

mean(outlier_example)
#> [1] 6.1
sd(outlier_example)
#> [1] 7.8

and writes a report on the interesting fact that this group of males is much taller than
usual. The average height is over six feet tall! Using your data science skills, however, you
notice something else that is unexpected: the standard deviation is over 7 feet. Adding and
subtracting two standard deviations, you note that 95% of this population will have heights
between -9.489, 21.697 feet, which does not make sense. A quick plot reveals the problem:

233

www.dbooks.org

https://www.dbooks.org/

234 11 Robust summaries

boxplot(outlier_example)

0
50

10
0

15
0

There appears to be at least one value that is nonsensical, since we know that a height of
180 feet is impossible. The boxplot detects this point as an outlier.

11.2 Median

When we have an outlier like this, the average can become very large. Mathematically, we
can make the average as large as we want by simply changing one number: with 500 data
points, we can increase the average by any amount ∆ by adding ∆× 500 to a single number.
The median, defined as the value for which half the values are smaller and the other half
are bigger, is robust to such outliers. No matter how large we make the largest point, the
median remains the same.

With this data the median is:

median(outlier_example)
#> [1] 5.74

which is about 5 feet and 9 inches.

The median is what boxplots display as a horizontal line.

11.3 The inter quartile range (IQR)

The box in boxplots is defined by the first and third quartile. These are meant to provide
an idea of the variability in the data: 50% of the data is within this range. The difference
between the 3rd and 1st quartile (or 75th and 25th percentiles) is referred to as the inter
quartile range (IQR). As is the case with the median, this quantity will be robust to outliers
as large values do not affect it. We can do some math to see that for normally distributed
data, the IQR / 1.349 approximates the standard deviation of the data had an outlier not

11.4 Tukey’s definition of an outlier 235

been present. We can see that this works well in our example since we get a standard
deviation estimate of:

IQR(outlier_example) / 1.349
#> [1] 0.245

which is about 3 inches.

11.4 Tukey’s definition of an outlier

In R, points falling outside the whiskers of the boxplot are referred to as outliers. This
definition of outlier was introduced by Tukey. The top whisker ends at the 75th percentile
plus 1.5 × IQR. Similarly the bottom whisker ends at the 25th percentile minus 1.5× IQR. If
we define the first and third quartiles as Q1 and Q3, respectively, then an outlier is anything
outside the range:

[Q1 − 1.5 × (Q3 − Q1), Q3 + 1.5 × (Q3 − Q1)].

When the data is normally distributed, the standard units of these values are:

q3 <- qnorm(0.75)
q1 <- qnorm(0.25)
iqr <- q3 - q1
r <- c(q1 - 1.5*iqr, q3 + 1.5*iqr)
r
#> [1] -2.7 2.7

Using the pnorm function, we see that 99.3% of the data falls in this interval.

Keep in mind that this is not such an extreme event: if we have 1000 data points that are
normally distributed, we expect to see about 7 outside of this range. But these would not
be outliers since we expect to see them under the typical variation.

If we want an outlier to be rarer, we can increase the 1.5 to a larger number. Tukey also used
3 and called these far out outliers. With a normal distribution, 100% of the data falls in
this interval. This translates into about 2 in a million chance of being outside the range. In
the geom_boxplot function, this can be controlled by the outlier.size argument, which
defaults to 1.5.

The 180 inches measurement is well beyond the range of the height data:

max_height <- quantile(outlier_example, 0.75) + 3*IQR(outlier_example)
max_height
#> 75%
#> 6.91

If we take this value out, we can see that the data is in fact normally distributed as expected:

www.dbooks.org

https://www.dbooks.org/

236 11 Robust summaries

x <- outlier_example[outlier_example < max_height]
qqnorm(x)
qqline(x)

−3 −2 −1 0 1 2 3

5.
0

5.
5

6.
0

6.
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

11.5 Median absolute deviation

Another way to robustly estimate the standard deviation in the presence of outliers is to use
the median absolute deviation (MAD). To compute the MAD, we first compute the median,
and then for each value we compute the distance between that value and the median. The
MAD is defined as the median of these distances. For technical reasons not discussed here,
this quantity needs to be multiplied by 1.4826 to assure it approximates the actual standard
deviation. The mad function already incorporates this correction. For the height data, we
get a MAD of:

mad(outlier_example)
#> [1] 0.237

which is about 3 inches.

11.6 Exercises

We are going to use the HistData package. If it is not installed you can install it like this:

install.packages("HistData")

Load the height data set and create a vector x with just the male heights used in Galton’s
data on the heights of parents and their children from his historic research on heredity.

11.7 Case study: self-reported student heights 237

library(HistData)
data(Galton)
x <- Galton$child

1. Compute the average and median of these data.

2. Compute the median and median absolute deviation of these data.

3. Now suppose Galton made a mistake when entering the first value and forgot to use the
decimal point. You can imitate this error by typing:

x_with_error <- x
x_with_error[1] <- x_with_error[1]*10

How many inches does the average grow after this mistake?

4. How many inches does the SD grow after this mistake?

5. How many inches does the median grow after this mistake?

6. How many inches does the MAD grow after this mistake?

7. How could you use exploratory data analysis to detect that an error was made?

a. Since it is only one value out of many, we will not be able to detect this.
b. We would see an obvious shift in the distribution.
c. A boxplot, histogram, or qq-plot would reveal a clear outlier.
d. A scatterplot would show high levels of measurement error.

8. How much can the average accidentally grow with mistakes like this? Write a function
called error_avg that takes a value k and returns the average of the vector x after the first
entry changed to k. Show the results for k=10000 and k=-10000.

11.7 Case study: self-reported student heights

The heights we have been looking at are not the original heights reported by students. The
original reported heights are also included in the dslabs package and can be loaded like
this:

library(dslabs)
data("reported_heights")

Height is a character vector so we create a new column with the numeric version:

reported_heights <- reported_heights %>%
mutate(original_heights = height, height = as.numeric(height))

#> Warning: NAs introduced by coercion

www.dbooks.org

https://www.dbooks.org/

238 11 Robust summaries

Note that we get a warning about NAs. This is because some of the self reported heights
were not numbers. We can see why we get these:

reported_heights %>% filter(is.na(height)) %>% head()
#> time_stamp sex height original_heights
#> 1 2014-09-02 15:16:28 Male NA 5' 4"
#> 2 2014-09-02 15:16:37 Female NA 165cm
#> 3 2014-09-02 15:16:52 Male NA 5'7
#> 4 2014-09-02 15:16:56 Male NA >9000
#> 5 2014-09-02 15:16:56 Male NA 5'7"
#> 6 2014-09-02 15:17:09 Female NA 5'3"

Some students self-reported their heights using feet and inches rather than just inches.
Others used centimeters and others were just trolling. For now we will remove these entries:

reported_heights <- filter(reported_heights, !is.na(height))

If we compute the average and standard deviation, we notice that we obtain strange results.
The average and standard deviation are different from the median and MAD:

reported_heights %>%
group_by(sex) %>%
summarize(average = mean(height), sd = sd(height),

median = median(height), MAD = mad(height))
#> # A tibble: 2 x 5
#> sex average sd median MAD
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Female 63.4 27.9 64.2 4.05
#> 2 Male 103. 530. 70 4.45

This suggests that we have outliers, which is confirmed by creating a boxplot:

0

3000

6000

9000

Female Male
sex

he
ig

ht

We can see some rather extreme values. To see what these values are, we can quickly look
at the largest values using the arrange function:

11.7 Case study: self-reported student heights 239

reported_heights %>% arrange(desc(height)) %>% top_n(10, height)
#> time_stamp sex height original_heights
#> 1 2014-09-03 23:55:37 Male 11111 11111
#> 2 2016-04-10 22:45:49 Male 10000 10000
#> 3 2015-08-10 03:10:01 Male 684 684
#> 4 2015-02-27 18:05:06 Male 612 612
#> 5 2014-09-02 15:16:41 Male 511 511
#> 6 2014-09-07 20:53:43 Male 300 300
#> 7 2014-11-28 12:18:40 Male 214 214
#> 8 2017-04-03 16:16:57 Male 210 210
#> 9 2015-11-24 10:39:45 Male 192 192
#> 10 2014-12-26 10:00:12 Male 190 190
#> 11 2016-11-06 10:21:02 Female 190 190

The first seven entries look like strange errors. However, the next few look like they were
entered as centimeters instead of inches. Since 184 cm is equivalent to six feet tall, we suspect
that 184 was actually meant to be 72 inches.

We can review all the nonsensical answers by looking at the data considered to be far out
by Tukey:

whisker <- 3*IQR(reported_heights$height)
max_height <- quantile(reported_heights$height, .75) + whisker
min_height <- quantile(reported_heights$height, .25) - whisker
reported_heights %>%
filter(!between(height, min_height, max_height)) %>%
select(original_heights) %>%
head(n=10) %>% pull(original_heights)

#> [1] "6" "5.3" "511" "6" "2" "5.25" "5.5" "11111"
#> [9] "6" "6.5"

Examining these heights carefully, we see two common mistakes: entries in centimeters,
which turn out to be too large, and entries of the form x.y with x and y representing feet
and inches, respectively, which turn out to be too small. Some of the even smaller values,
such as 1.6, could be entries in meters.

In the Data Wrangling part of this book we will learn techniques for correcting these values
and converting them into inches. Here we were able to detect this problem using careful
data exploration to uncover issues with the data: the first step in the great majority of data
science projects.

www.dbooks.org

https://www.dbooks.org/

Part III

Statistics with R

www.dbooks.org

https://www.dbooks.org/

12
Introduction to statistics with R

Data analysis is one of the main focuses of this book. While the computing tools we have
introduced are relatively recent developments, data analysis has been around for over a
century. Throughout the years, data analysts working on specific projects have come up
with ideas and concepts that generalize across many applications. They have also identified
common ways to get fooled by apparent patterns in the data and important mathematical
realities that are not immediately obvious. The accumulation of these ideas and insights
has given rise to the discipline of statistics, which provides a mathematical framework that
greatly facilitates the description and formal evaluation of these ideas.

To avoid repeating common mistakes and wasting time reinventing the wheel, it is important
for a data analyst to have an in-depth understanding of statistics. However, due to the
maturity of the discipline, there are dozens of excellent books already published on this topic
and we therefore do not focus on describing the mathematical framework here. Instead,
we introduce concepts briefly and then provide detailed case studies demonstrating how
statistics is used in data analysis along with R code implementing these ideas. We also use
R code to help elucidate some of the main statistical concepts that are usually described
using mathematics. We highly recommend complementing this part of the book with a
basic statistics textbook. Two examples are Statistics by Freedman, Pisani, and Purves and
Statistical Inference by Casella and Berger. The specific concepts covered in this part are
Probability, Statistical Inference, Statistical Models, Regression, and Linear Models, which
are major topics covered in a statistics course. The case studies we present relate to the
financial crisis, forecasting election results, understanding heredity, and building a baseball
team.

243

www.dbooks.org

https://www.dbooks.org/

13
Probability

In games of chance, probability has a very intuitive definition. For instance, we know what
it means that the chance of a pair of dice coming up seven is 1 in 6. However, this is not the
case in other contexts. Today probability theory is being used much more broadly with the
word probability commonly used in everyday language. Google’s auto-complete of “What
are the chances of” give us: “having twins”, “rain today”, “getting struck by lightning”, and
“getting cancer”. One of the goals of this part of the book is to help us understand how
probability is useful to understand and describe real-world events when performing data
analysis.

Because knowing how to compute probabilities gives you an edge in games of chance,
throughout history many smart individuals, including famous mathematicians such as Car-
dano, Fermat, and Pascal, spent time and energy thinking through the math of these games.
As a result, Probability Theory was born. Probability continues to be highly useful in mod-
ern games of chance. For example, in poker, we can compute the probability of winning a
hand based on the cards on the table. Also, casinos rely on probability theory to develop
games that almost certainly guarantee a profit.

Probability theory is useful in many other contexts and, in particular, in areas that depend
on data affected by chance in some way. All of the other chapters in this part build upon
probability theory. Knowledge of probability is therefore indispensable for data science.

13.1 Discrete probability

We start by covering some basic principles related to categorical data. The subset of proba-
bility is referred to as discrete probability. It will help us understand the probability theory
we will later introduce for numeric and continuous data, which is much more common in
data science applications. Discrete probability is more useful in card games and therefore
we use these as examples.

13.1.1 Relative frequency

The word probability is used in everyday language. Answering questions about probability
is often hard, if not impossible. Here we discuss a mathematical definition of probability that
does permit us to give precise answers to certain questions.

For example, if I have 2 red beads and 3 blue beads inside an urn1 (most probability books

1https://en.wikipedia.org/wiki/Urn_problem

245

www.dbooks.org

https://en.wikipedia.org/wiki/Urn_problem
https://www.dbooks.org/

246 13 Probability

use this archaic term, so we do too) and I pick one at random, what is the probability of
picking a red one? Our intuition tells us that the answer is 2/5 or 40%. A precise definition
can be given by noting that there are five possible outcomes of which two satisfy the condition
necessary for the event “pick a red bead”. Since each of the five outcomes has the same chance
of occurring, we conclude that the probability is .4 for red and .6 for blue.

A more tangible way to think about the probability of an event is as the proportion of times
the event occurs when we repeat the experiment an infinite number of times, independently,
and under the same conditions.

13.1.2 Notation

We use the notation Pr(A) to denote the probability of event A happening. We use the very
general term event to refer to things that can happen when something occurs by chance. In
our previous example, the event was “picking a red bead”. In a political poll in which we
call 100 likely voters at random, an example of an event is “calling 48 Democrats and 52
Republicans”.

In data science applications, we will often deal with continuous variables. These events will
often be things like “is this person taller than 6 feet”. In this case, we write events in a
more mathematical form: X ≥ 6. We will see more of these examples later. Here we focus
on categorical data.

13.1.3 Probability distributions

If we know the relative frequency of the different categories, defining a distribution for
categorical outcomes is relatively straightforward. We simply assign a probability to each
category. In cases that can be thought of as beads in an urn, for each bead type, their
proportion defines the distribution.

If we are randomly calling likely voters from a population that is 44% Democrat, 44%
Republican, 10% undecided, and 2% Green Party, these proportions define the probability
for each group. The probability distribution is:

Pr(picking a Republican) = 0.44
Pr(picking a Democrat) = 0.44
Pr(picking an undecided) = 0.10
Pr(picking a Green) = 0.02

13.2 Monte Carlo simulations for categorical data

Computers provide a way to actually perform the simple random experiment described
above: pick a bead at random from a bag that contains three blue beads and two red ones.
Random number generators permit us to mimic the process of picking at random.

13.2 Monte Carlo simulations for categorical data 247

An example is the sample function in R. We demonstrate its use in the code below. First,
we use the function rep to generate the urn:

beads <- rep(c("red", "blue"), times = c(2,3))
beads
#> [1] "red" "red" "blue" "blue" "blue"

and then use sample to pick a bead at random:

sample(beads, 1)
#> [1] "red"

This line of code produces one random outcome. We want to repeat this experiment an
infinite number of times, but it is impossible to repeat forever. Instead, we repeat the
experiment a large enough number of times to make the results practically equivalent to
repeating forever. This is an example of a Monte Carlo simulation.
Much of what mathematical and theoretical statisticians study, which we do not cover in this
book, relates to providing rigorous definitions of “practically equivalent” as well as studying
how close a large number of experiments gets us to what happens in the limit. Later in this
section, we provide a practical approach to deciding what is “large enough”.
To perform our first Monte Carlo simulation, we use the replicate function, which permits
us to repeat the same task any number of times. Here, we repeat the random event B =
10,000 times:

B <- 10000
events <- replicate(B, sample(beads, 1))

We can now see if our definition actually is in agreement with this Monte Carlo simulation
approximation. We can use table to see the distribution:

tab <- table(events)
tab
#> events
#> blue red
#> 6059 3941

and prop.table gives us the proportions:

prop.table(tab)
#> events
#> blue red
#> 0.606 0.394

The numbers above are the estimated probabilities provided by this Monte Carlo simulation.
Statistical theory, not covered here, tells us that as B gets larger, the estimates get closer
to 3/5=.6 and 2/5=.4.
Although this is a simple and not very useful example, we will use Monte Carlo simulations
to estimate probabilities in cases in which it is harder to compute the exact ones. Before
delving into more complex examples, we use simple ones to demonstrate the computing tools
available in R.

www.dbooks.org

https://www.dbooks.org/

248 13 Probability

13.2.1 Setting the random seed

Before we continue, we will briefly explain the following important line of code:

set.seed(1986)

Throughout this book, we use random number generators. This implies that many of the
results presented can actually change by chance, which then suggests that a frozen version
of the book may show a different result than what you obtain when you try to code as
shown in the book. This is actually fine since the results are random and change from time
to time. However, if you want to ensure that results are exactly the same every time you
run them, you can set R’s random number generation seed to a specific number. Above we
set it to 1986. We want to avoid using the same seed everytime. A popular way to pick
the seed is the year - month - day. For example, we picked 1986 on December 20, 2018:
2018 − 12 − 20 = 1986.

You can learn more about setting the seed by looking at the documentation:

?set.seed

In the exercises, we may ask you to set the seed to assure that the results you obtain are
exactly what we expect them to be.

13.2.2 With and without replacement

The function sample has an argument that permits us to pick more than one element from
the urn. However, by default, this selection occurs without replacement: after a bead is
selected, it is not put back in the bag. Notice what happens when we ask to randomly select
five beads:

sample(beads, 5)
#> [1] "red" "blue" "blue" "blue" "red"
sample(beads, 5)
#> [1] "red" "red" "blue" "blue" "blue"
sample(beads, 5)
#> [1] "blue" "red" "blue" "red" "blue"

This results in rearrangements that always have three blue and two red beads. If we ask
that six beads be selected, we get an error:

sample(beads, 6)

Error in sample.int(length(x), size, replace, prob) : cannot take a
sample larger than the population when 'replace = FALSE'

However, the sample function can be used directly, without the use of replicate, to repeat
the same experiment of picking 1 out of the 5 beads, continually, under the same conditions.
To do this, we sample with replacement: return the bead back to the urn after selecting it.
We can tell sample to do this by changing the replace argument, which defaults to FALSE,
to replace = TRUE:

13.4 Independence 249

events <- sample(beads, B, replace = TRUE)
prop.table(table(events))
#> events
#> blue red
#> 0.602 0.398

Not surprisingly, we get results very similar to those previously obtained with replicate.

13.3 Independence

We say two events are independent if the outcome of one does not affect the other. The
classic example is coin tosses. Every time we toss a fair coin, the probability of seeing heads
is 1/2 regardless of what previous tosses have revealed. The same is true when we pick beads
from an urn with replacement. In the example above, the probability of red is 0.40 regardless
of previous draws.

Many examples of events that are not independent come from card games. When we deal
the first card, the probability of getting a King is 1/13 since there are thirteen possibilities:
Ace, Deuce, Three, . . ., Ten, Jack, Queen, King, and Ace. Now if we deal a King for the first
card, and don’t replace it into the deck, the probabilities of a second card being a King is
less because there are only three Kings left: the probability is 3 out of 51. These events are
therefore not independent: the first outcome affected the next one.

To see an extreme case of non-independent events, consider our example of drawing five
beads at random without replacement:

x <- sample(beads, 5)

If you have to guess the color of the first bead, you will predict blue since blue has a 60%
chance. But if I show you the result of the last four outcomes:

x[2:5]
#> [1] "blue" "blue" "blue" "red"

would you still guess blue? Of course not. Now you know that the probability of red is 1
since the only bead left is red. The events are not independent, so the probabilities change.

13.4 Conditional probabilities

When events are not independent, conditional probabilities are useful. We already saw an
example of a conditional probability: we computed the probability that a second dealt card
is a King given that the first was a King. In probability, we use the following notation:

www.dbooks.org

https://www.dbooks.org/

250 13 Probability

Pr(Card 2 is a king | Card 1 is a king) = 3/51

We use the | as shorthand for “given that” or “conditional on”.

When two events, say A and B, are independent, we have:

Pr(A | B) = Pr(A)

This is the mathematical way of saying: the fact that B happened does not affect the
probability of A happening. In fact, this can be considered the mathematical definition of
independence.

13.5 Addition and multiplication rules

13.5.1 Multiplication rule

If we want to know the probability of two events, say A and B, occurring, we can use the
multiplication rule:

Pr(A and B) = Pr(A)Pr(B | A)

Let’s use Blackjack as an example. In Blackjack, you are assigned two random cards. After
you see what you have, you can ask for more. The goal is to get closer to 21 than the dealer,
without going over. Face cards are worth 10 points and Aces are worth 11 or 1 (you choose).

So, in a Blackjack game, to calculate the chances of getting a 21 by drawing an Ace and
then a face card, we compute the probability of the first being an Ace and multiply by the
probability of drawing a face card or a 10 given that the first was an Ace: 1/13×16/51 ≈ 0.025

The multiplication rule also applies to more than two events. We can use induction to expand
for more events:

Pr(A and B and C) = Pr(A)Pr(B | A)Pr(C | A and B)

13.5.2 Multiplication rule under independence

When we have independent events, then the multiplication rule becomes simpler:

Pr(A and B and C) = Pr(A)Pr(B)Pr(C)

But we have to be very careful before using this since assuming independence can result in
very different and incorrect probability calculations when we don’t actually have indepen-
dence.

As an example, imagine a court case in which the suspect was described as having a mustache
and a beard. The defendant has a mustache and a beard and the prosecution brings in

13.6 Combinations and permutations 251

an “expert” to testify that 1/10 men have beards and 1/5 have mustaches, so using the
multiplication rule we conclude that only 1/10 × 1/5 or 0.02 have both.

But to multiply like this we need to assume independence! Say the conditional probability of
a man having a mustache conditional on him having a beard is .95. So the correct calculation
probability is much higher: 1/10 × 95/100 = 0.095.

The multiplication rule also gives us a general formula for computing conditional probabil-
ities:

Pr(B | A) = Pr(A and B)
Pr(A)

To illustrate how we use these formulas and concepts in practice, we will use several examples
related to card games.

13.5.3 Addition rule

The addition rule tells us that:

Pr(A or B) = Pr(A) + Pr(B) − Pr(A and B)

This rule is intuitive: think of a Venn diagram. If we simply add the probabilities, we count
the intersection twice so we need to substract one instance.

A B

13.6 Combinations and permutations

In our very first example, we imagined an urn with five beads. As a reminder, to compute
the probability distribution of one draw, we simply listed out all the possibilities. There were
5 and so then, for each event, we counted how many of these possibilities were associated
with the event. The resulting probability of choosing a blue bead is 3/5 because out of the
five possible outcomes, three were blue.

For more complicated cases, the computations are not as straightforward. For instance, what

www.dbooks.org

https://www.dbooks.org/

252 13 Probability

is the probability that if I draw five cards without replacement, I get all cards of the same
suit, what is known as a “flush” in poker? In a discrete probability course you learn theory
on how to make these computations. Here we focus on how to use R code to compute the
answers.

First, let’s construct a deck of cards. For this, we will use the expand.grid and paste
functions. We use paste to create strings by joining smaller strings. To do this, we take the
number and suit of a card and create the card name like this:

number <- "Three"
suit <- "Hearts"
paste(number, suit)
#> [1] "Three Hearts"

paste also works on pairs of vectors performing the operation element-wise:

paste(letters[1:5], as.character(1:5))
#> [1] "a 1" "b 2" "c 3" "d 4" "e 5"

The function expand.grid gives us all the combinations of entries of two vectors. For exam-
ple, if you have blue and black pants and white, grey, and plaid shirts, all your combinations
are:

expand.grid(pants = c("blue", "black"), shirt = c("white", "grey", "plaid"))
#> pants shirt
#> 1 blue white
#> 2 black white
#> 3 blue grey
#> 4 black grey
#> 5 blue plaid
#> 6 black plaid

Here is how we generate a deck of cards:

suits <- c("Diamonds", "Clubs", "Hearts", "Spades")
numbers <- c("Ace", "Deuce", "Three", "Four", "Five", "Six", "Seven",

"Eight", "Nine", "Ten", "Jack", "Queen", "King")
deck <- expand.grid(number=numbers, suit=suits)
deck <- paste(deck$number, deck$suit)

With the deck constructed, we can double check that the probability of a King in the first
card is 1/13 by computing the proportion of possible outcomes that satisfy our condition:

kings <- paste("King", suits)
mean(deck %in% kings)
#> [1] 0.0769

Now, how about the conditional probability of the second card being a King given that the
first was a King? Earlier, we deduced that if one King is already out of the deck and there
are 51 left, then this probability is 3/51. Let’s confirm by listing out all possible outcomes.

13.6 Combinations and permutations 253

To do this, we can use the permutations function from the gtools package. For any list
of size n, this function computes all the different combinations we can get when we select r
items. Here are all the ways we can choose two numbers from a list consisting of 1,2,3:

library(gtools)
permutations(3, 2)
#> [,1] [,2]
#> [1,] 1 2
#> [2,] 1 3
#> [3,] 2 1
#> [4,] 2 3
#> [5,] 3 1
#> [6,] 3 2

Notice that the order matters here: 3,1 is different than 1,3. Also, note that (1,1), (2,2), and
(3,3) do not appear because once we pick a number, it can’t appear again.

Optionally, we can add a vector. If you want to see five random seven digit phone numbers
out of all possible phone numbers (without repeats), you can type:

all_phone_numbers <- permutations(10, 7, v = 0:9)
n <- nrow(all_phone_numbers)
index <- sample(n, 5)
all_phone_numbers[index,]
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1 3 8 0 6 7 5
#> [2,] 2 9 1 6 4 8 0
#> [3,] 5 1 6 0 9 8 2
#> [4,] 7 4 6 0 2 8 1
#> [5,] 4 6 5 9 2 8 0

Instead of using the numbers 1 through 10, the default, it uses what we provided through
v: the digits 0 through 9.

To compute all possible ways we can choose two cards when the order matters, we type:

hands <- permutations(52, 2, v = deck)

This is a matrix with two columns and 2652 rows. With a matrix we can get the first and
second cards like this:

first_card <- hands[,1]
second_card <- hands[,2]

Now the cases for which the first hand was a King can be computed like this:

kings <- paste("King", suits)
sum(first_card %in% kings)
#> [1] 204

www.dbooks.org

https://www.dbooks.org/

254 13 Probability

To get the conditional probability, we compute what fraction of these have a King in the
second card:

sum(first_card%in%kings & second_card%in%kings) / sum(first_card%in%kings)
#> [1] 0.0588

which is exactly 3/51, as we had already deduced. Notice that the code above is equivalent
to:

mean(first_card%in%kings & second_card%in%kings) / mean(first_card%in%kings)
#> [1] 0.0588

which uses mean instead of sum and is an R version of:

Pr(A and B)
Pr(A)

How about if the order doesn’t matter? For example, in Blackjack if you get an Ace and a
face card in the first draw, it is called a Natural 21 and you win automatically. If we wanted
to compute the probability of this happening, we would enumerate the combinations, not
the permutations, since the order does not matter.

combinations(3,2)
#> [,1] [,2]
#> [1,] 1 2
#> [2,] 1 3
#> [3,] 2 3

In the second line, the outcome does not include (2,1) because (1,2) already was enumerated.
The same applies to (3,1) and (3,2).

