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Abstract: Building on an economic model of rational Bitcoin mining, we measured the carbon
footprint of Bitcoin mining power consumption using feed-forward neural networks. We found
associated carbon footprints of 2.77, 16.08 and 14.99 MtCO2e for 2017, 2018 and 2019 based on a novel
bottom-up approach, which (i) conform with recent estimates, (ii) lie within the economic model
bounds while (iii) delivering much narrower prediction intervals and yet (iv) raise alarming concerns,
given recent evidence (e.g., from climate–weather integrated models). We demonstrate how machine
learning methods can contribute to not-for-profit pressing societal issues, such as global warming,
where data complexity and availability can be overcome.

Keywords: machine learning; neural networks; dropout methods; Bitcoin mining; CO2

1. Introduction

Does Bitcoin mining contribute to climate change? Participation in the Bitcoin blockchain
validation process1 requires specialized hardware and vast amounts of electricity, translating
into a significant carbon footprint. Mora et al. (2018) estimated that the 2017 carbon footprint
of Bitcoin reached 69 million metric tons of CO2 equivalent (MtCO2e), forecasting a violation
of the Paris COP21 UNFCCC Agreement2 by 2040 due to Bitcoin’s cumulative emissions
alone. At the heart of the controversy sparked, with various contributions revising downward
the projections obtained by Mora et al. (2018) (e.g., Houy 2019; Masanet et al. 2019; Stoll et al.
2019), lies the difficulty in measuring the power consumption of the Bitcoin mining network
and the associated carbon emissions (De Vries 2018, 2019, 2020). Bitcoin miners are globally
geo-located, facing very different energy costs, and employ hardware with unknown energy
intensities. To overcome the significant constraints in estimating the carbon emissions of daily
power consumption associated with Bitcoin’s blockchain, here, we use machine learning (ML)
methods, demonstrating their usefulness for pressing societal issues, such as climate change.

A subset of ML methods, feed-forward neural networks are becoming increasingly
popular due to their unrivaled performance in prediction tasks. Feedforward neural
networks, also called multilayer perceptrons (MLPs), have been developed since the mid-
twentieth century, relying on joint advances from computer science, applied mathematics
and information and probability theory. Their recent success stems from their theoretical
ability to approximate unknown data generating processes (Universal Approximation Theorem
and its variants), while handling large and complex datasets. They approximate or learn
some unknown function of the data (or inputs) that generates an output, such as the
CO2 emissions of Bitcoin network energy consumption, assuming that information “feeds
forward” from the input, through the unknown function, to the output.3 They are called
neural networks (NNs) because they are composed of many functions connected in a chain,
where each link is called a layer, each of which consists of an array of nodes (or units). By
adding layers and nodes within each layer, feed-forward NNs (or deep neural networks,
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DNNs) can approximate functions of increasing complexity. CO2 emissions are complex
to forecast, but having a reliable general-purpose method to do so in a timely manner can
inform progress towards keeping global temperatures from rising above 1.5 ◦C, in addition
to net-zero carbon emissions. Our main contribution is to provide a robust measure of the
carbon footprint associated with producing increasingly popular cryptocurrencies, such as
bitcoin (BTC), as well as of the uncertainty associated with that measure currently lacking
in the literature, conveying the likelihood of potentially alarming scenarios.

The carbon footprint of daily Bitcoin network electricity consumption is obtained
from multiplying the carbon intensity of the geo-located operating Bitcoin miners times
their daily power consumption, which is then added across regions/countries (our novel
bottom-up approach). To gauge the sensitivity of our bottom-up greenhouse gas emissions
to uncertainty in carbon intensities, we report the emissions obtained from adopting a
top-down approach instead, the current standard in the literature. To estimate a realistic
level of daily electricity consumption to produce Bitcoins, we first calculated a lower and
an upper limit based on Hayes’ (2017) economic model of rational Bitcoin mining decisions.
The lower limit corresponds to the lowest marginal cost for mining Bitcoins, as defined by
a scenario in which all miners use the most efficient available hardware. The upper limit is
obtained when the least efficient technology for mining Bitcoins is employed instead. Based
on IPO filings of major hardware manufacturers, insights on mining facility operations
and mining pool compositions, our DNN adopts as target output the carbon footprint of
the market-share-weighted average of the daily energy efficiency deployed by operating
miners, identified by their IP addresses. Our estimated level of electricity consumption is
thus a conservative one, closely tracking Hayes’ (2017) lower limit. As inputs, our DNN
admits a comprehensive range of factors previously found to drive Bitcoin prices in different
currencies, such as (i) fundamental factors advocated by monetary economics (e.g., its usage
in trade, money supply, or price level), (ii) factors driving investors’ interest in/attention to
the crypto-currency (e.g., speculation or Bitcoin’s role as safe haven); and (iii) exchange rate
hedging motives (see Kristoufek 2015; Liu and Tsyvinski 2018; McNally et al. 2018; Jang and
Lee 2017), together with (iv) novel supply-side factors for both Bitcoin and ASIC mining
chips producers, related to for-profit mining decisions, but excluding those employed in
the construction of the upper and lower limits. Aggregated at the yearly frequency, we
found Bitcoin mining energy consumption, ranging between 5.2 and 56.8 TWh in 2017,
between 25.1 and 93.3 TWh in 2018 and between 27.1 and 91.1 TWh in 2019 according to
Hayes’ (2017) upper and lower bounds. Obtaining mean point estimates of daily power
consumption within those economically meaningful limits provides substantial gains in
accuracy relative to recent contributions in the literature, while externally validating our
ML approach.4

Crucially, our novel approach also enables the construction of prediction intervals (PIs)
around the estimated carbon footprint of Bitcoin mining, substantially narrowing down the
associated uncertainty, currently measured by the difference between the carbon footprint
of Hayes’ (2017) upper and lower bounds, capturing the difference between the expected
marginal revenue and the marginal cost of Bitcoin network operating miners. When
aggregated at a yearly frequency, the corresponding CO2 estimates (and associated 0.95 PIs)
are, for the year 2017, 2.77 [1.98, 3.56] MtCO2e; for 2018, 16.08 [14.19, 17.97] MtCO2e; and,
for 2019, 14.99 [13.25, 16.73] MtCO2e. To provide an order of magnitude, the Bitcoin mining
estimated fossil fuels emissions for the year 2018 are higher than the annual levels of fossil
fuel emissions of (i) the US states of Maine (15.6 MtCO2e), New Hampshire (13.6 MtCO2e),
Rhode Island (10.1 MtCO2e) or South Dakota (14.6 MtCO2e), or of (ii) those of smaller
countries, such as Bolivia, Sudan or Lebanon (Global Carbon Atlas 2020).5

Relative to the aforementioned literature, the reported point estimates (and PIs) also
represent a downward revision of the results reported by Mora et al. (2018) and are
broadly in line with figures from Foteinis (2018), reporting global emissions for Bitcoin
and Ethereum for 2017 of 43.9 MtCO2, or from Stoll et al. (2019), reporting annual carbon
emissions for Bitcoin mining in 2018 in the range from 22.0 to 22.9 MtCO2. Our estimates
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further revise downward the 2017 estimates provided by Houy (2019) or Dittmar and
Praktiknjo (2019), reporting 15.5 MtCO2e for 2017, or those from Masanet et al. (2019), who
reported, for 2017, an estimate of 15.7 MtCO2e. What makes them nevertheless worrying
is recent evidence, e.g., from integrated weather–climate models (CMIP6), feeding into
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
2021 reported in Williams et al. (2020). According to them, global temperatures may rise as
much as 5 ◦C, prompting the recent global call to urgent policy measures by IMF’s Chief
Economist Gita Gopinath in Davos (Switzerland, 2020).

The topic is controversial, considering the growing interest of national governments on
cryptocurrencies (e.g., China) and the possibility of issuing financial instruments solely on
blockchain technologies (e.g., Bank of Australia and World Bank bond-i), while respecting
the Paris Agreement. Before incentivizing the wide-scale adoption of blockchain technolo-
gies, the SCC associated with proof-of-work protocols and their effect on rising global
temperatures need to be ascertained through better carbon intensity measurements. Be-
sides the gains in accuracy, here, we argue that ML methods present additional significant
advantages for enabling timeless public decision making regarding pressing complex social
issues, just as they do in private-sector for-profit decisions, e.g., business analytics, new
technology design, improvement or product adaptation and/or marketing. Being able to
process bigger and increasingly complex data in raw form, ML techniques return tailored
solutions in an automated manner. The significant ‘entry cost’ in terms of conceptual diffi-
culty and computational time has significantly decreased over the last ten years, thanks to
advancements in computational capacity, user-friendly software and increasing resources
devoted to training and technology adoption, rendering their use commonplace.

The rest of the paper is organized as follows: Section 2 reports the novel methodology
used in this paper based on a bottom-up approach and the implementation of ML methods
for measuring CO2 emissions, briefly discussing the data used. Section 3 demonstrates the
usefulness for predicting the carbon footprint associates with Bitcoin mining of our deep
learning approach (“optimized ReLU DNN”), delivering substantially narrower bounds
that increase the reliability of the provided estimates. Section 4 validates the empirical
results in terms of out-of-sample accuracy. Section 5 concludes. Appendix A simulates
the level of CO2 emissions based on the novel bottom-up approach. Appendix B reports a
review of the machine learning literature adopted in the present paper.

2. CO2 Emissions from Bitcoin Mining

There are three primary ways one can obtain BTCs, the most popular and widely
accepted of the so-called cryptocurrencies, i.e., buy them outright, accept them in exchange,
or produce them by “mining”. Mining for Bitcoins requires computer hardware and
software specifically designed to solve the cryptographic algorithm underlying the Bitcoin
protocol. Such computational effort mainly consumes electricity. Each unit of mining
effort has a fixed sunk cost involved in the purchase, transportation and installation of the
mining hardware. Existing literature (De Vries 2018) reports different prices of available
models of mining hardware, such as the Antminer S9. Mining effort also has a variable
cost which is the direct expense of electricity consumption. Since, at any point in time,
different miners operate hardware and software with varying levels of energy efficiency,
measuring the overall network power consumption involved in Bitcoin production remains
a challenge to date. As an example, “A hashrate of 14 terahashes per second (TH/s) can
either come from a single Antminer S9 running on just 1372 W, or more than half a million
PlayStation-3 devices running on 40 MW (as a single PlayStation-3 device has a hashrate of
21 megahashes per second and a power use of 60 W)” (De Vries 2018). To estimate a realistic
level of daily electricity consumption to produce Bitcoins based on a feed-forward neural
network, we first calculated a lower and an upper limit (Hayes 2017) within which our
mean predicted electricity consumption must “travel" between the 1 January 2017 and the 1
January 2020. The lower limit corresponds to the lowest marginal cost for mining Bitcoins
and is defined by a scenario in which all miners use the most efficient available hardware.
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The upper limit is obtained when, instead, the least efficient technology for mining Bitcoins
is employed, i.e., the break-even point of mining revenues and electricity costs. Obtaining
mean point estimates of daily power consumption within those economically meaningful
limits provides substantial gains in accuracy relative to recent contributions in the literature,
while externally validating our ML approach.

Our feed-forward deep neural network (DNN) is a supervised ML algorithm that
adopts, as target output, the carbon emissions associated with the market-share-weighted
average of the daily energy efficiency deployed by operating miners. We obtained the
computational power (usually provided in terahashes per second, TH/s) and the electricity
consumed (in Watts per second, W/s) by ASIC chips used for Bitcoin mining from AsicIndex.
Only mining chips that performed the SHA-256 algorithm were considered (Asin Miner
Index 2020). Our daily level of electricity consumption was a conservative one in that it
followed the approach of the lower limit and is based on the anticipated energy efficiency of
the network, on hardware sales and on auxiliary losses. These are energy losses associated
with cooling and investment in new IT equipment. They were computed on the basis of the
methodology employed by the existing literature (Cambridge 2020; Stoll et al. 2019, 2020).

2.1. Power Bounds in Bitcoin Production

Bitcoin production resembles a competitive market (Hayes 2017), where risk-neutral
rational miners produce until their marginal costs equal the value of their expected marginal
products. To produce Bitcoins, a miner directs computational effort at solving a difficult
cryptologic “puzzle” in competition with other miners in the network, to confirm and
validate transactions. Moreover, computational effort mainly consumes electrical power,
measured in Watts, W. The marginal cost (MC) of producing Bitcoins per day (in USD/day)
depends on the cost of electricity (price pe in USD per kWh, or 10−3 × pe in USD per Wh)
and the energy efficiency of mining (denoted by e and measured in W per unit of “mining
effort”, or “hashing power” ρ).

MC
[USD/day per ρ=1,000GH/s]

= (10−3 × pe · 24 · e) ·
(

1000GH
1000

)
(1)

In return for their work of validating the blockchain, miners are rewarded with a
block of “coins”, or “block reward” (measured in BTC per block, β). When analyzing
the reward obtained from mining, it is important to consider the phenomenon of halving
(Bitcoin halving) where the reward from mining Bitcoins is halved. Halving occurs every
210, 000 blocks (every four years). Within our sample, the last halving happened on 9 July
2016 with the mining revenue halved from USD 2, 396, 656 to USD 1, 208, 034.

