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Abstract 15 

Objective: Cyanide is a highly toxic compound, and the consumption of products containing 16 

cyanide is of singificant public health concern. In contrast, β-carotene possesses essential 17 

nutritional attributes related to human health, therefore the characterisation and quanfication of 18 

both compounds in food products is both fundamental and necessary. This investigation sought 19 

to identify the cyanide and β-carotene levels in two flours produced from the roots of two 20 
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varieties of cassava (Manihot esculenta crantz), namely UMUCASS-38 (TMS 01/1371) and NR 21 

8082, and their associated food products. 22 

Results: The fresh tuber, raw flour and food products were analysed for levels of residual 23 

cyanide and β-carotene using standard analytical methods. The cyanide content of NR 8082 24 

(18.01±0.01 ppm) and UMUCASS 38 (17.02±0.02 ppm) flours were significantly higher (p < 25 

0.05) than the residual cyanide levels determined in the cookies (10.00±0.00 ppm) and cake 26 

(7.10±0.14 ppm). The levels of β-carotene determined in the sample varied significantly (p < 27 

0.05). The highest levels of β-carotene (6.53±0.02 µg/g) were determined in raw roots of 28 

UMUCASS 38 while NR 8082 levels of β-carotene were 1.12±0.02 µg/g. Processing the roots 29 

into flour reduced the β-carotene content to 4.78±0.01 µg/g and 0.76±0.02 µg/g in UMUCASS 30 

38 and NR8082 flours, respectively. Cookies and cake produced from flour derived from the 31 

UMUCASS 38 variety had 2.15±0.01 µg/g and 2.84±0.04 µg/g of β-carotene, respectively. 32 

Keywords: Cyanide; β-carotene; Cassava Varieties; Nutrition; Flours 33 

Introduction 34 

Many stems (yams and sweet potatoes) and root tubers (cassava) serve as food for humans and 35 

animals. Cassava is among the staple foods in many parts of Africa, Asia and Latin America, 36 

with its roots being one of the main sources of carbohydrates in the region. Cassava is recognised 37 

as a crop which requires low agrochemical input, as well as being one of the most draught 38 

complaisant crops. Hence, it thrives even in mediocre soils [1]. There has been a substantial 39 

increase in world production of cassava since 2001, with the peak reaching 293.01 million tons 40 

in 2015 (Fig. 1a) [2]. According to FAOSTAT [2], world cassava production for the year 2018 is 41 

estimated to be approximately 277.81 million tons. In the last 10 years, the top five countries for 42 
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cassava production were Nigeria, Thailand, Democratic Republic of Congo (DRC), Brazil and 43 

Indonesia with an average of 50.98, 28.66, 26.81, 22.67 and 21.85 million tons of production 44 

respectively (Fig. 1b) [2]. 45 

46 

 47 

Fig. 1. World cassava production statistics. (A) production/yield quantities of cassava in the 48 

world from 1994 – 2018. (B) Top 10 producers of cassava from 2008 – 2018. Data source: 49 

FAOSTAT [9]. 50 

Cassava root comprises of three well defined tissues, namely, periderm, cortex and parenchyma. 51 

The periderm; the outer layer of the root, sheds off as the root eventually grows and ages, and 52 
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constitutes a thin layer of cells which comprises approximately 3% of the total weight of the 53 

root. The cortex is comprised of three different cells namely; cortical parenchyma, sclerenchyma 54 

and phloem cells, with these group of tissues constituting approximately 11 – 20% of the root 55 

weight. The edible portion of the root (parenchyma) constitutes an average of 85% of the total 56 

weight [3, 4]. It comprises of the xylem vessels which are radially distributed in a matrix of 57 

starch containing cells [3, 4]. Cassava comprises of a considerable amount of vitamin C (25 58 

mg/100g), phosphorous (40 mg/100g), and calcium (50 mg/100g) [27] while the concentration of 59 

proteins, riboflavin, thiamin and niacin in cassava is very low making it the one of highest 60 

sources of carbohydrates among tuber crops [5]. The carbohydrate content of cassava ranges 61 

from 64 – 72% starch (amylose and amylopectin) which is structurally different from that found 62 

in cereal, in its branch chain length distribution, amylose content and its granular structure. 63 

Approximately 17% of sucrose is also found predominantly in the sweet varieties and small 64 

quantities of fructose and dextrose have also been reported. The protein content is determined as 65 

between 1 – 2%, with low essential amino acid profiles; particularly methionine, tryptophan and 66 

lysine, whilst conversely possessing a  high dietary fiber content (3.40–3.78% soluble, and 4.92–67 

