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Abstract 

Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. 

For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis 

and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome 

P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved 

experimentally, hindering understanding of the determinants of electron transfer (ET), which is 

often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-

bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational 

approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less 

embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the 

CYP active site. Despite the constraints imposed by membrane binding, we identify several 

arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the 

interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by 

more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. 

Computed ET rates and pathways agree well with available experimental data and suggest why 

the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs.   

 

 

KEYWORDS: cytochrome P450, cytochrome P450 reductase, electron transfer, membrane 

protein complex, molecular dynamics simulation 
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Introduction 

CYP enzymes constitute the cardinal xenobiotic-metabolizing enzyme superfamily and they are 

of considerable interest for the synthesis of novel drugs and drug metabolites, targeted cancer 

gene therapy, biosensor design and bioremediation.1–3 CYPs are widely used as biocatalysts for 

regio- and enantioselective C-H hydroxylation reactions. CYPs are heme monooxygenases that 

activate one molecule of dioxygen and oxidize the substrate by inserting one oxygen atom to 

form the product and reducing the other oxygen atom to water. Thus, drugs are transformed into 

more polar metabolites during the process of drug metabolism.4  

In the catalytic cycle, CYP requires two electrons to be transferred sequentially from a redox 

partner to its heme cofactor (HEME), and the ET steps have been observed to be rate-limiting for 

the reaction in many cases.5 For the microsomal CYPs, the redox partner is CPR, a flavoprotein 

containing three cofactor binding domains: the FMN domain with the flavin mononucleotide 

(FMN) cofactor, the FAD domain with the flavin adenine dinucleotide (FAD) cofactor, and the 

NADP domain with the nicotinamide adenine dinucleotide phosphate (NADP) cofactor. Besides 

these three domains, CPR also contains an amino-terminal membrane binding domain, which 

serves as a nonspecific membrane anchor, and a flexible tether region that connects this domain 

and the FMN domains6. The membrane binding domain is necessary for efficient ET from CPR 

to CYP6 and its interactions with the membrane have been found to depend on cofactor binding 

and the oxidation state of CPR.7 Cytochrome b5 (cyt b5) is another natural redox partner for 

some CYPs and can also allosterically modulate CYP catalysis.8–11  

All mammalian CYPs have three domains: a globular catalytic HEME-containing domain, an N-

terminal transmembrane  α-helical domain, and a flexible linker region connecting these two 

domains. In humans, both the CYP and the CPR are anchored in the endoplasmic reticulum (ER) 

membrane by a transmembrane helix (TM-helix). The N-terminal region of the CYPs not only 

anchors the protein in the ER membrane, but also influences their localization to different 

microdomains of the membrane.12  

Information about the orientation of the globular domain of CYPs, alone or in CYP-CPR/cyt b5 

complexes in the membrane, has been gleaned from experiments such as linear dichroism 

measurements in Nanodiscs,13,14 atomic force microscopy and antibody mapping.15 To date, there 

is no experimentally determined structure of a full CYP-CPR/cyt b5 complex available, although 

structures of the individual globular domains of a number of mammalian CYPs and CPRs have 
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been determined by crystallography after removal of the N-terminal transmembrane domain to 

facilitate expression and crystallization.2 Various modeling and simulation procedures have been 

developed to predict the orientation of full-length CYPs in phospholipid bilayers.16–22
 Notably, T. 

brucei CYP 51 simulated20 prior to the determination in 2014 of the crystal structure of yeast 

CYP 51,23 the only eukaryotic CYP for which a full-length structure has been determined 

experimentally, indicated a very similar orientation of the protein with respect to the membrane. 

Experiments, such as solid-state NMR and mutagenesis, indicate that the association between a 

CYP and its CPR/cyt b5 redox partner is driven by electrostatic and hydrophobic interactions 

with positively charged residues on the proximal side of CYP interacting with negatively charged 

residues on the CPR FMN domain or cyt b524–29.  

We initially took the crystal structure of Bacillus megaterium cytochrome P450 BM3 

(P450BM3)
30, a non-stoichiometric complex of two CYP HEME domains and an FMN domain, as 

a template, for modeling the CYP 1A1-CPR complex but, despite extensive MD simulation, we 

did not succeed in obtaining ET-competent complexes. Indeed, considering the P450BM3 

structure as a template for modelling mammalian CYP-CPR interactions has four major 

drawbacks: (i) The crystal structure of P450BM3 (PDB ID: 1BVY) is not consistent with 

measured ET rates due to the high redox center separation distance; (ii) The low sequence 

identity between P450BM3 and  CYP/CPR of about 30% for the CYP and FMN domains; (iii) 

Unlike mammalian CYPs, the dimeric form of P450BM3 is catalytically functional and ET from 

FMN to HEME is proposed to occur in a trans fashion;31,32 (iv) Mammalian CYP and CPR are 

membrane-anchored proteins, whereas P450BM3 is not and the membrane attachment may affect 

the binding of CPR to the CYP. Hence, it is preferable to employ a de novo protocol rather than a 

template-based method for modelling full-length CYP-CPR interactions in a membrane. 

Here, we have carried out multiresolution simulations with the aim of achieving a detailed 

understanding of the structure and dynamics of the membrane-associated full-length CYP 1A1-

CPR complex, and consequently of the determinants of the ET process between CYP 1A1 and 

CPR. CYP 1A1 is an extrahepatic human drug target protein that plays an important role in the 

bioactivation of procarcinogens and detoxification of carcinogens.33,34 Many of its substrates, 

such as benzo[o]pyrene, a carcinogen found in tobacco smoke, are polycyclic aromatic 

hydrocarbons. The standard reference substrate for CYP 1A1 is 7-ethoxyresorufin, which is O-

dealkylated by the enzyme. Constitutive expression of CYP 1A1 is low but can be induced in 
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response to environmental contaminants, for example in smokers’ epithelial lung cells. 

