
www.dbooks.org

https://www.dbooks.org/

1.1

1.2

2.1

2.1.1

2.1.2

2.2

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.4

2.5

3.1

3.2

3.2.1

3.2.2

Table	of	Contents
Introduction

In	brief

Foundation
Communication

Input

Output

Event	handlers

Composition

Using	React's	children	API

Passing	a	child	as	a	prop

Higher-order	component

Function	as	a	children,	render	prop

Controlled	and	uncontrolled	inputs

Presentational	and	container	components

Data	flow
One	direction	data	flow

Flux

Flux	architecture	and	its	main	characteristics

Implementing	a	Flux	architecture

2

3.3

3.3.1

3.3.2

4.1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.3

4.4

5.1

Redux

Redux	architecture	and	its	main	characteristics

Simple	counter	app	using	Redux

Good	to	know
Dependency	injection

Using	React's	context	(prior	v.	16.3)

Using	React's	context	(v.	16.3	and	above)

Using	the	module	system

Styling

The	good	old	CSS	class

Inline	styling

CSS	modules

Styled-components

Integration	of	third-party	libraries

React	and	separation	of	concerns

Summary
Summary

3

www.dbooks.org

https://www.dbooks.org/

React	in	patterns
A	book	about	common	design	patterns	used	while	developing	with
React.	It	includes	techniques	for	composition,	data	flow,	dependency
management	and	more.

Web	(https://krasimir.gitbooks.io/react-in-patterns/content/)
PDF	(https://github.com/krasimir/react-in-
patterns/blob/master/book.pdf)
Mobi	(https://www.gitbook.com/download/mobi/book/krasimir/react-
in-patterns)
ePub	(https://www.gitbook.com/download/epub/book/krasimir/react-
in-patterns)
GitHub	(https://github.com/krasimir/react-in-patterns)

Introduction

4

https://krasimir.gitbooks.io/react-in-patterns/content/
https://www.gitbook.com/download/pdf/book/krasimir/react-in-patterns
https://www.gitbook.com/download/mobi/book/krasimir/react-in-patterns
https://www.gitbook.com/download/epub/book/krasimir/react-in-patterns
https://github.com/krasimir/react-in-patterns

Introduction

5

www.dbooks.org

https://www.dbooks.org/

In	brief
This	cookbook	is	targeting	developers	that	already	have	a	basic
understanding	of	what	React	is	and	how	it	works.	It's	not	meant	to	be
used	as	a	complete	how-to	guide	but	as	an	introduction	to	popular
concepts/design	patterns.	Paradigms	that	more	or	less	are	introduced
by	the	community.	It	points	you	to	an	abstract	thinking.	For	example,
instead	of	talking	about	Flux,	it	talks	about	data	flow.	Instead	of	talking
about	higher-order	components	it	talks	about	composition.

The	book	is	highly	opinionated.	It	represents	my	own	understanding	of
the	described	patterns	and	it	is	possible	that	they	have	a	different
interpretation	around	the	web.	Have	this	in	mind	when	arguing	with
someone	and	using	this	book	as	an	argument.

Also	notice	that	English	is	not	my	native	language.	If	you	see	a	typo	or
something	sounds	weird	please	contribute	here
github.com/krasimir/react-in-patterns.	If	you	are	reading	from	a	printed
version	of	this	book	then	feel	free	to	use	a	pen	¯\(ツ)/¯

In	brief

6

https://github.com/krasimir/react-in-patterns/tree/master/book

Communication
Every	React	component	is	like	a	small	system	that	operates	on	its	own.
It	has	its	own	state,	input	and	output.	In	the	following	section	we	will
explore	these	characteristics.

Input
The	input	of	a	React	component	is	its	props.	That's	how	we	pass	data	to
it:

//	Title.jsx

function	Title(props)	{

		return	<h1>{	props.text	}</h1>;

}

Title.propTypes	=	{

		text:	PropTypes.string

};

Title.defaultProps	=	{

		text:	'Hello	world'

};

//	App.jsx

function	App()	{

		return	<Title	text='Hello	React'	/>;

}

Communication

7

www.dbooks.org

https://www.dbooks.org/

The		Title		component	has	only	one	input	(prop)	-		text	.	The	parent
component	(App)	should	provide	it	as	an	attribute	while	using	the
	<Title>		tag.	Alongside	the	component	definition	we	also	have	to	define
at	least		propTypes	.	In	there	we	define	the	type	of	every	property	and
React	hints	us	in	the	console	if	something	unexpected	gets	sent.
	defaultProps		is	another	useful	option.	We	may	use	it	to	set	a	default
value	of	component's	props	so	that	if	the	developer	forgets	to	pass	them
we	have	meaningful	values.

React	is	not	defining	strictly	what	should	be	passed	as	a	prop.	It	may	be
whatever	we	want.	It	could	even	be	another	component:

function	SomethingElse({	answer	})	{

		return	<div>The	answer	is	{	answer	}</div>;

}

function	Answer()	{

		return	42;

}

//	later	somewhere	in	our	application

<SomethingElse	answer={	<Answer	/>	}	/>

There	is	also	a		props.children		property	that	gives	us	access	to	the
child	components	passed	by	the	owner	of	the	component.	For	example:

function	Title({	text,	children	})	{

		return	(

				<h1>

						{	text	}

						{	children	}

				</h1>

);

}

function	App()	{

		return	(

				<Title	text='Hello	React'>

						community

				</Title>

);

Communication

8

}

In	this	example		community		in		App		component	is
	children		in		Title		component.	Notice	that	if	we	don't	return		{
children	}		as	part	of	the		Title	's	body	the				tag	will	not	be
rendered.

(prior	v16.3)	An	indirect	input	to	a	component	may	be	also	the	so	called
	context	.	The	whole	React	tree	may	have	a		context		object	which	is
accessible	by	every	component.	More	about	that	in	the	dependency
injection	section.

Output
The	first	obvious	output	of	a	React	component	is	the	rendered	HTML.
Visually	that	is	what	we	get.	However,	because	the	prop	may	be
everything	including	a	function	we	could	also	send	out	data	or	trigger	a
process.

In	the	following	example	we	have	a	component	that	accepts	the	user's
input	and	sends	it	out	(<NameField	/>).

Communication

9

www.dbooks.org

https://www.dbooks.org/

function	NameField({	valueUpdated	})	{

		return	(

				<input

						onChange={	event	=>	valueUpdated(event.target.value)	}	/>

);

};

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	name:	''	};

		}

		render()	{

				return	(

						<div>

								<NameField

										valueUpdated={	name	=>	this.setState({	name	})	}	/>

								Name:	{	this.state.name	}

						</div>

);

		}

};

Very	often	we	need	an	entry	point	of	our	logic.	React	comes	with	some
handy	lifecycle	methods	that	may	be	used	to	trigger	a	process.	For
example	we	have	an	external	resource	that	needs	to	be	fetched	on	a
specific	page.

class	ResultsPage	extends	React.Component	{

		componentDidMount()	{

				this.props.getResults();

		}

		render()	{

				if	(this.props.results)	{

						return	<List	results={	this.props.results	}	/>;

				}	else	{

						return	<LoadingScreen	/>

				}

		}

}

Communication

10

Let's	say	that	we	are	building	a	search-results	experience.	We	have	a
search	page	and	we	enter	our	criteria	there.	We	click	submit	and	the
user	goes	to		/results		where	we	have	to	display	the	result	of	the
search.	Once	we	land	on	the	results	page	we	render	some	sort	of	a
loading	screen	and	trigger	a	request	for	fetching	the	results	in
	componentDidMount		lifecycle	hook.	When	the	data	comes	back	we	pass
it	to	a		<List>		component.

Final	thoughts
It	is	nice	that	we	may	think	about	every	React	component	as	a	black
box.	It	has	its	own	input,	lifecycle	and	output.	It	is	up	to	us	to	compose
these	boxes.	And	maybe	that	is	one	of	the	advantages	that	React	offers.
Easy	to	abstract	and	easy	to	compose.

Communication

11

www.dbooks.org

https://www.dbooks.org/

Event	handlers
React	provides	a	series	of	attributes	for	handling	events.	The	solution	is
almost	the	same	as	the	one	used	in	the	standard	DOM.	There	are	some
differences	like	using	camel	case	or	the	fact	that	we	pass	a	function	but
overall	it	is	pretty	similar.

const	theLogoIsClicked	=	()	=>	alert('Clicked');

<Logo	onClick={	theLogoIsClicked	}	/>

<input

		type='text'

		onChange={event	=>	theInputIsChanged(event.target.value)	}	/>

Usually	we	handle	events	in	the	component	that	contains	the	elements
dispatching	the	events.	Like	in	the	example	below,	we	have	a	click
handler	and	we	want	to	run	a	function	or	a	method	of	the	same
component:

class	Switcher	extends	React.Component	{

		render()	{

				return	(

						<button	onClick={	this._handleButtonClick	}>

								click	me

						</button>

);

		}

		_handleButtonClick()	{

				console.log('Button	is	clicked');

		}

};

That's	all	fine	because		_handleButtonClick		is	a	function	and	we	indeed
pass	a	function	to	the		onClick		attribute.	The	problem	is	that	as	it	is	the
code	doesn't	keep	the	same	context.	So,	if	we	have	to	use		this		inside

Event	handlers

12

	_handleButtonClick		to	refer	the	current		Switcher		component	we	will
get	an	error.

class	Switcher	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	name:	'React	in	patterns'	};

		}

		render()	{

				return	(

						<button	onClick={	this._handleButtonClick	}>

								click	me

						</button>

);

		}

		_handleButtonClick()	{

				console.log(`Button	is	clicked	inside	${	this.state.name	}`);

				//	leads	to

				//	Uncaught	TypeError:	Cannot	read	property	'state'	of	null

		}

};

What	we	normally	do	is	to	use		bind	:

<button	onClick={	this._handleButtonClick.bind(this)	}>

		click	me

</button>

However,	this	means	that	the		bind		function	is	called	again	and	again
because	we	may	render	the	button	many	times.	A	better	approach
would	be	to	create	the	bindings	in	the	constructor	of	the	component:

Event	handlers

13

www.dbooks.org

https://www.dbooks.org/

class	Switcher	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	name:	'React	in	patterns'	};

				this._buttonClick	=	this._handleButtonClick.bind(this);

		}

		render()	{

				return	(

						<button	onClick={	this._buttonClick	}>

								click	me

						</button>

);

		}

		_handleButtonClick()	{

				console.log(`Button	is	clicked	inside	${	this.state.name	}`);

		}

};

Facebook	by	the	way	recommends	the	same	technique	while	dealing
with	functions	that	need	the	context	of	the	same	component.

The	constructor	is	also	a	nice	place	for	partially	executing	our	handlers.
For	example,	we	have	a	form	but	want	to	handle	every	input	in	a	single
function.

Event	handlers

14

https://reactjs.org/docs/handling-events.html

class	Form	extends	React.Component	{

		constructor(props)	{

				super(props);

				this._onNameChanged	=	this._onFieldChange.bind(this,	'name');

				this._onPasswordChanged	=

						this._onFieldChange.bind(this,	'password');

		}

		render()	{

				return	(

						<form>

								<input	onChange={	this._onNameChanged	}	/>

								<input	onChange={	this._onPasswordChanged	}	/>

						</form>

);

		}

		_onFieldChange(field,	event)	{

				console.log(`${	field	}	changed	to	${	event.target.value	}`);

		}

};

Final	thoughts
There	is	not	much	to	learn	about	event	handling	in	React.	The	authors
of	the	library	did	a	good	job	in	keeping	what's	already	there.	Since	we
are	using	HTML-like	syntax	it	makes	total	sense	that	we	also	have	a
DOM-like	event	handling.

Event	handlers

15

www.dbooks.org

https://www.dbooks.org/

Composition
One	of	the	biggest	benefits	of	React	is	composability.	I	personally	don't
know	a	framework	that	offers	such	an	easy	way	to	create	and	combine
components.	In	this	section	we	will	explore	a	few	composition
techniques	which	proved	to	work	well.

Let's	get	a	simple	example.	Let's	say	that	we	have	an	application	with	a
header	and	we	want	to	place	a	navigation	inside.	We	have	three	React
components	-		App	,		Header		and		Navigation	.	They	have	to	be	nested
into	each	other	so	we	end	up	with	the	following	dependencies:

<App>	->	<Header>	->	<Navigation>

The	trivial	approach	for	combining	these	components	is	to	reference
them	in	the	places	where	we	need	them.

//	app.jsx

import	Header	from	'./Header.jsx';

export	default	function	App()	{

		return	<Header	/>;

}

//	Header.jsx

import	Navigation	from	'./Navigation.jsx';

export	default	function	Header()	{

		return	<header><Navigation	/></header>;

}

//	Navigation.jsx

export	default	function	Navigation()	{

		return	(<nav>	...	</nav>);

}

Composition

16

However,	by	following	this	approach	we	introduced	a	couple	of
problems:

We	may	consider	the		App		as	a	place	where	we	do	our	main
composition.	The		Header		though	may	have	other	elements	like	a
logo,	search	field	or	a	slogan.	It	will	be	nice	if	they	are	passed
somehow	from	the		App		component	so	we	don't	create	hard-coded
dependencies.	What	if	we	need	the	same		Header		component	but
without	the		Navigation	.	We	can't	easily	achieve	that	because	we
have	the	two	bound	tightly	together.
It's	difficult	to	test.	We	may	have	some	business	logic	in	the
	Header		and	in	order	to	test	it	we	have	to	create	an	instance	of	the
component.	However,	because	it	imports	other	components	we	will
probably	create	instances	of	those	components	too	and	it	becomes
heavy	to	test.	We	may	break	our		Header		test	by	doing	something
wrong	in	the		Navigation		component	which	is	totally	misleading.
(Note:	to	some	extent	shallow	rendering	solves	this	problem	by
rendering	only	the		Header		without	its	nested	children.)

Using	React's	children	API
In	React	we	have	the	handy		children		prop.	That's	how	the	parent
reads/accesses	its	children.	This	API	will	make	our	Header	agnostic	and
dependency-free:

export	default	function	App()	{

		return	(

				<Header>

						<Navigation	/>

				</Header>

);

}

export	default	function	Header({	children	})	{

		return	<header>{	children	}</header>;

};

Composition

17

www.dbooks.org

https://facebook.github.io/react/docs/test-utils.html#shallow-rendering
https://facebook.github.io/react/docs/multiple-components.html#children
https://www.dbooks.org/

Notice	also	that	if	we	don't	use		{	children	}		in		Header	,	the
	Navigation		component	will	never	be	rendered.