The halving is an important event not only for determining the Bitcoin price (reduction
in Bitcoin supply, with unchanged demand) and the break-even energy efficiency level of
mining production, but also because it produces a jump or discontinuity in the historical
observations at hand. The time interval considered 2017–2019 ensures that there are no
observed halvings. Starting from 9 July 2016, the block reward is 12.5 Bitcoin per block. Per
day, miners can then expect to earn an amount of bitcoins (BTC/day), or expected marginal
product (EMP), the value of which depends on the market price of Bitcoin (pb in USD
per BTC), the block reward β, the transaction fees f , the hashing power ρ employed by
a miner (normalized at ρ =1000 GH/s = 1 TH/s, for conformity with the MC units) and
the “difficulty” of mining (denoted by δ) which captures how much aggregate effort other
operating miners are putting.

pb︸︷︷︸
[USD/BTC]

· EMP︸ ︷︷ ︸
[BTC/day per ρ=1TH/s]︸ ︷︷ ︸

Value of Expected MP

= pb ·

 (
1

δ · 232

)
[Reward probability]

(β + f ) · ρ · (24 · 3600)︸ ︷︷ ︸
[Daily reward per unit of effort ρ]

 (2)
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where s = 3600 is the number of seconds in one hour, h = 24 is the number of hours in a
day and 2−32 is the normalized probability of a single hash solving a block, given that the
mining algorithm is the SHA-256 algorithm.

Daily data for the Bitcoin network difficulty δ and network hash rate H were retrieved
using the publicly available API (accessed on 2 February 2020) from blockchain.com.6 The
network statistics are reported together with their distributions, in Figure 1, as well as for
the daily Bitcoin price pb and the daily value in USD of the number of bitcoins obtained
by the overall network from mining (BTC/USD), as defined in Equation (2). Notice that,
although the network hash rate and the network difficulty are strongly positively correlated,
they nevertheless correspond to two different variables relevant to Bitcoin mining.
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Figure 1. The figure reports the average USD market price across major Bitcoin exchanges (upper
left), the mining reward in terms of Bitcoin (lower left), the hash rate in terms of estimated number
of terahashes per second the Bitcoin network performs (upper right) and the difficulty in terms of
hashing power employed by the network miners (lower right). Source: authors’ calculations on
publicly available data.

Given the market price of Bitcoin pb, a rational miner would produce bitcoins until
MC = pb ·EMP if mining for bitcoins is competitive. Since the actual energy efficiency e of
the Bitcoin network miners is unknown, the theoretical relationship pb = MC/EMP can
be used to obtain the break-even level of energy efficiency e below which the marginal cost
of mining is above the market value of the marginal product, e ≤ e =⇒ MC(e) ≥ MC(e) =
pb ·EMP, driving rational miners out of business. Hence, equating (1) to (2) and solving
for e,

e
[J/GH per ρ=1000GH/s]

= pb ·
(
(β + f ) · ρ

δ · 232

)
(24 · 3600)

[
(10−3 × pe · 24)

]−1
(3)

denotes the break-even daily energy efficiency production of bitcoins, which characterizes
the upper limit of daily electricity consumption E of the Bitcoin network when multiplied by
the overall network hash rate H (measured in hashes per second, H/s, corresponding to
10−12 per 1TH/s) and the power usage effectiveness (PUE) of mining hardware, capturing
the auxiliary energy efficiency losses due, for example, to cooling systems.

blockchain.com
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E
[W per day, per TH/s]

= e · H × 10−12 × PUE (4)

Instead of an average PUE of 1.05, we considered a value of 1.10 ≡ PUE (i.e., the
upper limit of daily electricity consumption was constructed considering the upper limit,
or most inefficient, PUE observed).

Similarly, it is possible to define the lower limit of daily electricity consumption E of the
Bitcoin network, assuming that all miners operate instead with the most energy efficient
e hardware with no auxiliary energy efficiency loss, PUE = 1 (because the most efficient
mining hardware is adopted).

E
[W per day, per TH/s]

= e · H × 10−12 × 24× PUE (5)

To date, the most energy-efficient dedicated computer hardware embeds application-
specific integrated circuit (ASIC) chips. Monthly data about the mining chips’ daily ef-
ficiency, measured (in J/GH) as the ratio between the energy used by the ASIC chip (in
Joules, J) and the number of iterations performed by the SHA-256 algorithm (in gigahashes
per second, GH/s)for different mining rigs are displayed in Figure 2’s lower-right panel for
the period between 1 January 2017 and 1 January 2020 (the data can be retrieved online
(accessed on 2 February 2020) from https://asic-dex.com); then, e corresponds to the lowest
monthly energy efficiency of ASIC chips, which, as time passes, tends to decrease—except
for a few outliers—due to an increase in the network hash rate, thus in the difficulty in
producing new bitcoins.

Figure 2 reports the number of bitcoins mined per day by the network (i.e., the average
EMP in Equation (2), excluding the Bitcoin price pb) and the associated upper E and lower E
limits of daily electricity consumption obtained from Equations (4) and (5) after multiplying
them by 10−6 (to convert them into mega Watts, MW), respectively. Although the upper
limit of daily power consumption is more volatile as it follows the market price of Bitcoin,
the lower limit is more stable, being defined by hardware efficiency and the network
hash rate. The difference between the upper and lower limits provides a sense of the
uncertainty associated with the actual daily hardware efficiency in electricity consumption
deployed by the Bitcoin production network of miners. The annual electricity consumption
corresponding to the lower and upper bounds E and E is obtained by summing the daily
electricity consumption over the year of interest; for 2017, it ranges between 5.2 and
56.8 TWh; for 2018, between 25.1 and 93.3 TWh; and, for 2019, between 27.1 and 91.1 TWh.

https://asic-dex.com
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Figure 2. The figure reports the upper and lower bounds of the energy consumption associated with
Bitcoin mining (upper left and upper right, respectively), the number of bitcoins mined per day
(lower left) and the energy efficiency in terms of J/Gh of the ASIC mining chips that use the SHA-256
algorithm (lower right). Source: authors’ calculations on publicly available data.

Notice, from Figure 2, the decreasing gap between E and E, converging to a point of
almost equality in 2019; miners with less efficient ASIC chips were then mining at a loss as
a result of the significant decrease in Bitcoin prices that can be observed in the upper left
panel of Figure 1. One would expect the same narrowing in the difference between the two
daily limits as we get closer to May 2020 (outside of our data window), when the halving of
the “block reward” happened. By then, miners will have had to run twice the number of
computations to mine the same number of bitcoins, doubling their electricity usage. This
would reduce the break-even level of energy efficiency e, reducing E, until new and more
efficient ASIC chips are introduced.

We computed electricity prices, pe, as a weighted average of the annual electricity
prices in the countries where Bitcoin miners are located, using, as weights, the share of
miners located in each country. We exploited the Internet of Things (IoT) search engine
Shodan.io (accessed on 2 February 2020) to locate the geographic area of the Bitcoin miners
IP addresses over the period examined (Shodan.io 2020). Being antminer the primary tool
for Bitcoin mining, by mapping the instances Digest real = “antMiner Configuration”, we
were able to map the IP addresses of the Bitcoin miners.

Figure 3 reports the countries with the highest number of miners, Venezuela (91),
China (162), Russia (158), Iran (122) and USA (75). Venezuela, Iran, Russia and (some
regions of) China were the countries with the lowest electricity prices in the World (in
USD per kWh). We collected historical data on electricity prices for the USA, China
and Russia from Bloomberg Terminal up to 2018 and the electricity prices for 2019 from
GlobalPetrolPrices.com (accessed on 2 February 2020). Figure 4 reports the evolution of the
yearly electricity prices for different usages (residential, industrial and other) in China, the
United States and Russia. When available and clearly indicated, we only considered the
residential electricity price. When unavailable, or unclear (e.g., China), we computed the
average of the electricity prices corresponding to the different levels of usage.

Shodan.io
GlobalPetrolPrices.com
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For Venezuela and Iran, it was not possible to collect historical prices; since electricity
prices (approximated to two digits) are generally constant over a three-year horizon, we
applied the 2019 electricity price over the three-year time window examined. The household
electricity price in Iran was 0.008 USD/kWh; for Venezuela, the business electricity price
was 0.128 USD/kWh (1.283 VEF/kWh). Figure 4 reports the employed electricity price pe,
computed as a weighted average of the electricity prices in the United States, China, Russia,
Venezuela and Iran, where the weights were determined by the proportion of Antminer
IP addresses of Bitcoin miners located in those countries. In total, 39% of the IP addresses
operating in the Bitcoin network were attributed to the remaining 44 countries.

1 162

Mining Locations
Generated with RStudio v 3.5.2
URL: https://www.rstudio.com/
Package “rworldmap”

Figure 3. Location of Bitcoin Miners as of 31 January 2020. Source: authors’ computation using
RStudio (v.3.5.2) https://www.rstudio.com/.
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Figure 4. The figure reports the energy prices (USD/kWh) for the countries China (upper left),
United States (upper right) and Russia (lower left), as well as the computed weighted average of
the energy prices (USD/kWh) across the countries United States, China, Russia, Venezuela and Iran
(lower right). Source: authors’ calculations on publicly available data.

https://www.rstudio.com/


J. Risk Financial Manag. 2022, 15, 71 9 of 30

2.2. The Carbon Footprint of Power Bounds in Bitcoin Production

We computed the CO2 upper (CO2) and lower (CO2) limits of the Bitcoin network
daily emissions (measured in ktCO2e), associated with the daily electricity consumption
upper and lower limits, E and E, from Equations (4) and (5) respectively, as follows:

CO2 = E× 10−3 · I × 10−6 + COrw
2 (6)

CO2 = E× 10−3 · I × 10−6 + COrw
2 (7)

where I is the average emission factor, or carbon intensity, of power generation (measured
in kgCO2 per kWh), which is obtained from weighting the C country-specific emission
factors, Ic, by the computing power share, sc, of Bitcoin miners’ IP addresses located in
each country c, I = ∑C

c=1 sc Ic. COrw
2 captures the approximate emissions associated with

the annual Bitcoin network overall disposal of hardware employed in mining bitcoins. A
daily value of COrw

2 = 0.0087 ktCO2 was obtained (De Vries 2018).7

In the reminder of the paper, we refer to Equations (6) and (7) as implementing a
top-down approach, the current standard in the literature. According to the methodology
reported in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories,
when computing the emission of greenhouse gas from stationary sources (electricity and
power consumption), the source consumption must be multiplied by the corresponding
emission factor. Since Bitcoin network mining spans many different countries, the contri-
bution of the miners located in each country to the overall network hash rate is needed to
construct country-specific upper and lower limits of electricity consumption that can then
be aggregated into a world total, i.e., a bottom-up approach. However, because miners are
particularly secretive about their locations, a country-specific break-even upper bound was
difficult to obtain.

Because one of the biggest sources of uncertainty in computing Bitcoin network min-
ing CO2 emissions is the translation of the overall network energy consumption into carbon
emissions, we exploit the information provided by the Cambridge Bitcoin Electricity Con-
sumption Index (CBECI) and the IoT search engine Shodan.io to obtain “clean energy”
country-specific emission factors (accessed on 2 February 2020), Ie

c . The US Energy Infor-
mation Administration (EIA) considers biomass-, hydro-, solar- and wind-based electricity
sources to be carbon neutral, i.e., associated with a zero-carbon intensity. Exploiting data
on the distribution of the overall network hashrate within countries—by Mapping the
instances Digetreal = “antMiner Configuration” in the IoT search engine Shodan.io (ac-
cessed on 2 February 2020), we obtained the Bitcoin network hashrate distribution for
China and the US as of 20 August 2020, reported in Figures 5 and 6—we were able to
identify (to some extent) the heterogeneous sources of electricity employed to mine bitcoins
when and where regional emission factors were available. For example, they were not
available for Russia, Venezuela or Iran, for which we assumed that a homogeneous source
of electricity was available and well captured by their reported country-specific emission
factors, Ie

c = Ic = {IRU , IVE, IIR}. Figures 5 and 6 report the distribution of Bitcoin miners
within China by province and within the US by state, respectively.

Shodan.io
Shodan.io
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Figure 5. Distribution of Bitcoin miners within the Chinese borders; % Hashrate by province in China.
Source: authors’ computation using RStudio (v.3.5.2) https://www.rstudio.com/.
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Figure 6. Distribution of Bitcoin miners within the US borders; % Hashrate by US states. Source:
authors’ computation using RStudio (v.3.5.2) https://www.rstudio.com/.

Focusing on China (The Economist Intelligence Group 2018), as of 2016, provinces
in the eastern and northern parts of China essentially employ coal-based energy sources,
due to the absence of precipitation (making hydro-power unprofitable) and the difficulty
of installing wind-power generation in these mountainous regions. Shanghai and Tianjin
provinces produced almost 100% of their electricity from non-renewable thermal power,
while Inner Mongolia and Xinjiang almost 90%. At the other extreme, Yunnan and Sichuan
provinces produced 83% and 87% of their electricity from hydro-power sources, respec-
tively, having a surplus of hydro-power during the wet season; Tibet generated 97% of
its electricity from clean energy sources and Quinghai province is the biggest producer of
solar energy.

