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ABSTRACT. 

Protein acetylation is a widespread post-translational modification implicated in many cellular 

processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites 

throughout the cell, however identifying regulatory acetylation marks have proven to be a daunting 

task. Knowledge of the kinetics and stoichiometry of site-specific acetylation are important factors 

to uncover function. Here, an improved method of quantifying acetylation stoichiometry was 

developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry 

within cellular compartments. The dynamic nature of site-specific acetylation in response to serum 

stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-

specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several 

groups. Overlap of dynamic acetylation sites among two different human cell lines suggested 

similar regulatory control points across major cellular pathways that include splicing, translation, 

and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest 

a positive regulatory role under pro-growth conditions. Lastly, higher median stoichiometry was 

observed in cellular compartments where active acetyltransferases are well-described. 

TEXT.  

Introduction: Protein lysine acetylation is now acknowledged as a widespread modification, 

rivaling phosphorylation in scope1. Protein acetylation was first characterized on the N-terminal 

lysine residues of histone proteins that wrap DNA in the nucleus2,3 and has since been described 

throughout the cell including cytoplasm4, mitochondria5, endoplasmic reticulum6, and 

peroxisomes7. In the nucleus, histone acetylation is associated with active gene expression, acting 

in part to open chromatin and allowing access for transcriptional machinery. Acetylation of 
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cytoplasmic proteins affects diverse cellular processes which include cell migration, cytoskeleton 

dynamics, metabolism, and aging. Mitochondrial protein acetylation has been linked to metabolic 

regulation, oxidative stress, OXPHOS, and mitochondrial gene expression8.  

Reversible acetylation is catalyzed by the enzymatic activity of lysine acetyltransferases (KATs) 

and deacetylases (KDACs), however other evidence also suggests that a significant proportion of 

acetyl-lysine sites result from nonenzymatic mechanisms9–11. We previously measured second-

order rate constants for nonenzymatic acetylation in vitro and found that the chemical conditions 

of the mitochondrial matrix was sufficient to drive considerable nonenzymatic acetylation, and 

was generally consistent with lysine sites with low in vivo acetylation stoichiometry12. With the 

use of a general-base catalyst in the active site of KAT families that include GCN5 and MYST, 

these reactions are not affected by the protonation state of the ε-amino group, whereas the 

nonenzymatic reactions are directly dependent on the amount of unprotonated lysine13,14.  

Mass spectrometry has enabled the identification of over 20,000 acetylation sites in human 

cells15. This comprehensive catalog was facilitated by the development of antibody enrichment 

strategies for acetylated peptides16,17. While immunoenrichment of acetylated peptides helps with 

identification of acetyl-lysine sites on low abundant proteins, immunoenrichment can introduce 

potential quantification bias through the additional experimental steps and antibody selectivity 

biases.  

Unlike a plethora of examples from protein kinase signaling pathways, lysine acetylation has 

not been associated with analogous cascades, where one acetylation event of an acetyltransferase 

leads to acetylation of a second acetyltransferase to transmit a biological signal. Such cascades are 

used to amplify and rapidly propagate information down a signal transduction pathway. From 

available evidence, acetylation can modulate protein-protein and protein-DNA interactions, 
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cellular localization, enzyme activity and stability8. For example, bromodomain-containing 

proteins recognize and bind acetyl-lysine residues for recruitment of larger multi-subunit 

complexes and permit efficient activation of gene transcription18,19. In mitochondria, current 

evidence suggests that protein acetylation generally serves as an inhibitory modification of 

metabolic enzymes8. In this regard, acetylation appears to function as a rheostat to modulate the 

degree of a biochemical process. Given these examples of regulation, quantifying the level of 

stoichiometry is critical for understanding the biological effect of acetylation.  

Protein phosphorylation cascades are well-known mechanisms by which cells respond in 

seconds to minutes to external stimuli. However, the time scales at which protein acetylation occur 

is poorly understood. Determining both stoichiometry and dynamic responses during cellular 

stimulation are key features to understand the role of protein acetylation at a site- and protein-

specific level. Additionally, understanding how acetylation changes occur across subcellular 

compartments can provide insights into the cellular mechanisms controlling dynamic acetylation. 

As a part of this study, we provide an improved method using data-independent acquisition (DIA) 

to quantify acetylation stoichiometry at the proteome level, which was benchmarked using cellular 

proteomes with defined acetylation stoichiometry. We employed this method to understand how 

acetylation and proteome dynamics are concomitantly modulated in cells across subcellular 

compartments. Two human cell lines were synchronized by serum depletion/refeeding and 

monitored for changes in the proteome and site-specific acetylation, revealing rapid and dynamic 

changes in acetylation and protein expression profiles. Quantifying acetylation stoichiometry 

dynamics will be a critical tool for prioritizing the ever-increasing number of detected lysine 

acetylation sites for further investigation and towards a deeper understanding of this regulatory 

modification. 
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Experimental Section 

Experimental Design and Statistical Rationale 

Samples: For NCE optimization, MCF7 cultured cells were acquired using eight NCE 

parameters as described. For the acetylation stoichiometry calibration curve, a cell culture stock 

of HEK293 cells was used to prepare the light and heavy acetyl-modified samples which are 

combined into eleven mixed samples at varying amounts as described. Steady-state and dynamic 

stoichiometry analysis (MCF7 and HCT116 cells) were measured in biological triplicate.  

Statistical tests: Various statistical tests including linear regression analysis and nonparametric 

analysis were performed throughout the study. Linear regression was performed on the 

stoichiometry calibration curve, while nonparametric tests were used to compare changes in the 

distribution of acetylation stoichiometry.  

 

Cell Culture conditions 

MCF7 and HEK293 cells were grown using DMEM supplemented with 10% FBS. For global 

acetylation stoichiometry and single amino acid analysis, MCF7 and HEK293 cells were harvested 

at ~80% confluency. Four hours prior to harvesting, cells were washed with PBS and replaced 

with fresh media. MCF7 and HEK293 cells were cultured for a total of 48 hours. 

For the serum stimulation experiments, MCF7 and HCT116 cells were grown in DMEM 

supplemented with 10% FBS to ~60% confluency. The cells were replenished with fresh media 

containing serum one hour prior to serum deprivation. The cells were then washed with PBS and 

replaced with fresh media without serum for 24 hours. After 24 hours, the 0 hour time point (no 

serum) was harvested and DMEM supplemented with serum was added to the other time points 

(15 min, 1, 2, or 4 hours). 
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All cells were harvested in 100 mM ammonium bicarbonate supplemented with 

acetyltransferase inhibitors (TSA, NAM, and sodium butyrate), protease inhibitors (PMSF, 

aprotinin, and leupeptin), and a phosphatase inhibitor cocktail (DOT Scientific). 

 

Sample preparation 

 We followed the procedure outlined in Lindahl et al, with the following exceptions 

described below60. 