So to compute the probability of a Natural 21 in Blackjack, we can do this:

aces <- paste("Ace", suits)

facecard <- c("King", "Queen", "Jack", "Ten")
facecard <- expand.grid(number = facecard, suit = suits)
facecard <- paste(facecard$number, facecard$suit)

hands <- combinations(52, 2, v = deck)
mean(hands[,1] %in% aces & hands[,2] %in% facecard)
#> [1] 0.0483

In the last line, we assume the Ace comes first. This is only because we know the way
combination enumerates possibilities and it will list this case first. But to be safe, we could
have written this and produced the same answer:

mean((hands[,1] %in% aces & hands[,2] %in% facecard) |
(hands[,2] %in% aces & hands[,1] %in% facecard))

#> [1] 0.0483

13.7 Examples 255

13.6.1 Monte Carlo example

Instead of using combinations to deduce the exact probability of a Natural 21, we can use
a Monte Carlo to estimate this probability. In this case, we draw two cards over and over
and keep track of how many 21s we get. We can use the function sample to draw two cards
without replacements:

hand <- sample(deck, 2)
hand
#> [1] "Queen Clubs" "Seven Spades"

And then check if one card is an Ace and the other a face card or a 10. Going forward, we
include 10 when we say face card. Now we need to check both possibilities:

(hands[1] %in% aces & hands[2] %in% facecard) |
(hands[2] %in% aces & hands[1] %in% facecard)

#> [1] FALSE

If we repeat this 10,000 times, we get a very good approximation of the probability of a
Natural 21.
Let’s start by writing a function that draws a hand and returns TRUE if we get a 21.
The function does not need any arguments because it uses objects defined in the global
environment.

blackjack <- function(){
hand <- sample(deck, 2)
(hand[1] %in% aces & hand[2] %in% facecard) |

(hand[2] %in% aces & hand[1] %in% facecard)
}

Here we do have to check both possibilities: Ace first or Ace second because we are not using
the combinations function. The function returns TRUE if we get a 21 and FALSE otherwise:

blackjack()
#> [1] FALSE

Now we can play this game, say, 10,000 times:

B <- 10000
results <- replicate(B, blackjack())
mean(results)
#> [1] 0.0475

13.7 Examples

In this section, we describe two discrete probability popular examples: the Monty Hall
problem and the birthday problem. We use R to help illustrate the mathematical concepts.

www.dbooks.org

https://www.dbooks.org/

256 13 Probability

13.7.1 Monty Hall problem

In the 1970s, there was a game show called “Let’s Make a Deal” and Monty Hall was the
host. At some point in the game, contestants were asked to pick one of three doors. Behind
one door there was a prize. The other doors had a goat behind them to show the contestant
they had lost. After the contestant picked a door, before revealing whether the chosen door
contained a prize, Monty Hall would open one of the two remaining doors and show the
contestant there was no prize behind that door. Then he would ask “Do you want to switch
doors?” What would you do?

We can use probability to show that if you stick with the original door choice, your chances
of winning a prize remain 1 in 3. However, if you switch to the other door, your chances
of winning double to 2 in 3! This seems counterintuitive. Many people incorrectly think
both chances are 1 in 2 since you are choosing between 2 options. You can watch a detailed
mathematical explanation on Khan Academy2 or read one on Wikipedia3. Below we use a
Monte Carlo simulation to see which strategy is better. Note that this code is written longer
than it should be for pedagogical purposes.

Let’s start with the stick strategy:

B <- 10000
monty_hall <- function(strategy){
doors <- as.character(1:3)
prize <- sample(c("car", "goat", "goat"))
prize_door <- doors[prize == "car"]
my_pick <- sample(doors, 1)
show <- sample(doors[!doors %in% c(my_pick, prize_door)],1)
stick <- my_pick
stick == prize_door
switch <- doors[!doors%in%c(my_pick, show)]
choice <- ifelse(strategy == "stick", stick, switch)
choice == prize_door

}
stick <- replicate(B, monty_hall("stick"))
mean(stick)
#> [1] 0.342
switch <- replicate(B, monty_hall("switch"))
mean(switch)
#> [1] 0.668

As we write the code, we note that the lines starting with my_pick and show have no
influence on the last logical operation when we stick to our original choice anyway. From
this we should realize that the chance is 1 in 3, what we began with. When we switch,
the Monte Carlo estimate confirms the 2/3 calculation. This helps us gain some insight by
showing that we are removing a door, show, that is definitely not a winner from our choices.
We also see that unless we get it right when we first pick, you win: 1 - 1/3 = 2/3.

2https://www.khanacademy.org/math/precalculus/prob-comb/dependent-events-precalc/v/monty-
hall-problem

3https://en.wikipedia.org/wiki/Monty_Hall_problem

https://www.khanacademy.org/math/precalculus/prob-comb/dependent-events-precalc/v/monty-hall-problem
https://www.khanacademy.org/math/precalculus/prob-comb/dependent-events-precalc/v/monty-hall-problem
https://en.wikipedia.org/wiki/Monty_Hall_problem

13.7 Examples 257

13.7.2 Birthday problem

Suppose you are in a classroom with 50 people. If we assume this is a randomly selected
group of 50 people, what is the chance that at least two people have the same birthday?
Although it is somewhat advanced, we can deduce this mathematically. We will do this
later. Here we use a Monte Carlo simulation. For simplicity, we assume nobody was born
on February 29. This actually doesn’t change the answer much.
First, note that birthdays can be represented as numbers between 1 and 365, so a sample
of 50 birthdays can be obtained like this:

n <- 50
bdays <- sample(1:365, n, replace = TRUE)

To check if in this particular set of 50 people we have at least two with the same birthday,
we can use the function duplicated, which returns TRUE whenever an element of a vector
is a duplicate. Here is an example:

duplicated(c(1,2,3,1,4,3,5))
#> [1] FALSE FALSE FALSE TRUE FALSE TRUE FALSE

The second time 1 and 3 appear, we get a TRUE. So to check if two birthdays were the same,
we simply use the any and duplicated functions like this:

any(duplicated(bdays))
#> [1] TRUE

In this case, we see that it did happen. At least two people had the same birthday.
To estimate the probability of a shared birthday in the group, we repeat this experiment by
sampling sets of 50 birthdays over and over:

B <- 10000
same_birthday <- function(n){
bdays <- sample(1:365, n, replace=TRUE)
any(duplicated(bdays))

}
results <- replicate(B, same_birthday(50))
mean(results)
#> [1] 0.969

Were you expecting the probability to be this high?
People tend to underestimate these probabilities. To get an intuition as to why it is so high,
think about what happens when the group size is close to 365. At this stage, we run out of
days and the probability is one.
Say we want to use this knowledge to bet with friends about two people having the same
birthday in a group of people. When are the chances larger than 50%? Larger than 75%?
Let’s create a look-up table. We can quickly create a function to compute this for any group
size:

www.dbooks.org

https://www.dbooks.org/

258 13 Probability

compute_prob <- function(n, B=10000){
results <- replicate(B, same_birthday(n))
mean(results)

}

Using the function sapply, we can perform element-wise operations on any function:

n <- seq(1,60)
prob <- sapply(n, compute_prob)

We can now make a plot of the estimated probabilities of two people having the same
birthday in a group of size n:

library(tidyverse)
prob <- sapply(n, compute_prob)
qplot(n, prob)

0.00

0.25

0.50

0.75

1.00

0 20 40 60
n

pr
ob

Now let’s compute the exact probabilities rather than use Monte Carlo approximations. Not
only do we get the exact answer using math, but the computations are much faster since we
don’t have to generate experiments.

To make the math simpler, instead of computing the probability of it happening, we will
compute the probability of it not happening. For this, we use the multiplication rule.

Let’s start with the first person. The probability that person 1 has a unique birthday is 1.
The probability that person 2 has a unique birthday, given that person 1 already took one,
is 364/365. Then, given that the first two people have unique birthdays, person 3 is left with
363 days to choose from. We continue this way and find the chances of all 50 people having
a unique birthday is:

1 × 364
365

× 363
365

. . .
365 − n + 1

365

We can write a function that does this for any number:

13.8 Infinity in practice 259

exact_prob <- function(n){
prob_unique <- seq(365,365-n+1)/365
1 - prod(prob_unique)

}
eprob <- sapply(n, exact_prob)
qplot(n, prob) + geom_line(aes(n, eprob), col = "red")

0.00

0.25

0.50

0.75

1.00

0 20 40 60
n

pr
ob

This plot shows that the Monte Carlo simulation provided a very good estimate of the exact
probability. Had it not been possible to compute the exact probabilities, we would have still
been able to accurately estimate the probabilities.

13.8 Infinity in practice

The theory described here requires repeating experiments over and over forever. In practice
we can’t do this. In the examples above, we used B = 10, 000 Monte Carlo experiments
and it turned out that this provided accurate estimates. The larger this number, the more
accurate the estimate becomes until the approximaton is so good that your computer can’t
tell the difference. But in more complex calculations, 10,000 may not be nearly enough.
Also, for some calculations, 10,000 experiments might not be computationally feasible. In
practice, we won’t know what the answer is, so we won’t know if our Monte Carlo estimate is
accurate. We know that the larger B, the better the approximation. But how big do we need
it to be? This is actually a challenging question and answering it often requires advanced
theoretical statistics training.

One practical approach we will describe here is to check for the stability of the estimate.
The following is an example with the birthday problem for a group of 25 people.

B <- 10^seq(1, 5, len = 100)
compute_prob <- function(B, n=25){
same_day <- replicate(B, same_birthday(n))
mean(same_day)

www.dbooks.org

https://www.dbooks.org/

260 13 Probability

}
prob <- sapply(B, compute_prob)
qplot(log10(B), prob, geom = "line")

0.4

0.5

0.6

0.7

1 2 3 4 5
log10(B)

pr
ob

In this plot, we can see that the values start to stabilize (that is, they vary less than .01)
around 1000. Note that the exact probability, which we know in this case, is 0.569.

13.9 Exercises

1. One ball will be drawn at random from a box containing: 3 cyan balls, 5 magenta balls,
and 7 yellow balls. What is the probability that the ball will be cyan?

2. What is the probability that the ball will not be cyan?

3. Instead of taking just one draw, consider taking two draws. You take the second draw
without returning the first draw to the box. We call this sampling without replacement.
What is the probability that the first draw is cyan and that the second draw is not cyan?

4. Now repeat the experiment, but this time, after taking the first draw and recording the
color, return it to the box and shake the box. We call this sampling with replacement. What
is the probability that the first draw is cyan and that the second draw is not cyan?

5. Two events A and B are independent if Pr(A and B) = Pr(A)P (B). Under which situation
are the draws independent?

a. You don’t replace the draw.
b. You replace the draw.
c. Neither
d. Both

6. Say you’ve drawn 5 balls from the box, with replacement, and all have been yellow. What
is the probability that the next one is yellow?

13.10 Exercises 261

7. If you roll a 6-sided die six times, what is the probability of not seeing a 6?

8. Two teams, say the Celtics and the Cavs, are playing a seven game series. The Cavs are
a better team and have a 60% chance of winning each game. What is the probability that
the Celtics win at least one game?

9. Create a Monte Carlo simulation to confirm your answer to the previous problem. Use B
<- 10000 simulations. Hint: use the following code to generate the results of the first four
games:

celtic_wins <- sample(c(0,1), 4, replace = TRUE, prob = c(0.6, 0.4))

The Celtics must win one of these 4 games.

10. Two teams, say the Cavs and the Warriors, are playing a seven game championship
series. The first to win four games, therefore, wins the series. The teams are equally good so
they each have a 50-50 chance of winning each game. If the Cavs lose the first game, what
is the probability that they win the series?

11. Confirm the results of the previous question with a Monte Carlo simulation.

12. Two teams, A and B, are playing a seven game series. Team A is better than team B
and has a p > 0.5 chance of winning each game. Given a value p, the probability of winning
the series for the underdog team B can be computed with the following function based on
a Monte Carlo simulation:

prob_win <- function(p){
B <- 10000
result <- replicate(B, {
b_win <- sample(c(1,0), 7, replace = TRUE, prob = c(1-p, p))
sum(b_win)>=4

})
mean(result)

}

Use the function sapply to compute the probability, call it Pr, of winning for p <- seq(0.5,
0.95, 0.025). Then plot the result.

13. Repeat the exercise above, but now keep the probability fixed at p <- 0.75 and compute
the probability for different series lengths: best of 1 game, 3 games, 5 games,… Specifically,
N <- seq(1, 25, 2). Hint: use this function:

prob_win <- function(N, p=0.75){
B <- 10000
result <- replicate(B, {
b_win <- sample(c(1,0), N, replace = TRUE, prob = c(1-p, p))
sum(b_win)>=(N+1)/2

})
mean(result)

}

www.dbooks.org

https://www.dbooks.org/

262 13 Probability

13.10 Continuous probability

In Section 8.4, we explained why when summarizing a list of numeric values, such as heights,
it is not useful to construct a distribution that defines a proportion to each possible outcome.
For example, if we measure every single person in a very large population of size n with
extremely high precision, since no two people are exactly the same height, we need to assign
the proportion 1/n to each observed value and attain no useful summary at all. Similarly,
when defining probability distributions, it is not useful to assign a very small probability to
every single height.

Just as when using distributions to summarize numeric data, it is much more practical to
define a function that operates on intervals rather than single values. The standard way of
doing this is using the cumulative distribution function (CDF).

We described empirical cumulative distribution function (eCDF) in Section 8.4 as a basic
summary of a list of numeric values. As an example, we earlier defined the height distribution
for adult male students. Here, we define the vector x to contain these heights:

library(tidyverse)
library(dslabs)
data(heights)
x <- heights %>% filter(sex=="Male") %>% pull(height)

We defined the empirical distribution function as:

F <- function(a) mean(x<=a)

which, for any value a, gives the proportion of values in the list x that are smaller or equal
than a.

Keep in mind that we have not yet introduced probability in the context of CDFs. Let’s
do this by asking the following: if I pick one of the male students at random, what is the
chance that he is taller than 70.5 inches? Because every student has the same chance of
being picked, the answer to this is equivalent to the proportion of students that are taller
than 70.5 inches. Using the CDF we obtain an answer by typing:

1 - F(70)
#> [1] 0.377

Once a CDF is defined, we can use this to compute the probability of any subset. For
instance, the probability of a student being between height a and height b is:

F(b)-F(a)

Because we can compute the probability for any possible event this way, the cumulative
probability function defines the probability distribution for picking a height at random from
our vector of heights x.

13.11 Theoretical continuous distributions 263

13.11 Theoretical continuous distributions

In Section 8.8 we introduced the normal distribution as a useful approximation to many
naturally occurring distributions, including that of height. The cumulative distribution for
the normal distribution is defined by a mathematical formula which in R can be obtained
with the function pnorm. We say that a random quantity is normally distributed with average
m and standard deviation s if its probability distribution is defined by:

F(a) = pnorm(a, m, s)

This is useful because if we are willing to use the normal approximation for, say, height,
we don’t need the entire dataset to answer questions such as: what is the probability that
a randomly selected student is taller then 70 inches? We just need the average height and
standard deviation:

m <- mean(x)
s <- sd(x)
1 - pnorm(70.5, m, s)
#> [1] 0.371

13.11.1 Theoretical distributions as approximations

The normal distribution is derived mathematically: we do not need data to define it. For
practicing data scientists, almost everything we do involves data. Data is always, technically
speaking, discrete. For example, we could consider our height data categorical with each
specific height a unique category. The probability distribution is defined by the proportion
of students reporting each height. Here is a plot of that probability distribution:

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

a = Height in inches

P
r(

X
 =

 a
)

50 53.77 58 61 64 66.7 70 73 75.98 79

While most students rounded up their heights to the nearest inch, others reported values
with more precision. One student reported his height to be 69.6850393700787, which is 177
centimeters. The probability assigned to this height is 0.001 or 1 in 812. The probability for

www.dbooks.org

https://www.dbooks.org/

264 13 Probability

70 inches is much higher at 0.106, but does it really make sense to think of the probability of
being exactly 70 inches as being different than 69.6850393700787? Clearly it is much more
useful for data analytic purposes to treat this outcome as a continuous numeric variable,
keeping in mind that very few people, or perhaps none, are exactly 70 inches, and that the
reason we get more values at 70 is because people round to the nearest inch.

With continuous distributions, the probability of a singular value is not even defined. For
example, it does not make sense to ask what is the probability that a normally distributed
value is 70. Instead, we define probabilities for intervals. We thus could ask what is the
probability that someone is between 69.5 and 70.5.

In cases like height, in which the data is rounded, the normal approximation is particularly
useful if we deal with intervals that include exactly one round number. For example, the
normal distribution is useful for approximating the proportion of students reporting values
in intervals like the following three:

mean(x <= 68.5) - mean(x <= 67.5)
#> [1] 0.115
mean(x <= 69.5) - mean(x <= 68.5)
#> [1] 0.119
mean(x <= 70.5) - mean(x <= 69.5)
#> [1] 0.122

Note how close we get with the normal approximation:

pnorm(68.5, m, s) - pnorm(67.5, m, s)
#> [1] 0.103
pnorm(69.5, m, s) - pnorm(68.5, m, s)
#> [1] 0.11
pnorm(70.5, m, s) - pnorm(69.5, m, s)
#> [1] 0.108

However, the approximation is not as useful for other intervals. For instance, notice how the
approximation breaks down when we try to estimate:

mean(x <= 70.9) - mean(x<=70.1)
#> [1] 0.0222

with

pnorm(70.9, m, s) - pnorm(70.1, m, s)
#> [1] 0.0836

In general, we call this situation discretization. Although the true height distribution is
continuous, the reported heights tend to be more common at discrete values, in this case,
due to rounding. As long as we are aware of how to deal with this reality, the normal
approximation can still be a very useful tool.

13.12 Theoretical continuous distributions 265

13.11.2 The probability density

For categorical distributions, we can define the probability of a category. For example, a roll
of a die, let’s call it X, can be 1,2,3,4,5 or 6. The probability of 4 is defined as:

Pr(X = 4) = 1/6

The CDF can then easily be defined:

F (4) = Pr(X ≤ 4) = Pr(X = 4) + Pr(X = 3) + Pr(X = 2) + Pr(X = 1)

Although for continuous distributions the probability of a single value Pr(X = x) is not
defined, there is a theoretical definition that has a similar interpretation. The probability
density at x is defined as the function f(a) such that:

F (a) = Pr(X ≤ a) =
∫ a

−∞
f(x) dx

For those that know calculus, remember that the integral is related to a sum: it is the sum
of bars with widths approximating 0. If you don’t know calculus, you can think of f(x) as
a curve for which the area under that curve up to the value a, gives you the probability
Pr(X ≤ a).
For example, to use the normal approximation to estimate the probability of someone being
taller than 76 inches, we use:

1 - pnorm(76, m, s)
#> [1] 0.0321

which mathematically is the grey area below:

0.00

0.03

0.06

0.09

60 70 80
x

y

The curve you see is the probability density for the normal distribution. In R, we get this
using the function dnorm.
Although it may not be immediately obvious why knowing about probability densities is
useful, understanding this concept will be essential to those wanting to fit models to data
for which predefined functions are not available.

www.dbooks.org

https://www.dbooks.org/

266 13 Probability

13.12 Monte Carlo simulations for continuous variables

R provides functions to generate normally distributed outcomes. Specifically, the rnorm
function takes three arguments: size, average (defaults to 0), and standard deviation (de-
faults to 1) and produces random numbers. Here is an example of how we could generate
data that looks like our reported heights:

n <- length(x)
m <- mean(x)
s <- sd(x)
simulated_heights <- rnorm(n, m, s)

Not surprisingly, the distribution looks normal:

0

25

50

75

100

60 70 80
simulated_heights

co
un

t

This is one of the most useful functions in R as it will permit us to generate data that
mimics natural events and answers questions related to what could happen by chance by
running Monte Carlo simulations.

If, for example, we pick 800 males at random, what is the distribution of the tallest person?
How rare is a seven footer in a group of 800 males? The following Monte Carlo simulation
helps us answer that question:

B <- 10000
tallest <- replicate(B, {
simulated_data <- rnorm(800, m, s)
max(simulated_data)

})

Having a seven footer is quite rare:

mean(tallest >= 7*12)
#> [1] 0.0189

13.14 Continuous distributions 267

Here is the resulting distribution:

0

1000

2000

3000

80 85
tallest

co
un

t

Note that it does not look normal.

13.13 Continuous distributions

We introduced the normal distribution in Section 8.8 and used it as an example above. The
normal distribution is not the only useful theoretical distribution. Other continuous distri-
butions that we may encounter are the student-t, Chi-square, exponential, gamma, beta, and
beta-binomial. R provides functions to compute the density, the quantiles, the cumulative
distribution functions and to generate Monte Carlo simulations. R uses a convention that
lets us remember the names, namely using the letters d, q, p, and r in front of a shorthand
for the distribution. We have already seen the functions dnorm, pnorm, and rnorm for the
normal distribution. The functions qnorm gives us the quantiles. We can therefore draw a
distribution like this:

x <- seq(-4, 4, length.out = 100)
qplot(x, f, geom = "line", data = data.frame(x, f = dnorm(x)))

For the student-t, described later in Section 16.10, the shorthand t is used so the functions
are dt for the density, qt for the quantiles, pt for the cumulative distribution function, and
rt for Monte Carlo simulation.

13.14 Exercises

1. Assume the distribution of female heights is approximated by a normal distribution with
a mean of 64 inches and a standard deviation of 3 inches. If we pick a female at random,
what is the probability that she is 5 feet or shorter?

www.dbooks.org

https://www.dbooks.org/

268 13 Probability

2. Assume the distribution of female heights is approximated by a normal distribution with
a mean of 64 inches and a standard deviation of 3 inches. If we pick a female at random,
what is the probability that she is 6 feet or taller?

3. Assume the distribution of female heights is approximated by a normal distribution with
a mean of 64 inches and a standard deviation of 3 inches. If we pick a female at random,
what is the probability that she is between 61 and 67 inches?

4. Repeat the exercise above, but convert everything to centimeters. That is, multiply every
height, including the standard deviation, by 2.54. What is the answer now?

5. Notice that the answer to the question does not change when you change units. This
makes sense since the answer to the question should not be affected by what units we use.
In fact, if you look closely, you notice that 61 and 64 are both 1 SD away from the average.
Compute the probability that a randomly picked, normally distributed random variable is
within 1 SD from the average.

6. To see the math that explains why the answers to questions 3, 4, and 5 are the same,
suppose we have a random variable with average m and standard error s. Suppose we ask the
probability of X being smaller or equal to a. Remember that, by definition, a is (a − m)/s
standard deviations s away from the average m. The probability is:

Pr(X ≤ a)

Now we subtract µ to both sides and then divide both sides by σ:

Pr
(

X − m

s
≤ a − m

s

)
The quantity on the left is a standard normal random variable. It has an average of 0 and
a standard error of 1. We will call it Z:

Pr
(

Z ≤ a − m

s

)
So, no matter the units, the probability of X ≤ a is the same as the probability of a standard
normal variable being less than (a−m)/s. If mu is the average and sigma the standard error,
which of the following R code would give us the right answer in every situation:

a. mean(X<=a)
b. pnorm((a - m)/s)
c. pnorm((a - m)/s, m, s)
d. pnorm(a)

7. Imagine the distribution of male adults is approximately normal with an expected value
of 69 and a standard deviation of 3. How tall is the male in the 99th percentile? Hint: use
qnorm.

8. The distribution of IQ scores is approximately normally distributed. The average is 100
and the standard deviation is 15. Suppose you want to know the distribution of the highest
IQ across all graduating classes if 10,000 people are born each in your school district. Run a
Monte Carlo simulation with B=1000 generating 10,000 IQ scores and keeping the highest.
Make a histogram.

14
Random variables

In data science, we often deal with data that is affected by chance in some way: the data
comes from a random sample, the data is affected by measurement error, or the data mea-
sures some outcome that is random in nature. Being able to quantify the uncertainty in-
troduced by randomness is one of the most important jobs of a data analyst. Statistical
inference offers a framework, as well as several practical tools, for doing this. The first step
is to learn how to mathematically describe random variables.
In this chapter, we introduce random variables and their properties starting with their
application to games of chance. We then describe some of the events surrounding the financial
crisis of 2007-20081 using probability theory. This financial crisis was in part caused by
underestimating the risk of certain securities2 sold by financial institutions. Specifically, the
risks of mortgage-backed securities (MBS) and collateralized debt obligations (CDO) were
grossly underestimated. These assets were sold at prices that assumed most homeowners
would make their monthly payments, and the probability of this not occurring was calculated
as being low. A combination of factors resulted in many more defaults than were expected,
which led to a price crash of these securities. As a consequence, banks lost so much money
that they needed government bailouts to avoid closing down completely.

14.1 Random variables

Random variables are numeric outcomes resulting from random processes. We can easily
generate random variables using some of the simple examples we have shown. For example,
define X to be 1 if a bead is blue and red otherwise:

beads <- rep(c("red", "blue"), times = c(2,3))
X <- ifelse(sample(beads, 1) == "blue", 1, 0)

Here X is a random variable: every time we select a new bead the outcome changes randomly.
See below:

ifelse(sample(beads, 1) == "blue", 1, 0)
#> [1] 1
ifelse(sample(beads, 1) == "blue", 1, 0)
#> [1] 0
ifelse(sample(beads, 1) == "blue", 1, 0)
#> [1] 0

1https://en.wikipedia.org/w/index.php?title=Financial_crisis_of_2007%E2%80%932008
2https://en.wikipedia.org/w/index.php?title=Security_(finance)

269

www.dbooks.org

https://en.wikipedia.org/w/index.php?title=Financial_crisis_of_2007%E2%80%932008
https://en.wikipedia.org/w/index.php?title=Security_(finance)
https://www.dbooks.org/

270 14 Random variables

Sometimes it’s 1 and sometimes it’s 0.