Although existing literature (Bendiksen and Gibbons 2019) observes that Chinese
miners relocate during the rainy season (from May to September) to hydro-power sur-
plus provinces, such as Sichuan, Yunnan and Guizhou, from low-cost coal-based energy
provinces, such as Xinjiang and Inner Mongolia, we ignored such seasonal relocations for

https://www.rstudio.com/
https://www.rstudio.com/
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two reasons. Firstly, it is not yet fully understood how relocation costs influence miners’
seasonal migration. Secondly, reliable measures of such relocation costs are needed to
compute the economic upper bound (Hayes 2017).

Turning now to the US, Figure 6 reports Tennessee, with 0.18, California, with 0.14,
Oregon, with 0.18, and Washington state, with 0.12, as those states with the highest con-
centration of the overall US mining activity. Coupled with the reports in Bitcoin Magazine
(Willms 2019), the exact location of mining centers can be identified to better understand
the source of electricity used for mining; e.g., focusing on Washington state, the Shodan
IoT search engine located Bitcoin miners in the cities of East Wentchee and Everett, where
it was reported (Willms 2019) that Salcido Enterprise had three mining centers that used
inexpensive hydroelectric power from dams in the Columbia River. Similarly, Bitmain
invested USD 20 million for the construction of five mining buildings equipped with 1620
antMiners (Willms 2019). Focusing on California, we located Bitcoin miners close to the
city of Los Angeles, thus close to the California’s Mojave District where Plouton Mining
invested in mining using solar power (Willms 2019). Focusing on Oregon, we located a high
concentration of Bitcoin miners in the proximity of Portland, close to the Columbia River.
We assumed that, also in this state, most of the mining activity was hydro-power based.
Finally, a high concentration of Bitcoin miners in the cities of Knoxville and Chattanooga,
where there are the biggest dams in the state of Tennessee, the Norris and Chickamauga
dams, led our presumption that, also in the state of Tennessee, Bitcoin miners use clean
energy sources.

Based on the above analysis, the more conservative conversion factor Ie was computed
as follows: using the weights provided by CBECI, we obtained Ie

China = {[100− (8.34 +
26.5 + 2.53 + 0.4)]/100} × 0.97463 + [(8.34 + 26.5 + 2.53 + 0.4)/100] × 0 = 0.60651 as
the “clean energy” carbon intensity for China, computed as a weighted mean of the
Chinese emission factor of IChina = 0.97463 for the polluting provinces {d′} and the
carbon intensity of Id = 0 for the non-polluting provinces d ∈ {DChina − d′} ={Yunnan,
Sichuan, Gansu, Qinghai} with weights of 0.0834, 0.265, 0.0253 and 0.004, respectively.
Similarly, exploiting the information provided by Willms (2019), the “clean energy” carbon
intensity for the US was obtained from Ie

US = {[100− (18 + 14 + 18 + 12)]/100} × 0.5471 +
[(18 + 14 + 18 + 12)/100]× 0 = 0.20790, where the non-polluting US states d ∈ {DUS −
d′} ={Tennessee, California, Oregon, Washington}, with weights of 0.18, 0.14, 0.18 and
0.12, respectively. Combining both, we obtained a new overall average carbon intensity of
Ie = ∑C

c=1 sc[∑Dc
d=1 sd Id] = ∑C

c=1 sc[∑Dc−d′
d=1 sd0 + ∑d′

d=1 sd Id] = ∑C
c=1 sc[∑d′

d=1 sd Id] = 0.4784.
Figure 7 displays the evolution of the upper and lower limits of the Bitcoin network

daily carbon footprint (measured in ktCO2) under both scenarios, I (“brown”, in black) and
Ie (in “green”), over the 2017-2019 period. The annual Bitcoin network carbon footprint
lower CO2 and upper CO2 limits were obtained from adding the corresponding daily CO2
emissions over the year, for each year considered, reported in million tons of CO2, MtCO2.
Under scenario I (“brown”, in black), the annual Bitcoin mining emissions range between
3.2 and 35.1 MtCO2 for 2017, between 15.5 and 57.7 MtCO2 for 2018 and between 16.7 and
56.3 MtCO2 for 2019. Instead, under a “clean energy” scenario Ie (in green), the estimated
annual emission bounds are: between 2.5 and 27.2 MtCO2 for 2017; between 12 and 44.6
MtCO2 for 2018; and between 12.9 and 43.6 MtCO2 for 2019.
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Figure 7. The figure reports the lower and upper bounds for the daily CO2 Bitcoin mining emission
levels obtained from adopting a “brown” carbon intensity I (in black) instead of a “green” carbon
intensity Ie (in green).

3. Machine Learning the Carbon Footprint of Bitcoin Mining

Deploying supervised ML deep learning methods narrows down the uncertainty
around the carbon footprint of Bitcoin mining and provides more accurate quantitative
point predictions. A deep neural network with rectified linear unit activation functions
(ReLU DNN) exploits a comprehensive set of inputs to (i) estimate the Bitcoin mining
carbon footprint associated with a realistic level of electricity consumption and energy
efficiency (Stoll et al. 2019) as target output and (ii) assess its statistical reliability, conveyed
by 95% prediction intervals (PIs) (see Gal and Ghahramani 2016). For a comparison with
the literature (Mora et al. 2018; Houy 2019; Masanet et al. 2019; De Vries 2018, 2019, 2020),
the current “top-down” approach to the output target construction is presented first and
evaluated with “clean energy” carbon intensities (Stoll et al. 2019), to then present our
novel (partial) “bottom-up” techno-economic approach.

When the top-down approach (Stoll et al. 2019) is implemented, our ReLU DNN adopts,
as target output y, a “realistic” level of CO2 emissions, COr

2, from the Bitcoin network daily
electricity consumption Er associated with a “realistic” energy efficiency use of hardware,
er.

COr
2

[ktCO2 per day, per TH/s]
= Er · I + COrw

2 = PUE · er · H · I × 10−9 + COrw
2 (8)

where PUE = ∑j={S,M,L} sj · PUEj is the power usage of electricity, with sj being the
share of facility of type j, which can be small (S), medium (M) or large (L); and PUEj is the
corresponding power usage effectiveness of type j facility, with PUES = 1.00, PUEM = 1.10
and PUEL = 1.05. The “realistic” energy efficiency er = ∑M

m=1 sASIC
m · er

m is obtained as a
weighted mean of the average energy efficiency of all the reported ASIC mining chips at
a given date, er

m. Considering M rational miners operating in the network, it is assumed
that, when a new mining chip is available, miner m invests in updating the hardware.
Therefore, the computational power of a particular mining chip at a given date is considered
indicative of the energy efficiency of the ASIC producer m, until the release of a new chip.
The weights associated with each ASIC mining chip producer, sASIC

m , were identified
by the market share in terms of either computing power or revenue and were obtained
from the IPO filings disclosed in 2018 by Bitmain, in 2019 by Canaan and in 2020 by
Ebang (Bitmain 2018; Canaan 2019; Ebang 2020). For 2017, Frost and Sullivan reported that
Bitmain accounted for 74.5% of the revenue of the global ASIC mining hardware, Company
E for 6.2% and Company F for 4.5% (E and F’s companies names were undisclosed).

Based on these estimates, Figure 8 reports the actual weights, sASIC
m , between 2017 and

2020, assuming that they were constant during a given calendar year. As of November 2018,
Bitmain accounted for 76% of the network computing power (Stoll et al. 2019) and Canaan
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and Ebang accounted for 12%. Finally, looking at the IPO filings disclosed in November
2019 by Canaan, Frost and Sullivan reported that, as of July 2019, Bitmain accounted for
65.2% of the computing power of the market, Canaan for 21.9% and Ebang 7.9%.
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Figure 8. The figure reports the yearly weights applied between 2017 and 2020 to the weighted mean
of the energy efficiency of the different ASIC mining hardware. Source: authors’ calculations on
publicly available data.

An even more conservative realistic target was obtained when, instead of I, a “clean
energy” weighted carbon intensity Ie was considered in (8).

COer
2

[ktCO2 per day, per TH/s]
= Er · Ie + COrw

2 = 1.05 · er · H · Ie × 10−9 + COrw
2 . (9)

Our novel bottom-up approach (BU) to CO2 emissions’ output target y for our ReLU
DNN was obtained, instead, from multiplying the share of ASIC mining operators m in a
given region c, sASIC

cm , by the “clean energy” weighted carbon intensities in each region, Ie
c ,

multiplied by that region’s share of the overall network hashrate, Hc, and then aggregating
across regions and operators.

COBU
2

[ktCO2 per day, per TH/s]
= 1.05 ·∑M

m=1 er
m ·∑C

c=1 sASIC
cm · Ie

c · Hc × 10−9 + COrw
2 (10)

Based on the incomplete information collected from the 2017-9 IPO filings, it was possible
to obtain the geographical distribution of the computing power shares of the main Bitcoin
network mining operators m = {BITMAIN, EBANG, CANAAN, Other} by region c =
{America(US), Asia (excl. China), Europe, China}, imputing the missing shares as if
uniformly distributed across the remaining regions (marked with an “*”).

Region/Operator, c/m BITMAIN EBANG CANAAN Other % By region c
America (US) 12 2.4 0.3∗ 1.25∗ 15.9

Asia (excl.China) 14.7 6.5∗ 0.3∗ 1.25∗ 22.7
Europe 7 6.5∗ 0 1.25∗ 14.8
China 31.5 6.5∗ 7.3 1.25∗ 46.6

2019 % By operator m 65.2 21.9 7.9 5 100

Region/Operator, c/m BITMAIN EBANG CANAAN Other % By region c
America (US) 14 1.2 0.5∗ 0∗ 15.7

Asia (excl.China) 17 3.6∗ 0.5∗ 0∗ 21.1
Europe 8.1 3.6∗ 0 0∗ 11.7
China 36.9 3.6∗ 11 0∗ 51.5

2018 % By operator m 76 12 12 0 100
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Region/Operator, c/m BITMAIN E F Other % By region c
America (US) 13.8 1.55∗ 1.125∗ 3.7∗ 20.2

Asia (excl.China) 16.7 1.55∗ 1.125∗ 3.7∗ 23
Europe 8 1.55∗ 1.125∗ 3.7∗ 14.4
China 36 1.55∗ 1.125∗ 3.7∗ 42.4

2017 % By operator m 74.5 6.2 4.5 14.8∗ 100

Within each country/region c, the country/region-specific factor can be further decom-
posed, i.e., Ie

c ·Hc = Ie
c · scH, where sc is the share of the Bitcoin overall network hash rate H

that is employed in region/country c. For example, considering c = A(merica), since most
Bitcoin miners were concentrated in the US and Venezuela, Ie

A · sA H = ∑r∈A Ie
r · sr H =

Ie
US · sUS H + Ie

V · sV H + ∑r∈A\{US,V} Ie
r · sr H. Moreover, a similar process can be conducted

for the other regions/countries c. When considering “clean energy" carbon intensities
Ie
c , since we only had data for the US and China, Ie

c = Ic when c = {Asia (excl. China),
Europe}. In addition, Ie

A · sA H = Ie
US · sUS H + IV · sV H + ∑r∈A\{US,V} Ir · sr H, because

we did not have information on “clean energy" power sources for other countries in the
America region other than the US, i.e., Ie

r = Ir, r ∈ A\{US, V}.
For comparison, Figure 9 displays the “observed” daily evolution of the three different

“realistic” levels of CO2 emissions, COr
2 in black, COer

2 in green and COBU
2 in red, from

Bitcoin miners operating in the network over the period. The novel (partial) “bottom-up”
COBU

2 improves upon the most recent techno-economic approach advanced in the literature
(Stoll et al. 2019; Quin et al. 2021), correcting for “e-waste” and covering all operators and
world regions, with different electricity prices and carbon intensities, disaggregating the
network hashrate at the country, province (China; CBECI) and state (US; own computa-
tions) levels on the basis of the 2017-9 IPO filings and the IoT search engine Shodan.io.
Although the three of them were adopted separately as target outputs y to be learned by
our supervised ML ReLU DNN on the basis of the collected input data X, Figure 9 only
displays (in blue) the ReLU DNN point estimates of Bitcoin CO2 daily emissions when
COBU

2 was the target (as opposed to its “observed”—or not— ML-predicted, in red).
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Observed Top-down green energy 
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 Predicted Bottom-up green energy
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Figure 9. The figure reports the realistic daily CO2 emission levels (in ktCO2) for the “brown”
(energy intensity I, COr

2 in black) and “green/clean” (energy intensity Ie, COre
2 in green) top-down

approaches, as well as our “green” bottom-up approach (COBU
2 in red). For comparison, the ReLU

DNN point estimates for COBU
2 are reported in blue.

