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Abstract 

UDP-dependent glycosyltransferases (UGTs) are enzymes that glycosylate a wide variety of 

natural products, thereby modifying their physico-chemical properties, i.e. solubility, stability, 

reactivity, and function. To successfully leverage the UGTs in biocatalytic processes, we need 

to be able to screen and characterise them in vitro, which requires efficient heterologous 

expression in amenable hosts, preferably Escherichia coli. However, many UGTs are insoluble 

when expressed in standard and attempted optimised E. coli conditions, resulting in many 

unproductive and costly experiments. To overcome this limitation, we have investigated the 

performance of 11 existing solubility predictors on a dataset of 57 UGTs expressed in E. coli. 

We show that SoluProt outperforms other methods in terms of both threshold-independent and 

threshold-dependent measures. Among the benchmarked methods, only SoluProt is 

significantly better than random predictors using both measures. Moreover, we show that 

SoluProt uses a threshold for separating soluble and insoluble proteins that is optimal for our 

dataset. Hence, we conclude that using SoluProt to select UGT sequences for in vitro 

investigation will significantly increase the success rate of soluble expression, thereby 

minimising cost and enabling efficient characterisation efforts for biocatalysis research. 
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Introduction 

Plants produce a wide range of natural product glycosides, which are used in industry for 

example as scents, dyes, flavours, and cosmetics [1–3]. Glycosylation can alter solubility, 

stability, reactivity and function of natural products and therefore glycosylation routes are of high 

importance [1]. In plants, natural products are glycosylated by UDP-dependent 

glycosyltransferases (UGTs) [4,5]. A single plant can have hundreds of UGTs, but unfortunately 

it is not well understood what governs the selectivity of these enzymes, limiting their usability in 

biotechnological applications. Their application is further hampered by the fact that many UGTs 

are poorly soluble when expressed in heterologous hosts, making screening, characterisation, 

and production efforts costly. For example, from our library of 57 UGT sequences of various 

plant origin expressed in Escherichia coli, only 31 sequences (54%) were soluble in the tested 

conditions. 

E. coli is one of the most common host organisms for heterologous expression of recombinant 

proteins due to its versatile technological toolbox, availability, high growth rate, and continuous 

fermentation potential [6,7]. However, there is no guarantee for solubility of recombinant target 

proteins. For example, over-expression of recombinant proteins can exhaust the bacterial 

quality control system resulting in the formation of aggregates of misfolded and partially folded 

proteins called inclusion bodies [8]. In some cases, this can be exploited to simplify downstream 

processing [9], but in many cases, recovery from inclusion bodies is inefficient at best [10,11]. 

Nonetheless, E.coli remains the host of choice for recombinant protein expression in the 

academic research community in general as well as the UGT research community, since no 

other host has so far been identified as the silver bullet for recombinant UGT expression. 

Solubility prediction software tools can have a significant impact on recombinant protein 

production by excluding insoluble proteins from expression trials and thereby preventing extra 
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costs and dead-end experiments. Overall, solubility prediction tools can be grouped into 3 

classes based on their applications [12]: 1) methods that predict the overall solubility of proteins 

upon expression (usually in E. coli), 2) approaches for predicting the aggregation propensity of 

different regions in a protein sequence, and 3) tools that predict the impact of mutations on 

solubility of proteins. Among these groups, the former is studied here. 

Some of the existing protein solubility prediction tools have previously been benchmarked on a 

dataset of 2000 non-redundant proteins [13] from different families, which showed an accuracy 

range of 51 - 64 (%) for the five benchmarked methods (PROSOII, ccSOL, SOLpro, PROSO, 

and RPSP) with PROSOII being the most accurate predictor. In this study, we have 

benchmarked the performance of 11 protein solubility prediction tools on a dataset of 57 plant 

UGT proteins expressed in E. coli which were not used in other benchmarks. UGTs are 

notoriously difficult to handle recombinantly, and together with their high industrial relevance, 

this makes them an interesting target for in silico protein solubility prediction. We show here that 

SoluProt is the best predictor for UGT solubility, using both threshold-dependent and threshold-

independent analyses. Moreover, this method uses a threshold that separates soluble and 

insoluble proteins well. 

