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Preface to the Second Edition

We are happy that Springer Verlag asked us to prepare the second edition of our

textbook Analysis for Computer Scientists. We are still convinced that the algo-

rithmic approach developed in the first edition is an appropriate concept for pre-

senting the subject of analysis. Accordingly, there was no need to make larger

changes.

However, we took the opportunity to add and update some material. In partic-

ular, we added hyperbolic functions and gave some more details on curves and

surfaces in space. Two new sections have been added: One on second-order dif-

ferential equations and one on the pendulum equation. Moreover, the exercise

sections have been extended considerably. Statistical data have been updated where

appropriate.

Due to the essential importance of the MATLAB programs for our concept, we

have decided to provide these programs additionally in Python for the users’

convenience.

We thank the editors of Springer, especially Simon Rees and Wayne Wheeler,

for their support during the preparation of the second edition.

Innsbruck, Austria Michael Oberguggenberger

March 2018 Alexander Ostermann
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Preface to the First Edition

Mathematics and mathematical modelling are of central importance in computer

science. For this reason the teaching concepts of mathematics in computer science

have to be constantly reconsidered, and the choice of material and the motivation

have to be adapted. This applies in particular to mathematical analysis, whose

significance has to be conveyed in an environment where thinking in discrete

structures is predominant. On the one hand, an analysis course in computer science

has to cover the essential basic knowledge. On the other hand, it has to convey the

importance of mathematical analysis in applications, especially those which will be

encountered by computer scientists in their professional life.

We see a need to renew the didactic principles of mathematics teaching in

computer science, and to restructure the teaching according to contemporary

requirements. We try to give an answer with this textbook which we have devel-

oped based on the following concepts:

1. algorithmic approach;

2. concise presentation;

3. integrating mathematical software as an important component;

4. emphasis on modelling and applications of analysis.

The book is positioned in the triangle between mathematics, computer science and

applications. In this field, algorithmic thinking is of high importance. The algo-

rithmic approach chosen by us encompasses:

a. development of concepts of analysis from an algorithmic point of view;

b. illustrations and explanations using MATLAB andmaple programs as well as Java

applets;

c. computer experiments and programming exercises as motivation for actively

acquiring the subject matter;

d. mathematical theory combined with basic concepts and methods of numerical

analysis.

Concise presentation means for us that we have deliberately reduced the subject

matter to the essential ideas. For example, we do not discuss the general conver-

gence theory of power series; however, we do outline Taylor expansion with an

estimate of the remainder term. (Taylor expansion is included in the book as it is an

vii
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indispensable tool for modelling and numerical analysis.) For the sake of read-

ability, proofs are only detailed in the main text if they introduce essential ideas and

contribute to the understanding of the concepts. To continue with the example

above, the integral representation of the remainder term of the Taylor expansion is

derived by integration by parts. In contrast, Lagrange’s form of the remainder term,

which requires the mean value theorem of integration, is only mentioned. Never-

theless we have put effort into ensuring a self-contained presentation. We assign a

high value to geometric intuition, which is reflected in a large number of

illustrations.

Due to the terse presentation it was possible to cover the whole spectrum from

foundations to interesting applications of analysis (again selected from the view-

point of computer science), such as fractals, L-systems, curves and surfaces, linear

regression, differential equations and dynamical systems. These topics give suffi-

cient opportunity to enter various aspects of mathematical modelling.

The present book is a translation of the original German version that appeared in

2005 (with the second edition in 2009). We have kept the structure of the German

text, but took the opportunity to improve the presentation at various places.

The contents of the book are as follows. Chapters 1–8, 10–12 and 14–17 are

devoted to the basic concepts of analysis, and Chapters 9, 13 and 18–21 are ded-

icated to important applications and more advanced topics. The Appendices A and

B collect some tools from vector and matrix algebra, and Appendix C supplies

further details which were deliberately omitted in the main text. The employed

software, which is an integral part of our concept, is summarised in Appendix D.

Each chapter is preceded by a brief introduction for orientation. The text is enriched

by computer experiments which should encourage the reader to actively acquire the

subject matter. Finally, every chapter has exercises, half of which are to be solved

with the help of computer programs. The book can be used from the first semester

on as the main textbook for a course, as a complementary text or for self-study.

We thank Elisabeth Bradley for her help in the translation of the text. Further, we

thank the editors of Springer, especially Simon Rees and Wayne Wheeler, for their

support and advice during the preparation of the English text.

Innsbruck, Austria Michael Oberguggenberger

January 2011 Alexander Ostermann
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1Numbers

The commonly known rational numbers (fractions) are not sufficient for a rigor-

ous foundation of mathematical analysis. The historical development shows that for

issues concerning analysis, the rational numbers have to be extended to the real num-

bers. For clarity we introduce the real numbers as decimal numbers with an infinite

number of decimal places. We illustrate exemplarily how the rules of calculation and

the order relation extend from the rational to the real numbers in a natural way.

A further section is dedicated to floating point numbers, which are implemented

in most programming languages as approximations to the real numbers. In particular,

we will discuss optimal rounding and in connection with this the relative machine

accuracy.

1.1 The Real Numbers

In this book we assume the following number systems as known:

N = {1, 2, 3, 4, . . .} the set of natural numbers;
N0 = N ∪ {0} the set of natural numbers including zero;
Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} the set of integers;
Q =

{

k
n

; k ∈ Z and n ∈ N
}

the set of rational numbers.

Two rational numbers k
n

and ℓ
m

are equal if and only if km = ℓn. Further an integer

k ∈ Z can be identified with the fraction k
1

∈ Q. Consequently, the inclusions N ⊂
Z ⊂ Q are true.
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2 1 Numbers

Let M and N be arbitrary sets. A mapping from M to N is a rule which assigns to

each element in M exactly one element in N .1 A mapping is called bijective, if for

each element n ∈ N there exists exactly one element in M which is assigned to n.

Definition 1.1 Two sets M and N have the same cardinality if there exists a bijective

mapping between these sets. A set M is called countably infinite if it has the same

cardinality as N.

The sets N, Z and Q have the same cardinality and in this sense are equally large.

All three sets have an infinite number of elements which can be enumerated. Each

enumeration represents a bijective mapping to N. The countability of Z can be seen

from the representation Z = {0, 1,−1, 2,−2, 3, −3, . . .}. To prove the countability

of Q, Cantor’s2 diagonal method is being used:

1
1

→ 2
1

3
1

→ 4
1

. . .

ւ ր ւ
1
2

2
2

3
2

4
2

. . .

↓ ր ւ
1
3

2
3

3
3

4
3

. . .

ւ
1
4

2
4

3
4

4
4

. . .
...

...
...

...

The enumeration is carried out in direction of the arrows, where each rational number

is only counted at its first appearance. In this way the countability of all positive

rational number (and therefore all rational numbers) is proven.

To visualise the rational numbers we use a line, which can be pictured as an

infinitely long ruler, on which an arbitrary point is labelled as zero. The integers are

marked equidistantly starting from zero. Likewise each rational number is allocated

a specific place on the real line according to its size, see Fig. 1.1.

However, the real line also contains points which do not correspond to rational

numbers. (We say that Q is not complete.) For instance, the length of the diagonal d

in the unit square (see Fig. 1.2) can be measured with a ruler. Yet, the Pythagoreans

already knew that d2 = 2, but that d =
√

2 is not a rational number.

2a1
1

2

1

30−
1

2
−1−2

Fig. 1.1 The real line

1We will rarely use the term mapping in such generality. The special case of real-valued functions,

which is important for us, will be discussed thoroughly in Chap. 2.
2G. Cantor, 1845–1918.
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Fig. 1.2 Diagonal in the unit

square

1

1

√

2

Proposition 1.2
√

2 /∈ Q.

Proof This statement is proven indirectly. Assume that
√

2 were rational. Then√
2 can be represented as a reduced fraction

√
2 = k

n
∈ Q. Squaring this equa-

tion gives k2 = 2n2 and thus k2 would be an even number. This is only possible if

k itself is an even number, so k = 2l. If we substitute this into the above we obtain

4l2 = 2n2 which simplifies to 2l2 = n2. Consequently n would also be even which

is in contradiction to the initial assumption that the fraction k
n

was reduced. �

As it is generally known,
√

2 is the unique positive root of the polynomial x2 − 2.

The naive supposition that all non-rational numbers are roots of polynomials with

integer coefficients turns out to be incorrect. There are other non-rational numbers

(so-called transcendental numbers) which cannot be represented in this way. For

example, the ratio of a circle’s circumference to its diameter

π = 3.141592653589793... /∈ Q

is transcendental, but can be represented on the real line as half the circumference

of the circle with radius 1 (e.g. through unwinding).

In the following we will take up a pragmatic point of view and construct the

missing numbers as decimals.

Definition 1.3 A finite decimal number x with l decimal places has the form

x = ± d0.d1d2d3 . . . dl

with d0 ∈ N0 and the single digits di ∈ {0, 1, . . . , 9}, 1 ≤ i ≤ l, with dl �= 0.

Proposition 1.4 (Representing rational numbers as decimals) Each rational num-

ber can be written as a finite or periodic decimal.

Proof Let q ∈ Q and consequently q = k
n

with k ∈ Z and n ∈ N. One obtains the

representation of q as a decimal by successive division with remainder. Since the

remainder r ∈ N always fulfils the condition 0 ≤ r < n, the remainder will be zero

or periodic after a maximum of n iterations. �

Example 1.5 Let us take q = − 5
7

∈ Q as an example. Successive division with re-

mainder shows that q = −0.71428571428571... with remainders 5, 1, 3, 2, 6, 4, 5,

1, 3, 2, 6, 4, 5, 1, 3, . . . The period of this decimal is six.
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4 1 Numbers

Each nonzero decimal with a finite number of decimal places can be written as a

periodic decimal (with an infinite number of decimal places). To this end one dimin-

ishes the last nonzero digit by one and then fills the remaining infinitely many decimal

places with the digit 9. For example, the fraction − 17
50

= −0.34 = −0.3399999...

becomes periodic after the third decimal place. In this way Q can be considered as

the set of all decimals which turn periodic from a certain number of decimal places

onwards.

Definition 1.6 The set of real numbers R consists of all decimals of the form

± d0.d1d2d3...

with d0 ∈ N0 and digits di ∈ {0, ..., 9}, i.e. decimals with an infinite number of

decimal places. The set R \ Q is called the set of irrational numbers.

Obviously Q ⊂ R. According to what was mentioned so far the numbers

0.1010010001000010... and
√

2

are irrational. There are much more irrational than rational numbers, as is shown by

the following proposition.

Proposition 1.7 The set R is not countable and has therefore higher cardinality

than Q.

Proof This statement is proven indirectly. Assume the real numbers between 0 and

1 to be countable and tabulate them:

1 0. d11 d12 d13 d14...

2 0. d21 d22 d23 d24...

3 0. d31 d32 d33 d34...

4 0. d41 d42 d43 d44...

. ...

. ...

With the help of this list, we define

di =
{

1 if di i = 2,

2 else.

Then x = 0.d1d2d3d4... is not included in the above list which is a contradiction to

the initial assumption of countability. �
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30

1;24,51,10

42;25
,35

Fig. 1.3 Babylonian cuneiform inscription YBC 7289 (Yale Babylonian Collection, with authori-

sation) from 1900 before our time with a translation of the inscription according to [1]. It represents

a square with side length 30 and diagonals 42; 25, 35. The ratio is
√

2 ≈ 1; 24, 51, 10

However, although R contains considerably more numbers than Q, every real

number can be approximated by rational numbers to any degree of accuracy, e.g.

π to nine digits

π ≈
314159265

100000000
∈ Q.

Good approximations to the real numbers are sufficient for practical applications.

For
√

2, already the Babylonians were aware of such approximations:

√
2 ≈ 1; 24, 51, 10 = 1 +

24

60
+

51

602
+

10

603
= 1.41421296... ,

see Fig. 1.3. The somewhat unfamiliar notation is due to the fact that the Babylonians

worked in the sexagesimal system with base 60.

1.2 Order Relation and Arithmetic on R

In the following we write real numbers (uniquely) as decimals with an infinite number

of decimal places, for example, we write 0.2999... instead of 0.3.

Definition 1.8 (Order relation) Let a = a0.a1a2... and b = b0.b1b2... be non-

negative real numbers in decimal form, i.e. a0, b0 ∈ N0.

(a) One says that a is less than or equal to b (and writes a ≤ b), if a = b or if there

is an index j ∈ N0 such that a j < b j and ai = bi for i = 0, . . . , j − 1.

(b) Furthermore one stipulates that always −a ≤ b and sets −a ≤ −b whenever

b ≤ a.

This definition extends the known orders of N and Q to R. The interpretation of

the order relation ≤ on the real line is as follows: a ≤ b holds true, if a is to the left

of b on the real line, or a = b.
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6 1 Numbers

The relation ≤ obviously has the following properties. For all a, b, c ∈ R it holds

that

a ≤ a (reflexivity),

a ≤ b and b ≤ c ⇒ a ≤ c (transitivity),

a ≤ b and b ≤ a ⇒ a = b (antisymmetry).

In case of a ≤ b and a �= b one writes a < b and calls a less than b. Furthermore

one defines a ≥ b, if b ≤ a (in words: a greater than or equal to b), and a > b, if

b < a (in words: a greater than b).

Addition and multiplication can be carried over from Q to R in a similar way.

Graphically one uses the fact that each real number corresponds to a segment on

the real line. One thus defines the addition of real numbers as the addition of the

respective segments.

A rigorous and at the same time algorithmic definition of the addition starts from

the observation that real numbers can be approximated by rational numbers to any

degree of accuracy. Let a = a0.a1a2... and b = b0.b1b2... be two non-negative real

numbers. By cutting them off after k decimal places we obtain two rational approxi-

mations a(k) = a0.a1a2...ak ≈ a and b(k) = b0.b1b2...bk ≈ b. Then a(k) + b(k) is a

monotonically increasing sequence of approximations to the yet to be defined num-

ber a + b. This allows one to define a + b as supremum of these approximations.

To justify this approach rigorously we refer to Chap. 5. The multiplication of real

numbers is defined in the same way. It turns out that the real numbers with addition

and multiplication (R, +, ·) are a field. Therefore the usual rules of calculation apply,

e.g., the distributive law

(a + b)c = ac + bc.

The following proposition recapitulates some of the important rules for ≤. The

statements can easily be verified with the help of the real line.

Proposition 1.9 For all a, b, c ∈ R the following holds:

a ≤ b ⇒ a + c ≤ b + c,

a ≤ b and c ≥ 0 ⇒ ac ≤ bc,

a ≤ b and c ≤ 0 ⇒ ac ≥ bc.

Note that a < b does not imply a2 < b2. For example −2 < 1, but nonetheless

4 > 1. However, for a, b ≥ 0 it always holds that a < b ⇔ a2 < b2.

Definition 1.10 (Intervals) The following subsets of R are called intervals:

[a, b] = {x ∈ R ; a ≤ x ≤ b} closed interval;

(a, b] = {x ∈ R ; a < x ≤ b} left half-open interval;

[a, b) = {x ∈ R ; a ≤ x < b} right half-open interval;

(a, b) = {x ∈ R ; a < x < b} open interval.
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fedcba

Fig. 1.4 The intervals (a, b), [c, d] and (e, f ] on the real line

Intervals can be visualised on the real line, as illustrated in Fig. 1.4.

It proves to be useful to introduce the symbols −∞ (minus infinity) and ∞
(infinity), by means of the property

∀a ∈ R : −∞ < a < ∞.

One may then define, e.g., the improper intervals

[a,∞) = {x ∈ R ; x ≥ a}
(−∞, b) = {x ∈ R ; x < b}

and furthermore (−∞, ∞) = R. Note that −∞ and ∞ are only symbols and not

real numbers.

Definition 1.11 The absolute value of a real number a is defined as

|a| =
{

a, if a ≥ 0,

−a, if a < 0.

As an application of the properties of the order relation given in Proposition 1.9

we exemplarily solve some inequalities.

Example 1.12 Find all x ∈ R satisfying −3x − 2 ≤ 5 < −3x + 4. In this example

we have the following two inequalities

−3x − 2 ≤ 5 and 5 < −3x + 4.

The first inequality can be rearranged to

−3x ≤ 7 ⇔ x ≥ −
7

3
.

This is the first constraint for x . The second inequality states

3x < −1 ⇔ x < −
1

3

and poses a second constraint for x . The solution to the original problem must fulfil

both constraints. Therefore the solution set is

S =
{

x ∈ R; −
7

3
≤ x < −

1

3

}

=
[

−
7

3
,−

1

3

)

.
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8 1 Numbers

Example 1.13 Find all x ∈ R satisfying x2 − 2x ≥ 3. By completing the square the

inequality is rewritten as

(x − 1)2 = x2 − 2x + 1 ≥ 4.

Taking the square root we obtain two possibilities

x − 1 ≥ 2 or x − 1 ≤ −2.

The combination of those gives the solution set

S = {x ∈ R ; x ≥ 3 or x ≤ −1} = (−∞, −1] ∪ [3, ∞).

1.3 Machine Numbers

The real numbers can be realised only partially on a computer. In exact arithmetic,

like for example in maple, real numbers are treated as symbolic expressions, e.g.√
2 = RootOf(_Zˆ2-2). With the help of the command evalf they can be

evaluated, exact to many decimal places.

The floating point numbers that are usually employed in programming languages

as substitutes for the real numbers have a fixed relative accuracy, e.g. double precision

with 52 bit mantissa. The arithmetic rules of R are not valid for these machine

numbers, e.g.

1 + 10−20 = 1

in double precision. Floating point numbers are standardised by the Institute of

Electrical and Electronics Engineers IEEE 754-1985 and by the International Elec-

trotechnical Commission IEC 559:1989. In the following we give a short outline of

these machine numbers. Further information can be found in [20].

One distinguishes between single and double format. The single format (single

precision) requires 32-bit storage space

V e M

1 8 23

The double format (double precision) requires 64-bit storage space

V e M

1 11 52

Here, V ∈ {0, 1} denotes the sign, emin ≤ e ≤ emax is the exponent (a signed integer)

and M is the mantissa of length p

M = d12−1 + d22−2 + . . . + dp2−p ∼= d1d2 . . . dp, d j ∈ {0, 1}.
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2
emin+1

2
emin

2
emin−1

0

Fig. 1.5 Floating point numbers on the real line

This representation corresponds to the following number x :

x = (−1)V 2e

p
∑

j=1

d j 2
− j .

Normalised floating point numbers in base 2 always have d1 = 1. Therefore, one

does not need to store d1 and obtains for the mantissa

single precision p = 24;
double precision p = 53.

To simplify matters we will only describe the key features of floating point numbers.

For the subtleties of the IEEE-IEC standard, we refer to [20].

In our representation the following range applies for the exponents:

emin emax

single precision −125 128

double precision −1021 1024

With M = Mmax and e = emax one obtains the largest floating point number

xmax =
(

1 − 2−p
)

2emax ,

whereas M = Mmin and e = emin gives the smallest positive (normalised) floating

point number

xmin = 2emin−1.

The floating point numbers are not evenly distributed on the real line, but their relative

density is nearly constant, see Fig. 1.5.

In the IEEE standard the following approximate values apply:

xmin xmax

single precision 1.18 · 10−38 3.40 · 1038

double precision 2.23 · 10−308 1.80 · 10308

Furthermore, there are special symbols like

±INF . . . ± ∞
NaN . . . not a number, e.g. for zero divided by zero.

In general, one can continue calculating with these symbols without program termi-

nation.
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10 1 Numbers

1.4 Rounding

Let x = a · 2e ∈ R with 1/2 ≤ a < 1 and xmin ≤ x ≤ xmax. Furthermore, let

u, v be two adjacent machine numbers with u ≤ x ≤ v. Then

u = 0 e b1 . . . bp

and

v = u + 0 e 00 . . . 01 = u + 0 e − (p − 1) 10 . . . 00

Thus v − u = 2e−p and the inequality

|rd(x) − x | ≤
1

2
(v − u) = 2e−p−1

holds for the optimal rounding rd(x) of x . With this estimate one can determine the

relative error of the rounding. Due to 1
a

≤ 2 it holds that

|rd(x) − x |
x

≤
2e−p−1

a · 2e
≤ 2 · 2−p−1 = 2−p.

The same calculation is valid for negative x (by using the absolute value).

Definition 1.14 The number eps = 2−p is called relative machine accuracy.

The following proposition is an important application of this concept.

Proposition 1.15 Let x ∈ R with xmin ≤ |x | ≤ xmax. Then there exists ε ∈ R with

rd(x) = x(1 + ε) and |ε| ≤ eps.

Proof We define

ε =
rd(x) − x

x
.

According to the calculation above, we have |ε| ≤ eps. �

Experiment 1.16 (Experimental determination of eps) Let z be the smallest pos-

itive machine number for which 1 + z > 1.

1 = 0 1 100 . . . 00 , z = 0 1 000 . . . 01 = 2 · 2−p.

Thus z = 2eps. The number z can be determined experimentally and therefore eps

as well. (Note that the number z is called eps in MATLAB.)
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In IEC/IEEE standard the following applies:

single precision : eps = 2−24 ≈ 5.96 · 10−8,

double precision : eps = 2−53 ≈ 1.11 · 10−16.

In double precision arithmetic an accuracy of approximately 16 places is available.

1.5 Exercises

1. Show that
√

3 is irrational.

2. Prove the triangle inequality

|a + b| ≤ |a| + |b|

for all a, b ∈ R.

Hint. Distinguish the cases where a and b have either the same or different signs.

3. Sketch the following subsets of the real line:

A = {x : |x | ≤ 1}, B = {x : |x − 1| ≤ 2}, C = {x : |x | ≥ 3}.

More generally, sketch the set Ur (a) = {x : |x − a| < r} (for a ∈ R, r > 0).

Convince yourself that Ur (a) is the set of points of distance less than r to the

point a.

4. Solve the following inequalities by hand as well as with maple (using solve).

State the solution set in interval notation.

(a) 4x2 ≤ 8x + 1, (b)
1

3 − x
> 3 + x,

(c)
∣

∣2 − x2
∣

∣ ≥ x2, (d)
1 + x

1 − x
> 1,

(e) x2 < 6 + x, (f)
∣

∣|x | − x
∣

∣ ≥ 1,

(g) |1 − x2| ≤ 2x + 2, (h) 4x2 − 13x + 4 < 1.

5. Determine the solution set of the inequality

8(x − 2) ≥
20

x + 1
+ 3(x − 7).

6. Sketch the regions in the (x, y)-plane which are given by

(a) x = y; (b) y < x; (c) y > x; (d) y > |x |; (e) |y| > |x |.

Hint. Consult Sects. A.1 and A.6 for basic plane geometry.

www.dbooks.org

https://www.dbooks.org/


12 1 Numbers

7. Compute the binary representation of the floating point number x = 0.1 in single

precision IEEE arithmetic.

8. Experimentally determine the relative machine accuracy eps.

Hint. Write a computer program in your programming language of choice which

calculates the smallest machine number z such that 1 + z > 1.



2Real-Valued Functions

The notion of a function is the mathematical way of formalising the idea that one

or more independent quantities are assigned to one or more dependent quantities.

Functions in general and their investigation are at the core of analysis. They help to

model dependencies of variable quantities, from simple planar graphs, curves and

surfaces in space to solutions of differential equations or the algorithmic construction

of fractals. One the one hand, this chapter serves to introduce the basic concepts. On

the other hand, the most important examples of real-valued, elementary functions

are discussed in an informal way. These include the power functions, the exponential

functions and their inverses. Trigonometric functions will be discussed in Chap. 3,

complex-valued functions in Chap. 4.

2.1 Basic Notions

The simplest case of a real-valued function is a double-row list of numbers, consisting

of values from an independent quantity x and corresponding values of a dependent

quantity y.

Experiment 2.1 Study the mapping y = x2 with the help of MATLAB. First choose

the region D in which the x-values should vary, for instance D = {x ∈ R : −1 ≤
x ≤ 1}. The command

x = −1 : 0.01 : 1;

produces a list of x-values, the row vector

x = [x1, x2, . . . , xn] = [−1.00,−0.99,−0.98, . . . , 0.99, 1.00].

© Springer Nature Switzerland AG 2018
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14 2 Real-Valued Functions

Using

y = x.ˆ2;

a row vector of the same length of corresponding y-values is generated. Finally

plot(x,y) plots the points (x1, y1), . . . , (xn, yn) in the coordinate plane and con-

nects them with line segments. The result can be seen in Fig. 2.1.

In the general mathematical framework we do not just want to assign finite lists

of values. In many areas of mathematics functions defined on arbitrary sets are

needed. For the general set-theoretic notion of a function we refer to the literature,

e.g. [3, Chap. 0.2]. This section is dedicated to real-valued functions, which are

central in analysis.

Definition 2.2 A real-valued function f with domain D and range R is a rule which

assigns to every x ∈ D a real number y ∈ R.

−1 0 1

0

0.5

1

Fig. 2.1 A function

In general, D is an arbitrary set. In this section,

however, it will be a subset of R. For the expres-

sion function we also use the word mapping synony-

mously. A function is denoted by

f : D → R : x �→ y = f (x).

The graph of the function f is the set

Γ ( f ) = {(x, y) ∈ D × R ; y = f (x)}.

In the case of D ⊂ R the graph can also be represented as a subset of the coordinate

plane. The set of the actually assumed values is called image of f or proper range:

f (D) = { f (x) ; x ∈ D}.

Example 2.3 A part of the graph of the quadratic function f : R → R, f (x) = x2

is shown in Fig. 2.2. If one chooses the domain to be D = R, then the image is the

interval f (D) = [0,∞).

An important tool is the concept of inverse functions, whether to solve equations

or to find new types of functions. If and in which domain a given function has an

inverse depends on two main properties, the injectivity and the surjectivity, which

we investigate on their own at first.

Definition 2.4 (a) A function f : D → R is called injective or one-to-one, if differ-

ent arguments always have different function values:

x1 �= x2 ⇒ f (x1) �= f (x2).
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−1 0 1

−0.5

0

0.5

1

1.5

D = R

Γ (f)
(x, x2)

y

x

Fig. 2.2 Quadratic function

(b) A function f : D → B ⊂ R is called surjective or onto from D to B, if each

y ∈ B appears as a function value:

∀y ∈ B ∃x ∈ D : y = f (x).

(c) A function f : D → B is called bijective, if it is injective and surjective.

Figures 2.3 and 2.4 illustrate these notions.

Surjectivity can always be enforced by reducing the range B; for example,

f : D → f (D) is always surjective. Likewise, injectivity can be obtained by restrict-

ing the domain to a subdomain.

If f : D → B is bijective, then for every y ∈ B there exists exactly one x ∈ D

with y = f (x). The mapping y �→ x then defines the inverse of the mapping x �→ y.

Definition 2.5 If the function

f : D → B : y = f (x),

is bijective, then the assignment

f −1 : B → D : x = f −1(y),

−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

injective

y = x3

x

not injective

y = x2

x

Fig. 2.3 Injectivity
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−1 0 1

−0.5

0

0.5

1

1.5

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

surjective

y = 2x3 − x

x

not surjective on B = R

y = x4

x

Fig. 2.4 Surjectivity

Fig. 2.5 Bijectivity and

inverse function

y = f(x) = x2

x = f−1(y) =
√

y

y

x

which maps each y ∈ B to the unique x ∈ D with y = f (x) is called the inverse

function of the function f .

Example 2.6 The quadratic function f (x) = x2 is bijective from D = [0,∞) to

B = [0,∞). In these intervals (x ≥ 0, y ≥ 0) one has

y = x2 ⇔ x =
√

y.

Here
√

y denotes the positive square root. Thus the inverse of the quadratic function

on the above intervals is given by f −1(y) = √
y ; see Fig. 2.5.

Once one has found the inverse function f −1, it is usually written with variables

y = f −1(x). This corresponds to flipping the graph of y = f (x) about the diagonal

y = x , as is shown in Fig. 2.6.

Experiment 2.7 The term inverse function is clearly illustrated by the MATLAB plot

command. The graph of the inverse function can easily be plotted by interchanging

the variables, which exactly corresponds to flipping the lists y ↔ x . For example,
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Fig. 2.6 Inverse function

and reflection in the diagonal

y = f−1(x)

y = f(x)

y

x

the graphs in Fig. 2.6 are obtained by

x = 0:0.01:1;

y = x.ˆ2;

plot(x,y)

hold on

plot(y,x)

How the formatting, the dashed diagonal and the labelling are obtained can be learned

from the M-file mat02_1.m.

2.2 Some Elementary Functions

The elementary functions are the powers and roots, exponential functions and loga-

rithms, trigonometric functions and their inverse functions, as well as all functions

which are obtained by combining these. We are going to discuss the most important

basic types which have historically proven to be of importance for applications. The

trigonometric functions will be dealt with in Chap. 3.

Linear functions (straight lines). A linear function R → R assigns each x-value a

fixed multiple as y-value, i.e.,

y = kx .

Here

k =
increase in height

increase in length
=

∆y

∆x

is the slope of the graph, which is a straight line through the origin. The connection

between the slope and the angle between the straight line and x-axis is discussed in

Sect. 3.1. Adding an intercept d ∈ R translates the straight line d units in y-direction

(Fig. 2.7). The equation is then

y = kx + d.
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Fig. 2.7 Equation of a straight line

Quadratic parabolas. The quadratic function with domain D = R in its basic form

is given by

y = x2.

Compression/stretching, horizontal and vertical translation are obtained via

y = αx2, y = (x − β)2, y = x2 + γ.

The effect of these transformations on the graph can be seen in Fig. 2.8.

α > 1 … compression in x-direction

0 < α < 1 … stretching in x-direction

α < 0 … reflection in the x-axis

β > 0 … translation to the right γ > 0 … translation upwards

β < 0 … translation to the left γ < 0 … translation downwards

The general quadratic function can be reduced to these cases by completing the

square:

y = ax2 + bx + c

= a
(

x +
b

2a

)2
+ c −

b2

4a

= α(x − β)2 + γ.

Power functions. In the case of an integer exponent n ∈ N the following rules apply

xn = x · x · x · · · · · x (n factors), x1 = x,

x0 = 1, x−n =
1

xn
(x �= 0).

The behaviour of y = x3 can be seen in the picture on the right-hand side of

Fig. 2.3, the one of y = x4 in the picture on the left-hand side of Fig. 2.4. The graphs

for odd and even powers behave similarly.
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Fig. 2.9 Power functions with fractional and negative exponents

As an example of fractional exponents we consider the root functions y =
n
√

x = x1/n for n ∈ N with domain D = [0, ∞). Here y = n
√

x is defined as the

inverse function of the nth power, see Fig. 2.9 left. The graph of y = x−1 with domain

D = R \ {0} is pictured in Fig. 2.9 right.

Absolute value, sign and indicator function. The graph of the absolute value

function

y = |x | =
{

x, x ≥ 0,

−x, x < 0

has a kink at the point (0, 0), see Fig. 2.10 left.

The graph of the sign function or signum function

y = sign x =

⎧

⎨

⎩

1, x > 0,

0, x = 0,

−1, x < 0
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Fig. 2.10 Absolute value and sign

has a jump at x = 0 (Fig. 2.10 right). The indicator function of a subset A ⊂ R is

defined as

11A(x) =
{

1, x ∈ A,

0, x /∈ A.

Exponential functions and logarithms. Integer powers of a number a > 0 have

just been defined. Fractional (rational) powers give

a1/n = n
√

a, am/n = ( n
√

a)m = n
√

am .

If r is an arbitrary real number then ar is defined by its approximations am/n , where
m
n

is the rational approximation to r obtained by decimal expansion.

Example 2.8 2π is defined by the sequence

23, 23.1, 23.14, 23.141, 23.1415, . . . ,

where

23.1 = 231/10 = 10
√

231 ; 23.14 = 2314/100 = 100
√

2314 ; . . . etc.

This somewhat informal introduction of the exponential function should be suffi-

cient to have some examples at hand for applications in the following sections. With

the tools we have developed so far we cannot yet show that this process of approx-

imation actually leads to a well-defined mathematical object. The success of this

process is based on the completeness of the real numbers. This will be thoroughly

discussed in Chap. 5.

From the definition above we obtain that the following rules of calculation are

valid for rational exponents:

ar as = ar+s

(ar )s = ars = (as)r

ar br = (ab)r
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Fig. 2.11 Exponential

functions
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y = (1/2)x
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y = 2x
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for a, b > 0 and arbitrary r, s ∈ Q. The fact that these rules are also true for real-

valued exponents r, s ∈ R can be shown by employing a limiting argument.

The graph of the exponential function with base a, the function y = ax , increases

for a > 1 and decreases for a < 1, see Fig. 2.11. Its proper range is B = (0,∞);

the exponential function is bijective from R to (0, ∞). Its inverse function is the

logarithm to the base a (with domain (0, ∞) and range R):

y = ax ⇔ x = loga y.

For example, log10 2 is the power by which 10 needs to be raised to obtain 2:

2 = 10log10 2.

Other examples are, for instance:

2 = log10(102), log10 10 = 1, log10 1 = 0, log10 0.001 = −3.

Euler’s number1 e is defined by

e = 1 +
1

1
+

1

2
+

1

6
+

1

24
+ . . .

= 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · · =

∞
∑

j=0

1

j !

≈ 2.718281828459045235360287471...

That this summation of infinitely many numbers can be defined rigorously will be

proven in Chap. 5 by invoking the completeness of the real numbers. The logarithm

to the base e is called natural logarithm and is denoted by log:

log x = loge x

1L. Euler, 1707–1783.
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Fig. 2.12 Logarithms to the base e and to the base 10

In some books the natural logarithm is denoted by ln x . We stick to the notation log x

which is used, e.g., in MATLAB. The following rules are obtained directly by rewriting

the rules for the exponential function:

u = elog u

log(uv) = log u + log v

log(uz) = z log u

for u, v > 0 and arbitrary z ∈ R. In addition, it holds that

u = log(eu)

for all u ∈ R, and log e = 1. In particular it follows from the above that

log
1

u
= − log u, log

v

u
= log v − log u.

The graphs of y = log x and y = log10 x are shown in Fig. 2.12.

Hyperbolic functions and their inverses. Hyperbolic functions and their inverses

will mainly be needed in Chap. 14 for the parametric representation of hyperbo-

las, in Chap. 10 for evaluating integrals and in Chap. 19 for explicitly solving some

differential equations.

The hyperbolic sine, the hyperbolic cosine and the hyperbolic tangent are defined

by

sinh x =
1

2

(

ex − e−x
)

, cosh x =
1

2

(

ex + e−x
)

, tanh x =
sinh x

cosh x
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Fig. 2.13 Hyperbolic sine and cosine (left), and hyperbolic tangent (right)

for x ∈ R. Their graphs are displayed in Fig. 2.13. An important property is the

identity

cosh2 x − sinh2 x = 1,

which can easily be verified by inserting the defining expressions.

Figure 2.13 shows that the hyperbolic sine is invertible as a function from R → R,

the hyperbolic cosine is invertible as a function from [0,∞) → [1, ∞), and the

hyperbolic tangent is invertible as a function from R → (−1, 1). The inverse hyper-

bolic functions, also known as area functions, are referred to as inverse hyper-

bolic sine (cosine, tangent) or area hyperbolic sine (cosine, tangent). They can be

expressed by means of logarithms as follows (see Exercise 15):

arsinh x = log
(

x +
√

x2 + 1
)

, for x ∈ R,

arcosh x = log
(

x +
√

x2 − 1
)

, for x ≥ 1,

artanh x =
1

2
log

1 + x

1 − x
, for |x | < 1.

2.3 Exercises

1. How does the graph of an arbitrary function y = f (x) : R → R change under

the transformations

y = f (ax), y = f (x − b), y = c f (x), y = f (x) + d

with a, b, c, d ∈ R? Distinguish the following different cases for a:

a < −1, −1 ≤ a < 0, 0 < a ≤ 1, a > 1,

and for b, c, d the cases

b, c, d > 0, b, c, d < 0.

Sketch the resulting graphs.
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2. Let the function f : D → R : x �→ 3x4 − 2x3 − 3x2 + 1 be given. Using

MATLAB plot the graphs of f for

D = [−1, 1.5], D = [−0.5, 0.5], D = [0.5, 1.5].

Explain the behaviour of the function for D = R and find

f ([−1, 1.5]), f ((−0.5, 0.5)), f ((−∞, 1]).

3. Which of the following functions are injective/surjective/bijective?

f : N → N : n �→ n2 − 6n + 10;
g : R → R : x �→ |x + 1| − 3;
h : R → R : x �→ x3.

Hint. Illustrative examples for the use of the MATLAB plot command may be

found in the M-file mat02_2.m.

4. Sketch the graph of the function y = x2 − 4x and justify why it is bijective as a

function from D = (−∞, 2] to B = [−4, ∞). Compute its inverse function on

the given domain.

5. Check that the following functions D → B are bijective in the given regions

and compute the inverse function in each case:

y = −2x + 3, D = R, B = R;
y = x2 + 1, D = (−∞, 0] , B = [1,∞) ;
y = x2 − 2x − 1, D = [1,∞) , B = [−2,∞) .

6. Find the equation of the straight line through the points (1, 1) and (4, 3) as well

as the equation of the quadratic parabola through the points (−1, 6), (0, 5) and

(2, 21).

7. Let the amount of a radioactive substance at time t = 0 be A grams. According

to the law of radioactive decay, there remain A · q t grams after t days. Compute

q for radioactive iodine 131 from its half life (8 days) and work out after how

many days 1
100

of the original amount of iodine 131 is remaining.

Hint. The half life is the time span after which only half of the initial amount of

radioactive substance is remaining.

8. Let I [Watt/cm2] be the sound intensity of a sound wave that hits a detector sur-

face. According to the Weber–Fechner law, its sound level L [Phon] is computed

by

L = 10 log10

(

I/I0

)

where I0 = 10−16 W/cm2. If the intensity I of a loudspeaker produces a sound

level of 80 Phon, which level is then produced by an intensity of 2I by two

loudspeakers?
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9. For x ∈ R the floor function ⌊x⌋ denotes the largest integer not greater than x ,

i.e.,

⌊x⌋ = max {n ∈ N ; n ≤ x}.

Plot the following functions with domain D = [0, 10] using the MATLAB com-

mand floor:

y = ⌊x⌋, y = x − ⌊x⌋, y = (x − ⌊x⌋)3 , y = (⌊x⌋)3 .

Try to program correct plots in which the vertical connecting lines do not appear.

10. A function f : D = {1, 2, . . . , N } → B = {1, 2, . . . , N } is given by the list of

its function values y = (y1, . . . , yN ), yi = f (i). Write a MATLAB program which

determines whether f is bijective. Test your program by generating random y-

values using

(a) y = unirnd(N,1,N), (b) y = randperm(N).

Hint. See the two M-files mat02_ex12a.m and mat02_ex12b.m or the

Python-file python02_ex12.

11. Draw the graph of the function f : R → R : y = ax + sign x for different values

of a. Distinguish between the cases a > 0, a = 0, a < 0. For which values of a

is the function f injective and surjective, respectively?

12. Let a > 0, b > 0. Verify the laws of exponents

ar as = ar+s, (ar )s = ars, ar br = (ab)r

for rational r = k/ l, s = m/n.

Hint. Start by verifying the laws for integer r and s (and arbitrary a, b > 0). To

prove the first law for rational r = k/ l, s = m/n, write

(ak/ lam/n)ln = (ak/ l)ln(am/n)ln = aknalm = akn+lm

using the third law for integer exponents and inspection; conclude that

ak/ lam/n = a(kn+lm)/ ln = ak/ l+m/n .

13. Using the arithmetics of exponentiation, verify the rules log(uv) = log u + log v

and log uz = z log u for u, v > 0 and z ∈ R.

Hint. Set x = log u, y = log v, so uv = ex ey . Use the laws of exponents and

take the logarithm.

14. Verify the identity cosh2 x − sinh2 x = 1.

15. Show that arsinh x = log
(

x +
√

x2 + 1
)

for x ∈ R.

Hint. Set y = arsinh x and solve the identity x = sinh y = 1
2
(ey − e−y) for y.

Substitute u = ey to derive the quadratic equation u2 − 2xu − 1 = 0 for u.

Observe that u > 0 to select the appropriate root of this equation.
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3Trigonometry

Trigonometric functions play a major role in geometric considerations as well as in

the modelling of oscillations. We introduce these functions at the right-angled triangle

and extend them periodically to R using the unit circle. Furthermore, we will discuss

the inverse functions of the trigonometric functions in this chapter. As an application

we will consider the transformation between Cartesian and polar coordinates.

3.1 Trigonometric Functions at the Triangle

The definitions of the trigonometric functions are based on elementary properties of

the right-angled triangle. Figure 3.1 shows a right-angled triangle. The sides adjacent

to the right angle are called legs (or catheti), the opposite side hypotenuse.

One of the basic properties of the right-angled triangle is expressed by Pythagoras’

theorem.1

Proposition 3.1 (Pythagoras) In a right-angled triangle the sum of the squares of

the legs equals the square of the hypotenuse. In the notation of Fig. 3.1 this says that

a2 + b2 = c2.

Proof According to Fig. 3.2 one can easily see that

(a + b)2 − c2 = area of the grey triangles = 2ab.

From this it follows that a2 + b2 − c2 = 0. �

1Pythagoras, approx. 570–501 B.C.
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Fig. 3.1 A right-angled

triangle with legs a, b and

hypotenuse c
α

β

c
b

a

Fig. 3.2 Basic idea of the

proof of Pythagoras’

theorem

A fundamental fact is Thales’ intercept theorem2 which says that the ratios of

the sides in a triangle are scale invariant; i.e. they do not depend on the size of the

triangle.

In the situation of Fig. 3.3 Thales’ theorem asserts that the following ratios are

valid:

a

c
=

a′

c′
,

b

c
=

b′

c′
,

a

b
=

a′

b′
.

The reason for this is that by changing the scale (enlargement or reduction of the

triangle) all sides are changed by the same factor. One then concludes that the ratios

of the sides only depend on the angle α (and β = 90◦ − α, respectively). This gives

rise to the following definition.

Fig. 3.3 Similar triangles

β

α

α

c

c b
b

a

a

2Thales of Miletus, approx. 624–547 B.C.
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Definition 3.2 (Trigonometric functions) For 0◦ ≤ α ≤ 90◦ we define

sin α =
a

c
=

opposite leg

hypotenuse
(sine),

cos α =
b

c
=

adjacent leg

hypotenuse
(cosine),

tan α =
a

b
=

opposite leg

adjacent leg
(tangent),

cot α =
b

a
=

adjacent leg

opposite leg
(cotangent).

Note that tan α is not defined for α = 90◦ (since b = 0) and that cot α is not

defined for α = 0◦ (since a = 0). The identities

tan α =
sin α

cos α
, cot α =

cos α

sin α
, sin α = cos β = cos (90◦ − α)

follow directly from the definition, the relationship

sin2 α + cos2 α = 1

is obtained using Pythagoras’ theorem.

The trigonometric functions have many applications in mathematics. As a first

example we derive the formula for the area of a general triangle; see Fig. 3.4. The

sides of a triangle are usually labelled in counterclockwise direction using lowercase

Latin letters, and the angles opposite the sides are labelled using the corresponding

Greek letters. Because F = 1
2

ch and h = b sin α the formula for the area of a triangle

can be written as

F =
1

2
bc sin α =

1

2
ac sin β =

1

2
ab sin γ.

So the area equals half the product of two sides times the sine of the enclosed angle.

The last equality in the above formula is valid for reasons of symmetry. There γ

denotes the angle opposite to the side c, in other words γ = 180◦ − α − β.

As a second example we compute the slope of a straight line. Figure 3.5 shows a

straight line y = kx + d. Its slope k is the change of the y-value per unit change in x .

It is calculated from the triangle attached to the straight line in Fig. 3.5 as k = tan α.

Fig. 3.4 A general triangle

βα

h
b a

c
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Fig. 3.5 Straight line with

slope k

α

1

k

y = kx + dy

x

Fig. 3.6 Relationship

between degrees and radian

measure

1

α

In order to have simple formulas such as

d

dx
sin x = cos x,

one has to measure the angle in radian measure. The connection between degree and

radian measure can be seen from the unit circle (i.e., the circle with centre 0 and

radius 1); see Fig. 3.6.

The radian measure of the angle α (in degrees) is defined as the length ℓ of the

corresponding arc of the unit circle with the sign of α. The arc length ℓ on the unit

circle has no physical unit. However, one speaks about radians (rad) to emphasise

the difference to degrees.

As is generally known the circumference of the unit circle is 2π with the constant

π = 3.141592653589793... ≈
22

7
.

For the conversion between the two measures we use that 360◦ corresponds to 2π in

radian measure, for short 360◦ ↔ 2π [rad], so

α◦ ↔
π

180
α [rad] and ℓ [rad] ↔

(

180

π
ℓ

)◦

,

respectively. For example, 90◦ ↔ π
2

and −270◦ ↔ − 3π
2

. Henceforth we always

measure angles in radians.
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3.2 Extension of the Trigonometric Functions to R

For 0 ≤ α ≤ π
2

the values sin α, cos α, tan α and cot α have a simple interpretation

on the unit circle; see Fig. 3.7. This representation follows from the fact that the

hypotenuse of the defining triangle has length 1 on the unit circle.

One now extends the definition of the trigonometric functions for 0 ≤ α ≤ 2π by

continuation with the help of the unit circle. A general point P on the unit circle,

which is defined by the angle α, is assigned the coordinates

P = (cos α, sin α),

see Fig. 3.8. For 0 ≤ α ≤ π
2

this is compatible with the earlier definition. For larger

angles the sine and cosine functions are extended to the interval [0, 2π] by this

convention. For example, it follows from the above that

sin α = − sin(α − π), cos α = − cos(α − π)

for π ≤ α ≤ 3π
2

, see Fig. 3.8.

For arbitrary values α ∈ R one finally defines sin α and cos α by periodic contin-

uation with period 2π. For this purpose one first writes α = x + 2kπ with a unique

x ∈ [0, 2π) and k ∈ Z. Then one sets

sin α = sin (x + 2kπ) = sin x, cos α = cos (x + 2kπ) = cos x .

Fig. 3.7 Definition of the

trigonometric functions on

the unit circle

tan α

cot α

sin α

cos α

1

1

α

Fig. 3.8 Extension of the

trigonometric functions on

the unit circle

sin α

cos α

1

1

P

α
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Fig. 3.9 The graphs of the sine and cosine functions in the interval [−2π, 2π]

With the help of the formulas

tan α =
sin α

cos α
, cot α =

cos α

sin α

the tangent and cotangent functions are extended as well. Since the sine function

equals zero for integer multiples of π, the cotangent is not defined for such arguments.

Likewise the tangent is not defined for odd multiples of π
2

.

The graphs of the functions y = sin x , y = cos x are shown in Fig. 3.9. The domain

of both functions is D = R.

The graphs of the functions y = tan x and y = cot x are presented in Fig. 3.10.

The domain D for the tangent is, as explained above, given by D = {x ∈ R ; x �=
π
2

+ kπ, k ∈ Z}, the one for the cotangent is D = {x ∈ R ; x �= kπ, k ∈ Z}.

Many relations are valid between the trigonometric functions. For example, the

following addition theorems, which can be proven by elementary geometrical con-

siderations, are valid; see Exercise 3. The maple commandsexpand andcombine

use such identities to simplify trigonometric expressions.

Proposition 3.3 (Addition theorems) For x, y ∈ R it holds that

sin (x + y) = sin x cos y + cos x sin y,

cos (x + y) = cos x cos y − sin x sin y.
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Fig. 3.10 The graphs of the tangent (left) and cotangent (right) functions

3.3 Cyclometric Functions

The cyclometric functions are inverse to the trigonometric functions in the appropri-

ate bijectivity regions.

Sine and arcsine. The sine function is bijective from the interval [−π
2
, π

2
] to the

range [−1, 1]; see Fig. 3.9. This part of the graph is called principal branch of the

sine. Its inverse function (Fig. 3.11) is called arcsine (or sometimes inverse sine)

arcsin : [−1, 1] →
[

−
π

2
,
π

2

]

.

According to the definition of the inverse function it follows that

sin(arcsin y) = y for all y ∈ [−1, 1].

However, the converse formula is only valid for the principal branch; i.e.

arcsin(sin x) = x is only valid for −
π

2
≤ x ≤

π

2
.

For example, arcsin(sin 4) = −0.8584073... �= 4.

Cosine and arccosine. Likewise, the principal branch of the cosine is defined as

restriction of the cosine to the interval [0,π] with range [−1, 1]. The principal branch

is bijective, and its inverse function (Fig. 3.12) is called arccosine (or sometimes

inverse cosine)

arccos : [−1, 1] → [0,π].
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Fig. 3.11 The principal branch of the sine (left); the arcsine function (right)
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Fig. 3.12 The principal branch of the cosine (left); the arccosine function (right)

Tangent and arctangent. As can be seen in Fig. 3.10 the restriction of the tangent to

the interval (−π
2
, π

2
) is bijective. Its inverse function is called arctangent (or inverse

tangent)

arctan : R →
(

−
π

2
,
π

2

)

.

To be precise this is again the principal branch of the inverse tangent (Fig. 3.13).
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Fig. 3.13 The principal branch of the arctangent
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Fig. 3.14 Plane polar

coordinates P = (x, y)

r sin ϕ

r cos ϕ

y

x

r

ϕ

Application 3.4 (Polar coordinates in the plane) The polar coordinates (r,ϕ) of

a point P = (x, y) in the plane are obtained by prescribing its distance r from the

origin and the angle ϕ with the positive x-axis (in counterclockwise direction);

see Fig. 3.14.

The connection between Cartesian and polar coordinates is therefore described by

x = r cos ϕ ,

y = r sin ϕ ,

where 0 ≤ ϕ < 2π and r ≥ 0. The range −π < ϕ ≤ π is also often used.

In the converse direction the following conversion formulas are valid

r =

√

x2 + y2 ,

ϕ = arctan
y

x
(in the region x > 0; −π

2
< ϕ < π

2
),

ϕ = sign y · arccos
x

√

x2 + y2
(if y �= 0 or x > 0; −π < ϕ < π).

The reader is encouraged to verify these formulas with the help of maple .

3.4 Exercises

1. Using geometric considerations at suitable right-angled triangles, determine the

values of the sine, cosine and tangent of the angles α = 45◦, β = 60◦, γ = 30◦.

Extend your result for α = 45◦ to the angles 135◦, 225◦, −45◦ with the help of

the unit circle. What are the values of the angles under consideration in radian

measure?

2. Using MATLAB write a function degrad.m which converts degrees to radian

measure. The command degrad(180) should give π as a result. Further-

more, write a function mysin.m which calculates the sine of an angle in radian

measure with the help of degrad.m.
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Fig. 3.15 Proof of

Proposition 3.3

cosx sin y sin y

x

y

x

1

sin x cos y

3. Prove the addition theorem of the sine function

sin(x + y) = sin x cos y + cos x sin y.

Hint. If the angles x, y and their sum x + y are between 0 and π/2 you can

directly argue with the help of Fig. 3.15; the remaining cases can be reduced to

this case.

4. Prove the law of cosines

a2 = b2 + c2 − 2bc cos α

for the general triangle in Fig. 3.4.

Hint. The segment c is divided into two segments c1 (left) and c2 (right) by the

height h. The following identities hold true by Pythagoras’ theorem

a2 = h2 + c2
2, b2 = h2 + c2

1, c = c1 + c2.

Eliminating h gives a2 = b2 + c2 − 2cc1.

5. Compute the angles α, β, γ of the triangle with sides a = 3, b = 4, c = 2 and

plot the triangle in maple .

Hint. Use the law of cosines from Exercise 4.

6. Prove the law of sines

a

sin α
=

b

sin β
=

c

sin γ

for the general triangle in Fig. 3.4.

Hint. The first identity follows from

sin α =
h

b
, sin β =

h

a
.
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Fig. 3.16 Right circular

truncated cone with unrolled

surface
t

s

2πr

2πR

α

h s

R

r

7. Compute the missing sides and angles of the triangle with data b = 5, α = 43◦,

γ = 62◦, and plot your solutions using MATLAB.

Hint. Use the law of sines from Exercise 6.

8. With the help of MATLAB plot the following functions

y = cos(arccos x), x ∈ [−1, 1];

y = arccos(cos x), x ∈ [0,π];

y = arccos(cos x), x ∈ [0, 4π].

Why is arccos(cos x) �= x in the last case?

9. Plot the functions y = sin x , y = |sin x |, y = sin2 x , y = sin3 x , y = 1
2

(|sin x | −

sin x) and y = arcsin
(

1
2
(|sin x | − sin x)

)

in the interval [0, 6π]. Explain your

results.

Hint. Use the MATLAB command axis equal.

10. Plot the graph of the function f : R → R : x �→ ax + sin x for various values

of a. For which values of a is the function f injective or surjective?

11. Show that the following formulas for the surface line s and the surface area M

of a right circular truncated cone (see Fig. 3.16, left) hold true

s =
√

h2 + (R − r)2, M = π(r + R)s.

Hint. By unrolling the truncated cone a sector of an annulus with apex angle

α is created; see Fig. 3.16, right. Therefore, the following relationships hold:

αt = 2πr , α(s + t) = 2πR and M = 1
2
α
(

(s + t)2 − t2
)

.

12. The secant and cosecant functions are defined as the reciprocals of the cosine

and the sine functions, respectively,

sec α =
1

cos α
, csc α =

1

sin α
.

Due to the zeros of the cosine and the sine function, the secant is not defined for

odd multiples of π
2

, and the cosecant is not defined for integer multiples of π.

(a) Prove the identities 1 + tan2 α = sec2 α and 1 + cot2 α = csc2 α.

(b) With the help of MATLAB plot the graph of the functions y = sec x and

y = csc x for x between −2π and 2π.
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Complex numbers are not just useful when solving polynomial equations but play

an important role in many fields of mathematical analysis. With the help of complex

functions transformations of the plane can be expressed, solution formulas for dif-

ferential equations can be obtained, and matrices can be classified. Not least, fractals

can be defined by complex iteration processes. In this section we introduce complex

numbers and then discuss some elementary complex functions, like the complex

exponential function. Applications can be found in Chaps. 9 (fractals), 20 (systems

of differential equations) and in Appendix B (normal form of matrices).

4.1 The Notion of Complex Numbers

The set of complex numbers C represents an extension of the real numbers, in which

the polynomial z2 + 1 has a root. Complex numbers can be introduced as pairs (a, b)

of real numbers for which addition and multiplication are defined as follows:

(a, b) + (c, d) = (a + c, b + d),

(a, b) · (c, d) = (ac − bd, ad + bc).

The real numbers are considered as the subset of all pairs of the form (a, 0), a ∈ R.

Squaring the pair (0, 1) shows that

(0, 1) · (0, 1) = (−1, 0).

The square of (0, 1) thus corresponds to the real number −1. Therefore, (0, 1) pro-

vides a root for the polynomial z2 + 1. This root is denoted by i; in other words

i2 = −1.
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Using this notation and rewriting the pairs (a, b) in the form a + ib, one obtains a

computationally more convenient representation of the set of complex numbers:

C = {a + ib ; a ∈ R, b ∈ R}.

The rules of calculation with pairs (a, b) then simply amount to the common cal-

culations with the expressions a + ib like with terms with the additional rule that

i2 = −1:

(a + ib) + (c + id) = a + c + i(b + d),

(a + ib)(c + id) = ac + ibc + iad + i2bd

= ac − bd + i(ad + bc).

So, for example,

(2 + 3i)(−1 + i) = −5 − i.

Definition 4.1 For the complex number z = x + iy,

x = Re z, y = Im z

denote the real part and the imaginary part of z, respectively. The real number

|z| =
√

x2 + y2

is the absolute value (or modulus) of z, and

z̄ = x − iy

is the complex conjugate to z.

A simple calculation shows that

zz̄ = (x + iy)(x − iy) = x2 + y2 = |z|2,

which means that zz̄ is always a real number. From this we obtain the rule for

calculating with fractions

u + iv

x + iy
=

(

u + iv

x + iy

)(

x − iy

x − iy

)

=
(u + iv)(x − iy)

x2 + y2
=

ux + vy

x2 + y2
+ i

vx − uy

x2 + y2
.

It is achieved by expansion with the complex conjugate of the denominator. Appar-

ently one can therefore divide by any complex number not equal to zero, and the set

C forms a field.
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Experiment 4.2 Type in MATLAB: z = complex(2,3) (equivalently z = 2+3*i

or z = 2+3*j) as well as w = complex(-1,1) and try out the commands z * w,

z/w as well as real(z), imag(z), conj(z), abs(z).

Clearly every negative real x has two square roots in C, namely i
√

|x | and −i
√

|x |.
More than that the fundamental theorem of algebra says that C is algebraically

closed. Thus every polynomial equation

αnzn + αn−1zn−1 · · · + α1z + α0 = 0

with coefficients α j ∈ C, αn �= 0 has n complex solutions (counted with their

multiplicity).

Example 4.3 (Taking the square root of complex numbers) The equation z2 = a +
ib can be solved by the ansatz

(x + iy)2 = a + ib

so

x2 − y2 = a, 2xy = b.

If one uses the second equation to express y through x and substitutes this into the

first equation, one obtains the quartic equation

x4 − ax2 − b2/4 = 0.

Solving this by substitution t = x2 one obtains the two real solutions. In the case of

b = 0, either x or y equals zero depending on the sign of a.

The complex plane. A geometric representation of the complex numbers is obtained

by identifying z = x + iy ∈ C with the point (x, y) ∈ R
2 in the coordinate plane

(Fig. 4.1). Geometrically |z| =
√

x2 + y2 is the distance of point (x, y) from the

origin; the complex conjugate z̄ = x − iy is obtained by reflection in the x-axis.

The polar representation of a complex number z = x + iy is obtained like in

Application 3.4 by

r = |z|, ϕ = arg z.

Fig. 4.1 Complex plane

z = x + iy

y = Im z

x = Re z

iy

x
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The angle ϕ to the positive x-axis is called argument of the complex number, where-

upon the choice of the interval −π < ϕ ≤ π defines the principal value Arg z of the

argument. Thus

z = x + iy = r(cos ϕ + i sin ϕ).

The multiplication of two complex numbers z = r(cos ϕ + i sin ϕ), w = s(cos ψ +
i sin ψ) in polar representation corresponds to the product of the absolute values and

the sum of the angles:

zw = rs
(

cos(ϕ + ψ) + i sin(ϕ + ψ)
)

,

which follows from the addition formulas for sine and cosine:

sin(ϕ + ψ) = sin ϕ cos ψ + cos ϕ sin ψ,

cos(ϕ + ψ) = cos ϕ cos ψ − sin ϕ sin ψ,

see Proposition 3.3.

4.2 The Complex Exponential Function

An important tool for the representation of complex numbers and functions, but also

for the real trigonometric functions, is given by the complex exponential function.

For z = x + iy this function is defined by

ez = ex (cos y + i sin y).

The complex exponential function maps C to C \ {0}. We will study its mapping

behaviour below. It is an extension of the real exponential function; i.e. if z = x ∈ R,

then ez = ex . This is in accordance with the previously defined real-valued expo-

nential function. We also use the notation exp(z) for ez .

The addition theorems for sine and cosine imply the usual rules of calculation

ez+w = ezew, e0 = 1, (ez)n = enz,

valid for z, w ∈ C and n ∈ Z. In contrast to the case when z is a real number, the last

rule (for raising to powers) is generally not true, if n is not an integer.

Exponential function and polar coordinates. According to the definition the expo-

nential function of a purely imaginary number iϕ equals

eiϕ = cos ϕ + i sin ϕ,

|eiϕ | =
√

cos2 ϕ + sin2 ϕ = 1.
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Fig. 4.2 The unit circle in

the complex plane
e
iϕ

= cos ϕ + i sin ϕ

iy

x

1

ϕ

Thus the complex numbers

{eiϕ ; −π < ϕ ≤ π}

lie on the unit circle (Fig. 4.2).

For example, the following identities hold:

eiπ/2 = i, eiπ = −1, e2iπ = 1, e2kiπ = 1 (k ∈ Z).

Using r = |z|, ϕ = Arg z results in the especially simple form of the polar represen-

tation

z = reiϕ .

Taking roots is accordingly simple.

Example 4.4 (Taking square roots in complex polar coordinates) If z2 = reiϕ , then

one obtains the two solutions ±
√

r eiϕ/2 for z. For example, the problem

z2 = 2i = 2 eiπ/2

has the two solutions

z =
√

2 eiπ/4 = 1 + i

and

z = −
√

2 eiπ/4 = −1 − i.

Euler’s formulas. By addition and subtraction, respectively, of the relations

eiϕ = cos ϕ + i sin ϕ,

e−iϕ = cos ϕ − i sin ϕ,
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one obtains at once Euler’s formulas

cos ϕ =
1

2

(

eiϕ + e−iϕ
)

,

sin ϕ =
1

2i

(

eiϕ − e−iϕ
)

.

They permit a representation of the real trigonometric functions by means of the

complex exponential function.

4.3 Mapping Properties of Complex Functions

In this section we study the mapping properties of complex functions. More precisely,

we ask how their effect can be described geometrically. Let

f : D ⊂ C → C : z �→ w = f (z)

be a complex function, defined on a subset D of the complex plane. The effect of the

function f can best be visualised by plotting two complex planes next to each other,

the z-plane and the w-plane, and studying the images of rays and circles under f .

Example 4.5 The complex quadratic function maps D = C to C : w = z2. Using

polar coordinates one obtains

z = x + iy = r eiϕ ⇒ w = u + iv = r2e2iϕ .

From this representation it can be seen that the complex quadratic function maps a

circle of radius r in the z-plane onto a circle of radius r2 in the w-plane. Further, it

maps half-rays

{z = reiψ : r > 0}

with the angle of inclination ψ onto half-rays with angle of inclination 2ψ (Fig. 4.3).

Particularly important are the mapping properties of the complex exponential

function w = ez because they form the basis for the definition of the complex loga-

rithm and the root functions. If z = x + iy then ez = ex (cos y + i sin y). We always

have that ex > 0; furthermore cos y + i sin y defines a point on the complex unit

circle which is unique for −π < y ≤ π . If x moves along the real line then the

points ex (cos y + i sin y) form a half-ray with angle y, as can be seen in Fig. 4.4.

Conversely, if x is fixed and y varies between −π and π one obtains the circle with

radius ex in the w-plane. For example, the dotted circle (Fig. 4.4, right) is the image

of the dotted straight line (Fig. 4.4, left) under the exponential function.
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w = z
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Fig. 4.3 The complex quadratic function
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Fig. 4.4 The complex exponential function

From what has just been said it follows that the exponential function is bijective

on the domain

D = {z = x + iy ; x ∈ R, −π < y ≤ π} → B = C \ {0}.

It thus maps the strip of width 2π onto the complex plane without zero. The argument

of ez exhibits a jump along the negative u-axis as indicated in Fig. 4.4 (right). Within

the domain D the exponential function has an inverse function, the principal branch

of the complex logarithm. From the representation w = ez = ex eiy one derives at

once the relation x = log |w|, y = Arg w. Thus the principal value of the complex

logarithm of the complex number w is given by

z = Log w = log |w| + i Arg w

and in polar coordinates

Log
(

r eiϕ
)

= log r + iϕ, −π < ϕ ≤ π,

respectively.

With the help of the principal value of the complex logarithm, the principal values

of the nth complex root function can be defined by n
√

z = exp
(

1
n

Log(z)
)

.

www.dbooks.org

https://www.dbooks.org/


46 4 Complex Numbers

Experiment 4.6 Open the applet 2D visualisation of complex functions and inves-

tigate how the power functions w = zn, n ∈ N, map circles and rays of the complex

plane. Set the pattern polar coordinates and experiment with different sectors (inter-

vals of the argument [α, β] with 0 ≤ α < β ≤ 2π ).

Experiment 4.7 Open the applet 2D visualisation of complex functions and investi-

gate how the exponential function w = ez maps horizontal and vertical straight lines

of the complex plane. Set the pattern grid and experiment with different strips, for

example 1 ≤ Re z ≤ 2,−2 ≤ Im z ≤ 2.

4.4 Exercises

1. Compute Re z, Im z, z̄ and |z| for each of the following complex numbers z:

z = 3 + 2i, z = −i, z =
1 + i

2 − i
, z = 3 − i +

1

3 − i
, z =

1 − 2i

4 − 3i
.

Perform these calculations in MATLAB as well.

2. Rewrite the following complex numbers in the form z = reiϕ and sketch them

in the complex plane:

z = −1 − i, z = −5, z = 3i, z = 2 − 2i, z = 1 − i
√

3.

What are the values of ϕ in radian measure?

3. Compute the two complex solutions of the equation

z2 = 2 + 2i

with the help of the ansatz z = x + iy and equating the real and the imaginary

parts. Test and explain the MATLAB commands

roots([2,0,-2 - 2 *i])

sqrt(2 + 2 *i)

4. Compute the two complex solutions of the equation

z2 = 2 + 2i

in the form z = reiϕ from the polar representation of 2 + 2i.

5. Compute the four complex solutions of the quartic equation

z4 − 2z2 + 2 = 0

by hand and with MATLAB (command roots).
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6. Let z = x + iy, w = u + iv. Check the formula ez+w = ezew by using the def-

inition and applying the addition theorems for the trigonometric functions.

7. Compute z = Log w for

w = 1 + i, w = −5i, w = −1.

Sketch w and z in the complex plane and verify your results with the help of the

relation w = ez and with MATLAB (command log).

8. The complex sine and cosine functions are defined by

sin z =
1

2i

(

eiz − e−iz
)

, cos z =
1

2

(

eiz + e−iz
)

for z ∈ C.

(a) Show that both functions are periodic with period 2π , that is sin(z + 2π) =
sin z, cos(z + 2π) = cos z.

(b) Verify that, for z = x + iy,

sin z = sin x cosh y + i cos x sinh y, cos z = cos x cosh y − i sin x sinh y.

(c) Show that sin z = 0 if and only if z = kπ , k ∈ Z, and cos z = 0 if and only

if z = (k + 1
2
)π , k ∈ Z.
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The concept of a limiting process at infinity is one of the central ideas of mathematical analysis.

It forms the basis for all its essential concepts, like continuity, differentiability, series expansions

of functions, integration, etc. The transition from a discrete to a continuous setting constitutes the

modelling strength of mathematical analysis. Discrete models of physical, technical or economic

processes can often be better and more easily understood, provided that the number of their atoms—

their discrete building blocks—is sufficiently big, if they are approximated by a continuous model

with the help of a limiting process. The transition from difference equations for biological growth

processes in discrete time to differential equations in continuous time are examples for that, as is

the description of share prices by stochastic processes in continuous time. The majority of models

in physics are field models, that is, they are expressed in a continuous space and time structure.

Even though the models are discretised again in numerical approximations, the continuous model

is still helpful as a background, for example for the derivation of error estimates.

The following sections are dedicated to the specification of the idea of limiting processes. This

chapter starts by studying infinite sequences and series, gives some applications and covers the

corresponding notion of a limit. One of the achievements which we especially emphasise is the

completeness of the real numbers. It guarantees the existence of limits for arbitrary monotonically

increasing bounded sequences of numbers, the existence of zeros of continuous functions, of maxima

and minima of differentiable functions, of integrals, etc. It is an indispensable building block of

mathematical analysis.

5.1 The Notion of an Infinite Sequence

Definition 5.1 Let X be a set. An (infinite) sequence with values in X is a mapping

from N to X .
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Fig. 5.1 Graph of a sequence

Thus each natural number n (the index) is mapped to an element an of X (the nth

term of the sequence). We express this by using the notation

(an)n≥1 = (a1, a2, a3, . . .).

In the case of X = R one speaks of real-valued sequences, if X = C of complex-

valued sequences, if X = Rm of vector-valued sequences. In this section we only

discuss real-valued sequences.

Sequences can be added

(an)n≥1 + (bn)n≥1 = (an + bn)n≥1

and multiplied by a scalar factor

λ(an)n≥1 = (λan)n≥1.

These operations are performed componentwise and endow the set of all real-valued

sequences with the structure of a vector space. The graph of a sequence is visualised

by plotting the points (n, an), n = 1, 2, 3, . . . in a coordinate system, see Fig. 5.1.

Experiment 5.2 The M-file mat05_1a.m offers the possibility to study various

examples of sequences which are increasing/decreasing, bounded/unbounded, oscil-

lating, convergent. For a better visualisation the discrete points of the graph of the

sequence are often connected by line segments (exclusively for graphical purpose)—

this is implemented in the M-file mat05_1b.m. Open the applet Sequences and use

it to illustrate the sequences given in the M-file mat05_1a.m.

Sequences can either be defined explicitly by a formula, for instance

an = 2n,

or recursively by giving a starting value and a rule how to calculate a term from the

preceding one,

a1 = 1, an+1 = 2an .