Because Bitcoin is a cryptocurrency based on a fundamentally new technology not
fully understood—“blockchain”—while performing similar functions with other, more
traditional assets, one key advantage of our ML-based approach is that it can handle big
and complex input data in raw form, X = {. . . xp . . . }. The factors considered as input data
range from (i) standard fundamental factors advocated by monetary economics and the
quantity theory of money, such as predictors of the Bitcoin price level; (ii) factors driving
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investors’ interest in/attention to the cryptocurrency (Figure 10), such as speculation or the
role of Bitcoin as a safe haven; (iii) exchange rates with other currencies, to capture investors’
hedging motives, e.g., the tight connection between the USD and the CNY markets; or (iv)
supply-side factors for the costs incurred by Bitcoin and ASIC mining chips producers,
related to rational for-profit mining decisions. The resulting novel input dataset for the
period 1 January 2017–31 December 2019 covers a comprehensive set of factors found in
the related literature (Liu and Tsyvinski 2018; Kristoufek 2015; McNally et al. 2018; Jang
and Lee 2017), adding some novel supply-side ones, described next.

11 100

Google Search 'Bitcoin'
Generated with RStudio v 3.5.2
URL: https://www.rstudio.com/
Package “rworldmap”

Figure 10. The figure reports the Google search ”Bitcoin” using 100 as reference for the maximum
interest. Source: authors’ computation using RStudio (v.3.5.2) https://www.rstudio.com/.

3.1. Input Data

Because Bitcoin prices determine the upper limit of CO2 emissions generated by
the break-even electricity consumption of rational Bitcoin network miners, we start with
the predictors of Bitcoin prices identified in the literature. The complete list of variables
(obtained from Bloomberg) is reported in Table 1 and explained as follows:

1. Commodity prices of gold, platinum and crude oil were included (XAUCurncy,
CL1Comdty and PL1Comdty in Table 1) because of the common traits shared with
cryptocurrencies such as limited supply and high price volatility, but also because it
is believed that Bitcoin could serve as an alternative to these commodities either as a
store of value or as a hedging instrument (Dyhrberg 2016). The daily future price of
crude oil and the spot prices of platinum (USD/ounce) and gold (USD/ounce) were
obtained from Bloomberg.

2. Macroeconomic factors in different markets, such as consumption, production and
personal income growth (in USD), measure the extent to which Bitcoin is perceived as
a traditional financial asset, such as the stock market. The CAIPMOM, UKIPIMOM,
IPCHNG, JNIPMOM and SIIPMOM indices, measuring the volume of output in
the industries of mining and quarrying, manufacturing and public utilities (electricity,
gas and water supply) for the USA, the UK, China, Japan and Singapore, as well as
the indices PITL and PITLCHNG, measuring the income received by households
including wages and salaries, investment income, rental income and transfer pay-
ments in the USA and China, were included. Finally, the PCEMOM index quantifying
the price changes for goods and services purchased by consumers in the USA was
also considered.

3. Relative asset market performance measures capture the extent to which Bitcoin is
similarly exposed to factors driving the returns of traditional assets. Based on Figure 3,
we included the major stock market indices of the countries most relevant for Bitcoin
mining, the USA, China, Venezuela and Europe. For this reason, the indices S&P 500,
Dow Jones, Nasdaq, Euro Stoxx 50, Shanghai Stock Exchange (SSE), Nikkei 225, FTSE

https://www.rstudio.com/
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100, Caracas Stock Exchange (IBVCIndex) and SHASHRIndex were considered as
predictors (e.g., SPXIndex, SX5EIndex, INDUIndex, CCMPIndex, SHCOMPIndex,
VIXIndex, NKYIndex and UKXIndex in Table 1).

4. Investor attention, measured by ”Bitcoin” word Google searches (Google Bitcoin in
Table 1). Empirical studies (Liu and Tsyvinski 2018; Garcia et al. 2014; Bouoiyour and
Selmi 2017) have shown that only cryptocurrency market specific factors—momentum
and the proxies for investor attention—consistently explain the variations in cryp-
tocurrency returns, suggesting that investors do not perceive them as traditional
assets. Figure 10 reports the geographic location of daily data returned from Google
Trends search queries for the word “Bitcoin”, which quantifies the interest in the form
of an index between 0 and 100. A value of 100 corresponds to peak popularity and of 0
to insufficient data for Google to quantify any interest in the term “Bitcoin”. With the
exception of Nigeria, the country that receives the highest interest index, one could
notice the similarity with Figure 3, where the geographical location of Bitcoin miners’
IP addresses from the IoT search engine Shodan.io can be visualized, suggesting that a
high value of the interest index is associated with Bitcoin mining activities.

5. Exchange rates were included because of the popular belief that Bitcoin, if sufficiently
adopted, may replace existing fiat currencies as a medium of exchange. The exposure
of the cryptocurrency returns to major currencies was captured by the inclusion of
the spot exchange rates between the USD and units of foreign currency, for the Aus-
tralian Dollar (AUDCurncy), the Euro (EURCurncy), the British Pound (GBPCurncy),
the Canadian Dollar (CADCurncy), the Singapore Dollar (SGDCurncy), the Swiss
Franc (CHFCurncy), the Japanese Yen (JPYCurncy), the Chinese Yuan Renminbi
(CNHCurncy) and the Chinese Yuan (CNYCurncy), all collected from Bloomberg.
Being the Bitcoin price denominated in USD, an appreciation of the USD against
the above currencies could result in an appreciation against the Bitcoin, thereby af-
fecting mining decisions through the reduction in the price of the cryptocurrency
(Ciaian et al. 2016). We excluded the exchange rates of Bitcoin against other cryptocur-
rencies, such as Ethereum or Ripple, because they are less popular, were introduced
later and there is little evidence of significant arbitrage activity with respect to Bitcoin.

6. The FED financial stress index (FSI) is a popular measure of financial uncertainty.
Its inclusion was intended to capture the possibility that Bitcoin is perceived as a
safe haven (Kristoufek 2015). The weekly series was built from 18 different series
of data at a weekly frequency, seven interest rate series, six yield spreads and five
other indicators, each of which captures a different aspect of “financial stress”. The
FSI is centered around 0 (“normal financial stress”), with negative values indicating
unusual calmness and positive ones “abnormally high” levels of financial uncertainty
(Federal Reserve 2020).

Finally, supply factors that proxy for the costs of Bitcoin mining and ASIC mining
chips producers were also included as follows:

7. ASIC mining chips producers offer mining hardware (e.g., Antminers), the profitabil-
ity of which is directly related to the marginal costs that can be expected from Bitcoin
mining. Being electricity the most important input in mining for bitcoins, we included
the weighted average of the daily stock returns of 25 electricity companies in the
USA and of 65 electricity companies in China (Average (USA) and Average (China)
in Table 1) and the daily stock returns of Sinopec (Sinopec) (Liu and Tsyvinski 2018).
Sinopec had 4.02% missing at random values at a daily frequency, which were in-
putted using the MissForest algorithm (Stekhoven 2013).8 The Out-Of-Bag (OOB)
estimates of the imputation error in terms of normalized root-mean-squared error
(NRMSE) was 2.160× 10−9.

8. To proxy for the cost of inputs relevant for manufacturing Antminers, we included
the aluminum (25 USD/Mt) and copper (25 USD/Mt) prices—from Bloomberg—and
predictors of the supply of coltan by its largest producers, namely, the CDMNCLT
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index, measuring the value (USD) of the mining and oil production in the Democratic
Republic of Congo; and the RWEXCLVA and RWEXCLVO indices, measuring the
value and the volume (USD) of trade of coltan from Rwanda. Copper is largely used
for the production of electrical wires due to its high conductivity, heat resistance
and low cost. Aluminum wires are used for power transmission and distributions
(generally not used in households). Coltan is employed in the production of tantalum
capacitors, which are essential to manufacture mining hardware and computers.

Table 1 reports the main descriptive statistics of the 42 series considered. When
referring to “price” data, due to the non-sationarity of the series, they were converted into
log returns, which are stationary and for which the descriptive statistics are reported. With
the exception of the variables FSI and Google Bitcoin, all the variables reported in Table 1
were collected from Bloomberg, for which institutional or private access must be obtained.
The reported variable names in Table 1 correspond to the exact Bloomberg tickers (used to
download them) for the time span from 1 January 2017 to 1 January 2020, to ease replication.
The variables Average(USA) and Average(China) report the average returns from the
major electricity companies—in terms of minimum market capitalization—in the USA (25)
and in China (65). The stock returns were obtained using the function EQS in Bloomberg
terminals after filtering by market capitalization. Alternatively, the 90 tickers to be used
were available from the authors upon request. The variable FSI is publicly available from
the St. Louis Federal Reserve database (STLFSI); the variable Google Bitcoin is publicly
available from the Google statistics webpage.

Table 1. The table reports the descriptive statistics for the 42 input series considered. The “price”
data were converted into log returns before standardizing for the training of the network. The
column Shapiro–Wilk reports the p-value associated with the Shapiro–Wilk test for normality. Sources:
Bloomberg, St. Louis Federal Reserve database and Google statistics webpage.

Mean Median Std. Dev. Min Max 0.25 Q. 0.75 Q. Shapiro–Wilk

AUDCurncy −2.94E-05 0 4.84E-03 −1.80E-02 1.96E-02 −3.32E-03 3.16E-03 4.53E-03
EURCurncy 8.96E-05 8.85E-05 4.10E-03 −1.91E-02 1.40E-02 −2.54E-03 2.53E-03 1.39E-03
GBPCurncy 9.82E-05 7.57E-05 5.25E-03 −1.69E-02 3.00E-02 −3.29E-03 2.91E-03 3.59E-10
CADCurncy 4.39E-05 −0.0001498 4.05E-03 −1.72E-02 1.66E-02 −2.32E-03 2.23E-03 1.02E-05
SGDCurncy 9.60E-05 0.00014304 2.49E-03 −9.98E-03 1.05E-02 −1.42E-03 1.47E-03 1.62E-07
CHFCurncy 7.32E-05 −0.000102 3.97E-03 −1.46E-02 1.30E-02 −2.38E-03 2.48E-03 7.75E-04
JPYCurncy 1.01E-04 9.14E-05 4.30E-03 −1.79E-02 2.05E-02 −2.47E-03 2.29E-03 1.67E-08
CNHCurncy 2.46E-06 −8.72E-05 3.06E-03 −1.74E-02 1.35E-02 −1.64E-03 1.37E-03 2.67E-15
CNYCurncy −3.35E-06 0 2.52E-03 −1.58E-02 1.12E-02 −1.13E-03 1.24E-03 1.21E-15
XAUCurncy 3.58E-04 0.00039595 6.51E-03 −2.18E-02 2.46E-02 −3.48E-03 4.27E-03 8.83E-05
CL1Comdty 1.64E-04 0.0015186 1.88E-02 −8.23E-02 1.37E-01 −8.88E-03 1.05E-02 2.39E-17
PL1Comdty 9.55E-05 0.00023764 1.19E-02 −5.25E-02 4.58E-02 −6.77E-03 6.95E-03 3.28E-08
LMAHDS03Comdty 8.56E-05 0 1.07E-02 −7.31E-02 5.34E-02 −6.23E-03 6.22E-03 2.90E-13
LMCADS03Comdty 1.40E-04 0 1.06E-02 −4.23E-02 4.52E-02 −6.15E-03 6.38E-03 6.48E-08
CDMNCLTIndex 1.63E+02 153.5 5.61E+01 5.86E+01 3.30E+02 1.34E+02 1.92E+02 1.88E-25
RWEXCLVAIndex 4.94E+06 5,019,960 2.11E+06 2.38E+05 9.65E+06 3.76E+06 6.37E+06 6.11E-09
RWEXCLVOIndex 1.31E+05 128,133 4.48E+04 1.06E+04 2.40E+05 1.09E+05 1.58E+05 3.97E-13
CAIPMOMIndex 1.32E-01 0.17 7.04E-01 −1.42E+00 1.50E+00 −3.30E-01 6.10E-01 6.09E-12
UKIPIMOMIndex −3.46E-02 0 8.09E-01 −3.30E+00 1.70E+00 −4.00E-01 2.00E-01 1.21E-27
IPCHNGIndex 2.03E-01 0.14 5.22E-01 −7.90E-01 1.52E+00 −2.50E-01 5.70E-01 1.48E-11
JNIPMOMIndex −7.57E-02 0.1 1.67E+00 −4.50E+00 2.60E+00 −1.00E+00 1.10E+00 2.17E-17
SIIPMOMIndex 8.95E-02 −0.3 4.54E+00 −9.80E+00 1.01E+01 −3.60E+00 3.40E+00 1.28E-07
CAPIPDINIndex 8.99E+05 906,041.5 4.41E+04 8.42E+05 9.50E+05 8.42E+05 9.50E+05 7.31E-31
PITLIndex 1.77E+04 17,796.58 7.44E+02 1.64E+04 1.89E+04 1.70E+04 1.84E+04 5.09E-18
PCECMOMIndex 1.42E-01 0.15 7.72E-02 −1.10E-01 2.80E-01 1.10E-01 1.90E-01 5.55E-16
PITLCHNGIndex 4.01E-01 0.4 2.08E-01 0.00E+00 9.00E-01 3.00E-01 5.00E-01 3.49E-16
SPXIndex 4.70E-04 0.00050924 7.94E-03 −4.18E-02 4.84E-02 −2.17E-03 4.38E-03 3.58E-22
SX5EIndex 2.49E-04 0.00056771 8.25E-03 −3.31E-02 5.29E-02 −4.23E-03 5.06E-03 1.16E-11
INDUIndex 4.71E-04 0.00041741 8.16E-03 −4.71E-02 4.86E-02 −2.45E-03 4.36E-03 9.20E-22
CCMPIndex 6.54E-04 0.00071221 9.97E-03 −4.53E-02 5.67E-02 −2.85E-03 6.04E-03 3.79E-19
SHCOMPIndex −2.66E-05 0 1.08E-02 −6.19E-02 5.82E-02 −4.53E-03 5.53E-03 7.34E-18
VIXIndex −2.39E-05 −0.0029895 8.09E-02 −3.00E-01 7.68E-01 −4.27E-02 3.16E-02 3.81E-23
NKYIndex 3.61E-04 0.00018195 8.99E-03 −4.28E-02 4.12E-02 −4.06E-03 5.77E-03 1.00E-12
UKXIndex 1.62E-04 0.00033114 7.58E-03 −3.36E-02 3.00E-02 −3.99E-03 4.69E-03 2.18E-10
GoogleBitcoin 5.02E+01 52 2.23E+01 8.00E+00 1.00E+02 3.40E+01 6.70E+01 2.66E-09
Gold 3.58E-04 0.000163 6.68E-03 −2.28E-02 3.53E-02 −3.22E-03 4.03E-03 2.71E-10
SHASHRIndex −2.57E-05 0 1.08E-02 −6.19E-02 5.82E-02 −4.51E-03 5.55E-03 7.43E-18
IBVCIndex −2.45E-03 0 2.30E-01 −5.75E+00 4.31E-01 −1.46E-02 3.08E-02 1.44E-49
Sinopec −2.34E-04 −0.0003256 1.47E-02 −7.47E-02 5.95E-02 −7.56E-03 8.04E-03 6.97E-13
FSI −1.19E+00 −1.219 1.97E-01 −1.49E+00 −4.71E-01 −1.34E+00 −1.06E+00 2.20E-16
Average (USA) 6.77E-04 0.00021563 1.11E-02 −4.48E-02 5.49E-02 −5.07E-03 6.78E-03 3.70E-11
Average (China) 1.40E-04 8.16E-05 1.35E-02 −9.17E-02 1.38E-01 −5.11E-03 5.98E-03 4.11E-30
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4. Empirical Results