Protein chemical acetylation and digestion 

Equal amount of protein (200 µg) was resuspended into 25-30 µL of urea buffer (8 M urea 

(deionized), 500 mM ammonium bicarbonate pH = 8.0, 5 mM DTT). Incubation steps throughout 

the sample preparation are carried out using the Eppendorf ThermoMixer® C. Sample was 

incubated at 60 °C for 20 minutes while shaking at 1500 RPM. Cysteine alkylation was carried out 

with 50 mM iodoacetamide and incubating for 20 minutes. Chemical acetylation of unmodified 

lysine residues was performed as previously described12,20,34. Briefly, ~20 µmol of the “light” 12C-

acetic anhydride (Sigma) or “heavy” D6-acetic anhydride (Cambridge Isotope Laboratories) was 

added to each sample and incubated at 60 °C for 20 minutes at 1500 RPM. The pH of each sample 

was raised to ~8 using ammonium hydroxide and visually checked with litmus paper. Two rounds 

of chemical acetylation were performed for each sample to ensure near-complete lysine 

acetylation. To hydrolyze any O-acetyl esters formed during the chemical acetylation, the pH of 

the sample raised to ~8.5 and each sample was incubated at 60 °C for 20 minutes at 1500 RPM. 

For protein digestion, the urea concentration of each sample was diluted to ~2 M by adding 100 

mM ammonium bicarbonate pH = 8.0 followed by addition of trypsin (Promega) at a final ratio of 

1:100. The sample was digested at 37 °C for 4 hours while shaking at 500 RPM. If a second 
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digestion using GluC (Promega) occurred, the urea concentration was further diluted to ~1 M using 

100 mM ammonium bicarbonate pH = 8.0 and digested with GluC (1:100) at 37 °C overnight 

while shaking at 500 RPM. Each sample was acidified by the addition of 15 µL of acetic acid.  

Digesting protein sample to single amino acids  

For complete digestion of proteins, which converts all unmodified lysine residues to free lysine, 

and all N-ε-acetylated lysine residue to acetyl-lysine, 20 μg of sample was diluted into 50 μL of 

digestion buffer (50 mM ammonium bicarbonate, pH 7.5, 5 mM DTT, in LC-MS grade water). A 

sample with 50 μL digestion buffer without protein was also included as a procedural blank. The 

samples were digested to single amino acids by treatment with three enzymes sequentially: First, 

samples were treated with 0.4 μg Pronase and incubated for 24 hr at 37°C. Then the Pronase 

activity was stopped by heating to 95°C for 5 min. After cooling down to ambient temperature, 

samples were then treated with 0.8 μg aminopeptidase and incubated at 37°C for 18 hr. 

Aminopeptidase activity was again stopped by heating samples to 95°C for 5 min and cooling 

down. Finally, samples were digested with 0.4 μg prolidase and incubated at 37°C for 3 hr. To 

extract the resulting single amino acids, 200 μL LC-MS grade acetonitrile (ACN) was added to 

each sample. The mixture was vortexed for 5 sec, spun at maximal speed for 5 min, and the 

supernatant was saved for analysis by LCMS. 

Offline High pH Reverse Phase (HPRP) Prefractionation 

Chemically acetylated peptides were resuspended into ~2mL of HPRP buffer A (100 mM 

Ammonium Formate pH = 10) and injected onto a pre-equilibrated Phenomenex Gemini® NX-

C18 column (5µm, 110Å, 150 x 2.0mm) with 2% buffer B (10% Buffer A, 90% acetonitrile). 

Peptides were separated with a Shimadzu LC-20AT HPLC system using a 2% - 40% buffer B 

linear gradient over 30 minutes at 0.6 mL/min flow rate, collecting 24 fractions throughout the 
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length of the gradient. Fractions were dried down using a speedvac and pooled by concatenation 

into 6 final fractions as described previously 61.  

Immunoblot Analysis 

Samples were denatured in SDS loading dye and 5 min boil. 20 μg of whole cell lysate were 

loaded on a Bolt 4-12% Bis-Tris Plus gel (Invitrogen), followed by transfer to PVDF. Membrane 

was blocked with 1% milk before being blotted with either anti-Phospho-Akt (Ser473) (CST 

#4060) or anti-Akt (pan) (CST #2920) 1:2,000 and imaged. Bands were quantified using Image 

Studio Lite (LI-COR Biosciences). 

 

Mass spectrometry 

Liquid chromatography 

Peptides were separated with a Dionex Ultimate 3000 RSLCnano HPLC using a Waters Atlantis 

dC18 (100 µm x 150 mm, 3µm) C18 column. The mobile phase consisted of 0.1% formic acid (A) 

and acetonitrile with 0.1% formic acid (B). Peptides were eluted with a linear gradient of 2 – 35% 

B at a flow rate of 700 nL/min over 90 minutes. Peptides were injected by nanoelectrospray 

ionization (Nanospray Flex™) into the Thermo Fisher Q Exactive™ Hybrid Quadrupole-

Orbitrap™ Mass spectrometer.  

Data-dependent acquisition mass spectrometry 

For data-dependent acquisition (DDA), the MS survey scan was performed in positive ion mode 

with a resolution of 70,000, AGC of 3e6, maximum fill time of 100 ms, and scan range of 400 to 

1200 m/z in profile mode. Data dependent MS/MS was performed in profile mode with a resolution 

of 35,000, AGC of 1e6, maximum fill time of 200 ms, non-overlapping isolation window of 2.0 
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m/z, normalized collision energy of 25, dynamic exclusion was set for 30 seconds, and a loop count 

of 20.  

Data-independent acquisition mass spectrometry 

For data-independent acquisition (DIA), the MS survey scan was performed in profile mode 

with a resolution of 70,000, AGC of 1e6, maximum fill time of 100 ms in the scan range between 

400 and 1000 m/z. The survey scan was followed 30 DIA scans in profile mode with a resolution 

of 35,000, AGC 1e6, non-overlapping 20 m/z window, and NCE of 25 or 30. For both DDA and 

DIA methods, the source voltage was set at 2000 V, capillary temperature at 250 °C, and S-lens 

RF = 50. 

LCMS analysis of single amino acids 

The abundances of free lysine, acetyl-lysine, and other amino acids from completely digested 

protein samples were analyzed using a Thermo Fisher Q Exactive™ Hybrid Quadrupole-

Orbitrap™ Mass spectrometer coupled to a Vanquish UHPLC system (Thermo). Samples are 

separated using a 5 μm polymer 150 2.1 mm SeQuant® ZIC®-pHILIC column, with the following 

gradient of solvent A (ACN) and solvent B (10 mM ammonium acetate in water, pH 5.5) at a flow 

rate of 0.3 mL/min: 0-2min, 10% solvent B; 2-14min, linearly increase solvent B to 90%; 14-

17min, isocratic 90% solvent B; 17-20min, equilibration with 10% solvent B. Samples are 

introduced to the mass spectrometer by heated electrospray ionization using a HESI II source. 

Settings for the ion source are: 10 aux gas flow rate, 35 sheath gas flow rate, 1 sweep gas flow 

rate, 3.5 kV spray voltage, 320°C capillary temperature, and 300°C heater temperature. Analysis 

is performed under positive ionization mode, with scan range of 88–500 m/z, resolution of 70 K, 

maximum injection time of 40 ms, and AGC of 1E6.  
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To quantify absolute levels of lysine and acetyl-lysine, an external calibration curve was run in 

the same sequence with the experimental samples. Lysine standard ranges between 10 to 200 μM, 

and acetyl-lysine standard ranges between 0.5 to 10 μM. Signal from procedural blank was 

subtracted from samples. 