The recursion can also involve several previous terms at a time.
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Example 5.3 A discrete population model which goes back to Verhulst1 (limited

growth) describes the population xn at the point in time n (using time intervals of

length 1) by the recursive relation

xn+1 = xn + βxn(L − xn).

Here β is a growth factor and L the limiting population, i.e. the population which

is not exceeded in the long-term (short-term overruns are possible, however, lead

to immediate decay of the population). Additionally one has to prescribe the initial

population x1 = A. According to the model the population increase xn+1 − xn during

one time interval is proportional to the existing population and to the difference to

the population limit. The M-file mat05_2.m contains a MATLAB function, called as

x = mat05_2(A,beta,N)

which computes and plots the first N terms of the sequence x = (x1, . . . , xN ). The

initial value is A, the growth rate β; L was set to L = 1. Experiments with A = 0.1,

N = 50 and β = 0.5, β = 1, β = 2, β = 2.5, β = 3 show convergent, oscillating

and chaotic behaviour of the sequence, respectively.

Below we develop some concepts which help to describe the behaviour of

sequences.

Definition 5.4 A sequence (an)n≥1 is called monotonically increasing, if

n ≤ m ⇒ an ≤ am;

(an)n≥1 is called monotonically decreasing, if

n ≤ m ⇒ an ≥ am;

(an)n≥1 is called bounded from above, if

∃T ∈ R ∀n ∈ N : an ≤ T .

We will show in Proposition 5.13 below that the set of upper bounds of a bounded

sequence has a smallest element. This least upper bound T0 is called the supremum

of the sequence and denoted by

T0 = sup
n∈N

an .

1P.-F. Verhulst, 1804–1849.
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The supremum is characterised by the following two conditions:

(a) an ≤ T0 for all n ∈ N;

(b) if T is a real number and an ≤ T for all n ∈ N, then T ≥ T0.

Note that the supremum itself does not have to be a term of the sequence. However,

if this is the case, it is called maximum of the sequence and denoted by

T0 = max
n∈N

an .

A sequence has a maximum T0 if the following two conditions are fulfilled:

(a) an ≤ T0 for all n ∈ N;

(b) there exists at least one m ∈ N such that am = T0.

In the same way, a sequence (an)n≥1 is called bounded from below, if

∃S ∈ R ∀n ∈ N : S ≤ an .

The greatest lower bound is called infimum (or minimum, if it is attained by a term

of the sequence).

Experiment 5.5 Investigate the sequences produced by the M-file mat05_1a.m

with regard to the concepts developed above.

As mentioned in the introduction to this chapter, the concept of convergence is

a central concept of mathematical analysis. Intuitively it states that the terms of the

sequence (an)n≥1 approach a limit a with growing index n. For example, in Fig. 5.2

with a = 0.8 one has

|a − an| < 0.2 from n = 6, |a − an| < 0.05 from n = 21.

0 5 10 15 20 25 30

0

0.4

0.8

1.2

1.6
an

n

Fig. 5.2 Convergence of a sequence
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For a precise definition of the concept of convergence we first introduce the notion

of an ε-neighbourhood of a point a ∈ R (ε > 0):

Uε(a) = {x ∈ R ; |a − x | < ε} = (a − ε, a + ε).

We say that a sequence (an)n≥1 settles in a neighbourhood Uε(a), if from a certain

index n(ε) on all subsequent terms an of the sequence lie in Uε(a).

Definition 5.6 The sequence (an)n≥1 converges to a limit a if it settles in each

ε-neighbourhood of a.

These facts can be expressed in quantifier notation as follows:

∀ε > 0 ∃n(ε) ∈ N ∀n ≥ n(ε) : |a − an| < ε.

If a sequence (an)n≥1 converges to a limit a, one writes

a = lim
n→∞

an or an → a as n → ∞.

In the example of Fig. 5.2 the limit a is indicated as a dotted line, the neighbourhood

U0.2(a) as a strip with a dashed boundary line and the neighbourhood U0.05(a) as a

strip with a solid boundary line.

In the case of convergence the limit can be interchanged with addition, multipli-

cation and division (with the exception of zero), as expected.

Proposition 5.7 (Rules of calculation for limits) If the sequences (an)n≥1 and

(bn)n≥1 are convergent then the following rules hold:

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(λan) = λ lim
n→∞

an (for λ ∈ R)

lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn)

lim
n→∞

(an/bn) = ( lim
n→∞

an)/( lim
n→∞

bn) (if lim
n→∞

bn 
= 0)

Proof The verification of these trivialities is left to the reader as an exercise. The

proofs are not deep, but one has to carefully pick the right approach in order to verify

the conditions of Definition 5.6. In order to illustrate at least once how such proofs

are done, we will show the statement about multiplication. Assume that

lim
n→∞

an = a and lim
n→∞

bn = b.

Let ε > 0. According to Definition 5.6 we have to find an index n(ε) ∈ N satisfying

|ab − anbn| < ε
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for all n ≥ n(ε). Due to the convergence of the sequence (an)n≥1 we can first find

an n1(ε) ∈ N so that |a − an| ≤ 1 for all n ≥ n1(ε). For these n it also applies that

|an| = |an − a + a| ≤ 1 + |a|.

Furthermore, we can find n2(ε) ∈ N and n3(ε) ∈ N which guarantee that

|a − an| <
ε

2 max(|b|, 1)
and |b − bn| <

ε

2(1 + |a|)

for all n ≥ n2(ε) and n ≥ n3(ε), respectively. It thus follows that

|ab − anbn| = |(a − an)b + an(b − bn)| ≤ |a − an||b| + |an||b − bn|

≤ |a − an||b| + (|a| + 1)|b − bn| ≤
ε

2
+

ε

2
≤ ε

for all n ≥ n(ε) with n(ε) = max(n1(ε), n2(ε), n3(ε)). This is the statement that was

to be proven. �

The important ideas of the proof were: Splitting in two summands with the help of

the triangle inequality (see Exercise 2 of Chap. 1); bounding |an| by 1 + |a| using the

assumed convergence; upper bounds for the terms |a − an| and |b − bn| by fractions

of ε (again possible due to the convergence) so that the summands together stay less

than ε. All elementary proofs of convergence in mathematical analysis proceed in a

similar way.

Real-valued sequences with terms that increase to infinity with growing index n

have no limit in the sense of the definition given above. However, it is practical to

assign them the symbol ∞ as an improper limit.

Definition 5.8 A sequence (an)n≥1 has the improper limit ∞ if it has the property

of unlimited increase

∀T ∈ R ∃n(T ) ∈ N ∀n ≥ n(T ) : an ≥ T .

In this case one writes

lim
n→∞

an = ∞.

In the same way one defines

lim
n→∞

bn = −∞, if lim
n→∞

(−bn) = ∞.
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Example 5.9 We consider the geometric sequence (qn)n≥1. It obviously holds that

lim
n→∞

qn = 0, if |q| < 1,

lim
n→∞

qn = ∞, if q > 1,

lim
n→∞

qn = 1, if q = 1.

For q ≤ −1 the sequence has no limit (neither proper nor improper).

5.2 The Completeness of the Set of Real Numbers

As remarked in the introduction to this chapter, the completeness of the set of real

numbers is one of the pillars of real analysis. The property of completeness can be

expressed in different ways. We will use a simple formulation which is particularly

helpful in many applications.

Proposition 5.10 (Completeness of the set of real numbers) Each monotonically

increasing sequence of real numbers that is bounded from above has a limit (in R).

Proof Let (an)n≥1 be a monotonically increasing, bounded sequence. First we prove

the theorem in the case that all terms an are non-negative. We write the terms as

decimal numbers

an = A(n).α
(n)
1 α

(n)
2 α

(n)
3 . . .

with A(n) ∈ N0, α
(n)
j ∈ {0, 1, . . . , 9}. By assumption there is a bound T ≥ 0 so that

an ≤ T for all n. Therefore, also A(n) ≤ T for all n. But the sequence (A(n))n≥1

is a monotonically increasing, bounded sequence of integers and therefore must

eventually reach its least upper bound A (and stay there). In other words, there exists

n0 ∈ N such that

A(n) = A for all n ≥ n0.

Thus we have found the integer part of the limit a to be constructed:

a = A. . . .

Let now α1 ∈ {0, . . . , 9} be the least upper bound for α
(n)
1 . As the sequence is mono-

tonically increasing there is again an n1 ∈ N with

α
(n)
1 = α1 for all n ≥ n1
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and consequently

a = A.α1 . . .

Let now α2 ∈ {0, . . . , 9} be the least upper bound for α
(n)
2 . There is an n2 ∈ N with

α
(n)
2 = α2 for all n ≥ n2

and consequently

a = A.α1α2 . . .

Successively one defines a real number

a = A.α1α2α3α4 . . .

in that way. It remains to show that a = limn→∞ an . Let ε > 0. We first choose

j ∈ N so that 10− j < ε. For n ≥ n j

a − an = 0.000 . . . 0 α
(n)
j+1 α

(n)
j+2 . . . ,

since the first j digits after the decimal point in a coincide with those of an provided

n ≥ n j . Therefore,

|a − an| ≤ 10− j < ε for n ≥ n j .

With n(ε) = n j the condition required in Definition 5.6 is fulfilled.

If the sequence (an)n≥1 also has negative terms, it can be transformed to a sequence

with non-negative terms by adding the absolute value of the first term which results

in the sequence (|a1| + an)n≥1. Using the obvious rule lim(c + an) = c + lim an

allows one to apply the first part of the proof. �

Remark 5.11 The set of rational numbers is not complete. For example, the decimal

expansion of
√

2,

(1, 1.4, 1.41, 1.414, 1.4142, . . .)

is a monotonically increasing, bounded sequence of rational numbers (an upper

bound is, e.g. T = 1.5, since 1.52 > 2), but the limit
√

2 does not belong to Q (as it

is an irrational number).

Example 5.12 (Arithmetic of real numbers) Due to Proposition 5.10 the arithmeti-

cal operations on the real numbers introduced in Sect. 1.2 can be legitimised a poste-

riori. Let us look, for instance, at the addition of two non-negative real numbers

a = A.α1α2 . . . and b = B.β1β2 . . . with A, B ∈ N0, α j ,β j ∈ {0, 1, . . . , 9}. By
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truncating them after the nth decimal place we obtain two approximating sequences

of rational numbers an = A.α1α2 . . . αn and bn = B.β1β2 . . .βn with

a = lim
n→∞

an, b = lim
n→∞

bn .

The sum of two approximations an + bn is defined by the addition of rational num-

bers in an elementary way. The sequence (an + bn)n≥1 is evidently monotonically

increasing and bounded from above, for instance, by A + B + 2. According to Propo-

sition 5.10 this sequence has a limit and this limit defines the sum of the real numbers

a + b = lim
n→∞

(an + bn).

In this way the addition of real numbers is rigorously justified. In a similar way

one can proceed with multiplication. Finally, Proposition 5.7 allows one to prove the

usual rules for addition and multiplication.

Consider a sequence with upper bound T . Each real number T1 > T is also an

upper bound. We can now show that there always exists a smallest upper bound. A

bounded sequence thus actually has a supremum as claimed earlier.

Proposition 5.13 Each sequence (an)n≥1 of real numbers which is bounded from

above has a supremum.

Proof Let Tn = max{a1, . . . , an} be the maximum of the first n terms of the

sequence. These maxima on their part define a sequence (Tn)n≥1 which is bounded

from above by the same bounds as (an)n≥1 but is additionally monotonically increas-

ing. According to the previous proposition it has a limit T0. We are going to show

that this limit is the supremum of the original sequence. Indeed, as Tn ≤ T0 for all n,

we have an ≤ T0 for all n as well. Assume that the sequence (an)n≥1 had a smaller

upper bound T < T0, i.e. an ≤ T for all n. This in turn implies Tn ≤ T for all n and

contradicts the fact that T0 = lim Tn . Therefore, T0 is the least upper bound. �

Application 5.14 We are now in a position to show that the construction of the

exponential function for real exponents given informally in Sect. 2.2 is justified.

Let a > 0 be a basis for the power ar to be defined with real exponent r ∈ R. It

is sufficient to treat the case r > 0 (for negative r , the expression ar is defined

by the reciprocal of a|r |). We write r as the limit of a monotonically increasing

sequence (rn)n≥1 of rational numbers by choosing for rn the decimal representation

of r , truncated at the nth digit. The rules of calculation for rational exponents imply

the inequality arn+1 − arn = arn
(

arn+1−rn − 1
)

≥ 0. This shows that the sequence

(arn )n≥1 is monotonically increasing. It is also bounded from above, for instance,

by aq , if q is a rational number bigger than r . According to Proposition 5.10 this

sequence has a limit. It defines ar .
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Application 5.15 Let a > 0. Then limn→∞ n
√

a = 1.

In the proof we can restrict ourselves to the case 0 < a < 1 since otherwise the

argument can be used for 1/a. One can easily see that the sequence ( n
√

a )n≥1 is

monotonically increasing; it is also bounded from above by 1. Therefore, it has a

limit b. Suppose that b < 1. From n
√

a ≤ b we infer that a ≤ bn → 0 for n → ∞,

which contradicts the assumption a > 0. Consequently b = 1.

5.3 Infinite Series

Sums of the form

∞
∑

k=1

ak = a1 + a2 + a3 + · · ·

with infinitely many summands can be given a meaning under certain conditions.

The starting point of our considerations is a sequence of coefficients (ak)k≥1 of real

numbers. The nth partial sum is defined as

Sn =
n

∑

k=1

ak = a1 + a2 + · · · + an,

thus

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3, etc.

As needed we also use the notation Sn =
∑n

k=0 ak without further comment if the

sequence a0, a1, a2, a3, . . . starts with the index k = 0.

Definition 5.16 The sequence of the partial sums (Sn)n≥1 is called a series. If the

limit S = limn→∞ Sn exists, then the series is called convergent, otherwise divergent.

In the case of convergence one writes

S =
∞
∑

k=1

ak = lim
n→∞

(

n
∑

k=1

ak

)

.

In this way the summation problem is reduced to the question of convergence of the

sequence of the partial sums.
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Experiment 5.17 The M-file mat05_3.m, when called as mat05_3(N,Z), gen-

erates the first N partial sums with time delay Z [seconds] of five series, i.e. it

computes Sn for 1 ≤ n ≤ N in each case:

Series 1 : Sn =
n

∑

k=1

k−0.99 Series 2 : Sn =
n

∑

k=1

k−1

Series 3 : Sn =
n

∑

k=1

k−1.01 Series 4 : Sn =
n

∑

k=1

k−2

Series 5 : Sn =
n

∑

k=1

1

k!

Experiment with increasing values of N and try to see which series shows conver-

gence or divergence.

In the experiment the convergence of Series 5 seems obvious, while the observa-

tions for the other series are rather not as conclusive. Actually, Series 1 and 2 are

divergent while the others are convergent. This shows the need for analytical tools

in order to be able to decide the question of convergence. However, we first look at

a few examples.

Example 5.18 (Geometric series) In this example we are concerned with the series
∑∞

k=0 qk with real factor q ∈ R. For the partial sums we deduce that

Sn =
n

∑

k=0

qk =
1 − qn+1

1 − q
.

Indeed, by subtraction of the two lines

Sn = 1 + q + q2 + · · · + qn ,

q Sn = q + q2 + q3 + · · · + qn+1

one obtains the formula (1 − q)Sn = 1 − qn+1 from which the result follows.

The case |q| < 1: As qn+1 → 0 the series converges with value

S = lim
n→∞

1 − qn+1

1 − q
=

1

1 − q
.

The case |q| > 1: For q > 1 the partial sum Sn = (qn+1 − 1)/(q − 1) → ∞ and

the series diverges. In the case of q < −1 the partial sums Sn = (1 − (−1)n+1|q|n+1)/

(1 − q) are unbounded and oscillate. They thus diverge as well.
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The case |q| = 1: For q = 1 we have Sn = 1 + 1 + · · · + 1 = n + 1 which tends

to infinity; for q = −1, the partial sums Sn oscillate between 1 and 0. In both cases

the series diverges.

Example 5.19 The nth partial sum of the series
∑∞

k=1
1

k(k+1)
is

Sn =
n

∑

k=1

1

k(k + 1)
=

n
∑

k=1

(

1

k
−

1

k + 1

)

= 1 −
1

2
+

1

2
−

1

3
+

1

3
−

1

4
+ · · · −

1

n
+

1

n
−

1

n + 1
= 1 −

1

n + 1
.

It is called a telescopic sum. The series converges to

S =
∞
∑

k=1

1

k(k + 1)
= lim

n→∞

(

1 −
1

n + 1

)

= 1.

Example 5.20 (Harmonic series) We consider the series
∑∞

k=1
1
k

. By combining

blocks of two, four, eight, sixteen, etc., elements, one obtains the grouping

1+ 1
2

+
(

1
3

+ 1
4

)

+
(

1
5

+ 1
6

+ 1
7

+ 1
8

)

+
(

1
9

+ · · · + 1
16

)

+
(

1
17

+ · · ·
)

+ · · ·
≥ 1 + 1

2
+

(

1
4

+ 1
4

)

+
(

1
8

+ 1
8

+ 1
8

+ 1
8

)

+
(

1
16

+ · · · + 1
16

)

+
(

1
32

+ · · ·
)

+ · · ·
= 1 + 1

2
+ 1

2
+ 1

2
+ 1

2
+ 1

2
+ · · · → ∞.

The partial sums tend to infinity, therefore, the series diverges.

There are a number of criteria which allow one to decide whether a series converges

or diverges. Here we only discuss two simple comparison criteria, which suffice for

our purpose. For further considerations we refer to the literature, for instance [3,

Chap. 9.2].

Proposition 5.21 (Comparison criteria) Let 0 ≤ ak ≤ bk for all k ∈ N or at least

for all k greater than or equal to a certain k0. Then we have:

(a) If the series
∑∞

k=1 bk is convergent then the series
∑∞

k=1 ak converges, too.

(b) If the series
∑∞

k=1 ak is divergent then the series
∑∞

k=1 bk diverges, too.

Proof (a) The partial sums fulfill Sn =
∑n

k=1 ak ≤
∑∞

k=1 bk = T and Sn ≤ Sn+1,

hence are bounded and monotonically increasing. According to Proposition 5.10 the

limit of the partial sums exists.

(b) This time, we have for the partial sums

Tn =
n

∑

k=1

bk ≥
n

∑

k=1

ak → ∞,

since the latter are positive and divergent. �
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Under the condition 0 ≤ ak ≤ bk of the proposition one says that
∑∞

k=1 bk dom-

inates
∑∞

k=1 ak . A series thus converges if it is dominated by a convergent series; it

diverges if it dominates a divergent series.

Example 5.22 The series
∑∞

k=1
1
k2 is convergent. For the proof we use that

n
∑

k=1

1

k2
= 1 +

n−1
∑

j=1

1

( j + 1)2
and a j =

1

( j + 1)2
≤

1

j ( j + 1)
= b j .

Example 5.19 shows that
∑∞

j=1 b j converges. Proposition 5.21 then implies conver-

gence of the original series.

Example 5.23 The series
∑∞

k=1 k−0.99 diverges. This follows from the fact that

k−1 ≤ k−0.99. Therefore, the series
∑∞

k=1 k−0.99 dominates the harmonic series

which itself is divergent, see Example 5.20.

Example 5.24 In Chap. 2 Euler’s number

e =
∞
∑

j=0

1

j !
= 1 + 1 +

1

2
+

1

6
+

1

24
+

1

120
+ · · ·

was introduced. We can now show that this definition makes sense, i.e. the series

converges. For j ≥ 4 it is obvious that

j ! = 1 · 2 · 3 · 4 · 5 · · · · · j ≥ 2 · 2 · 2 · 2 · 2 · · · · · 2 = 2 j .

Thus the geometric series
∑∞

j=0(
1
2
) j is a dominating convergent series.

Example 5.25 The decimal notation of a positive real number

a = A.α1α2α3 . . .

with A ∈ N0, αk ∈ {0, . . . , 9} can be understood as a representation by the series

a = A +
∞
∑

k=1

αk10−k .

The series converges since A + 9
∑∞

k=1 10−k is a dominating convergent series.
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5.4 Supplement: Accumulation Points of Sequences

Occasionally we need sequences which themselves do not converge but have con-

vergent subsequences. The notions of accumulation points, limit superior and limit

inferior are connected with this concept.

Definition 5.26 A number b is called accumulation point of a sequence (an)n≥1 if

each neighbourhood Uε(b) of b contains infinitely many terms of the sequence:

∀ε > 0 ∀n ∈ N ∃m = m(n, ε) ≥ n : |b − am | < ε.

Figure 5.3 displays the sequence

an = arctan n + cos(nπ/2) +
1

n
sin(nπ/2).

It has three accumulation points, namely b1 = π/2 + 1 ≈ 2.57, b2 = π/2 ≈ 1.57

and b3 = π/2 − 1 ≈ 0.57.

If a sequence is convergent with limit a then a is the unique accumulation point.

Accumulation points of a sequence can also be characterised with the help of the

concept of subsequences.

Definition 5.27 If 1 ≤ n1 < n2 < n3 < · · · is a strictly monotonically increasing

sequence of integers (indices) then

(an j
) j≥1

is called a subsequence of the sequence (an)n≥1.

0 5 10 15 20 25 30

0

1

2

3

an

n

Fig. 5.3 Accumulation points of a sequence
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Example 5.28 We start with the sequence an = 1
n

. If we take, for instance, n j = j2

then we obtain the sequence an j
= 1

j2 as subsequence:

(an)n≥1 = (1, 1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, 1

8
, 1

9
, 1

10
, . . . ),

(an j
) j≥1 = (1, 1

4
, 1

9
, . . . ).

Proposition 5.29 A number b is an accumulation point of the sequence (an)n≥0 if

and only if b is the limit of a convergent subsequence (an j
) j≥1.

Proof Let b be an accumulation point of the sequence (an)n≥0. Step by step we will

construct a strictly monotonically increasing sequence of indices (n j ) j≥1 so that

|b − an j
| <

1

j

is fulfilled for all j ∈ N. According to Definition 5.26 for ε1 = 1 we have

∀n ∈ N ∃m ≥ n : |b − am | < ε1.

We choose n = 1 and denote the smallest m ≥ n which fulfills this condition by n1.

Thus

|b − an1 | < ε1 = 1.

For ε2 = 1
2

one again obtains according to Definition 5.26:

∀n ∈ N ∃m ≥ n : |b − am | < ε2.

This time we choose n = n1 + 1 and denote the smallest m ≥ n1 + 1 which fulfills

this condition by n2. Thus

|b − an2 | < ε2 =
1

2
.

It is clear how one has to proceed. Once n j is constructed one sets ε j+1 = 1/( j + 1)

and uses Definition 5.26 according to which

∀n ∈ N ∃m ≥ n : |b − am | < ε j+1.

We choose n = n j + 1 and denote the smallest m ≥ n j + 1 which fulfills this con-

dition by n j+1. Thus

|b − an j+1
| < ε j+1 =

1

j + 1
.
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This procedure guarantees on the one hand that the sequence of indices (n j ) j≥1 is

strictly monotonically increasing and on the other hand that the desired inequality is

fulfilled for all j ∈ N. In particular, (an j
) j≥1 is a subsequence that converges to b.

Conversely, it is obvious that the limit of a convergent subsequence is an accu-

mulation point of the original sequence. �

In the proof of the proposition we have used the method of recursive definition of

a sequence, namely the subsequence (an j
) j≥1.

We next want to show that each bounded sequence has at least one accumulation

point—or equivalently—a convergent subsequence. This result bears the names of

Bolzano2 and Weierstrass3 and is an important technical tool for proofs in many

areas of analysis.

Proposition 5.30 (Theorem of Bolzano–Weierstrass) Every bounded sequence

(an)n≥1 has (at least) one accumulation point.

Proof Due to the boundedness of the sequence there are bounds b < c so that all

terms of the sequence an lie between b and c. We bisect the interval [b, c]. Then in

at least one of the two half-intervals [b, (b + c)/2] or [(b + c)/2, c] there have to

be infinitely many terms of the sequence. We choose such a half-interval and call

it [b1, c1]. This interval is also bisected; in one of the two halves again there have

to be infinitely many terms of the sequence. We call this quarter-interval [b2, c2].
Continuing this way we obtain a sequence of intervals [bn, cn] of length 2−n(c − b)

each of which contains infinitely many terms of the sequence. Obviously the bn are

monotonically increasing and bounded, therefore converge to a limit b. Since each

interval [b − 2−n, b + 2−n] by construction contains infinitely many terms of the

sequence, b is an accumulation point of the sequence. �

If the sequence (an)n≥1 is bounded then the set of its accumulation points is

also bounded and hence has a supremum. This supremum is itself an accumulation

point of the sequence (which can be shown by constructing a suitable convergent

subsequence) and thus forms the largest accumulation point.

Definition 5.31 The largest accumulation point of a bounded sequence is called

limit superior and is denoted by lim n→∞an or lim supn→∞ an . The smallest accu-

mulation point is called limit inferior with the corresponding notation lim n→∞an

or lim infn→∞ an .

2B. Bolzano, 1781–1848.
3K. Weierstrass, 1815–1897.
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The relationships

lim sup
n→∞

an = lim
n→∞

(

sup
m≥n

am

)

, lim inf
n→∞

an = lim
n→∞

(

inf
m≥n

am

)

follow easily from the definition and justify the notation.

For example, the sequence (an)n≥1 from Fig. 5.3 has lim supn→∞ an = π/2 + 1

and lim infn→∞ an = π/2 − 1.

5.5 Exercises

1. Find a law of formation for the sequences below and check for monotonicity,

boundedness and convergence:

−3, −2, −1, 0, 1
4
, 3

9
, 5

16
, 7

25
, 9

36
, . . . ;

0, −1, 1
2
, −2, 1

4
, −3, 1

8
, −4, 1

16
, . . . .

2. Verify that the sequence an = n2

1+n2 converges to 1.

Hint. Given ε > 0, find n(ε) such that
∣

∣

∣

∣

n2

1 + n2
− 1

∣

∣

∣

∣

< ε

for all n ≥ n(ε).

3. Determine a recursion formula that provides the terms of the geometric sequence

an = qn , n ≥ 0 successively. Write a MATLAB program that calculates the first

N terms of the geometric sequence for an arbitrary q ∈ R.

Check the convergence behaviour for different values of q and plot the results.

Do the same with the help of the applet Sequences.

4. Investigate whether the following sequences converge and, in case of conver-

gence, compute the limit:

an =
n

n + 1
−

n + 1

n
, bn = −n +

1

n
, cn =

(

−
1

n

)n

,

dn = n −
n2 + 3n + 1

n
, en =

1

2

(

en + e−n
)

, fn = cos(nπ).

5. Investigate whether the following sequences have a limit or an accumulation

point. Compute, if existent, lim, lim inf, lim sup, inf, sup:

an =
n + 7

n3 + n + 1
, bn =

1 − 3n2

7n + 5
, cn =

en − e−n

en + e−n
,

dn = 1 + (−1)n, en =
1 + (−1)n

n
, fn =

(

1 + (−1)n
)

(−1)n/2.
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6. Open the applet Sequences, visualise the sequences from Exercises 4 and 5 and

discuss their behaviour by means of their graphs.

7. The population model of Verhulst from Example 5.3 can be described in appro-

priate units in simplified form by the recursive relationship

xn+1 = r xn(1 − xn), n = 0, 1, 2, 3, . . .

with an initial value x0 and a parameter r . We presume in this sequence that

0 ≤ x0 ≤ 1 and 0 ≤ r ≤ 4 (since all xn then stay in the interval [0, 1]). Write

a MATLAB program which calculates for given r, x0, N the first N terms of the

sequence (xn)n≥1. With the help of your program (and some numerical values

for r, x0, N ) check the following statements:

(a) For 0 ≤ r ≤ 1 the sequence xn converges to 0.

(b) For 1 < r < 2
√

2 the sequence xn tends to a positive limit.

(c) For 3 < r < 1 +
√

6 the sequence xn eventually oscillates between two

different positive values.

(d) For 3.75 < r ≤ 4 the sequence xn behaves chaotically.

Illustrate these assertions also with the applet Sequences.

8. The sequence (an)n≥1 is given recursively by

a1 = A, an+1 =
1

2
a2

n −
1

2
.

Which starting values A ∈ R are fixed points of the recursion, i.e. it holds

A = a1 = a2 = . . .? Investigate for which starting values A ∈ R the sequence

converges or diverges, respectively. You can use the applet Sequences for that.

Try to locate the regions of convergence and divergence as precisely as possible.

9. Write a MATLAB program which, for given α ∈ [0, 1] and N ∈ N, calculates the

first N terms of the sequence

xn = nα − ⌊nα⌋, n = 1, 2, 3, . . . , N

(⌊nα⌋ denotes the largest integer smaller than nα). With the help of your pro-

gram, investigate the behaviour of the sequence for a rational α = p
q

and for an

irrational α (or at least a very precise rational approximation to an irrational α)

by plotting the terms of the sequence and by visualising their distribution in a

histogram. Use the MATLAB commands floor and hist.

10. Give formal proofs for the remaining rules of calculation of Proposition 5.7, i.e.

for addition and division by modifying the proof for the multiplication rule.

11. Check the following series for convergence with the help of the comparison

criteria:

∞
∑

k=1

1

k(k + 2)
,

∞
∑

k=1

1
√

k
,

∞
∑

k=1

1

k3
.
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12. Check the following series for convergence:

∞
∑

k=1

2 + k2

k4
,

∞
∑

k=1

(

1

2

)2k

,

∞
∑

k=1

2

k!
.

13. Try to find out how the partial sums Sn of the series in Exercises 11 and 12 can

be calculated with the help of a recursion and then study their behaviour with

the applet Sequences.

14. Prove the convergence of the series

∞
∑

k=0

2k

k!
.

Hint. Use the fact that j ! ≥ 4 j is fulfilled for j ≥ 9 (why)? From this it follows

that 2 j/j ! ≤ 1/2 j . Now apply the appropriate comparison criterion.

15. Prove the ratio test for series with positive terms ak > 0: If there exists a number

q , 0 < q < 1 such that the quotients satisfy

ak+1

ak

≤ q

for all k ∈ N0, then the series
∑∞

k=0 ak converges.

Hint. From the assumption it follows that a1 ≤ a0q , a2 ≤ a1q ≤ a0q2 and thus

successively ak ≤ a0qk for all k. Now use the comparison criteria and the con-

vergence of the geometric series with q < 1.



6Limits and Continuity of Functions

In this section we extend the notion of the limit of a sequence to the concept of the limit

of a function. Hereby we obtain a tool which enables us to investigate the behaviour

of graphs of functions in the neighbourhood of chosen points. Moreover, limits of

functions form the basis of one of the central themes in mathematical analysis, namely

differentiation (Chap. 7). In order to derive certain differentiation formulas some

elementary limits are needed, for instance, limits of trigonometric functions. The

property of continuity of a function has far-reaching consequences like, for instance,

the intermediate value theorem, according to which a continuous function which

changes its sign in an interval has a zero. Not only does this theorem allow one to show

the solvability of equations, it also provides numerical procedures to approximate

the solutions. Further material on continuity can be found in Appendix C.

6.1 The Notion of Continuity

We start with the investigation of the behaviour of graphs of real functions

f : (a, b) → R

while approaching a point x in the open interval (a, b) or a boundary point of the

closed interval [a, b]. For that we need the notion of a zero sequence, i.e. a sequence

of real numbers (hn)n≥1 with limn→∞ hn = 0.
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Definition 6.1 (Limits and continuity)

(a) The function f has a limit M at a point x ∈ (a, b), if

lim
n→∞

f (x + hn) = M

for all zero sequences (hn)n≥1 with hn �= 0. In this case one writes

M = lim
h→0

f (x + h) = lim
ξ→x

f (ξ)

or

f (x + h) → M as h → 0.

(b) The function f has a right-hand limit R at the point x ∈ [a, b), if

lim
n→∞

f (x + hn) = R

for all zero sequences (hn)n≥1 with hn > 0, with the corresponding notation

R = lim
h→0+

f (x + h) = lim
ξ→x+

f (ξ).

(c) The function f has a left-hand limit L at the point x ∈ (a, b], if:

lim
n→∞

f (x + hn) = L

for all zero sequences (hn)n≥1 with hn < 0. Notations:

L = lim
h→0−

f (x + h) = lim
ξ→x−

f (ξ).

(d) If f has a limit M at x ∈ (a, b) which coincides with the value of the function,

i.e. f (x) = M , then f is called continuous at the point x .

(e) If f is continuous at every x ∈ (a, b), then f is said to be continuous on the open

interval (a, b). If in addition f has right- and left-hand limits at the endpoints a

and b, it is called continuous on the closed interval [a, b].
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f(x+h)

f(x) = M

x+hx

R

f(x)

L

x

Fig. 6.1 Limit and continuity; left- and right-hand limits

Figure 6.1 illustrates the idea of approaching a point x for h → 0 as well as

possible differences between left-hand and right-hand limits and the value of the

function.

If a function f is continuous at a point x , the function evaluation can be inter-

changed with the limit:

lim
ξ→x

f (ξ) = f (x) = f ( lim
ξ→x

ξ).

The following examples show some further possibilities how a function can behave

in the neighbourhood of a point: Jump discontinuity with left- and right-hand limits,

vertical asymptote, oscillations with non-vanishing amplitude and ever-increasing

frequency.

Example 6.2 The quadratic function f (x) = x2 is continuous at every x ∈ R since

f (x + hn) − f (x) = (x + hn)2 − x2 = 2xhn + h2
n → 0

as n → ∞ for any zero sequence (hn)n≥1. Therefore

lim
h→0

f (x + h) = f (x).

Likewise the continuity of the power functions x �→ xm for m ∈ N can be shown.

Example 6.3 The absolute value function f (x) = |x | and the third root g(x) = 3
√

x

are everywhere continuous. The former has a kink at x = 0, the latter a vertical

tangent; see Fig. 6.2.

Example 6.4 The sign function f (x) = sign x has different left- and right-hand lim-

its L = −1, R = 1 at x = 0. In particular, it is discontinuous at that point. At all other

points x �= 0 it is continuous; see Fig. 6.3.
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y = 3
√

x

x

y = |x|

x

Fig. 6.2 Continuity and kink or vertical tangent

1

0

y = (sign x)2

x

1

0

−1

y = sign x

x

Fig. 6.3 Discontinuities: jump discontinuity and exceptional value

Example 6.5 The square of the sign function

g(x) = (sign x)2 =
{

1, x �= 0

0, x = 0

has equal left- and right-hand limits at x = 0. However, they are different from the

value of the function (see Fig. 6.3):

lim
ξ→0

g(ξ) = 1 �= 0 = g(0).

Therefore, g is discontinuous at x = 0.

Example 6.6 The functions f (x) = 1
x

and g(x) = tan x have vertical asymptotes at

x = 0 and x = π
2

+ kπ, k ∈ Z, respectively, and in particular no left- or right-hand

limit at these points. At all other points, however, they are continuous. We refer to

Figs. 2.9 and 3.10.

Example 6.7 The function f (x) = sin 1
x

has no left- or right-hand limit at x = 0

but oscillates with non-vanishing amplitude (Fig. 6.4). Indeed, one obtains different

limits for different zero sequences. For example, for

hn =
1

nπ
, kn =

1

π/2 + 2nπ
, ln =

1

3π/2 + 2nπ
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Fig. 6.4 No limits,

oscillation with

non-vanishing amplitude

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

y = sin(1/x)

x

Fig. 6.5 Continuity,

oscillation with vanishing

amplitude

−0.1 0 0.1

−0.1

−0.05

0

0.05

0.1

y = x sin(1/x)

x

the respective limits are

lim
n→∞

f (hn) = 0, lim
n→∞

f (kn) = 1, lim
n→∞

f (ln) = −1.

All other values in the interval [−1, 1] can also be obtained as limits with the help

of suitable zero sequences.

Example 6.8 The function g(x) = x sin 1
x

can be continuously extended by g(0) = 0

at x = 0; it oscillates with vanishing amplitude (Fig. 6.5). Indeed,

|g(hn) − g(0)| = |hn sin 1
hn

− 0| ≤ |hn| → 0

for all zero sequences (hn)n≥1, thus limh→0 h sin 1
h

= 0.

Experiment 6.9 Open the M-files mat06_1.m and mat06_2.m, and study the

graphs of the functions in Figs. 6.4 and 6.5 with the use of the zoom tool in the figure

window. How can you improve the accuracy of the visualisation in the neighbourhood

of x = 0?
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6.2 Trigonometric Limits

Comparing the areas in Fig. 6.6 shows that the area of the grey triangle with sides

cos x and sin x is smaller than the area of the sector which in turn is smaller or equal

to the area of the big triangle with sides 1 and tan x .

The area of a sector in the unit circle (with angle x in radian measure) equals x/2

as is well-known. In summary we obtain the inequalities

1

2
sin x cos x ≤

x

2
≤

1

2
tan x

or after division by sin x and taking the reciprocal

cos x ≤
sin x

x
≤

1

cos x
,

valid for all x with 0 < |x | < π/2.

With the help of these inequalities we can compute several important limits. From

an elementary geometric consideration, one obtains

|cos x | ≥
1

2
for −

π

3
≤ x ≤

π

3
,

and together with the previous inequalities

|sin hn| ≤
|hn|

|cos hn|
≤ 2 |hn| → 0

for all zero sequences (hn)n≥1. This means that

lim
h→0

sin h = 0.

Fig. 6.6 Illustration of

trigonometric inequalities

cos x

tan x
x

sin x

1

1
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The sine function is therefore continuous at zero. From the continuity of the square

function and the root function as well as the fact that cos h equals the positive square

root of 1 − sin2 h for small h it follows that

lim
h→0

cos h = lim
h→0

√

1 − sin2 h = 1.

With this the continuity of the sine function at every point x ∈ R can be proven:

lim
h→0

sin(x + h) = lim
h→0

(

sin x cos h + cos x sin h
)

= sin x .

The inequality illustrated at the beginning of the section allows one to deduce one

of the most important trigonometric limits. It forms the basis of the differentiation

rules for trigonometric functions.

Proposition 6.10 limx→0
sin x

x
= 1.

Proof We combine the above result limx→0 cos x = 1 with the inequality deduced

earlier and obtain

1 = lim
x→0

cos x ≤ lim
x→0

sin x

x
≤ lim

x→0

1

cos x
= 1,

and therefore limx→0
sin x

x
= 1. �

6.3 Zeros of Continuous Functions

Figure 6.7 shows the graph of a function that is continuous on a closed interval

[a, b] and that is negative at the left endpoint and positive at the right endpoint.

Geometrically the graph has to intersect the x-axis at least once since it has no jumps

due to the continuity. This means that f has to have at least one zero in (a, b). This

is a criterion that guarantees the existences of a solution to the equation f (x) = 0.

A first rigorous proof of this intuitively evident statement goes back to Bolzano.

Proposition 6.11 (Intermediate value theorem) Let f : [a, b] → R be continuous

and f (a) < 0, f (b) > 0. Then there exists a point ξ ∈ (a, b) with f (ξ) = 0.

Proof The proof is based on the successive bisection of the intervals and the com-

pleteness of the set of real numbers. One starts with the interval [a, b] and sets a1 = a,

b1 = b.
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Fig. 6.7 The intermediate

value theorem

b

ξa

f(x)

x

Step 1: Compute y1 = f
(

a1+b1
2

)

.

If y1 > 0 : set a2 = a1, b2 = a1+b1
2

.

If y1 < 0 : set a2 = a1+b1
2

, b2 = b1.

If y1 = 0 : termination, ξ = a1+b1
2

is a zero.

By construction f (a2) < 0, f (b2) > 0 and the interval length is halved:

b2 − a2 =
1

2
(b1 − a1).

Step 2: Compute y2 = f
(

a2+b2
2

)

.

If y2 > 0 : set a3 = a2, b3 = a2+b2
2

.

If y2 < 0 : set a3 = a2+b2
2

, b3 = b2.

If y2 = 0 : termination, ξ = a2+b2
2

is a zero.

Further iterations lead to a monotonically increasing sequence

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b

which is bounded from above. According to Proposition 5.10 the limit ξ = lim
n→∞

an

exists.

On the other hand |an − bn| ≤ |a − b|/2n−1 → 0, therefore limn→∞ bn = ξ as

well. If ξ has not appeared after a finite number of steps as either ak or bk then for

all n ∈ N:

f (an) < 0, f (bn) > 0.

From the continuity of f it follows that

f (ξ) = lim
n→∞

f (an) ≤ 0, f (ξ) = lim
n→∞

f (bn) ≥ 0

which implies f (ξ) = 0, as claimed. �
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The proof provides at the same time a numerical method to compute zeros of

functions, the bisection method. Although it converges rather slowly, it is easily

implementable and universally applicable—also for non-differentiable, continuous

functions. For differentiable functions, however, considerably faster algorithms exist.

The order of convergence and the discussion of faster procedures will be taken up in

Sect. 8.2.

Example 6.12 Calculation of
√

2 as the root of f (x) = x2 − 2 = 0 in the interval

[1, 2] using the bisection method:

Start: f (1) = −1 < 0, f (2) = 2 > 0; a1 = 1, b1 = 2

Step 1: f (1.5) = 0.25 > 0; a2 = 1, b2 = 1.5

Step 2: f (1.25) = −0.4375 < 0; a3 = 1.25, b3 = 1.5

Step 3: f (1.375) = −0.109375 < 0; a4 = 1.375, b4 = 1.5

Step 4: f (1.4375) = 0.066406 . . . > 0; a5 = 1.375, b5 = 1.4375

Step 5: f (1.40625) = −0.022461 . . . < 0; a6 = 1.40625, b6 = 1.4375

etc.

After 5 steps the first decimal place is ascertained:

1.40625 <
√

2 < 1.4375

Experiment 6.13 Sketch the graph of the function y = x3 + 3x2 − 2 on the interval

[−3, 2], and try to first estimate graphically one of the roots by successive bisec-

tion. Execute the interval bisection with the help of the applet Bisection method.

Assure yourself of the plausibility of the intermediate value theorem using the applet

Animation of the intermediate value theorem.

As an important application of the intermediate value theorem we now show that

images of intervals under continuous functions are again intervals. For the different

types of intervals which appear in the following proposition we refer to Sect. 1.2; for

the notion of the proper range to Sect. 2.1.

Proposition 6.14 Let I ⊂ R be an interval (open, half-open or closed, bounded or

improper) and f : I → R a continuous function with proper range J = f (I ). Then

J is also an interval.

Proof As subsets of the real line, intervals are characterised by the following

property: With any two points all intermediate points are contained in it as well.

Let y1, y2 ∈ J , y1 < y2, and η be an intermediate point, i.e. y1 < η < y2. Since

f : I → J is surjective there are x1, x2 ∈ I such that y1 = f (x1) and y2 = f (x2).

We consider the case x1 < x2. Since f (x1) − η < 0 and f (x2) − η > 0 it follows

from the intermediate value theorem applied on the interval [x1, x2] that there exists

a point ξ ∈ (x1, x2) with f (ξ) − η = 0, thus f (ξ) = η. Hence η is attained as a value

of the function and therefore lies in J = f (I ). �
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Proposition 6.15 Let I = [a, b] be a closed, bounded interval and f : I → R a

continuous function. Then the proper range J = f (I ) is also a closed, bounded

interval.

Proof According to Proposition 6.14 the range J is an interval. Let d be the least

upper bound (possibly d = ∞). We take a sequence of values yn ∈ J which con-

verges to d. The values yn are function values of certain arguments xn ∈ I = [a, b].
The sequence (xn)n≥1 is bounded and, according to Proposition 5.30, has an accu-

mulation point x0, a ≤ x0 ≤ b. Thus a subsequence (xn j
) j≥1 exists which converges

to x0 (see Sect. 5.4). From the continuity of the function f it follows that

d = lim
j→∞

yn j
= lim

j→∞
f (xn j

) = f (x0).

This shows that the upper endpoint of the interval J is finite and is attained as function

value. The same argument is applied to the lower boundary c; the range J is therefore

a closed, bounded interval [c, d]. �

From the proof of the proposition it is clear that d is the largest and c the smallest

value of the function f on the interval [a, b]. We thus obtain the following important

consequence.

Corollary 6.16 Each continuous function defined on a closed interval I = [a, b]
attains its maximum and minimum there.

6.4 Exercises

1. (a) Investigate the behaviour of the functions

x + x2

|x |
,

√
1 + x − 1

x
,

x2 + sin x
√

1 − cos2 x

in a neighbourhood of x = 0 by plotting their graphs for arguments in

[−2, − 1
100

) ∪ ( 1
100

, 2].
(b) Find out by inspection of the graphs whether there are left- or right-hand

limits at x = 0. Which value do they have? Explain your results by rear-

ranging the expressions in (a).

Hint. Some guidance for part (a) can be found in the M-filemat06_ex1.m.

Expand the middle term in (b) with
√

1 + x + 1.



6.4 Exercises 79

2. Do the following functions have a limit at the given points? If so, what is its

value?

(a) y = x3 + 5x + 10, x = 1.

(b) y = x2−1
x2+x

, x = 0, x = 1, x = −1.

(c) y = 1−cos x
x2 , x = 0.

Hint. Expand with (1 + cos x).

(d) y = sign x · sin x, x = 0.

(e) y = sign x · cos x, x = 0.

3. Let fn(x) = arctan nx, gn(x) = (1 + x2)−n . Compute the limits

f (x) = lim
n→∞

fn(x), g(x) = lim
n→∞

gn(x)

for each x ∈ R, and sketch the graphs of the thereby defined functions f and g.

Are they continuous? Plot fn and gn using MATLAB, and investigate the behaviour

of the graphs for n → ∞.

Hint. An advice can be found in the M-file mat06_ex3.m.

4. With the help of zero sequences, carry out a formal proof of the fact that the

absolute value function and the third root function of Example 6.3 are continuous.

5. Argue with the help of the intermediate value theorem that p(x) = x3 + 5 x + 10

has a zero in the interval [−2, 1]. Compute this zero up to four decimal places

using the applet Bisection method.

6. Compute all zeros of the following functions in the given interval with accuracy

10−3, using the applet Bisection method.

f (x) = x4 − 2, I = R;
g(x) = x − cos x, I = R;
h(x) = sin 1

x
, I =

[

1
20

, 1
10

]

.

7. Write a MATLAB program which locates—with the help of the bisection method—

the zero of an arbitrary polynomial

p(x) = x3 + c1x2 + c2x + c3

of degree three. Your program should automatically provide starting values a, b

with p(a) < 0, p(b) > 0 (why do such values always exist?). Test your program

by choosing the coefficient vector (c1, c2, c3) randomly, for example by using

c = 1000*rand(1,3).

Hint. A solution is suggested in the M-file mat06_ex7.m.
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Starting from the problem to define the tangent to the graph of a function, we introduce

the derivative of a function. Two points on the graph can always be joined by a secant,

which is a good model for the tangent whenever these points are close to each other. In

a limiting process, the secant (discrete model) is replaced by the tangent (continuous

model). Differential calculus, which is based on this limiting process, has become

one of the most important building blocks of mathematical modelling.

In this section we discuss the derivative of important elementary functions as

well as general differentiation rules. Thanks to the meticulous implementation of

these rules, expert systems such as maple have become helpful tools in mathemat-

ical analysis. Furthermore, we will discuss the interpretation of the derivative as

linear approximation and as rate of change. These interpretations form the basis of

numerous applications in science and engineering.

The concept of the numerical derivative follows the opposite direction. The contin-

uous model is discretised, and the derivative is replaced by a difference quotient. We

carry out a detailed error analysis which allows us to find an optimal approximation.

Further, we will illustrate the relevance of symmetry in numerical procedures.

7.1 Motivation

Example 7.1 (The free fall according to Galilei1) Imagine an object, which released

at time t = 0, falls down under the influence of gravity. We are interested in the

position s(t) of the object at time t ≥ 0 as well as in its velocity v(t), see Fig. 7.1.

Due to the definition of velocity as change in travelled distance divided by change

1G. Galilei, 1564–1642.
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Fig. 7.1 The free fall

s

s = 0

s(t)

in time, the object has the average velocity

vaverage =
s(t + Δt) − s(t)

Δt

in the time interval [t, t + Δt]. In order to obtain the instantaneous velocity v = v(t)

we take the limit Δt → 0 in the above formula and arrive at

v(t) = lim
Δt→0

s(t + Δt) − s(t)

Δt
.

Galilei discovered through his experiments that the travelled distance in free fall

increases quadratically with the time passed, i.e. the law

s(t) =
g

2
t2

with g ≈ 9.81 m/s2 holds. Thus we obtain the expression

v(t) = lim
Δt→0

g
2
(t + Δt)2 − g

2
t2

Δt
=

g

2
lim

Δt→0

(

2t + Δt
)

= gt

for the instantaneous velocity. The velocity is hence proportional to the time passed.

Example 7.2 (The tangent problem) Consider a real function f and two differ-

ent points P = (x0, f (x0)) and Q = (x, f (x)) on the graph of the function. The

uniquely defined straight line through these two points is called secant of the func-

tion f through P and Q, see Fig. 7.2. The slope of the secant is given by the difference

quotient

Δy

Δx
=

f (x) − f (x0)

x − x0
.

As x tends to x0, the secant graphically turns into the tangent, provided the limit

exists. Motivated by this idea we define the slope

k = lim
x→x0

f (x) − f (x0)

x − x0
= lim

h→0

f (x0 + h) − f (x0)

h

of the function f at x0. If this limit exists, we call the straight line

y = k · (x − x0) + f (x0)

the tangent to the graph of the function at the point (x0, f (x0)).
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Fig. 7.2 Slope of the secant

Q

P

∆x

∆y

y = f(x)

f(x)

f(x0)

xx0

Experiment 7.3 Plot the function f (x) = x2 on the interval [0, 2] in MATLAB . Draw

the straight lines through the points (1, 1), (2, z) for various values of z. Adjust z

until you find the tangent to the graph of the function f at (1, 1) and read off its

slope.

7.2 The Derivative

Motivated by the above applications we are going to define the derivative of a real-

valued function.

Definition 7.4 (Derivative) Let I ⊂ R be an open interval, f : I → R a real-

valued function and x0 ∈ I .

(a) The function f is called differentiable at x0 if the difference quotient

Δy

Δx
=

f (x) − f (x0)

x − x0

has a (finite) limit for x → x0. In this case one writes

f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0
= lim

h→0

f (x0 + h) − f (x0)

h

and calls the limit derivative of f at the point x0.

(b) The function f is called differentiable (in the interval I ) if f ′(x) exists for all

x ∈ I . In this case the function

f ′ : I → R : x �→ f ′(x)

is called the derivative of f . The process of computing f ′ from f is called

differentiation.

In place of f ′(x) one often writes
d f

dx
(x) or

d

dx
f (x), respectively. The following

examples show how the derivative of a function is obtained by means of the limiting

process above.
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Example 7.5 (The constant function f (x) = c)

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

c − c

h
= lim

h→0

0

h
= 0.

The derivative of a constant function is zero.

Example 7.6 (The affine function g(x) = ax + b)

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

ax + ah + b − ax − b

h
= lim

h→0
a = a.

The derivative is the slope a of the straight line y = ax + b.

Example 7.7 (The derivative of the quadratic function y = x2)

y′ = lim
h→0

(x + h)2 − x2

h
= lim

h→0

2hx + h2

h
= lim

h→0
(2x + h) = 2x .

Similarly, one can show for the power function (with n ∈ N):

f (x) = xn ⇒ f ′(x) = n · xn−1.

Example 7.8 (The derivative of the square root function y =
√

x for x > 0)

y′ = lim
ξ→x

√
ξ −

√
x

ξ − x
= lim

ξ→x

√
ξ −

√
x

(
√

ξ −
√

x)(
√

ξ +
√

x)
= lim

ξ→x

1
√

ξ +
√

x
=

1

2
√

x
.

Example 7.9 (Derivatives of the sine and cosine functions) We first recall from

Proposition 6.10 that

lim
t→0

sin t

t
= 1.

Due to

(cos t − 1)(cos t + 1) = − sin2 t

it also holds that

cos t − 1

t
= − sin t

︸︷︷︸

→ 0

·
sin t

t
︸︷︷︸

→ 1

·
1

cos t + 1
︸ ︷︷ ︸

→ 1/2

→ 0 for t → 0,

and thus

lim
t→0

cos t − 1

t
= 0.
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Due to the addition theorems (Proposition 3.3) we get with the preparations from

above

sin′ x = lim
h→0

sin(x + h) − sin x

h
= lim

h→0

sin x cos h + cos x sin h − sin x

h

= lim
h→0

sin x ·
cos h − 1

h
+ lim

h→0
cos x ·

sin h

h

= sin x · lim
h→0

cos h − 1

h
︸ ︷︷ ︸

= 0

+ cos x · lim
h→0

sin h

h
︸ ︷︷ ︸

= 1

= cos x .

This proves the formula sin′ x = cos x . Likewise it can be shown that cos′ x =
− sin x .

Example 7.10 (The derivative of the exponential function with base e) Rearranging

terms in the series expansion of the exponential function (Proposition C.12) we obtain

eh − 1

h
=

∞
∑

k=0

hk

(k + 1)!
= 1 +

h

2
+

h2

6
+

h3

24
+ · · ·

From that one infers

∣
∣
∣
∣

eh − 1

h
− 1

∣
∣
∣
∣
≤ |h|

(
1

2
+

|h|
6

+
|h|3

24
+ · · ·

)

≤ |h|e|h|.

Letting h → 0 hence gives the important limit

lim
h→0

eh − 1

h
= 1.

The existence of the limit

lim
h→0

ex+h − ex

h
= ex · lim

h→0

eh − 1

h
= ex

shows that the exponential function is differentiable and that (ex )′ = ex .

Example 7.11 (New representation of Euler’s number) By substituting y = eh − 1,

h = log(y + 1) in the above limit one obtains

lim
y→0

y

log(y + 1)
= 1

and in this way

lim
y→0

log(1 + αy)1/y = lim
y→0

log(1 + αy)

y
= α lim

y→0

log(1 + αy)

αy
= α.
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Due to the continuity of the exponential function it further follows that

lim
y→0

(1 + αy)1/y = eα.

In particular, for y = 1/n, we obtain a new representation of the exponential function

eα = lim
n→∞

(

1 +
α

n

)n

.

For α = 1 the identity

e = lim
n→∞

(

1 +
1

n

)n

=
∞
∑

k=0

1

k!
= 2.718281828459...

follows.

Example 7.12 Not every continuous function is differentiable. For instance, the func-

tion

f (x) = |x | =
{

x, x ≥ 0

−x, x ≤ 0

is not differentiable at the vertex x = 0, see Fig. 7.3, left picture. However, it is

differentiable for x = 0 with

(|x |)′ =
{

1, if x > 0

−1, if x < 0.

The function g(x) = 3
√

x is not differentiable at x = 0 either. The reason for that is

the vertical tangent, see Fig. 7.3, right picture.

There are even continuous functions that are nowhere differentiable. It is possible

to write down such functions in the form of certain intricate infinite series. However,

an analogous example of a (continuous) curve in the plane which is nowhere differ-

entiable is the boundary of Koch’s snowflake, which can be constructed in a simple

geometric manner, see Examples 9.9 and 14.17.

Fig. 7.3 Functions that are

not differentiable at x = 0

y = |x|
y = 3

√
x
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Definition 7.13 If the function f ′ is again differentiable then

f ′′(x) =
d2

dx2
f (x) =

d2 f

dx2
(x) = lim

h→0

f ′(x + h) − f ′(x)

h

is called the second derivative of f with respect to x . Likewise higher derivatives

are defined recursively as

f ′′′(x) =
(

f ′′(x)
)′

or
d3

dx3
f (x) =

d

dx

(
d2

dx2
f (x)

)

, etc.

Differentiating with maple. Using maple one can differentiate expressions as well

as functions. If the expression g is of the form

g := xˆ2 - a*x;

then the corresponding function f is defined by

f := x -> xˆ2 - a*x;

The evaluation of functions generates expressions, for example f(t) produces the

expression t2 − at . Conversely, expressions can be converted to functions using

unapply

h := unapply(g,x);

The derivative of expressions can be obtained using diff, those of functions using

D. Examples can be found in the maple worksheet mp07_1.mws.

7.3 Interpretations of the Derivative

We introduced the derivative geometrically as the slope of the tangent, and we saw

that the tangent to a graph of a differentiable function f at the point (x0, f (x0)) is

given by

y = f ′(x0)(x − x0) + f (x0).

Example 7.14 Let f (x) = x4 + 1 with derivative f ′(x) = 4x3.

(i) The tangent to the graph of f at the point (0, 1) is

y = f ′(0) · (x − 0) + f (0) = 1

and thus horizontal.
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(ii) The tangent to the graph of f at the point (1, 2) is

y = f ′(1)(x − 1) + 2 = 4(x − 1) + 2 = 4x − 2.

The derivative allows further interpretations.

Interpretation as linear approximation. We start off by emphasising that every

differentiable function f can be written in the form

f (x) = f (x0) + f ′(x0)(x − x0) + R(x, x0),

where the remainder R(x, x0) has the property

lim
x→x0

R(x, x0)

x − x0
= 0.

This follows immediately from

R(x, x0) = f (x) − f (x0) − f ′(x0)(x − x0)

by dividing by x − x0, since

f (x) − f (x0)

x − x0
→ f ′(x0) as x → x0.

Application 7.15 As we have just seen, a differentiable function f is characterised

by the property that

f (x) = f (x0) + f ′(x0)(x − x0) + R(x, x0),

where the remainder term R(x, x0) tends faster to zero than x − x0. Taking the

limit x → x0 in this equation shows in particular that every differentiable function

is continuous.

Application 7.16 Let g be the function given by

g(x) = k · (x − x0) + f (x0).

Its graph is the straight line with slope k passing through the point (x0, f (x0)). Since

f (x) − g(x)

x − x0
=

f (x) − f (x0) − k · (x − x0)

x − x0
= f ′(x0) − k +

R(x, x0)

x − x0
︸ ︷︷ ︸

→0
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as x → x0, the tangent with k = f ′(x0) is the straight line which approximates the

graph best. One therefore calls

g(x) = f (x0) + f ′(x0) · (x − x0)

the linear approximation to f at x0. For x close to x0 one can consider g(x) as a

good approximation to f (x). In applications the (possibly complicated) function f

is often replaced by its linear approximation g which is easier to handle.

Example 7.17 Let f (x) =
√

x = x1/2. Consequently,

f ′(x) =
1

2
x− 1

2 =
1

2
√

x
.

We want to find the linear approximation to the function f at x0 = a. According to

the formula above it holds that

√
x ≈ g(x) =

√
a +

1

2
√

a
(x − a)

for x close to a, or, alternatively with h = x − a,

√
a + h ≈

√
a +

1

2
√

a
h for small h.

If we now substitute a = 1 and h = 0.1, we obtain the approximation

√
1.1 ≈ 1 +

0.1

2
= 1.05.

The first digits of the actual value are 1.0488...

Physical interpretation as rate of change. In physical applications the derivative

often plays the role of a rate of change. A well-known example from everyday life is

the velocity, see Sect. 7.1. Consider a particle which is moving along a straight line.

Let s(t) be the position where the particle is at time t . The average velocity is given

by the quotient

s(t) − s(t0)

t − t0
(difference in displacement divided by difference in time).

In the limit t → t0 the average velocity turns into the instantaneous velocity

v(t0) =
ds

dt
(t0) = ṡ(t0) = lim

t→t0

s(t) − s(t0)

t − t0
.

Note that one often writes ḟ (t) instead of f ′(t) if the time t is the argument of the

function f . In particular, in physics the dot notation is most commonly used.
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Likewise one obtains the acceleration by differentiating the velocity

a(t) = v̇(t) = s̈(t).

The notion of velocity is also used in the modelling of other processes that vary over

time, e.g. for growth or decay.

7.4 Differentiation Rules

In this section I ⊂ R denotes an open interval. We first note that differentiation is a

linear process.

Proposition 7.18 (Linearity of the derivative) Let f, g : I → R be two functions

which are differentiable at x ∈ I and take c ∈ R. Then the functions f + g and c · f

are differentiable at x as well and

(

f (x) + g(x)
)′ = f ′(x) + g′(x),

(

c f (x))′ = c f ′(x).

Proof The result follows from the corresponding rules for limits. The first statement

is true because

f (x + h) + g(x + h) − ( f (x) + g(x))

h
=

f (x + h) − f (x)

h
︸ ︷︷ ︸

→ f ′(x)

+
g(x + h) − g(x)

h
︸ ︷︷ ︸

→ g′(x)

as h → 0. The second statement follows similarly. �

Linearity together with the differentiation rule (xm)′ = m xm−1 for powers implies

that every polynomial is differentiable. Let

p(x) = an xn + an−1xn−1 + · · · + a1x + a0.

Then its derivative has the form

p′(x) = nan xn−1 + (n − 1)an−1xn−2 + · · · + a1.

For example, (3x7 − 4x2 + 5x − 1)′ = 21x6 − 8x + 5.

The following two rules allow one to determine the derivative of products and

quotients of functions from their factors.

Proposition 7.19 (Product rule) Let f, g : I → R be two functions which are dif-

ferentiable at x ∈ I . Then the function f · g is differentiable at x and

(

f (x) · g(x)
)′ = f ′(x) · g(x) + f (x) · g′(x).
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Proof This fact follows again from the corresponding rules for limits

f (x + h) · g(x + h) − f (x) · g(x)

h

=
f (x + h) · g(x + h) − f (x) · g(x + h)

h
+

f (x) · g(x + h) − f (x) · g(x)

h

=
f (x + h) − f (x)

h
︸ ︷︷ ︸

→ f ′(x)

· g(x + h)
︸ ︷︷ ︸

→ g(x)

+ f (x) ·
g(x + h) − g(x)

h
︸ ︷︷ ︸

→ g′(x)

as h → 0. The required continuity of g at x is a consequence of Application 7.15. �

Proposition 7.20 (Quotient rule) Let f, g : I → R be two functions differentiable

at x ∈ I and g(x) = 0. Then the quotient
f

g
is differentiable at the point x and

(
f (x)

g(x)

)′
=

f ′(x) · g(x) − f (x) · g′(x)

g(x)2
.

In particular,
(

1

g(x)

)′
= −

g′(x)

(g(x))2
.

The proof is similar to the one for the product rule and can be found in [3,

Chap. 3.1], for example.

Example 7.21 An application of the quotient rule to tan x =
sin x

cos x
shows that

tan′ x =
cos2 x + sin2 x

cos2 x
=

1

cos2 x
= 1 + tan2 x .

Complicated functions can often be written as a composition of simpler functions.

For example, the function

h : [2,∞) → R : x �→ h(x) =
√

log(x − 1)

can be interpreted as h(x) = f (g(x)) with

f : [0,∞) → R : y �→ √
y, g : [2,∞) → [0,∞) : x �→ log(x − 1).

One denotes the composition of the functions f and g by h = f ◦ g. The following

proposition shows how such compound functions can be differentiated.
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Proposition 7.22 (Chain rule) The composition of two differentiable functions g :
I → B and f : B → R is also differentiable and

d

dx
f (g(x)) = f ′(g(x)) · g′(x).

In shorthand notation the rule is

( f ◦ g)′ = ( f ′ ◦ g) · g′.

Proof We write

1

h

(

f (g(x + h)) − f (g(x))
)

=
f (g(x + h)) − f (g(x))

g(x + h) − g(x)
·
g(x + h) − g(x)

h

=
f (g(x) + k) − f (g(x))

k
·
g(x + h) − g(x)

h
,

where, due to the interpretation as a linear approximation (see Sect. 7.3), the expres-

sion

k = g(x + h) − g(x)

is of the form

k = g′(x)h + R(x + h, x)

and tends to zero itself as h → 0. It follows that

d

dx
f (g(x)) = lim

h→0

1

h

(

f (g(x + h)) − f (g(x))
)

= lim
h→0

(
f (g(x) + k) − f (g(x))

k
·
g(x + h) − g(x)

h

)

= f ′(g(x)) · g′(x)

and hence the assertion of the proposition. �

The differentiation of a composite function h(x) = f (g(x)) is consequently per-

formed in three steps:

1. Identify the outer function f and the inner function g with h(x) = f (g(x)).

2. Differentiate the outer function f at the point g(x), i.e. compute f ′(y) and then

substitute y = g(x). The result is f ′(g(x)).

3. Inner derivative: Differentiate the inner function g and multiply it with the result

of step 2. One obtains h′(x) = f ′(g(x)) · g′(x).

In the case of three or more compositions, the above rules have to be applied recur-

sively.
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Example 7.23 (a) Let h(x) = (sin x)3. We identify the outer function f (y) = y3

and the inner function g(x) = sin x . Then

h′(x) = 3 (sin x)2 · cos x .

(b) Let h(x) = e−x2
. We identify f (y) = ey and g(x) = −x2. Thus

h′(x) = e−x2 · (−2x).

The last rule that we will discuss concerns the differentiation of the inverse of a

differentiable function.

Proposition 7.24 (Inverse function rule) Let f : I → J be bijective, differentiable

and f ′(y) = 0 for all y ∈ I . Then f −1 : J → I is also differentiable and

d

dx
f −1(x) =

1

f ′( f −1(x))
.

In shorthand notation this rule is

(

f −1
)′ =

1

f ′ ◦ f −1
.

Proof We set y = f −1(x) and η = f −1(ξ). Due to the continuity of the inverse

function (see Proposition C.3) we have that η → y as ξ → x . It thus follows that

d

dx
f −1(x) = lim

ξ→x

f −1(ξ) − f −1(x)

ξ − x
= lim

η→y

η − y

f (η) − f (y)

= lim
η→y

(
f (η) − f (y)

η − y

)−1

=
1

f ′(y)
=

1

f ′( f −1(x))

and hence the statement of the proposition. �

Figure 7.4 shows the geometric background of the inverse function rule: The slope

of a straight line in x-direction is the inverse of the slope in y-direction.

If it is known beforehand that the inverse function is differentiable then its deriva-

tive can also be obtained in the following way. One differentiates the identity

x = f ( f −1(x))

with respect to x using the chain rule. This yields

1 = f ′( f −1(x)) · ( f −1)′(x)

and one obtains the inverse rule by division by f ′( f −1(x)).
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1/k

k1

1

y = f−1(x)

y

x x = f(y)

1

k
= f (y)

k = (f−1) (x)
1

1

Fig. 7.4 Derivative of the inverse function with detailed view of the slopes

Example 7.25 (Derivative of the logarithm) Since y = log x is the inverse function

to x = ey , it follows from the inverse function rule that

(

log x
)′ =

1

elog x
=

1

x

for x > 0. Furthermore

log |x | =
{

log x, x > 0,

log (−x) , x < 0,

and thus

(

log |x |
)′ =

⎧

⎪
⎨

⎪
⎩

(

log x
)′ =

1

x
, x > 0,

(

log (−x)
)′ =

1

(−x)
· (−1) =

1

x
, x < 0.

Altogether one obtains the formula

(

log |x |
)′ =

1

x
for x = 0.

For logarithms to the base a one has

loga x =
log x

log a
, thus

(

loga x
)′ =

1

x log a
.

Example 7.26 (Derivatives of general power functions) From xα = eα log x we

infer by the chain rule that

(

xα
)′ = eα log x ·

α

x
= xα ·

α

x
= α xα−1.

Example 7.27 (Derivative of the general exponential function) For a > 0 we have

ax = ex log a . An application of the chain rule shows that

(

ax
)′ =

(

ex log a
)′ = ex log a · log a = ax log a.
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Example 7.28 For x > 0 we have x x = ex log x and thus

(

x x
)′ = ex log x

(

log x +
x

x

)

= x x (log x + 1) .

Example 7.29 (Derivatives of cyclometric functions) We recall the differentiation

rules for the trigonometric functions on their principal branches:

(sin x)′ = cos x =
√

1 − sin2 x, −π
2

≤ x ≤ π
2
,

(cos x)′ = − sin x = −
√

1 − cos2 x, 0 ≤ x ≤ π,

(tan x)′ = 1 + tan2 x, −π
2

< x < π
2
.

The inverse function rule thus yields

(arcsin x)′ =
1

√

1 − sin2(arcsin x)
=

1
√

1 − x2
, −1 < x < 1,

(arccos x)′ =
−1

√

1 − cos2(arccos x)
= −

1
√

1 − x2
, −1 < x < 1,

(arctan x)′ =
1

1 + tan2(arctan x)
=

1

1 + x2
, −∞ < x < ∞.

Example 7.30 (Derivatives of hyperbolic and inverse hyperbolic functions) The

derivative of the hyperbolic sine is readily computed by invoking the defining for-

mula:

(sinh x)′ =
(1

2

(

ex − e−x
)
)′

=
1

2

(

ex + e−x
)

= cosh x .