We deployed supervised ML methods to better and more reliably measure Bitcoin
mining carbon emissions, nesting within and improving upon the state-of-the-art techno-
economic approach.9 Faced with the unobservability of miners geolocation and actual
hardware and source of energy efficiency used, supervised ML is a statistical approach that
overcomes the difficulty of providing prediction intervals that are robust to model mis-
specification mistakes, by automating model selection and estimation under a high-quality
approximation constraint given by the class of functions considered. While deep learn-
ing (DL) builds on the class of feed-forward neural networks (or multi-layer perceptrons,
characterized by the number of neurons arranged in different layers of possibly different
widths), random forests (RFs) build instead on the recursive partitioning tree-structured
class of functions. The two ML methodologies were chosen as they enable the construc-
tion of prediction intervals without resorting to bootstrapping methods, as opposed to
other popular ML approaches (e.g., SVM, Lasso, or XGBoost). Both aim at minimizing
the prediction error (e.g., measured by the MAE or R/MSE statistics) on “unseen” (or
“out-of-sample”) data of the uncovered/approximated/estimated function f̂ (·) between
the output target y and the input data X (Section 3.1), y = f (X) + ε. The statistical error
term ε captures the presence of unobserved factors to the researcher attempting to measure
the associated carbon emissions of Bitcoin mining.

Adopting, as target outputs, y expressions (8)–(10), both RFs and DL nest the techno-
economic approach within them under the additional restriction X = 0, i.e., that the
researcher has no additional information to exploit beyond what is contained in the con-
struction of the target y (Figure 9 reports the observed targets (8) in black, (9) in green
and (10) in red, as well as the DL-estimated f̂ (X) CO2 emission levels when (10) is the
target, at a daily frequency).

Because both DL and RFs are “data hungry” methods, the standard practice is to divide
the available sample {yi, Xi}N

i=1 into two disjoint parts, a training/learning subsample,
{yi, Xi}Nx

i=1, where f̂ (X) is obtained, and a test/out-of subsample, {yi, Xi}Nᵀ

i=1 : Nx + Nᵀ =

N, where f̂ (X) is tested in terms of its predictive performance on the subsample, not used
to estimate it. Once we established the predictive outperformance of our Relu DNN DL
method, we deployed Monte Carlo dropout to obtain the 95% prediction intervals (PIs)
around the CO2 emission point estimates reported at an annual frequency in Section 4.1
below.

Both DL and RFs are different classes of functions (“dictionaries”) characterized by
parameters (to be estimated) and hyperparameters (to be “fine tuned” by the optimization
algorithm, e.g., Adam or RMSProp) that are obtained/estimated f̂ (X) from the train-
ing/learning subsample, {yi, Xi}Nx

i=1. Because both DL and RFs methods are “data hungry”,
the “fine tuning"/optimizing of the hyperparameters is conducted on different random
splits of the training subsample, also called “cross-validation”. Due to the high number of
hyperparameters and the limited training subsample size, four random splits of the training
subsample, or “four-fold cross-validation” over a randomized gridsearch are implemented.
Optimal ReLU DNN architectures only cross-validate a subset of the hyperparameters,
after performing a combinatorial optimization (with RStudio software) on the number
of neural network nodes (“size”) allocated across (“depth”) and within (“width”) layers,
which maximizes the expressivity (or “goodness of fit”) of the neural network architecture.
To validate this novel methodology, it is benchmarked against (cv) cross-validated ReLU
DNNs, the current state-of-the-art, below.

4.1. DL and RF Hyperparameters

ReLU DNN: Different architecture sizes Z, optimization algorithms (Adam, RMSProp),
weight initialization values (s, s1, s2), learning rates ε, dropout rates q and training epochs
were considered during training. In particular, the different architecture sizes considered
were Z = {200, 500, 800, 1674, 1800}. The learning rates ε = {0.0001, 0.001, 0.005, 0.003,
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0.002, 0.01} for the Adam optimizer (ρ1 = 0.9, ρ2 = 0.999), for the stochastic gradient
descent (SGD) with Nesterov momentum of α = 0.9 and for the RMSProp optimizer with
ρ = 0.9 were tuned. When the Adam optimizer was considered, the He normal initializer
drew samples from a truncated normal distribution with µ = 0 and σ =

√
2/Indim, where

”Indim” is the number of input units in the weight tensor (Keras documentation, 2020);
when, instead, the SGD was tuned, a truncated normal distribution with µ = [0.5, 0.1] and
σ = [0.02, 0.01] was considered. The maximum numbers of training epochs analyzed were
500, 1000, 2000, 5000 and 8000 and early stopping was applied. Different dropout rates
q = {0.05, 0.1, 0.2, 0.3} were tuned for all hidden layers. The default “minibatch” size of
B = 32 was adopted and not tuned.

RF hyperspace parameters in (rf): (a) the number of variables to be randomly sampled
at each sample split was defined in the interval [20, 40], by intervals of 2; (b) the minimum
size of the terminal nodes in [2, 20], by intervals of 2; and (c) the number of trees to grow in
the interval [50, 500], by intervals of 50.

When the target was COr
2, as defined by Equation (8), the cross-validated NN architec-

ture size that minimized the out-of-sample MSE was found to be Z = 1674, with an optimal
depth of L = 15 and optimal allocation of hidden units [162, 126, 126, 126, 126, 126, 126,
126, 126, 126, 126, 126, 126]. The cross-validated hyperparameters were: RMSProp optimizer
with ρ = 0.9; learning rate, ε = 0.005; dropout rate, p = 0.1 for all hidden layers; and
number of epochs, 5000.

The same optimal hyperparameters were selected when considering, instead, COre
2 ,

defined by Equation (9). Finally, when the bottom-up target was adopted, COBU
2 in (10), the

optimal hyperparameters were: RMSProp optimizer with ρ = 0.9; learning rate, ε = 0.003;
dropout rate, q = 0.1 for all hidden layers; and number of epochs, 5000. The four-fold cross-
validation returned an optimal architecture of [151, 125, 158, 91, 106, 74, 198, 131, 86, 71, 162,
132, 189]. Figure 11 returns the training and validation MAE of the different neural networks
considered in the empirical application.
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Figure 11. The figure reports the training (in red) and validation (in green) MAE for the fitted optimal
neural network with realistic targets (in panels): COBU

2 (top left), COre
2 (top right) and COr

2 (bottom
left), while (bottom right) reports instead a cross-validated architecture for target COBU

2 .

4.2. Validation Methods

To internally validate our ML approach, Figure 12 shows that our ML-based CO2
mean predictions (10) (in blue) lie within the Bitcoin carbon footprint upper and lower
bounds (6) and (7) (in black), obtained from basic economic principles, despite having
excluded factors associated with the blockchain network operation from the set of inputs
X, such as the network hash rate, difficulty or block reward, because they were used in the
construction of the target variable.



J. Risk Financial Manag. 2022, 15, 71 20 of 30

To externally validate the results obtained, we tested the performance of the novel
bottom-up target COBU

2 (10), with “unseen” data (or out-of-sample) against (i) “top-down”
targets (8) and (9), (ii) the current approach in the literature and (iii) state-of-the-art ML
methods, i.e., DNN cross-validated architectures (cv) and random forests. The test data
consisted of daily observations for (each of three) target output(s) and the P = 42 input
variables between 1 November 2019 and 31 December 2019. An optimal ReLU DNN was
fitted for each of the three different targets, corresponding to Equations (8)–(10). Since
our inputs were standardized, the current approach in the literature was nested within
the ML approach when no input data were used, i.e., when the inputs were evaluated at
their means of zero (“Optimal ReLU, no inputs”). For each case, the out-of-sample mean
absolute error (MAE), mean squared error (MSE) and square root of the MSE (RMSE) are
reported, showing the predictive outperformance of COBU

2 (third row) against (i) (first two
rows), (ii) (fourth row) and (iii) (fifth and sixth rows).
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Figure 12. The top panel reports the economic upper and lower bounds for daily CO2 emissions (in
black) and within them, the “green/clean” bottom-up ReLU DNN-based daily CO2 emissions point
estimates, COBU

2 , in blue. The bottom panel reports the 95% prediction intervals (in black), on a differ-
ent left-hand scale for visibility and comparability with the upper panel “distance” between bounds.

Method Target Output MAE MSE RMSE
Optimal ReLU DNN COr

2 8.29 123.97 11.13
Optimal ReLU DNN COre

2 6.17 58.76 7.67
Optimal ReLU DNN COBU

2 4.50 33.59 5.80
Optimal ReLU DNN, no inputs COBU

2 18.37 363.56 19.07
Cross-validated ReLU DNN COBU

2 5.35 48.48 6.96
Random forest COBU

2 7.17 82.62 9.09

To perform a pairwise comparison in terms of predictive ability, a Diebold Mariano
test was performed to obtain a test statistic of the difference in out-of-sample MSEs. The
implemented test returned a test statistic of 3.77 (with an associated p-value < 0.0001) for
our optimal ReLU DNN against the (rf) random forest and of 1.93 (with an associated
p-value of 0.0269) against the (cv) equally sized cross-validated ReLU DNN, with levels
of statistical confidence above five percent. Hence, better measurements of the carbon
footprint of Bitcoin mining were obtained using our deep learning ML approach when
adopting our novel bottom-up target, building and improving upon the last contribution
in the techno-economic literature.
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CO2 Emission Levels and Prediction Intervals

More reliable measurements were also obtained as follows: our deep learning ap-
proach enabled the construction of 95% prediction intervals (PIs) around our ML-CO2
point estimates, which were substantially narrower than the economics-based bounds.
Implementing Monte Carlo (MC) dropout (Gal and Ghahramani 2016), the following point
estimates and associated 95% prediction intervals (PIs) for the yearly Bitcoin mining CO2
emissions were obtained (see also Appendix B for a review of MC dropout methods):

Optimal ReLU DNN Target/Year 2017 2018 2019
COBU

2 (MtCO2e)
[95% PI]

2.77
[1.98,3.56]

16.08
[14.19,17.97]

14.99
[13.25,16.73]

COre
2 (MtCO2e)

[95% PI]
2.98

[0.42,6.70]
18.11

[16.34,19.88]
17.45

[15.76,19.14]

COr
2 (MtCO2e)

[95% PI]
3.72

[2.90,4.54]
23.98

[22.46,25.51]
20.06

[18.53,21.59]

Figure 12 visually conveys the substantial reduction in the uncertainty around the
estimated CO2 emission values from our bottom-up target relative to the economic upper
and lower bounds (Hayes 2017) (upper panel), when compared to the associated 95% PIs
(lower panel), for the overall period at a daily frequency.