5.6% insoluble) [6, 7].  68 

Cyanogenic glycosides and Cyanide 69 

Cyanogenic glycosides are a large group of secondary metabolites which are distributed across 70 

the plant kingdom [8]. Cyanogenic glycosides are present in all parts of the plant with the leaves 71 

having the highest concentration [9]. According to Kotopka and Smolke [10], these compounds 72 

act as chemical defenses produced by the plants as a deterrent against pathogenic organisms and 73 

the activities of herbivores. Structurally, cyanogenic glycosides comprise of a core carbon which 74 

is attached to a CN group, as well as two substituent groups denoted as R1 (methyl, phenyl or p-75 
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hydroxyphenyl group) and R2 (hydrogen, methyl or ethyl group) and attached to a 76 

monosaccharadic or disaccharidic sugar via glycosidic bonding [11].  77 

Cassava is comprised of two cyanogenic glycosides namely lotaustralin and linamarin which 78 

release hydrogen cyanide (HCN) upon destruction of the tissues as a result of mechanical 79 

damage during harvesting, or indeed chewing action of herbivores and consumers. The presence 80 

of these glycosides, especially in the tuber has been to some extent attributed to the extreme 81 

conditions in which the crop is grown, with draught being one of the parameters investigated 82 

thus far, findings from a research monitoring cassava toxicity in mozambique showed that the 83 

levels of residual cyanide tripled during draught years in comparison to the normal years[12, 24]. 84 

The breakdown of linamarin catalyzed by an endogenous β-glucosidase (linamarase) due to the 85 

disruption of cellular integrity of a plant cell leads to the formation of a cyanohydrin and a sugar 86 

(Scheme 1). The cyanohydrin which is formed, is highly unstable under neutral conditions and 87 

undergoes further decomposition to yield an aldehyde, or a ketone and cyanide [11, 13, 14]. The 88 

enzyme hydroxynitrile lyase catalyzes the breakdown of the cyanohydrin formed into a carbonyl 89 

compound and hydrogen cyanide [15] (Scheme 1). The toxicity of a cyanogenic glycoside is as a 90 

result of its degradation catalyzed by its endogenous β-glucosidase to yield hydrogen cyanide, 91 

which would eventually lead to acute cyanide poisoning (LD50 of 1.52 mg/kg for oral 92 

administration) [28]. The following clinical symptoms; drop in blood pressure, dizziness, 93 

headache, mental confusion, blue colouration of skin due to lack of oxygen, twitching and 94 

convulsion, rapid pulse, stupor are usually presented in cases of acute cyanide poisoning [11].   95 
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High levels of cyanide intake associated with the chronic consumption of cyanogenic glycosides96 

(from cassava etc.) are reported to lead to diseases such as iodine deficiency disorder, tropical97 

ataxic neuropathy and konzo [16, 17].  98 

99 

Scheme 1. Hydrolysis of linamarin adopted from Idibie, 2006 [15] 100 

Cassava being of a lower nutritional value than other staple foods consumed in subsaharan101 

Africa and vitamin A deficiency being a major hindernace to improved nutrition, prompted the102 

biofortification of cassava, giving rise to the genetically engineered pro-vitamin A cassava103 

developed under the IITA-HarvestPlus program. This was rationalised to partially address the104 

vitamin A deficiency affecting much of the  subsaharan Africa population, with approximately105 

23,500 child mortalities annually in Kenya as a result of micronutrient deficiencies, with school106 

children often suffering from sub-clinical vitamin A deficiency [17]. Herein, we determine the107 

levels of residual hydrogen cyanide and β-carotene content as yellow flesh cassava UMUCAS 38108 
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(TMS 01/1371) is being processed from tuber into confectionary products whilst NR 8082 is 109 

used as control sample.  110 

Materials and methods 111 

Materials 112 

Acetone, hyflosupercel (celite), 3mm whatman filter paper, vacuum filtration equipment , UV 113 

visible spectrophotometer (Jenway 6300, Staffordshire, UK). All chemicals within this study 114 

were purchased from Sigma Aldrich (1 Friesland Drive Longmeadow Business Estate 1645 115 

Modderfontein South Africa). 116 

Sample preparation 117 

Freshly harvested roots of the two experimental cultivars UMUCASS 38 (TMS 01/1371) and NR 118 

8082 (Control) were obtained from the Cassava Programme of National Root Crops Research 119 

Institute (NRCRI), Umudike, Nigeria. The samples were processed into high quality cassava 120 

flour (HQCF) following the methods described by Onabolu et al [18] and oven dried at a 121 

temperature of 115°C for 6 hours. The HQCF sample was furthered processed into consumer 122 

products.  123 

Carotenoid Determination 124 

The extraction with acetone for carotenoid analysis developed by Rodriguez-Amaya and Kimura 125 