Results 

We have compared the performance of 11 sequence based solubility prediction methods on 

plant UGT proteins. We have only included the tools that predict the solubility of different 

proteins expressed in E. coli [12,13]. The list of the tools and their description can be found in 

the Methods section. These methods were tested on a dataset of plant UGT sequences. The 

dataset consists of 57 plant UGT sequences with their experimentally validated solubility 

(Methods), from which 31 sequences are soluble and 26 are insoluble. We have statistically  
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Figure 1. Threshold independent evaluation of the 11 solubility prediction methods on UDP-dependent 

Glycosyltransferase (UGT) dataset. A) Receiver Operating Characteristic (ROC) curves comparing the methods. The 

x axis shows the ratio of visited soluble proteins at each step to the whole number of soluble proteins and the y axis 

shows the ratio of visited insoluble proteins to the number of all insoluble proteins. B) Area under the ROC curves 

(AUC) comparing 11 different methods of solubility prediction shown in percentage. The higher the AUC, the better 

the method and a random method would have an AUC of about 50%, which is shown with a vertical line. C) The 

curve shows the distribution of AUC values obtained from 10,000 random solubility prediction methods. The dashed 

line shows the average AUC value obtained from simulated predictors which is about 0.5. The grey area on the right 

shows the top 5%, which corresponds to P-value < 0.05. SoluProt, DeepSol3, and SOLpro are the only predictors in 

this area. 

analysed the results from different methods of solubility prediction for UGTs and compared them 

to experimentally validated data. 

Threshold-independent comparison 

In order to compare the solubility prediction of different methods on UGT sequences, we used 

Receiver Operating Characteristic (ROC) curves shown in Figure 1A. For each method, the 

UGTs are sorted based on their solubility measure in increasing order. A ROC curve starts from 

point (0,0) and the first protein in the sorted list. If the protein is actually insoluble, it goes one 

step upwards and if it is soluble it moves one step to the right. In case the predictor works 

perfectly, the curve should first move n steps upwards followed by m steps to the right, where n 
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and m represent the number of insoluble and soluble proteins, respectively. This results in an 

Area Under the Curve (AUC) of 1. However, if all of the predictions are incorrect, the AUC will 

be zero and a random predictor has an AUC of around 0.5. Overall, higher AUC values mean 

better predictions. The comparison shows that the AUC values for 4 of the methods are below 

0.5. However, SoluProt (AUC = 66.4) followed by DeepSol3 (AUC = 65.3), and SOLpro (AUC = 

63.2) are the three top performing tools (Figure 1B). 

Since AUC values were close to random for many of the methods, we then asked whether any 

of the predictors work significantly better than a random predictor for evaluating UGT solubility. 

To this end, we simulated 10,000 predictors, each of which randomly assigns a solubility score 

to each UGT protein using a uniform distribution. Afterwards, we calculated the AUC values for 

every single predictor and plotted their distribution together with the AUC values for the 11 

benchmarked methods (Figure 1C). The top 5% of simulated predictors are shown in the grey 

shaded area which is equivalent to having less than 5% chance of obtaining these results by 

random i.e. P-value < 0.05. As the figure shows, the difference between the predictions from the 

benchmarked methods and random predictors is statistically significant for SoluProt, DeepSol3 

and SOLpro. 

Threshold-dependent comparison 

So far, we have used AUCs to evaluate the goodness of different methods. This measure is 

independent of the thresholds used to separate soluble and insoluble proteins. Nevertheless, 

this is not the only measurement for evaluating the performance of predictors. In Figure 2, we 

have used 3 other measures. Since these measures rely on a threshold for separating soluble 

and insoluble proteins, we excluded Protein-Sol from this analysis which does not provide a 

threshold. Sensitivity is the number of soluble UGTs that are correctly predicted as soluble 

divided by the number of all soluble UGTs, whereas specificity is the number of insoluble UGTs  
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Figure 2. Threshold dependent evaluation of the solubility prediction methods. A) The comparison of sensitivity and 

specificity for all of the benchmarked methods for predicting soluble proteins on UGT dataset. Protein-Sol is excluded 

from this figure since it does not provide a threshold for separating soluble and insoluble proteins. The points around 

the black line have an inverse relationship between sensitivity and specificity. The best predictors are the ones above 

the line that are most distant from it. B) The comparison of balanced accuracy for the benchmarked methods 

(excluding Protein-Sol). The vertical line shows the average balanced accuracy of a random method. C) The curve 

shows the distribution of balanced accuracy values obtained from 10,000 random solubility prediction methods. The 

dashed line shows the average AUC value obtained from simulated predictors which is about 0.5. The grey area on 

the right shows the top 5%, which corresponds to P-value < 0.05. SoluProt is the only method in this region. 

that are correctly predicted as insoluble divided by the number of all insoluble UGTs. Specificity 

is an important measure when one intends to select only soluble proteins for their study. Among 

all methods, SoluProt and SOLpro share the first place in terms of specificity (84.6). However, 

sensitivity and specificity very much depend on the number of soluble and insoluble predictions. 