5. Conclusions

There is growing concern about climate change. Recent evidence (e.g., from integrated
weather–climate models) magnifies the contribution of greenhouse emissions, making a
compelling, urgent call to cut on those (Williams et al. 2020). By focusing on the CO2 emis-
sions associated with Bitcoin mining, here, we show that its measurement is controversial
and subject to significant uncertainty, as conveyed by Figure 7. There, the uncertainty
surrounding the actual CO2 emissions generated by Bitcoin production was measured by
the difference between the upper and lower limits, corresponding to the expected marginal
revenue and the marginal cost of Bitcoin network operating miners, respectively (Hayes
2017). This uncertainty stems from the difficulty in (i) determining the carbon intensity of
the source of energy employed and in (ii) estimating the actual power consumption of a
globally geo-located network of miners.

Here, we demonstrate how ML methods could be successfully exploited to contribute
to the ongoing academic and policy debate in a timely manner. Building on an economic
model of rational Bitcoin mining, we propose a novel bottom-up approach to compute a
realistic conservative output target of the associated carbon footprint, combining spatial
information on the geo-location of miners and carbon intensities of energy sourced, with
information from IPO filings. Exploiting a large set of inputs/features, our novel approach
enabled the construction of prediction intervals (PIs) around the estimated carbon footprint
of Bitcoin mining, that, aggregated at a yearly frequency, delivered CO2 estimates (and
associated 95% PIs) of 2.77 [1.98, 3.56] MtCO2e for the year 2017;, of 16.08 [14.19, 17.97]
MtCO2e for 2018 and of 14.99 [13.25, 16.73] MtCO2e for 2019. To provide an order of
magnitude, the estimated Bitcoin mining fossil fuel emissions for 2018 are higher than the
annual levels of emissions of (i) the US states of Maine (15.6 MtCO2e), New Hampshire
(13.6 MtCO2e), Rhode Island (10.1 MtCO2e) or South Dakota (14.6 MtCO2e), or of (ii) those
of smaller countries, such as Bolivia, Sudan or Lebanon (Global Carbon Atlas 2020).

The reported estimates (and PIs) conform with recent literature downward revi-
sions of the original estimate (Mora et al. 2018) of 69 MtCO2e for 2017, e.g., down to
15.5 MtCO2e when excluding unprofitable mining rigs (Houy 2019), or to 15.7 MtCO2e
(Masanet et al. 2019); they also conform with those for 2018, e.g., down to 43.9 MtCO2e (for
Bitcoin and Ethereum, Foteinis 2018), or the lower and upper bounds of 22.0 (device IP
method) and 22.9 (pool IP method) MtCO2e for Bitcoin mining activity (Stoll et al. 2019).
Furthermore, the differences in the estimated yearly carbon footprints reported here can
be attributed to the different approaches adopted in the literature to compute the targets,
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decomposing into the following: (i) the contribution of carbon intensity uncertainty, keep-
ing the approach constant, i.e., reported differences between COre

2 and COr
2 estimates are

solely due to adopting a “clean” energy source carbon intensity; (ii) the effect of changing
from a top-down to a bottom-up approach, keeping a “clean” source of carbon intensity, i.e.,
reported differences between COBU

2 and COre
2 .

Recalling that the GHG estimates reported here are the result of adopting a con-
servative target, one could conclude that the economic social cost associated with the
proof-of-work algorithm is nevertheless significant and raising alarmingly (see Future
Projections, in Appendix A). Future work assessing how fast and how much Bitcoin GHG
levels are forecast to increase on the basis of the ML methods deployed, as well as the
counterfactual policy evaluation scenarios that they promise to handle (Farrell et al. 2021),
can timely inform policies targeting Bitcoin mining GHG emissions that do not jeopardize
the Paris agreement target.
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Appendix A. Future Projections

Although a proper ML-based forecasting exercise is beyond the scope of the current
contribution, for a comparison with the most recent reported emission forecasts (Jiang
et al. 2021), Figure A1 (lower panel) illustrates how our ML approach can also deliver
reasonable forecasts of Bitcoin mining CO2 emission levels based on the evolution of the
overall Bitcoin network hashrate (Cocco and Marchesi 2016) (instead of, e.g., gold-like
market capitalization growth rates (Quin et al. 2021) or older technologies’ rates of adoption
(Mora et al. 2018). The energy required to mine cryptocurrencies in a proof-of-work scheme
is measurable in the hashrates of the network, which increase with the larger participation
of miners and with the increasing difficulty of the calculations (Krause and Tolaymat 2018).
Figure A1 below (upper panel) reports the results of simulating, only four years ahead (in
red), the overall Bitcoin network hashrate on the basis of an exponential trend found in the
data (observed, in black) at a daily frequency, between the 1 January 2017 and 31 December
2019 (“white area”, upper panel). When benchmarked against a linear trend model, we
obtained an estimated regression coefficient of 55.3 (t-statistic of 20.06) for the quadratic
trend term, providing strong statistical evidence in favor of a deterministic exponential
trend model, relative to a linear one. By benchmarking against a unit root (with or without
drift), an associated augmented Dickey–Fuller test statistic of −21.68 (p-value < 0.0001)
was obtained, also rejecting the deterministic linear trend model. The lower panel displays
the corresponding ML-based projections four years ahead of the Bitcoin mining carbon

https://github.com/TullioM94/PhD-code
https://github.com/TullioM94/PhD-code


J. Risk Financial Manag. 2022, 15, 71 23 of 30

footprint for the three reported targets, as follows: in black, COr
2; in green, COer

2 ; and, in
blue, COBU

2 , keeping all other (input and target output) variables at their means. According
to our most conservative novel bottom-up approach, COBU

2 , Bitcoin mining GHG annual
emission levels were forecast to increase to 29.05 by the end of 2021, to 50.46 by 2022 and
to 83.41 by 2023, to reach an alarming 132.01 by the end of 2024, all in MtCO2e. External
validation of these forecasts comes from the 130.5 MtCO2e forecast obtained from a top-
down techno-economic flow system approach in the “business as usual” scenario (for China
alone, concentrating ∼70% of global Bitcoin mining operations, Jiang et al. 2021).
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Figure A1. The top panel reports the simulated (in red) and observed (in black) Bitcoin network
hashrate. The white area was used for fitting the exponential trend Ht = (a · t) · exp{b · t}+ εt, with
estimated coefficients â = 3.52× 104 and b̂ = 8.31× 104, for initial values, â0 = 7.15× 104 and b̂0

= 4.36× 10−3. The green area tests its goodness of fit on unseen data, between 1 January 2020 and 23
October 2020. The bottom panel reports the projected daily level of CO2 emissions in ktCO2 for the
novel “clean energy” bottom-up (in blue), “brown energy” top-down (in black) and “green energy”
top-down (in green) approaches. In red, we report the observed level of CO2 emissions displayed in
red in Figure 9.

Appendix B. Deep Learning Basics

Machine learning (ML) technology is widespread nowadays, from web searches to
content filtering on social networks to recommendations on e-commerce websites. ML
identifies objects in images, transcribes speech into text, matches news items, posts or
products with users’ interests and selects relevant results of the search, making use of
a class of techniques called deep learning. Deep learning allows computational models
that are composed of multiple processing layers to learn representations of big complex
datasets, uncovering intricate structures within them. These methods have dramatically
improved the state of the art in many domains, such as drug discovery and genomics,
being increasingly present in consumer products such as cameras, smartphones or com-
puterized personal assistants. For example, Apple’s Siri, Amazon’s Alexa, Google Now or
Microsoft’s Cortana employ deep neural networks to recognize, understand and answer
human questions. However, so far, they have not been widely adopted to solve societal
pressing issues, such as quantifying greenhouse emissions to better ascertain their effect on
climate change. After framing deep learning within the ML literature, this section swiftly
presents the methodology for architecture optimization (Calvo-Pardo et al. 2020) and con-
struction of associated prediction intervals (e.g., Gal and Ghahramani 2016), deployed to
predict/now-cast the carbon footprint of Bitcoin mining.
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Appendix B.1. Machine Learning Basics

ML aims to uncover/learn a relationship between P inputs (predictors, features,
explanatory or independent variables), X = {. . . xp . . . }, and one output (dependent or
response variable), y, for predicting values for y given only the values of X, in the presence
of U unobserved/uncontrolled quantities z = {. . . zu . . . }.

y = g(. . . xp . . . ; . . . zu . . . ).

To reflect the uncertainty associated with the unobserved inputs z, the above relation-
ship is replaced by the statistical model

y = f (. . . xp . . . ) + ε : ε ∼ Fε(ε),E[ε| . . . xp . . . ] = 0 (A1)

where f (X) = Eε[y|X] denotes the expectation of y conditional on X. For a given set of
observed input values X, (A1) specifies a distribution of output y-values, the conditional
mean of which is the target function f (X). Input and output variables can be real or
categorical, but categories can always be converted into “indicators” or “dummies” that are
real-valued. An example of an output variable y is the carbon footprint of Bitcoin mining,
the input variables X of which are electricity prices, the energy efficiency of available mining
hardware, drivers of Bitcoin prices, foreign currencies exchange rates against the USD,
or the country-specific carbon intensities of electricity consumed, among others. Finally,
examples of unobserved inputs z are the actual energy efficiency of mining hardware or
the carbon intensities of different sources of electricity effectively employed.

ML algorithms can be broadly categorized as unsupervised or supervised. Unsuper-
vised learning algorithms aim at uncovering useful properties of the structure of the input
dataset, i.e., there is no y, and, given that the true data generating process (DGP) pdata(X)
is unknown, the goal is to learn it, or some useful properties of it, from a random sample of
i = 1 . . . N realizations of input data only, {Xi}, on the basis of which the empirical distri-
bution p̂data(X) is obtained. Instead, supervised learning algorithms aim to obtain a useful
approximation f̂ (X) to the true (unknown) “target” function f (X) in (A1), by modifying
(under constraints) the input/output relationship f̂ (X) that it produces, in response to
differences {yi − ŷi} (errors) between the predicted ŷi = f̂ (Xi) and real yi system outputs.

f̂ (X) ∈ arg min
g(X)

1
N ∑N

i=1 L[yi, g(Xi)] (A2)

where L(·, ·) is the “loss function”, or a measure of distance (error) between yi and ŷi =
f̂ (Xi). Notice that (A2) is the available sample {yi, Xi} analog to solving for the global
prediction error in (A1).

f̂ ∈ arg min
g(X)

∫
{EεL[ f (X) + ε, g(X)]}pdata(X)dX (A3)

where pdata(X) is the unknown true data generating process. Problem (A3) defines the
target performance measure for prediction in supervised learning/function approximation;
as new input-only observations become available, collected in a prediction or test sample
“>”, {yi, Xi}N>

i=1, we want to predict (estimate) a likely output value using f̂ (Xi), ŷi = f̂ (Xi),
where f̂ (X) was obtained from (A2) exploiting the available sample, {yi, Xi}N

i=1. Then, com-

puting 1
N> ∑N>

i=1 L[yi, ŷi] allows the researcher to evaluate the out-of-sample performance of

the algorithm/function approximation f̂ (X), showing that accurate approximation and pre-
diction are one and the same objective. As more data are unavailable, the standard practice
is to divide the available sample {yi, Xi}N

i=1 into two disjoint parts, a training/learning sam-
ple “x” {yi, Xi}Nx

i=1 in (A2) where f̂ (X) is obtained, and a prediction/test sample {yi, Xi}N>
i=1,

where the out-of-sample predictive performance of f̂ (X) is evaluated, so that N = Nx+ N>.
More complex forms of the unknown target function f (X) naturally call for bigger training
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samples Nx to obtain better representations/approximations f̂ (X). However, this comes at
the expense of increasing the chances of f̂ (X) “overfitting”. Overfitting happens when a
model that represents the training data very well represents very poorly unseen data N>

in the “prediction/test phase”.
Because Nx is finite, problem (A2) does not have a unique solution; if Nx = +∞,

we would directly compute f (X) from (A1) predicting the mean of y for each value of X.
Therefore, one must restrict the set of admissible functions to a smaller set G than the set of
all possible functions g(X). “Universal approximators” for the class of all continuous target
functions f (X) are classes of functions G = {g(X) : g(X) = ∑Z

z=1 azb(X|γz), γz ∈ Rq} that
could exactly represent f (X) if the sample size were not finite, i.e., f (X) = ∑∞

z=1 a∗z b(X|γz)
for some set of expansion coefficient values {a∗z}∞

z=1. If the training sample size were in-
finite, lim

Nx→∞
f̂ (X) = f (X; θ̂) = ∑∞

z=1 âzb(X|γ̂z) = ∑∞
z=1 a∗z b(X|γz) = f (X) with θ̂ = θ̂ML =

{âz, γ̂z}∞
z=1; therefore, lim

N>→∞

1
N> ∑N>

i=1 L[yi, f̂ (Xi)] = 0 (“Oracle property”). However, be-

cause the training sample size is finite, Z < ∞ and 1
N> ∑N>

i=1 L[yi, f̂ (Xi)] > 0. Then, choosing
Z corresponds to “model selection”; as entries {az}Z

z=1 are added, the approximation is able
to better fit the training data, increasing the variance component of (A3) but decreasing the
bias. The bias decreases because adding entries enlarges the function space spanned by the
approximation f̂ (X). With a finite sample size, the goal is to choose a small Z that keeps
the variance and the bias small, so that (A3) can be expected to remain small.