14.2 Sampling models

Many data generation procedures, those that produce the data we study, can be modeled
quite well as draws from an urn. For instance, we can model the process of polling likely
voters as drawing 0s (Republicans) and 1s (Democrats) from an urn containing the 0 and 1
code for all likely voters. In epidemiological studies, we often assume that the subjects in our
study are a random sample from the population of interest. The data related to a specific
outcome can be modeled as a random sample from an urn containing the outcome for the
entire population of interest. Similarly, in experimental research, we often assume that the
individual organisms we are studying, for example worms, flies, or mice, are a random sample
from a larger population. Randomized experiments can also be modeled by draws from an
urn given the way individuals are assigned into groups: when getting assigned, you draw
your group at random. Sampling models are therefore ubiquitous in data science. Casino
games offer a plethora of examples of real-world situations in which sampling models are
used to answer specific questions. We will therefore start with such examples.

Suppose a very small casino hires you to consult on whether they should set up roulette
wheels. To keep the example simple, we will assume that 1,000 people will play and that the
only game you can play on the roulette wheel is to bet on red or black. The casino wants
you to predict how much money they will make or lose. They want a range of values and, in
particular, they want to know what’s the chance of losing money. If this probability is too
high, they will pass on installing roulette wheels.

We are going to define a random variable S that will represent the casino’s total winnings.
Let’s start by constructing the urn. A roulette wheel has 18 red pockets, 18 black pockets
and 2 green ones. So playing a color in one game of roulette is equivalent to drawing from
this urn:

color <- rep(c("Black", "Red", "Green"), c(18, 18, 2))

The 1,000 outcomes from 1,000 people playing are independent draws from this urn. If red
comes up, the gambler wins and the casino loses a dollar, so we draw a -$1. Otherwise, the
casino wins a dollar and we draw a $1. To construct our random variable S, we can use this
code:

n <- 1000
X <- sample(ifelse(color == "Red", -1, 1), n, replace = TRUE)
X[1:10]
#> [1] -1 1 1 -1 -1 -1 1 1 1 1

Because we know the proportions of 1s and -1s, we can generate the draws with one line of
code, without defining color:

X <- sample(c(-1,1), n, replace = TRUE, prob=c(9/19, 10/19))

14.3 The probability distribution of a random variable 271

We call this a sampling model since we are modeling the random behavior of roulette
with the sampling of draws from an urn. The total winnings S is simply the sum of these
1,000 independent draws:

X <- sample(c(-1,1), n, replace = TRUE, prob=c(9/19, 10/19))
S <- sum(X)
S
#> [1] 22

14.3 The probability distribution of a random variable

If you run the code above, you see that S changes every time. This is, of course, because
S is a random variable. The probability distribution of a random variable tells us the
probability of the observed value falling at any given interval. So, for example, if we want
to know the probability that we lose money, we are asking the probability that S is in the
interval S < 0.
Note that if we can define a cumulative distribution function F (a) = Pr(S ≤ a), then we will
be able to answer any question related to the probability of events defined by our random
variable S, including the event S < 0. We call this F the random variable’s distribution
function.
We can estimate the distribution function for the random variable S by using a Monte Carlo
simulation to generate many realizations of the random variable. With this code, we run
the experiment of having 1,000 people play roulette, over and over, specifically B = 10, 000
times:

n <- 1000
B <- 10000
roulette_winnings <- function(n){
X <- sample(c(-1,1), n, replace = TRUE, prob=c(9/19, 10/19))
sum(X)

}
S <- replicate(B, roulette_winnings(n))

Now we can ask the following: in our simulations, how often did we get sums less than or
equal to a?

mean(S <= a)

This will be a very good approximation of F (a) and we can easily answer the casino’s
question: how likely is it that we will lose money? We can see it is quite low:

mean(S<0)
#> [1] 0.0456

We can visualize the distribution of S by creating a histogram showing the probability
F (b) − F (a) for several intervals (a, b]:

www.dbooks.org

https://www.dbooks.org/

272 14 Random variables

0.000

0.005

0.010

0 100
S

P
ro

ba
bi

lit
y

We see that the distribution appears to be approximately normal. A qq-plot will confirm
that the normal approximation is close to a perfect approximation for this distribution. If,
in fact, the distribution is normal, then all we need to define the distribution is the average
and the standard deviation. Because we have the original values from which the distribution
is created, we can easily compute these with mean(S) and sd(S). The blue curve you see
added to the histogram above is a normal density with this average and standard deviation.

This average and this standard deviation have special names. They are referred to as the
expected value and standard error of the random variable S. We will say more about these
in the next section.

Statistical theory provides a way to derive the distribution of random variables defined as
independent random draws from an urn. Specifically, in our example above, we can show
that (S + n)/2 follows a binomial distribution. We therefore do not need to run for Monte
Carlo simulations to know the probability distribution of S. We did this for illustrative
purposes.

We can use the function dbinom and pbinom to compute the probabilities exactly. For
example, to compute Pr(S < 0) we note that:

Pr(S < 0) = Pr((S + n)/2 < (0 + n)/2)

and we can use the pbinom to compute

Pr(S ≤ 0)

n <- 1000
pbinom(n/2, size = n, prob = 10/19)
#> [1] 0.0511

Because this is a discrete probability function, to get Pr(S < 0) rather than Pr(S ≤ 0), we
write:

pbinom(n/2-1, size = n, prob = 10/19)
#> [1] 0.0448

14.5 Distributions versus probability distributions 273

For the details of the binomial distribution, you can consult any basic probability book or
even Wikipedia3.

Here we do not cover these details. Instead, we will discuss an incredibly useful approxima-
tion provided by mathematical theory that applies generally to sums and averages of draws
from any urn: the Central Limit Theorem (CLT).

14.4 Distributions versus probability distributions

Before we continue, let’s make an important distinction and connection between the dis-
tribution of a list of numbers and a probability distribution. In the visualization chapter,
we described how any list of numbers x1, . . . , xn has a distribution. The definition is quite
straightforward. We define F (a) as the function that tells us what proportion of the list
is less than or equal to a. Because they are useful summaries when the distribution is ap-
proximately normal, we define the average and standard deviation. These are defined with
a straightforward operation of the vector containing the list of numbers x:

m <- sum(x)/length(x)
s <- sqrt(sum((x - m)^2) / length(x))

A random variable X has a distribution function. To define this, we do not need a list of
numbers. It is a theoretical concept. In this case, we define the distribution as the F (a) that
answers the question: what is the probability that X is less than or equal to a? There is no
list of numbers.

However, if X is defined by drawing from an urn with numbers in it, then there is a list: the
list of numbers inside the urn. In this case, the distribution of that list is the probability
distribution of X and the average and standard deviation of that list are the expected value
and standard error of the random variable.

Another way to think about it that does not involve an urn is to run a Monte Carlo simulation
and generate a very large list of outcomes of X. These outcomes are a list of numbers. The
distribution of this list will be a very good approximation of the probability distribution of
X. The longer the list, the better the approximation. The average and standard deviation
of this list will approximate the expected value and standard error of the random variable.

14.5 Notation for random variables

In statistical textbooks, upper case letters are used to denote random variables and we
follow this convention here. Lower case letters are used for observed values. You will see
some notation that includes both. For example, you will see events defined as X ≤ x. Here
X is a random variable, making it a random event, and x is an arbitrary value and not

3https://en.wikipedia.org/w/index.php?title=Binomial_distribution

www.dbooks.org

https://en.wikipedia.org/w/index.php?title=Binomial_distribution
https://www.dbooks.org/

274 14 Random variables

random. So, for example, X might represent the number on a die roll and x will represent
an actual value we see 1, 2, 3, 4, 5, or 6. So in this case, the probability of X = x is 1/6
regardless of the observed value x. This notation is a bit strange because, when we ask
questions about probability, X is not an observed quantity. Instead, it’s a random quantity
that we will see in the future. We can talk about what we expect it to be, what values are
probable, but not what it is. But once we have data, we do see a realization of X. So data
scientists talk of what could have been after we see what actually happened.

14.6 The expected value and standard error

We have described sampling models for draws. We will now go over the mathematical theory
that lets us approximate the probability distributions for the sum of draws. Once we do
this, we will be able to help the casino predict how much money they will make. The same
approach we use for the sum of draws will be useful for describing the distribution of averages
and proportion which we will need to understand how polls work.

The first important concept to learn is the expected value. In statistics books, it is common
to use letter E like this:

E[X]

to denote the expected value of the random variable X.

A random variable will vary around its expected value in a way that if you take the average
of many, many draws, the average of the draws will approximate the expected value, getting
closer and closer the more draws you take.

Theoretical statistics provides techniques that facilitate the calculation of expected values
in different circumstances. For example, a useful formula tells us that the expected value of
a random variable defined by one draw is the average of the numbers in the urn. In the urn
used to model betting on red in roulette, we have 20 one dollars and 18 negative one dollars.
The expected value is thus:

E[X] = (20 + −18)/38

which is about 5 cents. It is a bit counterintuitive to say that X varies around 0.05, when
the only values it takes is 1 and -1. One way to make sense of the expected value in this
context is by realizing that if we play the game over and over, the casino wins, on average,
5 cents per game. A Monte Carlo simulation confirms this:

B <- 10^6
x <- sample(c(-1,1), B, replace = TRUE, prob=c(9/19, 10/19))
mean(x)
#> [1] 0.0517

In general, if the urn has two possible outcomes, say a and b, with proportions p and 1 − p
respectively, the average is:

14.6 The expected value and standard error 275

E[X] = ap + b(1 − p)

To see this, notice that if there are n beads in the urn, then we have np as and n(1 − p) bs
and because the average is the sum, n × a × p + n × b × (1 − p), divided by the total n, we
get that the average is ap + b(1 − p).

Now the reason we define the expected value is because this mathematical definition turns
out to be useful for approximating the probability distributions of sum, which then is useful
for describing the distribution of averages and proportions. The first useful fact is that the
expected value of the sum of the draws is:

number of draws × average of the numbers in the urn

So if 1,000 people play roulette, the casino expects to win, on average, about 1,000 × $0.05 =
$50. But this is an expected value. How different can one observation be from the expected
value? The casino really needs to know this. What is the range of possibilities? If negative
numbers are too likely, they will not install roulette wheels. Statistical theory once again
answers this question. The standard error (SE) gives us an idea of the size of the variation
around the expected value. In statistics books, it’s common to use:

SE[X]

to denote the standard error of a random variable.

If our draws are independent, then the standard error of the sum is given by the
equation:

√
number of draws × standard deviation of the numbers in the urn

Using the definition of standard deviation, we can derive, with a bit of math, that if an
urn contains two values a and b with proportions p and (1 − p), respectively, the standard
deviation is:

| b − a |
√

p(1 − p).

So in our roulette example, the standard deviation of the values inside the urn is: | 1−(−1) |√
10/19 × 9/19 or:

2 * sqrt(90)/19
#> [1] 0.999

The standard error tells us the typical difference between a random variable and its expec-
tation. Since one draw is obviously the sum of just one draw, we can use the formula above
to calculate that the random variable defined by one draw has an expected value of 0.05
and a standard error of about 1. This makes sense since we either get 1 or -1, with 1 slightly
favored over -1.

Using the formula above, the sum of 1,000 people playing has standard error of about $32:

www.dbooks.org

https://www.dbooks.org/

276 14 Random variables

n <- 1000
sqrt(n) * 2 * sqrt(90)/19
#> [1] 31.6

As a result, when 1,000 people bet on red, the casino is expected to win $50 with a standard
error of $32. It therefore seems like a safe bet. But we still haven’t answered the question:
how likely is it to lose money? Here the CLT will help.
Advanced note: Before continuing we should point out that exact probability calculations
for the casino winnings can be performed with the binomial distribution. However, here we
focus on the CLT, which can be generally applied to sums of random variables in a way that
the binomial distribution can’t.

14.6.1 Population SD versus the sample SD

The standard deviation of a list x (below we use heights as an example) is defined as the
square root of the average of the squared differences:

library(dslabs)
x <- heights$height
m <- mean(x)
s <- sqrt(mean((x-m)^2))

Using mathematical notation we write:

µ = 1
n

n∑
i=1

xiσ =

√√√√ 1
n

n∑
i=1

(xi − µ)2

However, be aware that the sd function returns a slightly different result:

identical(s, sd(x))
#> [1] FALSE
s-sd(x)
#> [1] -0.00194

This is because the sd function R does not return the sd of the list, but rather uses a formula
that estimates standard deviations of a population from a random sample X1, . . . , XN which,
for reasons not discussed here, divide the sum of squares by the N − 1.

X̄ = 1
N

N∑
i=1

Xi, s =

√√√√ 1
N − 1

N∑
i=1

(Xi − X̄)2

You can see that this is the case by typing:

n <- length(x)
s-sd(x)*sqrt((n-1) / n)
#> [1] 0

14.7 Central Limit Theorem 277

For all the theory discussed here, you need to compute the actual standard deviation as
defined:

sqrt(mean((x-m)^2))

So be careful when using the sd function in R. However, keep in mind that throughout the
book we sometimes use the sd function when we really want the actual SD. This is because
when the list size is big, these two are practically equivalent since

√
(N − 1)/N ≈ 1.

14.7 Central Limit Theorem

The Central Limit Theorem (CLT) tells us that when the number of draws, also called
the sample size, is large, the probability distribution of the sum of the independent draws
is approximately normal. Because sampling models are used for so many data generation
processes, the CLT is considered one of the most important mathematical insights in history.
Previously, we discussed that if we know that the distribution of a list of numbers is ap-
proximated by the normal distribution, all we need to describe the list are the average
and standard deviation. We also know that the same applies to probability distributions.
If a random variable has a probability distribution that is approximated with the normal
distribution, then all we need to describe the probability distribution are the average and
standard deviation, referred to as the expected value and standard error.
We previously ran this Monte Carlo simulation:

n <- 1000
B <- 10000
roulette_winnings <- function(n){
X <- sample(c(-1,1), n, replace = TRUE, prob=c(9/19, 10/19))
sum(X)

}
S <- replicate(B, roulette_winnings(n))

The Central Limit Theorem (CLT) tells us that the sum S is approximated by a normal
distribution. Using the formulas above, we know that the expected value and standard error
are:

n * (20-18)/38
#> [1] 52.6
sqrt(n) * 2 * sqrt(90)/19
#> [1] 31.6

The theoretical values above match those obtained with the Monte Carlo simulation:

mean(S)
#> [1] 52.2
sd(S)
#> [1] 31.7

www.dbooks.org

https://www.dbooks.org/

278 14 Random variables

Using the CLT, we can skip the Monte Carlo simulation and instead compute the probability
of the casino losing money using this approximation:

mu <- n * (20-18)/38
se <- sqrt(n) * 2 * sqrt(90)/19
pnorm(0, mu, se)
#> [1] 0.0478

which is also in very good agreement with our Monte Carlo result:

mean(S < 0)
#> [1] 0.0458

14.7.1 How large is large in the Central Limit Theorem?

The CLT works when the number of draws is large. But large is a relative term. In many
circumstances as few as 30 draws is enough to make the CLT useful. In some specific in-
stances, as few as 10 is enough. However, these should not be considered general rules. Note,
for example, that when the probability of success is very small, we need much larger sample
sizes.

By way of illustration, let’s consider the lottery. In the lottery, the chances of winning are
less than 1 in a million. Thousands of people play so the number of draws is very large. Yet
the number of winners, the sum of the draws, range between 0 and 4. This sum is certainly
not well approximated by a normal distribution, so the CLT does not apply, even with the
very large sample size. This is generally true when the probability of a success is very low.
In these cases, the Poisson distribution is more appropriate.

You can examine the properties of the Poisson distribution using dpois and ppois. You can
generate random variables following this distribution with rpois. However, we do not cover
the theory here. You can learn about the Poisson distribution in any probability textbook
and even Wikipedia4

14.8 Statistical properties of averages

There are several useful mathematical results that we used above and often employ when
working with data. We list them below.

1. The expected value of the sum of random variables is the sum of each random variable’s
expected value. We can write it like this:

E[X1 + X2 + · · · + Xn] = E[X1] + E[X2] + · · · + E[Xn]

If the X are independent draws from the urn, then they all have the same expected value.
Let’s call it µ and thus:

4https://en.wikipedia.org/w/index.php?title=Poisson_distribution

https://en.wikipedia.org/w/index.php?title=Poisson_distribution

14.8 Statistical properties of averages 279

E[X1 + X2 + · · · + Xn] = nµ

which is another way of writing the result we show above for the sum of draws.

2. The expected value of a non-random constant times a random variable is the non-random
constant times the expected value of a random variable. This is easier to explain with
symbols:

E[aX] = a × E[X]

To see why this is intuitive, consider change of units. If we change the units of a random
variable, say from dollars to cents, the expectation should change in the same way. A con-
sequence of the above two facts is that the expected value of the average of independent
draws from the same urn is the expected value of the urn, call it µ again:

E[(X1 + X2 + · · · + Xn)/n] = E[X1 + X2 + · · · + Xn]/n = nµ/n = µ

3. The square of the standard error of the sum of independent random variables is the sum
of the square of the standard error of each random variable. This one is easier to understand
in math form:

SE[X1 + X2 + · · · + Xn] =
√

SE[X1]2 + SE[X2]2 + · · · + SE[Xn]2

The square of the standard error is referred to as the variance in statistical textbooks. Note
that this particular property is not as intuitive as the previous three and more in depth
explanations can be found in statistics textbooks.

4. The standard error of a non-random constant times a random variable is the non-random
constant times the random variable’s standard error. As with the expectation:

SE[aX] = a × SE[X]

To see why this is intuitive, again think of units.

A consequence of 3 and 4 is that the standard error of the average of independent draws
from the same urn is the standard deviation of the urn divided by the square root of n (the
number of draws), call it σ:

SE[(X1 + X2 + · · · + Xn)/n] = SE[X1 + X2 + · · · + Xn]/n

=
√

SE[X1]2 + SE[X2]2 + · · · + SE[Xn]2/n

=
√

σ2 + σ2 + · · · + σ2/n

=
√

nσ2/n

= σ/
√

n

5. If X is a normally distributed random variable, then if a and b are non-random constants,
aX +b is also a normally distributed random variable. All we are doing is changing the units
of the random variable by multiplying by a, then shifting the center by b.

Note that statistical textbooks use the Greek letters µ and σ to denote the expected value

www.dbooks.org

https://www.dbooks.org/

280 14 Random variables

and standard error, respectively. This is because µ is the Greek letter for m, the first letter
of mean, which is another term used for expected value. Similarly, σ is the Greek letter for
s, the first letter of standard error.

14.9 Law of large numbers

An important implication of the final result is that the standard error of the average becomes
smaller and smaller as n grows larger. When n is very large, then the standard error is
practically 0 and the average of the draws converges to the average of the urn. This is
known in statistical textbooks as the law of large numbers or the law of averages.

14.9.1 Misinterpreting law of averages

The law of averages is sometimes misinterpreted. For example, if you toss a coin 5 times and
see a head each time, you might hear someone argue that the next toss is probably a tail
because of the law of averages: on average we should see 50% heads and 50% tails. A similar
argument would be to say that red “is due” on the roulette wheel after seeing black come
up five times in a row. These events are independent so the chance of a coin landing heads
is 50% regardless of the previous 5. This is also the case for the roulette outcome. The law
of averages applies only when the number of draws is very large and not in small samples.
After a million tosses, you will definitely see about 50% heads regardless of the outcome of
the first five tosses.

Another funny misuse of the law of averages is in sports when TV sportscasters predict a
player is about to succeed because they have failed a few times in a row.

14.10 Exercises

1. In American Roulette you can also bet on green. There are 18 reds, 18 blacks and 2 greens
(0 and 00). What are the chances the green comes out?

2. The payout for winning on green is $17 dollars. This means that if you bet a dollar and it
lands on green, you get $17. Create a sampling model using sample to simulate the random
variable X for your winnings. Hint: see the example below for how it should look like when
betting on red.

x <- sample(c(1,-1), 1, prob = c(9/19, 10/19))

3. Compute the expected value of X.

4. Compute the standard error of X.

5. Now create a random variable S that is the sum of your winnings after betting on green

14.11 Exercises 281

1000 times. Hint: change the argument size and replace in your answer to question 2.
Start your code by setting the seed to 1 with set.seed(1).

6. What is the expected value of S?

7. What is the standard error of S?

8. What is the probability that you end up winning money? Hint: use the CLT.

9. Create a Monte Carlo simulation that generates 1,000 outcomes of S. Compute the average
and standard deviation of the resulting list to confirm the results of 6 and 7. Start your code
by setting the seed to 1 with set.seed(1).

10. Now check your answer to 8 using the Monte Carlo result.

11. The Monte Carlo result and the CLT approximation are close, but not that close. What
could account for this?

a. 1,000 simulations is not enough. If we do more, they match.
b. The CLT does not work as well when the probability of success is small. In this

case, it was 1/19. If we make the number of roulette plays bigger, they will match
better.

c. The difference is within rounding error.
d. The CLT only works for averages.

12. Now create a random variable Y that is your average winnings per bet after playing off
your winnings after betting on green 1,000 times.

13. What is the expected value of Y ?

14. What is the standard error of Y ?

15. What is the probability that you end up with winnings per game that are positive? Hint:
use the CLT.

16. Create a Monte Carlo simulation that generates 2,500 outcomes of Y . Compute the
average and standard deviation of the resulting list to confirm the results of 6 and 7. Start
your code by setting the seed to 1 with set.seed(1).

17. Now check your answer to 8 using the Monte Carlo result.

18. The Monte Carlo result and the CLT approximation are now much closer. What could
account for this?

a. We are now computing averages instead of sums.
b. 2,500 Monte Carlo simulations is not better than 1,000.
c. The CLT works better when the sample size is larger. We increased from 1,000

to 2,500.
d. It is not closer. The difference is within rounding error.

www.dbooks.org

https://www.dbooks.org/

282 14 Random variables

14.11 Case study: The Big Short

14.11.1 Interest rates explained with chance model

More complex versions of the sampling models we have discussed are also used by banks
to decide interest rates. Suppose you run a small bank that has a history of identifying
potential homeowners that can be trusted to make payments. In fact, historically, in a given
year, only 2% of your customers default, meaning that they don’t pay back the money that
you lent them. However, you are aware that if you simply loan money to everybody without
interest, you will end up losing money due to this 2%. Although you know 2% of your
clients will probably default, you don’t know which ones. Yet by charging everybody just
a bit extra in interest, you can make up the losses incurred due to that 2% and also cover
your operating costs. You can also make a profit, but if you set the interest rates too high,
your clients will go to another bank. We use all these facts and some probability theory to
decide what interest rate you should charge.

Suppose your bank will give out 1,000 loans for $180,000 this year. Also, after adding up
all costs, suppose your bank loses $200,000 per foreclosure. For simplicity, we assume this
includes all operational costs. A sampling model for this scenario can be coded like this:

n <- 1000
loss_per_foreclosure <- -200000
p <- 0.02
defaults <- sample(c(0,1), n, prob=c(1-p, p), replace = TRUE)
sum(defaults * loss_per_foreclosure)
#> [1] -3600000

Note that the total loss defined by the final sum is a random variable. Every time you run
the above code, you get a different answer. We can easily construct a Monte Carlo simulation
to get an idea of the distribution of this random variable.

B <- 10000
losses <- replicate(B, {

defaults <- sample(c(0,1), n, prob=c(1-p, p), replace = TRUE)
sum(defaults * loss_per_foreclosure)

})

We don’t really need a Monte Carlo simulation though. Using what we have learned, the
CLT tells us that because our losses are a sum of independent draws, its distribution is
approximately normal with expected value and standard errors given by:

n*(p*loss_per_foreclosure + (1-p)*0)
#> [1] -4e+06
sqrt(n)*abs(loss_per_foreclosure)*sqrt(p*(1-p))
#> [1] 885438

We can now set an interest rate to guarantee that, on average, we break even. Basically, we

14.11 Case study: The Big Short 283

need to add a quantity x to each loan, which in this case are represented by draws, so that
the expected value is 0. If we define l to be the loss per foreclosure, we need:

lp + x(1 − p) = 0

which implies x is

- loss_per_foreclosure*p/(1-p)
#> [1] 4082

or an interest rate of 0.023.

However, we still have a problem. Although this interest rate guarantees that on average we
break even, there is a 50% chance that we lose money. If our bank loses money, we have to
close it down. We therefore need to pick an interest rate that makes it unlikely for this to
happen. At the same time, if the interest rate is too high, our clients will go to another bank
so we must be willing to take some risks. So let’s say that we want our chances of losing
money to be 1 in 100, what does the x quantity need to be now? This one is a bit harder.
We want the sum S to have:

Pr(S < 0) = 0.01

We know that S is approximately normal. The expected value of S is

E[S] = {lp + x(1 − p)}n

with n the number of draws, which in this case represents loans. The standard error is

SD[S] = |x − l|
√

np(1 − p).

Because x is positive and l negative |x − l| = x − l. Note that these are just an application
of the formulas shown earlier, but using more compact symbols.

Now we are going to use a mathematical “trick” that is very common in statistics. We add
and subtract the same quantities to both sides of the event S < 0 so that the probability
does not change and we end up with a standard normal random variable on the left, which
will then permit us to write down an equation with only x as an unknown. This “trick” is
as follows:

If Pr(S < 0) = 0.01 then

Pr
(

S − E[S]
SE[S]

<
−E[S]
SE[S]

)
And remember E[S] and SE[S] are the expected value and standard error of S, respectively.
All we did above was add and divide by the same quantity on both sides. We did this because
now the term on the left is a standard normal random variable, which we will rename Z.
Now we fill in the blanks with the actual formula for expected value and standard error:

Pr
(

Z <
−{lp + x(1 − p)}n

(x − l)
√

np(1 − p)

)
= 0.01

www.dbooks.org

https://www.dbooks.org/

284 14 Random variables

It may look complicated, but remember that l, p and n are all known amounts, so eventually
we will replace them with numbers.

Now because the Z is a normal random with expected value 0 and standard error 1, it means
that the quantity on the right side of the < sign must be equal to:

qnorm(0.01)
#> [1] -2.33

for the equation to hold true. Remember that z =qnorm(0.01) gives us the value of z for
which:

Pr(Z ≤ z) = 0.01

So this means that the right side of the complicated equation must be z=qnorm(0.01).

−{lp + x(1 − p)}n

(x − l)
√

np(1 − p)
= z

The trick works because we end up with an expression containing x that we know has to be
equal to a known quantity z. Solving for x is now simply algebra:

x = −l
np − z

√
np(1 − p)

n(1 − p) + z
√

np(1 − p)

which is:

l <- loss_per_foreclosure
z <- qnorm(0.01)
x <- -l*(n*p - z*sqrt(n*p*(1-p)))/ (n*(1-p) + z*sqrt(n*p*(1-p)))
x
#> [1] 6249

Our interest rate now goes up to 0.035. This is still a very competitive interest rate. By
choosing this interest rate, we now have an expected profit per loan of:

loss_per_foreclosure*p + x*(1-p)
#> [1] 2124

which is a total expected profit of about:

n*(loss_per_foreclosure*p + x*(1-p))
#> [1] 2124198

dollars!