For example, a method that predicts every protein as soluble has 100% sensitivity and 0% 

specificity, while a method that predicts everything as insoluble has 0% sensitivity and 100% 

specificity. It can be seen in Figure 2A that for most of the methods there is almost an inverse 

relationship between sensitivity and specificity. In order to take both sensitivity and specificity 

into consideration, we have used the balanced accuracy measure. Balanced accuracy is the 

average of sensitivity and specificity and detects the methods that work well based on both 

measures. In agreement with the threshold-independent analysis, the comparison of balanced  
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Figure 3. A comparison of solubility predictions using the 11 benchmarked methods. Each column shows the 

predictions of a method sorted by their solubility score so that the highest predicted solubility is at the top and the 

lowest predicted solubility is at the bottom. Brown shows experimental solubility and turquoise shows experimental 

insolubility. In all columns apart from Protein-Sol, protein names in black are predicted as soluble and proteins written 

in white are predicted as insoluble. For protein-Sol black shows a solubility score higher than average soluble E. coli 

proteins whereas white shows solubility scores lower than it. 
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accuracy for different methods shows that SoluProt (61.7), SOLpro (58.4), and DeepSol3 (57.3) 

outperform other methods (Figure 2B). We also compared the balanced accuracy of the 

prediction methods with that of 10,000 random predictors that randomly assign a solubility score 

to each sequence. A protein is considered soluble if its assigned score is above 0.5 and 

insoluble otherwise. We showed that SoluProt is the only method whose balanced accuracy is 

significantly higher than random predictors (Figure 2C). 

We also asked whether the proteins with highest solubility scores from each method are actually 

soluble and proteins with lowest solubility scores are insoluble. To this end, we sorted the UGTs 

based on their solubility scores for each method (Figure 3). As the figure shows, looking at the 

top 10% predictions (top 5) from each method, SoluProt, DeepSol3, PaRSnIP,  and DeepSol2 

predict no false positives. Moreover, for the top 20% predictions (top 11), SoluProt, DeepSol1, 

and PaRSnIP are the best predictors with 2 false positives. This indicates that using these 

methods with higher thresholds for separating soluble and insoluble proteins can result in very 

few false positives. 

Threshold evaluation 

In order to test whether the suggested thresholds for discriminating between soluble and 

insoluble UGTs are correctly assigned for different methods, we calculated the balanced 

accuracy of the predictions using different thresholds. These values are visualised in Figure 4. 

The dashed light brown lines show the thresholds defined by the methods and the solid 

turquoise lines show the best thresholds that maximise balanced accuracy for our dataset. As 

Protein-Sol does not provide a threshold for separating soluble and insoluble proteins, we have 

used a dotted dark brown line for it which visualises the average solubility score for soluble 

proteins in E. coli. The figures show that apart from SoluProt, DeepSol3, and PROSOII, in all 

the other methods, the predefined thresholds are distant from the best thresholds. PROSOII is  
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Figure 4. The comparison of the pre-defined thresholds for predicting solubility (dashed light brown) and the best 

thresholds that maximise balanced accuracy (solid turquoise). The dotted dark brown line for Protein-Sol shows the 

average solubility score of soluble Escherichia coli proteins. In all cases except for SoluProt, DeepSol3, and 

PROSOII, the defined thresholds are distant from the best thresholds, while in these three cases they are almost 

equal. 

the only method that uses a threshold of 60%, rather than 50%, for distinguishing between 

soluble and insoluble proteins and Figure 4 shows that this threshold actually yields the 

maximum possible accuracy for this method. 