In general, the choice of the set of admissible functions G is based on considerations
outside the data and is usually conducted by the choice of a learning method. The class of
functions g(X) = ∑M

m=1 amb(X|γm), γm ∈ Rq are commonly known as “dictionaries”. The
choice of a learning method selects a particular dictionary. Examples of dictionaries that
are universal approximators are feed-forward neural networks, radial basis functions, re-
cursive partitioning tree-structured methods and tensor product methods (Friedman 1994).
Choosing a learning method can be modeled as adding a penalty term λΩ[g(X)] to restrict
solutions to (A2).

f̂ (X; λ) ∈ arg min
g(X)

1
Nx ∑Nx

i=1 L[yi, g(Xi)]+λΩ[g(X)] (A4)

where λ (the “regularization parameter”) modulates the strength of the penalty functional
Ω[·] over all possible functions g(X). The choice of a penalty functional is made on the basis
of “outside the data information” about the unknown target f (X). For example, restricting
g(X) ∈ G (“universal approximators”) is achieved by setting Ω[g(X)] = H{bias2[g(X)]}
with H{h} = 0 · 1{h=0} + ∞ · 1{h 6=0} (with the convention that ∞ · 0 = 0), since, when
h = 0 = bias2[g(X)], we have g(X; θ̂) = ∑Z

z=1 âzb(X|γ̂z), i.e., learning f̂ (X; λ) in (A2)
reduces to parameter learning, f̂ (X; λ) = g(X; θ̂, λ), where θ = {az, γz}Z

z=1. Another
important example is choosing Ω[·] on the basis of a prior over the class of models g(X),
Pr[g(X)].

Appendix B.2. Deep Learning Basics

Among the others, deep learning constitutes a relevant class of techniques in the
ML learning universe. Deep learning builds on feed-forward neural networks (NNs) or
multi-layer perceptrons (MLPs) to learn unknown target functions of increasing complexity.
MLPs are then compositions of single-layer/shallow NNs, each hidden unit of which (or
“neuron”) is fully connected to the hidden units of the subsequent layer, to capture the fact
that information flows forward from the inputs X to the output y. Accordingly, the network
is free of cycles or feedback connections that pass information backward.

Single-layer/shallow NNs are universal approximators (Hornik 1991; Cybenko 1989) and
have dictionaries of functions of the form {b(X|γ1) = s(W′1X + b1) : γ1 = (b1, W1), W′1X =

[. . . ∑P
p=1 wzpxp . . . ]′ ∈ RZ1}, where s(·) : RZ1 → RZ1 is a vector-valued “activation function”

(i.e., applied unit-wise), mapping the output from the single hidden layer h1 = W′1X +
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b1 ∈ RZ1 and the bias of each hidden unit z ∈ RZ1 in the single hidden layer, b1 ∈ RZ1 ,
into the output, ŷ = ∑Z1

z=1 w2zsz(W′1X + b1) + b2z ≡ f̂ (X; θ1), with the weights w2 ∈ RZ1

and bias b2 ∈ R being the parameters {az}Z1
z=1 of the function class G defined above, i.e.,

θ1 = (w2, b2; b1, W1) ≡ (a; γ1). Adding hidden units results in “wider” single-layer NNs that
are better able to approximate the unknown target, f (X). Popular choices for the activation
function include (i) rectified linear units (ReLU), s(h) = max{0, h}; (ii) Softplus, s(h) =
log(1 + eh); (iii) hard tanh, s(h) = max{−1, min{1, h}}; (iv) sigmoid or “logistic”, s(h) =
(1 + e−h)−1; or (v) maxout, s(h) = max

j∈Gi
hj where the number of hidden units z in layer l, Zl,

is divided into groups of k values, {(z1, . . . , zk), . . . , (zZl−k+1, . . . , zZl )} and Gi = {(i− 1)k +
1, . . . , ik} is the set of indices into the inputs for group i. All activation functions s(·) have in
common that a certain threshold must be overcome for information to be passed forward,
much as neurons in the human brain, that need to receive a certain amount of stimuli in order
to be activated. The threshold hurdle creates a non-linearity that allows artificial NNs to learn
non-linear and non-convex unknown target functions f (X).

A DNN is constructed by adding hidden layers, each subsequent one taking, as inputs,
the outputs of the previous ones. More formally, a DNN approximation f̂ (·) : RP → R of
size Z = ∑L

l=1 Zl with L ∈ N hidden layers and Zl ∈ N nodes per layer l is of the form

f̂ (X) ≡ f (X; ΛL) = w′L+1s(W′LhL−1 + bL) + bL+1

= f ◦ f ◦ · · · ◦
L−composition

f (X; Λ1)

where s(·) : RZL−1 → RZL is the vector-valued activation function that maps the out-
put from the previous hidden layer hL−1 = s(W′L−1hL−2 + bL−1) ∈ RZL−1 and the bias
of each hidden unit z ∈ RZL in the last hidden layer L, bL ∈ RZL , into the output
layer l = L + 1, with weights wL+1 ∈ RZL and bias unit bL+1 ∈ R. The matrices
Wl = [w1 . . . wZl ] ∈ RZl−1×Zl contain the weights wz ∈ RZl−1 of each hidden unit
z = 1 . . . Zl for each hidden layer l = 1 . . . L, with Z0 = P, the dimension of the in-
put vector X ∈ RP. ΛL≡ [θL; Z, L, {Zl}L

l=1; ε, λ, α] is the collection of parameters θL =
[(wL+1, bL+1) . . . (W1, b1)] and sets of hyperparameters [Z, L, {Zl}L

l=1] and [ε, λ, α] to be
learned and/or “fined tuned" by the optimization algorithm. Λ1 ≡ [[θ1; Z, 1, {Zl}1

l=1; ε, λ, α]
in the last equality simply conveys that a DNN can be expressed as the composition of
L-single layer/“shallow” NNs.

Adding hidden layers then results in parameter addition, increasing the variance and
reducing the bias. The overall effect on performance (i.e., on generalization/test error)
depends on how well the resulting dictionary matches the unknown target function f (X).
Recent advances in the deep learning literature (Montufar et al. 2014; Pascanu et al. 2013)
show how the depth and the width of a DNN play a pivotal role in determining the
approximation power of a neural network. However, “tuning” or optimizing the neural
network architecture is a daunting task in terms of processing time and computational
capacity, e.g., determining the optimal depth (number of layers L) and nodes per layer
({Zl}L

l=1) for architectures of a given size Z involves solving an NP-hard combinatorial
optimization problem, because L, {Zl}l ∈ N, i.e., are integer values (Judd 1990).

Here, the structure of the deep feed-forward neural network used for the estima-
tion of the carbon footprint of Bitcoin mining is instead identified implementing a novel
methodology (Calvo-Pardo et al. 2020). There, we show that recent advances in combi-
natorial optimization software (RStudio) can be exploited to optimally allocate hidden
units ({Zl}L

l=1) within (“width”) and across layers in deep architectures of a given size
Z = ∑L

l=1 Zl . Adopting the lower bound (Montufar et al. 2014) on the maximal num-
ber of linear regions that ReLU DNNs can approximate as the maximization criterion,

LB(L, {Zl}L−1
l=1 ; P) ≡

(
∏L−1

l=1

⌊
Zl
P

⌋P
)

∑P
r=0 (

Z−∑L−1
l=1 Zl
r ), the optimal depth and width of a

DNN is identified from
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(L̂, {Ẑl}L̂
l=1) ∈ arg max

(L,{Zl}L−1
l=1 )

LB(L, {Zl}L−1
l=1 ; P) (A5)

The optimization (A5) finds the optimal depth L̂ and number of hidden units per layer (or
optimal width, layer-wise) {Ẑl}L̂

l=1 given the network architecture size, Z = ∑L
l=1 Zl . Since

the optimization (A5) is conditional on the architecture size, note that bigger and more
complex datasets {yi, Xi}N

i=1 would naturally summon architectures with more hidden
units, Z.

Appendix B.3. Uncertainty and Deep Learning

Despite their unrivaled success in prediction tasks, deep learning models struggle in
conveying the uncertainty or degree of statistical confidence/reliability associated with
those forecasts. Some recent contributions in the ML literature have made progress in
the provision of prediction intervals for the point forecasts provided by deep learning
models trained with dropout. For example, recent literature (Montufar et al. 2014) shows
that an NN with arbitrary depth and nonlinearities, with dropout applied before every
hidden layer and a parametric L2 penalty v[θ] = ∑L

l=1

{
‖Wl‖2

2 + ‖bl‖2
2

}
, minimizes the

Kullback–Leibler divergence between an approximate (variational) distribution, q(θ)—over
matrices θ = (W1, . . . , WL) with columns randomly set to zero, Wl = Mldiag[rzl ]

Zl
z=1, rzl ∼

Bernoulli(pl), l = 1, . . . , L, z = 1, . . . , Zl—-and the posterior of a deep Gaussian process,
p(θ|y; X), which is intractable.

−∑N
i=1
∫

q(θ) log p(yi|Xi; θ)dθ+ DKL(q(θ)||p(θ))

∝ −∑N
i=1

log p(yi |Xi ;θ̂)
τN + ∑L

l=1

{
pl l2

2τN ‖Ml‖2
2 +

l2

2τN ‖bl‖2
2

}
where the first and second terms in the sum are approximated. In the first term, each
element of the sum over N is approximated by Monte Carlo integration with a single
sample θ̂b ∼ q(θ) to obtain an unbiased estimate of log p(yi|Xi; θ̂). In the second, l de-
notes prior length-scale and τ model precision, i.e., p(y|X; θ) = N(ŷ(X; θ), 1

τ I) : ŷ(X; θ) =
−2
√

ZLWLs(. . . −2
√

Z1W2s(W1X + b1) . . . ) and variance–covariance matrix 1
τ I, with I the iden-

tity matrix. The sampled θ̂b result in realizations from the Bernoulli distribution [rb
l ] equivalent

to the binary variables in the dropout case, i.e., sampling B sets of vectors of realizations
from the Bernoulli distribution {[rb

l ]}
B
b=1 with [rb

l ] = [rb
zl ]

Zl
z=1, giving {Wb

1, . . . , Wb
L}B

b=1, with
which the first two moments of the predictive distribution p(yi|Xi; θ̂) are estimated (by
moment matching). The first moment, f̄MC(Xi) = 1

B ∑B
b=1 ŷ(X; Wb

1, . . . , Wb
L), is known as

Monte Carlo (MC) dropout and, in practice, it corresponds to performing B stochastic forward
passes through the NN and averaging the results (model averaging). The second moment,
1
τ I + 1

B ∑B
b=1 ŷ(X; Wb

1, . . . , Wb
L)
′ŷ(X; Wb

1, . . . , Wb
L), equals the sample variance of B stochastic

forward passes through the NN plus the inverse model precision, providing a measure of the
uncertainty attached to the deep NN point prediction.

Under the assumption that the approximation error is negligible, the predictive vari-
ance can be estimated as

σ̂2
MC = σ̂2

e +
1
B

B

∑
b=1

ŷ(X; Wb
1, . . . , Wb

L)
′ŷ(X; Wb

1, . . . , Wb
L), (A6)

with σ̂2
e = 1

N> ∑N>
i=1
(
yi − f̄MC(Xi)

)2 a consistent estimator of σ2
e under homoscedasticity of

the error term (Montufar et al. 2014; Kendall and Gal 2017).
Therefore, under the assumption that p(ŷ |X, θ) is normally distributed, the 1− α (with

α significance level) prediction intervals of the CO2 emissions are obtained from

f̄MC(Xi)± z1−α/2σ̂MC. (A7)
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Notes
1 The revolutionary element of Bitcoin is the underlying “blockchain” technology. Instead of a trusted third party, incentivized

network participants validate transactions and ensure the integrity of the network via the decentralized administration of a data
protocol (also called “proof-of-work”). The distributed ledger protocol created has since then been called the “first blockchain”.

2 The Paris Agreement is an agreement within the United Nations Framework Convention on Climate Change (UNFCCC), dealing
with greenhouse gas (GHG) emissions mitigation, adaptation and finance, signed in 2016. It sets out a global framework to avoid
dangerous climate change by limiting global warming to well below 2 ◦C and pursuing efforts to limit it to 1.5 ◦C. It also aims to
strengthen countries’ ability to deal with the impacts of climate change and support them in their efforts. Ongoing efforts to
implement measures to reduce global warming beyond 1.5 ◦C are currently under discussion in Glasgow as part of the Glasgow
climate conference in November 2021.

3 This is in contrast to recurrent neural networks, where information is allowed to feed-back from the output to the model itself.
4 For daily estimates of the electricity consumption by the Bitcoin network, the University of Cambridge recently added a new

source, the Cambridge Bitcoin Electricity Consumption Index (CBECI, https://www.cbeci.org), which is an alternative to the
already existing Bitcoin Energy Consumption Index (BECI). De Vries (2020) reports that “As per 30 September 2019, these two
[respectively] estimated the network was consuming 73.1 to 78.3 terawatt-hours (TWh) of electrical energy annually. For a single
Bitcoin transaction, this translates to an electrical energy footprint roughly equal to the electrical energy consumption of a British
household in two months”.