 

Data Processing 

Generating 12C-AcK and D3-AcK Spectral Library 

The spectral library consists of a catalog of high-quality MS/MS fragmentation spectra resulting 

from data-dependent acquisition (DDA) MS runs. For the MCF7 and HCT116 stoichiometry, we 

performed DDA runs on three MCF7 lysate samples which were chemically acetylated with 12C-

acetic anhydride, digested with trypsin and GluC, followed by HPRP prefractionation (see above). 

Prior to MS analysis, iRT peptides (Biognosys) were spiked into each sample following 

manufacturer’s guidelines. Database search was performed using MaxQuant with Andromeda as 

the peptide search engine version 1.6.1.0 using lysine acetylation and methionine oxidation as 

variable modifications and cysteine carbamidomethylation as a fixed modification. Enzymes for 

digestion were set to trypsin, which cleaves after lysines and arginines, and GluC, which cleaves 

after glutamate in ammonium bicarbonate buffers62. We increased the maximum missed cleavages 

to 4, because our labeling scheme, which modifies all unmodified lysines, prevents cleavage from 

trypsin. PSM and Protein FDR were both set to 1% calculated by the target-decoy approach, per 

default settings. Decoy entries were created in MaxQuant by reversing the original protein 

sequences. Main search peptide mass tolerance was set to 4.5 ppm, per default settings. The DDA 

runs were searched against the Swiss-Prot reviewed sequence database downloaded from 

UniProtKB on 12/12/2017 (20244 entries). The MaxQuant search results were imported into 
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Spectronaut to build the 12C-AcK library. The 12C-AcK spectral library was then exported as a 

spreadsheet, specifically Biognosys' library format (.kit), from Spectronaut and imported into a 

custom spectral library modifier, which completes the spectral library for all combinations of light 

and heavy acetylated peptides. With this in silico approach to inflate the 12C-AcK library, every 

acetylated peptide precursor will be represented by 2n versions differing in the number and position 

of heavy/light acetylated lysine, where n is the number of acetylation sites in the peptide. The 

spectral library was completed with the corresponding precursor m/z values and fragment m/z 

values. The most intense fragment ions selected from the initial MS2 spectrum were cloned to the 

other peptide precursor versions. All peptide precursor versions will have identical retention time 

and hence iRT was also cloned. MaxQuant result files and inflated library can be accessed through 

ProteomExchange via the MassIVE repository (ProteomExchange: PXD014453; MassIVE: 

MSV000084029). 

DIA MS data analysis 

Data from DIA-MS was analyzed using Spectronaut 10. Thermo raw files were converted to 

HTRMS files with the Spectronaut Raw to HTRMS converter using the default settings and input 

into Spectronaut. The Spectronaut default settings for quantitation were used with slight 

modification: Identification-Qvalue score was set to 0.1 and Workflow-Unify peptide peaks were 

selected. This will cause Spectronaut to use the same integration boundaries for all light/heavy 

versions of one acetylated peptide within one LC-MS run. This change in the workflow will 

instruct Spectronaut to select for a given acetylated peptide precursor the best signal (by q-value) 

of the 2n versions in the spectral library (see above). With this workflow, Spectronaut will then 

transfer the integration boundaries of the best scoring peptide precursor to the other peptide 

precursors. Because all of the 2n peptide precursor versions only differ by the number of heavy 
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instead of light acetylated lysine the retention time is expected to be identical. The spectral libraries 

which were completed as described above for all the light/heavy peptide precursor versions were 

used with this workflow. A Spectronaut output file containing all the fragment ion peak areas along 

with the corresponding peptide and protein identification was exported and used to compute the 

lysine site stoichiometry. A list containing all the data categories used for downstream 

stoichiometry analysis is found in the supplemental information. 

Stoichiometry data processing 

Data processing was performed in R v3.5.0 (http://www.r-project.org/) using an in-house made 

R script, which is available in the supplementary information. The stoichiometry preprocessing 

pipeline consists of two major steps: quantifying fragment ion stoichiometry and natural 

abundance isotopic correction, as described below. R-scripts utilized to analyze the results 

presented here can be accessed through GitHub (DOI:10.5281/zenodo.3360892). 

Quantifying site-specific stoichiometry 

DIA MS measures multiple peptide fragment ion abundances so this approach allows for 

quantitation of multiple lysines within a peptide. Acetylation stoichiometry of unique lysine sites 

are quantified by matching light and heavy fragment ion pairs and using the equation: 

!"#$
!"#$%	!"#'

      Equation 1 

where XICL is the peak area of the light fragment ion and XICH is the peak area of the heavy 

fragment ion.  

Isotopic purity correction 

The mass shift of the light and heavy AcK peptides is 3 Da. This causes the M+0 peak of the 

heavy AcK peptide to overlap with the M+3 peak of the light AcK peptide. Therefore, we are 

correcting for the isotopic distribution overlap between the peptide pairs. This is done using an in-
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house R script as well as the R package, BRAIN v1.16.0 (Baffling Recursive Algorithm for 

Isotopic DistributioN calculations), available from Bioconductor, the open-source, software 

project (http://www.Bioconductor.org/)63. To correct for natural abundance of 13C isotope, the 

M+0 and M+I, where I represents the isotopic mass shift +1 or +3, were used to calculate the 

correction coefficient. 

Correction coefficient = (

(*	+	,*	+	-)
    Equation 2 

The correction coefficient is used to calculate the correction value:  

Correction value = XICL * correction coefficient  Equation 3 

where the XICL is the peak area of the light fragment ion. Finally, the corrected heavy peak area 

(CorrXICH) is calculated: 

CorrXICH = XICH - Correction value   Equation 4 

where the XICH is the peak area of the heavy fragment ion. The corrected stoichiometry is 

quantified using equation 1, substituting with CorrXICH. 

MSstats  

Protein abundance summarization was performed using MSstats v3.12.0 with the output of 

Spectronaut as the input. The function “SpectronauttoMSstatsFormat” was used with the following 

arguments: intensity set to “PeakArea”, filter_w_Qvalue set to TRUE, qvalue_cutoff set to 0.01, 

useUniquePeptide set to TRUE, fewMeasurements set to “remove”, removeProtein_with1Feature 

set to FALSE, and summaryforMultipleRows set to “max”. The dataProcesses function was then 

performed using the default arguments.  

 

NCE Optimization 
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To quantify site-specific acetylation stoichiometry from peptides containing multiple lysines, 

the fragmentation spectra of precursor ions must contain a high b- and y-ion coverage. To this end, 

we compared and optimized the number of peptide spectral matches (PSMs) as well as b- and y-

ion coverage of MCF7 peptides (chemically acetylated with 12C-acetic anhydride followed by 

trypsin and GluC digestion) with a Q-Exactive MS using varying NCE settings (15, 20, 25, 30, 35, 

40, 45, 50). For all NCE conditions, precursors between 400 - 1200 m/z were selected for 

fragmentation. MS1 resolution was set to 70,000, 3e6 target AGC, and 100 ms max IT in profile 

mode. MS2 resolution was set to 35,000, 1e6 target AGC, 200 ms max IT in profile mode with 

15-sec dynamic exclusion. Database search was performed using MaxQuant version 1.5.4.1 

followed by data analysis in R. 