[19] was used for the determination of the total β-carotene content of the samples. 5 mg of the 126 

sample was ground with the aid of hyflosupercel (3.0 g) in 50ml of cold acetone and vacuum 127 

filtered. The filtrate was extracted using 40 ml petroleum ether (PE). Saturated sodium chloride 128 
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 8

was used to prevent the formation of emulsion. The lower aqueous phase was discarded while 129 

the upper phase was collected and filtered through 15g of anhydrous sodium sulfate to eliminate 130 

residual water. The seperating funnel was washed with PE and the flask was made up to 50 ml. 131 

The absorbance of the solution was measured at 450 nm and the total carotenoid content was 132 

calculated using the Beet-Lambert law (Equation 1). 133 

����� �����	
��� ��
�	
� ��/�� �  
� � �����	 
���� ��

�
�%

���
 � �����	 �	���� 
��

 (Equation 1) 134 

Cyanide Determination 135 

The simple picrate paper method was used to determine the levels of residual hydrogen cyanide 136 

[20]. 100 mg of the sample was placed in a flat-bottomed plastic bottle containing the enzyme 137 

(linamarinase), buffer and picrate paper. The contents were left to incubate in the dark for 24 138 

hours at room tempeature. The picrate papers darkened as a result of cyanide production were 139 

then placed in test tube with 5ml of distilled water. The sample was allowed to stand at room 140 

temprature for 30 minutes. The UV absorbance was determined at a wavelength of 510 nm and 141 

total cyanide content calculated according to Equation 2. 142 

����� ���
��	 ��
�	
� ���� � 396 � �������
�	 (Equation 2) 143 

Statistical Analysis 144 

Paired t-tests were carried out to compare the levels of cyanide and β-carotene in the different 145 

samples using Prism 8 (Graph Pad software LLC). ANOVA was carried out using the Statistical 146 

Package for Social Sciences (SPSS), version 22. Statistical significance was set at p< 0.05.   147 

Results 148 
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Cyanide determination 149 

Fresh NR 8082 carried the highest cyanide concentration (44.10±0.14 ppm) while the fresh 150 

UMUCASS 38 had a value of 43.02±0.02 ppm (Figure 1). NR 8082 flour was determined as 151 

having the highest cyanide level (18.01±0.01 ppm) while the UMUCASS 38 had the least 152 

(17.02±0.02 ppm). The cookie sample showed the highest concentration (10.00±0.00 ppm) as 153 

compared to the cake sample (7.10±0.14 ppm). In addition, the NR 8082 variety had 154 

significantly higher cyanide concentration (p<0.05) than the yellow flesh (Fig. 2). 155 

156 

  157 

Fig. 2. Levels of residual cyanide in roots and products determined using simple picrate paper 158 

method. 159 
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Carotenoid determination 160 

Fresh UMUCASS 38 possessed a carotenoid content of 6.53±0.02 µg/g compared to that of the 161 

NR 8082 variety (1.17±0.02 µg/g). The products retained a portion of the β-carotenoids after 162 

production; the cake sample had a residual β-carotene concentration of 2.84±0.04 µg/g whilst 163 

that of the cookie sample was determined at 2.15±0.01 µg/g (p<0.05) (Fig. 3).  164 

165 

  166 

Fig. 3. Levels of β-Carotene in roots and products determined using the extraction with acetone 167 

method for carotenoid analysis developed by Rodriguez-Amaya and Kimura.   168 
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Discussion 170 

Chronic exposure to cyanide causes a myriad of cardiac, neurological and metabolic 171 

dysfunctions which can be fatal [21]. As a result of concern regarding the levels of potential 172 

residual cyanide remaining in cassava after processing, the roots were classified according to 173 

their potential toxicity to humans and animals as non-toxic (less than 50mg HCN kg-1 in fresh 174 

root), moderately toxic (50-100mg HCN kg-1 in fresh root) and highly toxic (above 100mg HCN 175 

kg-1 in fresh root) [22]. The lethal dose of cyanide in humans is in the range of 0.5 to 3.5 mg/kg 176 

body weight [23, 24]. The level of cyanide in the flour within this study was reduced by almost 177 

60% as a result of the method of food processing. The products possessed lower levels of 178 

cyanide; acceptable according to the WHO standard of 10 ppm [13]. This standard was reached 179 

as a result of the lack of quantitative and epidemiological information to estimate a safe level. 180 