It	now	becomes	easier	to	test	because	we	may	render	the		Header		with
an	empty		<div>	.	This	will	isolate	the	component	and	will	let	us	focus	on
one	piece	of	our	application.

Passing	a	child	as	a	prop
Every	React	component	receives	props.	As	we	mentioned	already	there
is	no	any	strict	rule	about	what	these	props	are.	We	may	even	pass
other	components.

const	Title	=	function	()	{

		return	<h1>Hello	there!</h1>;

}

const	Header	=	function	({	title,	children	})	{

		return	(

				<header>

						{	title	}

						{	children	}

				</header>

);

}

function	App()	{

		return	(

				<Header	title={	<Title	/>	}>

						<Navigation	/>

				</Header>

);

};

This	technique	is	useful	when	a	component	like		Header		needs	to	take
decisions	about	its	children	but	don't	bother	about	what	they	actually
are.	A	simple	example	is	a	visibility	component	that	hides	its	children
based	on	a	specific	condition.

Composition

18

Higher-order	component
For	a	long	period	of	time	higher-order	components	were	the	most
popular	way	to	enhance	and	compose	React	elements.	They	look	really
similar	to	the	decorator	design	pattern	because	we	have	component
wrapping	and	enhancing.

On	the	technical	side	the	higher-order	component	is	usually	a	function
that	accepts	our	original	component	and	returns	an	enhanced/populated
version	of	it.	The	most	trivial	example	is	as	follows:

var	enhanceComponent	=	(Component)	=>

		class	Enhance	extends	React.Component	{

				render()	{

						return	(

								<Component	{...this.props}	/>

)

				}

		};

var	OriginalTitle	=	()	=>	<h1>Hello	world</h1>;

var	EnhancedTitle	=	enhanceComponent(OriginalTitle);

class	App	extends	React.Component	{

		render()	{

				return	<EnhancedTitle	/>;

		}

};

The	very	first	thing	that	the	higher-order	component	does	is	to	render
the	original	component.	It's	a	good	practice	to	proxy	pass	the		props		to
it.	This	way	we	will	keep	the	input	of	our	original	component.	And	here
comes	the	first	big	benefit	of	this	pattern	-	because	we	control	the	input
of	the	component	we	may	send	something	that	the	component	usually
has	no	access	to.	Let's	say	that	we	have	a	configuration	setting	that
	OriginalTitle		needs:

Composition

19

www.dbooks.org

http://robdodson.me/javascript-design-patterns-decorator/
https://www.dbooks.org/

var	config	=	require('path/to/configuration');

var	enhanceComponent	=	(Component)	=>

		class	Enhance	extends	React.Component	{

				render()	{

						return	(

								<Component

										{...this.props}

										title={	config.appTitle	}

								/>

)

				}

		};

var	OriginalTitle		=	({	title	})	=>	<h1>{	title	}</h1>;

var	EnhancedTitle	=	enhanceComponent(OriginalTitle);

The	knowledge	for	the		appTitle		is	hidden	into	the	higher-order
component.		OriginalTitle		knows	only	that	it	receives	a		prop		called
	title	.	It	has	no	idea	that	this	is	coming	from	a	configuration	file.	That's
a	huge	advantage	because	it	allows	us	to	isolate	blocks.	It	also	helps
with	the	testing	of	the	component	because	we	can	create	mocks	easily.

Another	characteristic	of	this	pattern	is	that	we	have	a	nice	buffer	for
additional	logic.	For	example,	if	our		OriginalTitle		needs	data	also
from	a	remote	server.	We	may	query	this	data	in	the	higher-order
component	and	again	send	it	as	a	prop.

Composition

20

var	enhanceComponent	=	(Component)	=>

		class	Enhance	extends	React.Component	{

				constructor(props)	{

						super(props);

						this.state	=	{	remoteTitle:	null	};

				}

				componentDidMount()	{

						fetchRemoteData('path/to/endpoint').then(data	=>	{

								this.setState({	remoteTitle:	data.title	});

						});

				}

				render()	{

						return	(

								<Component

										{...this.props}

										title={	config.appTitle	}

										remoteTitle={	this.state.remoteTitle	}

								/>

)

				}

		};

var	OriginalTitle		=	({	title,	remoteTitle	})	=>

		<h1>{	title	}{	remoteTitle	}</h1>;

var	EnhancedTitle	=	enhanceComponent(OriginalTitle);

Again,	the		OriginalTitle		knows	that	it	receives	two	props	and	has	to
render	them	next	to	each	other.	Its	only	concern	is	how	the	data	looks
like	not	where	it	comes	from	and	how.

Dan	Abramov	made	a	really	good	point	that	the	actual	creation	of	the
higher-order	component	(i.e.	calling	a	function	like		enhanceComponent)
should	happen	at	a	component	definition	level.	Or	in	other	words,	it's	a
bad	practice	to	do	it	inside	another	React	component	because	it	may	be
slow	and	lead	to	performance	issues.

Composition

21

www.dbooks.org

https://github.com/gaearon
https://github.com/krasimir/react-in-patterns/issues/12
https://www.dbooks.org/

Function	as	a	children,	render	prop
For	the	last	couple	of	months,	the	React	community	started	shifting	in	an
interesting	direction.	So	far	in	our	examples	the		children		prop	was	a
React	component.	There	is	however	a	new	pattern	gaining	popularity	in
which	the	same		children		prop	is	a	JSX	expression.	Let's	start	by
passing	a	simple	object.

function	UserName({	children	})	{

		return	(

				<div>

						{	children.lastName	},

						{	children.firstName	}

				</div>

);

}

function	App()	{

		const	user	=	{

				firstName:	'Krasimir',

				lastName:	'Tsonev'

		};

		return	(

				<UserName>{	user	}</UserName>

);

}

This	may	look	weird	but	in	fact	is	really	powerful.	Like	for	example	when
we	have	some	knowledge	in	the	parent	component	and	don't	necessary
want	to	send	it	down	to	children.	The	example	below	prints	a	list	of
TODOs.	The		App		component	has	all	the	data	and	knows	how	to
determine	whether	a	TODO	is	completed	or	not.	The		TodoList	
component	simply	encapsulate	the	needed	HTML	markup.

Composition

22

function	TodoList({	todos,	children	})	{

		return	(

				<section	className='main-section'>

						<ul	className='todo-list'>{

								todos.map((todo,	i)	=>	(

										<li	key={	i	}>{	children(todo)	}

))

						}

				</section>

);

}

function	App()	{

		const	todos	=	[

				{	label:	'Write	tests',	status:	'done'	},

				{	label:	'Sent	report',	status:	'progress'	},

				{	label:	'Answer	emails',	status:	'done'	}

];

		const	isCompleted	=	todo	=>	todo.status	===	'done';

		return	(

				<TodoList	todos={	todos	}>

						{

								todo	=>	isCompleted(todo)	?

										{	todo.label	}	:

										todo.label

						}

				</TodoList>

);

}

Notice	how	the		App		component	doesn't	expose	the	structure	of	the
data.		TodoList		has	no	idea	that	there	is		label		or		status		properties.

The	so	called	render	prop	pattern	is	almost	the	same	except	that	we	use
the		render		prop	and	not		children		for	rendering	the	todo.

Composition

23

www.dbooks.org

https://www.dbooks.org/

function	TodoList({	todos,	render	})	{

		return	(

				<section	className='main-section'>

						<ul	className='todo-list'>{

								todos.map((todo,	i)	=>	(

										<li	key={	i	}>{	render(todo)	}

))

						}

				</section>

);

}

return	(

		<TodoList

				todos={	todos	}

				render={

						todo	=>	isCompleted(todo)	?

								{	todo.label	}	:	todo.label

				}	/>

);

These	two	patterns,	function	as	children	and	render	prop	are	probably
one	of	my	favorite	ones	recently.	They	provide	flexibility	and	help	when
we	want	to	reuse	code.	They	are	also	a	powerful	way	to	abstract
imperative	code.

class	DataProvider	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	data:	null	};

				setTimeout(()	=>	this.setState({	data:	'Hey	there!'	}),	5000);

		}

		render()	{

				if	(this.state.data	===	null)	return	null;

				return	(

						<section>{	this.props.render(this.state.data)	}</section>

);

		}

}

Composition

24

	DataProvider		renders	nothing	when	it	first	gets	mounted.	Five	seconds
later	we	update	the	state	of	the	component	and	render	a		<section>	
followed	by	what	is		render		prop	returning.	Imagine	that	this	same
component	fetches	data	from	a	remote	server	and	we	want	to	display	it
only	when	it	is	available.

<DataProvider	render={	data	=>	<p>The	data	is	here!</p>	}	/>

We	do	say	what	we	want	to	happen	but	not	how.	That	is	hidden	inside
the		DataProvider	.	These	days	we	used	this	pattern	at	work	where	we
had	to	restrict	some	UI	to	certain	users	having		read:products	
permissions.	And	we	used	the	render	prop	pattern.

<Authorize

		permissionsInclude={['read:products']}

		render={	()	=>	<ProductsList	/>	}	/>

Pretty	nice	and	self-explanatory	in	a	declarative	fashion.		Authorize	
goes	to	our	identity	provider	and	checks	what	are	the	permissions	of	the
current	user.	If	he/she	is	allowed	to	read	our	products	we	render	the
	ProductList	.

Final	thoughts
Did	you	wonder	why	HTML	is	still	here.	It	was	created	in	the	dawn	of	the
internet	and	we	still	use	it.	That	is	because	it's	highly	composable.	React
and	its	JSX	looks	like	HTML	on	steroids	and	as	such	it	comes	with	the
same	capabilities.	So,	make	sure	that	you	master	the	composition
because	that	is	one	of	the	biggest	benefits	of	React.

Composition

25

www.dbooks.org

https://www.dbooks.org/

Controlled	and	uncontrolled
inputs
These	two	terms	controlled	and	uncontrolled	are	very	often	used	in	the
context	of	forms	management.	controlled	input	is	an	input	that	gets	its
value	from	a	single	source	of	truth.	For	example	the		App		component
below	has	a	single		<input>		field	which	is	controlled:

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	value:	'hello'	};

		}

		render()	{

				return	<input	type='text'	value={	this.state.value	}	/>;

		}

};

The	result	of	this	code	is	an	input	element	that	we	can	focus	but	can't
change.	It	is	never	updated	because	we	have	a	single	source	of	truth	-
the		App	's	component	state.	To	make	the	input	work	as	expected	we
have	to	add	an		onChange		handler	and	update	the	state	(the	single
source	of	truth).	Which	will	trigger	a	new	rendering	cycle	and	we	will	see
what	we	typed.

Controlled	and	uncontrolled	inputs

27

www.dbooks.org

https://www.dbooks.org/

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	value:	'hello'	};

				this._change	=	this._handleInputChange.bind(this);

		}

		render()	{

				return	(

						<input

								type='text'

								value={	this.state.value	}

								onChange={	this._change	}	/>

);

		}

		_handleInputChange(e)	{

				this.setState({	value:	e.target.value	});

		}

};

On	the	opposite	side	is	the	uncontrolled	input	where	we	let	the	browser
handle	the	user's	updates.	We	may	still	provide	an	initial	value	by	using
the		defaultValue		prop	but	after	that	the	browser	is	responsible	for
keeping	the	state	of	the	input.

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	value:	'hello'	};

		}

		render()	{

				return	<input	type='text'	defaultValue={	this.state.value	}	/>

		}

};

That		<input>		element	above	is	a	little	bit	useless	because	the	user
updates	the	value	but	our	component	has	no	idea	about	that.	We	then
have	to	use		Refs		to	get	access	to	the	actual	element.

Controlled	and	uncontrolled	inputs

28

https://reactjs.org/docs/glossary.html#refs

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	value:	'hello'	};

				this._change	=	this._handleInputChange.bind(this);

		}

		render()	{

				return	(

						<input

								type='text'

								defaultValue={	this.state.value	}

								onChange={	this._change	}

								ref={	input	=>	this.input	=	input	}/>

);

		}

		_handleInputChange()	{

				this.setState({	value:	this.input.value	});

		}

};

The		ref		prop	receives	a	string	or	a	callback.	The	code	above	uses	a
callback	and	stores	the	DOM	element	into	a	local	variable	called		input	.
Later	when	the		onChange		handler	is	fired	we	get	the	new	value	and
send	it	to	the		App	's	state.

Using	a	lot	of		refs		is	not	a	good	idea.	If	it	happens	in	your	app
consider	using		controlled		inputs	and	re-think	your	components.

Final	thoughts
controlled	versus	uncontrolled	inputs	is	very	often	underrated.	However	I
believe	that	it	is	a	fundamental	decision	because	it	dictates	the	data	flow
in	the	React	component.	I	personally	think	that	uncontrolled	inputs	are
kind	of	an	anti-pattern	and	I'm	trying	to	avoid	them	when	possible.

Controlled	and	uncontrolled	inputs

29

www.dbooks.org

https://www.dbooks.org/

Presentational	and	container
components
Every	beginning	is	difficult.	React	is	no	exception	and	as	beginners	we
also	have	lots	of	questions.	Where	I'm	supposed	to	put	my	data,	how	to
communicate	changes	or	how	to	manage	state?	The	answers	of	these
questions	are	very	often	a	matter	of	context	and	sometimes	just	practice
and	experience	with	the	library.	However,	there	is	a	pattern	which	is
used	widely	and	helps	organizing	React	based	applications	-	splitting
the	component	into	presentation	and	container.