Moreover, engineered CYP 1A1 has potential as a biocatalyst.35,36 Notably, CYP 1A1-CPR 

fusion proteins have been made to improve ET rates.  A fusion between rat CYP 1A1 and rat 

CPR was found to exhibit four times higher monooxygenase activity than rat CYP 1A1 alone,35 

whereas a fusion between rat CYP 1A1 and yeast CPR had a similar ET rate to P450BM3.
36 

Hence, a detailed atomic level understanding of CYP 1A1-CPR interactions and ET kinetics 

would provide the basis for the design of drugs targeting CYP 1A1, as well as the exploitation of 

CYP 1A1 as a  biocatalyst. We therefore here describe the building and simulation of the full-

length CYP 1A1–CPR complex in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

bilayer. POPC was chosen because phosphatidylcholine is the main component in the 

mammalian ER membrane37 and because it provides a simple representation, which is often used 

in in vitro studies of CYPs, of the disordered regions of the ER where CYP 1A1 has been 

observed to localize.12,38  

 

Results and Discussion 

Electrostatic steering of the CYP 1A1 and the CPR FMN domains leads to encounter complex 

formation 

 

The multiresolution computational method used to model and simulate the membrane-associated 

full-length CYP 1A1-CPR complex is depicted in Fig. 1, (further details are given in Methods, 

Supplementary Methods and Fig. S1). The Brownian dynamics (BD) docking method allows 

generation of diffusional encounter complexes that satisfy biochemical constraints. It has been 

successfully applied to predict protein-protein complexes,39 including those between cytochrome 

P450s and their electron transfer partners. 39–41 For example, the orientation of putidaredoxin in 

the predicted complex with cytochrome P450cam42 was similar (about 15° rotated) to that in the 

crystal structure of the complex published afterwards by Tripathi et al.43  The six representative 

encounter complexes of the globular domains of CYP 1A1 and CPR generated by BD rigid-body 

docking simulations and selected for subsequent molecular dynamics (MD) simulations are listed 

in Table 1 (all encounter complexes are listed in the Supplementary MS Excel sheet and Table 

S1). The representative encounter complexes and their expected position with respect to the 
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membrane are shown in Fig. S2 and one of these complexes is shown in Fig 2a. The interfacial 

residues in these complexes are listed in Table S2.  

In the encounter complexes, the globular domains of CYP 1A1 and CPR dock specifically due to 

complementary electrostatic interactions, and the proximal face of CYP 1A1 and the outer FMN-

binding loop interact (Fig. 1). The FMN domain binding mode differs from that in the crystal 

structure of the P450BM3 CYP-FMN domain complex.30 In the encounter complexes, both the α1- 

and α3-helices of the FMN domain contribute to the interface whereas, in P450BM3, it is mainly 

the α1-helix of the FMN domain. The distance between the redox centers, DFe-N5, in the six 

representative encounter complexes ranges from 15.4-20.2 Å and is shorter than the distance 

(23.6 Å) observed in the crystal structure of P450BM3  even though the distance between the 

centers of mass of the globular domain of CYP 1A1 and the FMN domain, DCYP-FMN domain, is 

higher in the representative diffusional encounter complexes (34.6-37.9 Å) than in the P450BM3 

crystal structure (31.7 Å). (Table 1). The relative orientation of the FMN domain and the CYP 

globular domain can be characterized44 by the angle θ between the α1-helix of the FMN domain 

and the CYP C-helix (see Fig. 2a).  Angle θ ranges from 54° to 99° in these 6 complexes, 

whereas in the P450BM3 crystal structure, it is 95°. Nevertheless, the binding face of CYP 1A1 in 

all these complexes is similar to that identified in mutagenesis studies of CYP 1A2-CPR45 and 

CYP 2B4-CPR binding.27 Next, we relaxed the BD rigid-body docked complexes by performing 

MD simulations. 

 

Structural relaxation of encounter complexes in “soluble” MD simulations resulted in three 

putative ET-competent complexes 

All “soluble” MD simulations were performed for the globular domain of apo-CYP 1A1 and the 

FMN domain of CPR in a periodic box of aqueous solvent with initial structures taken from the 

six selected diffusional encounter complexes. The structures of the individual domains were well 

maintained throughout all the production simulations. The Cα atom root mean squared deviation 

(Cα-RMSD) values of the CYP globular domain and the FMN domain were 2.0-2.6 Å and 1.2-

1.4 Å, respectively (Table S3). The arrangement of the protein domains in the complexes 

relaxed during the simulations (Fig. 3). Three of the six encounter complexes were discarded 

after structural relaxation, either because they were no longer ET-competent (B7 and D3, see 
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Table 1) or because of rearrangements in the hydrogen-bonding of the FMN cofactor (A4, see 

Fig. S3). 

For the remaining three encounter complexes (C2, C3 and D2), decreases in DCYP-FMN domain and 

DFe-N5 were observed during the simulations (Table 1), indicating the formation of tighter 

complexes with non-zero ET rates. The interface residues of CYP 1A1 remained similar to those 

in the initial BD docked complexes (Table S2).  Next, these three refined complexes were used 

to build and simulate complete CYP-CPR complexes in the presence of a phospholipid bilayer.   

CYP-membrane interactions weaken in the presence of CPR and the CPR structure adopts a 

more compact form 

All three models of membrane-bound CYP-CPR complexes were simulated for about 500 ns. In 

addition, a second simulation (D2’), with identical initial coordinates but with different initial 

assigned velocities, was run for the D2 system. The structures of the individual protein domains 

were well maintained as shown in Cα-RMSD plots (Fig. S4) but there were rearrangements of 

the domains within CPR and of the proteins with respect to the membrane (Table S4). 

Table 1: Evolution of the CYP 1A1-FMN domain interface and electron transfer (ET) rates of the 

complexes along the steps of the multiresolution simulation procedure. Observed redox center 

distances (DFe-N5), center-to-center distances between the CYP and FMN domains of CPR (DCYP-FMN 

domain), θ angle, and calculated ET rates are given for six complexes. 

Sys-

tem 

Energy minimized 

complexes generated by 

BD simulation  

Complexes from MD simulation in 

explicit aqueous solution without a 

membrane$ 

Complexes from MD simulations in 

membrane-bound form& 

DFe-

N5 

(Å)  

DCYP-

FMN 

domain 

(Å) 

θ (°) 
  kET 

 (s-1) 

DFe-N5  

(Å)  

DCYP 

-FMN  

domain  

(Å) 

θ (°) 
kET  

(s-1) * 

DFe-N5  

(Å)  

DCYP 

-FMN  

domain  

(Å) 

θ (°) 
kET  

(s-1) 

A4 19.2 

 

34.6 53.5 0.002 19.4±0.4 

 

35.7±0.3 107.6±3.2 0.002 -- -- -- -- 

B7 16.3 

 

37.3 89.6 0.001 21.7±0.9 

 

42.7±0.7 124.2±6.4 0.000 -- -- -- -- 

C2 18.4 

 

37.4 94.9 0.001 17.2±0.3 

 

36.1±0.3 92.8±2.6 0.004 15.6±0.3  34.6±0.2 95.7±4.0 -- 
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C3 17.5 

 

35.7 99.0 0.005 15.5±0.3 

 

33.8±0.2 98.3±2.0 0.013 15.5±0.4  33.7±0.2 99.1±1.7 0.2±0.5

D2 

D2’# 

15.4  37.9 70.4 0.000 14.5±0.3 36.5±0.3 

 

63.1±2.5 1.882 14.7±0.4 

16.3±0.3 

35.6±0.4 

33.0±0.2 

62.0±3.1 

75.1±2.6 

8.1±16.6

2.4±2.6

D3 20.2 35.2 95.3 0.000 20.0±0.6 36.4±0.4 104.3±2.9 0.000 -- -- -- -- 

$Average over last 20 ns with 2 ps intervals; &Average over last 50 ns with 100 ps intervals; 
*Last frame. #Values in italics are for the second set of simulations of the D2 complex (D2’). 