We can run a Monte Carlo simulation to double check our theoretical approximations:

14.11 Case study: The Big Short 285

B <- 100000
profit <- replicate(B, {

draws <- sample(c(x, loss_per_foreclosure), n,
prob=c(1-p, p), replace = TRUE)

sum(draws)
})
mean(profit)
#> [1] 2118604
mean(profit<0)
#> [1] 0.013

14.11.2 The Big Short

One of your employees points out that since the bank is making 2,124 dollars per loan, the
bank should give out more loans! Why just n? You explain that finding those n clients was
hard. You need a group that is predictable and that keeps the chances of defaults low. He
then points out that even if the probability of default is higher, as long as our expected
value is positive, you can minimize your chances of losses by increasing n and relying on the
law of large numbers.

He claims that even if the default rate is twice as high, say 4%, if we set the rate just a bit
higher than this value:

p <- 0.04
r <- (- loss_per_foreclosure*p/(1-p)) / 180000
r
#> [1] 0.0463

we will profit. At 5%, we are guaranteed a positive expected value of:

r <- 0.05
x <- r*180000
loss_per_foreclosure*p + x * (1-p)
#> [1] 640

and can minimize our chances of losing money by simply increasing n since:

Pr(S < 0) = Pr
(

Z < − E[S]
SE[S]

)
with Z a standard normal random variable as shown earlier. If we define µ and σ to be the
expected value and standard deviation of the urn, respectively (that is of a single loan), using
the formulas above we have: E[S] = nµ and SE[S] =

√
nσ. So if we define z=qnorm(0.01),

we have:
− nµ√

nσ
= −

√
nµ

σ
= z

which implies that if we let:

n ≥ z2σ2/µ2

www.dbooks.org

https://www.dbooks.org/

286 14 Random variables

we are guaranteed to have a probability of less than 0.01. The implication is that, as long
as µ is positive, we can find an n that minimizes the probability of a loss. This is a form of
the law of large numbers: when n is large, our average earnings per loan converges to the
expected earning µ.
With x fixed, now we can ask what n do we need for the probability to be 0.01? In our
example, if we give out:

z <- qnorm(0.01)
n <- ceiling((z^2*(x-l)^2*p*(1-p))/(l*p + x*(1-p))^2)
n
#> [1] 22163

loans, the probability of losing is about 0.01 and we are expected to earn a total of

n*(loss_per_foreclosure*p + x * (1-p))
#> [1] 14184320

dollars! We can confirm this with a Monte Carlo simulation:

p <- 0.04
x <- 0.05*180000
profit <- replicate(B, {

draws <- sample(c(x, loss_per_foreclosure), n,
prob=c(1-p, p), replace = TRUE)

sum(draws)
})
mean(profit)
#> [1] 14185724

This seems like a no brainer. As a result, your colleague decides to leave your bank and
start his own high-risk mortgage company. A few months later, your colleague’s bank has
gone bankrupt. A book is written and eventually a movie is made relating the mistake your
friend, and many others, made. What happened?
Your colleague’s scheme was mainly based on this mathematical formula:

SE[(X1 + X2 + · · · + Xn)/n] = σ/
√

n

By making n large, we minimize the standard error of our per-loan profit. However, for this
rule to hold, the Xs must be independent draws: one person defaulting must be independent
of others defaulting. Note that in the case of averaging the same event over and over, an
extreme example of events that are not independent, we get a standard error that is

√
n

times bigger:
SE[(X1 + X1 + · · · + X1)/n] = SE[nX1/n] = σ > σ/

√
n

To construct a more realistic simulation than the original one your colleague ran, let’s assume
there is a global event that affects everybody with high-risk mortgages and changes their
probability. We will assume that with 50-50 chance, all the probabilities go up or down
slightly to somewhere between 0.03 and 0.05. But it happens to everybody at once, not just
one person. These draws are no longer independent.

14.12 Case study: The Big Short 287

p <- 0.04
x <- 0.05*180000
profit <- replicate(B, {

new_p <- 0.04 + sample(seq(-0.01, 0.01, length = 100), 1)
draws <- sample(c(x, loss_per_foreclosure), n,

prob=c(1-new_p, new_p), replace = TRUE)
sum(draws)

})

Note that our expected profit is still large:

mean(profit)
#> [1] 14082671

However, the probability of the bank having negative earnings shoots up to:

mean(profit<0)
#> [1] 0.35

Even scarier is that the probability of losing more than 10 million dollars is:

mean(profit < -10000000)
#> [1] 0.244

To understand how this happens look at the distribution:

data.frame(profit_in_millions=profit/10^6) %>%
ggplot(aes(profit_in_millions)) +
geom_histogram(color="black", binwidth = 5)

0

2000

4000

−40 0 40 80
profit_in_millions

co
un

t

The theory completely breaks down and the random variable has much more variability
than expected. The financial meltdown of 2007 was due, among other things, to financial
“experts” assuming independence when there was none.

www.dbooks.org

https://www.dbooks.org/

288 14 Random variables

14.12 Exercises

1. Create a random variable S with the earnings of your bank if you give out 10,000 loans,
the default rate is 0.3, and you lose $200,000 in each foreclosure. Hint: use the code we
showed in the previous section, but change the parameters.

2. Run a Monte Carlo simulation with 10,000 outcomes for S. Make a histogram of the
results.

3. What is the expected value of S?

4. What is the standard error of S?

5. Suppose we give out loans for $180,000. What should the interest rate be so that our
expected value is 0?

6. (Harder) What should the interest rate be so that the chance of losing money is 1 in 20?
In math notation, what should the interest rate be so that Pr(S < 0) = 0.05 ?

7. If the bank wants to minimize the probabilities of losing money, which of the following
does not make interest rates go up?

a. A smaller pool of loans.
b. A larger probability of default.
c. A smaller required probability of losing money.
d. The number of Monte Carlo simulations.

15
Statistical inference

In Chapter 16 we will describe, in some detail, how poll aggregators such as FiveThirtyEight
use data to predict election outcomes. To understand how they do this, we first need to learn
the basics of Statistical Inference, the part of statistics that helps distinguish patterns arising
from signal from those arising from chance. Statistical inference is a broad topic and here
we go over the very basics using polls as a motivating example. To describe the concepts,
we complement the mathematical formulas with Monte Carlo simulations and R code.

15.1 Polls

Opinion polling has been conducted since the 19th century. The general goal is to describe
the opinions held by a specific population on a given set of topics. In recent times, these
polls have been pervasive during presidential elections. Polls are useful when interviewing
every member of a particular population is logistically impossible. The general strategy is
to interview a smaller group, chosen at random, and then infer the opinions of the entire
population from the opinions of the smaller group. Statistical theory is used to justify the
process. This theory is referred to as inference and it is the main topic of this chapter.

Perhaps the best known opinion polls are those conducted to determine which candidate is
preferred by voters in a given election. Political strategists make extensive use of polls to
decide, among other things, how to invest resources. For example, they may want to know
in which geographical locations to focus their “get out the vote” efforts.

Elections are a particularly interesting case of opinion polls because the actual opinion of
the entire population is revealed on election day. Of course, it costs millions of dollars to
run an actual election which makes polling a cost effective strategy for those that want to
forecast the results.

Although typically the results of these polls are kept private, similar polls are conducted
by news organizations because results tend to be of interest to the general public and made
public. We will eventually be looking at such data.

Real Clear Politics1 is an example of a news aggregator that organizes and publishes poll re-
sults. For example, they present the following poll results reporting estimates of the popular
vote for the 2016 presidential election2:

1http://www.realclearpolitics.com
2http://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton-

5491.html

289

www.dbooks.org

http://www.realclearpolitics.com
http://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton-5491.html
http://www.realclearpolitics.com/epolls/2016/president/us/general_election_trump_vs_clinton-5491.html
https://www.dbooks.org/

290 15 Statistical inference

Poll Date Sample MoE Clinton Trump Spread

Final Results – – – 48.2 46.1 Clinton +2.1
RCP Average 11/1 - 11/7 – – 46.8 43.6 Clinton +3.2
Bloomberg 11/4 - 11/6 799 LV 3.5 46.0 43.0 Clinton +3
IBD 11/4 - 11/7 1107 LV 3.1 43.0 42.0 Clinton +1
Economist 11/4 - 11/7 3669 LV – 49.0 45.0 Clinton +4

LA Times 11/1 - 11/7 2935 LV 4.5 44.0 47.0 Trump +3
ABC 11/3 - 11/6 2220 LV 2.5 49.0 46.0 Clinton +3
FOX News 11/3 - 11/6 1295 LV 2.5 48.0 44.0 Clinton +4
Monmouth 11/3 - 11/6 748 LV 3.6 50.0 44.0 Clinton +6
NBC News 11/3 - 11/5 1282 LV 2.7 48.0 43.0 Clinton +5

CBS News 11/2 - 11/6 1426 LV 3.0 47.0 43.0 Clinton +4
Reuters 11/2 - 11/6 2196 LV 2.3 44.0 39.0 Clinton +5

Although in the United States the popular vote does not determine the result of the presi-
dential election, we will use it as an illustrative and simple example of how well polls work.
Forecasting the election is a more complex process since it involves combining results from
50 states and DC and we describe it in Section 16.8.

Let’s make some observations about the table above. First, note that different polls, all taken
days before the election, report a different spread: the estimated difference between support
for the two candidates. Notice also that the reported spreads hover around what ended up
being the actual result: Clinton won the popular vote by 2.1%. We also see a column titled
MoE which stands for margin of error.

In this section, we will show how the probability concepts we learned in the previous chapter
can be applied to develop the statistical approaches that make polls an effective tool. We will
learn the statistical concepts necessary to define estimates and margins of errors, and show
how we can use these to forecast final results relatively well and also provide an estimate
of the precision of our forecast. Once we learn this, we will be able to understand two
concepts that are ubiquitous in data science: confidence intervals and p-values. Finally, to
understand probabilistic statements about the probability of a candidate winning, we will
have to learn about Bayesian modeling. In the final sections, we put it all together to recreate
the simplified version of the FiveThirtyEight model and apply it to the 2016 election.

We start by connecting probability theory to the task of using polls to learn about a popu-
lation.

15.1.1 The sampling model for polls

To help us understand the connection between polls and what we have learned, let’s construct
a similar situation to the one pollsters face. To mimic the challenge real pollsters face in
terms of competing with other pollsters for media attention, we will use an urn full of beads
to represent voters and pretend we are competing for a $25 dollar prize. The challenge is to
guess the spread between the proportion of blue and red beads in this urn (in this case, a
pickle jar):

15.2 Polls 291

Before making a prediction, you can take a sample (with replacement) from the urn. To
mimic the fact that running polls is expensive, it costs you $0.10 per each bead you sample.
Therefore, if your sample size is 250, and you win, you will break even since you will pay $25
to collect your $25 prize. Your entry into the competition can be an interval. If the interval
you submit contains the true proportion, you get half what you paid and pass to the second
phase of the competition. In the second phase, the entry with the smallest interval is selected
as the winner.

The dslabs package includes a function that shows a random draw from this urn:

library(tidyverse)
library(dslabs)
take_poll(25)

Blue Red

Think about how you would construct your interval based on the data shown above.

We have just described a simple sampling model for opinion polls. The beads inside the
urn represent the individuals that will vote on election day. Those that will vote for the
Republican candidate are represented with red beads and the Democrats with the blue
beads. For simplicity, assume there are no other colors. That is, that there are just two
parties: Republican and Democratic.

www.dbooks.org

https://www.dbooks.org/

292 15 Statistical inference

15.2 Populations, samples, parameters, and estimates

We want to predict the proportion of blue beads in the urn. Let’s call this quantity p, which
then tells us the proportion of red beads 1 − p, and the spread p − (1 − p), which simplifies
to 2p − 1.

In statistical textbooks, the beads in the urn are called the population. The proportion of
blue beads in the population p is called a parameter. The 25 beads we see in the previous
plot are called a sample. The task of statistical inference is to predict the parameter p using
the observed data in the sample.

Can we do this with the 25 observations above? It is certainly informative. For example,
given that we see 13 red and 12 blue beads, it is unlikely that p > .9 or p < .1. But are we
ready to predict with certainty that there are more red beads than blue in the jar?

We want to construct an estimate of p using only the information we observe. An estimate
should be thought of as a summary of the observed data that we think is informative about
the parameter of interest. It seems intuitive to think that the proportion of blue beads in the
sample 0.48 must be at least related to the actual proportion p. But do we simply predict p
to be 0.48? First, remember that the sample proportion is a random variable. If we run the
command take_poll(25) four times, we get a different answer each time, since the sample
proportion is a random variable.

Blue Red Blue Red

Blue Red Blue Red

Note that in the four random samples shown above, the sample proportions range from
0.44 to 0.60. By describing the distribution of this random variable, we will be able to gain
insights into how good this estimate is and how we can make it better.

15.2.1 The sample average

Conducting an opinion poll is being modeled as taking a random sample from an urn. We
are proposing the use of the proportion of blue beads in our sample as an estimate of the
parameter p. Once we have this estimate, we can easily report an estimate for the spread
2p − 1, but for simplicity we will illustrate the concepts for estimating p. We will use our

15.2 Populations, samples, parameters, and estimates 293

knowledge of probability to defend our use of the sample proportion and quantify how close
we think it is from the population proportion p.

We start by defining the random variable X as: X = 1 if we pick a blue bead at random
and X = 0 if it is red. This implies that the population is a list of 0s and 1s. If we sample
N beads, then the average of the draws X1, . . . , XN is equivalent to the proportion of blue
beads in our sample. This is because adding the Xs is equivalent to counting the blue beads
and dividing this count by the total N is equivalent to computing a proportion. We use
the symbol X̄ to represent this average. In general, in statistics textbooks a bar on top of
a symbol means the average. The theory we just learned about the sum of draws becomes
useful because the average is a sum of draws multiplied by the constant 1/N :

X̄ = 1/N ×
N∑

i=1
Xi

For simplicity, let’s assume that the draws are independent: after we see each sampled bead,
we return it to the urn. In this case, what do we know about the distribution of the sum of
draws? First, we know that the expected value of the sum of draws is N times the average
of the values in the urn. We know that the average of the 0s and 1s in the urn must be p,
the proportion of blue beads.

Here we encounter an important difference with what we did in the Probability chapter: we
don’t know what is in the urn. We know there are blue and red beads, but we don’t know
how many of each. This is what we want to find out: we are trying to estimate p.

15.2.2 Parameters

Just like we use variables to define unknowns in systems of equations, in statistical inference
we define parameters to define unknown parts of our models. In the urn model which we are
using to mimic an opinion poll, we do not know the proportion of blue beads in the urn. We
define the parameters p to represent this quantity. p is the average of the urn because if we
take the average of the 1s (blue) and 0s (red), we get the proportion of blue beads. Since
our main goal is figuring out what is p, we are going to estimate this parameter.

The ideas presented here on how we estimate parameters, and provide insights into how good
these estimates are, extrapolate to many data science tasks. For example, we may want to
determine the difference in health improvement between patients receiving treatment and a
control group. We may ask, what are the health effects of smoking on a population? What
are the differences in racial groups of fatal shootings by police? What is the rate of change
in life expectancy in the US during the last 10 years? All these questions can be framed as
a task of estimating a parameter from a sample.

15.2.3 Polling versus forecasting

Before we continue, let’s make an important clarification related to the practical problem
of forecasting the election. If a poll is conducted four months before the election, it is
estimating the p for that moment and not for election day. The p for election night might be
different since people’s opinions fluctuate through time. The polls provided the night before
the election tend to be the most accurate since opinions don’t change that much in a day.
However, forecasters try to build tools that model how opinions vary across time and try to

www.dbooks.org

https://www.dbooks.org/

294 15 Statistical inference

predict the election night results taking into consideration the fact that opinions fluctuate.
We will describe some approaches for doing this in a later section.

15.2.4 Properties of our estimate: expected value and standard error

To understand how good our estimate is, we will describe the statistical properties of the
random variable defined above: the sample proportion X̄. Remember that X̄ is the sum of
independent draws so the rules we covered in the probability chapter apply.

Using what we have learned, the expected value of the sum NX̄ is N× the average of the
urn, p. So dividing by the non-random constant N gives us that the expected value of the
average X̄ is p. We can write it using our mathematical notation:

E(X̄) = p

We can also use what we learned to figure out the standard error: the standard error of the
sum is

√
N× the standard deviation of the urn. Can we compute the standard error of the

urn? We learned a formula that tells us that it is (1 − 0)
√

p(1 − p) =
√

p(1 − p). Because
we are dividing the sum by N , we arrive at the following formula for the standard error of
the average:

SE(X̄) =
√

p(1 − p)/N

This result reveals the power of polls. The expected value of the sample proportion X̄ is
the parameter of interest p and we can make the standard error as small as we want by
increasing N . The law of large numbers tells us that with a large enough poll, our estimate
converges to p.

If we take a large enough poll to make our standard error about 1%, we will be quite certain
about who will win. But how large does the poll have to be for the standard error to be this
small?

One problem is that we do not know p, so we can’t compute the standard error. However,
for illustrative purposes, let’s assume that p = 0.51 and make a plot of the standard error
versus the sample size N :

0.00

0.05

0.10

0.15

10 100 1000 10000
N

S
E

15.4 Exercises 295

From the plot we see that we would need a poll of over 10,000 people to get the standard
error that low. We rarely see polls of this size due in part to costs. From the Real Clear
Politics table, we learn that the sample sizes in opinion polls range from 500-3,500 people.
For a sample size of 1,000 and p = 0.51, the standard error is:

sqrt(p*(1-p))/sqrt(1000)
#> [1] 0.0158

or 1.5 percentage points. So even with large polls, for close elections, X̄ can lead us astray
if we don’t realize it is a random variable. Nonetheless, we can actually say more about how
close we get the p and we do that in Section 15.4.

15.3 Exercises

1. Suppose you poll a population in which a proportion p of voters are Democrats and 1 − p
are Republicans. Your sample size is N = 25. Consider the random variable S which is the
total number of Democrats in your sample. What is the expected value of this random
variable? Hint: it’s a function of p.
2. What is the standard error of S ? Hint: it’s a function of p.
3. Consider the random variable S/N . This is equivalent to the sample average, which we
have been denoting as X̄. What is the expected value of the X̄? Hint: it’s a function of p.
4. What is the standard error of X̄? Hint: it’s a function of p.
5. Write a line of code that gives you the standard error se for the problem above for several
values of p, specifically for p <- seq(0, 1, length = 100). Make a plot of se versus p.
6. Copy the code above and put it inside a for-loop to make the plot for N = 25, N = 100,
and N = 1000.
7. If we are interested in the difference in proportions, p − (1 − p), our estimate is d =
X̄ − (1 − X̄). Use the rules we learned about sums of random variables and scaled random
variables to derive the expected value of d.
8. What is the standard error of d?
9. If the actual p = .45, it means the Republicans are winning by a relatively large margin
since d = −.1, which is a 10% margin of victory. In this case, what is the standard error of
2X̂ − 1 if we take a sample of N = 25?
10. Given the answer to 9, which of the following best describes your strategy of using a
sample size of N = 25?

a. The expected value of our estimate 2X̄ −1 is d, so our prediction will be right on.
b. Our standard error is larger than the difference, so the chances of 2X̄ − 1 being

positive and throwing us off were not that small. We should pick a larger sample
size.

c. The difference is 10% and the standard error is about 0.2, therefore much smaller
than the difference.

d. Because we don’t know p, we have no way of knowing that making N larger would
actually improve our standard error.

www.dbooks.org

https://www.dbooks.org/

296 15 Statistical inference

15.4 Central Limit Theorem in practice

The CLT tells us that the distribution function for a sum of draws is approximately normal.
We also learned that dividing a normally distributed random variable by a constant is also
a normally distributed variable. This implies that the distribution of X̄ is approximately
normal.

In summary, we have that X̄ has an approximately normal distribution with expected value
p and standard error

√
p(1 − p)/N .

Now how does this help us? Suppose we want to know what is the probability that we are
within 1% from p. We are basically asking what is

Pr(|X̄ − p| ≤ .01)

which is the same as:

Pr(X̄ ≤ p + .01) − Pr(X̄ ≤ p − .01)

Can we answer this question? We can use the mathematical trick we learned in the previous
chapter. Subtract the expected value and divide by the standard error to get a standard
normal random variable, call it Z, on the left. Since p is the expected value and SE(X̄) =√

p(1 − p)/N is the standard error we get:

Pr
(

Z ≤ .01
SE(X̄)

)
− Pr

(
Z ≤ − .01

SE(X̄)

)
One problem we have is that since we don’t know p, we don’t know SE(X̄). But it turns out
that the CLT still works if we estimate the standard error by using X̄ in place of p. We say
that we plug-in the estimate. Our estimate of the standard error is therefore:

ŜE(X̄) =
√

X̄(1 − X̄)/N

In statistics textbooks, we use a little hat to denote estimates. The estimate can be con-
structed using the observed data and N .

Now we continue with our calculation, but dividing by ŜE(X̄) =
√

X̄(1 − X̄)/N) instead.
In our first sample we had 12 blue and 13 red so X̄ = 0.48 and our estimate of standard
error is:

x_hat <- 0.48
se <- sqrt(x_hat*(1-x_hat)/25)
se
#> [1] 0.0999

And now we can answer the question of the probability of being close to p. The answer is:

15.4 Central Limit Theorem in practice 297

pnorm(0.01/se) - pnorm(-0.01/se)
#> [1] 0.0797

Therefore, there is a small chance that we will be close. A poll of only N = 25 people is not
really very useful, at least not for a close election.

Earlier we mentioned the margin of error. Now we can define it because it is simply two
times the standard error, which we can now estimate. In our case it is:

1.96*se
#> [1] 0.196

Why do we multiply by 1.96? Because if you ask what is the probability that we are within
1.96 standard errors from p, we get:

Pr
(
Z ≤ 1.96 SE(X̄)/SE(X̄)

)
− Pr

(
Z ≤ −1.96 SE(X̄)/SE(X̄)

)
which is:

Pr (Z ≤ 1.96) − Pr (Z ≤ −1.96)

which we know is about 95%:

pnorm(1.96)-pnorm(-1.96)
#> [1] 0.95

Hence, there is a 95% probability that X̄ will be within 1.96 × ŜE(X̄), in our case within
about 0.2, of p. Note that 95% is somewhat of an arbitrary choice and sometimes other
percentages are used, but it is the most commonly used value to define margin of error. We
often round 1.96 up to 2 for simplicity of presentation.

In summary, the CLT tells us that our poll based on a sample size of 25 is not very useful.
We don’t really learn much when the margin of error is this large. All we can really say is
that the popular vote will not be won by a large margin. This is why pollsters tend to use
larger sample sizes.

From the table above, we see that typical sample sizes range from 700 to 3500. To see how
this gives us a much more practical result, notice that if we had obtained a X̄=0.48 with
a sample size of 2,000, our standard error ŜE(X̄) would have been 0.011. So our result
is an estimate of 48% with a margin of error of 2%. In this case, the result is much more
informative and would make us think that there are more red balls than blue. Keep in mind,
however, that this is hypothetical. We did not take a poll of 2,000 since we don’t want to
ruin the competition.

15.4.1 A Monte Carlo simulation

Suppose we want to use a Monte Carlo simulation to corroborate the tools we have built
using probability theory. To create the simulation, we would write code like this:

www.dbooks.org

https://www.dbooks.org/

298 15 Statistical inference

B <- 10000
N <- 1000
x_hat <- replicate(B, {

x <- sample(c(0,1), size = N, replace = TRUE, prob = c(1-p, p))
mean(x)

})

The problem is, of course, we don’t know p. We could construct an urn like the one pictured
above and run an analog (without a computer) simulation. It would take a long time, but
you could take 10,000 samples, count the beads and keep track of the proportions of blue.
We can use the function take_poll(n=1000) instead of drawing from an actual urn, but it
would still take time to count the beads and enter the results.

One thing we therefore do to corroborate theoretical results is to pick one or several values
of p and run the simulations. Let’s set p=0.45. We can then simulate a poll:

p <- 0.45
N <- 1000

x <- sample(c(0,1), size = N, replace = TRUE, prob = c(1-p, p))
x_hat <- mean(x)

In this particular sample, our estimate is x_hat. We can use that code to do a Monte Carlo
simulation:

B <- 10000
x_hat <- replicate(B, {

x <- sample(c(0,1), size = N, replace = TRUE, prob = c(1-p, p))
mean(x)

})

To review, the theory tells us that X̄ is approximately normally distributed, has expected
value p = 0.45 and standard error

√
p(1 − p)/N = 0.016. The simulation confirms this:

mean(x_hat)
#> [1] 0.45
sd(x_hat)
#> [1] 0.0157

A histogram and qq-plot confirm that the normal approximation is accurate as well:

15.4 Central Limit Theorem in practice 299

0

400

800

1200

0.39 0.42 0.45 0.48 0.51
x_hat

co
un

t

0.39

0.42

0.45

0.48

0.51

0.39 0.42 0.45 0.48 0.51
Theoretical normal

x_
ha

t

Of course, in real life we would never be able to run such an experiment because we don’t
know p. But we could run it for various values of p and N and see that the theory does
indeed work well for most values. You can easily do this by re-running the code above after
changing p and N.

15.4.2 The spread

The competition is to predict the spread, not the proportion p. However, because we are
assuming there are only two parties, we know that the spread is p − (1 − p) = 2p − 1. As
a result, everything we have done can easily be adapted to an estimate of 2p − 1. Once we
have our estimate X̄ and ŜE(X̄), we estimate the spread with 2X̄ − 1 and, since we are
multiplying by 2, the standard error is 2ŜE(X̄). Note that subtracting 1 does not add any
variability so it does not affect the standard error.

For our 25 item sample above, our estimate p is .48 with margin of error .20 and our
estimate of the spread is 0.04 with margin of error .40. Again, not a very useful sample
size. However, the point is that once we have an estimate and standard error for p, we have
it for the spread 2p − 1.