Let's	start	with	a	simple	example	that	illustrates	the	problem	and	then
split	the	component	into	container	and	presentation.	We	will	use	a
	Clock		component.	It	accepts	a	Date	object	as	a	prop	and	displays	the
time	in	real	time.

class	Clock	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	time:	this.props.time	};

				this._update	=	this._updateTime.bind(this);

		}

		render()	{

				const	time	=	this._formatTime(this.state.time);

				return	(

						<h1>

								{	time.hours	}	:	{	time.minutes	}	:	{	time.seconds	}

						</h1>

);

		}

		componentDidMount()	{

				this._interval	=	setInterval(this._update,	1000);

		}

		componentWillUnmount()	{

				clearInterval(this._interval);

		}

Presentational	and	container	components

31

www.dbooks.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://www.dbooks.org/

		_formatTime(time)	{

				var	[hours,	minutes,	seconds]	=	[

						time.getHours(),

						time.getMinutes(),

						time.getSeconds()

].map(num	=>	num	<	10	?	'0'	+	num	:	num);

				return	{	hours,	minutes,	seconds	};

		}

		_updateTime()	{

				this.setState({

						time:	new	Date(this.state.time.getTime()	+	1000)

				});

		}

};

ReactDOM.render(<Clock	time={	new	Date()	}/>,	...);

In	the	constructor	of	the	component	we	initialize	the	component's	state
which	in	our	case	is	just	the	current		time		value.	By	using		setInterval	
we	update	the	state	every	second	and	the	component	is	re-rendered.	To
make	it	looks	like	a	real	clock	we	use	two	helper	methods	-
	_formatTime		and		_updateTime	.	The	first	one	is	about	extracting	hours,
minutes	and	seconds	and	making	sure	that	they	are	following	the	two-
digits	format.		_updateTime		is	mutating	the	current		time		object	by	one
second.

The	problems
There	are	couple	of	things	happening	in	our	component.	It	looks	like	it
has	too	many	responsibilities.

It	mutates	the	state	by	itself.	Changing	the	time	inside	the
component	may	not	be	a	good	idea	because	then	only		Clock	
knows	the	current	value.	If	there	is	another	part	of	the	system	that
depends	on	this	data	it	will	be	difficult	to	share	it.

Presentational	and	container	components

32

	_formatTime		is	actually	doing	two	things	-	it	extracts	the	needed
information	from	the	date	object	and	makes	sure	that	the	values	are
always	presented	by	two	digits.	That's	fine	but	it	will	be	nice	if	the
extracting	is	not	part	of	the	function	because	then	it	is	bound	to	the
type	of	the		time		object	(coming	as	a	prop).	I.e.	knows	specifics
about	the	shape	of	the	data	and	at	the	same	time	deals	with	the
visualization	of	it.

Extracting	the	container
Containers	know	about	data,	its	shape	and	where	it	comes	from.	They
know	details	about	how	the	things	work	or	the	so	called	business	logic.
They	receive	information	and	format	it	so	like	is	easy	to	be	used	by	the
presentational	component.	Very	often	we	use	higher-order	components
to	create	containers	because	they	provide	a	buffer	space	where	we	can
insert	custom	logic.

Here's	how	our		ClockContainer		looks	like:

Presentational	and	container	components

33

www.dbooks.org

https://github.com/krasimir/react-in-patterns/tree/master/patterns/higher-order-components
https://www.dbooks.org/

//	Clock/index.js

import	Clock	from	'./Clock.jsx';	//	<--	that's	the	presentational	

component

export	default	class	ClockContainer	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	time:	props.time	};

				this._update	=	this._updateTime.bind(this);

		}

		render()	{

				return	<Clock	{	...this._extract(this.state.time)	}/>;

		}

		componentDidMount()	{

				this._interval	=	setInterval(this._update,	1000);

		}

		componentWillUnmount()	{

				clearInterval(this._interval);

		}

		_extract(time)	{

				return	{

						hours:	time.getHours(),

						minutes:	time.getMinutes(),

						seconds:	time.getSeconds()

				};

		}

		_updateTime()	{

				this.setState({

						time:	new	Date(this.state.time.getTime()	+	1000)

				});

		}

};

It	still	accepts		time		(a	date	object),	does	the		setInterval		loop	and
knows	details	about	the	data	(getHours	,		getMinutes		and		getSeconds).
In	the	end	renders	the	presentational	component	and	passes	three
numbers	for	hours,	minutes	and	seconds.	There	is	nothing	about	how
the	things	look	like.	Only	business	logic.

Presentational	and	container	components

34

Presentational	component
Presentational	components	are	concerned	with	how	the	things	look.
They	have	the	additional	markup	needed	for	making	the	page	pretty.
Such	components	are	not	bound	to	anything	and	have	no
dependencies.	Very	often	implemented	as	a	stateless	functional
components	they	don't	have	internal	state.

In	our	case	the	presentational	component	contains	only	the	two-digits
check	and	returns	the		<h1>		tag:

//	Clock/Clock.jsx

export	default	function	Clock(props)	{

		var	[hours,	minutes,	seconds]	=	[

				props.hours,

				props.minutes,

				props.seconds

].map(num	=>	num	<	10	?	'0'	+	num	:	num);

		return	<h1>{	hours	}	:	{	minutes	}	:	{	seconds	}</h1>;

};

Benefits
Splitting	the	components	in	containers	and	presentation	increases	the
reusability	of	the	components.	Our		Clock		function/component	may
exist	in	application	that	doesn't	change	the	time	or	it's	not	working	with
JavaScript's	Date	object.	That's	because	it	is	pretty	dummy.	No	details
about	the	data	are	required.

The	containers	encapsulate	logic	and	we	may	use	them	together	with
different	renderers	because	they	don't	leak	information	about	the	visual
part.	The	approach	that	we	took	above	is	a	good	example	of	how	the

Presentational	and	container	components

35

www.dbooks.org

https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://www.dbooks.org/

container	doesn't	care	about	how	the	things	look	like.	We	may	easily
switch	from	digital	to	analog	clock	and	the	only	one	change	will	be	to
replace	the		<Clock>		component	in	the		render		method.

Even	the	testing	becomes	easier	because	the	components	have	less
responsibilities.	Containers	are	not	concern	with	UI.	Presentational
components	are	pure	renderers	and	it	is	enough	to	run	expectations	on
the	resulted	markup.

Final	thoughts
The	concept	of	container	and	presentation	is	not	new	at	all	but	it	fits
really	nicely	with	React.	It	makes	our	applications	better	structured,	easy
to	manage	and	scale.

Presentational	and	container	components

36

One-way	direction	data	flow
One-way	direction	data	flow	is	a	pattern	that	works	nicely	with	React.	It
is	around	the	idea	that	the	components	do	not	modify	the	data	that	they
receive.	They	only	listen	for	changes	of	this	data	and	maybe	provide	the
new	value	but	they	do	not	update	the	actual	data.	This	update	happens
following	another	mechanism	in	another	place	and	the	component	just
gets	re-rendered	with	the	new	value.

Let's	for	example	get	a	simple		Switcher		component	that	contains	a
button.	If	we	click	it	we	have	to	enable	a	flag	in	the	system.

class	Switcher	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	flag:	false	};

				this._onButtonClick	=	e	=>	this.setState({

						flag:	!this.state.flag

				});

		}

		render()	{

				return	(

						<button	onClick={	this._onButtonClick	}>

								{	this.state.flag	?	'lights	on'	:	'lights	off'	}

						</button>

);

		}

};

//	...	and	we	render	it

function	App()	{

		return	<Switcher	/>;

};

One	direction	data	flow

37

www.dbooks.org

https://www.dbooks.org/

At	this	moment	we	have	the	data	inside	our	component.	Or	in	other
words,		Switcher		is	the	only	one	place	that	knows	about	our		flag	.
Let's	send	it	out	to	some	kind	of	a	store:

var	Store	=	{

		_flag:	false,

		set:	function(value)	{

				this._flag	=	value;

		},

		get:	function()	{

				return	this._flag;

		}

};

class	Switcher	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	flag:	false	};

				this._onButtonClick	=	e	=>	{

						this.setState({	flag:	!this.state.flag	},	()	=>	{

								this.props.onChange(this.state.flag);

						});

				}

		}

		render()	{

				return	(

						<button	onClick={	this._onButtonClick	}>

								{	this.state.flag	?	'lights	on'	:	'lights	off'	}

						</button>

);

		}

};

function	App()	{

		return	<Switcher	onChange={	Store.set.bind(Store)	}	/>;

};

Our		Store		object	is	a	singleton	where	we	have	helpers	for	setting	and
getting	the	value	of	the		_flag		property.	By	passing	the	setter	to	the
	Switcher		we	are	able	to	update	the	data	externally.	More	or	less	our
application	workflow	looks	like	that:

One	direction	data	flow

38

https://addyosmani.com/resources/essentialjsdesignpatterns/book/#singletonpatternjavascript

Let's	assume	that	we	are	saving	the	flag	value	to	a	back-end	service	via
the		Store	.	When	the	user	comes	back	we	have	to	set	a	proper	initial
state.	If	the	user	left	the	flag	as		true		we	have	to	show	"lights	on"	and
not	the	default	"lights	off".	Now	it	gets	tricky	because	we	have	the	data
in	two	places.	The	UI	and	the		Store		have	their	own	states.	We	have	to
communicate	in	both	directions	from	the	store	to	the	switcher	and	from
the	switcher	to	the	store.

//	...	in	App	component

<Switcher

		value={	Store.get()	}

		onChange={	Store.set.bind(Store)	}	/>

//	...	in	Switcher	component

constructor(props)	{

		super(props);

		this.state	=	{	flag:	this.props.value	};

		...

Our	workflow	changes	to	the	following:

One	direction	data	flow

39

www.dbooks.org

https://www.dbooks.org/

All	this	leads	to	managing	two	states	instead	of	one.	What	if	the		Store	
changes	its	value	based	on	other	actions	in	the	system.	We	have	to
propagate	that	change	to	the		Switcher		and	we	increase	the	complexity
of	our	app.

One-way	direction	data	flow	solves	this	problem.	It	eliminates	the
multiple	places	where	we	manage	states	and	deals	with	only	one	which
is	usually	the	store.	To	achieve	that	we	have	to	tweak	our		Store		object
a	little	bit.	We	need	logic	that	allows	us	to	subscribe	for	changes:

One	direction	data	flow

40

var	Store	=	{

		_handlers:	[],

		_flag:	'',

		subscribe:	function(handler)	{

				this._handlers.push(handler);

		},

		set:	function(value)	{

				this._flag	=	value;

				this._handlers.forEach(handler	=>	handler(value))

		},

		get:	function()	{

				return	this._flag;

		}

};

Then	we	will	hook	our	main		App		component	and	we'll	re-render	it	every
time	when	the		Store		changes	its	value:

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	value:	Store.get()	};

				Store.subscribe(value	=>	this.setState({	value	}));

		}

		render()	{

				return	(

						<div>

								<Switcher

										value={	this.state.value	}

										onChange={	Store.set.bind(Store)	}	/>

						</div>

);

		}

};

Because	of	this	change	the		Switcher		becomes	really	simple.	We	don't
need	the	internal	state	and	the	component	may	be	written	as	a	stateless
function.

One	direction	data	flow

41

www.dbooks.org

https://www.dbooks.org/

function	Switcher({	value,	onChange	})	{

		return	(

				<button	onClick={	e	=>	onChange(!value)	}>

						{	value	?	'lights	on'	:	'lights	off'	}

				</button>

);

};

<Switcher

		value={	Store.get()	}

		onChange={	Store.set.bind(Store)	}	/>

Final	thoughts
The	benefit	that	comes	with	this	pattern	is	that	our	components	become
dummy	representation	of	the	store's	data.	There	is	only	one	source	of
truth	and	this	makes	the	development	easier.	If	you	are	going	to	take
one	thing	from	this	book	I	would	prefer	to	be	this	chapter.	The	one-
direction	data	flow	drastically	changed	the	way	of	how	I	think	when
designing	a	feature	so	I	believe	it	will	have	the	same	effect	on	you.

One	direction	data	flow

42

Flux
I'm	obsessed	by	making	my	code	simpler.	I	didn't	say	smaller	because
having	less	code	doesn't	mean	that	is	simple	and	easy	to	work	with.	I
believe	that	big	part	of	the	problems	in	the	software	industry	come	from
the	unnecessary	complexity.	Complexity	which	is	a	result	of	our	own
abstractions.	You	know,	we	(the	programmers)	like	to	abstract.	We	like
placing	things	in	black	boxes	and	hope	that	these	boxes	work	together.

Flux	is	an	architectural	design	pattern	for	building	user	interfaces.	It	was
introduced	by	Facebook	at	their	F8	conference.	Since	then,	lots	of
companies	adopted	the	idea	and	it	seems	like	a	good	pattern	for
building	front-end	apps.	Flux	is	very	often	used	with	React.	Another
library	released	by	Facebook.	I	myself	use	React+Flux/Redux	in	my
daily	job	and	I	could	say	that	it	is	simple	and	really	flexible.	The	pattern
helps	creating	apps	faster	and	at	the	same	time	keeps	the	code	well
organized.

Flux	architecture	and	its	main
characteristics

Flux

43

www.dbooks.org

http://facebook.github.io/flux/
https://youtu.be/nYkdrAPrdcw?t=568
http://facebook.github.io/react/
http://antidote.me/
https://www.dbooks.org/

The	main	actor	in	this	pattern	is	the	dispatcher.	It	acts	as	a	hub	for	all
the	events	in	the	system.	Its	job	is	to	receive	notifications	that	we	call
actions	and	pass	them	to	all	the	stores.	The	store	decides	if	it	is
interested	or	not	and	reacts	by	changing	its	internal	state/data.	That
change	is	triggering	re-rendering	of	the	views	which	are	(in	our	case)
React	components.	If	we	have	to	compare	Flux	to	the	well	known	MVC
we	may	say	that	the	store	is	similar	to	the	model.	It	keeps	the	data	and
its	mutations.

The	actions	are	coming	to	the	dispatcher	either	from	the	views	or	from
other	parts	of	the	system,	like	services.	For	example	a	module	that
performs	a	HTTP	request.	When	it	receives	the	result	it	may	fire	an
action	saying	that	the	request	was	successful.

Implementing	a	Flux	architecture
As	every	other	popular	concept	Flux	also	has	some	variations.	Very
often	to	understand	something	we	have	to	implement	it.	In	the	next	few
sections	we	will	create	a	library	that	provides	helpers	for	building	the
Flux	pattern.