Discussion 

In this study, we compared different solubility prediction methods for predicting the solubility of 

UGT sequences when expressed in E. coli. For this, we used both threshold-dependent and 

threshold-independent measures. We showed that among all of the methods SoluProt is the 

best performer in terms of AUC, which is a threshold-independent measure, followed by 

DeepSol3, and SOLpro (Figure 1A and B). Moreover, these three are the only methods that 
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outperform random predictors in a statistically significant manner (Figure 1C). For a threshold-

dependent comparison, we calculated balanced accuracy values and found that the best tools 

are SoluProt, SOLpro, and DeepSol3 (Figure 2B). However, only SoluProt performs significantly 

better than random predictors (Figure 2C). We also investigated the solubility thresholds in 

different methods and showed that the solubility threshold for the majority of methods is distant 

from the best threshold that maximises their accuracy. This analysis shows that proposed 

thresholds for most of the methods are not optimal for UGT proteins. The exceptions to this are 

SoluProt, DeepSol3, and PROSOII (Figure 5). 

Chang et al. [13] have previously reported accuracy values comparing PROSOII (64.35), 

SOLpro (59.95), PROSO (57.85), ccSOL (54.20), and RPSP (51.45). The ranking of the tools 

based on accuracy from Chang et al. [13] is to some extent different from our study (SOLpro, 

PROSOII, RPSP, ccSOL, and PROSO). In addition, the accuracy values in Chang et al. [13] are 

generally higher than our findings. One reason for these differences is that the test data in 

Chang et al. [13] is randomly selected from the datasets used for the development of these tools 

which results in higher accuracy for the tools and also works in favour of the tools with larger 

datasets. As a matter of fact, the reported accuracy values in the mentioned benchmark and the 

size of datasets are highly correlated with 0.88 Pearson’s correlation coefficient. Other factors 

for the dissimilarities in the results are the small size of our dataset compared to their dataset of 

2000 proteins and the differences in the nature of the datasets since their dataset is diverse, 

while ours is homogeneous and only includes plant UGTs.  

Overall, this analysis shows that SoluProt outperforms all the other methods for predicting the 

solubility of plant UGTs and its predictions are significantly better than random predictors using 

threshold-dependent and threshold-independent measures. This method can be used for 

selecting soluble enzymes for in vitro studies. 
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Methods 

Solubility dataset 

We used a set of 57 plant UGT sequences with 31 soluble and 26 insoluble proteins. The whole 

dataset with UniProt IDs and their solubility status as well as their predicted solubility using the 

benchmarked methods is provided in Supplementary Materials. The sequences in fasta format 

can also be found in Supplementary Materials. In this file, 5 sequences are annotated with the 

word “indigo” in their header. The solubility of these sequences was studied according to Hsu et 

al. [14].  In addition, we added all of the plant based non-redundant BLAST hits of the protein 

with UniProt ID B6SRY5 in PDB database to the soluble group. We assumed these proteins are 

soluble, since they have a solved structure on PDB. These are annotated with “BLAST”. The 

solubility of the rest of the sequences are studied as explained in the following section. 

Experimental solubility identification 

Synthetic genes encoding different UGTs were obtained from Genscript in a modified 

pET28a(+) vector with an N-terminal His-tag followed by a TEV-cleavage site and the gene of 

interest. Plasmids were transformed into BL21 Star (DE3) cells (Invitrogen) for expression. 80 

mL of Luria-Bertani media was supplemented with kanamycin (50 µg/mL), inoculated with 1 % 

overnight culture and grown at 37°C until OD600 reached 0.5-0.8. Protein expression was 

induced with 0.5 mM IPTG and cells grown overnight at 18°C. Cells were harvested with 

centrifugation (4000xg, 15 min, 4°C) and stored at -20°C. 

All purification steps were done on ice or in a cold room. Cell pellets were thawed and dissolved 

in lysis buffer (50 mM Hepes, 300 mM NaCl, 20 mM Imidazole, 1 mM DTT, pH 7.4 

supplemented with 1 µg/mL Dnase I and cOmplete EDTA-free protease inhibitor cocktail 
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(Roche)). Cells were lysed via three passes through EmulsiFlex C5 (Avestin) and the lysate was 

cleared with centrifugation (12,000xg, 40 min, 4°C). Supernatant was incubated with Ni-NTA 

beads (HisPur NiNTA resin, Thermo-Fischer) with gentle shaking (1h) and the beads were 

washed three times with wash buffer (50 mM Hepes, 300 mM NaCl, 20 mM Imidazole, pH 7.4). 

Bound proteins were eluted with elution buffer (50 mM Hepes, 300 mM NaCl, 250 mM 

Imidazole, pH 7.4). Samples of different purification steps were analysed on SDS-PAGE 

(NuPAGE 4-12 % Bis-Tris protein gel) to assess solubility of proteins. 