The derivative of the hyperbolic cosine is obtained in the same way; for differentiating

the hyperbolic tangent, the quotient rule is to be applied (see Exercise 3):

(cosh x)′ = sinh x, (tanh x)′ = 1 − tanh2 x .

The derivative of the inverse hyperbolic sine can be computed by means of the inverse

function rule:

(arsinh x)′ =
1

cosh(arsinh x)
=

1
√

1 + sinh2(arsinh x)
=

1
√

1 + x2

for x ∈ R, where we have used the identity cosh2 x − sinh2 x = 1. In a similar way,

the derivatives of the other inverse hyperbolic functions can be computed on their

respective domains (Exercise 3):

(arcosh x)′ =
1

√
x2 − 1

, x > 1,

(artanh x)′ =
1

1 − x2
, −1 < x < 1.
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Table 7.1 Derivatives of the elementary functions (α ∈ R, a > 0)

f (x) 1 xα ex ax log |x | loga x

f ′(x) 0 αxα−1 ex ax log a
1

x

1

x log a

f (x) sin x cos x tan x arcsin x arccos x arctan x

f ′(x) cos x − sin x 1 + tan2 x
1

√
1 − x2

−1
√

1 − x2

1

1 + x2

f (x) sinh x cosh x tanh x arsinh x arcosh x artanh x

f ′(x) cosh x sinh x 1 − tanh2 x
1

√
1 + x2

1
√

x2 − 1

1

1 − x2

The derivatives of the most important elementary functions are collected in Table 7.1.

The formulas are valid on the respective domains.

7.5 Numerical Differentiation

In applications it often happens that a function can be evaluated for arbitrary argu-

ments, but no analytic formula is known which represents the function. This situation,

for example, arises if the dependent variable is determined using a measuring instru-

ment, e.g. the temperature at a given point as a function of time.

The definition of the derivative as a limit of difference quotients suggests that

the derivative of such functions can be approximated by an appropriate difference

quotient

f ′(a) ≈
f (a + h) − f (a)

h
.

The question is how small h should be chosen. In order to decide this we will first

carry out a numerical experiment.

Experiment 7.31 Use the above formula to approximate the derivative f ′(a) of

f (x) = ex at a = 1. Consider different values of h, for example for h = 10− j with

j = 0, 1, . . . , 16. One expects a value close to e = 2.71828... as result. Typical

outcomes of such an experiment are listed in Table 7.2.

One sees that the error initially decreases with h, but increases again for smaller

h. The reason lies in the representation of numbers on a computer. The experiment

was carried out in IEEE double precision which corresponds to a relative

machine accuracy of eps ≈ 10−16. The experiment shows that the best result is

obtained for

h ≈ √
eps ≈ 10−8.
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Table 7.2 Numerical differentiation of the exponential function at a = 1 using a one-sided differ-

ence quotient. The numerical results and errors are given as functions of h

h Value Error

1.000E-000 4.67077427047160 1.95249244201256E-000

1.000E-001 2.85884195487388 1.40560126414838E-001

1.000E-002 2.73191865578714 1.36368273280976E-002

1.000E-003 2.71964142253338 1.35959407433051E-003

1.000E-004 2.71841774708220 1.35918623152431E-004

1.000E-005 2.71829541994577 1.35914867218645E-005

1.000E-006 2.71828318752147 1.35906242526573E-006

1.000E-007 2.71828196740610 1.38947053418548E-007

1.000E-008 2.71828183998415 1.15251088672608E-008

1.000E-009 2.71828219937549 3.70916445113778E-007

1.000E-010 2.71828349976758 1.67130853068187E-006

1.000E-011 2.71829650802524 1.46795661959409E-005

1.000E-012 2.71866817252997 3.86344070924416E-004

1.000E-013 2.71755491373926 -7.26914719783700E-004

1.000E-014 2.73058485544819 1.23030269891471E-002

1.000E-015 3.16240089670572 4.44119068246674E-001

1.000E-016 1.44632569809566 -1.27195613036338E-000

This behaviour can be explained by using Taylor expansion. In Chap. 12 we will

derive the formula

f (a + h) = f (a) + h f ′(a) +
h2

2
f ′′(ξ),

where ξ denotes an appropriate point between a and a + h. (The value of ξ is usually

not known.) Thus, after rearranging, we get

f ′(a) =
f (a + h) − f (a)

h
−

h

2
f ′′(ξ).

The discretisation error, i.e. the error which arises from replacing the derivative

by the difference quotient, is proportional to h and decreases linearly with h. This

behaviour can also be seen in the numerical experiment for h between 10−2 and

10−8.

For very small h rounding errors additionally come into play. As we have seen in

Sect. 1.4 the calculation of f (a) on a computer yields

rd( f (a)) = f (a) · (1 + ε) = f (a) + ε f (a)
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Fig. 7.5 Approximation of

the tangent by a symmetric

secant

y = f(x)

a + ha a− h

with |ε| ≤ eps. The rounding error turns out to be proportional to eps / h and

increases dramatically for small h. This behaviour can be seen in the numerical

experiment for h between 10−8 and 10−16.

The result of the numerical derivative using the one-sided difference quotient

f ′(a) ≈
f (a + h) − f (a)

h

is then most precise if discretisation and rounding error have approximately the same

magnitude, so if

h ≈
eps

h
or h ≈ √

eps ≈ 10−8.

In order to calculate the derivative of f ′(a) one can also use a secant placed

symmetrically around
(

a, f (a)
)

, i.e.

f ′(a) = lim
h→0

f (a + h) − f (a − h)

2h

This suggests the symmetric formula

f ′(a) ≈
f (a + h) − f (a − h)

2h
.

This approximation is called symmetric difference quotient (Fig. 7.5).

To analyse the accuracy of the approximation, we need the Taylor series from

Chap. 12:

f (a + h) = f (a) + h f ′(a) +
h2

2
f ′′(a) +

h3

6
f ′′′(a) + · · ·

If one replaces h by −h in this formula

f (a − h) = f (a) − h f ′(a) +
h2

2
f ′′(a) −

h3

6
f ′′′(a) + · · ·
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Table 7.3 Numerical differentiation of the exponential function at a = 1 using a symmetric differ-

ence quotient. The numerical results and errors are given as functions of h

h Value Error

1.000E-000 3.19452804946533 4.76246221006280E-001

1.000E-001 2.72281456394742 4.53273548837307E-003

1.000E-002 2.71832713338270 4.53049236583958E-005

1.000E-003 2.71828228150582 4.53046770765297E-007

1.000E-004 2.71828183298958 4.53053283777649E-009

1.000E-005 2.71828182851255 5.35020916458961E-011

1.000E-006 2.71828182834134 -1.17704512803130E-010

1.000E-007 2.71828182903696 5.77919490041268E-010

1.000E-008 2.71828181795317 -1.05058792776447E-008

1.000E-009 2.71828182478364 -3.67540575751946E-009

1.000E-010 2.71828199164235 1.63183308643511E-007

1.000E-011 2.71829103280427 9.20434522511116E-006

1.000E-012 2.71839560410381 1.13775644761560E-004

and takes the difference, one obtains

f (a + h) − f (a − h) = 2h f ′(a) + 2
h3

6
f ′′′(a) + · · ·

and furthermore

f ′(a) =
f (a + h) − f (a − h)

2h
−

h2

6
f ′′′(a) + · · ·

In this case the discretisation error is hence proportional to h2, while the rounding

error is still proportional to eps/h.

The symmetric procedure thus delivers the best results for

h2 ≈
eps

h
or h ≈ 3

√
eps,

respectively. We repeat Experiment 7.31 with f (x) = ex , a = 1 and h = 10− j for

j = 0, . . . , 12. The results are listed in Table 7.3.

As expected one obtains the best result for h ≈ 10−5. The obtained approximation

is more precise than that of Table 7.2. Since symmetric procedures generally give

better results, symmetry is an important concept in numerical mathematics.

Numerical differentiation of noisy functions. In practice it often occurs that a

function which has to be differentiated consists of discrete data that are addition-

ally perturbed by a noise. The noise represents small measuring errors and behaves

statistically like random numbers.
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Fig. 7.6 The left picture shows random noise which masks the data. The noise is modelled by 801

normally distributed random numbers. The frequencies of the chosen random numbers can be seen

in the histogram in the right picture. For comparison, the (scaled) density of the corresponding

normal distribution is given there as well

Example 7.32 Digitising a line of a picture by J + 1 pixels produces a function

f : {0, 1, . . . , J } → R : j �→ f ( j) = f j = brightness of the j th pixel.

In order to find an edge in the picture, where the brightness locally changes very

rapidly, this function has to be differentiated.

We consider a concrete example. Suppose that the picture information consists of

the function

g : [a, b] → R : x �→ g(x) = −2x3 + 4x

with a = −2 and b = 2. Let Δx be the distance between two pixels and

J =
b − a

Δx

denote the total number of pixels minus 1. We choose Δx = 1/200 and thus obtain

J = 800. The actual brightness of the j th pixel would then be

g j = g(a + jΔx), 0 ≤ j ≤ J.

However, due to measuring errors the measuring instrument supplies

f j = g j + ε j ,

where ε j are random numbers. We choose normally distributed random numbers

with expected value 0 and variance 2.5 · 10−5 for ε j , see Fig. 7.6. For an exact

definition of the notions of expected value and variance we refer to the literature, for

instance [18].

These random numbers can be generated in MATLAB using the command

randn(1,801)*sqrt(2.5e-5).
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Fig. 7.7 Numerically obtained derivative of a noisy function f , consisting of 801 data values (left);

derivative of the same function after filtering using a Gaussian filter (middle) and after smoothing

using splines (right)

Differentiating f using the previous rules generates

f ′
j ≈

f j − f j−1

Δx
=

g j − g j−1

Δx
+

ε j − ε j−1

Δx

and the part with g gives the desired value of the derivative, namely

g j − g j−1

Δx
=

g(a + jΔx) − g(a + jΔx − Δx)

Δx
≈ g′(a + jΔx).

The sequence of random numbers results in a non-differentiable graph. The expres-

sion

ε j − ε j−1

Δx

is proportional to J · max0≤ j≤J |ε j |. The errors become dominant for large J , see

Fig. 7.7, left picture.

To still obtain reliable results, the data have to be smoothed before differentiating.

The simplest method is a so-called convolution with a Gaussian filter which amounts

to a weighted averaging of the data (Fig. 7.7, middle). Alternatively one can also use

splines for smoothing, for example the routine csaps in MATLAB. For the right

picture in Fig. 7.7 this method has been used.

Experiment 7.33 Generate Fig. 7.7 using the MATLAB program mat07_1.m and

investigate the influence of the choice of random numbers and the smoothing param-

eter in csaps on the result.

7.6 Exercises

1. Compute the first derivative of the functions

f (x) = x3, g(t) =
1

t2
, h(x) = cos x, k(x) =

1
√

x
, ℓ(t) = tan t

using the definition of the derivative as a limit.
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2. Compute the first derivative of the functions

a(x) = x2−1
x2+2x+1

, b(x) = (x3 − 1) sin2 x, c(t) =
√

1 + t2 arctan t,

d(t) = t2ecos(t2+1), e(x) = x2 sin x , f (s) = log
(

s +
√

1 + s2
)

.

Check your results with maple .

3. Derive the remaining formulas in Example 7.30. Start by computing the deriva-

tives of the hyperbolic cosine and hyperbolic tangent. Use the inverse function

rule to differentiate the inverse hyperbolic cosine and inverse hyperbolic tangent.

4. Compute an approximation of
√

34 by replacing the function f (x) =
√

x at

x = 36 by its linear approximation. How accurate is your result?

5. Find the equation of the tangent line to the graph of the function y = f (x)

through the point (x0, f (x0)), where

f (x) =
x

2
+

x

log x
and (a) x0 = e; (b) x0 = e2.

6. Sand runs from a conveyor belt onto a heap with a velocity of 2 m3/min. The

sand forms a cone-shaped pile whose height equals 4
3

of the radius. With which

velocity does the radius grow if the sand cone has a diameter of 6 m?

Hint. Determine the volume V as a function of the radius r , consider V and r as

functions of time t and differentiate the equation with respect to t . Compute ṙ .

7. Use the Taylor series

y(x + h) = y(x) + hy′(x) +
h2

2
y′′(x) +

h3

6
y′′′(x) +

h4

24
y(4)(x) + · · ·

to derive the formula

y′′(x) =
y(x + h) − 2y(x) + y(x − h)

h2
−

h2

12
y(4)(x) + · · ·

and read off from that a numerical method for calculating the second derivative.

The discretisation error is proportional to h2, and the rounding error is propor-

tional to eps/h2. By equating the discretisation and the rounding error deduce

the optimal step size h. Check your considerations by performing a numerical

experiment in MATLAB , computing the second derivative of y(x) = e2x at the

point x = 1.

8. Write a MATLAB program which numerically differentiates a given function on a

given interval and plots the function and its first derivative. Test your program

on the functions

f (x) = cos x, 0 ≤ x ≤ 6π,

and

g(x) = e− cos(3x), 0 ≤ x ≤ 2.
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9. Show that the nth derivative of the power function y = xn equals n! for n ≥
1. Verify that the derivative of order n + 1 of a polynomial p(x) = an xn +
an−1xn−1 + · · · + a1x + a0 of degree n equals zero.

10. Compute the second derivative of the functions

f (x) = e−x2

, g(x) = log
(

x +
√

1 + x2
)

, h(x) = log
x + 1

x − 1
.



8Applications of the Derivative

This chapter is devoted to some applications of the derivative which form part of

the basic skills in modelling. We start with a discussion of features of graphs. More

precisely, we use the derivative to describe geometric properties like maxima, minima

and monotonicity. Even though plotting functions with MATLAB or maple is simple,

understanding the connection with the derivative is important, for example, when a

function with given properties is to be chosen from a particular class of functions.

In the following section we discuss Newton’s method and the concept of order

of convergence. Newton’s method is one of the most important tools for computing

zeros of functions. It is nearly universally in use.

The final section of this chapter is devoted to an elementary method from data

analysis. We show how to compute a regression line through the origin. There are

many areas of application that involve linear regression. This topic will be developed

in more detail in Chap. 18.

8.1 Curve Sketching

In the following we investigate some geometric properties of graphs of functions

using the derivative: maxima and minima, intervals of monotonicity and convexity.

We further discuss the mean value theorem which is an important technical tool for

proofs.

Definition 8.1 A function f : [a, b] → R has

(a) a global maximum at x0 ∈ [a, b] if

f (x) ≤ f (x0) for all x ∈ [a, b];
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Fig. 8.1 Minima and

maxima of a function

local min

local max

local max

y

x

ba

global max

local min

(b) a local maximum at x0 ∈ [a, b], if there exists a neighbourhood Uε(x0) so that

f (x) ≤ f (x0) for all x ∈ Uε(x0) ∩ [a, b].

The maximum is called strict if the strict inequality f (x) < f (x0) holds in (a) or

(b) for x �= x0.

The definition for minimum is analogous by inverting the inequalities. Maxima

and minima are subsumed under the term extrema. Figure 8.1 shows some possible

situations. Note that the function there does not have a global minimum on the chosen

interval.

For points x0 in the open interval (a, b) one has a simple necessary condition for

extrema of differentiable functions:

Proposition 8.2 Let x0 ∈ (a, b) and f be differentiable at x0. If f has a local max-

imum or minimum at x0 then f ′(x0) = 0.

Proof Due to the differentiability of f we have

f ′(x0) = lim
h→0+

f (x0 + h) − f (x0)

h
= lim

h→0−

f (x0 + h) − f (x0)

h
.

In the case of a maximum the slope of the secant satisfies the inequalities

f (x0 + h) − f (x0)

h
≤ 0, if h > 0,

f (x0 + h) − f (x0)

h
≥ 0, if h < 0.

Consequently the limit f ′(x0) has to be greater than or equal to zero as well as

smaller than or equal to zero, thus necessarily f ′(x0) = 0. �

The function f (x) = x3, whose derivative vanishes at x = 0, shows that the con-

dition of the proposition is not sufficient for the existence of a maximum or minimum.

The geometric content of the proposition is that in the case of differentiability the

graph of the function has a horizontal tangent at a maximum or minimum. A point

x0 ∈ (a, b) where f ′(x0) = 0 is called a stationary point.
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Fig. 8.2 The mean value

theorem

f(b)

f(a)

ξ ba
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Remark 8.3 The proposition shows that the following point sets have to be checked

in order to determine the maxima and minima of a function f : [a, b] → R:

(a) the boundary points x0 = a, x0 = b;

(b) points x0 ∈ (a, b) at which f is not differentiable;

(c) points x0 ∈ (a, b) at which f is differentiable and f ′(x0) = 0.

The following proposition is a useful technical tool for proofs. One of its applica-

tions lies in estimating the error of numerical methods. Similarly to the intermediate

value theorem, the proof is based on the completeness of the real numbers. We are not

going to present it here but instead refer to the literature, for instance [3, Chap. 3.2].

Proposition 8.4 (Mean value theorem) Let f be continuous on [a, b] and differ-

entiable on (a, b). Then there exists a point ξ ∈ (a, b) such that

f (b) − f (a)

b − a
= f ′(ξ).

Geometrically this means that the tangent at ξ has the same slope as the secant

through (a, f (a)), (b, f (b)). Figure 8.2 illustrates this fact.

We now turn to the description of the behaviour of the slope of differentiable

functions.

Definition 8.5 A function f : I → R is called monotonically increasing, if

x1 < x2 ⇒ f (x1) ≤ f (x2)

for all x1, x2 ∈ I . It is called strictly monotonically increasing, if

x1 < x2 ⇒ f (x1) < f (x2).

A function f is said to be (strictly) monotonically decreasing, if − f is (strictly)

monotonically increasing.

Examples of strictly monotonically increasing functions are the power functions

x 
→ xn with odd powers n; a monotonically, but not strictly monotonically increas-

ing function is the sign function x 
→ sign x , for instance. The behaviour of the slope

of a differentiable function can be described by the sign of the first derivative.
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Fig. 8.3 Local maximum
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Proposition 8.6 For differentiable functions f : (a, b) → R the following implica-

tions hold:

(a)
f ′ ≥ 0 on (a, b) ⇔ f is monotonically increasing;
f ′ > 0 on (a, b) ⇒ f is strictly monotonically increasing.

(b)
f ′ ≤ 0 on (a, b) ⇔ f is monotonically decreasing;
f ′ < 0 on (a, b) ⇒ f is strictly monotonically decreasing.

Proof (a) According to the mean value theorem we have f (x2) − f (x1) = f ′(ξ) ·
(x2 − x1) for a certain ξ ∈ (a, b). If x1 < x2 and f ′(ξ) ≥ 0 then f (x2) − f (x1) ≥ 0.

If f ′(ξ) > 0 then f (x2) − f (x1) > 0. Conversely

f ′(x) = lim
h→0

f (x + h) − f (x)

h
≥ 0,

if f is increasing. The proof for (b) is similar. �

Remark 8.7 The example f (x) = x3 shows that f can be strictly monotonically

increasing even if f ′ = 0 at isolated points.

Proposition 8.8 (Criterion for local extrema) Let f be differentiable on (a, b),

x0 ∈ (a, b) and f ′(x0) = 0. Then

(a)
f ′(x) > 0 for x < x0

f ′(x) < 0 for x > x0

}

⇒ f has a local maximum in x0,

(b)
f ′(x) < 0 for x < x0

f ′(x) > 0 for x > x0

}

⇒ f has a local minimum in x0.

Proof The proof follows from the previous proposition which characterises the

monotonic behaviour as shown in Fig. 8.3. �

Remark 8.9 (Convexity and concavity of a function graph) If f ′′ > 0 holds in an

interval then f ′ is monotonically increasing there. Thus the graph of f is curved to

the left or convex. On the other hand, if f ′′ < 0, then f ′ is monotonically decreasing

and the graph of f is curved to the right or concave (see Fig. 8.4). A quantitative

description of the curvature of the graph of a function will be given in Sect. 14.2.
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Fig. 8.4 Convexity/

concavity and second

derivative

x0

f > 0

f < 0

xx0

f (x0) = 0
f > 0

f < 0

x

Let x0 be a point where f ′(x0) = 0. If f ′ does not change its sign at x0, then x0 is

an inflection point. Here f changes from positive to negative curvature or vice versa.

Proposition 8.10 (Second derivative criterion for local extrema) Let f be twice

continuously differentiable on (a, b), x0 ∈ (a, b) and f ′(x0) = 0.

(a) If f ′′(x0) > 0 then f has a local minimum at x0.

(b) If f ′′(x0) < 0 then f has a local maximum at x0.

Proof (a) Since f ′′ is continuous, f ′′(x) > 0 for all x in a neighbourhood of

x0. According to Proposition 8.6, f ′ is strictly monotonically increasing in this

neighbourhood. Because of f ′(x0) = 0 this means that f ′(x0) < 0 for x < x0 and

f ′(x) > 0 for x > x0; according to the criterion for local extrema, x0 is a minimum.

The assertion (b) can be shown similarly. �

Remark 8.11 If f ′′(x0) = 0 there can either be an inflection point or a minimum or

maximum. The functions f (x) = xn , n = 3, 4, 5, . . . supply a typical example. In

fact, they have for n even a global minimum at x = 0, and an inflection point for n odd.

More general functions can easily be assessed using Taylor expansion. An extreme

value criterion based on this expansion will be discussed in Application 12.14.

One of the applications of the previous propositions is curve sketching, which

is the detailed investigation of the properties of the graph of a function using

differential calculus. Even though graphs can easily be plotted in MATLAB or maple it

is still often necessary to check the graphical output at certain points using analytic

methods.

Experiment 8.12 Plot the function

y = x(sign x − 1)(x + 1)3 +
(

sign(x − 1) + 1
)(

(x − 2)4 − 1/2
)

on the interval −2 ≤ x ≤ 3 and try to read off the local and global extrema, the

inflection points and the monotonic behaviour. Check your observations using the

criteria discussed above.

A further application of the previous propositions consists in finding extrema,

i.e. solving one-dimensional optimisation problems. We illustrate this topic using a

standard example.
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Example 8.13 Which rectangle with a given perimeter has the largest area? To

answer this question we denote the lengths of the sides of the rectangle by x and y.

Then the perimeter and the area are given by

U = 2x + 2y, F = xy.

Since U is fixed, we obtain y = U/2 − x , and from that

F = x(U/2 − x),

where x can vary in the domain 0 ≤ x ≤ U/2. We want to find the maximum of

the function F on the interval [0, U/2]. Since F is differentiable, we only have to

investigate the boundary points and the stationary points. At the boundary points

x = 0 and x = U/2 we have F(0) = 0 and F(U/2) = 0. The stationary points are

obtained by setting the derivative to zero

F ′(x) = U/2 − 2x = 0,

which brings us to x = U/4 with the function value F(U/4) = U 2/16.

As result we get that the maximum area is obtained at x = U/4, thus in the case

of a square.

8.2 Newton’s Method

With the help of differential calculus efficient numerical methods for computing

zeros of differentiable functions can be constructed. One of the basic procedures is

Newton’s method1 which will be discussed in this section for the case of real-valued

functions f : D ⊂ R → R.

First we recall the bisection method discussed in Sect. 6.3. Consider a continuous,

real-valued function f on an interval [a, b] with

f (a) < 0, f (b) > 0 or f (a) > 0, f (b) < 0.

With the help of continued bisection of the interval, one obtains a zero ξ of f

satisfying

a = a1 ≤ a2 ≤ a3 ≤ · · · ≤ ξ ≤ · · · ≤ b3 ≤ b2 ≤ b1 = b,

where

|bn+1 − an+1| =
1

2
|bn − an| =

1

4
|bn−1 − an−1| = . . . =

1

2n
|b1 − a1|.

1I. Newton, 1642–1727.
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If one stops after n iterations and chooses an or bn as approximation for ξ then one

gets a guaranteed error bound

|error| ≤ ϕ(n) = |bn − an|.

Note that we have

ϕ(n + 1) =
1

2
ϕ(n).

The error thus decays with each iteration by (at least) a constant factor 1
2

, and one

calls the method linearly convergent. More generally, an iteration scheme is called

convergent of order α if there exist error bounds (ϕ(n))n≥1 and a constant C > 0

such that

lim
n→∞

ϕ(n + 1)

(ϕ(n))α
= C.

For sufficiently large n, one thus has approximately

ϕ(n + 1) ≈ C(ϕ(n))α.

Linear convergence (α = 1) therefore implies

ϕ(n + 1) ≈ Cϕ(n) ≈ C2ϕ(n − 1) ≈ . . . ≈ Cn ϕ(1).

Plotting the logarithm of ϕ(n) against n (semi-logarithmic representation, as shown

for example in Fig. 8.6) results in a straight line:

log ϕ(n + 1) ≈ n log C + log ϕ(1).

If C < 1 then the error bound ϕ(n + 1) tends to 0 and the number of correct decimal

places increases with each iteration by a constant. Quadratic convergence would

mean that the number of correct decimal places approximately doubles with each

iteration.

Derivation of Newton’s method. The aim of the construction is to obtain a procedure

that provides quadratic convergence (α = 2), at least if one starts sufficiently close

to a simple zero ξ of a differentiable function. The geometric idea behind Newton’s

method is simple: Once an approximation xn is chosen, one calculates xn+1 as the

intersection of the tangent to the graph of f through (xn, f (xn)) with the x-axis, see

Fig. 8.5. The equation of the tangent is given by

y = f (xn) + f ′(xn)(x − xn).

The point of intersection xn+1 with the x-axis is obtained from

0 = f (xn) + f ′(xn)(xn+1 − xn),
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Fig. 8.5 Two steps of

Newton’s method

ξ xn+2 xn+1 xn

y

x

thus

xn+1 = xn −
f (xn)

f ′(xn)
, n ≥ 1.

Obviously it has to be assumed that f ′(xn) �= 0. This condition is fulfilled, if f ′ is

continuous, f ′(ξ) �= 0 and xn is sufficiently close to the zero ξ.

Proposition 8.14 (Convergence of Newton’s method) Let f be a real-valued func-

tion, twice differentiable with a continuous second derivative. Further, let f (ξ) = 0

and f ′(ξ) �= 0. Then there exists a neighbourhood Uε(ξ) such that Newton’s method

converges quadratically to ξ for every starting value x1 ∈ Uε(ξ).

Proof Since f ′(ξ) �= 0 and f ′ is continuous, there exist a neighbourhood Uδ(ξ) and

a bound m > 0 so that | f ′(x)| ≥ m for all x ∈ Uδ(ξ). Applying the mean value

theorem twice gives

|xn+1 − ξ| =
∣

∣

∣

∣

xn − ξ −
f (xn) − f (ξ)

f ′(xn)

∣

∣

∣

∣

≤ |xn − ξ|
∣

∣

∣

∣

1 −
f ′(η)

f ′(xn)

∣

∣

∣

∣

= |xn − ξ|
| f ′(xn) − f ′(η)|

| f ′(xn)|

≤ |xn − ξ|2
| f ′′(ζ)|
| f ′(xn)|

with η between xn and ξ and ζ between xn and η. Let M denote the maximum of

| f ′′| on Uδ(ξ). Under the assumption that all iterates xn lie in the neighbourhood

Uδ(ξ), we obtain the quadratic error bound

ϕ(n + 1) = |xn+1 − ξ| ≤ |xn − ξ|2
M

m
= (ϕ(n))2 M

m

for the error ϕ(n) = |xn − ξ|. Thus, the assertion of the proposition holds with

the neighbourhood Uδ(ξ). Otherwise we have to decrease the neighbourhood by
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choosing an ε < δ which satisfies the inequality ε M
m

≤ 1. Then

|xn − ξ| ≤ ε ⇒ |xn+1 − ξ| ≤ ε2 M

m
≤ ε.

This means that if an approximate value xn lies in Uε(ξ) then so does the subsequent

value xn+1. Since Uε(ξ) ⊂ Uδ(ξ), the quadratic error estimate from above is still

valid. Thus the assertion of the proposition is valid with the smaller neighbourhood

Uε(ξ). �

Example 8.15 In computing the root ξ = 3
√

2 of x3 − 2 = 0, we compare the bisec-

tion method with starting interval [−2, 2] and Newton’s method with starting value

x1 = 2. The interval boundaries [an, bn] and the iterates xn are listed in Tables 8.1

and 8.2, respectively. Newton’s method gives the value

3
√

2 = 1.25992104989487

correct to 14 decimal places after only six iterations.

Table 8.1 Bisection method for calculating the third root of 2

n an bn Error

1 −2.00000000000000 2.00000000000000 4.00000000000000

2 0.00000000000000 2.00000000000000 2.00000000000000

3 1.00000000000000 2.00000000000000 1.00000000000000

4 1.00000000000000 1.50000000000000 0.50000000000000

5 1.25000000000000 1.50000000000000 0.25000000000000

6 1.25000000000000 1.37500000000000 0.12500000000000

7 1.25000000000000 1.31250000000000 0.06250000000000

8 1.25000000000000 1.28125000000000 0.03125000000000

9 1.25000000000000 1.26562500000000 0.01562500000000

10 1.25781250000000 1.26562500000000 0.00781250000000

11 1.25781250000000 1.26171875000000 0.00390625000000

12 1.25976562500000 1.26171875000000 0.00195312500000

13 1.25976562500000 1.26074218750000 0.00097656250000

14 1.25976562500000 1.26025390625000 0.00048828125000

15 1.25976562500000 1.26000976562500 0.00024414062500

16 1.25988769531250 1.26000976562500 0.00012207031250

17 1.25988769531250 1.25994873046875 0.00006103515625

18 1.25991821289063 1.25994873046875 0.00003051757813
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Table 8.2 Newton’s method

for calculating the third root

of 2

n xn Error

1 2.00000000000000 0.74007895010513

2 1.50000000000000 0.24007895010513

3 1.29629629629630 0.03637524640142

4 1.26093222474175 0.00101117484688

5 1.25992186056593 0.00000081067105

6 1.25992104989539 0.00000000000052

7 1.25992104989487 0.00000000000000

The error curves for the bisection method and Newton’s method can be seen in

Fig. 8.6. A semi-logarithmic representation (MATLAB command semilogy) is used

there.

Remark 8.16 The convergence behaviour of Newton’s method depends on the con-

ditions of Proposition 8.14. If the starting value x1 is too far away from the zero ξ,

then the method might diverge, oscillate or converge to a different zero. If f ′(ξ) = 0,

which means the zero ξ has a multiplicity > 1, then the order of convergence may

be reduced.

Experiment 8.17 Open the applet Newton’s method and test—using the sine

function—how the choice of the starting value influences the result (in the applet the

right interval boundary is the initial value). Experiment with the intervals [−2, x0]
for x0 = 1, 1.1, 1.2, 1.3, 1.5, 1.57, 1.5707, 1.57079 and interpret your observations.

Also carry out the calculations with the same starting values with the help of the

M-file mat08_2.m.

Experiment 8.18 With the help of the applet Newton’s method, study how the order

of convergence drops for multiple zeros. For this purpose, use the two polynomial

functions given in the applet.

Remark 8.19 Variants of Newton’s method can be obtained by evaluating the deriva-

tive f ′(xn) numerically. For example, the approximation

f ′(xn) ≈
f (xn) − f (xn−1)

xn − xn−1
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Fig. 8.6 Error of the

bisection method and of

Newton’s method for the

calculation of
3
√

2
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Newton

bisection

provides the secant method

xn+1 = xn −
(xn − xn−1) f (xn)

f (xn) − f (xn−1)
,

which computes xn+1 as intercept of the secant through (xn, f (xn)) and (xn−1,

f (xn−1)) with the x-axis. It has a fractional order less than 2.

8.3 Regression Line Through the Origin

This section is a first digression into data analysis: Given a collection of data points

scattered in the plane, find the line of best fit (regression line) through the origin. We

will discuss this problem as an application of differentiation; it can also be solved by

using methods of linear algebra. The general problem of multiple linear regression

will be dealt with in Chap. 18.

In the year 2002, the height x [cm] and the weight y [kg] of 70 students in

Computer Science at the University of Innsbruck were collected. The data can be

obtained from the M-file mat08_3.m.

The measurements (xi , yi ), i = 1, . . . , n of height and weight form a scatter plot

in the plane as shown in Fig. 8.7. Under the assumption that there is a linear relation

of the form y = kx between height and weight, k should be determined such that the

straight line y = kx represents the scatter plot as closely as possible (Fig. 8.8). The

approach that we discuss below goes back to Gauss2 and understands the data fit in

the sense of minimising the sum of squares of the errors.

2C.F. Gauss, 1777–1855.
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Fig. 8.7 Scatter plot
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Fig. 8.8 Line of best fit

y = kx
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Application 8.20 (Line of best fit through the origin) A straight line through the

origin

y = kx

is to be fitted to a scatter plot (xi , yi ), i = 1, . . . , n. If k is known, one can compute

the square of the deviation of the measurement yi from the value kxi given by the

equation of the straight line as

(yi − kxi )
2

(the square of the error). We are looking for the specific k which minimises the sum

of squares of the errors; thus

F(k) =
n

∑

i=1

(yi − kxi )
2 → min

Obviously, F(k) is a quadratic function of k. First we compute the derivatives

F ′(k) =
n

∑

i=1

(−2xi )(yi − kxi ), F ′′(k) =
n

∑

i=1

2x2
i .

By setting F ′(k) = 0 we obtain the formula

F ′(k) = −2

n
∑

i=1

xi yi + 2k

n
∑

i=1

x2
i = 0.
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Since evidently F ′′ > 0, its solution

k =
∑

xi yi
∑

x2
i

is the global minimum and gives the slope of the line of best fit.

Example 8.21 To illustrate the regression line through the origin we use the Austrian

consumer price index 2010–2016 (data taken from [26]):

year 2010 2011 2012 2013 2014 2015 2016

index 100.0 103.3 105.8 107.9 109.7 110.7 111.7

For the calculation it is useful to introduce new variables x and y, where x = 0

corresponds to the year 2010 and y = 0 to the index 100. This means that x =
(year − 2010) and y = (index − 100); y describes the relative price increase (in per

cent) with respect to the year 2010. The re-scaled data are

xi 0 1 2 3 4 5 6

yi 0.0 3.3 5.8 7.9 9.7 10.7 11.7

We are looking for the line of best fit to these data through the origin. For this purpose

we have to minimise

F(k) = (3.3 − k · 1)2 + (5.8 − k · 2)2 + (7.9 − k · 3)2 + (9.7 − k · 4)2

+ (10.7 − k · 5)2 + (11.7 − k · 6)2

which results in (rounded)

k =
1 · 3.3 + 2 · 5.8 + 3 · 7.9 + 4 · 9.7 + 5 · 10.7 + 6 · 11.7

1 · 1 + 2 · 2 + 3 · 3 + 4 · 4 + 5 · 5 + 6 · 6
=

201.1

91
= 2.21.

The line of best fit is thus

y = 2.21x

or transformed back

index = 100 + (year − 2010) · 2.21.

The result is shown in Fig. 8.9, in a year/index-scale as well as in the transformed

variables. For the year 2017, extrapolation along the regression line would forecast

index(2017) = 100 + 7 · 2.21 = 115.5.
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Fig. 8.9 Consumer price

index and regression line
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The actual consumer price index in 2017 had the value 114.0. Inspection of Fig. 8.9

shows that the consumer price index stopped growing linearly around 2014; thus the

straight line is a bad fit to the data in the period under consideration. How to choose

better regression models will be discussed in Chap. 18.

8.4 Exercises

1. Find out which of the following (continuous) functions are differentiable at

x = 0:

y = x |x |; y = |x |1/2, y = |x |3/2, y = x sin(1/x).

2. Find all maxima and minima of the functions

f (x) =
x

x2 + 1
and g(x) = x2e−x2

.

3. Find the maxima of the functions

y =
1

x
e−(log x)2/2, x > 0 and y = e−x e−(e−x ), x ∈ R.

These functions represent the densities of the standard lognormal distribution

and of the Gumbel distribution, respectively.

4. Find all maxima and minima of the function

f (x) =
x

√
x4 + 1

,

determine on what intervals it is increasing or decreasing, analyse its behaviour

as x → ±∞, and sketch its graph.
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Fig. 8.10 Failure wedge

with sliding surface

θ

h

5. Find the proportions of the cylinder which has the smallest surface area F for a

given volume V .

Hint. F = 2rπh + 2r2π → min. Calculate the height h as a function of the

radius r from V = r2πh, substitute and minimise F(r).

6. (From mechanics of solids) The moment of inertia with respect to the central

axis of a beam with rectangular cross section is I = 1
12

bh3 (b the width, h the

height). Find the proportions of the beam which can be cut from a log with

circular cross section of given radius r such that its moment of inertia becomes

maximal.

Hint. Write b as function of h, I (h) → max.

7. (From soil mechanics) The mobilised cohesion cm(θ) of a failure wedge with

sliding surface, inclined by an angle θ, is

cm(θ) =
γh sin(θ − ϕm) cos θ

2 cos ϕm
.

Here h is the height of the failure wedge, ϕm the angle of internal friction, γ the

specific weight of the soil (see Fig. 8.10). Show that the mobilised cohesion cm

with given h, ϕm, γ is a maximum for the angle of inclination θ = ϕm/2 + 45◦.

8. This exercise aims at investigating the convergence of Newton’s method for

solving the equations

x3 − 3x2 + 3x − 1 = 0,

x3 − 3x2 + 3x − 2 = 0

on the interval [0, 3].
(a) Open the applet Newton’s method and carry out Newton’s method for both

equations with an accuracy of 0.0001. Explain why you need a different

number of iterations.

(b) With the help of the M-file mat08_1.m, generate a list of approximations

in each case (starting value x1 = 1.5, tol = 100*eps, maxk =

100) and plot the errors |xn − ξ| in each case using semilogy. Discuss

the results.

9. Apply the MATLAB program mat08_2.m to the functions which are defined

by the M-files mat08_f1.m and mat08_f2.m (with respective derivatives

mat08_df1.m and mat08_df2.m). Choose x1 = 2, maxk = 250.

How do you explain the results?
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10. Rewrite the MATLAB program mat08_2.m so that termination occurs when

either the given number of iterationsmaxk or a given error boundtol is reached

(termination at the nth iteration, if either n > maxk or | f (xn)| < tol). Com-

pute n, xn and the error | f (xn)|. Test your program using the functions from

Exercise 8 and explain the results.

Hint. Consult the M-file mat08_ex9.m.

11. Write a MATLAB program which carries out the secant method for cubic polyno-

mials.

12. (a) By minimising the sum of squares of the errors, derive a formula for

the coefficient c of the regression parabola y = cx2 through the data

(x1, y1), ..., (xn, yn).

(b) A series of measurements of braking distances s [m] (without taking into

account the perception-reaction distance) of a certain type of car in depen-

dence on the velocity v [km/h] produced the following values:

vi 10 20 40 50 60 70 80 100 120

si 1 3 8 13 18 23 31 47 63

Calculate the coefficient c of the regression parabola s = cv2 and plot the result.

13. Show that the best horizontal straight line y = d through the data points

(xi , yi ), i = 1, . . . , n is given by the arithmetic mean of the y-values:

d =
1

n

n
∑

i=1

yi .

Hint. Minimise G(d) =
∑n

i=1(yi − d)2.

14. (From geotechnics) The angle of internal friction of a soil specimen can be

obtained by means of a direct shear test, whereby the material is subjected to

normal stress σ and the lateral shear stress τ at failure is recorded. In case

the cohesion is negligible, the relation between τ and σ can be modelled by a

regression line through the origin of the form τ = kσ. The slope of the regression

line is interpreted as the tangent of the friction angle ϕ, k = tan ϕ. In a laboratory

experiment, the following data have been obtained for a specimen of glacial till

(data from [25]):

σi [kPa] 100 150 200 300 150 250 300 100 150 250 100 150 200 250

τi [kPa] 68 127 135 206 127 148 197 76 78 168 123 97 124 157

Calculate the angle of internal friction of the specimen.

15. (a) Convince yourself by applying the mean value theorem that the function

f (x) = cos x is a contraction (see Definition C.17) on the interval [0, 1]
and compute the fixed point x∗ = cos x∗ up to two decimal places using the

iteration of Proposition C.18.
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(b) Write a MATLAB program which carries out the first N iterations for the

computation of x∗ = cos x∗ for a given initial value x1 ∈ [0, 1] and displays

x1, x2, . . . , xN in a column.
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In geometry objects are often defined by explicit rules and transformations which

can easily be translated into mathematical formulas. For example, a circle is the set

of all points which are at a fixed distance r from a centre (a, b):

K = {(x, y) ∈ R
2 ; (x − a)2 + (y − b)2 = r2}

or

K = {(x, y) ∈ R
2 ; x = a + r cos ϕ, y = b + r sin ϕ, 0 ≤ ϕ < 2π}.

In contrast to that, the objects of fractal geometry are usually given by a recur-

sion. These fractal sets (fractals) have recently found many interesting applications,

e.g. in computer graphics (modelling of clouds, plants, trees, landscapes), in image

compression and data analysis. Furthermore fractals have a certain importance in

modelling growth processes.

Typical properties of fractals are often their non-integer dimension and the self-

similarity of the entire set with its pieces. The latter can frequently be found in nature,

e.g. in geology. There it is often difficult to decide from a photograph without a given

scale whether the object in question is a grain of sand, a pebble or a large piece of

rock. For that reason fractal geometry is often exuberantly called the geometry of

nature.

In this chapter we exemplarily have a look at fractals in R
2 and C. Furthermore

we give a short introduction to L-systems and discuss, as an application, a simple

concept for modelling the growth of plants. For a more in-depth presentation we

refer to the textbooks [21,22].
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9.1 Fractals

To start with we generalise the notions of open and closed interval to subsets of R
2.

For a fixed a = (a, b) ∈ R
2 and ε > 0 the set

B(a, ε) =
{
(x, y) ∈ R

2 ;
√

(x − a)2 + (y − b)2 < ε

}

is called an ε-neighbourhood of a. Note that the set B(a, ε) is a circular disc (with

centre a and radius ε) where the boundary is missing.

Definition 9.1 Let A ⊆ R
2.

(a) A point a ∈ A is called interior point of A if there exists an ε-neighbourhood

of a which itself is contained in A.

(b) A is called open if each point of A is an interior point.

(c) A point c ∈ R
2 is called boundary point of A if every ε-neighbourhood of c

contains at least one point of A as well as a point of R
2 \ A. The set of boundary

points of A is denoted by ∂ A (boundary of A).

(d) A set is called closed if it contains all its boundary points.

(e) A is called bounded if there is a number r > 0 with A ⊆ B(0, r).

Example 9.2 The square

Q = {(x, y) ∈ R
2 ; 0 < x < 1 and 0 < y < 1}

is open since every point of Q has an ε-neighbourhood which is contained in Q, see

Fig. 9.1, left picture. The boundary of Q consists of four line segments

{0, 1} × [0, 1] ∪ [0, 1] × {0, 1}.

(0, 0)

(1, 1)

Fig. 9.1 Open (left), closed (middle) and neither open nor closed (right) square with side length 1
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Fig. 9.2 Covering a curve

using circles

Every ε-neighbourhood of a boundary point also contains points which are outside

of Q, see Fig. 9.1, middle picture. The square in Fig. 9.1, right picture,

{(x, y) ∈ R
2 ; 0 < x ≤ 1 and 0 < y ≤ 1}

is neither closed nor open since the boundary point (x, y) = (0, 0) is not an element

of the set and the set on the other hand contains the point (x, y) = (1, 1) which is

not an inner point. All three sets are bounded since they are, for example, contained

in B(0, 2).

Fractal dimension. Roughly speaking, points have dimension 0, line segments

dimension 1 and plane regions dimension 2. The concept of fractal dimension serves

to make finer distinctions. If, for example, a curve fills a plane region densely one

tends to assign to it a higher dimension than 1. Conversely, if a line segment has

many gaps, its dimension could be between 0 and 1.

Let A ⊆ R
2 be bounded (and not empty) and let N (A, ε) be the smallest number

of closed circles with radius ε which are needed to cover A, see Fig. 9.2.

The following intuitive idea stands behind the definition of the fractal dimension

d of A: For curve segments the number N (A, ε) is inverse proportional to ε, for

plane regions inverse proportional to ε2, so

N (A, ε) ≈ C · ε−d ,

where d denotes the dimension. Taking logarithms one obtains

log N (A, ε) ≈ log C − d log ε,

and

d ≈ −
log N (A, ε) − log C

log ε
,

respectively. This approximation is getting more precise the smaller one chooses

ε > 0. Due to

lim
ε→0+

log C

log ε
= 0

this leads to the following definition.
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Fig. 9.3 Raster of the plane using squares of side length ε. The boxes that have a non-empty

intersection with the fractal are coloured in grey. In the picture we have N (A, ε) = 27

Definition 9.3 Let A ⊆ R
2 be not empty, bounded and N (A, ε) as above. If the limit

d = d(A) = − lim
ε→0+

log N (A, ε)

log ε

exists, then d is called fractal dimension of A.

Remark 9.4 In the above definition it is sufficient to choose a zero sequence of the

form

εn = C · qn, 0 < q < 1

for ε. Furthermore it is not essential to use circular discs for the covering. One can just

as well use squares, see [5, Chap. 5]. Hence the number obtained by Definition 9.3

is also called box-dimension of A.

Experimentally the dimension of a fractal can be determined in the following

way: For various rasters of the plane with mesh size εn one counts the number of

boxes which have a non-empty intersection with the fractal, see Fig. 9.3. Let us call

this number again N (A, εn). If one plots log N (A, εn) as a function of log εn in a

double-logarithmic diagram and fits the best line to this graph (Sect. 18.1), then

d(A) ≈ − slope of the straight line.

With this procedure one can, for example, determine the fractal dimension of the

coastline of Great Britain, see Exercise 1.

Example 9.5 The line segment (Fig. 9.4)

A = {(x, y) ∈ R
2 ; a ≤ x ≤ b, y = c}

has fractal dimension d = 1.

Fig. 9.4 Covering of a

straight line segment using

circles

a b
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Fig. 9.5 A set of points with box-dimension d = 1
2

We choose

εn = (b − a) · 2−n, q = 1/2.

Due to N (A, εn) = 2n−1 the following holds

−
log N (A, εn)

log εn

= −
(n − 1) log 2

log(b − a) − n log 2
→ 1 as n → ∞.

Likewise, it can easily be shown: Every set that consists of finitely many points

has fractal dimension 0. Plane regions in R
2 have fractal dimension 2. The fractal

dimension is in this way a generalisation of the intuitive notion of dimension. Still,

caution is advisable here as can be seen in the following example.

Example 9.6 The set F =
{
0, 1, 1

2
, 1

3
, 1

4
, . . .

}
displayed in Fig. 9.5 has box-dimen-

sion d = 1/2. We check this claim with the following MATLAB experiment.

Experiment 9.7 To determine the dimension of F approximately with the help

of MATLAB we take the following steps. For j = 1, 2, 3, . . . we split the interval

[0, 1] into 4 j equally large subintervals, set ε j = 4− j and determine the number

N j = N (F, ε j ) of subintervals which have a non-empty intersection with F . Then

we plot log N j as a function of log ε j in a double-logarithmic diagram. The slope of

the secant

d j = −
log N j+1 − log N j

log ε j+1 − log ε j

is an approximation to d which is steadily improving with growing j . The values

obtained by using the program mat09_1.m are given in the following table:

4 j 4 16 64 256 1024 4096 16384 65536 262144 1048576

d j 0.79 0.61 0.55 0.52 0.512 0.5057 0.5028 0.5014 0.5007 0.50035

Verify the given values and determine that the approximations given by Definition 9.3

d̃ j = −
log N j

log ε j

are much worse. Explain this behaviour.
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Fig. 9.6 The construction of

the Cantor set

A3

A2

A1

A0

Example 9.8 (Cantor set) We construct this set recursively using

A0 = [0, 1]
A1 =

[
0, 1

3

]
∪

[
2
3
, 1

]

A2 =
[
0, 1

9

]
∪

[
2
9
, 1

3

]
∪

[
2
3
, 7

9

]
∪

[
8
9
, 1

]

...

One obtains An+1 from An by removing the middle third of each line segment of

An , see Fig. 9.6.

The intersection of all these sets

A =
∞⋂

n=0

An

is called Cantor set. Let |An| denote the length of An . Obviously the following holds

true: |A0| = 1, |A1| = 2/3, |A2| = (2/3)2 and |An| = (2/3)n . Thus

|A| = lim
n→∞

|An| = lim
n→∞

(2/3)n = 0,

which means that A has length 0. Nevertheless, A does not simply consist of discrete

points. More information about the structure of A is given by its fractal dimension

d. To determine it we choose

εn =
1

2
· 3−n, i.e. q = 1/3,

and obtain (according to Fig. 9.6) the value N (A, εn) = 2n . Thus

d = − lim
n→∞

log 2n

log 3−n − log 2
= lim

n→∞

n log 2

n log 3 + log 2
=

log 2

log 3
= 0.6309...

The Cantor set is thus an object between points and straight lines. The self-similarity

of A is also noteworthy. Enlarging certain parts of A results in copies of A. This

together with the non-integer dimension is a typical property of fractals.
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Fig. 9.7 Snowflakes of depth 0, 1, 2, 3 and 4

Fig. 9.8 Law of formation

of the snowflake

Example 9.9 (Koch’s snowflake1) This is a figure of finite area whose boundary

is a fractal of infinite length. In Fig. 9.7 one can see the first five construction steps

of this fractal. In the step from An to An+1 we substitute each straight boundary

segment by four line segments in the following way: We replace the central third by

two sides of an equilateral triangle, see Fig. 9.8.

The perimeter Un of the figure An is computed as

Un =
4

3
Un−1 =

(
4

3

)2

Un−2 = · · · =
(

4

3

)n

U0 = 3a

(
4

3

)n

.

Hence the perimeter U∞ of Koch’s snowflake A∞ is

U∞ = lim
n→∞

Un = ∞.

Next we compute the fractal dimension of ∂ A∞. For that we set

εn =
a

2
· 3−n, i.e. q = 1/3.

Since one can use a circle of radius εn to cover each straight boundary piece, we

obtain

N (∂ A∞, εn) ≤ 3 · 4n

and hence

d = d(∂ A∞) ≤
log 4

log 3
≈ 1.262.

A covering using equilateral triangles of side length εn shows that N (∂ A∞, εn) is

proportional to 4n and thus

d =
log 4

log 3
.

The boundary of the snowflake ∂ A∞ is hence a geometric object between a curve

and a plane region.

1H. von Koch, 1870–1924.
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9.2 Mandelbrot Sets

An interesting class of fractals can be obtained with the help of iteration methods.

As an example we consider in C the iteration

zn+1 = z2
n + c.

Setting z = x + iy and c = a + ib one obtains, by separating the real and the imag-

inary part, the equivalent real form of the iteration

xn+1 = x2
n − y2

n + a,

yn+1 = 2xn yn + b.

The real representation is important when working with a programming language

that does not support complex arithmetic.

First we investigate for which values of c ∈ C the iteration

zn+1 = z2
n + c, z0 = 0

remains bounded. In the present case this is equivalent to |zn| 	→ ∞ for n → ∞.

The set of all c with this property is obviously not empty since it contains c = 0. On

the other hand it is bounded since the iteration always diverges for |c| > 2 as can

easily be verified with MATLAB .

Definition 9.10 The set

M = {c ∈ C ; |zn| 	→ ∞ as n → ∞}

is called Mandelbrot set2 of the iteration zn+1 = z2
n + c, z0 = 0.

To get an impression of M we carry out a numerical experiment in MATLAB.

Experiment 9.11 To visualise the Mandelbrot set M one first chooses a raster of a

certain region, for example

−2 ≤ Re c ≤ 1, −1.15 ≤ Im c ≤ 1.15.

Next for each point of the raster one carries out a large number of iterations (e.g. 80)

and decides then whether the iterations remain bounded (for example |zn| ≤ 2). If

this is the case one colours the point in black. This way one successively obtains

a picture of M . For your experiments use the MATLAB program mat09_2.m and

modify it as required. This way generate in particular the pictures in Fig. 9.9 in high

resolution.

2B. Mandelbrot, 1924–2010.
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−2 −1 0 1

−1

−0.5

0

0.5

1

−1.8 −1.78 −1.76 −1.74 −1.72

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Fig. 9.9 The Mandelbrot set of the iteration zn+1 = z2
n + c, z0 = 0 and enlargement of a section

Figure 9.9 shows as result a little apple man which has smaller apple men attached

which finally develop into an antenna. Here one already recognises the self-similarity.

If an enlargement of a certain detail on the antenna (−1.8 ≤ Re c ≤ −1.72, −0.03 ≤
Im c ≤ 0.03) is made, one finds an almost perfect copy of the complete apple man.

The Mandelbrot set is one of the most popular fractals and one of the most complex

mathematical objects which can be visualised.

9.3 Julia Sets

Again we consider the iteration

zn+1 = z2
n + c.

This time, however, we interchange the roles of z0 and c.

Definition 9.12 For a given c ∈ C, the set

Jc = {z0 ∈ C ; |zn| 	→ ∞ as n → ∞}

is called Julia set3 of the iteration zn+1 = z2
n + c.

The Julia set for the parameter value c hence consists of those initial values for

which the iteration remains bounded. For some values of c the pictures of Jc are

displayed in Fig. 9.10. Julia sets have many interesting properties; for example,

Jc is connected ⇔ c ∈ M.

3G. Julia, 1893–1978.
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−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2
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−0.5

0

0.5

1

1.5

−2 −1 0 1 2

−1.5
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0

0.5

1

1.5

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 9.10 Julia sets of the iteration zn+1 = z2
n + c for the parameter values c = −0.75 (top left),

c = 0.35 + 0.35 i (top right), c = −0.03 + 0.655 i (bottom left) and −0.12 + 0.74 i (bottom right)

Thus one can alternatively define the Mandelbrot set M as

M = {c ∈ C ; Jc is connected}.

Furthermore the boundary of a Julia set is self-similar and a fractal.

Experiment 9.13 Using the MATLAB program mat09_3.m plot the Julia sets Jc in

Fig. 9.10 in high definition. Also try other values of c.

9.4 Newton’s Method in C

Since the arithmetic in C is an extension of that in R, many concepts of real analysis

can be transferred directly to C. For example, a function f : C → C: z �→ f (z) is

called complex differentiable if the difference quotient

f (z + ∆z) − f (z)

∆z
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has a limit as ∆z → 0. This limit is again denoted by

f ′(z) = lim
∆z→0

f (z + ∆z) − f (z)

∆z

and called complex derivative of f at the point z. Since differentiation in C is defined

in the same way as differentiation in R, the same differentiation rules hold. In par-

ticular any polynomial

f (z) = anzn + · · · + a1z + a0

is complex differentiable and has the derivative

f ′(z) = nanzn−1 + · · · + a1.

Like the real derivative (see Sect. 7.3), the complex derivative has an interpretation

as a linear approximation

f (z) ≈ f (z0) + f ′(z0)(z − z0)

for z close to z0.

Let f : C → C: z �→ f (z) be a complex differentiable function with f (ζ) = 0

and f ′(ζ) 	= 0. In order to compute the zero ζ of the function f , one first computes

the linear approximation starting from the initial value z0, so

z1 = z0 −
f (z0)

f ′(z0)
.

Subsequently z1 is used as the new initial value and the procedure is iterated. In this

way one obtains Newton’s method in C:

zn+1 = zn −
f (zn)

f ′(zn)
.

For initial values z0 close to ζ the procedure converges (as in R) quadratically.

Otherwise, however, the situation can become very complicated.

In 1983 Eckmann [9] investigated Newton’s method for the function

f (z) = z3 − 1 = (z − 1)(z2 + z + 1).

This function has three roots in C

ζ1 = 1, ζ2,3 = −
1

2
± i

√
3

2
.

Naively one could think that the complex plane C is split into three equally large

sectors where the iteration with initial values in sector S1 converges to ζ1, the ones

in S2 to ζ2, etc., see Fig. 9.11.
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S3

S2

S1

ζ1

ζ3

ζ2

Fig. 9.11 Possible regions of attraction of Newton’s iteration for finding the roots of z3 − 1
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−0.8 −0.6 −0.4 −0.2 0

Fig. 9.12 Actual regions of attraction of Newton’s iteration for finding the roots of z3 − 1 and

enlargement of a part

A numerical experiment, however, shows that it is not that way. If one colours the

initial values according to their convergence, one obtains a very complex picture.

One can prove (however, not easily imagine) that at every point where two colours

meet, the third colour is also present. The boundaries of the regions of attraction are

dominated by pincer-like motifs which reappear again and again when enlarging the

scale, see Fig. 9.12. The boundaries of the regions of attraction are Julia sets. Again

we have found fractals.

Experiment 9.14 Using the MATLAB programmat09_4.m carry out an experiment.

Ascertain yourself of the self-similarity of the appearing Julia sets by producing

suitable enlargements of the boundaries of the region of attraction.

9.5 L-systems

The formalism of L-systems was developed by Lindenmayer4 around 1968 in order

to model the growth of plants. It also turned out that many fractals can be created this

way. In this section we give a brief introduction to L-systems and discuss a possible

implementation in maple.

4A. Lindenmayer, 1925–1989.
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Definition 9.15 An L-system consists of the following five components:

(a) A finite set B of symbols, the so-called alphabet. The elements of B are called

letters, and any string of letters is called a word.

(b) Certain substitution rules. These rules determine how the letters of the current

word are to be replaced in each iteration step.

(c) The initial word w ∈ W . The initial word is also called axiom or seed.

(d) The number of iteration steps which one wants to carry out. In each of these

steps, every letter of the current word is replaced according to the substitution

rules.

(e) A graphical interpretation of the word.

Let W be the set of all words that can be formed in the given L-system. The

substitution rules can be interpreted as a mapping from B to W :

S : B → W : b �→ S(b).

Example 9.16 Consider the alphabet B = {f,p,m} consisting of the three letters f,

p and m. As substitution rules for this alphabet we take

S(f) = fpfmfmffpfpfmf, S(p) = p, S(m) = m

and consider the axiom w = fpfpfpf. An application of the substitution rules

shows that, after one substitution, the word fpf becomes the new word

fpfmfmffpfpfmfpfpfmfmffpfpfmf. If one applies the substitution rules on

the axiom then one obtains a new word. Applying the substitution rules on that again

gives a new word, and so on. Each of these words can be interpreted as a polygon

by assigning the following meaning to the individual letters:

f means forward by one unit;

p stands for a rotation of α radians (plus);

m stands for a rotation of −α radians (minus).

Thereby 0 ≤ α ≤ π is a chosen angle. One plots the polygon by choosing an arbitrary

initial point and an arbitrary initial direction. Then one sequentially processes the

letters of the word to be displayed according to the rules above.

In maple lists and the substitution command subs lend themselves to the imple-

mentation of L-systems. In the example above the axiom would hence be defined by

a := [f,p,f,p,f,p,f]
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the substitution rules would be

a− > subs(f = (f,p,f,m,f,m,f,f,p,f,p,f,m,f),a).

The letters p and m do not change in the example, and they are fixed points in the

construction. For the purpose of visualisation one can use polygons in maple, given

by lists of points (in the plane). These lists can be plotted easily using the command

plot.

Construction of fractals. With the graphical interpretation above and α = π/2,

the axiom fpfpfpf is a square which is passed through in a counterclockwise

direction. The substitution rule converts a straight line segment into a zigzag line.

By an iterative application of the substitution rule the axiom develops into a fractal.

Experiment 9.17 Using the maple worksheet mp09_1.mws create different frac-

tals. Further, try to understand the procedure fractal in detail.

Example 9.18 The substitution rule for Koch’s curve is

a -> subs(f=(f,p,f,m,m,f,p,f),a).

Depending on which axiom one uses, one can build fractal curves or snowflakes

from that, see the maple worksheet mp09_1.mws.

Simulation of plant growth. As a new element branchings (ramifications) are added

here. Mathematically one can describe this using two new symbols:

v stands for a ramification;

e stands for the end of the branch.

Let us look, for example, at the word

[f,p,f,v,p,p,f,p,f,e,v,m,f,m,f,e,f,p,f,v,p,f,p,f,e,f,m,f].

If one removes all branchings that start with v and end with e from the list then one

obtains the stem of the plant

stem := [f,p,f,f,p,f,f,m,f].

After the second f in the stem obviously a double branching is taking place and the

branches sprout

branch1 := [p,p,f,p,f] and branch2 := [m,f,m,f].

Further up the stem branches again with the branch [p,f,p,f].
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Fig. 9.13 Plants created using the maple worksheet mp09_2.mws

For a more realistic modelling one can introduce additional parameters. For exam-

ple, asymmetry can be build in by rotating by the positive angle α at p and by the

negative angle −β at m. In the program mp09_2.mws that was done, see Fig. 9.13.

Experiment 9.19 Using the maple worksheet mp09_2.mws create different arti-

ficial plants. Further, try to understand the procedure grow in detail.

To visualise the created plants one can use lists of polygons in maple, i.e. lists of

points (in the plane). To implement the branchings one conveniently uses a recursive

stack. Whenever one comes across the command v for a branching, one saves the

current state as the topmost value in the stack. A state is described by three numbers

(x, y, t) where x and y denote the position in the (x, y)-plane and t the angle enclosed

the with the positive x-axis. Conversely one removes the topmost state from the stack

if one comes across the end of a branch e and returns to this state in order to continue

the plot. At the beginning the stack is empty (at the end it should be as well).

Extensions. In the context of L-systems many generalisations are possible which

can make the emerging structures more realistic. For example one could:

(a) Represent the letter f by shorter segments as one moves further away from the

root of the plant. For that, one has to save the distance from the root as a further

state parameter in the stack.

(b) Introduce randomness by using different substitution rules for one and the same

letter and in each step choosing one at random. For example, the substitution

rules for random weeds could be as such:

f -> (f,v,p,f,e,f,v,m,f,e,f) with probability 1/3;

f -> (f,v,p,f,e,f) with probability 1/3;

f -> (f,v,m,f,e,f) with probability 1/3.

Using random numbers one selects the according rule in each step.
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Experiment 9.20 Using the maple worksheet mp09_3.mws create random plants.

Further, try to understand the implemented substitution rule in detail.

9.6 Exercises

1. Determine experimentally the fractal dimension of the coastline of Great Britain.

In order to do that, take a map of Great Britain (e.g. a copy from an atlas) and

raster the map using different mesh sizes (e.g. with 1/64th, 1/32th, 1/16th,

1/8th and 1/4th of the North–South expansion). Count the boxes which contain

parts of the coastline and display this number as a function of the mesh size in a

double-logarithmic diagram. Fit the best line through these points and determine

the fractal dimension in question from the slope of the straight line.

2. Using the program mat09_3.m visualise the Julia sets of zn+1 = z2
n + c for

c = −1.25 and c = 0.365 − 0.3 i. Search for interesting details.

3. Let f (z) = z3 − 1 with z = x + iy. Use Newton’s method to solve f (z) = 0

and separate the real part and the imaginary part, i.e. find the functions g1 and

g2 with

xn+1 = g1(xn, yn),

yn+1 = g2(xn, yn).

4. Modify the procedure grow in the program mp09_2.mws by representing the

letter f by shorter segments depending on how far it is away from the root. With

that plot the umbel from Experiment 9.19 again.

5. Modify the program mp09_3.mws by attributing new probabilities to the exist-

ing substitution rules (or invent new substitution rules). Use your modified pro-

gram to plot some plants.

6. Modify the program mat09_3.m to visualise the Julia sets of zn+1 = z2k
n − c

for c = −1 and integer values of k. Observe how varying k affects the shape of

the Julia set. Try other values of c as well.

7. Modify the program mat09_3.m to visualise the Julia sets of

zn+1 = z3
n + (c − 1)zn − c.

Study especially the behaviour of the Julia sets when c ranges between 0.60 and

0.65.
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The derivative of a function y = F(x) describes its local rate of change, i.e. the

change Δy of the y-value with respect to the change Δx of the x-value in the limit

Δx → 0; more precisely

f (x) = F ′(x) = lim
Δx→0

Δy

Δx
= lim

Δx→0

F(x + Δx) − F(x)

Δx
.

Conversely, the question about the reconstruction of a function F from its local rate

of change f leads to the notion of indefinite integrals which comprises the totality

of all functions that have f as their derivative, the antiderivatives of f . Chapter 10

addresses this notion, its properties, some basic examples and applications.

By multiplying the rate of change f (x) with the change Δx one obtains an approx-

imation to the change of the values of the function of the antiderivative F in the

segment of length Δx :

Δy = F(x + Δx) − F(x) ≈ f (x)Δx .

Adding up these local changes in an interval, for instance between x = a and x = b

in steps of length Δx , gives an approximation to the total change F(b) − F(a). The

limit Δx → 0 (with an appropriate increase of the number of summands) leads to

the notion of the definite integral of f in the interval [a, b], which is the subject of

Chap. 11.

10.1 Indefinite Integrals

In Sect. 7.2 it was shown that the derivative of a constant is zero. The following

proposition shows that the converse is also true.
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Proposition 10.1 If the function F is differentiable on (a, b) and F ′(x) = 0 for all

x ∈ (a, b) then F is constant. This means that F(x) = c for a certain c ∈ R and all

x ∈ (a, b).

Proof We choose an arbitrary x0 ∈ (a, b) and set c = F(x0). If now x ∈ (a, b) then,

according to the mean value theorem (Proposition 8.4),

F(x) − F(x0) = F ′(ξ)(x − x0)

for a point ξ between x and x0. Since F ′(ξ) = 0 it follows that F(x) = F(x0) = c.

This holds for all x ∈ (a, b), consequently F has to be equal to the constant function

with value c. �

Definition 10.2 (Antiderivatives) Let f be a real-valued function on an interval

(a, b). An antiderivative of f is a differentiable function F : (a, b) → R whose

derivative F ′ equals f .

Example 10.3 The function F(x) = x3

3
is an antiderivative of f (x) = x2, as is

G(x) = x3

3
+ 5.

Proposition 10.1 implies that antiderivatives are unique up to an additive constant.

Proposition 10.4 Let F and G be antiderivatives of f in (a, b). Then F(x) =
G(x) + c for a certain c ∈ R and all x ∈ (a, b).

Proof Since F ′(x) − G ′(x) = f (x) − f (x) = 0 for all x ∈ (a, b), an application

of Proposition 10.1 gives the desired result. �

Definition 10.5 (Indefinite integrals) The indefinite integral

∫

f (x) dx

denotes the totality of all antiderivatives of f .

Once a particular antiderivative F has been found, one writes accordingly

∫

f (x) dx = F(x) + c.

Example 10.6 The indefinite integral of the quadratic function (Example 10.3) is
∫

x2 dx = x3

3
+ c.
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Example 10.7 (a) An application of indefinite integration to the differential equation

of the vertical throw: Let w(t) denote the height (in metres [m]) at time t (in seconds

[s]) of an object above ground level (w = 0). Then

w′(t) = v(t)

is the velocity of the object (positive in upward direction) and

v′(t) = a(t)

the acceleration (positive in upward direction). In this coordinate system the gravi-

tational acceleration

g = 9.81 [m/s2]

acts downwards, consequently

a(t) = −g.

Velocity and distance are obtained by inverting the differentiation process

v(t) =
∫

a(t) dt + c1 = −gt + c1,

w(t) =
∫

v(t) dt + c2 =
∫

(−gt + c1) dt + c2 = −
g

2
t2 + c1t + c2,

where the constants c1, c2 are determined by the initial conditions:

c1 = v(0) . . . initial velocity,

c2 = w(0) . . . initial height.

(b) A concrete example—the free fall from a height of 100 m. Here

w(0) = 100, v(0) = 0

and thus

w(t) = −
1

2
9.81t2 + 100.

The travelled distance as a function of time (Fig. 10.1) is given by a parabola.

The time of impact t0 is obtained from the condition w(t0) = 0, i.e.

0 = −
1

2
9.81t2

0 + 100, t0 =
√

200/9.81 ≈ 4.5 [s],

the velocity at impact is

v(t0) = −gt0 ≈ 44.3 [m/s] ≈ 160 [km/h].
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Fig. 10.1 Free fall: travelled

distance as function of time

0 2 4 6

0

50

100

w(t)
c2

t
t0

10.2 Integration Formulas

It follows immediately from Definition 10.5 that indefinite integration can be seen

as the inversion of differentiation. It is, however, only unique up to a constant:

(∫

f (x) dx

)′
= f (x),

∫

g′(x) dx = g(x) + c.

With this consideration and the formulas from Sect. 7.4 one easily obtains the basic

integration formulas stated in the following table. The formulas are valid in the

according domains.

The formulas in Table 10.1 are a direct consequence of those in Table 7.1.