(a) Weakening of CYP 1A1-membrane interactions and reorientation of CYP globular domain 

During the simulations, the axial distance between the centers of mass of the globular domain of 

CYP 1A1 and the membrane, DCYP-mem, increased by 3-8 Å (Table S4) indicating that, in the 

presence of CPR, CYP becomes less deeply embedded in the membrane. The protein-lipid 

interactions of CYP 1A1 are mainly hydrophobic in nature and formed by a completely 

immersed TM-helix and a partially immersed FG-loop (residues 229–245). During all the 

simulations except for C3, the axial distance between the centers of mass of the FG-loop and the 

membrane, DFG-mem, increased by 3-5 Å (Table S4), indicating a weakening of the peripheral 

CYP interactions with the membrane.  

In the presence of CPR, the CYP 1A1 globular domain underwent an orientational rearrangement 

with respect to the CPR-free membrane-bound state as indicated by the changes in α, β and 

heme-tilt angles16 (Fig. 2b) along the simulations (Fig. 4, Table S4). Despite the almost identical 

starting orientations of CYP 1A1 in the membrane, the simulations converge to quite different 

orientations of the CYP globular domain due to the different binding modes of CPR to CYP 

1A1. In the presence of CPR, the heme tilt angle dropped from ~71° to around 40° for the C2 

and D2 systems (Table S4). Thus, the interactions with CPR, resulting in an increase of the area 

of the FMN domain interface of up to ~700 Å2, weakened the CYP-membrane interactions, and 

facilitated reorganization of the CYP with respect to the membrane. 

(b) Rearrangement of the FMN domain of CPR with respect to the membrane  

For CPR, a greater extent of rearrangement of the FMN domain with respect to the membrane 

was observed in the D2 and D2’ simulations as indicated by the large drop in DFMN domain-mem 

(Table S4). This drop was accompanied by steep decreases of more than 43 Å  in the axial 

distance, Dlinker-mem, between the first atom of the FMN domain (the amide nitrogen of E66) and 

the center of mass (CoM) of the membrane for the D2 simulations. Thus, rearrangements of the 
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highly flexible linker region between the TM-helix of CPR and the FMN domain affected the 

CPR orientation with respect to the membrane. However, this large rearrangement of the FMN 

domain towards the membrane had little effect on the interdomain distance, DCYP-FMN domain.  

 

(c) Rearrangement of the FAD and NADP domains with respect to the membrane results in a 

more compact structure of CPR 

Due to the highly flexible linker hinge between the FMN and FAD domains of CPR, 

rearrangements of the FAD and NADP domains with respect to the membrane were observed 

(Fig. 5 a-d, Table S4). This domain motion, as well as the initial binding mode of the encounter 

complexes, brought the FAD and NADP domains nearer to the globular domain of CYP 1A1 in 

the C2 and D2 systems (Fig. 4). For the D2’ simulation, the decrease in the FAD-NADP 

interdomain distance resulted in a more compact CPR structure, similar to that of the semi-open 

conformation in the crystal structure (PDB ID 3ES9 chain A) (Fig. S5).  In this structure, the 

center-to-center distance between the FMN and FAD cofactors was reduced to 44.7 Å, a distance 

intermediate between that of the closed form (PDB ID 3QE2) of 14.2 Å and that of the fully 

open form (PDB ID: 3ES9 chain B) of 61.3 Å, and too long for ET between them.   This 

compaction of CPR enabled additional contacts to be formed between the NADP domain and the 

distal side of CYP 1A1. 

 

CYP 1A1 and CPR form stable complexes in the membrane 

In all the simulations, the interdomain distance D
CYP-FMN domain was stable at 33-36 Å.  It 

remained longer than the interdomain distance in the crystal structure of P450BM3 (31.7 Å), 

possibly because the membrane prevents the two domains from coming as close as in the 

membrane-free P450BM3. Nevertheless, in all the CYP 1A1-CPR complexes, DFe-N5 was within 

the range (14-16 Å) for biological ET (Table S4) and converged stably in all the simulations 

(Fig. 4).  

No contacts between the TM-helices of CYP 1A1 and CPR were observed, which is consistent 

with the observations of Sundermann and Oostenbrink46 in their 10 ns simulation of a 

membrane-bound CYP 2D6-CPR complex. However, the computed interface contact area of the 

globular domain of CYP 1A1 and the CPR FMN domain in the model complexes was 

~2000 Å2 (Table S4), much higher than the interface area of about 240 Å2 observed in the 
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simulation of a membrane-bound CYP 2D6-CPR complex,46 and greater that the interface area of 

many transient protein-protein complexes, which is usually is less than 1500 Å2.47,48  This large 

interface area is consistent with the measured binding affinity of CPR to rat CYP 1A2 (which has 

68% identity to human CYP 1A1) of 47 nM.45 The CPR NADP domain interactions with the 

distal side of CYP create an additional contact interface. The high contact area of the CYP 1A1-

CPR complexes indicates the formation of a rather strongly bound transient complex between the 

proteins.  

 

The interface between CYP 1A1 and the CPR FMN domain mostly has similar residues to 

other CYP-CPR complexes but shows differences to the P450BM3 CYP-FMN domain interface  

The CYP-FMN domain interactions involve charge pairing of the positively charged proximal 

side of CYP 1A1 with the negatively charged surface of the FMN domain surrounding the 

cofactor. These electrostatic interactions are complemented by van der Waals and hydrophobic 

interactions. The interface residues in CYP 1A1 are located on the B, C and L-helices and the 

JK-loop and the loop structure near the HEME (Table S2 and Fig. 5e). The interface residues of 

the CPR FMN domain surround the cofactor and involve the α1 and α3-helices, Lα′ and Lβ1-5 

loops and β1 and β2-strands (Table S2 and Fig. 5f). In all cases, a hydrogen-bonding interaction 

between the FMN phosphate group and the side-chain of Q139 in the C-helix of CYP 1A1 was 

also present. NMR spectra of a membrane-anchored CYP 2B4-CPR FMN domain complex24 

showed the same region of the FMN domain at the interface.  

Site-directed mutagenesis and structural studies have been performed to identify CYP residues 

that interact with the redox protein for CYP 2B4 (CPR),27,49  CYP 17A1 (cyt b5),50,51 CYP 1A2 

(CPR)45 and P450BM3 (FMN domain),30 revealing the importance of positively charged residues 

for redox protein binding. Even though the residues at the FMN domain binding interface of 

CYP 1A1 do not align completely with the interfacial residues of the other CYPs in a multiple 

sequence alignment (Fig. S6), the secondary structure regions at the interface are similar, mostly 

involving the B, C and L-helices, and the CC'-loop, HI-loop and the loop near the HEME. The 

alignment revealed that the positively charged CYP residues at the FMN domain interface were 

most conserved in the C3 simulation, with the conservation being highest for CYP 1A2 (80%).  