 

Stoichiometry curve 

We determined the accuracy and precision of the stoichiometry method by generating an 11-

point stoichiometry curve using a complex sample. For this, we used a HEK293 lysate that was 

grown using standard culture conditions and harvested by centrifugation. The packed cell volume 

was resuspended using urea buffer (6-8M urea, 100mM ammonium bicarbonate pH = 8.0) and 

lysed by sonication. Protein concentration was measured using Bradford reagent (Bio-Rad).  

To quantify stoichiometry ranging between 1-99%, we varied the amount of starting material to 

be chemically acetylated with 12C-acetic anhydride or D6-acetic anhydride using a total of 200 µg 

of protein for each stoichiometry point. For example, to measure a sample as 10% acetylated, we 

labeled 20 µg of HEK293 lysate with 12C-acetic anhydride and 180 µg of HEK293 lysate with D6-

acetic anhydride. The starting protein amounts were varied to generate stoichiometries of: 1, 5, 10, 

20, 40, 50, 60, 80, 90, 95, and 99% acetylation. Upon chemical acetylation, the sample was pooled 
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together, digested using trypsin and we performed an offline HPRP prefractionation as outlined 

above.  

 

Bioinformatics 

Subcellular localization assignment 

To assign protein subcellular localization, we used the MitoCarta64,65 and Uniprot 

(http://www.uniprot.org/) databases. For the “Mitochondrial” assignment of proteins, we used the 

Mitocarta database. Additionally, we used “Subcellular location” or “GO - Cellular component” 

from the Uniprot database to assign “Mitochondrial”, “Nuclear”, and “Cytoplasmic” pools. Other 

subcellular locations, such as endoplasmic reticulum, Golgi apparatus, cell membrane, etc., were 

assigned to the “Nuclear” fraction due to the likelihood that these cellular compartments, during 

differential centrifugation, would sediment in the “Nuclear” spin, which occurs at 1000 xg.  

Quantitative Site set functional Score Analysis (QSSA) 

The intersection of the KEGG pathway map66 and proteins in the spectral library detected with 

< 1% FDR was used for the gene set background. Acetylation coverage for each (p) pathway was 

calculated as the number of acetyl sites identified (nack) over the total number of lysines in the 

pathway (nk), counted using protein sequences from Uniprot. The extent of acetylation was taken 

into account by summing the acetylation stoichiometry (s) across all conditions and all sites in 

each pathway. To allow for combining acetylation coverage and stoichiometry, the standard score 

of each quantity was taken. The overall pathway score was then calculated as the sum of the 

individual z-scores. 

𝑄𝑆𝑆𝐴2 = 𝑧 56789
6:

; + 𝑧=∑ 𝑠@@∈2 B   Equation 5 

Functional analysis 
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Functional annotation of enriched gene ontology (GO) terms was assessed using DAVID 

v6.845,46. For enrichment analysis, the background was set to all the proteins identified in the DDA 

spectral library totaling 2400 unique protein IDs. The list of proteins with significantly changing 

acetylation sites in both serum-stimulated MCF7 and HCT116 cells were analyzed using DAVID 

for the following GO terms: GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and 

GOTERM_MF_DIRECT. GO term fold-enrichment was plotted as a bar graph with the 

corresponding p-value in overlaying, white text. Terms were grouped according to DAVID 

Functional Annotation Clustering. 

STRING Network analysis 

The underlying interaction network was downloaded from the STRING database (version 

11.0)47. The thickness of edges in the STRING network display interaction confidence. Clusters 

of interactions were determined using k-means clustering with a set number of four clusters. 

 

Results 

DIA acetylation stoichiometry method optimization 

We previously reported a method to determine lysine acetylation stoichiometry across an entire 

proteome20. This method employed an isotopic chemical acetylation approach to label all 

unmodified lysine residues within a sample and, upon proteolytic digestion coupled to LC-

MS/MS, has been utilized to quantify proteome-wide acetylation stoichiometry in various 

biological conditions20–23 as well as in in vitro, nonenzymatic acetylation kinetics12. This method, 

however, had some limitations that we sought to address before utilizing this method to investigate 

acetylation dynamics. For example, 1) stoichiometry was measured using precursor-based 

quantification of the light and heavy peptide pairs. Therefore, signal interference in either the light 
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or heavy channel could distort the 

stoichiometry quantification. 2) stoichiometry 

was quantified at the peptide level. Peptides 

can contain multiple lysine residues, so it was 

not possible to determine the contribution of individual lysines towards the observed 

stoichiometry. 3) software to analyze stoichiometry data is not widely available.  

Here, we utilized an improved method to quantify acetylation stoichiometry in human cells by 

combining peptide prefractionation, data-independent acquisition (DIA) mass spectrometry, a 

Figure 1: DIA acetylation stoichiometry 
workflow(A) Overall workflow for 
quantifying acetylation stoichiometry. A 
spectral library containing all possible 
light and heavy fragment ions is generated 
by 1) chemical acetylation of a sample 
using D0-acetic anhydride, 2) digestion 
using trypsin and GluC, 3) high pH reverse 
phase (HPRP) fractionation, 4) DDA mass 
spectrometry followed by a MaxQuant 
database search. The spectral library is 
imported into Spectronaut and using an 
external standalone software tool, the 
spectral library is 5) modified to contain 
all the heavy acetyl-lysine fragments. To 
quantify stoichiometry, the sample is 1) 
chemically acetylated using D6-acetic 
anhydride, 2) digested, 3) pre-fractionated 
4) analyzed using DIA mass spectrometry 
and 6) analyzed in Spectronaut for 
targeted extraction using the custom light 
and heavy acetyl-lysine spectral library. 
(B) Diagram illustrating MS2 spectra for 
the Histone H3 peptide containing lysine 
K18Ac and K23Ac. The fragments b2-b3 
are specific for K18 and y4-y8 are specific 
for K23. The fragments b6-b8 are 
ambiguous as they contain K18Ac and 
K23Ac, while the fragments y1-y3 contain 
no acetyl lysine information. 
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novel spectral library generation procedure (Figure 1A). This method is applicable to both cell 

culture and tissue models because this workflow does not require metabolic labeling. A protein 

sample, extracted from either cell culture or tissue, is chemically acetylated using isotopic D6-

acetic anhydride and digested with trypsin and GluC. The sequential digestion of the acetyl-

proteome generates shorter peptides for MS analysis. Peptides are then pre-fractionated offline 

using high pH reversed-phase (HPRP) chromatography, analyzed using nano-LC-MS/MS in DIA 

mode and analyzed using Spectronaut (Biognosys)24–27 (Figure 1A-right side, Figure S1). A 