Experiment 10.8 Antiderivatives can be calculated in maple using the command

int. Explanations and further integration commands can be found in the maple

Table 10.1 Integrals of some elementary functions

f (x) xα, α �= −1
1

x
ex ax

∫

f (x) dx
xα+1

α + 1
+ c log |x | + c ex + c

1

log a
ax + c

f (x) sin x cos x
1

√
1 − x2

1

1 + x2

∫

f (x) dx − cos x + c sin x + c arcsin x + c arctan x + c

f (x) sinh x cosh x
1

√
1 + x2

1
√

x2 − 1
∫

f (x) dx cosh x + c sinh x + c arsinh x + c arcosh x + c
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worksheet mp10_1.mws. Experiment with these maple commands by applying

them to the examples of Table 10.1 and other functions of your choice.

Experiment 10.9 Integrate the following expressions

xe−x2

, e−x2

, sin(x2)

with maple.

Functions that are obtained by combining power functions, exponential functions

and trigonometric functions, as well as their inverses, are called elementary functions.

The derivative of an elementary function is again an elementary function and can

be obtained using the rules from Chap. 7. In contrast to differentiation there is no

general procedure for computing indefinite integrals. Not only does the calculation

of an integral often turn out to be a difficult task, but there are also many elementary

functions whose antiderivatives are not elementary. An algorithm to decide whether

a functions has an elementary indefinite integral was first deduced by Liouville1

around 1835. This was the starting point for the field of symbolic integration. For

details, we refer to [7].

Example 10.10 (Higher transcendental functions) Antiderivatives of functions that

do not possess elementary integrals are frequently called higher transcendental func-

tions. We give the following examples:

2
√

π

∫

e−x2

dx = Erf(x) + c . . . Gaussian error function;

∫

ex

x
dx = Ei(x) + c . . . exponential integral;

∫

1

log x
dx = ℓi(x) + c . . . logarithmic integral;

∫

sin x

x
dx = Si(x) + c . . . sine integral;

∫

sin
(π

2
x2

)

dx = S(x) + c . . . Fresnel integral.2

Proposition 10.11 (Rules for indefinite integration) For indefinite integration the

following rules hold:

(a) Sum:
∫ (

f (x) + g(x)
)

dx =
∫

f (x) dx +
∫

g(x) dx

1J. Liouville, 1809–1882.
2A.J. Fresnel, 1788–1827.
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(b) Constant factor:
∫

λ f (x) dx = λ
∫

f (x) dx (λ ∈ R)

(c) Integration by parts:

∫

f (x)g′(x) dx = f (x)g(x) −
∫

f ′(x)g(x) dx

(d) Substitution:
∫

f (g(x))g′(x) dx =
∫

f (y) dy

∣

∣

∣

y=g(x)
.

Proof (a) and (b) are clear; (c) follows from the product rule for the derivative

(Sect. 7.4)

∫

f (x)g′(x) dx +
∫

f ′(x)g(x) dx =
∫

(

f (x)g′(x) + f ′(x)g(x)
)

dx

=
∫

(

f (x)g(x)
)′

dx = f (x)g(x) + c,

which can be rewritten as

∫

f (x)g′(x) dx = f (x)g(x) −
∫

f ′(x)g(x) dx .

In this formula we can drop the integration constant c since it is already contained

in the notion of indefinite integrals, which appear on both sides. Point (d) is an

immediate consequence of the chain rule according to which an antiderivative of

f (g(x))g′(x) is given by the antiderivative of f (y) evaluated at y = g(x). �

Example 10.12 The following five examples show how the rules of Table 10.1 and

Proposition 10.11 can be applied.

(a)

∫

dx
3
√

x
=

∫

x−1/3 dx =
x− 1

3 +1

− 1
3

+ 1
+ c =

3

2
x2/3 + c.

(b)

∫

x cos x dx = x sin x −
∫

sin x dx = x sin x + cos x + c,

which follows via integration by parts:

f (x) = x, g′(x) = cos x,

f ′(x) = 1, g(x) = sin x .

(c)

∫

log x dx =
∫

1 · log x dx = x log x −
∫

x

x
dx = x log x − x + c,
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via integration by parts:

f (x) = log x, g′(x) = 1,

f ′(x) = 1
x
, g(x) = x .

(d)

∫

x sin(x2) dx =
∫

1

2
sin y dy

∣

∣

∣

y=x2
= −

1

2
cos y

∣

∣

∣

y=x2
+ c = −

1

2
cos(x2) + c,

which follows from the substitution rule with y = g(x) = x2, g′(x) = 2x ,

f (y) = 1
2

sin y.

(e)

∫

tan x dx =
∫

sin x

cos x
dx = − log |y|

∣

∣

∣

y=cos x
+ c = − log |cos x | + c,

again after substitution with y = g(x) = cos x , g′(x) = − sin x and f (y) =
−1/y.

Example 10.13 (A simple expansion into partial fractions) In order to find the

indefinite integral of f (x) = 1/(x2 − 1), we decompose the quadratic denominator

in its linear factors x2 − 1 = (x − 1)(x + 1) and expand f (x) into partial fractions

of the form

1

x2 − 1
=

A

x − 1
+

B

x + 1
.

Resolving the fractions leads to the equation 1 = A(x + 1) + B(x − 1). Equating

coefficients results in

(A + B)x = 0, A − B = 1

with the obvious solution A = 1/2, B = −1/2. Thus

∫

1

x2 − 1
dx =

1

2

(∫

dx

x − 1
−

∫

dx

x + 1

)

=
1

2

(

log |x − 1| − log |x + 1|
)

+ C =
1

2
log

∣

∣

∣

∣

x − 1

x + 1

∣

∣

∣

∣

+ C.

In view of Example 7.30, another antiderivative of f (x) = 1/(x2 − 1) is F(x) =
− artanh x . Thus, by Proposition 10.4,

artanh x = −
1

2
log

∣

∣

∣

∣

x − 1

x + 1

∣

∣

∣

∣

+ C =
1

2
log

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

+ C.

Inserting x = 0 on both sides shows that C = 0 and yields an expression of the

inverse hyperbolic tangent in terms of the logarithm.



146 10 Antiderivatives

10.3 Exercises

1. An object is thrown vertically upwards from the ground with a velocity of

10 [m/s]. Find its height w(t) as a function of time t , the maximum height

as well as the time of impact on the ground.

Hint. Integrate w′′(t) = −g ≈ 9.81 [m/s2] twice indefinitely and determine the

integration constants from the initial conditions w(0) = 0, w′(0) = 10.

2. Compute the following indefinite integrals by hand and with maple:

(a)

∫

(x + 3x2 + 5x4 + 7x6) dx, (b)

∫

dx
√

x
,

(c)

∫

xe−x2

dx (substitution), (d)

∫

xex dx (integration by parts).

3. Compute the indefinite integrals

(a)

∫

cos2 x dx, (b)

∫

√

1 − x2 dx

by hand and check the results using maple.

Hints. For (a) use the identity

cos2 x =
1

2
(1 + cos 2x);

for (b) use the substitution y = g(x) = arcsin x , f (y) = 1 − sin2 y.

4. Compute the indefinite integrals

(a)

∫

dx

x2 + 2x + 5
dx, (b)

∫

dx

x2 + 2x − 3

by hand and check the results using maple.

Hints. Write the denominator in (a) in the form (x + 1)2 + 4 and reduce it to

y2 + 1 by means of a suitable substitution. Factorize the denominator in (b) and

follow the procedure of Example 10.13.

5. Compute the indefinite integrals

(a)

∫

dx

x2 + 2x
dx, (b)

∫

dx

x2 + 2x + 1

by hand and check the results using maple.

6. Compute the indefinite integrals

(a)

∫

x2 sin x dx, (b)

∫

x2e−3x dx .

Hint. Repeated integration by parts.
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7. Compute the indefinite integrals

(a)

∫

ex

ex + 1
dx, (b)

∫

√

1 + x2 dx .

Hint. Substitution y = ex in case (a), substitution y = sinh x in case (b), invoking

the formula cosh2 y − sinh2 y = 1 and repeated integration by parts or recourse

to the definition of the hyperbolic functions.

8. Show that the functions

f (x) = arctan x and g(x) = arctan
1 + x

1 − x

differ in the interval (−∞, 1) by a constant. Compute this constant. Answer the

same question for the interval (1, ∞).

9. Prove the identity arsinh x = log
(

x +
√

1 + x2
)

.

Hint. Recall from Chap. 7 that the functions f (x) = arsinh x and g(x) =
log

(

x +
√

1 + x2
)

have the same derivative. (Compare with the algebraic

derivation of the formula in Exercise 15 of Sect. 2.3.)
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In the introduction to Chap. 10 the notion of the definite integral of a function f on an

interval [a, b] was already mentioned. It arises from summing up expressions of the

form f (x)∆x and taking limits. Such sums appear in many applications including

the calculation of areas, surface areas and volumes as well as the calculation of

lengths of curves. This chapter employs the notion of Riemann integrals as the basic

concept of definite integration. Riemann’s approach provides an intuitive concept in

many applications, as will be elaborated in examples at the end of the chapter.

The main part of this chapter is dedicated to the properties of the integral. In

particular, the two fundamental theorems of calculus are proven. The first theorem

allows one to calculate a definite integral from the knowledge of an antiderivative.

The second fundamental theorem states that the definite integral of a function f

on an interval [a, x] with variable upper bound provides an antiderivative of f .

Since the definite integral can be approximated, for example by Riemann sums, the

second fundamental theorem offers a possibility to approximate the antiderivative

numerically. This is of importance, for example, for the calculation of distribution

functions in statistics.

11.1 The Riemann Integral

Example 11.1 (From velocity to distance) How can one calculate the distance w

which a vehicle travels between time a and time b if one only knows its velocity v(t)

for all times a ≤ t ≤ b? If v(t) ≡ v is constant, one simply gets

w = v · (b − a).
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Fig. 11.1 Subdivision of the

time axis t
· · ·

τnτ2τ1

tn = btn−1t2t1a = t0

If the velocity v(t) is time-dependent, one divides the time axis into smaller subin-

tervals (Fig. 11.1): a = t0 < t1 < t2 < · · · < tn = b.

Choosing intermediate points τ j ∈ [t j−1, t j ] one obtains approximately

v(t) ≈ v(τ j ) for t ∈ [t j−1, t j ],

if v is a continuous function of time. The approximation is the more precise, the

shorter the intervals [t j−1, t j ] are chosen. The distance travelled in this interval is

approximately equal to

w j ≈ v(τ j )(t j − t j−1).

The total distance covered between time a and time b is then

w =
n

∑

j=1

w j ≈
n

∑

j=1

v(τ j )(t j − t j−1).

Letting the length of the subintervals [t j−1, t j ] tend to zero, one expects to obtain

the actual value of the distance in the limit.

Example 11.2 (Area under the graph of a nonnegative function) In a similar way

one can try to approximate the area under the graph of a function y = f (x) by using

rectangles which are successively refined (Fig. 11.2).

The sum of the areas of the rectangles

F ≈
n

∑

j=1

f (ξ j )(x j − x j−1)

form an approximation to the actual area under the graph.

Fig. 11.2 Sums of

rectangles as approximation

to the area

y

x
· · ·

ξnξ3ξ2ξ1

xn = bxn−1x3x2x1a = x0
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The two examples are based on the same concept, the Riemann integral,1 which

we will now introduce. Let an interval [a, b] and a function f = [a, b] → R be

given. Choosing points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

the intervals [x0, x1], [x1, x2], . . . , [xn−1, xn] form a partition Z of the interval

[a, b]. We denote the length of the largest subinterval by Φ(Z), i.e.

Φ(Z) = max
j=1,...,n

|x j − x j−1|.

For arbitrarily chosen intermediate points ξ j ∈ [x j−1, x j ] one calls the expression

S =
n

∑

j=1

f (ξ j )(x j − x j−1)

a Riemann sum. In order to further specify the idea of the limiting process above, we

take a sequence Z1, Z2, Z3, . . . of partitions such that Φ(Z N ) → 0 as N → ∞ and

corresponding Riemann sums SN .

Definition 11.3 A function f is called Riemann integrable in [a, b] if, for arbitrary

sequences of partitions (Z N )N≥1 with Φ(Z N ) → 0, the corresponding Riemann

sums (SN )N≥1 tend to the same limit I ( f ), independently of the choice of the

intermediate points. This limit

I ( f ) =
∫ b

a

f (x) dx

is called the definite integral of f on [a, b].

The intuitive approach in the introductory Examples 11.1 and 11.2 can now be

made precise. If the respective functions f and v are Riemann integrable, then the

integral

F =
∫ b

a

f (x) dx

represents the area between the x-axis and the graph, and

w =
∫ b

a

v(t) dt

gives the total distance covered.

1B. Riemann, 1826–1866.
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Experiment 11.4 Open the M-file mat11_1.m, study the given explanations and

experiment with randomly chosen Riemann sums for the function f (x) = 3x2 in the

interval [0, 1]. What happens if you take more and more partition points n?

Experiment 11.5 Open the applet Riemann sums and study the effects of changing

the partition. In particular, vary the maximum length of the subintervals and the

choice of intermediate points. How does the sign of the function influence the result?

The following examples illustrate the notion of Riemann integrability.

Example 11.6 (a) Let f (x) = c = constant. Then the area under the graph of the

function is the area of the rectangle c(b − a). On the other hand, any Riemann sum

is of the form

f (ξ1)(x1 − x0) + f (ξ2)(x2 − x1) + · · · + f (ξn)(xn − xn−1)

= c(x1 − x0 + x2 − x1 + · · · + xn − xn−1)

= c(xn − x0) = c(b − a).

All Riemann sums are equal and thus, as expected,

∫ b

a

c dx = c(b − a).

(b) Let f (x) = 1
x

for x ∈ (0, 1], f (0) = 0. This function is not integrable in [0, 1].
The corresponding Riemann sums are of the form

1

ξ1
(x1 − 0) +

1

ξ2
(x2 − x1) + · · · +

1

ξn

(xn − xn−1).

By choosing ξ1 close to 0 every such Riemann sum can be made arbitrarily large;

thus the limit of the Riemann sums does not exist.

(c) Dirichlet’s function2

f (x) =

{

1, x ∈ Q

0, x /∈ Q

is not integrable in [0, 1]. The Riemann sums are of the form

SN = f (ξ1)(x1 − x0) + · · · + f (ξn)(xn − xn−1).

If all ξ j ∈ Q then SN = 1. If one takes all ξ j /∈ Q then SN = 0; thus the limit depends

on the choice of intermediate points ξ j .

2P.G.L. Dirichlet, 1805–1859.
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Fig. 11.3 A piecewise

continuous function
y

x
dcba

Remark 11.7 Riemann integrable functions f : [a, b] → R are necessarily bounded.

This fact can easily be shown by generalising the argument in Example 11.6(b).

The most important criteria for Riemann integrability are outlined in the follow-

ing proposition. Its proof is simple, however, it requires a few technical consider-

ations about refining partitions. For details, we refer to the literature, for instance

[4, Chap. 5.1].

Proposition 11.8 (a) Every function which is bounded and monotonically increasing

(monotonically decreasing) on an interval [a, b] is Riemann integrable.

(b) Every piecewise continuous function on an interval [a, b] is Riemann inte-

grable. �

A function is called piecewise continuous if it is continuous except for a finite

number of points. At these points, the graph may have jumps but is required to have

left- and right-hand limits (Fig. 11.3).

Remark 11.9 By taking equidistant grid points a = x0 < x1 < · · · < xn−1 < xn = b

for the partition, i.e.

x j − x j−1 =: ∆x =
b − a

n
,

the Riemann sums can be written as

SN =
n

∑

j=1

f (ξ j )∆x .

The transition ∆x → 0 with simultaneous increase of the number of summands

suggests the notation

∫ b

a

f (x) dx .

Originally it was introduced by Leibniz3 with the interpretation as an infinite sum of

infinitely small rectangles of width dx . After centuries of dispute, this interpretation

3G. Leibniz, 1646–1716.
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can be rigorously justified today within the framework of nonstandard analysis (see,

for instance, [27]).

Note that the integration variable x in the definite integral is a bound variable

and can be replaced by any other letter:

∫ b

a

f (x) dx =
∫ b

a

f (t) dt =
∫ b

a

f (ξ) dξ = · · ·

This can be used with advantage in order to avoid possible confusion with other

bound variables.

Proposition 11.10 (Properties of the definite integral) In the following let a < b

and f, g be Riemann integrable on [a, b].

(a) Positivity:

f ≥ 0 in [a, b] ⇒
∫ b

a

f (x) dx ≥ 0,

f ≤ 0 in [a, b] ⇒
∫ b

a

f (x) dx ≤ 0.

(b) Monotonicity:

f ≤ g in [a, b] ⇒
∫ b

a

f (x) dx ≤
∫ b

a

g(x) dx .

In particular, with

m = inf
x∈[a,b]

f (x), M = sup
x∈[a,b]

f (x),

the following inequality holds

m(b − a) ≤
∫ b

a

f (x) dx ≤ M(b − a).

(c) Sum and constant factor (linearity):

∫ b

a

(

f (x) + g(x)
)

dx =
∫ b

a

f (x) dx +
∫ b

a

g(x) dx

∫ b

a

λ f (x) dx = λ

∫ b

a

f (x) dx (λ ∈ R).
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(d) Partition of the integration domain: Let a < b < c and f be integrable in [a, c],
then

∫ b

a

f (x) dx +
∫ c

b

f (x) dx =
∫ c

a

f (x) dx .

If one defines

∫ a

a

f (x) dx = 0,

∫ a

b

f (x) dx = −
∫ b

a

f (x) dx,

then one obtains the validity of the sum formula even for arbitrary a, b, c ∈ R

if f is integrable on the respective intervals.

Proof All justifications are easily obtained by considering the corresponding Rie-

mann sums. �

Item (a) from Proposition 11.10 shows that the interpretation of the integral as the

area under the graph is only appropriate if f ≥ 0. On the other hand, the interpretation

of the integral of a velocity as travelled distance is also meaningful for negative

velocities (change of direction). Item (d) is especially important for the integration

of piecewise continuous functions (see Fig. 11.3): the integral is obtained as the sum

of the single integrals.

11.2 Fundamental Theorems of Calculus

For a Riemann integrable function f we define a new function

F(x) =
∫ x

a

f (t) dt.

It is obtained by considering the upper boundary of the integration domain as variable.

Remark 11.11 For positive f , the value F(x) is the area under the graph of the

function in the interval [a, x]; see Fig. 11.4.

Fig. 11.4 The interpretation

of F(x) as area

F (x)

y = f(x)

x
bxa
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Proposition 11.12 (Fundamental theorems of calculus) Let f be continuous in

[a, b]. Then the following assertions hold:

(a) First fundamental theorem: If G is an antiderivative of f then

∫ b

a

f (x) dx = G(b) − G(a).

(b) Second fundamental theorem: The function

F(x) =
∫ x

a

f (t) dt

is an antiderivative of f , that is, F is differentiable and F ′(x) = f (x).

Proof In the first step we prove the second fundamental theorem. For that let

x ∈ (a, b), h > 0 and x + h ∈ (a, b). According to Proposition 6.15 the function

f has a minimum and a maximum in the interval [x, x + h]:

m(h) = min
t∈[x,x+h]

f (t), M(h) = max
t∈[x,x+h]

f (t).

The continuity of f implies the convergence m(h) → f (x) and M(h) → f (x) as

h → 0. According to item (b) in Proposition 11.10 we have that

m(h) · h ≤ F(x + h) − F(x) =
∫ x+h

x

f (t) dt ≤ M(h) · h.

This shows that F is differentiable at x and

F ′(x) = lim
h→0

F(x + h) − F(x)

h
= f (x).

The first fundamental theorem follows from the second fundamental theorem

∫ b

a

f (t) dt = F(b) = F(b) − F(a),

since F(a) = 0. If G is another antiderivative then G = F + c according to Propo-

sition 10.1; hence

G(b) − G(a) = F(b) + c − (F(a) + c) = F(b) − F(a).

Thus G(b) − G(a) =
∫ b

a
f (x) dx as well. �

https://doi.org/10.1007/978-3-319-91155-7_6
https://doi.org/10.1007/978-3-319-91155-7_10
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Remark 11.13 For positive f , the second fundamental theorem of calculus has an

intuitive interpretation. The value F(x + h) − F(x) is the area under the graph of

the function y = f (x) in the interval [x, x + h], while h f (x) is the area of the

approximating rectangle of height f (x). The resulting approximation

F(x + h) − F(x)

h
≈ f (x)

suggests that in the limit as h → 0, F ′(x) = f (x). The given proof makes the argu-

ment rigorous.

Applications of the first fundamental theorem. The most important application

consists in evaluating definite integrals
∫ b

a
f (x) dx . For that, one determines an

antiderivative F(x), for instance as indefinite integral, and substitutes:

∫ b

a

f (x) dx = F(x)

∣

∣

∣

x=b

x=a
= F(b) − F(a).

Example 11.14 As an application we compute the following integrals.

(a)

∫ 3

1

x2 dx =
x3

3

∣

∣

∣

∣

x=3

x=1

=
27

3
−

1

3
=

26

3
.

(b)

∫ π/2

0

cos x dx = sin x

∣

∣

∣

∣

x=π/2

x=0

= sin
π

2
− sin 0 = 1.

(c)

∫ 1

0

x sin(x2) dx = −
1

2
cos(x2)

∣

∣

∣

∣

x=1

x=0

= −
1

2
cos 1 −

(

−
1

2
cos 0

)

= −
1

2
cos 1 +

1

2
(see Example 10.12).

Remark 11.15 In maple the integration of expressions and functions is carried out

using the command int, which requires the analytic expression and the domain as

arguments, for instance

int(xˆ2, x = 1..3);

Applications of the second fundamental theorem. Usually, such applications are

of theoretical nature, like the description of the relation between travelled distance

and velocity,

w(t) = w(0) +
∫ t

0

v(s) ds, w′(t) = v(t),

www.dbooks.org
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wherew(t)denotes the travelled distance from 0 to time t andv(t) is the instantaneous

velocity. Other applications arise in numerical analysis, for instance

∫ x

0

e−y2

dy is an antiderivative of e−x2

.

The value of such an integral can be approximately calculated using Taylor poly-

nomials (see Application 12.18) or numerical integration methods (see Sect. 13.1).

This is of particular interest if the antiderivative is not an elementary function, as it

is the case for the Gaussian error function from Example 10.10.

11.3 Applications of the Definite Integral

We now turn to further applications of the definite integral, which confirm the mod-

elling power of the notion of the Riemann integral.

The volume of a solid of revolution. Assume first that for a three-dimensional

solid (possibly after choosing an appropriate Cartesian coordinate system) the cross-

sectional area A = A(x) is known for every x ∈ [a, b]; see Fig. 11.5. The volume of

a thin slice of thickness ∆x is approximately equal to A(x)∆x . Writing down the

Riemann sums and taking limits one obtains for the volume V of the solid

V =
∫ b

a

A(x) dx .

A solid of revolution is obtained by rotating the plane curve y = f (x), a ≤ x ≤ b

around the x-axis. In this case, we have A(x) = π f (x)2, and the volume is given by

V = π

∫ b

a

f (x)2 dx .

Fig. 11.5 Solid of

revolution, volume

∆x

A(x)

y

z

x

https://doi.org/10.1007/978-3-319-91155-7_12
https://doi.org/10.1007/978-3-319-91155-7_13
https://doi.org/10.1007/978-3-319-91155-7_10
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Fig. 11.6 A cone

r

h

y

z

x

Example 11.16 (Volume of a cone) The rotation of the straight line y = r
h

x around

the x-axis produces a cone of radius r and height h (Fig. 11.6). Its volume is given

by

V = π
r2

h2

∫ h

0

x2 dx = π
r2

h2
·

x3

3

∣

∣

∣

∣

x=h

x=0

= πr2 h

3
.

Arc length of the graph of a function. To determine the arc length of the graph

of a differentiable function with continuous derivative, we first partition the interval

[a, b],

a = x0 < x1 < x2 < · · · < xn = b,

and replace the graph y = f (x) on [a, b] by line segments passing through the points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)). The total length of the line segments is

sn =
n

∑

j=1

√

(x j − x j−1)2 + ( f (x j ) − f (x j−1))2.

It is simply given by the sum of the lengths of the individual segments (Fig. 11.7).

According to the mean value theorem (Proposition 8.4) we have

sn =
n

∑

j=1

√

(x j − x j−1)2 + f ′(ξ j )2(x j − x j−1)2

=
n

∑

j=1

√

1 + f ′(ξ j )2 (x j − x j−1)

Fig. 11.7 The arc length of

a graph
y = f(x)

x

f(x3)

f(x2)

x5 = bx4x3x2x1a = x0

www.dbooks.org
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with certain points ξ j ∈ [x j−1, x j ]. The sums sn are easily identified as Riemann

sums. Their limit is thus given by

s =
∫ b

a

√

1 + f ′(x)2 dx .

Lateral surface area of a solid of revolution. The lateral surface of a solid of

revolution is obtained by rotating the curve y = f (x), a ≤ x ≤ b around the x-axis.

In order to determine its area, we split the solid into small slices of thickness ∆x .

Each of these slices is approximately a truncated cone with generator of length ∆s

and mean radius f (x); see Fig. 11.8. According to Exercise 11 of Chap. 3 the lateral

surface area of this truncated cone is equal to 2π f (x)∆s. According to what has

been said previously, ∆s ≈
√

1 + f ′(x)2 ∆x and thus the lateral surface area of a

small slice is approximately equal to

2π f (x)

√

1 + f ′(x)2 ∆x .

Writing down the Riemann sums and taking limits one obtains

M = 2π

∫ b

a

f (x)

√

1 + f ′(x)2 dx

for the lateral surface area.

Example 11.17 (Surface area of a sphere) The surface of a sphere of radius r is

generated by rotation of the graph f (x) =
√

r2 − x2, −r ≤ x ≤ r . One obtains

M = 2π

∫ r

−r

√

r2 − x2
r

√
r2 − x2

dx = 4πr2.

Fig. 11.8 Solid of rotation,

curved surface area

∆s

f(x)

y

z

x

https://doi.org/10.1007/978-3-319-91155-7_3
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11.4 Exercises

1. Modify the MATLAB program mat11_1.m so that it evaluates Riemann sums of

given lengths n for polynomials of degree k on arbitrary intervals [a, b] (MATLAB

command polyval).

2. Prove that every function which is piecewise constant in an interval [a, b] is

Riemann integrable (use Definition 11.3).

3. Compute the area between the graphs of y = sin x and y =
√

x on the interval

[0, 2π].
4. (From engineering mechanics; Fig. 11.9) The shear force Q(x) and the bending

moment M(x) of a beam of length L under a distributed load p(x) obey the

relationships M ′(x) = Q(x), Q′(x) = −p(x), 0 ≤ x ≤ L . Compute Q(x) and

M(x) and sketch their graphs for

(a) a simply supported beam with uniformly distributed load: p(x) = p0, Q(0) =
p0 L/2, M(0) = 0;

(b) a cantilever beam with triangular load: p(x) = q0(1 − x/L), Q(L) = 0,

M(L) = 0.

5. Write a MATLAB program which provides a numerical approximation to the

integral
∫ 1

0

e−x2

dx .

For this purpose, use Riemann sums of the form

L =
n

∑

j=1

e
−x2

j ∆x, U =
n

∑

j=1

e
−x2

j−1 ∆x

with x j = j∆x, ∆x = 1/n and try to determine ∆x and n, respectively, so

that U − L ≤ 0.01; i.e. the result should be correct up to two digits. Com-

pare your result with the value obtained by means of the MATLAB command

sqrt(pi)/2*erf(1).

Additional task: Extend your program such that it allows one to compute
∫ a

0 e−x2
dx for arbitrary a > 0.

q0

L0
x

p0

L0

x

Fig. 11.9 Simply supported beam with uniformly distributed load, cantilever beam with triangular

load
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6. Show that the error of approximating the integral in Exercise 5 either by L or U

is at most U − L . Use the applet Integration to visualise this fact.

Hint. Verify the inequality

L ≤
∫ 1

0

e−x2

dx ≤ U.

Thus, L and U are lower and upper sums, respectively.

7. Rotation of the parabola y = 2
√

x, 0 ≤ x ≤ 1 around the x-axis produces a

paraboloid. Sketch it and compute its volume and its lateral surface area.

8. Compute the arc length of the graph of the following functions:

(a) the parabola f (x) = x2/2 for 0 ≤ x ≤ 2;

(b) the catenary g(x) = cosh x for −1 ≤ x ≤ 3.

Hint. See Exercise 7 in Sect. 10.3.

9. The surface of a cooling tower can be described qualitatively by rotating the

hyperbola y =
√

1 + x2 around the x-axis in the bounds −1 ≤ x ≤ 2.

(a) Compute the volume of the corresponding solid of revolution.

(b) Show that the lateral surface area is given by M = 2π
∫ 2
−1

√
1 + 2x2 dx .

Evaluate the integral directly and by means of maple.

Hint. Reduce the integral to the one considered in Exercise 7 of Sect. 10.3 by a

suitable substitution.

10. A lens-shaped body is obtained by rotating the graph of the sine function y =
sin x around the x-axis in the bounds 0 ≤ x ≤ π.

(a) Compute the volume of the body.

(b) Compute its lateral surface area.

Hint. For (a) use the identity sin2 x = 1
2
(1 − cos 2x); for (b) use the substitution

g(x) = cos x .

11. (From probability theory) Let X be a random variable with values in an inter-

val [a, b] which possesses a probability density f (x), that is, f (x) ≥ 0 and
∫ b

a
f (x) dx = 1. Its expectation value µ = E(X), its second moment E(X2)

and its variance V(X) are defined by

E(X) =
∫ b

a

x f (x) dx, E(X2) =
∫ b

a

x2 f (x) dx,

V(X) =
∫ b

a

(x − µ)2 f (x) dx .

Show that V(X) = E(X2) − µ2.

https://doi.org/10.1007/978-3-319-91155-7_10
https://doi.org/10.1007/978-3-319-91155-7_10
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12. Compute the expectation value and the variance of a random variable which has

(a) a uniform distribution on [a, b], i.e. f (x) = 1/(b − a) for a ≤ x ≤ b;

(b) a (special) beta distribution on [a, b] with density f (x) = 6(x − a)(b − x)/

(b − a)3.

13. Compute the expectation value and the variance of a random variable which has

a triangular distribution on [a, b] with modal value m, i.e.

f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2(x − a)

(b − a)(m − a)
for a ≤ x ≤ m,

2(b − x)

(b − a)(b − m)
for m ≤ x ≤ b.

www.dbooks.org
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Approximations of complicated functions by simpler functions play a vital part in

applied mathematics. Starting with the concept of linear approximation we discuss

the approximation of a function by Taylor polynomials and by Taylor series in this

chapter. As important applications we will use Taylor series to compute limits of

functions and to analyse various approximation formulas.

12.1 Taylor’s Formula

In this section we consider the approximation of sufficiently smooth functions by

polynomials as well as applications of these approximations. We have already seen

an approximation formula in Chap. 7: Let f be a function that is differentiable at a.

Then

f (x) ≈ g(x) = f (a) + f ′(a) · (x − a),

for all x close to a. The linear approximation g is a polynomial of degree 1 in x , and

its graph is just the tangent to f at a. We now want to generalise this approximation

result.

Proposition 12.1 (Taylor’s formula1) Let I ⊆ R be an open interval and f : I → R

an (n + 1)-times continuously differentiable function (i.e., the derivative of order

(n + 1) of f exists and is continuous). Then, for all x, a ∈ I ,

1B. Taylor, 1685–1731.
© Springer Nature Switzerland AG 2018

M. Oberguggenberger and A. Ostermann, Analysis for Computer Scientists,

Undergraduate Topics in Computer Science,
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f (x) = f (a) + f ′(a) · (x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

f (n)(a)

n!
(x − a)n

+ Rn+1(x, a)

with the remainder term (in integral form)

Rn+1(x, a) =
1

n!

∫ x

a

(x − t)n f (n+1) (t) dt.

Alternatively the remainder term can be expressed by

Rn+1(x, a) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1,

where ξ is a point between a and x (Lagrange’s2 form of the remainder term).

Proof According to the fundamental theorem of calculus, we have

∫ x

a

f ′(t) dt = f (x) − f (a),

and thus

f (x) = f (a) +
∫ x

a

f ′(t) dt.

We apply integration by parts to this formula. Due to

∫ x

a

u′(t)v(t) dt = u(t)v(t)

∣

∣

∣

x

a
−

∫ x

a

u(t)v′(t) dt

with u(t) = t − x and v(t) = f ′(t) we get

f (x) = f (a) + (t − x) f ′(t)
∣

∣

∣

x

a
−

∫ x

a

(t − x) f ′′(t) dt

= f (a) + f ′(a) · (x − a) +
∫ x

a

(x − t) f ′′(t) dt.

A further integration by parts yields

∫ x

a

(x − t) f ′′(t) dt = −
(x − t)2

2
f ′′(t)

∣

∣

∣

x

a
+

∫ x

a

(x − t)2

2
f ′′′(t) dt

=
f ′′(a)

2
(x − a)2 +

1

2

∫ x

a

(x − t)2 f ′′′(t) dt,

2J.L. Lagrange, 1736–1813.
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and one recognises that repeated integration by parts leads to the desired formula

(with the remainder term in integral form). The other representation of the remainder

term follows from the mean value theorem for integrals [4, Chap. 5, Theorem 5.4].

⊓⊔

Example 12.2 (Important special case) If one sets x = a + h and replaces a by x

in Taylor’s formula, then one obtains

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) + · · · +

hn

n!
f (n)(x) +

hn+1

(n + 1)!
f (n+1)(ξ)

with a point ξ between x and x + h. For small h this formula describes how the

function f behaves near x .

Remark 12.3 Often one does not know the remainder term

Rn+1(x, a) =
f (n+1)(ξ)

(n + 1)!
(x − a)n+1

explicitly since ξ is unknown in general. Let M be the supremum of
∣

∣ f (n+1)
∣

∣ in the

considered interval around a. For x in this interval we obtain the bound

∣

∣Rn+1(x, a)
∣

∣ ≤
M

(n + 1)!
(x − a)n+1.

The remainder term is thus bounded by a constant times hn+1, where h = x − a. In

this situation, one writes for short

Rn+1(a + h, a) = O(hn+1)

as h → 0 and calls the remainder a term of order n + 1. This notation is also used

by maple .

Definition 12.4 The polynomial

Tn(x, a) = f (a) + f ′(a) · (x − a) + · · · +
f (n)(a)

n!
(x − a)n

is called nth Taylor polynomial of f around the point of expansion a.

The graphs of the functions y = Tn(x, a) and y = f (x) both pass through the

point (a, f (a)). Their tangents in this point have the same slope T ′
n(x, a) = f ′(a)

and the graphs have the same curvature (due to T ′′
n (x, a) = f ′′(a), see Chap. 14). It

depends on the size of the remainder term how well the Taylor polynomial approxi-

mates the function.
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Example 12.5 (Taylor polynomial of the exponential function) Let f (x) = ex and

a = 0. Due to (ex )′ = ex we have f (k)(0) = e0 = 1 for all k ≥ 0 and hence

ex = 1 + x +
x2

2
+ · · · +

xn

n!
+

eξ

(n + 1)!
xn+1,

where ξ denotes a point between 0 and x . We want to determine the minimal degree of

the Taylor polynomial which approximates the function in the interval [0, 1], correct

to 5 digits. For that we require the following bound on the remainder term

∣

∣

∣

∣

ex − 1 − x − · · · −
xn

n!

∣

∣

∣

∣

=
eξ

(n + 1)!
xn+1 ≤ 10−5.

Note that x ∈ [0, 1] as well as eξ are non-negative. The above remainder will be

maximal for x = ξ = 1. Thus we determine n from the inequality e/(n + 1)! ≤ 10−5.

Due to e ≈ 3 this inequality is certainly fulfilled from n = 8 onwards; in particular,

e = 1 + 1 +
1

2
+ · · · +

1

8!
± 10−5.

One has to choose n ≥ 8 in order to determine the first 5 digits of e.

Experiment 12.6 Repeat the above calculations with the help of the maple work-

sheet mp12_1.mws. In this worksheet the required maple commands for Taylor’s

formula are explained.

Example 12.7 (Taylor polynomial of the sine function) Let f (x) = sin x and

a = 0. Recall that (sin x)′ = cos x and (cos x)′ = − sin x as well as sin 0 = 0 and

cos 0 = 1. Therefore,

sin x =
2n+1
∑

k=0

sin(k)(0)

k!
xk + R2n+2(x, 0) =

= x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · + (−1)n x2n+1

(2n + 1)!
+ R2n+2(x, 0).

Note that the Taylor polynomial consists of odd powers of x only. According to

Taylor’s formula, the remainder has the form

R2n+2(x, 0) =
sin(2n+2)(ξ)

(2n + 2)!
x2n+2.

Since all derivatives of the sine function are bounded by 1, we obtain

|R2n+2(x, 0)| ≤
x2n+2

(2n + 2)!
.
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For fixed x the remainder term tends to zero as n → ∞, since the expression

x2n+2/(2n + 2)! is a summand of the exponential series, which converges for all

x ∈ R. The above estimate can be interpreted as follows: For every x ∈ R and ε > 0,

there exists an integer N ∈ N such that the difference of the sine function and its nth

Taylor polynomial is small; more precisely,

| sin t − Tn(t, 0)| ≤ ε

for all n ≥ N and t ∈ [−x, x].

Experiment 12.8 Using the maple worksheet mp12_2.mws compute the Taylor

polynomials of sin x around the point 0 and determine the accuracy of the approxi-

mation (by plotting the difference to sin x). In order to achieve high accuracy for large

x , the degree of the polynomials has to be chosen sufficiently high. Due to rounding

errors, however, this procedure quickly reaches its limits (unless one increases the

number of significant digits).

Example 12.9 The 4th degree Taylor polynomial T4(x, 0) of the function

f (x) =

⎧

⎨

⎩

x

ex − 1
x �= 0,

1 x = 0,

is given by

T4(x, 0) = 1 −
x

2
+

1

12
x2 −

1

720
x4.

Experiment 12.10 The maple worksheet mp12_3.mws shows that, for suffi-

ciently large n, the Taylor polynomial of degree n gives a good approximation to the

function from Example 12.9 on closed subintervals of (−2π, 2π). For x ≥ 2π (as

well as for x ≤ −2π) the Taylor polynomial is, however, useless.

12.2 Taylor’s Theorem

The last example gives rise to the question for which points the Taylor polynomial

converges to the function as n → ∞.

Definition 12.11 Let I ⊆ R be an open interval and let f : I → R have arbitrarily

many derivatives. Given a ∈ I , the series

T (x, a, f ) =
∞
∑

k=0

f (k)(a)

k!
(x − a)k

is called Taylor series of f around the point a.
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Proposition 12.12 (Taylor’s theorem) Let f : I → R be a function with arbitrarily

many derivatives and let T (x, a, f ) be its Taylor series around the point a. Then the

function and its Taylor series coincide at x ∈ I , i.e.,

f (x) =
∞
∑

k=0

f (k)(a)

k!
(x − a)k,

if and only if the remainder term

Rn(x, a) =
f (n)(ξ)

n!
(x − a)n

tends to 0 as n → ∞.

Proof According to Taylor’s formula (Proposition 12.1),

f (x) − Tn(x, a) = Rn+1(x, a)

and hence

f (x) = lim
n→∞

Tn(x, a) = T (x, a, f ) ⇔ lim
n→∞

Rn(x, a) = 0,

which was to be shown. ⊓⊔

Example 12.13 Let f (x) = sin x and a = 0. Due to Rn(x, 0) = sin(n)(ξ)
n! xn we have

|Rn(x, 0)| ≤
|x |n

n!
→ 0

for x fixed and n → ∞. Hence for all x ∈ R

sin x =
∞
∑

k=0

(−1)k x2k+1

(2k + 1)!
= x −

x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
∓ . . .

12.3 Applications of Taylor’s Formula

To complete this chapter we discuss a few important applications of Taylor’s formula.

Application 12.14 (Extremum test) Let the function f : I → R be n-times contin-

uously differentiable in the interval I and assume that

f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) �= 0.
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Then the following assertions hold:

(a) The function f has an extremum at a if and only if n is even;

(b) if n is even and f (n)(a) > 0, then a is a local minimum of f ;

if n is even and f (n)(a) < 0, then a is a local maximum of f .

Proof Due to Taylor’s formula, we have

f (x) − f (a) =
f (n)(ξ)

n!
(x − a)n, x ∈ I.

If x is close to a, f (n)(ξ) and f (n)(a) have the same sign (since f (n) is continuous).

For n odd the right-hand side changes its sign at x = a because of the term (x − a)n .

Hence an extremum can only occur for n even. If now n is even and f (n)(a) > 0

then f (x) > f (a) for all x close to a with x �= a. Thus a is a local minimum. ⊓⊔

Example 12.15 The polynomial f (x) = 6 + 4x + 6x2 + 4x3 + x4 has the deriva-

tives

f ′(−1) = f ′′(−1) = f ′′′(−1) = 0, f (4)(−1) = 24

at the point x = −1. Hence x = −1 is a local minimum of f .

Application 12.16 (Computation of limits of functions) As an example, we inves-

tigate the function

g(x) =
x2 log(1 + x)

(1 − cos x) sin x

in the neighbourhood of x = 0. For x = 0 we obtain the undefined expression 0
0

. In

order to determine the limit when x tends to 0, we expand all appearing functions in

Taylor polynomials around the point a = 0. Exercise 1 yields that cos x = 1 − x2

2
+

O(x4). Taylor’s formula for log(1 + x) around the point a = 0 reads

log(1 + x) = x + O(x2)

because of log 1 = 0 and log(1 + x)′|x=0 = 1. We thus obtain

g(x) =
x2

(

x + O(x2)
)

(

1 − 1 + x2

2
+ O(x4)

)(

x + O(x3)
)

=
x3 + O(x4)

x3

2
+ O(x5)

=
1 + O(x)

1
2

+ O(x2)

and consequently lim
x→0

g(x) = 2.

Application 12.17 (Analysis of approximation formulas) When differentiating

numerically in Chap. 7, we considered the symmetric difference quotient

f ′′(x) ≈
f (x + h) − 2 f (x) + f (x − h)

h2
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as an approximation to the second derivative f ′′(x). We are now in the position to

investigate the accuracy of this formula. From

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + O(h4),

f (x − h) = f (x) − h f ′(x) +
h2

2
f ′′(x) −

h3

6
f ′′′(x) + O(h4)

we infer that

f (x + h) + f (x − h) = 2 f (x) + h2 f ′′(x) + O(h4)

and hence

f (x + h) − 2 f (x) + f (x − h)

h2
= f ′′(x) + O(h2).

One calls this formula second-order accurate. If one reduces h by the factor λ, then

the error reduces by the factor λ2, as long as rounding errors do not play a decisive

role.

Application 12.18 (Integration of functions that do not possess elementary inte-

grals) As already mentioned in Sect. 10.2 there are functions whose antiderivatives

cannot be expressed as combinations of elementary functions. For example, the

function f (x) = e−x2
does not have an elementary integral. In order to compute the

definite integral
∫ 1

0

e−x2

dx,

we approximate e−x2
by the Taylor polynomial of degree 8

e−x2

≈ 1 − x2 +
x4

2
−

x6

6
+

x8

24

and approximate the integral sought after by

∫ 1

0

(

1 − x2 +
x4

2
−

x6

6
+

x8

24

)

dx =
5651

7560
.

The error of this approximation is 6.63 · 10−4. For more precise results one takes a

Taylor polynomial of a higher degree.

Experiment 12.19 Using the maple worksheet mp12_4.mws repeat the calcula-

tions from Application 12.18. Subsequently modify the program such that you can

integrate g(x) = cos
(

x2
)

with it.
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12.4 Exercises

1. Compute the Taylor polynomials of degree 0, 1, 2, 3 and 4 of the function g(x) =
cos x around the point of expansion a = 0. For which x ∈ R does the Taylor

series of cos x converge?

2. Compute the Taylor polynomials of degree 1, 3 and 5 of the function sin x

around the point of expansion a = 9π. Further, compute the Taylor polynomial

of degree 39 with maple and plot the graph together with the graph of the

function in the interval [0, 18π]. In order to be able to better distinguish the two

graphs you should plot them in different colours.

3. Compute the Taylor polynomials of degree 1, 2 and 3 of the function f (t) =√
1 + t around the point of expansion a = 0. Further compute the Taylor poly-

nomial of degree 10 with maple .

4. Compute the following limits using Taylor series expansion:

lim
x→0

x sin x − x2

2 cos x − 2 + x2
, lim

x→0

e2x − 1 − 2x

sin2 x
,

lim
x→0

e−x2 − 1

sin2(3x)
, lim

x→0

x2
(

log(1 − 2x)
)2

1 − cos(x2)
.

Verify your results with maple .

5. For the approximate evaluation of the integral

∫ 1

0

sin(t2)

t
dt

replace the integrand by its Taylor polynomial of degree 9 and integrate this

polynomial. Verify your result with maple .

6. Prove the formula

eiϕ = cos ϕ + i sin ϕ

by substituting the value iϕ for x into the series of the exponential function

ex =
∞
∑

k=0

xk

k!

and separating real and imaginary parts.

7. Compute the Taylor series of the hyperbolic functions f (x) = sinh x and

g(x) = cosh x around the point of expansion a = 0 and verify the convergence

of the series.

Hint. Compute the Taylor polynomials of degree n − 1 and show that the remain-

der terms Rn(x, 0) can be estimated by (cosh M)Mn/n! whenever |x | ≤ M .
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8. Show that the Taylor series of f (x) = log(1 + x) around a = 0 is given by

log(1 + x) =
∞
∑

k=1

(−1)k−1 xk

k
= x −

x2

2
+

x3

3
−

x4

4
± . . .

for |x | < 1.

Hint. A formal calculation, namely an integration of the geometric series

expansion

1

1 + t
=

1

1 − (−t)
=

∞
∑

j=0

(−1) j t j

from t = 0 to t = x , suggests the result. For a rigorous proof of convergence,

the remainder term has to be estimated. This can be done by integrating the

remainder term in the geometric series

1

1 + t
−

n−1
∑

j=0

(−1) j t j =
1

1 + t
−

1 − (−1)n tn

1 + t
=

(−1)n tn

1 + t
,

observing that 1 + t ≥ δ>0 for some positive constant δ as long as |t | ≤ |x | < 1.

www.dbooks.org

https://www.dbooks.org/


13Numerical Integration

The fundamental theorem of calculus suggests the following approach to the

calculation of definite integrals: one determines an antiderivative F of the integrand

f and computes from that the value of the integral

∫ b

a

f (x) dx = F(b) − F(a).

In practice, however, it is difficult and often even impossible to find an antiderivative

F as a combination of elementary functions. Apart from that, antiderivatives can

also be fairly complex, as the example
∫

x100 sin x dx shows. Finally, in concrete

applications the integrand is often given numerically and not by an explicit formula.

In all these cases one reverts to numerical methods. In this chapter the basic concepts

of numerical integration (quadrature formulas and their order) are introduced and

explained. By means of instructive examples we analyse the achievable accuracy for

the Gaussian quadrature formulas and the required computational effort.

13.1 Quadrature Formulas

For the numerical computation of
∫ b

a
f (x) dx we first split the interval of integration

[a, b] into subintervals with grid points a = x0 < x1 < x2 < . . . < xN−1 < xN = b,

see Fig. 13.1. From the additivity of the integral (Proposition 11.10 (d)) we get

∫ b

a

f (x) dx =
N−1
∑

j=0

∫ x j+1

x j

f (x) dx .
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y = f(x)

xN = b· · ·xj+1xj· · ·x2x1x0 = a

Fig. 13.1 Partition of the interval of integration into subintervals

Hence it is sufficient to find an approximation formula for a (small) subinterval

of length h j = x j+1 − x j . One example of such a formula is the trapezoidal rule

through which the area under the graph of a function is approximated by the area of

the corresponding trapezoid (Fig. 13.2)

∫ x j+1

x j

f (x) dx ≈ h j

1

2

(

f (x j ) + f (x j+1)
)

.

For the derivation and analysis of such approximation formulas it is useful to carry

out a transformation onto the interval [0, 1]. By setting x = x j + τh j one obtains

from dx = h j dτ that

∫ x j+1

x j

f (x) dx =
∫ 1

0

f (x j + τh j )h j dτ = h j

∫ 1

0

g(τ ) dτ

with g(τ ) = f (x j + τh j ). Thus it is sufficient to find approximation formulas for
∫ 1

0 g(τ ) dτ . The trapezoidal rule in this case is

∫ 1

0

g(τ ) dτ ≈
1

2

(

g(0) + g(1)
)

.

Obviously, it is exact if g(τ ) is a polynomial of degree 0 or 1.

Fig. 13.2 Trapezoidal rule

g(1)

g(0)

10
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In order to obtain a more accurate formula, we demand that quadratic polynomials

are integrated exactly as well. For the moment let

g(τ ) = α + βτ + γτ2

be a general polynomial of degree 2. Due to g(0) = α, g
(

1
2

)

= α + 1
2
β + 1

4
γ and

g(1) = α + β + γ we get by a short calculation

∫ 1

0

(

α + βτ + γτ2
)

dτ = α +
1

2
β +

1

3
γ =

1

6

(

g(0) + 4g
(

1
2

)

+ g(1)
)

.

The corresponding approximation formula for general g reads

∫ 1

0

g(τ ) dτ ≈
1

6

(

g(0) + 4g
(

1
2

)

+ g(1)
)

.

By construction, it is exact for polynomials of degree less than or equal to 2; it is

called Simpson’s rule.1

The special forms of the trapezoidal and of Simpson’s rule motivate the following

definition.

Definition 13.1 The approximation formula

∫ 1

0

g(τ ) dτ ≈
s

∑

i=1

bi g(ci )

is called a quadrature formula. The numbers b1, . . . , bs are called weights, and the

numbers c1, . . . , cs are called nodes of the quadrature formula; the integer s is called

the number of stages.

A quadrature formula is determined by the specification of the weights and nodes.

Thus we denote a quadrature formula by {(bi , ci ), i = 1, . . . , s} for short. Without

loss of generality the weights bi are not zero, and the nodes are pairwise different

(ci �= ck for i �= k).

Example 13.2 (a) The trapezoidal rule has s = 2 stages and is given by

b1 = b2 =
1

2
, c1 = 0, c2 = 1.

1T. Simpson, 1710–1761.
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(b) Simpson’s rule has s = 3 stages and is given by

b1 =
1

6
, b2 =

2

3
, b3 =

1

6
, c1 = 0, c2 =

1

2
, c3 = 1.

In order to compute the original integral
∫ b

a
f (x) dx by quadrature formulas, one

has to reverse the transformation from f to g. Due to g(τ ) = f (x j + τh j ) one

obtains

∫ x j+1

x j

f (x) dx = h j

∫ 1

0

g(τ ) dt ≈ h j

s
∑

i=1

big(ci ) = h j

s
∑

i=1

bi f (x j + ci h j ),

and thus the approximation formula

∫ b

a

f (x) dx =
N−1
∑

j=0

∫ x j+1

x j

f (x) dx ≈
N−1
∑

j=0

h j

s
∑

i=1

bi f (x j + ci h j ).

We now look for quadrature formulas that are as accurate as possible. Since the

integrand is typically well approximated by Taylor polynomials on small intervals,

a good quadrature formula is characterised by the property that it integrates exactly

as many polynomials as possible. This idea motivates the following definition.

Definition 13.3 (Order) The quadrature formula {(bi , ci ), i = 1, . . . , s} has order

p if all polynomials g of degree less or equal to p − 1 are integrated exactly by the

quadrature formula; i.e.,

∫ 1

0

g(τ ) dτ =
s

∑

i=1

bi g(ci )

for all polynomials g of degree smaller than or equal to p − 1.

Example 13.4 (a) The trapezoidal rule has order 2.

(b) Simpson’s rule has (by construction) at least order 3.

The following proposition yields an algebraic characterisation of the order of

quadrature formulas.

Proposition 13.5 A quadrature formula {(bi , ci ), i = 1, . . . , s} has order p if and

only if

s
∑

i=1

bi c
q−1
i =

1

q
for 1 ≤ q ≤ p.
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Proof One uses the fact that a polynomial g of degree p − 1

g(τ ) = α0 + α1τ + . . . + αp−1 τ p−1

is a linear combination of monomials, and that both integration and application of a

quadrature formula are linear processes. Thus it is sufficient to prove the result for

the monomials

g(τ ) = τq−1, 1 ≤ q ≤ p.

The proposition now follows directly from the identity

1

q
=

∫ 1

0

τq−1 dτ =
s

∑

i=1

bi g(ci ) =
s

∑

i=1

bi c
q−1
i . �

The conditions of the proposition

b1 + b2 + . . . + bs = 1

b1c1 + b2c2 + . . . + bscs = 1
2

b1c2
1 + b2c2

2 + . . . + bsc2
s = 1

3

...

b1c
p−1
1 + b2c

p−1
2 + . . . + bsc

p−1
s = 1

p

are called order conditions of order p. If s nodes c1, . . . , cs are given then the order

conditions form a linear system of equations for the unknown weights bi . If the

nodes are pairwise different then the weights can be determined uniquely from that.

This shows that for s different nodes there always exists a unique quadrature formula

of order p ≥ s.

Example 13.6 We determine once more the order of Simpson’s rule. Due to

b1 + b2 + b3 = 1
6

+ 2
3

+ 1
6

= 1

b1c1 + b2c2 + b3c3 = 2
3

· 1
2

+ 1
6

= 1
2

b1c2
1 + b2c2

2 + b3c2
3 = 2

3
· 1

4
+ 1

6
= 1

3

its order is at least 3 (as we already know from the construction). However,

additionally

b1c3
1 + b2c3

2 + b3c3
3 = 4

6
· 1

8
+ 1

6
= 3

12
= 1

4
,

i.e., Simpson’s rule even has order 4.
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The best quadrature formulas (high accuracy with little computational effort) are

the Gaussian quadrature formulas. For that we state the following result whose proof

can be found in [23, Chap. 10, Corollary 10.1].

Proposition 13.7 There is no quadrature formula with s stages of order p > 2s. On

the other hand, for every s ∈ N there exists a (unique) quadrature formula of order

p = 2s. This formula is called s-stage Gaussian quadrature formula.

The Gaussian quadrature formulas for s ≤ 3 are

s = 1 : c1 =
1

2
, b1 = 1, order 2 (midpoint rule);

s = 2 : c1 =
1

2
−

√
3

6
, c2 =

1

2
+

√
3

6
, b1 = b2 =

1

2
, order 4;

s = 3 : c1 =
1

2
−

√
15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
,

b1 =
5

18
, b2 =

8

18
, b3 =

5

18
, order 6.

13.2 Accuracy and Efficiency

In the following numerical experiment the accuracy of quadrature formulas will be

illustrated. With the help of the Gaussian quadrature formulas of order 2, 4 and 6 we

compute the two integrals

∫ 3

0

cos x dx = sin 3 and

∫ 1

0

x5/2 dx =
2

7
.

For that we choose equidistant grid points

x j = a + jh, j = 0, . . . , N

with h = (b − a)/N and N = 1, 2, 4, 8, 16, . . . , 512. Finally, we plot the costs of the

calculation as a function of the achieved accuracy in a double-logarithmic diagram.

A measure for the computational cost of a quadrature formula is the number of

required function evaluations, abbreviated by fe. For an s-stage quadrature formula,

it is the number

fe = s · N .

The achieved accuracy err is the absolute value of the error. The according results

are presented in Fig. 13.3. One makes the following observations:
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f(x) = cosx

Fig. 13.3 Accuracy-cost-diagram of the Gaussian quadrature formulas. The crosses are the results

of the one-stage Gaussian method of order 2, the squares the ones of the two-stage method of order

4 and the circles the ones of the three-stage method of order 6

(a) The curves are straight lines (as long as one does not get into the range of

rounding errors, like with the three-stage method in the left picture).

(b) In the left picture the straight lines have slope −1/p, where p is the order of

the quadrature formula. In the right picture this is only true for the method of

order 2, and the other two methods result in straight lines with slope −2/7.

(c) For given costs the formulas of higher order are more accurate.

In order to understand this behaviour, we expand the integrand into a Taylor series.

On the subinterval [α, α + h] of length h we obtain

f (α + τh) =
p−1
∑

q=0

hq

q!
f (q)(α)τq + O(h p).

Since a quadrature formula of order p integrates polynomials of degree less than or

equal to p − 1 exactly, the Taylor polynomial of f of degree p − 1 is being integrated

exactly. The error of the quadrature formula on this subinterval is proportional to the

length of the interval times the size of the remainder term of the integrand, so

h · O(h p) = O(h p+1).

In total we have N subintervals; hence, the total error of the quadrature formula is

N · O(h p+1) = Nh · O(h p) = (b − a) · O(h p) = O(h p).

Thus we have shown that (for small h) the error err behaves like

err ≈ c1 · h p.
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Since furthermore

fe = s N = s · Nh · h−1 = s · (b − a) · h−1 = c2 · h−1

holds true, we obtain

log(fe) = log c2 − log h and log(err) ≈ log c1 + p · log h,

so altogether

log(fe) ≈ c3 −
1

p
· log(err).

This explains why straight lines with slope −1/p appear in the left picture.

In the right picture it has to be noted that the second derivative of the integrand

is discontinuous at 0. Hence the above considerations with the Taylor series are not

valid anymore. The quadrature formula also detects this discontinuity of the high

derivatives and reacts with a so-called order reduction; i.e., the methods show a

lower order (in our case p = 7/2).

Experiment 13.8 Compute the integrals

∫ 3

0

√
x dx and

∫ 2

1

dx

x

using the Gaussian quadrature formulas and generate an accuracy-cost-diagram.

For that purpose modify the programs mat13_1.m, mat13_2.m, mat13_3.m,

mat13_4.m and mat13_5.m with which Fig. 13.3 was produced.

Commercial programs for numerical integration determine the grid points adap-

tively based on automatic error estimates. The user can usually specify the desired

accuracy. In MATLAB the routines quad.m and quadl.m serve this purpose.

13.3 Exercises

1. For the calculation of
∫ 1

0 x100 sin x dx first determine an antiderivative F of the

integrand f using maple . Then evaluate F(1) − F(0) to 10, 50, 100, 200 and

400 digits and explain the surprising results.

2. Determine the order of the quadrature formula given by

b1 = b4 =
1

8
, b2 = b3 =

3

8
, c1 = 0, c2 =

1

3
, c3 =

2

3
, c4 = 1.
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3. Determine the unique quadrature formula of order 3 with the nodes

c1 =
1

3
, c2 =

2

3
, c3 = 1.

4. Determine the unique quadrature formula with the nodes

c1 =
1

4
, c2 =

1

2
, c3 =

3

4
.

Which order does it have?

5. Familiarise yourself with the MATLAB programs quad.m and quadl.m for the

computation of definite integrals and test the programs for

∫ 1

0

e−x2

dx and

∫ 1

0

3
√

x dx .

6. Justify the formulas

π = 4

∫ 1

0

dx

1 + x2
and π = 4

∫ 1

0

√

1 − x2 dx

and use them to calculate π by numerical integration. To do so divide the interval

[0, 1] into N equally large parts (N = 10, 100, . . .) and use Simpson’s rule on

those subintervals. Why are the results obtained with the first formula always

more accurate?

7. Write a MATLAB program that allows you to evaluate the integral of any given

(continuous) function on a given interval [a, b], both by the trapezoidal rule and

by Simpson’s rule. Use your program to numerically answering the questions of

Exercises 7–9 from Sect. 11.4 and Exercise 5 from Sect. 12.4.

8. Use your program from Exercise 7 to produce tables (for x = 0 to x = 10 in

steps of 0.5) of some higher transcendental functions:

(a) the Gaussian error function

Erf(x) =
2

√
π

∫ x

0

e−y2

dy,

(b) the sine integral

Si(x) =
∫ x

0

sin y

y
dy,

(c) the Fresnel integral

S(x) =
∫ x

0

sin
(π

2
y2

)

dy.
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9. (Experimental determination of expectation values) The family of standard beta

distributions on the interval [0, 1] is defined through the probability densities

f (x; r, s) =
1

B(r, s)
xr−1(1 − x)s−1, 0 ≤ x ≤ 1,

where r, s > 0. Here B(r, s) =
∫ 1

0 yr−1(1 − y)s−1 dy is the beta function,

which is a higher transcendental function for non-integer values of r, s. For

integer values of r, s ≥ 1 it is given by

B(r, s) =
(r − 1)!(s − 1)!

(r + s − 1)!
.

With the help of the MATLAB program quad.m, compute the expectation values

µ(r, s) =
∫ 1

0 x f (x; r, s) dx for various integer values of r and s and guess a

general formula for µ(r, s) from your experimental results.
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The graph of a function y = f (x) represents a curve in the plane. This concept,

however, is too tight to represent more intricate curves, like loops, self-intersections,

or even curves of fractal dimension. The aim of this chapter is to introduce the

concept of parametrised curves and to study, in particular, the case of differentiable

curves. For the visualisation of the trajectory of a curve, the notions of velocity

vector, moving frame, and curvature are important. The chapter contains a collection

of geometrically interesting examples of curves and several of their construction

principles. Further, the computation of the arc length of differentiable curves is

discussed, and an example of a continuous, bounded curve of infinite length is given.

The chapter ends with a short outlook on spatial curves. For the vector algebra used

in this chapter, we refer to Appendix A.

14.1 Parametrised Curves in the Plane

Definition 14.1 A parametrised plane curve is a continuous mapping

t �→ x(t) =
[

x(t)

y(t)

]

of an interval [a, b] to R
2; i.e., both the components t �→ x(t) and t �→ y(t) are

continuous functions.1 The variable t ∈ [a, b] is called parameter of the curve.

1Concerning the vector notation we remark that x(t), y(t) actually represent the coordinates of a

point in R
2. It is, however, common practise and useful to write this point as a position vector, thus

the column notation.
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Example 14.2 An object that is thrown at height h with horizontal velocity vH and

vertical velocity vV has the trajectory

x(t) = vH t,

y(t) = h + vV t − g
2

t2,
0 ≤ t ≤ t0,

where t0 is the positive solution of the equation h + vV t0 − g
2

t2
0 = 0 (time of

impact, see Fig. 14.1). In this example, we can eliminate t and represent the tra-

jectory as the graph of a function (ballistic curve). We have t = x/vH , and thus

y = h +
vV

vH

x −
g

2v2
H

x2.

Example 14.3 A circle of radius R with centre at the origin has the parametric

representation

x(t) = R cos t,

y(t) = R sin t,
0 ≤ t ≤ 2π.

In this case, t can be interpreted as the angle between the position vector and the

positive x-axis (Fig. 14.1). The components x = x(t), y = y(t) satisfy the quadratic

equation

x2 + y2 = R2;

however, one cannot represent the circle in its entirety as the graph of a function.

Experiment 14.4 Open the M-file mat14_1.m and discuss which curve is being

represented. Compare with the M-files mat14_2.m to mat14_4.m. Are these the

same curves?

Experiment 14.4 suggests that one can view curves statically as a set of points in

the plane or dynamically as the trajectory of a moving point. Both perspectives are

of importance in applications.

[x(t), y(t)]T

0 R

y

x
t

t = t0

h

t = 0
[x(t), y(t)]T

y

x

Fig. 14.1 Parabolic trajectory and circle
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The kinematic point of view. In the kinematic interpretation, one considers the

parameter t of the curve as time and the curve as path. Different parametrisations of

the same geometric object are viewed as different curves.

The geometric point of view. In the geometric interpretation, the location, the mov-

ing sense and the number of cycles are considered as the defining properties of a

curve. The particular parametrisation, however, is irrelevant.

A strictly monotonically increasing, continuous mapping of an interval [α, β] to

[a, b],

ϕ : [α, β] → [a, b]

is called a change of parameter. The curve

τ �→ ξ(τ ), α ≤ τ ≤ β

is called a reparametrisation of the curve

t �→ x(t), a ≤ t ≤ b,

if it is obtained through a change of parameter t = ϕ(τ ); i.e.,

ξ(τ ) = x(ϕ(τ )).

From the geometric point of view, the parametrised curves τ �→ ξ(τ ) and t �→ x(t)

are identified. A plane curve Γ is an equivalence class of parametrised curves which

can be transformed to one another by reparametrisation.

Example 14.5 We consider the segment of a parabola, parametrised by

Γ : x(t) =
[

t

t2

]
, −1 ≤ t ≤ 1.

Reparametrisations are for instance

ϕ :
[
− 1

2
, 1

2

]
→ [−1, 1], ϕ(τ ) = 2τ ,

ϕ̃ : [−1, 1] → [−1, 1], ϕ̃(t) = τ3.

Consequently,

ξ(τ ) =
[

2τ

4τ2

]
, − 1

2
≤ τ ≤ 1

2
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and

η(τ ) =
[
τ3

τ6

]
, −1 ≤ τ ≤ 1

geometrically represent the same curve. However,

ψ : [−1, 1] → [−1, 1], ψ(τ ) = −τ ,

ψ̃ : [0, 1] → [−1, 1], ψ̃(τ ) = −1 + 8τ (1 − τ )

are not reparametrisations and yield other curves, namely

y(τ ) =
[
−τ

τ2

]
, −1 ≤ τ ≤ 1,

z(τ ) =
[

−1 + 8τ (1 − τ )

(−1 + 8τ (1 − τ ))2

]
, 0 ≤ τ ≤ 1.

In the first case, the moving sense of Γ is reversed, and in the second case, the curve

is traversed twice.

Experiment 14.6 Modify the M-files from Experiment 14.4 so that the curves from

Example 14.5 are represented.

Algebraic curves. These are obtained as the set of zeros of polynomials in two

variables. As examples we had already parabola and circle

y − x2 = 0, x2 + y2 − R2 = 0.

One can also create cusps and loops in this way.

Example 14.7 Neil’s2 parabola

y2 − x3 = 0

has a cusp at x = y = 0 (Fig. 14.2). Generally, one obtains algebraic curves from

y2 − (x + p)x2 = 0, p ∈ R.

For p > 0 they have a loop. A parametric representation of this curve is, for instance,

x(t) = t2 − p,

y(t) = t (t2 − p),
− ∞ < t < ∞.

2W. Neil, 1637–1670.
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2
y

x

y

x

y

x

Fig. 14.2 Neil’s parabola, the α -curve and an elliptic curve

In the following we will primarily deal with curves which are given by differen-

tiable parametrisations.

Definition 14.8 If a plane curve Γ : t �→ x(t) has a parametrisation whose compo-

nents t �→ x(t), t �→ y(t) are differentiable, then Γ is called a differentiable curve.

If the components are k-times differentiable, then Γ is called a k-times differentiable

curve.

The graphical representation of a differentiable curve does not have to be smooth

but may have cusps and corners, as Example 14.7 shows.

Example 14.9 (Straight line and half ray) The parametric representation

t �→ x(t) =
[

x0

y0

]
+ t

[
r1

r2

]
, −∞ < t < ∞

describes a straight line through the point x0 = [x0, y0]T in the direction

r = [r1, r2]T. If one restricts the parameter t to 0 ≤ t < ∞ one obtains a half ray.

The parametrisation

xH (t) =
[

x0

y0

]
+ t2

[
r1

r2

]
, −∞ < t < ∞

leads to a double passage through the half ray.

Example 14.10 (Parametric representation of an ellipse) The equation of an ellipse

is

x2

a2
+

y2

b2
= 1.
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Fig. 14.3 Parametric

representation of the ellipse

b

a

[x(t), y(t)]T

y

x
t

A parametric representation (single passage in counterclockwise sense) is obtained

by

x(t) = a cos t,

y(t) = b sin t,
0 ≤ t ≤ 2π.

This can be seen by substituting these expressions into the equation of the ellipse.

The meaning of the parameter t can be seen from Fig. 14.3.

Example 14.11 (Parametric representation of a hyperbola) The hyperbolic sine and

the hyperbolic cosine have been introduced in Sect. 2.2. The important identity

cosh2 t − sinh2 t = 1

has been noted there. It shows that

x(t) = a cosh t,

y(t) = b sinh t,
− ∞ < t < ∞

is a parametric representation of the right branch of the hyperbola

x2

a2
−

y2

b2
= 1,

which is highlighted in Fig. 14.4.

Example 14.12 (Cycloids) A circle with radius R rolls (without sliding) along the

x-axis. If the starting position of the centre M is initially M = (0, R), its posi-

tion will be Mt = (Rt, R) after a turn of angle t . A point P with starting position

P = (0, R − A) thus moves to Pt = Mt − (A sin t, A cos t).
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The trajectory of the point P is called a cycloid. It is parametrised by

x(t) = Rt − A sin t,

y(t) = R − A cos t,
− ∞ < t < ∞.

Compare Fig. 14.5 for the derivation and Fig. 14.6 for some possible shapes of cy-

cloids.