The	dispatcher

In	most	of	the	cases	we	need	a	single	dispatcher.	Because	it	acts	as	a
glue	for	the	rest	of	the	parts	it	makes	sense	that	we	have	only	one.	The
dispatcher	needs	to	know	about	two	things	-	actions	and	stores.	The
actions	are	simply	forwarded	to	the	stores	so	we	don't	necessary	have
to	keep	them.	The	stores	however	should	be	tracked	inside	the
dispatcher	so	we	can	loop	through	them:

Flux

44

https://medium.com/social-tables-tech/we-compared-13-top-flux-implementations-you-won-t-believe-who-came-out-on-top-1063db32fe73

That's	what	I	started	with:

var	Dispatcher	=	function	()	{

		return	{

				_stores:	[],

				register:	function	(store)	{		

						this._stores.push({	store:	store	});

				},

				dispatch:	function	(action)	{

						if	(this._stores.length	>	0)	{

								this._stores.forEach(function	(entry)	{

										entry.store.update(action);

								});

						}

				}

		}

};

The	first	thing	that	we	notice	is	that	we	expect	to	see	an		update	
method	in	the	passed	stores.	It	will	be	nice	to	throw	an	error	if	such
method	is	not	there:

register:	function	(store)	{

		if	(!store	||	!store.update)	{

				throw	new	Error('You	should	provide	a	store	that	has	an	`updat

e`	method.');

		}	else	{

				this._stores.push({	store:	store	});

		}

}

Flux

45

www.dbooks.org

https://www.dbooks.org/

Bounding	the	views	and	the	stores

The	next	logical	step	is	to	connect	our	views	to	the	stores	so	we	re-
render	when	the	state	in	the	stores	is	changed.

Using	a	helper

Some	of	the	flux	implementations	available	out	there	provide	a	helper
function	that	does	the	job.	For	example:

Framework.attachToStore(view,	store);

However,	I	don't	quite	like	this	approach.	To	make		attachToStore		works
we	expect	to	see	a	specific	API	in	the	view	and	in	the	store.	We	kind	of
strictly	define	new	public	methods.	Or	in	other	words	we	say	"Your	views
and	store	should	have	such	APIs	so	we	are	able	to	wire	them	together".
If	we	go	down	this	road	then	we	will	probably	define	our	own	base
classes	which	could	be	extended	so	we	don't	bother	the	developer	with
Flux	details.	Then	we	say	"All	your	classes	should	extend	our	classes".
This	doesn't	sound	good	either	because	the	developer	may	decide	to
switch	to	another	Flux	provider	and	has	to	amend	everything.

Flux

46

With	a	mixin

What	if	we	use	React's	mixins.

var	View	=	React.createClass({

		mixins:	[Framework.attachToStore(store)]

		...

});

That's	a	"nice"	way	to	define	behavior	of	existing	React	component.	So,
in	theory	we	may	create	a	mixin	that	does	the	bounding	for	us.	To	be
honest,	I	don't	think	that	this	is	a	good	idea.	And	it	looks	like	it's	not	only
me.	My	reason	of	not	liking	mixins	is	that	they	modify	the	components	in
a	non-predictable	way.	I	have	no	idea	what	is	going	on	behind	the
scenes.	So	I'm	crossing	this	option.

Using	a	context

Another	technique	that	may	answer	the	question	is	React's	context.	It	is
a	way	to	pass	props	to	child	components	without	the	need	to	specify
them	in	every	level	of	the	tree.	Facebook	suggests	context	in	the	cases
where	we	have	data	that	has	to	reach	deeply	nested	components.

Occasionally,	you	want	to	pass	data	through	the	component	tree
without	having	to	pass	the	props	down	manually	at	every	level.
React's	"context"	feature	lets	you	do	this.

I	see	similarity	with	the	mixins	here.	The	context	is	defined	somewhere
at	the	top	and	magically	serves	props	for	all	the	children	below.	It's	not
immediately	clear	where	the	data	comes	from.

Flux

47

www.dbooks.org

https://reactjs.org/docs/react-without-es6.html#mixins
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://facebook.github.io/react/docs/context.html
https://www.dbooks.org/

Higher-Order	components	concept

Higher-Order	components	pattern	is	introduced	by	Sebastian	Markbåge
and	it's	about	creating	a	wrapper	component	that	returns	ours.	While
doing	it,	it	has	the	opportunity	to	send	properties	or	apply	additional
logic.	For	example:

function	attachToStore(Component,	store,	consumer)	{

		const	Wrapper	=	React.createClass({

				getInitialState()	{

						return	consumer(this.props,	store);

				},

				componentDidMount()	{

						store.onChangeEvent(this._handleStoreChange);

				},

				componentWillUnmount()	{

						store.offChangeEvent(this._handleStoreChange);

				},

				_handleStoreChange()	{

						if	(this.isMounted())	{

								this.setState(consumer(this.props,	store));

						}

				},

				render()	{

						return	<Component	{...this.props}	{...this.state}	/>;

				}

		});

		return	Wrapper;

};

	Component		is	the	view	that	we	want	attached	to	the		store	.	The
	consumer		function	says	what	part	of	the	store's	state	should	be	fetched
and	sent	to	the	view.	A	simple	usage	of	the	above	function	could	be:

class	MyView	extends	React.Component	{

		...

}

ProfilePage	=	connectToStores(MyView,	store,	(props,	store)	=>	({

		data:	store.get('key')

Flux

48

https://gist.github.com/sebmarkbage/ef0bf1f338a7182b6775

}));

That	is	an	interesting	pattern	because	it	shifts	the	responsibilities.	It	is
the	view	fetching	data	from	the	store	and	not	the	store	pushing
something	to	the	view.	This	of	course	has	it's	own	pros	and	cons.	It	is
nice	because	it	makes	the	store	dummy.	A	store	that	only	mutates	the
data	and	says	"Hey,	my	state	is	changed".	It	is	not	responsible	for
sending	anything	to	anyone.	The	downside	of	this	approach	is	maybe
the	fact	that	we	have	one	more	component	(the	wrapper)	involved.	We
also	need	the	three	things	-	view,	store	and	consumer	to	be	in	one	place
so	we	can	establish	the	connection.

My	choice

The	last	option	above,	higher-order	components,	is	really	close	to	what
I'm	searching	for.	I	like	the	fact	that	the	view	decides	what	it	needs.	That
knowledge	anyway	exists	in	the	component	so	it	makes	sense	to	keep	it
there.	That's	also	why	the	functions	that	generate	higher-order
components	are	usually	kept	in	the	same	file	as	the	view.	What	if	we
can	use	similar	approach	but	not	passing	the	store	at	all.	Or	in	other
words,	a	function	that	accepts	only	the	consumer.	And	that	function	is
called	every	time	when	there	is	a	change	in	the	store.

So	far	our	implementation	interacts	with	the	store	only	in	the		register	
method.

register:	function	(store)	{

		if	(!store	||	!store.update)	{

				throw	new	Error('You	should	provide	a	store	that	has	an	`updat

e`	method.');

		}	else	{

				this._stores.push({	store:	store	});

		}

}

Flux

49

www.dbooks.org

https://www.dbooks.org/

By	using		register		we	keep	a	reference	to	the	store	inside	the
dispatcher.	However,		register		returns	nothing.	And	instead	of	nothing
it	may	return	a	subscriber	that	will	accept	our	consumer	functions.

I	decided	to	send	the	whole	store	to	the	consumer	function	and	not	the
data	that	the	store	keeps.	Like	in	the	higher-order	components	pattern
the	view	should	say	what	it	needs	by	using	store's	getters.	This	makes
the	store	really	simple	and	there	is	no	trace	of	presentational	logic.

Here	is	how	the	register	method	looks	like	after	the	changes:

register:	function	(store)	{

		if	(!store	||	!store.update)	{

				throw	new	Error(

						'You	should	provide	a	store	that	has	an	`update`	method.'

);

		}	else	{

				var	consumers	=	[];

				var	subscribe	=	function	(consumer)	{

						consumers.push(consumer);

				};

				this._stores.push({	store:	store	});

				return	subscribe;

		}

		return	false;

}

Flux

50

The	last	bit	in	the	story	is	how	the	store	says	that	its	internal	state	is
changed.	It's	nice	that	we	collect	the	consumer	functions	but	right	now
there	is	no	code	that	executes	them.

According	to	the	basic	principles	of	the	flux	architecture	the	stores
change	their	state	in	response	of	actions.	In	the		update		method	we
send	the		action		but	we	could	also	send	a	function		change	.	Calling
that	function	should	trigger	the	consumers:

register:	function	(store)	{

		if	(!store	||	!store.update)	{

				throw	new	Error(

						'You	should	provide	a	store	that	has	an	`update`	method.'

);

		}	else	{

				var	consumers	=	[];

				var	change	=	function	()	{

						consumers.forEach(function	(consumer)	{

								consumer(store);

						});

				};

				var	subscribe	=	function	(consumer)	{

						consumers.push(consumer);

				};

				this._stores.push({	store:	store,	change:	change	});

				return	subscribe;

		}

		return	false;

},

dispatch:	function	(action)	{

		if	(this._stores.length	>	0)	{

				this._stores.forEach(function	(entry)	{

						entry.store.update(action,	entry.change);

				});

		}

}

Flux

51

www.dbooks.org

https://www.dbooks.org/

Notice	how	we	push		change		together	with		store		inside	the		_stores	
array.	Later	in	the		dispatch		method	we	call		update		by	passing	the
	action		and	the		change		function.

A	common	use	case	is	to	render	the	view	with	the	initial	state	of	the
store.	In	the	context	of	our	implementation	this	means	firing	all	the
consumers	at	least	once	when	they	land	in	the	library.	This	could	be
easily	done	in	the		subscribe		method:

var	subscribe	=	function	(consumer,	noInit)	{

		consumers.push(consumer);

		!noInit	?	consumer(store)	:	null;

};

Of	course	sometimes	this	is	not	needed	so	we	added	a	flag	which	is	by
default	falsy.	Here	is	the	final	version	of	our	dispatcher:

Flux

52

var	Dispatcher	=	function	()	{

		return	{

				_stores:	[],

				register:	function	(store)	{

						if	(!store	||	!store.update)	{

								throw	new	Error(

										'You	should	provide	a	store	that	has	an	`update`	method'

);

						}	else	{

								var	consumers	=	[];

								var	change	=	function	()	{

										consumers.forEach(function	(consumer)	{

												consumer(store);

										});

								};

								var	subscribe	=	function	(consumer,	noInit)	{

										consumers.push(consumer);

										!noInit	?	consumer(store)	:	null;

								};

								this._stores.push({	store:	store,	change:	change	});

								return	subscribe;

						}

						return	false;

				},

				dispatch:	function	(action)	{

						if	(this._stores.length	>	0)	{

								this._stores.forEach(function	(entry)	{

										entry.store.update(action,	entry.change);

								});

						}

				}

		}

};

Flux

53

www.dbooks.org

https://www.dbooks.org/

The	actions
You	probably	noticed	that	we	didn't	talk	about	the	actions.	What	are
they?	The	convention	is	that	they	should	be	simple	objects	having	two
properties	-		type		and		payload	:

{

		type:	'USER_LOGIN_REQUEST',

		payload:	{

				username:	'...',

				password:	'...'

		}

}

The		type		says	what	exactly	the	action	is	and	the		payload		contains	the
information	associated	with	the	event.	And	in	some	cases	we	may	leave
the		payload		empty.

It's	interesting	that	the		type		is	well	known	in	the	beginning.	We	know
what	type	of	actions	should	be	floating	in	our	app,	who	is	dispatching
them	and	which	of	the	stores	are	interested.	Thus,	we	can	apply	partial
application	and	avoid	passing	the	action	object	here	and	there.	For
example:

var	createAction	=	function	(type)	{

		if	(!type)	{

				throw	new	Error('Please,	provide	action\'s	type.');

		}	else	{

				return	function	(payload)	{

						return	dispatcher.dispatch({

								type:	type,

								payload:	payload

						});

				}

		}

}

Flux

54

http://krasimirtsonev.com/blog/article/a-story-about-currying-bind

	createAction		leads	to	the	following	benefits:

We	no	more	need	to	remember	the	exact	type	of	the	action.	We
now	have	a	function	which	we	call	passing	only	the	payload.
We	no	more	need	an	access	to	the	dispatcher	which	is	a	huge
benefit.	Otherwise,	think	about	how	we	have	to	pass	it	to	every
single	place	where	we	need	to	dispatch	an	action.
In	the	end	we	don't	have	to	deal	with	objects	but	with	functions
which	is	much	nicer.	The	objects	are	static	while	the	functions
describe	a	process.

This	approach	for	creating	actions	is	actually	really	popular	and
functions	like	the	one	above	are	usually	called	action	creators.

The	final	code
In	the	section	above	we	successfully	hide	the	dispatcher	while
submitting	actions.	We	may	do	it	again	for	the	store's	registration:

var	createSubscriber	=	function	(store)	{

		return	dispatcher.register(store);

}

Flux

55

www.dbooks.org

https://www.dbooks.org/

And	instead	of	exporting	the	dispatcher	we	may	export	only	these	two
functions		createAction		and		createSubscriber	.	Here	is	how	the	final
code	looks	like:

var	Dispatcher	=	function	()	{

		return	{

				_stores:	[],

				register:	function	(store)	{

						if	(!store	||	!store.update)	{

								throw	new	Error(

										'You	should	provide	a	store	that	has	an	`update`	method'

);

						}	else	{

								var	consumers	=	[];

								var	change	=	function	()	{

										consumers.forEach(function	(consumer)	{

												consumer(store);

										});

								};

								var	subscribe	=	function	(consumer,	noInit)	{

										consumers.push(consumer);

										!noInit	?	consumer(store)	:	null;

								};

								this._stores.push({	store:	store,	change:	change	});

								return	subscribe;

						}

						return	false;

				},

				dispatch:	function	(action)	{

						if	(this._stores.length	>	0)	{

								this._stores.forEach(function	(entry)	{

										entry.store.update(action,	entry.change);

								});

						}

				}

		}

};

module.exports	=	{

		create:	function	()	{

				var	dispatcher	=	Dispatcher();

Flux

56

				return	{

						createAction:	function	(type)	{

								if	(!type)	{

										throw	new	Error('Please,	provide	action\'s	type.');

								}	else	{

										return	function	(payload)	{

												return	dispatcher.dispatch({

														type:	type,

														payload:	payload

												});

										}

								}

						},

						createSubscriber:	function	(store)	{

								return	dispatcher.register(store);

						}

				}

		}

};

If	we	add	the	support	of	AMD,	CommonJS	and	global	usage	we	end	up
with	66	lines	of	code,	1.7KB	plain	or	795	bytes	after	minification
JavaScript.

Wrapping	up
We	have	a	module	that	provides	two	helpers	for	building	a	Flux	project.
Let's	write	a	simple	counter	app	that	doesn't	involve	React	so	we	see
the	pattern	in	action.