novel aspect of the method includes a project-specific spectral library that is generated from a D0-

acetic anhydride (light isotope) modified sample. Acetyl peptides are pre-fractionated using HPRP 

and acquired in data-dependent acquisition (DDA) mode. The spectral library, which includes light 

acetyl peptides (D0-AcK), is imported into Spectronaut. To account for both light and heavy acetyl-

lysine fragment ions in the spectral library, a novel, standalone software was developed to be used 

with Spectronaut, which generates the heavy labeled (D3-AcK) fragment ions in silico from the 

light spectral library (Figure 1A-left side). This process ensures that for a given peptide all light 

and heavy fragment ions are represented in the spectral library. This is a critical step for deeper 

coverage of the proteome, and supports a more rigorous analysis that requires both isotopic pairs 

to be quantified before stoichiometry is calculated. Combining offline pre-fractionation and DIA 

has several advantages that addresses unique limitations from the original study, as has been 

previously discussed23,24,27–30. HPRP prefractionation reduces interferences caused by coeluting 

peptides and has the added benefit of also increasing the depth of the acetylome coverage31. DIA 

analysis uses all quantified light and heavy fragment ions in MS2 which yields more accurate 

quantification than using MS1 signal. Additionally, stoichiometry can be localized to a specific 

lysine site even when multiple lysines are present on a peptide (Figure 1B). 
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To assess the accuracy and precision of the improved workflow, a proteome-wide acetylation 

stoichiometry calibration curve was generated. For this analysis, a proteome sample of HEK293 

cells was chemically acetylated with either light (12C-) or heavy (D6-) acetic anhydride, which 

Figure 2: Benchmarking the DIA stoichiometry workflow (A) Diagram of standard curve 
samples generated by combining fully heavy labeled (green) peptides with fully light labeled 
(red) peptides at the specified ratios. (B) Correction of natural abundance isotopic envelope 
between light and heavy acetyl peptides. Red peaks represent light acetyl containing fragment 
ions and the green peaks represent heavy acetyl fragment ions. Isotopic overlap is much more 
pronounced at high stoichiometry. (C) Boxplot of the proteome-wide stoichiometry distribution 
before and after natural abundance isotope correction. (D) Density plot of the Log10-
transformed (light/heavy) peak area for each input stoichiometry condition. (E) Linear 
regression analysis of all acetyl lysine sites (> 9 data points, n = 616) with the color of each line 
corresponding to the R2 value. (F) Distribution of Adjusted R2 values for the acetyl lysine linear 
regression analyses. 
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were then combined at varying ratios and subjected to the DIA workflow (Figure 2A). A cell-

based proteome was used for method validation over standard peptides, which had several 

advantages: 1.) The use of standard peptides at this scale would be cost prohibitive. 2.) The 

combined acetyl-proteomes results in comprehensive acetylation stoichiometry, mimicking 

experimental samples. 3.) The level of acetylation can be modulated to encompass a wide range 

of stoichiometries (1% - 99%) providing limits of sensitivity and quantification. A caveat of using 

a cell-based workflow is that endogenous acetylation can potentially confound the results, which 

can lead to overestimation of some lysine sites. However, because the vast majority of lysine sites 

display negligible acetylation, this validation approach can be used to assess the accuracy and 

precision of the stoichiometry workflow. 

Due to the 3 Da mass shift between the light and heavy acetyl peptide fragment ions, high 

acetylation stoichiometry will lead to an underestimation of stoichiometry due to increased 

intensity of the M+3 natural abundance isotopic peak (Figure 2B, Figure S2). To account for this, 

a natural abundance correction was applied to all heavy acetyl lysine fragment ions. This correction 

was performed by subtracting the M+3 isotopic peak of the light acetyl lysine fragment ion from 

the M+0 isotopic peak of the heavy acetyl lysine fragment ion (Figure 2B, Figure S2). This global 

correction improved the precision of the stoichiometry quantification, especially in the higher 

stoichiometry values (Figure 2C). An alternative method to assess the precision of the 

quantification is to measure the ratio of the light and heavy fragment ions. Quantification of the 

light/heavy ratios corresponding to stoichiometry profiles between 20 and 80% displayed the 

highest precision (Figure 2D). This is due to the abundance values of the light and heavy fragment 

ions near 1:1 ratio. In contrast, stoichiometries at the extreme ends of the curve (< 5% and > 95%) 

displayed the lowest precision since quantitation in these conditions requires the measurement of 
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fragment ions greater than 20-fold difference (Figure 2D). In order to calculate stoichiometry, 

both the heavy and light fragment ions must be observed, which can be challenging for the lowest 

stoichiometry if the light fragment ion is below the limit of detection. The heavy fragment ions or 

light fragment ions are summed independently before calculating the stoichiometry. This allows 

the higher intensity, higher confidence fragment ions to strongly influence the stoichiometry 

calculation, rather than biasing the calculation by equally weighting high and low abundance 

fragment ions. The stoichiometry curve analysis quantified stoichiometry for ~1400 acetyl lysine 

sites. The number of acetyl sites quantified in at least nine conditions was 616. Linear regression 

analysis using acetyl lysine sites quantified in at least nine conditions shows high reproducibility 

of this method (Figure 2E) with a median R2 of 0.94, after correction for multiple regression 

analysis (Figure 2F). This global analysis with well-defined input stoichiometries highlights the 

quantitative nature of this method and is applicable to query acetylation stoichiometry of an entire 

proteome. 

The improved stoichiometry workflow enables the quantitation of different acetyl-lysines from 

a single peptide, removing the ambiguity of site quantification. As an example, the histone H3 

peptide (containing K18 & K23), KAcQLATKAcAAR, has fragment ions that are unique to each 

lysine site. K18 is quantified by the fragment ions b2-b3, while y4-y8 are specific for K23 (Figure 

1C). Obtaining high quality and high coverage of b- and y-ions is essential for quantification of 
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multiple lysines on the same peptide. Therefore, the normalized collision energy (NCE) was 

optimized for higher energy collisional dissociation (HCD) fragmentation 32. Peptide spectral 

matches (PSMs) were evaluated (Figure 3A) as well as the global b- and y-ion coverage (Figure 

3B) across a wide range of NCEs (15-50 in 5-unit increments) using a chemically acetylated, 

trypsin and GluC digested proteome. A low number of PSMs with a c-terminal lysine are observed 

(blue bar). These peptide matches could arise from trypsin cleavage of unmodified lysines as well 

as proteins with a c-terminal lysine. However, comparing the frequency of lysine peptides to c-

terminal glutamate (red) and arginine (green) peptides demonstrates that the chemical acetylation 

of the proteome progresses to near completion. To determine the global b- and y- fragment ion 

coverage, each fragment ion identified for a given PSM was counted and normalized to the peptide 

length. As y-ions increase with higher NCE, the proportion of b-ions begin to decline at a similar 

rate (Figure 3B). The NCE 25 was used to balance the frequency of b-ions, y-ions, as well as the 

number of PSMs (Figure 3A).  