Definition 14.13 Let Γ : t �→ x(t) be a differentiable curve. The rate of change of

the position vector with regard to the parameter of the curve

ẋ(t) = lim
h→0

1

h

(
x(t + h) − x(t)

)
=

[
ẋ(t)

ẏ(t)

]

is called the velocity vector at the point x(t) of the curve. If ẋ(t) �= 0 one defines the

tangent vector

T(t) =
ẋ(t)

‖ẋ(t)‖
=

1√
ẋ(t)2 + ẏ(t)2

[
ẋ(t)

ẏ(t)

]

and the normal vector

N(t) =
1√

ẋ(t)2 + ẏ(t)2

[
−ẏ(t)

ẋ(t)

]

Fig. 14.4 Parametric

representation of the right

branch of a hyperbola

b

a

y

x

Fig. 14.5 Parametrisation of

a cycloid

A sin t

R

A cos t

Mt

Pt

P

M

y

x
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Fig. 14.6 Cycloids for

A = R/2, R, 3R/2

y

x

Fig. 14.7 Velocity vector,

acceleration vector, tangent

vector, normal vector

y

x

N(t)

T(t)

y

x

ẍ(t)

ẋ(t)

of the curve. The pair (T(t), N(t)) is called moving frame. If the curve Γ is twice

differentiable then the acceleration vector is given by

ẍ(t) =
[

ẍ(t)

ÿ(t)

]
.

In the kinematic interpretation the parameter t is the time and ẋ(t) the velocity

vector in the physical sense. If it is different from zero, it points in the direction of

the tangent (as limit of secant vectors). The tangent vector is just the unit vector of

the same direction. By rotation of 90◦ in the counterclockwise sense we obtain the

normal vector of the curve, see Fig. 14.7.

Experiment 14.14 Open the Java applet Parametric curves in the plane. Plot the

curves from Example 14.5 and the corresponding velocity and acceleration vectors.

Use the moving frame to visualise the kinematic curve progression.

Example 14.15 For the parabola from Example 14.2 we get

ẋ(t) = vH , ẍ(t) = 0,

ẏ(t) = vV − gt, ÿ(t) = −g,

T(t) =
1√

v2
H + (vV − gt)2

[
vH

vV − gt

]
,

N(t) =
1√

v2
H + (vV − gt)2

[
gt − vV

vH

]
.
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14.2 Arc Length and Curvature

We start with the question whether and how a length can be assigned to a curve

segment. Let a continuous curve

Γ : t �→ x(t) =
[

x(t)

y(t)

]
, a ≤ t ≤ b

be given. For a partition Z : a = t0 < t1 < · · · < tn = b of the parameter interval we

consider the (inscribed) polygonal chain through the points

x(t0), x(t1), . . . , x(tn).

The length of the largest subinterval is again denoted by Φ(Z). The length of the

polygonal chain is

Ln =
n∑

i=1

√
(x(ti ) − x(ti−1))2 + (y(ti ) − y(ti−1))2 .

Definition 14.16 (Curves of finite length) A plane curve Γ is called rectifiable or of

finite length if the lengths Ln of all inscribed polygonal chains Zn converge towards

one (and the same) limit provided that Φ(Zn) → 0.

Example 14.17 (Koch’s snowflake) Koch’s snowflake was introduced in Sect. 9.1

as an example of a finite region whose boundary has the fractal dimension

d = log 4/ log 3 and infinite length. This was proven by the fact that the boundary

can be constructed as the limit of polygonal chains whose lengths tend to infinity.

It remains to verify that the boundary of Koch’s snowflake is indeed a continuous,

parametrised curve. This can be seen as follows. The snowflake of depth 0 is an

equilateral triangle, for instance with the vertices p1, p2, p3 ∈ R
2. Using the unit

interval [0, 1] we obtain a continuous parametrisation

x0(t) =

⎧
⎪⎨
⎪⎩

p1 + 3t (p2 − p1), 0 ≤ t ≤ 1
3
,

p2 + (3t − 1)(p3 − p2),
1
3

≤ t ≤ 2
3
,

p3 + (3t − 2)(p1 − p3),
2
3

≤ t ≤ 1.

We parametrise the snowflake of depth 1 by splitting the three intervals [0, 1
3
],

[ 1
3
, 2

3
], [ 2

3
, 1] into three parts each and using the middle parts for the parametrisation

of the inserted next smaller angle (Fig. 14.8). Continuing in this way we obtain a

sequence of parametrisations

t �→ x0(t), t �→ x1(t), . . . , t �→ xn(t), . . .
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Fig. 14.8 Parametrisation of

the boundary of Koch’s

snowflake

This is a sequence of continuous functions [0, 1] → R
2 which, due to its construction,

converges uniformly (see Definition C.5). According to Proposition C.6 the limit

function

x(t) = lim
n→∞

xn(t), t ∈ [0, 1]

is continuous (and obviously parametrises the boundary of Koch’s snowflake).

This example shows that continuous curves can be infinitely long even if the

parameter of the curve only varies in a bounded interval [a, b]. That such a behaviour

does not appear for differentiable curves is shown by the next proposition.

Proposition 14.18 (Length of differentiable curves) Every continuously differen-

tiable curve t �→ x(t), t ∈ [a, b] is rectifiable. Its length is

L =
∫ b

a

‖ẋ(t)‖ dt =
∫ b

a

√
ẋ(t)2 + ẏ(t)2 dt.

Proof We only give the proof for the somewhat simpler case that the components of

the velocity vector ẋ(t) are Lipschitz continuous (see Appendix C.4), for instance

with a Lipschitz constant C . We start with a partition Z : a = t0 < t1 < · · · < tn = b

of [a, b] with corresponding Φ(Z). The integral defining L is the limit of Riemann

sums

∫ b

a

√
ẋ(t)2 + ẏ(t)2 dt = lim

n→∞,Φ(Z)→0

n∑

i=1

√
ẋ(τi )2 + ẏ(τi )2 (ti − ti−1),

where τi ∈ [ti−1, ti ]. On the other hand, according to the mean value theorem, Propo-

sition 8.4, the length of the inscribed polygonal chain through x(t0), x(t1), . . . , x(tn)

is equal to

n∑

i=1

√
(x(ti ) − x(ti−1))2 + (y(ti ) − y(ti−1))2

=
n∑

i=1

√
ẋ(ρi )2 + ẏ(σi )2 (ti − ti−1)
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for certain ρi ,σi ∈ [ti−1, ti ]. In order to be able to estimate the difference between

the Riemann sums and the lengths of the inscribed polygonal chains, we use the

inequality (triangle inequality for vectors in the plane)

∣∣∣
√

a2 + b2 −
√

c2 + d2

∣∣∣ ≤
√

(a − c)2 + (b − d)2,

which can be checked directly by squaring. Applying this inequality shows that

∣∣∣∣
√

ẋ(τi )2 + ẏ(τi )2 −
√

ẋ(ρi )2 + ẏ(σi )2

∣∣∣∣

≤
√

(ẋ(τi ) − ẋ(ρi ))2 + (ẏ(τi ) − ẏ(σi ))2

≤
√

C2(τi − ρi )2 + C2(τi − σi )2

≤
√

2CΦ(Z).

For the difference between the Riemann sums and the lengths of the polygonal chains

one obtains the estimate

∣∣∣
n∑

i=1

(√
ẋ(τi )2 + ẏ(τi )2 −

√
ẋ(ρi )2 + ẏ(σi )2

)
(ti − ti−1)

∣∣∣

≤
√

2CΦ(Z)

n∑

i=1

(ti − ti−1) =
√

2CΦ(Z)(b − a).

For Φ(Z) → 0, this difference tends to zero. Thus the Riemann sums and the lengths

of the inscribed polygonal chains have the same limit, namely L .

The proof of the general case, where the components of the velocity vector are

not Lipschitz continuous, is similar. However, one additionally needs the fact that

continuous functions on bounded, closed intervals are uniformly continuous. This is

briefly addressed near the end of Appendix C.4. �

Example 14.19 (Length of a circular arc) The parametric representation of a circle

of radius R and its derivative is

x(t) = R cos t, ẋ(t) = −R sin t,

y(t) = R sin t, ẏ(t) = R cos t,
0 ≤ t ≤ 2π.

The circumference of the circle is thus

L =
∫ 2π

0

√
(−R sin t)2 + (R cos t)2 dt =

∫ 2π

0

R dt = 2Rπ.
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Experiment 14.20 Use the MATLAB program mat14_5.m to approximate the cir-

cumference of the unit circle using inscribed polygonal chains. Modify the program

so that it approximates the lengths of arbitrary differentiable curves.

Definition 14.21 (Arc length) Let t �→ x(t) be a differentiable curve. The length

of the curve segment from the initial parameter value a to the current parameter value

t is called the arc length,

s = L(t) =
∫ t

a

√
ẋ(τ )2 + ẏ(τ )2 dτ .

The arc length s is a strictly monotonically increasing, continuous (even continu-

ously differentiable) function. It is thus suitable for a reparametrisation t = L−1(s).

The curve

s �→ ξ(s) = x(L−1(s))

is called parametrised by arc length.

In the following let t �→ x(t) be a differentiable curve (in the plane). The angle

of the tangent vector with the positive x-axis is denoted by ϕ(t); that is,

tan ϕ(t) =
ẏ(t)

ẋ(t)
.

Definition 14.22 (Curvature of a plane curve) The curvature of a differentiable

curve in the plane is the rate of change of the angle ϕ with respect to the arc length,

κ =
dϕ

ds
=

d

ds
ϕ(L−1(s)).

Figure 14.9 illustrates this definition. If ϕ is the angle at the length s of the arc

and ϕ + �ϕ the angle at the length s + �s, then κ = lim�s→0
�ϕ
�s

. This shows that

the value of κ actually corresponds to the intuitive meaning of curvature. Note that

the curvature of a plane curve comes with a sign; when reversing the moving sense,

the sign changes.

Proposition 14.23 The curvature of a twice continuously differentiable curve at the

point (x(t), y(t)) of the curve is

κ(t) =
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)
(
ẋ(t)2 + ẏ(t)2

)3/2
.
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Fig. 14.9 Curvature

∆s

∆ϕ

ϕ

ϕ

Proof According to the chain rule and the inverse function rule, one gets

κ =
d

ds
ϕ(L−1(s)) = ϕ̇(L−1(s)) ·

d

ds
L−1(s) = ϕ̇(L−1(s)) ·

1

L̇(L−1(s))
.

Differentiating the arc length

s = L(t) =
∫ t

a

√
ẋ(τ )2 + ẏ(τ )2 dτ

with respect to t gives

ds

dt
= L̇(t) =

√
ẋ(t)2 + ẏ(t)2.

Differentiating the relationship tan ϕ(t) = ẏ(t)/ẋ(t) leads to

ϕ̇(t)
(
1 + tan2 ϕ(t)

)
=

ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

ẋ(t)2
,

which gives, after substituting the above expression for tan ϕ(t) and simplifying,

ϕ̇(t) =
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

ẋ(t)2 + ẏ(t)2
.

If one takes into account the relation t = L−1(s) and substitutes the derived expres-

sions for ϕ̇(t) and L̇(t) into the formula for κ at the beginning of the proof, one

obtains

κ(t) =
ϕ̇(t)

L̇(t)
=

ẋ(t)ÿ(t) − ẏ(t)ẍ(t)
(
ẋ(t)2 + ẏ(t)2

)3/2
,

which is the desired assertion. �
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Remark 14.24 As a special case, the curvature of the graph of a twice differentiable

function y = f (x) can be obtained as

κ(x) =
f ′′(x)

(
1 + f ′(x)2

)3/2
.

This follows easily from the above proposition by using the parametrisation x = t ,

y = f (t).

Example 14.25 The curvature of a circle of radius R, traversed in the positive direc-

tion, is constant and equal to κ = 1
R

. Indeed

x(t) = R cos t, ẋ(t) = −R sin t, ẍ(t) = −R cos t,

y(t) = R sin t, ẏ(t) = R cos t, ÿ(t) = −R sin t,

and thus

κ =
R2 sin2 t + R2 cos2 t

(R2 sin2 t + R2 cos2 t)3/2
=

1

R
.

One obtains the same result from the following geometric consideration. At the point

(x, y) = (R cos t, R sin t) the angle ϕ of the tangent vector with the positive x-axis

is equal to t + π/2, and the arc length is s = Rt . Therefore ϕ = s/R + π/2 which

differentiated with respect to s gives κ = 1/R.

Definition 14.26 The osculating circle at a point of a differentiable curve is the

circle which has the same tangent and the same curvature as the curve.

According to Example 14.25 it follows that the osculating circle has the radius
1

|κ(t)| and its centre xc(t) lies on the normal of the curve. It is given by

xc(t) = x(t) +
1

κ(t)
N(t).

Example 14.27 (Clothoid) The clothoid is a curve whose curvature is proportional

to its arc length. In applications it serves as a connecting link from a straight line (with

curvature 0) to a circular arc (with curvature 1
R

). It is used in railway engineering

and road design. Its defining property is

κ(s) =
dϕ

ds
= c · s

for a certain c ∈ R. If one starts with curvature 0 at s = 0 then the angle is equal to

ϕ(s) =
c

2
s2.
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Fig. 14.10 Clothoid
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We use s as the curve parameter.

Differentiating the relation

s =
∫ s

0

√
ẋ(σ)2 + ẏ(σ)2 dσ

shows that

1 =
√

ẋ(s)2 + ẏ(s)2;

thus, the velocity vector of a curve parametrised by arc length has length one. This

implies in particular

dx

ds
= cos ϕ(s),

dy

ds
= sin ϕ(s).

From there we can compute the parametrisation of the curve:

x(s) =
∫ s

0

dx

ds
(σ) dσ =

∫ s

0

cos ϕ(σ) dσ =
∫ s

0

cos
( c

2
σ2

)
dσ,

y(s) =
∫ s

0

dy

ds
(σ) dσ =

∫ s

0

sin ϕ(σ) dσ =
∫ s

0

sin
( c

2
σ2

)
dσ.

The components of the curve are thus given by Fresnel’s integrals. The shape of the

curve is displayed in Fig. 14.10, its numerical calculation can be seen in the MATLAB

program mat14_6.m.
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14.3 Plane Curves in Polar Coordinates

By writing the parametric representation in the form

x(t) = r(t) cos t,

y(t) = r(t) sin t

in polar coordinates with t as angle and r(t) as radius, one obtains a simple way

of representing many curves. By convention negative radii are plotted in opposite

direction of the ray with angle t .

Example 14.28 (Spirals) The Archimedean3 spiral is defined by

r(t) = t, 0 ≤ t < ∞,

the logarithmic spiral by

r(t) = et , −∞ < t < ∞,

the hyperbolic spiral by

r(t) =
1

t
, 0 < t < ∞.

Typical parts of these spirals are displayed in Fig. 14.11.

Experiment 14.29 Study the behaviour of the logarithmic spiral near the origin

using the zoom tool (use the M-file mat14_7.m).

Example 14.30 (Loops) Loops are obtained by choosing r(t) = cos nt , n ∈ N. In

Cartesian coordinates the parametric representation thus reads

x(t) = cos nt cos t,

y(t) = cos nt sin t.
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y

0 300 600

−300
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300

x
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−0.3 0 0.3

0

0.3

0.6

x

y

Fig. 14.11 Archimedean, logarithmic and hyperbolic spirals

3Archimedes of Syracuse, 287–212 B.C.
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Fig. 14.12 Loops with r = cos t and r = cos 2t
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Fig. 14.13 Loops with r = cos 3t and r = ±
√

cos 2t

The choice n = 1 results in a circle of radius 1
2

about ( 1
2
, 0), for odd n one obtains

n leaves, for even n one obtains 2n leaves, see Figs. 14.12 and 14.13.

The figure eight from Fig. 14.13 is obtained by r(t) =
√

cos 2t and

r(t) = −
√

cos 2t , respectively, for −π
4

< t < π
4

, where the positive root gives the

right leave and the negative root the left leave. This curve is called lemniscate.

Example 14.31 (Cardioid) The cardioid is a special epicycloid, where one circle is

rolling around another circle with the same radius A. Its parametric representation is

x(t) = 2A cos t + A cos 2t,

y(t) = 2A sin t + A sin 2t

for 0 ≤ t ≤ 2π. The cardioid with radius A = 1 is shown in Fig. 14.14.

−2 0 2 4

−2

0

2

x

y

Fig. 14.14 Cardioid with A = 1
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14.4 Parametrised Space Curves

In the same way as for plane curves, a parametrised curve in space is defined as a

continuous mapping of an interval [a, b] to R
3,

t �→ x(t) =

⎡
⎣

x(t)

y(t)

z(t)

⎤
⎦ , a ≤ t ≤ b.

The curve is called differentiable, if all three components t �→ x(t),

t �→ y(t), t �→ z(t) are differentiable real-valued functions.

Velocity and tangent vector of a differentiable curve in space are defined as in the

planar case by

ẋ(t) =

⎡
⎣

ẋ(t)

ẏ(t)

ż(t)

⎤
⎦ , T(t) =

ẋ(t)

‖ẋ(t)‖
=

1√
ẋ(t)2 + ẏ(t)2 + ż(t)2

⎡
⎣

ẋ(t)

ẏ(t)

ż(t)

⎤
⎦ .

The second derivative ẍ(t) is the acceleration vector. In the spatial case there is a

normal plane to the curve which is spanned by the normal vector

N(t) =
1

‖Ṫ(t)‖
Ṫ(t)

and the binormal vector

B(t) = T(t) × N(t),

provided that ẋ(t) �= 0, Ṫ(t) �= 0. The formula

0 =
d

dt
1 =

d

dt
‖T(t)‖2 = 2〈T(t), Ṫ(t)〉

(which is verified by a straightforward computation) implies that Ṫ(t) is perpendic-

ular to T(t). Therefore, the three vectors (T(t), N(t), B(t)) form an orthogonal basis

in R
3, called the moving frame of the curve.

Rectifiability of a curve in space is defined in analogy to Definition 14.16 for plane

curves. The length of a differentiable curve in space can be computed by

L =
∫ b

a

‖ẋ(t)‖ dt =
∫ b

a

√
ẋ(t)2 + ẏ(t)2 + ż(t)2 dt.

Also, the arc length can be defined similarly to the planar case (Definition 14.21).
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Fig. 14.15 Helix with tangent, normal and binormal vector

Example 14.32 (Helix) The parametric representation of the helix is

x(t) =

⎡
⎣

cos t

sin t

t

⎤
⎦ , −∞ < t < ∞.

We obtain

ẋ(t) =

⎡
⎣

− sin t

cos t

1

⎤
⎦ , T(t) =

1
√

2

⎡
⎣

− sin t

cos t

1

⎤
⎦ ,

Ṫ(t) =
1

√
2

⎡
⎣

− cos t

− sin t

0

⎤
⎦ , N(t) =

⎡
⎣

− cos t

− sin t

0

⎤
⎦

with binormal vector

B(t) =
1

√
2

⎡
⎣

− sin t

cos t

1

⎤
⎦ ×

⎡
⎣

− cos t

− sin t

0

⎤
⎦ =

1
√

2

⎡
⎣

sin t

− cos t

1

⎤
⎦ .

The formula for the arc length of the helix, counting from the origin, is particularly

simple:

L(t) =
∫ t

0

‖ẋ(τ )‖ dτ =
∫ t

0

√
2 dτ =

√
2 t.
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Figure 14.15 was drawn using the MATLAB commands

t=0 : pi/100 : 6 * pi;

plot3(cos(t), sin(t), t/10).

The Java applet Parametric curves in space offers dynamic visualising possibilities

of those and other curves in space and of their moving frames.

14.5 Exercises

1. Find out which geometric formation is represented by the set of zeros of the poly-

nomial y2 − x(x2 − 1) = 0. Visualise the curve in maple using the command

implicitplot. Can you parametrise it as a continuous curve?

2. Verify that the algebraic curves y2 − (x + p)x2 = 0, p ∈ R (Example 14.7) can

be parametrised by

x(t) = t2 − p,

y(t) = t (t2 − p),
− ∞ < t < ∞.

Visualise the curves for p = −1, 0, 1 in maple using the command

implicitplot.

3. Using MATLAB or maple , investigate the shape of Lissajous figures4

x(t) = sin(w1t), y(t) = cos(w2t)

and

x(t) = sin(w1t), y(t) = cos
(
w2t +

π

2

)
.

Consider the cases w2 = w1, w2 = 2w1, w2 = 3
2
w1 and explain the results.

The following exercises use the Java applets Parametric curves in the plane
and Parametric curves in space.

4. (a) Using the Java applet analyse where the cycloid

x(t) = t − 2 sin t,

y(t) = 1 − 2 cos t,
− 2π ≤ t ≤ 2π.

has its maximal speed (‖ẋ(t)‖ → max) and check your result by hand.

4J.A. Lissajous, 1822–1880.
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(b) Discuss and explain the shape of the loops

x(t) = cos nt cos t,

y(t) = cos nt sin t,
0 ≤ t ≤ 2π.

for n = 1, 2, 3, 4, 5 using the Java applets (plot the moving frame).

5. Study the velocity and the acceleration of the following curves by using the Java

applet. Verify your results by computing the points where the curve has either a

horizontal tangent (ẋ(t) �= 0, ẏ(t)=0) or a vertical tangent (ẋ(t)=0, ẏ(t) �= 0),

or is singular (ẋ(t)=0, ẏ(t)=0).

(a) Cycloid:

x(t) = t − sin t,

y(t) = 1 − cos t,
− 2π ≤ t ≤ 2π.

(b) Cardioid:

x(t) = 2 cos t + cos 2t,

y(t) = 2 sin t + sin 2t,
0 ≤ t ≤ 2π.

6. Analyse and explain the trajectories of the curves

x(t) =
[

1 − 2t2

(1 − 2t2)2

]
, −1 ≤ t ≤ 1,

y(t) =
[

cos t

cos2 t

]
, 0 ≤ t ≤ 2π,

z(t) =
[

t cos t

t2 cos2 t

]
, −2 ≤ t ≤ 2.

Are these curves (geometrically) equivalent?

7. (a) Compute the curvature κ(t) of the branch of the hyperbola

x(t) = cosh t,

y(t) = sinh t,
− ∞ < t < ∞.

(b) Determine its osculating circle (centre and radius) at t = 0.

8. Consider the ellipse

x(t) =
[

2 cos t

sin t

]
, −π ≤ t ≤ π.

(a) Compute its velocity vector ẋ(t), its acceleration vector ẍ(t) as well as the

moving frame (T(t), N(t)).

(b) Compute its curvature κ(t) and determine the osculating circle (centre and

radius) at t = 0.
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9. (a) Analyse the trajectory of the astroid

x(t) =
[

cos3 t

sin3 t

]
, 0 ≤ t ≤ 2π.

(b) Compute the length of the part of the astroid which lies in the first quadrant.

10. (a) Compute the velocity vector ẋ(t) and the moving frame (T(t), N(t)) for the

segment

x(t) =
[

et cos t

et sin t

]
, 0 ≤ t ≤ π/2

of the logarithmic spiral. At what point in the interval [0,π/2] does it have

a vertical tangent?

(b) Compute the length of the segment. Deduce a formula for its arc length

s = L(t).

(c) Reparametrise the spiral by its arc length, i.e., compute ξ(s) = x
(
L−1(s)

)

and verify that ‖ξ̇(s)‖ = 1.

11. (Application of the secant and cosecant functions) Analyse what plane curves

are determined in polar coordinates by

r(t) = sec t, −π/2 < t < π/2 and r(t) = csc t, 0 < t < π.

12. (a) Determine the tangent and the normal to the graph of the function y = 1/x

at (x0, y0) = (1, 1) and compute its curvature at that point.

(b) Suppose the graph of the function y = 1/x is to be replaced by a circular

arc at x0, i.e., for x ≥ 1. Find the centre and the radius of a circle which

admits a smooth transition (same tangent, same curvature).

13. (a) Analyse the space curve

x(t) =

⎡
⎣

cos t

sin t

2 sin t
2

⎤
⎦ , 0 ≤ t ≤ 4π

using the applet.

(b) Check that the curve is the intersection of the cylinder x2 + y2 = 1 with the

sphere (x + 1)2 + y2 + z2 = 4.

Hint. Use sin2 t
2

= 1
2
(1 − cos t).

14. Using MATLAB, maple or the applet, sketch and discuss the space curves

x(t) =

⎡
⎣

t cos t

t sin t

2t

⎤
⎦ , 0 ≤ t < ∞,
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and

y(t) =

⎡
⎣

cos t

sin t

0

⎤
⎦ , 0 ≤ t ≤ 4π.

15. Sketch and discuss the space curves

x(t) =

⎡
⎣

t

t

t3

⎤
⎦ , y(t) =

⎡
⎣

t

t2

t3

⎤
⎦ , 0 ≤ t < 1.

Compute their velocity vectors ẋ(t), ẏ(t) and their acceleration vectors ẍ(t),

ÿ(t).

16. Sketch the space curve

x(t) =

⎡
⎣

√
2 t

cosh t

cosh t

⎤
⎦ , 0 ≤ t < 1.

Compute its moving frame (T(t), N(t), B(t)) as well as its length.

17. Sketch the space curve

x(t) =

⎡
⎣

cos t

sin t

t3/2

⎤
⎦ , 0 ≤ t < 2π,

and compute its length.



15Scalar-Valued Functions of Two
Variables

This chapter is devoted to differential calculus of functions of two variables. In

particular we will study geometrical objects such as tangents and tangent planes,

maxima and minima, as well as linear and quadratic approximations. The restriction

to two variables has been made for simplicity of presentation. All ideas in this and the

next chapter can easily be extended (although with slightly more notational effort)

to the case of n variables.

We begin by studying the graph of a function with the help of vertical cuts and

level sets. As a further tool we introduce partial derivatives, which describe the rate

of change of the function in the direction of the coordinate axes. Finally the notion

of the Fréchet derivative allows us to define the tangent plane to the graph. As for

functions of one variable the Taylor formula plays a central role. We use it, e.g., to

determine extrema of functions of two variables.

In the entire chapter D denotes a subset of R
2, and

f : D ⊂ R
2 → R : (x, y) �→ z = f (x, y)

denotes a scalar-valued function of two variables. Details of vector and matrix alge-

bra used in this chapter can be found in Appendices A and B.

15.1 Graph and Partial Mappings

The graph

G =
{
(x, y, z) ∈ D × R ; z = f (x, y)

}
⊂ R

3
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Fig. 15.1 Graph of a function as surface in space with coordinate curves (left) and level curve Nc

(right)

of a function of two variables f : D → R is a surface in space, if f is sufficiently

regular. To describe the properties of this surface we consider particular curves on it.

The partial mappings

x �→ f (x, b), y �→ f (a, y)

are obtained by fixing one of the two variables y = b or x = a. The partial mappings

can be used to introduce the space curves

x �→

⎡
⎣

x

b

f (x, b)

⎤
⎦ , y �→

⎡
⎣

a

y

f (a, y)

⎤
⎦ .

These curves lie on the graph G of the function and are called coordinate curves.

Geometrically they are obtained as the intersection of G with the vertical planes

y = b and x = a respectively, see Fig. 15.1, left.

The level curves are the projections of the intersections of the graph G with the

horizontal planes z = c to the (x, y)-plane,

Nc =
{
(x, y) ∈ D ; f (x, y) = c

}
,

see Fig. 15.1, right. The set Nc is called level curve at level c.

Example 15.1 The graph of the quadratic function

f : R
2 → R : (x, y) �→ z =

x2

a2
−

y2

b2

describes a surface in space which is shaped like a saddle and called hyperbolic

paraboloid. Figure 15.2 shows the graph of z = x2/4 − y2/5 with coordinate curves

(left) as well as some level curves (right).
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Fig. 15.2 The picture on the left shows the graph of the function z = x2/4 − y2/5 with coordinate

curves. Furthermore, it shows the intersections with the planes z = c for selected values of c. The

picture on the right illustrates the level curves of the function for the same values of c (lower levels

correspond to thicker lines). The two intersecting straight lines are the level curves at level c = 0

Experiment 15.2 With the help of the MATLAB program mat15_1.m visualise the

elliptic paraboloid z = x2 + 2y2 − 4x + 1. Choose a suitable domain D and plot

the graph and some level curves.

15.2 Continuity

Like for functions in one variable (see Chap. 6) we characterise the continuity of

functions of two variables by means of sequences. Thus we need the concept of

convergence of vector-valued sequences.

Let (an)n≥1 = (a1, a2, a3, ...) be a sequence of points in D with terms

an = (an, bn) ∈ D ⊂ R
2.

The sequence (an)n≥1 is said to converge to a = (a, b) ∈ D as n → ∞, if and only

if both components of the sequence converge, i.e.

lim
n→∞

an = a and lim
n→∞

bn = b.

This is denoted by

(an, bn) = an → a = (a, b) as n → ∞ or lim
n→∞

an = a.

Otherwise the sequence is called divergent.
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Fig. 15.3 A function which

is discontinuous along a

straight line. For every

sequence (an) which

converges to a, the images of

the sequence
(

f (an)
)

converge to f (a). For the

point b, however, this does

not hold; f is discontinuous

at that point

f(b)

b

f(a)

a

An example of a convergent vector-valued sequence is

lim
n→∞

(
1

n
,

2n

3n + 4

)
=

(
0,

2

3

)
.

Definition 15.3 A function f : D → R is called continuous at the point a ∈ D, if

lim
n→∞

f (an) = f (a)

for all sequences (an)n≥1 which converge to a in D.

For continuous functions, the limit and the function sign can be interchanged.

Figure 15.3 shows a function which is discontinuous along a straight line but contin-

uous everywhere else.

15.3 Partial Derivatives

The partial derivatives of a function of two variables are the derivatives of the partial

mappings.

Definition 15.4 Let D ⊂ R
2 be open, f : D → R and a = (a, b) ∈ D. The function

f is called partially differentiable with respect to x at the point a, if the limit

∂ f

∂x
(a, b) = lim

x→a

f (x, b) − f (a, b)

x − a

exists. It is called partially differentiable with respect to y at the point a, if the limit

∂ f

∂y
(a, b) = lim

y→b

f (a, y) − f (a, b)

y − b



15.3 Partial Derivatives 213

Fig. 15.4 Geometric

interpretation of partial

derivatives f(a)
w

v

a

b

a

z

y

x

exists. The expressions

∂ f

∂x
(a, b) and

∂ f

∂y
(a, b)

are called partial derivatives of f with respect to x and y, respectively, at the point

(a, b). Further f is called partially differentiable at a, if both partial derivatives exist.

Another notation for partial derivatives at the point (x, y) is

∂ f

∂x
(x, y) =

∂

∂x
f (x, y) = ∂1 f (x, y)

and likewise

∂ f

∂y
(x, y) =

∂

∂y
f (x, y) = ∂2 f (x, y).

Geometrically, partial derivatives can be interpreted as slopes of the tangents to

the coordinate curves x �→ [x, b, f (x, b)]T and y �→ [a, y, f (a, y)]T, see. Fig. 15.4.

The two tangent vectors v and w to the coordinate curves at the point (a, b, f (a, b))

can therefore be represented as

v =

⎡
⎢⎣

1

0
∂ f

∂x
(a, b)

⎤
⎥⎦ , w =

⎡
⎢⎢⎣

0

1
∂ f

∂y
(a, b)

⎤
⎥⎥⎦ .

Since partial differentiation is nothing else but ordinary differentiation with respect

to one variable (while fixing the other one), the usual rules of differentiation apply,

e.g. the product rule

∂

∂y

(
f (x, y) · g(x, y)

)
=

∂ f

∂y
(x, y) · g(x, y) + f (x, y) ·

∂g

∂y
(x, y).
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Fig. 15.5 Partially

differentiable, discontinuous

function

z

y

x

Example 15.5 Let r : R
2 → R : (x, y) �→

√
x2 + y2. This function is everywhere

partially differentiable with the exception of (x, y) = (0, 0). The partial derivatives

are

∂r

∂x
(x, y) =

1

2

2x√
x2 + y2

=
x

r(x, y)
,

∂r

∂y
(x, y) =

1

2

2y√
x2 + y2

=
y

r(x, y)
.

In maple one can use the commands diff and Diff in order to calculate partial

derivatives, e.g. in the above example:

r:=sqrt(xˆ2+yˆ2);

diff(r,x);

Remark 15.6 In contrast to functions in one variable (see Application 7.16), partial

differentiability does not imply continuity

f partially differentiable � f continuous.

An example is given by the function (see Fig. 15.5)

f (x, y) =

⎧
⎨
⎩

xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0).

This function is everywhere partially differentiable. In particular, at the point (x, y) =
(0, 0) one obtains

∂ f

∂x
(0, 0) = lim

x→0

f (x, 0) − f (0, 0)

x
= 0 = lim

y→0

f (0, y) − f (0, 0)

y
=

∂ f

∂y
(0, 0).

However, the function is discontinuous at (0, 0). In order to see this, we choose two

sequences which converge to (0, 0):

an =
(

1
n
, 1

n

)
and cn =

(
1
n
,− 1

n

)
.
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We have

lim
n→∞

f (an) = lim
n→∞

1/n2

2/n2
=

1

2
,

but also

lim
n→∞

f (cn) = lim
n→∞

−1/n2

2/n2
= −

1

2
.

The limits do not coincide, in particular, they differ from f (0, 0) = 0.

Experiment 15.7 Visualise the function given in Remark 15.6 with the help of

MATLAB and maple . Using the command

plot3d(-x*y/(xˆ2+yˆ2), x=-1..1, y=-1..1, shading=zhue);

the corresponding plot can be obtained in maple .

Higher-order partial derivatives. Let D ⊂ R
2 be open and f : D → R partially

differentiable. The assignments

∂ f

∂x
: D → R and

∂ f

∂y
: D → R

define themselves scalar-valued functions of two variables. If these functions are also

partially differentiable, then f is called twice partially differentiable. The notation

in this case is

∂2 f

∂x2
=

∂

∂x

(
∂ f

∂x

)
,

∂2 f

∂y∂x
=

∂

∂y

(
∂ f

∂x

)
, etc.

Note that there are four partial derivatives of second order.

Definition 15.8 A function f : D → R is k-times continuously (partially) differ-

entiable, denoted f ∈ Ck(D), if f is k-times partially differentiable and all partial

derivatives up to order k are continuous.

Example 15.9 The function f (x, y) = exy2
is arbitrarily often partially differen-

tiable, f ∈ C∞(D), and the following holds

∂ f

∂x
(x, y) = exy2

y2,

∂ f

∂y
(x, y) = exy2

2xy,

∂2 f

∂x2
(x, y) = exy2

y4,
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∂2 f

∂y2
(x, y) = exy2

(4x2 y2 + 2x),

∂2 f

∂y∂x
(x, y) =

∂

∂y

(
∂ f

∂x
(x, y)

)
= exy2

(2xy3 + 2y),

∂2 f

∂x∂y
(x, y) =

∂

∂x

(
∂ f

∂y
(x, y)

)
= exy2

(2xy3 + 2y).

The identity

∂2 f

∂y∂x
(x, y) =

∂2 f

∂x∂y
(x, y)

which is evident in this example is generally valid for twice continuously differen-

tiable functions f . This observation is also true for higher derivatives: For k-times

continuously differentiable functions the order of differentiation of the kth partial

derivatives is irrelevant (Theorem of Schwarz1), see [3, Chap. 15, Theorem 1.1].

15.4 The Fréchet Derivative

Our next topic is the study of a simultaneous variation of both variables of the

function. This leads us to the notion of the Fréchet2 derivative. For functions of one

variable, ϕ : R → R, the derivative was defined by the limit

ϕ′(a) = lim
x→a

ϕ(x) − ϕ(a)

x − a
.

For functions of two variables this expression does not make sense anymore as one

cannot divide by vectors. We therefore will make use of the equivalent definition of

the derivative as a linear approximation

ϕ(x) = ϕ(a) + A · (x − a) + R(x, a)

with A = ϕ′(a) and the remainder term R(x, a) satisfying

lim
x→a

R(x, a)

|x − a|
= 0.

This formula can be generalised to functions of two variables.

1H.A. Schwarz, 1843–1921.
2M. Fréchet, 1878–1973.
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Definition 15.10 Let D ⊂ R
2 be open and f : D → R. The function f is called

Fréchet differentiable at the point (a, b) ∈ D, if there exists a linear mapping A :
R

2 → R such that

f (x, y) = f (a, b) + A(x − a, y − b) + R(x, y; a, b)

with a remainder R(x, y; a, b) fulfilling the condition

lim
(x,y)→(a,b)

R(x, y; a, b)√
(x − a)2 + (y − b)2

= 0.

The linear mapping A is called derivative of f at the point (a, b). Instead of A we

also write D f (a, b). The (1 × 2)-matrix of the linear mapping is called Jacobian3

of f . We denote it by f ′(a, b).

The question whether the derivative of a function is unique and how it can be

calculated, is answered in the following proposition.

Proposition 15.11 Let D ⊂ R
2 be open and f : D → R. If f is Fréchet differen-

tiable at (x, y) ∈ D, then f is also partially differentiable at (x, y) and

f ′(x, y) =
[
∂ f

∂x
(x, y),

∂ f

∂y
(x, y)

]
.

The components of the Jacobian are the partial derivatives. In particular, the Jaco-

bian and consequently the Fréchet derivative are unique.

Proof Exemplarily, we compute the second component and show that

(
f ′(x, y)

)
2

=
∂ f

∂y
(x, y).

Since f is Fréchet differentiable at (x, y), it holds that

f (x, y + h) = f (x, y) + f ′(x, y)

[
0

h

]
+ R(x, y + h; x, y).

Therefore

f (x, y + h) − f (x, y)

h
−

(
f ′(x, y)

)
2

=
R(x, y + h; x, y)

h
→ 0 as h → 0.

Consequently f is partially differentiable with respect to y, and the second compo-

nent of the Jacobian is the partial derivative of f with respect to y.

3C.G.J. Jacobi, 1804–1851.
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The next proposition follows immediately from the identity

lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

(
f (a, b) + D f (a, b)(x − a, y − b) + R(x, y; a, b)

)

= f (a, b).

Proposition 15.12 If f is Fréchet differentiable then f is continuous. �

In particular, the function

f (x, y) =

⎧
⎨
⎩

xy

x2 + y2
, (x, y) �= (0, 0),

0, (x, y) = (0, 0)

is not Fréchet differentiable at the point (0, 0).

Fréchet differentiability follows from partial differentiability under certain regu-

larity assumptions. In fact, one can show that a continuously partially differentiable

function is Fréchet differentiable, see [4, Chap. 7, Theorem 7.12].

Example 15.13 The function f : R
2 → R : (x, y) �→ x2e3y is Fréchet differen-

tiable, its derivative is

f ′(x, y) =
[
2xe3y, 3x2e3y

]
= xe3y [2, 3x].

Example 15.14 The affine function f : R
2 → R with

f (x, y) = αx + βy + γ = [α, β]
[

x

y

]
+ γ

is Fréchet differentiable and f ′(x, y) = [α, β].

Example 15.15 The quadratic function f : R
2 → R with

f (x, y) = αx2 + 2βxy + γy2 + δx + εy + ζ

= [x, y]
[
α β

β γ

] [
x

y

]
+ [δ, ε]

[
x

y

]
+ ζ

is Fréchet differentiable with the Jacobian

f ′(x, y) = [2αx + 2βy + δ, 2βx + 2γy + ε] = 2[x, y]
[
α β

β γ

]
+ [δ, ε].

The chain rule. Now we are in the position to generalise the chain rule to the case

of two variables.
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Proposition 15.16 Let D ⊂ R
2 be open and f : D → R : (x, y) �→ f (x, y) Fré-

chet differentiable. Furthermore let I ⊂ R be an open interval and φ, ψ : I → R

differentiable. Then the composition of functions

F : I → R : t �→ F(t) = f
(
φ(t), ψ(t)

)

is also differentiable and

dF

dt
(t) =

∂ f

∂x

(
φ(t), ψ(t)

)dφ

dt
(t) +

∂ f

∂y

(
φ(t), ψ(t)

)dψ

dt
(t).

Proof From the Fréchet differentiability of f it follows that

F(t + h) − F(t) = f
(
φ(t + h), ψ(t + h)

)
− f

(
φ(t), ψ(t)

)

= f ′(φ(t), ψ(t)
) [

φ(t + h) − φ(t)

ψ(t + h) − ψ(t)

]
+ R

(
φ(t + h), ψ(t + h);φ(t), ψ(t)

)
.

We divide this expression by h and subsequently examine the limit as h → 0. Let

g(t, h) =
(
φ(t + h) − φ(t)

)2 +
(
ψ(t + h) − ψ(t)

)2
. Then, due to the differentiability

of f , φ and ψ, we have

lim
h→0

R
(
φ(t + h), ψ(t + h); φ(t), ψ(t)

)
√

g(t, h)
·
√

g(t, h)

h
= 0.

Therefore, the function F is differentiable and the formula stated in the proposition

is valid. �

Example 15.17 Let D ⊂ R
2 be an open set that contains the circle x2 + y2 = 1 and

let f : D → R be a differentiable function. Then the restriction F of f to the circle

F : R → R : t �→ f (cos t, sin t)

is differentiable as a function of the angle t and

dF

dt
(t) = −

∂ f

∂x

(
cos t, sin t

)
· sin t +

∂ f

∂y

(
cos t, sin t

)
· cos t.

For instance, for f (x, y) = x2 − y2 the derivative is dF
dt

(t) = −4 cos t sin t .

Interpretation of the Fréchet derivative. Using the Fréchet derivative we obtain,

like in the case of one variable, the linear approximation g(x, y) to the graph of the

function at (a, b)

g(x, y) = f (a, b) + f ′(a, b)

[
x − a

y − b

]
≈ f (x, y).
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Now we want to interpret the plane

z = f (a, b) + f ′(a, b)

[
x − a

y − b

]

geometrically. For this we use the fact that the components of the Jacobian are the

partial derivatives. With that we can write the above equation as

z = f (a, b) +
∂ f

∂x
(a, b) · (x − a) +

∂ f

∂y
(a, b) · (y − b),

or alternatively in parametric form (x − a = λ, y − b = µ)

⎡
⎣

x

y

z

⎤
⎦ =

⎡
⎣

a

b

f (a, b)

⎤
⎦ + λ

⎡
⎣

1

0
∂ f
∂x

(a, b)

⎤
⎦ + µ

⎡
⎣

0

1
∂ f
∂y

(a, b)

⎤
⎦ .

The plane intersects the graph of f at the point (a, b, f (a, b)) and is spanned by the

tangent vectors to the coordinate curves. The equation

z = f (a, b) +
∂ f

∂x
(a, b) · (x − a) +

∂ f

∂y
(a, b) · (y − b),

consequently describes the tangent plane to the graph of f at the point (a, b).

The example shows that the graph of a function which is Fréchet differentiable

at the point (x, y) possesses a tangent plane at this point. Note that the existence of

tangents to the coordinate curves does not imply the existence of a tangent plane,

see Remark 15.6.

Example 15.18 We calculate the tangent plane at a point on the northern hemisphere

(with radius r )

f (x, y) = z =
√

r2 − x2 − y2.

Let c = f (a, b) =
√

r2 − a2 − b2. The partial derivatives of f at (a, b) are

∂ f

∂x
(a, b) = −

a
√

r2 − a2 − b2
= −

a

c
,

∂ f

∂y
(a, b) = −

b
√

r2 − a2 − b2
= −

b

c
.

Therefore, the equation of the tangent plane is

z = c −
a

c
(x − a) −

b

c
(y − b),

or alternatively

a(x − a) + b(y − b) + c(z − c) = 0.

The last formula actually holds for all points on the surface of the sphere.
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15.5 Directional Derivative and Gradient

So far functions f : D ⊂ R
2 → R were defined on R

2 as a point space. For the pur-

pose of directional derivatives it is useful and customary to write the arguments

(x, y) ∈ R
2 as position vectors x = [x, y]T. In this way each function f : D ⊂

R
2 → R can also be considered as a function of column vectors. We identify these

two functions and will not distinguish between f (x, y) and f (x) henceforth.

In Sect. 15.3 we have defined partial derivatives along coordinate axes. Now we

want to generalise this concept to differentiation in any direction.

Definition 15.19 Let D ⊂ R
2 be open, x = [x, y]T ∈ D and f : D → R. Further-

more let v ∈ R
2 with ‖v‖ = 1. The limit

∂v f (x) =
∂ f

∂v
(x) = lim

h→0

f (x + hv) − f (x)

h

= lim
h→0

f (x + hv1, y + hv2) − f (x, y)

h

(in case it exists) is called directional derivative of f at x in direction v.

The partial derivatives are special cases of the directional derivative, namely the

derivatives in direction of the coordinate axes.

The directional derivative ∂v f (x) describes the rate of change of the function f

at the point x in the direction of v. Indeed, this can been seen from the following.

Consider the straight line {x + tv | t ∈ R} ⊂ R
2 and the function

g(t) = f (x + tv) ( f restricted to this straight line)

with g(0) = f (x). Then

g′(0) = lim
h→0

g(h) − g(0)

h
= lim

h→0

f (x + hv) − f (x)

h
= ∂v f (x).

Next we clarify how the directional derivative can be computed. For that we need

the following definition.

Definition 15.20 Let D ⊂ R
2 be open and f : D → R partially differentiable. The

vector

∇ f (x, y) =

⎡
⎢⎢⎣

∂ f

∂x
(x, y)

∂ f

∂y
(x, y)

⎤
⎥⎥⎦ = f ′(x, y)T

is called gradient of f .
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Fig. 15.6 Geometric

interpretation of ∇ f
Nf(x)

∇f(x)

vx

Proposition 15.21 Let D ⊂ R
2 be open, v = [v1, v2]T ∈ R

2,‖v‖ = 1 and f : D →
R Fréchet differentiable at x = [x, y]T. Then

∂v f (x) = 〈∇ f (x), v〉 = f ′(x, y) v =
∂ f

∂x
(x, y) v1 +

∂ f

∂y
(x, y) v2.

Proof Since f is Fréchet differentiable at x, it holds that

f (x + hv) = f (x) + f ′(x) · hv + R(x + hv1, y + hv2; x, y)

and hence

f (x + hv) − f (x)

h
= f ′(x) · v +

R(x + hv1, y + hv2; x, y)

h
.

Letting h → 0 proves the desired assertion. �

Proposition 15.22 (Geometric interpretation of ∇) Let D ⊂ R
2 be open and f :

D → R continuously differentiable at x = (x, y) with f ′(x) �= [0, 0]. Then ∇ f (x)

is perpendicular to the level curve N f (x) = {̃x ∈ R
2 ; f (̃x) = f (x)} and points in

direction of the steepest ascent of f , see Fig. 15.6.

Proof Let v be a tangent vector to the level curve at the point x. From the implicit

function theorem (see [4, Chap. 14.1]) it follows that N f (x) can be parametrised as

a differentiable curve γ(t) = [x(t), y(t)]T, with

γ(0) = x and γ̇(0) = v

in a neighbourhood of x. Thus, for all t near t = 0,

f
(
γ(t)

)
= f (x) = const.

Since f and γ are differentiable, it follows from the chain rule (Proposition 15.16)

that

0 =
d

dt
f
(
γ(t)

)∣∣∣
t=0

= f ′(
γ(0)

)
γ̇(0) = 〈∇ f (x), v〉
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because γ(0) = x and γ̇(0) = v. Hence ∇ f (x) is perpendicular to v. Let w ∈ R
2 be

a further unit vector. Then

∂w f (x) =
∂ f

∂w
(x) = 〈∇ f (x), w〉 = ‖∇ f (x)‖ · ‖w‖ · cos ∢,

where ∢ denotes the angle enclosed by ∇ f (x) and w. From this formula one deduces

that ∂w f (x) is maximal if and only if cos ∢ = 1, which means ∇ f (x) = λw for some

λ > 0. �

Example 15.23 Let f (x, y) = x2 + y2. Then ∇ f (x, y) = 2[x, y]T.

15.6 The Taylor Formula in Two Variables

Let f : D ⊂ R
2 → R be a function of two variables. In the following calculation we

assume that f is at least three times continuously differentiable. In order to expand

f (x + h, y + k) into a Taylor series in a neighbourhood of (x, y), we first fix the

second variable and expand with respect to the first:

f (x + h, y + k) = f (x, y + k)+
∂ f

∂x
(x, y + k) · h +

1

2

∂2 f

∂x2
(x, y + k) · h2 +O(h3).

Then we also expand the terms on the right-hand side with respect to the second

variable (while fixing the first one):

f (x, y + k) = f (x, y) +
∂ f

∂y
(x, y) · k +

1

2

∂2 f

∂y2
(x, y) · k2 + O(k3),

∂ f

∂x
(x, y + k) =

∂ f

∂x
(x, y) +

∂2 f

∂y∂x
(x, y) · k + O(k2),

∂2 f

∂x2
(x, y + k) =

∂2 f

∂x2
(x, y) + O(k).

Inserting these expressions into the equation above, we obtain

f (x + h, y + k) = f (x, y) +
∂ f

∂x
(x, y) · h +

∂ f

∂y
(x, y) · k

+
1

2

∂2 f

∂x2
(x, y) · h2 +

1

2

∂2 f

∂y2
(x, y) · k2 +

∂2 f

∂y∂x
(x, y) · hk

+ O(h3) + O(h2k) + O(hk2) + O(k3).

In matrix-vector notation we can also write this equation as

f (x + h, y + k) = f (x, y) + f ′(x, y)

[
h

k

]
+

1

2
[h, k] · H f (x, y)

[
h

k

]
+ . . .

www.dbooks.org

https://www.dbooks.org/


224 15 Scalar-Valued Functions of Two Variables

with the Hessian matrix4

H f (x, y) =

⎡
⎢⎢⎢⎣

∂2 f

∂x2
(x, y)

∂2 f

∂y∂x
(x, y)

∂2 f

∂x∂y
(x, y)

∂2 f

∂y2
(x, y)

⎤
⎥⎥⎥⎦

collecting the second-order partial derivatives. By the above assumptions, these

derivatives are continuous. Thus the Hessian matrix is symmetric due to Schwarz’s

theorem.

Example 15.24 We compute the second-order approximation to the function f :
R

2 → R : (x, y) �→ x2 sin y at the point (a, b) = (2, 0). The partial derivatives are

f
∂ f

∂x

∂ f

∂y

∂2 f

∂x2

∂2 f

∂y∂x

∂2 f

∂y2

General x2 sin y 2x sin y x2 cos y 2 sin y 2x cos y −x2 sin y

At (2, 0) 0 0 4 0 4 0

Therefore, the quadratic approximation g(x, y) ≈ f (x, y) is given by the formula

g(x, y) = f (2, 0) + f ′(2, 0)

[
x − 2

y

]
+

1

2
[x − 2, y] · H f (2, 0)

[
x − 2

y

]

= 0 + [0, 4]
[

x − 2

y

]
+

1

2
[x − 2, y]

[
0 4

4 0

] [
x − 2

y

]

= 4y + 4y(x − 2) = 4y(x − 1).

15.7 Local Maxima and Minima

Let D ⊂ R
2 be open and f : D → R. In this section we investigate the graph of the

function f with respect to maxima and minima.

Definition 15.25 The scalar function f has a local maximum (respectively, local

minimum) at (a, b) ∈ D, if

f (x, y) ≤ f (a, b) (respectively, f (x, y) ≥ f (a, b)).

4L.O. Hesse, 1811–1874.
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z = x2+y2+1

z

x y

z = x
2+y

2+2

z

x y

z = (y − 2)2+1

z

x y

Fig. 15.7 Local and isolated local minima. The function in the picture on the left has local minima

along the straight line y = 2. The minima are not isolated. The function in the middle picture has an

isolated minimum at (x, y) = (0, 0). This minimum is even a global minimum. Finally, the function

in the picture on the right-hand side has also an isolated minimum at (x, y) = (0, 0). However, the

function is not differentiable at that point

for all (x, y) in a neighbourhood of (a, b). The maximum (minimum) is called

isolated, if (a, b) is the only point in a neighbourhood with this property.

Figure 15.7 shows a few typical examples. One observes that the existence of a

horizontal tangent plane is a necessary condition for extrema (i.e. maxima or minima)

of differentiable functions.

Proposition 15.26 Let f be partially differentiable. If f has a local maximum or

minimum at (a, b) ∈ D, then the partial derivatives vanish at (a, b):

∂ f

∂x
(a, b) =

∂ f

∂y
(a, b) = 0.

If, in addition, f is Fréchet differentiable, then f ′(a, b) = [0, 0], i.e. f has a hori-

zontal tangent plane at (a, b).

Proof Due to the assumptions, the function g(h) = f (a + h, b) has an extremum at

h = 0. Thus, Proposition 8.2 implies

g′(0) =
∂ f

∂x
(a, b) = 0.

Likewise one can show that
∂ f
∂y

(a, b) = 0. �

Definition 15.27 Let f be a Fréchet differentiable function with f ′(a, b) = [0, 0].
Then (a, b) is called a stationary point of f .

Stationary points are consequently candidates for extrema. Conversely, not all

stationary points are extrema, they can also be saddle points. We call (a, b) a saddle

point of f , if there is a vertical cut through the graph which has a local maximum at
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(a, b), and a second vertical cut which has a local minimum at (a, b), see, for example,

Fig. 15.2. In order to decide what is the case, one resorts to Taylor expansion, similarly

as for functions of one variable.

Let a = [a, b]T be a stationary point of f and v ∈ R
2 any unit vector. We investi-

gate the behaviour of f , restricted to the straight line a + λv, λ ∈ R. Taylor expan-

sion shows that

f (a + λv) = f (a) + f ′(a) · λv + 1
2
λ2vT H f (a) v + O(λ3).

Since a is a stationary point, it follows that f ′(a) = [0, 0] and consequently

f (a + λv) − f (a)

λ2
= 1

2
vT H f (a) v + O(λ).

For small λ the sign on the left-hand side is therefore determined by the sign of

vT H f (a) v. We ask how this can be expressed by conditions on H f (a). Writing

H f (a) =
[
α β

β γ

]
and v =

[
v

w

]

we get

vT H f (a) v = αv2 + 2βvw + γw2.

For an isolated local minimum this expression has to be positive for all v �= 0. If

w = 0 and v �= 0, then αv2 > 0 and therefore necessarily

α > 0.

If w �= 0, we substitute v = tw with t ∈ R and obtain

αt2w2 + 2βtw2 + γw2 > 0,

or alternatively (multiplying by α > 0 and simplifying by w2)

t2α2 + 2tαβ + αγ > 0.

Therefore,

(tα + β)2 + αγ − β2 > 0

for all t ∈ R. The left-hand side is smallest for t = −β/α. Inserting this we obtain

the second condition

det H f (a) = αγ − β2 > 0

in terms of the determinant, see Appendix B.1.

We have thus shown the following result.
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Proposition 15.28 The function f has an isolated local minimum at the stationary

point a, if the conditions

∂2 f

∂x2
(a) > 0 and det H f (a) > 0

are fulfilled.

By replacing f by − f one gets the corresponding result for isolated maxima.

Proposition 15.29 The function f has an isolated local maximum at the stationary

point a, if the conditions

∂2 f

∂x2
(a) < 0 and det H f (a) > 0

are fulfilled.

In a similar way one can prove the following assertion.

Proposition 15.30 The stationary point a of the function f is a saddle point, if

det H f (a) < 0.

If the determinant of the Hessian matrix equals zero, the behaviour of the function

needs to be investigated along vertical cuts. One example is given in Exercise 12.

Example 15.31 We determine the maxima, minima and saddle points of the function

f (x, y) = x6 + y6 − 3x2 − 3y2. The condition

f ′(x, y) = [6x5 − 6x, 6y5 − 6y] = [0, 0]

gives the following nine stationary points

x1 = 0, x2,3 = ±1, y1 = 0, y2,3 = ±1.

The Hessian matrix of the function is

H f (x, y) =
[

30x4 − 6 0

0 30y4 − 6

]
.

Applying the criteria of Propositions 15.28 through 15.30, we obtain the following

results: The point (0, 0) is an isolated local maximum of f , the points (−1, −1),

(−1, 1), (1,−1) and (1, 1) are isolated local minima, and the points (−1, 0), (1, 0),

(0,−1) and (0, 1) are saddle points. The reader is advised to visualise this function

with maple .
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15.8 Exercises

1. Compute the partial derivatives of the functions

f (x, y) = arcsin
( y

x

)
, g(x, y) = log

1√
x2 + y2

.

Verify your results with maple .

2. Show that the function

v(x, t) =
1

√
t

exp

(
−x2

4t

)

satisfies the heat equation

∂v

∂t
=

∂2v

∂x2

for t > 0 and x ∈ R.

3. Show that the function w(x, t) = g(x − kt) satisfies the transport equation

∂w

∂t
+ k

∂w

∂x
= 0

for any differentiable function g.

4. Show that the function g(x, y) = log(x2 + 2y2) satisfies the equation

∂2g

∂x2
+

1

2

∂2g

∂y2
= 0

for (x, y) �= (0, 0).

5. Represent the ellipsoid x2 + 2y2 + z2 = 1 as graph of a function (x, y) �→
f (x, y). Distinguish between positive and negative z-coordinates, respectively.

Compute the partial derivatives of f and sketch the level curves of f . Find the

direction in which ∇ f points.

6. Solve Exercise 5 for the hyperboloid x2 + 2y2 − z2 = 1.

7. Compute the directional derivative of the function f (x, y) = xy in the direction

v at the four points a1, . . . a4, where

a1 = (1, 2), a2 = (−1, 2), a3 = (1, −2), a4 = (−1, −2) and v =
1

√
5

[
2

1

]
.

At the given points a1, . . . a4, determine the direction for which the directional

derivative is maximal.
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8. Consider the function f (x, y) = 4 − x2 − y2.

(a) Determine and sketch the level curves f (x, y) = c for c = 4, 2, 0,−2 and

the graphs of the coordinate curves

x �→

⎡
⎣

x

b

f (x, b)

⎤
⎦ , y �→

⎡
⎣

a

y

f (a, y)

⎤
⎦

for a, b = −1, 0, 1.

(b) Compute the gradient of f at the point (1, 1) and determine the equation of

the tangent plane at (1, 1, 2). Verify that the gradient is perpendicular to the

level curve through (1, 1, 2).

(c) Compute the directional derivatives of f at (1, 1) in the directions

v1 =
1

√
2

[
1

1

]
, v2 =

1
√

2

[
−1

1

]
, v3 =

1
√

2

[
−1

−1

]
, v4 =

1
√

2

[
1

−1

]
.

Sketch the vectors v1, . . . , v4 in the (x, y)-plane and interpret the value of

the directional derivatives.

9. Consider the function f (x, y) = ye2x−y , where x = x(t) and y = y(t) are dif-

ferentiable functions satisfying

x(0) = 2, y(0) = 4, ẋ(0) = −1, ẏ(0) = 4.

From this information compute the derivative of z(t) = f
(
x(t), y(t)

)
at the point

t = 0.

10. Find all stationary points of the function

f (x, y) = x3 − 3xy2 + 6y.

Determine whether they are maxima, minima or saddle points.

11. Find the stationary point of the function

f (x, y) = ex + yey − x

and determine whether it is a maximum, minimum or a saddle point.

12. Investigate the function

f (x, y) = x4 − 3x2 y + y3

for local extrema and saddle points. Visualise the graph of the function.

Hint. To study the behaviour of the function at (0, 0) consider the partial map-

pings f (x, 0) and f (0, y).

13. Determine for the function

f (x, y) = x2ey/3(y − 3) − 1
2

y2
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(a) the gradient and the Hessian matrix;

(b) the second-order Taylor approximation at (0, 0);

(c) all stationary points. Find out whether they are maxima, minima or saddle

points.
14. Expand the polynomial f (x, y) = x2 + xy + 3y2 in powers of x − 1 and y − 2,

i.e. in the form

f (x, y) = α(x − 1)2 + β(x − 1)(y − 2) + γ(y − 2)2

+ δ(x − 1) + ε(y − 2) + ζ.

Hint. Use the second-order Taylor expansion at (1, 2).

15. Compute (0.95)2.01 numerically by using the second-order Taylor approximation

to the function f (x, y) = x y at (1, 2).



16Vector-Valued Functions of Two
Variables

In this section we briefly touch upon the theory of vector-valued functions in several

variables. To simplify matters we limit ourselves again to the case of two variables.

First we define vector fields in the plane and extend the notions of continuity

and differentiability to vector-valued functions. Then we discuss Newton’s method

in two variables. As an application we compute a common zero of two nonlinear

functions. Finally, as an extension of Sect. 15.1, we show how smooth surfaces can

be described mathematically with the help of parameterisations.

For the required basic notions of vector and matrix algebra we refer to the Appen-

dices A and B.

16.1 Vector Fields and the Jacobian

In the entire section D denotes an open subset of R
2 and

F : D ⊂ R
2 → R

2 : (x, y) �→
[

u

v

]

= F(x, y) =
[

f (x, y)

g(x, y)

]

a vector-valued function of two variables with values in R
2. Such functions are also

called vector fields since they assign a vector to every point in the plane. Important

applications are provided in physics. For example, the velocity field of a flowing

liquid or the gravitational field are mathematically described as vector fields.

In the previous chapter we have already encountered a vector field, namely the

gradient of a scalar-valued function of two variables f : D → R : (x, y) �→ f (x, y).
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For a partially differentiable function f the gradient

F = ∇ f : D → R
2 : (x, y) �→

⎡

⎢

⎢

⎣

∂ f

∂x
(x, y)

∂ f

∂y
(x, y)

⎤

⎥

⎥

⎦

is obviously a vector field.

Continuity and differentiability of vector fields are defined componentwise.

Definition 16.1 The function

F : D ⊂ R
2 → R

2 : (x, y) �→ F(x, y) =
[

f (x, y)

g(x, y)

]

is called continuous (or partially differentiable or Fréchet differentiable, respectively)

if and only if its two components f : D → R and g : D → R have the corresponding

property, i.e. they are continuous (or partially differentiable or Fréchet differentiable,

respectively).

If both f and g are Fréchet differentiable, one has the linearisations

f (x, y) = f (a, b) +
[

∂ f

∂x
(a, b),

∂ f

∂y
(a, b)

] [

x − a

y − b

]

+ R1(x, y; a, b),

g(x, y) = g(a, b) +
[

∂g

∂x
(a, b),

∂g

∂y
(a, b)

] [

x − a

y − b

]

+ R2(x, y; a, b)

for (x, y) close to (a, b) with remainder terms R1 and R2. If one combines these two

formulas to one formula using matrix-vector notation, one obtains

[

f (x, y)

g(x, y)

]

=
[

f (a, b)

g(a, b)

]

+

⎡

⎢

⎢

⎣

∂ f

∂x
(a, b)

∂ f

∂y
(a, b)

∂g

∂x
(a, b)

∂g

∂y
(a, b)

⎤

⎥

⎥

⎦

[

x − a

y − b

]

+
[

R1(x, y; a, b)

R2(x, y; a, b)

]

,

or in shorthand notation

F(x, y) = F(a, b) + F′(a, b)

[

x − a

y − b

]

+ R(x, y; a, b)

with the remainder term R(x, y; a, b) and the (2×2)-Jacobian

F′(a, b) =

⎡

⎢

⎢

⎣

∂ f

∂x
(a, b)

∂ f

∂y
(a, b)

∂g

∂x
(a, b)

∂g

∂y
(a, b)

⎤

⎥

⎥

⎦

.
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The linear mapping defined by this matrix is called (Fréchet) derivative of the func-

tion F at the point (a, b). The remainder term R has the property

lim
(x,y)→(a,b)

√

R1(x, y; a, b)2 + R2(x, y; a, b)2

√

(x − a)2 + (y − b)2
= 0.

Example 16.2 (Polar coordinates) The mapping

F : R
2 → R

2 : (r,φ) �→
[

x

y

]

=
[

r cos ϕ

r sin ϕ

]

is (everywhere) differentiable with derivative (Jacobian)

F′(r, ϕ) =
[

cos ϕ −r sin ϕ

sin ϕ r cos ϕ

]

.

16.2 Newton’s Method in Two Variables

The linearisation

F(x, y) ≈ F(a, b) + F′(a, b)

[

x − a

y − b

]

is the key for solving nonlinear equations in two (or more) unknowns. In this section,

we derive Newton’s method for determining the zeros of a function

F(x, y) =
[

f (x, y)

g(x, y)

]

of two variables and two components.

Example 16.3 (Intersection of a circle with a hyperbola) Consider the circle x2 +
y2 = 4 and the hyperbola xy = 1. The points of intersection are the zeros of the

vector equation F(x, y) = 0 with

F : R
2 → R

2 : F(x, y) =
[

f (x, y)

g(x, y)

]

=
[

x2 + y2 − 4

xy − 1

]

.

The level curves f (x, y) = 0 and g(x, y) = 0 are sketched in Fig. 16.1.
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Fig. 16.1 Intersection of a

circle with a hyperbola

x

y

Newton’s method for determining the zeros is based on the following idea. For a

starting value (x0, y0) which is sufficiently close to the solution, one computes an

improved value by replacing the function by its linear approximation at (x0, y0)

F(x, y) ≈ F(x0, y0) + F′(x0, y0)

[

x − x0

y − y0

]

.

The zero of the linearisation

F(x0, y0) + F′(x0, y0)

[

x − x0

y − y0

]

=
[

0

0

]

is taken as improved approximation (x1, y1), so

F′(x0, y0)

[

x1 − x0

y1 − y0

]

= −F(x0, y0),

and
[

x1

y1

]

=
[

x0

y0

]

−
(

F′(x0, y0)

)−1
F(x0, y0),

respectively. This can only be carried out if the Jacobian is invertible, i.e. its deter-

minant is not equal to zero. In the example above the Jacobian is

F′(x, y) =
[

2x 2y

y x

]

with determinant det F′(x, y) = 2x2 − 2y2. Thus it is singular on the straight lines

x = ±y. These lines are plotted as dashed lines in Fig. 16.1.

The idea now is to iterate the procedure, i.e. to repeat Newton’s step with the

improved value as new starting value

[

xk+1

yk+1

]

=
[

xk

yk

]

−

⎡

⎢

⎢

⎣

∂ f

∂x
(xk, yk)

∂ f

∂y
(xk, yk)

∂g

∂x
(xk, yk)

∂g

∂y
(xk, yk)

⎤

⎥

⎥

⎦

−1

[

f (xk, yk)

g(xk, yk)

]
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for k = 1, 2, 3, . . . until the desired accuracy is reached. The procedure generally

converges rapidly as is shown in the following proposition. For a proof, see [23,

Chap. 7, Theorem 7.1].

Proposition 16.4 Let F : D → R
2 be twice continuously differentiable with

F(a, b) = 0 and det F′(a, b) �= 0. If the starting value (x0, y0) lies sufficiently close

to the solution (a, b) then Newton’s method converges quadratically.

One often sums up this fact under the term local quadratic convergence of New-

ton’s method.

Example 16.5 The intersection points of the circle and the hyperbola can also be

computed analytically. Since

xy = 1 ⇔ x =
1

y

we may insert x = 1/y into the equation x2 + y2 = 4 to obtain the biquadratic

equation

y4 − 4y2 + 1 = 0.

By substituting y2 = u the equation is easily solvable. The intersection point with

the largest x-component has the coordinates

x =
√

2 +
√

3 = 1.93185165257813657 . . .

y =
√

2 −
√

3 = 0.51763809020504152 . . .

Application of Newton’s method with starting values x0 = 2 and y0 = 1 yields

the above solution in 5 steps with 16 digits accuracy. The quadratic convergence can

be observed from the fact that the number of correct digits doubles with each step.

x y Error

2.000000000000000 1.000000000000000 4.871521418175E-001

2.000000000000000 5.000000000000000E-001 7.039388810410E-002

1.933333333333333 5.166666666666667E-001 1.771734052060E-003

1.931852741096439 5.176370548219287E-001 1.502295005704E-006

1.931851652578934 5.176380902042443E-001 1.127875985998E-012

1.931851652578136 5.176380902050416E-001 2.220446049250E-016
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Experiment 16.6 Using the MATLAB programs mat16_1.m and mat16_2.m

compute the intersection points from Example 16.3. Experiment with different start-

ing values, and this way try to determine all four solutions to the problem. What

happens if the starting value is chosen to be (x0, y0) = (1, 1)?

16.3 Parametric Surfaces

In Sect. 15.1 we investigated surfaces as graphs of functions f : D ⊂ R
2 → R. How-

ever, similar to the case of curves, this concept is too narrow to represent more

complicated surfaces. The remedy is to use parameterisations like it was done for

curves.

The starting point for the construction of a parametric surface is a (componentwise)

continuous mapping

(u, v) �→ x(u, v) =

⎡

⎣

x(u, v)

y(u, v)

z(u, v)

⎤

⎦

of a parameter domain D ⊂ R
2 to R

3. By fixing one parameter u = u0 or v = v0 at

a time one obtains coordinate curves in space

u �→ x(u, v0) . . . u-curve

v �→ x(u0, v) . . . v-curve

Definition 16.7 A regular parametric surface is defined by a mapping D ⊂ R
2 →

R
3 : (u, v) �→ x(u, v) which satisfies the following conditions

(a) the mapping (u, v) �→ x(u, v) is injective;

(b) the u-curves and the v-curves are continuously differentiable;

(c) the tangent vectors to the u-curves and v-curves are linearly independent at every

point (thus always span a plane).