However, the JECFA committee concluded that upto a level of 10 mg HCN/kg body weight (10 181 

ppm) in the codex standard of cassava flour is not associated with acute toxicity [25]. The low 182 

cyanide levels in the products was as a result of the processing method which involved the 183 

peeling, grating and subsequent oven drying to produce HQCF. The low cyanide levels in the 184 

products suggest that the food products may not be highly toxic to consumers when employing 185 

the WHO standard as a benchmark [13]. The body has several pathways for the detoxification of 186 

cyanide, and this primarily involves the conversion of soluble thiocyanate (SCN-) by the enzyme 187 

rhodanase [25]. Lesser pathways of metabolism include the complexation of cyanide with cobalt 188 

in hydroxocobalamin to form cyanocobalamin (Vitamin B12) [25]. 189 

The consumption of these cassava varieties as a staple food must be complemented by a diet rich 190 

in protein from exogenous sources due to the low protein content of cassava itself; the findings 191 

of the current study showed a reduction in cyanide and β-carotene levels in the processed 192 
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products (Cookies, 10.00±0.00 ppm; Cake, 7.10±0.14 ppm) and (Cookies, 2.15±0.01 µg/g; Cake, 193 

2.84±0.04 µg/g) respectively (Figs. 2 & 3). The levels of β-carotene after processing using a 194 

method which has been confirmed to reduce cyanide levels at the expense of leaching or 195 

destruction of essential nutrients such as vitamin C, β-carotene (vitamin A precursor) and  196 

vitamins B (riboflavin, niaci and thiamine) suggests that the consumption of yellow root cassava 197 

UMUCAS 38 does indeed contribute to the recommended daily allowance of vitamin A [24]. 198 

The continuous consumption of cassava-based products without sufficient protein intake would 199 

limit protein synthesis, thus leading to stunted growth in children [22]. 200 

Carotenoids, the colourful plant pigments, some of which the body can convert to vitamin A, are 201 

also powerful antioxidants that have been suggested to contribute to the resistance against certain 202 

forms of cancer and heart diseases, and also enhance immune response to infections [22]. The 203 

yellow cassava species investigated had significantly higher carotenoid quantities than the white 204 

variety, thus this may confer antioxidant potential [22]. The predominant carotenoid in yellow 205 

cassava being β-carotene, suggests a need for dietary supplementation as the consumption of this 206 

yellow root cassava may not meet the recommended daily allowance (RDA) for vitamin A in 207 

men (750 – 900 µg daily), women (700µg daily) and children (400 – 600 µg daily) [22, 26].  208 

Fresh UMUCASS 38 had the highest carotenoid content (6.53 µg/g) while the NR 8082 variety 209 

(1.12 µg/g) had relatively low carotenoid content in comparison. There was a decrease in the 210 

carotenoid content in the flour level as a result of exposure to light and heat treatment. The 211 

products retained a portion of the β-carotenoids after heat treatment, this could be as a result of 212 

the ingridients used in the making of the product which includes eggs, a known source of vitamin 213 

A. There was also a significant decrease in the HCN levels which can be attributed to further 214 
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heat treatment i.e. baking, mixing of the sample which could have lead to the release of the 215 

enzyme linamarinase. 216 

Conclusion 217 

This study determined the levels of residual hydrogen cyanide and β-carotene as the yellow flesh 218 

cassava UMUCAS 38 (TMS 01/1371) is processed from tuber into confectionary products. The 219 

results obtained from the study showed that the processed yellow root variety had low levels of 220 

residual cyanide. The UMUCASS 38 variety retained relatively significant quantities of β-221 

carotene after (Cookies, 2.15±0.01 µg/g; Cake, 2.84±0.04 µg/g)  processing through peeling, 222 

grating, heat treatment (oven drying), milling, these processes are known to diminish nutritional 223 

value as well as cyanide content. The consumption of the pro vitamin A cassava variety should 224 

be encouraged as the findings herein demonstrate the viable food safety of the cassava-based 225 

products for human consumption as well as the need to supplement vitamin A from exogenous 226 

sources to combat cases of vitamin A deficiency in regions where cassava is a staple food. Based 227 

on the findings from this study we suggest that more research should be carried to further 228 

improve the β-carotene content of these biofortified cassava varieties.  229 

Limitations  230 

• Using the simple picrate paper method for cyanide determination is limited by the rate of 231 

reaction of approximately 16 – 24 hrs for completion, the chemicals require special 232 

handling and storage, the results obtained can sometimes be indefinite. Hence, the 233 

dissolving of the chromophore from the picrate paper for a quantitative determination 234 

using a spectrophotometer.  235 
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