Flux

57

www.dbooks.org

https://www.dbooks.org/

The	markup

We'll	need	some	UI	to	interact	with	it	so:

<div	id="counter">

		

		<button>increase</button>

		<button>decrease</button>

</div>

The		span		will	be	used	for	displaying	the	current	value	of	our	counter.
The	buttons	will	change	that	value.

The	view

const	View	=	function	(subscribeToStore,	increase,	decrease)	{

		var	value	=	null;

		var	el	=	document.querySelector('#counter');

		var	display	=	el.querySelector('span');

		var	[increaseBtn,	decreaseBtn]	=

				Array.from(el.querySelectorAll('button'));

		var	render	=	()	=>	display.innerHTML	=	value;

		var	updateState	=	(store)	=>	value	=	store.getValue();

		subscribeToStore([updateState,	render]);

		increaseBtn.addEventListener('click',	increase);

		decreaseBtn.addEventListener('click',	decrease);

};

It	accepts	a	store	subscriber	function	and	two	action	function	for
increasing	and	decreasing	the	value.	The	first	few	lines	of	the	view	are
just	fetching	the	DOM	elements.

Flux

58

After	that	we	define	a		render		function	which	puts	the	value	inside	the
	span		tag.		updateState		will	be	called	every	time	when	the	store
changes.	So,	we	pass	these	two	functions	to		subscribeToStore	
because	we	want	to	get	the	view	updated	and	we	want	to	get	an	initial
rendering.	Remember	how	our	consumers	are	called	at	least	once	by
default.

The	last	bit	is	calling	the	action	functions	when	we	press	the	buttons.

The	store

Every	action	has	a	type.	It's	a	good	practice	to	create	constants	for
these	types	so	we	don't	deal	with	raw	strings.

const	INCREASE	=	'INCREASE';

const	DECREASE	=	'DECREASE';

Very	often	we	have	only	one	instance	of	every	store.	For	the	sake	of
simplicity	we'll	create	ours	as	a	singleton.

const	CounterStore	=	{

		_data:	{	value:	0	},

		getValue:	function	()	{

				return	this._data.value;

		},

		update:	function	(action,	change)	{

				if	(action.type	===	INCREASE)	{

						this._data.value	+=	1;

				}	else	if	(action.type	===	DECREASE)	{

						this._data.value	-=	1;

				}

				change();

		}

};

Flux

59

www.dbooks.org

https://www.dbooks.org/

	_data		is	the	internal	state	of	the	store.		update		is	the	well	known
method	that	our	dispatcher	calls.	We	process	the	action	inside	and	say
	change()		when	we	are	done.		getValue		is	a	public	method	used	by	the
view	so	it	reaches	the	needed	info.	In	our	case	this	is	just	the	value	of
the	counter.

Wiring	all	the	pieces

So,	we	have	the	store	waiting	for	actions	from	the	dispatcher.	We	have
the	view	defined.	Let's	create	the	store	subscriber,	the	actions	and	run
everything.

const	{	createAction,	createSubscriber	}	=	Fluxiny.create();

const	counterStoreSubscriber	=	createSubscriber(CounterStore);

const	actions	=	{

		increase:	createAction(INCREASE),

		decrease:	createAction(DECREASE)

};

View(counterStoreSubscriber,	actions.increase,	actions.decrease);

And	that's	it.	Our	view	is	subscribed	to	the	store	and	it	renders	by	default
because	one	of	our	consumers	is	actually	the		render		method.

A	live	demo

A	live	demo	could	be	seen	in	the	following	JSBin
http://jsbin.com/koxidu/embed?js,output.	If	that's	not	enough	and	it
seems	too	simple	for	you	please	checkout	the	example	in	Fluxiny
repository	https://github.com/krasimir/fluxiny/tree/master/example.	It
uses	React	as	a	view	layer.

The	Flux	implementation	discussed	in	this	section	is	available	here
github.com/krasimir/fluxiny.	Feel	free	to	use	it	in	a	browser	directly	or	as
a	npm	dependency.

Flux

60

http://jsbin.com/koxidu/embed?js,output
https://github.com/krasimir/fluxiny/tree/master/example
https://github.com/krasimir/fluxiny
https://github.com/krasimir/fluxiny/tree/master/lib
https://www.npmjs.com/package/fluxiny

Redux
Redux	is	a	library	that	acts	as	a	state	container	and	helps	managing
your	application	data	flow.	It	was	introduced	back	in	2015	at
ReactEurope	conference	(video)	by	Dan	Abramov.	It	is	similar	to	Flux
architecture	and	has	a	lot	in	common	with	it.	In	this	section	we	will
create	a	small	counter	app	using	Redux	alongside	React.

Redux

62

https://redux.js.org/
https://www.youtube.com/watch?v=xsSnOQynTHs
https://twitter.com/dan_abramov
https://github.com/krasimir/react-in-patterns/blob/master/book/chapter-08/README.md#flux-architecture-and-its-main-characteristics

Redux	architecture	and	its	main
characteristics

Similarly	to	Flux	architecture	we	have	the	view	components	(React)
dispatching	an	action.	Same	action	may	be	dispatched	by	another	part
of	our	system.	Like	a	bootstrap	logic	for	example.	This	action	is
dispatched	not	to	a	central	hub	but	directly	to	the	store.	We	are	saying
"store"	not	"stores"	because	there	is	only	one	in	Redux.	That	is	one	of
the	big	differences	between	Flux	and	Redux.	The	logic	that	decided	how

Redux

63

www.dbooks.org

https://github.com/krasimir/react-in-patterns/blob/master/book/chapter-08/README.md
https://www.dbooks.org/

our	data	changes	lives	in	pure	functions	called	reducers.	Once	the	store
receives	an	action	it	asks	the	reducers	about	the	new	version	of	the
state	by	sending	the	current	state	and	the	given	action.	Then	in
immutable	fashion	the	reducer	needs	to	return	the	new	state.	The	store
continues	from	there	and	updates	its	internal	state.	As	a	final	step,	the
wired	to	the	store	React	component	gets	re-rendered.

The	concept	is	pretty	linear	and	again	follows	the	one-direction	data
flow.	Let's	talk	about	all	these	pieces	and	introduce	a	couple	of	new
terms	that	support	the	work	of	the	Redux	pattern.

Actions

The	typical	action	in	Redux	(same	as	Flux)	is	just	an	object	with	a		type	
property.	Everything	else	in	that	object	is	considered	a	context	specific
data	and	it	is	not	related	to	the	pattern	but	to	your	application	logic.	For
example:

const	CHANGE_VISIBILITY	=	'CHANGE_VISIBILITY';

const	action	=	{

		type:	CHANGE_VISIBILITY,

		visible:	false

}

It	is	a	good	practice	that	we	create	constants	like		CHANGE_VISIBILITY		for
our	action	types.	It	happens	that	there	are	lots	of	tools/libraries	that
support	Redux	and	solve	different	problems	which	do	require	the	type	of
the	action	only.	So	it	is	just	a	convenient	way	to	transfer	this	information.

The		visible		property	is	the	meta	data	that	we	mentioned	above.	It	has
nothing	to	do	with	Redux.	It	means	something	in	the	context	of	the
application.

Redux

64

https://github.com/krasimir/react-in-patterns/blob/master/book/chapter-07/README.md

Every	time	when	we	want	to	dispatch	a	method	we	have	to	use	such
objects.	However,	it	becomes	too	noisy	to	write	them	over	and	over
again.	That	is	why	there	is	the	concept	of	action	creators.	An	action
creator	is	a	function	that	returns	an	object	and	may	or	may	not	accept
an	argument	which	directly	relates	to	the	action	properties.	For	example
the	action	creator	for	the	above	action	looks	like	this:

const	changeVisibility	=	visible	=>	({

		type:	CHANGE_VISIBILITY,

		visible

});

changeVisibility(false);

//	{	type:	CHANGE_VISIBILITY,	visible:	false	}

Notice	that	we	pass	the	value	of	the		visible		as	an	argument	and	we
don't	have	to	remember	(or	import)	the	exact	type	of	the	action.	Using
such	helpers	makes	the	code	compact	and	easy	to	read.

Store

Redux	provides	a	helper		createStore		for	creating	a	store.	Its	signature
is	as	follows:

import	{	createStore	}	from	'redux';

createStore([reducer],	[initial	state],	[enhancer]);

We	already	mentioned	that	the	reducer	is	a	function	that	accepts	the
current	state	and	action	and	returns	the	new	state.	More	about	that	in	a
bit.	The	second	argument	is	the	initial	state	of	the	store.	This	comes	as
a	handy	instrument	to	initialize	our	application	with	data	that	we	already
have.	This	feature	is	the	essence	of	processes	like	server-side
rendering	or	persistent	experience.	The	third	parameter,	enhancer,

Redux

65

www.dbooks.org

https://www.dbooks.org/

provides	an	API	for	extending	Redux	with	third	party	middlewares	and
basically	plug	some	functionally	which	is	not	baked-in.	Like	for	example
an	instrument	for	handling	async	processes.

Once	created	the	store	has	four	methods	-		getState	,		dispatch	,
	subscribe		and		replaceReducer	.	Probably	the	most	important	one	is
	dispatch	:

store.dispatch(changeVisibility(false));

That	is	the	place	where	we	use	our	action	creators.	We	pass	the	result
of	them	or	in	other	words	action	objects	to	this		dispatch		method.	It
then	gets	spread	to	the	reducers	in	our	application.

In	the	typical	React	application	we	usually	don't	use		getState		and
	subscribe		directly	because	there	is	a	helper	(we	will	see	it	in	the	next
sections)	that	wires	our	components	with	the	store	and	effectively
	subscribe	s	for	changes.	As	part	of	this	subscription	we	also	receive	the
current	state	so	we	don't	have	to	call		getState		ourself.		replaceReducer	
is	kind	of	an	advanced	API	and	it	swaps	the	reducer	currently	used	by
the	store.	I	personally	never	used	this	method.

Reducer

The	reducer	function	is	probably	the	most	beautiful	part	of	Redux.	Even
before	that	I	was	interested	in	writing	pure	functions	with	an	immutability
in	mind	but	Redux	forced	me	to	do	it.	There	are	two	characteristics	of
the	reducer	that	are	quite	important	and	without	them	we	basically	have
a	broken	pattern.

(1)	It	must	be	a	pure	function	-	it	means	that	the	function	should	return
the	exact	same	output	every	time	when	the	same	input	is	given.

Redux

66

(2)	It	should	have	no	side	effects	-	stuff	like	accessing	a	global	variable,
making	an	async	call	or	waiting	for	a	promise	to	resolve	have	no	place
in	here.

Here	is	a	simple	counter	reducer:

const	counterReducer	=	function	(state,	action)	{

		if	(action.type	===	ADD)	{

				return	{	value:	state.value	+	1	};

		}	else	if	(action.type	===	SUBTRACT)	{

				return	{	value:	state.value	-	1	};

		}

		return	{	value:	0	};

};

There	are	no	side	effects	and	we	return	a	brand	new	object	every	time.
We	accumulate	the	new	value	based	on	the	previous	state	and	the
incoming	action	type.

Wiring	to	React	components

If	we	talk	about	Redux	in	the	context	of	React	we	almost	always	mean
react-redux	module.	It	provides	two	things	that	help	connecting	Redux	to
our	components.

(1)		<Provider>		component	-	it's	a	component	that	accepts	our	store	and
makes	it	available	for	the	children	down	the	React	tree	via	the	React's
context	API.	For	example:

<Provider	store={	myStore	}>

		<MyApp	/>

</Provider>

We	usually	have	a	single	place	in	our	app	where	we	use	it.

Redux

67

www.dbooks.org

https://github.com/reactjs/react-redux
https://www.dbooks.org/

(2)		connect		function	-	it	is	a	function	that	does	the	subscribing	for
updates	in	the	store	and	re-renders	our	component.	It	implements	a
higher-order	component.	Here	is	its	signature:

connect(

		[mapStateToProps],

		[mapDispatchToProps],

		[mergeProps],

		[options]

)

	mapStateToProps		parameter	is	a	function	that	accepts	the	current	state
and	must	return	a	set	of	key-value	pairs	(an	object)	that	are	getting	send
as	props	to	our	React	component.	For	example:

const	mapStateToProps	=	state	=>	({

		visible:	state.visible

});

	mapDispatchToProps		is	a	similar	one	but	instead	of	the		state		receives
a		dispatch		function.	Here	is	the	place	where	we	can	define	a	prop	for
dispatching	actions.

const	mapDispatchToProps	=	dispatch	=>	({

		changeVisibility:	value	=>	dispatch(changeVisibility(value))

});

	mergeProps		combines	both		mapStateToProps		and		mapDispatchToProps	
and	the	props	send	to	the	component	and	gives	us	the	opportunity	to
accumulate	better	props.	Like	for	example	if	we	need	to	fire	two	actions
we	may	combine	them	to	a	single	prop	and	send	that	to	React.		options	
accepts	couple	of	settings	that	control	how	the	connection	works.

Redux

68

https://github.com/krasimir/react-in-patterns/blob/master/book/chapter-04/README.md#higher-order-component

Simple	counter	app	using	Redux
Let's	create	a	simple	counter	app	that	uses	all	the	APIs	above.

The	"Add"	and	"Subtract"	buttons	will	simply	change	a	value	in	our	store.
"Visible"	and	"Hidden"	will	control	its	visibility.

Modeling	the	actions

For	me,	every	Redux	feature	starts	with	modeling	the	action	types	and
defining	what	state	we	want	to	keep.	In	our	case	we	have	three
operations	going	on	-	adding,	subtracting	and	managing	visibility.	So	we
will	go	with	the	following:

const	ADD	=	'ADD';

const	SUBTRACT	=	'SUBTRACT';

const	CHANGE_VISIBILITY	=	'CHANGE_VISIBILITY';

const	add	=	()	=>	({	type:	ADD	});

const	subtract	=	()	=>	({	type:	SUBTRACT	});

const	changeVisibility	=	visible	=>	({

		type:	CHANGE_VISIBILITY,

		visible

});

Store	and	its	reducers

Redux

69

www.dbooks.org

https://www.dbooks.org/

There	is	something	that	we	didn't	talk	about	while	explaining	the	store
and	reducers.	We	usually	have	more	then	one	reducer	because	we
want	to	manage	multiple	things.	The	store	is	one	though	and	we	in
theory	have	only	one	state	object.	What	happens	in	most	of	the	apps
running	in	production	is	that	the	application	state	is	a	composition	of
slices.	Every	slice	represents	a	part	of	our	system.	In	this	very	small
example	we	have	counting	and	visibility	slices.	So	our	initial	state	looks
like	that:

const	initialState	=	{

		counter:	{

				value:	0

		},

		visible:	true

};

We	must	define	separate	reducers	for	both	parts.	This	is	to	introduce
some	flexibility	and	to	improve	the	readability	of	our	code.	Imagine	if	we
have	a	giant	app	with	ten	or	more	state	slices	and	we	keep	working
within	a	single	function.	It	will	be	too	difficult	to	manage.