These conditions guarantee that the parametric surface is indeed a two-dimensional

smooth subset of R
3.

For a regular surface, the tangent vectors

∂x

∂u
(u, v) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂x

∂u
(u, v)

∂y

∂u
(u, v)

∂z

∂u
(u, v)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
∂x

∂v
(u, v) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂x

∂v
(u, v)

∂y

∂v
(u, v)

∂z

∂v
(u, v)

⎤

⎥

⎥

⎥

⎥

⎥

⎦



16.3 Parametric Surfaces 237

span the tangent plane at x(u, v). The tangent plane has the parametric representation

p(λ, µ) = x(u, v) + λ
∂x

∂u
(u, v) + µ

∂x

∂v
(u, v), λ, µ ∈ R.

The regularity condition (c) is equivalent to the assertion that

∂x

∂u
×

∂x

∂v
�= 0.

The cross product constitutes a normal vector to the (tangent plane of the) surface.

Example 16.8 (Surfaces of rotation) By rotation of the graph of a continuously

differentiable, positive function z �→ h(z), a < z < b, around the z-axis, one obtains

a surface of rotation with parametrisation

D = (a, b) × (0, 2π), x(u, v) =

⎡

⎣

h(u) cos v

h(u) sin v

u

⎤

⎦ .

The v-curves are horizontal circles, the u-curves are the generator lines. Note that

the generator line corresponding to the angle v = 0 has been removed to ensure

condition (a). To verify condition (c) we compute the cross product of the tangent

vectors to the u- and the v-curves

∂x

∂u
×

∂x

∂v
=

⎡

⎣

h′(u) cos v

h′(u) sin v

1

⎤

⎦ ×

⎡

⎣

−h(u) sin v

h(u) cos v

0

⎤

⎦ =

⎡

⎣

−h(u) cos v

−h(u) sin v

h(u) h′(u)

⎤

⎦ �= 0.

Due to h(u) > 0 this vector is not zero; the two tangent vectors are hence not collinear.

Figure 16.2 shows the surface of rotation which is generated by h(u) = 0.4 +
cos(4πu)/3, u ∈ (0, 1). In MATLAB one advantageously uses the command

cylinder in combination with the command mesh for the representation of such

surfaces.

Example 16.9 (The sphere) The sphere of radius R is obtained by the parametri-

sation

D = (0, π) × (0, 2π), x(u, v) =

⎡

⎣

R sin u cos v

R sin u sin v

R cos u

⎤

⎦ .
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Fig.16.2 Surface of rotation, generated by rotation of a graph h(z) about the z-axis. The underlying

graph h(z) is represented on the right
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Fig. 16.3 Unit sphere as parametric surface. The interpretation of the parameters u, v as angles is

given in the picture on the right

The v-curves are the circles of latitude, the u-curves the meridians. The meaning of

the parameters u, v as angles can be seen from Fig. 16.3.

16.4 Exercises

1. Compute the Jacobian of the mapping

[

u

v

]

= F(x, y) =
[

x2 + y2

x2 − y2

]

.

For which values of x and y is the Jacobian invertible?
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2. Program Newton’s method in several variables and test the program on the

problem

x2 + sin y = 4

xy = 1

with starting values x = 2 and y = 1. If you are working in MATLAB, you can

solve this question by modifying mat16_2.m.

3. Compute the tangent vectors ∂x
∂u

, ∂x
∂v

and the normal vector ∂x
∂u

× ∂x
∂v

to the sphere

of radius R (Example 16.9). What can you observe about the direction of the

normal vector?

4. Sketch the surface of revolution

x(u, v) =

⎡

⎣

cos u cos v

cos u sin v

u

⎤

⎦ , −1 < u < 1, 0 < v < 2π.

Compute the tangent vectors ∂x
∂u

, ∂x
∂v

and the normal vector ∂x
∂u

× ∂x
∂v

. Determine

the equation of the tangent plane at the point (1/
√

2, 1/
√

2, 0).

5. Sketch the paraboloid

x(u, v) =

⎡

⎣

u cos v

u sin v

1 − u2

⎤

⎦ , 0 < u < 1, 0 < v < 2π

and plot some of the u- and v-curves. Compute the tangent vectors ∂x
∂u

, ∂x
∂v

and

the normal vector ∂x
∂u

× ∂x
∂v

.

6. Plot some of the u- and v-curves for the helicoid

x(u, v) =

⎡

⎣

u cos v

u sin v

v

⎤

⎦ , 0 < u < 1, 0 < v < 2π

What kind of curves are they? Try to sketch the surface.

7. A planar vector field (see also Sect. 20.1)

(x, y) �→ F(x, y) =
[

f (x, y)

g(x, y)

]

can be visualised by plotting a grid of points (xi , y j ) in the plane and attaching

the vector F(xi , y j ) to each grid point. Sketch the vector fields

F(x, y) =
1

√

x2 + y2

[

x

y

]

and G(x, y) =
1

√

x2 + y2

[

−y

x

]

in this way.
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Variables

In Sect. 11.3 we have shown how to calculate the volume of solids of revolution. If

there is no rotational symmetry, however, one needs an extension of integral calculus

to functions of two variables. This arises, for example, if one wants to find the volume

of a solid that lies between a domain D in the (x, y)-plane and the graph of a non-

negative function z = f (x, y). In this section we will extend the notion of Riemann

integrals from Chap. 11 to double integrals of functions of two variables. Important

tools for the computation of double integrals are their representation as iterated

integrals and the transformation formula (change of coordinates). The integration of

functions of several variables occurs in numerous applications, a few of which we

will discuss.

17.1 Double Integrals

We start with the integration of a real-valued function z = f (x, y) which is defined

on a rectangle R = [a, b] × [c, d]. More general domains of integration D ⊂ R
2 will

be discussed below. Since we know from Sect. 11.1 that Riemann integrable functions

are necessarily bounded, we assume in the whole section that f is bounded. If f

is non-negative, the integral should be interpretable as the volume of the solid with

base R and top surface given by the graph of f (see Fig. 17.2). This motivates the

following approach in which the solid is approximated by a sum of cuboids.

We place a rectangular grid G over the domain R by partitioning the intervals

[a, b] and [c, d] like in Sect. 11.1:

Zx : a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

Z y : c = y0 < y1 < y2 < · · · < ym−1 < ym = d.
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The rectangular grid is made up of the small rectangles

[xi−1, xi ] × [y j−1, y j ], i = 1, . . . , n, j = 1, . . . , m.

The mesh size Φ(G) is the length of the largest subinterval involved:

Φ(G) = max
(

|xi − xi−1|, |y j − y j−1| ; i = 1, . . . , n, j = 1, . . . , m
)

.

Finally we choose an arbitrary intermediate point pi j = (ξi j , ηi j ) in each of the

rectangles of the grid, see Fig. 17.1.

The double sum

S =
n

∑

i=1

m
∑

j=1

f (ξi j , ηi j )(xi − xi−1)(y j − y j−1)

is again called a Riemann sum. Since the volume of a cuboid with base [xi−1, xi ] ×
[y j−1, y j ] and height f (ξi j , ηi j ) is

f (ξi j , ηi j )(xi − xi−1)(y j − y j−1),

the above Riemann sum is an approximation to the volume under the graph of f

(Fig. 17.2).

Like in Sect. 11.1, the integral is now defined as a limit of Riemann sums. We

consider a sequence G1, G2, G3, . . . of grids whose mesh size Φ(G N ) tends to zero

as N → ∞ and the corresponding Riemann sums SN .

Fig. 17.1 Partitioning the

rectangle R
d

ym−1

ηij

y1

c
bxn−1ξijx2x1a

Fig. 17.2 Volume and

approximation by cuboids

f(ξij , ηij )

d

c

∆y b

a
∆x
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Definition 17.1 A bounded function z = f (x, y) is called Riemann integrable on

R = [a, b] × [c, d] if for arbitrary sequences of grids (G N )N≥1 with Φ(G N ) → 0

the corresponding Riemann sums (SN )N≥1 tend to the same limit I ( f ), indepen-

dently of the choice of intermediate points. This limit

I ( f ) =
∫∫

R

f (x, y) d(x, y)

is called the double integral of f on R.

Experiment 17.2 Study the M-file mat17_1.m and experiment with different

randomly chosen Riemann sums for the function z = x2 + y2 on the rectangle

[0, 1] × [0, 1]. What happens if you choose finer and finer grids?

As in the case of one variable, one may use the definition of the double integral

for obtaining a numerical approximation to the integral. However, it is of little use

for the analytic evaluation of integrals. In Sect. 11.1 the fundamental theorem of

calculus has proven helpful, here the representation as iterated integral does. In this

way the computation of double integrals is reduced to the integration of functions in

one variable.

Proposition 17.3 (The double integral as iterated integral) If a bounded function

f and its partial functions x �→ f (x, y), y �→ f (x, y) are Riemann integrable on

R = [a, b] × [c, d], then the mappings x �→
∫ d

c
f (x, y) dy and y �→

∫ b

a
f (x, y) dx

are Riemann integrable as well and

∫∫

R

f (x, y) d(x, y) =
∫ b

a

(∫ d

c

f (x, y) dy

)

dx =
∫ d

c

(∫ b

a

f (x, y) dx

)

dy.

Outline of the proof. If one chooses intermediate points in the Riemann sums of the

special form pi j = (ξi , η j ) with ξi ∈ [xi−1, xi ], η j ∈ [y j−1, y j ], then

∫∫

R

f (x, y) d(x, y) ≈
n

∑

i=1

⎛

⎝

m
∑

j=1

f (ξi , η j )(y j − y j−1)

⎞

⎠ (xi − xi−1)

≈
n

∑

i=1

(∫ d

c

f (ξi , y) dy

)

(xi − xi−1) ≈
∫ b

a

(∫ d

c

f (x, y) dy

)

dx

and likewise for the second statement by changing the order. For a rigorous proof of

this argument, we refer to the literature, for instance [4, Theorem 8.13 and Corol-

lary]. �

Figure 17.3 serves to illustrate Proposition 17.3. The volume is approximated by

summation of thin slices parallel to the axis instead of small cuboids. Proposition 17.3
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Fig. 17.3 The double

integral as iterated integral

d

c
f(x, y) dy

d

c

b

a
∆x

states that the volume of the solid is obtained by integration over the area of the cross

sections (perpendicular to the x- or y-axis). In this form Proposition 17.3 is called

Cavalieri’s principle.1 In general integration theory one also speaks of Fubini’s

theorem.2 Since in the case of integrability the order of integration does not matter,

one often omits the brackets and writes

∫∫

R

f (x, y) d(x, y) =
∫∫

R

f (x, y) dx dy =
∫ b

a

∫ d

c

f (x, y) dy dx .

Example 17.4 Let R = [0, 1] × [0, 1]. The volume of the body

B = {(x, y, z) ∈ R
3 : (x, y) ∈ R, 0 ≤ z ≤ x2 + y2}

is obtained using Proposition 17.3 as follows, see also Fig. 17.4:

∫∫

R

(

x2 + y2
)

d(x, y) =
∫ 1

0

(∫ 1

0

(

x2 + y2
)

dy

)

dx

=
∫ 1

0

(

x2 y +
y3

3

)

∣

∣

∣

y=1

y=0
dx =

∫ 1

0

(

x2 +
1

3

)

dx =
(

x3

3
+

x

3

)

∣

∣

∣

x=1

x=0
=

2

3
.

Fig. 17.4 The body B

(1, 1)

(1, 0)

(0, 0)

1B. Cavalieri, 1598–1647.
2G. Fubini, 1879–1943.
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Fig. 17.5 Area as volume of

the cylinder of height one

R

D

1

We now turn to the integration over more general (bounded) domains D ⊂ R
2.

The indicator function of the domain D is

11D(x, y) =
{

1, (x, y) ∈ D,

0, (x, y) /∈ D.

We can enclose the bounded domain D in a rectangle R (D ⊂ R). If the Riemann

integral of the indicator function of D exists, then it represents the volume of the

cylinder of height one and base D and thus the area of D (Fig. 17.5). The result

obviously does not depend on the size of the surrounding rectangle since the indicator

function assumes the value zero outside the domain D.

Definition 17.5 Let D be a bounded domain and R an enclosing rectangle.

(a) If the indicator function of D is Riemann integrable then the domain D is called

measurable and one sets
∫∫

D

d(x, y) =
∫∫

R

11D(x, y) d(x, y).

(b) A subset N ⊂ R
2 is called set of measure zero, if

∫∫

N
d(x, y) = 0.

(c) For a bounded function z = f (x, y), its integral over a measurable domain D is

defined as

∫∫

D

f (x, y) d(x, y) =
∫∫

R

f (x, y)11D(x, y) d(x, y),

if f (x, y)11D(x, y) is Riemann integrable.

Sets of measure zero are, for example, single points, straight line segments or

segments of differentiable curves in the plane. Item (c) of the definition states that

the integral of a function f over a domain D is determined by continuing f to a

larger rectangle R and assigning the value zero outside D.

Remark 17.6 (a) If D is a measurable domain, N a set of measure zero and f is

integrable over the respective domains then
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∫∫

D

f (x, y) d(x, y) =
∫∫

D\N

f (x, y) d(x, y).

(b) Let D = D1 ∪ D2. If D1 ∩ D2 is a set of measure zero then

∫∫

D

f (x, y) d(x, y) =
∫∫

D1

f (x, y) d(x, y) +
∫∫

D2

f (x, y) d(x, y).

The integral over the entire domain D is thus obtained as sum of the integrals over

subdomains. The proof of this statement can easily be obtained by working with

Riemann sums.

An important class of domains D on which integration is simple are the so-called

normal domains.

Definition 17.7 (a) A subset D ⊂ R
2 is called normal domain of type I if

D = {(x, y) ∈ R
2 ; a ≤ x ≤ b, v(x) ≤ y ≤ w(x)}

with certain continuously differentiable lower and upper bounding functions x �→
v(x), x �→ w(x).

(b) A subset D ⊂ R
2 is called normal domain of type II

D = {(x, y) ∈ R
2 ; c ≤ y ≤ d, l(y) ≤ x ≤ r(y)}

with certain continuously differentiable left and right bounding functions x �→ l(x),

x �→ r(x).

Figure 17.6 shows examples of normal domains.

Proposition 17.8 (Integration over normal domains) Let D be a normal domain

and f : D → R continuous. For normal domains of type I, one has

∫∫

D

f (x, y) d(x, y) =
∫ b

a

(

∫ w(x)

v(x)

f (x, y) dy

)

dx

d

c

x = r(y)x = l(y)

y

x
a b

y = w(x)

y = v(x)

y

x

Fig. 17.6 Normal domains of type I and II
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and for normal domains of type II

∫∫

D

f (x, y) d(x, y) =
∫ d

c

(

∫ r(y)

l(y)

f (x, y) dx

)

dy.

Proof The statements follow from Proposition 17.3. We recall that f is extended by

zero outside of D. For details we refer to the remark at the end of [4, Chap. 8.3]. �

Example 17.9 For the calculation of the volume of the body lying between the tri-

angle D = {(x, y) ; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x} and the graph of z = x2 + y2, we

interpret D as normal domain of type I with the boundaries v(x) = 0, w(x) = 1 − x .

Consequently

∫∫

D

(

x2 + y2
)

d(x, y) =
∫ 1

0

(∫ 1−x

0

(

x2 + y2
)

dy

)

dx

=
∫ 1

0

(

x2 y +
y3

3

)

∣

∣

∣

y=1−x

y=0
dx =

∫ 1

0

(

x2(1 − x) +
(1 − x)3

3

)

dx =
1

6
,

as can be seen by multiplying out and integrating term by term.

17.2 Applications of the Double Integral

For modelling purposes it is useful to introduce a simplified notation for Riemann

sums. In the case of equidistant partitions Zx , Z y where all subintervals have the

same lengths, one writes

∆x = xi − xi−1, ∆y = y j − y j−1

and calls

∆A = ∆x ∆y

the area element of the grid G. If one then takes the right upper corner pi j = (xi , y j )

of the subrectangle [xi−1, xi ] × [y j−1, y j ] as an intermediate point, the correspond-

ing Riemann sum reads

S =
n

∑

i=1

m
∑

j=1

f (xi , y j )∆A =
n

∑

i=1

m
∑

j=1

f (xi , y j )∆x ∆y.

Application 17.10 (Mass as integral of the density) A thin plane object D has

density ρ(x, y) [mass/unit area] at the point (x, y). If the density ρ is constant every-

where then its total mass is simply the product of density and area. In the case of
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variable density (e.g. due to a change of the material properties from point to point),

we partition D in smaller rectangles with sides ∆x , ∆y. The mass contained in such

a small rectangle around (x, y) is approximately equal to ρ(x, y)∆x ∆y. The total

mass is thus approximately equal to

n
∑

i=1

m
∑

j=1

ρ(xi , y j )∆x ∆y.

However, this is just a Riemann sum for

M =
∫∫

D

ρ(x, y) dx dy.

This consideration shows that the integral of the density function is a feasible model

for representing the total mass of a two-dimensional object.

Application 17.11 (Centre of gravity) We consider a two-dimensional flat object

D as in Application 17.10. The two statical moments of a small rectangle close to

(x, y) with respect to a point (x∗, y∗) are

(x − x∗)ρ(x, y)∆x ∆y, (y − y∗)ρ(x, y)∆x ∆y,

see Fig. 17.7.

The relevance of the statical moments can be seen if one considers the object under

the influence of gravity. Multiplied by the gravitational acceleration g one obtains

the moments of force with respect to the axes through (x∗, y∗) in direction of the

coordinates (force times lever arm). The centre of gravity of the two-dimensional

object D is the point (xS, yS) with respect to which the total statical moments vanish:

n
∑

i=1

m
∑

j=1

(xi − xS)ρ(xi , y j )∆x ∆y ≈ 0,

n
∑

i=1

m
∑

j=1

(y j − yS)ρ(xi , y j )∆x ∆y ≈ 0.

In the limit, as the mesh size of the grid tends to zero, one obtains

∫∫

D

(x − xS)ρ(x, y) dx dy = 0,

∫∫

D

(y − yS)ρ(x, y) dx dy = 0

Fig. 17.7 The statical

moments

y∗

x∗

x − x∗

y − y∗

∆x

∆y

y

x
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Fig. 17.8 Centre of gravity

of the quarter circle

y =
√

r2
− x2

yS

rxS

y

x

as defining equations for the centre of gravity; i.e.,

xS =
1

M

∫∫

D

x ρ(x, y) dx dy, yS =
1

M

∫∫

D

y ρ(x, y) dx dy,

where M denotes the total mass as in Application 17.10.

For the special case of a constant density ρ(x, y) ≡ 1 one obtains the geometric

centre of gravity of the domain D.

Example 17.12 (Geometric centre of gravity of a quarter circle) Let D be the quar-

ter circle of radius r about (0, 0) in the first quadrant; i.e., D = {(x, y) ; 0 ≤ x ≤
r, 0 ≤ y ≤

√
r2 − x2} (Fig. 17.8). With density ρ(x, y) ≡ 1 one obtains the area M

as r2π/4. The first statical moment is

∫∫

D

x dx dy =
∫ r

0

(

∫

√
r2−x2

0

x dy

)

dx =
∫ r

0

(

xy

∣

∣

∣

y=
√

r2−x2

y=0

)

dx

=
∫ r

0

x
√

r2 − x2 dx = −
1

3

(

r2 − x2
)3/2

∣

∣

∣

x=r

x=0
=

1

3
r3.

The x-coordinate of the centre of gravity is thus given by xS = 4
r2π

· 1
3
r3 = 4r

3π . For

reasons of symmetry, one has yS = xS.

17.3 The Transformation Formula

Similar to the substitution rule for one-dimensional integrals (Sect. 10.2), the trans-

formation formula for double integrals makes it possible to change coordinates on

the domain D of integration. For the purpose of this section it is convenient to assume

that D is an open subset of R
2 (see Definition 9.1).

Definition 17.13 A bijective, differentiable mapping F : D → B = F(D) between

two open subsets D, B ⊂ R
2 is called a diffeomorphism if the inverse mapping F−1

is also differentiable.
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Fig. 17.9 Transformation of

a planar domain

B

y

x

F

D

v

u

We use the following notation for the variables:

F : D → B :
[

u

v

]

�→
[

x

y

]

=
[

x(u, v)

y(u, v)

]

.

Figure 17.9 shows the image B of the domain D = (0, 1) × (0, 1) under the trans-

formation

F :
[

u

v

]

�→
[

x

y

]

=
[

u + v/4

u/4 + v + u2v2

]

.

The aim is to transform the integral of a real-valued function f over the domain B

to one over D.

For this purpose we lay a grid G over the domain D in the (u, v)-plane and select

a rectangle, for instance with the left lower corner (u, v) and sides spanned by the

vectors
[

∆u

0

]

,

[

0

∆v

]

.

The image of this rectangle under the transformation F will in general have a curvi-

linear boundary. In a first approximation we replace it by a parallelogram. In linear

approximation (see Sect. 15.4) we have the following:

F(u + ∆u, v) ≈ F(u, v) + F′(u, v)

[

∆u

0

]

,

F(u, v + ∆v) ≈ F(u, v) + F′(u, v)

[

0

∆v

]

.

The approximating parallelogram is thus spanned by the vectors

⎡

⎢

⎣

∂x

∂u
(u, v)

∂y

∂u
(u, v)

⎤

⎥

⎦
∆u,

⎡

⎢

⎣

∂x

∂v
(u, v)

∂y

∂v
(u, v)

⎤

⎥

⎦
∆v

and has the area (see Appendix A.5)

∣

∣

∣
det

⎡

⎢

⎣

∂x

∂u
(u, v)

∂x

∂v
(u, v)

∂y

∂u
(u, v)

∂y

∂v
(u, v)

⎤

⎥

⎦
∆u ∆v

∣

∣

∣
=

∣

∣det F′(u, v)
∣

∣∆u ∆v.
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Fig. 17.10 Transformation

of an area element

∆F(A)

y

x

∆A

v

u

In short, the area element ∆A = ∆u ∆v is changed by the transformation F to the

area element ∆F(A) =
∣

∣det F′(u, v)
∣

∣∆u ∆v (see Fig. 17.10).

Proposition 17.14 (Transformation formula for double integrals) Let D, B be

open, bounded subsets of R
2, F : D → B a diffeomorphism and f : B → R a

bounded mapping. Then

∫∫

B

f (x, y) dx dy =
∫∫

D

f
(

F(u, v)
)
∣

∣det F′(u, v)
∣

∣ du dv,

as long as the functions f and f (F)
∣

∣det F′∣
∣ are Riemann integrable.

Outline of the proof. We use Riemann sums on the transformed grid and obtain

∫∫

B

f (x, y) dx dy ≈
n

∑

i=1

m
∑

j=1

f (xi , y j )∆F(A)

≈
n

∑

i=1

m
∑

j=1

f
(

x(ui , v j ), y(ui , v j )
)
∣

∣det F′(ui , v j )
∣

∣∆u ∆v

≈
∫∫

D

f
(

x(u, v), y(u, v)
)∣

∣det F′(u, v)
∣

∣ du dv.

A rigorous proof is tedious and requires a careful study of the boundary of the domain

D and the behaviour of the transformation F near the boundary (see for instance [3,

Chap. 19, Theorem 4.7]). �

Example 17.15 The area of the domain B from Fig. 17.9 can be calculated using the

transformation formula with f (x, y) = 1 as follows. We have

F′(u, v) =
[

1 1/4

1/4 + 2uv2 1 + 2u2v

]

,

∣

∣det F′(u, v)
∣

∣ =
∣

∣

∣

15

16
+ 2u2v −

1

2
uv2

∣

∣

∣
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and thus

∫∫

B

dx dy =
∫∫

D

∣

∣det F′(u, v)
∣

∣ du dv

=
∫ 1

0

(∫ 1

0

(

15

16
+ 2u2v −

1

2
uv2

)

dv

)

du

=
∫ 1

0

(

15

16
+ u2 −

1

6
u

)

du =
15

16
+

1

3
−

1

12
=

19

16
.

Example 17.16 (Volume of a hemisphere in polar coordinates) We represent a

hemisphere of radius R by the three-dimensional domain

{(x, y, z) ; 0 ≤ x2 + y2 ≤ R2, 0 ≤ z ≤
√

R2 − x2 − y2}.

Its volume is obtained by integration of the function f (x, y) =
√

R2 − x2 − y2 over

the base B = {(x, y) ; 0 ≤ x2 + y2 ≤ R2}. In polar coordinates

F : R
2 → R

2 :
[

r

ϕ

]

�→
[

x

y

]

=
[

r cos ϕ

r sin ϕ

]

the area B can be represented as the image F(D) of the rectangle D = [0, R] ×
[0, 2π]. However, in order to fulfil the assumptions of Proposition 17.14 we have

to switch to open domains on which F is a diffeomorphism. We can obtain this, for

instance, by removing the boundary and the half ray {(x, y) ; 0 ≤ x ≤ R, y = 0}
of the circle B and the boundary of the rectangle D. On the smaller domains D′, B ′

obtained in this way, F is a diffeomorphism. However, since B differs from B ′ and

D differs from D′ by sets of measure zero, the value of the integral is not changed

if one replaces B by B ′ and D by D′, see Remark 17.6. We have

F′(r, ϕ) =
[

cos ϕ −r sin ϕ

sin ϕ r cos ϕ

]

,
∣

∣det F′(r, ϕ)
∣

∣ = r.

Substituting x = r cos ϕ, y = r sin ϕ results in x2 + y2 = r2 and we obtain the vol-

ume from the transformation formula as

∫∫

B

√

R2 − x2 − y2 dx dy =
∫ R

0

∫ 2π

0

√

R2 − r2 r dϕ dr

=
∫ R

0

2πr
√

R2 − r2 dr

= −
2π

3

(

R2 − r2
)3/2

∣

∣

∣

r=R

r=0
=

2π

3
R3,

which coincides with the known result from elementary geometry.
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17.4 Exercises

1. Compute the volume of the parabolic dome z = 2 − x2 − y2 above the quadratic

domain D : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

2. (From statics) Compute the axial moment of inertia
∫∫

D
y2 dx dy of a rectangular

cross section D : 0 ≤ x ≤ b, −h/2 ≤ y ≤ h/2, where b > 0, h > 0.

3. Compute the volume of the body bounded by the plane z = x + y above the

domain D : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2.

4. Compute the volume of the body bounded by the plane z = 6 − x − y above

the domain D, which is bounded by the y-axis and the straight lines x + y = 6,

x + 3y = 6 (x ≥ 0, y ≥ 0).

5. Compute the geometric centre of gravity of the domain D : 0 ≤ x ≤ 1, 0 ≤ y ≤
1 − x2.

6. Compute the area and the geometric centre of gravity of the semi-ellipse

x2

a2
+

y2

b2
≤ 1, y ≥ 0.

Hint. Introduce elliptic coordinates x = ar cos ϕ, y = br sin ϕ, 0 ≤ r ≤ 1, 0 ≤
ϕ ≤ π, compute the Jacobian and use the transformation formula.

7. (From statics) Compute the axial moment of inertia of a ring with inner radius

R1 and outer radius R2 with respect to the central axis, i.e. the integral
∫∫

D
(x2 +

y2) dx dy over the domain D : R1 ≤
√

x2 + y2 ≤ R2.

8. Modify the M-file mat17_1.m so that it can evaluate Riemann sums over

equidistant partitions with ∆x �= ∆y.

9. Let the domain D be bounded by the curves

y = x and y = x2, 0 ≤ x ≤ 1.

(a) Sketch D.

(b) Compute the area of D by means of the double integral F =
∫∫

D
d(x, y).

(c) Compute the statical moments
∫∫

D
x d(x, y) und

∫∫

D
y d(x, y).

10. Compute the statical moment
∫∫

D
y d(x, y) of the half-disk

D = {(x, y) ∈ R
2; −1 ≤ x ≤ 1, 0 ≤ y ≤

√

1 − x2}

(a) as a double integral, writing D as a normal domain of type I;

(b) by transformation to polar coordinates.

11. The following integral is written in terms of a normal domain of type II:

1
∫

0

y2+1
∫

y

x2 y dxdy.
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(a) Compute the integral.

(b) Sketch the domain and represent it as a normal domain of type I.

(c) Interchange the order of integration and recompute the integral.

Hint. In (c) two summands are needed.
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Linear regression is one of the most important methods of data analysis. It serves

the determination of model parameters, model fitting, assessing the importance of

influencing factors, and prediction, in all areas of human, natural and economic

sciences. Computer scientists who work closely with people from these areas will

definitely come across regression models.

The aim of this chapter is a first introduction into the subject. We deduce the

coefficients of the regression models using the method of least squares to minimise

the errors. We will only employ methods of descriptive data analysis. We do not touch

upon the more advanced probabilistic approaches which are topics of statistics. For

that, as well as for nonlinear regression, we refer to the specialised literature.

We start with simple (or univariate) linear regression—a model with a single input

and a single output quantity—and explain the basic ideas of analysis of variance for

model evaluation. Then we turn to multiple (or multivariate) linear regression with

several input quantities. The chapter closes with a descriptive approach to determine

the influence of the individual coefficients.

18.1 Simple Linear Regression

A first glance at the basic idea of linear regression was already given in Sect. 8.3. In

extension to this, we will now allow more general models, in particular regression

lines with nonzero intercept.

Consider pairs of data (x1, y1), . . . , (xn, yn), obtained as observations or mea-

surements. Geometrically they form a scatter plot in the plane. The values xi and yi

may appear repeatedly in this list of data. In particular, for a given xi there can be

data points with different values yi1, . . . , yi p. The general task of linear regression
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Fig. 18.1 Scatter plot height/weight, line of best fit, best parabola

is to fit the graph of a function

y = β0ϕ0(x) + β1ϕ1(x) + · · · + βmϕm(x)

to the n data points (x1, y1), . . . , (xn, yn). Here the shape functions ϕ j (x) are given

and the (unknown) coefficients β j are to be determined such that the sum of squares

of the errors is minimal (method of least squares):

n∑

i=1

(
yi − β0ϕ0(xi ) − β1ϕ1(xi ) − · · · − βmϕm(xi )

)2
→ min

The regression is called linear because the function y depends linearly on the

unknown coefficients β j . The choice of the shape functions ensues either from a

possible theoretical model or empirically, where different possibilities are subjected

to statistical tests. The choice is made, for example, according to the proportion of

data variability which is explained by the regression—more about that in Sect. 18.4.

The standard question of (simple or univariate) linear regression is to fit a linear

model

y = β0 + β1x

to the data, i.e., to find the line of best fit or regression line through the scatter plot.

Example 18.1 A sample of n = 70 computer science students at the University of

Innsbruck in 2002 yielded the data depicted in Fig. 18.1. Here x denotes the height

[cm] and y the weight [kg] of the students. The left picture in Fig. 18.1 shows the

regression line y = β0 + β1x , the right one a fitted quadratic parabola of the form

y = β0 + β1x + β2x2.

Note the difference to Fig. 8.8 where the line of best fit through the origin was used;

i.e., the intercept β0 was set to zero in the linear model.
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Fig. 18.2 Scatter plot height of fathers/height of the sons, regression line

A variant of the standard problem is obtained by considering the linear model

η = β0 + β1ξ

for the transformed variables

ξ = ϕ(x), η = ψ(y).

Formally this problem is identical to the standard problem of linear regression, how-

ever, with transformed data

(ξi , ηi ) =
(
ϕ(xi ), ψ(yi )

)
.

A typical example is given by the loglinear regression with ξ = log x , η = log y

log y = β0 + β1 log x,

which in the original variables amounts to the exponential model

y = eβ0 xβ1 .

If the variable x itself has several components which enter linearly in the model, then

one speaks of multiple linear regression. We will deal with it in Sect. 18.3.

The notion of regression was introduced by Galton1 who observed, while inves-

tigating the height of sons/fathers, a tendency of regressing to the average size. The

data taken from [15] clearly show this effect, see Fig. 18.2. The method of least

squares goes back to Gauss.

After these introductory remarks about the general concept of linear regression,

we turn to simple linear regression. We start with setting up the model. The postulated

relationship between x and y is linear

y = β0 + β1x

1F. Galton, 1822–1911.
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Fig. 18.3 Linear model and

error εi y = β0 + β1x

yi

εi

xi

x

y

with unknown coefficients β0 and β1. In general, the given data will not exactly lie

on a straight line but deviate by εi , i.e.,

yi = β0 + β1xi + εi ,

as represented in Fig. 18.3.

From the given data we want to obtain estimated values β̂0, β̂1 for β0, β1. This is

achieved through minimising the sum of squares of the errors

L(β0, β1) =

n∑

i=1

ε2
i =

n∑

i=1

(yi − β0 − β1xi )
2,

so that β̂0, β̂1 solve the minimisation problem

L(β̂0, β̂1) = min
(

L(β0, β1) ; β0 ∈ R, β1 ∈ R

)
.

We obtain β̂0 and β̂1 by setting the partial derivatives of L with respect to β0 and β1

to zero:

∂L

∂β0

(
β̂0, β̂1

)
= −2

n∑

i=1

(yi − β̂0 − β̂1xi ) = 0,

∂L

∂β1

(
β̂0, β̂1

)
= −2

n∑

i=1

xi (yi − β̂0 − β̂1xi ) = 0.

This leads to a linear system of equations for β̂0, β̂1, the so-called normal equations

n β̂0 +
(∑

xi

)
β̂1 =

∑
yi ,(∑

xi

)
β̂0 +

(∑
x2

i

)
β̂1 =

∑
xi yi .

Proposition 18.2 Assume that at least two x-values in the data set (xi , yi ), i =

1, . . . , n are different. Then the normal equations have a unique solution

β̂0 =
(

1
n

∑
yi

)
−

(
1
n

∑
xi

)
β̂1, β̂1 =

∑
xi yi − 1

n

∑
xi

∑
yi∑

x2
i − 1

n
(
∑

xi )2

which minimises the sum of squares L(β0, β1) of the errors.
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Fig. 18.4 Linear model,

prediction, residual

y = β0 + β1xyi

y = β0 + β1x

yi
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Proof With the notations x = (x1, . . . , xn) and 1 = (1, . . . , 1) the determinant of the

normal equations is n
∑

x2
i − (

∑
xi )

2 = ‖x‖2‖1‖2 − 〈x, 1〉2. For vectors of length

n = 2 and n = 3 we know that 〈x, 1〉 = ‖x‖‖1‖ · cos ∡(x, 1), see Appendix A.4, and

thus ‖x‖‖1‖ ≥ |〈x, 1〉|. This relation, however, is valid in any dimension n (see for

instance [2, Chap. VI, Theorem 1.1]), and equality can only occur if x is parallel to

1, so all components xi are equal. As this possibility was excluded, the determinant

of the normal equations is greater than zero and the solution formula is obtained by

a simple calculation.

In order to show that this solution minimises L(β0, β1), we compute the Hessian

matrix

HL =

⎡
⎣

∂2 L

∂β2
0

∂2 L
∂β0∂β1

∂2 L
∂β1∂β0

∂2 L

∂β2
1

⎤
⎦ = 2

[
n

∑
xi∑

xi

∑
x2

i

]
= 2

[
‖1‖2 〈x, 1〉

〈x, 1〉 ‖x‖2

]
.

The entry ∂2L/∂β2
0 = 2n and det HL = 4

(
‖x‖2‖1‖2 − 〈x, 1〉2

)
are both positive.

According to Proposition 15.28, L has an isolated local minimum at the point

(β̂0, β̂1). Due to the uniqueness of the solution, this is the only minimum of L . �

The assumption that there are at least two different xi -values in the data set is not

a restriction since otherwise the regression problem is not meaningful. The result of

the regression is the predicted regression line

y = β̂0 + β̂1x .

The values predicted by the model are then

ŷi = β̂0 + β̂1xi , i = 1, . . . , n.

Their deviations from the data values yi are called residuals

ei = yi − ŷi = yi − β̂0 − β̂1xi , i = 1, . . . , n.

The meaning of these quantities can be seen in Fig. 18.4.

With the above specifications, the deterministic regression model is completed. In

the statistical regression model the errors εi are interpreted as random variables with
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mean zero. Under further probabilistic assumptions the model is made accessible to

statistical tests and diagnostic procedures. As mentioned in the introduction, we will

not pursue this path here but remain in the framework of descriptive data analysis.

In order to obtain a more lucid representation, we will reformulate the normal

equations. For this we introduce the following vectors and matrices:

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎦ , β =

[
β0

β1

]
, ε =

⎡
⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎦ .

By this, the relations

yi = β0 + β1xi + εi , i = 1, . . . , n,

can be written simply as

y = Xβ + ε.

Further

XTX =

[
1 1 . . . 1

x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣

1 x1

1 x2

...
...

1 xn

⎤
⎥⎥⎥⎦ =

[
n

∑
xi∑

xi

∑
x2

i

]
,

XTy =

[
1 1 . . . 1

x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣

yi

y2

...

yn

⎤
⎥⎥⎥⎦ =

[ ∑
yi∑

xi yi

]
,

so that the normal equations take the form

XTXβ̂ = XTy

with solution

β̂ = (XTX)−1 XTy.

The predicted values and residuals are

ŷ = Xβ̂, e = y − ŷ.

Example 18.3 (Continuation of Example 18.1) The data for x = height and y =

weight can be found in the M-file mat08_3.m; the matrix X is generated in MATLAB

by

X = [ones(size(x)), x];
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the regression coefficients are obtained by

beta = inv(X’* X) * X’* y;

The command beta = X\y permits a more stable calculation in MATLAB. In our

case the result is

β̂0 = −85.02,

β̂1 = 0.8787.

This gives the regression line depicted in Fig. 18.1.

18.2 Rudiments of the Analysis of Variance

First indications for the quality of fit of the linear model can be obtained from

the analysis of variance (ANOVA), which also forms the basis for more advanced

statistical test procedures.

The arithmetic mean of the y-values y1, . . . , yn is

ȳ =
1

n

n∑

i=1

yi .

The deviation of the measured value yi from the mean value ȳ is yi − ȳ. The total

sum of squares or total variability of the data is

Syy =

n∑

i=1

(yi − ȳ)2.

The total variability is split into two components in the following way:

n∑

i=1

(yi − ȳ)2 =

n∑

i=1

(ŷi − ȳ)2 +

n∑

i=1

(yi − ŷi )
2.

The validity of this relationship will be proven in Proposition 18.4 below. It is inter-

preted as follows: ŷi − ȳ is the deviation of the predicted value from the mean value,

and

SSR =

n∑

i=1

(ŷi − ȳ)2

the regression sum of squares. This is interpreted as the part of the data variability

accounted for by the model. On the other hand ei = yi − ŷi are the residuals, and

SSE =

n∑

i=1

(yi − ŷi )
2
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is the error sum of squares which is interpreted as the part of the variability that

remains unexplained by the linear model. These notions are best explained by con-

sidering the two extremal cases.

(a) The data values yi themselves already lie on a straight line. Then all ŷi = yi and

thus Syy = SSR , SSE = 0, and the regression model describes the data record

exactly.

(b) The data values are in no linear relation. Then the line of best fit is the horizontal

line through the mean value (see Exercise 13 of Chap. 8), so ŷi = ȳ for all i

and hence Syy = SSE , SSR = 0. This means that the regression model does not

offer any indication for a linear relation between the values.

The basis of these considerations is the validity of the following formula.

Proposition 18.4 (Partitioning of total variability) Syy = SSR + SSE .

Proof In the following we use matrix and vector notation. In particular, we employ

the formulas

aTb = bTa =
∑

ai bi , 1Ta = aT1 =
∑

ai = nā, aTa =
∑

a2
i

for vectors a, b, and the matrix identity (AB)T = BTAT. We have

Syy = (y − ȳ1)T(y − ȳ1) = yTy − ȳ(1Ty) − (yT1)ȳ + n ȳ2

= yTy − n ȳ2 − n ȳ2 + n ȳ2 = yTy − n ȳ2,

SSE = eTe = (y − ŷ)T(y − ŷ) = (y − Xβ̂)T(y − Xβ̂)

= yTy − β̂
T

XTy − yTXβ̂ + β̂
T

XTXβ̂ = yTy − β̂
T

XTy.

For the last equality we have used the normal equations XTXβ̂ = XTy and the

transposition formula β̂
T

XTy = (yTXβ̂)T = yTXβ̂. The relation ŷ = Xβ̂ implies in

particular XTŷ = XTy. Since the first line of XT consists of ones only, it follows that

1Tŷ = 1Ty and thus

SSR = (̂y − ȳ1)T (̂y − ȳ1) = ŷTŷ − ȳ( 1Tŷ ) − ( ŷT1)ȳ + n ȳ2

= ŷTŷ − n ȳ2 − n ȳ2 + n ȳ2 = β̂
T
(XTXβ̂) − n ȳ2 = β̂

T
XTy − n ȳ2.

Summation of the obtained expressions for SSE and SSR results in the sought after

formula. �

The partitioning of total variability

Syy = SSR + SSE
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and its above interpretation suggests using the quantity

R2 =
SSR

Syy

for the assessment of the goodness of fit. The quantity R2 is called coefficient of

determination and measures the fraction of variability explained by the regression.

In the limiting case of an exact fit, where the regression line passes through all data

points, we have SSE = 0 and thus R2 = 1. A small value of R2 indicates that the

linear model does not fit the data.

Remark 18.5 An essential point in the proof of Proposition 18.4 was the property of

XT that its first line was composed of ones only. This is a consequence of the fact that

β0 was a model parameter. In the regression where a straight line through the origin

is used (see Sect. 8.3) this is not the case. For a regression which does not have β0 as

a parameter the variance partition is not valid and the coefficient of determination is

meaningless.

Example 18.6 We continue the investigation of the relation between height and

weight from Example 18.1. Using the MATLAB program mat18_1.m and entering

the data from mat08_3.m results in

Syy = 9584.9, SSE = 8094.4, SSR = 1490.5

and

R2 = 0.1555, R = 0.3943.

The low value of R2 is a clear indication that height and weight are not in a linear

relation.

Example 18.7 In Sect. 9.1 the fractal dimension d = d(A) of a bounded subset A of

R
2 was defined by the limit

d = d(A) = − lim
ε→0+

log N (A, ε)/ log ε,

where N (A, ε) denoted the smallest number of squares of side length ε needed to

cover A. For the experimental determination of the dimension of a fractal set A, one

rasters the plane with different mesh sizes ε and determines the number N = N (A, ε)

of boxes that have a non-empty intersection with the fractal. As explained in Sect. 9.1,

one uses the approximation

N (A, ε) ≈ C · ε−d .

Applying logarithms results in

log N (A, ε) ≈ log C + d log
1

ε
,
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which is a linear model

y ≈ β0 + β1x

for the quantities x = log 1/ε, y = log N (A, ε). The regression coefficient β̂1 can

be used as an estimate for the fractal dimension d.

In Exercise 1 of Sect. 9.6 this procedure was applied to the coastline of Great

Britain. Assume that the following values were obtained:

1/ε 4 8 12 16 24 32

N (A, ε) 16 48 90 120 192 283

A linear regression through the logarithms x = log 1/ε, y = log N (A, ε) yields the

coefficients

β̂0 = 0.9849, d ≈ β̂1 = 1.3616

with the coefficient of determination

R2 = 0.9930.

This is very good fit, which is also confirmed by Fig. 18.5. The given data thus

indicate that the fractal dimension of the coastline of Great Britain is d = 1.36.

A word of caution is in order. Data analysis can only supply indications, but never

a proof that a model is correct. Even if we choose among a number of wrong models

the one with the largest R2, this model will not become correct. A healthy amount of

skepticism with respect to purely empirically inferred relations is advisable; models

should always be critically questioned. Scientific progress arises from the interplay

between the invention of models and their experimental validation through data.

1 2 3 4

2

3

4

5

6
y = log N

x = log 1/ε

Fig. 18.5 Fractal dimension of the coastline of Great Britain

www.dbooks.org

https://www.dbooks.org/


18.3 Multiple Linear Regression 265

18.3 Multiple Linear Regression

In multiple (multivariate) linear regression the variable y does not just depend on

one regressor variable x , but on several variables, for instance x1, x2, . . . , xk . We

emphasise that the notation with respect to Sect. 18.1 is changed; there xi denoted

the i th data value, and now xi refers to the i th regressor variable. The measurements of

the i th regressor variable are now denoted with two indices, namely xi1, xi2, . . . , xin .

In total, there are k × n data values. We again look for a linear model

y = β0 + β1x1 + β2x2 + · · · + βk xk

with the yet unknown coefficients β0, β1, . . . , βk .

Example 18.8 A vending machine company wants to analyse the delivery time,

i.e., the time span y which a driver needs to refill a machine. The most impor-

tant parameters are the number x1 of refilled product units and the distance x2

walked by the driver. The results of an observation of 25 services are given in

the M-file mat18_3.m. The data values are taken from [19]. The observations

(x11, x21), (x12, x22), (x13, x23), . . . , (x1,25, x2,25) with the corresponding service

times y1, y2, y3, . . . , y25 yield a scatter plot in space to which a plane of the form

y = β0 + β1x1 + β2x2 should be fitted (Fig. 18.6; use the M-file mat18_4.m for

visualisation).

Remark 18.9 A special case of the general multiple linear model y = β0 + β1x1 +

· · · + βk xk is simple linear regression with several nonlinear form functions (as

mentioned in Sect. 18.1), i.e.,

y = β0 + β1ϕ1(x) + β2ϕ2(x) + · · · + βkϕk(x),

where x1 = ϕ1(x), x2 = ϕ2(x), · · · , xk = ϕk(x) are considered as regressor vari-

ables. In particular one can allow polynomial models

y = β0 + β1x + β2x2 + · · · + βk xk

Fig. 18.6 Multiple linear

regression through a scatter

plot in space
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or still more general interactions between several variables, for instance

y = β0 + β1x1 + β2x2 + β3x1x2.

All these cases are treated in the same way as the standard problem of multiple linear

regression, after renaming the variables.

The data values for the individual regressor variables are schematically repre-

sented as follows:

Variable y x1 x2 . . . xk

Observation 1 y1 x11 x21 . . . xk1

Observation 2 y2 x12 x22 . . . xk2

...
...

...
...

...

Observation n yn x1n x2n . . . xkn

Each value yi is to be approximated by

yi = β0 + β1x1i + β2x2i + · · · + βk xki + εi , i = 1, . . . , n

with the errors εi . The estimated coefficients β̂0, β̂1, . . . , β̂k are again obtained as

the solution of the minimisation problem

L(β0, β1, . . . , βk) =

n∑

i=1

ε2
i → min

Using vector and matrix notation

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x11 x21 . . . xk1

1 x12 x22 . . . xk2

...
...

...
...

1 x1n x2n . . . xkn

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

β0

β1

...

βk

⎤
⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎦

the linear model can again be written for short as

y = Xβ + ε.

The coefficients of best fit are obtained as in Sect. 18.1 by the formula

β̂ = (XTX)−1XTy

with the predicted values and the residuals

ŷ = Xβ̂, e = y − ŷ.
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The partitioning of total variability

Syy = SSR + SSE

is still valid; the multiple coefficient of determination

R2 = SSR/Syy

is an indicator of the goodness of fit of the model.

Example 18.10 We continue the analysis of the delivery times from Example 18.8.

Using the MATLAB program mat18_2.m and entering the data from mat18_3.m

results in

β̂ =

⎡
⎣

2.3412

1.6159

0.0144

⎤
⎦ .

We obtain the model

ŷ = 2.3412 + 1.6159 x1 + 0.0144 x2

with the multiple coefficient of determination of

R2 = 0.9596

and the partitioning of total variability

Syy = 5784.5, SSR = 5550.8, SSE = 233.7

In this example merely (1 − R2) · 100% ≈ 4% of the variability of the data is not

explained by the regression, a very satisfactory goodness of fit.

18.4 Model Fitting and Variable Selection

A recurring problem is to decide which variables should be included in the model.

Would the inclusion of x3 = x2
2 and x4 = x1x2, i.e., the model

y = β0 + β1x1 + β2x2 + β3x2
2 + β4x1x2,

lead to better results, and can, e.g., the term β2x2 be eliminated subsequently? It is

not desirable to have too many variables in the model. If there are as many variables

as data points, then one can fit the regression exactly through the data and the model

would loose its predictive power. A criterion will definitely be to reach a value of

R2 which is as large as possible. Another aim is to eliminate variables that do not
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contribute essentially to the total variability. An algorithmic procedure for identifying

these variables is the sequential partitioning of total variability.

Sequential partitioning of total variability. We include variables stepwise in the

model, thus consider the increasing sequence of models with corresponding SSR :

y = β0 SSR(β0),

y = β0 + β1x1 SSR(β0, β1),

y = β0 + β1x1 + β2x2 SSR(β0, β1, β2),

...
...

y = β0 + β1x1 + β2x2 + · · · + βk xk SSR(β0, β1, . . . , βk) = SSR .

Note that SSR(β0) = 0, since in the initial model β0 = ȳ. The additional explana-

tory power of the variable x1 is measured by

SSR(β1|β0) = SSR(β0, β1) − 0,

the power of variable x2 (if x1 is already in the model) by

SSR(β2|β0, β1) = SSR(β0, β1, β2) − SSR(β0, β1),

the power of variable xk (if x1, x2, . . . , xk−1 are in the model) by

SSR(βk |β0, β1, . . . , βk−1) = SSR(β0, β1, . . . , βk) − SSR(β0, β1, . . . , βk−1).

Obviously,

SSR(β1|β0) + SSR(β2|β0, β1) + SSR(β3|β0, β1, β2) + · · ·

+ SSR(βk |β0, β1, β2, . . . , βk−1) = SSR .

This shows that one can interpret the sequential, partial coefficient of determination

SSR(β j |β0, β1, . . . , β j−1)

Syy

as explanatory power of the variables x j , under the condition that the variables

x1, x2, . . . , x j−1 are already included in the model. This partial coefficient of deter-

mination depends on the order of the added variables. This dependency can be elim-

inated by averaging over all possible sequences of variables.

Average explanatory power of individual coefficients. One first computes all possi-

ble sequential, partial coefficients of determination which can be obtained by adding

the variable x j to all possible combinations of the already included variables. Sum-

ming up these coefficients and dividing the result by the total number of possibilities,

one obtains a measure for the contribution of the variable x j to the explanatory power

of the model.

www.dbooks.org

https://www.dbooks.org/


18.4 Model Fitting and Variable Selection 269

Average over orderings was proposed by [16]; further details and advanced con-

siderations can be found, for instance, in [8,10]. The concept does not use proba-

bilistically motivated indicators. Instead it is based on the data and on combinatorics,

thus belongs to descriptive data analysis. Such descriptive methods, in contrast to the

commonly used statistical hypothesis testing, do not require additional assumptions

which may be difficult to justify.

Example 18.11 We compute the explanatory power of the coefficients in the delivery

time problem of Example 18.8. First we fit the two univariate models

y = β0 + β1x1, y = β0 + β2x2

and from that obtain

SSR(β0, β1) = 5382.4, SSR(β0, β2) = 4599.1,

with the regression coefficients β̂0 = 3.3208, β̂1 = 2.1762 in the first and β̂0 =

4.9612, β̂2 = 0.0426 in the second case. With the already computed values of the

bivariate model

SSR(β0, β1, β2) = SSR = 5550.8, Syy = 5784.5

from Example 18.10 we obtain the two sequences

SSR(β1|β0) = 5382.4 ≈ 93.05% of Syy

SSR(β2|β0, β1) = 168.4 ≈ 2.91% of Syy

and

SSR(β2|β0) = 4599.1 ≈ 79.51% of Syy

SSR(β1|β0, β2) = 951.7 ≈ 16.45% of Syy .

The average explanatory power of the variable x1 (or of the coefficient β1) is

1

2

(
93.05 + 16.45

)
% = 54.75%,

the one of the variable x2 is

1

2

(
2.91 + 79.51

)
% = 41.21%;

the remaining 4.04% stay unexplained. The result is represented in Fig. 18.7.
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Fig. 18.7 Average

explanatory powers of the

individual variables

54.8 %

41.2 %

4.0 %

unexplained
proportion β2

proportion β1

Numerical calculation of the average explanatory powers. In the case of more

than two independent variables one has to take care that all possible sequences (rep-

resented by permutations of the variables) are considered. This will be exemplarily

shown with three variables x1, x2, x3. In the left column of the table there are the

3! = 6 permutations of {1, 2, 3}, the other columns list the sequentially obtained

values of SSR .

1 2 3 SSR(β1|β0) SSR(β2|β0, β1) SSR(β3|β0, β1, β2)

1 3 2 SSR(β1|β0) SSR(β3|β0, β1) SSR(β2|β0, β1, β3)

2 1 3 SSR(β2|β0) SSR(β1|β0, β2) SSR(β3|β0, β2, β1)

2 3 1 SSR(β2|β0) SSR(β3|β0, β2) SSR(β1|β0, β2, β3)

3 1 2 SSR(β3|β0) SSR(β1|β0, β3) SSR(β2|β0, β3, β1)

3 2 1 SSR(β3|β0) SSR(β2|β0, β3) SSR(β1|β0, β3, β2)

Obviously the sum of each row is always equal to SSR , so that the sum of all entries

is equal to 6 · SSR . Note that amongst the 18 SSR-values there are actually only 12

different ones.

The average explanatory power of the variable x1 is defined by M1/Syy , where

M1 =
1

6

(
SSR(β1|β0) + SSR(β1|β0) + SSR(β1|β0, β2) + SSR(β1|β0, β3)

+ SSR(β1|β0, β2, β3) + SSR(β1|β0, β3, β2)
)

and analogously for the other variables. As remarked above, we have

M1 + M2 + M3 = SSR,

and thus the total partitioning adds up to one

M1

Syy

+
M2

Syy

+
M3

Syy

+
SSE

Syy

= 1.

For a more detailed analysis of the underlying combinatorics, for the necessary

modifications in the case of collinearity of the data (linear dependence of the columns
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of the matrix X) and for a discussion of the significance of the average explanatory

power, we refer to the literature quoted above. The algorithm is implemented in the

applet Linear regression.

Experiment 18.12 Open the applet Linear regression and load data set number 9.

It contains experimental data quantifying the influence of different aggregates on a

mixture of concrete. The meaning of the output variables x1 through x4 and the input

variables x5 through x13 is explained in the online description of the applet. Exper-

iment with different selections of the variables of the model. An interesting initial

model is obtained, for example, by choosing x6, x8, x9, x10, x11, x12, x13 as inde-

pendent and x1 as dependent variable; then remove variables with low explanatory

power and draw a pie chart.

18.5 Exercises

1. The total consumption of electric energy in Austria 1970–2015 is given in Table

18.1 (from [26, Table 22.13]). The task is to carry out a linear regression of the

form y = β0 + β1x through the data.

(a) Write down the matrix X explicitly and compute the coefficients β̂ =

[β̂0, β̂1]
T using the MATLAB command beta = X\y.

(b) Check the goodness of fit by computing R2. Plot a scatter diagram with the

fitted straight line. Compute the forecast ŷ for 2020.

Table 18.1 Electric energy consumption in Austria, year = xi , consumption = yi [GWh]

xi 1970 1980 1990 2000 2005 2010 2013 2014 2015

yi 23.908 37.473 48.529 58.512 66.083 68.931 69.934 68.918 69.747

2. A sample of n = 44 civil engineering students at the University of Innsbruck in

the year 1998 gave the values for x = height [cm] and y = weight [kg], listed

in the M-file mat18_ex2.m. Compute the regression line y = β0 + β1x , plot

the scatter diagram and calculate the coefficient of determination R2.

3. Solve Exercise 1 using Excel.

4. Solve Exercise 1 using the statistics package SPSS.

Hint. Enter the data in the worksheet Data View; the names of the variables and

their properties can be defined in the worksheet Variable View. Go to Analyze

→ Regression → Linear.

5. The stock of buildings in Austria 1869–2011 is given in the M-file

mat18_ex5.m (data from [26, Table 12.01]). Compute the regression line

y = β0 + β1x and the regression parabola y = α0 + α1(x − 1860)2 through the

data and test which model fits better, using the coefficient of determination R2.

6. The monthly share index for four breweries from November 1999 to November

2000 is given in the M-file mat18_ex6.m (November 1999 = 100%, from the

Austrian magazine profil 46/2000). Fit a univariate linear model y = β0 + β1x
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to each of the four data sets (x . . . date, y . . . share index), plot the results in

four equally scaled windows, evaluate the results by computing R2 and check

whether the caption provided by profil is justified by the data. For the calculation

you may use the MATLAB program mat18_1.m.

Hint. A solution is suggested in the M-file mat18_exsol6.m.

7. Continuation of Exercise 5, stock of buildings in Austria. Fit the model

y = β0 + β1x + β2(x − 1860)2

and compute SSR = SSR(β0, β1, β2) and Syy . Further, analyse the increase of

explanatory power through adding the respective missing variable in the models

of Exercise 5, i.e., compute SSR(β2|β0, β1) and SSR(β1|β0, β2) as well as the

average explanatory power of the individual coefficients. Compare with the result

for data set number 5 in the applet Linear regression.

8. The M-file mat18_ex8.m contains the mileage per gallon y of 30 cars depend-

ing on the engine displacement x1, the horsepower x2, the overall length x3 and

the weight x4 of the vehicle (from: Motor Trend 1975, according to [19]). Fit

the linear model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4

and estimate the explanatory power of the individual coefficients through a sim-

ple sequential analysis

SSR(β1|β0), SSR(β2|β0, β1), SSR(β3|β0, β1, β2), SSR(β4|β0, β1, β2, β3).

Compare your result with the average explanatory power of the coefficients for

data set number 2 in the applet Linear regression.

Hint. A suggested solution is given in the M-file mat18_exsol8.m.

9. Check the results of Exercises 2 and 6 using the applet Linear regression (data

sets 1 and 4); likewise for the Examples 18.1 and 18.8 with the data sets 8 and

3. In particular, investigate in data set 8 whether height, weight and the risk of

breaking a leg are in any linear relation.

10. Continuation of Exercise 14 from Sect. 8.4. A more accurate linear approxima-

tion to the relation between shear strength τ and normal stress σ is delivered

by Coulomb’s model τ = c + kσ where k = tan ϕ and c [kPa] is interpreted

as cohesion. Recompute the regression model of Exercise 14 in Sect. 8.4 with

nonzero intercept. Check that the resulting cohesion is indeed small as compared

to the applied stresses, and compare the resulting friction angles.

11. (Change point analysis) The consumer prize data from Example 8.21 suggest

that there might be a change in the slope of the regression line around the year

2013, see also Fig. 8.9. Given data (x1, y1), . . . , (xn, yn) with ordered data points

x1 < x2 < . . . < xn , phenomena of this type can be modelled by a piecewise

linear regression

y =

{
α0 + α1x, x ≤ x∗,

β0 + β1x, x ≥ x∗.
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If the slopes α1 and α2 are different, x∗ is called a change point. A change point

can be detected by fitting models

yi =

{
α0 + α1xi , i = 1, . . . , m,

β0 + β1xi , i = m + 1, . . . , n

and varying the index m between 2 and n − 1 until a two-line model with the

smallest total residual sum of squares SSR(α0, α1) + SSR(β0, β1) is found. The

change point x∗ is the point of intersection of the two predicted lines. (If the

overall one-line model has the smallest SSR , there is no change point.)

Find out whether there is a change point in the data of Example 8.21. If so, locate

it and use the two-line model to predict the consumer price index for 2017.

12. Atmospheric CO2 concentration has been recorded at Mauna Loa, Hawai, since

1958. The yearly averages (1959–2008) in ppm can be found in the MATLAB

program mat18_ex12.m; the data are from [14].

(a) Fit an exponential model y = α0 eα1x to the data and compare the prediction

with the actual data (2017: 406.53 ppm).

Hint. Taking logarithms leads to the linear model z = β0 + β1x with z =

log y, β0 = log α0, β1 = α1. Estimate the coefficients β̂0, β̂1 and compute

α̂0, α̂1 as well as the prediction for y.

(b) Fit a square exponential model y = α0 eα1x+α2x2
to the data and check

whether this yields a better fit and prediction.
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In this chapter we discuss the theory of initial value problems for ordinary differential

equations. We limit ourselves to scalar equations here; systems will be discussed in

the next chapter.

After presenting the general definition of a differential equation and the geometric

significance of its direction field, we start with a detailed discussion of first-order

linear equations. As important applications we discuss the modelling of growth and

decay processes. Subsequently, we investigate questions of existence and (local)

uniqueness of the solution of general differential equations and discuss the method

of power series. We also study the qualitative behaviour of solutions close to an

equilibrium point. Finally, we discuss the solution of second-order linear problems

with constant coefficients.

19.1 Initial Value Problems

Differential equations are equations involving a (sought after) function and its deriva-

tive(s). They play a decisive role in modelling time-dependent processes.

Definition 19.1 Let D ⊂ R
2 be open and f : D ⊂ R

2 → R continuous. The equa-

tion

y′(x) = f
(

x, y(x)
)

is called (an ordinary) first-order differential equation. A solution is a differentiable

function y : I → D which satisfies the equation for all x ∈ I .
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One often suppresses the independent variable x in the notation and writes the

above problem for short as

y′ = f (x, y).

The sought after function y in this equation is also called the dependent variable

(depending on x).

In modelling time-dependent processes, one usually denotes the independent vari-

able by t (for time) and the dependent variable by x = x(t). In this case one writes

the first-order differential equation as

ẋ(t) = f
(

t, x(t)
)

or for short as ẋ = f (t, x).

Example 19.2 (Separation of the variables) We want to find all functions y = y(x)

satisfying the equation y′(x) = x · y(x)2. In this example one obtains the solutions

by separating the variables. For y �= 0 one divides the differential equation by y2

and gets

1

y2
· y′ = x .

The left-hand side of this equation is of the form g(y) · y′. Let G(y) be an antideriva-

tive of g(y). According to the chain rule, and recalling that y is a function of x , we

obtain

d

dx
G(y) =

d

dy
G(y) ·

dy

dx
= g(y) · y′.

In our example we have g(y) = y−2 and G(y) = −y−1, consequently

d

dx

(

−
1

y

)

=
1

y2
· y′ = x .

Integration of this equation with respect to x results in

−
1

y
=

x2

2
+ C,

where C denotes an arbitrary integration constant. By elementary manipulations we

find

y =
1

−x2/2 − C
=

2

K − x2

with the constant K = −2C .

The function y = 0 is also a solution of the differential equation. Formally, one

obtains it from the above solution by setting K = ∞. The example shows that differ-

ential equations have infinitely many solutions in general. By requiring an additional

condition, a unique solution can be selected. For example, setting y(0) = 1 gives

y(x) = 2/(2 − x2).
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Fig. 19.1 The direction field

of y′ = −2xy/(x2 + 2y)
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Definition 19.3 The differential equation y′(x) = f
(

x, y(x)
)

together with the

additional condition y(x0) = y0, i.e.,

y′(x) = f
(

x, y(x)
)

, y(x0) = y0,

is called initial value problem. A solution of an initial value problem is a (continu-

ously) differentiable function y(x), which satisfies the differential equation and the

initial condition y(x0) = y0.

Geometric interpretation of a differential equation. For a given first-order differ-

ential equation

y′ = f (x, y), (x, y) ∈ D ⊂ R
2

one searches for a differentiable function y = y(x) whose graph lies in D and whose

tangents have the slopes tan ϕ = y′(x) = f
(

x, y(x)
)

for each x . By plotting short

arrows with slopes tan ϕ = f (x, y) at the points (x, y) ∈ D one obtains the direction

field of the differential equation. The direction field is tangential to the solution curves

and offers a good visual impression of their shapes. Figure 19.1 shows the direction

field of the differential equation

y′ = −
2xy

x2 + 2y
.

The right-hand side has singularities along the curve y = −x2/2 which is reflected

by the behaviour of the arrows in the lower part of the figure.

Experiment 19.4 Visualise the direction field of the above differential equation with

the applet Dynamical systems in the plane.
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19.2 First-Order Linear Differential Equations

Let a(x) and g(x) be functions defined on some interval. The equation

y′ + a(x) y = g(x)

is called a first-order linear differential equation. The function a is the coefficient, the

right-hand side g is called inhomogeneity. The differential equation is called homo-

geneous, if g = 0, otherwise inhomogeneous. First we state the following important

result.

Proposition 19.5 (Superposition principle) If y and z are solutions of a linear

differential equation with possibly different inhomogeneities

y′(x) + a(x) y(x) = g(x),

z′(x) + a(x) z(x) = h(x),

then their linear combination

w(x) = αy(x) + βz(x), α, β ∈ R

solves the linear differential equation

w′(x) + a(x) w(x) = αg(x) + βh(x).

Proof This so-called superposition principle follows from the linearity of the deriva-

tive and the linearity of the equation. �

In a first step we compute all solutions of the homogeneous equation. We will use

the superposition principle later to find all solutions of the inhomogeneous equation.

Proposition 19.6 The general solution of the homogeneous differential equation

y′ + a(x) y = 0

is

yh(x) = K e−A(x)

with K ∈ R and an arbitrary antiderivative A(x) of a(x).

Proof For y �= 0 we separate the variables

1

y
· y′ = −a(x)
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Fig. 19.2 The direction field of y′ = y (left) and y′ = −y (right)

and use

d

dy
log |y| =

1

y

to obtain

log |y| = −A(x) + C

by integrating the equation. From that we infer

|y(x)| = e−A(x)eC .

This formula shows that y(x) cannot change sign since the right-hand side is never

zero. Thus K = eC · sign y(x) is a constant as well, and the formula

y(x) = sign y(x) · |y(x)| = K e−A(x), K ∈ R

yields all solutions of the homogeneous equation. �

Example 19.7 The linear differential equation

ẋ = ax

with constant coefficient a has the general solution

x(t) = K eat , K ∈ R.

The constant K is determined by x(0), for example.

The direction field of the differential equation y′ = ay (depending on the sign of

the coefficient) is shown in Fig. 19.2.

Interpretation. Let x(t) be a time-dependent function which describes a growth or

decay process (population increase/decrease, change of mass, etc.). We consider a
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time interval [t, t + h] with h > 0. For x(t) �= 0 the relative change of x in this time

interval is given by

x(t + h) − x(t)

x(t)
=

x(t + h)

x(t)
− 1.

The relative rate of change (change per unit of time) is thus

x(t + h) − x(t)

t + h − t
·

1

x(t)
=

x(t + h) − x(t)

h · x(t)
.

For an ideal growth process this rate only depends on time t . In the limit h → 0 this

leads to the instantaneous relative rate of change

a(t) = lim
h→0

x(t + h) − x(t)

h · x(t)
=

ẋ(t)

x(t)
.

Ideal growth processes thus may be modelled by the linear differential equation

ẋ(t) = a(t)x(t).

Example 19.8 (Radioactive decay) Let x(t) be the concentration of a radioactive

substance at time t . In radioactive decay the rate of change does not depend on time

and is negative,

a(t) ≡ a < 0.

The solution of the equation ẋ = ax with initial value x(0) = x0 is

x(t) = eat x0.

It is exponentially decreasing and limt→∞ x(t) = 0, see Fig. 19.3. The half life T ,

the time in which half of the substance has decayed, is obtained from

x0

2
= eaT x0 as T = −

log 2

a
.

The half life for a = −2 is indicated in Fig. 19.3 by the dotted lines.

Fig. 19.3 Radioactive decay

with constants

a = −0.5,−1,−2 (top to

bottom)
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Example 19.9 (Population models) Let x(t) be the size of a population at time t ,

modelled by ẋ = ax . If a constant, positive rate of growth a > 0 is presumed then

the population grows exponentially

x(t) = eat x0, lim
t→∞

|x(t)| = ∞.

One calls this behaviour Malthusian law.1 In 1839 Verhulst suggested an improved

model which also takes limited resources into account

ẋ(t) =
(

α − βx(t)
)

· x(t) with α,β > 0.

The corresponding discrete model was already discussed in Example 5.3, where L

denoted the quotient α/β.

The rate of growth in Verhulst’s model is population dependent, namely equal to

α − βx(t), and decreases linearly with increasing population. Verhulst’s model can

be solved by separating the variables (or with maple). One obtains

x(t) =
α

β + Cαe−αt

and thus, independently of the initial value,

lim
t→∞

x(t) =
α

β
,

see also Fig. 19.4. The stationary solution x(t) = α/β is an asymptotically stable

equilibrium point of Verhulst’s model, see Sect. 19.5.

Variation of constants. We now turn to the solution of the inhomogeneous equation

y′ + a(x)y = g(x).