5 A measure of the magnitude of the economic problem can be obtained from adopting the social cost of carbon (SCC) estimate
of USD 62 per metric ton of CO2 equivalent (Interagency Working Group, IWG, 2016) in 2007 in USD; yearly, the Bitcoin
mining SCC reliably ranged USD [122, 760, 000; 220, 720, 000] in 2017, USD [923, 800, 000; 1, 114, 140, 000] in 2018 and USD
[821, 500, 000; 1, 037, 260, 000] in 2019.

6 Since, for the time interval 18 July 2018–3 August 2018, those network statistics are missing, they were imputed using the
MissForest algorithm (Stekhoven 2013), with a maximum number of trees to be grown in each forest equal to 500, a maximum
number of nodes per tree equal to 100and a maximum number of iterations of 50. The MissForest algorithm is agnostic about
the distribution of the variables, estimating the missing values by fitting a random forest trained on the observed values. The
Out-Of-Bag (OOB) estimates of the imputation error in terms of normalized root-mean-squared error (NRMSE) was 0.04831 and
convergence was achieved.

7 As of October 2018, 3.91 M antminer S9 machines were needed to produce the overall Bitcoin network total of 54.7 exahashes per
second (at its peak), with each antminer producing an output of 14 TH/s. Since each antminer S9 machine weighs 4.2 kg and
lasts an average of 1.5 years, after which it needs to be replaced/disposed of, a total of 16,442 metric tons of weight of mining
displays are to be disposed of every 1.5 years, or 10,948 metric tons per year. To convert these into CO2 emissions, the Climate
Institute reports that, for every ton of cathode-ray tube (CRT) display products manufactured, 2.9 metric tons of carbon were
released. When properly recycled, only 10 percent of greenhouse gas emissions are released. Therefore, a total of 10,948 metric
tons of Bitcoin e-waste times 2.9 metric tons of CO2 per ton of weight yields 31,749.2 metric tons of greenhouse gas emissions per
year, which, when properly recycled, results in only 10%, or 3,174.9 metric tons of CO2 released per year. Dividing by 365 days,
we obtain a daily figure of COrw

2 = 0.0087 ktCO2 per day, per TH/s.
8 The maximum number of trees to be grown in each forest is set equal to 500, the maximum number of nodes for each tree is equal

to 500 and the maximum number of iterations is 20.
9 The interested reader is referred to Appendix B and to Calvo-Pardo et al. (2020) for a review of the topics.

References
Asic Miner Index. 2020. Available online: https://asic-dex.com/ (accessed on 2 February 2021).
Bendiksen, Christoper, and Samuel Gibbons. 2019. The Bitcoin mining network: Trends, Average Creation Costs, Electricity Consump-

tion & Sources. CoinShare 5: 2018.
Bitmain. 2018. IPO Prospectus. Available online: https://templatelab.com/bitmain-ipo-prospectus/ (accessed on 2 February 2021).
Bouoiyour, Jamal, and Refk Selmi. 2017. The Bitcoin price formation: Beyond the fundamental sources. arXiv arXiv:1707.01284.
Calvo-Pardo, Hector. F., Tullio Mancini, and Jose Olmo. 2020. Optimal Deep Neural Networks by Maximization of the Approximation

Power. Available online: https://ssrn.com/abstract=3578850 (accessed on 2 February 2021).
Cambridge. 2020. Cambridge Bitcoin Electricity Consumption Index. Available online: https://www.cbeci.org/ (accessed on 2

February 2020).
Canaan. 2019. Form F-1 Registration Statement. Available online: https://www.sec.gov/Archives/edgar/data/1780652/0001193125

19276263/d773846df1.htm#rom773846_14 (accessed on 2 February 2021).
Ciaian, Pavel, Miroslava Rajcaniova, and d’Artis Kancs. 2016. The economics of BitCoin price formation. Applied Economics 48:

1799–815. [CrossRef]
Cocco, Luisanna, and Michele Marchesi. 2016. Modeling and Simulation of the Economics of Mining in the Bitcoin Market. PloS ONE

11: e0164603. [CrossRef] [PubMed]

https://www.cbeci.org
https://asic-dex.com/
https://templatelab.com/bitmain-ipo-prospectus/
https://ssrn.com/abstract=3578850
https://www.cbeci.org/
https://www.sec.gov/Archives/edgar/data/1780652/000119312519276263/d773846df1.htm#rom773846_14
https://www.sec.gov/Archives/edgar/data/1780652/000119312519276263/d773846df1.htm#rom773846_14
http://doi.org/10.1080/00036846.2015.1109038
http://dx.doi.org/10.1371/journal.pone.0164603
http://www.ncbi.nlm.nih.gov/pubmed/27768691


J. Risk Financial Manag. 2022, 15, 71 29 of 30

Cybenko, George 1989. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2: 303–14.
[CrossRef]

De Vries, Alex 2018. Bitcoin’s growing energy problem. Joule 2: 801–5. [CrossRef]
De Vries, Alex 2019. Renewable energy will not solve bitcoin’s sustainability problem. Joule 3: 893–98. [CrossRef]
De Vries, Alex 2020. Bitcoin’s energy consumption is underestimated: A market dynamics approach. Energy Research & Social Science 70:

101721.
Dittmar, Lars, and Aaron Praktiknjo. 2019. Could Bitcoin emissions push global warming above 2 ◦ C? Nature Climate Change 8: 931–33.

[CrossRef]
Dyhrberg, Anne Haubo. 2016. Bitcoin, gold and the dollar—A GARCH volatility analysis. Finance Research Letters 16: 85–92. [CrossRef]
Ebang. 2020. Form F-1 Registration Statement. Available online: https://www.sec.gov/Archives/edgar/data/1799290/000121390020

010071/ea121021-f1_ebanginter.htm#a_013 (accessed on 2 February 2021).
Farrell, Max H., Tengyuan Liang, and Sanjog Misra. 2021. Deep neural Networks for Estimation and Inference. Econometrica 89:

181–213. [CrossRef]
Federal Reserve. 2020. Federal Reserve Bank of St. Louis, St. Louis Fed Financial Stress Index [STLFSI]. Retrieved from FRED, Federal

Reserve Bank of St. Louis. Available online: https://fred.stlouisfed.org/series/STLFSI (accessed on 22 March 2020).
Foteinis, Spyros. 2018. Bitcoin’s alarming carbon footprint. Nature 554: 169. [CrossRef]
Friedman, Jerome H. 1994. An overview of predictive learning and function approximation. In From Statistics to Neural Networks;

Berlin/Heidelberg: Springer, pp. 1–61.
Gal, Yarin, and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning.

Paper presented at International Conference on Machine Learning, New York, NY, USA, June 19–24. pp. 1050–59.
Garcia, David, Claudio J. Tessone, Pavlin Mavrodiev, and Nicolas Perony. 2014. The digital traces of bubbles: Feedback cycles between

socio-economic signals in the Bitcoin economy. Journal of the Royal Society Interface 11: 20140623. [CrossRef]
Global Carbon Atlas. 2020. Available online: http://www.globalcarbonatlas.org/en/CO2-emissions (accessed on 2 February 2021).
Hayes, Adam S. 2017. Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin.

Telematics and Informatics 34: 1308–21. [CrossRef]
Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4: 251–57. [CrossRef]
Houy, Nicolas. 2019. Rational mining limits Bitcoin emissions. Nature Climate Change 9: 655. [CrossRef]
Jang, Huisu, and Jaewook Lee. 2017. An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks

based on blockchain information. IEEE Access 6: 5427–37. [CrossRef]
Jiang, Shangrong, Yuze Li, Quanying Lu, Yongmiao Hong, Dabo Guan, Yu Xiong, and Shouyang Wang. 2021. Policy assessments for

the carbon emission flows and sustainability of Bitcoin blockchain operation in China. Nature Communications 12: 1938. [CrossRef]
Judd, J. Stephen. 1990. Neural Network Design and the Complexity of Learning. Cambridge and Boston: MIT Press.
Kendall, Alex, and Yarin Gal. 2017. What uncertainties do we need in bayesian deep learning for computer vision? Advances in Neural

Information Processing Systems, 5574–84.
Krause, Max J., and Thabet Tolaymat. 2018. Quantification of energy and carbon costs for mining cryptocurrencies. Nature Sustainability

1: 711–18. [CrossRef]
Kristoufek, Ladislav. 2015. What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE 10:

e0123923. [CrossRef]
Liu, Yukun, and Aleh Tsyvinski. 2018. Risks and Returns of Cryptocurrency. No. w24877. Cambridge and Boston: National Bureau of

Economic Research.
Masanet, Eric, Arman Shehabi, Nuoa Lei, Harald Vranken, Jonathan Koomey, and Jens Malmodin. 2019. Implausible projections

overestimate near-term Bitcoin CO2 emissions. Nature Climate Change 9: 653–54. [CrossRef]
McNally, Sean, Jason Roche, and Simon Caton. 2018. Predicting the price of bitcoin using machine learning. Paper presented at 2018

26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Cambridge, UK, March
21–23. pp. 339–43.

Montufar, Guido, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 2014. On the number of linear regions of deep neural
networks. Advances in Neural Information Processing Systems, 2924–32.

MMora, Camilo, Randi L. Rollins, Katie Taladay, Michael B. Kantar, Mason K. Chock, Mio Shimada, and Erik C. Franklin. 2018. Bitcoin
emissions alone could push global warming above 2 C. Nature Climate Change 8: 931–33. [CrossRef]

Pascanu, Razvan, Guido Montufar, and Yoshua Bengio. 2013. On the number of response regions of deep feed forward networks with
piece-wise linear activations. arXiv arXiv:1312.6098.

Qin, Shize, Lena Klaaßen, Ulrich Gallersdörfer, Christian Stoll, and Da Zhang. 2021. Bitcoin’s Future Carbon Footprint. Available
online: https://arxiv.org/ftp/arxiv/papers/2011/2011.02612.pdf (accessed on 2 October 2021).

Shodan.io. 2020. IoT-Search Engine. Available online: https://www.shodan.io/ (accessed on 2 February 2021).
Stekhoven, Daniel J. 2013. missForest: Nonparametric Missing Value Imputation Using Random Forest. R Package Version 1.4.0.
Stoll, Christian, Lena Klaaßen, and Ulrich Gallersdörfer. 2019. The carbon footprint of bitcoin. Joule 3: 1647–61. [CrossRef]
Stoll, Christian, Lena Klaaßen, and Ulrich Gallersdörfer. 2020. Energy Consumption of Cryptocurrencies Beyond Bitcoin. Joule 4:

1843–46.
The Economist Intelligence Group. 2018. Regional China: Energy structure. The Economist 5: 2018.

http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/j.joule.2018.04.016
http://dx.doi.org/10.1016/j.joule.2019.02.007
http://dx.doi.org/10.1038/s41558-019-0534-5
http://dx.doi.org/10.1016/j.frl.2015.10.008
https://www.sec.gov/Archives/edgar/data/1799290/000121390020010071/ea121021-f1_ebanginter.htm#a_013
https://www.sec.gov/Archives/edgar/data/1799290/000121390020010071/ea121021-f1_ebanginter.htm#a_013
http://dx.doi.org/10.3982/ECTA16901
https://fred.stlouisfed.org/series/STLFSI
http://dx.doi.org/10.1038/d41586-018-01625-x
http://dx.doi.org/10.1098/rsif.2014.0623
http://www.globalcarbonatlas.org/en/CO2-emissions
http://dx.doi.org/10.1016/j.tele.2016.05.005
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1038/s41558-019-0533-6
http://dx.doi.org/10.1109/ACCESS.2017.2779181
http://dx.doi.org/10.1038/s41467-021-22256-3
http://dx.doi.org/10.1038/s41893-018-0152-7
http://dx.doi.org/10.1371/journal.pone.0123923
http://dx.doi.org/10.1038/s41558-019-0535-4
http://dx.doi.org/10.1038/s41558-018-0321-8
https://arxiv.org/ftp/arxiv/papers/2011/2011.02612.pdf
https://www.shodan.io/
http://dx.doi.org/10.1016/j.joule.2019.05.012


J. Risk Financial Manag. 2022, 15, 71 30 of 30

Williams, Keith, Alan Hewitt, and Alejandro Bodas-Salcedo. 2020. Use of short-range forecasts to evaluate fast physics processes
relevant for climate sensitivity. Journal of Advances in Modeling Earth Systems 12. [CrossRef]

Willms, Jesse. 2019. Bitcoin Mining In North America: A New Gold Rush In The New World. Bitcoin Magazine, December 3.

http://dx.doi.org/10.1029/2019MS001986

	Introduction
	CO2 Emissions Bitcoin Mining
	Bounds
	CO2Bounds

	Machine Learning the Carbon Footprint of Bitcoin Mining
	Data

	Empirical Results
	DL and RF Hyperparameters
	Validation Methods

	Conclusions
	Future Projections
	Deep Learning Basics
	Machine Learning Basics
	Deep Learning Basics
	Uncertainty and Deep Learning

	References