Redux	comes	with	a	helper	that	allows	us	to	target	a	specific	part	of	the
state	and	assign	a	reducer	to	it.	It	is	called		combineReducers	:

import	{	createStore,	combineReducers	}	from	'redux';

const	rootReducer	=	combineReducers({

		counter:	function	A()	{	...	},

		visible:	function	B()	{	...	}

});

const	store	=	createStore(rootReducer);

Function		A		receives	only	the		counter		slice	as	a	state	and	needs	to
return	only	that	part.	Same	for		B	.	Accepts	a	boolean	(the	value	of
	visible)	and	must	return	a	boolean.

Redux

70

The	reducer	for	our	counter	slice	should	take	into	account	both	actions
	ADD		and		SUBTRACT		and	based	on	them	calculates	the	new		counter	
state.

const	counterReducer	=	function	(state,	action)	{

		if	(action.type	===	ADD)	{

				return	{	value:	state.value	+	1	};

		}	else	if	(action.type	===	SUBTRACT)	{

				return	{	value:	state.value	-	1	};

		}

		return	state	||	{	value:	0	};

};

Every	reducer	is	fired	at	least	once	when	the	store	is	initialized.	In	that
very	first	run	the		state		is		undefined		and	the		action		is		{	type:
"@@redux/INIT"}	.	In	this	case	our	reducer	should	return	the	initial	value
of	our	data	-		{	value:	0	}	.

The	reducer	for	the	visibility	is	pretty	similar	except	that	it	waits	for
	CHANGE_VISIBILITY		action:

const	visibilityReducer	=	function	(state,	action)	{

		if	(action.type	===	CHANGE_VISIBILITY)	{

				return	action.visible;

		}

		return	true;

};

And	at	the	end	we	have	to	pass	both	reducers	to		combineReducers		so
we	create	our		rootReducer	.

const	rootReducer	=	combineReducers({

		counter:	counterReducer,

		visible:	visibilityReducer

});

Redux

71

www.dbooks.org

https://www.dbooks.org/

Selectors

Before	moving	to	the	React	components	we	have	to	mention	the
concept	of	a	selector.	From	the	previous	section	we	know	that	our	state
is	usually	divided	into	different	parts.	We	have	dedicated	reducers	to
update	the	data	but	when	it	comes	to	fetching	it	we	still	have	a	single
object.	Here	is	the	place	where	the	selectors	come	in	handy.	The
selector	is	a	function	that	accepts	the	whole	state	object	and	extracts
only	the	information	that	we	need.	For	example	in	our	small	app	we
need	two	of	those:

const	getCounterValue	=	state	=>	state.counter.value;

const	getVisibility	=	state	=>	state.visible;

A	counter	app	is	too	small	to	see	the	real	power	of	writing	such	helpers.
However,	in	a	big	project	is	quite	different.	And	it	is	not	just	about	saving
a	few	lines	of	code.	Neither	is	about	readability.	Selectors	come	with
these	stuff	but	they	are	also	contextual	and	may	contain	logic.	Since
they	have	access	to	the	whole	state	they	are	able	to	answer	business
logic	related	questions.	Like	for	example	"Is	the	user	authorize	to	do	X
while	being	on	page	Y".	This	may	be	done	in	a	single	selector.

React	components

Let's	first	deal	with	the	UI	that	manages	the	visibility	of	the	counter.

function	Visibility({	changeVisibility	})	{

		return	(

				<div>

						<button	onClick={	()	=>	changeVisibility(true)	}>

								Visible

						</button>

						<button	onClick={	()	=>	changeVisibility(false)	}>

								Hidden

						</button>

				</div>

Redux

72

);

}

const	VisibilityConnected	=	connect(

		null,

		dispatch	=>	({

				changeVisibility:	value	=>	dispatch(changeVisibility(value))

		})

)(Visibility);

We	have	two	buttons		Visible		and		Hidden	.	They	both	fire
	CHANGE_VISIBILITY		action	but	the	first	one	passes		true		as	a	value
while	the	second	one		false	.	The		VisibilityConnected		component
class	gets	created	as	a	result	of	the	wiring	done	via	Redux's		connect	.
Notice	that	we	pass		null		as		mapStateToProps		because	we	don't	need
any	of	the	data	in	the	store.	We	just	need	to		dispatch		an	action.

The	second	component	is	slightly	more	complicated.	It	is	named
	Counter		and	renders	two	buttons	and	the	counter	value.

function	Counter({	value,	add,	subtract	})	{

		return	(

				<div>

						<p>Value:	{	value	}</p>

						<button	onClick={	add	}>Add</button>

						<button	onClick={	subtract	}>Subtract</button>

				</div>

);

}

const	CounterConnected	=	connect(

		state	=>	({

				value:	getCounterValue(state)

		}),

		dispatch	=>	({

				add:	()	=>	dispatch(add()),

				subtract:	()	=>	dispatch(subtract())

		})

)(Counter);

Redux

73

www.dbooks.org

https://www.dbooks.org/

We	now	need	both		mapStateToProps		and		mapDispatchToProps		because
we	want	to	read	data	from	the	store	and	dispatch	actions.	Our
component	receives	three	props	-		value	,		add		and		subtract	.

The	very	last	bit	is	an		App		component	where	we	compose	the
application.

function	App({	visible	})	{

		return	(

				<div>

						<VisibilityConnected	/>

						{	visible	&&	<CounterConnected	/>	}

				</div>

);

}

const	AppConnected	=	connect(

		state	=>	({

				visible:	getVisibility(state)

		})

)(App);

We	again	need	to		connect		our	component	because	we	want	to	control
the	visibility	of	the	counter.	The		getVisibility		selector	returns	a
boolean	that	indicates	whether		CounterConnected		will	be	rendered	or
not.

Final	thoughts
Redux	is	a	wonderful	pattern.	Over	the	years	the	JavaScript	community
developed	the	idea	and	enhanced	it	with	couple	of	new	terms.	I	think	a
typical	redux	application	looks	more	like	this:

Redux

74

By	the	way	we	didn't	mention	the	side	effects	management.	It	is	a	whole
new	story	with	its	own	ideas	and	solutions.

Redux

75

www.dbooks.org

https://www.dbooks.org/

We	can	conclude	that	Redux	itself	is	a	pretty	simple	pattern.	It	teaches
very	useful	techniques	but	unfortunately	it	is	very	often	not	enough.
Sooner	or	later	we	have	to	introduce	more	concepts/patterns.	Which	of
course	is	not	that	bad.	We	just	have	to	plan	for	it.

Redux

76

Dependency	injection
Many	of	the	modules/components	that	we	write	have	dependencies.	A
proper	management	of	these	dependencies	is	critical	for	the	success	of
the	project.	There	is	a	technique	(most	people	consider	it	a	pattern)
called	dependency	injection	that	helps	solving	the	problem.

In	React	the	need	of	dependency	injector	is	easily	visible.	Let's	consider
the	following	application	tree:

//	Title.jsx

export	default	function	Title(props)	{

		return	<h1>{	props.title	}</h1>;

}

//	Header.jsx

import	Title	from	'./Title.jsx';

export	default	function	Header()	{

		return	(

				<header>

						<Title	/>

				</header>

);

}

//	App.jsx

import	Header	from	'./Header.jsx';

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	title:	'React	in	patterns'	};

		}

		render()	{

				return	<Header	/>;

		}

};

Dependency	injection

77

www.dbooks.org

http://krasimirtsonev.com/blog/article/Dependency-injection-in-JavaScript
https://www.dbooks.org/

The	string	"React	in	patterns"	should	somehow	reach	the		Title	
component.	The	direct	way	of	doing	this	is	to	pass	it	from		App		to
	Header		and	then		Header		pass	it	down	to		Title	.	However,	this	may
work	for	these	three	components	but	what	happens	if	there	are	multiple
properties	and	deeper	nesting.	Lots	of	components	will	act	as	proxy
passing	properties	to	their	children.

We	already	saw	how	the	higher-order	component	may	be	used	to	inject
data.	Let's	use	the	same	technique	to	inject	the		title		variable:

//	inject.jsx

const	title	=	'React	in	patterns';

export	default	function	inject(Component)	{

		return	class	Injector	extends	React.Component	{

				render()	{

						return	(

								<Component

										{...this.props}

										title={	title	}

								/>

)

				}

		};

}

//	-----------------------------------

//	Header.jsx

import	inject	from	'./inject.jsx';

import	Title	from	'./Title.jsx';

var	EnhancedTitle	=	inject(Title);

export	default	function	Header()	{

		return	(

				<header>

						<EnhancedTitle	/>

				</header>

);

}

Dependency	injection

78

https://krasimir.gitbooks.io/react-in-patterns/content/chapter-04/#higher-order-component

The		title		is	hidden	in	a	middle	layer	(higher-order	component)	where
we	pass	it	as	a	prop	to	the	original		Title		component.	That's	all	nice
but	it	solves	only	half	of	the	problem.	Now	we	don't	have	to	pass	the
	title		down	the	tree	but	how	this	data	reaches	the		inject.jsx		helper.

Using	React's	context	(prior	v.	16.3)
In	v16.3	React's	team	introduced	a	new	version	of	the	context	API	and	if
you	are	going	to	use	that	version	or	above	you'd	probably	skip	this
section.

React	has	the	concept	of	context.	The	context	is	something	that	every
React	component	has	access	to.	It's	something	like	an	event	bus	but	for
data.	A	single	store	which	we	access	from	everywhere.

//	a	place	where	we	will	define	the	context

var	context	=	{	title:	'React	in	patterns'	};

class	App	extends	React.Component	{

		getChildContext()	{

				return	context;

		}

		...

};

App.childContextTypes	=	{

		title:	React.PropTypes.string

};

//	a	place	where	we	use	the	context

class	Inject	extends	React.Component	{

		render()	{

				var	title	=	this.context.title;

				...

		}

}

Inject.contextTypes	=	{

		title:	React.PropTypes.string

};

Dependency	injection

79

www.dbooks.org

https://facebook.github.io/react/docs/context.html
https://github.com/krasimir/EventBus
https://www.dbooks.org/

Notice	that	we	have	to	specify	the	exact	signature	of	the	context	object.
With		childContextTypes		and		contextTypes	.	If	those	are	not	specified
then	the		context		object	will	be	empty.	That	can	be	a	little	bit	frustrating
because	we	may	have	lots	of	stuff	to	put	there.	That	is	why	it	is	a	good
practice	that	our		context		is	not	just	a	plain	object	but	it	has	an	interface
that	allows	us	to	store	and	retrieve	data.	For	example:

//	dependencies.js

export	default	{

		data:	{},

		get(key)	{

				return	this.data[key];

		},

		register(key,	value)	{

				this.data[key]	=	value;

		}

}

Then,	if	we	go	back	to	our	example,	the		App		component	may	look	like
that:

import	dependencies	from	'./dependencies';

dependencies.register('title',	'React	in	patterns');

class	App	extends	React.Component	{

		getChildContext()	{

				return	dependencies;

		}

		render()	{

				return	<Header	/>;

		}

};

App.childContextTypes	=	{

		data:	React.PropTypes.object,

		get:	React.PropTypes.func,

		register:	React.PropTypes.func

};

Dependency	injection

80

And	our		Title		component	gets	it's	data	through	the	context:

//	Title.jsx

export	default	class	Title	extends	React.Component	{

		render()	{

				return	<h1>{	this.context.get('title')	}</h1>

		}

}

Title.contextTypes	=	{

		data:	React.PropTypes.object,

		get:	React.PropTypes.func,

		register:	React.PropTypes.func

};

Ideally	we	don't	want	to	specify	the		contextTypes		every	time	when	we
need	an	access	to	the	context.	This	detail	may	be	wrapped	again	in	a
higher-order	component.	And	even	better,	we	may	write	an	utility
function	that	is	more	descriptive	and	helps	us	declare	the	exact	wiring.
I.e	instead	of	accessing	the	context	directly	with
	this.context.get('title')		we	ask	the	higher-order	component	to	get
what	we	need	and	pass	it	as	props	to	our	component.	For	example:

//	Title.jsx

import	wire	from	'./wire';

function	Title(props)	{

		return	<h1>{	props.title	}</h1>;

}

export	default	wire(Title,	['title'],	function	resolve(title)	{

		return	{	title	};

});

The		wire		function	accepts	a	React	component,	then	an	array	with	all
the	needed	dependencies	(which	are		register	ed	already)	and	then	a
function	which	I	like	to	call		mapper	.	It	receives	what	is	stored	in	the
context	as	a	raw	data	and	returns	an	object	which	is	later	used	as	props

Dependency	injection

81

www.dbooks.org

https://www.dbooks.org/

for	our	component	(Title).	In	this	example	we	just	pass	what	we	get	-
a		title		string	variable.	However,	in	a	real	app	this	could	be	a
collection	of	data	stores,	configuration	or	something	else.

Here	is	how	the		wire		function	looks	like:

export	default	function	wire(Component,	dependencies,	mapper)	{

		class	Inject	extends	React.Component	{

				render()	{

						var	resolved	=	dependencies.map(

								this.context.get.bind(this.context)

);

						var	props	=	mapper(...resolved);

						return	React.createElement(Component,	props);

				}

		}

		Inject.contextTypes	=	{

				data:	React.PropTypes.object,

				get:	React.PropTypes.func,

				register:	React.PropTypes.func

		};

		return	Inject;

};

	Inject		is	a	higher-order	component	that	gets	access	to	the	context
and	retrieves	all	the	items	listed	under		dependencies		array.	The
	mapper		is	a	function	receiving	the		context		data	and	transforms	it	to
props	for	our	component.