15.4.3 Bias: why not run a very large poll?

For realistic values of p, say from 0.35 to 0.65, if we run a very large poll with 100,000
people, theory tells us that we would predict the election perfectly since the largest possible
margin of error is around 0.3%:

www.dbooks.org

https://www.dbooks.org/

300 15 Statistical inference

0.00304

0.00308

0.00312

0.00316

0.4 0.5 0.6
p

S
E

One reason is that running such a poll is very expensive. Another possibly more important
reason is that theory has its limitations. Polling is much more complicated than picking
beads from an urn. Some people might lie to pollsters and others might not have phones.
But perhaps the most important way an actual poll differs from an urn model is that we
actually don’t know for sure who is in our population and who is not. How do we know
who is going to vote? Are we reaching all possible voters? Hence, even if our margin of error
is very small, it might not be exactly right that our expected value is p. We call this bias.
Historically, we observe that polls are indeed biased, although not by that much. The typical
bias appears to be about 1-2%. This makes election forecasting a bit more interesting and
we will talk about how to model this in a later chapter.

15.5 Exercises

1. Write an urn model function that takes the proportion of Democrats p and the sample
size N as arguments and returns the sample average if Democrats are 1s and Republicans
are 0s. Call the function take_sample.

2. Now assume p <- 0.45 and that your sample size is N = 100. Take a sample 10,000 times
and save the vector of mean(X) - p into an object called errors. Hint: use the function
you wrote for exercise 1 to write this in one line of code.

3. The vector errors contains, for each simulated sample, the difference between the actual
p and our estimate X̄. We refer to this difference as the error. Compute the average and
make a histogram of the errors generated in the Monte Carlo simulation and select which
of the following best describes their distributions:

mean(errors)
hist(errors)

a. The errors are all about 0.05.
b. The errors are all about -0.05.
c. The errors are symmetrically distributed around 0.

15.5 Exercises 301

d. The errors range from -1 to 1.

4. The error X̄ −p is a random variable. In practice, the error is not observed because we do
not know p. Here we observe it because we constructed the simulation. What is the average
size of the error if we define the size by taking the absolute value | X̄ − p | ?

5. The standard error is related to the typical size of the error we make when predicting. We
say size because we just saw that the errors are centered around 0, so thus the average error
value is 0. For mathematical reasons related to the Central Limit Theorem, we actually use
the standard deviation of errors rather than the average of the absolute values to quantify
the typical size. What is this standard deviation of the errors?

6. The theory we just learned tells us what this standard deviation is going to be because it
is the standard error of X̄. What does theory tell us is the standard error of X̄ for a sample
size of 100?

7. In practice, we don’t know p, so we construct an estimate of the theoretical prediction
based by plugging in X̄ for p. Compute this estimate. Set the seed at 1 with set.seed(1).

8. Note how close the standard error estimates obtained from the Monte Carlo simula-
tion (exercise 5), the theoretical prediction (exercise 6), and the estimate of the theoretical
prediction (exercise 7) are. The theory is working and it gives us a practical approach to
knowing the typical error we will make if we predict p with X̄. Another advantage that the
theoretical result provides is that it gives an idea of how large a sample size is required to
obtain the precision we need. Earlier we learned that the largest standard errors occur for
p = 0.5. Create a plot of the largest standard error for N ranging from 100 to 5,000. Based
on this plot, how large does the sample size have to be to have a standard error of about
1%?

a. 100
b. 500
c. 2,500
d. 4,000

9. For sample size N = 100, the central limit theorem tells us that the distribution of X̄ is:

a. practically equal to p.
b. approximately normal with expected value p and standard error

√
p(1 − p)/N .

c. approximately normal with expected value X̄ and standard error
√

X̄(1 − X̄)/N .
d. not a random variable.

10. Based on the answer from exercise 8, the error X̄ − p is:

a. practically equal to 0.
b. approximately normal with expected value 0 and standard error

√
p(1 − p)/N .

c. approximately normal with expected value p and standard error
√

p(1 − p)/N .
d. not a random variable.

11. To corroborate your answer to exercise 9, make a qq-plot of the errors you generated
in exercise 2 to see if they follow a normal distribution.

12. If p = 0.45 and N = 100 as in exercise 2, use the CLT to estimate the probability that
X̄ > 0.5. You can assume you know p = 0.45 for this calculation.

www.dbooks.org

https://www.dbooks.org/

302 15 Statistical inference

13. Assume you are in a practical situation and you don’t know p. Take a sample of size
N = 100 and obtain a sample average of X̄ = 0.51. What is the CLT approximation for the
probability that your error is equal to or larger than 0.01?

15.6 Confidence intervals

Confidence intervals are a very useful concept widely employed by data analysts. A version
of these that are commonly seen come from the ggplot geometry geom_smooth. Here is an
example using a temperature dataset available in R:

49

51

53

1910 1920 1930 1940 1950 1960 1970
year

te
m

pe
ra

tu
re

Average Yearly Temperatures in New Haven

In the Machine Learning part we will learn how the curve is formed, but for now consider
the shaded area around the curve. This is created using the concept of confidence intervals.

In our earlier competition, you were asked to give an interval. If the interval you submitted
includes the p, you get half the money you spent on your “poll” back and pass to the
next stage of the competition. One way to pass to the second round is to report a very
large interval. For example, the interval [0, 1] is guaranteed to include p. However, with an
interval this big, we have no chance of winning the competition. Similarly, if you are an
election forecaster and predict the spread will be between -100% and 100%, you will be
ridiculed for stating the obvious. Even a smaller interval, such as saying the spread will be
between -10 and 10%, will not be considered serious.

On the other hand, the smaller the interval we report, the smaller our chances are of winning
the prize. Likewise, a bold pollster that reports very small intervals and misses the mark
most of the time will not be considered a good pollster. We want to be somewhere in between.

We can use the statistical theory we have learned to compute the probability of any given
interval including p. If we are asked to create an interval with, say, a 95% chance of including
p, we can do that as well. These are called 95% confidence intervals.

When a pollster reports an estimate and a margin of error, they are, in a way, reporting a
95% confidence interval. Let’s show how this works mathematically.

We want to know the probability that the interval [X̄ − 2ŜE(X̄), X̄ − 2ŜE(X̄)] contains

15.6 Confidence intervals 303

the true proportion p. First, consider that the start and end of these intervals are random
variables: every time we take a sample, they change. To illustrate this, run the Monte Carlo
simulation above twice. We use the same parameters as above:

p <- 0.45
N <- 1000

And notice that the interval here:

x <- sample(c(0, 1), size = N, replace = TRUE, prob = c(1-p, p))
x_hat <- mean(x)
se_hat <- sqrt(x_hat * (1 - x_hat) / N)
c(x_hat - 1.96 * se_hat, x_hat + 1.96 * se_hat)
#> [1] 0.418 0.480

is different from this one:

x <- sample(c(0,1), size=N, replace=TRUE, prob=c(1-p, p))
x_hat <- mean(x)
se_hat <- sqrt(x_hat * (1 - x_hat) / N)
c(x_hat - 1.96 * se_hat, x_hat + 1.96 * se_hat)
#> [1] 0.422 0.484

Keep sampling and creating intervals and you will see the random variation.

To determine the probability that the interval includes p, we need to compute this:

Pr
(

X̄ − 1.96ŜE(X̄) ≤ p ≤ X̄ + 1.96ŜE(X̄)
)

By subtracting and dividing the same quantities in all parts of the equation, we get that
the above is equivalent to:

Pr
(

−1.96 ≤ X̄ − p

ŜE(X̄)
≤ 1.96

)

The term in the middle is an approximately normal random variable with expected value 0
and standard error 1, which we have been denoting with Z, so we have:

Pr (−1.96 ≤ Z ≤ 1.96)

which we can quickly compute using :

pnorm(1.96) - pnorm(-1.96)
#> [1] 0.95

proving that we have a 95% probability.

If we want to have a larger probability, say 99%, we need to multiply by whatever z satisfies
the following:

www.dbooks.org

https://www.dbooks.org/

304 15 Statistical inference

Pr (−z ≤ Z ≤ z) = 0.99

Using:

z <- qnorm(0.995)
z
#> [1] 2.58

will achieve this because by definition pnorm(qnorm(0.995)) is 0.995 and by symmetry
pnorm(1-qnorm(0.995)) is 1 - 0.995. As a consequence, we have that:

pnorm(z) - pnorm(-z)
#> [1] 0.99

is 0.995 - 0.005 = 0.99. We can use this approach for any proportion p: we set z =
qnorm(1 - (1 - p)/2) because 1 − (1 − p)/2 + (1 − p)/2 = p.

So, for example, for p = 0.95, 1 − (1 − p)/2 = 0.975 and we get the 1.96 we have been using:

qnorm(0.975)
#> [1] 1.96

15.6.1 A Monte Carlo simulation

We can run a Monte Carlo simulation to confirm that, in fact, a 95% confidence interval
includes p 95% of the time.

N <- 1000
B <- 10000
inside <- replicate(B, {
x <- sample(c(0,1), size = N, replace = TRUE, prob = c(1-p, p))
x_hat <- mean(x)
se_hat <- sqrt(x_hat * (1 - x_hat) / N)
between(p, x_hat - 1.96 * se_hat, x_hat + 1.96 * se_hat)

})
mean(inside)
#> [1] 0.948

The following plot shows the first 100 confidence intervals. In this case, we created the
simulation so the black line denotes the parameter we are trying to estimate:

15.7 Exercises 305

0

25

50

75

100

0.40 0.44 0.48 0.52
estimate

po
ll

p_inside

No

Yes

15.6.2 The correct language

When using the theory we described above, it is important to remember that it is the
intervals that are random, not p. In the plot above, we can see the random intervals moving
around and p, represented with the vertical line, staying in the same place. The proportion
of blue in the urn p is not. So the 95% relates to the probability that this random interval
falls on top of p. Saying the p has a 95% chance of being between this and that is technically
an incorrect statement because p is not random.

15.7 Exercises

For these exercises, we will use actual polls from the 2016 election. You can load the data
from the dslabs package.

library(dslabs)
data("polls_us_election_2016")

Specifically, we will use all the national polls that ended within one week before the election.

library(tidyverse)
polls <- polls_us_election_2016 %>%
filter(enddate >= "2016-10-31" & state == "U.S.")

www.dbooks.org

https://www.dbooks.org/

306 15 Statistical inference

1. For the first poll, you can obtain the samples size and estimated Clinton percentage with:

N <- polls$samplesize[1]
x_hat <- polls$rawpoll_clinton[1]/100

Assume there are only two candidates and construct a 95% confidence interval for the
election night proportion p.

2. Now use dplyr to add a confidence interval as two columns, call them lower and upper,
to the object poll. Then use select to show the pollster, enddate, x_hat,lower, upper
variables. Hint: define temporary columns x_hat and se_hat.

3. The final tally for the popular vote was Clinton 48.2% and Trump 46.1%. Add a column,
call it hit, to the previous table stating if the confidence interval included the true proportion
p = 0.482 or not.

4. For the table you just created, what proportion of confidence intervals included p?

5. If these confidence intervals are constructed correctly, and the theory holds up, what
proportion should include p?

6. A much smaller proportion of the polls than expected produce confidence intervals con-
taining p. If you look closely at the table, you will see that most polls that fail to include
p are underestimating. The reason for this is undecided voters, individuals polled that do
not yet know who they will vote for or do not want to say. Because, historically, undecideds
divide evenly between the two main candidates on election day, it is more informative to
estimate the spread or the difference between the proportion of two candidates d, which in
this election was 0.482 − 0.461 = 0.021. Assume that there are only two parties and that
d = 2p − 1, redefine polls as below and re-do exercise 1, but for the difference.

polls <- polls_us_election_2016 %>%
filter(enddate >= "2016-10-31" & state == "U.S.") %>%
mutate(d_hat = rawpoll_clinton / 100 - rawpoll_trump / 100)

7. Now repeat exercise 3, but for the difference.

8. Now repeat exercise 4, but for the difference.

9. Although the proportion of confidence intervals goes up substantially, it is still lower than
0.95. In the next chapter, we learn the reason for this. To motivate this, make a plot of
the error, the difference between each poll’s estimate and the actual d = 0.021. Stratify by
pollster.

10. Redo the plot that you made for exercise 9, but only for pollsters that took five or more
polls.

15.8 Power

Pollsters are not successful at providing correct confidence intervals, but rather at predicting
who will win. When we took a 25 bead sample size, the confidence interval for the spread:

15.9 p-values 307

N <- 25
x_hat <- 0.48
(2 * x_hat - 1) + c(-1.96, 1.96) * 2 * sqrt(x_hat * (1 - x_hat) / N)
#> [1] -0.432 0.352

includes 0. If this were a poll and we were forced to make a declaration, we would have to
say it was a “toss-up”.
A problem with our poll results is that given the sample size and the value of p, we would
have to sacrifice on the probability of an incorrect call to create an interval that does not
include 0.
This does not mean that the election is close. It only means that we have a small sample
size. In statistical textbooks this is called lack of power. In the context of polls, power is the
probability of detecting spreads different from 0.
By increasing our sample size, we lower our standard error and therefore have a much better
chance of detecting the direction of the spread.

15.9 p-values

p-values are ubiquitous in the scientific literature. They are related to confidence intervals
so we introduce the concept here.
Let’s consider the blue and red beads. Suppose that rather than wanting an estimate of the
spread or the proportion of blue, I am interested only in the question: are there more blue
beads or red beads? I want to know if the spread 2p − 1 > 0.
Say we take a random sample of N = 100 and we observe 52 blue beads, which gives us
2X̄ − 1 = 0.04. This seems to be pointing to the existence of more blue than red beads since
0.04 is larger than 0. However, as data scientists we need to be skeptical. We know there
is chance involved in this process and we could get a 52 even when the actual spread is 0.
We call the assumption that the spread is 2p − 1 = 0 a null hypothesis. The null hypothesis
is the skeptic’s hypothesis. We have observed a random variable 2 ∗ X̄ − 1 = 0.04 and the
p-value is the answer to the question: how likely is it to see a value this large, when the null
hypothesis is true? So we write:

Pr(| X̄ − 0.5 |> 0.02)

assuming the 2p − 1 = 0 or p = 0.5. Under the null hypothesis we know that:

√
N

X̄ − 0.5√
0.5(1 − 0.5)

is standard normal. We therefore can compute the probability above, which is the p-value.

Pr
(

√
N

| X̄ − 0.5 |√
0.5(1 − 0.5)

>
√

N
0.02√

0.5(1 − 0.5)

)

www.dbooks.org

https://www.dbooks.org/

308 15 Statistical inference

N <- 100
z <- sqrt(N)*0.02/0.5
1 - (pnorm(z) - pnorm(-z))
#> [1] 0.689

In this case, there is actually a large chance of seeing 52 or larger under the null hypothesis.

Keep in mind that there is a close connection between p-values and confidence intervals. If
a 95% confidence interval of the spread does not include 0, we know that the p-value must
be smaller than 0.05.

To learn more about p-values, you can consult any statistics textbook. However, in general,
we prefer reporting confidence intervals over p-values since it gives us an idea of the size of
the estimate. If we just report the p-value we provide no information about the significance
of the finding in the context of the problem.

15.10 Association tests

The statistical tests we have studied up to now leave out a substantial portion of data types.
Specifically, we have not discussed inference for binary, categorical, and ordinal data. To give
a very specific example, consider the following case study.

A 2014 PNAS paper3 analyzed success rates from funding agencies in the Netherlands and
concluded that their:

results reveal gender bias favoring male applicants over female applicants in the priori-
tization of their “quality of researcher” (but not “quality of proposal”) evaluations and
success rates, as well as in the language use in instructional and evaluation materials.

The main evidence for this conclusion comes down to a comparison of the percentages. Table
S1 in the paper includes the information we need. Here are the three columns showing the
overall outcomes:

library(tidyverse)
library(dslabs)
data("research_funding_rates")
research_funding_rates %>% select(discipline, applications_total,

success_rates_total) %>% head()
#> discipline applications_total success_rates_total
#> 1 Chemical sciences 122 26.2
#> 2 Physical sciences 174 20.1
#> 3 Physics 76 26.3
#> 4 Humanities 396 16.4
#> 5 Technical sciences 251 17.1
#> 6 Interdisciplinary 183 15.8

3http://www.pnas.org/content/112/40/12349.abstract

http://www.pnas.org/content/112/40/12349.abstract

15.10 Association tests 309

We have these values for each gender:

names(research_funding_rates)
#> [1] "discipline" "applications_total" "applications_men"
#> [4] "applications_women" "awards_total" "awards_men"
#> [7] "awards_women" "success_rates_total" "success_rates_men"
#> [10] "success_rates_women"

We can compute the totals that were successful and the totals that were not as follows:

totals <- research_funding_rates %>%
select(-discipline) %>%
summarize_all(sum) %>%
summarize(yes_men = awards_men,

no_men = applications_men - awards_men,
yes_women = awards_women,
no_women = applications_women - awards_women)

So we see that a larger percent of men than women received awards:

totals %>% summarize(percent_men = yes_men/(yes_men+no_men),
percent_women = yes_women/(yes_women+no_women))

#> percent_men percent_women
#> 1 0.177 0.149

But could this be due just to random variability? Here we learn how to perform inference
for this type of data.

15.10.1 Lady Tasting Tea

R.A. Fisher4 was one of the first to formalize hypothesis testing. The “Lady Tasting Tea”
is one of the most famous examples.

The story is as follows: an acquaintance of Fisher’s claimed that she could tell if milk was
added before or after tea was poured. Fisher was skeptical. He designed an experiment to
test this claim. He gave her four pairs of cups of tea: one with milk poured first, the other
after. The order was randomized. The null hypothesis here is that she is guessing. Fisher
derived the distribution for the number of correct picks on the assumption that the choices
were random and independent.

As an example, suppose she picked 3 out of 4 correctly. Do we believe she has a special
ability? The basic question we ask is: if the tester is actually guessing, what are the chances
that she gets 3 or more correct? Just as we have done before, we can compute a probability
under the null hypothesis that she is guessing 4 of each. Under this null hypothesis, we can
think of this particular example as picking 4 balls out of an urn with 4 blue (correct answer)
and 4 red (incorrect answer) balls. Remember, she knows that there are four before tea and
four after.

Under the null hypothesis that she is simply guessing, each ball has the same chance of

4https://en.wikipedia.org/wiki/Ronald_Fisher

www.dbooks.org

https://en.wikipedia.org/wiki/Ronald_Fisher
https://www.dbooks.org/

310 15 Statistical inference

being picked. We can then use combinations to figure out each probability. The probability of
picking 3 is

(4
3
)(4

1
)
/
(8

4
)

= 16/70. The probability of picking all 4 correct is
(4

4
)(4

0
)
/
(8

4
)

= 1/70.
Thus, the chance of observing a 3 or something more extreme, under the null hypothesis,
is ≈ 0.24. This is the p-value. The procedure that produced this p-value is called Fisher’s
exact test and it uses the hypergeometric distribution.

15.10.2 Two-by-two tables

The data from the experiment is usually summarized by a table like this:

tab <- matrix(c(3,1,1,3),2,2)
rownames(tab)<-c("Poured Before","Poured After")
colnames(tab)<-c("Guessed before","Guessed after")
tab
#> Guessed before Guessed after
#> Poured Before 3 1
#> Poured After 1 3

These are referred to as a two-by-two table. For each of the four combinations one can get
with a pair of binary variables, they show the observed counts for each occurrence.

The function fisher.test performs the inference calculations above:

fisher.test(tab, alternative="greater")$p.value
#> [1] 0.243

15.10.3 Chi-square Test

Notice that, in a way, our funding rates example is similar to the Lady Tasting Tea. However,
in the Lady Tasting Tea example, the number of blue and red beads is experimentally fixed
and the number of answers given for each category is also fixed. This is because Fisher made
sure there were four cups with milk poured before tea and four cups with milk poured after
and the lady knew this, so the answers would also have to include four befores and four
afters. If this is the case, the sum of the rows and the sum of the columns are fixed. This
defines constraints on the possible ways we can fill the two by two table and also permits us
to use the hypergeometric distribution. In general, this is not the case. Nonetheless, there
is another approach, the Chi-squared test, which is described below.

Imagine we have 290, 1,345, 177, 1,011 applicants, some are men and some are women and
some get funded, whereas others don’t. We saw that the success rates for men and woman
were:

totals %>% summarize(percent_men = yes_men/(yes_men+no_men),
percent_women = yes_women/(yes_women+no_women))

#> percent_men percent_women
#> 1 0.177 0.149

respectively. Would we see this again if we randomly assign funding at the overall rate:

15.10 Association tests 311

rate <- totals %>%
summarize(percent_total =

(yes_men + yes_women)/
(yes_men + no_men +yes_women + no_women)) %>%

pull(percent_total)
rate
#> [1] 0.165

The Chi-square test answers this question. The first step is to create the two-by-two data
table:

two_by_two <- data.frame(awarded = c("no", "yes"),
men = c(totals$no_men, totals$yes_men),
women = c(totals$no_women, totals$yes_women))

two_by_two
#> awarded men women
#> 1 no 1345 1011
#> 2 yes 290 177

The general idea of the Chi-square test is to compare this two-by-two table to what you
expect to see, which would be:

data.frame(awarded = c("no", "yes"),
men = (totals$no_men + totals$yes_men) * c(1 - rate, rate),
women = (totals$no_women + totals$yes_women) * c(1 - rate, rate))

#> awarded men women
#> 1 no 1365 991
#> 2 yes 270 197

We can see that more men than expected and fewer women than expected received funding.
However, under the null hypothesis these observations are random variables. The Chi-square
test tells us how likely it is to see a deviation this large or larger. This test uses an asymptotic
result, similar to the CLT, related to the sums of independent binary outcomes. The R
function chisq.test takes a two-by-two table and returns the results from the test:

chisq_test <- two_by_two %>% select(-awarded) %>% chisq.test()

We see that the p-value is 0.0509:

chisq_test$p.value
#> [1] 0.0509

15.10.4 The odds ratio

An informative summary statistic associated with two-by-two tables is the odds ratio. Define
the two variables as X = 1 if you are a male and 0 otherwise, and Y = 1 if you are funded
and 0 otherwise. The odds of getting funded if you are a man is defined:

www.dbooks.org

https://www.dbooks.org/

312 15 Statistical inference

Pr(Y = 1 | X = 1)/Pr(Y = 0 | X = 1)

and can be computed like this:

odds_men <- with(two_by_two, (men[2]/sum(men)) / (men[1]/sum(men)))
odds_men
#> [1] 0.216

And the odds of being funded if you are a woman is:

Pr(Y = 1 | X = 0)/Pr(Y = 0 | X = 0)

and can be computed like this:

odds_women <- with(two_by_two, (women[2]/sum(women)) / (women[1]/sum(women)))
odds_women
#> [1] 0.175

The odds ratio is the ratio for these two odds: how many times larger are the odds for men
than for women?

odds_men / odds_women
#> [1] 1.23

We often see two-by-two tables written out as

Men Women

Awarded a b
Not Awarded c d

In this case, the odds ratio is a/c
b/d which is equivalent to (ad)/(bc)

15.10.5 Confidence intervals for the odds ratio

Computing confidence intervals for the odds ratio is not mathematically straightforward.
Unlike other statistics, for which we can derive useful approximations of their distributions,
the odds ratio is not only a ratio, but a ratio of ratios. Therefore, there is no simple way of
using, for example, the CLT.

However, statistical theory tells us that when all four entries of the two-by-two table are
large enough, then the log of the odds ratio is approximately normal with standard error

√
1/a + 1/b + 1/c + 1/d

This implies that a 95% confidence interval for the log odds ratio can be formed by:

15.10 Association tests 313

log
(

ad

bc

)
± 1.96

√
1/a + 1/b + 1/c + 1/d

By exponentiating these two numbers we can construct a confidence interval of the odds
ratio.

Using R we can compute this confidence interval as follows:

log_or <- log(odds_men / odds_women)
se <- two_by_two %>% select(-awarded) %>%
summarize(se = sqrt(sum(1/men) + sum(1/women))) %>%
pull(se)

ci <- log_or + c(-1,1) * qnorm(0.975) * se

If we want to convert it back to the odds ratio scale, we can exponentiate:

exp(ci)
#> [1] 1.00 1.51

Note that 1 is not included in the confidence interval which must mean that the p-value is
smaller than 0.05. We can confirm this using:

2*(1 - pnorm(log_or, 0, se))
#> [1] 0.0454

This is a slightly different p-value than that with the Chi-square test. This is because we are
using a different asymptotic approximation to the null distribution. To learn more about
inference and asymptotic theory for odds ratio, consult the Generalized Linear Models book
by McCullagh and Nelder.

15.10.6 Small count correction

Note that the log odds ratio is not defined if any of the cells of the two-by-two table is
0. This is because if a, b, c, or d is 0, the log(ad

bc) is either the log of 0 or has a 0 in the
denominator. For this situation, it is common practice to avoid 0s by adding 0.5 to each
cell. This is referred to as the Haldane–Anscombe correction and has been shown, both in
practice and theory, to work well.

15.10.7 Large samples, small p-values

As mentioned earlier, reporting only p-values is not an appropriate way to report the results
of data analysis. In scientific journals, for example, some studies seem to overemphasize p-
values. Some of these studies have large sample sizes and report impressively small p-values.
Yet when one looks closely at the results, we realize odds ratios are quite modest: barely
bigger than 1. In this case the difference may not be practically significant or scientifically
significant.

Note that the relationship between odds ratio and p-value is not one-to-one. It depends on

www.dbooks.org

https://www.dbooks.org/

314 15 Statistical inference

the sample size. So a very small p-value does not necessarily mean a very large odds ratio.
Notice what happens to the p-value if we multiply our two-by-two table by 10, which does
not change the odds ratio:

two_by_two %>% select(-awarded) %>%
mutate(men = men*10, women = women*10) %>%
chisq.test() %>% .$p.value

#> [1] 2.63e-10

15.11 Exercises

1. A famous athlete has an impressive career, winning 70% of her 500 career matches.
However, this athlete gets criticized because in important events, such as the Olympics, she
has a losing record of 8 wins and 9 losses. Perform a Chi-square test to determine if this
losing record can be simply due to chance as opposed to not performing well under pressure.

2. Why did we use the Chi-square test instead of Fisher’s exact test in the previous exercise?

a. It actually does not matter, since they give the exact same p-value.
b. Fisher’s exact and the Chi-square are different names for the same test.
c. Because the sum of the rows and columns of the two-by-two table are not fixed so

the hypergeometric distribution is not an appropriate assumption for the null hy-
pothesis. For this reason, Fisher’s exact test is rarely applicable with observational
data.

d. Because the Chi-square test runs faster.

3. Compute the odds ratio of “losing under pressure” along with a confidence interval.

4. Notice that the p-value is larger than 0.05 but the 95% confidence interval does not
include 1. What explains this?

a. We made a mistake in our code.
b. These are not t-tests so the connection between p-value and confidence intervals

does not apply.
c. Different approximations are used for the p-value and the confidence interval

calculation. If we had a larger sample size the match would be better.
d. We should use the Fisher exact test to get confidence intervals.