Figure 3: Optimization of instrument parameters for increased fragment ion coverage (A) 
Peptide spectral matches (PSMs) at varying normalized collision energy (NCE) for trypsin (c-
terminal arginine and lysine) and GluC (c-terminal glutamate) digested peptides. The data 
consists of an MCF7 whole cell lysate labeled with 12C-acetic anhydride, digested with trypsin 
and GluC and analyzed in DDA mode using varying NCE settings. (B) Global fragment ion 
coverage for b- and y-ions of the data in A.  
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Subcellular distribution of acetylation stoichiometry 

There are few studies measuring (or estimating) acetylation stoichiometry in mammalian 

systems21,22,33. Thus, a comprehensive analysis of the acetylation stoichiometry distribution across 

the cell remains uncertain. To address this, we first utilized the current quantitative stoichiometry 

approach using breast cancer cell line MCF7 and quantified a wide range of stoichiometry (< 1% 

up to 99%) with high correlation between acetyl lysine fragment ions (red) and peptides (blue) 

between three biological replicates (Figure 4A). Quantifying acetylation stoichiometry in MCF7 

cells shows the distribution of acetylation skewed towards low stoichiometry (Figure 4A). To 

determine if the distribution of stoichiometry varies across subcellular regions, we next grouped 

each protein into known subcellular localization based on Uniprot localization and compared the 

acetylation stoichiometry distribution between cytoplasmic and nuclear localizations. Using this 

grouping and non-parametric analysis, the nuclear fraction contains more acetylation sites with a 

higher stoichiometry compared to the cytoplasmic fractions (p = 0.00027) (Figure 4B). To validate 

these findings, an orthogonal approach to quantify subcellular acetylation levels was utilized. 

Subcellular fractionation was performed on MCF7 cells by differential centrifugation and acid 

extraction to enrich for histone, nuclear non-histone, mitochondrial, and cytosolic proteins. Each 

fraction was treated with a combination of proteases to completely digest proteins of each 

subcellular compartment to individual amino acids. The relative abundance of acetyl-lysine and 

unmodified lysine can be measured using mass spectrometry34 (Figure 4C). Acetyl-lysine was 

significantly more abundant on histone and nuclear proteins compared to the cytoplasm and 

mitochondrial fractions (Figure 4D) corroborating the peptide-level stoichiometry results (Figure 

4B). 
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To identify biological processes enriched in acetylation, a biological pathway analysis tool recently 

Figure 4: Nuclear-localized proteins have the highest lysine PTM abundances (A) Scatterplot 
matrix of acetylation stoichiometry across the three biological replicates of MCF7 cells. 
Spearman correlation is displayed for each pairwise comparison of fragment ions (red) acetyl-
lysine site stoichiometry (blue). (B) QSSA heatmap showing enriched KEGG pathways. 
Acetylation stoichiometry was binned into quartiles and used as input for the QSSA. (C) 
Acetylation stoichiometry distribution across cellular compartments. Compartments were 
grouped in silico as cytoplasmic or nuclear. Statistical analysis was performed using the posthoc 
Kruskal-Nemenyi test. Colored circles represent individual subcellular location assignment 
based on Uniprot location and mitocarta database 64,65. (D) Workflow for quantifying single 
amino acid abundances of modified and unmodified lysines of enriched subcellular fractions. 
Each fraction is digested with a cocktail of proteases to generate single amino acids. Amino 
acids are analyzed by MS to quantify modified lysine / unmodified lysine as a measure of global 
subcellular stoichiometry. (E) Acetyl-lysine:lysine ratio across cytoplasmic, mitochondrial, 
histone, and non-histone proteins. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2020. ; https://doi.org/10.1101/472530doi: bioRxiv preprint 

https://doi.org/10.1101/472530
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

developed termed quantitative site set functional score analysis (QSSA) was used to analyze the 

acetylation stoichiometry dataset35. This tool was developed for PTM pathway enrichment analysis 

taking into account the number of modified sites as well as the fold-change across conditions. 

QSSA was adapted for acetylation stoichiometry datasets. The stoichiometry data from MCF7 

cells was divided into quartiles (for stoichiometry ranges, see Materials and Methods). Each 

quartile was used as input for the QSSA. To correct for any sample preparation or mass 

spectrometry analysis biases, QSSA enrichment scores were calculated against a background of 

proteins and acetyl-lysine sites identified in the spectral library. Gene Ontology processes that 

were enriched in this experiment include Metabolic Pathways, Ribosome, Spliceosome, and 

Protein Processing in Endoplasmic Reticulum (Figure 4E). Enrichment of metabolic pathways is 

a hallmark of acetylation studies3,35,36. Proteins that form part of the ribosome are N-ε-17,37 and N-

α-acetylated38. Interestingly, decreases in N-α-acetylation of ribosomal proteins correlate with a 

decrease in 80S ribosome assembly and cell growth38 demonstrating a functional link, however, it 

remains unknown whether N-ε-acetylation can regulate ribosomal function or what time scales are 

needed to observe changes in ribosomal acetylation.  

 

Acetylation and proteome dynamics 

While many studies focus on acetylation changes over longer periods of time, days in cell culture 

and months in animal models, understanding the dynamics of acetylation over shorter time scales 

(minutes and hours) can give critical insight into the mechanisms and functionality of acetylation. 

With time-course information, the relative timing, direction, and magnitude of the acetylation 

changes can help to distinguish change as primary or secondary responses. Levels of acetylation 

are dictated through additive mechanisms that involve acetyltransferase activity, nonenzymatic 
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reactions and increased acetyl-CoA levels, while removal mechanisms involve deacetylase activity 

and protein degradation8,36,39. Therefore, understanding the dynamics of not only protein 

acetylation, but also proteome dynamics will be important to understand the interplay between 

these two processes. The majority of studies quantifying acetylation dynamics utilize an antibody 

based workflow to enrich for the acetyl-peptides16,17. Using an enrichment strategy, it is necessary 

to account for changes in protein abundance in order to accurately report changes in acetylation 

by analyzing a sample of the proteome which was not subjected to the immuno-enrichment 

procedure. The methods described here represent a label-free DIA workflow that does not require 

an enrichment step. Instead, all free lysine residues are chemically modified using acetic 

anhydride, a step which is analogous to the alkylation of cysteine residues with iodoacetamide. 

Therefore, precursor abundance data collected from the acetylation stoichiometry workflow can 

also be used to estimate protein abundance using label-free quantification techniques.  

 To initiate a robust stimulation of MCF7 cells, 24 hr serum-starved cells were activated with 

serum and harvested at 0, 1, 2, 4 hours (Figure 5A). Acetylation stoichiometry and protein 

abundance were determined as in Figure 1A. This design has the benefits of synchronizing cells 

upon serum starvation followed by robust changes in signaling pathways that occur upon serum 

replenishment40–42. To verify activation of major signaling pathways, we monitored the level of 

AKT S473 phosphorylation (Figure 5B, C) and S6 ribosomal protein S235/236 phosphorylation 

(Figure S3).  