However, there are some differences, e.g. V267 and L270 in the H-helix of CYP 2B4 mediate 

CPR interactions27 whereas neither the corresponding aligned residues in CYP 1A1, S284 and 
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E287, nor the H-helix make any contacts with CPR in our simulations. An NMR study of the 

binding of the CPR FMN domain to CYP 17A151 indicated that distal residues were affected by 

FMN binding along with proximal residues close to those identified in our CYP 1A1 complexes 

(Fig. S6). In CYP 19A1, the B-helix (K108), C-helix (S153 and G154), K-helix (K352), K’’-L-

loop (K420, Y424 and R425) and L-helix (Y441) were reported to be involved in interactions 

with FMN domain of CPR in a modelled CYP 19A1-CPR structure.52 In a model of the 

membrane-bound CYP2D6-CPR complex,46 the B-helix (R88), C-helix (R129, R133 and R140), 

CC’-loop (K146, K147 and S148) and loop near heme moiety (K429, E431 and R440) were 

found to interact  with the FMN domain of CPR. In our simulations, we found that a similar, 

positively charged region of CYP 1A1 was involved interactions with the FMN domain of CPR 

(Table S2).  

One of the simulations (D2’) showed complexes with a similar arrangement of the FMN and 

CYP domains with approximately the same protein binding faces to that observed in the crystal 

structure of P450BM3, although with the position of FMN cofactor shifted by about 20o in angle θ, 

see Fig. 6a. This rotation, together with sequence differences, permitted the cofactors to come 

closer to each other. Indeed, DFe-N5 was much shorter in all of the CYP 1A1-CPR complexes 

than in the P450BM3 crystal structure. Recently, Dubey et al.44 performed MD simulations of 

P450BM3 and observed a change from a perpendicular to a parallel arrangement of the CYP C-

helix and the FMN domain α1-helix. Sequence differences in the C-helix resulted in salt-bridges 

that prevented this reorganization in the CYP 1A1-CPR complex, see Fig. 6b,c.  This salt-bridge 

interaction was observed in the C3 and D2’ simulations, whereas, in the other two simulations 

(C2 and D2), the FMN domain α1-helix was not in close contact with the C-helix of CYP 1A1. 

In the D2 simulation, the NADP domain formed transient interactions with the distal side of CYP 

1A1 and in C2, the NADP domain interacted with the membrane. These two different 

arrangements of CPR precluded the possibility of reorganization of the C- and α1-helices as 

observed in P450BM3.  

Transient interactions are formed between CYP 1A1 and the NADP domain of CPR  

In the initial model for the D2 system, the NADP domain of CPR was relatively far from the 

membrane and from the globular domain of CYP 1A1 (Fig. 2a). During the simulations, the 

NADP domain came closer to the CYP 1A1 globular domain and formed interactions (Fig. 5c-

d). The motion of the NADP domain shifted the CPR from an open conformation towards a 
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semi-open conformation, while retaining the center-to-center distance between the FAD and 

NADP domains as in the starting structure (~34 Å). These motions of the NADP domain did not 

appear to have a significant impact on the interactions between CYP 1A1 and the FMN domain.  

There is experimental evidence supporting interactions between the NADP domain and the CYP 

globular domain for the CYP 1A1-CPR complex. A strong inhibition (>80%) of the CPR-

supported metabolism of 7-ethoxycoumarin and ethoxyresorufin was observed in K271I and 

K279I single-point mutants of rat CYP 1A1, accompanied by a reduction by a factor of about 2 

and 9, respectively, of the Michaelis constant for the reductase (wild-type Km = 5.1 pM).53 Based 

on a combination of in vitro mutagenesis, in vivo screening and spectral analysis, it was 

confirmed that K268 and R275 of rat CYP 1A1 are important for CPR binding.54,55 However, 

residues 268 and 271 are in the G-helix and residues 275 and 279 are in the GH-loop, neither of 

which is on the proximal side of rat CYP 1A1, see Fig. S6.  

From mutagenesis, NMR and crystallographic studies of several CYPs from several species, it is 

well established that the proximal side of CYP serves as an interface25–27,49,50 for the FMN 

domain. Hence, the only way for CPR to interact with the distal side of CYP 1A1 is via the 

NADP domain. Indeed, in the D2 simulation, the CPR NADP domain moved towards the CYP 

globular domain after 400 ns of simulation and residues 664, 667 and 668 formed transient 

contacts (with ≤ 30% occupancy) with the J-helix and the JK-loop of CYP 1A1 (Fig. 5e). In the 

D2’ simulation, the NADP domain moved towards the CYP globular domain after 200 ns and 

residues 664, 667 and 668 formed contacts (with ≥ 50% occupancy) with the EF-loop, the C'-

helix, the G-helix  and the GH-loop (Fig. 5e). Additionally, residues 271 and 279 of the GH-loop 

made transient contacts with NADP domain residues with occupancies of 9% and 13%, 

respectively. Thus, the interaction of the NADP domain with the G-helix and GH-loop of CYP 

1A1 in the D2’ simulation is consistent with experiments. 

During the simulations of the C2 complex, the FAD and NADP domains of CPR moved towards 

the phospholipid bilayer and started to interact with the head groups (Fig. 5a). Otyepka and 

colleagues made a similar observation in their simulations of a full-length CPR-membrane 

system.56 They found E270, P275, I307, R313 and N467 from the FAD domain and W549 and 

G554 from the NADP domain were points of contact with the membrane. We found the same 

residues making contact with the membrane in our simulations. However, the OPM57 webserver 

predicted that the FAD and NADP domains of CPR have no membrane-interacting region. The 
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hydrophobicity and electrostatic properties of the protein surface do not indicate any membrane 

interaction region. Moreover, experiments indicate that the NADP domain of CPR interacts with 

the distal part of CYP in a way that would be incompatible with membrane binding.7,54,55 Hence, 

we discarded the C2 system from further structural analysis. The NADP domain of CPR 

remained further from the membrane than the CYP globular domain in all trajectories of the C3 

and D2 systems. 

 

Simulations reveal two ET pathways and ET rates consistent with experiment 

CPR transfers two electrons sequentially to CYPs during the catalytic monooxygenation cycle. 