5. Multiply the two-by-two table by 2 and see if the p-value and confidence retrieval are a
better match.

16
Statistical models

“All models are wrong, but some are useful.” –George E. P. Box

The day before the 2008 presidential election, Nate Silver’s FiveThirtyEight stated that
“Barack Obama appears poised for a decisive electoral victory”. They went further and
predicted that Obama would win the election with 349 electoral votes to 189, and the
popular vote by a margin of 6.1%. FiveThirtyEight also attached a probabilistic statement
to their prediction claiming that Obama had a 91% chance of winning the election. The
predictions were quite accurate since, in the final results, Obama won the electoral college
365 to 173 and the popular vote by a 7.2% difference. Their performance in the 2008 election
brought FiveThirtyEight to the attention of political pundits and TV personalities. Four
years later, the week before the 2012 presidential election, FiveThirtyEight’s Nate Silver
was giving Obama a 90% chance of winning despite many of the experts thinking the final
results would be closer. Political commentator Joe Scarborough said during his show1:

Anybody that thinks that this race is anything but a toss-up right now is such
an ideologue … they’re jokes.

To which Nate Silver responded via Twitter:

If you think it’s a toss-up, let’s bet. If Obama wins, you donate $1,000 to the
American Red Cross. If Romney wins, I do. Deal?

In 2016, Silver was not as certain and gave Hillary Clinton only a 71% of winning. In
contrast, most other forecasters were almost certain she would win. She lost. But 71% is
still more than 50%, so was Mr. Silver wrong? And what does probability mean in this
context anyway? Are dice being tossed somewhere?

In this chapter we will demonstrate how poll aggregators, such as FiveThirtyEight, collected
and combined data reported by different experts to produce improved predictions. We will
introduce ideas behind the statistical models, also known as probability models, that were
used by poll aggregators to improve election forecasts beyond the power of individual polls.
In this chapter, we motivate the models, building on the statistical inference concepts we
learned in Chapter 15. We start with relatively simple models, realizing that the actual data
science exercise of forecasting elections involves rather complex ones, which we introduce
towards the end of the chapter in Section 16.8.

1https://www.youtube.com/watch?v=TbKkjm-gheY

315

www.dbooks.org

https://www.youtube.com/watch?v=TbKkjm-gheY
https://www.dbooks.org/

316 16 Statistical models

16.1 Poll aggregators

As we described earlier, a few weeks before the 2012 election Nate Silver was giving Obama
a 90% chance of winning. How was Mr. Silver so confident? We will use a Monte Carlo
simulation to illustrate the insight Mr. Silver had and others missed. To do this, we generate
results for 12 polls taken the week before the election. We mimic sample sizes from actual
polls and construct and report 95% confidence intervals for each of the 12 polls. We save
the results from this simulation in a data frame and add a poll ID column.

library(tidyverse)
library(dslabs)
d <- 0.039
Ns <- c(1298, 533, 1342, 897, 774, 254, 812, 324, 1291, 1056, 2172, 516)
p <- (d + 1) / 2

polls <- map_df(Ns, function(N) {
x <- sample(c(0,1), size=N, replace=TRUE, prob=c(1-p, p))
x_hat <- mean(x)
se_hat <- sqrt(x_hat * (1 - x_hat) / N)
list(estimate = 2 * x_hat - 1,
low = 2*(x_hat - 1.96*se_hat) - 1,
high = 2*(x_hat + 1.96*se_hat) - 1,
sample_size = N)

}) %>% mutate(poll = seq_along(Ns))

Here is a visualization showing the intervals the pollsters would have reported for the dif-
ference between Obama and Romney:

1

5

−0.1 0.0 0.1
estimate

po
ll

Not surprisingly, all 12 polls report confidence intervals that include the election night result
(dashed line). However, all 12 polls also include 0 (solid black line) as well. Therefore, if
asked individually for a prediction, the pollsters would have to say: it’s a toss-up. Below we
describe a key insight they are missing.

16.1 Poll aggregators 317

Poll aggregators, such as Nate Silver, realized that by combining the results of different polls
you could greatly improve precision. By doing this, we are effectively conducting a poll with
a huge sample size. We can therefore report a smaller 95% confidence interval and a more
precise prediction.

Although as aggregators we do not have access to the raw poll data, we can use mathematics
to reconstruct what we would have obtained had we made one large poll with:

sum(polls$sample_size)
#> [1] 11269

participants. Basically, we construct an estimate of the spread, let’s call it d, with a weighted
average in the following way:

d_hat <- polls %>%
summarize(avg = sum(estimate*sample_size) / sum(sample_size)) %>%
pull(avg)

Once we have an estimate of d, we can construct an estimate for the proportion voting for
Obama, which we can then use to estimate the standard error. Once we do this, we see that
our margin of error is 0.018.

Thus, we can predict that the spread will be 3.1 plus or minus 1.8, which not only includes
the actual result we eventually observed on election night, but is quite far from including 0.
Once we combine the 12 polls, we become quite certain that Obama will win the popular
vote.

1

10

11

12

2

3

4

5

6

7

8

9

Avg

−0.1 0.0 0.1
estimate

po
ll

Of course, this was just a simulation to illustrate the idea. The actual data science exercise of
forecasting elections is much more complicated and it involves modeling. Below we explain
how pollsters fit multilevel models to the data and use this to forecast election results. In the
2008 and 2012 US presidential elections, Nate Silver used this approach to make an almost
perfect prediction and silence the pundits.

Since the 2008 elections, other organizations have started their own election forecasting
group that, like Nate Silver’s, aggregates polling data and uses statistical models to make
predictions. In 2016, forecasters underestimated Trump’s chances of winning greatly. The

www.dbooks.org

https://www.dbooks.org/

318 16 Statistical models

day before the election the New York Times reported2 the following probabilities for Hillary
Clinton winning the presidency:

NYT 538 HuffPost PW PEC DK Cook Roth

Win Prob 85% 71% 98% 89% >99% 92% Lean Dem Lean Dem

For example, the Princeton Election Consortium (PEC) gave Trump less than 1% chance of
winning, while the Huffington Post gave him a 2% chance. In contrast, FiveThirtyEight had
Trump’s probability of winning at 29%, higher than tossing two coins and getting two heads.
In fact, four days before the election FiveThirtyEight published an article titled Trump Is
Just A Normal Polling Error Behind Clinton3. By understanding statistical models and how
these forecasters use them, we will start to understand how this happened.

Although not nearly as interesting as predicting the electoral college, for illustrative purposes
we will start by looking at predictions for the popular vote. FiveThirtyEight predicted a
3.6% advantage for Clinton4, included the actual result of 2.1% (48.2% to 46.1%) in their
interval, and was much more confident about Clinton winning the election, giving her an
81.4% chance. Their prediction was summarized with a chart like this:

48.5%

44.9%

5.0%

Clinton

Trump

Johnson

0% 25% 50% 75%

The colored areas represent values with an 80% chance of including the actual result, ac-
cording to the FiveThirtyEight model.

We introduce actual data from the 2016 US presidential election to show how models are mo-
tivated and built to produce these predictions. To understand the “81.4% chance” statement
we need to describe Bayesian statistics, which we do in Sections 16.4 and 16.8.1.

16.1.1 Poll data

We use public polling data organized by FiveThirtyEight for the 2016 presidential election.
The data is included as part of the dslabs package:

data(polls_us_election_2016)

The table includes results for national polls, as well as state polls, taken during the year
prior to the election. For this first example, we will filter the data to include national polls

2https://www.nytimes.com/interactive/2016/upshot/presidential-polls-forecast.html
3https://fivethirtyeight.com/features/trump-is-just-a-normal-polling-error-behind-clinton/
4https://projects.fivethirtyeight.com/2016-election-forecast/

https://www.nytimes.com/interactive/2016/upshot/presidential-polls-forecast.html
https://fivethirtyeight.com/features/trump-is-just-a-normal-polling-error-behind-clinton/
https://projects.fivethirtyeight.com/2016-election-forecast/

16.1 Poll aggregators 319

conducted during the week before the election. We also remove polls that FiveThirtyEight
has determined not to be reliable and graded with a “B” or less. Some polls have not been
graded and we include those:

polls <- polls_us_election_2016 %>%
filter(state == "U.S." & enddate >= "2016-10-31" &

(grade %in% c("A+","A","A-","B+") | is.na(grade)))

We add a spread estimate:

polls <- polls %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

For this example, we will assume that there are only two parties and call p the proportion
voting for Clinton and 1 − p the proportion voting for Trump. We are interested in the
spread 2p − 1. Let’s call the spread d (for difference).

We have 49 estimates of the spread. The theory we learned tells us that these estimates are a
random variable with a probability distribution that is approximately normal. The expected
value is the election night spread d and the standard error is 2

√
p(1 − p)/N . Assuming the

urn model we described earlier is a good one, we can use this information to construct a
confidence interval based on the aggregated data. The estimated spread is:

d_hat <- polls %>%
summarize(d_hat = sum(spread * samplesize) / sum(samplesize)) %>%
pull(d_hat)

and the standard error is:

p_hat <- (d_hat+1)/2
moe <- 1.96 * 2 * sqrt(p_hat * (1 - p_hat) / sum(polls$samplesize))
moe
#> [1] 0.00662

So we report a spread of 1.43% with a margin of error of 0.66%. On election night, we
discover that the actual percentage was 2.1%, which is outside a 95% confidence interval.
What happened?

A histogram of the reported spreads shows a problem:

polls %>%
ggplot(aes(spread)) +
geom_histogram(color="black", binwidth = .01)

www.dbooks.org

https://www.dbooks.org/

320 16 Statistical models

0.0

2.5

5.0

7.5

−0.04 0.00 0.04 0.08
spread

co
un

t

The data does not appear to be normally distributed and the standard error appears to be
larger than 0.007. The theory is not quite working here.

16.1.2 Pollster bias

Notice that various pollsters are involved and some are taking several polls a week:

polls %>% group_by(pollster) %>% summarize(n())
#> # A tibble: 15 x 2
#> pollster `n()`
#> <fct> <int>
#> 1 ABC News/Washington Post 7
#> 2 Angus Reid Global 1
#> 3 CBS News/New York Times 2
#> 4 Fox News/Anderson Robbins Research/Shaw & Company Research 2
#> 5 IBD/TIPP 8
#> # ... with 10 more rows

Let’s visualize the data for the pollsters that are regularly polling:

ABC News/Washington Post

IBD/TIPP

Ipsos

The Times−Picayune/Lucid

USC Dornsife/LA Times

−0.05 0.00 0.05
spread

po
lls

te
r

16.2 Data-driven models 321

This plot reveals an unexpected result. First, consider that the standard error predicted by
theory for each poll:

polls %>% group_by(pollster) %>%
filter(n() >= 6) %>%
summarize(se = 2 * sqrt(p_hat * (1-p_hat) / median(samplesize)))

#> # A tibble: 5 x 2
#> pollster se
#> <fct> <dbl>
#> 1 ABC News/Washington Post 0.0265
#> 2 IBD/TIPP 0.0333
#> 3 Ipsos 0.0225
#> 4 The Times-Picayune/Lucid 0.0196
#> 5 USC Dornsife/LA Times 0.0183

is between 0.018 and 0.033, which agrees with the within poll variation we see. However,
there appears to be differences across the polls. Note, for example, how the USC Dornsife/LA
Times pollster is predicting a 4% win for Trump, while Ipsos is predicting a win larger than
5% for Clinton. The theory we learned says nothing about different pollsters producing
polls with different expected values. All the polls should have the same expected value.
FiveThirtyEight refers to these differences as “house effects”. We also call them pollster
bias.

In the following section, rather than use the urn model theory, we are instead going to
develop a data-driven model.

16.2 Data-driven models

For each pollster, let’s collect their last reported result before the election:

one_poll_per_pollster <- polls %>% group_by(pollster) %>%
filter(enddate == max(enddate)) %>%
ungroup()

Here is a histogram of the data for these 15 pollsters:

qplot(spread, data = one_poll_per_pollster, binwidth = 0.01)

www.dbooks.org

https://www.dbooks.org/

322 16 Statistical models

0

2

4

6

−0.04 −0.02 0.00 0.02 0.04 0.06
spread

In the previous section, we saw that using the urn model theory to combine these results
might not be appropriate due to the pollster effect. Instead, we will model this spread data
directly.
The new model can also be thought of as an urn model, although the connection is not as
direct. Rather than 0s (Republicans) and 1s (Democrats), our urn now contains poll results
from all possible pollsters. We assume that the expected value of our urn is the actual spread
d = 2p − 1.
Because instead of 0s and 1s, our urn contains continuous numbers between -1 and 1, the
standard deviation of the urn is no longer

√
p(1 − p). Rather than voter sampling variability,

the standard error now includes the pollster-to-pollster variability. Our new urn also includes
the sampling variability from the polling. Regardless, this standard deviation is now an
unknown parameter. In statistics textbooks, the Greek symbol σ is used to represent this
parameter.
In summary, we have two unknown parameters: the expected value d and the standard
deviation σ.
Our task is to estimate d. Because we model the observed values X1, . . . XN as a random
sample from the urn, the CLT might still work in this situation because it is an average of
independent random variables. For a large enough sample size N , the probability distribution
of the sample average X̄ is approximately normal with expected value µ and standard error
σ/

√
N . If we are willing to consider N = 15 large enough, we can use this to construct

confidence intervals.
A problem is that we don’t know σ. But theory tells us that we can estimate the urn model
σ with the sample standard deviation defined as s =

√∑N
i=1(Xi − X̄)2/(N − 1).

Unlike for the population standard deviation definition, we now divide by N −1. This makes
s a better estimate of σ. There is a mathematical explanation for this, which is explained
in most statistics textbooks, but we don’t cover it here.
The sd function in R computes the sample standard deviation:

sd(one_poll_per_pollster$spread)
#> [1] 0.0242

We are now ready to form a new confidence interval based on our new data-driven model:

16.3 Exercises 323

results <- one_poll_per_pollster %>%
summarize(avg = mean(spread),

se = sd(spread) / sqrt(length(spread))) %>%
mutate(start = avg - 1.96 * se,

end = avg + 1.96 * se)
round(results * 100, 1)
#> avg se start end
#> 1 2.9 0.6 1.7 4.1

Our confidence interval is wider now since it incorporates the pollster variability. It does
include the election night result of 2.1%. Also, note that it was small enough not to include
0, which means we were confident Clinton would win the popular vote.

Are we now ready to declare a probability of Clinton winning the popular vote? Not yet. In
our model d is a fixed parameter so we can’t talk about probabilities. To provide probabili-
ties, we will need to learn about Bayesian statistics.

16.3 Exercises

We have been using urn models to motivate the use of probability models. Most data science
applications are not related to data obtained from urns. More common are data that come
from individuals. The reason probability plays a role here is because the data come from a
random sample. The random sample is taken from a population and the urn serves as an
analogy for the population.

Let’s revisit the heights dataset. Suppose we consider the males in our course the population.

library(dslabs)
data(heights)
x <- heights %>% filter(sex == "Male") %>%
pull(height)

1. Mathematically speaking, x is our population. Using the urn analogy, we have an urn
with the values of x in it. What are the average and standard deviation of our population?

2. Call the population average computed above µ and the standard deviation σ. Now take
a sample of size 50, with replacement, and construct an estimate for µ and σ.

3. What does the theory tell us about the sample average X̄ and how it is related to µ?

a. It is practically identical to µ.
b. It is a random variable with expected value µ and standard error σ/

√
N .

c. It is a random variable with expected value µ and standard error σ.
d. Contains no information.

4. So how is this useful? We are going to use an oversimplified yet illustrative example.
Suppose we want to know the average height of our male students, but we only get to
measure 50 of the 708. We will use X̄ as our estimate. We know from the answer to exercise

www.dbooks.org

https://www.dbooks.org/

324 16 Statistical models

3 that the standard estimate of our error X̄ − µ is σ/
√

N . We want to compute this, but
we don’t know σ. Based on what is described in this section, show your estimate of σ.

5. Now that we have an estimate of σ, let’s call our estimate s. Construct a 95% confidence
interval for µ.

6. Now run a Monte Carlo simulation in which you compute 10,000 confidence intervals as
you have just done. What proportion of these intervals include µ?

7. In this section, we talked about pollster bias. We used visualization to motivate the
presence of such bias. Here we will give it a more rigorous treatment. We will consider two
pollsters that conducted daily polls. We will look at national polls for the month before the
election.

data(polls_us_election_2016)
polls <- polls_us_election_2016 %>%
filter(pollster %in% c("Rasmussen Reports/Pulse Opinion Research",

"The Times-Picayune/Lucid") &
enddate >= "2016-10-15" &
state == "U.S.") %>%

mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

We want to answer the question: is there a poll bias? Make a plot showing the spreads for
each poll.

8. The data does seem to suggest there is a difference. However, these data are subject to
variability. Perhaps the differences we observe are due to chance.

The urn model theory says nothing about pollster effect. Under the urn model, both pollsters
have the same expected value: the election day difference, that we call d.

To answer the question “is there an urn model?”, we will model the observed data Yi,j in
the following way:

Yi,j = d + bi + εi,j

with i = 1, 2 indexing the two pollsters, bi the bias for pollster i and εij poll to poll chance
variability. We assume the ε are independent from each other, have expected value 0 and
standard deviation σi regardless of j.

Which of the following best represents our question?

a. Is εi,j = 0?
b. How close are the Yi,j to d?
c. Is b1 ̸= b2?
d. Are b1 = 0 and b2 = 0 ?

9. In the right side of this model only εi,j is a random variable. The other two are constants.
What is the expected value of Y1,j?

10. Suppose we define Ȳ1 as the average of poll results from the first poll, Y1,1, . . . , Y1,N1

with N1 the number of polls conducted by the first pollster:

16.3 Exercises 325

polls %>%
filter(pollster=="Rasmussen Reports/Pulse Opinion Research") %>%
summarize(N_1 = n())

What is the expected values Ȳ1?

11. What is the standard error of Ȳ1 ?

12. Suppose we define Ȳ2 as the average of poll results from the first poll, Y2,1, . . . , Y2,N2

with N2 the number of polls conducted by the first pollster. What is the expected value Ȳ2?

13. What is the standard error of Ȳ2 ?

14. Using what we learned by answering the questions above, what is the expected value of
Ȳ2 − Ȳ1?

15. Using what we learned by answering the questions above, what is the standard error of
Ȳ2 − Ȳ1?

16. The answer to the question above depends on σ1 and σ2, which we don’t know. We
learned that we can estimate these with the sample standard deviation. Write code that
computes these two estimates.

17. What does the CLT tell us about the distribution of Ȳ2 − Ȳ1?

a. Nothing because this is not the average of a sample.
b. Because the Yij are approximately normal, so are the averages.
c. Note that Ȳ2 and Ȳ1 are sample averages, so if we assume N2 and N1 are large

enough, each is approximately normal. The difference of normals is also normal.
d. The data are not 0 or 1, so CLT does not apply.

18. We have constructed a random variable that has expected value b2 − b1, the pollster
bias difference. If our model holds, then this random variable has an approximately normal
distribution and we know its standard error. The standard error depends on σ1 and σ2, but
we can plug the sample standard deviations we computed above. We started off by asking:
is b2 − b1 different from 0? Use all the information we have learned above to construct a
95% confidence interval for the difference b2 and b1.

19. The confidence interval tells us there is relatively strong pollster effect resulting in a
difference of about 5%. Random variability does not seem to explain it. We can compute a
p-value to relay the fact that chance does not explain it. What is the p-value?

20. The statistic formed by dividing our estimate of b2 − b1 by its estimated standard error:

Ȳ2 − Ȳ1√
s2

2/N2 + s2
1/N1

is called the t-statistic. Now notice that we have more than two pollsters. We can also test
for pollster effect using all pollsters, not just two. The idea is to compare the variability
across polls to variability within polls. We can actually construct statistics to test for effects
and approximate their distribution. The area of statistics that does this is called Analysis
of Variance or ANOVA. We do not cover it here, but ANOVA provides a very useful set of
tools to answer questions such as: is there a pollster effect?

For this exercise, create a new table:

www.dbooks.org

https://www.dbooks.org/

326 16 Statistical models

polls <- polls_us_election_2016 %>%
filter(enddate >= "2016-10-15" &

state == "U.S.") %>%
group_by(pollster) %>%
filter(n() >= 5) %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100) %>%
ungroup()

Compute the average and standard deviation for each pollster and examine the variability
across the averages and how it compares to the variability within the pollsters, summarized
by the standard deviation.

16.4 Bayesian statistics

What does it mean when an election forecaster tells us that a given candidate has a 90%
chance of winning? In the context of the urn model, this would be equivalent to stating that
the probability p > 0.5 is 90%. However, as we discussed earlier, in the urn model p is a fixed
parameter and it does not make sense to talk about probability. With Bayesian statistics,
we model p as random variable and thus a statement such as “90% chance of winning” is
consistent with the approach.

Forecasters also use models to describe variability at different levels. For example, sampling
variability, pollster to pollster variability, day to day variability, and election to election
variability. One of the most successful approaches used for this are hierarchical models,
which can be explained in the context of Bayesian statistics.

In this chapter we briefly describe Bayesian statistics. For an in-depth treatment of this
topic we recommend one of the following textbooks:

• Berger JO (1985). Statistical Decision Theory and Bayesian Analysis, 2nd edition.
Springer-Verlag.

• Lee PM (1989). Bayesian Statistics: An Introduction. Oxford.

16.4.1 Bayes theorem

We start by describing Bayes theorem. We do this using a hypothetical cystic fibrosis test
as an example. Suppose a test for cystic fibrosis has an accuracy of 99%. We will use the
following notation:

Prob(+ | D = 1) = 0.99, Prob(− | D = 0) = 0.99

with + meaning a positive test and D representing if you actually have the disease (1) or
not (0).

Suppose we select a random person and they test positive. What is the probability that

16.5 Bayes theorem simulation 327

they have the disease? We write this as Prob(D = 1 | +)? The cystic fibrosis rate is 1 in
3,900 which implies that Prob(D = 1) = 0.00025. To answer this question, we will use Bayes
theorem, which in general tells us that:

Pr(A | B) = Pr(B | A)Pr(A)
Pr(B)

This equation applied to our problem becomes:

Pr(D = 1 | +) = P (+ | D = 1) · P (D = 1)
Pr(+)

= Pr(+ | D = 1) · P (D = 1)
Pr(+ | D = 1) · P (D = 1) + Pr(+ | D = 0)Pr(D = 0)

Plugging in the numbers we get:

0.99 · 0.00025
0.99 · 0.00025 + 0.01 · (.99975)

= 0.02

This says that despite the test having 0.99 accuracy, the probability of having the disease
given a positive test is only 0.02. This may appear counter-intuitive to some, but the reason
this is the case is because we have to factor in the very rare probability that a person, chosen
at random, has the disease. To illustrate this, we run a Monte Carlo simulation.

16.5 Bayes theorem simulation

The following simulation is meant to help you visualize Bayes theorem. We start by randomly
selecting 100,000 people from a population in which the disease in question has a 1 in 4,000
prevalence.

prev <- 0.00025
N <- 100000
outcome <- sample(c("Disease","Healthy"), N, replace = TRUE,

prob = c(prev, 1 - prev))

Note that there are very few people with the disease:

N_D <- sum(outcome == "Disease")
N_D
#> [1] 23
N_H <- sum(outcome == "Healthy")
N_H
#> [1] 99977

Also, there are many without the disease, which makes it more probable that we will see
some false positives given that the test is not perfect. Now each person gets the test, which
is correct 99% of the time:

www.dbooks.org

https://www.dbooks.org/

328 16 Statistical models

accuracy <- 0.99
test <- vector("character", N)
test[outcome == "Disease"] <- sample(c("+", "-"), N_D, replace = TRUE,

prob = c(accuracy, 1 - accuracy))
test[outcome == "Healthy"] <- sample(c("-", "+"), N_H, replace = TRUE,

prob = c(accuracy, 1 - accuracy))

Because there are so many more controls than cases, even with a low false positive rate we
get more controls than cases in the group that tested positive:

table(outcome, test)
#> test
#> outcome - +
#> Disease 0 23
#> Healthy 99012 965

From this table, we see that the proportion of positive tests that have the disease is 23 out
of 988. We can run this over and over again to see that, in fact, the probability converges
to about 0.022.

16.5.1 Bayes in practice

José Iglesias is a professional baseball player. In April 2013, when he was starting his career,
he was performing rather well:

Month At Bats H AVG
April 20 9 .450

The batting average (AVG) statistic is one way of measuring success. Roughly speaking, it
tells us the success rate when batting. An AVG of .450 means José has been successful 45% of
the times he has batted (At Bats) which is rather high, historically speaking. Keep in mind
that no one has finished a season with an AVG of .400 or more since Ted Williams did it in
1941! To illustrate the way hierarchical models are powerful, we will try to predict José’s
batting average at the end of the season. Note that in a typical season, players have about
500 at bats.

With the techniques we have learned up to now, referred to as frequentist techniques, the
best we can do is provide a confidence interval. We can think of outcomes from hitting as a
binomial with a success rate of p. So if the success rate is indeed .450, the standard error of
just 20 at bats is:

√
.450(1 − .450)

20
= .111

This means that our confidence interval is .450 − .222 to .450 + .222 or .228 to .672.

This prediction has two problems. First, it is very large, so not very useful. Second, it is

16.6 Hierarchical models 329

centered at .450, which implies that our best guess is that this new player will break Ted
Williams’ record.

If you follow baseball, this last statement will seem wrong and this is because you are
implicitly using a hierarchical model that factors in information from years of following
baseball. Here we show how we can quantify this intuition.

First, let’s explore the distribution of batting averages for all players with more than 500 at
bats during the previous three seasons:

2010 2011 2012

0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35

0

5

10

15

AVG

co
un

t

The average player had an AVG of .275 and the standard deviation of the population of
players was 0.027. So we can see already that .450 would be quite an anomaly since it is
over six standard deviations away from the mean.

So is José lucky or is he the best batter seen in the last 50 years? Perhaps it’s a combination
of both luck and talent. But how much of each? If we become convinced that he is lucky, we
should trade him to a team that trusts the .450 observation and is maybe overestimating
his potential.

16.6 Hierarchical models

The hierarchical model provides a mathematical description of how we came to see the
observation of .450. First, we pick a player at random with an intrinsic ability summarized
by, for example, p. Then we see 20 random outcomes with success probability p.

We use a model to represent two levels of variability in our data. First, each player is assigned
a natural ability to hit. We will use the symbol p to represent this ability. You can think
of p as the batting average you would converge to if this particular player batted over and
over again.

www.dbooks.org

https://www.dbooks.org/

330 16 Statistical models

Based on the plots we showed earlier, we assume that p has a normal distribution. With
expected value .270 and standard error 0.027.