Acetylation stoichiometry was quantified using the described DIA-MS approach followed by a 

pattern recognition analysis using fuzzy c-means clustering43. Clustering analysis identified four 

unique clusters where site-level acetylation dynamics revealed distinct profiles (Figure 5D). Over 

two-thirds of the acetylation sites identified in this clustering analysis were found in clusters 1 and 
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3 which display rapid changes upon growth factor stimulation. These clusters correspond to 

acetylation levels that rapidly increased and returned to pretreatment baseline levels (Cluster 1) as 

well as trends where acetylation rapidly decreased and remained low (Cluster 3), respectively. 

Protein abundance was determined by label-free quantification using MSstats in conjunction with 

Figure 5: Acetylation and protein dynamics (A) Diagram of experimental approach to quantify 
acetylation stoichiometry dynamics. (B) Immunoblot of phosphorylated AKT S473 (top) and 
AKT (bottom). (C) Quantitation of the immunoblot. Statistical analysis was performed using a 
t-test. (D) Time-course clusters of acetylation stoichiometry dynamics by fuzzy c-means 
clustering. (E) Time-course clusters of protein abundance dynamics by fuzzy c-means 
clustering. (F) QSSA heatmap showing enriched KEGG pathways. Acetylation stoichiometry 
was separated by clusters and used as input for the QSSA. (G) Barplot quantifying the 
frequency of acetylation dynamic clusters within each protein dynamics cluster. 
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the chemically acetylated proteome sample44 followed by the clustering analysis using fuzzy c-

means (Figure 5E)43. QSSA analysis of the serum-stimulated acetylation stoichiometry dataset 

identified biological processes that are enriched in each of the acetylation clusters (Figure 5F). 

Acetylation clusters 1 and 2, which exhibited rapid increases in acetylation stoichiometry within 

the first two hours were highly enriched for Metabolic Pathways. Cluster 4, which contained 

acetylation sites that more slowly increased over time, was highly enriched for the Ribosome.  

To investigate possible links between protein levels and acetylation dynamics, the trends of 

acetylation were compared within the protein clusters (Figure 5G). For example, there is strong 

overlap between acetylation stoichiometry cluster 3 within the protein clusters 2 and 4. This 

demonstrates that there is a subset of sites that have decreased acetylation stoichiometry with 

increasing protein abundance. This particular overlap of dynamics could be due to an increase in 

protein abundance without increased lysine acetylation, which would result in a trend showing a 

decrease in acetylation stoichiometry. Whereas, increases in lysine acetylation when protein 

abundance also increases must occur through active acetylation.  

 

Coordinated acetylation dynamics in diverse human cell lines 

The results from MCF7 cells suggest protein acetylation is dynamically controlled in a model of 

growth factor stimulation, and that major metabolic and cellular pathways are targets of these rapid 

acetylation changes. To further understand acetylation dynamics and determine if the serum-

stimulated changes are conserved across cell types, the serum starve-replete cell culture model was 

applied to a colon cancer cell line, HCT116 (Figure 5A). Acetylation stoichiometry was quantified 

using the DIA-MS approach at 0 hours (no serum), 15 minutes, 1, 2, and 4 hours post-serum re-
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addition. The total number of quantified acetylation sites in the HCT116 experiment was 3818, 

which is comparable to the 4310 acetylation sites quantified in the MCF7 experiment. 

Interestingly, there was a strong overlap of quantified acetylation sites across the two 

experiments, 3143 sites had quantifiable stoichiometry in both experiments resulting in a ~63% 
Figure 6: Coordinated acetylation dynamics in diverse cell lines, MCF7 and HCT116 (A) Venn 
diagram of quantified acetylation sites in serum-stimulated MCF7 and HCT116 cells. (B) Venn 
diagram of significantly changing acetylation sites (significance calculated using one-way 
ANOVA analyses) between MCF7 and HCT116 cells. (C) DAVID GO Term enrichment 
analysis of the proteins significantly changing in both MCF7 and HCT116 cells. Bar graphs 
represent fold enrichment with p-values in white text, and terms are grouped by similarity. (E) 
STRING network analysis of robustly (≥ 5%) and significantly changing sites in both 
experiments. Color of nodes represent cluster from k-means clustering in STRING and edges 
represent the confidence of the interaction. (F) Time-course clusters of acetylation 
stoichiometry dynamics by fuzzy c-means clustering. 
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overlap (Figure 6A). To identify and understand which acetylation sites are dynamic in both 

experiments, we identified which acetylation sites are significantly changing over time using one-

way analysis of variance (ANOVA). There were 647 and 1037 acetylation sites in MCF7 and 

HCT116 cells, respectively, significantly changing over time (p-value ≤ 0.05) with 228 sites 

significantly changing in both experiments (Figure 6B). Observing dynamic acetylation on the 

same lysine site in diverse cell lines suggests functional conservation. Examples of overlapping 

acetylation sites are Mitochondrial fission 1 protein (FIS1) K89 and Sulfiredoxin (SRXN1) K116. 

Both of these acetylation sites experienced rapid increases in acetylation in response to serum 

stimulation, a 30-40% increase at FIS1 K89 and a 25-60% increase at SRXN1 K116, which was 

maintained at a high level throughout the time course.  

In addition to identifying the proteins and sites significantly changing in both experiments, 

determining the pathways similarly regulated between cell lines was an important goal. Therefore, 

we used DAVID Bioinformatics Functional Annotation Tool to identify GO term enrichment in 

the overlapping dynamic acetylation sites45,46. This enrichment was calculated against a 

background of identified proteins in our spectral library to correct for any sample biases. Grouping 

similar GO Terms together, we found that terms associated with cell junction, translation, protein 

folding, and splicing were enriched (Figure 6C). Furthermore, we took the most robustly changing 

sites in the overlap, ≥ 5% change up or down relative to the pre-stimulation time point and 

performed network analysis using STRING (Figure 6D)47. K-means clustering of the resulting 

network demonstrated three main clusters of proteins that correlated with the pathway enrichment 

analysis. The clusters generally encompassed splicing and RNA-binding proteins, translational 

machinery, and proteins involved in maintaining protein homeostasis.  
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Lastly, we used the same fuzzy c-means clustering to identify acetylation dynamic patterns in 

the serum-stimulated HCT116 cells (Figure 6E). Interestingly, similar acetylation trends in 

HCT116 cells were also observed in the MCF7 cells (Figure 5D). We identified several clusters 

with rapid changes in acetylation (clusters 1, 3, and 4) and one cluster with a delayed acetylation 

response (cluster 2). When we overlaid the pathway enrichment analysis onto the cluster analysis, 

we found that RNA metabolic processes, such as splicing and translation, had more sites that 

increased in acetylation over time (Figure 5D – clusters 1 and 4, and Figure 6E – clusters 1, 2, 

and 3). Cell-cell junction annotated proteins demonstrated more sites whose acetylation decreased 

over time with growth factor stimulation (Figure 5D – cluster 3 and Figure 6E – cluster 4). 