The second ET step is rate-determining for most bacterial CYPs,58 whereas for eukaryotic CYPs, 

different rate-determining steps - formation of the membrane-bound CYP-CPR complex59, 

product release36, or the first60 or second ET61 - have been reported. The first ET to mammalian 

CYPs from CPR occurs at ~2–10 s−1 62,63 and the second ET is usually within this range or 

slower.45,62,64  

Irrespective of the different modes of interaction between CPR and CYP in the three plausible 

complexes (C3, D2 and D2’), only two major ET pathways were identified. These are FMN-

I458-C457-HEME (56%) and FMN-K456-C457-HEME (35%), see Fig. 5g-h. Only the latter 

pathway was present in the D2’ simulation, whereas the former pathway was the predominant 

ET route in the other two simulations (C3: 77% and D2: 96%).  Evidence supporting both these 

paths, which involve the backbone of the loop near the heme moiety and the heme-coordinating 

cysteine, comes from experiments and simulations.  

As regards the first path, experiments showed that the I458V point mutation in CYP 1A1 

enhanced N-demethylase activity by about two-fold due to a decreased Km value, indicating 

slightly tighter binding of the substrate, possibly due to realignment of the heme in the mutant.65  

The I458P mutation had a smaller and opposite effect to the I458V mutation.65 From a QM/MM 

study of CYP 3A4, it was concluded that the I443 backbone amide forms a hydrogen bond with 

the side chain of the heme-coordinating C442 and thus stabilizes the Fe-S bond and prevents the 

localization of the radical on the sulfur in the presence of substrate.66  Furthermore, 

computational modelling of CYP 19A1 and the CPR FMN domain by Magistrato and co-

workers revealed that C437, A438, K440 and Y441 are involved in ET.67 (For alignment, see 
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Fig. S7). Thus, these studies support the pathway in which the backbone of I458 in CYP 1A1 is 

involved in ET to the heme Fe+2-O2 species through the sulfur atom of the coordinating cysteine.  

With respect to the second path, the S441P mutation in CYP 17A1 (aligning with K456 in CYP 

1A1) causes a complete loss of both 17α-hydroxylase and 17,20-lyase activities.68 Based on 

modelling of the membrane-bound CYP 3A4-CPR complex, Otyepka and co-workers suggested 

that N441, C442 and R446 of CYP 3A4 may be involved in ET.56 Furthermore, attachment of a 

photoactive Ru complex at residue 387 on the proximal side of P450BM3  indicated that electron 

transfer to the heme could occur along the peptide loop backbone from Q387 to the proximal 

cysteine.69 Superimposition of the crystal structure of P450BM3 on our CYP 1A1-CPR complexes 

indicates that Q387 is quite close to the FMN cofactor.  Moreover, in the model of the CYP 2D6-

CPR membrane-bound complex46, the loop region near the heme moiety (R440, R441, A442 and 

C443) was found to be involved in the electron transfer pathway, with A442 and C443 of CYP 

2D6 aligning with K456 and C457, the two residues in the electron transfer pathway in our D2’ 

model of the CYP 1A1-CPR complex.  

To investigate the relation between ET rate and the structure of the complex, 2D histograms of 

the computed binding free energies between the CYP globular domain and the FMN domain in 

the complexes (Fig. 5i), DFe-N5 and the θ angle (Fig. S8a-b) were plotted against log(kET). The 

maximum population of structures has log(kET) between 0.1 to 0.7. The calculated ET rates 

(Table 1) agree well with the measured value45 of kET for the rat CYP 1A2-CPR complex 

expressed in yeast of 5.9 s-1. Fig. 5i shows that the highly populated clusters in the trajectories 

have intermediate binding free energies, and this is consistent with evidence from surface 

plasmon resonance measurements that the association of CYP and CPR in ET-compatible 

orientations is governed by entropic rather than enthalpic contributions.70 The histogram plot of 

DFe-N5 vs log(kET) (Fig S8a) shows that, consistent with the distances observed experimentally in 

several other redox proteins,71 DFe-N5 ranges from about 13 to 17.5 Å, and that the experimental 

kET value is reproduced with this range of DFe-N5. Notably, the histogram plot (Fig. S8b) of θ vs 

log(kET) has a region from 82° to 90° where no structures were sampled during the simulations as 

this arrangement of the CYP 1A1 C-helix and FMN domain α1-helix is disfavored as discussed 

above.  

 

CPR affects CYP ligand tunnels due to CYP reorientation and CYP-CPR interactions 
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We analyzed the effects of CPR binding on the opening of ligand tunnels between the buried 

CYP active site and the protein surface in the conventional MD simulations described above 

(Fig. 7) and in RAMD simulations of ligand egress from the CYP active site (Table 2).  

In the conventional MD simulations, two ligand tunnels in CYP 1A1 with diameters sufficient 

for passage of a water molecule were identified (Fig 7a-d): (i) the solvent tunnel (S) between the 

I- and F-helices; and (ii) tunnel 2ac between the tip of the B–C loop and the G-helix (with tunnel 

nomenclature as in Ref 72). In the D2’ simulation and the simulation of CYP 1A1 in a membrane 

in the absence of CPR, both tunnels were open, whereas, in the C3 simulation, only the solvent 

tunnel was present and, in the D2 simulation, only tunnel 2ac was present. These tunnel closures 

were due to BC-loop motion resulting in hydrogen-bond formation closing tunnel 2ac (Fig. 7e) 

and movement of the side-chain of F224 away from the ligand to interact with F319 in the I-

helix and close the solvent tunnel (Fig. 7f). A direct influence of CPR on these motions could not 

be identified by contact map analysis of the trajectories. 

The RAMD simulations, in which 7-ethoxyresorufin travelled from the active site to the protein 

surface, revealed five ligand egress routes in the CYP-CPR complexes (S, 2ac, 2c, 3s and 3) and 

three routes (S, 2c and 3) in CPR-free CYP 1A1 (Table 2). Although the transient interactions 

between F224 and F319 were perturbed in the RAMD ligand egress simulations and thus egress 

via the solvent tunnel was observed in all systems, the solvent tunnel tended to close and either 

the 2c or the 3s tunnel tended to open in the CPR-bound systems. Tunnel 2ac was rarely 

observed as an egress route, even though it was detected in the conventional MD simulation.  

Egress via tunnel 3s, between the F- and G-helices, was observed in two of the CPR-bound 

systems and occurred when the contacts of N221 with A250 and D253 (occupancy >90% in the 

CPR-free system) were broken, allowing the F- and G-helices to move apart and permit ligand 

passage. In summary, in these simulations, the binding of CPR to CYP 1A1 alters the 

distribution of egress pathways. An alteration in ligand tunnels due to CPR binding has also 

recently been observed in conventional MD simulations of the CYP 19A1-CPR complex in a 

membrane.52  Our results indicate, however, that more extensive studies of substrate access and 

product release would be necessary to confirm the effect of CPR. 