We already know the general solution

yh(x) = c · e−A(x), c ∈ R

Fig. 19.4 Population

increase according to

Malthus and Verhulst

0 0.5 1 1.5

0

0.25

0.5

1

α/β

t

x

Verhulst

Malthus

1T.R. Malthus, 1766–1834.
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of the homogeneous equation with the antiderivative

A(x) =
∫ x

x0

a(ξ) dξ.

We look for a particular solution of the inhomogeneous equation of the form

yp(x) = c(x) · yh(x) = c(x) · e−A(x),

where we allow the constant c = c(x) to be a function of x (variation of constants).

Substituting this formula into the inhomogeneous equation and differentiating using

the product rule yields

y′
p(x) + a(x) yp(x) = c′(x) yh(x) + c(x) y′

h(x) + a(x) yp(x)

= c′(x) yh(x) − a(x) c(x) yh(x) + a(x) yp(x)

= c′(x) yh(x).

If one equates this expression with the inhomogeneity g(x), one recognises that c(x)

fulfils the differential equation

c′(x) = eA(x)g(x)

which can be solved by integration

c(x) =
∫ x

x0

eA(ξ)g(ξ) dξ.

We thus obtain the following proposition.

Proposition 19.10 The differential equation

y′ + a(x)y = g(x)

has the general solution

y(x) = e−A(x)

(∫ x

x0

eA(ξ)g(ξ) dξ + K

)

with A(x) =
∫ x

x0
a(ξ) dξ and an arbitrary constant K ∈ R.

Proof By the above considerations, the function y(x) is a solution of the differen-

tial equation y′ + a(x)y = g(x). Conversely, let z(x) be any other solution. Then,

according to the superposition principle, the difference z(x) − y(x) is a solution of

the homogeneous equation, so

z(x) = y(x) + c e−A(x).

Therefore, z(x) also has the form stated in the proposition. �
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Corollary 19.11 Let yp be an arbitrary solution of the inhomogeneous linear dif-

ferential equation

y′ + a(x)y = g(x).

Then, its general solution can be written as

y(x) = yp(x) + yh(x) = yp(x) + K e−A(x), K ∈ R.

Proof This statement follows from the proof of Proposition 19.10 or directly from

the superposition principle. �

Example 19.12 We solve the problem y′ + 2y = e4x + 1. The solution of the homo-

geneous equation is yh(x) = c e−2x . A particular solution can be found by variation

of constants. From

c(x) =
∫ x

0

e2ξ
(

e4ξ + 1
)

dξ =
1

6
e6x +

1

2
e2x −

2

3

it follows that

yp(x) =
1

6
e4x −

2

3
e−2x +

1

2
.

The general solution is thus

y(x) = yp(x) + yh(x) = K e−2x +
1

6
e4x +

1

2
.

Here, we have combined the two terms containing e−2x . The new constant K can be

determined from an additional initial condition y(0) = α, namely

K = α −
2

3
.

19.3 Existence and Uniqueness of the Solution

Finding analytic solutions of differential equations can be a difficult problem and

is often impossible. Apart from some types of differential equations (e.g., linear

problems or equations with separable variables), there is no general procedure to

determine the solution explicitly. Thus numerical methods are used frequently (see

Chap. 21). In the following we discuss the existence and uniqueness of solutions of

general initial value problems.
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Proposition 19.13 (Peano’s theorem2) If the function f is continuous in a neigh-

bourhood of (x0, y0), then the initial value problem

y′ = f (x, y), y(x0) = y0

has a solution y(x) for x close to x0.

Instead of a proof (see [11, Part I, Theorem 7.6]), we discuss the limitations of

this proposition. First it only guarantees the existence of a local solution in the

neighbourhood of the initial value. The next example shows that one cannot expect

more, in general.

Example 19.14 We solve the differential equation ẋ = x2, x(0) = 1. Separation of

the variables yields
∫

dx

x2
=

∫

dt = t + C,

and thus

x(t) =
1

1 − t
.

This function has a singularity at t = 1, where the solution ceases to exist. This

behaviour is called blow up.

Furthermore, Peano’s theorem does not give any information on how many solu-

tions an initial value problem has. In general, solutions need not be unique, as it is

shown in the following example.

Example 19.15 The initial value problem y′ = 2
√

|y|, y(0) = 0 has infinitely many

solutions

y(x) =

⎧

⎪

⎨

⎪

⎩

(x − b)2, b < x,

0, −a ≤ x ≤ b,

−(x − a)2, x < −a,

a, b ≥ 0 arbitrary.

For example, for x < −a, one verifies at once

y′(x) = −2(x − a) = 2(a − x) = 2|x − a| = 2
√

(x − a)2 = 2
√

|y|.

Thus the continuity of f is not sufficient to guarantee the uniqueness of the solution

of initial value problems. One needs somewhat more regularity, namely Lipschitz3

continuity with respect to the second variable (see also Definition C.14).

2G. Peano, 1858–1932.
3R. Lipschitz, 1832–1903.
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Definition 19.16 Let D ⊂ R
2 and f : D → R. The function f is said to satisfy

a Lipschitz condition with Lipschitz constant L on D, if the inequality | f (x, y) −
f (x, z)| ≤ L |y − z| holds for all points (x, y), (x, z) ∈ D.

According to the mean value theorem (Proposition 8.4)

f (x, y) − f (x, z) =
∂ f

∂y
(x, ξ)(y − z)

for every differentiable function. If the derivative is bounded, then the function sat-

isfies a Lipschitz condition. In this case one can choose

L = sup

∣

∣

∣

∣

∂ f

∂y
(x, ξ)

∣

∣

∣

∣

.

Counterexample 19.17 The function g(x, y) =
√

|y| does not satisfy a Lipschitz

condition in any D that contains a point with y = 0 because

|g(x, y) − g(x, 0)|
|y − 0|

=
√

|y|
|y|

=
1

√
|y|

→ ∞ for y → 0.

Proposition 19.18 If the function f satisfies a Lipschitz condition in the neighbour-

hood of (x0, y0), then the initial value problem

y′ = f (x, y), y(x0) = y0

has a unique solution y(x) for x close to x0.

Proof We only show uniqueness, the existence of a solution y(x) on the interval

[x0, x0 + H ] follows (for small H ) from Peano’s theorem. Uniqueness is proven

indirectly. Assume that z is another solution, different from y, on the interval

[x0, x0 + H ] with z(x0) = y0. The number

x1 = inf
{

x ∈ R ; x0 ≤ x ≤ x0 + H and y(x) �= z(x)
}

is thus well-defined. We infer from the continuity of y and z that y(x1) = z(x1).

Now we choose h > 0 so small that x1 + h ≤ x0 + H and integrate the differential

equation

y′(x) = f
(

x, y(x)
)

from x1 to x1 + h. This gives

y(x1 + h) − y(x1) =
∫ x1+h

x1

y′(x) dx =
∫ x1+h

x1

f
(

x, y(x)
)

dx
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and

z(x1 + h) − y(x1) =
∫ x1+h

x1

f
(

x, z(x)
)

dx .

Subtracting the first formula above from the second yields

z(x1 + h) − y(x1 + h) =
∫ x1+h

x1

(

f
(

x, z(x)
)

− f
(

x, y(x)
)

)

dx .

The Lipschitz condition on f gives

|z(x1 + h) − y(x1 + h)| ≤
∫ x1+h

x1

∣

∣ f
(

x, z(x)
)

− f
(

x, y(x)
)
∣

∣ dx

≤ L

∫ x1+h

x1

|z(x) − y(x)| dx .

Let now

M = max
{

|z(x) − y(x)| ; x1 ≤ x ≤ x1 + h
}

.

Due to the continuity of y and z, this maximum exists, see the discussion after

Proposition 6.15. After possibly decreasing h this maximum is attained at x1 + h

and

M = |z(x1 + h) − y(x1 + h)| ≤ L

∫ x1+h

x1

M dx ≤ Lh M.

For a sufficiently small h, namely Lh < 1, the inequality

M ≤ Lh M

implies M = 0. Since one can choose h arbitrarily small, y(x) = z(x) holds true for

x1 ≤ x ≤ x1 + h in contradiction to the definition of x1. Hence the assumed different

solution z does not exist. �

19.4 Method of Power Series

We have encountered several examples of functions that can be represented as series,

e.g. in Chap. 12. Motivated by this we try to solve the initial value problem

y′ = f (x, y), y(x0) = y0

by means of a series

y(x) =
∞
∑

n=0

an(x − x0)
n .
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We will use the fact that convergent power series can be differentiated and rearranged

term by term, see for instance [3, Chap. 9, Corollary 7.4].

Example 19.19 We solve once more the linear initial value problem

y′ = y, y(0) = 1.

For that we differentiate the ansatz

y(x) =
∞
∑

n=0

an xn = a0 + a1x + a2x2 + a3x3 + · · ·

term by term with respect to x

y′(x) =
∞
∑

n=1

nan xn−1 = a1 + 2a2x + 3a3x2 + 4a4x3 + · · ·

and substitute the result into the differential equation to get

a1 + 2a2x + 3a3x2 + 4a4x3 + · · · = a0 + a1x + a2x2 + a3x3 + · · ·

Since this equation has to hold for all x , the unknowns an can be determined by

equating the coefficients of same powers of x . This gives

a1 = a0, 2a2 = a1,

3a3 = a2, 4a4 = a3,

and so on. Due to a0 = y(0) = 1 this infinite system of equations can be solved

recursively. One obtains

a0 = 1, a1 = 1, a2 =
1

2!
, a3 =

1

3!
, . . . , an =

1

n!

and thus the (expected) solution

y(x) =
∞
∑

n=0

xn

n!
= ex .

Example 19.20 (A particular Riccati differential equation4) For the solution of the

initial value problem

y′ = y2 + x2, y(0) = 1,

4J.F. Riccati, 1676–1754.
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we make the ansatz

y(x) =
∞
∑

n=0

an xn = a0 + a1x + a2x2 + a3x3 + · · ·

The initial condition y(0) = 1 immediately gives a0 = 1. First, we compute the

product (see also Proposition C.10)

y(x)2 = (1 + a1x + a2x2 + a3x3 + · · · )2

= 1 + 2a1x + (a2
1 + 2a2)x2 + (2a3 + 2a2a1)x3 + · · ·

and substitute it into the differential equation

a1 + 2a2x + 3a3x2 + 4a4x3 + · · ·
= 1 + 2a1x + (1 + a2

1 + 2a2)x2 + (2a3 + 2a2a1)x3 + · · ·

Equating coefficients results in

a1 = 1,

2a2 = 2a1, a2 = 1

3a3 = 1 + a2
1 + 2a2, a3 = 4/3

4a4 = 2a3 + 2a2a1, a4 = 7/6, . . .

Thus we obtain a good approximation to the solution for small x

y(x) = 1 + x + x2 +
4

3
x3 +

7

6
x4 + O(x5).

The maple command

dsolve({diff(y(x),x)=xˆ2+y(x)ˆ2, y(0)=1}, y(x), series);

carries out the above computations.

19.5 Qualitative Theory

Often one can describe the qualitative behaviour of the solutions of differential equa-

tions without solving the equations themselves. As the simplest case we discuss the

stability of nonlinear differential equations in the neighbourhood of an equilibrium

point. A differential equation is called autonomous, if its right-hand side does not

explicitly depend on the independent variable.
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Definition 19.21 The point y⋆ ∈ R is called an equilibrium of the autonomous dif-

ferential equation y′ = f (y), if f (y⋆) = 0.

Equilibrium points are particular solutions of the differential equation, so-called

stationary solutions.

In order to investigate solutions in the neighbourhood of an equilibrium point, we

linearise the differential equation at the equilibrium. Let

w(x) = y(x) − y⋆

denote the distance of the solution y(x) from the equilibrium. Taylor series expansion

of f shows that

w′ = y′ = f (y) = f (y) − f (y⋆) = f ′(y⋆)w + O(w2),

hence

w′(x) =
(

a + O(w)
)

w

with a = f ′(y⋆). It is decisive how solutions of this problem behave for small

w. Obviously the value of the coefficient a + O(w) is crucial. If a < 0, then

a + O(w) < 0 for sufficiently small w and the function |w(x)| decreases. If on

the other hand a > 0, then the function |w(x)| increases for small w. With these

considerations one has proven the following proposition.

Proposition 19.22 Let y⋆ be an equilibrium point of the differential equation y′ =
f (y) and assume that f ′(y⋆) < 0. Then all solutions of the differential equation with

initial value w(0) close to y⋆ satisfy the estimate

|w(x)| ≤ C · ebx · |w(0)|

with constants C > 0 and b < 0.

Under the conditions of the proposition one calls the equilibrium point asymptot-

ically stable. An asymptotically stable equilibrium attracts all solutions in a suffi-

ciently small neighbourhood (exponentially fast), since due to b < 0

|w(x)| → 0 as x → ∞.

Example 19.23 Verhulst’s model

y′ = (α − βy)y, α,β > 0

has two equilibrium points, namely y⋆
1 = 0 and y⋆

2 = α/β. Due to

f ′(y⋆
1) = α − 2βy⋆

1 = α, f ′(y⋆
2) = α − 2βy⋆

2 = −α,

y⋆
1 = 0 is unstable and y⋆

2 = α/β is asymptotically stable.
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19.6 Second-Order Problems

The equation

y′′(x) + ay′(x) + by(x) = g(x)

is called a second-order linear differential equation with constant coefficients a, b

and inhomogeneity g.

Example 19.24 (Mass–spring–damper model) According to Newton’s second law

of motion, a mass–spring system is modelled by the second-order differential equa-

tion

y′′(x) + ky(x) = 0,

where y(x) denotes the position of the mass and k is the stiffness of the spring. The

solution of this equation describes a free vibration without damping and excitation.

A more realistic model is obtained by adding a viscous damping force −cy′(x) and

an external excitation g(x). This results in the differential equation

my′′(x) + cy′(x) + ky(x) = g(x),

which is of the above form.

By introducing the new variable z(x) = y′(x), the homogeneous problem

y′′ + ay′ + by = 0

can be rewritten as a system of first-order equations

y′ = z

z′ = −by − az,

see Chap. 20, where this approach is worked out in detail.

Here, we will follow a different idea. Let α and β denote the roots of the quadratic

equation

λ2 + aλ + b = 0,

which is called the characteristic equation of the homogeneous problem. Then, the

second-order problem

y′′(x) + ay′(x) + by(x) = g(x)

can be factorised in the following way:

(

d2

dx2
+ a

d

dx
+ b

)

y(x) =
(

d

dx
− β

) (

d

dx
− α

)

y(x) = g(x).
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Setting

w(x) = y′(x) − αy(x),

we obtain the following first-order linear differential equation for w

w′(x) − βw(x) = g(x).

This problem has the general solution (see Proposition 19.10)

w(x) = K2eβ(x−x0) +
∫ x

x0

eβ(x−ξ)g(ξ) dξ

with some constant K2. Inserting this expression into the definition of w shows that

y is the solution of the first-order problem

y′(x) − αy(x) = K2eβ(x−x0) +
∫ x

x0

eβ(x−ξ)g(ξ) dξ.

Let us assume for a moment that α �= β. Applying once more Proposition 19.10 for

the solution of this problem gives

y(x) = K1eα(x−x0) +
∫ x

x0

eα(x−η)w(η) dη

= K1eα(x−x0) + K2

∫ x

x0

eα(x−η)eβ(η−x0) dη

+
∫ x

x0

eα(x−η)

∫ η

x0

eβ(η−ξ)g(ξ) dξ dη.

Since

∫ x

x0

eα(x−η)eβ(η−x0) dη = eαx−βx0

∫ x

x0

eη(β−α) dη

=
1

β − α

(

eβ(x−x0) − eα(x−x0)
)

,

we finally obtain

y(x) = c1eα(x−x0) + c2eβ(x−x0) +
∫ x

x0

eα(x−η)

∫ η

x0

eβ(η−ξ)g(ξ) dξ dη

with

c1 = K1 −
K2

β − α
, c2 =

K2

β − α
.
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By setting g = 0, one obtains the general solution of the homogeneous problem

yh(x) = c1eα(x−x0) + c2eβ(x−x0).

The double integral
∫ x

x0

eα(x−η)

∫ η

x0

eβ(η−ξ)g(ξ) dξ dη

is a particular solution of the inhomogeneous problem. Note that, due to the linearity

of the problem, the superposition principle (see Proposition 19.5) is again valid.

Summarising the above calculations gives the following two propositions.

Proposition 19.25 Consider the homogeneous differential equation

y′′(x) + ay′(x) + by(x) = 0

and let α and β denote the roots of its characteristic equation

λ2 + aλ + b = 0.

The general (real) solution of this problem is given by

yh(x) =

⎧

⎪

⎨

⎪

⎩

c1eαx + c2eβx for α �= β ∈ R,

(c1 + c2x)eαx for α = β ∈ R,

eρx
(

c1 cos(θx) + c2 sin(θx)
)

for α = ρ + iθ, ρ, θ ∈ R,

for arbitrary real constants c1 and c2.

Proof Since the characteristic equation has real coefficients, the roots are either both

real or conjugate complex, i.e. α = β. The case α �= β was already considered above.

In the complex case where α = ρ + iθ, we use Euler’s formula

eαx = eρx
(

cos(θx) + i sin(θx)
)

.

This shows that c1eρx cos(θx) and c2eρx sin(θx) are the searched for real solutions.

Finally, in the case α = β, the above calculations show

yh(x) = K1eα(x−x0) + K2

∫ x

x0

eα(x−η)eα(η−x0) dη

= (c1 + c2x)eαx

with c1 = (K1 − K2x0)e
−αx0 and c2 = K2e−αx0 . �
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Proposition 19.26 Let yp be an arbitrary solution of the inhomogeneous differential

equation

y′′(x) + ay′(x) + by(x) = g(x).

Then its general solution can be written as

y(x) = yh(x) + yp(x)

where yh is the general solution of the homogeneous problem.

Proof Superposition principle. �

Example 19.27 In order to find the general solution of the inhomogeneous differen-

tial equation

y′′(x) − 4y(x) = ex

we first consider the homogeneous part. Its characteristic equation λ2 − 4 = 0 has

the roots λ1 = 2 and λ2 = −2. Therefore,

yh(x) = c1e2x + c2e−2x .

A particular solution of the inhomogeneous problem is found by the general formula

yp(x) =
∫ x

0

e2(x−η)

∫ η

0

e−2(η−ξ)eξ dξ dη

= e2x

∫ x

0

e−4η 1

3

(

e3η − 1
)

dη

=
1

3
e2x

(

(

1 − e−x
)

+
1

4

(

e−4x − 1
)

)

.

Comparing this with yh shows that the choice yp(x) = − 1
3

ex is possible as well,

since the other terms solve the homogeneous equation.

In general, however, it is simpler to use as ansatz for yp a linear combination

of the inhomogeneity and its derivatives. In our case, the ansatz would be yp(x) =
aex . Inserting this ansatz into the inhomogeneous problem gives a − 4a = 1, which

results again in yp(x) = − 1
3
ex .

Example 19.28 The characteristic equation of the homogeneous problem

y′′(x) − 10y′(x) + 25y(x) = 0

has the double root λ1 = λ2 = 5. Therefore, its general solution is

y(x) = c1e5x + c2xe5x .
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Example 19.29 The characteristic equation of the homogeneous problem

y′′(x) + 2y′(x) + 2y(x) = 0

has the complex conjugate roots λ1 = −1 + i and λ2 = −1 − i. The complex form

of its general solution is

y(x) = c1e−(1+i)x + c2e−(1−i)x

with complex coefficients c1 and c2.

The real form is

y(x) = e−x
(

d1 cos x + d2 sin x
)

with real coefficients d1 and d2.

19.7 Exercises

1. Find the general solution of the following differential equations and sketch some

solution curves

(a) ẋ =
x

t
, (b) ẋ =

t

x
, (c) ẋ =

−t

x
.

The direction field is most easily plotted with maple, e.g. with DEplot.

2. Using the applet Dynamical systems in the plane, solve Exercise 1 by rewrit-

ing the respective differential equation as an equivalent autonomous system by

adding the equation ṫ = 1.

Hint. The variables are denoted by x and y in the applet. For example, Exer-

cise 1(a) would have to be written as x ′ = x/y and y′ = 1.

3. According to Newton’s law of cooling, the rate of change of the temperature x

of an object is proportional to the difference of its temperature and the ambient

temperature a. This is modelled by the differential equation

ẋ = k(a − x),

where k is a proportionality constant. Find the general solution of this differential

equation.

How long does it take to cool down an object from x(0) = 100◦ to 40◦ at an

ambient temperature of 20◦, if it cooled down from 100◦ to 80◦ in 5 minutes?

4. Solve Verhulst’s differential equation from Example 19.9 and compute the limit

t → ∞ of the solution.
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5. A tank contains 100 l of liquid A. Liquid B is added at a rate of 5 l/s, while at

the same time the mixture is pumped out with a rate of 10 l/s. We are interested

in the amount x(t) of the liquid B in the tank at time t . From the balance

equation ẋ(t) = rate(in) − rate(out) = rate(in) − 10 · x(t)/total amount(t) one

obtains the differential equation

ẋ = 5 −
10x

100 − 5t
, x(0) = 0.

Explain the derivation of this equation in detail and use maple (with dsolve)

to solve the initial value problem. When is the tank empty?

6. Solve the differential equations

(a) y′ = ay, (b) y′ = ay + 2

with the method of power series.

7. Find the solution of the initial value problem

ẋ(t) = 1 + x(t)2

with initial value x(0) = 0. In which interval does the solution exist?

8. Find the solution of the initial value problem

ẋ(t) + 2x(t) = e4t + 1

with initial value x(0) = 0.

9. Find the general solutions of the differential equations

(a) ẍ + 4ẋ − 5x = 0, (b) ẍ + 4ẋ + 5x = 0, (c) ẍ + 4ẋ = 0.

10. Find a particular solution of the problem

ẍ(t) + ẋ(t) − 6x(t) = t2 + 2t − 1.

Hint. Use the ansatz yp(t) = at2 + bt + c.

11. Find the general solution of the differential equation

y′′(x) + 4y(x) = cos x

and specify the solution for the initial data y(0) = 1, y′(0) = 0.

Hint. Consider the ansatz yp(x) = k1 cos x + k2 sin x .

12. Find the general solution of the differential equation

y′′(x) + 4y′(x) + 5y(x) = cos 2x

and specify the solution for the initial data y(0) = 1, y′(0) = 0.

Hint. Consider the ansatz yp(x) = k1 cos 2x + k2 sin 2x .

13. Find the general solution of the homogeneous equation

y′′(x) + 2y′(x) + y(x) = 0.
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Systems of differential equations, often called differentiable dynamical systems, play

a vital role in modelling time-dependent processes in mechanics, meteorology, biol-

ogy, medicine, economics and other sciences. We limit ourselves to two-dimensional

systems, whose solutions (trajectories) can be graphically represented as curves in

the plane. The first section introduces linear systems, which can be solved ana-

lytically as will be shown. In many applications, however, nonlinear systems are

required. In general, their solution cannot be given explicitly. Here it is of primary

interest to understand the qualitative behaviour of solutions. In the second section

of this chapter, we touch upon the rich qualitative theory of dynamical systems. The

third section is devoted to analysing the mathematical pendulum in various ways.

Numerical methods will be discussed in Chap. 21.

20.1 Systems of Linear Differential Equations

We start with the description of various situations which lead to systems of differential

equations. In Chap. 19 Malthus’ population model was presented, where the rate of

change of a population x(t) was assumed proportional to the existing population:

ẋ(t) = ax(t).

The presence of a second population y(t) could result in a decrease or increase of

the rate of change of x(t). Conversely, the population x(t) could also affect the rate

of change of y(t). This results in a coupled system of equations

ẋ(t) = ax(t) + by(t),

ẏ(t) = cx(t) + dy(t),
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with positive or negative coefficients b and c, which describe the interaction of the

populations. This is the general form of a linear system of differential equations in

two unknowns, written for short as

ẋ = ax + by,

ẏ = cx + dy.

Refined models are obtained, if one takes into account the dependence of the rate of

growth on food supply, for instance. For one species this would result in an equation

of the form

ẋ = (v − n)x,

where v denotes the available food supply and n a threshold value. So, the population

is increasing if the available quantity of food is larger than n, and is otherwise

decreasing. In the case of a predator–prey relationship of species x to species y, in

which y is the food for x , the relative rates of change are not constant. A common

assumption is that these rates contain a term that depends linearly on the other species.

Under this assumption, one obtains the nonlinear system

ẋ = (ay − n)x,

ẏ = (d − cx)y.

This is the famous predator–prey model of Lotka1 and Volterra2 (for a detailed

derivation we refer to [13, Chap. 12.2]).

The general form of a system of nonlinear differential equations is

ẋ = f (x, y),

ẏ = g(x, y).

Geometrically this can be interpreted in the following way. The right-hand side

defines a vector field

(x, y) �→

[

f (x, y)

g(x, y)

]

on R
2; the left-hand side is the velocity vector of a plane curve

t �→

[

x(t)

y(t)

]

.

The solutions are thus plane curves whose velocity vectors are given by the vector

field.

1A.J. Lotka, 1880–1949
2V. Volterra, 1860–1940
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[−y, x]T

(x, y)

y

x

Fig. 20.1 Vector field and solution curves

Example 20.1 (Rotation of the plane) The vector field

(x, y) �→

[

−y

x

]

is perpendicular to the corresponding position vectors [x, y]T, see Fig. 20.1. The

solutions of the system of differential equations

ẋ = −y,

ẏ = x

are the circles (Fig. 20.1)

x(t) = R cos t,

y(t) = R sin t,

where the radius R is given by the initial values, for instance, x(0) = R and y(0) = 0.

Remark 20.2 The geometrical, two-dimensional representation is made possible by

the fact that the right-hand side of the system does not dependent on time t explicitly.

Such systems are called autonomous. A representation which includes the time axis

(like in Chap. 19) would require a three-dimensional plot with a three-dimensional

direction field

(x, y, t) �→

⎡

⎣

f (x, y)

g(x, y)

1

⎤

⎦ .

The solutions are represented as spatial curves

t �→

⎡

⎣

x(t)

y(t)

t

⎤

⎦ ,
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Fig. 20.2 Direction field and

space-time diagram for

ẋ = −y, ẏ = x
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−1

0

1

0

2π

π

t

y
x

see the space-time diagram in Fig. 20.2.

Example 20.3 Another type of example which demonstrates the meaning of the

vector field and the solution curves is obtained from the flow of ideal fluids. For

example,

ẋ = 1 −
x2 − y2

(x2 + y2)2
,

ẏ =
−2xy

(x2 + y2)2

describes a plane, stationary potential flow around the cylinder x2 + y2 ≤ 1 (Fig.

20.3). The right-hand side describes the flow velocity at the point (x, y). The solution

curves follow the streamlines

y
(

1 −
1

x2 + y2

)

= C.

Fig. 20.3 Plane potential

flow around a cylinder
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Here C denotes a constant. This can be checked by differentiating the above relation

with respect to t and substituting ẋ and ẏ by the right-hand side of the differential

equation.

Experiment 20.4 Using the applet Dynamical systems in the plane, study the vec-

tor field and the solution curves of the system of differential equations from Exam-

ples 20.1 and 20.3. In a similar way, study the systems of differential equations

ẋ = y,

ẏ = −x,

ẋ = y,

ẏ = x,

ẋ = −y,

ẏ = −x,

ẋ = x,

ẏ = x,

ẋ = y,

ẏ = y

and try to understand the behaviour of the solution curves.

Before turning to the solution theory of planar linear systems of differential equa-

tions, it is useful to introduce a couple of notions that serve to describe the qualitative

behaviour of solution curves. The system of differential equations

ẋ(t) = f
(

x(t), y(t)
)

,

ẏ(t) = g
(

x(t), y(t)
)

together with prescribed values at t = 0

x(0) = x0, y(0) = y0,

is again called an initial value problem. In this chapter we assume the functions

f and g to be at least continuous. By a solution curve or a trajectory we mean

a continuously differentiable curve t �→ [x(t) y(t)]T whose components fulfil the

system of differential equations.

For the case of a single differential equation the notion of an equilibrium point

was introduced in Definition 19.21. For systems of differential equations one has an

analogous notion.

Definition 20.5 (Equilibrium point) A point (x∗, y∗) is called equilibrium point or

equilibrium of the system of differential equations, if f (x∗, y∗) = 0 and

g(x∗, y∗) = 0.

The name comes from the fact that a solution with initial value x0 = x∗, y0 = y∗

remains at (x∗, y∗) for all times; in other words, if (x∗, y∗) is an equilibrium point,

then x(t) = x∗, y(t) = y∗ is a solution to the system of differential equations since

both the left- and right-hand sides will be zero.

From Chap. 19 we know that solutions of differential equations do not have to

exist for large times. However, if solutions with initial values in a neighbourhood of

an equilibrium point exist for all times then the following notions are meaningful.
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Definition 20.6 Let (x∗, y∗) be an equilibrium point. If there is a neighbourhood U

of (x∗, y∗) so that all trajectories with initial values (x0, y0) in U converge to the

equilibrium point (x∗, y∗) as t → ∞, then this equilibrium is called asymptotically

stable. If for every neighbourhood V of (x∗, y∗) there is a neighbourhood W of

(x∗, y∗) so that all trajectories with initial values (x0, y0) in W stay entirely in V ,

then the equilibrium (x∗, y∗) is called stable. An equilibrium point which is not

stable is called unstable.

In short, stability means that trajectories that start close to the equilibrium point

remain close to it; asymptotic stability means that the trajectories are attracted by the

equilibrium point. In the case of an unstable equilibrium point there are trajectories

that move away from it; in linear systems these trajectories are unbounded, and in the

nonlinear case they can also converge to another equilibrium or a periodic solution

(for instance, see the discussion of the mathematical pendulum in Sect. 20.3 or [13]).

In the following we determine the solution to the initial value problem

ẋ = ax + by, x(0) = x0,

ẏ = cx + dy, y(0) = y0.

This is a two-dimensional system of first-order linear differential equations. For this

purpose we first discuss the three basic types of such systems and then show how

arbitrary systems can be transformed to a system of basic type.

We denote the coefficient matrix by

A =

[

a b

c d

]

.

The decisive question is whether A is similar to a matrix of type I, II or III, as

described in Appendix B.2. A matrix of type I has real eigenvalues and is similar to a

diagonal matrix. A matrix of type II has a double real eigenvalue; its canonical form,

however, contains a nilpotent part. The case of two complex conjugate eigenvalues

is finally covered by type III.

Type I—real eigenvalues, diagonalisable matrix. In this case the standard form of

the system is

ẋ = αx, x(0) = x0,

ẏ = βy, y(0) = y0.

We know from Example 19.7 that the solutions are given by

x(t) = x0eαt , y(t) = y0eβt

and in particular exist for all times t ∈ R. Obviously (x∗, y∗) = (0, 0) is an equilib-

rium point. If α < 0 and β < 0, then all solution curves approach the equilibrium

(0, 0) as t → ∞; this equilibrium is asymptotically stable. If α ≥ 0, β ≥ 0 (not both
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Fig. 20.4 Real eigenvalues,

unstable equilibrium
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equal to zero), then the solution curves leave every neighbourhood of (0, 0) and the

equilibrium is unstable. Similarly, instability is present in the case where α > 0,

β < 0 (or vice versa). One calls such an equilibrium a saddle point.

If α 	= 0 and x0 	= 0, then one can solve for t and represent the solution curves as

graphs of functions:

et =
( x

x0

)1/α
, y = y0

( x

x0

)β/α
.

Example 20.7 The three systems

ẋ = x,

ẏ = 2y,

ẋ = −x,

ẏ = −2y,

ẋ = x,

ẏ = −2y

have the solutions

x(t) = x0et ,

y(t) = y0e2t ,

x(t) = x0e−t ,

y(t) = y0e−2t ,

x(t) = x0et ,

y(t) = y0e−2t ,

respectively. The vector fields and some solutions are shown in Figs. 20.4, 20.5 and

20.6. One recognises that all coordinate half axes are solutions curves.

Type II—double real eigenvalue, not diagonalisable. The case of a double real

eigenvalue α = β is a special case of type I, if the coefficient matrix is diagonalisable.

There is, however, the particular situation of a double eigenvalue and a nilpotent part.

Then the standard form of the system is

ẋ = αx + y,

ẏ = αy,

x(0) = x0,

y(0) = y0.

We compute the solution component

y(t) = y0eαt ,
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Fig. 20.5 Real eigenvalues,

asymptotically stable

equilibrium
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Fig. 20.6 Real eigenvalues,
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Fig. 20.7 Double real

eigenvalue, matrix not

diagonalisable
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substitute it into the first equation

ẋ(t) = αx(t) + y0eαt , x(0) = x0

and apply the variation of constants formula from Chap. 19:

x(t) = eαt
(

x0 +

∫ t

0

e−αs y0eαs ds
)

= eαt
(

x0 + t y0

)

.

The vector fields and some solution curves for the case α = −1 are depicted in

Fig. 20.7.
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Type III—complex conjugate eigenvalues. In this case the standard form of the

system is

ẋ = αx − βy, x(0) = x0,

ẏ = βx + αy, y(0) = y0.

By introducing the complex variable z and the complex coefficients γ, z0 as

z = x + iy, γ = α + iβ, z0 = x0 + iy0,

we see that the above system represents the real and the imaginary parts of the

equation

(ẋ + i ẏ) = (α + iβ)(x + iy), x(0) + iy(0) = x0 + iy0.

From the complex formulation

ż = γz, z(0) = z0,

the solutions can be derived immediately:

z(t) = z0eγt .

Splitting the left- and right-hand sides into real and imaginary parts, one obtains

x(t) + iy(t) = (x0 + iy0)e(α+iβ)t

= (x0 + iy0)eαt (cos βt + i sin βt).

From that we get (see Sect. 4.2)

x(t) = x0eαt cos βt − y0eαt sin βt,

y(t) = x0eαt sin βt + y0eαt cos βt.

The point (x∗, y∗) = (0, 0) is again an equilibrium point. In the case α < 0 it is

asymptotically stable; for α > 0 it is unstable; for α = 0 it is stable but not asymp-

totically stable. Indeed the solution curves are circles and hence bounded, but are

not attracted by the origin as t → ∞.

Example 20.8 The vector fields and solutions curves for the two systems

ẋ = 1
10

x − y,

ẏ = x + 1
10

y,

ẋ = − 1
10

x − y,

ẏ = x − 1
10

y
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Fig. 20.8 Complex

eigenvalues, unstable

−5 0 5

−5

0

5 y

x

Fig. 20.9 Complex

eigenvalues, asymptotically

stable
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are given in Figs. 20.8 and 20.9. For the stable case ẋ = −y, ẏ = x we refer to

Fig. 20.1.

General solution of a linear system of differential equations. The similarity trans-

formation from Appendix B allows us to solve arbitrary linear systems of differential

equations by reduction to the three standard cases.

Proposition 20.9 For an arbitrary (2 × 2)-matrix A, the initial value problem

[

ẋ(t)

ẏ(t)

]

= A

[

x(t)

y(t)

]

,

[

x(0)

y(0)

]

=

[

x0

y0

]

has a unique solution that exists for all times t ∈ R. This solution can be computed

explicitly by transformation to one of the types I, II or III.

Proof According to Appendix B.2 there is an invertible matrix T such that

T−1AT = B,

where B belongs to one of the standard types I, II, III. We set

[

u

v

]

= T−1

[

x

y

]
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Fig. 20.10 Example 20.10
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and obtain the transformed system

[

u̇

v̇

]

= T−1

[

ẋ

ẏ

]

= T−1A

[

x

y

]

= T−1AT

[

u

v

]

= B

[

u

v

]

,

[

u(0)

v(0)

]

= T−1

[

x0

y0

]

.

We solve this system of differential equations depending on its type, as explained

above. Each of these systems in standard form has a unique solution which exists for

all times. The reverse transformation

[

x

y

]

= T

[

u

v

]

yields the solution of the original system. �

Thus, modulo a linear transformation, the types I, II, III actually comprise all

cases that can occur.

Example 20.10 We study the solution curves of the system

ẋ = x + 2y,

ẏ = 2x + y.

The corresponding coefficient matrix

A =

[

1 2

2 1

]

has the eigenvalues λ1 = 3 and λ2 = −1 with respective eigenvectors e1 = [1 1]T

and e2 = [−1 1]T. It is of type I, and the origin is a saddle point. The vector field

and some solutions can be seen in Fig. 20.10.
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Remark 20.11 The proof of Proposition 20.9 shows the structure of the general

solution of a linear system of differential equations. Assume, for example, that the

roots λ1,λ2 of the characteristic polynomial of the coefficient matrix are real and

distinct, so the system is of type I. The general solution in transformed coordinates

is given by

u(t) = C1eλ1t , v(t) = C2eλ2t .

If we denote the columns of the transformation matrix by t1, t2, then the solution in

the original coordinates is

[

x(t)

y(t)

]

= t1u(t) + t2v(t) =

[

t11C1eλ1t + t12C2eλ2t

t21C1eλ1t + t22C2eλ2t

]

.

Every component is a particular linear combination of the transformed solutions

u(t), v(t). In the case of complex conjugate roots µ ± iν (type III) the components

of the general solution are particular linear combinations of the functions eµt cos νt

and eµt sin νt . In the case of a double root α (type II), the components are given as

linear combinations of the functions eαt and teαt .

20.2 Systems of Nonlinear Differential Equations

In contrast to linear systems of differential equations, the solutions to nonlinear

systems can generally not be expressed by explicit formulas. Apart from numerical

methods (Chap. 21) the qualitative theory is of interest. It describes the behaviour of

solutions without knowing them explicitly. In this section we will demonstrate this

with the help of an example from population dynamics.

The Lotka–Volterra model. In Sect. 20.1 the predator–prey model of Lotka and

Volterra was introduced. In order to simplify the presentation, we set all coefficients

equal to one. Thus the system becomes

ẋ = x(y − 1),

ẏ = y(1 − x).

The equilibrium points are (x∗, y∗) = (1, 1) and (x∗∗, y∗∗) = (0, 0). Obviously, the

coordinate half axes are solution curves given by

x(t) = x0e−t , x(t) = 0,

y(t) = 0, y(t) = y0et .

The equilibrium (0, 0) is thus a saddle point (unstable); we will later analyse the

type of equilibrium (1, 1). In the following we will only consider the first quadrant

x ≥ 0, y ≥ 0, which is relevant in biological models. Along the straight line x = 1

the vector field is horizontal, and along the straight line y = 1 it is vertical. It looks
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Fig. 20.11 Vector field of

the Lotka–Volterra model
2

1

0
210

y

x

as if the solution curves rotate about the equilibrium point (1, 1), see Fig. 20.11.

In order to be able to verify this conjecture we search for a function H(x, y) which

is constant along the solution curves:

H(x(t), y(t)) = C.

Such a function is called a first integral, invariant or conserved quantity of the system

of differential equations. Consequently, we have

d

dt
H(x(t), y(t)) = 0

or by the chain rule for functions in two variables (Proposition 15.16)

∂H

∂x
ẋ +

∂H

∂y
ẏ = 0.

With the ansatz

H(x, y) = F(x) + G(y),

we should have

F ′(x)ẋ + G ′(y)ẏ = 0.

Inserting the differential equations we obtain

F ′(x)x(y − 1) + G ′(y) y(1 − x) = 0,

and a separation of the variables yields

x F ′(x)

x − 1
=

y G ′(y)

y − 1
.



310 20 Systems of Differential Equations

Since the variables x and y are independent of each other, this is only possible if

both sides are constant:

x F ′(x)

x − 1
= C,

y G ′(y)

y − 1
= C.

It follows that

F ′(x) = C

(

1 −
1

x

)

, G ′(y) = C

(

1 −
1

y

)

and thus

H(x, y) = C(x − log x + y − log y) + D.

This function has a global minimum at (x∗, y∗) = (1, 1), as can also be seen in

Fig. 20.12.

0
1

2
3

0

1

2

3

2

3

4

0 1 2 3

0

1

2

3y

x

H(x, y)

y
x

Fig. 20.12 First integral and level sets

The solution curves of the Lotka–Volterra system lie on the level sets

x − log x + y − log y = const.

These level sets are obviously closed curves. The question arises whether the solution

curves are also closed, and the solutions thus are periodic. In the following proposition

we will answer this question affirmatively. Periodic, closed solution curves are called

periodic orbits.

Proposition 20.12 For initial values x0 > 0, y0 > 0 the solution curves of the

Lotka–Volterra system are periodic orbits and (x∗, y∗) = (1, 1) is a stable equi-

librium point.

Outline of proof The proof of the fact that the solution

t �→

[

x(t)

y(t)

]

,

[

x(0)

y(0)

]

=

[

x0

y0

]
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exists (and is unique) for all initial values x0 ≥ 0, y0 ≥ 0 and all times t ∈ R requires

methods that go beyond the scope of this book. The interested reader is referred to

[13, Chap. 8]. In order to prove periodicity, we take initial values (x0, y0) 	= (1, 1)

and show that the corresponding solution curves return to the initial value after finite

time τ > 0. For that we split the first quadrant x > 0, y > 0 into four regions

Q1 : x > 1, y > 1; Q2 : x < 1, y > 1;

Q3 : x < 1, y < 1; Q4 : x > 1, y < 1

and show that every solution curve moves (clockwise) through all four regions in

finite time. For instance, consider the case (x0, y0) ∈ Q3, so 0 < x0 < 1, 0 < y0 < 1.

We want to show that the solution curve reaches the region Q2 in finite time; i.e.

y(t) assumes the value one. From the differential equations it follows that

ẋ = x(y − 1) < 0, ẏ = y(1 − x) > 0

in region Q3 and thus

x(t) < x0, y(t) > y0, ẏ(t) > y0(1 − x0),

as long as (x(t), y(t)) stays in region Q3. If y(t) were less than one for all times

t > 0, then the following inequalities would hold:

1 > y(t) = y0 +

∫ t

0

ẏ(s) ds > y0 +

∫ t

0

y0(1 − x0) ds = y0 + t y0(1 − x0).

However, the latter expression diverges to infinity as t → ∞, a contradiction. Con-

sequently, y(t) has to reach the value 1 and thus the region Q2 in finite time. Like-

wise one reasons for the other regions. Thus there exists a time τ > 0 such that

(x(τ ), y(τ )) = (x0, y0).

From that the periodicity of the orbit follows. Since the system of differential

equations is autonomous, t �→ (x(t + τ ), y(t + τ )) is a solution as well. As just

shown, both solutions have the same initial value at t = 0. The uniqueness of the

solution of initial value problems implies that the two solutions are identical, so

x(t) = x(t + τ ), y(t) = y(t + τ )

is fulfilled for all times t ∈ R. However, this proves that the solution t �→ (x(t), y(t))

is periodic with period τ .

All solution curves in the first quadrant with the exception of the equilibrium are

thus periodic orbits. Solution curves that start close to (x∗, y∗) = (1, 1) stay close,

see Fig. 20.12. The point (1, 1) is thus a stable equilibrium. �
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Fig. 20.13 Solution curves

of the Lotka–Volterra model
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Figure 20.13 shows some solution curves. The populations of predator and prey

thus increase and decrease periodically and in opposite direction. For further popu-

lation models we refer to [6].

20.3 The Pendulum Equation

As a second example of a nonlinear system we consider the mathematical pendulum.

It models an object of mass m that is attached to the origin with a (massless) cord of

length l and moves under the gravitational force −mg, see Fig. 20.14. The variable

x(t) denotes the angle of deflection from the vertical direction, measured in coun-

terclockwise direction. The tangential acceleration of the object is equal to l ẍ(t),

and the tangential component of the gravitational force is −mg sin x(t). According

to Newton’s law, force = mass × acceleration, we have

−mg sin x = mlẍ

or

mlẍ + mg sin x = 0.

This is a second-order nonlinear differential equation. We will later reduce it to a

first-order system, but for a start, we wish to derive a conserved quantity.

Conservation of energy. Multiplying the pendulum equation by l ẋ gives

ml2 ẋ ẍ + mgl ẋ sin x = 0.

We identify ẋ ẍ as the derivative of 1
2

ẋ2 and ẋ sin x as the derivative of 1 − cos x and

arrive at a conserved quantity, which we denote by H(x, ẋ):

d

dt
H(x, ẋ) =

d

dt

(

1

2
ml2 ẋ2 + mgl

(

1 − cos x
)

)

= 0;
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Fig. 20.14 Derivation of the

pendulum equation

x

x
l

m

−mg

that is, H(x(t), ẋ(t)) is constant when x(t) is a solution of the pendulum equation.

Recall from mechanics that the kinetic energy of the moving mass is given by

T (ẋ) =
1

2
ml2 ẋ2.

The potential energy is defined as the work required to move the mass from its height

−l at rest to position −l cos x , that is

U (x) =

∫ −l cos x

−l

mg dξ = mgl
(

1 − cos x
)

.

Thus the conserved quantity is identified as the total energy

H(x, ẋ) = T (ẋ) + U (x),

in accordance with the well-known mechanical principle of conservation of total

energy.

Note that the linearisation

sin x = x + O(x3) ≈ x

for small angles x leads to the approximation

mlẍ + mgx = 0.

For convenience, we will cancel m in the equation and set g/ l = 1. Then the pendu-

lum equation reads

ẍ = − sin x,

with the conserved quantity

H(x, ẋ) =
1

2
ẋ2 + 1 − cos x,
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while the linearised pendulum equation reads

ẍ = −x .

Reduction to a first-order system. Every explicit second-order differential equation

ẍ = f (x, ẋ) can be reduced to a first-order system by introducing the new variable

y = ẋ , resulting in the system

ẋ = y,

ẏ = f (x, y).

Applying this procedure to the pendulum equation and adjoining initial data leads

to the system

ẋ = y, x(0) = x0,

ẏ = − sin x, y(0) = y0

for the mathematical pendulum. Here x denotes the angle of deflection and y the

angular velocity of the object.

The linearised pendulum equation can be written as the system

ẋ = y, x(0) = x0,

ẏ = −x, y(0) = y0.

Apart from the change in sign this system of differential equations coincides with

that of Example 20.1. It is a system of type III; hence its solution is given by

x(t) = x0 cos t + y0 sin t,

y(t) = −x0 sin t + y0 cos t.

The first line exhibits the solution to the second-order linearised equation ẍ = −x

with initial data x(0) = x0, ẋ(0) = y0. The same result can be obtained directly by

the methods of Sect. 19.6.

Solution trajectories of the nonlinear pendulum. In the coordinates (x, y), the

total energy reads

H(x, y) =
1

2
y2 + 1 − cos x .

As was shown above, it is a conserved quantity; hence solution curves for prescribed

initial values (x0, y0) lie on the level sets H(x, y) = C ; i.e.

1

2
y2 + 1 − cos x =

1

2
y2

0 + 1 − cos x0,

y = ±

√

y2
0 − 2 cos x0 + 2 cos x .
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Fig. 20.15 Solution curves,

mathematical pendulum

−5 0 5

−4

−2

0
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4 y

x

Figure 20.15 shows some solution curves. There are unstable equilibria at y = 0,

x = . . . , −3π,−π,π, 3π, . . . which are connected by limit curves. One of the two

limit curves passes through x0 = 0, y0 = 2. The solution with these initial values

lies on the limit curve and approaches the equilibrium (π, 0) as t → ∞, and (−π, 0)

as t → −∞. Initial values that lie between these limit curves (for instance the values

x0 = 0, |y0| < 2) give rise to periodic solutions of small amplitude (less than π). The

solutions outside represent large oscillations where the pendulum loops. We remark

that effects of friction are not taken into account in this model.

Power series solutions. The method of power series for solving differential equations

has been introduced in Chap. 19. We have seen that the linearised pendulum equation

ẍ = −x can be solved explicitly by the methods of Sects. 19.6 and 20.1. Also, the

nonlinear pendulum equation can be solved explicitly with the aid of certain higher

transcendental functions, the Jacobian elliptic functions. Nevertheless, it is of interest

to analyse the solutions of these equations by means of powers series, especially in

view of the fact that they can be readily obtained in maple.

Example 20.13 (Power series for the linearised pendulum) As an example, we solve

the initial value problem

ẍ = −x, x(0) = a, ẋ(0) = 0

by means of the power series ansatz

x(t) =

∞
∑

n=0

cn tn = c0 + c1t + c2t2 + c3t3 + c4t4 + · · ·

We have

ẋ(t) =

∞
∑

n=1

ncn tn−1 = c1 + 2c2t + 3c3t2 + 4c4t3 + · · ·

ẍ(t) =

∞
∑

n=2

n(n − 1)cn tn−2 = 2c2 + 6c3t + 12c4t2 + · · ·
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We know that c0 = a and c1 = 0. Equating ẍ(t) with −x(t) gives, up to second

degree,

2c2 + 6c3t + 12c4t2 + · · · = −a − c2t2 − · · ·

thus

c2 = −
a

2
, c3 = 0, c4 = −

c2

12
=

a

24
, . . .

The power series expansion starts with

x(t) = a
(

1 −
1

2
t2 +

1

24
t4 ∓ . . .

)

and seemingly coincides with the Taylor series of the known solution x(t) = a cos t .

Example 20.14 (Power series for the nonlinear pendulum) We turn to the initial

value problem for the nonlinear pendulum equation

ẍ = − sin x, x(0) = a, ẋ(0) = 0,

making the same power series ansatz as in Example 20.13. Developing the sine

function into its Taylor series, inserting the lowest order terms of the power series of

x(t) and noting that c0 = a, c1 = 0 yields

− sin x(t) = −
(

x(t) −
1

3!
x(t)3 +

1

5!
x(t)5 + . . .

)

= −
(

a + c2t2 + · · ·
)

+
1

3!

(

a + c2t2 + . . .
)3

−
1

5!

(

a + c2t2 + · · ·
)5

= −
(

a + c2t2 + · · ·
)

+
1

6

(

a3 + 3a2c2t2 + · · ·
)

−
1

120

(

a5 + 5a4c2t2 + · · ·
)

,

where we have used the binomial formulas. Equating the last line with

ẍ(t) = 2c2 + 6c3t + 12c4t2 + · · ·

shows that

2c2 = −a +
1

6
a3 −

1

120
a5 ± . . .

6c3 = 0

12c4 = c2

(

− 1 +
3

6
a2 −

5

120
a4 ± . . .

)

which suggests that

c2 = −
1

2
sin a, c4 =

1

24
sin a cos a.
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Collecting terms and factoring a out finally results in the expansion

x(t) = a

(

1 −
1

2

sin a

a
t2 +

1

24

sin a cos a

a
t4 ± . . .

)

.

The expansion can be checked by means of the maple command

ode:=diff(x(t),[t$2])=-sin(x(t))

ics:=x(0)=a,D(x)(0)=0

dsolve({ode,ics}, x(t), series);

If the initial deflection x0 = a is sufficiently small, then

sin a

a
≈ 1, cos a ≈ 1,

see Proposition 6.10, and so the solution x(t) is close to the solution a cos t of the

linearised pendulum equation, as expected.

20.4 Exercises

1. The space-time diagram of a two-dimensional system of differential equations

(Remark 20.2) can be obtained by introducing time as third variable z(t) = t

and passing to the three-dimensional system

⎡

⎣

ẋ

ẏ

ż

⎤

⎦ =

⎡

⎣

f (x, y)

g(x, y)

1

⎤

⎦ .

Use this observation to visualise the systems from Examples 20.1 and 20.3.

Study the time-dependent solution curves with the applet Dynamical systems in

space.

2. Compute the general solutions of the following three systems of differential

equations by transformation to standard form:

ẋ = 3
5

x − 4
5

y,

ẏ = − 4
5

x − 3
5

y,

ẋ = −3y,

ẏ = x,

ẋ = 7
4

x − 5
4

y,

ẏ = 5
4

x + 1
4

y.

Visualise the solution curves with the applet Dynamical systems in the plane.

3. Small, undamped oscillations of an object of mass m attached to a spring are

described by the differential equation mẍ + kx = 0. Here, x = x(t) denotes the

displacement from the position of rest and k is the spring stiffness. Introduce

the variable y = ẋ and rewrite the second-order differential equation as a linear

system of differential equations. Find the general solution.
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4. A company deposits its profits in an account with continuous interest rate a%.

The balance is denoted by x(t). Simultaneously the amount y(t) is withdrawn

continuously from the account, where the rate of withdrawal is equal to b% of

the account balance. With r = a/100, s = b/100 this leads to the linear system

of differential equations

ẋ(t) = r(x(t) − y(t)),

ẏ(t) = s x(t).

Find the solution (x(t), y(t)) for the initial values x(0) = 1, y(0) = 0 and anal-

yse how big s can be in comparison with r so that the account balance x(t) is

increasing for all times without oscillations.

5. A national economy has two sectors (for instance industry and agriculture) with

the production volumes x1(t), x2(t) at time t . If one assumes that the invest-

ments are proportional to the respective growth rate, then the classical model of

Leontief 3 [24, Chap. 9.5] states

x1(t) = a11x1(t) + a12x2(t) + b1 ẋ1(t) + c1(t),

x2(t) = a21x1(t) + a22x2(t) + b2 ẋ2(t) + c2(t).

Here ai j denotes the required amount of goods from sector i to produce one

unit of goods in sector j . Further bi ẋi (t) are the investments, and ci (t) is the

consumption in sector i . Under the simplifying assumptions a11 = a22 = 0,

a12 = a21 = a (0 < a < 1), b1 = b2 = 1, c1(t) = c2(t) = 0 (no consumption)

one obtains the system of differential equations

ẋ1(t) = x1(t) − ax2(t),

ẋ2(t) = −ax1(t) + x2(t).

Find the general solution and discuss the result.

6. Use the applet Dynamical systems in the plane to analyse the solution curves

of the differential equations of the mathematical pendulum and translate the

mathematical results to statements about the mechanical behaviour.

7. Derive the conserved quantity H(x, y) = 1
2

y2 + 1 − cos x of the pendulum

equation by means of the ansatz H(x, y) = F(x) + G(y) as for the Lotka–

Volterra system.

8. Using maple, find the power series solution to the nonlinear pendulum equation

ẍ = − sin x with initial data

x(0) = a, ẋ(0) = 0 and x(0) = 0, ẋ(0) = b.

Check by how much its coefficients differ from the ones of the power series

solution of the corresponding linearised pendulum equation ẍ = −x for various

values of a, b between 0 and 1.

3 W. Leontief, 1906–1999.
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9. The differential equation mẍ(t) + kx(t) + 2cx3(t) = 0 describes a nonlinear

mass–spring system where x(t) is the displacement of the mass m, k is the

stiffness of the spring and the term cx3 models nonlinear effects (c > 0 . . .

hardening, c < 0 . . . softening).

(a) Show that

H(x, ẋ) =
1

2

(

mẋ2 + kx2 + cx4
)

is a conserved quantity.

(b) Assume that m = 1, k = 1 and x(0) = 0, ẋ(0) = 1. Reduce the second-

order equation to a first-order system. Making use of the conserved quantity,

plot the solution curves for the values of c = 0, c = −0.2, c = 0.2 and c = 5.

Hint. A typical maple command is

with(plots,implicitplot); c:=5;

implicitplot(yˆ2+xˆ2+c*xˆ4=1,x=-1.5..1.5,y=-1.5..1.5);

10. Using maple, find the power series solution to the nonlinear differential equation

ẍ(t) + x(t) + 2cx3(t) = 0 with initial data x(0) = a, ẋ(0) = b. Compare it to

the solution with c = 0.



21Numerical Solution of Differential
Equations

As we have seen in the last two chapters, only particular classes of differential

equations can be solved analytically. Especially for nonlinear problems one has to

rely on numerical methods.

In this chapter we discuss several variants of Euler’s method as a prototype. Moti-

vated by the Taylor expansion of the analytical solution we deduce Euler approxi-

mations and study their stability properties. In this way we introduce the reader to

several important aspects of the numerical solution of differential equations. We point

out, however, that for most real-life applications one has to use more sophisticated

numerical methods.

21.1 The Explicit Euler Method

The differential equation

y′(x) = f
(

x, y(x)
)

defines the slope of the tangent to the solution curve y(x). Expanding the solution

at the point x + h into a Taylor series

y(x + h) = y(x) + hy′(x) + O(h2)

and inserting the above value for y′(x), one obtains

y(x + h) = y(x) + h f
(

x, y(x)
)

+ O(h2)
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and consequently for small h the approximation

y(x + h) ≈ y(x) + h f
(

x, y(x)
)

.

This observation motivates the (explicit) Euler method.

Euler’s method. For the numerical solution of the initial value problem

y′(x) = f
(

x, y(x)
)

, y(a) = y0

on the interval [a, b] we first divide the interval into N parts of length h = (b − a)/N

and define the grid points x j = x0 + jh, 0 ≤ j ≤ N , see Fig. 21.1.

xN = x0 + Nh = b· · ·x2x1x0 = a

Fig. 21.1 Equidistant grid points x j = x0 + jh

The distance h between two grid points is called step size. We look for a numerical

approximation yn to the exact solution y(xn) at xn , i.e. yn ≈ y(xn). According to the

considerations above we should have

y(xn+1) ≈ y(xn) + h f
(

xn, y(xn)
)

.

If one replaces the exact solution by the numerical approximation and ≈ by = ,

then one obtains the explicit Euler method

yn+1 = yn + h f (xn, yn),

which defines the approximation yn+1 as a function of yn .

Starting from the initial value y0 one computes from this recursion the approxi-

mations y1, y2,…, yN ≈ y(b). The points (xi , yi ) are the vertices of a polygon which

approximates the graph of the exact solution y(x). Figure 21.2 shows the exact solu-

tion of the differential equation y′ = y, y(0) = 1 as well as polygons defined by

Euler’s method for three different step sizes.

Euler’s method is convergent of order 1, see [11, Chap. II.3]. On bounded intervals

[a, b] one thus has the uniform error estimate

|y(xn) − yn| ≤ Ch

for all n ≥ 1 and sufficiently small h with 0 ≤ nh ≤ b − a. The constant C depends

on the length of the interval and the solution y(x), however, it does not depend on n

and h.
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Fig. 21.2 Euler

approximation to

y′ = y, y(0) = 1

0 0.25 0.5 0.75 1

1

1.6

2.2

2.8

15 Euler steps

5 Euler steps

2 Euler steps

Example 21.1 The solution of the initial value problem y′ = y, y(0) = 1 is y(x) =

ex . For nh = 1 the numerical solution yn approximates the exact solution at x = 1.

Due to

yn = yn−1 + hyn−1 = (1 + h)yn−1 = · · · = (1 + h)n y0

we have

yn = (1 + h)n =

(

1 +
1

n

)n

≈ e .

The convergence of Euler’s method thus implies

e = lim
n→∞

(

1 +
1

n

)n

.

This formula for e was already deduced in Example 7.11.

In commercial software packages, methods of higher order are used for the numer-

ical integration, for example Runge–Kutta or multi-step methods. All these methods

are refinements of Euler’s method. In modern implementations of these algorithms

the error is automatically estimated and the step size adaptively adjusted to the prob-

lem. For more details, we refer to [11,12].

Experiment 21.2 In MATLAB you can find information on the numerical solution of

differential equations by calling help funfun. For example, one can solve the

initial value problem

y′ = y2, y(0) = 0.9
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on the interval [0, 1] with the command

[x,y] = ode23(’qfun’, [0,1], 0.9);

The file qfun.m has to contain the definition of the function

function yp = f(x,y)

yp = y.ˆ2;

For a plot of the solution, one sets the option

myopt = odeset(’OutputFcn’,’odeplot’)

and calls the solver by

[x,y] = ode23(’qfun’, [0,1], 0.9, myopt);

Start the program with different initial values and observe the blow up for y(0) ≥ 1.

21.2 Stability and Stiff Problems

The linear differential equation

y′ = ay, y(0) = 1

has the solution

y(x) = eax.

For a ≤ 0 this solution has the following qualitative property, independent of the

size of a :

|y(x)| ≤ 1 for all x ≥ 0.

We are investigating whether numerical methods preserve this property. For that we

solve the differential equation with the explicit Euler method and obtain

yn = yn−1 + hayn−1 = (1 + ha)yn−1 = · · · = (1 + ha)n y0 = (1 + ha)n .

For −2 ≤ ha ≤ 0 the numerical solution obeys the same bound

|yn| =
∣

∣(1 + ha)n
∣

∣ =
∣

∣1 + ha
∣

∣

n
≤ 1
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as the exact solution. However, for ha < −2 a dramatic instability occurs although

the exact solution is harmless. In fact, all explicit methods have the same difficulties

in this situation: The solution is only stable under very restrictive conditions on the

step size. For the explicit Euler method the condition for stability is

−2 ≤ ha ≤ 0.

For a ≪ 0 this implies a drastic restriction on the step size, which eventually makes

the method in this situation inefficient.

In this case a remedy is offered by implicit methods, for example, the implicit

Euler method

yn+1 = yn + h f (xn+1, yn+1).

It differs from the explicit method by the fact that the slope of the tangent is now

taken at the endpoint. For the determination of the numerical solution, a nonlinear

equation has to be solved in general. Therefore, such methods are called implicit.

The implicit Euler method has the same accuracy as the explicit one, but by far better

stability properties, as the following analysis shows. If one applies the implicit Euler

method to the initial value problem

y′ = ay, y(0) = 1, with a ≤ 0,

one obtains

yn = yn−1 + h f (xn, yn) = yn−1 + hayn,

and therefore

yn =
1

1 − ha
yn−1 = · · · =

1

(1 − ha)n
y0 =

1

(1 − ha)n
.

The procedure is thus stable, i.e. |yn| ≤ 1, if

∣

∣(1 − ha)n
∣

∣ ≥ 1.

However, for a ≤ 0 this is fulfilled for all h ≥ 0. Thus the procedure is stable for

arbitrarily large step sizes.

Remark 21.3 A differential equation is called stiff, if for its solution the implicit

Euler method is more efficient (often dramatically more efficient) than the explicit

method.
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Fig. 21.3 Instability of the explicit Euler method. In each case the picture shows the exact solution

and the approximating polygons of Euler’s method with n steps
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Fig. 21.4 Stability of the implicit Euler method. In each case the picture shows the exact solution

and the approximating polygons of Euler’s method with n steps

Example 21.4 (From [12, Chap. IV.1]) We integrate the initial value problem

y′ = −50(y − cos x), y(0) = 0.997.

Its exact solution is

y(x) =
2500

2501
cos x +

50

2501
sin x −

6503

250100
e−50x

≈ cos(x − 0.02) − 0.0026 e−50x.

The solution looks quite harmless and resembles cos x , but the equation is stiff with

a = −50. Warned by the analysis above we expect difficulties for explicit methods.

We integrate this differential equation numerically on the interval [0, 10] with

the explicit Euler method and step sizes h = 10/n with n = 250, 248 and 246.

For n < 250, i.e. h > 1/25, exponential instabilities occur, see Fig. 21.3. This is

consistent with the considerations above because the product ah satisfies ah ≤ −2

for h > 1/25.

However, if one integrates the differential equation with the implicit Euler method,

then even for very large step sizes no instabilities arise, see Fig. 21.4. The implicit

Euler method is more costly than the explicit one, as the computation of yn+1 from

yn+1 = yn + h f (xn+1, yn+1)

generally requires the solution of a nonlinear equation.
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21.3 Systems of Differential Equations

For the derivation of a simple numerical method for solving systems of differential

equations

ẋ(t) = f
(

t, x(t), y(t)
)

, x(t0) = x0,

ẏ(t) = g
(

t, x(t), y(t)
)

, y(t0) = y0,

one again starts from the Taylor expansion of the analytic solution

x(t + h) = x(t) + hẋ(t) + O(h2),

y(t + h) = y(t) + h ẏ(t) + O(h2)

and replaces the derivatives by the right-hand sides of the differential equations. For

small step sizes h this motivates the explicit Euler method

xn+1 = xn + h f
(

tn, xn, yn

)

,

yn+1 = yn + hg
(

tn, xn, yn

)

.

One interprets xn and yn as numerical approximations to the exact solution x(tn) and

y(tn) at time tn = t0 + nh.

Example 21.5 In Sect. 20.2 we have investigated the Lotka–Volterra model

ẋ = x(y − 1),

ẏ = y(1 − x).

In order to compute the periodic orbit through the point (x0, y0) = (2, 2) numerically,

we apply the explicit Euler method and obtain the recursion

xn+1 = xn + hxn(yn − 1),

yn+1 = yn + hyn(1 − xn).

Starting from the initial values x0 = 2 and y0 = 2 this recursion determines the

numerical solution for n ≥ 0. The results for three different step sizes are depicted

in Fig. 21.5. Note the linear convergence of the numerical solution for h → 0.

This numerical experiment shows that one has to choose a very small step size in

order to obtain the periodicity of the true orbit in the numerical solution. Alternatively,

one can use numerical methods of higher order or—in the present example—also

the following modification of Euler’s method

xn+1 = xn + hxn(yn − 1),

yn+1 = yn + hyn(1 − xn+1).
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Fig. 21.5 Numerical computation of a periodic orbit of the Lotka–Volterra model. The system was

integrated on the interval 0 ≤ t ≤ 14 with Euler’s method and constant step sizes h = 14/n for

n = 250, 500 and 1000

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

n = 200n = 100n = 50

Fig. 21.6 Numerical computation of a periodic orbit of the Lotka–Volterra model. The system

was integrated on the interval 0 ≤ t ≤ 14 with the modified Euler method with constant step sizes

h = 14/n for n = 50, 100 and 200

In this method one uses instead of xn the updated value xn+1 for the computation

of yn+1. The numerical results, obtained with this modified Euler method, are given

in Fig. 21.6. One clearly recognises the superiority of this approach compared to the

original one. Clearly, the geometric structure of the solution was better captured.

21.4 Exercises

1. Solve the special Riccati equation y′ = x2 + y2, y(0) = −4 for 0 ≤ x ≤ 2 with

MATLAB.

2. Solve with MATLAB the linear system of differential equations

ẋ = y, ẏ = −x

with initial values x(0) = 1 and y(0) = 0 on the interval [0, b] for b = 2π , 10π

and 200π . Explain the observations.

Hint. In MATLAB one can use the command ode23(’mat21_1’,[0 2*pi],

[0 1]), where the file mat21_1.m defines the right-hand side of the differ-

ential equation.
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3. Solve the Lotka–Volterra system

ẋ = x(y − 1), ẏ = y(1 − x)

for 0 ≤ t ≤ 14 with initial values x(0) = 2 and y(0) = 2 in MATLAB. Compare

your results with Figs. 21.5 and 21.6.

4. Let y′(x) = f (x, y(x)). Show by Taylor expansion that

y(x + h) = y(x) + h f

(

x +
h

2
, y(x) +

h

2
f
(

x, y(x)
)

)

+ O(h3)

and deduce from this the numerical scheme

yn+1 = yn + h f

(

xn +
h

2
, yn +

h

2
f (xn, yn)

)

.

Compare the accuracy of this scheme with that of the explicit Euler method

applied to the Riccati equation of Exercise 1.

5. Apply the numerical scheme

yn+1 = yn + h f

(

xn +
h

2
, yn +

h

2
f (xn, yn)

)

to the solution of the differential equation

y′ = y, y(0) = 1

and show that

yn =

(

1 + h +
h2

2

)n

.

Deduce from this identity a formula for approximating e. How do the results

compare to the corresponding formula obtained with the explicit Euler scheme?

Hint: Choose h = 1/n for n = 10, 100, 1000, 10000.

6. Let a ≤ 0. Apply the numerical scheme

yn+1 = yn + h f

(

xn +
h

2
, yn +

h

2
f (xn, yn)

)

to the linear differential equation y′ = ay, y(0) = 1 and find a condition on the

step size h such that |yn| ≤ 1 for all n ∈ N.

www.dbooks.org

https://www.dbooks.org/


AVector Algebra

In various sections of this book we referred to the notion of a vector. We assumed
the reader to have a basic knowledge on standard school level. In this appendix we
recapitulate some basic notions of vector algebra. For a more detailed presentation
we refer to [2].

A.1 Cartesian Coordinate Systems

A Cartesian coordinate system in the plane (in space) consists of two (three) real
lines (coordinate axes) which intersect in right angles at the point O (origin). We
always assume that the coordinate system is positively (right-handed) oriented. In a
planar right-handed system, the positive y-axis lies to the left in viewing direction of
the positive x-axis (Fig. A.1). In a positively oriented three-dimensional coordinate
system, the direction of the positive z-axis is obtained by turning the x-axis in the
direction of the y-axis according to the right-hand rule, see Fig. A.2.

The coordinates of a point are obtained by parallel projection of the point onto
the coordinate axes. In the case of the plane, the point A has the coordinates a1 and
a2, and we write

A = (a1, a2) ∈ R2.

In an analogous way a point A in space with coordinates a1, a2 and a3 is denoted as

A = (a1, a2, a3) ∈ R3.

Thus one has a unique representation of points by pairs or triples of real numbers.