Now the second level of variability has to do with luck when batting. Regardless of how good
the player is, sometimes you have bad luck and sometimes you have good luck. At each at
bat, this player has a probability of success p. If we add up these successes and failures,
then the CLT tells us that the observed average, call it Y , has a normal distribution with
expected value p and standard error

√
p(1 − p)/N with N the number of at bats.

Statistical textbooks will write the model like this:

p ∼ N(µ, τ2)
Y | p ∼ N(p, σ2)

Here the ∼ symbol tells us the random variable on the left of the symbol follows the dis-
tribution on the right and N(a, b2) represents the normal distribution with mean a and
standard deviation b. The | is read as conditioned on, and it means that we are treating the
random variable to the right of the symbol as known. We refer to the model as hierarchical
because we need to know p, the first level, in order to model Y , the second level. In our
example the first level describes randomness in assigning talent to a player and the second
describes randomness in this particular player’s performance once we have fixed the talent
parameter. In a Bayesian framework, the first level is called a prior distribution and the
second the sampling distribution. The data analysis we have conducted here suggests that
we set µ = .270, τ = 0.027, and σ2 = p(1 − p)/N .

Now, let’s use this model for José’s data. Suppose we want to predict his innate ability in
the form of his true batting average p. This would be the hierarchical model for our data:

p ∼ N(.275, .0272)
Y | p ∼ N(p, .1112)

We now are ready to compute a posterior distribution to summarize our prediction of p.
The continuous version of Bayes’ rule can be used here to derive the posterior probability
function, which is the distribution of p assuming we observe Y = y. In our case, we can
show that when we fix Y = y, p follows a normal distribution with expected value:

E(p | Y = y) = Bµ + (1 − B)y
= µ + (1 − B)(y − µ)

with B = σ2

σ2 + τ2

This is a weighted average of the population average µ and the observed data y. The weight
depends on the SD of the population τ and the SD of our observed data σ. This weighted
average is sometimes referred to as shrinking because it shrinks estimates towards a prior
mean. In the case of José Iglesias, we have:

E(p | Y = .450) = B × .275 + (1 − B) × .450
= .275 + (1 − B)(.450 − .275)

B = .1112

.1112 + .0272 = 0.944

E(p | Y = 450) ≈ .285

16.7 Exercises 331

We do not show the derivation here, but the standard error can be shown to be:

SE(p | y)2 = 1
1/σ2 + 1/τ2 = 1

1/.1112 + 1/.0272 = 0.00069

and the standard deviation is therefore 0.026. So we started with a frequentist 95% confi-
dence interval that ignored data from other players and summarized just José’s data: .450
± 0.220. Then we used a Bayesian approach that incorporated data from other players and
other years to obtain a posterior probability. This is actually referred to as an empirical
Bayes approach because we used data to construct the prior. From the posterior, we can
report what is called a 95% credible interval by reporting a region, centered at the mean,
with a 95% chance of occurring. In our case, this turns out to be: .285 ± 0.052.

The Bayesian credible interval suggests that if another team is impressed by the .450 obser-
vation, we should consider trading José as we are predicting he will be just slightly above
average. Interestingly, the Red Sox traded José to the Detroit Tigers in July. Here are the
José Iglesias batting averages for the next five months:

Month At Bat Hits AVG
April 20 9 .450
May 26 11 .423
June 86 34 .395
July 83 17 .205
August 85 25 .294
September 50 10 .200
Total w/o April 330 97 .293

Although both intervals included the final batting average, the Bayesian credible interval
provided a much more precise prediction. In particular, it predicted that he would not be
as good during the remainder of the season.

16.7 Exercises

1. In 1999, in England, Sally Clark5 was found guilty of the murder of two of her sons. Both
infants were found dead in the morning, one in 1996 and another in 1998. In both cases,
she claimed the cause of death was sudden infant death syndrome (SIDS). No evidence of
physical harm was found on the two infants so the main piece of evidence against her was
the testimony of Professor Sir Roy Meadow, who testified that the chances of two infants
dying of SIDS was 1 in 73 million. He arrived at this figure by finding that the rate of SIDS
was 1 in 8,500 and then calculating that the chance of two SIDS cases was 8,500 × 8,500 ≈
73 million. Which of the following do you agree with?

a. Sir Meadow assumed that the probability of the second son being affected by SIDS
was independent of the first son being affected, thereby ignoring possible genetic

5https://en.wikipedia.org/wiki/Sally_Clark

www.dbooks.org

https://en.wikipedia.org/wiki/Sally_Clark
https://www.dbooks.org/

332 16 Statistical models

causes. If genetics plays a role then: Pr(second case of SIDS | first case of SIDS) <
Pr(first case of SIDS).

b. Nothing. The multiplication rule always applies in this way: Pr(A and B) =
Pr(A)Pr(B)

c. Sir Meadow is an expert and we should trust his calculations.
d. Numbers don’t lie.

2. Let’s assume that there is in fact a genetic component to SIDS and the probability of
Pr(second case of SIDS | first case of SIDS) = 1/100, is much higher than 1 in 8,500. What
is the probability of both of her sons dying of SIDS?

3. Many press reports stated that the expert claimed the probability of Sally Clark being
innocent as 1 in 73 million. Perhaps the jury and judge also interpreted the testimony this
way. This probability can be written as the probability of a mother is a son-murdering
psychopath given that two of her children are found dead with no evidence of physical harm.
According to Bayes’ rule, what is this?

4. Assume that the chance of a son-murdering psychopath finding a way to kill her children,
without leaving evidence of physical harm, is:

Pr(A | B) = 0.50

with A = two of her children are found dead with no evidence of physical harm and B =
a mother is a son-murdering psychopath = 0.50. Assume that the rate of son-murdering
psychopaths mothers is 1 in 1,000,000. According to Bayes’ theorem, what is the probability
of Pr(B | A) ?

5/. After Sally Clark was found guilty, the Royal Statistical Society issued a statement
saying that there was “no statistical basis” for the expert’s claim. They expressed concern
at the “misuse of statistics in the courts”. Eventually, Sally Clark was acquitted in June
2003. What did the expert miss?

a. He made an arithmetic error.
b. He made two mistakes. First, he misused the multiplication rule and did not take

into account how rare it is for a mother to murder her children. After using Bayes’
rule, we found a probability closer to 0.5 than 1 in 73 million.

c. He mixed up the numerator and denominator of Bayes’ rule.
d. He did not use R.

6. Florida is one of the most closely watched states in the U.S. election because it has many
electoral votes, and the election is generally close, and Florida tends to be a swing state
that can vote either way. Create the following table with the polls taken during the last two
weeks:

library(tidyverse)
library(dslabs)
data(polls_us_election_2016)
polls <- polls_us_election_2016 %>%
filter(state == "Florida" & enddate >= "2016-11-04") %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

Take the average spread of these polls. The CLT tells us this average is approximately

16.8 Case study: election forecasting 333

normal. Calculate an average and provide an estimate of the standard error. Save your
results in an object called results.
7. Now assume a Bayesian model that sets the prior distribution for Florida’s election night
spread d to be Normal with expected value µ and standard deviation τ . What are the
interpretations of µ and τ?

a. µ and τ are arbitrary numbers that let us make probability statements about d.
b. µ and τ summarize what we would predict for Florida before seeing any polls.

Based on past elections, we would set µ close to 0 because both Republicans and
Democrats have won, and τ at about 0.02, because these elections tend to be
close.

c. µ and τ summarize what we want to be true. We therefore set µ at 0.10 and τ at
0.01.

d. The choice of prior has no effect on Bayesian analysis.

8. The CLT tells us that our estimate of the spread d̂ has normal distribution with expected
value d and standard deviation σ calculated in problem 6. Use the formulas we showed for
the posterior distribution to calculate the expected value of the posterior distribution if we
set µ = 0 and τ = 0.01.
9. Now compute the standard deviation of the posterior distribution.
10. Using the fact that the posterior distribution is normal, create an interval that has a
95% probability of occurring centered at the posterior expected value. Note that we call
these credible intervals.
11. According to this analysis, what was the probability that Trump wins Florida?
12. Now use sapply function to change the prior variance from seq(0.05, 0.05, len =
100) and observe how the probability changes by making a plot.

16.8 Case study: election forecasting

In a previous section, we generated these data tables:

library(tidyverse)
library(dslabs)
polls <- polls_us_election_2016 %>%
filter(state == "U.S." & enddate >= "2016-10-31" &

(grade %in% c("A+","A","A-","B+") | is.na(grade))) %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

one_poll_per_pollster <- polls %>% group_by(pollster) %>%
filter(enddate == max(enddate)) %>%
ungroup()

results <- one_poll_per_pollster %>%
summarize(avg = mean(spread), se = sd(spread)/sqrt(length(spread))) %>%
mutate(start = avg - 1.96*se, end = avg + 1.96*se)

www.dbooks.org

https://www.dbooks.org/

334 16 Statistical models

Below, we will use these for our forecasting.

16.8.1 Bayesian approach

Pollsters tend to make probabilistic statements about the results of the election. For example,
“The chance that Obama wins the electoral college is 91%” is a probabilistic statement about
a parameter which in previous sections we have denoted with d. We showed that for the
2016 election, FiveThirtyEight gave Clinton an 81.4% chance of winning the popular vote.
To do this, they used the Bayesian approach we described.

We assume a hierarchical model similar to what we did to predict the performance of a
baseball player. Statistical textbooks will write the model like this:

d ∼ N(µ, τ2) describes our best guess had we not seen any polling data
X̄ | d ∼ N(d, σ2) describes randomness due to sampling and the pollster effect

For our best guess, we note that before any poll data is available, we can use data sources
other than polling data. A popular approach is to use what pollsters call fundamentals,
which are based on properties about the current economy that historically appear to have
an effect in favor or against the incumbent party. We won’t use these here. Instead, we will
use µ = 0, which is interpreted as a model that simply does not provide any information on
who will win. For the standard deviation, we will use recent historical data that shows the
winner of the popular vote has an average spread of about 3.5%. Therefore, we set τ = 0.035.

Now we can use the formulas for the posterior distribution for the parameter d: the proba-
bility of d > 0 given the observed poll data:

mu <- 0
tau <- 0.035
sigma <- results$se
Y <- results$avg
B <- sigma^2 / (sigma^2 + tau^2)

posterior_mean <- B*mu + (1-B)*Y
posterior_se <- sqrt(1/ (1/sigma^2 + 1/tau^2))

posterior_mean
#> [1] 0.0281
posterior_se
#> [1] 0.00615

To make a probability statement, we use the fact that the posterior distribution is also
normal. And we have a credible interval of:

posterior_mean + c(-1.96, 1.96)*posterior_se
#> [1] 0.0160 0.0401

The posterior probability Pr(d > 0 | X̄) can be computed like this:

16.8 Case study: election forecasting 335

1 - pnorm(0, posterior_mean, posterior_se)
#> [1] 1

This says we are 100% sure Clinton will win the popular vote, which seems too overconfident.
Also, it is not in agreement with FiveThirtyEight’s 81.4%. What explains this difference?

16.8.2 The general bias

After elections are over, one can look at the difference between pollster predictions and
actual result. An important observation that our model does not take into account is that
it is common to see a general bias that affects many pollsters in the same way making the
observed data correlated. There is no good explanation for this, but we do observe it in
historical data: in one election, the average of polls favors Democrats by 2%, then in the
following election they favor Republicans by 1%, then in the next election there is no bias,
then in the following one Republicans are favored by 3%, and so on. In 2016, the polls were
biased in favor of the Democrats by 1-2%.

Although we know this bias term affects our polls, we have no way of knowing what this
bias is until election night. So we can’t correct our polls accordingly. What we can do is
include a term in our model that accounts for this variability.

16.8.3 Mathematical representations of models

Suppose we are collecting data from one pollster and we assume there is no general bias. The
pollster collects several polls with a sample size of N , so we observe several measurements of
the spread X1, . . . , XJ . The theory tells us that these random variables have expected value
d and standard error 2

√
p(1 − p)/N . Let’s start by using the following model to describe

the observed variability:

Xj = d + εj .

We use the index j to represent the different polls and we define εj to be a random variable
that explains the poll-to-poll variability introduced by sampling error. To do this, we assume
its average is 0 and standard error is 2

√
p(1 − p)/N . If d is 2.1 and the sample size for these

polls is 2,000, we can simulate J = 6 data points from this model like this:

set.seed(3)
J <- 6
N <- 2000
d <- .021
p <- (d + 1)/2
X <- d + rnorm(J, 0, 2 * sqrt(p * (1 - p) / N))

Now suppose we have J = 6 data points from I = 5 different pollsters. To represent this
we now need two indexes, one for pollster and one for the polls each pollster takes. We use
Xij with i representing the pollster and j representing the j-th poll from that pollster. If
we apply the same model, we write:

www.dbooks.org

https://www.dbooks.org/

336 16 Statistical models

Xi,j = d + εi,j

To simulate data, we now have to loop through the pollsters:

I <- 5
J <- 6
N <- 2000
X <- sapply(1:I, function(i){
d + rnorm(J, 0, 2 * sqrt(p * (1 - p) / N))

})

The simulated data does not really seem to capture the features of the actual data:

Simulated data Observed data

−0.05 0.00 0.05 −0.05 0.00 0.05

ABC News/Washington Post

IBD/TIPP

Ipsos

The Times−Picayune/Lucid

USC Dornsife/LA Times

1

2

3

4

5

spread

po
lls

te
r

The model above does not account for pollster-to-pollster variability. To fix this, we add
a new term for the pollster effect. We will use hi to represent the house effect of the i-th
pollster. The model is now augmented to:

Xi,j = d + hi + εi,j

To simulate data from a specific pollster, we now need to draw an hi and then add the εs.
Here is how we would do it for one specific pollster. We assume σh is 0.025:

I <- 5
J <- 6
N <- 2000
d <- .021
p <- (d + 1) / 2
h <- rnorm(I, 0, 0.025)
X <- sapply(1:I, function(i){
d + h[i] + rnorm(J, 0, 2 * sqrt(p * (1 - p) / N))

})

The simulated data now looks more like the actual data:

16.8 Case study: election forecasting 337

1

2

3

4

5

−0.05 0.00 0.05
Spread

P
ol

ls
te

r

Note that hi is common to all the observed spreads from a specific pollster. Different pollsters
have a different hi, which explains why we can see the groups of points shift up and down
from pollster to pollster.

Now, in the model above, we assume the average house effect is 0. We think that for every
pollster biased in favor of our party, there is another one in favor of the other and assume
the standard deviation is σh. But historically we see that every election has a general bias
affecting all polls. We can observe this with the 2016 data, but if we collect historical data,
we see that the average of polls misses by more than models like the one above predict. To
see this, we would take the average of polls for each election year and compare it to the
actual value. If we did this, we would see a difference with a standard deviation of between
2-3%. To incorporate this into the model, we can add another term to account for this
variability:

Xi,j = d + b + hi + εi,j .

Here b is a random variable that accounts for the election-to-election variability. This random
variable changes from election to election, but for any given election, it is the same for all
pollsters and polls within on election. This is why it does not have indexes. This implies
that all the random variables Xi,j for an election year are correlated since they all have b
in common.

One way to interpret b is as the difference between the average of all polls from all pollsters
and the actual result of the election. Because we don’t know the actual result until after
the election, we can’t estimate b until after the election. However, we can estimate b from
previous elections and study the distribution of these values. Based on this approach we
assume that, across election years, b has expected value 0 and the standard error is about
σb = 0.025.

An implication of adding this term to the model is that the standard deviation for Xi,j is
actually higher than what we earlier called σ, which combines the pollster variability and
the sample in variability, and was estimated with:

sd(one_poll_per_pollster$spread)
#> [1] 0.0242

This estimate does not include the variability introduced by b. Note that because

www.dbooks.org

https://www.dbooks.org/

338 16 Statistical models

X̄ = d + b + 1
N

N∑
i=1

Xi,

the standard deviation of X̄ is:

√
σ2/N + σ2

b .

Since the same b is in every measurement, the average does not reduce the variability
introduced by the b term. This is an important point: it does not matter how many polls
you take, this bias does not get reduced.
If we redo the Bayesian calculation taking this variability into account, we get a result much
closer to FiveThirtyEight’s:

mu <- 0
tau <- 0.035
sigma <- sqrt(results$se^2 + .025^2)
Y <- results$avg
B <- sigma^2 / (sigma^2 + tau^2)

posterior_mean <- B*mu + (1-B)*Y
posterior_se <- sqrt(1/ (1/sigma^2 + 1/tau^2))

1 - pnorm(0, posterior_mean, posterior_se)
#> [1] 0.817

16.8.4 Predicting the electoral college

Up to now we have focused on the popular vote. But in the United States, elections are
not decided by the popular vote but rather by what is known as the electoral college. Each
state gets a number of electoral votes that depends, in a somewhat complex way, on the
population size of the state. Here are the top 5 states ranked by electoral votes in 2016.

results_us_election_2016 %>% top_n(5, electoral_votes)
#> state electoral_votes clinton trump others
#> 1 California 55 61.7 31.6 6.7
#> 2 Texas 38 43.2 52.2 4.5
#> 3 Florida 29 47.8 49.0 3.2
#> 4 New York 29 59.0 36.5 4.5
#> 5 Illinois 20 55.8 38.8 5.4
#> 6 Pennsylvania 20 47.9 48.6 3.6

With some minor exceptions we don’t discuss, the electoral votes are won all or nothing.
For example, if you win California by just 1 vote, you still get all 55 of its electoral votes.
This means that by winning a few big states by a large margin, but losing many small
states by small margins, you can win the popular vote and yet lose the electoral college.
This happened in 1876, 1888, 2000, and 2016. The idea behind this is to avoid a few large
states having the power to dominate the presidential election. Nonetheless, many people in
the US consider the electoral college unfair and would like to see it abolished.

16.8 Case study: election forecasting 339

We are now ready to predict the electoral college result for 2016. We start by aggregating
results from a poll taken during the last week before the election. We use the str_detect,
a function we introduce later in Section 24.1, to remove polls that are not for entire states.

results <- polls_us_election_2016 %>%
filter(state!="U.S." &

!str_detect(state, "CD") &
enddate >="2016-10-31" &
(grade %in% c("A+","A","A-","B+") | is.na(grade))) %>%

mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100) %>%
group_by(state) %>%
summarize(avg = mean(spread), sd = sd(spread), n = n()) %>%
mutate(state = as.character(state))

Here are the five closest races according to the polls:

results %>% arrange(abs(avg))
#> # A tibble: 47 x 4
#> state avg sd n
#> <chr> <dbl> <dbl> <int>
#> 1 Florida 0.00356 0.0163 7
#> 2 North Carolina -0.00730 0.0306 9
#> 3 Ohio -0.0104 0.0252 6
#> 4 Nevada 0.0169 0.0441 7
#> 5 Iowa -0.0197 0.0437 3
#> # ... with 42 more rows

We now introduce the command left_join that will let us easily add the number of elec-
toral votes for each state from the dataset us_electoral_votes_2016. We will describe
this function in detail in the Wrangling chapter. Here, we simply say that the function com-
bines the two datasets so that the information from the second argument is added to the
information in the first:

results <- left_join(results, results_us_election_2016, by = "state")

Notice that some states have no polls because the winner is pretty much known:

results_us_election_2016 %>% filter(!state %in% results$state) %>%
pull(state)

#> [1] "Rhode Island" "Alaska" "Wyoming"
#> [4] "District of Columbia"

No polls were conducted in DC, Rhode Island, Alaska, and Wyoming because Democrats
are sure to win in the first two and Republicans in the last two.

Because we can’t estimate the standard deviation for states with just one poll, we will
estimate it as the median of the standard deviations estimated for states with more than
one poll:

www.dbooks.org

https://www.dbooks.org/

340 16 Statistical models

results <- results %>%
mutate(sd = ifelse(is.na(sd), median(results$sd, na.rm = TRUE), sd))

To make probabilistic arguments, we will use a Monte Carlo simulation. For each state, we
apply the Bayesian approach to generate an election day d. We could construct the priors
for each state based on recent history. However, to keep it simple, we assign a prior to
each state that assumes we know nothing about what will happen. Since from election year
to election year the results from a specific state don’t change that much, we will assign a
standard deviation of 2% or τ = 0.02. For now, we will assume, incorrectly, that the poll
results from each state are independent. The code for the Bayesian calculation under these
assumptions looks like this:

#> # A tibble: 47 x 12
#> state avg sd n electoral_votes clinton trump others
#> <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>
#> 1 Alab~ -0.149 2.53e-2 3 9 34.4 62.1 3.6
#> 2 Ariz~ -0.0326 2.70e-2 9 11 45.1 48.7 6.2
#> 3 Arka~ -0.151 9.90e-4 2 6 33.7 60.6 5.8
#> 4 Cali~ 0.260 3.87e-2 5 55 61.7 31.6 6.7
#> 5 Colo~ 0.0452 2.95e-2 7 9 48.2 43.3 8.6
#> # ... with 42 more rows, and 4 more variables: sigma <dbl>, B <dbl>,
#> # posterior_mean <dbl>, posterior_se <dbl>

The estimates based on posterior do move the estimates towards 0, although the states with
many polls are influenced less. This is expected as the more poll data we collect, the more
we trust those results:

−0.3

−0.2

−0.1

0.0

0.1

−0.3 −0.2 −0.1 0.0 0.1 0.2
avg

po
st

er
io

r_
m

ea
n n

3

6

9

12

Now we repeat this 10,000 times and generate an outcome from the posterior. In each
iteration, we keep track of the total number of electoral votes for Clinton. Remember that
Trump gets 270 minus the votes for Clinton. Also note that the reason we add 7 in the code
is to account for Rhode Island and D.C.:

16.8 Case study: election forecasting 341

B <- 10000
mu <- 0
tau <- 0.02
clinton_EV <- replicate(B, {
results %>% mutate(sigma = sd/sqrt(n),

B = sigma^2 / (sigma^2 + tau^2),
posterior_mean = B * mu + (1 - B) * avg,
posterior_se = sqrt(1 / (1/sigma^2 + 1/tau^2)),
result = rnorm(length(posterior_mean),

posterior_mean, posterior_se),
clinton = ifelse(result > 0, electoral_votes, 0)) %>%

summarize(clinton = sum(clinton)) %>%
pull(clinton) + 7

})

mean(clinton_EV > 269)
#> [1] 0.998

This model gives Clinton over 99% chance of winning. A similar prediction was made by
the Princeton Election Consortium. We now know it was quite off. What happened?

The model above ignores the general bias and assumes the results from different states
are independent. After the election, we realized that the general bias in 2016 was not that
big: it was between 1 and 2%. But because the election was close in several big states
and these states had a large number of polls, pollsters that ignored the general bias greatly
underestimated the standard error. Using the notation we introduce, they assumed the stan-
dard error was

√
σ2/N which with large N is quite smaller than the more accurate estimate√

σ2/N + σ2
b . FiveThirtyEight, which models the general bias in a rather sophisticated way,

reported a closer result. We can simulate the results now with a bias term. For the state
level, the general bias can be larger so we set it at σb = 0.03:

tau <- 0.02
bias_sd <- 0.03
clinton_EV_2 <- replicate(1000, {
results %>% mutate(sigma = sqrt(sd^2/n + bias_sd^2),

B = sigma^2 / (sigma^2 + tau^2),
posterior_mean = B*mu + (1-B)*avg,
posterior_se = sqrt(1/ (1/sigma^2 + 1/tau^2)),
result = rnorm(length(posterior_mean),

posterior_mean, posterior_se),
clinton = ifelse(result>0, electoral_votes, 0)) %>%

summarize(clinton = sum(clinton) + 7) %>%
pull(clinton)

})
mean(clinton_EV_2 > 269)
#> [1] 0.848

This gives us a much more sensible estimate. Looking at the outcomes of the simulation, we
see how the bias term adds variability to the final results.

www.dbooks.org

https://www.dbooks.org/

342 16 Statistical models

no_bias
w

ith_bias

250 300 350 400

0

500

1000

1500

2000

2500

0

50

100

150

200

result

co
un

t

FiveThirtyEight includes many other features we do not include here. One is that they model
variability with distributions that have high probabilities for extreme events compared to
the normal. One way we could do this is by changing the distribution used in the simulation
from a normal distribution to a t-distribution. FiveThirtyEight predicted a probability of
71%.

16.8.5 Forecasting

Forecasters like to make predictions well before the election. The predictions are adapted as
new polls come out. However, an important question forecasters must ask is: how informative
are polls taken several weeks before the election about the actual election? Here we study
the variability of poll results across time.

To make sure the variability we observe is not due to pollster effects, let’s study data from
one pollster:

one_pollster <- polls_us_election_2016 %>%
filter(pollster == "Ipsos" & state == "U.S.") %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

Since there is no pollster effect, then perhaps the theoretical standard error matches the
data-derived standard deviation. We compute both here:

se <- one_pollster %>%
summarize(empirical = sd(spread),

theoretical = 2 * sqrt(mean(spread) * (1 - mean(spread)) /
min(samplesize)))

se
#> empirical theoretical
#> 1 0.0403 0.0326

But the empirical standard deviation is higher than the highest possible theoretical estimate.
Furthermore, the spread data does not look normal as the theory would predict:

16.8 Case study: election forecasting 343

0

10

20

30

−0.05 0.00 0.05 0.10 0.15
spread

The models we have described include pollster-to-pollster variability and sampling error. But
this plot is for one pollster and the variability we see is certainly not explained by sampling
error. Where is the extra variability coming from? The following plots make a strong case
that it comes from time fluctuations not accounted for by the theory that assumes p is fixed:

−0.05

0.00

0.05

0.10

0.15

Jan Apr Jul Oct
enddate

sp
re

ad

Some of the peaks and valleys we see coincide with events such as the party conventions,
which tend to give the candidate a boost. We can see the peaks and valleys are consistent
across several pollsters:

www.dbooks.org

https://www.dbooks.org/

344 16 Statistical models

0.0

0.1

Jan 2016 Apr 2016 Jul 2016 Oct 2016
enddate

sp
re

ad

This implies that, if we are going to forecast, our model must include a term to accounts
for the time effect. We need to write a model including a bias term for time:

Yi,j,t = d + b + hj + bt + εi,j,t

The standard deviation of bt would depend on t since the closer we get to election day, the
closer to 0 this bias term should be.
Pollsters also try to estimate trends from these data and incorporate these into their pre-
dictions. We can model the time trend with a function f(t) and rewrite the model like this:
The blue lines in the plots above:

Yi,j,t = d + b + hj + bt + f(t) + εi,jt,

We usually see the estimated f(t) not for the difference, but for the actual percentages for
each candidate like this:

30

35

40

45

50

Jul Aug Sep Oct Nov
enddate

pe
rc

en
ta

ge candidate

Trump

Clinton

Once a model like the one above is selected, we can use historical and present data to
estimate all the necessary parameters to make predictions. There is a variety of methods for
estimating trends f(t) which we discuss in the Machine Learning part.