Using	React's	context	(v.	16.3	and
above)
For	years	the	context	API	was	not	really	recommended	by	Facebook.
They	mentioned	in	the	official	docs	that	the	API	is	not	stable	and	may
change.	And	that	is	exactly	what	happened.	In	the	version	16.3	we	got	a

Dependency	injection

82

new	one	which	I	think	is	more	natural	and	easy	to	work	with.

Let's	use	the	same	example	with	the	string	that	needs	to	reach	a
	<Title>		component.

We	will	start	by	defining	a	file	that	will	contain	our	context	initialization:

//	context.js

import	{	createContext	}	from	'react';

const	Context	=	createContext({});

export	const	Provider	=	Context.Provider;

export	const	Consumer	=	Context.Consumer;

	createContext		returns	an	object	that	has		.Provider		and		.Consumer	
properties.	Those	are	actually	valid	React	classes.	The		Provider	
accepts	our	context	in	the	form	of	a		value		prop.	The	consumer	is	used
to	access	the	context	and	basically	read	data	from	it.	And	because	they
usually	live	in	different	files	it	is	a	good	idea	to	create	a	single	place	for
their	initialization.

Let's	say	that	our		App		component	is	the	root	of	our	tree.	At	that	place
we	have	to	pass	the	context.

import	{	Provider	}	from	'./context';

const	context	=	{	title:	'React	In	Patterns'	};

class	App	extends	React.Component	{

		render()	{

				return	(

						<Provider	value={	context	}>

								<Header	/>

						</Provider>

);

		}

};

Dependency	injection

83

www.dbooks.org

https://www.dbooks.org/

The	wrapped	components	and	their	children	now	share	the	same
context.	The		<Title>		component	is	the	one	that	needs	the		title	
string	so	that	is	the	place	where	we	use	the		<Consumer>	.

import	{	Consumer	}	from	'./context';

function	Title()	{

		return	(

				<Consumer>{

						({	title	})	=>	<h1>Title:	{	title	}</h1>

				}</Consumer>

);

}

Notice	that	the		Consumer		class	uses	the	function	as	children	(render
prop)	pattern	to	deliver	the	context.

The	new	API	feels	easier	to	understand	and	eliminates	the	boilerplate.	It
is	still	pretty	new	but	looks	promising.	It	opens	a	whole	new	range	of
possibilities.

Using	the	module	system
If	we	don't	want	to	use	the	context	there	are	a	couple	of	other	ways	to
achieve	the	injection.	They	are	not	exactly	React	specific	but	worth
mentioning.	One	of	them	is	using	the	module	system.

As	we	know	the	typical	module	system	in	JavaScript	has	a	caching
mechanism.	It's	nicely	noted	in	the	Node's	documentation:

Modules	are	cached	after	the	first	time	they	are	loaded.	This
means	(among	other	things)	that	every	call	to	require('foo')	will	get
exactly	the	same	object	returned,	if	it	would	resolve	to	the	same
file.

Dependency	injection

84

https://nodejs.org/api/modules.html#modules_caching

Multiple	calls	to	require('foo')	may	not	cause	the	module	code	to
be	executed	multiple	times.	This	is	an	important	feature.	With	it,
"partially	done"	objects	can	be	returned,	thus	allowing	transitive
dependencies	to	be	loaded	even	when	they	would	cause	cycles.

How	is	that	helping	for	our	injection?	Well,	if	we	export	an	object	we	are
actually	exporting	a	singleton	and	every	other	module	that	imports	the
file	will	get	the	same	object.	This	allows	us	to		register		our
dependencies	and	later		fetch		them	in	another	file.

Let's	create	a	new	file	called		di.jsx		with	the	following	content:

var	dependencies	=	{};

export	function	register(key,	dependency)	{

		dependencies[key]	=	dependency;

}

export	function	fetch(key)	{

		if	(dependencies[key])	return	dependencies[key];

		throw	new	Error(`"${	key	}	is	not	registered	as	dependency.`);

}

export	function	wire(Component,	deps,	mapper)	{

		return	class	Injector	extends	React.Component	{

				constructor(props)	{

						super(props);

						this._resolvedDependencies	=	mapper(...deps.map(fetch));

				}

				render()	{

						return	(

								<Component

										{...this.state}

										{...this.props}

										{...this._resolvedDependencies}

								/>

);

				}

		};

}

Dependency	injection

85

www.dbooks.org

https://addyosmani.com/resources/essentialjsdesignpatterns/book/#singletonpatternjavascript
https://www.dbooks.org/

We'll	store	the	dependencies	in		dependencies		global	variable	(it's	global
for	our	module,	not	for	the	whole	application).	We	then	export	two
functions		register		and		fetch		that	write	and	read	entries.	It	looks	a
little	bit	like	implementing	setter	and	getter	against	a	simple	JavaScript
object.	Then	we	have	the		wire		function	that	accepts	our	React
component	and	returns	a	higher-order	component.	In	the	constructor	of
that	component	we	are	resolving	the	dependencies	and	later	while
rendering	the	original	component	we	pass	them	as	props.	We	follow	the
same	pattern	where	we	describe	what	we	need	(deps		argument)	and
extract	the	needed	props	with	a		mapper		function.

Having	the		di.jsx		helper	we	are	again	able	to	register	our
dependencies	at	the	entry	point	of	our	application	(app.jsx)	and	inject
them	wherever	(Title.jsx)	we	need.

Dependency	injection

86

https://krasimir.gitbooks.io/react-in-patterns/content/chapter-04/#higher-order-component

//	app.jsx

import	Header	from	'./Header.jsx';

import	{	register	}	from	'./di.jsx';

register('my-awesome-title',	'React	in	patterns');

class	App	extends	React.Component	{

		render()	{

				return	<Header	/>;

		}

};

//	-----------------------------------

//	Header.jsx

import	Title	from	'./Title.jsx';

export	default	function	Header()	{

		return	(

				<header>

						<Title	/>

				</header>

);

}

//	-----------------------------------

//	Title.jsx

import	{	wire	}	from	'./di.jsx';

var	Title	=	function(props)	{

		return	<h1>{	props.title	}</h1>;

};

export	default	wire(

		Title,

		['my-awesome-title'],

		title	=>	({	title	})

);

If	we	look	at	the		Title.jsx		file	we'll	see	that	the	actual	component	and
the	wiring	may	live	in	different	files.	That	way	the	component	and	the
mapper	function	become	easily	unit	testable.

Dependency	injection

87

www.dbooks.org

https://www.dbooks.org/

Final	thoughts
Dependency	injection	is	a	tough	problem.	Especially	in	JavaScript.	Lots
of	people	didn't	realize	that	but	putting	a	proper	dependency
management	is	a	key	process	of	every	development	cycle.	JavaScript
ecosystem	offers	different	tools	and	we	as	developers	should	pick	the
one	that	fits	in	our	needs.

Dependency	injection

88

Styling	React	components
React	is	a	view	layer.	As	such	it	kind	of	controls	the	markup	rendered	in
the	browser.	And	we	know	that	the	styling	with	CSS	is	tightly	connected
to	the	markup	on	the	page.	There	are	couple	of	approaches	for	styling
React	applications	and	in	this	section	we	will	go	through	the	most
popular	ones.

The	good	old	CSS	class
JSX	syntax	is	pretty	close	to	HTML	syntax.	As	such	we	have	almost	the
same	tag	attributes	and	we	may	still	style	using	CSS	classes.	Classes
which	are	defined	in	an	external		.css		file.	The	only	caveat	is	using
	className		and	not		class	.	For	example:

<h1	className='title'>Styling</h1>

Inline	styling
The	inline	styling	works	just	fine.	Similarly	to	HTML	we	are	free	to	pass
styles	directly	via	a		style		attribute.	However,	while	in	HTML	the	value
is	a	string,	in	JSX	it	must	be	an	object.

const	inlineStyles	=	{

		color:	'red',

		fontSize:	'10px',

		marginTop:	'2em',

		'border-top':	'solid	1px	#000'

};

<h2	style={	inlineStyles	}>Inline	styling</h2>

Styling

89

www.dbooks.org

https://www.dbooks.org/

Because	we	write	the	styles	in	JavaScript	we	have	some	limitations	from
a	syntax	point	of	view.	If	we	want	to	keep	the	original	CSS	property
names	we	have	to	put	them	in	quotes.	If	not	then	we	have	to	follow	the
camel	case	convention.	However,	writing	styles	in	JavaScript	is	quite
interesting	and	may	be	a	lot	more	flexible	than	the	plain	CSS.	Like	for
example	inheriting	of	styles:

const	theme	=	{

		fontFamily:	'Georgia',

		color:	'blue'

};

const	paragraphText	=	{

		...theme,

		fontSize:	'20px'

};

We	have	some	basic	styles	in		theme		and	with	mix	them	with	what	is	in
	paragraphText	.	Shortly,	we	are	able	to	use	the	whole	power	of
JavaScript	to	organize	our	CSS.	What	matters	at	the	end	is	that	we
generate	an	object	that	goes	to	the		style		attribute.

CSS	modules
CSS	modules	is	building	on	top	of	what	we	said	so	far.	If	we	don't	like
the	JavaScript	syntax	then	we	may	use	CSS	modules	and	we	will	be
able	to	write	plain	CSS.	Usually	this	library	plays	its	role	at	bundling
time.	It	is	possible	to	hook	it	as	part	of	the	transpilation	step	but	normally
is	distributed	as	a	build	system	plugin.

Here	is	a	quick	example	to	get	an	idea	how	it	works:

Styling

90

https://github.com/css-modules/css-modules/blob/master/docs/get-started.md

/*	style.css	*/

.title	{

		color:	green;

}

//	App.jsx

import	styles	from	"./style.css";

function	App()	{

		return	<h1	style={	styles.title	}>Hello	world</h1>;

}

That	is	not	possible	by	default	but	with	CSS	modules	we	may	import
directly	a	plain	CSS	file	and	use	the	classes	inside.

And	when	we	say	plain	CSS	we	don't	mean	that	it	is	exactly	like	the
normal	CSS.	It	supports	some	really	helpful	composition	techniques.	For
example:

.title	{

		composes:	mainColor	from	"./brand-colors.css";

}

Styled-components
Styled-components	took	another	direction.	Instead	of	inlining	styles	the
library	provides	a	React	component.	We	then	use	this	component	to
represent	a	specific	look	and	feel.	For	example,	we	may	create	a		Link	
component	that	has	certain	styling	and	use	that	instead	of	the		<a>		tag.

const	Link	=	styled.a`

		text-decoration:	none;

		padding:	4px;

		border:	solid	1px	#999;

		color:	black;

`;

Styling

91

www.dbooks.org

https://www.styled-components.com/
https://www.dbooks.org/

<Link	href='http://google.com'>Google</Link>

There	is	again	a	mechanism	for	extending	classes.	We	may	still	use	the
	Link		component	but	change	the	text	color	like	so:

const	AnotherLink	=	styled(Link)`

		color:	blue;

`;

<AnotherLink	href='http://facebook.com'>Facebook</AnotherLink>

For	me	styled-components	are	probably	by	far	the	most	interesting
approach	for	styling	in	React.	It	is	quite	easy	to	create	components	for
everything	and	forget	about	the	styling.	If	your	company	has	the
capacity	to	create	a	design	system	and	building	a	product	with	it	then
this	option	is	probably	the	most	suitable	one.

Final	thoughts
There	are	multiple	ways	to	style	your	React	application.	I	experienced	all
of	them	in	production	and	I	would	say	that	there	is	no	right	or	wrong.	As
most	of	the	stuff	in	JavaScript	today	you	have	to	pick	the	one	that	fits
better	in	your	context.

Styling

92

Third-party	integration
React	is	probably	one	of	the	best	choices	for	building	UI.	Good	design,
support	and	community.	However,	there	are	cases	where	we	want	to
use	an	external	service	or	we	want	to	integrate	something	completely
different.	We	all	know	that	React	works	heavily	with	the	actual	DOM	and
basically	controls	what's	rendered	on	the	screen.	That's	why	integrating
of	third-party	components	may	be	tricky.	In	this	section	we	will	see	how
to	mix	React	and	jQuery's	UI	plugin	and	do	it	safely.

The	example
I	picked	tag-it	jQuery	plugin	for	my	example.	It	transforms	an	unordered
list	to	input	field	for	managing	tags:

		JavaScript

		CSS

to:

To	make	it	work	we	have	to	include	jQuery,	jQuery	UI	and	the	tag-it
plugin	code.	It	works	like	that:

$('<dom	element	selector>').tagit();

We	select	a	DOM	element	and	call		tagit()	.

Integration	of	third-party	libraries

93

www.dbooks.org

https://github.com/aehlke/tag-it
https://www.dbooks.org/

Now,	let's	create	a	simple	React	app	that	will	use	the	plugin:

//	Tags.jsx

class	Tags	extends	React.Component	{

		componentDidMount()	{

				//	initialize	tagit

				$(this.refs.list).tagit();

		}

		render()	{

				return	(

						<ul	ref="list">

						{

								this.props.tags.map(

										(tag,	i)	=>	<li	key={	i	}>{	tag	}	

)

						}

						

);

		}

};

//	App.jsx

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{	tags:	['JavaScript',	'CSS']	};

		}

		render()	{

				return	(

						<div>

								<Tags	tags={	this.state.tags	}	/>

						</div>

);

		}

}

ReactDOM.render(<App	/>,	document.querySelector('#container'));

The	entry	point	is	our		App		class.	It	uses	the		Tags		component	that
displays	an	unordered	list	based	on	the	passed		tags		prop.	When
React	renders	the	list	on	the	screen	we	know	that	we	have	a				tag

Integration	of	third-party	libraries

94

so	we	can	hook	it	up	to	the	jQuery	plugin.

Force	a	single-render
The	very	first	thing	that	we	have	to	do	is	to	force	a	single-render	of	the
	Tags		component.	That	is	because	when	React	adds	the	elements	in
the	actual	DOM	we	want	to	pass	the	control	of	them	to	jQuery.	If	we	skip
this	both	React	and	jQuery	will	work	on	same	DOM	elements	without
knowing	for	each	other.	To	achieve	a	single-render	we	have	to	use	the
lifecycle	method		shouldComponentUpdate		like	so:

class	Tags	extends	React.Component	{

		shouldComponentUpdate()	{

				return	false;

		}

		...