 

 
Table 2: Relative occurrence (in %) of 7-ethoxyresorufin egress routes from the CYP 1A1 active 
site in RAMD simulations. Simulations were started from snapshots from the C3, D2 and D2’ 
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simulations and the CYP 1A1-membrane system in the absence of CPR.  Upon complexation with CPR, 
the solvent tunnel tends to close and either the 2c or the 3s tunnel tends to open. 

Tunnel 
C3  

 
D2  

D2’  
 

CYP 
without 

CPR  

S 38 71 71 94 

2ac 0 4 4 0 

2c 0 21 0 4 

3s 58 0 25 0 

3 4 4 0 2 

 

Conclusions 

A multiresolution computational approach, using a combination of BD, coarse grained and all-

atom MD simulations, both in the absence and presence of a phospholipid bilayer, was used for 

de novo modelling and simulation of the interactions between full-length CYP 1A1 and its redox 

binding partner, CPR. After sampling and selection of possible arrangements, a cumulative ~2 μs 

of atomic detail MD simulations of membrane-bound CYP-CPR complexes were performed. 

From these simulations, we identified several arrangements of membrane-bound CPR and CYP 

1A1 that are compatible with ET. Further simulations may enable a complete sampling of the 

configurational ensemble of the membrane-bound CYP 1A1-CPR complex but already, from the 

simulations done, we have been able to identify two main interaction modes consistent with 

available mutagenesis data and having ET pathways compatible with experimentally observed 

ET rates.   

Upon binding CPR, the interaction between CYP 1A1 and the membrane became weaker as the 

CYP-FMN domain interface area increased. Although no TM-helix-TM-helix contacts between 

CYP and CPR were observed, the large interface area of the final complexes (ca. 2000 Å2) was 

consistent with the high binding affinity of the CYP 1A1-CPR complex. In all the final model 

complexes, the CYP1A1 catalytic domain reoriented in the membrane. This reorientation 

affected ligand access and egress pathways between the active site and the membrane but there 

was little effect on interactions of the ligand in the catalytic site on the timescale of the 

simulations. CPR rearranged in the membrane and underwent a large conformational change 

from the open to the semi-open form which enabled formation of an additional interface between 
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the distal side of CYP 1A1 and the CPR NADP domain. These data clearly indicate that, in 

presence of CPR, a rearrangement in orientation of CYP occurs and vice versa. 

The FMN domain binding face composition of CYP1A1 in the modelled CYP 1A1-CPR 

complexes is mostly similar to other experimentally determined FMN domain binding interfaces 

of CYPs.27,30,45,49,51  One of our model complexes (D2’) has a similar arrangement of the CPR 

FMN domain with CYP 1A1 to that observed in the crystal structure of P450BM3, although, with 

the position of the FMN cofactor shifted by about 20o. The computed ET rates and pathways 

from CPR to CYP 1A1 are in excellent agreement with available experimental data. The slower 

ET rates compared to soluble CYPs appear to result from the competing requirements of ET and 

membrane binding by both CYP and CPR, as well as sequence differences at the CYP-FMN 

domain interface.  The importance of identifying ET pathways is highlighted by the fact that 

mutation of I458, a key residue in the dominant computed ET pathway, has been shown to affect 

prodrug activation.65 The most common non-synonymous polymorphisms of CYP 1A1 have the 

mutations T461N and/or I462V, resulting in high-risk variants for non-small cell lung cancer in 

non-smokers.73,74 We observed direct contact (<5 Å) of I462 with I458 only in our simulations in 

the presence of CPR, indicating that the I462V variant may have a role in the regulation of 

substrate metabolism. T461 interacted with the Lβ4-loop region of the CPR FMN domain in our 

simulations, indicating that alterations in CPR binding of the T461N mutant might contribute to 

the observed increased formation of the mutagenic diol epoxide of benzo[a]pyrene-7,8-

dihydrodiol75. Thus, the present simulations give detailed atomistic insights into structural and 

functional aspects of CYP 1A1-mediated drug and carcinogen metabolism. Moreover, they 

provide insights into how CYP-redox partner interactions can vary, and provide a basis for 

further work to explore the interactions of different CYPs with CPR.   

 

 

 

 

 

Methods 
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The computational workflow for building systems for simulations of full-length CYP-CPR 

complexes in a membrane bilayer is illustrated in Fig. 1 and described briefly below; further 

details are given in Supplementary Methods and Fig. S1. 

 

Protein structures 

Modeling of CYP 1A1 was based on the crystal structure of the globular domain of human CYP 

1A1 (PDB ID: 4I8V; 2.6 Å resolution), in complex with the inhibitor α-naphthoflavone,76 

following refinement and rebuilding using the PDB-REDO server77,78 and addition of missing 

residues using Modeller79–81 v.10. All four chains (A-D) of the asymmetric unit were used in BD 

simulations. For the full protein, the TM-helix in CYP 1A1 was assigned to residues 6-27 and the 

flexible linker and TM-helix were modelled as described previously. 57,82The structure of an open 

conformation of human CPR was modelled on the basis of the crystal structures of the N-

terminally truncated rat CPR in an open conformation (PDB ID: 3ES9 chain B; 3.4 Å 

resolution)62 and the closed form of the N-terminally truncated human CPR (PDB ID: 3QE2; 

1.75 Å resolution).83 Missing residues were modelled using VMD84 and Modeller.  

 

Brownian dynamics simulations 

BD rigid-body docking simulations of the four structures of the globular domain of CYP 1A1 

and the N-terminally truncated CPR were carried out using the SDA 7 software.39,85–87 All 

cofactors were retained but the ligand was removed from the CYP. Docking was performed 

subject to electrostatic interaction, electrostatic desolvation, and non-polar desolvation forces.85–

87  

240,000 independent trajectories were run starting with CPR at a random relative orientation and 

position at a center-to-center distance of 450 Å from the CYP, and they were all terminated when 

the inter-protein center-to-center separation reached 600 Å.  ET in redox proteins typically 

occurs when the edges of the redox centers lie within 14–15 Å.71 Hence, the coordinates of 

diffusional encounter complexes were recorded subject to two distance constraints: (i) the 

cofactor-cofactor distance from FMN:N to HEME:Fe, DFe-N5 < 20 Å, and (ii) the center-to-center 

distance between the CYP globular domain and the CPR FMN domain, DCYP-FMN domain < 60 Å, to 

ensure close approach of the domains. 
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For each of the four CYP structures, the energetically ranked top 5,000 docked encounter 

complexes were clustered into 10 clusters ranked by cluster size using a hierarchical method.39 

Thus, 40 representative encounter complexes were generated and named according to the chain 

identifier in the crystal structure of CYP 1A1 and the docking cluster number of CPR. E.g., C3 

for chain C of CYP 1A1 and the third largest docked cluster of CPR. These complexes were 

further filtered according to interaction energy, and to ensure that the clusters were structurally 

distinct and did not have orientations of CPR inconsistent with membrane anchoring if the CYP 

was assumed to be positioned in the membrane as observed in MD simulations of CYP 1A1 in a 

POPC bilayer. As a result, six structures of diffusional encounter complexes were selected for 

further studies.    