16.9 Exercises 345

16.9 Exercises

1. Create this table:

library(tidyverse)
library(dslabs)
data("polls_us_election_2016")
polls <- polls_us_election_2016 %>%
filter(state != "U.S." & enddate >= "2016-10-31") %>%
mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100)

Now for each poll use the CLT to create a 95% confidence interval for the spread reported
by each poll. Call the resulting object cis with columns lower and upper for the limits of
the confidence intervals. Use the select function to keep the columns state, startdate,
end date, pollster, grade, spread, lower, upper.

2. You can add the final result to the cis table you just created using the right_join
function like this:

add <- results_us_election_2016 %>%
mutate(actual_spread = clinton/100 - trump/100) %>%
select(state, actual_spread)

cis <- cis %>%
mutate(state = as.character(state)) %>%
left_join(add, by = "state")

Now determine how often the 95% confidence interval includes the actual result.

3. Repeat this, but show the proportion of hits for each pollster. Show only pollsters with
more than 5 polls and order them from best to worst. Show the number of polls conducted
by each pollster and the FiveThirtyEight grade of each pollster. Hint: use n=n(), grade =
grade[1] in the call to summarize.

4. Repeat exercise 3, but instead of pollster, stratify by state. Note that here we can’t show
grades.

5. Make a barplot based on the result of exercise 4. Use coord_flip.

6. Add two columns to the cis table by computing, for each poll, the difference between the
predicted spread and the actual spread, and define a column hit that is true if the signs
are the same. Hint: use the function sign. Call the object resids.

7. Create a plot like in exercise 5, but for the proportion of times the sign of the spread
agreed.

8. In exercise 7, we see that for most states the polls had it right 100% of the time. For
only 9 states did the polls miss more than 25% of the time. In particular, notice that in
Wisconsin every single poll got it wrong. In Pennsylvania and Michigan more than 90% of
the polls had the signs wrong. Make a histogram of the errors. What is the median of these
errors?

9. We see that at the state level, the median error was 3% in favor of Clinton. The distribution

www.dbooks.org

https://www.dbooks.org/

346 16 Statistical models

is not centered at 0, but at 0.03. This is the general bias we described in the section above.
Create a boxplot to see if the bias was general to all states or it affected some states
differently. Use filter(grade %in% c("A+","A","A-","B+") | is.na(grade))) to only
include pollsters with high grades.

10. Some of these states only have a few polls. Repeat exercise 9, but only include states
with 5 good polls or more. Hint: use group_by, filter then ungroup. You will see that the
West (Washington, New Mexico, California) underestimated Hillary’s performance, while
the Midwest (Michigan, Pennsylvania, Wisconsin, Ohio, Missouri) overestimated it. In our
simulation, we did not model this behavior since we added general bias, rather than a
regional bias. Note that some pollsters may now be modeling correlation between similar
states and estimating this correlation from historical data. To learn more about this, you
can learn about random effects and mixed models.

16.10 The t-distribution

Above we made use of the CLT with a sample size of 15. Because we are estimating a second
parameters σ, further variability is introduced into our confidence interval which results in
intervals that are too small. For very large sample sizes this extra variability is negligible,
but, in general, for values smaller than 30 we need to be cautious about using the CLT.

However, if the data in the urn is known to follow a normal distribution, then we actually
have mathematical theory that tells us how much bigger we need to make the intervals to
account for the estimation of σ. Using this theory, we can construct confidence intervals for
any N . But again, this works only if the data in the urn is known to follow a normal
distribution. So for the 0, 1 data of our previous urn model, this theory definitely does
not apply.

The statistic on which confidence intervals for d are based is

Z = X̄ − d

σ/
√

N

CLT tells us that Z is approximately normally distributed with expected value 0 and stan-
dard error 1. But in practice we don’t know σ so we use:

Z = X̄ − d

s/
√

N

By substituting σ with s we introduce some variability. The theory tells us that Z follows
a t-distribution with N − 1 degrees of freedom. The degrees of freedom is a parameter that
controls the variability via fatter tails:

16.10 The t-distribution 347

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
x

f(
x)

distribution

Normal

t_03

t_05

t_15

If we are willing to assume the pollster effect data is normally distributed, based on the
sample data X1, . . . , XN ,

one_poll_per_pollster %>%
ggplot(aes(sample=spread)) + stat_qq()

−0.02

0.00

0.02

0.04

0.06

−2 −1 0 1 2
theoretical

sa
m

pl
e

then Z follows a t-distribution with N −1 degrees of freedom. So perhaps a better confidence
interval for d is:

z <- qt(0.975, nrow(one_poll_per_pollster)-1)
one_poll_per_pollster %>%
summarize(avg = mean(spread), moe = z*sd(spread)/sqrt(length(spread))) %>%
mutate(start = avg - moe, end = avg + moe)

#> # A tibble: 1 x 4
#> avg moe start end
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.0290 0.0134 0.0156 0.0424

A bit larger than the one using normal is

www.dbooks.org

https://www.dbooks.org/

348 16 Statistical models

qt(0.975, 14)
#> [1] 2.14

is bigger than

qnorm(0.975)
#> [1] 1.96

The t-distribution can also be used to model errors in bigger deviations that are more likely
than with the normal distribution, as seen in the densities we previously saw. Fivethirtyeight
uses the t-distribution to generate errors that better model the deviations we see in election
data. For example, in Wisconsin the average of six polls was 7% in favor of Clinton with
a standard deviation of 1%, but Trump won by 0.7%. Even after taking into account the
overall bias, this 7.7% residual is more in line with t-distributed data than the normal
distribution.

data("polls_us_election_2016")
polls_us_election_2016 %>%
filter(state =="Wisconsin" &

enddate >="2016-10-31" &
(grade %in% c("A+","A","A-","B+") | is.na(grade))) %>%

mutate(spread = rawpoll_clinton/100 - rawpoll_trump/100) %>%
mutate(state = as.character(state)) %>%
left_join(results_us_election_2016, by = "state") %>%
mutate(actual = clinton/100 - trump/100) %>%
summarize(actual = first(actual), avg = mean(spread),

sd = sd(spread), n = n()) %>%
select(actual, avg, sd, n)

#> actual avg sd n
#> 1 -0.007 0.0711 0.0104 6

17
Regression

Up to this point, this book has focused mainly on single variables. However, in data science
applications, it is very common to be interested in the relationship between two or more
variables. For instance, in Chapter 18 we will use a data-driven approach that examines
the relationship between player statistics and success to guide the building of a baseball
team with a limited budget. Before delving into this more complex example, we introduce
necessary concepts needed to understand regression using a simpler illustration. We actually
use the dataset from which regression was born.

The example is from genetics. Francis Galton1 studied the variation and heredity of human
traits. Among many other traits, Galton collected and studied height data from families
to try to understand heredity. While doing this, he developed the concepts of correlation
and regression, as well as a connection to pairs of data that follow a normal distribution.
Of course, at the time this data was collected our knowledge of genetics was quite limited
compared to what we know today. A very specific question Galton tried to answer was:
how well can we predict a child’s height based on the parents’ height? The technique he
developed to answer this question, regression, can also be applied to our baseball question.
Regression can be applied in many other circumstances as well.

Historical note: Galton made important contributions to statistics and genetics, but he was
also one of the first proponents of eugenics, a scientifically flawed philosophical movement
favored by many biologists of Galton’s time but with horrific historical consequences. You
can read more about it here: https://pged.org/history-eugenics-and-genetics/.

17.1 Case study: is height hereditary?

We have access to Galton’s family height data through the HistData package. This data
contains heights on several dozen families: mothers, fathers, daughters, and sons. To imitate
Galton’s analysis, we will create a dataset with the heights of fathers and a randomly selected
son of each family:

library(tidyverse)
library(HistData)
data("GaltonFamilies")

set.seed(1983)
galton_heights <- GaltonFamilies %>%
filter(gender == "male") %>%

1https://en.wikipedia.org/wiki/Francis_Galton

349

www.dbooks.org

https://pged.org/history-eugenics-and-genetics/
https://en.wikipedia.org/wiki/Francis_Galton
https://www.dbooks.org/

350 17 Regression

group_by(family) %>%
sample_n(1) %>%
ungroup() %>%
select(father, childHeight) %>%
rename(son = childHeight)

In the exercises, we will look at other relationships including mothers and daughters.
Suppose we were asked to summarize the father and son data. Since both distributions
are well approximated by the normal distribution, we could use the two averages and two
standard deviations as summaries:

galton_heights %>%
summarize(mean(father), sd(father), mean(son), sd(son))

#> # A tibble: 1 x 4
#> `mean(father)` `sd(father)` `mean(son)` `sd(son)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 69.1 2.55 69.2 2.71

However, this summary fails to describe an important characteristic of the data: the trend
that the taller the father, the taller the son.

galton_heights %>% ggplot(aes(father, son)) +
geom_point(alpha = 0.5)

60

65

70

75

65 70 75
father

so
n

We will learn that the correlation coefficient is an informative summary of how two variables
move together and then see how this can be used to predict one variable using the other.

17.2 The correlation coefficient

The correlation coefficient is defined for a list of pairs (x1, y1), . . . , (xn, yn) as the average of
the product of the standardized values:

17.2 The correlation coefficient 351

ρ = 1
n

n∑
i=1

(
xi − µx

σx

)(
yi − µy

σy

)
with µx, µy the averages of x1, . . . , xn and y1, . . . , yn, respectively, and σx, σy the standard
deviations. The Greek letter ρ is commonly used in statistics books to denote the correlation.
The Greek letter for r, ρ, because it is the first letter of regression. Soon we learn about the
connection between correlation and regression. We can represent the formula above with R
code using:

rho <- mean(scale(x) * scale(y))

To understand why this equation does in fact summarize how two variables move together,
consider the i-th entry of x is

(
xi−µx

σx

)
SDs away from the average. Similarly, the yi that

is paired with xi, is
(

y1−µy

σy

)
SDs away from the average y. If x and y are unrelated, the

product
(

xi−µx

σx

)(
yi−µy

σy

)
will be positive (+ × + and − × −) as often as negative (+ × −

and − × +) and will average out to about 0. This correlation is the average and therefore
unrelated variables will have 0 correlation. If instead the quantities vary together, then we
are averaging mostly positive products (+×+ and −×−) and we get a positive correlation.
If they vary in opposite directions, we get a negative correlation.

The correlation coefficient is always between -1 and 1. We can show this mathematically:
consider that we can’t have higher correlation than when we compare a list to itself (perfect
correlation) and in this case the correlation is:

ρ = 1
n

n∑
i=1

(
xi − µx

σx

)2

= 1
σ2

x

1
n

n∑
i=1

(xi − µx)2 = 1
σ2

x

σ2
x = 1

A similar derivation, but with x and its exact opposite, proves the correlation has to be
bigger or equal to -1.

For other pairs, the correlation is in between -1 and 1. The correlation between father and
son’s heights is about 0.5:

galton_heights %>% summarize(r = cor(father, son)) %>% pull(r)
#> [1] 0.433

To see what data looks like for different values of ρ, here are six examples of pairs with
correlations ranging from -0.9 to 0.99:

www.dbooks.org

https://www.dbooks.org/

352 17 Regression

0.5 0.9 0.99

−0.9 −0.5 0

−2 0 2 4 −2 0 2 4 −2 0 2 4

−2.5

0.0

2.5

−2.5

0.0

2.5

x

y

17.2.1 Sample correlation is a random variable

Before we continue connecting correlation to regression, let’s remind ourselves about random
variability.

In most data science applications, we observe data that includes random variation. For ex-
ample, in many cases, we do not observe data for the entire population of interest but rather
for a random sample. As with the average and standard deviation, the sample correlation
is the most commonly used estimate of the population correlation. This implies that the
correlation we compute and use as a summary is a random variable.

By way of illustration, let’s assume that the 179 pairs of fathers and sons is our entire
population. A less fortunate geneticist can only afford measurements from a random sample
of 25 pairs. The sample correlation can be computed with:

R <- sample_n(galton_heights, 25, replace = TRUE) %>%
summarize(r = cor(father, son)) %>% pull(r)

R is a random variable. We can run a Monte Carlo simulation to see its distribution:

B <- 1000
N <- 25
R <- replicate(B, {
sample_n(galton_heights, N, replace = TRUE) %>%
summarize(r=cor(father, son)) %>%
pull(r)

})
qplot(R, geom = "histogram", binwidth = 0.05, color = I("black"))

17.2 The correlation coefficient 353

0

50

100

0.0 0.3 0.6
R

We see that the expected value of R is the population correlation:

mean(R)
#> [1] 0.431

and that it has a relatively high standard error relative to the range of values R can take:

sd(R)
#> [1] 0.161

So, when interpreting correlations, remember that correlations derived from samples are
estimates containing uncertainty.
Also, note that because the sample correlation is an average of independent draws, the
central limit actually applies. Therefore, for large enough N , the distribution of R is approx-
imately normal with expected value ρ. The standard deviation, which is somewhat complex
to derive, is

√
1−r2

N−2 .

In our example, N = 25 does not seem to be large enough to make the approximation a
good one:

ggplot(aes(sample=R), data = data.frame(R)) +
stat_qq() +
geom_abline(intercept = mean(R), slope = sqrt((1-mean(R)^2)/(N-2)))

0.0

0.2

0.4

0.6

0.8

−2 0 2
theoretical

sa
m

pl
e

If you increase N , you will see the distribution converging to normal.

www.dbooks.org

https://www.dbooks.org/

354 17 Regression

17.2.2 Correlation is not always a useful summary

Correlation is not always a good summary of the relationship between two variables. The
following four artificial datasets, referred to as Anscombe’s quartet, famously illustrate this
point. All these pairs have a correlation of 0.82:

3 4

1 2

5 10 15 5 10 15

4

8

12

4

8

12

x

y

Correlation is only meaningful in a particular context. To help us understand when it is that
correlation is meaningful as a summary statistic, we will return to the example of predicting
a son’s height using his father’s height. This will help motivate and define linear regression.
We start by demonstrating how correlation can be useful for prediction.

17.3 Conditional expectations

Suppose we are asked to guess the height of a randomly selected son and we don’t know
his father’s height. Because the distribution of sons’ heights is approximately normal, we
know the average height, 69.2, is the value with the highest proportion and would be the
prediction with the highest chance of minimizing the error. But what if we are told that the
father is taller than average, say 72 inches tall, do we still guess 69.2 for the son?

It turns out that if we were able to collect data from a very large number of fathers that are
72 inches, the distribution of their sons’ heights would be normally distributed. This implies
that the average of the distribution computed on this subset would be our best prediction.

In general, we call this approach conditioning. The general idea is that we stratify a popula-
tion into groups and compute summaries in each group. Conditioning is therefore related to
the concept of stratification described in Section 8.13. To provide a mathematical descrip-
tion of conditioning, consider we have a population of pairs of values (x1, y1), . . . , (xn, yn),
for example all father and son heights in England. In the previous chapter we learned that
if you take a random pair (X, Y), the expected value and best predictor of Y is E(Y) = µy,
the population average 1/n

∑n
i=1 yi. However, we are no longer interested in the general

population, instead we are interested in only the subset of a population with a specific xi

value, 72 inches in our example. This subset of the population, is also a population and

17.3 Conditional expectations 355

thus the same principles and properties we have learned apply. The yi in the subpopulation
have a distribution, referred to as the conditional distribution, and this distribution has an
expected value referred to as the conditional expectation. In our example, the conditional
expectation is the average height of all sons in England with fathers that are 72 inches. The
statistical notation for the conditional expectation is

E(Y | X = x)

with x representing the fixed value that defines that subset, for example 72 inches. Similarly,
we denote the standard deviation of the strata with

SD(Y | X = x) =
√

Var(Y | X = x)

Because the conditional expectation E(Y | X = x) is the best predictor for the random vari-
able Y for an individual in the strata defined by X = x, many data science challenges reduce
to estimating this quantity. The conditional standard deviation quantifies the precision of
the prediction.

In the example we have been considering, we are interested in computing the average son
height conditioned on the father being 72 inches tall. We want to estimate E(Y |X = 72)
using the sample collected by Galton. We previously learned that the sample average is the
preferred approach to estimating the population average. However, a challenge when using
this approach to estimating conditional expectations is that for continuous data we don’t
have many data points matching exactly one value in our sample. For example, we have
only:

sum(galton_heights$father == 72)
#> [1] 8

fathers that are exactly 72-inches. If we change the number to 72.5, we get even fewer data
points:

sum(galton_heights$father == 72.5)
#> [1] 1

A practical way to improve these estimates of the conditional expectations, is to define strata
of with similar values of x. In our example, we can round father heights to the nearest inch
and assume that they are all 72 inches. If we do this, we end up with the following prediction
for the son of a father that is 72 inches tall:

conditional_avg <- galton_heights %>%
filter(round(father) == 72) %>%
summarize(avg = mean(son)) %>%
pull(avg)

conditional_avg
#> [1] 70.5

Note that a 72-inch father is taller than average – specifically, 72 - 69.1/2.5 = 1.1 standard
deviations taller than the average father. Our prediction 70.5 is also taller than average, but

www.dbooks.org

https://www.dbooks.org/

356 17 Regression

only 0.49 standard deviations larger than the average son. The sons of 72-inch fathers have
regressed some to the average height. We notice that the reduction in how many SDs taller
is about 0.5, which happens to be the correlation. As we will see in a later section, this is
not a coincidence.
If we want to make a prediction of any height, not just 72, we could apply the same approach
to each strata. Stratification followed by boxplots lets us see the distribution of each group:

galton_heights %>% mutate(father_strata = factor(round(father))) %>%
ggplot(aes(father_strata, son)) +
geom_boxplot() +
geom_point()

60

65

70

75

62 64 65 66 67 68 69 70 71 72 73 74 75 76 78
father_strata

so
n

Not surprisingly, the centers of the groups are increasing with height. Furthermore, these
centers appear to follow a linear relationship. Below we plot the averages of each group.
If we take into account that these averages are random variables with standard errors, the
data is consistent with these points following a straight line:

66

68

70

72

65 70 75
father

so
n_

co
nd

iti
on

al
_a

vg

The fact that these conditional averages follow a line is not a coincidence. In the next section,
we explain that the line these averages follow is what we call the regression line, which
improves the precision of our estimates. However, it is not always appropriate to estimate
conditional expectations with the regression line so we also describe Galton’s theoretical
justification for using the regression line.

17.4 The regression line 357

17.4 The regression line

If we are predicting a random variable Y knowing the value of another X = x using a
regression line, then we predict that for every standard deviation, σX , that x increases
above the average µX , Y increase ρ standard deviations σY above the average µY with ρ
the correlation between X and Y . The formula for the regression is therefore:

(
Y − µY

σY

)
= ρ

(
x − µX

σX

)
We can rewrite it like this:

Y = µY + ρ

(
x − µX

σX

)
σY

If there is perfect correlation, the regression line predicts an increase that is the same number
of SDs. If there is 0 correlation, then we don’t use x at all for the prediction and simply
predict the average µY . For values between 0 and 1, the prediction is somewhere in between.
If the correlation is negative, we predict a reduction instead of an increase.

Note that if the correlation is positive and lower than 1, our prediction is closer, in standard
units, to the average height than the value used to predict, x, is to the average of the xs.
This is why we call it regression: the son regresses to the average height. In fact, the title of
Galton’s paper was: Regression toward mediocrity in hereditary stature. To add regression
lines to plots, we will need the above formula in the form:

y = b + mx with slope m = ρ
σy

σx
and intercept b = µy − mµx

Here we add the regression line to the original data:

mu_x <- mean(galton_heights$father)
mu_y <- mean(galton_heights$son)
s_x <- sd(galton_heights$father)
s_y <- sd(galton_heights$son)
r <- cor(galton_heights$father, galton_heights$son)

galton_heights %>%
ggplot(aes(father, son)) +
geom_point(alpha = 0.5) +
geom_abline(slope = r * s_y/s_x, intercept = mu_y - r * s_y/s_x * mu_x)

www.dbooks.org

https://www.dbooks.org/

358 17 Regression

60

65

70

75

65 70 75
father

so
n

The regression formula implies that if we first standardize the variables, that is subtract the
average and divide by the standard deviation, then the regression line has intercept 0 and
slope equal to the correlation ρ. You can make same plot, but using standard units like this:

galton_heights %>%
ggplot(aes(scale(father), scale(son))) +
geom_point(alpha = 0.5) +
geom_abline(intercept = 0, slope = r)

17.4.1 Regression improves precision

Let’s compare the two approaches to prediction that we have presented:

1. Round fathers’ heights to closest inch, stratify, and then take the average.
2. Compute the regression line and use it to predict.

We use a Monte Carlo simulation sampling N = 50 families:

B <- 1000
N <- 50

set.seed(1983)
conditional_avg <- replicate(B, {
dat <- sample_n(galton_heights, N)
dat %>% filter(round(father) == 72) %>%
summarize(avg = mean(son)) %>%
pull(avg)

})

regression_prediction <- replicate(B, {
dat <- sample_n(galton_heights, N)
mu_x <- mean(dat$father)
mu_y <- mean(dat$son)
s_x <- sd(dat$father)
s_y <- sd(dat$son)

17.4 The regression line 359

r <- cor(dat$father, dat$son)
mu_y + r*(72 - mu_x)/s_x*s_y

})

Although the expected value of these two random variables is about the same:

mean(conditional_avg, na.rm = TRUE)
#> [1] 70.5
mean(regression_prediction)
#> [1] 70.5

The standard error for the regression prediction is substantially smaller:

sd(conditional_avg, na.rm = TRUE)
#> [1] 0.964
sd(regression_prediction)
#> [1] 0.452

The regression line is therefore much more stable than the conditional mean. There is an
intuitive reason for this. The conditional average is computed on a relatively small subset:
the fathers that are about 72 inches tall. In fact, in some of the permutations we have no
data, which is why we use na.rm=TRUE. The regression always uses all the data.

So why not always use the regression for prediction? Because it is not always appropriate. For
example, Anscombe provided cases for which the data does not have a linear relationship. So
are we justified in using the regression line to predict? Galton answered this in the positive
for height data. The justification, which we include in the next section, is somewhat more
advanced than the rest of the chapter.

17.4.2 Bivariate normal distribution (advanced)

Correlation and the regression slope are a widely used summary statistic, but they are often
misused or misinterpreted. Anscombe’s examples provide over-simplified cases of dataset in
which summarizing with correlation would be a mistake. But there are many more real-life
examples.

The main way we motivate the use of correlation involves what is called the bivariate normal
distribution.

When a pair of random variables is approximated by the bivariate normal distribution,
scatterplots look like ovals. As we saw in Section 17.2, they can be thin (high correlation)
or circle-shaped (no correlation).

A more technical way to define the bivariate normal distribution is the following: if X is
a normally distributed random variable, Y is also a normally distributed random variable,
and the conditional distribution of Y for any X = x is approximately normal, then the pair
is approximately bivariate normal.

If we think the height data is well approximated by the bivariate normal distribution, then
we should see the normal approximation hold for each strata. Here we stratify the son heights
by the standardized father heights and see that the assumption appears to hold:

www.dbooks.org

https://www.dbooks.org/

360 17 Regression

galton_heights %>%
mutate(z_father = round((father - mean(father)) / sd(father))) %>%
filter(z_father %in% -2:2) %>%
ggplot() +
stat_qq(aes(sample = son)) +
facet_wrap(~ z_father)

1 2

−2 −1 0

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2
60

65

70

75

60

65

70

75

theoretical

sa
m

pl
e

Now we come back to defining correlation. Galton used mathematical statistics to demon-
strate that, when two variables follow a bivariate normal distribution, computing the regres-
sion line is equivalent to computing conditional expectations. We don’t show the derivation
here, but we can show that under this assumption, for any given value of x, the expected
value of the Y in pairs for which X = x is:

E(Y |X = x) = µY + ρ
X − µX

σX
σY

This is the regression line, with slope
ρ

σY

σX

and intercept µy − mµX . It is equivalent to the regression equation we showed earlier which
can be written like this:

E(Y | X = x) − µY

σY
= ρ

x − µX

σX

This implies that, if our data is approximately bivariate, the regression line gives the condi-
tional probability. Therefore, we can obtain a much more stable estimate of the conditional
expectation by finding the regression line and using it to predict.

In summary, if our data is approximately bivariate, then the conditional expectation, the
best prediction of Y given we know the value of X, is given by the regression line.

17.4 The regression line 361

17.4.3 Variance explained

The bivariate normal theory also tells us that the standard deviation of the conditional
distribution described above is:

SD(Y | X = x) = σY

√
1 − ρ2

To see why this is intuitive, notice that without conditioning, SD(Y) = σY , we are looking
at the variability of all the sons. But once we condition, we are only looking at the variability
of the sons with a tall, 72-inch, father. This group will all tend to be somewhat tall so the
standard deviation is reduced.

Specifically, it is reduced to
√

1 − ρ2 =
√

1 − 0.25 = 0.87 of what it was originally. We could
say that father heights “explain” 13% of the variability observed in son heights.

The statement “X explains such and such percent of the variability” is commonly used in
academic papers. In this case, this percent actually refers to the variance (the SD squared).
So if the data is bivariate normal, the variance is reduced by 1 − ρ2, so we say that X
explains 1 − (1 − ρ2) = ρ2 (the correlation squared) of the variance.

But it is important to remember that the “variance explained” statement only makes sense
when the data is approximated by a bivariate normal distribution.

17.4.4 Warning: there are two regression lines

We computed a regression line to predict the son’s height from father’s height. We used
these calculations:

mu_x <- mean(galton_heights$father)
mu_y <- mean(galton_heights$son)
s_x <- sd(galton_heights$father)
s_y <- sd(galton_heights$son)
r <- cor(galton_heights$father, galton_heights$son)
m_1 <- r * s_y / s_x
b_1 <- mu_y - m_1*mu_x

which gives us the function E(Y | X = x) = 37.3 + 0.46 x.

What if we want to predict the father’s height based on the son’s? It is important to know
that this is not determined by computing the inverse function: x = {E(Y | X = x)− 37.3
}/ 0.5.

We need to compute E(X | Y = y). Since the data is approximately bivariate normal, the
theory described above tells us that this conditional expectation will follow a line with slope
and intercept:

m_2 <- r * s_x / s_y
b_2 <- mu_x - m_2 * mu_y

So we get E(X | Y = y) = 40.9 + 0.41y. Again we see regression to the average: the

www.dbooks.org

https://www.dbooks.org/