By	always	returning		false		here	we	are	saying	that	our	component	will
never	re-render.	If	defined		shouldComponentUpdate		is	used	by	React	to
understand	whether	to	trigger		render		or	not.	That	is	ideal	for	our	case
because	we	want	to	place	the	markup	on	the	page	using	React	but	we
don't	want	to	rely	on	it	after	that.

Initializing	the	plugin
React	gives	us	an	API	for	accessing	actual	DOM	nodes.	We	have	to	use
the		ref		attribute	on	a	node	and	later	reach	that	node	via		this.refs	.
	componentDidMount		is	the	proper	lifecycle	method	for	initializing	the	tag-it
plugin.	That's	because	we	get	it	called	when	React	mounts	the	result	of
the		render		method.

Integration	of	third-party	libraries

95

www.dbooks.org

https://facebook.github.io/react/docs/refs-and-the-dom.html
https://www.dbooks.org/

class	Tags	extends	React.Component	{

		...

		componentDidMount()	{

				this.list	=	$(this.refs.list);

				this.list.tagit();

		}

		render()	{

				return	(

						<ul	ref='list'>

						{

								this.props.tags.map(

										(tag,	i)	=>	<li	key={	i	}>{	tag	}	

)

						}

						

);

		}

		...

The	code	above	together	with		shouldComponentUpdate		leads	to	React
rendering	the				with	two	items	and	then	tag-it	transforms	it	to	a
working	tag	editing	widget.

Controlling	the	plugin	using	React
Let's	say	that	we	want	to	programmatically	add	a	new	tag	to	the	already
running	tag-it	field.	Such	action	will	be	triggered	by	the	React
component	and	needs	to	use	the	jQuery	API.	We	have	to	find	a	way	to
communicate	data	to		Tags		component	but	still	keep	the	single-render
approach.

Integration	of	third-party	libraries

96

To	illustrate	the	whole	process	we	will	add	an	input	field	to	the		App	
class	and	a	button	which	if	clicked	will	pass	a	string	to		Tags	
component.

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this._addNewTag	=	this._addNewTag.bind(this);

				this.state	=	{

						tags:	['JavaScript',	'CSS'],

						newTag:	null

				};

		}

		_addNewTag()	{

				this.setState({	newTag:	this.refs.field.value	});

		}

		render()	{

				return	(

						<div>

								<p>Add	new	tag:</p>

								<div>

										<input	type='text'	ref='field'	/>

										<button	onClick={	this._addNewTag	}>Add</button>

								</div>

								<Tags

										tags={	this.state.tags	}

										newTag={	this.state.newTag	}	/>

						</div>

);

		}

}

We	use	the	internal	state	as	a	data	storage	for	the	value	of	the	newly
added	field.	Every	time	when	we	click	the	button	we	update	the	state
and	trigger	re-rendering	of		Tags		component.	However,	because	of
	shouldComponentUpdate		we	have	no	any	updates	on	the	screen.	The

Integration	of	third-party	libraries

97

www.dbooks.org

https://www.dbooks.org/

only	one	change	is	that	we	get	a	new	value	of	the		newTag		prop	which
may	be	captured	via	another	lifecycle	method	-
	componentWillReceiveProps	:

class	Tags	extends	React.Component	{

		...

		componentWillReceiveProps(newProps)	{

				this.list.tagit('createTag',	newProps.newTag);

		}

		...

	.tagit('createTag',	newProps.newTag)		is	a	pure	jQuery	code.
	componentWillReceiveProps		is	a	nice	place	for	calling	methods	of	the
third-party	library.

Here	is	the	full	code	of	the		Tags		component:

class	Tags	extends	React.Component	{

		componentDidMount()	{

				this.list	=	$(this.refs.list);

				this.list.tagit();

		}

		shouldComponentUpdate()	{

				return	false;

		}

		componentWillReceiveProps(newProps)	{

				this.list.tagit('createTag',	newProps.newTag);

		}

		render()	{

				return	(

						<ul	ref='list'>

						{

								this.props.tags.map(

										(tag,	i)	=>	<li	key={	i	}>{	tag	}	

)

						}

Integration	of	third-party	libraries

98

						

);

		}

};

Final	thoughts
Even	though	React	is	manipulating	the	DOM	tree	we	are	able	to
integrate	third-party	libraries	and	services.	The	available	lifecycle
methods	give	us	enough	control	on	the	rendering	process	so	they	are
the	perfect	bridge	between	React	and	non-React	code.

Integration	of	third-party	libraries

99

www.dbooks.org

https://www.dbooks.org/

React	and	separation	of
concerns
Years	ago	when	Facebook	announced	their	JSX	syntax	we	had	a	wave
of	comments	how	this	was	against	some	of	the	well	established	good
practices.	The	main	point	of	most	people	was	that	it	violates	the
separation	of	concerns.	They	said	that	React	and	its	JSX	are	mixing
HTML,	CSS	and	JavaScript	which	were	suppose	to	be	separated.

In	this	article	we	will	see	how	React	and	its	ecosystem	has	quite	good
separation	of	concerns.	We	will	prove	that	markup,	styles	and	logic	may
live	in	the	same	JavaScript	land	and	still	be	separated.

Styling
React	components	render	to	DOM	elements.	Nothing	stops	us	to	use
the	good	old		class		attribute	and	attach	a	CSS	class	to	the	produced
HTML	element.	The	only	one	difference	is	that	the	attribute	is	called
	className		instead	of		class	.	The	rest	still	works	which	means	that	if
we	want	we	may	put	our	styles	into	external		.css		files.	Following	this
approach	we	are	not	breaking	the	separation	of	concerns	principle	and
still	build	a	React	app	using	JSX.

//	assets/css/styles.css

.pageTitle	{

		color:	pink;

}

//	assets/js/app.js

function	PageTitle({	text	})	{

		return	<h1	className='pageTitle'>{	text	}</h1>;

}

React	and	separation	of	concerns

100

https://en.wikipedia.org/wiki/Separation_of_concerns#HTML,_CSS,_JavaScript

The	"problem"	became	a	problem	when	developers	started	talking	about
"CSS	in	JavaScript".	Back	in	2014	this	looked	weird	and	wrong.
However,	the	next	couple	of	years	showed	that	this	is	not	that	bad.	Let's
take	the	following	example:

function	UserCard({	name,	avatar	})	{

		const	cardStyles	=	{

				padding:	'1em',

				boxShadow:	'0px	0px	45px	0px	#000'

		};

		const	avatarStyles	=	{

				float:	'left',

				display:	'block',

				marginRight:	'1em'

		};

		return	(

				<div	style={cardStyles}>

						

						<p>{name}</p>

				</div>

);

}

This	is	the	pain	point.	The	place	where	we	are	mixing	CSS	and	markup
or	we	may	say	mixing	styling	and	structure.	To	solve	the	issue	let's	keep
	UserCard		still	responsible	for	the	structure,	but	extract	the	styling	out
into	dedicated	components		Card		and		Avatar	:

React	and	separation	of	concerns

101

www.dbooks.org

https://vimeo.com/116209150
https://www.dbooks.org/

function	Card({	children	})	{

		const	styles	=	{

				padding:	'1em',

				boxShadow:	'0px	0px	45px	0px	#000',

				maxWidth:	'200px'

		};

		return	<div	style={styles}>{children}</div>;

}

function	Avatar({	url	})	{

		const	styles	=	{

				float:	'left',

				display:	'block',

				marginRight:	'1em'

		};

		return	;

}

Then		UserCard		component	becomes	simpler	and	has	no	styling
concerns:

function	UserCard({	name,	avatar	})	{

		return	(

				<Card>

						<Avatar	url={avatar}	/>

						<p>{name}</p>

				</Card>

);

}

So,	as	we	can	see,	it	is	all	matter	of	composition.	React	even	makes	our
applications	more	compact	because	everything	is	defined	as	a	reusable
components	and	lives	in	the	same	context	-	JavaScript.

There	are	bunch	of	libraries	that	help	writing	maintainable	CSS	in
JavaScript	(and	to	be	more	specific	in	React	ecosystem).	I	have
experience	with	Glamorous	and	styled-components	and	they	both	work

React	and	separation	of	concerns

102

https://glamorous.rocks/
https://www.styled-components.com/

really	well.	The	result	of	such	libraries	is	usually	a	ready	for	use
component	that	encapsulates	the	styling	and	renders	a	specific	HTML
tag.

Logic
Very	often	we	write	logic	inside	our	React	components	which	is	more
then	clicking	a	button	and	showing	a	message.	The	snippet	below
demonstrates	a	component	that	fetches	data	from	a	fake	API	and
renders	users	on	the	screen.

class	App	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{

						loading:	false,

						users:	null,

						error:	null

				};

		}

		componentDidMount()	{

				this.setState({	loading:	true	},	()	=>	{

						fetch('https://jsonplaceholder.typicode.com/users')

								.then(response	=>	response.json())

								.then(users	=>	this.setState({	users,	loading:	false	}))

								.catch(error	=>	this.setState({	error,	loading:	false	}));

				});

		}

		render()	{

				const	{	loading,	users,	error	}	=	this.state;

				if	(isRequestInProgress)	return	<p>Loading</p>;

				if	(error)	return	<p>Ops,	sorry.	No	data	loaded.</p>;

				if	(users)	return	users.map(({	name	})	=>	<p>{name}</p>);

				return	null;

		}

}

React	and	separation	of	concerns

103

www.dbooks.org

https://www.dbooks.org/

Quite	a	lot	of	things	are	happening	isn't	it.	When	first	rendered	the
component	shows	nothing	-		null	.	Then	we	get	the	life-cycle
	componentDidMount		method	fired	where	we	set	the		loading		flag	to
	true		and	fire	the	API	request.	While	the	request	is	in	flight	we	display	a
paragraph	containing	the	text		"Loading"	.	In	the	end,	if	everything	is	ok
we	turn		loading		to	false	and	render	list	of	user	names.	In	case	of	error
we	display		"Ops,	sorry.	No	data	loaded"	.

Now	I	agree	that	the		App		component	is	kind	of	violating	the	separation
of	concerns.	It	contains	data	fetching	and	data	representation.	There	are
couple	of	ways	to	solve	this	problem	but	my	favorite	one	is	FaCC
(Function	as	Child	Components).	Let's	write	a		FetchUsers		component
that	will	take	care	for	the	API	request.

class	FetchUsers	extends	React.Component	{

		constructor(props)	{

				super(props);

				this.state	=	{

						loading:	false,

						users:	null,

						error:	null

				};

		}

		componentDidMount()	{

				this.setState({	loading:	true	},	()	=>	{

						fetch('https://jsonplaceholder.typicode.com/users')

								.then(response	=>	response.json())

								.then(users	=>	this.setState({	users,	loading:	false	}))

								.catch(error	=>	this.setState({	error,	loading:	false	}));

				});

		}

		render()	{

				const	{	loading,	users,	error	}	=	this.state;

				return	this.props.children({	loading,	users,	error	});

		}

}

React	and	separation	of	concerns

104

https://github.com/krasimir/react-in-patterns/blob/master/book/chapter-04/README.md#function-as-a-children-render-prop

The	very	first	thing	that	we	notice	is	that	the	constructor	and
	componentDidMount		method	are	just	copy-pasted	from	the		App	
component.	The	difference	is	that	we	render	nothing	(no	data
representation)	but	call	the		children		as	a	function	passing	the
status/result	of	the	request.	Having		FetchUsers		we	may	transform	our
	App		into	a	stateless	component:

function	App()	{

		return	(

				<FetchUsers>

						{({	loading,	users,	error	})	=>	{

								if	(loading)	return	<p>Loading</p>;

								if	(error)	return	<p>Ops,	sorry.	No	data	loaded.</p>;

								if	(users)	return	users.map(({	name	})	=>	<p>{name}</p>);

								return	null;

						}}

				</FetchUsers>

);

}

At	this	point	our	markup	is	separated	from	the	logic.	We	still	operate	with
the	same	data	and	as	a	bonus	we	have	this	reusable		FetchUsers	
component	that	may	be	dropped	anywhere.

Markup
JSX	syntax	is	following	the	XML/HTML	semantics	and	as	such	comes
with	a	huge	benefit	-	composability.	My	opinion	is	that	React	is	one	level
up	over	the	HTML	because	it	allows	us	to	group	complex	markup	into	a
single	component.	For	example	we	have	a		<header>		with	some		<h1>	,
	<nav>		and		<p>		tags	inside.	We	may	easily	create	a		<Header>	
component	and	put	all	those	bits	inside.	We	still	keep	them	together	but
now	they	are	easy	to	move	around.	Perhaps,	there	are	places	where	we
write	some	logic	directly	into	the	markup	like	so:

React	and	separation	of	concerns

105

www.dbooks.org

https://www.dbooks.org/

function	CallToActionButton({	service,	token	})	{

		return	<button	onClick={	()	=>	service.request(token)	}	/>;

}

<CallToAction	server={	service	}	token={	token	}	/>

In	such	cases	I	again	recommend	to	use	composition	and	remove	any
app	logic	concerns	out	of	the	presentation.

function	CallToActionButton({	onButtonClicked	})	{

		return	<button	onClick={	onButtonClicked	}	/>;

}

<CallToAction	server={	()	=>	service.request(token)	}	/>

It	is	just	a	matter	of	spotting	those	bits	and	change	them	on	time.

Conclusion
No,	I	don't	think	that	React	is	against	the	separation	of	concerns.	It	is	all
about	design	and	composition.	There	are	patterns	that	help	us	to
compose	and	logically	separate	our	apps.	We	can	still	write	well
organized	programs	with	clearly	defined	responsibilities.

React	and	separation	of	concerns

106

https://github.com/krasimir/react-in-patterns

Summary
React	became	one	of	the	most	popular	libraries	for	building	UIs.	It
comes	with	a	great	API	which	is	simple	and	powerful.	The	tricky	part
though	is	that	React	itself	is	not	always	enough	for	building	complex
applications.	There	are	concepts	that	we	must	know	to	make	it	right.
Design	patterns	that	are	introduced	by	the	community	and	work	well	at
scale.	This	book	teaches	most	of	those	patterns	in	a	slightly	opinionated
style.	I	hope	you	liked	it	:)

Summary

107

www.dbooks.org

https://www.dbooks.org/

	Introduction
	In brief
	Communication
	Event handlers
	Composition
	Controlled and uncontrolled inputs
	Presentational and container components
	One direction data flow
	Flux
	Redux
	Dependency injection
	Styling
	Integration of third-party libraries
	React and separation of concerns
	Summary