© Springer Nature Switzerland AG 2018
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Fig. A.1 Cartesian
coordinate system in the
plane a2

a1

A

y

x

Fig. A.2 Cartesian
coordinate system in space

a3

a2

a1

A

z

x
y

A.2 Vectors

For two points P and Q in the plane (in space) there exists exactly one parallel
translation which moves P to Q. This translation is called a vector. Vectors are thus
quantities with direction and length. The direction is that from P to Q and the length
is the distance between the two points. Vectors are used to model, e.g., forces and
velocities. We always write vectors in boldface.

For a vector a, the vector −a denotes the parallel translation which undoes the
action of a; the zero vector 0 does not cause any translation. The composition of
two parallel translations is again a parallel translation. The corresponding operation
for vectors is called addition and is performed according to the parallelogram rule.
For a real number λ ≥ 0, the vector λ a is the vector which has the same direction
as a, but λ times the length of a. This operation is called scalar multiplication. For
addition and scalar multiplication the usual rules of computation apply.

Let a be the parallel translation from P to Q. The length of the vector a, i.e. the
distance between P and Q, is called norm (or magnitude) of the vector. We denote
it by ‖a‖. A vector e with ‖e‖ = 1 is called a unit vector.

A.3 Vectors in a Cartesian Coordinate System

In a Cartesian coordinate system with origin O , we denote the three unit vectors in
direction of the three coordinate axes by e1, e2, e3, see Fig. A.3. These three vectors
are called the standard basis of R3. Here e1 stands for the parallel translation which
moves O to (1, 0, 0), etc.
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Fig. A.3 Representation of a

in components

e3

e2e1

a

a3

a2

a1

A = (a1, a2, a3)

z

x

y

The vector a which moves O to A can be decomposed in a unique way as a =
a1e1 + a2e2 + a3e3. We denote it by

a =

⎡

⎣

a1

a2

a3

⎤

⎦ ,

where the column on the right-hand side is the so-called coordinate vector of a with
respect to the standard basis e1, e2, e3. The vector a is also called position vector

of the point A. Since we are always working with the standard basis, we identify a
vector with its coordinate vector, i.e.

e1 =

⎡

⎣

1
0
0

⎤

⎦ , e2 =

⎡

⎣

0
1
0

⎤

⎦ , e3 =

⎡

⎣

0
0
1

⎤

⎦

and

a = a1e1 + a2e2 + a3e3 =

⎡

⎣

a1

0
0

⎤

⎦+

⎡

⎣

0
a2

0

⎤

⎦+

⎡

⎣

0
0
a3

⎤

⎦ =

⎡

⎣

a1

a2

a3

⎤

⎦ .

To distinguish between points and vectors we write the coordinates of points in a
row, but use column notation for vectors.

For column vectors the usual rules of computation apply:

⎡

⎣

a1

a2

a3

⎤

⎦+

⎡

⎣

b1

b2

b3

⎤

⎦ =

⎡

⎣

a1 + b1

a2 + b2

a3 + b3

⎤

⎦ , λ

⎡

⎣

a1

a2

a3

⎤

⎦ =

⎡

⎣

λa1

λa2

λa3

⎤

⎦ .

Thus the addition and the scalar multiplication are defined componentwise.
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The norm of a vector a ∈ R2 with components a1 and a2 is computed with

Pythagoras’ theorem as ‖a‖ =
√

a2
1 + a2

2 . Hence the components of the vector a

have the representation

a1 = ‖a‖ · cos α and a2 = ‖a‖ · sin α,

and we obtain

a = ‖a‖ ·
[

cos α

sin α

]

= length · direction,

see Fig. A.4. For the norm of a vector a ∈ R3 the analogous formula ‖a‖ =
√

a2
1 + a2

2 + a2
3 holds.

Remark A.1 The plane R2 (and likewise the space R3) appears in two roles: On the
one hand as point space (its objects are points which cannot be added) and on the
other hand as vector space (its objects are vectors that can be added). By parallel
translation, R2 (as vector space) can be attached to every point of R2 (as point space),
see Fig. A.5. In general, however, point space and vector space are different sets, as
shown in the following example.

Example A.2 (Particle on a circle) Let P be the position of a particle which moves
on a circle and v its velocity vector. Then the point space is the circle and the vector
space the tangent to the circle at the point P , see Fig. A.6.

Fig. A.4 A vector a with its
components a1 and a2

a2

a1

α

a

y

x

Fig. A.5 Force F

applied at P F

P
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Fig. A.6 Velocity vector is
tangential to the circle

P

v

A.4 The Inner Product (Dot Product)

The angle ∡(a, b) between two vectors a, b is uniquely determined by the condition
0 ≤ ∡(a, b) ≤ π. One calls a vector a orthogonal (perpendicular) to b (in symbols:
a ⊥ b), if ∡(a, b) = π

2 . By definition, the zero vector 0 is orthogonal to all vectors.

Definition A.3 Let a, b be planar (or spatial) vectors. The number

〈a, b〉 =

{

‖a‖ · ‖b‖ · cos ∡(a, b) a 	= 0, b 	= 0,

0 otherwise,

is called the inner product (dot product) of a and b.

For planar vectors a, b ∈ R2 the inner product is calculated from their compo-
nents as

〈a, b〉 =
〈[

a1

a2

]

,

[

b1

b2

]〉

= a1b1 + a2b2.

For vectors a, b ∈ R3 the analogous formula holds:

〈a, b〉 =

〈

⎡

⎣

a1

a2

a3

⎤

⎦ ,

⎡

⎣

b1

b2

b3

⎤

⎦

〉

= a1b1 + a2b2 + a3b3.

Example A.4 The standard basis vectors ei have length 1 and are mutually orthog-
onal, i.e.

〈ei , e j 〉 =

{

1, i = j,

0, i 	= j.

For vectors a, b, c and a scalar λ ∈ R the inner product obeys the rules

(a) 〈a, b〉 = 〈b, a〉,

(b) 〈a, a〉 = ‖a‖2,

(c) 〈a, b〉 = 0 ⇔ a ⊥ b,



336 Appendix A: Vector Algebra

(d) 〈λa, b〉 = 〈a, λb〉 = λ〈a, b〉,
(e) 〈a + b, c〉 = 〈a, c〉 + 〈b, c〉.

Example A.5 For the vectors

a =

⎡

⎣

2
−4
0

⎤

⎦ , b =

⎡

⎣

6
3
4

⎤

⎦ , c =

⎡

⎣

1
0

−1

⎤

⎦

we have

‖a‖2 = 4 + 16 = 20, ‖b‖2 = 36 + 9 + 16 = 61, ‖c‖2 = 1 + 1 = 2,

and

〈a, b〉 = 12 − 12 = 0, 〈a, c〉 = 2.

From this we conclude that a is perpendicular to b and

cos ∡(a, c) =
〈a, c〉

‖a‖ · ‖c‖
=

2
√

20
√

2
=

1
√

10
.

The value of the angle between a and c is thus

∡(a, c) = arccos
1

√
10

= 1.249 rad.

A.5 The Outer Product (Cross Product)

For vectors a, b in R2 one defines

a × b =
[

a1

a2

]

×
[

b1

b2

]

= det

[

a1 b1

a2 b2

]

= a1b2 − a2b1 ∈ R,

the cross product of a and b. An elementary calculation shows that

|a × b| = ‖a‖ · ‖b‖ · sin ∡(a, b).

Thus |a × b| is the area of the parallelogram spanned by a and b.
For vectors a, b ∈ R3 one defines the cross product as

a × b =

⎡

⎣

a1

a2

a3

⎤

⎦×

⎡

⎣

b1

b2

b3

⎤

⎦ =

⎡

⎣

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤

⎦ ∈ R3.

This product has the following geometric interpretation: If a = 0 or b = 0 or a = λb

then a × b = 0. Otherwise a × b is the vector
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(a) which is perpendicular to a and b : 〈a × b, a〉 = 〈a × b, b〉 = 0;

(b) which is directed such that a, b, a × b forms a right-handed system;

(c) whose length is equal to the area F of the parallelogram spanned by a and b :
F = ‖a × b‖ = ‖a‖ · ‖b‖ · sin ∡(a, b).

Example A.6 Let E be the plane spanned by the two vectors

a =

⎡

⎣

1
−1
2

⎤

⎦ and b =

⎡

⎣

1
0
1

⎤

⎦ .

Then

a × b =

⎡

⎣

1
−1
2

⎤

⎦×

⎡

⎣

1
0
1

⎤

⎦ =

⎡

⎣

−1
1
1

⎤

⎦

is a vector perpendicular to this plane.

For a, b, c ∈ R3 and λ ∈ R the following rules apply

(a) a × a = 0, a × b = −(b × a),

(b) λ(a × b) = (λa) × b = a × (λb),

(c) (a + b) × c = a × c + b × c.

However, the cross product is not associative and

a × (b × c) 	= (a × b) × c

for general a, b, c. For instance, the standard basis vectors of the R3 satisfy the
following identities

e1 × (e1 × e2) = e1 × e3 = −e2,

(e1 × e1) × e2 = 0 × e2 = 0.

A.6 Straight Lines in the Plane

The general equation of a straight line in the (x, y)-plane is

ax + by = c,
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where at least one of the coefficients a and b must be different from zero. The straight
line consists of all points (x, y) which satisfy the above equation,

g =
{

(x, y) ∈ R2; ax + by = c
}

.

If b = 0 (and thus a 	= 0) we get

x =
c

a
,

and thus a line parallel to the y-axis. If b 	= 0, one can solve for y and obtains the
standard form of a straight line

y = −
a

b
x +

c

b
= kx + d

with slope k and intercept d.
The parametric representation of the straight line is obtained from the general

solution of the linear equation

ax + by = c.

Since this equation is underdetermined, one replaces the independent variable by a
parameter and solves for the other variable.

Example A.7 In the equation

y = kx + d

x is considered as independent variable. One sets x = λ and obtains y = kλ + d and
thus the parametric representation

[

x

y

]

=
[

0
d

]

+ λ

[

1
k

]

, λ ∈ R.

Example A.8 In the equation

x = 4

y is the independent variable (it does not even appear). This straight line in parametric
representation is

[

x

y

]

=
[

4
0

]

+ λ

[

0
1

]

.

In general, the parametric representation of a straight line is of the form

[

x

y

]

=
[

p

q

]

+ λ

[

u

v

]

, λ ∈ R
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(position vector of a point plus a multiple of a direction vector). A vector perpendic-
ular to this straight line is called a normal vector. It is a multiple of

[

v

−u

]

, since

〈[

u

v

]

,

[

v

−u

]〉

= 0.

The conversion to the nonparametric form is obtained by multiplying the equation
in parametric form by a normal vector. Thereby the parameter is eliminated. In the
example above one obtains

vx − uy = pv − qu.

In particular, the coefficients of x and y in the nonparametric form are just the
components of a normal vector of the straight line.

A.7 Planes in Space

The general form of a plane in R3 is

ax + by + cz = d,

where at least one of the coefficients a, b, c is different from zero. The plane consists
of all points which satisfy the above equation, i.e.

E =
{

(x, y, z) ∈ R3; ax + by + cz = d
}

.

Since at least one of the coefficients is nonzero, one can solve the equation for the
corresponding unknown.

For example, if c 	= 0 one can solve for z to obtain

z = −
a

c
x −

b

c
y +

d

c
= kx + ly + e.

Here k represents the slope in x-direction, l is the slope in y-direction and e is the
intercept on the z-axis (because z = e for x = y = 0). By introducing parameters
for the independent variables x and y

x = λ, y = µ, z = kλ + lµ + e

one thus obtains the parametric representation of the plane:

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

0
0
e

⎤

⎦+ λ

⎡

⎣

1
0
k

⎤

⎦+ µ

⎡

⎣

0
1
l

⎤

⎦ , λ, µ ∈ R.
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In general, the parametric representation of a plane in R3 is

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

p

q

r

⎤

⎦+ λ

⎡

⎣

v1

v2

v3

⎤

⎦+ µ

⎡

⎣

w1

w2

w3

⎤

⎦

with v × w 	= 0. If one multiplies this equation with v × w and uses

〈v, v × w〉 = 〈w, v × w〉 = 0,

one again obtains the nonparametric form

〈

⎡

⎣

x

y

z

⎤

⎦ , v × w

〉

=

〈

⎡

⎣

p

q

r

⎤

⎦ , v × w

〉

.

Example A.9 We compute the nonparametric form of the plane

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

3
1
1

⎤

⎦+ λ

⎡

⎣

1
−1
2

⎤

⎦+ µ

⎡

⎣

1
0
1

⎤

⎦ .

A normal vector to this plane is given by

v × w =

⎡

⎣

1
−1
2

⎤

⎦×

⎡

⎣

1
0
1

⎤

⎦ =

⎡

⎣

−1
1
1

⎤

⎦ ,

and thus the equation of the plane is

−x + y + z = −1.

A.8 Straight Lines in Space

A straight line in R3 can be seen as the intersection of two planes:

g :
{

ax + by + cz = d,

ex + f y + gz = h.

The straight line is the set of all points (x, y, z) which fulfil this system of equations
(two equations in three unknowns). Generically, the solution of the above system
can be parametrised by one parameter (this is the case of a straight line). However,
it may also happen that the planes are parallel. In this situation they either coincide,
or they do not intersect at all.
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A straight line can also be represented parametrically by the position vector of a
point and an arbitrary multiple of a direction vector

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

p

q

r

⎤

⎦+ λ

⎡

⎣

u

v

w

⎤

⎦ , λ ∈ R.

The direction vector is obtained as difference of the position vectors of two points
on the straight line.

Example A.10 We want to determine the straight line through the points P =
(1, 2, 0) and Q = (3, 1, 2). A direction vector a of this line is given by

a =

⎡

⎣

3
1
2

⎤

⎦−

⎡

⎣

1
2
0

⎤

⎦ =

⎡

⎣

2
−1
2

⎤

⎦ .

Thus a parametric representation of the straight line is

g :

⎡

⎣

x

y

z

⎤

⎦ =

⎡

⎣

1
2
0

⎤

⎦+ λ

⎡

⎣

2
−1
2

⎤

⎦ , λ ∈ R.

The conversion from parametric to nonparametric form and vice versa is achieved
by elimination or introduction of a parameter λ. In the example above one computes
z = 2λ from the last equation and inserts it into the first two equations. This yields
the nonparametric form

x − z = 1,

2y + z = 4.



BMatrices

In this book matrix algebra is required in multi-dimensional calculus, for systems of
differential equations and for linear regression. This appendix serves to outline the
basic notions. A more detailed presentation can be found in [2].

B.1 Matrix Algebra

An (m × n)-matrix A is a rectangular scheme of the form

A =

⎡

⎢

⎢

⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤

⎥

⎥

⎦

.

The entries (coefficients, elements) ai j , i = 1, . . . , m, j = 1, . . . , n of the matrix A

are real or complex numbers. In this section we restrict ourselves to real numbers.
An (m × n)-matrix has m rows and n columns; if m = n, and the matrix is called
square. Vectors of length m can be understood as matrices with one column, i.e as
(m × 1)-matrices. In particular, one refers to the columns

a j =

⎡

⎢

⎢

⎣

a1 j

a2 j
...

amj

⎤

⎥

⎥

⎦

, j = 1, . . . , n

of a matrix A as column vectors and accordingly also writes

A = [a1
... a2

... . . .
... an]
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for the matrix. The rows of the matrix are sometimes called row vectors.
The product of an (m × n)-matrix A with a vector x of length n is defined as

y = Ax,

⎡

⎢

⎢

⎣

y1

y2
...

ym

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

a11x1 + a12x2 + . . . + a1n xn

a21x1 + a22x2 + . . . + a2n xn
...

am1x1 + am2x2 + . . . + amn xn

⎤

⎥

⎥

⎦

and results in a vector y of length m. The kth entry of y is obtained by the inner
product of the kth row vector of the matrix A (written as a column) with the vector
x.

Example B.1 For instance, the product of a (2 × 3)-matrix with a vector of length 3
is computed as follows:

A =
[

a b c

d e f

]

, x =

⎡

⎣

3
−1

2

⎤

⎦ , Ax =
[

3a − b + 2c

3d − e + 2 f

]

.

The assignment x �→ y = Ax defines a linear mapping from Rn to Rm . The lin-
earity is characterised by the validity of the relations

A(u + v) = Au + Av, A(λu) = λAu

for all u, v ∈ Rn and λ ∈ R, which follow immediately from the definition of matrix
multiplication. If e j is the j th standard basis vector of Rn , then obviously

a j = Ae j .

This means that the columns of the matrix A are just the images of the standard basis
vectors under the linear mapping defined by A.

Matrix arithmetic. Matrices of the same format can be added and subtracted by
adding or subtracting their components. Multiplication with a number λ ∈ R is also
defined componentwise. The transpose AT of a matrix A is obtained by swapping
rows and columns; i.e. the i th row of the matrix AT consists of the elements of the
i th column of A:

A =

⎡

⎢

⎢

⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎤

⎥

⎥

⎦

, AT =

⎡

⎢

⎢

⎣

a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn

⎤

⎥

⎥

⎦

.

By transposition an (m × n)-matrix becomes an (n × m)-matrix. In particular, trans-
position changes a column vector into a row vector and vice versa.
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Example B.2 For the matrix A and the vector x from Example B.1 we have:

AT =

⎡

⎣

a d

b e

c f

⎤

⎦ , xT =
[

3 −1 2
]

, x = [3 −1 2]T.

If a, b are vectors of length n, then one can regard aT as a (1 × n)-matrix. Its
product with the vector b is defined as above and coincides with the inner product:

aTb =
n
∑

i=1

ai bi = 〈a, b〉.

More generally, the product of an (m × n)-matrix A with an (n × l)-matrix B can be
defined by forming the inner products of the row vectors of A with the column vectors
of B. This means that the element ci j in the i th row and j th column of C = AB is
obtained by inner multiplication of the i th row of A with the j th column of B:

ci j =
n
∑

k=1

aikbk j .

The result is an (m × l)-matrix. The product is only defined if the dimensions match,
i.e. if the number of columns n of A is equal to the number of rows of B. The matrix
product corresponds to the composition of linear mappings. If B is the matrix of
a linear mapping Rl → Rn and A the matrix of a linear mapping Rn → Rm , then
AB is just the matrix of the composition of the two mappings Rl → Rn → Rm . The
transposition of the product is given by the formula

(AB)T = BTAT,

which can easily be deduced from the definitions.

Square matrices. The entries a11, a22, . . . , ann of an (n × n)-matrix A are called
the diagonal elements. A square matrix D is called diagonal matrix, if its entries are
all zero with the possible exception of the diagonal elements. Special cases are the
zero matrix and the unit matrix of dimension n × n:

O =

⎡

⎢

⎢

⎣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤

⎥

⎥

⎦

, I =

⎡

⎢

⎢

⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤

⎥

⎥

⎦

.

The unit matrix is the identity with respect to matrix multiplication. For all (n × n)-
matrices A it holds that IA = AI = A. If for a given matrix A there exists a matrix
B with the property

BA = AB = I,
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then one calls A invertible or regular and B the inverse of A, denoted by

B = A−1.

Let x ∈ Rn , A an invertible (n × n)-matrix and y = Ax. Then x can be computed
as x = A−1y; in particular, A−1Ax = x and AA−1y = y. This shows that the linear
mapping Rn → Rn induced by the matrix A is bijective and A−1 represents the
inverse mapping. The bijectivity of A can be expressed in yet another way. It means
that for every y ∈ Rn there is one and only one x ∈ Rn such that

Ax = y, or

a11x1 + a12x2 + . . . + a1n xn = y1,

a21x1 + a22x2 + . . . + a2n xn = y2,
...

...
...

...

am1x1 + am2x2 + . . . + amn xn = yn .

The latter can be considered as a linear system of equations with right-hand side y

and solution x = [x1 x2 . . . xn]T. In other words, the invertibility of a matrix A is
equivalent with the bijectivity of the corresponding linear mapping and equivalent
with the unique solvability of the corresponding linear system of equations (for
arbitrary right-hand sides).

For the remainder of this appendix we restrict our attention to (2 × 2)-matrices.
Let A be a (2 × 2)-matrix with the corresponding system of equations:

A = [a1
... a2] =

[

a11 a12

a21 a22

]

,
a11x1 + a12x2 = y1,

a21x1 + a22x2 = y2.

An important role is played by the determinant of the matrix A. In the (2 × 2)-case
it is defined as the cross product of the column vectors:

det A = a1 × a2 = a11a22 − a21a12.

Since a1 × a2 = ‖a1‖‖a2‖ sin ∡(a1, a2), the column vectors a1, a2 are linearly
dependent (so—in R2—multiples of each other), if and only if det A = 0. The fol-
lowing theorem characterises invertibility in the (2 × 2)-case completely.

Proposition B.3 For (2 × 2)-matrices A the following statements are equivalent:

(a) A is invertible.

(b) The linear mapping R2 → R2 defined by A is bijective.

(c) The linear system of equations Ax = y has a unique solution x ∈ R2 for arbitrary

right-hand sides y ∈ R2.

(d) The column vectors of A are linearly independent.

(e) The linear mapping R2 → R2 defined by A is injective.
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(f) The only solution of the linear system of equations Ax = 0 is the zero solution

x = 0.

(g) det A 	= 0.

Proof The equivalence of the statements (a), (b) and (c) was already observed above.
The equivalence of (d), (e) and (f) can easily be seen by negation. Indeed, if the
column vectors are linearly dependent, then there exists x = [x1 x2]T 	= 0 with
x1a1 + x2a2 = 0. On the one hand, this means that the vector x is mapped to 0

by A; thus this mapping is not injective. On the other hand, x is a nontrivial solution
of the linear system of equations Ax = 0. The converse implications are shown in
the same way. Thus (d), (e) and (f) are equivalent. The equivalence of (g) and (d) is
obvious from the geometric meaning of the determinant. If the determinant does not
vanish then

A−1 =
1

a11a22 − a21a12

[

a22 −a12

−a21 a11

]

is an inverse to A, as can be verified at once. Thus (g) implies (a). Finally, (e)
obviously follows from (b). Hence all statements (a)–(g) are equivalent. �

Proposition B.3 holds for matrices of arbitrary dimension n × n. For n = 3 one
can still use geometrical arguments. The cross product, however, has to be replaced by
the triple product 〈a1 × a2, a3〉 of the three column vectors, which then also defines
the determinant of the (3 × 3)-matrix A. In higher dimensions the proof requires
tools from combinatorics, for which we refer to the literature.

B.2 Canonical Form of Matrices

In this subsection we will show that every (2 × 2)-matrix A is similar to a matrix
of standard type, which means that it can be put into standard form by a basis
transformation. We need this fact in Sect. 20.1 for the classification and solution of
systems of differential equations. The transformation explained below is a special
case of the Jordan canonical form1 for (n × n)-matrices.

If T is an invertible (2 × 2)-matrix, then the columns t1, t2 form a basis of R2.
This means that every element x ∈ R2 can be written in a unique way as a linear

combination c1t1 + c2t2; the coefficients c1, c2 ∈ R are the coordinates of x with
respect to t1 and t2. One can regard T as a linear transformation of R2 which maps
the standard basis {[1 0]T, [0 1]T} to the basis {t1, t2}.

Definition B.4 Two matrices A, B are called similar, if there exists an invertible
matrix T such that T−1AT = B.

1C. Jordan, 1838–1922.
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The three standard types which will define the similarity classes of (2 × 2)-
matrices are of the following form:

type I type II type III
[

λ1 0
0 λ2

] [

λ 1
0 λ

] [

µ −ν

ν µ

]

Here the coefficients λ1, λ2,λ, µ, ν are real numbers.
In what follows, we need the notion of eigenvalues and eigenvectors. If the equa-

tion

Av = λv

has a solution v 	= 0 ∈ R2 for some λ ∈ R, then λ is called eigenvalue and v eigen-

vector of A. In other words, v is the solution of the equation

(A − λI)v = 0,

where I denotes again the unit matrix. For the existence of a nonzero solution v it is
necessary and sufficient that the matrix A − λI is not invertible, i.e.

det(A − λI) = 0.

By writing

A =
[

a b

c d

]

we see that λ has to be a solution of the characteristic equation

det

[

a − λ b

c d − λ

]

= λ2 − (a + d)λ + ad − bc = 0.

If this equation has a real solution λ, then the system of equations (A − λI)v = 0 is
underdetermined and thus has a nonzero solution v = [v1 v2]T. Hence one obtains
the eigenvectors to the eigenvalue λ by solving the linear system

(a − λ) v1 + b v2 = 0,

c v1 + (d − λ) v2 = 0.

Depending on whether the characteristic equation has two real, a double real or two
complex conjugate solutions, we obtain one of the three similarity classes of A.

Proposition B.5 Every (2 × 2)-matrix A is similar to a matrix of type I, II or III.
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Proof (1) The case of two distinct real eigenvalues λ1 	= λ2. With

v1 =
[

v11

v21

]

, v2 =
[

v12

v22

]

we denote the corresponding eigenvectors. They are linearly independent and thus
form a basis of the R2. Otherwise they would be multiples of each other and so cv1 =
v2 for some nonzero c ∈ R. Applying A would result in cλ1v1 = λ2v2 = λ2cv1 and
thus λ1 = λ2 in contradiction to the hypothesis. According to Proposition B.3 the
matrix

T = [v1
... v2] =

[

v11 v12

v21 v22

]

is invertible. Using

Av1 = λ1v1, Av2 = λ2v2,

we obtain the identities

T−1AT = T−1A [v1
... v2] = T−1[λ1v1

...λ2v2]

=
1

v11v22 − v21v12

[

v22 −v12

−v21 v11

] [

λ1v11 λ2v12

λ1v21 λ2v22

]

=
[

λ1 0
0 λ2

]

.

The matrix A is similar to a diagonal matrix and thus of type I.
(2) The case of a double real eigenvalue λ = λ1 = λ2. Since

λ =
1

2

(

a + d ±
√

(a − d)2 + 4bc
)

is the solution of the characteristic equation, this case occurs if

(a − d)2 = −4bc, λ =
1

2
(a + d) .

If b = 0 and c = 0, then a = d and A is already a diagonal matrix of the form

A =
[

a 0
0 a

]

,

thus of type I. If b 	= 0, we compute c from (a − d)2 = −4bc and find

A − λI =
[

a − λ b

c d − λ

]

=

[

1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

]

.

Note that
[

1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

][

1
2 (a − d) b

− 1
4b

(a − d)2 − 1
2 (a − d)

]

=
[

0 0
0 0

]

,
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or (A − λI)2 = O. In this case, A − λI is called a nilpotent matrix. A similar cal-
culation shows that (A − λI)2 = O if c 	= 0. We now choose a vector v2 ∈ R2 for
which (A − λI)v2 	= 0. Due to the above consideration this vector satisfies

(A − λI)2v2 = 0.

If we set

v1 = (A − λI)v2,

then obviously

Av1 = λv1, Av2 = v1 + λv2.

Further v1 and v2 are linearly independent (because if v1 were a multiple of v2, then
Av2 = λv2 in contradiction to the construction of v2). We set

T = [v1
... v2].

The computation

T−1AT = T−1[λv1
... v1 + λv2]

=
1

v11v22 − v21v12

[

v22 −v12

−v21 v11

] [

λv11 v11 + λv12

λv21 v21 + λv22

]

=
[

λ 1
0 λ

]

.

shows that A is similar to a matrix of type II.
(3) The case of complex conjugate solutions λ1 = µ + iν,λ2 = µ − iν. This case
arises if the discriminant (a − d)2 + 4bc is negative. The most elegant way to deal
with this case is to switch to complex variables and to perform the computations in
the complex vector space C2. We first determine complex vectors v1, v2 ∈ C2 such
that

Av1 = λ1v1, Av2 = λ2v2

and then decompose v1 = f + ig into real and imaginary parts with vectors f , g in
R2. Since λ1 = µ + iν,λ2 = µ − iν, it follows that

v2 = f − ig.

Note that {v1, v2} forms a basis of C2. Thus {g, f} is a basis of R2 and

A(f + ig) = (µ + iν)(f + ig) = µf − νg + i(νf + µg),

consequently

Ag = νf + µg, Af = µf − νg.

Again we set

T = [g ... f] =
[

g1 f1

g2 f2

]
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from which we deduce

T−1AT = T−1[νf + µg
... µf − νg]

=
1

g1 f2 − g2 f1

[

f2 − f1

−g2 g1

] [

ν f1 + µg1 µ f1 − νg1

ν f2 + µg2 µ f2 − νg2

]

=
[

µ −ν

ν µ

]

.

Thus A is similar to a matrix of type III.
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CFurther Results on Continuity

This appendix covers further material on continuity which is not central for this book
but on the other hand is required in various proofs (like in the chapters on curves
and differential equations). It includes assertions about the continuity of the inverse
function, the concept of uniform convergence of sequences of functions, the power
series expansion of the exponential function and the notions of uniform and Lipschitz
continuity.

C.1 Continuity of the Inverse Function

We consider a real-valued function f defined on an interval I ⊂ R. The interval I can
be open, half-open or closed. By J = f (I ) we denote the image of f . First, we show
that a continuous function f : I → J is bijective, if and only if it is strictly mono-
tonically increasing or decreasing. Monotonicity was introduced in Definition 8.5.
Subsequently, we show that the inverse function is continuous if f is continuous,
and we describe the respective ranges.

Proposition C.1 A real-valued, continuous function f : I → J = f (I ) is bijective

if and only if it is strictly monotonically increasing or decreasing.

Proof We already know that the function f : I → f (I ) is surjective. It is injective
if and only if

x1 	= x2 ⇒ f (x1) 	= f (x2).

Strict monotonicity thus implies injectivity. To prove the converse implication we
start by choosing two points x1 < x2 ∈ I . Let f (x1) < f (x2), for example. We will
show that f is strictly monotonically increasing on the entire interval I . First we
observe that for every x3 ∈ (x1, x2) we must have f (x1) < f (x3) < f (x2). This
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is shown by contradiction. Assuming f (x3) > f (x2), Proposition 6.14 implies that
every intermediate point f (x2) < η < f (x3) would be the image of a point ξ1 ∈
(x1, x3) and also the image of a point ξ2 ∈ (x3, x2), contradicting injectivity.

If we now choose x4 ∈ I such that x2 < x4, then once again f (x2) < f (x4). Oth-
erwise we would have x1 < x2 < x4 with f (x2) > f (x4); this possibility is excluded
as in the previous case. Finally, the points to the left of x1 are inspected in a simi-
lar way. It follows that f is strictly monotonically increasing on the entire interval
I . In the case f (x1) > f (x2), one can deduce similarly that f is monotonically
decreasing. �

The function y = x · 11(−1,0](x) + (1 − x) · 11(0,1)(x), where 11I denotes the indi-
cator function of the interval I (see Sect. 2.2), shows that a discontinuous function
can be bijective on an interval without being strictly monotonically increasing or
decreasing.

Remark C.2 If I is an open interval and f : I → J a continuous and bijective func-
tion, then J is an open interval as well. Indeed, if J were of the form [a, b), then
a would arise as function value of a point x1 ∈ I , i.e. a = f (x1). However, since I

is open, there are points x2 ∈ I , x2 < x1 and x3 ∈ I with x3 > x1. If f is strictly
monotonically increasing then we would have f (x2) < f (x1) = a. If f is strictly
monotonically decreasing then f (x3) < f (x1) = a. Both cases contradict the fact
that a was assumed to be the lower boundary of the image J = f (I ). In the same
way, one excludes the possibilities that J = (a, b] or J = [a, b].

Proposition C.3 Let I ⊂ R be an open interval and f : I → J continuous and

bijective. Then the inverse function f −1 : J → I is continuous as well.

Proof We take x ∈ I , y ∈ J with y = f (x), x = f −1(y). For small ε > 0 the ε-
neighbourhood Uε(x) of x is contained in I . According to Remark C.2 f (Uε(x)) is
an open interval and therefore contains a δ-neighbourhood Uδ(y) of y for a certain
δ > 0. Consider a sequence of values yn ∈ J which converges to y as n → ∞. Then
there is an index n(δ) ∈ N such that all elements of the sequence yn with n ≥ n(δ) lie
in the δ-neighbourhood Uδ(y). That, however, means that the values of the function
f −1(yn) from n(δ) onwards lie in the ε-neighbourhood Uε(x) of x = f −1(y). Thus
limn→∞ f −1(yn) = f −1(y) which is the continuity of f −1 at y. �

C.2 Limits of Sequences of Functions

We consider a sequence of functions fn : I → R, defined on an interval I ⊂ R. If
the function values fn(x) converge for every fixed x ∈ I , then the sequence ( fn)n≥1

is called pointwise convergent. The pointwise limits define a function f : I → R by
f (x) = limn→∞ fn(x), the so-called limit function.
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Example C.4 Let I = [0, 1] and fn(x) = xn . Then limn→∞ fn(x) = 0 if 0 ≤ x < 1,
and limn→∞ fn(1) = 1. The limit function is thus the function

f (x) =
{

0, 0 ≤ x < 1,

1, x = 1.

This example shows that the limit function of a pointwise convergent sequence of
continuous functions is not necessarily continuous.

Definition C.5 (Uniform convergence of sequences of functions) A sequence of
functions ( fn)n≥1 defined on an interval I is called uniformly convergent with limit

function f , if

∀ε > 0 ∃n(ε) ∈ N ∀n ≥ n(ε) ∀x ∈ I : | f (x) − fn(x)| < ε.

Uniform convergence means that the index n(ε) after which the sequence of
function values ( fn(x))n≥1 settles in the ε-neighbourhood Uε( f (x)) can be chosen
independently of x ∈ I .

Proposition C.6 The limit function f of a uniformly convergent sequence of func-

tions ( fn)n≥1 is continuous.

Proof We take x ∈ I and a sequence of points xk converging to x as k → ∞. We
have to show that f (x) = limk→∞ f (xk). For this we write

f (x) − f (xk) =
(

f (x) − fn(x)
)

+
(

fn(x) − fn(xk)
)

+
(

fn(xk) − f (xk)
)

and choose ε > 0. Due to the uniform convergence it is possible to find an index
n ∈ N such that

| f (x) − fn(x)| <
ε

3
and | fn(xk) − f (xk)| <

ε

3

for all k ∈ N. Since fn is continuous, there is an index k(ε) ∈ N such that

| fn(x) − fn(xk)| <
ε

3

for all k ≥ k(ε). For such indices k we have

| f (x) − f (xk)| <
ε

3
+

ε

3
+

ε

3
= ε.

Thus f (xk) → f (x) as k → ∞, which implies the continuity of f . �
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Application C.7 The exponential function f (x) = ax is continuous on R. In Appli-
cation 5.14 it was shown that the exponential function with base a > 0 can be defined
for every x ∈ R as a limit. Let rn(x) denote the decimal representation of x , truncated
at the nth decimal place. Then

rn(x) ≤ x < rn(x) + 10−n .

The value of rn(x) is the same for all real numbers x , which coincide up to the
nth decimal place. Thus the mapping x �→ rn(x) is a step function with jumps at a
distance of 10−n . We define the function fn(x) by linear interpolation between the
points

(

rn(x), arn(x)
)

and
(

rn(x) + 10−n, arn(x)+10−n )

,

which means

fn(x) = arn(x) +
x − rn(x)

10−n

(

arn(x)+10−n

− arn(x)
)

.

The graph of the function fn(x) is a polygonal chain (with kinks at the distance of
10−n), and thus fn is continuous. We show that the sequence of functions ( fn)n≥1

converges uniformly to f on every interval [−T, T ], 0 < T ∈ Q. Since x − rn(x) ≤
10−n , it follows that

| f (x) − fn(x)| ≤
∣

∣ax − arn(x)
∣

∣+
∣

∣arn(x)+10−n

− arn(x)
∣

∣.

For x ∈ [−T, T ] we have

ax − arn(x) = arn(x)
(

ax−rn(x) − 1
)

≤ aT
(

a10−n

− 1
)

and likewise

arn(x)+10−n

− arn(x) ≤ aT
(

a10−n

− 1
)

.

Consequently

| f (x) − fn(x)| ≤ 2aT
(

10n√
a − 1

)

,

and the term on the right-hand side converges to zero independently of x , as was
proven in Application 5.15.

The rules of calculation for real exponents can now also be derived by taking
limits. Take, for example, r, s ∈ R with decimal approximations (rn)n≥1, (sn)n≥1.
Then Proposition 5.7 and the continuity of the exponential function imply

ar as = lim
n→∞

(

arn asn
)

= lim
n→∞

(

arn+sn
)

= ar+s .

With the help of Proposition C.3 the continuity of the logarithm follows as well.
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C.3 The Exponential Series

The aim of this section is to derive the series representation of the exponential function

ex =
∞
∑

m=0

xm

m!

by using exclusively the theory of convergent series without resorting to differential
calculus. This is important for our exposition because the differentiability of the
exponential function is proven with the help of the series representation in Sect. 7.2.

As a tool we need two supplements to the theory of series: Absolute convergence
and Cauchy’s2 formula for the product of two series.

Definition C.8 A series
∑∞

k=0 ak is called absolutely convergent, if the series
∑∞

k=0 |ak | of the absolute values of its coefficients converges.

Proposition C.9 Every absolutely convergent series is convergent.

Proof We define the positive and the negative parts of the coefficient ak by

a+
k =

{

ak, ak ≥ 0,

0, ak < 0,
a−

k =
{

0, ak ≥ 0,

|ak |, ak < 0.

Obviously, we have 0 ≤ a+
k ≤ |ak | and 0 ≤ a−

k ≤ |ak |. Thus the two series
∑∞

k=0 a+
k

and
∑∞

k=0 a−
k converge due to the comparison criterion (Proposition 5.21) and the

limit

lim
n→∞

n
∑

k=0

ak = lim
n→∞

n
∑

k=0

a+
k − lim

n→∞

n
∑

k=0

a−
k

exists. Consequently, the series
∑∞

k=0 ak converges. �

We consider two absolutely convergent series
∑∞

i=0 ai and
∑∞

j=0 b j and ask how
their product can be computed. Term-by-term multiplication of the nth partial sums
suggests to consider the following scheme:

a0b0 a0b1 . . . a0bn−1 a0bn

a1b0 a1b1 . . . a1bn−1 a1bn
... . .

. ...

an−1b0 an−1b1 . . . an−1bn−1 an−1bn

an b0 anb1 . . . anbn−1 anbn

2A.L. Cauchy, 1789–1857.
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Adding all entries of the quadratic scheme one obtains the product of the partial sums

Pn =
n
∑

i=0

ai

n
∑

j=0

b j .

In contrast, adding only the upper triangle containing the bold entries (diagonal by
diagonal), one obtains the so-called Cauchy product formula

Sn =
n
∑

m=0

(

m
∑

k=0

akbm−k

)

.

We want to show that, for absolutely convergent series, the limits are equal:

lim
n→∞

Pn = lim
n→∞

Sn .

Proposition C.10 (Cauchy product) If the series
∑∞

i=0 ai and
∑∞

j=0 b j converge

absolutely then

∞
∑

i=0

ai

∞
∑

j=0

b j =
∞
∑

m=0

(

m
∑

k=0

akbm−k

)

.

The series defined by the Cauchy product formula also converges absolutely.

Proof We set

cm =
m
∑

k=0

akbm−k

and obtain that the partial sums

Tn =
n
∑

m=0

|cm | ≤
n
∑

i=0

|ai |
n
∑

j=0

|b j | ≤
∞
∑

i=0

|ai |
∞
∑

j=0

|b j |

remain bounded. This follows from the facts that the triangle in the scheme above has
fewer entries than the square and the original series converge absolutely. Obviously
the sequence Tn is also monotonically increasing; according to Proposition 5.10 it
thus has a limit. This means that the series

∑∞
m=0 cm converges absolutely, so the

Cauchy product exists. It remains to be shown that it coincides with the product of
the series. For the partial sums, we have

∣

∣

∣
Pn − Sn

∣

∣

∣
=
∣

∣

∣

∣

n
∑

i=0

ai

n
∑

j=0

b j −
n
∑

m=0

cm

∣

∣

∣

∣

≤
∣

∣

∣

∣

∞
∑

m=n+1

cm

∣

∣

∣

∣

,

since the difference can obviously be approximated by the sum of the terms below
the nth diagonal. The latter sum, however, is just the difference of the partial sum

www.dbooks.org

https://doi.org/10.1007/978-3-319-91155-7_5
https://www.dbooks.org/


Appendix C: Further Results on Continuity 359

Sn and the value of the series
∑∞

m=0 cm . It thus converges to zero and the desired
assertion is proven. �

Let

E(x) =
∞
∑

m=0

xm

m!
, En(x) =

n
∑

m=0

xm

m!
.

The convergence of the series for x = 1 was shown in Example 5.24 and for x = 2
in Exercise 14 of Chap. 5. The absolute convergence for arbitrary x ∈ R can either
be shown analogously or by using the ratio test (Exercise 15 in Chap. 5). If x varies
in a bounded interval I = [−R, R], then the sequence of the partial sums En(x)

converges uniformly to E(x), due to the uniform estimate

∣

∣

∣
E(x) − En(x)

∣

∣

∣
=
∣

∣

∣

∣

∞
∑

m=n+1

xm

m!

∣

∣

∣

∣

≤
∞
∑

m=n+1

Rm

m!
→ 0

on the interval [−R, R]. Proposition C.6 implies that the function x �→ E(x) is
continuous.

For the derivation of the product formula E(x)E(y) = E(x + y) we recall the
binomial formula:

(x + y)m =
m
∑

k=0

(

m

k

)

xk ym−k with

(

m

k

)

=
m!

k!(m − k)!
,

valid for arbitrary x, y ∈ R and n ∈ N, see, for instance, [17, Chap. XIII, Theo-
rem 7.2].

Proposition C.11 For arbitrary x, y ∈ R it holds that

∞
∑

i=0

x i

i !

∞
∑

j=0

y j

j !
=

∞
∑

m=0

(x + y)m

m!
.

Proof Due to the absolute convergence of the above series, Proposition C.10 yields

∞
∑

i=0

x i

i !

∞
∑

j=0

y j

j !
=

∞
∑

m=0

m
∑

k=0

xk

k!
ym−k

(m − k)!
.

An application of the binomial formula

m
∑

k=0

xk

k!
ym−k

(m − k)!
=

1

m!

m
∑

k=0

(

m

k

)

xk ym−k =
1

m!
(x + y)m

shows the desired assertion. �
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Proposition C.12 (Series representation of the exponential function) The exponen-

tial function possesses the series representation

ex =
∞
∑

m=0

xm

m!
,

valid for arbitrary x ∈ R.

Proof By definition of the number e (see Example 5.24) we obviously have

e0 = 1 = E(0), e1 = e = E(1).

From Proposition C.11 we get in particular

e2 = e1+1 = e1 e1 = E(1)E(1) = E(1 + 1) = E(2)

and recursively

em = E(m) for m ∈ N.

The relation E(m)E(−m) = E(m − m) = E(0) = 1 shows that

e−m =
1

em
=

1

E(m)
= E(−m).

Likewise, one concludes from
(

E(1/n)
)n = E(1) that

e1/n = n
√

e = n
√

E(1) = E(1/n).

So far this shows that ex = E(x) holds for all rational x = m/n. From Application
C.7 we know that the exponential function x �→ ex is continuous. The continuity
of the function x �→ E(x) was shown above. But two continuous functions which
coincide for all rational numbers are equal. More precisely, if x ∈ R and x j is the
decimal expansion of x truncated at the j th place, then

ex = lim
j→∞

ex j = lim
j→∞

E(x j ) = E(x),

which is the desired result. �

Remark C.13 The rigorous introduction of the exponential function is surprisingly
involved and is handled differently by different authors. The total effort, however, is
approximately the same in all approaches. We took the following route: Introduction
of Euler’s number e as the value of a convergent series (Example 5.24); definition
of the exponential function x �→ ex for x ∈ R by using the completeness of the
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real numbers (Application 5.14); continuity of the exponential function based on
uniform convergence (Application C.7); series representation (Proposition C.12);
differentiability and calculation of the derivative (Sect. 7.2). Finally, in the course
of the computation of the derivative we also obtained the well-known formula e =
limn→∞ (1 + 1/n)n , which Euler himself used to define the number e.

C.4 Lipschitz Continuity and Uniform Continuity

Some results on curves and differential equations require more refined continuity
properties. More precisely, methods for quantifying how the function values change
in dependence on the arguments are needed.

Definition C.14 A function f : D ⊂ R → R is called Lipschitz continuous, if there
exists a constant L > 0 such that the inequality

| f (x1) − f (x2)| ≤ L|x1 − x2|

holds for all x1, x2 ∈ D. In this case L is called a Lipschitz constant of the function f .

If x ∈ D and (xn)n≥1 is a sequence of points in D which converges to x ,
the inequality | f (x) − f (xn)| ≤ L|x − xn| implies that f (xn) → f (x) as n → ∞.
Every Lipschitz continuous function is thus continuous. For Lipschitz continuous
functions one can quantify how much change in the x-values can be allowed to
obtain a change in the function values of ε > 0 at the most:

|x1 − x2| < ε/L ⇒ | f (x1) − f (x2)| < ε.

Occasionally the following weaker quantification is required.

Definition C.15 A function f : D ⊂ R → R is called uniformly continuous, if there
exists a mapping ω : (0, 1] → (0, 1] : ε �→ ω(ε) such that

|x1 − x2| < ω(ε) ⇒ | f (x1) − f (x2)| < ε

for all x1, x2 ∈ D. In this case the mapping ω is called a modulus of continuity of
the function f .

Every Lipschitz continuous function is uniformly continuous (with ω(ε) = ε/L),
and every uniformly continuous function is continuous.
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Example C.16 (a) The quadratic function f (x) = x2 is Lipschitz continuous on
every bounded interval [a, b]. For x1 ∈ [a, b] we have |x1| ≤ M = max(|a|, |b|)
and likewise for x2. Thus

| f (x1) − f (x2)| = |x2
1 − x2

2 | = |x1 + x2||x1 − x2| ≤ 2M |x1 − x2|

holds for all x1, x2 ∈ [a, b].
(b) The absolute value function f (x) = |x | is Lipschitz continuous on D = R (with
Lipschitz constant L = 1). This follows from the inequality

∣

∣|x1| − |x2|
∣

∣ ≤ |x1 − x2|,

which is valid for all x1, x2 ∈ R.
(c) The square root function f (x) =

√
x is uniformly continuous on the interval

[0, 1], but not Lipschitz continuous. This follows from the inequality

∣

∣

√
x1 −

√
x2
∣

∣ ≤
√

|x1 − x2|,

which is proved immediately by squaring. Thus ω(ε) = ε2 is a modulus of continuity
of the square root function on the interval [0, 1]. The square root function is not
Lipschitz continuous on [0, 1], since otherwise the choice x2 = 0 would imply the
relations

√
x1 ≤ L|x1|,

1
√

x1
≤ L

which cannot hold for fixed L > 0 and all x1 ∈ (0, 1].
(d) The function f (x) = 1

x
is continuous on the interval (0, 1), but not uniformly

continuous. Assume that we could find a modulus of continuity ε �→ ω(ε) on (0, 1).
Then for x1 = 2εω(ε), x2 = εω(ε) and ε < 1 we would get |x1 − x2| < ω(ε), but

∣

∣

∣

∣

1

x1
−

1

x2

∣

∣

∣

∣

=
∣

∣

∣

∣

x2 − x1

x1x2

∣

∣

∣

∣

=
εω(ε)

2ε2ω(ε)2
=

1

2εω(ε)

which becomes arbitrarily large as ε → 0. In particular, it cannot be bounded from
above by ε.

From the mean value theorem (Proposition 8.4) it follows that differentiable func-
tions with bounded derivative are Lipschitz continuous. Further it can be shown that
every function which is continuous on a closed, bounded interval [a, b] is uniformly
continuous there. The proof requires further tools from analysis for which we refer
to [4, Theorem 3.13].

Apart from the intermediate value theorem, the fixed point theorem is an important
tool for proving the existence of solutions of equations. Moreover one obtains an
iterative algorithm for approximating the fixed point.
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Definition C.17 A Lipschitz continuous mapping f of an interval I to R is called a
contraction, if f (I ) ⊂ I and f has a Lipschitz constant L < 1. A point x∗ ∈ I with
x∗ = f (x∗) is called fixed point of the function f .

Proposition C.18 (Fixed point theorem) A contraction f on a closed interval

[a, b] has a unique fixed point. The sequence, recursively defined by the iteration

xn+1 = f (xn)

converges to the fixed point x∗ for arbitrary initial values x1 ∈ [a, b].

Proof Since f ([a, b]) ⊂ [a, b] we must have

a ≤ f (a) and f (b) ≤ b.

If a = f (a) or b = f (b), we are done. Otherwise the intermediate value theorem
applied to the function g(x) = x − f (x) yields the existence of a point x∗ ∈ (a, b)

with g(x∗) = 0. This x∗ is a fixed point of f . Due to the contraction property the
existence of a further fixed point y∗ would result in

|x∗ − y∗| = | f (x∗) − f (y∗)| ≤ L|x∗ − y∗| < |x∗ − y∗|

which is impossible for x∗ 	= y∗. Thus the fixed point is unique.
The convergence of the iteration follows from the inequalities

|x∗ − xn+1| = | f (x∗) − f (xn)| ≤ L|x∗ − xn| ≤ . . . ≤ Ln|x∗ − x1|,

since |x∗ − x1| ≤ b − a and limn→∞ Ln = 0. �



DDescription of the Supplementary
Software

In our view using and writing software forms an essential component of an analysis
course for computer scientists. The software that has been developed for this book
is available on the website

https://www.springer.com/book/9783319911540

This site contains the Java applets referred to in the text as well as some source files
in maple, Python and MATLAB.

For the execution of the maple and MATLAB programs additional licences are
needed.

Java applets. The available applets are listed in Table D.1. The applets are executable
and only require a current version of Java installed.

Source codes in MATLAB and maple. In addition to the Java applets, you can find
maple and MATLAB programs on this website. These programs are numbered accord-
ing to the individual chapters and are mainly used in experiments and exercises. To
run the programs the corresponding software licence is required.

Source codes in Python. For each MATLAB program, an equivalent Python program
is provided. To run these programs, a current version of Python has to be installed.
We do not specifically refer these programs in the text; the numbering is the same as
for the M-files.
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Table D.1 List of available Java applets

Sequences

2D-visualisation of complex functions

3D-visualisation of complex functions

Bisection method

Animation of the intermediate value theorem

Newton’s method

Riemann sums

Integration

Parametric curves in the plane

Parametric curves in space

Surfaces in space

Dynamical systems in the plane

Dynamical systems in space

Linear regression
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Symbols

C, 39
N, 1
N0, 1
Q, 1
R, 4
Z, 1
e, 21, 61, 85, 168, 323
i, 39
π, 3, 30
∇, 222
∞, 7

A

Absolute value, 7, 40
function, 19

Acceleration, 90
vector, 192, 202

Addition theorems, 32, 42, 85
Affine function

derivative, 84
Analysis of variance, 261
Angle, between vectors, 335
ANOVA, 261
Antiderivative, 140
Approximation

linear, 88, 89, 219
quadratic, 224

Arccosine, 33
derivative, 95
graph, 34

Archimedean spiral, 200
Archimedes, 200

Arc length, 30, 196
graph, 159
parametrisation, 196

Arcosh, 23
derivative, 95

Arcsine, 33
derivative, 95
graph, 33

Arctangent, 34
derivative, 95
graph, 34

Area
sector, 74
surface of sphere, 160
triangle, 29
under a graph, 150

Area element, 247
Area functions, 23
Area hyperbolic

cosine, 23
sine, 23
tangent, 23

Argument, 42
Arithmetic of real numbers, 56
Arsinh, 23

derivative, 95
Artanh, 23

derivative, 95
Ascent, steepest, 222
Axial moment, 253

B

Basis, standard, 332
Beam, 119
Bijective, see function
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Binomial formula, 359
Binormal vector, 202
Bisection method, 77, 110, 114
Bolzano, B., 64, 75
Bolzano–Weierstrass

theorem of, 64
Box-dimension, 126

C

Cantor, G., 2
set, 128

Cardioid, 201
parametric representation, 201

Cauchy, A.L., 357
product, 358

Cavalieri, B., 244
Cavalieri’s priciple, 244
Centre of gravity, 248

geometric, 249
Chain rule, 91, 219
Characteristic equation, 348
Circle

of latitude, 238
osculating, 198
parametric representation, 186
unit, 30

Circular arc
length, 195

Clothoid, 198
parametric representation, 198

Coastline, 126, 264
Coefficient of determination, 263

multiple, 267
partial, 268

Column vector, 343
Completeness, 2, 55
Complex conjugate, 40
Complex exponential function, 42
Complex logarithm, 44, 45

principal branch, 45
Complex number, 39

absolute value, 40
argument, 42
conjugate, 40
imaginary part, 40
modulus, 40
polar representation, 41
real part, 40

Complex plane, 41
Complex quadratic function, 44
Complex root, principal value, 45

Concavity, 108, 109
Cone, volume, 159
Consumer price index, 117
Continuity, 70, 212

componentwise, 232
Lipschitz, 194, 361
uniform, 361

Contraction, 363
Convergence

linear, 111
Newton’s method, 112
order, 111
quadratic, 111
sequence, 53

Convexity, 108, 109
Coordinate curve, 210, 236
Coordinates

of a point, 331
polar, 35, 42

Coordinate system
Cartesian, 331
positively oriented, 331
right-handed, 331

Coordinate vector, 333
Cosecant function, 37
Cosine, 28

antiderivative, 142
derivative, 85
graph, 32
hyperbolic, 22

Cotangent, 28
graph, 32

Countability, 2
Cuboid, 241
Curvature

curve, 196
graph, 198

Curve, 185
algebraic, 188
arc length, 196
ballistic, 186
change of parameter, 187
curvature, 196
differentiable, 189
figure eight, 201
in the plane, 185, 187
length, 193, 194
normal vector, 191
parameter, 185
polar coordinates, 200
rectifiable, 193
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reparametrisation, 187
Curve in space, 202

arc length, 202
binormal vector, 202
differentiable, 202
length, 202
normal plane, 202
normal vector, 202
rectifiable, 202

Curve sketching, 105, 109
Cusp, 188
Cycloid, 190

parametric representation, 190
Cyclometric functions, 33

derivative, 95

D

Damping, viscous, 290
Density, 247
Derivative, 83, 217

affine function, 84
arccosine, 95
arcosh, 95
arcsine, 95
arctangent, 95
arsinh, 95
artanh, 95
complex, 133
cosine, 84
cyclometric functions, 95
directional, 221
elementary functions, 96
exponential function, 85, 94
Fréchet, 217, 233
geometric interpretation, 213
higher, 87
higher partial, 215
hyperbolic functions, 95
inverse function, 93
inverse hyperbolic functions, 95
linearity, 90
logarithm, 93
numerical, 96
of a real function, 83
partial, 212
power function, 94
quadratic function, 84
root function, 84
second, 87
sine, 85
tangent, 91

Determinant, 346
Diagonal matrix, 345
Diffeomorphism, 249
Difference quotient, 82, 83

accuracy, 171
one-sided, 97, 98
symmetric, 98, 99

Differentiability
componentwise, 232

Differentiable, 83
continuously, 215
Fréchet, 217
nowhere, 86
partially, 212

Differential equation
autonomous, 288, 299
blow up, 284
characteristic equation, 290
conserved quantity, 309
dependent variable, 276
direction field, 277
equilibrium, 289
existence of solution, 284
first integral, 309
first-order, 275
homogeneous, 278, 292
independent variable, 276
inhomogeneous, 278, 293
initial condition, 277
initial value problem, 301
invariant, 309
linear, 278, 290
linear system, 298
Lotka–Volterra, 298
nonlinear system, 298
particular solution, 282
power series, 286, 315
qualitative theory, 288
saddle point, 303
second-order, 290
separation of variables, 276
solution, 275
solution curve, 301
stationary solution, 281, 289
stiff, 325
trajectory, 301
uniqueness of solution, 285

Differentiation, 83
Differentiation rules, 90

chain rule, 91
inverse function rule, 93
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product rule, 90
quotient rule, 91

Dimension
box, 126
experimentally, 126
fractal, 126

Directional derivative, 221
Direction field, 277
Dirichlet, P.G.L., 152

function, 152
Discretisation error, 97
Distribution

Gumbel, 118
lognormal, 118

Domain, 14
Double integral, 243

transformation formula, 251

E

Eigenvalue, 348
Eigenvector, 348
Ellipse, 189

parametric representation, 189
Ellipsoid, 228
Energy

conservation of, 313
kinetic, 313
potential, 313
total, 313

Epicycloid, 201
eps, 10
Equilibrium, 289, 301

asymptotically stable, 289, 302
stable, 302
unstable, 302

Equilibrium point, 301
Error sum of squares, 262
Euler, L., 21
Euler method

explicit, 322, 327
implicit, 325
modified, 328
stability, 325

Euler’s formulas, 43
Euler’s number, 21, 61, 85, 168, 323
Exponential function, 20, 57

antiderivative, 142
derivative, 85, 94
series representation, 360
Taylor polynomial, 168

Exponential integral, 143

Extremum, 106, 109, 225
local, 108, 109
necessary condition, 106

Extremum test, 170

F

Failure wedge, 119
Field, 40
First integral, 309
Fixed point, 120, 363
Floor function, 25
Fractal, 124
Fraction, 1
Fréchet, M., 216
Free fall, 81
Fresnel, A.J., 143

integral, 143, 199
Fubini, G., 244
Fubini’s theorem, 244
Function, 14

affine, 218
antiderivative, 140
bijective, 2, 15
complex, 44
complex exponential, 42
complex quadratic, 44
composition, 91
compound, 91
concave, 108
continuous, 70, 212
convex, 108
cyclometric, 33
derivative, 83
differentiable, 83
elementary, 143
exponential, 57
floor, 25
graph, 14, 209
higher transcendental, 143
hyperbolic, 22
image, 14
injective, 14
inverse, 16
inverse hyperbolic, 23
linear, 17
linear approximation, 89
monotonically decreasing, 107
monotonically increasing, 107
noisy, 99
nowhere differentiable, 86
piecewise continuous, 153
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quadratic, 14, 18, 218
range, 14
real-valued, 14
slope, 107
strictly monotonically increasing, 107
surjective, 15
trigonometric, 27, 44
vector valued, 231
zero, 75

Fundamental theorem
of algebra, 41
of calculus, 156

G

Galilei, Galileo, 81
Galton, F., 257
Gauss, C.F., 115, 257
Gaussian error function, 143
Gaussian filter, 101
Gradient, 221, 232

geometric interpretation, 222
Graph, 14, 209

tangent plane, 220
Grid

mesh size, 242
rectangular, 241

Grid points, 175

H

Half life, 280
Half ray, 189
Heat equation, 228
Helix, 203

parametric form, 203
Hesse, L.O., 224
Hessian matrix, 224
Hyperbola, 190

parametric representation, 190
Hyperbolic

cosine, 22
function, 22
sine, 22
spiral, 200
tangent, 22

Hyperbolic functions, 22
derivative, 95

Hyperboloid, 228

I

Image, 14
Imaginary part, 40
Indicator function, 20, 245
Inequality, 7
INF, 9
Infimum, 52
Infinity, 7
Inflection point, 109
Initial value problem, 277, 301
Injective, see function
Integrable, Riemann, 151, 243
Integral

definite, 149, 151
double, 241, 243
elementary function, 142
indefinite, 140
iterated, 243
properties, 154
Riemann, 149

Integration
by parts, 144
numerical, 175
rules of, 143
substitution, 144
symbolic, 143
Taylor series, 172

Integration variable, 154
Intermediate value theorem, 75
Interval, 6

closed, 6
half-open, 6
improper, 7
open, 6

Interval bisection, 75
Inverse function rule, 93
Inverse hyperbolic

cosine, 23
sine, 23
tangent, 23

Inverse hyperbolic functions, 23
derivative, 95

Inverse, of a matrix, 346
Iterated integral, 243
Iteration method, 363

J

Jacobian, 217, 232
Jacobi, C.G.J., 217
Jordan, C., 347
Julia, G., 131
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set, 131
Jump discontinuity, 71, 72

K

Koch, H. von, 129
Koch’s snowflake, 129, 136, 193

L

Lagrange, J.L., 166
Lateral surface area

solid of revolution, 160
Law of cosines, 36
Law of sines, 36
Least squares method, 256
Leibniz, G., 153
Lemniscate, 201

parametric representation, 201
Length

circular arc, 195
differentiable curve, 194
differentiable curve in space, 202

Leontief, W., 318
Level curve, 210
Limit

computation with Taylor series, 171
improper, 54
inferior, 64
left-hand, 70
of a function, 70
of a sequence, 53
of a sequence of functions, 354
right-hand, 70
superior, 64
trigonometric, 74

Limit function, 354
Lindemayer, A., 134
Linear approximation, 88, 89, 165, 219
Line of best fit, 115, 256

through origin, 115, 116
Line, parametric representation, 189
Liouville, J., 143
Lipschitz, R., 284

condition, 285
constant, 285, 361
continuous, 361

Lissajous, J.A., 204
figure, 204

Little apple man, 131
Logarithm, 21

derivative, 93

natural, 21
Logarithmic

integral, 143
spiral, 200

Loop, 200
parametric representation, 200

Lotka, A.J., 298
Lotka–Volterra model, 308, 327
L-system, 135

M

Machine accuracy
relative, 10, 12

Malthus, T.R., 281
Mandelbrot, B., 130

set, 130
Mantissa, 8
Mapping, 2, 14

linear, 344
Mass, 247
Mass–spring–damper system, 290
Mass–spring system, nonlinear, 319
Matrix, 343

coefficient, 343
determinant, 346
diagonal element, 345
element, 343
entry, 343
inverse, 346
invertible, 346
Jordan canonical form, 347
nilpotent, 350
product, 345
product with vector, 344
regular, 346
similar, 347
square, 343
transposed, 344
unit, 345
zero, 345

Matrix algebra, 343
Maximum, 52

global, 105
isolated local, 227
local, 106, 108, 170, 224
strict, 106

Mean value theorem, 107
Measurable, 245
Meridian, 238
Minimum, 52

global, 106
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isolated local, 227
local, 106, 170, 224

Mobilised cohesion, 119
Model, linear, 256, 265
Modulus, 40
Modulus of continuity, 361
Moment

of inertia, 119
statical, 248

Monotonically decreasing, 107
Monotonically increasing, 107
Moving frame, 192, 202
Multi-step method, 323

N

NaN, 9
Neighbourhood, 53, 124
Neil, W., 188
Newton, I., 110, 294
Newton’s method, 111, 114, 119

in C, 133
local quadratic convergence, 235
two variables, 233

Nonstandard analysis, 154
Normal domain, 246

of type I, 246
of type II, 246

Normal equations, 258
Numbers, 1

complex, 39
decimal, 3
floating point, 8

largest, 9
normalised, 9
smallest, 9

integer, 1
irrational, 4
natural, 1
random, 100
rational, 1
real, 4
transcendental, 3

Numerical differentiation, 96

O

Optimisation problem, 109
Orbit, periodic, 310
Order relation, 5

properties, 6
rules of computation, 6

Osculating circle, 198

P

Parabola
Neil’s, 188
quadratic, 18

Paraboloid
elliptic, 211
hyperbolic, 210

Partial mapping, 210
Partial sum, 58
Partition, 151

equidistant, 153
Peano, G., 284
Pendulum, mathematical, 312, 314
Plane

in space, 339
intercept, 339
normal vector, 340
parametric representation, 339
slope, 339

Plant
growth, 136
random, 138

Point of expansion, 167
Point space, 334
Polar coordinates, 233
Population model, 281

discrete, 51
Malthusian, 281
Verhulst, 51, 66, 281

Position vector, 333
Power function, 18

antiderivative, 142
derivative, 94

Power series, equating coefficients, 287
Precision

double, 8
single, 8

Predator-prey model, 298
Principal value

argument, 42
Product rule, 90
Proper range, 14
Pythagoras, 27

theorem, 27

Q

Quadratic function
derivative, 84
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graph, 18
Quadrature formula, 177

efficiency, 180
error, 181
Gaussian, 180
nodes, 177
order, 178
order conditions, 179
order reduction, 182
Simpson rule, 177
stages, 177
trapezoidal rule, 176
weights, 177

Quotient rule, 91

R

Radian, 30
Radioactive decay, 24, 280
Rate of change, 89, 280
Ratio test, 67
Real part, 40
Rectifiable, 193
Regression

change point, 273
exponential model, 257, 273
linear, 255
loglinear, 257
multiple linear, 265
multivariate linear, 265
simple linear, 256
univariate linear, 256

Regression line, 256
predicted, 259
through origin, 115

Regression parabola, 120
Regression sum of squares, 261
Remainder term, 166
Residual, 259
Riccati, J.F., 287

equation, 287, 328
Riemann, B., 149

integrable, 151, 243
integral, 151
sum, 151, 242

Right-hand rule, 331
Root, complex, 41, 43
Root function, 19

derivative, 84
Rounding, 10
Rounding error, 97
Row vector, 344

Rules of calculation
for limits, 53

Runge–Kutta method, 323

S

Saddle point, 225, 227
Saddle surface, 210
Scalar multiplication, 332
Scatter plot, 115, 255
Schwarz, H.A., 216

theorem, 216
Secant, 82

slope, 83
Secant function, 37
Secant method, 115
Self-similarity, 123
Semi-logarithmic, 111
Sequence, 49

accumulation point, 62
bounded from above, 51
bounded from below, 52
complex-valued, 50
convergent, 53
geometric, 55
graph, 50
infinite, 49
limit, 53
monotonically decreasing, 51
monotonically increasing, 51
real-valued, 50
recursively defined, 50
settling, 53
vector-valued, 50, 211

convergence, 211
Sequence of functions

pointwise convergent, 354
uniformly convergent, 355

Series, 58
absolutely convergent, 357
Cauchy product, 358
comparison criteria, 60
convergent, 58
divergent, 58
geometric, 59
harmonic, 60
infinite, 58
partial sum, 58
ratio test, 67

Set
boundary, 124
boundary point, 124
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bounded, 124
Cantor, 128
cardinality, 2
closed, 124
covering, 125
interior point, 124
Julia, 131
Mandelbrot, 130
of measure zero, 245
open, 124

Sexagesimal, 5
Shape function, 256
Sign function, 19
Simpson, T., 177

rule, 177
Sine, 28

antiderivative, 142
derivative, 84
graph, 32
hyperbolic, 22
Taylor polynomial, 168
Taylor series, 170

Sine integral, 143
Snowflake, 129
Solid of revolution

lateral surface area, 160
volume, 158

Space-time diagram, 300
Sphere, 237

surface area, 160
Spiral, 200

Archimedean, 200
hyperbolic, 200
logarithmic, 200
parametric representation, 200

Spline, 101
Spring, stiffness, 290
Square of the error, 116
Standard basis, 332
Stationary point, 106, 225
Step size, 322
Straight line

equation, 337
in space, 340
intercept, 17, 338
normal vector, 339
parametric representation, 338
slope, 17, 29, 338

Subsequence, 62
Substitution, 144
Superposition principle, 278, 292

Supremum, 51
Surface

in space, 210
normal vector, 237
of rotation, 237
parametric, 236
regular parametric, 236
tangent plane, 237
tangent vector, 213

Surjective, see function
Symmetry, 99

T

Tangent, 28
graph, 32, 82, 87
hyperbolic, 22
plane, 220
problem, 82
slope, 87
vector, 191, 202

Taylor, B., 165
expansion, 97
formula, 165, 223
polynomial, 167
series, 169
theorem, 170

Telescopic sum, 60
Thales of Miletus, 28

theorem, 28
Total variability, 261
Transformation formula, 251
Transport equation, 228
Transpose

of a matrix, 344
Trapezoidal rule, 176
Triangle

area, 29
hypotenuse, 27
inequality, 11
leg, 27
right-angled, 27

Triangle inequality, 195
Trigonometric functions, 27, 28

addition theorems, 32, 36
inverse, 33

Triple product, 347
Truncated cone

surface area, 37
surface line, 37
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U

Uniform
continuity, 361
convergence, 355

Unit circle, 30, 43
Unit matrix, 345
Unit vector, 332

V

Variability
partitioning, 262

sequential, 268
total, 261

Variation of constants, 281
Vector, 332

cross product, 336
dot product, 335
inner product, 335
magnitude, 332
norm, 332
orthogonal, 335
perpendicular, 335
unit, 332

zero, 332
Vector algebra, 331
Vector field, 231
Vector space, 50, 334
Velocity, 89

average, 81
instantaneous, 82, 89

Velocity vector, 191, 202
Verhulst, P.-F., 51, 66, 281, 289
Vertical throw, 141
Volterra, V., 298
Volume

cone, 159
solid of revolution, 158

W

Weber–Fechner law, 24
Weierstrass, K., 64

Z

Zero matrix, 345
Zero sequence, 69
Zero vector, 332
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