 

All-atom molecular dynamics simulations in aqueous solution 

To account for protein flexibility, all-atom MD simulations in 150 mM aqueous solution 

(referred to as “soluble simulations”) were carried out for all 6 representative structures of CYP 

1A1 � CPR encounter complexes obtained from BD simulations. For computational efficiency, 

only the globular domain of CYP 1A1 and the FMN domain of CPR were simulated in the 

soluble simulations. After equilibration, all-atom MD production simulations were performed for 

about 50 to 140 ns using the NAMD v2.10 software.88  

 

All-atom molecular dynamics simulations of membrane-bound full-length CYP-CPR systems  

All the simulations with phospholipid bilayers, “membrane simulations”, were carried out for 

complete structures of full-length CYP and CPR. The initial configurations of the complexes of 

the globular domain of CYP and the FMN domain of CPR were obtained from the last frames of 

the soluble simulations.  

(a) Preparation of full-length CYP structures 

 We previously developed a protocol for inserting the full-length structure of a CYP into a 

membrane bilayer without predetermining the orientation or insertion depth.16 Hence, we 

superimposed the CYP domain of the CYPglobular-domain � CPRFMN-domain complexes onto a 

modelled structure of the membrane-bound full-length CYP 1A1 in a POPC membrane.82 Next, 

we replaced the globular domain of CYP 1A1 with each CYPglobular-domain � CPRFMN-domain 

complex and connected the TM-helix and the linker region (residues 1 to 50) from the 
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membrane-bound CYP 1A1 simulated in the absence of CPR with residue H51 of CYP 1A1 in 

the CYPglobular-domain-CPRFMN-domain complex.89 A local structural refinement to optimize the 

covalent linkage between residues 50 and 51 was performed using the interactive energy 

minimization module of Maestro (Schrödinger, LLC, New York, NY, 2015)89, resulting in 

complete initial structures of the membrane-bound CYPfull-length � CPRFMN-domain complex.  

(b) Preparation of full-length CPR structures 

The FMN domain of CPR (residues 66 to 230) in each membrane-bound CYPfull-length �  

CPRFMN-domain complex was superimposed onto the FMN domain of truncated human CPR 

(residues 66 to 677) and residues 231- 677 of CPR were extracted and connected with the FMN 

domain of the membrane-bound CYPfull-length � CPRFMN-domain complex. The amide bond between 

residues 230 and 231 was optimized using Maestro. The TM-helix region of CPR was predicted 

by using the Orientation of Protein in Membrane (OPM) 

(http://opm.phar.umich.edu/server.php)57 and the TMpred90 webservers and its structure was 

modelled using Modeller v 9.10. Next, the modelled TM-helix (residues 26 to 50, with residues 

26 to 44 being helical) was placed arbitrarily in the membrane so that there were no interactions 

between the CYP and CPR transmembrane helices. Then, the missing residues (1-25 of the 

membrane binding domain and 51-65 of the flexible tether region) were added using Modeller to 

complete the full structure of the membrane-bound CYPfull-length �  CPRfull-length complex. 

(c) Simulation setup and trajectory generation 

Each CYP-CPR complex in a bilayer of POPC phospholipids was immersed in a periodic box of 

water molecules with 150 mM ionic strength maintained by adding Na+ and Cl− ions. Production 

simulations were performed for protein-phospholipid bilayer systems based on three encounter 

complexes (with one system simulated in duplicate) using the NAMD v2.10 software. 

 

Post-analysis of MD trajectories  

CYP globular domain-FMN domain interaction free energies were estimated using the 

MMGBSA91,92 protocol implemented in the AMBER 14 package (without performing normal 

mode analysis for estimating the vibrational entropy contribution) for snapshots collected at 100 

ps intervals after completion of 350 ns simulation (i.e. for the last 150-200 ns of the trajectories 

of the protein complexes). Substrate access tunnels were computed using CAVER 3.093 for the 

last 500 snapshots of each trajectory collected at 100 ps intervals. Random acceleration 
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molecular dynamics (RAMD)94 simulations, as implemented in NAMD 2.10, were performed to 

study the ligand egress pathways from the CYP 1A1 active site in the presence and absence of 

CPR. ET pathways and rates were computed using Beratan’s model with the VMD pathway 

plugin module.95   
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Figure captions 
 
Figure 1: Diagram of the procedure to build and simulate a model of a mammalian CYP-CPR 
complex in a membrane.   
The formation of the CYP-CPR complex is necessary for the transfer of electrons to the CYP active site 
in the CYP catalytic cycle, as indicated in the schematic cycle. Step 1: Brownian dynamics (BD) rigid-
body docking of CYP and CPR globular domains. Molecular electrostatic isopotential contours at ±1 kT/e 
show a highly positive (blue) patch on the proximal face of CYP and a highly negative (red) patch on the 
CPR that interact complementarily in the docked complexes. Step 2:  Coarse-grained (CG) and all-atom 
molecular dynamics (MD) simulation of CYP (blue cartoon representation) in a phospholipid bilayer 
(cyan with orange spheres representing phosphorous atoms). Step 3: Relaxation of the BD docked 
complexes by MD simulation in aqueous solution followed by superimposition on the CYP in the bilayer 
(with CPR shown in cartoon representation colored by domain (FMN: red, FAD: green, NAD: pink)). 
Step 4: Atomic detail MD simulation of the CYP-CPR complexes in a phospholipid bilayer. 
 
Figure 2: A CYP 1A1-CPR encounter complex obtained from the rigid-body BD docking 
simulations is shown superimposed on the structure of CYP 1A1 in a membrane bilayer obtained 
from MD simulations which is shown together with the definitions of the angles defining the 
arrangement of the proteins. A CYP 1A1-CPR encounter complex (D2) obtained from the rigid-body 
BD docking simulations is shown in (a) superimposed on the structure of CYP 1A1 in a membrane 
bilayer obtained from MD simulations shown in (b). The proteins are shown in cartoon representation 
(CYP globular domain: lilac, TM-helix: green; CPR FMN domain: salmon, FAD domain: pale green, 
NADP domain: pale pink), cofactors are shown in pink stick representation, and the bilayer is shown in 
cyan lines with orange spheres representing the phosphorous atoms. The angles defining the arrangement 
of the proteins are shown: θ is the angle between the CYP C-helix (green) and the FMN domain α1-helix 
(residues 91-105; red); the FMN domain α3-helix (150-158; cyan) and N-terminal residue of FMN 
domain (blue sphere) are indicated; the heme tilt angle is the angle between the heme plane and the z-axis 
perpendicular to the membrane plane; α, β and γ are the angles between the z-axis and the vectors v1, 
along the I-helix (cyan), v2, orthogonal to v1 and connecting the C-helix (red) and the F-helix (magenta); 
and v3 along the TM-helix (residues 7-26; green). 
 