 

Discussion 

Integrated stoichiometry workflow 

In this study, we have developed and utilized an improved DIA mass spectrometry method to 

quantify acetylation stoichiometry and investigate rapid acetylation dynamics in cells in response 

to serum stimulation. Understanding the speed and magnitude of protein acetylation changes on 

shorter timescales (minutes and hours) provide new insights into the cellular mechanisms of 

acetylation and help to prioritize specific sites for functional investigation. As discussed earlier, 

this improved method addresses limitations of our previously developed DDA method (20). Here, 

we integrated the acetylation stoichiometry workflow with targeted DIA analysis, which allows 

identification and quantification of light and heavy acetyl-lysine fragment ions, enabled by a novel 

spectral library that contains all light and heavy acetyl-lysine feature pairs. Using this method, we 

demonstrate accurate and reproducible analysis of dynamic protein acetylation in different cell 

lines and highlight similar activated pathways upon serum stimulation. 
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Recently, Choudhary and Colleagues developed an orthogonal method to quantify acetylation 

stoichiometry30,33,48, which incorporates a heavy SILAC labeled proteome subjected to partial 

chemical acetylation, combined with an experimental sample by serial dilution, trypsin digested, 

followed by acetyl-lysine enrichment and MS analysis. Stoichiometry quantification is assessed 

by comparing the SILAC ratio across the dilution series. Validation of this approach was 

performed using AQUA peptides, which agreed with their stoichiometry calculation30, when 

stoichiometries were less than 10%. Additionally, the authors demonstrate higher quantification 

accuracy for peptides with very low stoichiometry (< 1%) and higher error rates with higher 

stoichiometry (> 1%). Therefore, the two strategies developed for quantifying acetylation 

stoichiometry by Choudhary et al. and our current study, represent orthogonal methods for 

accurately quantifying low and high acetylation stoichiometry, respectively.  

Acetylation dynamics and mechanistic implications 

In this study, rapid acetylation dynamics were investigated using serum stimulation to initiate a 

major transcriptional, translational, and metabolic response49. Analysis in two different human cell 

lines revealed that acetylation changes occur on time-scales (minutes) that rival those observed via 

phosphorylation-dependent signaling50,51. Rapid changes in acetylation included groups of sites 

that increased and groups of sites that decreased, many with similar kinetic profiles. Notably, many 

other sites showed no significant change across the four-hour time-course. The majority of 

acetylation sites that decreased rapidly were from proteins that increased in abundance, as would 

be predicted from newly translated, unacetylated proteins under serum stimulation52. Most 

importantly, lysine sites that exhibited rapid increases in acetylation are candidates for 

acetyltransferase control and functional regulation. The results presented here, enabled by a robust 

MS method, provide a critical resource for investigators studying the regulation of these pathways. 
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Acetylation stoichiometry distribution in the cell 

One of the most interesting observations from this study is that the highest stoichiometry and 

dynamics occur on proteins that exist in subcellular compartments where acetyltransferases are 

known to reside. In continually serum-fed MCF7 cells, we observed a significantly larger 

proportion of proteins with higher acetylation stoichiometry within the nuclear compartment 

(Figure 4C), which was corroborated by a separate method (Figure 4D). Additionally, nuclear-

localized proteins displayed the most dramatic changes upon serum stimulation. Nuclear localized 

proteins, such as transcriptional and post-transcriptional processing factors, exhibited rapid 

increases in acetylation in both MCF7 and HCT116 cells. For example, we observed increases in 

acetylation stoichiometry ranging from 8-30% over the first hour on several splicing factors such 

as U4/U6.U5 tri-snRNP associated protein 1 (SART1) at K147, RNA binding-protein 8A 

(RBM8A) at K114, and heterogeneous nuclear ribonucleoprotein H3 (HNRNPH3) at K97. Given 

that these proteins display increased acetylation under pro-growth conditions and are localized to 

the nucleus where acetyltransferases reside, we predict that these sites are enzymatically regulated 

and functionally important for increasing basal splicing rates or for preferentially affecting certain 

types of splicing reactions. Our data provide a novel roadmap for investigating nuclear acetylation 

of non-histone proteins and suggest that acetyltransferases play a critical function well beyond 

histone acetylation.  

Outside the nucleus, we observe dynamic acetylation across other cellular pathways known to 

be regulated during serum stimulation. We observed high enrichment for proteins involved in 

translation, including increases in acetylation on ribosomal proteins such as RPL3 at K103 and 

K155 and RPL7 at K77 (Figures 6D and 6E). Pro-growth increases in protein synthesis is a major 

cellular response to serum stimulation52. A known mark of actively translating ribosomes is 
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Ribosomal protein S6 phosphorylation. The acetylation of S6 mimicked the pattern of the MCF7 

cluster showing increased but slower acetylation kinetics (Figures 5C and 5D)53. Interestingly, 

this same cluster of acetylation sites was enriched for the Ribosome. Taken together with the 

contrasting observation that most newly translated proteins are unacetylated, increased acetylation 

of ribosomal proteins is positively associated with translation and would be predicted to be 

catalyzed by acetyltransferases54. 

Another cellular pathway known to be affected by serum stimulation is mitochondrial fission 

and fusion, in which mitochondria transition between being highly fragmented in the quiescent 

state to more tubular structures as cells approach the G1-S transition55. On one protein involved in 

this process, mitochondrial fission protein 1 (FIS1) we observed large, rapid increases in 

acetylation at K89. FIS1 is localized to the cytoplasmic face of the mitochondrial outer membrane, 

therefore this site is likely to be enzymatically regulated by cytoplasmic acetyltransferases. 

Acetylation of FIS1 K89 might inhibit mitochondrial fission, potentially through disrupting 

interactions with other fission machinery such as Dynamin-1-like protein (DNM1L)56. Lastly, we 

observed dynamic protein acetylation on proteins related to protein homeostasis, particularly ER-

localized proteins. It was recently shown that the lysine acetyltransferases, NAT8/NAT8B, are 

localized in the lumen of the endoplasmic reticulum and function to acetylate properly folded 

proteins as proteins traverse through the secretory pathway57. Acetylation by NAT8/NAT8B is 

proposed to signal correctly folded proteins and function in quality control. Collectively, the strong 

trend in these results suggest that dynamic protein acetylation occurs in subcellular compartments 

with known, localized acetyltransferases. The existence of bona fide protein acetyltransferases in 

the mitochondrial matrix is the subject of debate9–11. While acetylation is prevalent in 

mitochondria5,35,36,58,59, the considerably lower mean stoichiometry and no apparent kinetic trends 
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in response to growth factor stimulation suggest that widespread enzyme-catalyze acetylation is 

not a major mechanism for matrix proteins. The method and results described in this study provide 

a valuable resource to investigate regulatory acetylation and as a rich data set for investigators to 

now directly test the role of acetylation in a pathway of interest.  
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The mass spectrometry raw files, spectral libraries, and the result files from MaxQuant and 

Spectronaut used in this study have been deposited to the ProteomeXchange Consortium via the 

MassIVE partner repository and can be accessed through either the ProteomExchange dataset 

identifier PXD014453 or MassIVE ID MSV000084029. 

The R code used to calculate acetylation stoichiometry from the Spectronaut result files and 

perform all secondary analyses have been published to GitHub through Zenodo and can be 

accessed using the following DOI: 10.5281/zenodo.3360892. 
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