Solubility prediction tools 

Here we will describe how we ran each of the methods and whether we have performed any 

processing on the output of the tools to prepare them for the statistical analyses. The predictors 

are selected from a review paper by Musil et al. [12] and a benchmark by Chang et al. [13]. We 

have excluded some of the tools which we could not access [15] or that predicted solubility of 

proteins expressed in the periplasm of E. coli which is not tested in this experiment [16]. All of 

the statistical analyses described in this paper are provided as an R script on 

https://github.com/ftmashari/Solubility_prediction. 

SoluProt [17] uses 36 sequence-based features and predicts solubility score of proteins using 

random forest regression, given that they are expressed in E. coli. The tool can be run from 

https://loschmidt.chemi.muni.cz/soluprot/. 

DeepSol [18] uses a deep learning approach called Convolutional Neural Network and feeds it 

with protein sequences as well as sequence based features extracted from them and secondary 

structure based features calculated using SCRATCH. DeepSol has 3 different configurations 

that differ in their network inputs. The output of the program is a score for solubility of proteins 

given that they are expressed in E. coli. DeepSol was downloaded from 
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https://github.com/sameerkhurana10/DSOL_rv0.2 and installed and run according to the 

guidelines. 

SOLpro [19] uses an ensemble of 20 Support Vector Machine (SVM) classifiers that are trained 

based on different features extracted from protein sequences as well as secondary structure 

features predicted using SCRATCH suite [20]. It then feeds the output of these classifiers in 

addition to the normalised sequence lengths to another SVM classifier. The output of this SVM 

classifier shows the solubility propensity of proteins on expression in E. coli. SOLpro was used 

through its website (http://scratch.proteomics.ics.uci.edu) by providing the sequence and 

selecting the SOLpro button. For the proteins that were predicted as insoluble, we subtracted 

the insolubility score from 1 to obtain the solubility score. 

PaRSnIP [21] uses a set of features extracted from protein sequences in addition to another set 

of secondary structure features predicted using SCRATCH suite. It then uses Gradient Boosting 

Machines to provide a score for solubility upon expression in E. coli. PARSnIP was downloaded 

from https://github.com/RedaRawi/PaRSnIP and installed and run according to the guidelines. 

Protein-Sol [22] extracts 35 sequence based properties from proteins and using these features 

calculates a measure for solubility. This measure is then compared to values obtained from E. 

coli proteins in a cell-free expression system [23]. Protein-Sol was run from https://protein-

sol.manchester.ac.uk and the predicted scaled solubility value was used for this analysis. 

PROSO [24] is an older version of PROSO II which uses a Naive Bayes classifier to combine 

the output of SVM classifiers and provide a score for solubility of proteins expressed in E. coli. 

PROSO was run from http://mbiljj45.bio.med.uni-muenchen.de:8888/proso/proso.seam. 

PROSO II [25] extracts a set of sequence based and global features from proteins. First, it uses 

a parzen window classifier in addition to logistic regression for predicting solubility. It then uses 

another logistic regression algorithm to combine the results obtained from the first stage and 
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provides a solubility score upon heterologous expression in E. coli. PROSO II was run from 

http://mbiljj45.bio.med.uni-muenchen.de:8888/prosoII/prosoII.seam by providing sequences in 

fasta format. Contrary to other methods that use a threshold of 0.5 for solubility score, in this 

method sequences with scores greater than or equal to 0.6 are considered soluble. 

RPSP [26,27] extracts 32 features from protein sequences and using logistic regression predicts 

a score for proteins to be soluble given that they are expressed in E. coli. RPSP was run using 

its web page (http://biotech.ou.edu). The average pI and molecular weight were calculated using 

https://web.expasy.org/compute_pi/. 

ccSOL omics [28] feeds the physico-chemical properties of proteins to a neural network with 

one hidden layer to predict the solubility propensity of proteins upon expression in E. coli. 

ccSOL omics was run from http://s.tartaglialab.com/update_submission/227788/66268c5911. 

Key points 

1. Among the 11 methods benchmarked for predicting the solubility of UDP-

Glycosyltransferases, 8 fail to perform significantly better than random predictors both in 

threshold-dependent and threshold-independent comparisons. 

2. SOLpro and DeepSol3 are significantly better than random predictors using threshold-

independent comparisons, but fail to perform well in threshold-dependent comparisons. 

3. SoluProt is the only method that performs better than random in both comparisons while 

it also outperforms all the other tools. 
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