Figure 3: Evolution of the six CYP-FMN domain encounter complexes generated by BD rigid body 
docking during the MD simulations in aqueous solution (referred to as ‘soluble’ simulations).  
Cα atom root mean squared deviation (Cα-RMSD) of (a) the globular domain of CYP 1A1, (b) the FMN 
domain of CPR, and (c) the FMN domain when the CYP domains of the complex were superimposed 
with respect to the initial frame. (d) Center-to-center distance between the CYP and the FMN domain, 
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DCYP-FMN domain, and (e) the distance between the HEME:Fe and FMN:N5 atoms, DFe-N5. RMSDs were 
calculated with respect to the initial energy minimized encounter complexes generated by BD simulation. 
Color scheme: A4: Black; B7: Red; C2: Green; C3: Blue; D2: yellow; D3: Brown. 
 
Figure 4: Observed changes in the position and configuration of the CYP-CPR complexes in the 
phospholipid bilayer during MD simulations.  
(a-c) Angles defining the CYP orientation in the membrane: (a) α, (b) β, and (c) heme tilt; (d): center of 
mass (CoM) distance of the FG loop to the CoM of the membrane, DFG-mem; (e) the redox center 
separation distance, DFe-N5; (f-h): CoM distances between (f) CYP and FMN domains, DCYP-FMN domain (g) 
CYP and NADP domains, DCYP-NADP domain and (h) FAD and NADP domains, DFAD-NADP domain. The lengths 
of the simulations for C2 (black), C3 (red), D2 (green) and D2’ (blue) were 478, 585, 524 and 568 ns, 
respectively. 
 
Figure 5: Structures, interactions and predicted ET pathways of four CYP-CPR complexes in a 
POPC bilayer obtained from MD simulations. 
 (a) C-2, (b) C3, (c) D2 and (d) D2’. The proteins are shown in surface representation colored by 
electrostatic potential (positive: CYP (cyan) and CPR (blue); negative: CYP (pink) and CPR (red)) with 
the transmembrane helices in green cartoon representation and the phosphorous atoms of the lipids 
represented as orange spheres. (e,f) The interfaces in the model CYP 1A1-CPR complexes are highlighted 
by colors and labels on cartoon representations of (e) CYP 1A1 (light blue) and (f) CPR (with the FMN 
domain (red), the FAD domain (green) and the NADP domain (pink));  CYP interface colors: B-Helix: 
Blue; C-Helix: Green; CC'-Loop: Purple; JK-Loop: Violet; HI-Loop and I-Helix: Orange; Loop near 
HEME: Gray; L-Helix: Deep teal; NADP binding region: Yellow. The FMN domain interface is colored 
blue and the NADP domain interface is colored yellow. The interfacial residues are listed in Table S2. (g-
i) Predicted ET pathways from the N5 of the FMN cofactor of CPR to Fe of the CYP 1A1 heme cofactor 
in complexes from (g) C3, D2, and (h) D2’ simulations; (i) 2D-histogram plot of the computed free 
energy of formation of the CYP-FMN domain complex vs predicted log(kET) rates. Stars indicate 
complexes from the last frames of the simulations (1) C3, (2) D2 and (3) D2’ for which atomic 
coordinates are provided in ModelArchive. 
 
Figure 6: Comparison of the CYP catalytic domain-FMN domain interaction in the final CYP 1A1-
CPR complex from the D2’ simulation with the crystal structure of P450BM3.  
The cofactors approach more closely in the CYP 1A1-CPR complex and the angle θ between the FMN 
domain α1 helix and the CYP C-helix differs by 20°. (a) Overlay of the structures by superposition of the 
heme cofactors. DFe-N5 is 16.3 Å in the CYP1A1-CPR complex and 23.5 Å in P450BM3. Close-up views of 
(b) the simulated CYP1A1-CPR complex and (c) the crystal structure of P450BM3. Salt-bridges between 
R136 of CYP 1A1 and residues E92 and E93 of the CPR FMN domain, as well as R135 with a heme 
carboxylate, lock the arrangement of the FMN domain α1-helix and the CYP C-helix. In contrast, in 
P450BM3, Dubey et al.44 found that after MD simulation, the α1-helix reoriented and E494 lost its 
hydrogen-bond to H100 and approached K97 of P450BM3, located at the beginning of the C-helix, close 
enough to form a salt-bridge. This reorganization resulted in a change from a perpendicular to a parallel 
arrangement of the C- and α1-helices. CYP 1A1, however, lacks a corresponding positively charged 
residue at the N-terminus of the C-helix: P129, A132 and R135 of the C-helix of CYP 1A1 structurally 
align with K94, K97 and H100 of P450BM3, respectively. Color scheme: P450BM3 FMN and CYP 
domains: white; CPR FMN and CYP 1A1 globular domains : salmon and light blue, respectively; CYP C-
helices: green; FMN domain α1 helices of P450BM3 and CPR:  pink and red, respectively;  FMN 
cofactors: pink, with P450BM3 and CPR cofactors in licorice and ball-and-stick representation, 
respectively; HEME: magenta carbons; 7-ethoxyresorufin: orange; selected residues are shown in yellow 
carbon representation with hydrogen bonds indicated by black dashed lines. 
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Figure 7: Comparison of ligand tunnels from the active site to the surface of CYP 1A1 in MD 
simulations of membrane-bound CYP 1A1-CPR complexes and of the CPR-free membrane-
anchored-CYP 1A1.  
(a-d) Tunnels calculated by CAVER analysis for (a-c) three CYP-CPR simulations: (a) C3; (b) D2 (c) 
D2’; and (d) CYP 1A1 simulated in a membrane in the absence of CPR. (Color scheme: BC-Loop (105-
128): Magenta; F-Helix (211-228): Yellow; FG-Loop (229-245): lime; G-Helix (246-272): Gray; I-Helix 
(304-336): Cyan. Tunnel 2ac: green; solvent tunnel: blue.) (e-f) Changes in the active site of CYP 1A1 
during simulations of the CYP-CPR complexes in the membrane bilayer resulting in closure of ligand 
tunnels. Structures are shown before (cyan) and after (green) simulation. (e) Formation of a hydrogen 
bond with 95% occupancy between the side chains of N117 and E256 in the C3 simulation blocking 
tunnel 2ac.  The occupancy of this interaction during the other simulations was less than 30%. (f) 
Movement of F224 and F319 in the I-helix in the D2 simulation to make van der Waals contact with an 
occupancy of 56%, thus blocking the route for ligand passage through the solvent tunnel. In the other 
simulations, the interaction between F224 and F319 was absent. Instead, there were parallel π–π 
interactions between the ligand and F224. 
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